1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the vector of instructions can be represented as a shuffle, like: 287 /// %x0 = extractelement <4 x i8> %x, i32 0 288 /// %x3 = extractelement <4 x i8> %x, i32 3 289 /// %y1 = extractelement <4 x i8> %y, i32 1 290 /// %y2 = extractelement <4 x i8> %y, i32 2 291 /// %x0x0 = mul i8 %x0, %x0 292 /// %x3x3 = mul i8 %x3, %x3 293 /// %y1y1 = mul i8 %y1, %y1 294 /// %y2y2 = mul i8 %y2, %y2 295 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 296 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 297 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 298 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 299 /// ret <4 x i8> %ins4 300 /// can be transformed into: 301 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 302 /// i32 6> 303 /// %2 = mul <4 x i8> %1, %1 304 /// ret <4 x i8> %2 305 /// We convert this initially to something like: 306 /// %x0 = extractelement <4 x i8> %x, i32 0 307 /// %x3 = extractelement <4 x i8> %x, i32 3 308 /// %y1 = extractelement <4 x i8> %y, i32 1 309 /// %y2 = extractelement <4 x i8> %y, i32 2 310 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 311 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 312 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 313 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 314 /// %5 = mul <4 x i8> %4, %4 315 /// %6 = extractelement <4 x i8> %5, i32 0 316 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 317 /// %7 = extractelement <4 x i8> %5, i32 1 318 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 319 /// %8 = extractelement <4 x i8> %5, i32 2 320 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 321 /// %9 = extractelement <4 x i8> %5, i32 3 322 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 323 /// ret <4 x i8> %ins4 324 /// InstCombiner transforms this into a shuffle and vector mul 325 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 326 /// TODO: Can we split off and reuse the shuffle mask detection from 327 /// TargetTransformInfo::getInstructionThroughput? 328 static Optional<TargetTransformInfo::ShuffleKind> 329 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 330 auto *EI0 = cast<ExtractElementInst>(VL[0]); 331 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 332 return None; 333 unsigned Size = 334 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 335 Value *Vec1 = nullptr; 336 Value *Vec2 = nullptr; 337 enum ShuffleMode { Unknown, Select, Permute }; 338 ShuffleMode CommonShuffleMode = Unknown; 339 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 340 auto *EI = cast<ExtractElementInst>(VL[I]); 341 auto *Vec = EI->getVectorOperand(); 342 // All vector operands must have the same number of vector elements. 343 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 344 return None; 345 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 346 if (!Idx) 347 return None; 348 // Undefined behavior if Idx is negative or >= Size. 349 if (Idx->getValue().uge(Size)) { 350 Mask.push_back(UndefMaskElem); 351 continue; 352 } 353 unsigned IntIdx = Idx->getValue().getZExtValue(); 354 Mask.push_back(IntIdx); 355 // We can extractelement from undef or poison vector. 356 if (isa<UndefValue>(Vec)) 357 continue; 358 // For correct shuffling we have to have at most 2 different vector operands 359 // in all extractelement instructions. 360 if (!Vec1 || Vec1 == Vec) 361 Vec1 = Vec; 362 else if (!Vec2 || Vec2 == Vec) 363 Vec2 = Vec; 364 else 365 return None; 366 if (CommonShuffleMode == Permute) 367 continue; 368 // If the extract index is not the same as the operation number, it is a 369 // permutation. 370 if (IntIdx != I) { 371 CommonShuffleMode = Permute; 372 continue; 373 } 374 CommonShuffleMode = Select; 375 } 376 // If we're not crossing lanes in different vectors, consider it as blending. 377 if (CommonShuffleMode == Select && Vec2) 378 return TargetTransformInfo::SK_Select; 379 // If Vec2 was never used, we have a permutation of a single vector, otherwise 380 // we have permutation of 2 vectors. 381 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 382 : TargetTransformInfo::SK_PermuteSingleSrc; 383 } 384 385 namespace { 386 387 /// Main data required for vectorization of instructions. 388 struct InstructionsState { 389 /// The very first instruction in the list with the main opcode. 390 Value *OpValue = nullptr; 391 392 /// The main/alternate instruction. 393 Instruction *MainOp = nullptr; 394 Instruction *AltOp = nullptr; 395 396 /// The main/alternate opcodes for the list of instructions. 397 unsigned getOpcode() const { 398 return MainOp ? MainOp->getOpcode() : 0; 399 } 400 401 unsigned getAltOpcode() const { 402 return AltOp ? AltOp->getOpcode() : 0; 403 } 404 405 /// Some of the instructions in the list have alternate opcodes. 406 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 407 408 bool isOpcodeOrAlt(Instruction *I) const { 409 unsigned CheckedOpcode = I->getOpcode(); 410 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 411 } 412 413 InstructionsState() = delete; 414 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 415 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 416 }; 417 418 } // end anonymous namespace 419 420 /// Chooses the correct key for scheduling data. If \p Op has the same (or 421 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 422 /// OpValue. 423 static Value *isOneOf(const InstructionsState &S, Value *Op) { 424 auto *I = dyn_cast<Instruction>(Op); 425 if (I && S.isOpcodeOrAlt(I)) 426 return Op; 427 return S.OpValue; 428 } 429 430 /// \returns true if \p Opcode is allowed as part of of the main/alternate 431 /// instruction for SLP vectorization. 432 /// 433 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 434 /// "shuffled out" lane would result in division by zero. 435 static bool isValidForAlternation(unsigned Opcode) { 436 if (Instruction::isIntDivRem(Opcode)) 437 return false; 438 439 return true; 440 } 441 442 /// \returns analysis of the Instructions in \p VL described in 443 /// InstructionsState, the Opcode that we suppose the whole list 444 /// could be vectorized even if its structure is diverse. 445 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 446 unsigned BaseIndex = 0) { 447 // Make sure these are all Instructions. 448 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 449 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 450 451 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 452 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 453 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 454 unsigned AltOpcode = Opcode; 455 unsigned AltIndex = BaseIndex; 456 457 // Check for one alternate opcode from another BinaryOperator. 458 // TODO - generalize to support all operators (types, calls etc.). 459 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 460 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 461 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 462 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 463 continue; 464 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 465 isValidForAlternation(Opcode)) { 466 AltOpcode = InstOpcode; 467 AltIndex = Cnt; 468 continue; 469 } 470 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 471 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 472 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 473 if (Ty0 == Ty1) { 474 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 475 continue; 476 if (Opcode == AltOpcode) { 477 assert(isValidForAlternation(Opcode) && 478 isValidForAlternation(InstOpcode) && 479 "Cast isn't safe for alternation, logic needs to be updated!"); 480 AltOpcode = InstOpcode; 481 AltIndex = Cnt; 482 continue; 483 } 484 } 485 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 486 continue; 487 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 488 } 489 490 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 491 cast<Instruction>(VL[AltIndex])); 492 } 493 494 /// \returns true if all of the values in \p VL have the same type or false 495 /// otherwise. 496 static bool allSameType(ArrayRef<Value *> VL) { 497 Type *Ty = VL[0]->getType(); 498 for (int i = 1, e = VL.size(); i < e; i++) 499 if (VL[i]->getType() != Ty) 500 return false; 501 502 return true; 503 } 504 505 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 506 static Optional<unsigned> getExtractIndex(Instruction *E) { 507 unsigned Opcode = E->getOpcode(); 508 assert((Opcode == Instruction::ExtractElement || 509 Opcode == Instruction::ExtractValue) && 510 "Expected extractelement or extractvalue instruction."); 511 if (Opcode == Instruction::ExtractElement) { 512 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 513 if (!CI) 514 return None; 515 return CI->getZExtValue(); 516 } 517 ExtractValueInst *EI = cast<ExtractValueInst>(E); 518 if (EI->getNumIndices() != 1) 519 return None; 520 return *EI->idx_begin(); 521 } 522 523 /// \returns True if in-tree use also needs extract. This refers to 524 /// possible scalar operand in vectorized instruction. 525 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 526 TargetLibraryInfo *TLI) { 527 unsigned Opcode = UserInst->getOpcode(); 528 switch (Opcode) { 529 case Instruction::Load: { 530 LoadInst *LI = cast<LoadInst>(UserInst); 531 return (LI->getPointerOperand() == Scalar); 532 } 533 case Instruction::Store: { 534 StoreInst *SI = cast<StoreInst>(UserInst); 535 return (SI->getPointerOperand() == Scalar); 536 } 537 case Instruction::Call: { 538 CallInst *CI = cast<CallInst>(UserInst); 539 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 540 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 541 if (hasVectorInstrinsicScalarOpd(ID, i)) 542 return (CI->getArgOperand(i) == Scalar); 543 } 544 LLVM_FALLTHROUGH; 545 } 546 default: 547 return false; 548 } 549 } 550 551 /// \returns the AA location that is being access by the instruction. 552 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 553 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 554 return MemoryLocation::get(SI); 555 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 556 return MemoryLocation::get(LI); 557 return MemoryLocation(); 558 } 559 560 /// \returns True if the instruction is not a volatile or atomic load/store. 561 static bool isSimple(Instruction *I) { 562 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 563 return LI->isSimple(); 564 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 565 return SI->isSimple(); 566 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 567 return !MI->isVolatile(); 568 return true; 569 } 570 571 /// Shuffles \p Mask in accordance with the given \p SubMask. 572 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 573 if (SubMask.empty()) 574 return; 575 if (Mask.empty()) { 576 Mask.append(SubMask.begin(), SubMask.end()); 577 return; 578 } 579 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 580 int TermValue = std::min(Mask.size(), SubMask.size()); 581 for (int I = 0, E = SubMask.size(); I < E; ++I) { 582 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 583 Mask[SubMask[I]] >= TermValue) 584 continue; 585 NewMask[I] = Mask[SubMask[I]]; 586 } 587 Mask.swap(NewMask); 588 } 589 590 /// Order may have elements assigned special value (size) which is out of 591 /// bounds. Such indices only appear on places which correspond to undef values 592 /// (see canReuseExtract for details) and used in order to avoid undef values 593 /// have effect on operands ordering. 594 /// The first loop below simply finds all unused indices and then the next loop 595 /// nest assigns these indices for undef values positions. 596 /// As an example below Order has two undef positions and they have assigned 597 /// values 3 and 7 respectively: 598 /// before: 6 9 5 4 9 2 1 0 599 /// after: 6 3 5 4 7 2 1 0 600 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 601 const unsigned Sz = Order.size(); 602 SmallBitVector UsedIndices(Sz); 603 SmallVector<int> MaskedIndices; 604 for (unsigned I = 0; I < Sz; ++I) { 605 if (Order[I] < Sz) 606 UsedIndices.set(Order[I]); 607 else 608 MaskedIndices.push_back(I); 609 } 610 if (MaskedIndices.empty()) 611 return; 612 SmallVector<int> AvailableIndices(MaskedIndices.size()); 613 unsigned Cnt = 0; 614 int Idx = UsedIndices.find_first(); 615 do { 616 AvailableIndices[Cnt] = Idx; 617 Idx = UsedIndices.find_next(Idx); 618 ++Cnt; 619 } while (Idx > 0); 620 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 621 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 622 Order[MaskedIndices[I]] = AvailableIndices[I]; 623 } 624 625 namespace llvm { 626 627 static void inversePermutation(ArrayRef<unsigned> Indices, 628 SmallVectorImpl<int> &Mask) { 629 Mask.clear(); 630 const unsigned E = Indices.size(); 631 Mask.resize(E, UndefMaskElem); 632 for (unsigned I = 0; I < E; ++I) 633 Mask[Indices[I]] = I; 634 } 635 636 /// \returns inserting index of InsertElement or InsertValue instruction, 637 /// using Offset as base offset for index. 638 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 639 int Index = Offset; 640 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 641 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 642 auto *VT = cast<FixedVectorType>(IE->getType()); 643 if (CI->getValue().uge(VT->getNumElements())) 644 return UndefMaskElem; 645 Index *= VT->getNumElements(); 646 Index += CI->getZExtValue(); 647 return Index; 648 } 649 if (isa<UndefValue>(IE->getOperand(2))) 650 return UndefMaskElem; 651 return None; 652 } 653 654 auto *IV = cast<InsertValueInst>(InsertInst); 655 Type *CurrentType = IV->getType(); 656 for (unsigned I : IV->indices()) { 657 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 658 Index *= ST->getNumElements(); 659 CurrentType = ST->getElementType(I); 660 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 661 Index *= AT->getNumElements(); 662 CurrentType = AT->getElementType(); 663 } else { 664 return None; 665 } 666 Index += I; 667 } 668 return Index; 669 } 670 671 /// Reorders the list of scalars in accordance with the given \p Order and then 672 /// the \p Mask. \p Order - is the original order of the scalars, need to 673 /// reorder scalars into an unordered state at first according to the given 674 /// order. Then the ordered scalars are shuffled once again in accordance with 675 /// the provided mask. 676 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 677 ArrayRef<int> Mask) { 678 assert(!Mask.empty() && "Expected non-empty mask."); 679 SmallVector<Value *> Prev(Scalars.size(), 680 UndefValue::get(Scalars.front()->getType())); 681 Prev.swap(Scalars); 682 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 683 if (Mask[I] != UndefMaskElem) 684 Scalars[Mask[I]] = Prev[I]; 685 } 686 687 namespace slpvectorizer { 688 689 /// Bottom Up SLP Vectorizer. 690 class BoUpSLP { 691 struct TreeEntry; 692 struct ScheduleData; 693 694 public: 695 using ValueList = SmallVector<Value *, 8>; 696 using InstrList = SmallVector<Instruction *, 16>; 697 using ValueSet = SmallPtrSet<Value *, 16>; 698 using StoreList = SmallVector<StoreInst *, 8>; 699 using ExtraValueToDebugLocsMap = 700 MapVector<Value *, SmallVector<Instruction *, 2>>; 701 using OrdersType = SmallVector<unsigned, 4>; 702 703 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 704 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 705 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 706 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 707 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 708 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 709 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 710 // Use the vector register size specified by the target unless overridden 711 // by a command-line option. 712 // TODO: It would be better to limit the vectorization factor based on 713 // data type rather than just register size. For example, x86 AVX has 714 // 256-bit registers, but it does not support integer operations 715 // at that width (that requires AVX2). 716 if (MaxVectorRegSizeOption.getNumOccurrences()) 717 MaxVecRegSize = MaxVectorRegSizeOption; 718 else 719 MaxVecRegSize = 720 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 721 .getFixedSize(); 722 723 if (MinVectorRegSizeOption.getNumOccurrences()) 724 MinVecRegSize = MinVectorRegSizeOption; 725 else 726 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 727 } 728 729 /// Vectorize the tree that starts with the elements in \p VL. 730 /// Returns the vectorized root. 731 Value *vectorizeTree(); 732 733 /// Vectorize the tree but with the list of externally used values \p 734 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 735 /// generated extractvalue instructions. 736 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 737 738 /// \returns the cost incurred by unwanted spills and fills, caused by 739 /// holding live values over call sites. 740 InstructionCost getSpillCost() const; 741 742 /// \returns the vectorization cost of the subtree that starts at \p VL. 743 /// A negative number means that this is profitable. 744 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 745 746 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 747 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 748 void buildTree(ArrayRef<Value *> Roots, 749 ArrayRef<Value *> UserIgnoreLst = None); 750 751 /// Builds external uses of the vectorized scalars, i.e. the list of 752 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 753 /// ExternallyUsedValues contains additional list of external uses to handle 754 /// vectorization of reductions. 755 void 756 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 757 758 /// Clear the internal data structures that are created by 'buildTree'. 759 void deleteTree() { 760 VectorizableTree.clear(); 761 ScalarToTreeEntry.clear(); 762 MustGather.clear(); 763 ExternalUses.clear(); 764 for (auto &Iter : BlocksSchedules) { 765 BlockScheduling *BS = Iter.second.get(); 766 BS->clear(); 767 } 768 MinBWs.clear(); 769 InstrElementSize.clear(); 770 } 771 772 unsigned getTreeSize() const { return VectorizableTree.size(); } 773 774 /// Perform LICM and CSE on the newly generated gather sequences. 775 void optimizeGatherSequence(); 776 777 /// Checks if the specified gather tree entry \p TE can be represented as a 778 /// shuffled vector entry + (possibly) permutation with other gathers. It 779 /// implements the checks only for possibly ordered scalars (Loads, 780 /// ExtractElement, ExtractValue), which can be part of the graph. 781 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 782 783 /// Reorders the current graph to the most profitable order starting from the 784 /// root node to the leaf nodes. The best order is chosen only from the nodes 785 /// of the same size (vectorization factor). Smaller nodes are considered 786 /// parts of subgraph with smaller VF and they are reordered independently. We 787 /// can make it because we still need to extend smaller nodes to the wider VF 788 /// and we can merge reordering shuffles with the widening shuffles. 789 void reorderTopToBottom(); 790 791 /// Reorders the current graph to the most profitable order starting from 792 /// leaves to the root. It allows to rotate small subgraphs and reduce the 793 /// number of reshuffles if the leaf nodes use the same order. In this case we 794 /// can merge the orders and just shuffle user node instead of shuffling its 795 /// operands. Plus, even the leaf nodes have different orders, it allows to 796 /// sink reordering in the graph closer to the root node and merge it later 797 /// during analysis. 798 void reorderBottomToTop(bool IgnoreReorder = false); 799 800 /// \return The vector element size in bits to use when vectorizing the 801 /// expression tree ending at \p V. If V is a store, the size is the width of 802 /// the stored value. Otherwise, the size is the width of the largest loaded 803 /// value reaching V. This method is used by the vectorizer to calculate 804 /// vectorization factors. 805 unsigned getVectorElementSize(Value *V); 806 807 /// Compute the minimum type sizes required to represent the entries in a 808 /// vectorizable tree. 809 void computeMinimumValueSizes(); 810 811 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 812 unsigned getMaxVecRegSize() const { 813 return MaxVecRegSize; 814 } 815 816 // \returns minimum vector register size as set by cl::opt. 817 unsigned getMinVecRegSize() const { 818 return MinVecRegSize; 819 } 820 821 unsigned getMinVF(unsigned Sz) const { 822 return std::max(2U, getMinVecRegSize() / Sz); 823 } 824 825 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 826 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 827 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 828 return MaxVF ? MaxVF : UINT_MAX; 829 } 830 831 /// Check if homogeneous aggregate is isomorphic to some VectorType. 832 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 833 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 834 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 835 /// 836 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 837 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 838 839 /// \returns True if the VectorizableTree is both tiny and not fully 840 /// vectorizable. We do not vectorize such trees. 841 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 842 843 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 844 /// can be load combined in the backend. Load combining may not be allowed in 845 /// the IR optimizer, so we do not want to alter the pattern. For example, 846 /// partially transforming a scalar bswap() pattern into vector code is 847 /// effectively impossible for the backend to undo. 848 /// TODO: If load combining is allowed in the IR optimizer, this analysis 849 /// may not be necessary. 850 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 851 852 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 853 /// can be load combined in the backend. Load combining may not be allowed in 854 /// the IR optimizer, so we do not want to alter the pattern. For example, 855 /// partially transforming a scalar bswap() pattern into vector code is 856 /// effectively impossible for the backend to undo. 857 /// TODO: If load combining is allowed in the IR optimizer, this analysis 858 /// may not be necessary. 859 bool isLoadCombineCandidate() const; 860 861 OptimizationRemarkEmitter *getORE() { return ORE; } 862 863 /// This structure holds any data we need about the edges being traversed 864 /// during buildTree_rec(). We keep track of: 865 /// (i) the user TreeEntry index, and 866 /// (ii) the index of the edge. 867 struct EdgeInfo { 868 EdgeInfo() = default; 869 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 870 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 871 /// The user TreeEntry. 872 TreeEntry *UserTE = nullptr; 873 /// The operand index of the use. 874 unsigned EdgeIdx = UINT_MAX; 875 #ifndef NDEBUG 876 friend inline raw_ostream &operator<<(raw_ostream &OS, 877 const BoUpSLP::EdgeInfo &EI) { 878 EI.dump(OS); 879 return OS; 880 } 881 /// Debug print. 882 void dump(raw_ostream &OS) const { 883 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 884 << " EdgeIdx:" << EdgeIdx << "}"; 885 } 886 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 887 #endif 888 }; 889 890 /// A helper data structure to hold the operands of a vector of instructions. 891 /// This supports a fixed vector length for all operand vectors. 892 class VLOperands { 893 /// For each operand we need (i) the value, and (ii) the opcode that it 894 /// would be attached to if the expression was in a left-linearized form. 895 /// This is required to avoid illegal operand reordering. 896 /// For example: 897 /// \verbatim 898 /// 0 Op1 899 /// |/ 900 /// Op1 Op2 Linearized + Op2 901 /// \ / ----------> |/ 902 /// - - 903 /// 904 /// Op1 - Op2 (0 + Op1) - Op2 905 /// \endverbatim 906 /// 907 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 908 /// 909 /// Another way to think of this is to track all the operations across the 910 /// path from the operand all the way to the root of the tree and to 911 /// calculate the operation that corresponds to this path. For example, the 912 /// path from Op2 to the root crosses the RHS of the '-', therefore the 913 /// corresponding operation is a '-' (which matches the one in the 914 /// linearized tree, as shown above). 915 /// 916 /// For lack of a better term, we refer to this operation as Accumulated 917 /// Path Operation (APO). 918 struct OperandData { 919 OperandData() = default; 920 OperandData(Value *V, bool APO, bool IsUsed) 921 : V(V), APO(APO), IsUsed(IsUsed) {} 922 /// The operand value. 923 Value *V = nullptr; 924 /// TreeEntries only allow a single opcode, or an alternate sequence of 925 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 926 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 927 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 928 /// (e.g., Add/Mul) 929 bool APO = false; 930 /// Helper data for the reordering function. 931 bool IsUsed = false; 932 }; 933 934 /// During operand reordering, we are trying to select the operand at lane 935 /// that matches best with the operand at the neighboring lane. Our 936 /// selection is based on the type of value we are looking for. For example, 937 /// if the neighboring lane has a load, we need to look for a load that is 938 /// accessing a consecutive address. These strategies are summarized in the 939 /// 'ReorderingMode' enumerator. 940 enum class ReorderingMode { 941 Load, ///< Matching loads to consecutive memory addresses 942 Opcode, ///< Matching instructions based on opcode (same or alternate) 943 Constant, ///< Matching constants 944 Splat, ///< Matching the same instruction multiple times (broadcast) 945 Failed, ///< We failed to create a vectorizable group 946 }; 947 948 using OperandDataVec = SmallVector<OperandData, 2>; 949 950 /// A vector of operand vectors. 951 SmallVector<OperandDataVec, 4> OpsVec; 952 953 const DataLayout &DL; 954 ScalarEvolution &SE; 955 const BoUpSLP &R; 956 957 /// \returns the operand data at \p OpIdx and \p Lane. 958 OperandData &getData(unsigned OpIdx, unsigned Lane) { 959 return OpsVec[OpIdx][Lane]; 960 } 961 962 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 963 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 964 return OpsVec[OpIdx][Lane]; 965 } 966 967 /// Clears the used flag for all entries. 968 void clearUsed() { 969 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 970 OpIdx != NumOperands; ++OpIdx) 971 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 972 ++Lane) 973 OpsVec[OpIdx][Lane].IsUsed = false; 974 } 975 976 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 977 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 978 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 979 } 980 981 // The hard-coded scores listed here are not very important. When computing 982 // the scores of matching one sub-tree with another, we are basically 983 // counting the number of values that are matching. So even if all scores 984 // are set to 1, we would still get a decent matching result. 985 // However, sometimes we have to break ties. For example we may have to 986 // choose between matching loads vs matching opcodes. This is what these 987 // scores are helping us with: they provide the order of preference. 988 989 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 990 static const int ScoreConsecutiveLoads = 3; 991 /// ExtractElementInst from same vector and consecutive indexes. 992 static const int ScoreConsecutiveExtracts = 3; 993 /// Constants. 994 static const int ScoreConstants = 2; 995 /// Instructions with the same opcode. 996 static const int ScoreSameOpcode = 2; 997 /// Instructions with alt opcodes (e.g, add + sub). 998 static const int ScoreAltOpcodes = 1; 999 /// Identical instructions (a.k.a. splat or broadcast). 1000 static const int ScoreSplat = 1; 1001 /// Matching with an undef is preferable to failing. 1002 static const int ScoreUndef = 1; 1003 /// Score for failing to find a decent match. 1004 static const int ScoreFail = 0; 1005 /// User exteranl to the vectorized code. 1006 static const int ExternalUseCost = 1; 1007 /// The user is internal but in a different lane. 1008 static const int UserInDiffLaneCost = ExternalUseCost; 1009 1010 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1011 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1012 ScalarEvolution &SE) { 1013 auto *LI1 = dyn_cast<LoadInst>(V1); 1014 auto *LI2 = dyn_cast<LoadInst>(V2); 1015 if (LI1 && LI2) { 1016 if (LI1->getParent() != LI2->getParent()) 1017 return VLOperands::ScoreFail; 1018 1019 Optional<int> Dist = getPointersDiff( 1020 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1021 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1022 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1023 : VLOperands::ScoreFail; 1024 } 1025 1026 auto *C1 = dyn_cast<Constant>(V1); 1027 auto *C2 = dyn_cast<Constant>(V2); 1028 if (C1 && C2) 1029 return VLOperands::ScoreConstants; 1030 1031 // Extracts from consecutive indexes of the same vector better score as 1032 // the extracts could be optimized away. 1033 Value *EV; 1034 ConstantInt *Ex1Idx, *Ex2Idx; 1035 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1036 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1037 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1038 return VLOperands::ScoreConsecutiveExtracts; 1039 1040 auto *I1 = dyn_cast<Instruction>(V1); 1041 auto *I2 = dyn_cast<Instruction>(V2); 1042 if (I1 && I2) { 1043 if (I1 == I2) 1044 return VLOperands::ScoreSplat; 1045 InstructionsState S = getSameOpcode({I1, I2}); 1046 // Note: Only consider instructions with <= 2 operands to avoid 1047 // complexity explosion. 1048 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1049 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1050 : VLOperands::ScoreSameOpcode; 1051 } 1052 1053 if (isa<UndefValue>(V2)) 1054 return VLOperands::ScoreUndef; 1055 1056 return VLOperands::ScoreFail; 1057 } 1058 1059 /// Holds the values and their lane that are taking part in the look-ahead 1060 /// score calculation. This is used in the external uses cost calculation. 1061 SmallDenseMap<Value *, int> InLookAheadValues; 1062 1063 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1064 /// either external to the vectorized code, or require shuffling. 1065 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1066 const std::pair<Value *, int> &RHS) { 1067 int Cost = 0; 1068 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1069 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1070 Value *V = Values[Idx].first; 1071 if (isa<Constant>(V)) { 1072 // Since this is a function pass, it doesn't make semantic sense to 1073 // walk the users of a subclass of Constant. The users could be in 1074 // another function, or even another module that happens to be in 1075 // the same LLVMContext. 1076 continue; 1077 } 1078 1079 // Calculate the absolute lane, using the minimum relative lane of LHS 1080 // and RHS as base and Idx as the offset. 1081 int Ln = std::min(LHS.second, RHS.second) + Idx; 1082 assert(Ln >= 0 && "Bad lane calculation"); 1083 unsigned UsersBudget = LookAheadUsersBudget; 1084 for (User *U : V->users()) { 1085 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1086 // The user is in the VectorizableTree. Check if we need to insert. 1087 auto It = llvm::find(UserTE->Scalars, U); 1088 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1089 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1090 assert(UserLn >= 0 && "Bad lane"); 1091 if (UserLn != Ln) 1092 Cost += UserInDiffLaneCost; 1093 } else { 1094 // Check if the user is in the look-ahead code. 1095 auto It2 = InLookAheadValues.find(U); 1096 if (It2 != InLookAheadValues.end()) { 1097 // The user is in the look-ahead code. Check the lane. 1098 if (It2->second != Ln) 1099 Cost += UserInDiffLaneCost; 1100 } else { 1101 // The user is neither in SLP tree nor in the look-ahead code. 1102 Cost += ExternalUseCost; 1103 } 1104 } 1105 // Limit the number of visited uses to cap compilation time. 1106 if (--UsersBudget == 0) 1107 break; 1108 } 1109 } 1110 return Cost; 1111 } 1112 1113 /// Go through the operands of \p LHS and \p RHS recursively until \p 1114 /// MaxLevel, and return the cummulative score. For example: 1115 /// \verbatim 1116 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1117 /// \ / \ / \ / \ / 1118 /// + + + + 1119 /// G1 G2 G3 G4 1120 /// \endverbatim 1121 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1122 /// each level recursively, accumulating the score. It starts from matching 1123 /// the additions at level 0, then moves on to the loads (level 1). The 1124 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1125 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1126 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1127 /// Please note that the order of the operands does not matter, as we 1128 /// evaluate the score of all profitable combinations of operands. In 1129 /// other words the score of G1 and G4 is the same as G1 and G2. This 1130 /// heuristic is based on ideas described in: 1131 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1132 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1133 /// Luís F. W. Góes 1134 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1135 const std::pair<Value *, int> &RHS, int CurrLevel, 1136 int MaxLevel) { 1137 1138 Value *V1 = LHS.first; 1139 Value *V2 = RHS.first; 1140 // Get the shallow score of V1 and V2. 1141 int ShallowScoreAtThisLevel = 1142 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1143 getExternalUsesCost(LHS, RHS)); 1144 int Lane1 = LHS.second; 1145 int Lane2 = RHS.second; 1146 1147 // If reached MaxLevel, 1148 // or if V1 and V2 are not instructions, 1149 // or if they are SPLAT, 1150 // or if they are not consecutive, early return the current cost. 1151 auto *I1 = dyn_cast<Instruction>(V1); 1152 auto *I2 = dyn_cast<Instruction>(V2); 1153 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1154 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1155 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1156 return ShallowScoreAtThisLevel; 1157 assert(I1 && I2 && "Should have early exited."); 1158 1159 // Keep track of in-tree values for determining the external-use cost. 1160 InLookAheadValues[V1] = Lane1; 1161 InLookAheadValues[V2] = Lane2; 1162 1163 // Contains the I2 operand indexes that got matched with I1 operands. 1164 SmallSet<unsigned, 4> Op2Used; 1165 1166 // Recursion towards the operands of I1 and I2. We are trying all possbile 1167 // operand pairs, and keeping track of the best score. 1168 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1169 OpIdx1 != NumOperands1; ++OpIdx1) { 1170 // Try to pair op1I with the best operand of I2. 1171 int MaxTmpScore = 0; 1172 unsigned MaxOpIdx2 = 0; 1173 bool FoundBest = false; 1174 // If I2 is commutative try all combinations. 1175 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1176 unsigned ToIdx = isCommutative(I2) 1177 ? I2->getNumOperands() 1178 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1179 assert(FromIdx <= ToIdx && "Bad index"); 1180 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1181 // Skip operands already paired with OpIdx1. 1182 if (Op2Used.count(OpIdx2)) 1183 continue; 1184 // Recursively calculate the cost at each level 1185 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1186 {I2->getOperand(OpIdx2), Lane2}, 1187 CurrLevel + 1, MaxLevel); 1188 // Look for the best score. 1189 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1190 MaxTmpScore = TmpScore; 1191 MaxOpIdx2 = OpIdx2; 1192 FoundBest = true; 1193 } 1194 } 1195 if (FoundBest) { 1196 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1197 Op2Used.insert(MaxOpIdx2); 1198 ShallowScoreAtThisLevel += MaxTmpScore; 1199 } 1200 } 1201 return ShallowScoreAtThisLevel; 1202 } 1203 1204 /// \Returns the look-ahead score, which tells us how much the sub-trees 1205 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1206 /// score. This helps break ties in an informed way when we cannot decide on 1207 /// the order of the operands by just considering the immediate 1208 /// predecessors. 1209 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1210 const std::pair<Value *, int> &RHS) { 1211 InLookAheadValues.clear(); 1212 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1213 } 1214 1215 // Search all operands in Ops[*][Lane] for the one that matches best 1216 // Ops[OpIdx][LastLane] and return its opreand index. 1217 // If no good match can be found, return None. 1218 Optional<unsigned> 1219 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1220 ArrayRef<ReorderingMode> ReorderingModes) { 1221 unsigned NumOperands = getNumOperands(); 1222 1223 // The operand of the previous lane at OpIdx. 1224 Value *OpLastLane = getData(OpIdx, LastLane).V; 1225 1226 // Our strategy mode for OpIdx. 1227 ReorderingMode RMode = ReorderingModes[OpIdx]; 1228 1229 // The linearized opcode of the operand at OpIdx, Lane. 1230 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1231 1232 // The best operand index and its score. 1233 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1234 // are using the score to differentiate between the two. 1235 struct BestOpData { 1236 Optional<unsigned> Idx = None; 1237 unsigned Score = 0; 1238 } BestOp; 1239 1240 // Iterate through all unused operands and look for the best. 1241 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1242 // Get the operand at Idx and Lane. 1243 OperandData &OpData = getData(Idx, Lane); 1244 Value *Op = OpData.V; 1245 bool OpAPO = OpData.APO; 1246 1247 // Skip already selected operands. 1248 if (OpData.IsUsed) 1249 continue; 1250 1251 // Skip if we are trying to move the operand to a position with a 1252 // different opcode in the linearized tree form. This would break the 1253 // semantics. 1254 if (OpAPO != OpIdxAPO) 1255 continue; 1256 1257 // Look for an operand that matches the current mode. 1258 switch (RMode) { 1259 case ReorderingMode::Load: 1260 case ReorderingMode::Constant: 1261 case ReorderingMode::Opcode: { 1262 bool LeftToRight = Lane > LastLane; 1263 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1264 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1265 unsigned Score = 1266 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1267 if (Score > BestOp.Score) { 1268 BestOp.Idx = Idx; 1269 BestOp.Score = Score; 1270 } 1271 break; 1272 } 1273 case ReorderingMode::Splat: 1274 if (Op == OpLastLane) 1275 BestOp.Idx = Idx; 1276 break; 1277 case ReorderingMode::Failed: 1278 return None; 1279 } 1280 } 1281 1282 if (BestOp.Idx) { 1283 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1284 return BestOp.Idx; 1285 } 1286 // If we could not find a good match return None. 1287 return None; 1288 } 1289 1290 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1291 /// reordering from. This is the one which has the least number of operands 1292 /// that can freely move about. 1293 unsigned getBestLaneToStartReordering() const { 1294 unsigned BestLane = 0; 1295 unsigned Min = UINT_MAX; 1296 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1297 ++Lane) { 1298 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1299 if (NumFreeOps < Min) { 1300 Min = NumFreeOps; 1301 BestLane = Lane; 1302 } 1303 } 1304 return BestLane; 1305 } 1306 1307 /// \Returns the maximum number of operands that are allowed to be reordered 1308 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1309 /// start operand reordering. 1310 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1311 unsigned CntTrue = 0; 1312 unsigned NumOperands = getNumOperands(); 1313 // Operands with the same APO can be reordered. We therefore need to count 1314 // how many of them we have for each APO, like this: Cnt[APO] = x. 1315 // Since we only have two APOs, namely true and false, we can avoid using 1316 // a map. Instead we can simply count the number of operands that 1317 // correspond to one of them (in this case the 'true' APO), and calculate 1318 // the other by subtracting it from the total number of operands. 1319 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1320 if (getData(OpIdx, Lane).APO) 1321 ++CntTrue; 1322 unsigned CntFalse = NumOperands - CntTrue; 1323 return std::max(CntTrue, CntFalse); 1324 } 1325 1326 /// Go through the instructions in VL and append their operands. 1327 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1328 assert(!VL.empty() && "Bad VL"); 1329 assert((empty() || VL.size() == getNumLanes()) && 1330 "Expected same number of lanes"); 1331 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1332 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1333 OpsVec.resize(NumOperands); 1334 unsigned NumLanes = VL.size(); 1335 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1336 OpsVec[OpIdx].resize(NumLanes); 1337 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1338 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1339 // Our tree has just 3 nodes: the root and two operands. 1340 // It is therefore trivial to get the APO. We only need to check the 1341 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1342 // RHS operand. The LHS operand of both add and sub is never attached 1343 // to an inversese operation in the linearized form, therefore its APO 1344 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1345 1346 // Since operand reordering is performed on groups of commutative 1347 // operations or alternating sequences (e.g., +, -), we can safely 1348 // tell the inverse operations by checking commutativity. 1349 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1350 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1351 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1352 APO, false}; 1353 } 1354 } 1355 } 1356 1357 /// \returns the number of operands. 1358 unsigned getNumOperands() const { return OpsVec.size(); } 1359 1360 /// \returns the number of lanes. 1361 unsigned getNumLanes() const { return OpsVec[0].size(); } 1362 1363 /// \returns the operand value at \p OpIdx and \p Lane. 1364 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1365 return getData(OpIdx, Lane).V; 1366 } 1367 1368 /// \returns true if the data structure is empty. 1369 bool empty() const { return OpsVec.empty(); } 1370 1371 /// Clears the data. 1372 void clear() { OpsVec.clear(); } 1373 1374 /// \Returns true if there are enough operands identical to \p Op to fill 1375 /// the whole vector. 1376 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1377 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1378 bool OpAPO = getData(OpIdx, Lane).APO; 1379 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1380 if (Ln == Lane) 1381 continue; 1382 // This is set to true if we found a candidate for broadcast at Lane. 1383 bool FoundCandidate = false; 1384 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1385 OperandData &Data = getData(OpI, Ln); 1386 if (Data.APO != OpAPO || Data.IsUsed) 1387 continue; 1388 if (Data.V == Op) { 1389 FoundCandidate = true; 1390 Data.IsUsed = true; 1391 break; 1392 } 1393 } 1394 if (!FoundCandidate) 1395 return false; 1396 } 1397 return true; 1398 } 1399 1400 public: 1401 /// Initialize with all the operands of the instruction vector \p RootVL. 1402 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1403 ScalarEvolution &SE, const BoUpSLP &R) 1404 : DL(DL), SE(SE), R(R) { 1405 // Append all the operands of RootVL. 1406 appendOperandsOfVL(RootVL); 1407 } 1408 1409 /// \Returns a value vector with the operands across all lanes for the 1410 /// opearnd at \p OpIdx. 1411 ValueList getVL(unsigned OpIdx) const { 1412 ValueList OpVL(OpsVec[OpIdx].size()); 1413 assert(OpsVec[OpIdx].size() == getNumLanes() && 1414 "Expected same num of lanes across all operands"); 1415 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1416 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1417 return OpVL; 1418 } 1419 1420 // Performs operand reordering for 2 or more operands. 1421 // The original operands are in OrigOps[OpIdx][Lane]. 1422 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1423 void reorder() { 1424 unsigned NumOperands = getNumOperands(); 1425 unsigned NumLanes = getNumLanes(); 1426 // Each operand has its own mode. We are using this mode to help us select 1427 // the instructions for each lane, so that they match best with the ones 1428 // we have selected so far. 1429 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1430 1431 // This is a greedy single-pass algorithm. We are going over each lane 1432 // once and deciding on the best order right away with no back-tracking. 1433 // However, in order to increase its effectiveness, we start with the lane 1434 // that has operands that can move the least. For example, given the 1435 // following lanes: 1436 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1437 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1438 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1439 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1440 // we will start at Lane 1, since the operands of the subtraction cannot 1441 // be reordered. Then we will visit the rest of the lanes in a circular 1442 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1443 1444 // Find the first lane that we will start our search from. 1445 unsigned FirstLane = getBestLaneToStartReordering(); 1446 1447 // Initialize the modes. 1448 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1449 Value *OpLane0 = getValue(OpIdx, FirstLane); 1450 // Keep track if we have instructions with all the same opcode on one 1451 // side. 1452 if (isa<LoadInst>(OpLane0)) 1453 ReorderingModes[OpIdx] = ReorderingMode::Load; 1454 else if (isa<Instruction>(OpLane0)) { 1455 // Check if OpLane0 should be broadcast. 1456 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1457 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1458 else 1459 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1460 } 1461 else if (isa<Constant>(OpLane0)) 1462 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1463 else if (isa<Argument>(OpLane0)) 1464 // Our best hope is a Splat. It may save some cost in some cases. 1465 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1466 else 1467 // NOTE: This should be unreachable. 1468 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1469 } 1470 1471 // If the initial strategy fails for any of the operand indexes, then we 1472 // perform reordering again in a second pass. This helps avoid assigning 1473 // high priority to the failed strategy, and should improve reordering for 1474 // the non-failed operand indexes. 1475 for (int Pass = 0; Pass != 2; ++Pass) { 1476 // Skip the second pass if the first pass did not fail. 1477 bool StrategyFailed = false; 1478 // Mark all operand data as free to use. 1479 clearUsed(); 1480 // We keep the original operand order for the FirstLane, so reorder the 1481 // rest of the lanes. We are visiting the nodes in a circular fashion, 1482 // using FirstLane as the center point and increasing the radius 1483 // distance. 1484 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1485 // Visit the lane on the right and then the lane on the left. 1486 for (int Direction : {+1, -1}) { 1487 int Lane = FirstLane + Direction * Distance; 1488 if (Lane < 0 || Lane >= (int)NumLanes) 1489 continue; 1490 int LastLane = Lane - Direction; 1491 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1492 "Out of bounds"); 1493 // Look for a good match for each operand. 1494 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1495 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1496 Optional<unsigned> BestIdx = 1497 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1498 // By not selecting a value, we allow the operands that follow to 1499 // select a better matching value. We will get a non-null value in 1500 // the next run of getBestOperand(). 1501 if (BestIdx) { 1502 // Swap the current operand with the one returned by 1503 // getBestOperand(). 1504 swap(OpIdx, BestIdx.getValue(), Lane); 1505 } else { 1506 // We failed to find a best operand, set mode to 'Failed'. 1507 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1508 // Enable the second pass. 1509 StrategyFailed = true; 1510 } 1511 } 1512 } 1513 } 1514 // Skip second pass if the strategy did not fail. 1515 if (!StrategyFailed) 1516 break; 1517 } 1518 } 1519 1520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1521 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1522 switch (RMode) { 1523 case ReorderingMode::Load: 1524 return "Load"; 1525 case ReorderingMode::Opcode: 1526 return "Opcode"; 1527 case ReorderingMode::Constant: 1528 return "Constant"; 1529 case ReorderingMode::Splat: 1530 return "Splat"; 1531 case ReorderingMode::Failed: 1532 return "Failed"; 1533 } 1534 llvm_unreachable("Unimplemented Reordering Type"); 1535 } 1536 1537 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1538 raw_ostream &OS) { 1539 return OS << getModeStr(RMode); 1540 } 1541 1542 /// Debug print. 1543 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1544 printMode(RMode, dbgs()); 1545 } 1546 1547 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1548 return printMode(RMode, OS); 1549 } 1550 1551 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1552 const unsigned Indent = 2; 1553 unsigned Cnt = 0; 1554 for (const OperandDataVec &OpDataVec : OpsVec) { 1555 OS << "Operand " << Cnt++ << "\n"; 1556 for (const OperandData &OpData : OpDataVec) { 1557 OS.indent(Indent) << "{"; 1558 if (Value *V = OpData.V) 1559 OS << *V; 1560 else 1561 OS << "null"; 1562 OS << ", APO:" << OpData.APO << "}\n"; 1563 } 1564 OS << "\n"; 1565 } 1566 return OS; 1567 } 1568 1569 /// Debug print. 1570 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1571 #endif 1572 }; 1573 1574 /// Checks if the instruction is marked for deletion. 1575 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1576 1577 /// Marks values operands for later deletion by replacing them with Undefs. 1578 void eraseInstructions(ArrayRef<Value *> AV); 1579 1580 ~BoUpSLP(); 1581 1582 private: 1583 /// Checks if all users of \p I are the part of the vectorization tree. 1584 bool areAllUsersVectorized(Instruction *I, 1585 ArrayRef<Value *> VectorizedVals) const; 1586 1587 /// \returns the cost of the vectorizable entry. 1588 InstructionCost getEntryCost(const TreeEntry *E, 1589 ArrayRef<Value *> VectorizedVals); 1590 1591 /// This is the recursive part of buildTree. 1592 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1593 const EdgeInfo &EI); 1594 1595 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1596 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1597 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1598 /// returns false, setting \p CurrentOrder to either an empty vector or a 1599 /// non-identity permutation that allows to reuse extract instructions. 1600 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1601 SmallVectorImpl<unsigned> &CurrentOrder) const; 1602 1603 /// Vectorize a single entry in the tree. 1604 Value *vectorizeTree(TreeEntry *E); 1605 1606 /// Vectorize a single entry in the tree, starting in \p VL. 1607 Value *vectorizeTree(ArrayRef<Value *> VL); 1608 1609 /// \returns the scalarization cost for this type. Scalarization in this 1610 /// context means the creation of vectors from a group of scalars. If \p 1611 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1612 /// vector elements. 1613 InstructionCost getGatherCost(FixedVectorType *Ty, 1614 const DenseSet<unsigned> &ShuffledIndices, 1615 bool NeedToShuffle) const; 1616 1617 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1618 /// tree entries. 1619 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1620 /// previous tree entries. \p Mask is filled with the shuffle mask. 1621 Optional<TargetTransformInfo::ShuffleKind> 1622 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1623 SmallVectorImpl<const TreeEntry *> &Entries); 1624 1625 /// \returns the scalarization cost for this list of values. Assuming that 1626 /// this subtree gets vectorized, we may need to extract the values from the 1627 /// roots. This method calculates the cost of extracting the values. 1628 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1629 1630 /// Set the Builder insert point to one after the last instruction in 1631 /// the bundle 1632 void setInsertPointAfterBundle(const TreeEntry *E); 1633 1634 /// \returns a vector from a collection of scalars in \p VL. 1635 Value *gather(ArrayRef<Value *> VL); 1636 1637 /// \returns whether the VectorizableTree is fully vectorizable and will 1638 /// be beneficial even the tree height is tiny. 1639 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1640 1641 /// Reorder commutative or alt operands to get better probability of 1642 /// generating vectorized code. 1643 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1644 SmallVectorImpl<Value *> &Left, 1645 SmallVectorImpl<Value *> &Right, 1646 const DataLayout &DL, 1647 ScalarEvolution &SE, 1648 const BoUpSLP &R); 1649 struct TreeEntry { 1650 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1651 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1652 1653 /// \returns true if the scalars in VL are equal to this entry. 1654 bool isSame(ArrayRef<Value *> VL) const { 1655 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1656 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1657 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1658 return VL.size() == Mask.size() && 1659 std::equal(VL.begin(), VL.end(), Mask.begin(), 1660 [Scalars](Value *V, int Idx) { 1661 return (isa<UndefValue>(V) && 1662 Idx == UndefMaskElem) || 1663 (Idx != UndefMaskElem && V == Scalars[Idx]); 1664 }); 1665 }; 1666 if (!ReorderIndices.empty()) { 1667 // TODO: implement matching if the nodes are just reordered, still can 1668 // treat the vector as the same if the list of scalars matches VL 1669 // directly, without reordering. 1670 SmallVector<int> Mask; 1671 inversePermutation(ReorderIndices, Mask); 1672 if (VL.size() == Scalars.size()) 1673 return IsSame(Scalars, Mask); 1674 if (VL.size() == ReuseShuffleIndices.size()) { 1675 ::addMask(Mask, ReuseShuffleIndices); 1676 return IsSame(Scalars, Mask); 1677 } 1678 return false; 1679 } 1680 return IsSame(Scalars, ReuseShuffleIndices); 1681 } 1682 1683 /// A vector of scalars. 1684 ValueList Scalars; 1685 1686 /// The Scalars are vectorized into this value. It is initialized to Null. 1687 Value *VectorizedValue = nullptr; 1688 1689 /// Do we need to gather this sequence or vectorize it 1690 /// (either with vector instruction or with scatter/gather 1691 /// intrinsics for store/load)? 1692 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1693 EntryState State; 1694 1695 /// Does this sequence require some shuffling? 1696 SmallVector<int, 4> ReuseShuffleIndices; 1697 1698 /// Does this entry require reordering? 1699 SmallVector<unsigned, 4> ReorderIndices; 1700 1701 /// Points back to the VectorizableTree. 1702 /// 1703 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1704 /// to be a pointer and needs to be able to initialize the child iterator. 1705 /// Thus we need a reference back to the container to translate the indices 1706 /// to entries. 1707 VecTreeTy &Container; 1708 1709 /// The TreeEntry index containing the user of this entry. We can actually 1710 /// have multiple users so the data structure is not truly a tree. 1711 SmallVector<EdgeInfo, 1> UserTreeIndices; 1712 1713 /// The index of this treeEntry in VectorizableTree. 1714 int Idx = -1; 1715 1716 private: 1717 /// The operands of each instruction in each lane Operands[op_index][lane]. 1718 /// Note: This helps avoid the replication of the code that performs the 1719 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1720 SmallVector<ValueList, 2> Operands; 1721 1722 /// The main/alternate instruction. 1723 Instruction *MainOp = nullptr; 1724 Instruction *AltOp = nullptr; 1725 1726 public: 1727 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1728 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1729 if (Operands.size() < OpIdx + 1) 1730 Operands.resize(OpIdx + 1); 1731 assert(Operands[OpIdx].empty() && "Already resized?"); 1732 Operands[OpIdx].resize(Scalars.size()); 1733 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1734 Operands[OpIdx][Lane] = OpVL[Lane]; 1735 } 1736 1737 /// Set the operands of this bundle in their original order. 1738 void setOperandsInOrder() { 1739 assert(Operands.empty() && "Already initialized?"); 1740 auto *I0 = cast<Instruction>(Scalars[0]); 1741 Operands.resize(I0->getNumOperands()); 1742 unsigned NumLanes = Scalars.size(); 1743 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1744 OpIdx != NumOperands; ++OpIdx) { 1745 Operands[OpIdx].resize(NumLanes); 1746 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1747 auto *I = cast<Instruction>(Scalars[Lane]); 1748 assert(I->getNumOperands() == NumOperands && 1749 "Expected same number of operands"); 1750 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1751 } 1752 } 1753 } 1754 1755 /// Reorders operands of the node to the given mask \p Mask. 1756 void reorderOperands(ArrayRef<int> Mask) { 1757 for (ValueList &Operand : Operands) 1758 reorderScalars(Operand, Mask); 1759 } 1760 1761 /// \returns the \p OpIdx operand of this TreeEntry. 1762 ValueList &getOperand(unsigned OpIdx) { 1763 assert(OpIdx < Operands.size() && "Off bounds"); 1764 return Operands[OpIdx]; 1765 } 1766 1767 /// \returns the number of operands. 1768 unsigned getNumOperands() const { return Operands.size(); } 1769 1770 /// \return the single \p OpIdx operand. 1771 Value *getSingleOperand(unsigned OpIdx) const { 1772 assert(OpIdx < Operands.size() && "Off bounds"); 1773 assert(!Operands[OpIdx].empty() && "No operand available"); 1774 return Operands[OpIdx][0]; 1775 } 1776 1777 /// Some of the instructions in the list have alternate opcodes. 1778 bool isAltShuffle() const { 1779 return getOpcode() != getAltOpcode(); 1780 } 1781 1782 bool isOpcodeOrAlt(Instruction *I) const { 1783 unsigned CheckedOpcode = I->getOpcode(); 1784 return (getOpcode() == CheckedOpcode || 1785 getAltOpcode() == CheckedOpcode); 1786 } 1787 1788 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1789 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1790 /// \p OpValue. 1791 Value *isOneOf(Value *Op) const { 1792 auto *I = dyn_cast<Instruction>(Op); 1793 if (I && isOpcodeOrAlt(I)) 1794 return Op; 1795 return MainOp; 1796 } 1797 1798 void setOperations(const InstructionsState &S) { 1799 MainOp = S.MainOp; 1800 AltOp = S.AltOp; 1801 } 1802 1803 Instruction *getMainOp() const { 1804 return MainOp; 1805 } 1806 1807 Instruction *getAltOp() const { 1808 return AltOp; 1809 } 1810 1811 /// The main/alternate opcodes for the list of instructions. 1812 unsigned getOpcode() const { 1813 return MainOp ? MainOp->getOpcode() : 0; 1814 } 1815 1816 unsigned getAltOpcode() const { 1817 return AltOp ? AltOp->getOpcode() : 0; 1818 } 1819 1820 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1821 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1822 int findLaneForValue(Value *V) const { 1823 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1824 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1825 if (!ReorderIndices.empty()) 1826 FoundLane = ReorderIndices[FoundLane]; 1827 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1828 if (!ReuseShuffleIndices.empty()) { 1829 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1830 find(ReuseShuffleIndices, FoundLane)); 1831 } 1832 return FoundLane; 1833 } 1834 1835 #ifndef NDEBUG 1836 /// Debug printer. 1837 LLVM_DUMP_METHOD void dump() const { 1838 dbgs() << Idx << ".\n"; 1839 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1840 dbgs() << "Operand " << OpI << ":\n"; 1841 for (const Value *V : Operands[OpI]) 1842 dbgs().indent(2) << *V << "\n"; 1843 } 1844 dbgs() << "Scalars: \n"; 1845 for (Value *V : Scalars) 1846 dbgs().indent(2) << *V << "\n"; 1847 dbgs() << "State: "; 1848 switch (State) { 1849 case Vectorize: 1850 dbgs() << "Vectorize\n"; 1851 break; 1852 case ScatterVectorize: 1853 dbgs() << "ScatterVectorize\n"; 1854 break; 1855 case NeedToGather: 1856 dbgs() << "NeedToGather\n"; 1857 break; 1858 } 1859 dbgs() << "MainOp: "; 1860 if (MainOp) 1861 dbgs() << *MainOp << "\n"; 1862 else 1863 dbgs() << "NULL\n"; 1864 dbgs() << "AltOp: "; 1865 if (AltOp) 1866 dbgs() << *AltOp << "\n"; 1867 else 1868 dbgs() << "NULL\n"; 1869 dbgs() << "VectorizedValue: "; 1870 if (VectorizedValue) 1871 dbgs() << *VectorizedValue << "\n"; 1872 else 1873 dbgs() << "NULL\n"; 1874 dbgs() << "ReuseShuffleIndices: "; 1875 if (ReuseShuffleIndices.empty()) 1876 dbgs() << "Empty"; 1877 else 1878 for (unsigned ReuseIdx : ReuseShuffleIndices) 1879 dbgs() << ReuseIdx << ", "; 1880 dbgs() << "\n"; 1881 dbgs() << "ReorderIndices: "; 1882 for (unsigned ReorderIdx : ReorderIndices) 1883 dbgs() << ReorderIdx << ", "; 1884 dbgs() << "\n"; 1885 dbgs() << "UserTreeIndices: "; 1886 for (const auto &EInfo : UserTreeIndices) 1887 dbgs() << EInfo << ", "; 1888 dbgs() << "\n"; 1889 } 1890 #endif 1891 }; 1892 1893 #ifndef NDEBUG 1894 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1895 InstructionCost VecCost, 1896 InstructionCost ScalarCost) const { 1897 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1898 dbgs() << "SLP: Costs:\n"; 1899 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1900 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1901 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1902 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1903 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1904 } 1905 #endif 1906 1907 /// Create a new VectorizableTree entry. 1908 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1909 const InstructionsState &S, 1910 const EdgeInfo &UserTreeIdx, 1911 ArrayRef<int> ReuseShuffleIndices = None, 1912 ArrayRef<unsigned> ReorderIndices = None) { 1913 TreeEntry::EntryState EntryState = 1914 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1915 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1916 ReuseShuffleIndices, ReorderIndices); 1917 } 1918 1919 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1920 TreeEntry::EntryState EntryState, 1921 Optional<ScheduleData *> Bundle, 1922 const InstructionsState &S, 1923 const EdgeInfo &UserTreeIdx, 1924 ArrayRef<int> ReuseShuffleIndices = None, 1925 ArrayRef<unsigned> ReorderIndices = None) { 1926 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1927 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1928 "Need to vectorize gather entry?"); 1929 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1930 TreeEntry *Last = VectorizableTree.back().get(); 1931 Last->Idx = VectorizableTree.size() - 1; 1932 Last->State = EntryState; 1933 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1934 ReuseShuffleIndices.end()); 1935 if (ReorderIndices.empty()) { 1936 Last->Scalars.assign(VL.begin(), VL.end()); 1937 Last->setOperations(S); 1938 } else { 1939 // Reorder scalars and build final mask. 1940 Last->Scalars.assign(VL.size(), nullptr); 1941 transform(ReorderIndices, Last->Scalars.begin(), 1942 [VL](unsigned Idx) -> Value * { 1943 if (Idx >= VL.size()) 1944 return UndefValue::get(VL.front()->getType()); 1945 return VL[Idx]; 1946 }); 1947 InstructionsState S = getSameOpcode(Last->Scalars); 1948 Last->setOperations(S); 1949 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1950 } 1951 if (Last->State != TreeEntry::NeedToGather) { 1952 for (Value *V : VL) { 1953 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1954 ScalarToTreeEntry[V] = Last; 1955 } 1956 // Update the scheduler bundle to point to this TreeEntry. 1957 unsigned Lane = 0; 1958 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1959 BundleMember = BundleMember->NextInBundle) { 1960 BundleMember->TE = Last; 1961 BundleMember->Lane = Lane; 1962 ++Lane; 1963 } 1964 assert((!Bundle.getValue() || Lane == VL.size()) && 1965 "Bundle and VL out of sync"); 1966 } else { 1967 MustGather.insert(VL.begin(), VL.end()); 1968 } 1969 1970 if (UserTreeIdx.UserTE) 1971 Last->UserTreeIndices.push_back(UserTreeIdx); 1972 1973 return Last; 1974 } 1975 1976 /// -- Vectorization State -- 1977 /// Holds all of the tree entries. 1978 TreeEntry::VecTreeTy VectorizableTree; 1979 1980 #ifndef NDEBUG 1981 /// Debug printer. 1982 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1983 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1984 VectorizableTree[Id]->dump(); 1985 dbgs() << "\n"; 1986 } 1987 } 1988 #endif 1989 1990 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1991 1992 const TreeEntry *getTreeEntry(Value *V) const { 1993 return ScalarToTreeEntry.lookup(V); 1994 } 1995 1996 /// Maps a specific scalar to its tree entry. 1997 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1998 1999 /// Maps a value to the proposed vectorizable size. 2000 SmallDenseMap<Value *, unsigned> InstrElementSize; 2001 2002 /// A list of scalars that we found that we need to keep as scalars. 2003 ValueSet MustGather; 2004 2005 /// This POD struct describes one external user in the vectorized tree. 2006 struct ExternalUser { 2007 ExternalUser(Value *S, llvm::User *U, int L) 2008 : Scalar(S), User(U), Lane(L) {} 2009 2010 // Which scalar in our function. 2011 Value *Scalar; 2012 2013 // Which user that uses the scalar. 2014 llvm::User *User; 2015 2016 // Which lane does the scalar belong to. 2017 int Lane; 2018 }; 2019 using UserList = SmallVector<ExternalUser, 16>; 2020 2021 /// Checks if two instructions may access the same memory. 2022 /// 2023 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2024 /// is invariant in the calling loop. 2025 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2026 Instruction *Inst2) { 2027 // First check if the result is already in the cache. 2028 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2029 Optional<bool> &result = AliasCache[key]; 2030 if (result.hasValue()) { 2031 return result.getValue(); 2032 } 2033 bool aliased = true; 2034 if (Loc1.Ptr && isSimple(Inst1)) 2035 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2036 // Store the result in the cache. 2037 result = aliased; 2038 return aliased; 2039 } 2040 2041 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2042 2043 /// Cache for alias results. 2044 /// TODO: consider moving this to the AliasAnalysis itself. 2045 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2046 2047 /// Removes an instruction from its block and eventually deletes it. 2048 /// It's like Instruction::eraseFromParent() except that the actual deletion 2049 /// is delayed until BoUpSLP is destructed. 2050 /// This is required to ensure that there are no incorrect collisions in the 2051 /// AliasCache, which can happen if a new instruction is allocated at the 2052 /// same address as a previously deleted instruction. 2053 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2054 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2055 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2056 } 2057 2058 /// Temporary store for deleted instructions. Instructions will be deleted 2059 /// eventually when the BoUpSLP is destructed. 2060 DenseMap<Instruction *, bool> DeletedInstructions; 2061 2062 /// A list of values that need to extracted out of the tree. 2063 /// This list holds pairs of (Internal Scalar : External User). External User 2064 /// can be nullptr, it means that this Internal Scalar will be used later, 2065 /// after vectorization. 2066 UserList ExternalUses; 2067 2068 /// Values used only by @llvm.assume calls. 2069 SmallPtrSet<const Value *, 32> EphValues; 2070 2071 /// Holds all of the instructions that we gathered. 2072 SetVector<Instruction *> GatherSeq; 2073 2074 /// A list of blocks that we are going to CSE. 2075 SetVector<BasicBlock *> CSEBlocks; 2076 2077 /// Contains all scheduling relevant data for an instruction. 2078 /// A ScheduleData either represents a single instruction or a member of an 2079 /// instruction bundle (= a group of instructions which is combined into a 2080 /// vector instruction). 2081 struct ScheduleData { 2082 // The initial value for the dependency counters. It means that the 2083 // dependencies are not calculated yet. 2084 enum { InvalidDeps = -1 }; 2085 2086 ScheduleData() = default; 2087 2088 void init(int BlockSchedulingRegionID, Value *OpVal) { 2089 FirstInBundle = this; 2090 NextInBundle = nullptr; 2091 NextLoadStore = nullptr; 2092 IsScheduled = false; 2093 SchedulingRegionID = BlockSchedulingRegionID; 2094 UnscheduledDepsInBundle = UnscheduledDeps; 2095 clearDependencies(); 2096 OpValue = OpVal; 2097 TE = nullptr; 2098 Lane = -1; 2099 } 2100 2101 /// Returns true if the dependency information has been calculated. 2102 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2103 2104 /// Returns true for single instructions and for bundle representatives 2105 /// (= the head of a bundle). 2106 bool isSchedulingEntity() const { return FirstInBundle == this; } 2107 2108 /// Returns true if it represents an instruction bundle and not only a 2109 /// single instruction. 2110 bool isPartOfBundle() const { 2111 return NextInBundle != nullptr || FirstInBundle != this; 2112 } 2113 2114 /// Returns true if it is ready for scheduling, i.e. it has no more 2115 /// unscheduled depending instructions/bundles. 2116 bool isReady() const { 2117 assert(isSchedulingEntity() && 2118 "can't consider non-scheduling entity for ready list"); 2119 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2120 } 2121 2122 /// Modifies the number of unscheduled dependencies, also updating it for 2123 /// the whole bundle. 2124 int incrementUnscheduledDeps(int Incr) { 2125 UnscheduledDeps += Incr; 2126 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2127 } 2128 2129 /// Sets the number of unscheduled dependencies to the number of 2130 /// dependencies. 2131 void resetUnscheduledDeps() { 2132 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2133 } 2134 2135 /// Clears all dependency information. 2136 void clearDependencies() { 2137 Dependencies = InvalidDeps; 2138 resetUnscheduledDeps(); 2139 MemoryDependencies.clear(); 2140 } 2141 2142 void dump(raw_ostream &os) const { 2143 if (!isSchedulingEntity()) { 2144 os << "/ " << *Inst; 2145 } else if (NextInBundle) { 2146 os << '[' << *Inst; 2147 ScheduleData *SD = NextInBundle; 2148 while (SD) { 2149 os << ';' << *SD->Inst; 2150 SD = SD->NextInBundle; 2151 } 2152 os << ']'; 2153 } else { 2154 os << *Inst; 2155 } 2156 } 2157 2158 Instruction *Inst = nullptr; 2159 2160 /// Points to the head in an instruction bundle (and always to this for 2161 /// single instructions). 2162 ScheduleData *FirstInBundle = nullptr; 2163 2164 /// Single linked list of all instructions in a bundle. Null if it is a 2165 /// single instruction. 2166 ScheduleData *NextInBundle = nullptr; 2167 2168 /// Single linked list of all memory instructions (e.g. load, store, call) 2169 /// in the block - until the end of the scheduling region. 2170 ScheduleData *NextLoadStore = nullptr; 2171 2172 /// The dependent memory instructions. 2173 /// This list is derived on demand in calculateDependencies(). 2174 SmallVector<ScheduleData *, 4> MemoryDependencies; 2175 2176 /// This ScheduleData is in the current scheduling region if this matches 2177 /// the current SchedulingRegionID of BlockScheduling. 2178 int SchedulingRegionID = 0; 2179 2180 /// Used for getting a "good" final ordering of instructions. 2181 int SchedulingPriority = 0; 2182 2183 /// The number of dependencies. Constitutes of the number of users of the 2184 /// instruction plus the number of dependent memory instructions (if any). 2185 /// This value is calculated on demand. 2186 /// If InvalidDeps, the number of dependencies is not calculated yet. 2187 int Dependencies = InvalidDeps; 2188 2189 /// The number of dependencies minus the number of dependencies of scheduled 2190 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2191 /// for scheduling. 2192 /// Note that this is negative as long as Dependencies is not calculated. 2193 int UnscheduledDeps = InvalidDeps; 2194 2195 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2196 /// single instructions. 2197 int UnscheduledDepsInBundle = InvalidDeps; 2198 2199 /// True if this instruction is scheduled (or considered as scheduled in the 2200 /// dry-run). 2201 bool IsScheduled = false; 2202 2203 /// Opcode of the current instruction in the schedule data. 2204 Value *OpValue = nullptr; 2205 2206 /// The TreeEntry that this instruction corresponds to. 2207 TreeEntry *TE = nullptr; 2208 2209 /// The lane of this node in the TreeEntry. 2210 int Lane = -1; 2211 }; 2212 2213 #ifndef NDEBUG 2214 friend inline raw_ostream &operator<<(raw_ostream &os, 2215 const BoUpSLP::ScheduleData &SD) { 2216 SD.dump(os); 2217 return os; 2218 } 2219 #endif 2220 2221 friend struct GraphTraits<BoUpSLP *>; 2222 friend struct DOTGraphTraits<BoUpSLP *>; 2223 2224 /// Contains all scheduling data for a basic block. 2225 struct BlockScheduling { 2226 BlockScheduling(BasicBlock *BB) 2227 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2228 2229 void clear() { 2230 ReadyInsts.clear(); 2231 ScheduleStart = nullptr; 2232 ScheduleEnd = nullptr; 2233 FirstLoadStoreInRegion = nullptr; 2234 LastLoadStoreInRegion = nullptr; 2235 2236 // Reduce the maximum schedule region size by the size of the 2237 // previous scheduling run. 2238 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2239 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2240 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2241 ScheduleRegionSize = 0; 2242 2243 // Make a new scheduling region, i.e. all existing ScheduleData is not 2244 // in the new region yet. 2245 ++SchedulingRegionID; 2246 } 2247 2248 ScheduleData *getScheduleData(Value *V) { 2249 ScheduleData *SD = ScheduleDataMap[V]; 2250 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2251 return SD; 2252 return nullptr; 2253 } 2254 2255 ScheduleData *getScheduleData(Value *V, Value *Key) { 2256 if (V == Key) 2257 return getScheduleData(V); 2258 auto I = ExtraScheduleDataMap.find(V); 2259 if (I != ExtraScheduleDataMap.end()) { 2260 ScheduleData *SD = I->second[Key]; 2261 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2262 return SD; 2263 } 2264 return nullptr; 2265 } 2266 2267 bool isInSchedulingRegion(ScheduleData *SD) const { 2268 return SD->SchedulingRegionID == SchedulingRegionID; 2269 } 2270 2271 /// Marks an instruction as scheduled and puts all dependent ready 2272 /// instructions into the ready-list. 2273 template <typename ReadyListType> 2274 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2275 SD->IsScheduled = true; 2276 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2277 2278 ScheduleData *BundleMember = SD; 2279 while (BundleMember) { 2280 if (BundleMember->Inst != BundleMember->OpValue) { 2281 BundleMember = BundleMember->NextInBundle; 2282 continue; 2283 } 2284 // Handle the def-use chain dependencies. 2285 2286 // Decrement the unscheduled counter and insert to ready list if ready. 2287 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2288 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2289 if (OpDef && OpDef->hasValidDependencies() && 2290 OpDef->incrementUnscheduledDeps(-1) == 0) { 2291 // There are no more unscheduled dependencies after 2292 // decrementing, so we can put the dependent instruction 2293 // into the ready list. 2294 ScheduleData *DepBundle = OpDef->FirstInBundle; 2295 assert(!DepBundle->IsScheduled && 2296 "already scheduled bundle gets ready"); 2297 ReadyList.insert(DepBundle); 2298 LLVM_DEBUG(dbgs() 2299 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2300 } 2301 }); 2302 }; 2303 2304 // If BundleMember is a vector bundle, its operands may have been 2305 // reordered duiring buildTree(). We therefore need to get its operands 2306 // through the TreeEntry. 2307 if (TreeEntry *TE = BundleMember->TE) { 2308 int Lane = BundleMember->Lane; 2309 assert(Lane >= 0 && "Lane not set"); 2310 2311 // Since vectorization tree is being built recursively this assertion 2312 // ensures that the tree entry has all operands set before reaching 2313 // this code. Couple of exceptions known at the moment are extracts 2314 // where their second (immediate) operand is not added. Since 2315 // immediates do not affect scheduler behavior this is considered 2316 // okay. 2317 auto *In = TE->getMainOp(); 2318 assert(In && 2319 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2320 In->getNumOperands() == TE->getNumOperands()) && 2321 "Missed TreeEntry operands?"); 2322 (void)In; // fake use to avoid build failure when assertions disabled 2323 2324 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2325 OpIdx != NumOperands; ++OpIdx) 2326 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2327 DecrUnsched(I); 2328 } else { 2329 // If BundleMember is a stand-alone instruction, no operand reordering 2330 // has taken place, so we directly access its operands. 2331 for (Use &U : BundleMember->Inst->operands()) 2332 if (auto *I = dyn_cast<Instruction>(U.get())) 2333 DecrUnsched(I); 2334 } 2335 // Handle the memory dependencies. 2336 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2337 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2338 // There are no more unscheduled dependencies after decrementing, 2339 // so we can put the dependent instruction into the ready list. 2340 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2341 assert(!DepBundle->IsScheduled && 2342 "already scheduled bundle gets ready"); 2343 ReadyList.insert(DepBundle); 2344 LLVM_DEBUG(dbgs() 2345 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2346 } 2347 } 2348 BundleMember = BundleMember->NextInBundle; 2349 } 2350 } 2351 2352 void doForAllOpcodes(Value *V, 2353 function_ref<void(ScheduleData *SD)> Action) { 2354 if (ScheduleData *SD = getScheduleData(V)) 2355 Action(SD); 2356 auto I = ExtraScheduleDataMap.find(V); 2357 if (I != ExtraScheduleDataMap.end()) 2358 for (auto &P : I->second) 2359 if (P.second->SchedulingRegionID == SchedulingRegionID) 2360 Action(P.second); 2361 } 2362 2363 /// Put all instructions into the ReadyList which are ready for scheduling. 2364 template <typename ReadyListType> 2365 void initialFillReadyList(ReadyListType &ReadyList) { 2366 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2367 doForAllOpcodes(I, [&](ScheduleData *SD) { 2368 if (SD->isSchedulingEntity() && SD->isReady()) { 2369 ReadyList.insert(SD); 2370 LLVM_DEBUG(dbgs() 2371 << "SLP: initially in ready list: " << *I << "\n"); 2372 } 2373 }); 2374 } 2375 } 2376 2377 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2378 /// cyclic dependencies. This is only a dry-run, no instructions are 2379 /// actually moved at this stage. 2380 /// \returns the scheduling bundle. The returned Optional value is non-None 2381 /// if \p VL is allowed to be scheduled. 2382 Optional<ScheduleData *> 2383 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2384 const InstructionsState &S); 2385 2386 /// Un-bundles a group of instructions. 2387 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2388 2389 /// Allocates schedule data chunk. 2390 ScheduleData *allocateScheduleDataChunks(); 2391 2392 /// Extends the scheduling region so that V is inside the region. 2393 /// \returns true if the region size is within the limit. 2394 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2395 2396 /// Initialize the ScheduleData structures for new instructions in the 2397 /// scheduling region. 2398 void initScheduleData(Instruction *FromI, Instruction *ToI, 2399 ScheduleData *PrevLoadStore, 2400 ScheduleData *NextLoadStore); 2401 2402 /// Updates the dependency information of a bundle and of all instructions/ 2403 /// bundles which depend on the original bundle. 2404 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2405 BoUpSLP *SLP); 2406 2407 /// Sets all instruction in the scheduling region to un-scheduled. 2408 void resetSchedule(); 2409 2410 BasicBlock *BB; 2411 2412 /// Simple memory allocation for ScheduleData. 2413 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2414 2415 /// The size of a ScheduleData array in ScheduleDataChunks. 2416 int ChunkSize; 2417 2418 /// The allocator position in the current chunk, which is the last entry 2419 /// of ScheduleDataChunks. 2420 int ChunkPos; 2421 2422 /// Attaches ScheduleData to Instruction. 2423 /// Note that the mapping survives during all vectorization iterations, i.e. 2424 /// ScheduleData structures are recycled. 2425 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2426 2427 /// Attaches ScheduleData to Instruction with the leading key. 2428 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2429 ExtraScheduleDataMap; 2430 2431 struct ReadyList : SmallVector<ScheduleData *, 8> { 2432 void insert(ScheduleData *SD) { push_back(SD); } 2433 }; 2434 2435 /// The ready-list for scheduling (only used for the dry-run). 2436 ReadyList ReadyInsts; 2437 2438 /// The first instruction of the scheduling region. 2439 Instruction *ScheduleStart = nullptr; 2440 2441 /// The first instruction _after_ the scheduling region. 2442 Instruction *ScheduleEnd = nullptr; 2443 2444 /// The first memory accessing instruction in the scheduling region 2445 /// (can be null). 2446 ScheduleData *FirstLoadStoreInRegion = nullptr; 2447 2448 /// The last memory accessing instruction in the scheduling region 2449 /// (can be null). 2450 ScheduleData *LastLoadStoreInRegion = nullptr; 2451 2452 /// The current size of the scheduling region. 2453 int ScheduleRegionSize = 0; 2454 2455 /// The maximum size allowed for the scheduling region. 2456 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2457 2458 /// The ID of the scheduling region. For a new vectorization iteration this 2459 /// is incremented which "removes" all ScheduleData from the region. 2460 // Make sure that the initial SchedulingRegionID is greater than the 2461 // initial SchedulingRegionID in ScheduleData (which is 0). 2462 int SchedulingRegionID = 1; 2463 }; 2464 2465 /// Attaches the BlockScheduling structures to basic blocks. 2466 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2467 2468 /// Performs the "real" scheduling. Done before vectorization is actually 2469 /// performed in a basic block. 2470 void scheduleBlock(BlockScheduling *BS); 2471 2472 /// List of users to ignore during scheduling and that don't need extracting. 2473 ArrayRef<Value *> UserIgnoreList; 2474 2475 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2476 /// sorted SmallVectors of unsigned. 2477 struct OrdersTypeDenseMapInfo { 2478 static OrdersType getEmptyKey() { 2479 OrdersType V; 2480 V.push_back(~1U); 2481 return V; 2482 } 2483 2484 static OrdersType getTombstoneKey() { 2485 OrdersType V; 2486 V.push_back(~2U); 2487 return V; 2488 } 2489 2490 static unsigned getHashValue(const OrdersType &V) { 2491 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2492 } 2493 2494 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2495 return LHS == RHS; 2496 } 2497 }; 2498 2499 // Analysis and block reference. 2500 Function *F; 2501 ScalarEvolution *SE; 2502 TargetTransformInfo *TTI; 2503 TargetLibraryInfo *TLI; 2504 AAResults *AA; 2505 LoopInfo *LI; 2506 DominatorTree *DT; 2507 AssumptionCache *AC; 2508 DemandedBits *DB; 2509 const DataLayout *DL; 2510 OptimizationRemarkEmitter *ORE; 2511 2512 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2513 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2514 2515 /// Instruction builder to construct the vectorized tree. 2516 IRBuilder<> Builder; 2517 2518 /// A map of scalar integer values to the smallest bit width with which they 2519 /// can legally be represented. The values map to (width, signed) pairs, 2520 /// where "width" indicates the minimum bit width and "signed" is True if the 2521 /// value must be signed-extended, rather than zero-extended, back to its 2522 /// original width. 2523 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2524 }; 2525 2526 } // end namespace slpvectorizer 2527 2528 template <> struct GraphTraits<BoUpSLP *> { 2529 using TreeEntry = BoUpSLP::TreeEntry; 2530 2531 /// NodeRef has to be a pointer per the GraphWriter. 2532 using NodeRef = TreeEntry *; 2533 2534 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2535 2536 /// Add the VectorizableTree to the index iterator to be able to return 2537 /// TreeEntry pointers. 2538 struct ChildIteratorType 2539 : public iterator_adaptor_base< 2540 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2541 ContainerTy &VectorizableTree; 2542 2543 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2544 ContainerTy &VT) 2545 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2546 2547 NodeRef operator*() { return I->UserTE; } 2548 }; 2549 2550 static NodeRef getEntryNode(BoUpSLP &R) { 2551 return R.VectorizableTree[0].get(); 2552 } 2553 2554 static ChildIteratorType child_begin(NodeRef N) { 2555 return {N->UserTreeIndices.begin(), N->Container}; 2556 } 2557 2558 static ChildIteratorType child_end(NodeRef N) { 2559 return {N->UserTreeIndices.end(), N->Container}; 2560 } 2561 2562 /// For the node iterator we just need to turn the TreeEntry iterator into a 2563 /// TreeEntry* iterator so that it dereferences to NodeRef. 2564 class nodes_iterator { 2565 using ItTy = ContainerTy::iterator; 2566 ItTy It; 2567 2568 public: 2569 nodes_iterator(const ItTy &It2) : It(It2) {} 2570 NodeRef operator*() { return It->get(); } 2571 nodes_iterator operator++() { 2572 ++It; 2573 return *this; 2574 } 2575 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2576 }; 2577 2578 static nodes_iterator nodes_begin(BoUpSLP *R) { 2579 return nodes_iterator(R->VectorizableTree.begin()); 2580 } 2581 2582 static nodes_iterator nodes_end(BoUpSLP *R) { 2583 return nodes_iterator(R->VectorizableTree.end()); 2584 } 2585 2586 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2587 }; 2588 2589 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2590 using TreeEntry = BoUpSLP::TreeEntry; 2591 2592 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2593 2594 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2595 std::string Str; 2596 raw_string_ostream OS(Str); 2597 if (isSplat(Entry->Scalars)) 2598 OS << "<splat> "; 2599 for (auto V : Entry->Scalars) { 2600 OS << *V; 2601 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2602 return EU.Scalar == V; 2603 })) 2604 OS << " <extract>"; 2605 OS << "\n"; 2606 } 2607 return Str; 2608 } 2609 2610 static std::string getNodeAttributes(const TreeEntry *Entry, 2611 const BoUpSLP *) { 2612 if (Entry->State == TreeEntry::NeedToGather) 2613 return "color=red"; 2614 return ""; 2615 } 2616 }; 2617 2618 } // end namespace llvm 2619 2620 BoUpSLP::~BoUpSLP() { 2621 for (const auto &Pair : DeletedInstructions) { 2622 // Replace operands of ignored instructions with Undefs in case if they were 2623 // marked for deletion. 2624 if (Pair.getSecond()) { 2625 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2626 Pair.getFirst()->replaceAllUsesWith(Undef); 2627 } 2628 Pair.getFirst()->dropAllReferences(); 2629 } 2630 for (const auto &Pair : DeletedInstructions) { 2631 assert(Pair.getFirst()->use_empty() && 2632 "trying to erase instruction with users."); 2633 Pair.getFirst()->eraseFromParent(); 2634 } 2635 #ifdef EXPENSIVE_CHECKS 2636 // If we could guarantee that this call is not extremely slow, we could 2637 // remove the ifdef limitation (see PR47712). 2638 assert(!verifyFunction(*F, &dbgs())); 2639 #endif 2640 } 2641 2642 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2643 for (auto *V : AV) { 2644 if (auto *I = dyn_cast<Instruction>(V)) 2645 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2646 }; 2647 } 2648 2649 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2650 /// contains original mask for the scalars reused in the node. Procedure 2651 /// transform this mask in accordance with the given \p Mask. 2652 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2653 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2654 "Expected non-empty mask."); 2655 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2656 Prev.swap(Reuses); 2657 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2658 if (Mask[I] != UndefMaskElem) 2659 Reuses[Mask[I]] = Prev[I]; 2660 } 2661 2662 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2663 /// the original order of the scalars. Procedure transforms the provided order 2664 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2665 /// identity order, \p Order is cleared. 2666 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2667 assert(!Mask.empty() && "Expected non-empty mask."); 2668 SmallVector<int> MaskOrder; 2669 if (Order.empty()) { 2670 MaskOrder.resize(Mask.size()); 2671 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2672 } else { 2673 inversePermutation(Order, MaskOrder); 2674 } 2675 reorderReuses(MaskOrder, Mask); 2676 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2677 Order.clear(); 2678 return; 2679 } 2680 Order.assign(Mask.size(), Mask.size()); 2681 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2682 if (MaskOrder[I] != UndefMaskElem) 2683 Order[MaskOrder[I]] = I; 2684 fixupOrderingIndices(Order); 2685 } 2686 2687 Optional<BoUpSLP::OrdersType> 2688 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2689 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2690 unsigned NumScalars = TE.Scalars.size(); 2691 OrdersType CurrentOrder(NumScalars, NumScalars); 2692 SmallVector<int> Positions; 2693 SmallBitVector UsedPositions(NumScalars); 2694 const TreeEntry *STE = nullptr; 2695 // Try to find all gathered scalars that are gets vectorized in other 2696 // vectorize node. Here we can have only one single tree vector node to 2697 // correctly identify order of the gathered scalars. 2698 for (unsigned I = 0; I < NumScalars; ++I) { 2699 Value *V = TE.Scalars[I]; 2700 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2701 continue; 2702 if (const auto *LocalSTE = getTreeEntry(V)) { 2703 if (!STE) 2704 STE = LocalSTE; 2705 else if (STE != LocalSTE) 2706 // Take the order only from the single vector node. 2707 return None; 2708 unsigned Lane = 2709 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2710 if (Lane >= NumScalars) 2711 return None; 2712 if (CurrentOrder[Lane] != NumScalars) { 2713 if (Lane != I) 2714 continue; 2715 UsedPositions.reset(CurrentOrder[Lane]); 2716 } 2717 // The partial identity (where only some elements of the gather node are 2718 // in the identity order) is good. 2719 CurrentOrder[Lane] = I; 2720 UsedPositions.set(I); 2721 } 2722 } 2723 // Need to keep the order if we have a vector entry and at least 2 scalars or 2724 // the vectorized entry has just 2 scalars. 2725 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2726 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2727 for (unsigned I = 0; I < NumScalars; ++I) 2728 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2729 return false; 2730 return true; 2731 }; 2732 if (IsIdentityOrder(CurrentOrder)) { 2733 CurrentOrder.clear(); 2734 return CurrentOrder; 2735 } 2736 auto *It = CurrentOrder.begin(); 2737 for (unsigned I = 0; I < NumScalars;) { 2738 if (UsedPositions.test(I)) { 2739 ++I; 2740 continue; 2741 } 2742 if (*It == NumScalars) { 2743 *It = I; 2744 ++I; 2745 } 2746 ++It; 2747 } 2748 return CurrentOrder; 2749 } 2750 return None; 2751 } 2752 2753 void BoUpSLP::reorderTopToBottom() { 2754 // Maps VF to the graph nodes. 2755 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2756 // ExtractElement gather nodes which can be vectorized and need to handle 2757 // their ordering. 2758 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2759 // Find all reorderable nodes with the given VF. 2760 // Currently the are vectorized loads,extracts + some gathering of extracts. 2761 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2762 const std::unique_ptr<TreeEntry> &TE) { 2763 // No need to reorder if need to shuffle reuses, still need to shuffle the 2764 // node. 2765 if (!TE->ReuseShuffleIndices.empty()) 2766 return; 2767 if (TE->State == TreeEntry::Vectorize && 2768 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2769 InsertElementInst>(TE->getMainOp()) && 2770 !TE->isAltShuffle()) { 2771 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2772 return; 2773 } 2774 if (TE->State == TreeEntry::NeedToGather) { 2775 if (TE->getOpcode() == Instruction::ExtractElement && 2776 !TE->isAltShuffle() && 2777 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2778 ->getVectorOperandType()) && 2779 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2780 // Check that gather of extractelements can be represented as 2781 // just a shuffle of a single vector. 2782 OrdersType CurrentOrder; 2783 bool Reuse = 2784 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2785 if (Reuse || !CurrentOrder.empty()) { 2786 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2787 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2788 return; 2789 } 2790 } 2791 if (Optional<OrdersType> CurrentOrder = 2792 findReusedOrderedScalars(*TE.get())) { 2793 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2794 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2795 } 2796 } 2797 }); 2798 2799 // Reorder the graph nodes according to their vectorization factor. 2800 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2801 VF /= 2) { 2802 auto It = VFToOrderedEntries.find(VF); 2803 if (It == VFToOrderedEntries.end()) 2804 continue; 2805 // Try to find the most profitable order. We just are looking for the most 2806 // used order and reorder scalar elements in the nodes according to this 2807 // mostly used order. 2808 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2809 // All operands are reordered and used only in this node - propagate the 2810 // most used order to the user node. 2811 MapVector<OrdersType, unsigned, 2812 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2813 OrdersUses; 2814 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2815 for (const TreeEntry *OpTE : OrderedEntries) { 2816 // No need to reorder this nodes, still need to extend and to use shuffle, 2817 // just need to merge reordering shuffle and the reuse shuffle. 2818 if (!OpTE->ReuseShuffleIndices.empty()) 2819 continue; 2820 // Count number of orders uses. 2821 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2822 if (OpTE->State == TreeEntry::NeedToGather) 2823 return GathersToOrders.find(OpTE)->second; 2824 return OpTE->ReorderIndices; 2825 }(); 2826 // Stores actually store the mask, not the order, need to invert. 2827 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2828 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2829 SmallVector<int> Mask; 2830 inversePermutation(Order, Mask); 2831 unsigned E = Order.size(); 2832 OrdersType CurrentOrder(E, E); 2833 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2834 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2835 }); 2836 fixupOrderingIndices(CurrentOrder); 2837 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2838 } else { 2839 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2840 } 2841 } 2842 // Set order of the user node. 2843 if (OrdersUses.empty()) 2844 continue; 2845 // Choose the most used order. 2846 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2847 unsigned Cnt = OrdersUses.front().second; 2848 for (const auto &Pair : drop_begin(OrdersUses)) { 2849 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2850 BestOrder = Pair.first; 2851 Cnt = Pair.second; 2852 } 2853 } 2854 // Set order of the user node. 2855 if (BestOrder.empty()) 2856 continue; 2857 SmallVector<int> Mask; 2858 inversePermutation(BestOrder, Mask); 2859 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2860 unsigned E = BestOrder.size(); 2861 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2862 return I < E ? static_cast<int>(I) : UndefMaskElem; 2863 }); 2864 // Do an actual reordering, if profitable. 2865 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2866 // Just do the reordering for the nodes with the given VF. 2867 if (TE->Scalars.size() != VF) { 2868 if (TE->ReuseShuffleIndices.size() == VF) { 2869 // Need to reorder the reuses masks of the operands with smaller VF to 2870 // be able to find the match between the graph nodes and scalar 2871 // operands of the given node during vectorization/cost estimation. 2872 assert(all_of(TE->UserTreeIndices, 2873 [VF, &TE](const EdgeInfo &EI) { 2874 return EI.UserTE->Scalars.size() == VF || 2875 EI.UserTE->Scalars.size() == 2876 TE->Scalars.size(); 2877 }) && 2878 "All users must be of VF size."); 2879 // Update ordering of the operands with the smaller VF than the given 2880 // one. 2881 reorderReuses(TE->ReuseShuffleIndices, Mask); 2882 } 2883 continue; 2884 } 2885 if (TE->State == TreeEntry::Vectorize && 2886 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2887 InsertElementInst>(TE->getMainOp()) && 2888 !TE->isAltShuffle()) { 2889 // Build correct orders for extract{element,value}, loads and 2890 // stores. 2891 reorderOrder(TE->ReorderIndices, Mask); 2892 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2893 TE->reorderOperands(Mask); 2894 } else { 2895 // Reorder the node and its operands. 2896 TE->reorderOperands(Mask); 2897 assert(TE->ReorderIndices.empty() && 2898 "Expected empty reorder sequence."); 2899 reorderScalars(TE->Scalars, Mask); 2900 } 2901 if (!TE->ReuseShuffleIndices.empty()) { 2902 // Apply reversed order to keep the original ordering of the reused 2903 // elements to avoid extra reorder indices shuffling. 2904 OrdersType CurrentOrder; 2905 reorderOrder(CurrentOrder, MaskOrder); 2906 SmallVector<int> NewReuses; 2907 inversePermutation(CurrentOrder, NewReuses); 2908 addMask(NewReuses, TE->ReuseShuffleIndices); 2909 TE->ReuseShuffleIndices.swap(NewReuses); 2910 } 2911 } 2912 } 2913 } 2914 2915 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2916 SetVector<TreeEntry *> OrderedEntries; 2917 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2918 // Find all reorderable leaf nodes with the given VF. 2919 // Currently the are vectorized loads,extracts without alternate operands + 2920 // some gathering of extracts. 2921 SmallVector<TreeEntry *> NonVectorized; 2922 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2923 &NonVectorized]( 2924 const std::unique_ptr<TreeEntry> &TE) { 2925 if (TE->State != TreeEntry::Vectorize) 2926 NonVectorized.push_back(TE.get()); 2927 // No need to reorder if need to shuffle reuses, still need to shuffle the 2928 // node. 2929 if (!TE->ReuseShuffleIndices.empty()) 2930 return; 2931 if (TE->State == TreeEntry::Vectorize && 2932 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2933 !TE->isAltShuffle()) { 2934 OrderedEntries.insert(TE.get()); 2935 return; 2936 } 2937 if (TE->State == TreeEntry::NeedToGather) { 2938 if (TE->getOpcode() == Instruction::ExtractElement && 2939 !TE->isAltShuffle() && 2940 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2941 ->getVectorOperandType()) && 2942 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2943 // Check that gather of extractelements can be represented as 2944 // just a shuffle of a single vector with a single user only. 2945 OrdersType CurrentOrder; 2946 bool Reuse = 2947 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2948 if ((Reuse || !CurrentOrder.empty()) && 2949 !any_of(VectorizableTree, 2950 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2951 return Entry->State == TreeEntry::NeedToGather && 2952 Entry.get() != TE.get() && 2953 Entry->isSame(TE->Scalars); 2954 })) { 2955 OrderedEntries.insert(TE.get()); 2956 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2957 return; 2958 } 2959 } 2960 if (Optional<OrdersType> CurrentOrder = 2961 findReusedOrderedScalars(*TE.get())) { 2962 OrderedEntries.insert(TE.get()); 2963 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2964 } 2965 } 2966 }); 2967 2968 // Checks if the operands of the users are reordarable and have only single 2969 // use. 2970 auto &&CheckOperands = 2971 [this, &NonVectorized](const auto &Data, 2972 SmallVectorImpl<TreeEntry *> &GatherOps) { 2973 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2974 if (any_of(Data.second, 2975 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2976 return OpData.first == I && 2977 OpData.second->State == TreeEntry::Vectorize; 2978 })) 2979 continue; 2980 ArrayRef<Value *> VL = Data.first->getOperand(I); 2981 const TreeEntry *TE = nullptr; 2982 const auto *It = find_if(VL, [this, &TE](Value *V) { 2983 TE = getTreeEntry(V); 2984 return TE; 2985 }); 2986 if (It != VL.end() && TE->isSame(VL)) 2987 return false; 2988 TreeEntry *Gather = nullptr; 2989 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2990 assert(TE->State != TreeEntry::Vectorize && 2991 "Only non-vectorized nodes are expected."); 2992 if (TE->isSame(VL)) { 2993 Gather = TE; 2994 return true; 2995 } 2996 return false; 2997 }) > 1) 2998 return false; 2999 if (Gather) 3000 GatherOps.push_back(Gather); 3001 } 3002 return true; 3003 }; 3004 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3005 // I.e., if the node has operands, that are reordered, try to make at least 3006 // one operand order in the natural order and reorder others + reorder the 3007 // user node itself. 3008 SmallPtrSet<const TreeEntry *, 4> Visited; 3009 while (!OrderedEntries.empty()) { 3010 // 1. Filter out only reordered nodes. 3011 // 2. If the entry has multiple uses - skip it and jump to the next node. 3012 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3013 SmallVector<TreeEntry *> Filtered; 3014 for (TreeEntry *TE : OrderedEntries) { 3015 if (!(TE->State == TreeEntry::Vectorize || 3016 (TE->State == TreeEntry::NeedToGather && 3017 GathersToOrders.count(TE))) || 3018 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3019 !all_of(drop_begin(TE->UserTreeIndices), 3020 [TE](const EdgeInfo &EI) { 3021 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3022 }) || 3023 !Visited.insert(TE).second) { 3024 Filtered.push_back(TE); 3025 continue; 3026 } 3027 // Build a map between user nodes and their operands order to speedup 3028 // search. The graph currently does not provide this dependency directly. 3029 for (EdgeInfo &EI : TE->UserTreeIndices) { 3030 TreeEntry *UserTE = EI.UserTE; 3031 auto It = Users.find(UserTE); 3032 if (It == Users.end()) 3033 It = Users.insert({UserTE, {}}).first; 3034 It->second.emplace_back(EI.EdgeIdx, TE); 3035 } 3036 } 3037 // Erase filtered entries. 3038 for_each(Filtered, 3039 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3040 for (const auto &Data : Users) { 3041 // Check that operands are used only in the User node. 3042 SmallVector<TreeEntry *> GatherOps; 3043 if (!CheckOperands(Data, GatherOps)) { 3044 for_each(Data.second, 3045 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3046 OrderedEntries.remove(Op.second); 3047 }); 3048 continue; 3049 } 3050 // All operands are reordered and used only in this node - propagate the 3051 // most used order to the user node. 3052 MapVector<OrdersType, unsigned, 3053 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3054 OrdersUses; 3055 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3056 for (const auto &Op : Data.second) { 3057 TreeEntry *OpTE = Op.second; 3058 if (!OpTE->ReuseShuffleIndices.empty() || 3059 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3060 continue; 3061 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3062 if (OpTE->State == TreeEntry::NeedToGather) 3063 return GathersToOrders.find(OpTE)->second; 3064 return OpTE->ReorderIndices; 3065 }(); 3066 // Stores actually store the mask, not the order, need to invert. 3067 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3068 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3069 SmallVector<int> Mask; 3070 inversePermutation(Order, Mask); 3071 unsigned E = Order.size(); 3072 OrdersType CurrentOrder(E, E); 3073 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3074 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3075 }); 3076 fixupOrderingIndices(CurrentOrder); 3077 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3078 } else { 3079 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3080 } 3081 if (VisitedOps.insert(OpTE).second) 3082 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3083 OpTE->UserTreeIndices.size(); 3084 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3085 --OrdersUses[{}]; 3086 } 3087 // If no orders - skip current nodes and jump to the next one, if any. 3088 if (OrdersUses.empty()) { 3089 for_each(Data.second, 3090 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3091 OrderedEntries.remove(Op.second); 3092 }); 3093 continue; 3094 } 3095 // Choose the best order. 3096 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3097 unsigned Cnt = OrdersUses.front().second; 3098 for (const auto &Pair : drop_begin(OrdersUses)) { 3099 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3100 BestOrder = Pair.first; 3101 Cnt = Pair.second; 3102 } 3103 } 3104 // Set order of the user node (reordering of operands and user nodes). 3105 if (BestOrder.empty()) { 3106 for_each(Data.second, 3107 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3108 OrderedEntries.remove(Op.second); 3109 }); 3110 continue; 3111 } 3112 // Erase operands from OrderedEntries list and adjust their orders. 3113 VisitedOps.clear(); 3114 SmallVector<int> Mask; 3115 inversePermutation(BestOrder, Mask); 3116 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3117 unsigned E = BestOrder.size(); 3118 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3119 return I < E ? static_cast<int>(I) : UndefMaskElem; 3120 }); 3121 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3122 TreeEntry *TE = Op.second; 3123 OrderedEntries.remove(TE); 3124 if (!VisitedOps.insert(TE).second) 3125 continue; 3126 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3127 // Just reorder reuses indices. 3128 reorderReuses(TE->ReuseShuffleIndices, Mask); 3129 continue; 3130 } 3131 // Gathers are processed separately. 3132 if (TE->State != TreeEntry::Vectorize) 3133 continue; 3134 assert((BestOrder.size() == TE->ReorderIndices.size() || 3135 TE->ReorderIndices.empty()) && 3136 "Non-matching sizes of user/operand entries."); 3137 reorderOrder(TE->ReorderIndices, Mask); 3138 } 3139 // For gathers just need to reorder its scalars. 3140 for (TreeEntry *Gather : GatherOps) { 3141 assert(Gather->ReorderIndices.empty() && 3142 "Unexpected reordering of gathers."); 3143 if (!Gather->ReuseShuffleIndices.empty()) { 3144 // Just reorder reuses indices. 3145 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3146 continue; 3147 } 3148 reorderScalars(Gather->Scalars, Mask); 3149 OrderedEntries.remove(Gather); 3150 } 3151 // Reorder operands of the user node and set the ordering for the user 3152 // node itself. 3153 if (Data.first->State != TreeEntry::Vectorize || 3154 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3155 Data.first->getMainOp()) || 3156 Data.first->isAltShuffle()) 3157 Data.first->reorderOperands(Mask); 3158 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3159 Data.first->isAltShuffle()) { 3160 reorderScalars(Data.first->Scalars, Mask); 3161 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3162 if (Data.first->ReuseShuffleIndices.empty() && 3163 !Data.first->ReorderIndices.empty() && 3164 !Data.first->isAltShuffle()) { 3165 // Insert user node to the list to try to sink reordering deeper in 3166 // the graph. 3167 OrderedEntries.insert(Data.first); 3168 } 3169 } else { 3170 reorderOrder(Data.first->ReorderIndices, Mask); 3171 } 3172 } 3173 } 3174 // If the reordering is unnecessary, just remove the reorder. 3175 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3176 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3177 VectorizableTree.front()->ReorderIndices.clear(); 3178 } 3179 3180 void BoUpSLP::buildExternalUses( 3181 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3182 // Collect the values that we need to extract from the tree. 3183 for (auto &TEPtr : VectorizableTree) { 3184 TreeEntry *Entry = TEPtr.get(); 3185 3186 // No need to handle users of gathered values. 3187 if (Entry->State == TreeEntry::NeedToGather) 3188 continue; 3189 3190 // For each lane: 3191 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3192 Value *Scalar = Entry->Scalars[Lane]; 3193 int FoundLane = Entry->findLaneForValue(Scalar); 3194 3195 // Check if the scalar is externally used as an extra arg. 3196 auto ExtI = ExternallyUsedValues.find(Scalar); 3197 if (ExtI != ExternallyUsedValues.end()) { 3198 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3199 << Lane << " from " << *Scalar << ".\n"); 3200 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3201 } 3202 for (User *U : Scalar->users()) { 3203 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3204 3205 Instruction *UserInst = dyn_cast<Instruction>(U); 3206 if (!UserInst) 3207 continue; 3208 3209 if (isDeleted(UserInst)) 3210 continue; 3211 3212 // Skip in-tree scalars that become vectors 3213 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3214 Value *UseScalar = UseEntry->Scalars[0]; 3215 // Some in-tree scalars will remain as scalar in vectorized 3216 // instructions. If that is the case, the one in Lane 0 will 3217 // be used. 3218 if (UseScalar != U || 3219 UseEntry->State == TreeEntry::ScatterVectorize || 3220 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3221 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3222 << ".\n"); 3223 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3224 continue; 3225 } 3226 } 3227 3228 // Ignore users in the user ignore list. 3229 if (is_contained(UserIgnoreList, UserInst)) 3230 continue; 3231 3232 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3233 << Lane << " from " << *Scalar << ".\n"); 3234 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3235 } 3236 } 3237 } 3238 } 3239 3240 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3241 ArrayRef<Value *> UserIgnoreLst) { 3242 deleteTree(); 3243 UserIgnoreList = UserIgnoreLst; 3244 if (!allSameType(Roots)) 3245 return; 3246 buildTree_rec(Roots, 0, EdgeInfo()); 3247 } 3248 3249 namespace { 3250 /// Tracks the state we can represent the loads in the given sequence. 3251 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3252 } // anonymous namespace 3253 3254 /// Checks if the given array of loads can be represented as a vectorized, 3255 /// scatter or just simple gather. 3256 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3257 const TargetTransformInfo &TTI, 3258 const DataLayout &DL, ScalarEvolution &SE, 3259 SmallVectorImpl<unsigned> &Order, 3260 SmallVectorImpl<Value *> &PointerOps) { 3261 // Check that a vectorized load would load the same memory as a scalar 3262 // load. For example, we don't want to vectorize loads that are smaller 3263 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3264 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3265 // from such a struct, we read/write packed bits disagreeing with the 3266 // unvectorized version. 3267 Type *ScalarTy = VL0->getType(); 3268 3269 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3270 return LoadsState::Gather; 3271 3272 // Make sure all loads in the bundle are simple - we can't vectorize 3273 // atomic or volatile loads. 3274 PointerOps.clear(); 3275 PointerOps.resize(VL.size()); 3276 auto *POIter = PointerOps.begin(); 3277 for (Value *V : VL) { 3278 auto *L = cast<LoadInst>(V); 3279 if (!L->isSimple()) 3280 return LoadsState::Gather; 3281 *POIter = L->getPointerOperand(); 3282 ++POIter; 3283 } 3284 3285 Order.clear(); 3286 // Check the order of pointer operands. 3287 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3288 Value *Ptr0; 3289 Value *PtrN; 3290 if (Order.empty()) { 3291 Ptr0 = PointerOps.front(); 3292 PtrN = PointerOps.back(); 3293 } else { 3294 Ptr0 = PointerOps[Order.front()]; 3295 PtrN = PointerOps[Order.back()]; 3296 } 3297 Optional<int> Diff = 3298 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3299 // Check that the sorted loads are consecutive. 3300 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3301 return LoadsState::Vectorize; 3302 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3303 for (Value *V : VL) 3304 CommonAlignment = 3305 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3306 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3307 CommonAlignment)) 3308 return LoadsState::ScatterVectorize; 3309 } 3310 3311 return LoadsState::Gather; 3312 } 3313 3314 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3315 const EdgeInfo &UserTreeIdx) { 3316 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3317 3318 SmallVector<int> ReuseShuffleIndicies; 3319 SmallVector<Value *> UniqueValues; 3320 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3321 &UserTreeIdx, 3322 this](const InstructionsState &S) { 3323 // Check that every instruction appears once in this bundle. 3324 DenseMap<Value *, unsigned> UniquePositions; 3325 for (Value *V : VL) { 3326 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3327 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3328 : Res.first->second); 3329 if (Res.second) 3330 UniqueValues.emplace_back(V); 3331 } 3332 size_t NumUniqueScalarValues = UniqueValues.size(); 3333 if (NumUniqueScalarValues == VL.size()) { 3334 ReuseShuffleIndicies.clear(); 3335 } else { 3336 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3337 if (NumUniqueScalarValues <= 1 || 3338 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3339 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3340 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3341 return false; 3342 } 3343 VL = UniqueValues; 3344 } 3345 return true; 3346 }; 3347 3348 InstructionsState S = getSameOpcode(VL); 3349 if (Depth == RecursionMaxDepth) { 3350 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3351 if (TryToFindDuplicates(S)) 3352 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3353 ReuseShuffleIndicies); 3354 return; 3355 } 3356 3357 // Don't handle scalable vectors 3358 if (S.getOpcode() == Instruction::ExtractElement && 3359 isa<ScalableVectorType>( 3360 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3361 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3362 if (TryToFindDuplicates(S)) 3363 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3364 ReuseShuffleIndicies); 3365 return; 3366 } 3367 3368 // Don't handle vectors. 3369 if (S.OpValue->getType()->isVectorTy() && 3370 !isa<InsertElementInst>(S.OpValue)) { 3371 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3372 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3373 return; 3374 } 3375 3376 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3377 if (SI->getValueOperand()->getType()->isVectorTy()) { 3378 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3379 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3380 return; 3381 } 3382 3383 // If all of the operands are identical or constant we have a simple solution. 3384 // If we deal with insert/extract instructions, they all must have constant 3385 // indices, otherwise we should gather them, not try to vectorize. 3386 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3387 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3388 !all_of(VL, isVectorLikeInstWithConstOps))) { 3389 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3390 if (TryToFindDuplicates(S)) 3391 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3392 ReuseShuffleIndicies); 3393 return; 3394 } 3395 3396 // We now know that this is a vector of instructions of the same type from 3397 // the same block. 3398 3399 // Don't vectorize ephemeral values. 3400 for (Value *V : VL) { 3401 if (EphValues.count(V)) { 3402 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3403 << ") is ephemeral.\n"); 3404 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3405 return; 3406 } 3407 } 3408 3409 // Check if this is a duplicate of another entry. 3410 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3411 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3412 if (!E->isSame(VL)) { 3413 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3414 if (TryToFindDuplicates(S)) 3415 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3416 ReuseShuffleIndicies); 3417 return; 3418 } 3419 // Record the reuse of the tree node. FIXME, currently this is only used to 3420 // properly draw the graph rather than for the actual vectorization. 3421 E->UserTreeIndices.push_back(UserTreeIdx); 3422 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3423 << ".\n"); 3424 return; 3425 } 3426 3427 // Check that none of the instructions in the bundle are already in the tree. 3428 for (Value *V : VL) { 3429 auto *I = dyn_cast<Instruction>(V); 3430 if (!I) 3431 continue; 3432 if (getTreeEntry(I)) { 3433 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3434 << ") is already in tree.\n"); 3435 if (TryToFindDuplicates(S)) 3436 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3437 ReuseShuffleIndicies); 3438 return; 3439 } 3440 } 3441 3442 // If any of the scalars is marked as a value that needs to stay scalar, then 3443 // we need to gather the scalars. 3444 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3445 for (Value *V : VL) { 3446 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3447 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3448 if (TryToFindDuplicates(S)) 3449 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3450 ReuseShuffleIndicies); 3451 return; 3452 } 3453 } 3454 3455 // Check that all of the users of the scalars that we want to vectorize are 3456 // schedulable. 3457 auto *VL0 = cast<Instruction>(S.OpValue); 3458 BasicBlock *BB = VL0->getParent(); 3459 3460 if (!DT->isReachableFromEntry(BB)) { 3461 // Don't go into unreachable blocks. They may contain instructions with 3462 // dependency cycles which confuse the final scheduling. 3463 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3464 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3465 return; 3466 } 3467 3468 // Check that every instruction appears once in this bundle. 3469 if (!TryToFindDuplicates(S)) 3470 return; 3471 3472 auto &BSRef = BlocksSchedules[BB]; 3473 if (!BSRef) 3474 BSRef = std::make_unique<BlockScheduling>(BB); 3475 3476 BlockScheduling &BS = *BSRef.get(); 3477 3478 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3479 if (!Bundle) { 3480 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3481 assert((!BS.getScheduleData(VL0) || 3482 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3483 "tryScheduleBundle should cancelScheduling on failure"); 3484 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3485 ReuseShuffleIndicies); 3486 return; 3487 } 3488 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3489 3490 unsigned ShuffleOrOp = S.isAltShuffle() ? 3491 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3492 switch (ShuffleOrOp) { 3493 case Instruction::PHI: { 3494 auto *PH = cast<PHINode>(VL0); 3495 3496 // Check for terminator values (e.g. invoke). 3497 for (Value *V : VL) 3498 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3499 Instruction *Term = dyn_cast<Instruction>( 3500 cast<PHINode>(V)->getIncomingValueForBlock( 3501 PH->getIncomingBlock(I))); 3502 if (Term && Term->isTerminator()) { 3503 LLVM_DEBUG(dbgs() 3504 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3505 BS.cancelScheduling(VL, VL0); 3506 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3507 ReuseShuffleIndicies); 3508 return; 3509 } 3510 } 3511 3512 TreeEntry *TE = 3513 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3514 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3515 3516 // Keeps the reordered operands to avoid code duplication. 3517 SmallVector<ValueList, 2> OperandsVec; 3518 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3519 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3520 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3521 TE->setOperand(I, Operands); 3522 OperandsVec.push_back(Operands); 3523 continue; 3524 } 3525 ValueList Operands; 3526 // Prepare the operand vector. 3527 for (Value *V : VL) 3528 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3529 PH->getIncomingBlock(I))); 3530 TE->setOperand(I, Operands); 3531 OperandsVec.push_back(Operands); 3532 } 3533 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3534 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3535 return; 3536 } 3537 case Instruction::ExtractValue: 3538 case Instruction::ExtractElement: { 3539 OrdersType CurrentOrder; 3540 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3541 if (Reuse) { 3542 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3543 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3544 ReuseShuffleIndicies); 3545 // This is a special case, as it does not gather, but at the same time 3546 // we are not extending buildTree_rec() towards the operands. 3547 ValueList Op0; 3548 Op0.assign(VL.size(), VL0->getOperand(0)); 3549 VectorizableTree.back()->setOperand(0, Op0); 3550 return; 3551 } 3552 if (!CurrentOrder.empty()) { 3553 LLVM_DEBUG({ 3554 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3555 "with order"; 3556 for (unsigned Idx : CurrentOrder) 3557 dbgs() << " " << Idx; 3558 dbgs() << "\n"; 3559 }); 3560 fixupOrderingIndices(CurrentOrder); 3561 // Insert new order with initial value 0, if it does not exist, 3562 // otherwise return the iterator to the existing one. 3563 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3564 ReuseShuffleIndicies, CurrentOrder); 3565 // This is a special case, as it does not gather, but at the same time 3566 // we are not extending buildTree_rec() towards the operands. 3567 ValueList Op0; 3568 Op0.assign(VL.size(), VL0->getOperand(0)); 3569 VectorizableTree.back()->setOperand(0, Op0); 3570 return; 3571 } 3572 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3573 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3574 ReuseShuffleIndicies); 3575 BS.cancelScheduling(VL, VL0); 3576 return; 3577 } 3578 case Instruction::InsertElement: { 3579 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3580 3581 // Check that we have a buildvector and not a shuffle of 2 or more 3582 // different vectors. 3583 ValueSet SourceVectors; 3584 int MinIdx = std::numeric_limits<int>::max(); 3585 for (Value *V : VL) { 3586 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3587 Optional<int> Idx = *getInsertIndex(V, 0); 3588 if (!Idx || *Idx == UndefMaskElem) 3589 continue; 3590 MinIdx = std::min(MinIdx, *Idx); 3591 } 3592 3593 if (count_if(VL, [&SourceVectors](Value *V) { 3594 return !SourceVectors.contains(V); 3595 }) >= 2) { 3596 // Found 2nd source vector - cancel. 3597 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3598 "different source vectors.\n"); 3599 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3600 BS.cancelScheduling(VL, VL0); 3601 return; 3602 } 3603 3604 auto OrdCompare = [](const std::pair<int, int> &P1, 3605 const std::pair<int, int> &P2) { 3606 return P1.first > P2.first; 3607 }; 3608 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3609 decltype(OrdCompare)> 3610 Indices(OrdCompare); 3611 for (int I = 0, E = VL.size(); I < E; ++I) { 3612 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3613 if (!Idx || *Idx == UndefMaskElem) 3614 continue; 3615 Indices.emplace(*Idx, I); 3616 } 3617 OrdersType CurrentOrder(VL.size(), VL.size()); 3618 bool IsIdentity = true; 3619 for (int I = 0, E = VL.size(); I < E; ++I) { 3620 CurrentOrder[Indices.top().second] = I; 3621 IsIdentity &= Indices.top().second == I; 3622 Indices.pop(); 3623 } 3624 if (IsIdentity) 3625 CurrentOrder.clear(); 3626 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3627 None, CurrentOrder); 3628 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3629 3630 constexpr int NumOps = 2; 3631 ValueList VectorOperands[NumOps]; 3632 for (int I = 0; I < NumOps; ++I) { 3633 for (Value *V : VL) 3634 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3635 3636 TE->setOperand(I, VectorOperands[I]); 3637 } 3638 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3639 return; 3640 } 3641 case Instruction::Load: { 3642 // Check that a vectorized load would load the same memory as a scalar 3643 // load. For example, we don't want to vectorize loads that are smaller 3644 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3645 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3646 // from such a struct, we read/write packed bits disagreeing with the 3647 // unvectorized version. 3648 SmallVector<Value *> PointerOps; 3649 OrdersType CurrentOrder; 3650 TreeEntry *TE = nullptr; 3651 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3652 PointerOps)) { 3653 case LoadsState::Vectorize: 3654 if (CurrentOrder.empty()) { 3655 // Original loads are consecutive and does not require reordering. 3656 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3657 ReuseShuffleIndicies); 3658 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3659 } else { 3660 fixupOrderingIndices(CurrentOrder); 3661 // Need to reorder. 3662 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3663 ReuseShuffleIndicies, CurrentOrder); 3664 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3665 } 3666 TE->setOperandsInOrder(); 3667 break; 3668 case LoadsState::ScatterVectorize: 3669 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3670 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3671 UserTreeIdx, ReuseShuffleIndicies); 3672 TE->setOperandsInOrder(); 3673 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3674 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3675 break; 3676 case LoadsState::Gather: 3677 BS.cancelScheduling(VL, VL0); 3678 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3679 ReuseShuffleIndicies); 3680 #ifndef NDEBUG 3681 Type *ScalarTy = VL0->getType(); 3682 if (DL->getTypeSizeInBits(ScalarTy) != 3683 DL->getTypeAllocSizeInBits(ScalarTy)) 3684 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3685 else if (any_of(VL, [](Value *V) { 3686 return !cast<LoadInst>(V)->isSimple(); 3687 })) 3688 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3689 else 3690 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3691 #endif // NDEBUG 3692 break; 3693 } 3694 return; 3695 } 3696 case Instruction::ZExt: 3697 case Instruction::SExt: 3698 case Instruction::FPToUI: 3699 case Instruction::FPToSI: 3700 case Instruction::FPExt: 3701 case Instruction::PtrToInt: 3702 case Instruction::IntToPtr: 3703 case Instruction::SIToFP: 3704 case Instruction::UIToFP: 3705 case Instruction::Trunc: 3706 case Instruction::FPTrunc: 3707 case Instruction::BitCast: { 3708 Type *SrcTy = VL0->getOperand(0)->getType(); 3709 for (Value *V : VL) { 3710 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3711 if (Ty != SrcTy || !isValidElementType(Ty)) { 3712 BS.cancelScheduling(VL, VL0); 3713 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3714 ReuseShuffleIndicies); 3715 LLVM_DEBUG(dbgs() 3716 << "SLP: Gathering casts with different src types.\n"); 3717 return; 3718 } 3719 } 3720 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3721 ReuseShuffleIndicies); 3722 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3723 3724 TE->setOperandsInOrder(); 3725 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3726 ValueList Operands; 3727 // Prepare the operand vector. 3728 for (Value *V : VL) 3729 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3730 3731 buildTree_rec(Operands, Depth + 1, {TE, i}); 3732 } 3733 return; 3734 } 3735 case Instruction::ICmp: 3736 case Instruction::FCmp: { 3737 // Check that all of the compares have the same predicate. 3738 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3739 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3740 Type *ComparedTy = VL0->getOperand(0)->getType(); 3741 for (Value *V : VL) { 3742 CmpInst *Cmp = cast<CmpInst>(V); 3743 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3744 Cmp->getOperand(0)->getType() != ComparedTy) { 3745 BS.cancelScheduling(VL, VL0); 3746 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3747 ReuseShuffleIndicies); 3748 LLVM_DEBUG(dbgs() 3749 << "SLP: Gathering cmp with different predicate.\n"); 3750 return; 3751 } 3752 } 3753 3754 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3755 ReuseShuffleIndicies); 3756 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3757 3758 ValueList Left, Right; 3759 if (cast<CmpInst>(VL0)->isCommutative()) { 3760 // Commutative predicate - collect + sort operands of the instructions 3761 // so that each side is more likely to have the same opcode. 3762 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3763 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3764 } else { 3765 // Collect operands - commute if it uses the swapped predicate. 3766 for (Value *V : VL) { 3767 auto *Cmp = cast<CmpInst>(V); 3768 Value *LHS = Cmp->getOperand(0); 3769 Value *RHS = Cmp->getOperand(1); 3770 if (Cmp->getPredicate() != P0) 3771 std::swap(LHS, RHS); 3772 Left.push_back(LHS); 3773 Right.push_back(RHS); 3774 } 3775 } 3776 TE->setOperand(0, Left); 3777 TE->setOperand(1, Right); 3778 buildTree_rec(Left, Depth + 1, {TE, 0}); 3779 buildTree_rec(Right, Depth + 1, {TE, 1}); 3780 return; 3781 } 3782 case Instruction::Select: 3783 case Instruction::FNeg: 3784 case Instruction::Add: 3785 case Instruction::FAdd: 3786 case Instruction::Sub: 3787 case Instruction::FSub: 3788 case Instruction::Mul: 3789 case Instruction::FMul: 3790 case Instruction::UDiv: 3791 case Instruction::SDiv: 3792 case Instruction::FDiv: 3793 case Instruction::URem: 3794 case Instruction::SRem: 3795 case Instruction::FRem: 3796 case Instruction::Shl: 3797 case Instruction::LShr: 3798 case Instruction::AShr: 3799 case Instruction::And: 3800 case Instruction::Or: 3801 case Instruction::Xor: { 3802 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3803 ReuseShuffleIndicies); 3804 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3805 3806 // Sort operands of the instructions so that each side is more likely to 3807 // have the same opcode. 3808 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3809 ValueList Left, Right; 3810 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3811 TE->setOperand(0, Left); 3812 TE->setOperand(1, Right); 3813 buildTree_rec(Left, Depth + 1, {TE, 0}); 3814 buildTree_rec(Right, Depth + 1, {TE, 1}); 3815 return; 3816 } 3817 3818 TE->setOperandsInOrder(); 3819 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3820 ValueList Operands; 3821 // Prepare the operand vector. 3822 for (Value *V : VL) 3823 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3824 3825 buildTree_rec(Operands, Depth + 1, {TE, i}); 3826 } 3827 return; 3828 } 3829 case Instruction::GetElementPtr: { 3830 // We don't combine GEPs with complicated (nested) indexing. 3831 for (Value *V : VL) { 3832 if (cast<Instruction>(V)->getNumOperands() != 2) { 3833 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3834 BS.cancelScheduling(VL, VL0); 3835 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3836 ReuseShuffleIndicies); 3837 return; 3838 } 3839 } 3840 3841 // We can't combine several GEPs into one vector if they operate on 3842 // different types. 3843 Type *Ty0 = VL0->getOperand(0)->getType(); 3844 for (Value *V : VL) { 3845 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3846 if (Ty0 != CurTy) { 3847 LLVM_DEBUG(dbgs() 3848 << "SLP: not-vectorizable GEP (different types).\n"); 3849 BS.cancelScheduling(VL, VL0); 3850 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3851 ReuseShuffleIndicies); 3852 return; 3853 } 3854 } 3855 3856 // We don't combine GEPs with non-constant indexes. 3857 Type *Ty1 = VL0->getOperand(1)->getType(); 3858 for (Value *V : VL) { 3859 auto Op = cast<Instruction>(V)->getOperand(1); 3860 if (!isa<ConstantInt>(Op) || 3861 (Op->getType() != Ty1 && 3862 Op->getType()->getScalarSizeInBits() > 3863 DL->getIndexSizeInBits( 3864 V->getType()->getPointerAddressSpace()))) { 3865 LLVM_DEBUG(dbgs() 3866 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3867 BS.cancelScheduling(VL, VL0); 3868 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3869 ReuseShuffleIndicies); 3870 return; 3871 } 3872 } 3873 3874 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3875 ReuseShuffleIndicies); 3876 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3877 SmallVector<ValueList, 2> Operands(2); 3878 // Prepare the operand vector for pointer operands. 3879 for (Value *V : VL) 3880 Operands.front().push_back( 3881 cast<GetElementPtrInst>(V)->getPointerOperand()); 3882 TE->setOperand(0, Operands.front()); 3883 // Need to cast all indices to the same type before vectorization to 3884 // avoid crash. 3885 // Required to be able to find correct matches between different gather 3886 // nodes and reuse the vectorized values rather than trying to gather them 3887 // again. 3888 int IndexIdx = 1; 3889 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 3890 Type *Ty = all_of(VL, 3891 [VL0Ty, IndexIdx](Value *V) { 3892 return VL0Ty == cast<GetElementPtrInst>(V) 3893 ->getOperand(IndexIdx) 3894 ->getType(); 3895 }) 3896 ? VL0Ty 3897 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 3898 ->getPointerOperandType() 3899 ->getScalarType()); 3900 // Prepare the operand vector. 3901 for (Value *V : VL) { 3902 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 3903 auto *CI = cast<ConstantInt>(Op); 3904 Operands.back().push_back(ConstantExpr::getIntegerCast( 3905 CI, Ty, CI->getValue().isSignBitSet())); 3906 } 3907 TE->setOperand(IndexIdx, Operands.back()); 3908 3909 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 3910 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 3911 return; 3912 } 3913 case Instruction::Store: { 3914 // Check if the stores are consecutive or if we need to swizzle them. 3915 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3916 // Avoid types that are padded when being allocated as scalars, while 3917 // being packed together in a vector (such as i1). 3918 if (DL->getTypeSizeInBits(ScalarTy) != 3919 DL->getTypeAllocSizeInBits(ScalarTy)) { 3920 BS.cancelScheduling(VL, VL0); 3921 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3922 ReuseShuffleIndicies); 3923 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3924 return; 3925 } 3926 // Make sure all stores in the bundle are simple - we can't vectorize 3927 // atomic or volatile stores. 3928 SmallVector<Value *, 4> PointerOps(VL.size()); 3929 ValueList Operands(VL.size()); 3930 auto POIter = PointerOps.begin(); 3931 auto OIter = Operands.begin(); 3932 for (Value *V : VL) { 3933 auto *SI = cast<StoreInst>(V); 3934 if (!SI->isSimple()) { 3935 BS.cancelScheduling(VL, VL0); 3936 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3937 ReuseShuffleIndicies); 3938 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3939 return; 3940 } 3941 *POIter = SI->getPointerOperand(); 3942 *OIter = SI->getValueOperand(); 3943 ++POIter; 3944 ++OIter; 3945 } 3946 3947 OrdersType CurrentOrder; 3948 // Check the order of pointer operands. 3949 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3950 Value *Ptr0; 3951 Value *PtrN; 3952 if (CurrentOrder.empty()) { 3953 Ptr0 = PointerOps.front(); 3954 PtrN = PointerOps.back(); 3955 } else { 3956 Ptr0 = PointerOps[CurrentOrder.front()]; 3957 PtrN = PointerOps[CurrentOrder.back()]; 3958 } 3959 Optional<int> Dist = 3960 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3961 // Check that the sorted pointer operands are consecutive. 3962 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3963 if (CurrentOrder.empty()) { 3964 // Original stores are consecutive and does not require reordering. 3965 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3966 UserTreeIdx, ReuseShuffleIndicies); 3967 TE->setOperandsInOrder(); 3968 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3969 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3970 } else { 3971 fixupOrderingIndices(CurrentOrder); 3972 TreeEntry *TE = 3973 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3974 ReuseShuffleIndicies, CurrentOrder); 3975 TE->setOperandsInOrder(); 3976 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3977 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3978 } 3979 return; 3980 } 3981 } 3982 3983 BS.cancelScheduling(VL, VL0); 3984 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3985 ReuseShuffleIndicies); 3986 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3987 return; 3988 } 3989 case Instruction::Call: { 3990 // Check if the calls are all to the same vectorizable intrinsic or 3991 // library function. 3992 CallInst *CI = cast<CallInst>(VL0); 3993 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3994 3995 VFShape Shape = VFShape::get( 3996 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3997 false /*HasGlobalPred*/); 3998 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3999 4000 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4001 BS.cancelScheduling(VL, VL0); 4002 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4003 ReuseShuffleIndicies); 4004 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4005 return; 4006 } 4007 Function *F = CI->getCalledFunction(); 4008 unsigned NumArgs = CI->arg_size(); 4009 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4010 for (unsigned j = 0; j != NumArgs; ++j) 4011 if (hasVectorInstrinsicScalarOpd(ID, j)) 4012 ScalarArgs[j] = CI->getArgOperand(j); 4013 for (Value *V : VL) { 4014 CallInst *CI2 = dyn_cast<CallInst>(V); 4015 if (!CI2 || CI2->getCalledFunction() != F || 4016 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4017 (VecFunc && 4018 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4019 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4020 BS.cancelScheduling(VL, VL0); 4021 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4022 ReuseShuffleIndicies); 4023 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4024 << "\n"); 4025 return; 4026 } 4027 // Some intrinsics have scalar arguments and should be same in order for 4028 // them to be vectorized. 4029 for (unsigned j = 0; j != NumArgs; ++j) { 4030 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4031 Value *A1J = CI2->getArgOperand(j); 4032 if (ScalarArgs[j] != A1J) { 4033 BS.cancelScheduling(VL, VL0); 4034 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4035 ReuseShuffleIndicies); 4036 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4037 << " argument " << ScalarArgs[j] << "!=" << A1J 4038 << "\n"); 4039 return; 4040 } 4041 } 4042 } 4043 // Verify that the bundle operands are identical between the two calls. 4044 if (CI->hasOperandBundles() && 4045 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4046 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4047 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4048 BS.cancelScheduling(VL, VL0); 4049 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4050 ReuseShuffleIndicies); 4051 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4052 << *CI << "!=" << *V << '\n'); 4053 return; 4054 } 4055 } 4056 4057 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4058 ReuseShuffleIndicies); 4059 TE->setOperandsInOrder(); 4060 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4061 // For scalar operands no need to to create an entry since no need to 4062 // vectorize it. 4063 if (hasVectorInstrinsicScalarOpd(ID, i)) 4064 continue; 4065 ValueList Operands; 4066 // Prepare the operand vector. 4067 for (Value *V : VL) { 4068 auto *CI2 = cast<CallInst>(V); 4069 Operands.push_back(CI2->getArgOperand(i)); 4070 } 4071 buildTree_rec(Operands, Depth + 1, {TE, i}); 4072 } 4073 return; 4074 } 4075 case Instruction::ShuffleVector: { 4076 // If this is not an alternate sequence of opcode like add-sub 4077 // then do not vectorize this instruction. 4078 if (!S.isAltShuffle()) { 4079 BS.cancelScheduling(VL, VL0); 4080 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4081 ReuseShuffleIndicies); 4082 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4083 return; 4084 } 4085 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4086 ReuseShuffleIndicies); 4087 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4088 4089 // Reorder operands if reordering would enable vectorization. 4090 if (isa<BinaryOperator>(VL0)) { 4091 ValueList Left, Right; 4092 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4093 TE->setOperand(0, Left); 4094 TE->setOperand(1, Right); 4095 buildTree_rec(Left, Depth + 1, {TE, 0}); 4096 buildTree_rec(Right, Depth + 1, {TE, 1}); 4097 return; 4098 } 4099 4100 TE->setOperandsInOrder(); 4101 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4102 ValueList Operands; 4103 // Prepare the operand vector. 4104 for (Value *V : VL) 4105 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4106 4107 buildTree_rec(Operands, Depth + 1, {TE, i}); 4108 } 4109 return; 4110 } 4111 default: 4112 BS.cancelScheduling(VL, VL0); 4113 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4114 ReuseShuffleIndicies); 4115 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4116 return; 4117 } 4118 } 4119 4120 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4121 unsigned N = 1; 4122 Type *EltTy = T; 4123 4124 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4125 isa<VectorType>(EltTy)) { 4126 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4127 // Check that struct is homogeneous. 4128 for (const auto *Ty : ST->elements()) 4129 if (Ty != *ST->element_begin()) 4130 return 0; 4131 N *= ST->getNumElements(); 4132 EltTy = *ST->element_begin(); 4133 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4134 N *= AT->getNumElements(); 4135 EltTy = AT->getElementType(); 4136 } else { 4137 auto *VT = cast<FixedVectorType>(EltTy); 4138 N *= VT->getNumElements(); 4139 EltTy = VT->getElementType(); 4140 } 4141 } 4142 4143 if (!isValidElementType(EltTy)) 4144 return 0; 4145 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4146 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4147 return 0; 4148 return N; 4149 } 4150 4151 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4152 SmallVectorImpl<unsigned> &CurrentOrder) const { 4153 Instruction *E0 = cast<Instruction>(OpValue); 4154 assert(E0->getOpcode() == Instruction::ExtractElement || 4155 E0->getOpcode() == Instruction::ExtractValue); 4156 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4157 // Check if all of the extracts come from the same vector and from the 4158 // correct offset. 4159 Value *Vec = E0->getOperand(0); 4160 4161 CurrentOrder.clear(); 4162 4163 // We have to extract from a vector/aggregate with the same number of elements. 4164 unsigned NElts; 4165 if (E0->getOpcode() == Instruction::ExtractValue) { 4166 const DataLayout &DL = E0->getModule()->getDataLayout(); 4167 NElts = canMapToVector(Vec->getType(), DL); 4168 if (!NElts) 4169 return false; 4170 // Check if load can be rewritten as load of vector. 4171 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4172 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4173 return false; 4174 } else { 4175 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4176 } 4177 4178 if (NElts != VL.size()) 4179 return false; 4180 4181 // Check that all of the indices extract from the correct offset. 4182 bool ShouldKeepOrder = true; 4183 unsigned E = VL.size(); 4184 // Assign to all items the initial value E + 1 so we can check if the extract 4185 // instruction index was used already. 4186 // Also, later we can check that all the indices are used and we have a 4187 // consecutive access in the extract instructions, by checking that no 4188 // element of CurrentOrder still has value E + 1. 4189 CurrentOrder.assign(E, E + 1); 4190 unsigned I = 0; 4191 for (; I < E; ++I) { 4192 auto *Inst = cast<Instruction>(VL[I]); 4193 if (Inst->getOperand(0) != Vec) 4194 break; 4195 Optional<unsigned> Idx = getExtractIndex(Inst); 4196 if (!Idx) 4197 break; 4198 const unsigned ExtIdx = *Idx; 4199 if (ExtIdx != I) { 4200 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4201 break; 4202 ShouldKeepOrder = false; 4203 CurrentOrder[ExtIdx] = I; 4204 } else { 4205 if (CurrentOrder[I] != E + 1) 4206 break; 4207 CurrentOrder[I] = I; 4208 } 4209 } 4210 if (I < E) { 4211 CurrentOrder.clear(); 4212 return false; 4213 } 4214 4215 return ShouldKeepOrder; 4216 } 4217 4218 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4219 ArrayRef<Value *> VectorizedVals) const { 4220 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4221 llvm::all_of(I->users(), [this](User *U) { 4222 return ScalarToTreeEntry.count(U) > 0; 4223 }); 4224 } 4225 4226 static std::pair<InstructionCost, InstructionCost> 4227 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4228 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4229 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4230 4231 // Calculate the cost of the scalar and vector calls. 4232 SmallVector<Type *, 4> VecTys; 4233 for (Use &Arg : CI->args()) 4234 VecTys.push_back( 4235 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4236 FastMathFlags FMF; 4237 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4238 FMF = FPCI->getFastMathFlags(); 4239 SmallVector<const Value *> Arguments(CI->args()); 4240 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4241 dyn_cast<IntrinsicInst>(CI)); 4242 auto IntrinsicCost = 4243 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4244 4245 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4246 VecTy->getNumElements())), 4247 false /*HasGlobalPred*/); 4248 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4249 auto LibCost = IntrinsicCost; 4250 if (!CI->isNoBuiltin() && VecFunc) { 4251 // Calculate the cost of the vector library call. 4252 // If the corresponding vector call is cheaper, return its cost. 4253 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4254 TTI::TCK_RecipThroughput); 4255 } 4256 return {IntrinsicCost, LibCost}; 4257 } 4258 4259 /// Compute the cost of creating a vector of type \p VecTy containing the 4260 /// extracted values from \p VL. 4261 static InstructionCost 4262 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4263 TargetTransformInfo::ShuffleKind ShuffleKind, 4264 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4265 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4266 4267 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4268 VecTy->getNumElements() < NumOfParts) 4269 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4270 4271 bool AllConsecutive = true; 4272 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4273 unsigned Idx = -1; 4274 InstructionCost Cost = 0; 4275 4276 // Process extracts in blocks of EltsPerVector to check if the source vector 4277 // operand can be re-used directly. If not, add the cost of creating a shuffle 4278 // to extract the values into a vector register. 4279 for (auto *V : VL) { 4280 ++Idx; 4281 4282 // Reached the start of a new vector registers. 4283 if (Idx % EltsPerVector == 0) { 4284 AllConsecutive = true; 4285 continue; 4286 } 4287 4288 // Check all extracts for a vector register on the target directly 4289 // extract values in order. 4290 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4291 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4292 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4293 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4294 4295 if (AllConsecutive) 4296 continue; 4297 4298 // Skip all indices, except for the last index per vector block. 4299 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4300 continue; 4301 4302 // If we have a series of extracts which are not consecutive and hence 4303 // cannot re-use the source vector register directly, compute the shuffle 4304 // cost to extract the a vector with EltsPerVector elements. 4305 Cost += TTI.getShuffleCost( 4306 TargetTransformInfo::SK_PermuteSingleSrc, 4307 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4308 } 4309 return Cost; 4310 } 4311 4312 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4313 /// operations operands. 4314 static void 4315 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4316 ArrayRef<int> ReusesIndices, 4317 const function_ref<bool(Instruction *)> IsAltOp, 4318 SmallVectorImpl<int> &Mask, 4319 SmallVectorImpl<Value *> *OpScalars = nullptr, 4320 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4321 unsigned Sz = VL.size(); 4322 Mask.assign(Sz, UndefMaskElem); 4323 SmallVector<int> OrderMask; 4324 if (!ReorderIndices.empty()) 4325 inversePermutation(ReorderIndices, OrderMask); 4326 for (unsigned I = 0; I < Sz; ++I) { 4327 unsigned Idx = I; 4328 if (!ReorderIndices.empty()) 4329 Idx = OrderMask[I]; 4330 auto *OpInst = cast<Instruction>(VL[Idx]); 4331 if (IsAltOp(OpInst)) { 4332 Mask[I] = Sz + Idx; 4333 if (AltScalars) 4334 AltScalars->push_back(OpInst); 4335 } else { 4336 Mask[I] = Idx; 4337 if (OpScalars) 4338 OpScalars->push_back(OpInst); 4339 } 4340 } 4341 if (!ReusesIndices.empty()) { 4342 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4343 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4344 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4345 }); 4346 Mask.swap(NewMask); 4347 } 4348 } 4349 4350 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4351 ArrayRef<Value *> VectorizedVals) { 4352 ArrayRef<Value*> VL = E->Scalars; 4353 4354 Type *ScalarTy = VL[0]->getType(); 4355 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4356 ScalarTy = SI->getValueOperand()->getType(); 4357 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4358 ScalarTy = CI->getOperand(0)->getType(); 4359 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4360 ScalarTy = IE->getOperand(1)->getType(); 4361 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4362 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4363 4364 // If we have computed a smaller type for the expression, update VecTy so 4365 // that the costs will be accurate. 4366 if (MinBWs.count(VL[0])) 4367 VecTy = FixedVectorType::get( 4368 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4369 auto *FinalVecTy = VecTy; 4370 4371 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4372 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4373 if (NeedToShuffleReuses) 4374 FinalVecTy = 4375 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4376 // FIXME: it tries to fix a problem with MSVC buildbots. 4377 TargetTransformInfo &TTIRef = *TTI; 4378 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4379 VectorizedVals](InstructionCost &Cost, 4380 bool IsGather) { 4381 DenseMap<Value *, int> ExtractVectorsTys; 4382 for (auto *V : VL) { 4383 // If all users of instruction are going to be vectorized and this 4384 // instruction itself is not going to be vectorized, consider this 4385 // instruction as dead and remove its cost from the final cost of the 4386 // vectorized tree. 4387 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4388 (IsGather && ScalarToTreeEntry.count(V))) 4389 continue; 4390 auto *EE = cast<ExtractElementInst>(V); 4391 unsigned Idx = *getExtractIndex(EE); 4392 if (TTIRef.getNumberOfParts(VecTy) != 4393 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4394 auto It = 4395 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4396 It->getSecond() = std::min<int>(It->second, Idx); 4397 } 4398 // Take credit for instruction that will become dead. 4399 if (EE->hasOneUse()) { 4400 Instruction *Ext = EE->user_back(); 4401 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4402 all_of(Ext->users(), 4403 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4404 // Use getExtractWithExtendCost() to calculate the cost of 4405 // extractelement/ext pair. 4406 Cost -= 4407 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4408 EE->getVectorOperandType(), Idx); 4409 // Add back the cost of s|zext which is subtracted separately. 4410 Cost += TTIRef.getCastInstrCost( 4411 Ext->getOpcode(), Ext->getType(), EE->getType(), 4412 TTI::getCastContextHint(Ext), CostKind, Ext); 4413 continue; 4414 } 4415 } 4416 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4417 EE->getVectorOperandType(), Idx); 4418 } 4419 // Add a cost for subvector extracts/inserts if required. 4420 for (const auto &Data : ExtractVectorsTys) { 4421 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4422 unsigned NumElts = VecTy->getNumElements(); 4423 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4424 unsigned Idx = (Data.second / NumElts) * NumElts; 4425 unsigned EENumElts = EEVTy->getNumElements(); 4426 if (Idx + NumElts <= EENumElts) { 4427 Cost += 4428 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4429 EEVTy, None, Idx, VecTy); 4430 } else { 4431 // Need to round up the subvector type vectorization factor to avoid a 4432 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4433 // <= EENumElts. 4434 auto *SubVT = 4435 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4436 Cost += 4437 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4438 EEVTy, None, Idx, SubVT); 4439 } 4440 } else { 4441 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4442 VecTy, None, 0, EEVTy); 4443 } 4444 } 4445 }; 4446 if (E->State == TreeEntry::NeedToGather) { 4447 if (allConstant(VL)) 4448 return 0; 4449 if (isa<InsertElementInst>(VL[0])) 4450 return InstructionCost::getInvalid(); 4451 SmallVector<int> Mask; 4452 SmallVector<const TreeEntry *> Entries; 4453 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4454 isGatherShuffledEntry(E, Mask, Entries); 4455 if (Shuffle.hasValue()) { 4456 InstructionCost GatherCost = 0; 4457 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4458 // Perfect match in the graph, will reuse the previously vectorized 4459 // node. Cost is 0. 4460 LLVM_DEBUG( 4461 dbgs() 4462 << "SLP: perfect diamond match for gather bundle that starts with " 4463 << *VL.front() << ".\n"); 4464 if (NeedToShuffleReuses) 4465 GatherCost = 4466 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4467 FinalVecTy, E->ReuseShuffleIndices); 4468 } else { 4469 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4470 << " entries for bundle that starts with " 4471 << *VL.front() << ".\n"); 4472 // Detected that instead of gather we can emit a shuffle of single/two 4473 // previously vectorized nodes. Add the cost of the permutation rather 4474 // than gather. 4475 ::addMask(Mask, E->ReuseShuffleIndices); 4476 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4477 } 4478 return GatherCost; 4479 } 4480 if (isSplat(VL)) { 4481 // Found the broadcasting of the single scalar, calculate the cost as the 4482 // broadcast. 4483 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4484 } 4485 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4486 allSameBlock(VL) && 4487 !isa<ScalableVectorType>( 4488 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4489 // Check that gather of extractelements can be represented as just a 4490 // shuffle of a single/two vectors the scalars are extracted from. 4491 SmallVector<int> Mask; 4492 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4493 isFixedVectorShuffle(VL, Mask); 4494 if (ShuffleKind.hasValue()) { 4495 // Found the bunch of extractelement instructions that must be gathered 4496 // into a vector and can be represented as a permutation elements in a 4497 // single input vector or of 2 input vectors. 4498 InstructionCost Cost = 4499 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4500 AdjustExtractsCost(Cost, /*IsGather=*/true); 4501 if (NeedToShuffleReuses) 4502 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4503 FinalVecTy, E->ReuseShuffleIndices); 4504 return Cost; 4505 } 4506 } 4507 InstructionCost ReuseShuffleCost = 0; 4508 if (NeedToShuffleReuses) 4509 ReuseShuffleCost = TTI->getShuffleCost( 4510 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4511 // Improve gather cost for gather of loads, if we can group some of the 4512 // loads into vector loads. 4513 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4514 !E->isAltShuffle()) { 4515 BoUpSLP::ValueSet VectorizedLoads; 4516 unsigned StartIdx = 0; 4517 unsigned VF = VL.size() / 2; 4518 unsigned VectorizedCnt = 0; 4519 unsigned ScatterVectorizeCnt = 0; 4520 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4521 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4522 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4523 Cnt += VF) { 4524 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4525 if (!VectorizedLoads.count(Slice.front()) && 4526 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4527 SmallVector<Value *> PointerOps; 4528 OrdersType CurrentOrder; 4529 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4530 *SE, CurrentOrder, PointerOps); 4531 switch (LS) { 4532 case LoadsState::Vectorize: 4533 case LoadsState::ScatterVectorize: 4534 // Mark the vectorized loads so that we don't vectorize them 4535 // again. 4536 if (LS == LoadsState::Vectorize) 4537 ++VectorizedCnt; 4538 else 4539 ++ScatterVectorizeCnt; 4540 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4541 // If we vectorized initial block, no need to try to vectorize it 4542 // again. 4543 if (Cnt == StartIdx) 4544 StartIdx += VF; 4545 break; 4546 case LoadsState::Gather: 4547 break; 4548 } 4549 } 4550 } 4551 // Check if the whole array was vectorized already - exit. 4552 if (StartIdx >= VL.size()) 4553 break; 4554 // Found vectorizable parts - exit. 4555 if (!VectorizedLoads.empty()) 4556 break; 4557 } 4558 if (!VectorizedLoads.empty()) { 4559 InstructionCost GatherCost = 0; 4560 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4561 bool NeedInsertSubvectorAnalysis = 4562 !NumParts || (VL.size() / VF) > NumParts; 4563 // Get the cost for gathered loads. 4564 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4565 if (VectorizedLoads.contains(VL[I])) 4566 continue; 4567 GatherCost += getGatherCost(VL.slice(I, VF)); 4568 } 4569 // The cost for vectorized loads. 4570 InstructionCost ScalarsCost = 0; 4571 for (Value *V : VectorizedLoads) { 4572 auto *LI = cast<LoadInst>(V); 4573 ScalarsCost += TTI->getMemoryOpCost( 4574 Instruction::Load, LI->getType(), LI->getAlign(), 4575 LI->getPointerAddressSpace(), CostKind, LI); 4576 } 4577 auto *LI = cast<LoadInst>(E->getMainOp()); 4578 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4579 Align Alignment = LI->getAlign(); 4580 GatherCost += 4581 VectorizedCnt * 4582 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4583 LI->getPointerAddressSpace(), CostKind, LI); 4584 GatherCost += ScatterVectorizeCnt * 4585 TTI->getGatherScatterOpCost( 4586 Instruction::Load, LoadTy, LI->getPointerOperand(), 4587 /*VariableMask=*/false, Alignment, CostKind, LI); 4588 if (NeedInsertSubvectorAnalysis) { 4589 // Add the cost for the subvectors insert. 4590 for (int I = VF, E = VL.size(); I < E; I += VF) 4591 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4592 None, I, LoadTy); 4593 } 4594 return ReuseShuffleCost + GatherCost - ScalarsCost; 4595 } 4596 } 4597 return ReuseShuffleCost + getGatherCost(VL); 4598 } 4599 InstructionCost CommonCost = 0; 4600 SmallVector<int> Mask; 4601 if (!E->ReorderIndices.empty()) { 4602 SmallVector<int> NewMask; 4603 if (E->getOpcode() == Instruction::Store) { 4604 // For stores the order is actually a mask. 4605 NewMask.resize(E->ReorderIndices.size()); 4606 copy(E->ReorderIndices, NewMask.begin()); 4607 } else { 4608 inversePermutation(E->ReorderIndices, NewMask); 4609 } 4610 ::addMask(Mask, NewMask); 4611 } 4612 if (NeedToShuffleReuses) 4613 ::addMask(Mask, E->ReuseShuffleIndices); 4614 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4615 CommonCost = 4616 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4617 assert((E->State == TreeEntry::Vectorize || 4618 E->State == TreeEntry::ScatterVectorize) && 4619 "Unhandled state"); 4620 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4621 Instruction *VL0 = E->getMainOp(); 4622 unsigned ShuffleOrOp = 4623 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4624 switch (ShuffleOrOp) { 4625 case Instruction::PHI: 4626 return 0; 4627 4628 case Instruction::ExtractValue: 4629 case Instruction::ExtractElement: { 4630 // The common cost of removal ExtractElement/ExtractValue instructions + 4631 // the cost of shuffles, if required to resuffle the original vector. 4632 if (NeedToShuffleReuses) { 4633 unsigned Idx = 0; 4634 for (unsigned I : E->ReuseShuffleIndices) { 4635 if (ShuffleOrOp == Instruction::ExtractElement) { 4636 auto *EE = cast<ExtractElementInst>(VL[I]); 4637 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4638 EE->getVectorOperandType(), 4639 *getExtractIndex(EE)); 4640 } else { 4641 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4642 VecTy, Idx); 4643 ++Idx; 4644 } 4645 } 4646 Idx = ReuseShuffleNumbers; 4647 for (Value *V : VL) { 4648 if (ShuffleOrOp == Instruction::ExtractElement) { 4649 auto *EE = cast<ExtractElementInst>(V); 4650 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4651 EE->getVectorOperandType(), 4652 *getExtractIndex(EE)); 4653 } else { 4654 --Idx; 4655 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4656 VecTy, Idx); 4657 } 4658 } 4659 } 4660 if (ShuffleOrOp == Instruction::ExtractValue) { 4661 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4662 auto *EI = cast<Instruction>(VL[I]); 4663 // Take credit for instruction that will become dead. 4664 if (EI->hasOneUse()) { 4665 Instruction *Ext = EI->user_back(); 4666 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4667 all_of(Ext->users(), 4668 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4669 // Use getExtractWithExtendCost() to calculate the cost of 4670 // extractelement/ext pair. 4671 CommonCost -= TTI->getExtractWithExtendCost( 4672 Ext->getOpcode(), Ext->getType(), VecTy, I); 4673 // Add back the cost of s|zext which is subtracted separately. 4674 CommonCost += TTI->getCastInstrCost( 4675 Ext->getOpcode(), Ext->getType(), EI->getType(), 4676 TTI::getCastContextHint(Ext), CostKind, Ext); 4677 continue; 4678 } 4679 } 4680 CommonCost -= 4681 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4682 } 4683 } else { 4684 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4685 } 4686 return CommonCost; 4687 } 4688 case Instruction::InsertElement: { 4689 assert(E->ReuseShuffleIndices.empty() && 4690 "Unique insertelements only are expected."); 4691 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4692 4693 unsigned const NumElts = SrcVecTy->getNumElements(); 4694 unsigned const NumScalars = VL.size(); 4695 APInt DemandedElts = APInt::getZero(NumElts); 4696 // TODO: Add support for Instruction::InsertValue. 4697 SmallVector<int> Mask; 4698 if (!E->ReorderIndices.empty()) { 4699 inversePermutation(E->ReorderIndices, Mask); 4700 Mask.append(NumElts - NumScalars, UndefMaskElem); 4701 } else { 4702 Mask.assign(NumElts, UndefMaskElem); 4703 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4704 } 4705 unsigned Offset = *getInsertIndex(VL0, 0); 4706 bool IsIdentity = true; 4707 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4708 Mask.swap(PrevMask); 4709 for (unsigned I = 0; I < NumScalars; ++I) { 4710 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4711 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4712 continue; 4713 DemandedElts.setBit(*InsertIdx); 4714 IsIdentity &= *InsertIdx - Offset == I; 4715 Mask[*InsertIdx - Offset] = I; 4716 } 4717 assert(Offset < NumElts && "Failed to find vector index offset"); 4718 4719 InstructionCost Cost = 0; 4720 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4721 /*Insert*/ true, /*Extract*/ false); 4722 4723 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4724 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4725 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4726 Cost += TTI->getShuffleCost( 4727 TargetTransformInfo::SK_PermuteSingleSrc, 4728 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4729 } else if (!IsIdentity) { 4730 auto *FirstInsert = 4731 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4732 return !is_contained(E->Scalars, 4733 cast<Instruction>(V)->getOperand(0)); 4734 })); 4735 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4736 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4737 } else { 4738 SmallVector<int> InsertMask(NumElts); 4739 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4740 for (unsigned I = 0; I < NumElts; I++) { 4741 if (Mask[I] != UndefMaskElem) 4742 InsertMask[Offset + I] = NumElts + I; 4743 } 4744 Cost += 4745 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4746 } 4747 } 4748 4749 return Cost; 4750 } 4751 case Instruction::ZExt: 4752 case Instruction::SExt: 4753 case Instruction::FPToUI: 4754 case Instruction::FPToSI: 4755 case Instruction::FPExt: 4756 case Instruction::PtrToInt: 4757 case Instruction::IntToPtr: 4758 case Instruction::SIToFP: 4759 case Instruction::UIToFP: 4760 case Instruction::Trunc: 4761 case Instruction::FPTrunc: 4762 case Instruction::BitCast: { 4763 Type *SrcTy = VL0->getOperand(0)->getType(); 4764 InstructionCost ScalarEltCost = 4765 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4766 TTI::getCastContextHint(VL0), CostKind, VL0); 4767 if (NeedToShuffleReuses) { 4768 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4769 } 4770 4771 // Calculate the cost of this instruction. 4772 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4773 4774 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4775 InstructionCost VecCost = 0; 4776 // Check if the values are candidates to demote. 4777 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4778 VecCost = CommonCost + TTI->getCastInstrCost( 4779 E->getOpcode(), VecTy, SrcVecTy, 4780 TTI::getCastContextHint(VL0), CostKind, VL0); 4781 } 4782 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4783 return VecCost - ScalarCost; 4784 } 4785 case Instruction::FCmp: 4786 case Instruction::ICmp: 4787 case Instruction::Select: { 4788 // Calculate the cost of this instruction. 4789 InstructionCost ScalarEltCost = 4790 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4791 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4792 if (NeedToShuffleReuses) { 4793 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4794 } 4795 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4796 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4797 4798 // Check if all entries in VL are either compares or selects with compares 4799 // as condition that have the same predicates. 4800 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4801 bool First = true; 4802 for (auto *V : VL) { 4803 CmpInst::Predicate CurrentPred; 4804 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4805 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4806 !match(V, MatchCmp)) || 4807 (!First && VecPred != CurrentPred)) { 4808 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4809 break; 4810 } 4811 First = false; 4812 VecPred = CurrentPred; 4813 } 4814 4815 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4816 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4817 // Check if it is possible and profitable to use min/max for selects in 4818 // VL. 4819 // 4820 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4821 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4822 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4823 {VecTy, VecTy}); 4824 InstructionCost IntrinsicCost = 4825 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4826 // If the selects are the only uses of the compares, they will be dead 4827 // and we can adjust the cost by removing their cost. 4828 if (IntrinsicAndUse.second) 4829 IntrinsicCost -= 4830 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4831 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4832 VecCost = std::min(VecCost, IntrinsicCost); 4833 } 4834 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4835 return CommonCost + VecCost - ScalarCost; 4836 } 4837 case Instruction::FNeg: 4838 case Instruction::Add: 4839 case Instruction::FAdd: 4840 case Instruction::Sub: 4841 case Instruction::FSub: 4842 case Instruction::Mul: 4843 case Instruction::FMul: 4844 case Instruction::UDiv: 4845 case Instruction::SDiv: 4846 case Instruction::FDiv: 4847 case Instruction::URem: 4848 case Instruction::SRem: 4849 case Instruction::FRem: 4850 case Instruction::Shl: 4851 case Instruction::LShr: 4852 case Instruction::AShr: 4853 case Instruction::And: 4854 case Instruction::Or: 4855 case Instruction::Xor: { 4856 // Certain instructions can be cheaper to vectorize if they have a 4857 // constant second vector operand. 4858 TargetTransformInfo::OperandValueKind Op1VK = 4859 TargetTransformInfo::OK_AnyValue; 4860 TargetTransformInfo::OperandValueKind Op2VK = 4861 TargetTransformInfo::OK_UniformConstantValue; 4862 TargetTransformInfo::OperandValueProperties Op1VP = 4863 TargetTransformInfo::OP_None; 4864 TargetTransformInfo::OperandValueProperties Op2VP = 4865 TargetTransformInfo::OP_PowerOf2; 4866 4867 // If all operands are exactly the same ConstantInt then set the 4868 // operand kind to OK_UniformConstantValue. 4869 // If instead not all operands are constants, then set the operand kind 4870 // to OK_AnyValue. If all operands are constants but not the same, 4871 // then set the operand kind to OK_NonUniformConstantValue. 4872 ConstantInt *CInt0 = nullptr; 4873 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4874 const Instruction *I = cast<Instruction>(VL[i]); 4875 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4876 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4877 if (!CInt) { 4878 Op2VK = TargetTransformInfo::OK_AnyValue; 4879 Op2VP = TargetTransformInfo::OP_None; 4880 break; 4881 } 4882 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4883 !CInt->getValue().isPowerOf2()) 4884 Op2VP = TargetTransformInfo::OP_None; 4885 if (i == 0) { 4886 CInt0 = CInt; 4887 continue; 4888 } 4889 if (CInt0 != CInt) 4890 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4891 } 4892 4893 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4894 InstructionCost ScalarEltCost = 4895 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4896 Op2VK, Op1VP, Op2VP, Operands, VL0); 4897 if (NeedToShuffleReuses) { 4898 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4899 } 4900 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4901 InstructionCost VecCost = 4902 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4903 Op2VK, Op1VP, Op2VP, Operands, VL0); 4904 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4905 return CommonCost + VecCost - ScalarCost; 4906 } 4907 case Instruction::GetElementPtr: { 4908 TargetTransformInfo::OperandValueKind Op1VK = 4909 TargetTransformInfo::OK_AnyValue; 4910 TargetTransformInfo::OperandValueKind Op2VK = 4911 TargetTransformInfo::OK_UniformConstantValue; 4912 4913 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4914 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4915 if (NeedToShuffleReuses) { 4916 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4917 } 4918 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4919 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4920 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4921 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4922 return CommonCost + VecCost - ScalarCost; 4923 } 4924 case Instruction::Load: { 4925 // Cost of wide load - cost of scalar loads. 4926 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4927 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4928 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4929 if (NeedToShuffleReuses) { 4930 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4931 } 4932 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4933 InstructionCost VecLdCost; 4934 if (E->State == TreeEntry::Vectorize) { 4935 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4936 CostKind, VL0); 4937 } else { 4938 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4939 Align CommonAlignment = Alignment; 4940 for (Value *V : VL) 4941 CommonAlignment = 4942 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4943 VecLdCost = TTI->getGatherScatterOpCost( 4944 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4945 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4946 } 4947 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4948 return CommonCost + VecLdCost - ScalarLdCost; 4949 } 4950 case Instruction::Store: { 4951 // We know that we can merge the stores. Calculate the cost. 4952 bool IsReorder = !E->ReorderIndices.empty(); 4953 auto *SI = 4954 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4955 Align Alignment = SI->getAlign(); 4956 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4957 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4958 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4959 InstructionCost VecStCost = TTI->getMemoryOpCost( 4960 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4961 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4962 return CommonCost + VecStCost - ScalarStCost; 4963 } 4964 case Instruction::Call: { 4965 CallInst *CI = cast<CallInst>(VL0); 4966 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4967 4968 // Calculate the cost of the scalar and vector calls. 4969 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4970 InstructionCost ScalarEltCost = 4971 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4972 if (NeedToShuffleReuses) { 4973 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4974 } 4975 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4976 4977 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4978 InstructionCost VecCallCost = 4979 std::min(VecCallCosts.first, VecCallCosts.second); 4980 4981 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4982 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4983 << " for " << *CI << "\n"); 4984 4985 return CommonCost + VecCallCost - ScalarCallCost; 4986 } 4987 case Instruction::ShuffleVector: { 4988 assert(E->isAltShuffle() && 4989 ((Instruction::isBinaryOp(E->getOpcode()) && 4990 Instruction::isBinaryOp(E->getAltOpcode())) || 4991 (Instruction::isCast(E->getOpcode()) && 4992 Instruction::isCast(E->getAltOpcode()))) && 4993 "Invalid Shuffle Vector Operand"); 4994 InstructionCost ScalarCost = 0; 4995 if (NeedToShuffleReuses) { 4996 for (unsigned Idx : E->ReuseShuffleIndices) { 4997 Instruction *I = cast<Instruction>(VL[Idx]); 4998 CommonCost -= TTI->getInstructionCost(I, CostKind); 4999 } 5000 for (Value *V : VL) { 5001 Instruction *I = cast<Instruction>(V); 5002 CommonCost += TTI->getInstructionCost(I, CostKind); 5003 } 5004 } 5005 for (Value *V : VL) { 5006 Instruction *I = cast<Instruction>(V); 5007 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5008 ScalarCost += TTI->getInstructionCost(I, CostKind); 5009 } 5010 // VecCost is equal to sum of the cost of creating 2 vectors 5011 // and the cost of creating shuffle. 5012 InstructionCost VecCost = 0; 5013 if (Instruction::isBinaryOp(E->getOpcode())) { 5014 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5015 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5016 CostKind); 5017 } else { 5018 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5019 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5020 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5021 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5022 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5023 TTI::CastContextHint::None, CostKind); 5024 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5025 TTI::CastContextHint::None, CostKind); 5026 } 5027 5028 SmallVector<int> Mask; 5029 buildSuffleEntryMask( 5030 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5031 [E](Instruction *I) { 5032 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5033 return I->getOpcode() == E->getAltOpcode(); 5034 }, 5035 Mask); 5036 CommonCost = 5037 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5038 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5039 return CommonCost + VecCost - ScalarCost; 5040 } 5041 default: 5042 llvm_unreachable("Unknown instruction"); 5043 } 5044 } 5045 5046 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5047 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5048 << VectorizableTree.size() << " is fully vectorizable .\n"); 5049 5050 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5051 SmallVector<int> Mask; 5052 return TE->State == TreeEntry::NeedToGather && 5053 !any_of(TE->Scalars, 5054 [this](Value *V) { return EphValues.contains(V); }) && 5055 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5056 TE->Scalars.size() < Limit || 5057 (TE->getOpcode() == Instruction::ExtractElement && 5058 isFixedVectorShuffle(TE->Scalars, Mask)) || 5059 (TE->State == TreeEntry::NeedToGather && 5060 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5061 }; 5062 5063 // We only handle trees of heights 1 and 2. 5064 if (VectorizableTree.size() == 1 && 5065 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5066 (ForReduction && 5067 AreVectorizableGathers(VectorizableTree[0].get(), 5068 VectorizableTree[0]->Scalars.size()) && 5069 (VectorizableTree[0]->Scalars.size() > 2 || 5070 VectorizableTree[0]->ReuseShuffleIndices.size() > 2)))) 5071 return true; 5072 5073 if (VectorizableTree.size() != 2) 5074 return false; 5075 5076 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5077 // with the second gather nodes if they have less scalar operands rather than 5078 // the initial tree element (may be profitable to shuffle the second gather) 5079 // or they are extractelements, which form shuffle. 5080 SmallVector<int> Mask; 5081 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5082 AreVectorizableGathers(VectorizableTree[1].get(), 5083 VectorizableTree[0]->Scalars.size())) 5084 return true; 5085 5086 // Gathering cost would be too much for tiny trees. 5087 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5088 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5089 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5090 return false; 5091 5092 return true; 5093 } 5094 5095 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5096 TargetTransformInfo *TTI, 5097 bool MustMatchOrInst) { 5098 // Look past the root to find a source value. Arbitrarily follow the 5099 // path through operand 0 of any 'or'. Also, peek through optional 5100 // shift-left-by-multiple-of-8-bits. 5101 Value *ZextLoad = Root; 5102 const APInt *ShAmtC; 5103 bool FoundOr = false; 5104 while (!isa<ConstantExpr>(ZextLoad) && 5105 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5106 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5107 ShAmtC->urem(8) == 0))) { 5108 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5109 ZextLoad = BinOp->getOperand(0); 5110 if (BinOp->getOpcode() == Instruction::Or) 5111 FoundOr = true; 5112 } 5113 // Check if the input is an extended load of the required or/shift expression. 5114 Value *LoadPtr; 5115 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5116 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5117 return false; 5118 5119 // Require that the total load bit width is a legal integer type. 5120 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5121 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5122 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5123 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5124 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5125 return false; 5126 5127 // Everything matched - assume that we can fold the whole sequence using 5128 // load combining. 5129 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5130 << *(cast<Instruction>(Root)) << "\n"); 5131 5132 return true; 5133 } 5134 5135 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5136 if (RdxKind != RecurKind::Or) 5137 return false; 5138 5139 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5140 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5141 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5142 /* MatchOr */ false); 5143 } 5144 5145 bool BoUpSLP::isLoadCombineCandidate() const { 5146 // Peek through a final sequence of stores and check if all operations are 5147 // likely to be load-combined. 5148 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5149 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5150 Value *X; 5151 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5152 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5153 return false; 5154 } 5155 return true; 5156 } 5157 5158 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5159 // No need to vectorize inserts of gathered values. 5160 if (VectorizableTree.size() == 2 && 5161 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5162 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5163 return true; 5164 5165 // We can vectorize the tree if its size is greater than or equal to the 5166 // minimum size specified by the MinTreeSize command line option. 5167 if (VectorizableTree.size() >= MinTreeSize) 5168 return false; 5169 5170 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5171 // can vectorize it if we can prove it fully vectorizable. 5172 if (isFullyVectorizableTinyTree(ForReduction)) 5173 return false; 5174 5175 assert(VectorizableTree.empty() 5176 ? ExternalUses.empty() 5177 : true && "We shouldn't have any external users"); 5178 5179 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5180 // vectorizable. 5181 return true; 5182 } 5183 5184 InstructionCost BoUpSLP::getSpillCost() const { 5185 // Walk from the bottom of the tree to the top, tracking which values are 5186 // live. When we see a call instruction that is not part of our tree, 5187 // query TTI to see if there is a cost to keeping values live over it 5188 // (for example, if spills and fills are required). 5189 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5190 InstructionCost Cost = 0; 5191 5192 SmallPtrSet<Instruction*, 4> LiveValues; 5193 Instruction *PrevInst = nullptr; 5194 5195 // The entries in VectorizableTree are not necessarily ordered by their 5196 // position in basic blocks. Collect them and order them by dominance so later 5197 // instructions are guaranteed to be visited first. For instructions in 5198 // different basic blocks, we only scan to the beginning of the block, so 5199 // their order does not matter, as long as all instructions in a basic block 5200 // are grouped together. Using dominance ensures a deterministic order. 5201 SmallVector<Instruction *, 16> OrderedScalars; 5202 for (const auto &TEPtr : VectorizableTree) { 5203 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5204 if (!Inst) 5205 continue; 5206 OrderedScalars.push_back(Inst); 5207 } 5208 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5209 auto *NodeA = DT->getNode(A->getParent()); 5210 auto *NodeB = DT->getNode(B->getParent()); 5211 assert(NodeA && "Should only process reachable instructions"); 5212 assert(NodeB && "Should only process reachable instructions"); 5213 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5214 "Different nodes should have different DFS numbers"); 5215 if (NodeA != NodeB) 5216 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5217 return B->comesBefore(A); 5218 }); 5219 5220 for (Instruction *Inst : OrderedScalars) { 5221 if (!PrevInst) { 5222 PrevInst = Inst; 5223 continue; 5224 } 5225 5226 // Update LiveValues. 5227 LiveValues.erase(PrevInst); 5228 for (auto &J : PrevInst->operands()) { 5229 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5230 LiveValues.insert(cast<Instruction>(&*J)); 5231 } 5232 5233 LLVM_DEBUG({ 5234 dbgs() << "SLP: #LV: " << LiveValues.size(); 5235 for (auto *X : LiveValues) 5236 dbgs() << " " << X->getName(); 5237 dbgs() << ", Looking at "; 5238 Inst->dump(); 5239 }); 5240 5241 // Now find the sequence of instructions between PrevInst and Inst. 5242 unsigned NumCalls = 0; 5243 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5244 PrevInstIt = 5245 PrevInst->getIterator().getReverse(); 5246 while (InstIt != PrevInstIt) { 5247 if (PrevInstIt == PrevInst->getParent()->rend()) { 5248 PrevInstIt = Inst->getParent()->rbegin(); 5249 continue; 5250 } 5251 5252 // Debug information does not impact spill cost. 5253 if ((isa<CallInst>(&*PrevInstIt) && 5254 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5255 &*PrevInstIt != PrevInst) 5256 NumCalls++; 5257 5258 ++PrevInstIt; 5259 } 5260 5261 if (NumCalls) { 5262 SmallVector<Type*, 4> V; 5263 for (auto *II : LiveValues) { 5264 auto *ScalarTy = II->getType(); 5265 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5266 ScalarTy = VectorTy->getElementType(); 5267 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5268 } 5269 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5270 } 5271 5272 PrevInst = Inst; 5273 } 5274 5275 return Cost; 5276 } 5277 5278 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5279 InstructionCost Cost = 0; 5280 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5281 << VectorizableTree.size() << ".\n"); 5282 5283 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5284 5285 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5286 TreeEntry &TE = *VectorizableTree[I].get(); 5287 5288 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5289 Cost += C; 5290 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5291 << " for bundle that starts with " << *TE.Scalars[0] 5292 << ".\n" 5293 << "SLP: Current total cost = " << Cost << "\n"); 5294 } 5295 5296 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5297 InstructionCost ExtractCost = 0; 5298 SmallVector<unsigned> VF; 5299 SmallVector<SmallVector<int>> ShuffleMask; 5300 SmallVector<Value *> FirstUsers; 5301 SmallVector<APInt> DemandedElts; 5302 for (ExternalUser &EU : ExternalUses) { 5303 // We only add extract cost once for the same scalar. 5304 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5305 continue; 5306 5307 // Uses by ephemeral values are free (because the ephemeral value will be 5308 // removed prior to code generation, and so the extraction will be 5309 // removed as well). 5310 if (EphValues.count(EU.User)) 5311 continue; 5312 5313 // No extract cost for vector "scalar" 5314 if (isa<FixedVectorType>(EU.Scalar->getType())) 5315 continue; 5316 5317 // Already counted the cost for external uses when tried to adjust the cost 5318 // for extractelements, no need to add it again. 5319 if (isa<ExtractElementInst>(EU.Scalar)) 5320 continue; 5321 5322 // If found user is an insertelement, do not calculate extract cost but try 5323 // to detect it as a final shuffled/identity match. 5324 if (isa_and_nonnull<InsertElementInst>(EU.User)) { 5325 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5326 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5327 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5328 continue; 5329 Value *VU = EU.User; 5330 auto *It = find_if(FirstUsers, [VU](Value *V) { 5331 // Checks if 2 insertelements are from the same buildvector. 5332 if (VU->getType() != V->getType()) 5333 return false; 5334 auto *IE1 = cast<InsertElementInst>(VU); 5335 auto *IE2 = cast<InsertElementInst>(V); 5336 // Go through of insertelement instructions trying to find either VU 5337 // as the original vector for IE2 or V as the original vector for IE1. 5338 do { 5339 if (IE1 == VU || IE2 == V) 5340 return true; 5341 if (IE1) 5342 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5343 if (IE2) 5344 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5345 } while (IE1 || IE2); 5346 return false; 5347 }); 5348 int VecId = -1; 5349 if (It == FirstUsers.end()) { 5350 VF.push_back(FTy->getNumElements()); 5351 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5352 FirstUsers.push_back(EU.User); 5353 DemandedElts.push_back(APInt::getZero(VF.back())); 5354 VecId = FirstUsers.size() - 1; 5355 } else { 5356 VecId = std::distance(FirstUsers.begin(), It); 5357 } 5358 int Idx = *InsertIdx; 5359 ShuffleMask[VecId][Idx] = EU.Lane; 5360 DemandedElts[VecId].setBit(Idx); 5361 } 5362 } 5363 5364 // If we plan to rewrite the tree in a smaller type, we will need to sign 5365 // extend the extracted value back to the original type. Here, we account 5366 // for the extract and the added cost of the sign extend if needed. 5367 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5368 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5369 if (MinBWs.count(ScalarRoot)) { 5370 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5371 auto Extend = 5372 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5373 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5374 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5375 VecTy, EU.Lane); 5376 } else { 5377 ExtractCost += 5378 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5379 } 5380 } 5381 5382 InstructionCost SpillCost = getSpillCost(); 5383 Cost += SpillCost + ExtractCost; 5384 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5385 // For the very first element - simple shuffle of the source vector. 5386 int Limit = ShuffleMask[I].size() * 2; 5387 if (I == 0 && 5388 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5389 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5390 InstructionCost C = TTI->getShuffleCost( 5391 TTI::SK_PermuteSingleSrc, 5392 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5393 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5394 << " for final shuffle of insertelement external users " 5395 << *VectorizableTree.front()->Scalars.front() << ".\n" 5396 << "SLP: Current total cost = " << Cost << "\n"); 5397 Cost += C; 5398 continue; 5399 } 5400 // Other elements - permutation of 2 vectors (the initial one and the next 5401 // Ith incoming vector). 5402 unsigned VF = ShuffleMask[I].size(); 5403 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5404 int &Mask = ShuffleMask[I][Idx]; 5405 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5406 } 5407 InstructionCost C = TTI->getShuffleCost( 5408 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5409 ShuffleMask[I]); 5410 LLVM_DEBUG( 5411 dbgs() 5412 << "SLP: Adding cost " << C 5413 << " for final shuffle of vector node and external insertelement users " 5414 << *VectorizableTree.front()->Scalars.front() << ".\n" 5415 << "SLP: Current total cost = " << Cost << "\n"); 5416 Cost += C; 5417 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5418 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5419 /*Insert*/ true, 5420 /*Extract*/ false); 5421 Cost -= InsertCost; 5422 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5423 << " for insertelements gather.\n" 5424 << "SLP: Current total cost = " << Cost << "\n"); 5425 } 5426 5427 #ifndef NDEBUG 5428 SmallString<256> Str; 5429 { 5430 raw_svector_ostream OS(Str); 5431 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5432 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5433 << "SLP: Total Cost = " << Cost << ".\n"; 5434 } 5435 LLVM_DEBUG(dbgs() << Str); 5436 if (ViewSLPTree) 5437 ViewGraph(this, "SLP" + F->getName(), false, Str); 5438 #endif 5439 5440 return Cost; 5441 } 5442 5443 Optional<TargetTransformInfo::ShuffleKind> 5444 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5445 SmallVectorImpl<const TreeEntry *> &Entries) { 5446 // TODO: currently checking only for Scalars in the tree entry, need to count 5447 // reused elements too for better cost estimation. 5448 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5449 Entries.clear(); 5450 // Build a lists of values to tree entries. 5451 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5452 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5453 if (EntryPtr.get() == TE) 5454 break; 5455 if (EntryPtr->State != TreeEntry::NeedToGather) 5456 continue; 5457 for (Value *V : EntryPtr->Scalars) 5458 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5459 } 5460 // Find all tree entries used by the gathered values. If no common entries 5461 // found - not a shuffle. 5462 // Here we build a set of tree nodes for each gathered value and trying to 5463 // find the intersection between these sets. If we have at least one common 5464 // tree node for each gathered value - we have just a permutation of the 5465 // single vector. If we have 2 different sets, we're in situation where we 5466 // have a permutation of 2 input vectors. 5467 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5468 DenseMap<Value *, int> UsedValuesEntry; 5469 for (Value *V : TE->Scalars) { 5470 if (isa<UndefValue>(V)) 5471 continue; 5472 // Build a list of tree entries where V is used. 5473 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5474 auto It = ValueToTEs.find(V); 5475 if (It != ValueToTEs.end()) 5476 VToTEs = It->second; 5477 if (const TreeEntry *VTE = getTreeEntry(V)) 5478 VToTEs.insert(VTE); 5479 if (VToTEs.empty()) 5480 return None; 5481 if (UsedTEs.empty()) { 5482 // The first iteration, just insert the list of nodes to vector. 5483 UsedTEs.push_back(VToTEs); 5484 } else { 5485 // Need to check if there are any previously used tree nodes which use V. 5486 // If there are no such nodes, consider that we have another one input 5487 // vector. 5488 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5489 unsigned Idx = 0; 5490 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5491 // Do we have a non-empty intersection of previously listed tree entries 5492 // and tree entries using current V? 5493 set_intersect(VToTEs, Set); 5494 if (!VToTEs.empty()) { 5495 // Yes, write the new subset and continue analysis for the next 5496 // scalar. 5497 Set.swap(VToTEs); 5498 break; 5499 } 5500 VToTEs = SavedVToTEs; 5501 ++Idx; 5502 } 5503 // No non-empty intersection found - need to add a second set of possible 5504 // source vectors. 5505 if (Idx == UsedTEs.size()) { 5506 // If the number of input vectors is greater than 2 - not a permutation, 5507 // fallback to the regular gather. 5508 if (UsedTEs.size() == 2) 5509 return None; 5510 UsedTEs.push_back(SavedVToTEs); 5511 Idx = UsedTEs.size() - 1; 5512 } 5513 UsedValuesEntry.try_emplace(V, Idx); 5514 } 5515 } 5516 5517 unsigned VF = 0; 5518 if (UsedTEs.size() == 1) { 5519 // Try to find the perfect match in another gather node at first. 5520 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5521 return EntryPtr->isSame(TE->Scalars); 5522 }); 5523 if (It != UsedTEs.front().end()) { 5524 Entries.push_back(*It); 5525 std::iota(Mask.begin(), Mask.end(), 0); 5526 return TargetTransformInfo::SK_PermuteSingleSrc; 5527 } 5528 // No perfect match, just shuffle, so choose the first tree node. 5529 Entries.push_back(*UsedTEs.front().begin()); 5530 } else { 5531 // Try to find nodes with the same vector factor. 5532 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5533 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5534 // landed. 5535 auto &&GetVF = [](const TreeEntry *TE) { 5536 if (!TE->ReuseShuffleIndices.empty()) 5537 return TE->ReuseShuffleIndices.size(); 5538 return TE->Scalars.size(); 5539 }; 5540 DenseMap<int, const TreeEntry *> VFToTE; 5541 for (const TreeEntry *TE : UsedTEs.front()) 5542 VFToTE.try_emplace(GetVF(TE), TE); 5543 for (const TreeEntry *TE : UsedTEs.back()) { 5544 auto It = VFToTE.find(GetVF(TE)); 5545 if (It != VFToTE.end()) { 5546 VF = It->first; 5547 Entries.push_back(It->second); 5548 Entries.push_back(TE); 5549 break; 5550 } 5551 } 5552 // No 2 source vectors with the same vector factor - give up and do regular 5553 // gather. 5554 if (Entries.empty()) 5555 return None; 5556 } 5557 5558 // Build a shuffle mask for better cost estimation and vector emission. 5559 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5560 Value *V = TE->Scalars[I]; 5561 if (isa<UndefValue>(V)) 5562 continue; 5563 unsigned Idx = UsedValuesEntry.lookup(V); 5564 const TreeEntry *VTE = Entries[Idx]; 5565 int FoundLane = VTE->findLaneForValue(V); 5566 Mask[I] = Idx * VF + FoundLane; 5567 // Extra check required by isSingleSourceMaskImpl function (called by 5568 // ShuffleVectorInst::isSingleSourceMask). 5569 if (Mask[I] >= 2 * E) 5570 return None; 5571 } 5572 switch (Entries.size()) { 5573 case 1: 5574 return TargetTransformInfo::SK_PermuteSingleSrc; 5575 case 2: 5576 return TargetTransformInfo::SK_PermuteTwoSrc; 5577 default: 5578 break; 5579 } 5580 return None; 5581 } 5582 5583 InstructionCost 5584 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5585 const DenseSet<unsigned> &ShuffledIndices, 5586 bool NeedToShuffle) const { 5587 unsigned NumElts = Ty->getNumElements(); 5588 APInt DemandedElts = APInt::getZero(NumElts); 5589 for (unsigned I = 0; I < NumElts; ++I) 5590 if (!ShuffledIndices.count(I)) 5591 DemandedElts.setBit(I); 5592 InstructionCost Cost = 5593 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5594 /*Extract*/ false); 5595 if (NeedToShuffle) 5596 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5597 return Cost; 5598 } 5599 5600 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5601 // Find the type of the operands in VL. 5602 Type *ScalarTy = VL[0]->getType(); 5603 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5604 ScalarTy = SI->getValueOperand()->getType(); 5605 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5606 bool DuplicateNonConst = false; 5607 // Find the cost of inserting/extracting values from the vector. 5608 // Check if the same elements are inserted several times and count them as 5609 // shuffle candidates. 5610 DenseSet<unsigned> ShuffledElements; 5611 DenseSet<Value *> UniqueElements; 5612 // Iterate in reverse order to consider insert elements with the high cost. 5613 for (unsigned I = VL.size(); I > 0; --I) { 5614 unsigned Idx = I - 1; 5615 // No need to shuffle duplicates for constants. 5616 if (isConstant(VL[Idx])) { 5617 ShuffledElements.insert(Idx); 5618 continue; 5619 } 5620 if (!UniqueElements.insert(VL[Idx]).second) { 5621 DuplicateNonConst = true; 5622 ShuffledElements.insert(Idx); 5623 } 5624 } 5625 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5626 } 5627 5628 // Perform operand reordering on the instructions in VL and return the reordered 5629 // operands in Left and Right. 5630 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5631 SmallVectorImpl<Value *> &Left, 5632 SmallVectorImpl<Value *> &Right, 5633 const DataLayout &DL, 5634 ScalarEvolution &SE, 5635 const BoUpSLP &R) { 5636 if (VL.empty()) 5637 return; 5638 VLOperands Ops(VL, DL, SE, R); 5639 // Reorder the operands in place. 5640 Ops.reorder(); 5641 Left = Ops.getVL(0); 5642 Right = Ops.getVL(1); 5643 } 5644 5645 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5646 // Get the basic block this bundle is in. All instructions in the bundle 5647 // should be in this block. 5648 auto *Front = E->getMainOp(); 5649 auto *BB = Front->getParent(); 5650 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5651 auto *I = cast<Instruction>(V); 5652 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5653 })); 5654 5655 // The last instruction in the bundle in program order. 5656 Instruction *LastInst = nullptr; 5657 5658 // Find the last instruction. The common case should be that BB has been 5659 // scheduled, and the last instruction is VL.back(). So we start with 5660 // VL.back() and iterate over schedule data until we reach the end of the 5661 // bundle. The end of the bundle is marked by null ScheduleData. 5662 if (BlocksSchedules.count(BB)) { 5663 auto *Bundle = 5664 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5665 if (Bundle && Bundle->isPartOfBundle()) 5666 for (; Bundle; Bundle = Bundle->NextInBundle) 5667 if (Bundle->OpValue == Bundle->Inst) 5668 LastInst = Bundle->Inst; 5669 } 5670 5671 // LastInst can still be null at this point if there's either not an entry 5672 // for BB in BlocksSchedules or there's no ScheduleData available for 5673 // VL.back(). This can be the case if buildTree_rec aborts for various 5674 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5675 // size is reached, etc.). ScheduleData is initialized in the scheduling 5676 // "dry-run". 5677 // 5678 // If this happens, we can still find the last instruction by brute force. We 5679 // iterate forwards from Front (inclusive) until we either see all 5680 // instructions in the bundle or reach the end of the block. If Front is the 5681 // last instruction in program order, LastInst will be set to Front, and we 5682 // will visit all the remaining instructions in the block. 5683 // 5684 // One of the reasons we exit early from buildTree_rec is to place an upper 5685 // bound on compile-time. Thus, taking an additional compile-time hit here is 5686 // not ideal. However, this should be exceedingly rare since it requires that 5687 // we both exit early from buildTree_rec and that the bundle be out-of-order 5688 // (causing us to iterate all the way to the end of the block). 5689 if (!LastInst) { 5690 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5691 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5692 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5693 LastInst = &I; 5694 if (Bundle.empty()) 5695 break; 5696 } 5697 } 5698 assert(LastInst && "Failed to find last instruction in bundle"); 5699 5700 // Set the insertion point after the last instruction in the bundle. Set the 5701 // debug location to Front. 5702 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5703 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5704 } 5705 5706 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5707 // List of instructions/lanes from current block and/or the blocks which are 5708 // part of the current loop. These instructions will be inserted at the end to 5709 // make it possible to optimize loops and hoist invariant instructions out of 5710 // the loops body with better chances for success. 5711 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5712 SmallSet<int, 4> PostponedIndices; 5713 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5714 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5715 SmallPtrSet<BasicBlock *, 4> Visited; 5716 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5717 InsertBB = InsertBB->getSinglePredecessor(); 5718 return InsertBB && InsertBB == InstBB; 5719 }; 5720 for (int I = 0, E = VL.size(); I < E; ++I) { 5721 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5722 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5723 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5724 PostponedIndices.insert(I).second) 5725 PostponedInsts.emplace_back(Inst, I); 5726 } 5727 5728 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5729 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5730 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5731 if (!InsElt) 5732 return Vec; 5733 GatherSeq.insert(InsElt); 5734 CSEBlocks.insert(InsElt->getParent()); 5735 // Add to our 'need-to-extract' list. 5736 if (TreeEntry *Entry = getTreeEntry(V)) { 5737 // Find which lane we need to extract. 5738 unsigned FoundLane = Entry->findLaneForValue(V); 5739 ExternalUses.emplace_back(V, InsElt, FoundLane); 5740 } 5741 return Vec; 5742 }; 5743 Value *Val0 = 5744 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5745 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5746 Value *Vec = PoisonValue::get(VecTy); 5747 SmallVector<int> NonConsts; 5748 // Insert constant values at first. 5749 for (int I = 0, E = VL.size(); I < E; ++I) { 5750 if (PostponedIndices.contains(I)) 5751 continue; 5752 if (!isConstant(VL[I])) { 5753 NonConsts.push_back(I); 5754 continue; 5755 } 5756 Vec = CreateInsertElement(Vec, VL[I], I); 5757 } 5758 // Insert non-constant values. 5759 for (int I : NonConsts) 5760 Vec = CreateInsertElement(Vec, VL[I], I); 5761 // Append instructions, which are/may be part of the loop, in the end to make 5762 // it possible to hoist non-loop-based instructions. 5763 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5764 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5765 5766 return Vec; 5767 } 5768 5769 namespace { 5770 /// Merges shuffle masks and emits final shuffle instruction, if required. 5771 class ShuffleInstructionBuilder { 5772 IRBuilderBase &Builder; 5773 const unsigned VF = 0; 5774 bool IsFinalized = false; 5775 SmallVector<int, 4> Mask; 5776 5777 public: 5778 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5779 : Builder(Builder), VF(VF) {} 5780 5781 /// Adds a mask, inverting it before applying. 5782 void addInversedMask(ArrayRef<unsigned> SubMask) { 5783 if (SubMask.empty()) 5784 return; 5785 SmallVector<int, 4> NewMask; 5786 inversePermutation(SubMask, NewMask); 5787 addMask(NewMask); 5788 } 5789 5790 /// Functions adds masks, merging them into single one. 5791 void addMask(ArrayRef<unsigned> SubMask) { 5792 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5793 addMask(NewMask); 5794 } 5795 5796 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5797 5798 Value *finalize(Value *V) { 5799 IsFinalized = true; 5800 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5801 if (VF == ValueVF && Mask.empty()) 5802 return V; 5803 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5804 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5805 addMask(NormalizedMask); 5806 5807 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5808 return V; 5809 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5810 } 5811 5812 ~ShuffleInstructionBuilder() { 5813 assert((IsFinalized || Mask.empty()) && 5814 "Shuffle construction must be finalized."); 5815 } 5816 }; 5817 } // namespace 5818 5819 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5820 unsigned VF = VL.size(); 5821 InstructionsState S = getSameOpcode(VL); 5822 if (S.getOpcode()) { 5823 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5824 if (E->isSame(VL)) { 5825 Value *V = vectorizeTree(E); 5826 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5827 if (!E->ReuseShuffleIndices.empty()) { 5828 // Reshuffle to get only unique values. 5829 // If some of the scalars are duplicated in the vectorization tree 5830 // entry, we do not vectorize them but instead generate a mask for 5831 // the reuses. But if there are several users of the same entry, 5832 // they may have different vectorization factors. This is especially 5833 // important for PHI nodes. In this case, we need to adapt the 5834 // resulting instruction for the user vectorization factor and have 5835 // to reshuffle it again to take only unique elements of the vector. 5836 // Without this code the function incorrectly returns reduced vector 5837 // instruction with the same elements, not with the unique ones. 5838 5839 // block: 5840 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5841 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5842 // ... (use %2) 5843 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5844 // br %block 5845 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5846 SmallSet<int, 4> UsedIdxs; 5847 int Pos = 0; 5848 int Sz = VL.size(); 5849 for (int Idx : E->ReuseShuffleIndices) { 5850 if (Idx != Sz && Idx != UndefMaskElem && 5851 UsedIdxs.insert(Idx).second) 5852 UniqueIdxs[Idx] = Pos; 5853 ++Pos; 5854 } 5855 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5856 "less than original vector size."); 5857 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5858 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5859 } else { 5860 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5861 "Expected vectorization factor less " 5862 "than original vector size."); 5863 SmallVector<int> UniformMask(VF, 0); 5864 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5865 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5866 } 5867 } 5868 return V; 5869 } 5870 } 5871 5872 // Check that every instruction appears once in this bundle. 5873 SmallVector<int> ReuseShuffleIndicies; 5874 SmallVector<Value *> UniqueValues; 5875 if (VL.size() > 2) { 5876 DenseMap<Value *, unsigned> UniquePositions; 5877 unsigned NumValues = 5878 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5879 return !isa<UndefValue>(V); 5880 }).base()); 5881 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5882 int UniqueVals = 0; 5883 for (Value *V : VL.drop_back(VL.size() - VF)) { 5884 if (isa<UndefValue>(V)) { 5885 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5886 continue; 5887 } 5888 if (isConstant(V)) { 5889 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5890 UniqueValues.emplace_back(V); 5891 continue; 5892 } 5893 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5894 ReuseShuffleIndicies.emplace_back(Res.first->second); 5895 if (Res.second) { 5896 UniqueValues.emplace_back(V); 5897 ++UniqueVals; 5898 } 5899 } 5900 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5901 // Emit pure splat vector. 5902 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5903 UndefMaskElem); 5904 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5905 ReuseShuffleIndicies.clear(); 5906 UniqueValues.clear(); 5907 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5908 } 5909 UniqueValues.append(VF - UniqueValues.size(), 5910 PoisonValue::get(VL[0]->getType())); 5911 VL = UniqueValues; 5912 } 5913 5914 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5915 Value *Vec = gather(VL); 5916 if (!ReuseShuffleIndicies.empty()) { 5917 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5918 Vec = ShuffleBuilder.finalize(Vec); 5919 if (auto *I = dyn_cast<Instruction>(Vec)) { 5920 GatherSeq.insert(I); 5921 CSEBlocks.insert(I->getParent()); 5922 } 5923 } 5924 return Vec; 5925 } 5926 5927 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5928 IRBuilder<>::InsertPointGuard Guard(Builder); 5929 5930 if (E->VectorizedValue) { 5931 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5932 return E->VectorizedValue; 5933 } 5934 5935 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5936 unsigned VF = E->Scalars.size(); 5937 if (NeedToShuffleReuses) 5938 VF = E->ReuseShuffleIndices.size(); 5939 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5940 if (E->State == TreeEntry::NeedToGather) { 5941 if (E->getMainOp()) 5942 setInsertPointAfterBundle(E); 5943 Value *Vec; 5944 SmallVector<int> Mask; 5945 SmallVector<const TreeEntry *> Entries; 5946 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5947 isGatherShuffledEntry(E, Mask, Entries); 5948 if (Shuffle.hasValue()) { 5949 assert((Entries.size() == 1 || Entries.size() == 2) && 5950 "Expected shuffle of 1 or 2 entries."); 5951 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5952 Entries.back()->VectorizedValue, Mask); 5953 } else { 5954 Vec = gather(E->Scalars); 5955 } 5956 if (NeedToShuffleReuses) { 5957 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5958 Vec = ShuffleBuilder.finalize(Vec); 5959 if (auto *I = dyn_cast<Instruction>(Vec)) { 5960 GatherSeq.insert(I); 5961 CSEBlocks.insert(I->getParent()); 5962 } 5963 } 5964 E->VectorizedValue = Vec; 5965 return Vec; 5966 } 5967 5968 assert((E->State == TreeEntry::Vectorize || 5969 E->State == TreeEntry::ScatterVectorize) && 5970 "Unhandled state"); 5971 unsigned ShuffleOrOp = 5972 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5973 Instruction *VL0 = E->getMainOp(); 5974 Type *ScalarTy = VL0->getType(); 5975 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5976 ScalarTy = Store->getValueOperand()->getType(); 5977 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5978 ScalarTy = IE->getOperand(1)->getType(); 5979 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5980 switch (ShuffleOrOp) { 5981 case Instruction::PHI: { 5982 assert( 5983 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5984 "PHI reordering is free."); 5985 auto *PH = cast<PHINode>(VL0); 5986 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5987 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5988 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5989 Value *V = NewPhi; 5990 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5991 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5992 V = ShuffleBuilder.finalize(V); 5993 5994 E->VectorizedValue = V; 5995 5996 // PHINodes may have multiple entries from the same block. We want to 5997 // visit every block once. 5998 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5999 6000 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6001 ValueList Operands; 6002 BasicBlock *IBB = PH->getIncomingBlock(i); 6003 6004 if (!VisitedBBs.insert(IBB).second) { 6005 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6006 continue; 6007 } 6008 6009 Builder.SetInsertPoint(IBB->getTerminator()); 6010 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6011 Value *Vec = vectorizeTree(E->getOperand(i)); 6012 NewPhi->addIncoming(Vec, IBB); 6013 } 6014 6015 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6016 "Invalid number of incoming values"); 6017 return V; 6018 } 6019 6020 case Instruction::ExtractElement: { 6021 Value *V = E->getSingleOperand(0); 6022 Builder.SetInsertPoint(VL0); 6023 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6024 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6025 V = ShuffleBuilder.finalize(V); 6026 E->VectorizedValue = V; 6027 return V; 6028 } 6029 case Instruction::ExtractValue: { 6030 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6031 Builder.SetInsertPoint(LI); 6032 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6033 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6034 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6035 Value *NewV = propagateMetadata(V, E->Scalars); 6036 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6037 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6038 NewV = ShuffleBuilder.finalize(NewV); 6039 E->VectorizedValue = NewV; 6040 return NewV; 6041 } 6042 case Instruction::InsertElement: { 6043 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6044 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6045 Value *V = vectorizeTree(E->getOperand(1)); 6046 6047 // Create InsertVector shuffle if necessary 6048 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6049 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6050 })); 6051 const unsigned NumElts = 6052 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6053 const unsigned NumScalars = E->Scalars.size(); 6054 6055 unsigned Offset = *getInsertIndex(VL0, 0); 6056 assert(Offset < NumElts && "Failed to find vector index offset"); 6057 6058 // Create shuffle to resize vector 6059 SmallVector<int> Mask; 6060 if (!E->ReorderIndices.empty()) { 6061 inversePermutation(E->ReorderIndices, Mask); 6062 Mask.append(NumElts - NumScalars, UndefMaskElem); 6063 } else { 6064 Mask.assign(NumElts, UndefMaskElem); 6065 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6066 } 6067 // Create InsertVector shuffle if necessary 6068 bool IsIdentity = true; 6069 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6070 Mask.swap(PrevMask); 6071 for (unsigned I = 0; I < NumScalars; ++I) { 6072 Value *Scalar = E->Scalars[PrevMask[I]]; 6073 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6074 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6075 continue; 6076 IsIdentity &= *InsertIdx - Offset == I; 6077 Mask[*InsertIdx - Offset] = I; 6078 } 6079 if (!IsIdentity || NumElts != NumScalars) 6080 V = Builder.CreateShuffleVector(V, Mask); 6081 6082 if ((!IsIdentity || Offset != 0 || 6083 !isa<UndefValue>(FirstInsert->getOperand(0))) && 6084 NumElts != NumScalars) { 6085 SmallVector<int> InsertMask(NumElts); 6086 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6087 for (unsigned I = 0; I < NumElts; I++) { 6088 if (Mask[I] != UndefMaskElem) 6089 InsertMask[Offset + I] = NumElts + I; 6090 } 6091 6092 V = Builder.CreateShuffleVector( 6093 FirstInsert->getOperand(0), V, InsertMask, 6094 cast<Instruction>(E->Scalars.back())->getName()); 6095 } 6096 6097 ++NumVectorInstructions; 6098 E->VectorizedValue = V; 6099 return V; 6100 } 6101 case Instruction::ZExt: 6102 case Instruction::SExt: 6103 case Instruction::FPToUI: 6104 case Instruction::FPToSI: 6105 case Instruction::FPExt: 6106 case Instruction::PtrToInt: 6107 case Instruction::IntToPtr: 6108 case Instruction::SIToFP: 6109 case Instruction::UIToFP: 6110 case Instruction::Trunc: 6111 case Instruction::FPTrunc: 6112 case Instruction::BitCast: { 6113 setInsertPointAfterBundle(E); 6114 6115 Value *InVec = vectorizeTree(E->getOperand(0)); 6116 6117 if (E->VectorizedValue) { 6118 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6119 return E->VectorizedValue; 6120 } 6121 6122 auto *CI = cast<CastInst>(VL0); 6123 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6124 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6125 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6126 V = ShuffleBuilder.finalize(V); 6127 6128 E->VectorizedValue = V; 6129 ++NumVectorInstructions; 6130 return V; 6131 } 6132 case Instruction::FCmp: 6133 case Instruction::ICmp: { 6134 setInsertPointAfterBundle(E); 6135 6136 Value *L = vectorizeTree(E->getOperand(0)); 6137 Value *R = vectorizeTree(E->getOperand(1)); 6138 6139 if (E->VectorizedValue) { 6140 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6141 return E->VectorizedValue; 6142 } 6143 6144 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6145 Value *V = Builder.CreateCmp(P0, L, R); 6146 propagateIRFlags(V, E->Scalars, VL0); 6147 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6148 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6149 V = ShuffleBuilder.finalize(V); 6150 6151 E->VectorizedValue = V; 6152 ++NumVectorInstructions; 6153 return V; 6154 } 6155 case Instruction::Select: { 6156 setInsertPointAfterBundle(E); 6157 6158 Value *Cond = vectorizeTree(E->getOperand(0)); 6159 Value *True = vectorizeTree(E->getOperand(1)); 6160 Value *False = vectorizeTree(E->getOperand(2)); 6161 6162 if (E->VectorizedValue) { 6163 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6164 return E->VectorizedValue; 6165 } 6166 6167 Value *V = Builder.CreateSelect(Cond, True, False); 6168 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6169 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6170 V = ShuffleBuilder.finalize(V); 6171 6172 E->VectorizedValue = V; 6173 ++NumVectorInstructions; 6174 return V; 6175 } 6176 case Instruction::FNeg: { 6177 setInsertPointAfterBundle(E); 6178 6179 Value *Op = vectorizeTree(E->getOperand(0)); 6180 6181 if (E->VectorizedValue) { 6182 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6183 return E->VectorizedValue; 6184 } 6185 6186 Value *V = Builder.CreateUnOp( 6187 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6188 propagateIRFlags(V, E->Scalars, VL0); 6189 if (auto *I = dyn_cast<Instruction>(V)) 6190 V = propagateMetadata(I, E->Scalars); 6191 6192 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6193 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6194 V = ShuffleBuilder.finalize(V); 6195 6196 E->VectorizedValue = V; 6197 ++NumVectorInstructions; 6198 6199 return V; 6200 } 6201 case Instruction::Add: 6202 case Instruction::FAdd: 6203 case Instruction::Sub: 6204 case Instruction::FSub: 6205 case Instruction::Mul: 6206 case Instruction::FMul: 6207 case Instruction::UDiv: 6208 case Instruction::SDiv: 6209 case Instruction::FDiv: 6210 case Instruction::URem: 6211 case Instruction::SRem: 6212 case Instruction::FRem: 6213 case Instruction::Shl: 6214 case Instruction::LShr: 6215 case Instruction::AShr: 6216 case Instruction::And: 6217 case Instruction::Or: 6218 case Instruction::Xor: { 6219 setInsertPointAfterBundle(E); 6220 6221 Value *LHS = vectorizeTree(E->getOperand(0)); 6222 Value *RHS = vectorizeTree(E->getOperand(1)); 6223 6224 if (E->VectorizedValue) { 6225 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6226 return E->VectorizedValue; 6227 } 6228 6229 Value *V = Builder.CreateBinOp( 6230 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6231 RHS); 6232 propagateIRFlags(V, E->Scalars, VL0); 6233 if (auto *I = dyn_cast<Instruction>(V)) 6234 V = propagateMetadata(I, E->Scalars); 6235 6236 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6237 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6238 V = ShuffleBuilder.finalize(V); 6239 6240 E->VectorizedValue = V; 6241 ++NumVectorInstructions; 6242 6243 return V; 6244 } 6245 case Instruction::Load: { 6246 // Loads are inserted at the head of the tree because we don't want to 6247 // sink them all the way down past store instructions. 6248 setInsertPointAfterBundle(E); 6249 6250 LoadInst *LI = cast<LoadInst>(VL0); 6251 Instruction *NewLI; 6252 unsigned AS = LI->getPointerAddressSpace(); 6253 Value *PO = LI->getPointerOperand(); 6254 if (E->State == TreeEntry::Vectorize) { 6255 6256 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6257 6258 // The pointer operand uses an in-tree scalar so we add the new BitCast 6259 // to ExternalUses list to make sure that an extract will be generated 6260 // in the future. 6261 if (TreeEntry *Entry = getTreeEntry(PO)) { 6262 // Find which lane we need to extract. 6263 unsigned FoundLane = Entry->findLaneForValue(PO); 6264 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6265 } 6266 6267 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6268 } else { 6269 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6270 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6271 // Use the minimum alignment of the gathered loads. 6272 Align CommonAlignment = LI->getAlign(); 6273 for (Value *V : E->Scalars) 6274 CommonAlignment = 6275 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6276 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6277 } 6278 Value *V = propagateMetadata(NewLI, E->Scalars); 6279 6280 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6281 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6282 V = ShuffleBuilder.finalize(V); 6283 E->VectorizedValue = V; 6284 ++NumVectorInstructions; 6285 return V; 6286 } 6287 case Instruction::Store: { 6288 auto *SI = cast<StoreInst>(VL0); 6289 unsigned AS = SI->getPointerAddressSpace(); 6290 6291 setInsertPointAfterBundle(E); 6292 6293 Value *VecValue = vectorizeTree(E->getOperand(0)); 6294 ShuffleBuilder.addMask(E->ReorderIndices); 6295 VecValue = ShuffleBuilder.finalize(VecValue); 6296 6297 Value *ScalarPtr = SI->getPointerOperand(); 6298 Value *VecPtr = Builder.CreateBitCast( 6299 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6300 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6301 SI->getAlign()); 6302 6303 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6304 // ExternalUses to make sure that an extract will be generated in the 6305 // future. 6306 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6307 // Find which lane we need to extract. 6308 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6309 ExternalUses.push_back( 6310 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6311 } 6312 6313 Value *V = propagateMetadata(ST, E->Scalars); 6314 6315 E->VectorizedValue = V; 6316 ++NumVectorInstructions; 6317 return V; 6318 } 6319 case Instruction::GetElementPtr: { 6320 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6321 setInsertPointAfterBundle(E); 6322 6323 Value *Op0 = vectorizeTree(E->getOperand(0)); 6324 6325 SmallVector<Value *> OpVecs; 6326 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6327 Value *OpVec = vectorizeTree(E->getOperand(J)); 6328 OpVecs.push_back(OpVec); 6329 } 6330 6331 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6332 if (Instruction *I = dyn_cast<Instruction>(V)) 6333 V = propagateMetadata(I, E->Scalars); 6334 6335 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6336 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6337 V = ShuffleBuilder.finalize(V); 6338 6339 E->VectorizedValue = V; 6340 ++NumVectorInstructions; 6341 6342 return V; 6343 } 6344 case Instruction::Call: { 6345 CallInst *CI = cast<CallInst>(VL0); 6346 setInsertPointAfterBundle(E); 6347 6348 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6349 if (Function *FI = CI->getCalledFunction()) 6350 IID = FI->getIntrinsicID(); 6351 6352 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6353 6354 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6355 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6356 VecCallCosts.first <= VecCallCosts.second; 6357 6358 Value *ScalarArg = nullptr; 6359 std::vector<Value *> OpVecs; 6360 SmallVector<Type *, 2> TysForDecl = 6361 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6362 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6363 ValueList OpVL; 6364 // Some intrinsics have scalar arguments. This argument should not be 6365 // vectorized. 6366 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6367 CallInst *CEI = cast<CallInst>(VL0); 6368 ScalarArg = CEI->getArgOperand(j); 6369 OpVecs.push_back(CEI->getArgOperand(j)); 6370 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6371 TysForDecl.push_back(ScalarArg->getType()); 6372 continue; 6373 } 6374 6375 Value *OpVec = vectorizeTree(E->getOperand(j)); 6376 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6377 OpVecs.push_back(OpVec); 6378 } 6379 6380 Function *CF; 6381 if (!UseIntrinsic) { 6382 VFShape Shape = 6383 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6384 VecTy->getNumElements())), 6385 false /*HasGlobalPred*/); 6386 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6387 } else { 6388 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6389 } 6390 6391 SmallVector<OperandBundleDef, 1> OpBundles; 6392 CI->getOperandBundlesAsDefs(OpBundles); 6393 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6394 6395 // The scalar argument uses an in-tree scalar so we add the new vectorized 6396 // call to ExternalUses list to make sure that an extract will be 6397 // generated in the future. 6398 if (ScalarArg) { 6399 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6400 // Find which lane we need to extract. 6401 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6402 ExternalUses.push_back( 6403 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6404 } 6405 } 6406 6407 propagateIRFlags(V, E->Scalars, VL0); 6408 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6409 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6410 V = ShuffleBuilder.finalize(V); 6411 6412 E->VectorizedValue = V; 6413 ++NumVectorInstructions; 6414 return V; 6415 } 6416 case Instruction::ShuffleVector: { 6417 assert(E->isAltShuffle() && 6418 ((Instruction::isBinaryOp(E->getOpcode()) && 6419 Instruction::isBinaryOp(E->getAltOpcode())) || 6420 (Instruction::isCast(E->getOpcode()) && 6421 Instruction::isCast(E->getAltOpcode()))) && 6422 "Invalid Shuffle Vector Operand"); 6423 6424 Value *LHS = nullptr, *RHS = nullptr; 6425 if (Instruction::isBinaryOp(E->getOpcode())) { 6426 setInsertPointAfterBundle(E); 6427 LHS = vectorizeTree(E->getOperand(0)); 6428 RHS = vectorizeTree(E->getOperand(1)); 6429 } else { 6430 setInsertPointAfterBundle(E); 6431 LHS = vectorizeTree(E->getOperand(0)); 6432 } 6433 6434 if (E->VectorizedValue) { 6435 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6436 return E->VectorizedValue; 6437 } 6438 6439 Value *V0, *V1; 6440 if (Instruction::isBinaryOp(E->getOpcode())) { 6441 V0 = Builder.CreateBinOp( 6442 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6443 V1 = Builder.CreateBinOp( 6444 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6445 } else { 6446 V0 = Builder.CreateCast( 6447 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6448 V1 = Builder.CreateCast( 6449 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6450 } 6451 6452 // Create shuffle to take alternate operations from the vector. 6453 // Also, gather up main and alt scalar ops to propagate IR flags to 6454 // each vector operation. 6455 ValueList OpScalars, AltScalars; 6456 SmallVector<int> Mask; 6457 buildSuffleEntryMask( 6458 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6459 [E](Instruction *I) { 6460 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6461 return I->getOpcode() == E->getAltOpcode(); 6462 }, 6463 Mask, &OpScalars, &AltScalars); 6464 6465 propagateIRFlags(V0, OpScalars); 6466 propagateIRFlags(V1, AltScalars); 6467 6468 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6469 if (Instruction *I = dyn_cast<Instruction>(V)) 6470 V = propagateMetadata(I, E->Scalars); 6471 V = ShuffleBuilder.finalize(V); 6472 6473 E->VectorizedValue = V; 6474 ++NumVectorInstructions; 6475 6476 return V; 6477 } 6478 default: 6479 llvm_unreachable("unknown inst"); 6480 } 6481 return nullptr; 6482 } 6483 6484 Value *BoUpSLP::vectorizeTree() { 6485 ExtraValueToDebugLocsMap ExternallyUsedValues; 6486 return vectorizeTree(ExternallyUsedValues); 6487 } 6488 6489 Value * 6490 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6491 // All blocks must be scheduled before any instructions are inserted. 6492 for (auto &BSIter : BlocksSchedules) { 6493 scheduleBlock(BSIter.second.get()); 6494 } 6495 6496 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6497 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6498 6499 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6500 // vectorized root. InstCombine will then rewrite the entire expression. We 6501 // sign extend the extracted values below. 6502 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6503 if (MinBWs.count(ScalarRoot)) { 6504 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6505 // If current instr is a phi and not the last phi, insert it after the 6506 // last phi node. 6507 if (isa<PHINode>(I)) 6508 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6509 else 6510 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6511 } 6512 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6513 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6514 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6515 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6516 VectorizableTree[0]->VectorizedValue = Trunc; 6517 } 6518 6519 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6520 << " values .\n"); 6521 6522 // Extract all of the elements with the external uses. 6523 for (const auto &ExternalUse : ExternalUses) { 6524 Value *Scalar = ExternalUse.Scalar; 6525 llvm::User *User = ExternalUse.User; 6526 6527 // Skip users that we already RAUW. This happens when one instruction 6528 // has multiple uses of the same value. 6529 if (User && !is_contained(Scalar->users(), User)) 6530 continue; 6531 TreeEntry *E = getTreeEntry(Scalar); 6532 assert(E && "Invalid scalar"); 6533 assert(E->State != TreeEntry::NeedToGather && 6534 "Extracting from a gather list"); 6535 6536 Value *Vec = E->VectorizedValue; 6537 assert(Vec && "Can't find vectorizable value"); 6538 6539 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6540 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6541 if (Scalar->getType() != Vec->getType()) { 6542 Value *Ex; 6543 // "Reuse" the existing extract to improve final codegen. 6544 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6545 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6546 ES->getOperand(1)); 6547 } else { 6548 Ex = Builder.CreateExtractElement(Vec, Lane); 6549 } 6550 // If necessary, sign-extend or zero-extend ScalarRoot 6551 // to the larger type. 6552 if (!MinBWs.count(ScalarRoot)) 6553 return Ex; 6554 if (MinBWs[ScalarRoot].second) 6555 return Builder.CreateSExt(Ex, Scalar->getType()); 6556 return Builder.CreateZExt(Ex, Scalar->getType()); 6557 } 6558 assert(isa<FixedVectorType>(Scalar->getType()) && 6559 isa<InsertElementInst>(Scalar) && 6560 "In-tree scalar of vector type is not insertelement?"); 6561 return Vec; 6562 }; 6563 // If User == nullptr, the Scalar is used as extra arg. Generate 6564 // ExtractElement instruction and update the record for this scalar in 6565 // ExternallyUsedValues. 6566 if (!User) { 6567 assert(ExternallyUsedValues.count(Scalar) && 6568 "Scalar with nullptr as an external user must be registered in " 6569 "ExternallyUsedValues map"); 6570 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6571 Builder.SetInsertPoint(VecI->getParent(), 6572 std::next(VecI->getIterator())); 6573 } else { 6574 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6575 } 6576 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6577 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6578 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6579 auto It = ExternallyUsedValues.find(Scalar); 6580 assert(It != ExternallyUsedValues.end() && 6581 "Externally used scalar is not found in ExternallyUsedValues"); 6582 NewInstLocs.append(It->second); 6583 ExternallyUsedValues.erase(Scalar); 6584 // Required to update internally referenced instructions. 6585 Scalar->replaceAllUsesWith(NewInst); 6586 continue; 6587 } 6588 6589 // Generate extracts for out-of-tree users. 6590 // Find the insertion point for the extractelement lane. 6591 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6592 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6593 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6594 if (PH->getIncomingValue(i) == Scalar) { 6595 Instruction *IncomingTerminator = 6596 PH->getIncomingBlock(i)->getTerminator(); 6597 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6598 Builder.SetInsertPoint(VecI->getParent(), 6599 std::next(VecI->getIterator())); 6600 } else { 6601 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6602 } 6603 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6604 CSEBlocks.insert(PH->getIncomingBlock(i)); 6605 PH->setOperand(i, NewInst); 6606 } 6607 } 6608 } else { 6609 Builder.SetInsertPoint(cast<Instruction>(User)); 6610 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6611 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6612 User->replaceUsesOfWith(Scalar, NewInst); 6613 } 6614 } else { 6615 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6616 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6617 CSEBlocks.insert(&F->getEntryBlock()); 6618 User->replaceUsesOfWith(Scalar, NewInst); 6619 } 6620 6621 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6622 } 6623 6624 // For each vectorized value: 6625 for (auto &TEPtr : VectorizableTree) { 6626 TreeEntry *Entry = TEPtr.get(); 6627 6628 // No need to handle users of gathered values. 6629 if (Entry->State == TreeEntry::NeedToGather) 6630 continue; 6631 6632 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6633 6634 // For each lane: 6635 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6636 Value *Scalar = Entry->Scalars[Lane]; 6637 6638 #ifndef NDEBUG 6639 Type *Ty = Scalar->getType(); 6640 if (!Ty->isVoidTy()) { 6641 for (User *U : Scalar->users()) { 6642 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6643 6644 // It is legal to delete users in the ignorelist. 6645 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6646 (isa_and_nonnull<Instruction>(U) && 6647 isDeleted(cast<Instruction>(U)))) && 6648 "Deleting out-of-tree value"); 6649 } 6650 } 6651 #endif 6652 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6653 eraseInstruction(cast<Instruction>(Scalar)); 6654 } 6655 } 6656 6657 Builder.ClearInsertionPoint(); 6658 InstrElementSize.clear(); 6659 6660 return VectorizableTree[0]->VectorizedValue; 6661 } 6662 6663 void BoUpSLP::optimizeGatherSequence() { 6664 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6665 << " gather sequences instructions.\n"); 6666 // LICM InsertElementInst sequences. 6667 for (Instruction *I : GatherSeq) { 6668 if (isDeleted(I)) 6669 continue; 6670 6671 // Check if this block is inside a loop. 6672 Loop *L = LI->getLoopFor(I->getParent()); 6673 if (!L) 6674 continue; 6675 6676 // Check if it has a preheader. 6677 BasicBlock *PreHeader = L->getLoopPreheader(); 6678 if (!PreHeader) 6679 continue; 6680 6681 // If the vector or the element that we insert into it are 6682 // instructions that are defined in this basic block then we can't 6683 // hoist this instruction. 6684 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6685 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6686 if (Op0 && L->contains(Op0)) 6687 continue; 6688 if (Op1 && L->contains(Op1)) 6689 continue; 6690 6691 // We can hoist this instruction. Move it to the pre-header. 6692 I->moveBefore(PreHeader->getTerminator()); 6693 } 6694 6695 // Make a list of all reachable blocks in our CSE queue. 6696 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6697 CSEWorkList.reserve(CSEBlocks.size()); 6698 for (BasicBlock *BB : CSEBlocks) 6699 if (DomTreeNode *N = DT->getNode(BB)) { 6700 assert(DT->isReachableFromEntry(N)); 6701 CSEWorkList.push_back(N); 6702 } 6703 6704 // Sort blocks by domination. This ensures we visit a block after all blocks 6705 // dominating it are visited. 6706 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6707 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6708 "Different nodes should have different DFS numbers"); 6709 return A->getDFSNumIn() < B->getDFSNumIn(); 6710 }); 6711 6712 // Perform O(N^2) search over the gather sequences and merge identical 6713 // instructions. TODO: We can further optimize this scan if we split the 6714 // instructions into different buckets based on the insert lane. 6715 SmallVector<Instruction *, 16> Visited; 6716 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6717 assert(*I && 6718 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6719 "Worklist not sorted properly!"); 6720 BasicBlock *BB = (*I)->getBlock(); 6721 // For all instructions in blocks containing gather sequences: 6722 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6723 if (isDeleted(&In)) 6724 continue; 6725 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6726 !isa<ShuffleVectorInst>(&In)) 6727 continue; 6728 6729 // Check if we can replace this instruction with any of the 6730 // visited instructions. 6731 bool Replaced = false; 6732 for (Instruction *v : Visited) { 6733 if (In.isIdenticalTo(v) && 6734 DT->dominates(v->getParent(), In.getParent())) { 6735 In.replaceAllUsesWith(v); 6736 eraseInstruction(&In); 6737 Replaced = true; 6738 break; 6739 } 6740 } 6741 if (!Replaced) { 6742 assert(!is_contained(Visited, &In)); 6743 Visited.push_back(&In); 6744 } 6745 } 6746 } 6747 CSEBlocks.clear(); 6748 GatherSeq.clear(); 6749 } 6750 6751 // Groups the instructions to a bundle (which is then a single scheduling entity) 6752 // and schedules instructions until the bundle gets ready. 6753 Optional<BoUpSLP::ScheduleData *> 6754 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6755 const InstructionsState &S) { 6756 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6757 // instructions. 6758 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6759 return nullptr; 6760 6761 // Initialize the instruction bundle. 6762 Instruction *OldScheduleEnd = ScheduleEnd; 6763 ScheduleData *PrevInBundle = nullptr; 6764 ScheduleData *Bundle = nullptr; 6765 bool ReSchedule = false; 6766 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6767 6768 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6769 ScheduleData *Bundle) { 6770 // The scheduling region got new instructions at the lower end (or it is a 6771 // new region for the first bundle). This makes it necessary to 6772 // recalculate all dependencies. 6773 // It is seldom that this needs to be done a second time after adding the 6774 // initial bundle to the region. 6775 if (ScheduleEnd != OldScheduleEnd) { 6776 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6777 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6778 ReSchedule = true; 6779 } 6780 if (ReSchedule) { 6781 resetSchedule(); 6782 initialFillReadyList(ReadyInsts); 6783 } 6784 if (Bundle) { 6785 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6786 << " in block " << BB->getName() << "\n"); 6787 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6788 } 6789 6790 // Now try to schedule the new bundle or (if no bundle) just calculate 6791 // dependencies. As soon as the bundle is "ready" it means that there are no 6792 // cyclic dependencies and we can schedule it. Note that's important that we 6793 // don't "schedule" the bundle yet (see cancelScheduling). 6794 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6795 !ReadyInsts.empty()) { 6796 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6797 if (Picked->isSchedulingEntity() && Picked->isReady()) 6798 schedule(Picked, ReadyInsts); 6799 } 6800 }; 6801 6802 // Make sure that the scheduling region contains all 6803 // instructions of the bundle. 6804 for (Value *V : VL) { 6805 if (!extendSchedulingRegion(V, S)) { 6806 // If the scheduling region got new instructions at the lower end (or it 6807 // is a new region for the first bundle). This makes it necessary to 6808 // recalculate all dependencies. 6809 // Otherwise the compiler may crash trying to incorrectly calculate 6810 // dependencies and emit instruction in the wrong order at the actual 6811 // scheduling. 6812 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6813 return None; 6814 } 6815 } 6816 6817 for (Value *V : VL) { 6818 ScheduleData *BundleMember = getScheduleData(V); 6819 assert(BundleMember && 6820 "no ScheduleData for bundle member (maybe not in same basic block)"); 6821 if (BundleMember->IsScheduled) { 6822 // A bundle member was scheduled as single instruction before and now 6823 // needs to be scheduled as part of the bundle. We just get rid of the 6824 // existing schedule. 6825 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6826 << " was already scheduled\n"); 6827 ReSchedule = true; 6828 } 6829 assert(BundleMember->isSchedulingEntity() && 6830 "bundle member already part of other bundle"); 6831 if (PrevInBundle) { 6832 PrevInBundle->NextInBundle = BundleMember; 6833 } else { 6834 Bundle = BundleMember; 6835 } 6836 BundleMember->UnscheduledDepsInBundle = 0; 6837 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6838 6839 // Group the instructions to a bundle. 6840 BundleMember->FirstInBundle = Bundle; 6841 PrevInBundle = BundleMember; 6842 } 6843 assert(Bundle && "Failed to find schedule bundle"); 6844 TryScheduleBundle(ReSchedule, Bundle); 6845 if (!Bundle->isReady()) { 6846 cancelScheduling(VL, S.OpValue); 6847 return None; 6848 } 6849 return Bundle; 6850 } 6851 6852 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6853 Value *OpValue) { 6854 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6855 return; 6856 6857 ScheduleData *Bundle = getScheduleData(OpValue); 6858 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6859 assert(!Bundle->IsScheduled && 6860 "Can't cancel bundle which is already scheduled"); 6861 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6862 "tried to unbundle something which is not a bundle"); 6863 6864 // Un-bundle: make single instructions out of the bundle. 6865 ScheduleData *BundleMember = Bundle; 6866 while (BundleMember) { 6867 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6868 BundleMember->FirstInBundle = BundleMember; 6869 ScheduleData *Next = BundleMember->NextInBundle; 6870 BundleMember->NextInBundle = nullptr; 6871 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6872 if (BundleMember->UnscheduledDepsInBundle == 0) { 6873 ReadyInsts.insert(BundleMember); 6874 } 6875 BundleMember = Next; 6876 } 6877 } 6878 6879 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6880 // Allocate a new ScheduleData for the instruction. 6881 if (ChunkPos >= ChunkSize) { 6882 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6883 ChunkPos = 0; 6884 } 6885 return &(ScheduleDataChunks.back()[ChunkPos++]); 6886 } 6887 6888 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6889 const InstructionsState &S) { 6890 if (getScheduleData(V, isOneOf(S, V))) 6891 return true; 6892 Instruction *I = dyn_cast<Instruction>(V); 6893 assert(I && "bundle member must be an instruction"); 6894 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6895 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6896 "be scheduled"); 6897 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6898 ScheduleData *ISD = getScheduleData(I); 6899 if (!ISD) 6900 return false; 6901 assert(isInSchedulingRegion(ISD) && 6902 "ScheduleData not in scheduling region"); 6903 ScheduleData *SD = allocateScheduleDataChunks(); 6904 SD->Inst = I; 6905 SD->init(SchedulingRegionID, S.OpValue); 6906 ExtraScheduleDataMap[I][S.OpValue] = SD; 6907 return true; 6908 }; 6909 if (CheckSheduleForI(I)) 6910 return true; 6911 if (!ScheduleStart) { 6912 // It's the first instruction in the new region. 6913 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6914 ScheduleStart = I; 6915 ScheduleEnd = I->getNextNode(); 6916 if (isOneOf(S, I) != I) 6917 CheckSheduleForI(I); 6918 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6919 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6920 return true; 6921 } 6922 // Search up and down at the same time, because we don't know if the new 6923 // instruction is above or below the existing scheduling region. 6924 BasicBlock::reverse_iterator UpIter = 6925 ++ScheduleStart->getIterator().getReverse(); 6926 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6927 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6928 BasicBlock::iterator LowerEnd = BB->end(); 6929 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6930 &*DownIter != I) { 6931 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6932 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6933 return false; 6934 } 6935 6936 ++UpIter; 6937 ++DownIter; 6938 } 6939 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6940 assert(I->getParent() == ScheduleStart->getParent() && 6941 "Instruction is in wrong basic block."); 6942 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6943 ScheduleStart = I; 6944 if (isOneOf(S, I) != I) 6945 CheckSheduleForI(I); 6946 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6947 << "\n"); 6948 return true; 6949 } 6950 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6951 "Expected to reach top of the basic block or instruction down the " 6952 "lower end."); 6953 assert(I->getParent() == ScheduleEnd->getParent() && 6954 "Instruction is in wrong basic block."); 6955 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6956 nullptr); 6957 ScheduleEnd = I->getNextNode(); 6958 if (isOneOf(S, I) != I) 6959 CheckSheduleForI(I); 6960 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6961 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6962 return true; 6963 } 6964 6965 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6966 Instruction *ToI, 6967 ScheduleData *PrevLoadStore, 6968 ScheduleData *NextLoadStore) { 6969 ScheduleData *CurrentLoadStore = PrevLoadStore; 6970 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6971 ScheduleData *SD = ScheduleDataMap[I]; 6972 if (!SD) { 6973 SD = allocateScheduleDataChunks(); 6974 ScheduleDataMap[I] = SD; 6975 SD->Inst = I; 6976 } 6977 assert(!isInSchedulingRegion(SD) && 6978 "new ScheduleData already in scheduling region"); 6979 SD->init(SchedulingRegionID, I); 6980 6981 if (I->mayReadOrWriteMemory() && 6982 (!isa<IntrinsicInst>(I) || 6983 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6984 cast<IntrinsicInst>(I)->getIntrinsicID() != 6985 Intrinsic::pseudoprobe))) { 6986 // Update the linked list of memory accessing instructions. 6987 if (CurrentLoadStore) { 6988 CurrentLoadStore->NextLoadStore = SD; 6989 } else { 6990 FirstLoadStoreInRegion = SD; 6991 } 6992 CurrentLoadStore = SD; 6993 } 6994 } 6995 if (NextLoadStore) { 6996 if (CurrentLoadStore) 6997 CurrentLoadStore->NextLoadStore = NextLoadStore; 6998 } else { 6999 LastLoadStoreInRegion = CurrentLoadStore; 7000 } 7001 } 7002 7003 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7004 bool InsertInReadyList, 7005 BoUpSLP *SLP) { 7006 assert(SD->isSchedulingEntity()); 7007 7008 SmallVector<ScheduleData *, 10> WorkList; 7009 WorkList.push_back(SD); 7010 7011 while (!WorkList.empty()) { 7012 ScheduleData *SD = WorkList.pop_back_val(); 7013 7014 ScheduleData *BundleMember = SD; 7015 while (BundleMember) { 7016 assert(isInSchedulingRegion(BundleMember)); 7017 if (!BundleMember->hasValidDependencies()) { 7018 7019 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7020 << "\n"); 7021 BundleMember->Dependencies = 0; 7022 BundleMember->resetUnscheduledDeps(); 7023 7024 // Handle def-use chain dependencies. 7025 if (BundleMember->OpValue != BundleMember->Inst) { 7026 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7027 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7028 BundleMember->Dependencies++; 7029 ScheduleData *DestBundle = UseSD->FirstInBundle; 7030 if (!DestBundle->IsScheduled) 7031 BundleMember->incrementUnscheduledDeps(1); 7032 if (!DestBundle->hasValidDependencies()) 7033 WorkList.push_back(DestBundle); 7034 } 7035 } else { 7036 for (User *U : BundleMember->Inst->users()) { 7037 if (isa<Instruction>(U)) { 7038 ScheduleData *UseSD = getScheduleData(U); 7039 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7040 BundleMember->Dependencies++; 7041 ScheduleData *DestBundle = UseSD->FirstInBundle; 7042 if (!DestBundle->IsScheduled) 7043 BundleMember->incrementUnscheduledDeps(1); 7044 if (!DestBundle->hasValidDependencies()) 7045 WorkList.push_back(DestBundle); 7046 } 7047 } else { 7048 // I'm not sure if this can ever happen. But we need to be safe. 7049 // This lets the instruction/bundle never be scheduled and 7050 // eventually disable vectorization. 7051 BundleMember->Dependencies++; 7052 BundleMember->incrementUnscheduledDeps(1); 7053 } 7054 } 7055 } 7056 7057 // Handle the memory dependencies. 7058 ScheduleData *DepDest = BundleMember->NextLoadStore; 7059 if (DepDest) { 7060 Instruction *SrcInst = BundleMember->Inst; 7061 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7062 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7063 unsigned numAliased = 0; 7064 unsigned DistToSrc = 1; 7065 7066 while (DepDest) { 7067 assert(isInSchedulingRegion(DepDest)); 7068 7069 // We have two limits to reduce the complexity: 7070 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7071 // SLP->isAliased (which is the expensive part in this loop). 7072 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7073 // the whole loop (even if the loop is fast, it's quadratic). 7074 // It's important for the loop break condition (see below) to 7075 // check this limit even between two read-only instructions. 7076 if (DistToSrc >= MaxMemDepDistance || 7077 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7078 (numAliased >= AliasedCheckLimit || 7079 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7080 7081 // We increment the counter only if the locations are aliased 7082 // (instead of counting all alias checks). This gives a better 7083 // balance between reduced runtime and accurate dependencies. 7084 numAliased++; 7085 7086 DepDest->MemoryDependencies.push_back(BundleMember); 7087 BundleMember->Dependencies++; 7088 ScheduleData *DestBundle = DepDest->FirstInBundle; 7089 if (!DestBundle->IsScheduled) { 7090 BundleMember->incrementUnscheduledDeps(1); 7091 } 7092 if (!DestBundle->hasValidDependencies()) { 7093 WorkList.push_back(DestBundle); 7094 } 7095 } 7096 DepDest = DepDest->NextLoadStore; 7097 7098 // Example, explaining the loop break condition: Let's assume our 7099 // starting instruction is i0 and MaxMemDepDistance = 3. 7100 // 7101 // +--------v--v--v 7102 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7103 // +--------^--^--^ 7104 // 7105 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7106 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7107 // Previously we already added dependencies from i3 to i6,i7,i8 7108 // (because of MaxMemDepDistance). As we added a dependency from 7109 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7110 // and we can abort this loop at i6. 7111 if (DistToSrc >= 2 * MaxMemDepDistance) 7112 break; 7113 DistToSrc++; 7114 } 7115 } 7116 } 7117 BundleMember = BundleMember->NextInBundle; 7118 } 7119 if (InsertInReadyList && SD->isReady()) { 7120 ReadyInsts.push_back(SD); 7121 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7122 << "\n"); 7123 } 7124 } 7125 } 7126 7127 void BoUpSLP::BlockScheduling::resetSchedule() { 7128 assert(ScheduleStart && 7129 "tried to reset schedule on block which has not been scheduled"); 7130 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7131 doForAllOpcodes(I, [&](ScheduleData *SD) { 7132 assert(isInSchedulingRegion(SD) && 7133 "ScheduleData not in scheduling region"); 7134 SD->IsScheduled = false; 7135 SD->resetUnscheduledDeps(); 7136 }); 7137 } 7138 ReadyInsts.clear(); 7139 } 7140 7141 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7142 if (!BS->ScheduleStart) 7143 return; 7144 7145 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7146 7147 BS->resetSchedule(); 7148 7149 // For the real scheduling we use a more sophisticated ready-list: it is 7150 // sorted by the original instruction location. This lets the final schedule 7151 // be as close as possible to the original instruction order. 7152 struct ScheduleDataCompare { 7153 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7154 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7155 } 7156 }; 7157 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7158 7159 // Ensure that all dependency data is updated and fill the ready-list with 7160 // initial instructions. 7161 int Idx = 0; 7162 int NumToSchedule = 0; 7163 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7164 I = I->getNextNode()) { 7165 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7166 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7167 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7168 "scheduler and vectorizer bundle mismatch"); 7169 SD->FirstInBundle->SchedulingPriority = Idx++; 7170 if (SD->isSchedulingEntity()) { 7171 BS->calculateDependencies(SD, false, this); 7172 NumToSchedule++; 7173 } 7174 }); 7175 } 7176 BS->initialFillReadyList(ReadyInsts); 7177 7178 Instruction *LastScheduledInst = BS->ScheduleEnd; 7179 7180 // Do the "real" scheduling. 7181 while (!ReadyInsts.empty()) { 7182 ScheduleData *picked = *ReadyInsts.begin(); 7183 ReadyInsts.erase(ReadyInsts.begin()); 7184 7185 // Move the scheduled instruction(s) to their dedicated places, if not 7186 // there yet. 7187 ScheduleData *BundleMember = picked; 7188 while (BundleMember) { 7189 Instruction *pickedInst = BundleMember->Inst; 7190 if (pickedInst->getNextNode() != LastScheduledInst) { 7191 BS->BB->getInstList().remove(pickedInst); 7192 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7193 pickedInst); 7194 } 7195 LastScheduledInst = pickedInst; 7196 BundleMember = BundleMember->NextInBundle; 7197 } 7198 7199 BS->schedule(picked, ReadyInsts); 7200 NumToSchedule--; 7201 } 7202 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7203 7204 // Avoid duplicate scheduling of the block. 7205 BS->ScheduleStart = nullptr; 7206 } 7207 7208 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7209 // If V is a store, just return the width of the stored value (or value 7210 // truncated just before storing) without traversing the expression tree. 7211 // This is the common case. 7212 if (auto *Store = dyn_cast<StoreInst>(V)) { 7213 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7214 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7215 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7216 } 7217 7218 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7219 return getVectorElementSize(IEI->getOperand(1)); 7220 7221 auto E = InstrElementSize.find(V); 7222 if (E != InstrElementSize.end()) 7223 return E->second; 7224 7225 // If V is not a store, we can traverse the expression tree to find loads 7226 // that feed it. The type of the loaded value may indicate a more suitable 7227 // width than V's type. We want to base the vector element size on the width 7228 // of memory operations where possible. 7229 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7230 SmallPtrSet<Instruction *, 16> Visited; 7231 if (auto *I = dyn_cast<Instruction>(V)) { 7232 Worklist.emplace_back(I, I->getParent()); 7233 Visited.insert(I); 7234 } 7235 7236 // Traverse the expression tree in bottom-up order looking for loads. If we 7237 // encounter an instruction we don't yet handle, we give up. 7238 auto Width = 0u; 7239 while (!Worklist.empty()) { 7240 Instruction *I; 7241 BasicBlock *Parent; 7242 std::tie(I, Parent) = Worklist.pop_back_val(); 7243 7244 // We should only be looking at scalar instructions here. If the current 7245 // instruction has a vector type, skip. 7246 auto *Ty = I->getType(); 7247 if (isa<VectorType>(Ty)) 7248 continue; 7249 7250 // If the current instruction is a load, update MaxWidth to reflect the 7251 // width of the loaded value. 7252 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7253 isa<ExtractValueInst>(I)) 7254 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7255 7256 // Otherwise, we need to visit the operands of the instruction. We only 7257 // handle the interesting cases from buildTree here. If an operand is an 7258 // instruction we haven't yet visited and from the same basic block as the 7259 // user or the use is a PHI node, we add it to the worklist. 7260 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7261 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7262 isa<UnaryOperator>(I)) { 7263 for (Use &U : I->operands()) 7264 if (auto *J = dyn_cast<Instruction>(U.get())) 7265 if (Visited.insert(J).second && 7266 (isa<PHINode>(I) || J->getParent() == Parent)) 7267 Worklist.emplace_back(J, J->getParent()); 7268 } else { 7269 break; 7270 } 7271 } 7272 7273 // If we didn't encounter a memory access in the expression tree, or if we 7274 // gave up for some reason, just return the width of V. Otherwise, return the 7275 // maximum width we found. 7276 if (!Width) { 7277 if (auto *CI = dyn_cast<CmpInst>(V)) 7278 V = CI->getOperand(0); 7279 Width = DL->getTypeSizeInBits(V->getType()); 7280 } 7281 7282 for (Instruction *I : Visited) 7283 InstrElementSize[I] = Width; 7284 7285 return Width; 7286 } 7287 7288 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7289 // smaller type with a truncation. We collect the values that will be demoted 7290 // in ToDemote and additional roots that require investigating in Roots. 7291 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7292 SmallVectorImpl<Value *> &ToDemote, 7293 SmallVectorImpl<Value *> &Roots) { 7294 // We can always demote constants. 7295 if (isa<Constant>(V)) { 7296 ToDemote.push_back(V); 7297 return true; 7298 } 7299 7300 // If the value is not an instruction in the expression with only one use, it 7301 // cannot be demoted. 7302 auto *I = dyn_cast<Instruction>(V); 7303 if (!I || !I->hasOneUse() || !Expr.count(I)) 7304 return false; 7305 7306 switch (I->getOpcode()) { 7307 7308 // We can always demote truncations and extensions. Since truncations can 7309 // seed additional demotion, we save the truncated value. 7310 case Instruction::Trunc: 7311 Roots.push_back(I->getOperand(0)); 7312 break; 7313 case Instruction::ZExt: 7314 case Instruction::SExt: 7315 if (isa<ExtractElementInst>(I->getOperand(0)) || 7316 isa<InsertElementInst>(I->getOperand(0))) 7317 return false; 7318 break; 7319 7320 // We can demote certain binary operations if we can demote both of their 7321 // operands. 7322 case Instruction::Add: 7323 case Instruction::Sub: 7324 case Instruction::Mul: 7325 case Instruction::And: 7326 case Instruction::Or: 7327 case Instruction::Xor: 7328 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7329 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7330 return false; 7331 break; 7332 7333 // We can demote selects if we can demote their true and false values. 7334 case Instruction::Select: { 7335 SelectInst *SI = cast<SelectInst>(I); 7336 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7337 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7338 return false; 7339 break; 7340 } 7341 7342 // We can demote phis if we can demote all their incoming operands. Note that 7343 // we don't need to worry about cycles since we ensure single use above. 7344 case Instruction::PHI: { 7345 PHINode *PN = cast<PHINode>(I); 7346 for (Value *IncValue : PN->incoming_values()) 7347 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7348 return false; 7349 break; 7350 } 7351 7352 // Otherwise, conservatively give up. 7353 default: 7354 return false; 7355 } 7356 7357 // Record the value that we can demote. 7358 ToDemote.push_back(V); 7359 return true; 7360 } 7361 7362 void BoUpSLP::computeMinimumValueSizes() { 7363 // If there are no external uses, the expression tree must be rooted by a 7364 // store. We can't demote in-memory values, so there is nothing to do here. 7365 if (ExternalUses.empty()) 7366 return; 7367 7368 // We only attempt to truncate integer expressions. 7369 auto &TreeRoot = VectorizableTree[0]->Scalars; 7370 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7371 if (!TreeRootIT) 7372 return; 7373 7374 // If the expression is not rooted by a store, these roots should have 7375 // external uses. We will rely on InstCombine to rewrite the expression in 7376 // the narrower type. However, InstCombine only rewrites single-use values. 7377 // This means that if a tree entry other than a root is used externally, it 7378 // must have multiple uses and InstCombine will not rewrite it. The code 7379 // below ensures that only the roots are used externally. 7380 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7381 for (auto &EU : ExternalUses) 7382 if (!Expr.erase(EU.Scalar)) 7383 return; 7384 if (!Expr.empty()) 7385 return; 7386 7387 // Collect the scalar values of the vectorizable expression. We will use this 7388 // context to determine which values can be demoted. If we see a truncation, 7389 // we mark it as seeding another demotion. 7390 for (auto &EntryPtr : VectorizableTree) 7391 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7392 7393 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7394 // have a single external user that is not in the vectorizable tree. 7395 for (auto *Root : TreeRoot) 7396 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7397 return; 7398 7399 // Conservatively determine if we can actually truncate the roots of the 7400 // expression. Collect the values that can be demoted in ToDemote and 7401 // additional roots that require investigating in Roots. 7402 SmallVector<Value *, 32> ToDemote; 7403 SmallVector<Value *, 4> Roots; 7404 for (auto *Root : TreeRoot) 7405 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7406 return; 7407 7408 // The maximum bit width required to represent all the values that can be 7409 // demoted without loss of precision. It would be safe to truncate the roots 7410 // of the expression to this width. 7411 auto MaxBitWidth = 8u; 7412 7413 // We first check if all the bits of the roots are demanded. If they're not, 7414 // we can truncate the roots to this narrower type. 7415 for (auto *Root : TreeRoot) { 7416 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7417 MaxBitWidth = std::max<unsigned>( 7418 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7419 } 7420 7421 // True if the roots can be zero-extended back to their original type, rather 7422 // than sign-extended. We know that if the leading bits are not demanded, we 7423 // can safely zero-extend. So we initialize IsKnownPositive to True. 7424 bool IsKnownPositive = true; 7425 7426 // If all the bits of the roots are demanded, we can try a little harder to 7427 // compute a narrower type. This can happen, for example, if the roots are 7428 // getelementptr indices. InstCombine promotes these indices to the pointer 7429 // width. Thus, all their bits are technically demanded even though the 7430 // address computation might be vectorized in a smaller type. 7431 // 7432 // We start by looking at each entry that can be demoted. We compute the 7433 // maximum bit width required to store the scalar by using ValueTracking to 7434 // compute the number of high-order bits we can truncate. 7435 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7436 llvm::all_of(TreeRoot, [](Value *R) { 7437 assert(R->hasOneUse() && "Root should have only one use!"); 7438 return isa<GetElementPtrInst>(R->user_back()); 7439 })) { 7440 MaxBitWidth = 8u; 7441 7442 // Determine if the sign bit of all the roots is known to be zero. If not, 7443 // IsKnownPositive is set to False. 7444 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7445 KnownBits Known = computeKnownBits(R, *DL); 7446 return Known.isNonNegative(); 7447 }); 7448 7449 // Determine the maximum number of bits required to store the scalar 7450 // values. 7451 for (auto *Scalar : ToDemote) { 7452 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7453 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7454 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7455 } 7456 7457 // If we can't prove that the sign bit is zero, we must add one to the 7458 // maximum bit width to account for the unknown sign bit. This preserves 7459 // the existing sign bit so we can safely sign-extend the root back to the 7460 // original type. Otherwise, if we know the sign bit is zero, we will 7461 // zero-extend the root instead. 7462 // 7463 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7464 // one to the maximum bit width will yield a larger-than-necessary 7465 // type. In general, we need to add an extra bit only if we can't 7466 // prove that the upper bit of the original type is equal to the 7467 // upper bit of the proposed smaller type. If these two bits are the 7468 // same (either zero or one) we know that sign-extending from the 7469 // smaller type will result in the same value. Here, since we can't 7470 // yet prove this, we are just making the proposed smaller type 7471 // larger to ensure correctness. 7472 if (!IsKnownPositive) 7473 ++MaxBitWidth; 7474 } 7475 7476 // Round MaxBitWidth up to the next power-of-two. 7477 if (!isPowerOf2_64(MaxBitWidth)) 7478 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7479 7480 // If the maximum bit width we compute is less than the with of the roots' 7481 // type, we can proceed with the narrowing. Otherwise, do nothing. 7482 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7483 return; 7484 7485 // If we can truncate the root, we must collect additional values that might 7486 // be demoted as a result. That is, those seeded by truncations we will 7487 // modify. 7488 while (!Roots.empty()) 7489 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7490 7491 // Finally, map the values we can demote to the maximum bit with we computed. 7492 for (auto *Scalar : ToDemote) 7493 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7494 } 7495 7496 namespace { 7497 7498 /// The SLPVectorizer Pass. 7499 struct SLPVectorizer : public FunctionPass { 7500 SLPVectorizerPass Impl; 7501 7502 /// Pass identification, replacement for typeid 7503 static char ID; 7504 7505 explicit SLPVectorizer() : FunctionPass(ID) { 7506 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7507 } 7508 7509 bool doInitialization(Module &M) override { return false; } 7510 7511 bool runOnFunction(Function &F) override { 7512 if (skipFunction(F)) 7513 return false; 7514 7515 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7516 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7517 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7518 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7519 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7520 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7521 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7522 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7523 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7524 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7525 7526 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7527 } 7528 7529 void getAnalysisUsage(AnalysisUsage &AU) const override { 7530 FunctionPass::getAnalysisUsage(AU); 7531 AU.addRequired<AssumptionCacheTracker>(); 7532 AU.addRequired<ScalarEvolutionWrapperPass>(); 7533 AU.addRequired<AAResultsWrapperPass>(); 7534 AU.addRequired<TargetTransformInfoWrapperPass>(); 7535 AU.addRequired<LoopInfoWrapperPass>(); 7536 AU.addRequired<DominatorTreeWrapperPass>(); 7537 AU.addRequired<DemandedBitsWrapperPass>(); 7538 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7539 AU.addRequired<InjectTLIMappingsLegacy>(); 7540 AU.addPreserved<LoopInfoWrapperPass>(); 7541 AU.addPreserved<DominatorTreeWrapperPass>(); 7542 AU.addPreserved<AAResultsWrapperPass>(); 7543 AU.addPreserved<GlobalsAAWrapperPass>(); 7544 AU.setPreservesCFG(); 7545 } 7546 }; 7547 7548 } // end anonymous namespace 7549 7550 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7551 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7552 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7553 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7554 auto *AA = &AM.getResult<AAManager>(F); 7555 auto *LI = &AM.getResult<LoopAnalysis>(F); 7556 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7557 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7558 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7559 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7560 7561 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7562 if (!Changed) 7563 return PreservedAnalyses::all(); 7564 7565 PreservedAnalyses PA; 7566 PA.preserveSet<CFGAnalyses>(); 7567 return PA; 7568 } 7569 7570 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7571 TargetTransformInfo *TTI_, 7572 TargetLibraryInfo *TLI_, AAResults *AA_, 7573 LoopInfo *LI_, DominatorTree *DT_, 7574 AssumptionCache *AC_, DemandedBits *DB_, 7575 OptimizationRemarkEmitter *ORE_) { 7576 if (!RunSLPVectorization) 7577 return false; 7578 SE = SE_; 7579 TTI = TTI_; 7580 TLI = TLI_; 7581 AA = AA_; 7582 LI = LI_; 7583 DT = DT_; 7584 AC = AC_; 7585 DB = DB_; 7586 DL = &F.getParent()->getDataLayout(); 7587 7588 Stores.clear(); 7589 GEPs.clear(); 7590 bool Changed = false; 7591 7592 // If the target claims to have no vector registers don't attempt 7593 // vectorization. 7594 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7595 return false; 7596 7597 // Don't vectorize when the attribute NoImplicitFloat is used. 7598 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7599 return false; 7600 7601 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7602 7603 // Use the bottom up slp vectorizer to construct chains that start with 7604 // store instructions. 7605 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7606 7607 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7608 // delete instructions. 7609 7610 // Update DFS numbers now so that we can use them for ordering. 7611 DT->updateDFSNumbers(); 7612 7613 // Scan the blocks in the function in post order. 7614 for (auto BB : post_order(&F.getEntryBlock())) { 7615 collectSeedInstructions(BB); 7616 7617 // Vectorize trees that end at stores. 7618 if (!Stores.empty()) { 7619 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7620 << " underlying objects.\n"); 7621 Changed |= vectorizeStoreChains(R); 7622 } 7623 7624 // Vectorize trees that end at reductions. 7625 Changed |= vectorizeChainsInBlock(BB, R); 7626 7627 // Vectorize the index computations of getelementptr instructions. This 7628 // is primarily intended to catch gather-like idioms ending at 7629 // non-consecutive loads. 7630 if (!GEPs.empty()) { 7631 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7632 << " underlying objects.\n"); 7633 Changed |= vectorizeGEPIndices(BB, R); 7634 } 7635 } 7636 7637 if (Changed) { 7638 R.optimizeGatherSequence(); 7639 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7640 } 7641 return Changed; 7642 } 7643 7644 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7645 unsigned Idx) { 7646 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7647 << "\n"); 7648 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7649 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7650 unsigned VF = Chain.size(); 7651 7652 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7653 return false; 7654 7655 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7656 << "\n"); 7657 7658 R.buildTree(Chain); 7659 if (R.isTreeTinyAndNotFullyVectorizable()) 7660 return false; 7661 if (R.isLoadCombineCandidate()) 7662 return false; 7663 R.reorderTopToBottom(); 7664 R.reorderBottomToTop(); 7665 R.buildExternalUses(); 7666 7667 R.computeMinimumValueSizes(); 7668 7669 InstructionCost Cost = R.getTreeCost(); 7670 7671 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7672 if (Cost < -SLPCostThreshold) { 7673 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7674 7675 using namespace ore; 7676 7677 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7678 cast<StoreInst>(Chain[0])) 7679 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7680 << " and with tree size " 7681 << NV("TreeSize", R.getTreeSize())); 7682 7683 R.vectorizeTree(); 7684 return true; 7685 } 7686 7687 return false; 7688 } 7689 7690 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7691 BoUpSLP &R) { 7692 // We may run into multiple chains that merge into a single chain. We mark the 7693 // stores that we vectorized so that we don't visit the same store twice. 7694 BoUpSLP::ValueSet VectorizedStores; 7695 bool Changed = false; 7696 7697 int E = Stores.size(); 7698 SmallBitVector Tails(E, false); 7699 int MaxIter = MaxStoreLookup.getValue(); 7700 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7701 E, std::make_pair(E, INT_MAX)); 7702 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7703 int IterCnt; 7704 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7705 &CheckedPairs, 7706 &ConsecutiveChain](int K, int Idx) { 7707 if (IterCnt >= MaxIter) 7708 return true; 7709 if (CheckedPairs[Idx].test(K)) 7710 return ConsecutiveChain[K].second == 1 && 7711 ConsecutiveChain[K].first == Idx; 7712 ++IterCnt; 7713 CheckedPairs[Idx].set(K); 7714 CheckedPairs[K].set(Idx); 7715 Optional<int> Diff = getPointersDiff( 7716 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7717 Stores[Idx]->getValueOperand()->getType(), 7718 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7719 if (!Diff || *Diff == 0) 7720 return false; 7721 int Val = *Diff; 7722 if (Val < 0) { 7723 if (ConsecutiveChain[Idx].second > -Val) { 7724 Tails.set(K); 7725 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7726 } 7727 return false; 7728 } 7729 if (ConsecutiveChain[K].second <= Val) 7730 return false; 7731 7732 Tails.set(Idx); 7733 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7734 return Val == 1; 7735 }; 7736 // Do a quadratic search on all of the given stores in reverse order and find 7737 // all of the pairs of stores that follow each other. 7738 for (int Idx = E - 1; Idx >= 0; --Idx) { 7739 // If a store has multiple consecutive store candidates, search according 7740 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7741 // This is because usually pairing with immediate succeeding or preceding 7742 // candidate create the best chance to find slp vectorization opportunity. 7743 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7744 IterCnt = 0; 7745 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7746 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7747 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7748 break; 7749 } 7750 7751 // Tracks if we tried to vectorize stores starting from the given tail 7752 // already. 7753 SmallBitVector TriedTails(E, false); 7754 // For stores that start but don't end a link in the chain: 7755 for (int Cnt = E; Cnt > 0; --Cnt) { 7756 int I = Cnt - 1; 7757 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7758 continue; 7759 // We found a store instr that starts a chain. Now follow the chain and try 7760 // to vectorize it. 7761 BoUpSLP::ValueList Operands; 7762 // Collect the chain into a list. 7763 while (I != E && !VectorizedStores.count(Stores[I])) { 7764 Operands.push_back(Stores[I]); 7765 Tails.set(I); 7766 if (ConsecutiveChain[I].second != 1) { 7767 // Mark the new end in the chain and go back, if required. It might be 7768 // required if the original stores come in reversed order, for example. 7769 if (ConsecutiveChain[I].first != E && 7770 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7771 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7772 TriedTails.set(I); 7773 Tails.reset(ConsecutiveChain[I].first); 7774 if (Cnt < ConsecutiveChain[I].first + 2) 7775 Cnt = ConsecutiveChain[I].first + 2; 7776 } 7777 break; 7778 } 7779 // Move to the next value in the chain. 7780 I = ConsecutiveChain[I].first; 7781 } 7782 assert(!Operands.empty() && "Expected non-empty list of stores."); 7783 7784 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7785 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7786 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7787 7788 unsigned MinVF = R.getMinVF(EltSize); 7789 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7790 MaxElts); 7791 7792 // FIXME: Is division-by-2 the correct step? Should we assert that the 7793 // register size is a power-of-2? 7794 unsigned StartIdx = 0; 7795 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7796 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7797 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7798 if (!VectorizedStores.count(Slice.front()) && 7799 !VectorizedStores.count(Slice.back()) && 7800 vectorizeStoreChain(Slice, R, Cnt)) { 7801 // Mark the vectorized stores so that we don't vectorize them again. 7802 VectorizedStores.insert(Slice.begin(), Slice.end()); 7803 Changed = true; 7804 // If we vectorized initial block, no need to try to vectorize it 7805 // again. 7806 if (Cnt == StartIdx) 7807 StartIdx += Size; 7808 Cnt += Size; 7809 continue; 7810 } 7811 ++Cnt; 7812 } 7813 // Check if the whole array was vectorized already - exit. 7814 if (StartIdx >= Operands.size()) 7815 break; 7816 } 7817 } 7818 7819 return Changed; 7820 } 7821 7822 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7823 // Initialize the collections. We will make a single pass over the block. 7824 Stores.clear(); 7825 GEPs.clear(); 7826 7827 // Visit the store and getelementptr instructions in BB and organize them in 7828 // Stores and GEPs according to the underlying objects of their pointer 7829 // operands. 7830 for (Instruction &I : *BB) { 7831 // Ignore store instructions that are volatile or have a pointer operand 7832 // that doesn't point to a scalar type. 7833 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7834 if (!SI->isSimple()) 7835 continue; 7836 if (!isValidElementType(SI->getValueOperand()->getType())) 7837 continue; 7838 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7839 } 7840 7841 // Ignore getelementptr instructions that have more than one index, a 7842 // constant index, or a pointer operand that doesn't point to a scalar 7843 // type. 7844 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7845 auto Idx = GEP->idx_begin()->get(); 7846 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7847 continue; 7848 if (!isValidElementType(Idx->getType())) 7849 continue; 7850 if (GEP->getType()->isVectorTy()) 7851 continue; 7852 GEPs[GEP->getPointerOperand()].push_back(GEP); 7853 } 7854 } 7855 } 7856 7857 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7858 if (!A || !B) 7859 return false; 7860 Value *VL[] = {A, B}; 7861 return tryToVectorizeList(VL, R); 7862 } 7863 7864 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7865 bool LimitForRegisterSize) { 7866 if (VL.size() < 2) 7867 return false; 7868 7869 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7870 << VL.size() << ".\n"); 7871 7872 // Check that all of the parts are instructions of the same type, 7873 // we permit an alternate opcode via InstructionsState. 7874 InstructionsState S = getSameOpcode(VL); 7875 if (!S.getOpcode()) 7876 return false; 7877 7878 Instruction *I0 = cast<Instruction>(S.OpValue); 7879 // Make sure invalid types (including vector type) are rejected before 7880 // determining vectorization factor for scalar instructions. 7881 for (Value *V : VL) { 7882 Type *Ty = V->getType(); 7883 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7884 // NOTE: the following will give user internal llvm type name, which may 7885 // not be useful. 7886 R.getORE()->emit([&]() { 7887 std::string type_str; 7888 llvm::raw_string_ostream rso(type_str); 7889 Ty->print(rso); 7890 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7891 << "Cannot SLP vectorize list: type " 7892 << rso.str() + " is unsupported by vectorizer"; 7893 }); 7894 return false; 7895 } 7896 } 7897 7898 unsigned Sz = R.getVectorElementSize(I0); 7899 unsigned MinVF = R.getMinVF(Sz); 7900 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7901 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7902 if (MaxVF < 2) { 7903 R.getORE()->emit([&]() { 7904 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7905 << "Cannot SLP vectorize list: vectorization factor " 7906 << "less than 2 is not supported"; 7907 }); 7908 return false; 7909 } 7910 7911 bool Changed = false; 7912 bool CandidateFound = false; 7913 InstructionCost MinCost = SLPCostThreshold.getValue(); 7914 Type *ScalarTy = VL[0]->getType(); 7915 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7916 ScalarTy = IE->getOperand(1)->getType(); 7917 7918 unsigned NextInst = 0, MaxInst = VL.size(); 7919 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7920 // No actual vectorization should happen, if number of parts is the same as 7921 // provided vectorization factor (i.e. the scalar type is used for vector 7922 // code during codegen). 7923 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7924 if (TTI->getNumberOfParts(VecTy) == VF) 7925 continue; 7926 for (unsigned I = NextInst; I < MaxInst; ++I) { 7927 unsigned OpsWidth = 0; 7928 7929 if (I + VF > MaxInst) 7930 OpsWidth = MaxInst - I; 7931 else 7932 OpsWidth = VF; 7933 7934 if (!isPowerOf2_32(OpsWidth)) 7935 continue; 7936 7937 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 7938 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7939 break; 7940 7941 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7942 // Check that a previous iteration of this loop did not delete the Value. 7943 if (llvm::any_of(Ops, [&R](Value *V) { 7944 auto *I = dyn_cast<Instruction>(V); 7945 return I && R.isDeleted(I); 7946 })) 7947 continue; 7948 7949 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7950 << "\n"); 7951 7952 R.buildTree(Ops); 7953 if (R.isTreeTinyAndNotFullyVectorizable()) 7954 continue; 7955 R.reorderTopToBottom(); 7956 R.reorderBottomToTop(); 7957 R.buildExternalUses(); 7958 7959 R.computeMinimumValueSizes(); 7960 InstructionCost Cost = R.getTreeCost(); 7961 CandidateFound = true; 7962 MinCost = std::min(MinCost, Cost); 7963 7964 if (Cost < -SLPCostThreshold) { 7965 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7966 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7967 cast<Instruction>(Ops[0])) 7968 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7969 << " and with tree size " 7970 << ore::NV("TreeSize", R.getTreeSize())); 7971 7972 R.vectorizeTree(); 7973 // Move to the next bundle. 7974 I += VF - 1; 7975 NextInst = I + 1; 7976 Changed = true; 7977 } 7978 } 7979 } 7980 7981 if (!Changed && CandidateFound) { 7982 R.getORE()->emit([&]() { 7983 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7984 << "List vectorization was possible but not beneficial with cost " 7985 << ore::NV("Cost", MinCost) << " >= " 7986 << ore::NV("Treshold", -SLPCostThreshold); 7987 }); 7988 } else if (!Changed) { 7989 R.getORE()->emit([&]() { 7990 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7991 << "Cannot SLP vectorize list: vectorization was impossible" 7992 << " with available vectorization factors"; 7993 }); 7994 } 7995 return Changed; 7996 } 7997 7998 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7999 if (!I) 8000 return false; 8001 8002 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8003 return false; 8004 8005 Value *P = I->getParent(); 8006 8007 // Vectorize in current basic block only. 8008 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8009 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8010 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8011 return false; 8012 8013 // Try to vectorize V. 8014 if (tryToVectorizePair(Op0, Op1, R)) 8015 return true; 8016 8017 auto *A = dyn_cast<BinaryOperator>(Op0); 8018 auto *B = dyn_cast<BinaryOperator>(Op1); 8019 // Try to skip B. 8020 if (B && B->hasOneUse()) { 8021 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8022 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8023 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8024 return true; 8025 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8026 return true; 8027 } 8028 8029 // Try to skip A. 8030 if (A && A->hasOneUse()) { 8031 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8032 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8033 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8034 return true; 8035 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8036 return true; 8037 } 8038 return false; 8039 } 8040 8041 namespace { 8042 8043 /// Model horizontal reductions. 8044 /// 8045 /// A horizontal reduction is a tree of reduction instructions that has values 8046 /// that can be put into a vector as its leaves. For example: 8047 /// 8048 /// mul mul mul mul 8049 /// \ / \ / 8050 /// + + 8051 /// \ / 8052 /// + 8053 /// This tree has "mul" as its leaf values and "+" as its reduction 8054 /// instructions. A reduction can feed into a store or a binary operation 8055 /// feeding a phi. 8056 /// ... 8057 /// \ / 8058 /// + 8059 /// | 8060 /// phi += 8061 /// 8062 /// Or: 8063 /// ... 8064 /// \ / 8065 /// + 8066 /// | 8067 /// *p = 8068 /// 8069 class HorizontalReduction { 8070 using ReductionOpsType = SmallVector<Value *, 16>; 8071 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8072 ReductionOpsListType ReductionOps; 8073 SmallVector<Value *, 32> ReducedVals; 8074 // Use map vector to make stable output. 8075 MapVector<Instruction *, Value *> ExtraArgs; 8076 WeakTrackingVH ReductionRoot; 8077 /// The type of reduction operation. 8078 RecurKind RdxKind; 8079 8080 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8081 8082 static bool isCmpSelMinMax(Instruction *I) { 8083 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8084 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8085 } 8086 8087 // And/or are potentially poison-safe logical patterns like: 8088 // select x, y, false 8089 // select x, true, y 8090 static bool isBoolLogicOp(Instruction *I) { 8091 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8092 match(I, m_LogicalOr(m_Value(), m_Value())); 8093 } 8094 8095 /// Checks if instruction is associative and can be vectorized. 8096 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8097 if (Kind == RecurKind::None) 8098 return false; 8099 8100 // Integer ops that map to select instructions or intrinsics are fine. 8101 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8102 isBoolLogicOp(I)) 8103 return true; 8104 8105 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8106 // FP min/max are associative except for NaN and -0.0. We do not 8107 // have to rule out -0.0 here because the intrinsic semantics do not 8108 // specify a fixed result for it. 8109 return I->getFastMathFlags().noNaNs(); 8110 } 8111 8112 return I->isAssociative(); 8113 } 8114 8115 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8116 // Poison-safe 'or' takes the form: select X, true, Y 8117 // To make that work with the normal operand processing, we skip the 8118 // true value operand. 8119 // TODO: Change the code and data structures to handle this without a hack. 8120 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8121 return I->getOperand(2); 8122 return I->getOperand(Index); 8123 } 8124 8125 /// Checks if the ParentStackElem.first should be marked as a reduction 8126 /// operation with an extra argument or as extra argument itself. 8127 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8128 Value *ExtraArg) { 8129 if (ExtraArgs.count(ParentStackElem.first)) { 8130 ExtraArgs[ParentStackElem.first] = nullptr; 8131 // We ran into something like: 8132 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8133 // The whole ParentStackElem.first should be considered as an extra value 8134 // in this case. 8135 // Do not perform analysis of remaining operands of ParentStackElem.first 8136 // instruction, this whole instruction is an extra argument. 8137 ParentStackElem.second = INVALID_OPERAND_INDEX; 8138 } else { 8139 // We ran into something like: 8140 // ParentStackElem.first += ... + ExtraArg + ... 8141 ExtraArgs[ParentStackElem.first] = ExtraArg; 8142 } 8143 } 8144 8145 /// Creates reduction operation with the current opcode. 8146 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8147 Value *RHS, const Twine &Name, bool UseSelect) { 8148 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8149 switch (Kind) { 8150 case RecurKind::Or: 8151 if (UseSelect && 8152 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8153 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8154 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8155 Name); 8156 case RecurKind::And: 8157 if (UseSelect && 8158 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8159 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8160 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8161 Name); 8162 case RecurKind::Add: 8163 case RecurKind::Mul: 8164 case RecurKind::Xor: 8165 case RecurKind::FAdd: 8166 case RecurKind::FMul: 8167 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8168 Name); 8169 case RecurKind::FMax: 8170 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8171 case RecurKind::FMin: 8172 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8173 case RecurKind::SMax: 8174 if (UseSelect) { 8175 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8176 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8177 } 8178 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8179 case RecurKind::SMin: 8180 if (UseSelect) { 8181 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8182 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8183 } 8184 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8185 case RecurKind::UMax: 8186 if (UseSelect) { 8187 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8188 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8189 } 8190 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8191 case RecurKind::UMin: 8192 if (UseSelect) { 8193 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8194 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8195 } 8196 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8197 default: 8198 llvm_unreachable("Unknown reduction operation."); 8199 } 8200 } 8201 8202 /// Creates reduction operation with the current opcode with the IR flags 8203 /// from \p ReductionOps. 8204 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8205 Value *RHS, const Twine &Name, 8206 const ReductionOpsListType &ReductionOps) { 8207 bool UseSelect = ReductionOps.size() == 2 || 8208 // Logical or/and. 8209 (ReductionOps.size() == 1 && 8210 isa<SelectInst>(ReductionOps.front().front())); 8211 assert((!UseSelect || ReductionOps.size() != 2 || 8212 isa<SelectInst>(ReductionOps[1][0])) && 8213 "Expected cmp + select pairs for reduction"); 8214 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8215 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8216 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8217 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8218 propagateIRFlags(Op, ReductionOps[1]); 8219 return Op; 8220 } 8221 } 8222 propagateIRFlags(Op, ReductionOps[0]); 8223 return Op; 8224 } 8225 8226 /// Creates reduction operation with the current opcode with the IR flags 8227 /// from \p I. 8228 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8229 Value *RHS, const Twine &Name, Instruction *I) { 8230 auto *SelI = dyn_cast<SelectInst>(I); 8231 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8232 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8233 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8234 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8235 } 8236 propagateIRFlags(Op, I); 8237 return Op; 8238 } 8239 8240 static RecurKind getRdxKind(Instruction *I) { 8241 assert(I && "Expected instruction for reduction matching"); 8242 TargetTransformInfo::ReductionFlags RdxFlags; 8243 if (match(I, m_Add(m_Value(), m_Value()))) 8244 return RecurKind::Add; 8245 if (match(I, m_Mul(m_Value(), m_Value()))) 8246 return RecurKind::Mul; 8247 if (match(I, m_And(m_Value(), m_Value())) || 8248 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8249 return RecurKind::And; 8250 if (match(I, m_Or(m_Value(), m_Value())) || 8251 match(I, m_LogicalOr(m_Value(), m_Value()))) 8252 return RecurKind::Or; 8253 if (match(I, m_Xor(m_Value(), m_Value()))) 8254 return RecurKind::Xor; 8255 if (match(I, m_FAdd(m_Value(), m_Value()))) 8256 return RecurKind::FAdd; 8257 if (match(I, m_FMul(m_Value(), m_Value()))) 8258 return RecurKind::FMul; 8259 8260 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8261 return RecurKind::FMax; 8262 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8263 return RecurKind::FMin; 8264 8265 // This matches either cmp+select or intrinsics. SLP is expected to handle 8266 // either form. 8267 // TODO: If we are canonicalizing to intrinsics, we can remove several 8268 // special-case paths that deal with selects. 8269 if (match(I, m_SMax(m_Value(), m_Value()))) 8270 return RecurKind::SMax; 8271 if (match(I, m_SMin(m_Value(), m_Value()))) 8272 return RecurKind::SMin; 8273 if (match(I, m_UMax(m_Value(), m_Value()))) 8274 return RecurKind::UMax; 8275 if (match(I, m_UMin(m_Value(), m_Value()))) 8276 return RecurKind::UMin; 8277 8278 if (auto *Select = dyn_cast<SelectInst>(I)) { 8279 // Try harder: look for min/max pattern based on instructions producing 8280 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8281 // During the intermediate stages of SLP, it's very common to have 8282 // pattern like this (since optimizeGatherSequence is run only once 8283 // at the end): 8284 // %1 = extractelement <2 x i32> %a, i32 0 8285 // %2 = extractelement <2 x i32> %a, i32 1 8286 // %cond = icmp sgt i32 %1, %2 8287 // %3 = extractelement <2 x i32> %a, i32 0 8288 // %4 = extractelement <2 x i32> %a, i32 1 8289 // %select = select i1 %cond, i32 %3, i32 %4 8290 CmpInst::Predicate Pred; 8291 Instruction *L1; 8292 Instruction *L2; 8293 8294 Value *LHS = Select->getTrueValue(); 8295 Value *RHS = Select->getFalseValue(); 8296 Value *Cond = Select->getCondition(); 8297 8298 // TODO: Support inverse predicates. 8299 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8300 if (!isa<ExtractElementInst>(RHS) || 8301 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8302 return RecurKind::None; 8303 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8304 if (!isa<ExtractElementInst>(LHS) || 8305 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8306 return RecurKind::None; 8307 } else { 8308 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8309 return RecurKind::None; 8310 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8311 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8312 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8313 return RecurKind::None; 8314 } 8315 8316 TargetTransformInfo::ReductionFlags RdxFlags; 8317 switch (Pred) { 8318 default: 8319 return RecurKind::None; 8320 case CmpInst::ICMP_SGT: 8321 case CmpInst::ICMP_SGE: 8322 return RecurKind::SMax; 8323 case CmpInst::ICMP_SLT: 8324 case CmpInst::ICMP_SLE: 8325 return RecurKind::SMin; 8326 case CmpInst::ICMP_UGT: 8327 case CmpInst::ICMP_UGE: 8328 return RecurKind::UMax; 8329 case CmpInst::ICMP_ULT: 8330 case CmpInst::ICMP_ULE: 8331 return RecurKind::UMin; 8332 } 8333 } 8334 return RecurKind::None; 8335 } 8336 8337 /// Get the index of the first operand. 8338 static unsigned getFirstOperandIndex(Instruction *I) { 8339 return isCmpSelMinMax(I) ? 1 : 0; 8340 } 8341 8342 /// Total number of operands in the reduction operation. 8343 static unsigned getNumberOfOperands(Instruction *I) { 8344 return isCmpSelMinMax(I) ? 3 : 2; 8345 } 8346 8347 /// Checks if the instruction is in basic block \p BB. 8348 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8349 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8350 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8351 auto *Sel = cast<SelectInst>(I); 8352 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8353 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8354 } 8355 return I->getParent() == BB; 8356 } 8357 8358 /// Expected number of uses for reduction operations/reduced values. 8359 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8360 if (IsCmpSelMinMax) { 8361 // SelectInst must be used twice while the condition op must have single 8362 // use only. 8363 if (auto *Sel = dyn_cast<SelectInst>(I)) 8364 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8365 return I->hasNUses(2); 8366 } 8367 8368 // Arithmetic reduction operation must be used once only. 8369 return I->hasOneUse(); 8370 } 8371 8372 /// Initializes the list of reduction operations. 8373 void initReductionOps(Instruction *I) { 8374 if (isCmpSelMinMax(I)) 8375 ReductionOps.assign(2, ReductionOpsType()); 8376 else 8377 ReductionOps.assign(1, ReductionOpsType()); 8378 } 8379 8380 /// Add all reduction operations for the reduction instruction \p I. 8381 void addReductionOps(Instruction *I) { 8382 if (isCmpSelMinMax(I)) { 8383 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8384 ReductionOps[1].emplace_back(I); 8385 } else { 8386 ReductionOps[0].emplace_back(I); 8387 } 8388 } 8389 8390 static Value *getLHS(RecurKind Kind, Instruction *I) { 8391 if (Kind == RecurKind::None) 8392 return nullptr; 8393 return I->getOperand(getFirstOperandIndex(I)); 8394 } 8395 static Value *getRHS(RecurKind Kind, Instruction *I) { 8396 if (Kind == RecurKind::None) 8397 return nullptr; 8398 return I->getOperand(getFirstOperandIndex(I) + 1); 8399 } 8400 8401 public: 8402 HorizontalReduction() = default; 8403 8404 /// Try to find a reduction tree. 8405 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8406 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8407 "Phi needs to use the binary operator"); 8408 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8409 isa<IntrinsicInst>(Inst)) && 8410 "Expected binop, select, or intrinsic for reduction matching"); 8411 RdxKind = getRdxKind(Inst); 8412 8413 // We could have a initial reductions that is not an add. 8414 // r *= v1 + v2 + v3 + v4 8415 // In such a case start looking for a tree rooted in the first '+'. 8416 if (Phi) { 8417 if (getLHS(RdxKind, Inst) == Phi) { 8418 Phi = nullptr; 8419 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8420 if (!Inst) 8421 return false; 8422 RdxKind = getRdxKind(Inst); 8423 } else if (getRHS(RdxKind, Inst) == Phi) { 8424 Phi = nullptr; 8425 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8426 if (!Inst) 8427 return false; 8428 RdxKind = getRdxKind(Inst); 8429 } 8430 } 8431 8432 if (!isVectorizable(RdxKind, Inst)) 8433 return false; 8434 8435 // Analyze "regular" integer/FP types for reductions - no target-specific 8436 // types or pointers. 8437 Type *Ty = Inst->getType(); 8438 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8439 return false; 8440 8441 // Though the ultimate reduction may have multiple uses, its condition must 8442 // have only single use. 8443 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8444 if (!Sel->getCondition()->hasOneUse()) 8445 return false; 8446 8447 ReductionRoot = Inst; 8448 8449 // The opcode for leaf values that we perform a reduction on. 8450 // For example: load(x) + load(y) + load(z) + fptoui(w) 8451 // The leaf opcode for 'w' does not match, so we don't include it as a 8452 // potential candidate for the reduction. 8453 unsigned LeafOpcode = 0; 8454 8455 // Post-order traverse the reduction tree starting at Inst. We only handle 8456 // true trees containing binary operators or selects. 8457 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8458 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8459 initReductionOps(Inst); 8460 while (!Stack.empty()) { 8461 Instruction *TreeN = Stack.back().first; 8462 unsigned EdgeToVisit = Stack.back().second++; 8463 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8464 bool IsReducedValue = TreeRdxKind != RdxKind; 8465 8466 // Postorder visit. 8467 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8468 if (IsReducedValue) 8469 ReducedVals.push_back(TreeN); 8470 else { 8471 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8472 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8473 // Check if TreeN is an extra argument of its parent operation. 8474 if (Stack.size() <= 1) { 8475 // TreeN can't be an extra argument as it is a root reduction 8476 // operation. 8477 return false; 8478 } 8479 // Yes, TreeN is an extra argument, do not add it to a list of 8480 // reduction operations. 8481 // Stack[Stack.size() - 2] always points to the parent operation. 8482 markExtraArg(Stack[Stack.size() - 2], TreeN); 8483 ExtraArgs.erase(TreeN); 8484 } else 8485 addReductionOps(TreeN); 8486 } 8487 // Retract. 8488 Stack.pop_back(); 8489 continue; 8490 } 8491 8492 // Visit operands. 8493 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8494 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8495 if (!EdgeInst) { 8496 // Edge value is not a reduction instruction or a leaf instruction. 8497 // (It may be a constant, function argument, or something else.) 8498 markExtraArg(Stack.back(), EdgeVal); 8499 continue; 8500 } 8501 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8502 // Continue analysis if the next operand is a reduction operation or 8503 // (possibly) a leaf value. If the leaf value opcode is not set, 8504 // the first met operation != reduction operation is considered as the 8505 // leaf opcode. 8506 // Only handle trees in the current basic block. 8507 // Each tree node needs to have minimal number of users except for the 8508 // ultimate reduction. 8509 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8510 if (EdgeInst != Phi && EdgeInst != Inst && 8511 hasSameParent(EdgeInst, Inst->getParent()) && 8512 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8513 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8514 if (IsRdxInst) { 8515 // We need to be able to reassociate the reduction operations. 8516 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8517 // I is an extra argument for TreeN (its parent operation). 8518 markExtraArg(Stack.back(), EdgeInst); 8519 continue; 8520 } 8521 } else if (!LeafOpcode) { 8522 LeafOpcode = EdgeInst->getOpcode(); 8523 } 8524 Stack.push_back( 8525 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8526 continue; 8527 } 8528 // I is an extra argument for TreeN (its parent operation). 8529 markExtraArg(Stack.back(), EdgeInst); 8530 } 8531 return true; 8532 } 8533 8534 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8535 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8536 // If there are a sufficient number of reduction values, reduce 8537 // to a nearby power-of-2. We can safely generate oversized 8538 // vectors and rely on the backend to split them to legal sizes. 8539 unsigned NumReducedVals = ReducedVals.size(); 8540 if (NumReducedVals < 4) 8541 return nullptr; 8542 8543 // Intersect the fast-math-flags from all reduction operations. 8544 FastMathFlags RdxFMF; 8545 RdxFMF.set(); 8546 for (ReductionOpsType &RdxOp : ReductionOps) { 8547 for (Value *RdxVal : RdxOp) { 8548 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8549 RdxFMF &= FPMO->getFastMathFlags(); 8550 } 8551 } 8552 8553 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8554 Builder.setFastMathFlags(RdxFMF); 8555 8556 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8557 // The same extra argument may be used several times, so log each attempt 8558 // to use it. 8559 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8560 assert(Pair.first && "DebugLoc must be set."); 8561 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8562 } 8563 8564 // The compare instruction of a min/max is the insertion point for new 8565 // instructions and may be replaced with a new compare instruction. 8566 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8567 assert(isa<SelectInst>(RdxRootInst) && 8568 "Expected min/max reduction to have select root instruction"); 8569 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8570 assert(isa<Instruction>(ScalarCond) && 8571 "Expected min/max reduction to have compare condition"); 8572 return cast<Instruction>(ScalarCond); 8573 }; 8574 8575 // The reduction root is used as the insertion point for new instructions, 8576 // so set it as externally used to prevent it from being deleted. 8577 ExternallyUsedValues[ReductionRoot]; 8578 SmallVector<Value *, 16> IgnoreList; 8579 for (ReductionOpsType &RdxOp : ReductionOps) 8580 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8581 8582 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8583 if (NumReducedVals > ReduxWidth) { 8584 // In the loop below, we are building a tree based on a window of 8585 // 'ReduxWidth' values. 8586 // If the operands of those values have common traits (compare predicate, 8587 // constant operand, etc), then we want to group those together to 8588 // minimize the cost of the reduction. 8589 8590 // TODO: This should be extended to count common operands for 8591 // compares and binops. 8592 8593 // Step 1: Count the number of times each compare predicate occurs. 8594 SmallDenseMap<unsigned, unsigned> PredCountMap; 8595 for (Value *RdxVal : ReducedVals) { 8596 CmpInst::Predicate Pred; 8597 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8598 ++PredCountMap[Pred]; 8599 } 8600 // Step 2: Sort the values so the most common predicates come first. 8601 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8602 CmpInst::Predicate PredA, PredB; 8603 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8604 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8605 return PredCountMap[PredA] > PredCountMap[PredB]; 8606 } 8607 return false; 8608 }); 8609 } 8610 8611 Value *VectorizedTree = nullptr; 8612 unsigned i = 0; 8613 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8614 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8615 V.buildTree(VL, IgnoreList); 8616 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8617 break; 8618 if (V.isLoadCombineReductionCandidate(RdxKind)) 8619 break; 8620 V.reorderTopToBottom(); 8621 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8622 V.buildExternalUses(ExternallyUsedValues); 8623 8624 // For a poison-safe boolean logic reduction, do not replace select 8625 // instructions with logic ops. All reduced values will be frozen (see 8626 // below) to prevent leaking poison. 8627 if (isa<SelectInst>(ReductionRoot) && 8628 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8629 NumReducedVals != ReduxWidth) 8630 break; 8631 8632 V.computeMinimumValueSizes(); 8633 8634 // Estimate cost. 8635 InstructionCost TreeCost = 8636 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8637 InstructionCost ReductionCost = 8638 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8639 InstructionCost Cost = TreeCost + ReductionCost; 8640 if (!Cost.isValid()) { 8641 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8642 return nullptr; 8643 } 8644 if (Cost >= -SLPCostThreshold) { 8645 V.getORE()->emit([&]() { 8646 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8647 cast<Instruction>(VL[0])) 8648 << "Vectorizing horizontal reduction is possible" 8649 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8650 << " and threshold " 8651 << ore::NV("Threshold", -SLPCostThreshold); 8652 }); 8653 break; 8654 } 8655 8656 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8657 << Cost << ". (HorRdx)\n"); 8658 V.getORE()->emit([&]() { 8659 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8660 cast<Instruction>(VL[0])) 8661 << "Vectorized horizontal reduction with cost " 8662 << ore::NV("Cost", Cost) << " and with tree size " 8663 << ore::NV("TreeSize", V.getTreeSize()); 8664 }); 8665 8666 // Vectorize a tree. 8667 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8668 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8669 8670 // Emit a reduction. If the root is a select (min/max idiom), the insert 8671 // point is the compare condition of that select. 8672 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8673 if (isCmpSelMinMax(RdxRootInst)) 8674 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8675 else 8676 Builder.SetInsertPoint(RdxRootInst); 8677 8678 // To prevent poison from leaking across what used to be sequential, safe, 8679 // scalar boolean logic operations, the reduction operand must be frozen. 8680 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8681 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8682 8683 Value *ReducedSubTree = 8684 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8685 8686 if (!VectorizedTree) { 8687 // Initialize the final value in the reduction. 8688 VectorizedTree = ReducedSubTree; 8689 } else { 8690 // Update the final value in the reduction. 8691 Builder.SetCurrentDebugLocation(Loc); 8692 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8693 ReducedSubTree, "op.rdx", ReductionOps); 8694 } 8695 i += ReduxWidth; 8696 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8697 } 8698 8699 if (VectorizedTree) { 8700 // Finish the reduction. 8701 for (; i < NumReducedVals; ++i) { 8702 auto *I = cast<Instruction>(ReducedVals[i]); 8703 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8704 VectorizedTree = 8705 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8706 } 8707 for (auto &Pair : ExternallyUsedValues) { 8708 // Add each externally used value to the final reduction. 8709 for (auto *I : Pair.second) { 8710 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8711 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8712 Pair.first, "op.extra", I); 8713 } 8714 } 8715 8716 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8717 8718 // Mark all scalar reduction ops for deletion, they are replaced by the 8719 // vector reductions. 8720 V.eraseInstructions(IgnoreList); 8721 } 8722 return VectorizedTree; 8723 } 8724 8725 unsigned numReductionValues() const { return ReducedVals.size(); } 8726 8727 private: 8728 /// Calculate the cost of a reduction. 8729 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8730 Value *FirstReducedVal, unsigned ReduxWidth, 8731 FastMathFlags FMF) { 8732 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8733 Type *ScalarTy = FirstReducedVal->getType(); 8734 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8735 InstructionCost VectorCost, ScalarCost; 8736 switch (RdxKind) { 8737 case RecurKind::Add: 8738 case RecurKind::Mul: 8739 case RecurKind::Or: 8740 case RecurKind::And: 8741 case RecurKind::Xor: 8742 case RecurKind::FAdd: 8743 case RecurKind::FMul: { 8744 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8745 VectorCost = 8746 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8747 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8748 break; 8749 } 8750 case RecurKind::FMax: 8751 case RecurKind::FMin: { 8752 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8753 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8754 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8755 /*unsigned=*/false, CostKind); 8756 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8757 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8758 SclCondTy, RdxPred, CostKind) + 8759 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8760 SclCondTy, RdxPred, CostKind); 8761 break; 8762 } 8763 case RecurKind::SMax: 8764 case RecurKind::SMin: 8765 case RecurKind::UMax: 8766 case RecurKind::UMin: { 8767 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8768 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8769 bool IsUnsigned = 8770 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8771 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8772 CostKind); 8773 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8774 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8775 SclCondTy, RdxPred, CostKind) + 8776 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8777 SclCondTy, RdxPred, CostKind); 8778 break; 8779 } 8780 default: 8781 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8782 } 8783 8784 // Scalar cost is repeated for N-1 elements. 8785 ScalarCost *= (ReduxWidth - 1); 8786 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8787 << " for reduction that starts with " << *FirstReducedVal 8788 << " (It is a splitting reduction)\n"); 8789 return VectorCost - ScalarCost; 8790 } 8791 8792 /// Emit a horizontal reduction of the vectorized value. 8793 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8794 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8795 assert(VectorizedValue && "Need to have a vectorized tree node"); 8796 assert(isPowerOf2_32(ReduxWidth) && 8797 "We only handle power-of-two reductions for now"); 8798 8799 ++NumVectorInstructions; 8800 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8801 ReductionOps.back()); 8802 } 8803 }; 8804 8805 } // end anonymous namespace 8806 8807 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8808 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8809 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8810 8811 unsigned AggregateSize = 1; 8812 auto *IV = cast<InsertValueInst>(InsertInst); 8813 Type *CurrentType = IV->getType(); 8814 do { 8815 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8816 for (auto *Elt : ST->elements()) 8817 if (Elt != ST->getElementType(0)) // check homogeneity 8818 return None; 8819 AggregateSize *= ST->getNumElements(); 8820 CurrentType = ST->getElementType(0); 8821 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8822 AggregateSize *= AT->getNumElements(); 8823 CurrentType = AT->getElementType(); 8824 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8825 AggregateSize *= VT->getNumElements(); 8826 return AggregateSize; 8827 } else if (CurrentType->isSingleValueType()) { 8828 return AggregateSize; 8829 } else { 8830 return None; 8831 } 8832 } while (true); 8833 } 8834 8835 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8836 TargetTransformInfo *TTI, 8837 SmallVectorImpl<Value *> &BuildVectorOpds, 8838 SmallVectorImpl<Value *> &InsertElts, 8839 unsigned OperandOffset) { 8840 do { 8841 Value *InsertedOperand = LastInsertInst->getOperand(1); 8842 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8843 if (!OperandIndex) 8844 return false; 8845 if (isa<InsertElementInst>(InsertedOperand) || 8846 isa<InsertValueInst>(InsertedOperand)) { 8847 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8848 BuildVectorOpds, InsertElts, *OperandIndex)) 8849 return false; 8850 } else { 8851 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8852 InsertElts[*OperandIndex] = LastInsertInst; 8853 } 8854 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8855 } while (LastInsertInst != nullptr && 8856 (isa<InsertValueInst>(LastInsertInst) || 8857 isa<InsertElementInst>(LastInsertInst)) && 8858 LastInsertInst->hasOneUse()); 8859 return true; 8860 } 8861 8862 /// Recognize construction of vectors like 8863 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8864 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8865 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8866 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8867 /// starting from the last insertelement or insertvalue instruction. 8868 /// 8869 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8870 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8871 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8872 /// 8873 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8874 /// 8875 /// \return true if it matches. 8876 static bool findBuildAggregate(Instruction *LastInsertInst, 8877 TargetTransformInfo *TTI, 8878 SmallVectorImpl<Value *> &BuildVectorOpds, 8879 SmallVectorImpl<Value *> &InsertElts) { 8880 8881 assert((isa<InsertElementInst>(LastInsertInst) || 8882 isa<InsertValueInst>(LastInsertInst)) && 8883 "Expected insertelement or insertvalue instruction!"); 8884 8885 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8886 "Expected empty result vectors!"); 8887 8888 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8889 if (!AggregateSize) 8890 return false; 8891 BuildVectorOpds.resize(*AggregateSize); 8892 InsertElts.resize(*AggregateSize); 8893 8894 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8895 0)) { 8896 llvm::erase_value(BuildVectorOpds, nullptr); 8897 llvm::erase_value(InsertElts, nullptr); 8898 if (BuildVectorOpds.size() >= 2) 8899 return true; 8900 } 8901 8902 return false; 8903 } 8904 8905 /// Try and get a reduction value from a phi node. 8906 /// 8907 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8908 /// if they come from either \p ParentBB or a containing loop latch. 8909 /// 8910 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8911 /// if not possible. 8912 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8913 BasicBlock *ParentBB, LoopInfo *LI) { 8914 // There are situations where the reduction value is not dominated by the 8915 // reduction phi. Vectorizing such cases has been reported to cause 8916 // miscompiles. See PR25787. 8917 auto DominatedReduxValue = [&](Value *R) { 8918 return isa<Instruction>(R) && 8919 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8920 }; 8921 8922 Value *Rdx = nullptr; 8923 8924 // Return the incoming value if it comes from the same BB as the phi node. 8925 if (P->getIncomingBlock(0) == ParentBB) { 8926 Rdx = P->getIncomingValue(0); 8927 } else if (P->getIncomingBlock(1) == ParentBB) { 8928 Rdx = P->getIncomingValue(1); 8929 } 8930 8931 if (Rdx && DominatedReduxValue(Rdx)) 8932 return Rdx; 8933 8934 // Otherwise, check whether we have a loop latch to look at. 8935 Loop *BBL = LI->getLoopFor(ParentBB); 8936 if (!BBL) 8937 return nullptr; 8938 BasicBlock *BBLatch = BBL->getLoopLatch(); 8939 if (!BBLatch) 8940 return nullptr; 8941 8942 // There is a loop latch, return the incoming value if it comes from 8943 // that. This reduction pattern occasionally turns up. 8944 if (P->getIncomingBlock(0) == BBLatch) { 8945 Rdx = P->getIncomingValue(0); 8946 } else if (P->getIncomingBlock(1) == BBLatch) { 8947 Rdx = P->getIncomingValue(1); 8948 } 8949 8950 if (Rdx && DominatedReduxValue(Rdx)) 8951 return Rdx; 8952 8953 return nullptr; 8954 } 8955 8956 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8957 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8958 return true; 8959 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8960 return true; 8961 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8962 return true; 8963 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8964 return true; 8965 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8966 return true; 8967 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8968 return true; 8969 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8970 return true; 8971 return false; 8972 } 8973 8974 /// Attempt to reduce a horizontal reduction. 8975 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8976 /// with reduction operators \a Root (or one of its operands) in a basic block 8977 /// \a BB, then check if it can be done. If horizontal reduction is not found 8978 /// and root instruction is a binary operation, vectorization of the operands is 8979 /// attempted. 8980 /// \returns true if a horizontal reduction was matched and reduced or operands 8981 /// of one of the binary instruction were vectorized. 8982 /// \returns false if a horizontal reduction was not matched (or not possible) 8983 /// or no vectorization of any binary operation feeding \a Root instruction was 8984 /// performed. 8985 static bool tryToVectorizeHorReductionOrInstOperands( 8986 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8987 TargetTransformInfo *TTI, 8988 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8989 if (!ShouldVectorizeHor) 8990 return false; 8991 8992 if (!Root) 8993 return false; 8994 8995 if (Root->getParent() != BB || isa<PHINode>(Root)) 8996 return false; 8997 // Start analysis starting from Root instruction. If horizontal reduction is 8998 // found, try to vectorize it. If it is not a horizontal reduction or 8999 // vectorization is not possible or not effective, and currently analyzed 9000 // instruction is a binary operation, try to vectorize the operands, using 9001 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9002 // the same procedure considering each operand as a possible root of the 9003 // horizontal reduction. 9004 // Interrupt the process if the Root instruction itself was vectorized or all 9005 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9006 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9007 // CmpInsts so we can skip extra attempts in 9008 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9009 std::queue<std::pair<Instruction *, unsigned>> Stack; 9010 Stack.emplace(Root, 0); 9011 SmallPtrSet<Value *, 8> VisitedInstrs; 9012 SmallVector<WeakTrackingVH> PostponedInsts; 9013 bool Res = false; 9014 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9015 Value *&B1) -> Value * { 9016 bool IsBinop = matchRdxBop(Inst, B0, B1); 9017 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9018 if (IsBinop || IsSelect) { 9019 HorizontalReduction HorRdx; 9020 if (HorRdx.matchAssociativeReduction(P, Inst)) 9021 return HorRdx.tryToReduce(R, TTI); 9022 } 9023 return nullptr; 9024 }; 9025 while (!Stack.empty()) { 9026 Instruction *Inst; 9027 unsigned Level; 9028 std::tie(Inst, Level) = Stack.front(); 9029 Stack.pop(); 9030 // Do not try to analyze instruction that has already been vectorized. 9031 // This may happen when we vectorize instruction operands on a previous 9032 // iteration while stack was populated before that happened. 9033 if (R.isDeleted(Inst)) 9034 continue; 9035 Value *B0 = nullptr, *B1 = nullptr; 9036 if (Value *V = TryToReduce(Inst, B0, B1)) { 9037 Res = true; 9038 // Set P to nullptr to avoid re-analysis of phi node in 9039 // matchAssociativeReduction function unless this is the root node. 9040 P = nullptr; 9041 if (auto *I = dyn_cast<Instruction>(V)) { 9042 // Try to find another reduction. 9043 Stack.emplace(I, Level); 9044 continue; 9045 } 9046 } else { 9047 bool IsBinop = B0 && B1; 9048 if (P && IsBinop) { 9049 Inst = dyn_cast<Instruction>(B0); 9050 if (Inst == P) 9051 Inst = dyn_cast<Instruction>(B1); 9052 if (!Inst) { 9053 // Set P to nullptr to avoid re-analysis of phi node in 9054 // matchAssociativeReduction function unless this is the root node. 9055 P = nullptr; 9056 continue; 9057 } 9058 } 9059 // Set P to nullptr to avoid re-analysis of phi node in 9060 // matchAssociativeReduction function unless this is the root node. 9061 P = nullptr; 9062 // Do not try to vectorize CmpInst operands, this is done separately. 9063 // Final attempt for binop args vectorization should happen after the loop 9064 // to try to find reductions. 9065 if (!isa<CmpInst>(Inst)) 9066 PostponedInsts.push_back(Inst); 9067 } 9068 9069 // Try to vectorize operands. 9070 // Continue analysis for the instruction from the same basic block only to 9071 // save compile time. 9072 if (++Level < RecursionMaxDepth) 9073 for (auto *Op : Inst->operand_values()) 9074 if (VisitedInstrs.insert(Op).second) 9075 if (auto *I = dyn_cast<Instruction>(Op)) 9076 // Do not try to vectorize CmpInst operands, this is done 9077 // separately. 9078 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9079 I->getParent() == BB) 9080 Stack.emplace(I, Level); 9081 } 9082 // Try to vectorized binops where reductions were not found. 9083 for (Value *V : PostponedInsts) 9084 if (auto *Inst = dyn_cast<Instruction>(V)) 9085 if (!R.isDeleted(Inst)) 9086 Res |= Vectorize(Inst, R); 9087 return Res; 9088 } 9089 9090 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9091 BasicBlock *BB, BoUpSLP &R, 9092 TargetTransformInfo *TTI) { 9093 auto *I = dyn_cast_or_null<Instruction>(V); 9094 if (!I) 9095 return false; 9096 9097 if (!isa<BinaryOperator>(I)) 9098 P = nullptr; 9099 // Try to match and vectorize a horizontal reduction. 9100 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9101 return tryToVectorize(I, R); 9102 }; 9103 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9104 ExtraVectorization); 9105 } 9106 9107 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9108 BasicBlock *BB, BoUpSLP &R) { 9109 const DataLayout &DL = BB->getModule()->getDataLayout(); 9110 if (!R.canMapToVector(IVI->getType(), DL)) 9111 return false; 9112 9113 SmallVector<Value *, 16> BuildVectorOpds; 9114 SmallVector<Value *, 16> BuildVectorInsts; 9115 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9116 return false; 9117 9118 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9119 // Aggregate value is unlikely to be processed in vector register, we need to 9120 // extract scalars into scalar registers, so NeedExtraction is set true. 9121 return tryToVectorizeList(BuildVectorOpds, R); 9122 } 9123 9124 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9125 BasicBlock *BB, BoUpSLP &R) { 9126 SmallVector<Value *, 16> BuildVectorInsts; 9127 SmallVector<Value *, 16> BuildVectorOpds; 9128 SmallVector<int> Mask; 9129 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9130 (llvm::all_of(BuildVectorOpds, 9131 [](Value *V) { return isa<ExtractElementInst>(V); }) && 9132 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9133 return false; 9134 9135 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9136 return tryToVectorizeList(BuildVectorInsts, R); 9137 } 9138 9139 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9140 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9141 bool AtTerminator) { 9142 bool OpsChanged = false; 9143 SmallVector<Instruction *, 4> PostponedCmps; 9144 for (auto *I : reverse(Instructions)) { 9145 if (R.isDeleted(I)) 9146 continue; 9147 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9148 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9149 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9150 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9151 else if (isa<CmpInst>(I)) 9152 PostponedCmps.push_back(I); 9153 } 9154 if (AtTerminator) { 9155 // Try to find reductions first. 9156 for (Instruction *I : PostponedCmps) { 9157 if (R.isDeleted(I)) 9158 continue; 9159 for (Value *Op : I->operands()) 9160 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9161 } 9162 // Try to vectorize operands as vector bundles. 9163 for (Instruction *I : PostponedCmps) { 9164 if (R.isDeleted(I)) 9165 continue; 9166 OpsChanged |= tryToVectorize(I, R); 9167 } 9168 Instructions.clear(); 9169 } else { 9170 // Insert in reverse order since the PostponedCmps vector was filled in 9171 // reverse order. 9172 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9173 } 9174 return OpsChanged; 9175 } 9176 9177 template <typename T> 9178 static bool 9179 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9180 function_ref<unsigned(T *)> Limit, 9181 function_ref<bool(T *, T *)> Comparator, 9182 function_ref<bool(T *, T *)> AreCompatible, 9183 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9184 bool LimitForRegisterSize) { 9185 bool Changed = false; 9186 // Sort by type, parent, operands. 9187 stable_sort(Incoming, Comparator); 9188 9189 // Try to vectorize elements base on their type. 9190 SmallVector<T *> Candidates; 9191 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9192 // Look for the next elements with the same type, parent and operand 9193 // kinds. 9194 auto *SameTypeIt = IncIt; 9195 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9196 ++SameTypeIt; 9197 9198 // Try to vectorize them. 9199 unsigned NumElts = (SameTypeIt - IncIt); 9200 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9201 << NumElts << ")\n"); 9202 // The vectorization is a 3-state attempt: 9203 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9204 // size of maximal register at first. 9205 // 2. Try to vectorize remaining instructions with the same type, if 9206 // possible. This may result in the better vectorization results rather than 9207 // if we try just to vectorize instructions with the same/alternate opcodes. 9208 // 3. Final attempt to try to vectorize all instructions with the 9209 // same/alternate ops only, this may result in some extra final 9210 // vectorization. 9211 if (NumElts > 1 && 9212 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9213 // Success start over because instructions might have been changed. 9214 Changed = true; 9215 } else if (NumElts < Limit(*IncIt) && 9216 (Candidates.empty() || 9217 Candidates.front()->getType() == (*IncIt)->getType())) { 9218 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9219 } 9220 // Final attempt to vectorize instructions with the same types. 9221 if (Candidates.size() > 1 && 9222 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9223 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9224 // Success start over because instructions might have been changed. 9225 Changed = true; 9226 } else if (LimitForRegisterSize) { 9227 // Try to vectorize using small vectors. 9228 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9229 It != End;) { 9230 auto *SameTypeIt = It; 9231 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9232 ++SameTypeIt; 9233 unsigned NumElts = (SameTypeIt - It); 9234 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9235 /*LimitForRegisterSize=*/false)) 9236 Changed = true; 9237 It = SameTypeIt; 9238 } 9239 } 9240 Candidates.clear(); 9241 } 9242 9243 // Start over at the next instruction of a different type (or the end). 9244 IncIt = SameTypeIt; 9245 } 9246 return Changed; 9247 } 9248 9249 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9250 bool Changed = false; 9251 SmallVector<Value *, 4> Incoming; 9252 SmallPtrSet<Value *, 16> VisitedInstrs; 9253 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9254 // node. Allows better to identify the chains that can be vectorized in the 9255 // better way. 9256 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9257 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9258 assert(isValidElementType(V1->getType()) && 9259 isValidElementType(V2->getType()) && 9260 "Expected vectorizable types only."); 9261 // It is fine to compare type IDs here, since we expect only vectorizable 9262 // types, like ints, floats and pointers, we don't care about other type. 9263 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9264 return true; 9265 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9266 return false; 9267 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9268 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9269 if (Opcodes1.size() < Opcodes2.size()) 9270 return true; 9271 if (Opcodes1.size() > Opcodes2.size()) 9272 return false; 9273 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9274 // Undefs are compatible with any other value. 9275 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9276 continue; 9277 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9278 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9279 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9280 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9281 if (!NodeI1) 9282 return NodeI2 != nullptr; 9283 if (!NodeI2) 9284 return false; 9285 assert((NodeI1 == NodeI2) == 9286 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9287 "Different nodes should have different DFS numbers"); 9288 if (NodeI1 != NodeI2) 9289 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9290 InstructionsState S = getSameOpcode({I1, I2}); 9291 if (S.getOpcode()) 9292 continue; 9293 return I1->getOpcode() < I2->getOpcode(); 9294 } 9295 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9296 continue; 9297 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9298 return true; 9299 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9300 return false; 9301 } 9302 return false; 9303 }; 9304 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9305 if (V1 == V2) 9306 return true; 9307 if (V1->getType() != V2->getType()) 9308 return false; 9309 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9310 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9311 if (Opcodes1.size() != Opcodes2.size()) 9312 return false; 9313 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9314 // Undefs are compatible with any other value. 9315 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9316 continue; 9317 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9318 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9319 if (I1->getParent() != I2->getParent()) 9320 return false; 9321 InstructionsState S = getSameOpcode({I1, I2}); 9322 if (S.getOpcode()) 9323 continue; 9324 return false; 9325 } 9326 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9327 continue; 9328 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9329 return false; 9330 } 9331 return true; 9332 }; 9333 auto Limit = [&R](Value *V) { 9334 unsigned EltSize = R.getVectorElementSize(V); 9335 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9336 }; 9337 9338 bool HaveVectorizedPhiNodes = false; 9339 do { 9340 // Collect the incoming values from the PHIs. 9341 Incoming.clear(); 9342 for (Instruction &I : *BB) { 9343 PHINode *P = dyn_cast<PHINode>(&I); 9344 if (!P) 9345 break; 9346 9347 // No need to analyze deleted, vectorized and non-vectorizable 9348 // instructions. 9349 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9350 isValidElementType(P->getType())) 9351 Incoming.push_back(P); 9352 } 9353 9354 // Find the corresponding non-phi nodes for better matching when trying to 9355 // build the tree. 9356 for (Value *V : Incoming) { 9357 SmallVectorImpl<Value *> &Opcodes = 9358 PHIToOpcodes.try_emplace(V).first->getSecond(); 9359 if (!Opcodes.empty()) 9360 continue; 9361 SmallVector<Value *, 4> Nodes(1, V); 9362 SmallPtrSet<Value *, 4> Visited; 9363 while (!Nodes.empty()) { 9364 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9365 if (!Visited.insert(PHI).second) 9366 continue; 9367 for (Value *V : PHI->incoming_values()) { 9368 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9369 Nodes.push_back(PHI1); 9370 continue; 9371 } 9372 Opcodes.emplace_back(V); 9373 } 9374 } 9375 } 9376 9377 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9378 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9379 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9380 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9381 }, 9382 /*LimitForRegisterSize=*/true); 9383 Changed |= HaveVectorizedPhiNodes; 9384 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9385 } while (HaveVectorizedPhiNodes); 9386 9387 VisitedInstrs.clear(); 9388 9389 SmallVector<Instruction *, 8> PostProcessInstructions; 9390 SmallDenseSet<Instruction *, 4> KeyNodes; 9391 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9392 // Skip instructions with scalable type. The num of elements is unknown at 9393 // compile-time for scalable type. 9394 if (isa<ScalableVectorType>(it->getType())) 9395 continue; 9396 9397 // Skip instructions marked for the deletion. 9398 if (R.isDeleted(&*it)) 9399 continue; 9400 // We may go through BB multiple times so skip the one we have checked. 9401 if (!VisitedInstrs.insert(&*it).second) { 9402 if (it->use_empty() && KeyNodes.contains(&*it) && 9403 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9404 it->isTerminator())) { 9405 // We would like to start over since some instructions are deleted 9406 // and the iterator may become invalid value. 9407 Changed = true; 9408 it = BB->begin(); 9409 e = BB->end(); 9410 } 9411 continue; 9412 } 9413 9414 if (isa<DbgInfoIntrinsic>(it)) 9415 continue; 9416 9417 // Try to vectorize reductions that use PHINodes. 9418 if (PHINode *P = dyn_cast<PHINode>(it)) { 9419 // Check that the PHI is a reduction PHI. 9420 if (P->getNumIncomingValues() == 2) { 9421 // Try to match and vectorize a horizontal reduction. 9422 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9423 TTI)) { 9424 Changed = true; 9425 it = BB->begin(); 9426 e = BB->end(); 9427 continue; 9428 } 9429 } 9430 // Try to vectorize the incoming values of the PHI, to catch reductions 9431 // that feed into PHIs. 9432 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9433 // Skip if the incoming block is the current BB for now. Also, bypass 9434 // unreachable IR for efficiency and to avoid crashing. 9435 // TODO: Collect the skipped incoming values and try to vectorize them 9436 // after processing BB. 9437 if (BB == P->getIncomingBlock(I) || 9438 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9439 continue; 9440 9441 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9442 P->getIncomingBlock(I), R, TTI); 9443 } 9444 continue; 9445 } 9446 9447 // Ran into an instruction without users, like terminator, or function call 9448 // with ignored return value, store. Ignore unused instructions (basing on 9449 // instruction type, except for CallInst and InvokeInst). 9450 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9451 isa<InvokeInst>(it))) { 9452 KeyNodes.insert(&*it); 9453 bool OpsChanged = false; 9454 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9455 for (auto *V : it->operand_values()) { 9456 // Try to match and vectorize a horizontal reduction. 9457 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9458 } 9459 } 9460 // Start vectorization of post-process list of instructions from the 9461 // top-tree instructions to try to vectorize as many instructions as 9462 // possible. 9463 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9464 it->isTerminator()); 9465 if (OpsChanged) { 9466 // We would like to start over since some instructions are deleted 9467 // and the iterator may become invalid value. 9468 Changed = true; 9469 it = BB->begin(); 9470 e = BB->end(); 9471 continue; 9472 } 9473 } 9474 9475 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9476 isa<InsertValueInst>(it)) 9477 PostProcessInstructions.push_back(&*it); 9478 } 9479 9480 return Changed; 9481 } 9482 9483 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9484 auto Changed = false; 9485 for (auto &Entry : GEPs) { 9486 // If the getelementptr list has fewer than two elements, there's nothing 9487 // to do. 9488 if (Entry.second.size() < 2) 9489 continue; 9490 9491 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9492 << Entry.second.size() << ".\n"); 9493 9494 // Process the GEP list in chunks suitable for the target's supported 9495 // vector size. If a vector register can't hold 1 element, we are done. We 9496 // are trying to vectorize the index computations, so the maximum number of 9497 // elements is based on the size of the index expression, rather than the 9498 // size of the GEP itself (the target's pointer size). 9499 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9500 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9501 if (MaxVecRegSize < EltSize) 9502 continue; 9503 9504 unsigned MaxElts = MaxVecRegSize / EltSize; 9505 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9506 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9507 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9508 9509 // Initialize a set a candidate getelementptrs. Note that we use a 9510 // SetVector here to preserve program order. If the index computations 9511 // are vectorizable and begin with loads, we want to minimize the chance 9512 // of having to reorder them later. 9513 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9514 9515 // Some of the candidates may have already been vectorized after we 9516 // initially collected them. If so, they are marked as deleted, so remove 9517 // them from the set of candidates. 9518 Candidates.remove_if( 9519 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9520 9521 // Remove from the set of candidates all pairs of getelementptrs with 9522 // constant differences. Such getelementptrs are likely not good 9523 // candidates for vectorization in a bottom-up phase since one can be 9524 // computed from the other. We also ensure all candidate getelementptr 9525 // indices are unique. 9526 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9527 auto *GEPI = GEPList[I]; 9528 if (!Candidates.count(GEPI)) 9529 continue; 9530 auto *SCEVI = SE->getSCEV(GEPList[I]); 9531 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9532 auto *GEPJ = GEPList[J]; 9533 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9534 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9535 Candidates.remove(GEPI); 9536 Candidates.remove(GEPJ); 9537 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9538 Candidates.remove(GEPJ); 9539 } 9540 } 9541 } 9542 9543 // We break out of the above computation as soon as we know there are 9544 // fewer than two candidates remaining. 9545 if (Candidates.size() < 2) 9546 continue; 9547 9548 // Add the single, non-constant index of each candidate to the bundle. We 9549 // ensured the indices met these constraints when we originally collected 9550 // the getelementptrs. 9551 SmallVector<Value *, 16> Bundle(Candidates.size()); 9552 auto BundleIndex = 0u; 9553 for (auto *V : Candidates) { 9554 auto *GEP = cast<GetElementPtrInst>(V); 9555 auto *GEPIdx = GEP->idx_begin()->get(); 9556 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9557 Bundle[BundleIndex++] = GEPIdx; 9558 } 9559 9560 // Try and vectorize the indices. We are currently only interested in 9561 // gather-like cases of the form: 9562 // 9563 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9564 // 9565 // where the loads of "a", the loads of "b", and the subtractions can be 9566 // performed in parallel. It's likely that detecting this pattern in a 9567 // bottom-up phase will be simpler and less costly than building a 9568 // full-blown top-down phase beginning at the consecutive loads. 9569 Changed |= tryToVectorizeList(Bundle, R); 9570 } 9571 } 9572 return Changed; 9573 } 9574 9575 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9576 bool Changed = false; 9577 // Sort by type, base pointers and values operand. Value operands must be 9578 // compatible (have the same opcode, same parent), otherwise it is 9579 // definitely not profitable to try to vectorize them. 9580 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9581 if (V->getPointerOperandType()->getTypeID() < 9582 V2->getPointerOperandType()->getTypeID()) 9583 return true; 9584 if (V->getPointerOperandType()->getTypeID() > 9585 V2->getPointerOperandType()->getTypeID()) 9586 return false; 9587 // UndefValues are compatible with all other values. 9588 if (isa<UndefValue>(V->getValueOperand()) || 9589 isa<UndefValue>(V2->getValueOperand())) 9590 return false; 9591 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9592 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9593 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9594 DT->getNode(I1->getParent()); 9595 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9596 DT->getNode(I2->getParent()); 9597 assert(NodeI1 && "Should only process reachable instructions"); 9598 assert(NodeI1 && "Should only process reachable instructions"); 9599 assert((NodeI1 == NodeI2) == 9600 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9601 "Different nodes should have different DFS numbers"); 9602 if (NodeI1 != NodeI2) 9603 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9604 InstructionsState S = getSameOpcode({I1, I2}); 9605 if (S.getOpcode()) 9606 return false; 9607 return I1->getOpcode() < I2->getOpcode(); 9608 } 9609 if (isa<Constant>(V->getValueOperand()) && 9610 isa<Constant>(V2->getValueOperand())) 9611 return false; 9612 return V->getValueOperand()->getValueID() < 9613 V2->getValueOperand()->getValueID(); 9614 }; 9615 9616 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9617 if (V1 == V2) 9618 return true; 9619 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9620 return false; 9621 // Undefs are compatible with any other value. 9622 if (isa<UndefValue>(V1->getValueOperand()) || 9623 isa<UndefValue>(V2->getValueOperand())) 9624 return true; 9625 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9626 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9627 if (I1->getParent() != I2->getParent()) 9628 return false; 9629 InstructionsState S = getSameOpcode({I1, I2}); 9630 return S.getOpcode() > 0; 9631 } 9632 if (isa<Constant>(V1->getValueOperand()) && 9633 isa<Constant>(V2->getValueOperand())) 9634 return true; 9635 return V1->getValueOperand()->getValueID() == 9636 V2->getValueOperand()->getValueID(); 9637 }; 9638 auto Limit = [&R, this](StoreInst *SI) { 9639 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9640 return R.getMinVF(EltSize); 9641 }; 9642 9643 // Attempt to sort and vectorize each of the store-groups. 9644 for (auto &Pair : Stores) { 9645 if (Pair.second.size() < 2) 9646 continue; 9647 9648 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9649 << Pair.second.size() << ".\n"); 9650 9651 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9652 continue; 9653 9654 Changed |= tryToVectorizeSequence<StoreInst>( 9655 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9656 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9657 return vectorizeStores(Candidates, R); 9658 }, 9659 /*LimitForRegisterSize=*/false); 9660 } 9661 return Changed; 9662 } 9663 9664 char SLPVectorizer::ID = 0; 9665 9666 static const char lv_name[] = "SLP Vectorizer"; 9667 9668 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9669 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9670 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9671 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9672 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9673 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9674 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9675 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9676 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9677 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9678 9679 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9680