1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
105 
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
108 
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 
111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112                                   cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130     cl::desc("Attempt to vectorize for this register size in bits"));
131 
132 static cl::opt<unsigned>
133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
134     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
135 
136 static cl::opt<int>
137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
138     cl::desc("Maximum depth of the lookup for consecutive stores."));
139 
140 /// Limits the size of scheduling regions in a block.
141 /// It avoid long compile times for _very_ large blocks where vector
142 /// instructions are spread over a wide range.
143 /// This limit is way higher than needed by real-world functions.
144 static cl::opt<int>
145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
146     cl::desc("Limit the size of the SLP scheduling region per block"));
147 
148 static cl::opt<int> MinVectorRegSizeOption(
149     "slp-min-reg-size", cl::init(128), cl::Hidden,
150     cl::desc("Attempt to vectorize for this register size in bits"));
151 
152 static cl::opt<unsigned> RecursionMaxDepth(
153     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
154     cl::desc("Limit the recursion depth when building a vectorizable tree"));
155 
156 static cl::opt<unsigned> MinTreeSize(
157     "slp-min-tree-size", cl::init(3), cl::Hidden,
158     cl::desc("Only vectorize small trees if they are fully vectorizable"));
159 
160 // The maximum depth that the look-ahead score heuristic will explore.
161 // The higher this value, the higher the compilation time overhead.
162 static cl::opt<int> LookAheadMaxDepth(
163     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
164     cl::desc("The maximum look-ahead depth for operand reordering scores"));
165 
166 // The Look-ahead heuristic goes through the users of the bundle to calculate
167 // the users cost in getExternalUsesCost(). To avoid compilation time increase
168 // we limit the number of users visited to this value.
169 static cl::opt<unsigned> LookAheadUsersBudget(
170     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
171     cl::desc("The maximum number of users to visit while visiting the "
172              "predecessors. This prevents compilation time increase."));
173 
174 static cl::opt<bool>
175     ViewSLPTree("view-slp-tree", cl::Hidden,
176                 cl::desc("Display the SLP trees with Graphviz"));
177 
178 // Limit the number of alias checks. The limit is chosen so that
179 // it has no negative effect on the llvm benchmarks.
180 static const unsigned AliasedCheckLimit = 10;
181 
182 // Another limit for the alias checks: The maximum distance between load/store
183 // instructions where alias checks are done.
184 // This limit is useful for very large basic blocks.
185 static const unsigned MaxMemDepDistance = 160;
186 
187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188 /// regions to be handled.
189 static const int MinScheduleRegionSize = 16;
190 
191 /// Predicate for the element types that the SLP vectorizer supports.
192 ///
193 /// The most important thing to filter here are types which are invalid in LLVM
194 /// vectors. We also filter target specific types which have absolutely no
195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196 /// avoids spending time checking the cost model and realizing that they will
197 /// be inevitably scalarized.
198 static bool isValidElementType(Type *Ty) {
199   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
200          !Ty->isPPC_FP128Ty();
201 }
202 
203 /// \returns true if all of the instructions in \p VL are in the same block or
204 /// false otherwise.
205 static bool allSameBlock(ArrayRef<Value *> VL) {
206   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
207   if (!I0)
208     return false;
209   BasicBlock *BB = I0->getParent();
210   for (int I = 1, E = VL.size(); I < E; I++) {
211     auto *II = dyn_cast<Instruction>(VL[I]);
212     if (!II)
213       return false;
214 
215     if (BB != II->getParent())
216       return false;
217   }
218   return true;
219 }
220 
221 /// \returns True if the value is a constant (but not globals/constant
222 /// expressions).
223 static bool isConstant(Value *V) {
224   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
225 }
226 
227 /// \returns True if all of the values in \p VL are constants (but not
228 /// globals/constant expressions).
229 static bool allConstant(ArrayRef<Value *> VL) {
230   // Constant expressions and globals can't be vectorized like normal integer/FP
231   // constants.
232   return all_of(VL, isConstant);
233 }
234 
235 /// \returns True if all of the values in \p VL are identical.
236 static bool isSplat(ArrayRef<Value *> VL) {
237   for (unsigned i = 1, e = VL.size(); i < e; ++i)
238     if (VL[i] != VL[0])
239       return false;
240   return true;
241 }
242 
243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244 static bool isCommutative(Instruction *I) {
245   if (auto *Cmp = dyn_cast<CmpInst>(I))
246     return Cmp->isCommutative();
247   if (auto *BO = dyn_cast<BinaryOperator>(I))
248     return BO->isCommutative();
249   // TODO: This should check for generic Instruction::isCommutative(), but
250   //       we need to confirm that the caller code correctly handles Intrinsics
251   //       for example (does not have 2 operands).
252   return false;
253 }
254 
255 /// Checks if the vector of instructions can be represented as a shuffle, like:
256 /// %x0 = extractelement <4 x i8> %x, i32 0
257 /// %x3 = extractelement <4 x i8> %x, i32 3
258 /// %y1 = extractelement <4 x i8> %y, i32 1
259 /// %y2 = extractelement <4 x i8> %y, i32 2
260 /// %x0x0 = mul i8 %x0, %x0
261 /// %x3x3 = mul i8 %x3, %x3
262 /// %y1y1 = mul i8 %y1, %y1
263 /// %y2y2 = mul i8 %y2, %y2
264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268 /// ret <4 x i8> %ins4
269 /// can be transformed into:
270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
271 ///                                                         i32 6>
272 /// %2 = mul <4 x i8> %1, %1
273 /// ret <4 x i8> %2
274 /// We convert this initially to something like:
275 /// %x0 = extractelement <4 x i8> %x, i32 0
276 /// %x3 = extractelement <4 x i8> %x, i32 3
277 /// %y1 = extractelement <4 x i8> %y, i32 1
278 /// %y2 = extractelement <4 x i8> %y, i32 2
279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283 /// %5 = mul <4 x i8> %4, %4
284 /// %6 = extractelement <4 x i8> %5, i32 0
285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286 /// %7 = extractelement <4 x i8> %5, i32 1
287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288 /// %8 = extractelement <4 x i8> %5, i32 2
289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290 /// %9 = extractelement <4 x i8> %5, i32 3
291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292 /// ret <4 x i8> %ins4
293 /// InstCombiner transforms this into a shuffle and vector mul
294 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
295 /// TODO: Can we split off and reuse the shuffle mask detection from
296 /// TargetTransformInfo::getInstructionThroughput?
297 static Optional<TargetTransformInfo::ShuffleKind>
298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
299   auto *EI0 = cast<ExtractElementInst>(VL[0]);
300   unsigned Size =
301       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
302   Value *Vec1 = nullptr;
303   Value *Vec2 = nullptr;
304   enum ShuffleMode { Unknown, Select, Permute };
305   ShuffleMode CommonShuffleMode = Unknown;
306   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
307     auto *EI = cast<ExtractElementInst>(VL[I]);
308     auto *Vec = EI->getVectorOperand();
309     // All vector operands must have the same number of vector elements.
310     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
311       return None;
312     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
313     if (!Idx)
314       return None;
315     // Undefined behavior if Idx is negative or >= Size.
316     if (Idx->getValue().uge(Size)) {
317       Mask.push_back(UndefMaskElem);
318       continue;
319     }
320     unsigned IntIdx = Idx->getValue().getZExtValue();
321     Mask.push_back(IntIdx);
322     // We can extractelement from undef or poison vector.
323     if (isa<UndefValue>(Vec))
324       continue;
325     // For correct shuffling we have to have at most 2 different vector operands
326     // in all extractelement instructions.
327     if (!Vec1 || Vec1 == Vec)
328       Vec1 = Vec;
329     else if (!Vec2 || Vec2 == Vec)
330       Vec2 = Vec;
331     else
332       return None;
333     if (CommonShuffleMode == Permute)
334       continue;
335     // If the extract index is not the same as the operation number, it is a
336     // permutation.
337     if (IntIdx != I) {
338       CommonShuffleMode = Permute;
339       continue;
340     }
341     CommonShuffleMode = Select;
342   }
343   // If we're not crossing lanes in different vectors, consider it as blending.
344   if (CommonShuffleMode == Select && Vec2)
345     return TargetTransformInfo::SK_Select;
346   // If Vec2 was never used, we have a permutation of a single vector, otherwise
347   // we have permutation of 2 vectors.
348   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
349               : TargetTransformInfo::SK_PermuteSingleSrc;
350 }
351 
352 namespace {
353 
354 /// Main data required for vectorization of instructions.
355 struct InstructionsState {
356   /// The very first instruction in the list with the main opcode.
357   Value *OpValue = nullptr;
358 
359   /// The main/alternate instruction.
360   Instruction *MainOp = nullptr;
361   Instruction *AltOp = nullptr;
362 
363   /// The main/alternate opcodes for the list of instructions.
364   unsigned getOpcode() const {
365     return MainOp ? MainOp->getOpcode() : 0;
366   }
367 
368   unsigned getAltOpcode() const {
369     return AltOp ? AltOp->getOpcode() : 0;
370   }
371 
372   /// Some of the instructions in the list have alternate opcodes.
373   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
374 
375   bool isOpcodeOrAlt(Instruction *I) const {
376     unsigned CheckedOpcode = I->getOpcode();
377     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
378   }
379 
380   InstructionsState() = delete;
381   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
382       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
383 };
384 
385 } // end anonymous namespace
386 
387 /// Chooses the correct key for scheduling data. If \p Op has the same (or
388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
389 /// OpValue.
390 static Value *isOneOf(const InstructionsState &S, Value *Op) {
391   auto *I = dyn_cast<Instruction>(Op);
392   if (I && S.isOpcodeOrAlt(I))
393     return Op;
394   return S.OpValue;
395 }
396 
397 /// \returns true if \p Opcode is allowed as part of of the main/alternate
398 /// instruction for SLP vectorization.
399 ///
400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
401 /// "shuffled out" lane would result in division by zero.
402 static bool isValidForAlternation(unsigned Opcode) {
403   if (Instruction::isIntDivRem(Opcode))
404     return false;
405 
406   return true;
407 }
408 
409 /// \returns analysis of the Instructions in \p VL described in
410 /// InstructionsState, the Opcode that we suppose the whole list
411 /// could be vectorized even if its structure is diverse.
412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
413                                        unsigned BaseIndex = 0) {
414   // Make sure these are all Instructions.
415   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
416     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
417 
418   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
419   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
420   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
421   unsigned AltOpcode = Opcode;
422   unsigned AltIndex = BaseIndex;
423 
424   // Check for one alternate opcode from another BinaryOperator.
425   // TODO - generalize to support all operators (types, calls etc.).
426   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
427     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
428     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
429       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
430         continue;
431       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
432           isValidForAlternation(Opcode)) {
433         AltOpcode = InstOpcode;
434         AltIndex = Cnt;
435         continue;
436       }
437     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
438       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
439       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
440       if (Ty0 == Ty1) {
441         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
442           continue;
443         if (Opcode == AltOpcode) {
444           assert(isValidForAlternation(Opcode) &&
445                  isValidForAlternation(InstOpcode) &&
446                  "Cast isn't safe for alternation, logic needs to be updated!");
447           AltOpcode = InstOpcode;
448           AltIndex = Cnt;
449           continue;
450         }
451       }
452     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
453       continue;
454     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
455   }
456 
457   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
458                            cast<Instruction>(VL[AltIndex]));
459 }
460 
461 /// \returns true if all of the values in \p VL have the same type or false
462 /// otherwise.
463 static bool allSameType(ArrayRef<Value *> VL) {
464   Type *Ty = VL[0]->getType();
465   for (int i = 1, e = VL.size(); i < e; i++)
466     if (VL[i]->getType() != Ty)
467       return false;
468 
469   return true;
470 }
471 
472 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
473 static Optional<unsigned> getExtractIndex(Instruction *E) {
474   unsigned Opcode = E->getOpcode();
475   assert((Opcode == Instruction::ExtractElement ||
476           Opcode == Instruction::ExtractValue) &&
477          "Expected extractelement or extractvalue instruction.");
478   if (Opcode == Instruction::ExtractElement) {
479     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
480     if (!CI)
481       return None;
482     return CI->getZExtValue();
483   }
484   ExtractValueInst *EI = cast<ExtractValueInst>(E);
485   if (EI->getNumIndices() != 1)
486     return None;
487   return *EI->idx_begin();
488 }
489 
490 /// \returns True if in-tree use also needs extract. This refers to
491 /// possible scalar operand in vectorized instruction.
492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
493                                     TargetLibraryInfo *TLI) {
494   unsigned Opcode = UserInst->getOpcode();
495   switch (Opcode) {
496   case Instruction::Load: {
497     LoadInst *LI = cast<LoadInst>(UserInst);
498     return (LI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Store: {
501     StoreInst *SI = cast<StoreInst>(UserInst);
502     return (SI->getPointerOperand() == Scalar);
503   }
504   case Instruction::Call: {
505     CallInst *CI = cast<CallInst>(UserInst);
506     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
507     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
508       if (hasVectorInstrinsicScalarOpd(ID, i))
509         return (CI->getArgOperand(i) == Scalar);
510     }
511     LLVM_FALLTHROUGH;
512   }
513   default:
514     return false;
515   }
516 }
517 
518 /// \returns the AA location that is being access by the instruction.
519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
520   if (StoreInst *SI = dyn_cast<StoreInst>(I))
521     return MemoryLocation::get(SI);
522   if (LoadInst *LI = dyn_cast<LoadInst>(I))
523     return MemoryLocation::get(LI);
524   return MemoryLocation();
525 }
526 
527 /// \returns True if the instruction is not a volatile or atomic load/store.
528 static bool isSimple(Instruction *I) {
529   if (LoadInst *LI = dyn_cast<LoadInst>(I))
530     return LI->isSimple();
531   if (StoreInst *SI = dyn_cast<StoreInst>(I))
532     return SI->isSimple();
533   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
534     return !MI->isVolatile();
535   return true;
536 }
537 
538 namespace llvm {
539 
540 static void inversePermutation(ArrayRef<unsigned> Indices,
541                                SmallVectorImpl<int> &Mask) {
542   Mask.clear();
543   const unsigned E = Indices.size();
544   Mask.resize(E, E + 1);
545   for (unsigned I = 0; I < E; ++I)
546     Mask[Indices[I]] = I;
547 }
548 
549 /// \returns inserting index of InsertElement or InsertValue instruction,
550 /// using Offset as base offset for index.
551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
552   int Index = Offset;
553   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
554     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
555       auto *VT = cast<FixedVectorType>(IE->getType());
556       if (CI->getValue().uge(VT->getNumElements()))
557         return UndefMaskElem;
558       Index *= VT->getNumElements();
559       Index += CI->getZExtValue();
560       return Index;
561     }
562     if (isa<UndefValue>(IE->getOperand(2)))
563       return UndefMaskElem;
564     return None;
565   }
566 
567   auto *IV = cast<InsertValueInst>(InsertInst);
568   Type *CurrentType = IV->getType();
569   for (unsigned I : IV->indices()) {
570     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
571       Index *= ST->getNumElements();
572       CurrentType = ST->getElementType(I);
573     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
574       Index *= AT->getNumElements();
575       CurrentType = AT->getElementType();
576     } else {
577       return None;
578     }
579     Index += I;
580   }
581   return Index;
582 }
583 
584 namespace slpvectorizer {
585 
586 /// Bottom Up SLP Vectorizer.
587 class BoUpSLP {
588   struct TreeEntry;
589   struct ScheduleData;
590 
591 public:
592   using ValueList = SmallVector<Value *, 8>;
593   using InstrList = SmallVector<Instruction *, 16>;
594   using ValueSet = SmallPtrSet<Value *, 16>;
595   using StoreList = SmallVector<StoreInst *, 8>;
596   using ExtraValueToDebugLocsMap =
597       MapVector<Value *, SmallVector<Instruction *, 2>>;
598   using OrdersType = SmallVector<unsigned, 4>;
599 
600   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
601           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
602           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
603           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
604       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
605         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
606     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
607     // Use the vector register size specified by the target unless overridden
608     // by a command-line option.
609     // TODO: It would be better to limit the vectorization factor based on
610     //       data type rather than just register size. For example, x86 AVX has
611     //       256-bit registers, but it does not support integer operations
612     //       at that width (that requires AVX2).
613     if (MaxVectorRegSizeOption.getNumOccurrences())
614       MaxVecRegSize = MaxVectorRegSizeOption;
615     else
616       MaxVecRegSize =
617           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
618               .getFixedSize();
619 
620     if (MinVectorRegSizeOption.getNumOccurrences())
621       MinVecRegSize = MinVectorRegSizeOption;
622     else
623       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
624   }
625 
626   /// Vectorize the tree that starts with the elements in \p VL.
627   /// Returns the vectorized root.
628   Value *vectorizeTree();
629 
630   /// Vectorize the tree but with the list of externally used values \p
631   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632   /// generated extractvalue instructions.
633   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
634 
635   /// \returns the cost incurred by unwanted spills and fills, caused by
636   /// holding live values over call sites.
637   InstructionCost getSpillCost() const;
638 
639   /// \returns the vectorization cost of the subtree that starts at \p VL.
640   /// A negative number means that this is profitable.
641   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
642 
643   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645   void buildTree(ArrayRef<Value *> Roots,
646                  ArrayRef<Value *> UserIgnoreLst = None);
647 
648   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650   /// into account (and updating it, if required) list of externally used
651   /// values stored in \p ExternallyUsedValues.
652   void buildTree(ArrayRef<Value *> Roots,
653                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
654                  ArrayRef<Value *> UserIgnoreLst = None);
655 
656   /// Clear the internal data structures that are created by 'buildTree'.
657   void deleteTree() {
658     VectorizableTree.clear();
659     ScalarToTreeEntry.clear();
660     MustGather.clear();
661     ExternalUses.clear();
662     NumOpsWantToKeepOrder.clear();
663     NumOpsWantToKeepOriginalOrder = 0;
664     for (auto &Iter : BlocksSchedules) {
665       BlockScheduling *BS = Iter.second.get();
666       BS->clear();
667     }
668     MinBWs.clear();
669     InstrElementSize.clear();
670   }
671 
672   unsigned getTreeSize() const { return VectorizableTree.size(); }
673 
674   /// Perform LICM and CSE on the newly generated gather sequences.
675   void optimizeGatherSequence();
676 
677   /// \returns The best order of instructions for vectorization.
678   Optional<ArrayRef<unsigned>> bestOrder() const {
679     assert(llvm::all_of(
680                NumOpsWantToKeepOrder,
681                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
682                  return D.getFirst().size() ==
683                         VectorizableTree[0]->Scalars.size();
684                }) &&
685            "All orders must have the same size as number of instructions in "
686            "tree node.");
687     auto I = std::max_element(
688         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
689         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
690            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
691           return D1.second < D2.second;
692         });
693     if (I == NumOpsWantToKeepOrder.end() ||
694         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
695       return None;
696 
697     return makeArrayRef(I->getFirst());
698   }
699 
700   /// Builds the correct order for root instructions.
701   /// If some leaves have the same instructions to be vectorized, we may
702   /// incorrectly evaluate the best order for the root node (it is built for the
703   /// vector of instructions without repeated instructions and, thus, has less
704   /// elements than the root node). This function builds the correct order for
705   /// the root node.
706   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709   /// be reordered, the best order will be \<1, 0\>. We need to extend this
710   /// order for the root node. For the root node this order should look like
711   /// \<3, 0, 1, 2\>. This function extends the order for the reused
712   /// instructions.
713   void findRootOrder(OrdersType &Order) {
714     // If the leaf has the same number of instructions to vectorize as the root
715     // - order must be set already.
716     unsigned RootSize = VectorizableTree[0]->Scalars.size();
717     if (Order.size() == RootSize)
718       return;
719     SmallVector<unsigned, 4> RealOrder(Order.size());
720     std::swap(Order, RealOrder);
721     SmallVector<int, 4> Mask;
722     inversePermutation(RealOrder, Mask);
723     Order.assign(Mask.begin(), Mask.end());
724     // The leaf has less number of instructions - need to find the true order of
725     // the root.
726     // Scan the nodes starting from the leaf back to the root.
727     const TreeEntry *PNode = VectorizableTree.back().get();
728     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
729     SmallPtrSet<const TreeEntry *, 4> Visited;
730     while (!Nodes.empty() && Order.size() != RootSize) {
731       const TreeEntry *PNode = Nodes.pop_back_val();
732       if (!Visited.insert(PNode).second)
733         continue;
734       const TreeEntry &Node = *PNode;
735       for (const EdgeInfo &EI : Node.UserTreeIndices)
736         if (EI.UserTE)
737           Nodes.push_back(EI.UserTE);
738       if (Node.ReuseShuffleIndices.empty())
739         continue;
740       // Build the order for the parent node.
741       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
742       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
743       // The algorithm of the order extension is:
744       // 1. Calculate the number of the same instructions for the order.
745       // 2. Calculate the index of the new order: total number of instructions
746       // with order less than the order of the current instruction + reuse
747       // number of the current instruction.
748       // 3. The new order is just the index of the instruction in the original
749       // vector of the instructions.
750       for (unsigned I : Node.ReuseShuffleIndices)
751         ++OrderCounter[Order[I]];
752       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
753       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
754         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
755         unsigned OrderIdx = Order[ReusedIdx];
756         unsigned NewIdx = 0;
757         for (unsigned J = 0; J < OrderIdx; ++J)
758           NewIdx += OrderCounter[J];
759         NewIdx += CurrentCounter[OrderIdx];
760         ++CurrentCounter[OrderIdx];
761         assert(NewOrder[NewIdx] == RootSize &&
762                "The order index should not be written already.");
763         NewOrder[NewIdx] = I;
764       }
765       std::swap(Order, NewOrder);
766     }
767     assert(Order.size() == RootSize &&
768            "Root node is expected or the size of the order must be the same as "
769            "the number of elements in the root node.");
770     assert(llvm::all_of(Order,
771                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
772            "All indices must be initialized");
773   }
774 
775   /// \return The vector element size in bits to use when vectorizing the
776   /// expression tree ending at \p V. If V is a store, the size is the width of
777   /// the stored value. Otherwise, the size is the width of the largest loaded
778   /// value reaching V. This method is used by the vectorizer to calculate
779   /// vectorization factors.
780   unsigned getVectorElementSize(Value *V);
781 
782   /// Compute the minimum type sizes required to represent the entries in a
783   /// vectorizable tree.
784   void computeMinimumValueSizes();
785 
786   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787   unsigned getMaxVecRegSize() const {
788     return MaxVecRegSize;
789   }
790 
791   // \returns minimum vector register size as set by cl::opt.
792   unsigned getMinVecRegSize() const {
793     return MinVecRegSize;
794   }
795 
796   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
797     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
798       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
799     return MaxVF ? MaxVF : UINT_MAX;
800   }
801 
802   /// Check if homogeneous aggregate is isomorphic to some VectorType.
803   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
806   ///
807   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
809 
810   /// \returns True if the VectorizableTree is both tiny and not fully
811   /// vectorizable. We do not vectorize such trees.
812   bool isTreeTinyAndNotFullyVectorizable() const;
813 
814   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815   /// can be load combined in the backend. Load combining may not be allowed in
816   /// the IR optimizer, so we do not want to alter the pattern. For example,
817   /// partially transforming a scalar bswap() pattern into vector code is
818   /// effectively impossible for the backend to undo.
819   /// TODO: If load combining is allowed in the IR optimizer, this analysis
820   ///       may not be necessary.
821   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
822 
823   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824   /// can be load combined in the backend. Load combining may not be allowed in
825   /// the IR optimizer, so we do not want to alter the pattern. For example,
826   /// partially transforming a scalar bswap() pattern into vector code is
827   /// effectively impossible for the backend to undo.
828   /// TODO: If load combining is allowed in the IR optimizer, this analysis
829   ///       may not be necessary.
830   bool isLoadCombineCandidate() const;
831 
832   OptimizationRemarkEmitter *getORE() { return ORE; }
833 
834   /// This structure holds any data we need about the edges being traversed
835   /// during buildTree_rec(). We keep track of:
836   /// (i) the user TreeEntry index, and
837   /// (ii) the index of the edge.
838   struct EdgeInfo {
839     EdgeInfo() = default;
840     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
841         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
842     /// The user TreeEntry.
843     TreeEntry *UserTE = nullptr;
844     /// The operand index of the use.
845     unsigned EdgeIdx = UINT_MAX;
846 #ifndef NDEBUG
847     friend inline raw_ostream &operator<<(raw_ostream &OS,
848                                           const BoUpSLP::EdgeInfo &EI) {
849       EI.dump(OS);
850       return OS;
851     }
852     /// Debug print.
853     void dump(raw_ostream &OS) const {
854       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
855          << " EdgeIdx:" << EdgeIdx << "}";
856     }
857     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
858 #endif
859   };
860 
861   /// A helper data structure to hold the operands of a vector of instructions.
862   /// This supports a fixed vector length for all operand vectors.
863   class VLOperands {
864     /// For each operand we need (i) the value, and (ii) the opcode that it
865     /// would be attached to if the expression was in a left-linearized form.
866     /// This is required to avoid illegal operand reordering.
867     /// For example:
868     /// \verbatim
869     ///                         0 Op1
870     ///                         |/
871     /// Op1 Op2   Linearized    + Op2
872     ///   \ /     ---------->   |/
873     ///    -                    -
874     ///
875     /// Op1 - Op2            (0 + Op1) - Op2
876     /// \endverbatim
877     ///
878     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
879     ///
880     /// Another way to think of this is to track all the operations across the
881     /// path from the operand all the way to the root of the tree and to
882     /// calculate the operation that corresponds to this path. For example, the
883     /// path from Op2 to the root crosses the RHS of the '-', therefore the
884     /// corresponding operation is a '-' (which matches the one in the
885     /// linearized tree, as shown above).
886     ///
887     /// For lack of a better term, we refer to this operation as Accumulated
888     /// Path Operation (APO).
889     struct OperandData {
890       OperandData() = default;
891       OperandData(Value *V, bool APO, bool IsUsed)
892           : V(V), APO(APO), IsUsed(IsUsed) {}
893       /// The operand value.
894       Value *V = nullptr;
895       /// TreeEntries only allow a single opcode, or an alternate sequence of
896       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
899       /// (e.g., Add/Mul)
900       bool APO = false;
901       /// Helper data for the reordering function.
902       bool IsUsed = false;
903     };
904 
905     /// During operand reordering, we are trying to select the operand at lane
906     /// that matches best with the operand at the neighboring lane. Our
907     /// selection is based on the type of value we are looking for. For example,
908     /// if the neighboring lane has a load, we need to look for a load that is
909     /// accessing a consecutive address. These strategies are summarized in the
910     /// 'ReorderingMode' enumerator.
911     enum class ReorderingMode {
912       Load,     ///< Matching loads to consecutive memory addresses
913       Opcode,   ///< Matching instructions based on opcode (same or alternate)
914       Constant, ///< Matching constants
915       Splat,    ///< Matching the same instruction multiple times (broadcast)
916       Failed,   ///< We failed to create a vectorizable group
917     };
918 
919     using OperandDataVec = SmallVector<OperandData, 2>;
920 
921     /// A vector of operand vectors.
922     SmallVector<OperandDataVec, 4> OpsVec;
923 
924     const DataLayout &DL;
925     ScalarEvolution &SE;
926     const BoUpSLP &R;
927 
928     /// \returns the operand data at \p OpIdx and \p Lane.
929     OperandData &getData(unsigned OpIdx, unsigned Lane) {
930       return OpsVec[OpIdx][Lane];
931     }
932 
933     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
935       return OpsVec[OpIdx][Lane];
936     }
937 
938     /// Clears the used flag for all entries.
939     void clearUsed() {
940       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
941            OpIdx != NumOperands; ++OpIdx)
942         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
943              ++Lane)
944           OpsVec[OpIdx][Lane].IsUsed = false;
945     }
946 
947     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
949       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
950     }
951 
952     // The hard-coded scores listed here are not very important. When computing
953     // the scores of matching one sub-tree with another, we are basically
954     // counting the number of values that are matching. So even if all scores
955     // are set to 1, we would still get a decent matching result.
956     // However, sometimes we have to break ties. For example we may have to
957     // choose between matching loads vs matching opcodes. This is what these
958     // scores are helping us with: they provide the order of preference.
959 
960     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961     static const int ScoreConsecutiveLoads = 3;
962     /// ExtractElementInst from same vector and consecutive indexes.
963     static const int ScoreConsecutiveExtracts = 3;
964     /// Constants.
965     static const int ScoreConstants = 2;
966     /// Instructions with the same opcode.
967     static const int ScoreSameOpcode = 2;
968     /// Instructions with alt opcodes (e.g, add + sub).
969     static const int ScoreAltOpcodes = 1;
970     /// Identical instructions (a.k.a. splat or broadcast).
971     static const int ScoreSplat = 1;
972     /// Matching with an undef is preferable to failing.
973     static const int ScoreUndef = 1;
974     /// Score for failing to find a decent match.
975     static const int ScoreFail = 0;
976     /// User exteranl to the vectorized code.
977     static const int ExternalUseCost = 1;
978     /// The user is internal but in a different lane.
979     static const int UserInDiffLaneCost = ExternalUseCost;
980 
981     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
983                                ScalarEvolution &SE) {
984       auto *LI1 = dyn_cast<LoadInst>(V1);
985       auto *LI2 = dyn_cast<LoadInst>(V2);
986       if (LI1 && LI2) {
987         if (LI1->getParent() != LI2->getParent())
988           return VLOperands::ScoreFail;
989 
990         Optional<int> Dist = getPointersDiff(
991             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
992             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
993         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
994                                     : VLOperands::ScoreFail;
995       }
996 
997       auto *C1 = dyn_cast<Constant>(V1);
998       auto *C2 = dyn_cast<Constant>(V2);
999       if (C1 && C2)
1000         return VLOperands::ScoreConstants;
1001 
1002       // Extracts from consecutive indexes of the same vector better score as
1003       // the extracts could be optimized away.
1004       Value *EV;
1005       ConstantInt *Ex1Idx, *Ex2Idx;
1006       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
1007           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
1008           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
1009         return VLOperands::ScoreConsecutiveExtracts;
1010 
1011       auto *I1 = dyn_cast<Instruction>(V1);
1012       auto *I2 = dyn_cast<Instruction>(V2);
1013       if (I1 && I2) {
1014         if (I1 == I2)
1015           return VLOperands::ScoreSplat;
1016         InstructionsState S = getSameOpcode({I1, I2});
1017         // Note: Only consider instructions with <= 2 operands to avoid
1018         // complexity explosion.
1019         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
1020           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021                                   : VLOperands::ScoreSameOpcode;
1022       }
1023 
1024       if (isa<UndefValue>(V2))
1025         return VLOperands::ScoreUndef;
1026 
1027       return VLOperands::ScoreFail;
1028     }
1029 
1030     /// Holds the values and their lane that are taking part in the look-ahead
1031     /// score calculation. This is used in the external uses cost calculation.
1032     SmallDenseMap<Value *, int> InLookAheadValues;
1033 
1034     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035     /// either external to the vectorized code, or require shuffling.
1036     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
1037                             const std::pair<Value *, int> &RHS) {
1038       int Cost = 0;
1039       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1040       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1041         Value *V = Values[Idx].first;
1042         if (isa<Constant>(V)) {
1043           // Since this is a function pass, it doesn't make semantic sense to
1044           // walk the users of a subclass of Constant. The users could be in
1045           // another function, or even another module that happens to be in
1046           // the same LLVMContext.
1047           continue;
1048         }
1049 
1050         // Calculate the absolute lane, using the minimum relative lane of LHS
1051         // and RHS as base and Idx as the offset.
1052         int Ln = std::min(LHS.second, RHS.second) + Idx;
1053         assert(Ln >= 0 && "Bad lane calculation");
1054         unsigned UsersBudget = LookAheadUsersBudget;
1055         for (User *U : V->users()) {
1056           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1057             // The user is in the VectorizableTree. Check if we need to insert.
1058             auto It = llvm::find(UserTE->Scalars, U);
1059             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1060             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1061             assert(UserLn >= 0 && "Bad lane");
1062             if (UserLn != Ln)
1063               Cost += UserInDiffLaneCost;
1064           } else {
1065             // Check if the user is in the look-ahead code.
1066             auto It2 = InLookAheadValues.find(U);
1067             if (It2 != InLookAheadValues.end()) {
1068               // The user is in the look-ahead code. Check the lane.
1069               if (It2->second != Ln)
1070                 Cost += UserInDiffLaneCost;
1071             } else {
1072               // The user is neither in SLP tree nor in the look-ahead code.
1073               Cost += ExternalUseCost;
1074             }
1075           }
1076           // Limit the number of visited uses to cap compilation time.
1077           if (--UsersBudget == 0)
1078             break;
1079         }
1080       }
1081       return Cost;
1082     }
1083 
1084     /// Go through the operands of \p LHS and \p RHS recursively until \p
1085     /// MaxLevel, and return the cummulative score. For example:
1086     /// \verbatim
1087     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1088     ///     \ /         \ /         \ /        \ /
1089     ///      +           +           +          +
1090     ///     G1          G2          G3         G4
1091     /// \endverbatim
1092     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093     /// each level recursively, accumulating the score. It starts from matching
1094     /// the additions at level 0, then moves on to the loads (level 1). The
1095     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098     /// Please note that the order of the operands does not matter, as we
1099     /// evaluate the score of all profitable combinations of operands. In
1100     /// other words the score of G1 and G4 is the same as G1 and G2. This
1101     /// heuristic is based on ideas described in:
1102     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1103     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104     ///   Luís F. W. Góes
1105     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1106                            const std::pair<Value *, int> &RHS, int CurrLevel,
1107                            int MaxLevel) {
1108 
1109       Value *V1 = LHS.first;
1110       Value *V2 = RHS.first;
1111       // Get the shallow score of V1 and V2.
1112       int ShallowScoreAtThisLevel =
1113           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1114                                        getExternalUsesCost(LHS, RHS));
1115       int Lane1 = LHS.second;
1116       int Lane2 = RHS.second;
1117 
1118       // If reached MaxLevel,
1119       //  or if V1 and V2 are not instructions,
1120       //  or if they are SPLAT,
1121       //  or if they are not consecutive, early return the current cost.
1122       auto *I1 = dyn_cast<Instruction>(V1);
1123       auto *I2 = dyn_cast<Instruction>(V2);
1124       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1125           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1126           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1127         return ShallowScoreAtThisLevel;
1128       assert(I1 && I2 && "Should have early exited.");
1129 
1130       // Keep track of in-tree values for determining the external-use cost.
1131       InLookAheadValues[V1] = Lane1;
1132       InLookAheadValues[V2] = Lane2;
1133 
1134       // Contains the I2 operand indexes that got matched with I1 operands.
1135       SmallSet<unsigned, 4> Op2Used;
1136 
1137       // Recursion towards the operands of I1 and I2. We are trying all possbile
1138       // operand pairs, and keeping track of the best score.
1139       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1140            OpIdx1 != NumOperands1; ++OpIdx1) {
1141         // Try to pair op1I with the best operand of I2.
1142         int MaxTmpScore = 0;
1143         unsigned MaxOpIdx2 = 0;
1144         bool FoundBest = false;
1145         // If I2 is commutative try all combinations.
1146         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1147         unsigned ToIdx = isCommutative(I2)
1148                              ? I2->getNumOperands()
1149                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1150         assert(FromIdx <= ToIdx && "Bad index");
1151         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1152           // Skip operands already paired with OpIdx1.
1153           if (Op2Used.count(OpIdx2))
1154             continue;
1155           // Recursively calculate the cost at each level
1156           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1157                                             {I2->getOperand(OpIdx2), Lane2},
1158                                             CurrLevel + 1, MaxLevel);
1159           // Look for the best score.
1160           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1161             MaxTmpScore = TmpScore;
1162             MaxOpIdx2 = OpIdx2;
1163             FoundBest = true;
1164           }
1165         }
1166         if (FoundBest) {
1167           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168           Op2Used.insert(MaxOpIdx2);
1169           ShallowScoreAtThisLevel += MaxTmpScore;
1170         }
1171       }
1172       return ShallowScoreAtThisLevel;
1173     }
1174 
1175     /// \Returns the look-ahead score, which tells us how much the sub-trees
1176     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177     /// score. This helps break ties in an informed way when we cannot decide on
1178     /// the order of the operands by just considering the immediate
1179     /// predecessors.
1180     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1181                           const std::pair<Value *, int> &RHS) {
1182       InLookAheadValues.clear();
1183       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1184     }
1185 
1186     // Search all operands in Ops[*][Lane] for the one that matches best
1187     // Ops[OpIdx][LastLane] and return its opreand index.
1188     // If no good match can be found, return None.
1189     Optional<unsigned>
1190     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1191                    ArrayRef<ReorderingMode> ReorderingModes) {
1192       unsigned NumOperands = getNumOperands();
1193 
1194       // The operand of the previous lane at OpIdx.
1195       Value *OpLastLane = getData(OpIdx, LastLane).V;
1196 
1197       // Our strategy mode for OpIdx.
1198       ReorderingMode RMode = ReorderingModes[OpIdx];
1199 
1200       // The linearized opcode of the operand at OpIdx, Lane.
1201       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1202 
1203       // The best operand index and its score.
1204       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205       // are using the score to differentiate between the two.
1206       struct BestOpData {
1207         Optional<unsigned> Idx = None;
1208         unsigned Score = 0;
1209       } BestOp;
1210 
1211       // Iterate through all unused operands and look for the best.
1212       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1213         // Get the operand at Idx and Lane.
1214         OperandData &OpData = getData(Idx, Lane);
1215         Value *Op = OpData.V;
1216         bool OpAPO = OpData.APO;
1217 
1218         // Skip already selected operands.
1219         if (OpData.IsUsed)
1220           continue;
1221 
1222         // Skip if we are trying to move the operand to a position with a
1223         // different opcode in the linearized tree form. This would break the
1224         // semantics.
1225         if (OpAPO != OpIdxAPO)
1226           continue;
1227 
1228         // Look for an operand that matches the current mode.
1229         switch (RMode) {
1230         case ReorderingMode::Load:
1231         case ReorderingMode::Constant:
1232         case ReorderingMode::Opcode: {
1233           bool LeftToRight = Lane > LastLane;
1234           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1235           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1236           unsigned Score =
1237               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1238           if (Score > BestOp.Score) {
1239             BestOp.Idx = Idx;
1240             BestOp.Score = Score;
1241           }
1242           break;
1243         }
1244         case ReorderingMode::Splat:
1245           if (Op == OpLastLane)
1246             BestOp.Idx = Idx;
1247           break;
1248         case ReorderingMode::Failed:
1249           return None;
1250         }
1251       }
1252 
1253       if (BestOp.Idx) {
1254         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1255         return BestOp.Idx;
1256       }
1257       // If we could not find a good match return None.
1258       return None;
1259     }
1260 
1261     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262     /// reordering from. This is the one which has the least number of operands
1263     /// that can freely move about.
1264     unsigned getBestLaneToStartReordering() const {
1265       unsigned BestLane = 0;
1266       unsigned Min = UINT_MAX;
1267       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1268            ++Lane) {
1269         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1270         if (NumFreeOps < Min) {
1271           Min = NumFreeOps;
1272           BestLane = Lane;
1273         }
1274       }
1275       return BestLane;
1276     }
1277 
1278     /// \Returns the maximum number of operands that are allowed to be reordered
1279     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280     /// start operand reordering.
1281     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1282       unsigned CntTrue = 0;
1283       unsigned NumOperands = getNumOperands();
1284       // Operands with the same APO can be reordered. We therefore need to count
1285       // how many of them we have for each APO, like this: Cnt[APO] = x.
1286       // Since we only have two APOs, namely true and false, we can avoid using
1287       // a map. Instead we can simply count the number of operands that
1288       // correspond to one of them (in this case the 'true' APO), and calculate
1289       // the other by subtracting it from the total number of operands.
1290       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1291         if (getData(OpIdx, Lane).APO)
1292           ++CntTrue;
1293       unsigned CntFalse = NumOperands - CntTrue;
1294       return std::max(CntTrue, CntFalse);
1295     }
1296 
1297     /// Go through the instructions in VL and append their operands.
1298     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1299       assert(!VL.empty() && "Bad VL");
1300       assert((empty() || VL.size() == getNumLanes()) &&
1301              "Expected same number of lanes");
1302       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1303       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1304       OpsVec.resize(NumOperands);
1305       unsigned NumLanes = VL.size();
1306       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1307         OpsVec[OpIdx].resize(NumLanes);
1308         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1309           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1310           // Our tree has just 3 nodes: the root and two operands.
1311           // It is therefore trivial to get the APO. We only need to check the
1312           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313           // RHS operand. The LHS operand of both add and sub is never attached
1314           // to an inversese operation in the linearized form, therefore its APO
1315           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1316 
1317           // Since operand reordering is performed on groups of commutative
1318           // operations or alternating sequences (e.g., +, -), we can safely
1319           // tell the inverse operations by checking commutativity.
1320           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1321           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1322           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1323                                  APO, false};
1324         }
1325       }
1326     }
1327 
1328     /// \returns the number of operands.
1329     unsigned getNumOperands() const { return OpsVec.size(); }
1330 
1331     /// \returns the number of lanes.
1332     unsigned getNumLanes() const { return OpsVec[0].size(); }
1333 
1334     /// \returns the operand value at \p OpIdx and \p Lane.
1335     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1336       return getData(OpIdx, Lane).V;
1337     }
1338 
1339     /// \returns true if the data structure is empty.
1340     bool empty() const { return OpsVec.empty(); }
1341 
1342     /// Clears the data.
1343     void clear() { OpsVec.clear(); }
1344 
1345     /// \Returns true if there are enough operands identical to \p Op to fill
1346     /// the whole vector.
1347     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1349       bool OpAPO = getData(OpIdx, Lane).APO;
1350       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1351         if (Ln == Lane)
1352           continue;
1353         // This is set to true if we found a candidate for broadcast at Lane.
1354         bool FoundCandidate = false;
1355         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1356           OperandData &Data = getData(OpI, Ln);
1357           if (Data.APO != OpAPO || Data.IsUsed)
1358             continue;
1359           if (Data.V == Op) {
1360             FoundCandidate = true;
1361             Data.IsUsed = true;
1362             break;
1363           }
1364         }
1365         if (!FoundCandidate)
1366           return false;
1367       }
1368       return true;
1369     }
1370 
1371   public:
1372     /// Initialize with all the operands of the instruction vector \p RootVL.
1373     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1374                ScalarEvolution &SE, const BoUpSLP &R)
1375         : DL(DL), SE(SE), R(R) {
1376       // Append all the operands of RootVL.
1377       appendOperandsOfVL(RootVL);
1378     }
1379 
1380     /// \Returns a value vector with the operands across all lanes for the
1381     /// opearnd at \p OpIdx.
1382     ValueList getVL(unsigned OpIdx) const {
1383       ValueList OpVL(OpsVec[OpIdx].size());
1384       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1385              "Expected same num of lanes across all operands");
1386       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1387         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1388       return OpVL;
1389     }
1390 
1391     // Performs operand reordering for 2 or more operands.
1392     // The original operands are in OrigOps[OpIdx][Lane].
1393     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1394     void reorder() {
1395       unsigned NumOperands = getNumOperands();
1396       unsigned NumLanes = getNumLanes();
1397       // Each operand has its own mode. We are using this mode to help us select
1398       // the instructions for each lane, so that they match best with the ones
1399       // we have selected so far.
1400       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1401 
1402       // This is a greedy single-pass algorithm. We are going over each lane
1403       // once and deciding on the best order right away with no back-tracking.
1404       // However, in order to increase its effectiveness, we start with the lane
1405       // that has operands that can move the least. For example, given the
1406       // following lanes:
1407       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1408       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1409       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1410       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1411       // we will start at Lane 1, since the operands of the subtraction cannot
1412       // be reordered. Then we will visit the rest of the lanes in a circular
1413       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1414 
1415       // Find the first lane that we will start our search from.
1416       unsigned FirstLane = getBestLaneToStartReordering();
1417 
1418       // Initialize the modes.
1419       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1420         Value *OpLane0 = getValue(OpIdx, FirstLane);
1421         // Keep track if we have instructions with all the same opcode on one
1422         // side.
1423         if (isa<LoadInst>(OpLane0))
1424           ReorderingModes[OpIdx] = ReorderingMode::Load;
1425         else if (isa<Instruction>(OpLane0)) {
1426           // Check if OpLane0 should be broadcast.
1427           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1428             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1429           else
1430             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1431         }
1432         else if (isa<Constant>(OpLane0))
1433           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1434         else if (isa<Argument>(OpLane0))
1435           // Our best hope is a Splat. It may save some cost in some cases.
1436           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1437         else
1438           // NOTE: This should be unreachable.
1439           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440       }
1441 
1442       // If the initial strategy fails for any of the operand indexes, then we
1443       // perform reordering again in a second pass. This helps avoid assigning
1444       // high priority to the failed strategy, and should improve reordering for
1445       // the non-failed operand indexes.
1446       for (int Pass = 0; Pass != 2; ++Pass) {
1447         // Skip the second pass if the first pass did not fail.
1448         bool StrategyFailed = false;
1449         // Mark all operand data as free to use.
1450         clearUsed();
1451         // We keep the original operand order for the FirstLane, so reorder the
1452         // rest of the lanes. We are visiting the nodes in a circular fashion,
1453         // using FirstLane as the center point and increasing the radius
1454         // distance.
1455         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1456           // Visit the lane on the right and then the lane on the left.
1457           for (int Direction : {+1, -1}) {
1458             int Lane = FirstLane + Direction * Distance;
1459             if (Lane < 0 || Lane >= (int)NumLanes)
1460               continue;
1461             int LastLane = Lane - Direction;
1462             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1463                    "Out of bounds");
1464             // Look for a good match for each operand.
1465             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1466               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467               Optional<unsigned> BestIdx =
1468                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1469               // By not selecting a value, we allow the operands that follow to
1470               // select a better matching value. We will get a non-null value in
1471               // the next run of getBestOperand().
1472               if (BestIdx) {
1473                 // Swap the current operand with the one returned by
1474                 // getBestOperand().
1475                 swap(OpIdx, BestIdx.getValue(), Lane);
1476               } else {
1477                 // We failed to find a best operand, set mode to 'Failed'.
1478                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1479                 // Enable the second pass.
1480                 StrategyFailed = true;
1481               }
1482             }
1483           }
1484         }
1485         // Skip second pass if the strategy did not fail.
1486         if (!StrategyFailed)
1487           break;
1488       }
1489     }
1490 
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1493       switch (RMode) {
1494       case ReorderingMode::Load:
1495         return "Load";
1496       case ReorderingMode::Opcode:
1497         return "Opcode";
1498       case ReorderingMode::Constant:
1499         return "Constant";
1500       case ReorderingMode::Splat:
1501         return "Splat";
1502       case ReorderingMode::Failed:
1503         return "Failed";
1504       }
1505       llvm_unreachable("Unimplemented Reordering Type");
1506     }
1507 
1508     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1509                                                    raw_ostream &OS) {
1510       return OS << getModeStr(RMode);
1511     }
1512 
1513     /// Debug print.
1514     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1515       printMode(RMode, dbgs());
1516     }
1517 
1518     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1519       return printMode(RMode, OS);
1520     }
1521 
1522     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1523       const unsigned Indent = 2;
1524       unsigned Cnt = 0;
1525       for (const OperandDataVec &OpDataVec : OpsVec) {
1526         OS << "Operand " << Cnt++ << "\n";
1527         for (const OperandData &OpData : OpDataVec) {
1528           OS.indent(Indent) << "{";
1529           if (Value *V = OpData.V)
1530             OS << *V;
1531           else
1532             OS << "null";
1533           OS << ", APO:" << OpData.APO << "}\n";
1534         }
1535         OS << "\n";
1536       }
1537       return OS;
1538     }
1539 
1540     /// Debug print.
1541     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1542 #endif
1543   };
1544 
1545   /// Checks if the instruction is marked for deletion.
1546   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1547 
1548   /// Marks values operands for later deletion by replacing them with Undefs.
1549   void eraseInstructions(ArrayRef<Value *> AV);
1550 
1551   ~BoUpSLP();
1552 
1553 private:
1554   /// Checks if all users of \p I are the part of the vectorization tree.
1555   bool areAllUsersVectorized(Instruction *I,
1556                              ArrayRef<Value *> VectorizedVals) const;
1557 
1558   /// \returns the cost of the vectorizable entry.
1559   InstructionCost getEntryCost(const TreeEntry *E,
1560                                ArrayRef<Value *> VectorizedVals);
1561 
1562   /// This is the recursive part of buildTree.
1563   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1564                      const EdgeInfo &EI);
1565 
1566   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569   /// returns false, setting \p CurrentOrder to either an empty vector or a
1570   /// non-identity permutation that allows to reuse extract instructions.
1571   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1572                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1573 
1574   /// Vectorize a single entry in the tree.
1575   Value *vectorizeTree(TreeEntry *E);
1576 
1577   /// Vectorize a single entry in the tree, starting in \p VL.
1578   Value *vectorizeTree(ArrayRef<Value *> VL);
1579 
1580   /// \returns the scalarization cost for this type. Scalarization in this
1581   /// context means the creation of vectors from a group of scalars.
1582   InstructionCost
1583   getGatherCost(FixedVectorType *Ty,
1584                 const DenseSet<unsigned> &ShuffledIndices) const;
1585 
1586   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1587   /// tree entries.
1588   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589   /// previous tree entries. \p Mask is filled with the shuffle mask.
1590   Optional<TargetTransformInfo::ShuffleKind>
1591   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1592                         SmallVectorImpl<const TreeEntry *> &Entries);
1593 
1594   /// \returns the scalarization cost for this list of values. Assuming that
1595   /// this subtree gets vectorized, we may need to extract the values from the
1596   /// roots. This method calculates the cost of extracting the values.
1597   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1598 
1599   /// Set the Builder insert point to one after the last instruction in
1600   /// the bundle
1601   void setInsertPointAfterBundle(const TreeEntry *E);
1602 
1603   /// \returns a vector from a collection of scalars in \p VL.
1604   Value *gather(ArrayRef<Value *> VL);
1605 
1606   /// \returns whether the VectorizableTree is fully vectorizable and will
1607   /// be beneficial even the tree height is tiny.
1608   bool isFullyVectorizableTinyTree() const;
1609 
1610   /// Reorder commutative or alt operands to get better probability of
1611   /// generating vectorized code.
1612   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1613                                              SmallVectorImpl<Value *> &Left,
1614                                              SmallVectorImpl<Value *> &Right,
1615                                              const DataLayout &DL,
1616                                              ScalarEvolution &SE,
1617                                              const BoUpSLP &R);
1618   struct TreeEntry {
1619     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1620     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1621 
1622     /// \returns true if the scalars in VL are equal to this entry.
1623     bool isSame(ArrayRef<Value *> VL) const {
1624       if (VL.size() == Scalars.size())
1625         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1626       return VL.size() == ReuseShuffleIndices.size() &&
1627              std::equal(
1628                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1629                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1630     }
1631 
1632     /// A vector of scalars.
1633     ValueList Scalars;
1634 
1635     /// The Scalars are vectorized into this value. It is initialized to Null.
1636     Value *VectorizedValue = nullptr;
1637 
1638     /// Do we need to gather this sequence or vectorize it
1639     /// (either with vector instruction or with scatter/gather
1640     /// intrinsics for store/load)?
1641     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1642     EntryState State;
1643 
1644     /// Does this sequence require some shuffling?
1645     SmallVector<int, 4> ReuseShuffleIndices;
1646 
1647     /// Does this entry require reordering?
1648     SmallVector<unsigned, 4> ReorderIndices;
1649 
1650     /// Points back to the VectorizableTree.
1651     ///
1652     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1653     /// to be a pointer and needs to be able to initialize the child iterator.
1654     /// Thus we need a reference back to the container to translate the indices
1655     /// to entries.
1656     VecTreeTy &Container;
1657 
1658     /// The TreeEntry index containing the user of this entry.  We can actually
1659     /// have multiple users so the data structure is not truly a tree.
1660     SmallVector<EdgeInfo, 1> UserTreeIndices;
1661 
1662     /// The index of this treeEntry in VectorizableTree.
1663     int Idx = -1;
1664 
1665   private:
1666     /// The operands of each instruction in each lane Operands[op_index][lane].
1667     /// Note: This helps avoid the replication of the code that performs the
1668     /// reordering of operands during buildTree_rec() and vectorizeTree().
1669     SmallVector<ValueList, 2> Operands;
1670 
1671     /// The main/alternate instruction.
1672     Instruction *MainOp = nullptr;
1673     Instruction *AltOp = nullptr;
1674 
1675   public:
1676     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1678       if (Operands.size() < OpIdx + 1)
1679         Operands.resize(OpIdx + 1);
1680       assert(Operands[OpIdx].empty() && "Already resized?");
1681       Operands[OpIdx].resize(Scalars.size());
1682       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1683         Operands[OpIdx][Lane] = OpVL[Lane];
1684     }
1685 
1686     /// Set the operands of this bundle in their original order.
1687     void setOperandsInOrder() {
1688       assert(Operands.empty() && "Already initialized?");
1689       auto *I0 = cast<Instruction>(Scalars[0]);
1690       Operands.resize(I0->getNumOperands());
1691       unsigned NumLanes = Scalars.size();
1692       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1693            OpIdx != NumOperands; ++OpIdx) {
1694         Operands[OpIdx].resize(NumLanes);
1695         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1696           auto *I = cast<Instruction>(Scalars[Lane]);
1697           assert(I->getNumOperands() == NumOperands &&
1698                  "Expected same number of operands");
1699           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1700         }
1701       }
1702     }
1703 
1704     /// \returns the \p OpIdx operand of this TreeEntry.
1705     ValueList &getOperand(unsigned OpIdx) {
1706       assert(OpIdx < Operands.size() && "Off bounds");
1707       return Operands[OpIdx];
1708     }
1709 
1710     /// \returns the number of operands.
1711     unsigned getNumOperands() const { return Operands.size(); }
1712 
1713     /// \return the single \p OpIdx operand.
1714     Value *getSingleOperand(unsigned OpIdx) const {
1715       assert(OpIdx < Operands.size() && "Off bounds");
1716       assert(!Operands[OpIdx].empty() && "No operand available");
1717       return Operands[OpIdx][0];
1718     }
1719 
1720     /// Some of the instructions in the list have alternate opcodes.
1721     bool isAltShuffle() const {
1722       return getOpcode() != getAltOpcode();
1723     }
1724 
1725     bool isOpcodeOrAlt(Instruction *I) const {
1726       unsigned CheckedOpcode = I->getOpcode();
1727       return (getOpcode() == CheckedOpcode ||
1728               getAltOpcode() == CheckedOpcode);
1729     }
1730 
1731     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1733     /// \p OpValue.
1734     Value *isOneOf(Value *Op) const {
1735       auto *I = dyn_cast<Instruction>(Op);
1736       if (I && isOpcodeOrAlt(I))
1737         return Op;
1738       return MainOp;
1739     }
1740 
1741     void setOperations(const InstructionsState &S) {
1742       MainOp = S.MainOp;
1743       AltOp = S.AltOp;
1744     }
1745 
1746     Instruction *getMainOp() const {
1747       return MainOp;
1748     }
1749 
1750     Instruction *getAltOp() const {
1751       return AltOp;
1752     }
1753 
1754     /// The main/alternate opcodes for the list of instructions.
1755     unsigned getOpcode() const {
1756       return MainOp ? MainOp->getOpcode() : 0;
1757     }
1758 
1759     unsigned getAltOpcode() const {
1760       return AltOp ? AltOp->getOpcode() : 0;
1761     }
1762 
1763     /// Update operations state of this entry if reorder occurred.
1764     bool updateStateIfReorder() {
1765       if (ReorderIndices.empty())
1766         return false;
1767       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1768       setOperations(S);
1769       return true;
1770     }
1771     /// When ReuseShuffleIndices is empty it just returns position of \p V
1772     /// within vector of Scalars. Otherwise, try to remap on its reuse index.
1773     int findLaneForValue(Value *V) const {
1774       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
1775       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
1776       if (!ReuseShuffleIndices.empty()) {
1777         FoundLane = std::distance(ReuseShuffleIndices.begin(),
1778                                   find(ReuseShuffleIndices, FoundLane));
1779       }
1780       return FoundLane;
1781     }
1782 
1783 #ifndef NDEBUG
1784     /// Debug printer.
1785     LLVM_DUMP_METHOD void dump() const {
1786       dbgs() << Idx << ".\n";
1787       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1788         dbgs() << "Operand " << OpI << ":\n";
1789         for (const Value *V : Operands[OpI])
1790           dbgs().indent(2) << *V << "\n";
1791       }
1792       dbgs() << "Scalars: \n";
1793       for (Value *V : Scalars)
1794         dbgs().indent(2) << *V << "\n";
1795       dbgs() << "State: ";
1796       switch (State) {
1797       case Vectorize:
1798         dbgs() << "Vectorize\n";
1799         break;
1800       case ScatterVectorize:
1801         dbgs() << "ScatterVectorize\n";
1802         break;
1803       case NeedToGather:
1804         dbgs() << "NeedToGather\n";
1805         break;
1806       }
1807       dbgs() << "MainOp: ";
1808       if (MainOp)
1809         dbgs() << *MainOp << "\n";
1810       else
1811         dbgs() << "NULL\n";
1812       dbgs() << "AltOp: ";
1813       if (AltOp)
1814         dbgs() << *AltOp << "\n";
1815       else
1816         dbgs() << "NULL\n";
1817       dbgs() << "VectorizedValue: ";
1818       if (VectorizedValue)
1819         dbgs() << *VectorizedValue << "\n";
1820       else
1821         dbgs() << "NULL\n";
1822       dbgs() << "ReuseShuffleIndices: ";
1823       if (ReuseShuffleIndices.empty())
1824         dbgs() << "Empty";
1825       else
1826         for (unsigned ReuseIdx : ReuseShuffleIndices)
1827           dbgs() << ReuseIdx << ", ";
1828       dbgs() << "\n";
1829       dbgs() << "ReorderIndices: ";
1830       for (unsigned ReorderIdx : ReorderIndices)
1831         dbgs() << ReorderIdx << ", ";
1832       dbgs() << "\n";
1833       dbgs() << "UserTreeIndices: ";
1834       for (const auto &EInfo : UserTreeIndices)
1835         dbgs() << EInfo << ", ";
1836       dbgs() << "\n";
1837     }
1838 #endif
1839   };
1840 
1841 #ifndef NDEBUG
1842   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1843                      InstructionCost VecCost,
1844                      InstructionCost ScalarCost) const {
1845     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1846     dbgs() << "SLP: Costs:\n";
1847     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1848     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1849     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1850     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1851                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1852   }
1853 #endif
1854 
1855   /// Create a new VectorizableTree entry.
1856   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1857                           const InstructionsState &S,
1858                           const EdgeInfo &UserTreeIdx,
1859                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1860                           ArrayRef<unsigned> ReorderIndices = None) {
1861     TreeEntry::EntryState EntryState =
1862         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1863     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1864                         ReuseShuffleIndices, ReorderIndices);
1865   }
1866 
1867   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1868                           TreeEntry::EntryState EntryState,
1869                           Optional<ScheduleData *> Bundle,
1870                           const InstructionsState &S,
1871                           const EdgeInfo &UserTreeIdx,
1872                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1873                           ArrayRef<unsigned> ReorderIndices = None) {
1874     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1875             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1876            "Need to vectorize gather entry?");
1877     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1878     TreeEntry *Last = VectorizableTree.back().get();
1879     Last->Idx = VectorizableTree.size() - 1;
1880     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1881     Last->State = EntryState;
1882     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1883                                      ReuseShuffleIndices.end());
1884     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1885     Last->setOperations(S);
1886     if (Last->State != TreeEntry::NeedToGather) {
1887       for (Value *V : VL) {
1888         assert(!getTreeEntry(V) && "Scalar already in tree!");
1889         ScalarToTreeEntry[V] = Last;
1890       }
1891       // Update the scheduler bundle to point to this TreeEntry.
1892       unsigned Lane = 0;
1893       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1894            BundleMember = BundleMember->NextInBundle) {
1895         BundleMember->TE = Last;
1896         BundleMember->Lane = Lane;
1897         ++Lane;
1898       }
1899       assert((!Bundle.getValue() || Lane == VL.size()) &&
1900              "Bundle and VL out of sync");
1901     } else {
1902       MustGather.insert(VL.begin(), VL.end());
1903     }
1904 
1905     if (UserTreeIdx.UserTE)
1906       Last->UserTreeIndices.push_back(UserTreeIdx);
1907 
1908     return Last;
1909   }
1910 
1911   /// -- Vectorization State --
1912   /// Holds all of the tree entries.
1913   TreeEntry::VecTreeTy VectorizableTree;
1914 
1915 #ifndef NDEBUG
1916   /// Debug printer.
1917   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1918     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1919       VectorizableTree[Id]->dump();
1920       dbgs() << "\n";
1921     }
1922   }
1923 #endif
1924 
1925   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1926 
1927   const TreeEntry *getTreeEntry(Value *V) const {
1928     return ScalarToTreeEntry.lookup(V);
1929   }
1930 
1931   /// Maps a specific scalar to its tree entry.
1932   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1933 
1934   /// Maps a value to the proposed vectorizable size.
1935   SmallDenseMap<Value *, unsigned> InstrElementSize;
1936 
1937   /// A list of scalars that we found that we need to keep as scalars.
1938   ValueSet MustGather;
1939 
1940   /// This POD struct describes one external user in the vectorized tree.
1941   struct ExternalUser {
1942     ExternalUser(Value *S, llvm::User *U, int L)
1943         : Scalar(S), User(U), Lane(L) {}
1944 
1945     // Which scalar in our function.
1946     Value *Scalar;
1947 
1948     // Which user that uses the scalar.
1949     llvm::User *User;
1950 
1951     // Which lane does the scalar belong to.
1952     int Lane;
1953   };
1954   using UserList = SmallVector<ExternalUser, 16>;
1955 
1956   /// Checks if two instructions may access the same memory.
1957   ///
1958   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1959   /// is invariant in the calling loop.
1960   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1961                  Instruction *Inst2) {
1962     // First check if the result is already in the cache.
1963     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1964     Optional<bool> &result = AliasCache[key];
1965     if (result.hasValue()) {
1966       return result.getValue();
1967     }
1968     MemoryLocation Loc2 = getLocation(Inst2, AA);
1969     bool aliased = true;
1970     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1971       // Do the alias check.
1972       aliased = !AA->isNoAlias(Loc1, Loc2);
1973     }
1974     // Store the result in the cache.
1975     result = aliased;
1976     return aliased;
1977   }
1978 
1979   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1980 
1981   /// Cache for alias results.
1982   /// TODO: consider moving this to the AliasAnalysis itself.
1983   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1984 
1985   /// Removes an instruction from its block and eventually deletes it.
1986   /// It's like Instruction::eraseFromParent() except that the actual deletion
1987   /// is delayed until BoUpSLP is destructed.
1988   /// This is required to ensure that there are no incorrect collisions in the
1989   /// AliasCache, which can happen if a new instruction is allocated at the
1990   /// same address as a previously deleted instruction.
1991   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1992     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1993     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1994   }
1995 
1996   /// Temporary store for deleted instructions. Instructions will be deleted
1997   /// eventually when the BoUpSLP is destructed.
1998   DenseMap<Instruction *, bool> DeletedInstructions;
1999 
2000   /// A list of values that need to extracted out of the tree.
2001   /// This list holds pairs of (Internal Scalar : External User). External User
2002   /// can be nullptr, it means that this Internal Scalar will be used later,
2003   /// after vectorization.
2004   UserList ExternalUses;
2005 
2006   /// Values used only by @llvm.assume calls.
2007   SmallPtrSet<const Value *, 32> EphValues;
2008 
2009   /// Holds all of the instructions that we gathered.
2010   SetVector<Instruction *> GatherSeq;
2011 
2012   /// A list of blocks that we are going to CSE.
2013   SetVector<BasicBlock *> CSEBlocks;
2014 
2015   /// Contains all scheduling relevant data for an instruction.
2016   /// A ScheduleData either represents a single instruction or a member of an
2017   /// instruction bundle (= a group of instructions which is combined into a
2018   /// vector instruction).
2019   struct ScheduleData {
2020     // The initial value for the dependency counters. It means that the
2021     // dependencies are not calculated yet.
2022     enum { InvalidDeps = -1 };
2023 
2024     ScheduleData() = default;
2025 
2026     void init(int BlockSchedulingRegionID, Value *OpVal) {
2027       FirstInBundle = this;
2028       NextInBundle = nullptr;
2029       NextLoadStore = nullptr;
2030       IsScheduled = false;
2031       SchedulingRegionID = BlockSchedulingRegionID;
2032       UnscheduledDepsInBundle = UnscheduledDeps;
2033       clearDependencies();
2034       OpValue = OpVal;
2035       TE = nullptr;
2036       Lane = -1;
2037     }
2038 
2039     /// Returns true if the dependency information has been calculated.
2040     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2041 
2042     /// Returns true for single instructions and for bundle representatives
2043     /// (= the head of a bundle).
2044     bool isSchedulingEntity() const { return FirstInBundle == this; }
2045 
2046     /// Returns true if it represents an instruction bundle and not only a
2047     /// single instruction.
2048     bool isPartOfBundle() const {
2049       return NextInBundle != nullptr || FirstInBundle != this;
2050     }
2051 
2052     /// Returns true if it is ready for scheduling, i.e. it has no more
2053     /// unscheduled depending instructions/bundles.
2054     bool isReady() const {
2055       assert(isSchedulingEntity() &&
2056              "can't consider non-scheduling entity for ready list");
2057       return UnscheduledDepsInBundle == 0 && !IsScheduled;
2058     }
2059 
2060     /// Modifies the number of unscheduled dependencies, also updating it for
2061     /// the whole bundle.
2062     int incrementUnscheduledDeps(int Incr) {
2063       UnscheduledDeps += Incr;
2064       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2065     }
2066 
2067     /// Sets the number of unscheduled dependencies to the number of
2068     /// dependencies.
2069     void resetUnscheduledDeps() {
2070       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2071     }
2072 
2073     /// Clears all dependency information.
2074     void clearDependencies() {
2075       Dependencies = InvalidDeps;
2076       resetUnscheduledDeps();
2077       MemoryDependencies.clear();
2078     }
2079 
2080     void dump(raw_ostream &os) const {
2081       if (!isSchedulingEntity()) {
2082         os << "/ " << *Inst;
2083       } else if (NextInBundle) {
2084         os << '[' << *Inst;
2085         ScheduleData *SD = NextInBundle;
2086         while (SD) {
2087           os << ';' << *SD->Inst;
2088           SD = SD->NextInBundle;
2089         }
2090         os << ']';
2091       } else {
2092         os << *Inst;
2093       }
2094     }
2095 
2096     Instruction *Inst = nullptr;
2097 
2098     /// Points to the head in an instruction bundle (and always to this for
2099     /// single instructions).
2100     ScheduleData *FirstInBundle = nullptr;
2101 
2102     /// Single linked list of all instructions in a bundle. Null if it is a
2103     /// single instruction.
2104     ScheduleData *NextInBundle = nullptr;
2105 
2106     /// Single linked list of all memory instructions (e.g. load, store, call)
2107     /// in the block - until the end of the scheduling region.
2108     ScheduleData *NextLoadStore = nullptr;
2109 
2110     /// The dependent memory instructions.
2111     /// This list is derived on demand in calculateDependencies().
2112     SmallVector<ScheduleData *, 4> MemoryDependencies;
2113 
2114     /// This ScheduleData is in the current scheduling region if this matches
2115     /// the current SchedulingRegionID of BlockScheduling.
2116     int SchedulingRegionID = 0;
2117 
2118     /// Used for getting a "good" final ordering of instructions.
2119     int SchedulingPriority = 0;
2120 
2121     /// The number of dependencies. Constitutes of the number of users of the
2122     /// instruction plus the number of dependent memory instructions (if any).
2123     /// This value is calculated on demand.
2124     /// If InvalidDeps, the number of dependencies is not calculated yet.
2125     int Dependencies = InvalidDeps;
2126 
2127     /// The number of dependencies minus the number of dependencies of scheduled
2128     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2129     /// for scheduling.
2130     /// Note that this is negative as long as Dependencies is not calculated.
2131     int UnscheduledDeps = InvalidDeps;
2132 
2133     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2134     /// single instructions.
2135     int UnscheduledDepsInBundle = InvalidDeps;
2136 
2137     /// True if this instruction is scheduled (or considered as scheduled in the
2138     /// dry-run).
2139     bool IsScheduled = false;
2140 
2141     /// Opcode of the current instruction in the schedule data.
2142     Value *OpValue = nullptr;
2143 
2144     /// The TreeEntry that this instruction corresponds to.
2145     TreeEntry *TE = nullptr;
2146 
2147     /// The lane of this node in the TreeEntry.
2148     int Lane = -1;
2149   };
2150 
2151 #ifndef NDEBUG
2152   friend inline raw_ostream &operator<<(raw_ostream &os,
2153                                         const BoUpSLP::ScheduleData &SD) {
2154     SD.dump(os);
2155     return os;
2156   }
2157 #endif
2158 
2159   friend struct GraphTraits<BoUpSLP *>;
2160   friend struct DOTGraphTraits<BoUpSLP *>;
2161 
2162   /// Contains all scheduling data for a basic block.
2163   struct BlockScheduling {
2164     BlockScheduling(BasicBlock *BB)
2165         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2166 
2167     void clear() {
2168       ReadyInsts.clear();
2169       ScheduleStart = nullptr;
2170       ScheduleEnd = nullptr;
2171       FirstLoadStoreInRegion = nullptr;
2172       LastLoadStoreInRegion = nullptr;
2173 
2174       // Reduce the maximum schedule region size by the size of the
2175       // previous scheduling run.
2176       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2177       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2178         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2179       ScheduleRegionSize = 0;
2180 
2181       // Make a new scheduling region, i.e. all existing ScheduleData is not
2182       // in the new region yet.
2183       ++SchedulingRegionID;
2184     }
2185 
2186     ScheduleData *getScheduleData(Value *V) {
2187       ScheduleData *SD = ScheduleDataMap[V];
2188       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2189         return SD;
2190       return nullptr;
2191     }
2192 
2193     ScheduleData *getScheduleData(Value *V, Value *Key) {
2194       if (V == Key)
2195         return getScheduleData(V);
2196       auto I = ExtraScheduleDataMap.find(V);
2197       if (I != ExtraScheduleDataMap.end()) {
2198         ScheduleData *SD = I->second[Key];
2199         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2200           return SD;
2201       }
2202       return nullptr;
2203     }
2204 
2205     bool isInSchedulingRegion(ScheduleData *SD) const {
2206       return SD->SchedulingRegionID == SchedulingRegionID;
2207     }
2208 
2209     /// Marks an instruction as scheduled and puts all dependent ready
2210     /// instructions into the ready-list.
2211     template <typename ReadyListType>
2212     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2213       SD->IsScheduled = true;
2214       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2215 
2216       ScheduleData *BundleMember = SD;
2217       while (BundleMember) {
2218         if (BundleMember->Inst != BundleMember->OpValue) {
2219           BundleMember = BundleMember->NextInBundle;
2220           continue;
2221         }
2222         // Handle the def-use chain dependencies.
2223 
2224         // Decrement the unscheduled counter and insert to ready list if ready.
2225         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2226           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2227             if (OpDef && OpDef->hasValidDependencies() &&
2228                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2229               // There are no more unscheduled dependencies after
2230               // decrementing, so we can put the dependent instruction
2231               // into the ready list.
2232               ScheduleData *DepBundle = OpDef->FirstInBundle;
2233               assert(!DepBundle->IsScheduled &&
2234                      "already scheduled bundle gets ready");
2235               ReadyList.insert(DepBundle);
2236               LLVM_DEBUG(dbgs()
2237                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2238             }
2239           });
2240         };
2241 
2242         // If BundleMember is a vector bundle, its operands may have been
2243         // reordered duiring buildTree(). We therefore need to get its operands
2244         // through the TreeEntry.
2245         if (TreeEntry *TE = BundleMember->TE) {
2246           int Lane = BundleMember->Lane;
2247           assert(Lane >= 0 && "Lane not set");
2248 
2249           // Since vectorization tree is being built recursively this assertion
2250           // ensures that the tree entry has all operands set before reaching
2251           // this code. Couple of exceptions known at the moment are extracts
2252           // where their second (immediate) operand is not added. Since
2253           // immediates do not affect scheduler behavior this is considered
2254           // okay.
2255           auto *In = TE->getMainOp();
2256           assert(In &&
2257                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2258                   In->getNumOperands() == TE->getNumOperands()) &&
2259                  "Missed TreeEntry operands?");
2260           (void)In; // fake use to avoid build failure when assertions disabled
2261 
2262           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2263                OpIdx != NumOperands; ++OpIdx)
2264             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2265               DecrUnsched(I);
2266         } else {
2267           // If BundleMember is a stand-alone instruction, no operand reordering
2268           // has taken place, so we directly access its operands.
2269           for (Use &U : BundleMember->Inst->operands())
2270             if (auto *I = dyn_cast<Instruction>(U.get()))
2271               DecrUnsched(I);
2272         }
2273         // Handle the memory dependencies.
2274         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2275           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2276             // There are no more unscheduled dependencies after decrementing,
2277             // so we can put the dependent instruction into the ready list.
2278             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2279             assert(!DepBundle->IsScheduled &&
2280                    "already scheduled bundle gets ready");
2281             ReadyList.insert(DepBundle);
2282             LLVM_DEBUG(dbgs()
2283                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2284           }
2285         }
2286         BundleMember = BundleMember->NextInBundle;
2287       }
2288     }
2289 
2290     void doForAllOpcodes(Value *V,
2291                          function_ref<void(ScheduleData *SD)> Action) {
2292       if (ScheduleData *SD = getScheduleData(V))
2293         Action(SD);
2294       auto I = ExtraScheduleDataMap.find(V);
2295       if (I != ExtraScheduleDataMap.end())
2296         for (auto &P : I->second)
2297           if (P.second->SchedulingRegionID == SchedulingRegionID)
2298             Action(P.second);
2299     }
2300 
2301     /// Put all instructions into the ReadyList which are ready for scheduling.
2302     template <typename ReadyListType>
2303     void initialFillReadyList(ReadyListType &ReadyList) {
2304       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2305         doForAllOpcodes(I, [&](ScheduleData *SD) {
2306           if (SD->isSchedulingEntity() && SD->isReady()) {
2307             ReadyList.insert(SD);
2308             LLVM_DEBUG(dbgs()
2309                        << "SLP:    initially in ready list: " << *I << "\n");
2310           }
2311         });
2312       }
2313     }
2314 
2315     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2316     /// cyclic dependencies. This is only a dry-run, no instructions are
2317     /// actually moved at this stage.
2318     /// \returns the scheduling bundle. The returned Optional value is non-None
2319     /// if \p VL is allowed to be scheduled.
2320     Optional<ScheduleData *>
2321     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2322                       const InstructionsState &S);
2323 
2324     /// Un-bundles a group of instructions.
2325     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2326 
2327     /// Allocates schedule data chunk.
2328     ScheduleData *allocateScheduleDataChunks();
2329 
2330     /// Extends the scheduling region so that V is inside the region.
2331     /// \returns true if the region size is within the limit.
2332     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2333 
2334     /// Initialize the ScheduleData structures for new instructions in the
2335     /// scheduling region.
2336     void initScheduleData(Instruction *FromI, Instruction *ToI,
2337                           ScheduleData *PrevLoadStore,
2338                           ScheduleData *NextLoadStore);
2339 
2340     /// Updates the dependency information of a bundle and of all instructions/
2341     /// bundles which depend on the original bundle.
2342     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2343                                BoUpSLP *SLP);
2344 
2345     /// Sets all instruction in the scheduling region to un-scheduled.
2346     void resetSchedule();
2347 
2348     BasicBlock *BB;
2349 
2350     /// Simple memory allocation for ScheduleData.
2351     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2352 
2353     /// The size of a ScheduleData array in ScheduleDataChunks.
2354     int ChunkSize;
2355 
2356     /// The allocator position in the current chunk, which is the last entry
2357     /// of ScheduleDataChunks.
2358     int ChunkPos;
2359 
2360     /// Attaches ScheduleData to Instruction.
2361     /// Note that the mapping survives during all vectorization iterations, i.e.
2362     /// ScheduleData structures are recycled.
2363     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2364 
2365     /// Attaches ScheduleData to Instruction with the leading key.
2366     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2367         ExtraScheduleDataMap;
2368 
2369     struct ReadyList : SmallVector<ScheduleData *, 8> {
2370       void insert(ScheduleData *SD) { push_back(SD); }
2371     };
2372 
2373     /// The ready-list for scheduling (only used for the dry-run).
2374     ReadyList ReadyInsts;
2375 
2376     /// The first instruction of the scheduling region.
2377     Instruction *ScheduleStart = nullptr;
2378 
2379     /// The first instruction _after_ the scheduling region.
2380     Instruction *ScheduleEnd = nullptr;
2381 
2382     /// The first memory accessing instruction in the scheduling region
2383     /// (can be null).
2384     ScheduleData *FirstLoadStoreInRegion = nullptr;
2385 
2386     /// The last memory accessing instruction in the scheduling region
2387     /// (can be null).
2388     ScheduleData *LastLoadStoreInRegion = nullptr;
2389 
2390     /// The current size of the scheduling region.
2391     int ScheduleRegionSize = 0;
2392 
2393     /// The maximum size allowed for the scheduling region.
2394     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2395 
2396     /// The ID of the scheduling region. For a new vectorization iteration this
2397     /// is incremented which "removes" all ScheduleData from the region.
2398     // Make sure that the initial SchedulingRegionID is greater than the
2399     // initial SchedulingRegionID in ScheduleData (which is 0).
2400     int SchedulingRegionID = 1;
2401   };
2402 
2403   /// Attaches the BlockScheduling structures to basic blocks.
2404   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2405 
2406   /// Performs the "real" scheduling. Done before vectorization is actually
2407   /// performed in a basic block.
2408   void scheduleBlock(BlockScheduling *BS);
2409 
2410   /// List of users to ignore during scheduling and that don't need extracting.
2411   ArrayRef<Value *> UserIgnoreList;
2412 
2413   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2414   /// sorted SmallVectors of unsigned.
2415   struct OrdersTypeDenseMapInfo {
2416     static OrdersType getEmptyKey() {
2417       OrdersType V;
2418       V.push_back(~1U);
2419       return V;
2420     }
2421 
2422     static OrdersType getTombstoneKey() {
2423       OrdersType V;
2424       V.push_back(~2U);
2425       return V;
2426     }
2427 
2428     static unsigned getHashValue(const OrdersType &V) {
2429       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2430     }
2431 
2432     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2433       return LHS == RHS;
2434     }
2435   };
2436 
2437   /// Contains orders of operations along with the number of bundles that have
2438   /// operations in this order. It stores only those orders that require
2439   /// reordering, if reordering is not required it is counted using \a
2440   /// NumOpsWantToKeepOriginalOrder.
2441   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2442   /// Number of bundles that do not require reordering.
2443   unsigned NumOpsWantToKeepOriginalOrder = 0;
2444 
2445   // Analysis and block reference.
2446   Function *F;
2447   ScalarEvolution *SE;
2448   TargetTransformInfo *TTI;
2449   TargetLibraryInfo *TLI;
2450   AAResults *AA;
2451   LoopInfo *LI;
2452   DominatorTree *DT;
2453   AssumptionCache *AC;
2454   DemandedBits *DB;
2455   const DataLayout *DL;
2456   OptimizationRemarkEmitter *ORE;
2457 
2458   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2459   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2460 
2461   /// Instruction builder to construct the vectorized tree.
2462   IRBuilder<> Builder;
2463 
2464   /// A map of scalar integer values to the smallest bit width with which they
2465   /// can legally be represented. The values map to (width, signed) pairs,
2466   /// where "width" indicates the minimum bit width and "signed" is True if the
2467   /// value must be signed-extended, rather than zero-extended, back to its
2468   /// original width.
2469   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2470 };
2471 
2472 } // end namespace slpvectorizer
2473 
2474 template <> struct GraphTraits<BoUpSLP *> {
2475   using TreeEntry = BoUpSLP::TreeEntry;
2476 
2477   /// NodeRef has to be a pointer per the GraphWriter.
2478   using NodeRef = TreeEntry *;
2479 
2480   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2481 
2482   /// Add the VectorizableTree to the index iterator to be able to return
2483   /// TreeEntry pointers.
2484   struct ChildIteratorType
2485       : public iterator_adaptor_base<
2486             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2487     ContainerTy &VectorizableTree;
2488 
2489     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2490                       ContainerTy &VT)
2491         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2492 
2493     NodeRef operator*() { return I->UserTE; }
2494   };
2495 
2496   static NodeRef getEntryNode(BoUpSLP &R) {
2497     return R.VectorizableTree[0].get();
2498   }
2499 
2500   static ChildIteratorType child_begin(NodeRef N) {
2501     return {N->UserTreeIndices.begin(), N->Container};
2502   }
2503 
2504   static ChildIteratorType child_end(NodeRef N) {
2505     return {N->UserTreeIndices.end(), N->Container};
2506   }
2507 
2508   /// For the node iterator we just need to turn the TreeEntry iterator into a
2509   /// TreeEntry* iterator so that it dereferences to NodeRef.
2510   class nodes_iterator {
2511     using ItTy = ContainerTy::iterator;
2512     ItTy It;
2513 
2514   public:
2515     nodes_iterator(const ItTy &It2) : It(It2) {}
2516     NodeRef operator*() { return It->get(); }
2517     nodes_iterator operator++() {
2518       ++It;
2519       return *this;
2520     }
2521     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2522   };
2523 
2524   static nodes_iterator nodes_begin(BoUpSLP *R) {
2525     return nodes_iterator(R->VectorizableTree.begin());
2526   }
2527 
2528   static nodes_iterator nodes_end(BoUpSLP *R) {
2529     return nodes_iterator(R->VectorizableTree.end());
2530   }
2531 
2532   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2533 };
2534 
2535 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2536   using TreeEntry = BoUpSLP::TreeEntry;
2537 
2538   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2539 
2540   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2541     std::string Str;
2542     raw_string_ostream OS(Str);
2543     if (isSplat(Entry->Scalars)) {
2544       OS << "<splat> " << *Entry->Scalars[0];
2545       return Str;
2546     }
2547     for (auto V : Entry->Scalars) {
2548       OS << *V;
2549       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2550             return EU.Scalar == V;
2551           }))
2552         OS << " <extract>";
2553       OS << "\n";
2554     }
2555     return Str;
2556   }
2557 
2558   static std::string getNodeAttributes(const TreeEntry *Entry,
2559                                        const BoUpSLP *) {
2560     if (Entry->State == TreeEntry::NeedToGather)
2561       return "color=red";
2562     return "";
2563   }
2564 };
2565 
2566 } // end namespace llvm
2567 
2568 BoUpSLP::~BoUpSLP() {
2569   for (const auto &Pair : DeletedInstructions) {
2570     // Replace operands of ignored instructions with Undefs in case if they were
2571     // marked for deletion.
2572     if (Pair.getSecond()) {
2573       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2574       Pair.getFirst()->replaceAllUsesWith(Undef);
2575     }
2576     Pair.getFirst()->dropAllReferences();
2577   }
2578   for (const auto &Pair : DeletedInstructions) {
2579     assert(Pair.getFirst()->use_empty() &&
2580            "trying to erase instruction with users.");
2581     Pair.getFirst()->eraseFromParent();
2582   }
2583 #ifdef EXPENSIVE_CHECKS
2584   // If we could guarantee that this call is not extremely slow, we could
2585   // remove the ifdef limitation (see PR47712).
2586   assert(!verifyFunction(*F, &dbgs()));
2587 #endif
2588 }
2589 
2590 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2591   for (auto *V : AV) {
2592     if (auto *I = dyn_cast<Instruction>(V))
2593       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2594   };
2595 }
2596 
2597 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2598                         ArrayRef<Value *> UserIgnoreLst) {
2599   ExtraValueToDebugLocsMap ExternallyUsedValues;
2600   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2601 }
2602 
2603 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2604                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2605                         ArrayRef<Value *> UserIgnoreLst) {
2606   deleteTree();
2607   UserIgnoreList = UserIgnoreLst;
2608   if (!allSameType(Roots))
2609     return;
2610   buildTree_rec(Roots, 0, EdgeInfo());
2611 
2612   // Collect the values that we need to extract from the tree.
2613   for (auto &TEPtr : VectorizableTree) {
2614     TreeEntry *Entry = TEPtr.get();
2615 
2616     // No need to handle users of gathered values.
2617     if (Entry->State == TreeEntry::NeedToGather)
2618       continue;
2619 
2620     // For each lane:
2621     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622       Value *Scalar = Entry->Scalars[Lane];
2623       int FoundLane = Entry->findLaneForValue(Scalar);
2624 
2625       // Check if the scalar is externally used as an extra arg.
2626       auto ExtI = ExternallyUsedValues.find(Scalar);
2627       if (ExtI != ExternallyUsedValues.end()) {
2628         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2629                           << Lane << " from " << *Scalar << ".\n");
2630         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2631       }
2632       for (User *U : Scalar->users()) {
2633         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2634 
2635         Instruction *UserInst = dyn_cast<Instruction>(U);
2636         if (!UserInst)
2637           continue;
2638 
2639         // Skip in-tree scalars that become vectors
2640         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2641           Value *UseScalar = UseEntry->Scalars[0];
2642           // Some in-tree scalars will remain as scalar in vectorized
2643           // instructions. If that is the case, the one in Lane 0 will
2644           // be used.
2645           if (UseScalar != U ||
2646               UseEntry->State == TreeEntry::ScatterVectorize ||
2647               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2648             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2649                               << ".\n");
2650             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2651             continue;
2652           }
2653         }
2654 
2655         // Ignore users in the user ignore list.
2656         if (is_contained(UserIgnoreList, UserInst))
2657           continue;
2658 
2659         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2660                           << Lane << " from " << *Scalar << ".\n");
2661         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2662       }
2663     }
2664   }
2665 }
2666 
2667 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2668                             const EdgeInfo &UserTreeIdx) {
2669   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2670 
2671   InstructionsState S = getSameOpcode(VL);
2672   if (Depth == RecursionMaxDepth) {
2673     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2674     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2675     return;
2676   }
2677 
2678   // Don't handle vectors.
2679   if (S.OpValue->getType()->isVectorTy() &&
2680       !isa<InsertElementInst>(S.OpValue)) {
2681     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2682     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2683     return;
2684   }
2685 
2686   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2687     if (SI->getValueOperand()->getType()->isVectorTy()) {
2688       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2689       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2690       return;
2691     }
2692 
2693   // If all of the operands are identical or constant we have a simple solution.
2694   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2695     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2696     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2697     return;
2698   }
2699 
2700   // We now know that this is a vector of instructions of the same type from
2701   // the same block.
2702 
2703   // Don't vectorize ephemeral values.
2704   for (Value *V : VL) {
2705     if (EphValues.count(V)) {
2706       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2707                         << ") is ephemeral.\n");
2708       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2709       return;
2710     }
2711   }
2712 
2713   // Check if this is a duplicate of another entry.
2714   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2715     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2716     if (!E->isSame(VL)) {
2717       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2718       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2719       return;
2720     }
2721     // Record the reuse of the tree node.  FIXME, currently this is only used to
2722     // properly draw the graph rather than for the actual vectorization.
2723     E->UserTreeIndices.push_back(UserTreeIdx);
2724     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2725                       << ".\n");
2726     return;
2727   }
2728 
2729   // Check that none of the instructions in the bundle are already in the tree.
2730   for (Value *V : VL) {
2731     auto *I = dyn_cast<Instruction>(V);
2732     if (!I)
2733       continue;
2734     if (getTreeEntry(I)) {
2735       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2736                         << ") is already in tree.\n");
2737       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2738       return;
2739     }
2740   }
2741 
2742   // If any of the scalars is marked as a value that needs to stay scalar, then
2743   // we need to gather the scalars.
2744   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2745   for (Value *V : VL) {
2746     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2747       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2748       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2749       return;
2750     }
2751   }
2752 
2753   // Check that all of the users of the scalars that we want to vectorize are
2754   // schedulable.
2755   auto *VL0 = cast<Instruction>(S.OpValue);
2756   BasicBlock *BB = VL0->getParent();
2757 
2758   if (!DT->isReachableFromEntry(BB)) {
2759     // Don't go into unreachable blocks. They may contain instructions with
2760     // dependency cycles which confuse the final scheduling.
2761     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2762     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2763     return;
2764   }
2765 
2766   // Check that every instruction appears once in this bundle.
2767   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2768   SmallVector<Value *, 4> UniqueValues;
2769   DenseMap<Value *, unsigned> UniquePositions;
2770   for (Value *V : VL) {
2771     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2772     ReuseShuffleIndicies.emplace_back(Res.first->second);
2773     if (Res.second)
2774       UniqueValues.emplace_back(V);
2775   }
2776   size_t NumUniqueScalarValues = UniqueValues.size();
2777   if (NumUniqueScalarValues == VL.size()) {
2778     ReuseShuffleIndicies.clear();
2779   } else {
2780     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2781     if (NumUniqueScalarValues <= 1 ||
2782         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2783       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2784       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2785       return;
2786     }
2787     VL = UniqueValues;
2788   }
2789 
2790   auto &BSRef = BlocksSchedules[BB];
2791   if (!BSRef)
2792     BSRef = std::make_unique<BlockScheduling>(BB);
2793 
2794   BlockScheduling &BS = *BSRef.get();
2795 
2796   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2797   if (!Bundle) {
2798     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2799     assert((!BS.getScheduleData(VL0) ||
2800             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2801            "tryScheduleBundle should cancelScheduling on failure");
2802     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2803                  ReuseShuffleIndicies);
2804     return;
2805   }
2806   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2807 
2808   unsigned ShuffleOrOp = S.isAltShuffle() ?
2809                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2810   switch (ShuffleOrOp) {
2811     case Instruction::PHI: {
2812       auto *PH = cast<PHINode>(VL0);
2813 
2814       // Check for terminator values (e.g. invoke).
2815       for (Value *V : VL)
2816         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2817           Instruction *Term = dyn_cast<Instruction>(
2818               cast<PHINode>(V)->getIncomingValueForBlock(
2819                   PH->getIncomingBlock(I)));
2820           if (Term && Term->isTerminator()) {
2821             LLVM_DEBUG(dbgs()
2822                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2823             BS.cancelScheduling(VL, VL0);
2824             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2825                          ReuseShuffleIndicies);
2826             return;
2827           }
2828         }
2829 
2830       TreeEntry *TE =
2831           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2832       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2833 
2834       // Keeps the reordered operands to avoid code duplication.
2835       SmallVector<ValueList, 2> OperandsVec;
2836       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2837         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
2838           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
2839           TE->setOperand(I, Operands);
2840           OperandsVec.push_back(Operands);
2841           continue;
2842         }
2843         ValueList Operands;
2844         // Prepare the operand vector.
2845         for (Value *V : VL)
2846           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2847               PH->getIncomingBlock(I)));
2848         TE->setOperand(I, Operands);
2849         OperandsVec.push_back(Operands);
2850       }
2851       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2852         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2853       return;
2854     }
2855     case Instruction::ExtractValue:
2856     case Instruction::ExtractElement: {
2857       OrdersType CurrentOrder;
2858       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2859       if (Reuse) {
2860         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2861         ++NumOpsWantToKeepOriginalOrder;
2862         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2863                      ReuseShuffleIndicies);
2864         // This is a special case, as it does not gather, but at the same time
2865         // we are not extending buildTree_rec() towards the operands.
2866         ValueList Op0;
2867         Op0.assign(VL.size(), VL0->getOperand(0));
2868         VectorizableTree.back()->setOperand(0, Op0);
2869         return;
2870       }
2871       if (!CurrentOrder.empty()) {
2872         LLVM_DEBUG({
2873           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2874                     "with order";
2875           for (unsigned Idx : CurrentOrder)
2876             dbgs() << " " << Idx;
2877           dbgs() << "\n";
2878         });
2879         // Insert new order with initial value 0, if it does not exist,
2880         // otherwise return the iterator to the existing one.
2881         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2882                      ReuseShuffleIndicies, CurrentOrder);
2883         findRootOrder(CurrentOrder);
2884         ++NumOpsWantToKeepOrder[CurrentOrder];
2885         // This is a special case, as it does not gather, but at the same time
2886         // we are not extending buildTree_rec() towards the operands.
2887         ValueList Op0;
2888         Op0.assign(VL.size(), VL0->getOperand(0));
2889         VectorizableTree.back()->setOperand(0, Op0);
2890         return;
2891       }
2892       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2893       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2894                    ReuseShuffleIndicies);
2895       BS.cancelScheduling(VL, VL0);
2896       return;
2897     }
2898     case Instruction::InsertElement: {
2899       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
2900 
2901       // Check that we have a buildvector and not a shuffle of 2 or more
2902       // different vectors.
2903       ValueSet SourceVectors;
2904       for (Value *V : VL)
2905         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
2906 
2907       if (count_if(VL, [&SourceVectors](Value *V) {
2908             return !SourceVectors.contains(V);
2909           }) >= 2) {
2910         // Found 2nd source vector - cancel.
2911         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
2912                              "different source vectors.\n");
2913         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2914                      ReuseShuffleIndicies);
2915         BS.cancelScheduling(VL, VL0);
2916         return;
2917       }
2918 
2919       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
2920       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
2921 
2922       constexpr int NumOps = 2;
2923       ValueList VectorOperands[NumOps];
2924       for (int I = 0; I < NumOps; ++I) {
2925         for (Value *V : VL)
2926           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
2927 
2928         TE->setOperand(I, VectorOperands[I]);
2929       }
2930       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
2931       return;
2932     }
2933     case Instruction::Load: {
2934       // Check that a vectorized load would load the same memory as a scalar
2935       // load. For example, we don't want to vectorize loads that are smaller
2936       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2937       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2938       // from such a struct, we read/write packed bits disagreeing with the
2939       // unvectorized version.
2940       Type *ScalarTy = VL0->getType();
2941 
2942       if (DL->getTypeSizeInBits(ScalarTy) !=
2943           DL->getTypeAllocSizeInBits(ScalarTy)) {
2944         BS.cancelScheduling(VL, VL0);
2945         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2946                      ReuseShuffleIndicies);
2947         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2948         return;
2949       }
2950 
2951       // Make sure all loads in the bundle are simple - we can't vectorize
2952       // atomic or volatile loads.
2953       SmallVector<Value *, 4> PointerOps(VL.size());
2954       auto POIter = PointerOps.begin();
2955       for (Value *V : VL) {
2956         auto *L = cast<LoadInst>(V);
2957         if (!L->isSimple()) {
2958           BS.cancelScheduling(VL, VL0);
2959           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2960                        ReuseShuffleIndicies);
2961           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2962           return;
2963         }
2964         *POIter = L->getPointerOperand();
2965         ++POIter;
2966       }
2967 
2968       OrdersType CurrentOrder;
2969       // Check the order of pointer operands.
2970       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
2971         Value *Ptr0;
2972         Value *PtrN;
2973         if (CurrentOrder.empty()) {
2974           Ptr0 = PointerOps.front();
2975           PtrN = PointerOps.back();
2976         } else {
2977           Ptr0 = PointerOps[CurrentOrder.front()];
2978           PtrN = PointerOps[CurrentOrder.back()];
2979         }
2980         Optional<int> Diff = getPointersDiff(
2981             ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
2982         // Check that the sorted loads are consecutive.
2983         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2984           if (CurrentOrder.empty()) {
2985             // Original loads are consecutive and does not require reordering.
2986             ++NumOpsWantToKeepOriginalOrder;
2987             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2988                                          UserTreeIdx, ReuseShuffleIndicies);
2989             TE->setOperandsInOrder();
2990             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2991           } else {
2992             // Need to reorder.
2993             TreeEntry *TE =
2994                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2995                              ReuseShuffleIndicies, CurrentOrder);
2996             TE->setOperandsInOrder();
2997             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2998             findRootOrder(CurrentOrder);
2999             ++NumOpsWantToKeepOrder[CurrentOrder];
3000           }
3001           return;
3002         }
3003         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3004         TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
3005                                      UserTreeIdx, ReuseShuffleIndicies);
3006         TE->setOperandsInOrder();
3007         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
3008         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
3009         return;
3010       }
3011 
3012       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
3013       BS.cancelScheduling(VL, VL0);
3014       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3015                    ReuseShuffleIndicies);
3016       return;
3017     }
3018     case Instruction::ZExt:
3019     case Instruction::SExt:
3020     case Instruction::FPToUI:
3021     case Instruction::FPToSI:
3022     case Instruction::FPExt:
3023     case Instruction::PtrToInt:
3024     case Instruction::IntToPtr:
3025     case Instruction::SIToFP:
3026     case Instruction::UIToFP:
3027     case Instruction::Trunc:
3028     case Instruction::FPTrunc:
3029     case Instruction::BitCast: {
3030       Type *SrcTy = VL0->getOperand(0)->getType();
3031       for (Value *V : VL) {
3032         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
3033         if (Ty != SrcTy || !isValidElementType(Ty)) {
3034           BS.cancelScheduling(VL, VL0);
3035           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3036                        ReuseShuffleIndicies);
3037           LLVM_DEBUG(dbgs()
3038                      << "SLP: Gathering casts with different src types.\n");
3039           return;
3040         }
3041       }
3042       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3043                                    ReuseShuffleIndicies);
3044       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
3045 
3046       TE->setOperandsInOrder();
3047       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3048         ValueList Operands;
3049         // Prepare the operand vector.
3050         for (Value *V : VL)
3051           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3052 
3053         buildTree_rec(Operands, Depth + 1, {TE, i});
3054       }
3055       return;
3056     }
3057     case Instruction::ICmp:
3058     case Instruction::FCmp: {
3059       // Check that all of the compares have the same predicate.
3060       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3061       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
3062       Type *ComparedTy = VL0->getOperand(0)->getType();
3063       for (Value *V : VL) {
3064         CmpInst *Cmp = cast<CmpInst>(V);
3065         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
3066             Cmp->getOperand(0)->getType() != ComparedTy) {
3067           BS.cancelScheduling(VL, VL0);
3068           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3069                        ReuseShuffleIndicies);
3070           LLVM_DEBUG(dbgs()
3071                      << "SLP: Gathering cmp with different predicate.\n");
3072           return;
3073         }
3074       }
3075 
3076       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3077                                    ReuseShuffleIndicies);
3078       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
3079 
3080       ValueList Left, Right;
3081       if (cast<CmpInst>(VL0)->isCommutative()) {
3082         // Commutative predicate - collect + sort operands of the instructions
3083         // so that each side is more likely to have the same opcode.
3084         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3085         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3086       } else {
3087         // Collect operands - commute if it uses the swapped predicate.
3088         for (Value *V : VL) {
3089           auto *Cmp = cast<CmpInst>(V);
3090           Value *LHS = Cmp->getOperand(0);
3091           Value *RHS = Cmp->getOperand(1);
3092           if (Cmp->getPredicate() != P0)
3093             std::swap(LHS, RHS);
3094           Left.push_back(LHS);
3095           Right.push_back(RHS);
3096         }
3097       }
3098       TE->setOperand(0, Left);
3099       TE->setOperand(1, Right);
3100       buildTree_rec(Left, Depth + 1, {TE, 0});
3101       buildTree_rec(Right, Depth + 1, {TE, 1});
3102       return;
3103     }
3104     case Instruction::Select:
3105     case Instruction::FNeg:
3106     case Instruction::Add:
3107     case Instruction::FAdd:
3108     case Instruction::Sub:
3109     case Instruction::FSub:
3110     case Instruction::Mul:
3111     case Instruction::FMul:
3112     case Instruction::UDiv:
3113     case Instruction::SDiv:
3114     case Instruction::FDiv:
3115     case Instruction::URem:
3116     case Instruction::SRem:
3117     case Instruction::FRem:
3118     case Instruction::Shl:
3119     case Instruction::LShr:
3120     case Instruction::AShr:
3121     case Instruction::And:
3122     case Instruction::Or:
3123     case Instruction::Xor: {
3124       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3125                                    ReuseShuffleIndicies);
3126       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3127 
3128       // Sort operands of the instructions so that each side is more likely to
3129       // have the same opcode.
3130       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3131         ValueList Left, Right;
3132         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3133         TE->setOperand(0, Left);
3134         TE->setOperand(1, Right);
3135         buildTree_rec(Left, Depth + 1, {TE, 0});
3136         buildTree_rec(Right, Depth + 1, {TE, 1});
3137         return;
3138       }
3139 
3140       TE->setOperandsInOrder();
3141       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3142         ValueList Operands;
3143         // Prepare the operand vector.
3144         for (Value *V : VL)
3145           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3146 
3147         buildTree_rec(Operands, Depth + 1, {TE, i});
3148       }
3149       return;
3150     }
3151     case Instruction::GetElementPtr: {
3152       // We don't combine GEPs with complicated (nested) indexing.
3153       for (Value *V : VL) {
3154         if (cast<Instruction>(V)->getNumOperands() != 2) {
3155           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3156           BS.cancelScheduling(VL, VL0);
3157           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3158                        ReuseShuffleIndicies);
3159           return;
3160         }
3161       }
3162 
3163       // We can't combine several GEPs into one vector if they operate on
3164       // different types.
3165       Type *Ty0 = VL0->getOperand(0)->getType();
3166       for (Value *V : VL) {
3167         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3168         if (Ty0 != CurTy) {
3169           LLVM_DEBUG(dbgs()
3170                      << "SLP: not-vectorizable GEP (different types).\n");
3171           BS.cancelScheduling(VL, VL0);
3172           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3173                        ReuseShuffleIndicies);
3174           return;
3175         }
3176       }
3177 
3178       // We don't combine GEPs with non-constant indexes.
3179       Type *Ty1 = VL0->getOperand(1)->getType();
3180       for (Value *V : VL) {
3181         auto Op = cast<Instruction>(V)->getOperand(1);
3182         if (!isa<ConstantInt>(Op) ||
3183             (Op->getType() != Ty1 &&
3184              Op->getType()->getScalarSizeInBits() >
3185                  DL->getIndexSizeInBits(
3186                      V->getType()->getPointerAddressSpace()))) {
3187           LLVM_DEBUG(dbgs()
3188                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3189           BS.cancelScheduling(VL, VL0);
3190           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3191                        ReuseShuffleIndicies);
3192           return;
3193         }
3194       }
3195 
3196       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3197                                    ReuseShuffleIndicies);
3198       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3199       TE->setOperandsInOrder();
3200       for (unsigned i = 0, e = 2; i < e; ++i) {
3201         ValueList Operands;
3202         // Prepare the operand vector.
3203         for (Value *V : VL)
3204           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3205 
3206         buildTree_rec(Operands, Depth + 1, {TE, i});
3207       }
3208       return;
3209     }
3210     case Instruction::Store: {
3211       // Check if the stores are consecutive or if we need to swizzle them.
3212       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3213       // Avoid types that are padded when being allocated as scalars, while
3214       // being packed together in a vector (such as i1).
3215       if (DL->getTypeSizeInBits(ScalarTy) !=
3216           DL->getTypeAllocSizeInBits(ScalarTy)) {
3217         BS.cancelScheduling(VL, VL0);
3218         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3219                      ReuseShuffleIndicies);
3220         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3221         return;
3222       }
3223       // Make sure all stores in the bundle are simple - we can't vectorize
3224       // atomic or volatile stores.
3225       SmallVector<Value *, 4> PointerOps(VL.size());
3226       ValueList Operands(VL.size());
3227       auto POIter = PointerOps.begin();
3228       auto OIter = Operands.begin();
3229       for (Value *V : VL) {
3230         auto *SI = cast<StoreInst>(V);
3231         if (!SI->isSimple()) {
3232           BS.cancelScheduling(VL, VL0);
3233           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3234                        ReuseShuffleIndicies);
3235           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3236           return;
3237         }
3238         *POIter = SI->getPointerOperand();
3239         *OIter = SI->getValueOperand();
3240         ++POIter;
3241         ++OIter;
3242       }
3243 
3244       OrdersType CurrentOrder;
3245       // Check the order of pointer operands.
3246       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
3247         Value *Ptr0;
3248         Value *PtrN;
3249         if (CurrentOrder.empty()) {
3250           Ptr0 = PointerOps.front();
3251           PtrN = PointerOps.back();
3252         } else {
3253           Ptr0 = PointerOps[CurrentOrder.front()];
3254           PtrN = PointerOps[CurrentOrder.back()];
3255         }
3256         Optional<int> Dist =
3257             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
3258         // Check that the sorted pointer operands are consecutive.
3259         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3260           if (CurrentOrder.empty()) {
3261             // Original stores are consecutive and does not require reordering.
3262             ++NumOpsWantToKeepOriginalOrder;
3263             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3264                                          UserTreeIdx, ReuseShuffleIndicies);
3265             TE->setOperandsInOrder();
3266             buildTree_rec(Operands, Depth + 1, {TE, 0});
3267             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3268           } else {
3269             TreeEntry *TE =
3270                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3271                              ReuseShuffleIndicies, CurrentOrder);
3272             TE->setOperandsInOrder();
3273             buildTree_rec(Operands, Depth + 1, {TE, 0});
3274             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3275             findRootOrder(CurrentOrder);
3276             ++NumOpsWantToKeepOrder[CurrentOrder];
3277           }
3278           return;
3279         }
3280       }
3281 
3282       BS.cancelScheduling(VL, VL0);
3283       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3284                    ReuseShuffleIndicies);
3285       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3286       return;
3287     }
3288     case Instruction::Call: {
3289       // Check if the calls are all to the same vectorizable intrinsic or
3290       // library function.
3291       CallInst *CI = cast<CallInst>(VL0);
3292       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3293 
3294       VFShape Shape = VFShape::get(
3295           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3296           false /*HasGlobalPred*/);
3297       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3298 
3299       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3300         BS.cancelScheduling(VL, VL0);
3301         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3302                      ReuseShuffleIndicies);
3303         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3304         return;
3305       }
3306       Function *F = CI->getCalledFunction();
3307       unsigned NumArgs = CI->getNumArgOperands();
3308       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3309       for (unsigned j = 0; j != NumArgs; ++j)
3310         if (hasVectorInstrinsicScalarOpd(ID, j))
3311           ScalarArgs[j] = CI->getArgOperand(j);
3312       for (Value *V : VL) {
3313         CallInst *CI2 = dyn_cast<CallInst>(V);
3314         if (!CI2 || CI2->getCalledFunction() != F ||
3315             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3316             (VecFunc &&
3317              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3318             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3319           BS.cancelScheduling(VL, VL0);
3320           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3321                        ReuseShuffleIndicies);
3322           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3323                             << "\n");
3324           return;
3325         }
3326         // Some intrinsics have scalar arguments and should be same in order for
3327         // them to be vectorized.
3328         for (unsigned j = 0; j != NumArgs; ++j) {
3329           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3330             Value *A1J = CI2->getArgOperand(j);
3331             if (ScalarArgs[j] != A1J) {
3332               BS.cancelScheduling(VL, VL0);
3333               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3334                            ReuseShuffleIndicies);
3335               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3336                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3337                                 << "\n");
3338               return;
3339             }
3340           }
3341         }
3342         // Verify that the bundle operands are identical between the two calls.
3343         if (CI->hasOperandBundles() &&
3344             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3345                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3346                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3347           BS.cancelScheduling(VL, VL0);
3348           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3349                        ReuseShuffleIndicies);
3350           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3351                             << *CI << "!=" << *V << '\n');
3352           return;
3353         }
3354       }
3355 
3356       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3357                                    ReuseShuffleIndicies);
3358       TE->setOperandsInOrder();
3359       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3360         ValueList Operands;
3361         // Prepare the operand vector.
3362         for (Value *V : VL) {
3363           auto *CI2 = cast<CallInst>(V);
3364           Operands.push_back(CI2->getArgOperand(i));
3365         }
3366         buildTree_rec(Operands, Depth + 1, {TE, i});
3367       }
3368       return;
3369     }
3370     case Instruction::ShuffleVector: {
3371       // If this is not an alternate sequence of opcode like add-sub
3372       // then do not vectorize this instruction.
3373       if (!S.isAltShuffle()) {
3374         BS.cancelScheduling(VL, VL0);
3375         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3376                      ReuseShuffleIndicies);
3377         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3378         return;
3379       }
3380       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3381                                    ReuseShuffleIndicies);
3382       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3383 
3384       // Reorder operands if reordering would enable vectorization.
3385       if (isa<BinaryOperator>(VL0)) {
3386         ValueList Left, Right;
3387         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3388         TE->setOperand(0, Left);
3389         TE->setOperand(1, Right);
3390         buildTree_rec(Left, Depth + 1, {TE, 0});
3391         buildTree_rec(Right, Depth + 1, {TE, 1});
3392         return;
3393       }
3394 
3395       TE->setOperandsInOrder();
3396       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3397         ValueList Operands;
3398         // Prepare the operand vector.
3399         for (Value *V : VL)
3400           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3401 
3402         buildTree_rec(Operands, Depth + 1, {TE, i});
3403       }
3404       return;
3405     }
3406     default:
3407       BS.cancelScheduling(VL, VL0);
3408       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3409                    ReuseShuffleIndicies);
3410       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3411       return;
3412   }
3413 }
3414 
3415 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3416   unsigned N = 1;
3417   Type *EltTy = T;
3418 
3419   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3420          isa<VectorType>(EltTy)) {
3421     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3422       // Check that struct is homogeneous.
3423       for (const auto *Ty : ST->elements())
3424         if (Ty != *ST->element_begin())
3425           return 0;
3426       N *= ST->getNumElements();
3427       EltTy = *ST->element_begin();
3428     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3429       N *= AT->getNumElements();
3430       EltTy = AT->getElementType();
3431     } else {
3432       auto *VT = cast<FixedVectorType>(EltTy);
3433       N *= VT->getNumElements();
3434       EltTy = VT->getElementType();
3435     }
3436   }
3437 
3438   if (!isValidElementType(EltTy))
3439     return 0;
3440   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3441   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3442     return 0;
3443   return N;
3444 }
3445 
3446 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3447                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3448   Instruction *E0 = cast<Instruction>(OpValue);
3449   assert(E0->getOpcode() == Instruction::ExtractElement ||
3450          E0->getOpcode() == Instruction::ExtractValue);
3451   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3452   // Check if all of the extracts come from the same vector and from the
3453   // correct offset.
3454   Value *Vec = E0->getOperand(0);
3455 
3456   CurrentOrder.clear();
3457 
3458   // We have to extract from a vector/aggregate with the same number of elements.
3459   unsigned NElts;
3460   if (E0->getOpcode() == Instruction::ExtractValue) {
3461     const DataLayout &DL = E0->getModule()->getDataLayout();
3462     NElts = canMapToVector(Vec->getType(), DL);
3463     if (!NElts)
3464       return false;
3465     // Check if load can be rewritten as load of vector.
3466     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3467     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3468       return false;
3469   } else {
3470     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3471   }
3472 
3473   if (NElts != VL.size())
3474     return false;
3475 
3476   // Check that all of the indices extract from the correct offset.
3477   bool ShouldKeepOrder = true;
3478   unsigned E = VL.size();
3479   // Assign to all items the initial value E + 1 so we can check if the extract
3480   // instruction index was used already.
3481   // Also, later we can check that all the indices are used and we have a
3482   // consecutive access in the extract instructions, by checking that no
3483   // element of CurrentOrder still has value E + 1.
3484   CurrentOrder.assign(E, E + 1);
3485   unsigned I = 0;
3486   for (; I < E; ++I) {
3487     auto *Inst = cast<Instruction>(VL[I]);
3488     if (Inst->getOperand(0) != Vec)
3489       break;
3490     Optional<unsigned> Idx = getExtractIndex(Inst);
3491     if (!Idx)
3492       break;
3493     const unsigned ExtIdx = *Idx;
3494     if (ExtIdx != I) {
3495       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3496         break;
3497       ShouldKeepOrder = false;
3498       CurrentOrder[ExtIdx] = I;
3499     } else {
3500       if (CurrentOrder[I] != E + 1)
3501         break;
3502       CurrentOrder[I] = I;
3503     }
3504   }
3505   if (I < E) {
3506     CurrentOrder.clear();
3507     return false;
3508   }
3509 
3510   return ShouldKeepOrder;
3511 }
3512 
3513 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
3514                                     ArrayRef<Value *> VectorizedVals) const {
3515   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
3516          llvm::all_of(I->users(), [this](User *U) {
3517            return ScalarToTreeEntry.count(U) > 0;
3518          });
3519 }
3520 
3521 static std::pair<InstructionCost, InstructionCost>
3522 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3523                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3524   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3525 
3526   // Calculate the cost of the scalar and vector calls.
3527   SmallVector<Type *, 4> VecTys;
3528   for (Use &Arg : CI->args())
3529     VecTys.push_back(
3530         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3531   FastMathFlags FMF;
3532   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3533     FMF = FPCI->getFastMathFlags();
3534   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3535   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3536                                     dyn_cast<IntrinsicInst>(CI));
3537   auto IntrinsicCost =
3538     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3539 
3540   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3541                                      VecTy->getNumElements())),
3542                             false /*HasGlobalPred*/);
3543   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3544   auto LibCost = IntrinsicCost;
3545   if (!CI->isNoBuiltin() && VecFunc) {
3546     // Calculate the cost of the vector library call.
3547     // If the corresponding vector call is cheaper, return its cost.
3548     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3549                                     TTI::TCK_RecipThroughput);
3550   }
3551   return {IntrinsicCost, LibCost};
3552 }
3553 
3554 /// Compute the cost of creating a vector of type \p VecTy containing the
3555 /// extracted values from \p VL.
3556 static InstructionCost
3557 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3558                    TargetTransformInfo::ShuffleKind ShuffleKind,
3559                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3560   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3561 
3562   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3563       VecTy->getNumElements() < NumOfParts)
3564     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3565 
3566   bool AllConsecutive = true;
3567   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3568   unsigned Idx = -1;
3569   InstructionCost Cost = 0;
3570 
3571   // Process extracts in blocks of EltsPerVector to check if the source vector
3572   // operand can be re-used directly. If not, add the cost of creating a shuffle
3573   // to extract the values into a vector register.
3574   for (auto *V : VL) {
3575     ++Idx;
3576 
3577     // Reached the start of a new vector registers.
3578     if (Idx % EltsPerVector == 0) {
3579       AllConsecutive = true;
3580       continue;
3581     }
3582 
3583     // Check all extracts for a vector register on the target directly
3584     // extract values in order.
3585     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3586     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3587     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3588                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3589 
3590     if (AllConsecutive)
3591       continue;
3592 
3593     // Skip all indices, except for the last index per vector block.
3594     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3595       continue;
3596 
3597     // If we have a series of extracts which are not consecutive and hence
3598     // cannot re-use the source vector register directly, compute the shuffle
3599     // cost to extract the a vector with EltsPerVector elements.
3600     Cost += TTI.getShuffleCost(
3601         TargetTransformInfo::SK_PermuteSingleSrc,
3602         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3603   }
3604   return Cost;
3605 }
3606 
3607 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
3608                                       ArrayRef<Value *> VectorizedVals) {
3609   ArrayRef<Value*> VL = E->Scalars;
3610 
3611   Type *ScalarTy = VL[0]->getType();
3612   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3613     ScalarTy = SI->getValueOperand()->getType();
3614   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3615     ScalarTy = CI->getOperand(0)->getType();
3616   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
3617     ScalarTy = IE->getOperand(1)->getType();
3618   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3619   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3620 
3621   // If we have computed a smaller type for the expression, update VecTy so
3622   // that the costs will be accurate.
3623   if (MinBWs.count(VL[0]))
3624     VecTy = FixedVectorType::get(
3625         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3626 
3627   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3628   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3629   InstructionCost ReuseShuffleCost = 0;
3630   if (NeedToShuffleReuses) {
3631     ReuseShuffleCost =
3632         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3633                             E->ReuseShuffleIndices);
3634   }
3635   // FIXME: it tries to fix a problem with MSVC buildbots.
3636   TargetTransformInfo &TTIRef = *TTI;
3637   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
3638                                VectorizedVals](InstructionCost &Cost,
3639                                                bool IsGather) {
3640     DenseMap<Value *, int> ExtractVectorsTys;
3641     for (auto *V : VL) {
3642       // If all users of instruction are going to be vectorized and this
3643       // instruction itself is not going to be vectorized, consider this
3644       // instruction as dead and remove its cost from the final cost of the
3645       // vectorized tree.
3646       if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
3647           (IsGather && ScalarToTreeEntry.count(V)))
3648         continue;
3649       auto *EE = cast<ExtractElementInst>(V);
3650       unsigned Idx = *getExtractIndex(EE);
3651       if (TTIRef.getNumberOfParts(VecTy) !=
3652           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3653         auto It =
3654             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3655         It->getSecond() = std::min<int>(It->second, Idx);
3656       }
3657       // Take credit for instruction that will become dead.
3658       if (EE->hasOneUse()) {
3659         Instruction *Ext = EE->user_back();
3660         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3661             all_of(Ext->users(),
3662                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
3663           // Use getExtractWithExtendCost() to calculate the cost of
3664           // extractelement/ext pair.
3665           Cost -=
3666               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3667                                               EE->getVectorOperandType(), Idx);
3668           // Add back the cost of s|zext which is subtracted separately.
3669           Cost += TTIRef.getCastInstrCost(
3670               Ext->getOpcode(), Ext->getType(), EE->getType(),
3671               TTI::getCastContextHint(Ext), CostKind, Ext);
3672           continue;
3673         }
3674       }
3675       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3676                                         EE->getVectorOperandType(), Idx);
3677     }
3678     // Add a cost for subvector extracts/inserts if required.
3679     for (const auto &Data : ExtractVectorsTys) {
3680       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3681       unsigned NumElts = VecTy->getNumElements();
3682       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3683         unsigned Idx = (Data.second / NumElts) * NumElts;
3684         unsigned EENumElts = EEVTy->getNumElements();
3685         if (Idx + NumElts <= EENumElts) {
3686           Cost +=
3687               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3688                                     EEVTy, None, Idx, VecTy);
3689         } else {
3690           // Need to round up the subvector type vectorization factor to avoid a
3691           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3692           // <= EENumElts.
3693           auto *SubVT =
3694               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3695           Cost +=
3696               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3697                                     EEVTy, None, Idx, SubVT);
3698         }
3699       } else {
3700         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3701                                       VecTy, None, 0, EEVTy);
3702       }
3703     }
3704   };
3705   if (E->State == TreeEntry::NeedToGather) {
3706     if (allConstant(VL))
3707       return 0;
3708     if (isa<InsertElementInst>(VL[0]))
3709       return InstructionCost::getInvalid();
3710     SmallVector<int> Mask;
3711     SmallVector<const TreeEntry *> Entries;
3712     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3713         isGatherShuffledEntry(E, Mask, Entries);
3714     if (Shuffle.hasValue()) {
3715       InstructionCost GatherCost = 0;
3716       if (ShuffleVectorInst::isIdentityMask(Mask)) {
3717         // Perfect match in the graph, will reuse the previously vectorized
3718         // node. Cost is 0.
3719         LLVM_DEBUG(
3720             dbgs()
3721             << "SLP: perfect diamond match for gather bundle that starts with "
3722             << *VL.front() << ".\n");
3723       } else {
3724         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3725                           << " entries for bundle that starts with "
3726                           << *VL.front() << ".\n");
3727         // Detected that instead of gather we can emit a shuffle of single/two
3728         // previously vectorized nodes. Add the cost of the permutation rather
3729         // than gather.
3730         GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3731       }
3732       return ReuseShuffleCost + GatherCost;
3733     }
3734     if (isSplat(VL)) {
3735       // Found the broadcasting of the single scalar, calculate the cost as the
3736       // broadcast.
3737       return ReuseShuffleCost +
3738              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3739                                  0);
3740     }
3741     if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
3742         allSameBlock(VL)) {
3743       // Check that gather of extractelements can be represented as just a
3744       // shuffle of a single/two vectors the scalars are extracted from.
3745       SmallVector<int> Mask;
3746       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3747           isShuffle(VL, Mask);
3748       if (ShuffleKind.hasValue()) {
3749         // Found the bunch of extractelement instructions that must be gathered
3750         // into a vector and can be represented as a permutation elements in a
3751         // single input vector or of 2 input vectors.
3752         InstructionCost Cost =
3753             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3754         AdjustExtractsCost(Cost, /*IsGather=*/true);
3755         return ReuseShuffleCost + Cost;
3756       }
3757     }
3758     return ReuseShuffleCost + getGatherCost(VL);
3759   }
3760   assert((E->State == TreeEntry::Vectorize ||
3761           E->State == TreeEntry::ScatterVectorize) &&
3762          "Unhandled state");
3763   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3764   Instruction *VL0 = E->getMainOp();
3765   unsigned ShuffleOrOp =
3766       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3767   switch (ShuffleOrOp) {
3768     case Instruction::PHI:
3769       return 0;
3770 
3771     case Instruction::ExtractValue:
3772     case Instruction::ExtractElement: {
3773       // The common cost of removal ExtractElement/ExtractValue instructions +
3774       // the cost of shuffles, if required to resuffle the original vector.
3775       InstructionCost CommonCost = 0;
3776       if (NeedToShuffleReuses) {
3777         unsigned Idx = 0;
3778         for (unsigned I : E->ReuseShuffleIndices) {
3779           if (ShuffleOrOp == Instruction::ExtractElement) {
3780             auto *EE = cast<ExtractElementInst>(VL[I]);
3781             ReuseShuffleCost -= TTI->getVectorInstrCost(
3782                 Instruction::ExtractElement, EE->getVectorOperandType(),
3783                 *getExtractIndex(EE));
3784           } else {
3785             ReuseShuffleCost -= TTI->getVectorInstrCost(
3786                 Instruction::ExtractElement, VecTy, Idx);
3787             ++Idx;
3788           }
3789         }
3790         Idx = ReuseShuffleNumbers;
3791         for (Value *V : VL) {
3792           if (ShuffleOrOp == Instruction::ExtractElement) {
3793             auto *EE = cast<ExtractElementInst>(V);
3794             ReuseShuffleCost += TTI->getVectorInstrCost(
3795                 Instruction::ExtractElement, EE->getVectorOperandType(),
3796                 *getExtractIndex(EE));
3797           } else {
3798             --Idx;
3799             ReuseShuffleCost += TTI->getVectorInstrCost(
3800                 Instruction::ExtractElement, VecTy, Idx);
3801           }
3802         }
3803         CommonCost = ReuseShuffleCost;
3804       } else if (!E->ReorderIndices.empty()) {
3805         SmallVector<int> NewMask;
3806         inversePermutation(E->ReorderIndices, NewMask);
3807         CommonCost = TTI->getShuffleCost(
3808             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3809       }
3810       if (ShuffleOrOp == Instruction::ExtractValue) {
3811         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3812           auto *EI = cast<Instruction>(VL[I]);
3813           // Take credit for instruction that will become dead.
3814           if (EI->hasOneUse()) {
3815             Instruction *Ext = EI->user_back();
3816             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3817                 all_of(Ext->users(),
3818                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3819               // Use getExtractWithExtendCost() to calculate the cost of
3820               // extractelement/ext pair.
3821               CommonCost -= TTI->getExtractWithExtendCost(
3822                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3823               // Add back the cost of s|zext which is subtracted separately.
3824               CommonCost += TTI->getCastInstrCost(
3825                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3826                   TTI::getCastContextHint(Ext), CostKind, Ext);
3827               continue;
3828             }
3829           }
3830           CommonCost -=
3831               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3832         }
3833       } else {
3834         AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3835       }
3836       return CommonCost;
3837     }
3838     case Instruction::InsertElement: {
3839       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
3840 
3841       unsigned const NumElts = SrcVecTy->getNumElements();
3842       unsigned const NumScalars = VL.size();
3843       APInt DemandedElts = APInt::getNullValue(NumElts);
3844       // TODO: Add support for Instruction::InsertValue.
3845       unsigned Offset = UINT_MAX;
3846       bool IsIdentity = true;
3847       SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
3848       for (unsigned I = 0; I < NumScalars; ++I) {
3849         Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
3850         if (!InsertIdx || *InsertIdx == UndefMaskElem)
3851           continue;
3852         unsigned Idx = *InsertIdx;
3853         DemandedElts.setBit(Idx);
3854         if (Idx < Offset) {
3855           Offset = Idx;
3856           IsIdentity &= I == 0;
3857         } else {
3858           assert(Idx >= Offset && "Failed to find vector index offset");
3859           IsIdentity &= Idx - Offset == I;
3860         }
3861         ShuffleMask[Idx] = I;
3862       }
3863       assert(Offset < NumElts && "Failed to find vector index offset");
3864 
3865       InstructionCost Cost = 0;
3866       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
3867                                             /*Insert*/ true, /*Extract*/ false);
3868 
3869       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0)
3870         Cost += TTI->getShuffleCost(
3871             TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None,
3872             Offset,
3873             FixedVectorType::get(SrcVecTy->getElementType(), NumScalars));
3874       else if (!IsIdentity)
3875         Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
3876                                     ShuffleMask);
3877 
3878       return Cost;
3879     }
3880     case Instruction::ZExt:
3881     case Instruction::SExt:
3882     case Instruction::FPToUI:
3883     case Instruction::FPToSI:
3884     case Instruction::FPExt:
3885     case Instruction::PtrToInt:
3886     case Instruction::IntToPtr:
3887     case Instruction::SIToFP:
3888     case Instruction::UIToFP:
3889     case Instruction::Trunc:
3890     case Instruction::FPTrunc:
3891     case Instruction::BitCast: {
3892       Type *SrcTy = VL0->getOperand(0)->getType();
3893       InstructionCost ScalarEltCost =
3894           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3895                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3896       if (NeedToShuffleReuses) {
3897         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3898       }
3899 
3900       // Calculate the cost of this instruction.
3901       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3902 
3903       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3904       InstructionCost VecCost = 0;
3905       // Check if the values are candidates to demote.
3906       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3907         VecCost =
3908             ReuseShuffleCost +
3909             TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3910                                   TTI::getCastContextHint(VL0), CostKind, VL0);
3911       }
3912       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3913       return VecCost - ScalarCost;
3914     }
3915     case Instruction::FCmp:
3916     case Instruction::ICmp:
3917     case Instruction::Select: {
3918       // Calculate the cost of this instruction.
3919       InstructionCost ScalarEltCost =
3920           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3921                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3922       if (NeedToShuffleReuses) {
3923         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3924       }
3925       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3926       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3927 
3928       // Check if all entries in VL are either compares or selects with compares
3929       // as condition that have the same predicates.
3930       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3931       bool First = true;
3932       for (auto *V : VL) {
3933         CmpInst::Predicate CurrentPred;
3934         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3935         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3936              !match(V, MatchCmp)) ||
3937             (!First && VecPred != CurrentPred)) {
3938           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3939           break;
3940         }
3941         First = false;
3942         VecPred = CurrentPred;
3943       }
3944 
3945       InstructionCost VecCost = TTI->getCmpSelInstrCost(
3946           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3947       // Check if it is possible and profitable to use min/max for selects in
3948       // VL.
3949       //
3950       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3951       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3952         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3953                                           {VecTy, VecTy});
3954         InstructionCost IntrinsicCost =
3955             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3956         // If the selects are the only uses of the compares, they will be dead
3957         // and we can adjust the cost by removing their cost.
3958         if (IntrinsicAndUse.second)
3959           IntrinsicCost -=
3960               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3961                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
3962         VecCost = std::min(VecCost, IntrinsicCost);
3963       }
3964       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3965       return ReuseShuffleCost + VecCost - ScalarCost;
3966     }
3967     case Instruction::FNeg:
3968     case Instruction::Add:
3969     case Instruction::FAdd:
3970     case Instruction::Sub:
3971     case Instruction::FSub:
3972     case Instruction::Mul:
3973     case Instruction::FMul:
3974     case Instruction::UDiv:
3975     case Instruction::SDiv:
3976     case Instruction::FDiv:
3977     case Instruction::URem:
3978     case Instruction::SRem:
3979     case Instruction::FRem:
3980     case Instruction::Shl:
3981     case Instruction::LShr:
3982     case Instruction::AShr:
3983     case Instruction::And:
3984     case Instruction::Or:
3985     case Instruction::Xor: {
3986       // Certain instructions can be cheaper to vectorize if they have a
3987       // constant second vector operand.
3988       TargetTransformInfo::OperandValueKind Op1VK =
3989           TargetTransformInfo::OK_AnyValue;
3990       TargetTransformInfo::OperandValueKind Op2VK =
3991           TargetTransformInfo::OK_UniformConstantValue;
3992       TargetTransformInfo::OperandValueProperties Op1VP =
3993           TargetTransformInfo::OP_None;
3994       TargetTransformInfo::OperandValueProperties Op2VP =
3995           TargetTransformInfo::OP_PowerOf2;
3996 
3997       // If all operands are exactly the same ConstantInt then set the
3998       // operand kind to OK_UniformConstantValue.
3999       // If instead not all operands are constants, then set the operand kind
4000       // to OK_AnyValue. If all operands are constants but not the same,
4001       // then set the operand kind to OK_NonUniformConstantValue.
4002       ConstantInt *CInt0 = nullptr;
4003       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
4004         const Instruction *I = cast<Instruction>(VL[i]);
4005         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
4006         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
4007         if (!CInt) {
4008           Op2VK = TargetTransformInfo::OK_AnyValue;
4009           Op2VP = TargetTransformInfo::OP_None;
4010           break;
4011         }
4012         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
4013             !CInt->getValue().isPowerOf2())
4014           Op2VP = TargetTransformInfo::OP_None;
4015         if (i == 0) {
4016           CInt0 = CInt;
4017           continue;
4018         }
4019         if (CInt0 != CInt)
4020           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
4021       }
4022 
4023       SmallVector<const Value *, 4> Operands(VL0->operand_values());
4024       InstructionCost ScalarEltCost =
4025           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
4026                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4027       if (NeedToShuffleReuses) {
4028         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4029       }
4030       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4031       InstructionCost VecCost =
4032           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
4033                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4034       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4035       return ReuseShuffleCost + VecCost - ScalarCost;
4036     }
4037     case Instruction::GetElementPtr: {
4038       TargetTransformInfo::OperandValueKind Op1VK =
4039           TargetTransformInfo::OK_AnyValue;
4040       TargetTransformInfo::OperandValueKind Op2VK =
4041           TargetTransformInfo::OK_UniformConstantValue;
4042 
4043       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
4044           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
4045       if (NeedToShuffleReuses) {
4046         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4047       }
4048       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4049       InstructionCost VecCost = TTI->getArithmeticInstrCost(
4050           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
4051       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4052       return ReuseShuffleCost + VecCost - ScalarCost;
4053     }
4054     case Instruction::Load: {
4055       // Cost of wide load - cost of scalar loads.
4056       Align alignment = cast<LoadInst>(VL0)->getAlign();
4057       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4058           Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
4059       if (NeedToShuffleReuses) {
4060         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4061       }
4062       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
4063       InstructionCost VecLdCost;
4064       if (E->State == TreeEntry::Vectorize) {
4065         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
4066                                          CostKind, VL0);
4067       } else {
4068         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
4069         VecLdCost = TTI->getGatherScatterOpCost(
4070             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
4071             /*VariableMask=*/false, alignment, CostKind, VL0);
4072       }
4073       if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
4074         SmallVector<int> NewMask;
4075         inversePermutation(E->ReorderIndices, NewMask);
4076         VecLdCost += TTI->getShuffleCost(
4077             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4078       }
4079       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost));
4080       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
4081     }
4082     case Instruction::Store: {
4083       // We know that we can merge the stores. Calculate the cost.
4084       bool IsReorder = !E->ReorderIndices.empty();
4085       auto *SI =
4086           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
4087       Align Alignment = SI->getAlign();
4088       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4089           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
4090       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
4091       InstructionCost VecStCost = TTI->getMemoryOpCost(
4092           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
4093       if (IsReorder) {
4094         SmallVector<int> NewMask;
4095         inversePermutation(E->ReorderIndices, NewMask);
4096         VecStCost += TTI->getShuffleCost(
4097             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4098       }
4099       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost));
4100       return VecStCost - ScalarStCost;
4101     }
4102     case Instruction::Call: {
4103       CallInst *CI = cast<CallInst>(VL0);
4104       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4105 
4106       // Calculate the cost of the scalar and vector calls.
4107       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
4108       InstructionCost ScalarEltCost =
4109           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4110       if (NeedToShuffleReuses) {
4111         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4112       }
4113       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
4114 
4115       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4116       InstructionCost VecCallCost =
4117           std::min(VecCallCosts.first, VecCallCosts.second);
4118 
4119       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
4120                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
4121                         << " for " << *CI << "\n");
4122 
4123       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
4124     }
4125     case Instruction::ShuffleVector: {
4126       assert(E->isAltShuffle() &&
4127              ((Instruction::isBinaryOp(E->getOpcode()) &&
4128                Instruction::isBinaryOp(E->getAltOpcode())) ||
4129               (Instruction::isCast(E->getOpcode()) &&
4130                Instruction::isCast(E->getAltOpcode()))) &&
4131              "Invalid Shuffle Vector Operand");
4132       InstructionCost ScalarCost = 0;
4133       if (NeedToShuffleReuses) {
4134         for (unsigned Idx : E->ReuseShuffleIndices) {
4135           Instruction *I = cast<Instruction>(VL[Idx]);
4136           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
4137         }
4138         for (Value *V : VL) {
4139           Instruction *I = cast<Instruction>(V);
4140           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
4141         }
4142       }
4143       for (Value *V : VL) {
4144         Instruction *I = cast<Instruction>(V);
4145         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
4146         ScalarCost += TTI->getInstructionCost(I, CostKind);
4147       }
4148       // VecCost is equal to sum of the cost of creating 2 vectors
4149       // and the cost of creating shuffle.
4150       InstructionCost VecCost = 0;
4151       if (Instruction::isBinaryOp(E->getOpcode())) {
4152         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4153         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4154                                                CostKind);
4155       } else {
4156         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4157         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4158         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4159         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4160         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4161                                         TTI::CastContextHint::None, CostKind);
4162         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4163                                          TTI::CastContextHint::None, CostKind);
4164       }
4165 
4166       SmallVector<int> Mask(E->Scalars.size());
4167       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4168         auto *OpInst = cast<Instruction>(E->Scalars[I]);
4169         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4170         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4171       }
4172       VecCost +=
4173           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4174       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4175       return ReuseShuffleCost + VecCost - ScalarCost;
4176     }
4177     default:
4178       llvm_unreachable("Unknown instruction");
4179   }
4180 }
4181 
4182 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4183   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4184                     << VectorizableTree.size() << " is fully vectorizable .\n");
4185 
4186   // We only handle trees of heights 1 and 2.
4187   if (VectorizableTree.size() == 1 &&
4188       VectorizableTree[0]->State == TreeEntry::Vectorize)
4189     return true;
4190 
4191   if (VectorizableTree.size() != 2)
4192     return false;
4193 
4194   // Handle splat and all-constants stores. Also try to vectorize tiny trees
4195   // with the second gather nodes if they have less scalar operands rather than
4196   // the initial tree element (may be profitable to shuffle the second gather)
4197   // or they are extractelements, which form shuffle.
4198   SmallVector<int> Mask;
4199   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4200       (allConstant(VectorizableTree[1]->Scalars) ||
4201        isSplat(VectorizableTree[1]->Scalars) ||
4202        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4203         VectorizableTree[1]->Scalars.size() <
4204             VectorizableTree[0]->Scalars.size()) ||
4205        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4206         VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
4207         isShuffle(VectorizableTree[1]->Scalars, Mask))))
4208     return true;
4209 
4210   // Gathering cost would be too much for tiny trees.
4211   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4212       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4213     return false;
4214 
4215   return true;
4216 }
4217 
4218 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4219                                        TargetTransformInfo *TTI,
4220                                        bool MustMatchOrInst) {
4221   // Look past the root to find a source value. Arbitrarily follow the
4222   // path through operand 0 of any 'or'. Also, peek through optional
4223   // shift-left-by-multiple-of-8-bits.
4224   Value *ZextLoad = Root;
4225   const APInt *ShAmtC;
4226   bool FoundOr = false;
4227   while (!isa<ConstantExpr>(ZextLoad) &&
4228          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4229           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4230            ShAmtC->urem(8) == 0))) {
4231     auto *BinOp = cast<BinaryOperator>(ZextLoad);
4232     ZextLoad = BinOp->getOperand(0);
4233     if (BinOp->getOpcode() == Instruction::Or)
4234       FoundOr = true;
4235   }
4236   // Check if the input is an extended load of the required or/shift expression.
4237   Value *LoadPtr;
4238   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4239       !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4240     return false;
4241 
4242   // Require that the total load bit width is a legal integer type.
4243   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4244   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4245   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4246   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4247   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4248     return false;
4249 
4250   // Everything matched - assume that we can fold the whole sequence using
4251   // load combining.
4252   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4253              << *(cast<Instruction>(Root)) << "\n");
4254 
4255   return true;
4256 }
4257 
4258 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4259   if (RdxKind != RecurKind::Or)
4260     return false;
4261 
4262   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4263   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4264   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4265                                     /* MatchOr */ false);
4266 }
4267 
4268 bool BoUpSLP::isLoadCombineCandidate() const {
4269   // Peek through a final sequence of stores and check if all operations are
4270   // likely to be load-combined.
4271   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4272   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4273     Value *X;
4274     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4275         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4276       return false;
4277   }
4278   return true;
4279 }
4280 
4281 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4282   // No need to vectorize inserts of gathered values.
4283   if (VectorizableTree.size() == 2 &&
4284       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
4285       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4286     return true;
4287 
4288   // We can vectorize the tree if its size is greater than or equal to the
4289   // minimum size specified by the MinTreeSize command line option.
4290   if (VectorizableTree.size() >= MinTreeSize)
4291     return false;
4292 
4293   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4294   // can vectorize it if we can prove it fully vectorizable.
4295   if (isFullyVectorizableTinyTree())
4296     return false;
4297 
4298   assert(VectorizableTree.empty()
4299              ? ExternalUses.empty()
4300              : true && "We shouldn't have any external users");
4301 
4302   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4303   // vectorizable.
4304   return true;
4305 }
4306 
4307 InstructionCost BoUpSLP::getSpillCost() const {
4308   // Walk from the bottom of the tree to the top, tracking which values are
4309   // live. When we see a call instruction that is not part of our tree,
4310   // query TTI to see if there is a cost to keeping values live over it
4311   // (for example, if spills and fills are required).
4312   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4313   InstructionCost Cost = 0;
4314 
4315   SmallPtrSet<Instruction*, 4> LiveValues;
4316   Instruction *PrevInst = nullptr;
4317 
4318   // The entries in VectorizableTree are not necessarily ordered by their
4319   // position in basic blocks. Collect them and order them by dominance so later
4320   // instructions are guaranteed to be visited first. For instructions in
4321   // different basic blocks, we only scan to the beginning of the block, so
4322   // their order does not matter, as long as all instructions in a basic block
4323   // are grouped together. Using dominance ensures a deterministic order.
4324   SmallVector<Instruction *, 16> OrderedScalars;
4325   for (const auto &TEPtr : VectorizableTree) {
4326     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4327     if (!Inst)
4328       continue;
4329     OrderedScalars.push_back(Inst);
4330   }
4331   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
4332     auto *NodeA = DT->getNode(A->getParent());
4333     auto *NodeB = DT->getNode(B->getParent());
4334     assert(NodeA && "Should only process reachable instructions");
4335     assert(NodeB && "Should only process reachable instructions");
4336     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
4337            "Different nodes should have different DFS numbers");
4338     if (NodeA != NodeB)
4339       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
4340     return B->comesBefore(A);
4341   });
4342 
4343   for (Instruction *Inst : OrderedScalars) {
4344     if (!PrevInst) {
4345       PrevInst = Inst;
4346       continue;
4347     }
4348 
4349     // Update LiveValues.
4350     LiveValues.erase(PrevInst);
4351     for (auto &J : PrevInst->operands()) {
4352       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4353         LiveValues.insert(cast<Instruction>(&*J));
4354     }
4355 
4356     LLVM_DEBUG({
4357       dbgs() << "SLP: #LV: " << LiveValues.size();
4358       for (auto *X : LiveValues)
4359         dbgs() << " " << X->getName();
4360       dbgs() << ", Looking at ";
4361       Inst->dump();
4362     });
4363 
4364     // Now find the sequence of instructions between PrevInst and Inst.
4365     unsigned NumCalls = 0;
4366     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4367                                  PrevInstIt =
4368                                      PrevInst->getIterator().getReverse();
4369     while (InstIt != PrevInstIt) {
4370       if (PrevInstIt == PrevInst->getParent()->rend()) {
4371         PrevInstIt = Inst->getParent()->rbegin();
4372         continue;
4373       }
4374 
4375       // Debug information does not impact spill cost.
4376       if ((isa<CallInst>(&*PrevInstIt) &&
4377            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4378           &*PrevInstIt != PrevInst)
4379         NumCalls++;
4380 
4381       ++PrevInstIt;
4382     }
4383 
4384     if (NumCalls) {
4385       SmallVector<Type*, 4> V;
4386       for (auto *II : LiveValues) {
4387         auto *ScalarTy = II->getType();
4388         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
4389           ScalarTy = VectorTy->getElementType();
4390         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
4391       }
4392       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4393     }
4394 
4395     PrevInst = Inst;
4396   }
4397 
4398   return Cost;
4399 }
4400 
4401 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
4402   InstructionCost Cost = 0;
4403   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4404                     << VectorizableTree.size() << ".\n");
4405 
4406   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4407 
4408   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4409     TreeEntry &TE = *VectorizableTree[I].get();
4410 
4411     InstructionCost C = getEntryCost(&TE, VectorizedVals);
4412     Cost += C;
4413     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4414                       << " for bundle that starts with " << *TE.Scalars[0]
4415                       << ".\n"
4416                       << "SLP: Current total cost = " << Cost << "\n");
4417   }
4418 
4419   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4420   InstructionCost ExtractCost = 0;
4421   SmallBitVector IsIdentity;
4422   SmallVector<unsigned> VF;
4423   SmallVector<SmallVector<int>> ShuffleMask;
4424   SmallVector<Value *> FirstUsers;
4425   SmallVector<APInt> DemandedElts;
4426   for (ExternalUser &EU : ExternalUses) {
4427     // We only add extract cost once for the same scalar.
4428     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4429       continue;
4430 
4431     // Uses by ephemeral values are free (because the ephemeral value will be
4432     // removed prior to code generation, and so the extraction will be
4433     // removed as well).
4434     if (EphValues.count(EU.User))
4435       continue;
4436 
4437     // No extract cost for vector "scalar"
4438     if (isa<FixedVectorType>(EU.Scalar->getType()))
4439       continue;
4440 
4441     // Already counted the cost for external uses when tried to adjust the cost
4442     // for extractelements, no need to add it again.
4443     if (isa<ExtractElementInst>(EU.Scalar))
4444       continue;
4445 
4446     // If found user is an insertelement, do not calculate extract cost but try
4447     // to detect it as a final shuffled/identity match.
4448     if (EU.User && isa<InsertElementInst>(EU.User)) {
4449       if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
4450         Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
4451         if (!InsertIdx || *InsertIdx == UndefMaskElem)
4452           continue;
4453         Value *VU = EU.User;
4454         auto *It = find_if(FirstUsers, [VU](Value *V) {
4455           // Checks if 2 insertelements are from the same buildvector.
4456           if (VU->getType() != V->getType())
4457             return false;
4458           auto *IE1 = cast<InsertElementInst>(VU);
4459           auto *IE2 = cast<InsertElementInst>(V);
4460           // Go though of insertelement instructions trying to find either VU as
4461           // the original vector for IE2 or V as the original vector for IE1.
4462           do {
4463             if (IE1 == VU || IE2 == V)
4464               return true;
4465             if (IE1)
4466               IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
4467             if (IE2)
4468               IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
4469           } while (IE1 || IE2);
4470           return false;
4471         });
4472         int VecId = -1;
4473         if (It == FirstUsers.end()) {
4474           VF.push_back(FTy->getNumElements());
4475           ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
4476           FirstUsers.push_back(EU.User);
4477           DemandedElts.push_back(APInt::getNullValue(VF.back()));
4478           IsIdentity.push_back(true);
4479           VecId = FirstUsers.size() - 1;
4480         } else {
4481           VecId = std::distance(FirstUsers.begin(), It);
4482         }
4483         int Idx = *InsertIdx;
4484         ShuffleMask[VecId][Idx] = EU.Lane;
4485         IsIdentity.set(IsIdentity.test(VecId) &
4486                        (EU.Lane == Idx || EU.Lane == UndefMaskElem));
4487         DemandedElts[VecId].setBit(Idx);
4488       }
4489     }
4490 
4491     // If we plan to rewrite the tree in a smaller type, we will need to sign
4492     // extend the extracted value back to the original type. Here, we account
4493     // for the extract and the added cost of the sign extend if needed.
4494     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4495     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4496     if (MinBWs.count(ScalarRoot)) {
4497       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4498       auto Extend =
4499           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4500       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4501       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4502                                                    VecTy, EU.Lane);
4503     } else {
4504       ExtractCost +=
4505           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4506     }
4507   }
4508 
4509   InstructionCost SpillCost = getSpillCost();
4510   Cost += SpillCost + ExtractCost;
4511   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
4512     if (!IsIdentity.test(I)) {
4513       InstructionCost C = TTI->getShuffleCost(
4514           TTI::SK_PermuteSingleSrc,
4515           cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
4516       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4517                         << " for final shuffle of insertelement external users "
4518                         << *VectorizableTree.front()->Scalars.front() << ".\n"
4519                         << "SLP: Current total cost = " << Cost << "\n");
4520       Cost += C;
4521     }
4522     unsigned VF = ShuffleMask[I].size();
4523     for (int &Mask : ShuffleMask[I])
4524       Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask;
4525     InstructionCost C = TTI->getShuffleCost(
4526         TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
4527         ShuffleMask[I]);
4528     LLVM_DEBUG(
4529         dbgs()
4530         << "SLP: Adding cost " << C
4531         << " for final shuffle of vector node and external insertelement users "
4532         << *VectorizableTree.front()->Scalars.front() << ".\n"
4533         << "SLP: Current total cost = " << Cost << "\n");
4534     Cost += C;
4535     InstructionCost InsertCost = TTI->getScalarizationOverhead(
4536         cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
4537         /*Insert*/ true,
4538         /*Extract*/ false);
4539     Cost -= InsertCost;
4540     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
4541                       << " for insertelements gather.\n"
4542                       << "SLP: Current total cost = " << Cost << "\n");
4543   }
4544 
4545 #ifndef NDEBUG
4546   SmallString<256> Str;
4547   {
4548     raw_svector_ostream OS(Str);
4549     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4550        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4551        << "SLP: Total Cost = " << Cost << ".\n";
4552   }
4553   LLVM_DEBUG(dbgs() << Str);
4554   if (ViewSLPTree)
4555     ViewGraph(this, "SLP" + F->getName(), false, Str);
4556 #endif
4557 
4558   return Cost;
4559 }
4560 
4561 Optional<TargetTransformInfo::ShuffleKind>
4562 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4563                                SmallVectorImpl<const TreeEntry *> &Entries) {
4564   // TODO: currently checking only for Scalars in the tree entry, need to count
4565   // reused elements too for better cost estimation.
4566   Mask.assign(TE->Scalars.size(), UndefMaskElem);
4567   Entries.clear();
4568   // Build a lists of values to tree entries.
4569   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
4570   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
4571     if (EntryPtr.get() == TE)
4572       break;
4573     if (EntryPtr->State != TreeEntry::NeedToGather)
4574       continue;
4575     for (Value *V : EntryPtr->Scalars)
4576       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
4577   }
4578   // Find all tree entries used by the gathered values. If no common entries
4579   // found - not a shuffle.
4580   // Here we build a set of tree nodes for each gathered value and trying to
4581   // find the intersection between these sets. If we have at least one common
4582   // tree node for each gathered value - we have just a permutation of the
4583   // single vector. If we have 2 different sets, we're in situation where we
4584   // have a permutation of 2 input vectors.
4585   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
4586   DenseMap<Value *, int> UsedValuesEntry;
4587   for (Value *V : TE->Scalars) {
4588     if (isa<UndefValue>(V))
4589       continue;
4590     // Build a list of tree entries where V is used.
4591     SmallPtrSet<const TreeEntry *, 4> VToTEs;
4592     auto It = ValueToTEs.find(V);
4593     if (It != ValueToTEs.end())
4594       VToTEs = It->second;
4595     if (const TreeEntry *VTE = getTreeEntry(V))
4596       VToTEs.insert(VTE);
4597     if (VToTEs.empty())
4598       return None;
4599     if (UsedTEs.empty()) {
4600       // The first iteration, just insert the list of nodes to vector.
4601       UsedTEs.push_back(VToTEs);
4602     } else {
4603       // Need to check if there are any previously used tree nodes which use V.
4604       // If there are no such nodes, consider that we have another one input
4605       // vector.
4606       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
4607       unsigned Idx = 0;
4608       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
4609         // Do we have a non-empty intersection of previously listed tree entries
4610         // and tree entries using current V?
4611         set_intersect(VToTEs, Set);
4612         if (!VToTEs.empty()) {
4613           // Yes, write the new subset and continue analysis for the next
4614           // scalar.
4615           Set.swap(VToTEs);
4616           break;
4617         }
4618         VToTEs = SavedVToTEs;
4619         ++Idx;
4620       }
4621       // No non-empty intersection found - need to add a second set of possible
4622       // source vectors.
4623       if (Idx == UsedTEs.size()) {
4624         // If the number of input vectors is greater than 2 - not a permutation,
4625         // fallback to the regular gather.
4626         if (UsedTEs.size() == 2)
4627           return None;
4628         UsedTEs.push_back(SavedVToTEs);
4629         Idx = UsedTEs.size() - 1;
4630       }
4631       UsedValuesEntry.try_emplace(V, Idx);
4632     }
4633   }
4634 
4635   unsigned VF = 0;
4636   if (UsedTEs.size() == 1) {
4637     // Try to find the perfect match in another gather node at first.
4638     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
4639       return EntryPtr->isSame(TE->Scalars);
4640     });
4641     if (It != UsedTEs.front().end()) {
4642       Entries.push_back(*It);
4643       std::iota(Mask.begin(), Mask.end(), 0);
4644       return TargetTransformInfo::SK_PermuteSingleSrc;
4645     }
4646     // No perfect match, just shuffle, so choose the first tree node.
4647     Entries.push_back(*UsedTEs.front().begin());
4648   } else {
4649     // Try to find nodes with the same vector factor.
4650     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
4651     // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4652     // landed.
4653     auto &&GetVF = [](const TreeEntry *TE) {
4654       if (!TE->ReuseShuffleIndices.empty())
4655         return TE->ReuseShuffleIndices.size();
4656       return TE->Scalars.size();
4657     };
4658     DenseMap<int, const TreeEntry *> VFToTE;
4659     for (const TreeEntry *TE : UsedTEs.front())
4660       VFToTE.try_emplace(GetVF(TE), TE);
4661     for (const TreeEntry *TE : UsedTEs.back()) {
4662       auto It = VFToTE.find(GetVF(TE));
4663       if (It != VFToTE.end()) {
4664         VF = It->first;
4665         Entries.push_back(It->second);
4666         Entries.push_back(TE);
4667         break;
4668       }
4669     }
4670     // No 2 source vectors with the same vector factor - give up and do regular
4671     // gather.
4672     if (Entries.empty())
4673       return None;
4674   }
4675 
4676   // Build a shuffle mask for better cost estimation and vector emission.
4677   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4678     Value *V = TE->Scalars[I];
4679     if (isa<UndefValue>(V))
4680       continue;
4681     unsigned Idx = UsedValuesEntry.lookup(V);
4682     const TreeEntry *VTE = Entries[Idx];
4683     int FoundLane = VTE->findLaneForValue(V);
4684     Mask[I] = Idx * VF + FoundLane;
4685     // Extra check required by isSingleSourceMaskImpl function (called by
4686     // ShuffleVectorInst::isSingleSourceMask).
4687     if (Mask[I] >= 2 * E)
4688       return None;
4689   }
4690   switch (Entries.size()) {
4691   case 1:
4692     return TargetTransformInfo::SK_PermuteSingleSrc;
4693   case 2:
4694     return TargetTransformInfo::SK_PermuteTwoSrc;
4695   default:
4696     break;
4697   }
4698   return None;
4699 }
4700 
4701 InstructionCost
4702 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4703                        const DenseSet<unsigned> &ShuffledIndices) const {
4704   unsigned NumElts = Ty->getNumElements();
4705   APInt DemandedElts = APInt::getNullValue(NumElts);
4706   for (unsigned I = 0; I < NumElts; ++I)
4707     if (!ShuffledIndices.count(I))
4708       DemandedElts.setBit(I);
4709   InstructionCost Cost =
4710       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4711                                     /*Extract*/ false);
4712   if (!ShuffledIndices.empty())
4713     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4714   return Cost;
4715 }
4716 
4717 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4718   // Find the type of the operands in VL.
4719   Type *ScalarTy = VL[0]->getType();
4720   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4721     ScalarTy = SI->getValueOperand()->getType();
4722   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4723   // Find the cost of inserting/extracting values from the vector.
4724   // Check if the same elements are inserted several times and count them as
4725   // shuffle candidates.
4726   DenseSet<unsigned> ShuffledElements;
4727   DenseSet<Value *> UniqueElements;
4728   // Iterate in reverse order to consider insert elements with the high cost.
4729   for (unsigned I = VL.size(); I > 0; --I) {
4730     unsigned Idx = I - 1;
4731     if (isConstant(VL[Idx]))
4732       continue;
4733     if (!UniqueElements.insert(VL[Idx]).second)
4734       ShuffledElements.insert(Idx);
4735   }
4736   return getGatherCost(VecTy, ShuffledElements);
4737 }
4738 
4739 // Perform operand reordering on the instructions in VL and return the reordered
4740 // operands in Left and Right.
4741 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4742                                              SmallVectorImpl<Value *> &Left,
4743                                              SmallVectorImpl<Value *> &Right,
4744                                              const DataLayout &DL,
4745                                              ScalarEvolution &SE,
4746                                              const BoUpSLP &R) {
4747   if (VL.empty())
4748     return;
4749   VLOperands Ops(VL, DL, SE, R);
4750   // Reorder the operands in place.
4751   Ops.reorder();
4752   Left = Ops.getVL(0);
4753   Right = Ops.getVL(1);
4754 }
4755 
4756 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4757   // Get the basic block this bundle is in. All instructions in the bundle
4758   // should be in this block.
4759   auto *Front = E->getMainOp();
4760   auto *BB = Front->getParent();
4761   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4762     auto *I = cast<Instruction>(V);
4763     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4764   }));
4765 
4766   // The last instruction in the bundle in program order.
4767   Instruction *LastInst = nullptr;
4768 
4769   // Find the last instruction. The common case should be that BB has been
4770   // scheduled, and the last instruction is VL.back(). So we start with
4771   // VL.back() and iterate over schedule data until we reach the end of the
4772   // bundle. The end of the bundle is marked by null ScheduleData.
4773   if (BlocksSchedules.count(BB)) {
4774     auto *Bundle =
4775         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4776     if (Bundle && Bundle->isPartOfBundle())
4777       for (; Bundle; Bundle = Bundle->NextInBundle)
4778         if (Bundle->OpValue == Bundle->Inst)
4779           LastInst = Bundle->Inst;
4780   }
4781 
4782   // LastInst can still be null at this point if there's either not an entry
4783   // for BB in BlocksSchedules or there's no ScheduleData available for
4784   // VL.back(). This can be the case if buildTree_rec aborts for various
4785   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4786   // size is reached, etc.). ScheduleData is initialized in the scheduling
4787   // "dry-run".
4788   //
4789   // If this happens, we can still find the last instruction by brute force. We
4790   // iterate forwards from Front (inclusive) until we either see all
4791   // instructions in the bundle or reach the end of the block. If Front is the
4792   // last instruction in program order, LastInst will be set to Front, and we
4793   // will visit all the remaining instructions in the block.
4794   //
4795   // One of the reasons we exit early from buildTree_rec is to place an upper
4796   // bound on compile-time. Thus, taking an additional compile-time hit here is
4797   // not ideal. However, this should be exceedingly rare since it requires that
4798   // we both exit early from buildTree_rec and that the bundle be out-of-order
4799   // (causing us to iterate all the way to the end of the block).
4800   if (!LastInst) {
4801     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4802     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4803       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4804         LastInst = &I;
4805       if (Bundle.empty())
4806         break;
4807     }
4808   }
4809   assert(LastInst && "Failed to find last instruction in bundle");
4810 
4811   // Set the insertion point after the last instruction in the bundle. Set the
4812   // debug location to Front.
4813   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4814   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4815 }
4816 
4817 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4818   // List of instructions/lanes from current block and/or the blocks which are
4819   // part of the current loop. These instructions will be inserted at the end to
4820   // make it possible to optimize loops and hoist invariant instructions out of
4821   // the loops body with better chances for success.
4822   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
4823   SmallSet<int, 4> PostponedIndices;
4824   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
4825   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
4826     SmallPtrSet<BasicBlock *, 4> Visited;
4827     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
4828       InsertBB = InsertBB->getSinglePredecessor();
4829     return InsertBB && InsertBB == InstBB;
4830   };
4831   for (int I = 0, E = VL.size(); I < E; ++I) {
4832     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
4833       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
4834            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
4835           PostponedIndices.insert(I).second)
4836         PostponedInsts.emplace_back(Inst, I);
4837   }
4838 
4839   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
4840     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
4841     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4842     if (!InsElt)
4843       return Vec;
4844     GatherSeq.insert(InsElt);
4845     CSEBlocks.insert(InsElt->getParent());
4846     // Add to our 'need-to-extract' list.
4847     if (TreeEntry *Entry = getTreeEntry(V)) {
4848       // Find which lane we need to extract.
4849       unsigned FoundLane = Entry->findLaneForValue(V);
4850       ExternalUses.emplace_back(V, InsElt, FoundLane);
4851     }
4852     return Vec;
4853   };
4854   Value *Val0 =
4855       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4856   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4857   Value *Vec = PoisonValue::get(VecTy);
4858   SmallVector<int> NonConsts;
4859   // Insert constant values at first.
4860   for (int I = 0, E = VL.size(); I < E; ++I) {
4861     if (PostponedIndices.contains(I))
4862       continue;
4863     if (!isConstant(VL[I])) {
4864       NonConsts.push_back(I);
4865       continue;
4866     }
4867     Vec = CreateInsertElement(Vec, VL[I], I);
4868   }
4869   // Insert non-constant values.
4870   for (int I : NonConsts)
4871     Vec = CreateInsertElement(Vec, VL[I], I);
4872   // Append instructions, which are/may be part of the loop, in the end to make
4873   // it possible to hoist non-loop-based instructions.
4874   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
4875     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
4876 
4877   return Vec;
4878 }
4879 
4880 namespace {
4881 /// Merges shuffle masks and emits final shuffle instruction, if required.
4882 class ShuffleInstructionBuilder {
4883   IRBuilderBase &Builder;
4884   const unsigned VF = 0;
4885   bool IsFinalized = false;
4886   SmallVector<int, 4> Mask;
4887 
4888 public:
4889   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
4890       : Builder(Builder), VF(VF) {}
4891 
4892   /// Adds a mask, inverting it before applying.
4893   void addInversedMask(ArrayRef<unsigned> SubMask) {
4894     if (SubMask.empty())
4895       return;
4896     SmallVector<int, 4> NewMask;
4897     inversePermutation(SubMask, NewMask);
4898     addMask(NewMask);
4899   }
4900 
4901   /// Functions adds masks, merging them into  single one.
4902   void addMask(ArrayRef<unsigned> SubMask) {
4903     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4904     addMask(NewMask);
4905   }
4906 
4907   void addMask(ArrayRef<int> SubMask) {
4908     if (SubMask.empty())
4909       return;
4910     if (Mask.empty()) {
4911       Mask.append(SubMask.begin(), SubMask.end());
4912       return;
4913     }
4914     SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4915     int TermValue = std::min(Mask.size(), SubMask.size());
4916     for (int I = 0, E = SubMask.size(); I < E; ++I) {
4917       if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
4918           Mask[SubMask[I]] >= TermValue) {
4919         NewMask[I] = UndefMaskElem;
4920         continue;
4921       }
4922       NewMask[I] = Mask[SubMask[I]];
4923     }
4924     Mask.swap(NewMask);
4925   }
4926 
4927   Value *finalize(Value *V) {
4928     IsFinalized = true;
4929     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
4930     if (VF == ValueVF && Mask.empty())
4931       return V;
4932     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
4933     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
4934     addMask(NormalizedMask);
4935 
4936     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
4937       return V;
4938     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4939   }
4940 
4941   ~ShuffleInstructionBuilder() {
4942     assert((IsFinalized || Mask.empty()) &&
4943            "Shuffle construction must be finalized.");
4944   }
4945 };
4946 } // namespace
4947 
4948 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4949   unsigned VF = VL.size();
4950   InstructionsState S = getSameOpcode(VL);
4951   if (S.getOpcode()) {
4952     if (TreeEntry *E = getTreeEntry(S.OpValue))
4953       if (E->isSame(VL)) {
4954         Value *V = vectorizeTree(E);
4955         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
4956           if (!E->ReuseShuffleIndices.empty()) {
4957             // Reshuffle to get only unique values.
4958             // If some of the scalars are duplicated in the vectorization tree
4959             // entry, we do not vectorize them but instead generate a mask for
4960             // the reuses. But if there are several users of the same entry,
4961             // they may have different vectorization factors. This is especially
4962             // important for PHI nodes. In this case, we need to adapt the
4963             // resulting instruction for the user vectorization factor and have
4964             // to reshuffle it again to take only unique elements of the vector.
4965             // Without this code the function incorrectly returns reduced vector
4966             // instruction with the same elements, not with the unique ones.
4967 
4968             // block:
4969             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4970             // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4971             // ... (use %2)
4972             // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4973             // br %block
4974             SmallVector<int> UniqueIdxs;
4975             SmallSet<int, 4> UsedIdxs;
4976             int Pos = 0;
4977             int Sz = VL.size();
4978             for (int Idx : E->ReuseShuffleIndices) {
4979               if (Idx != Sz && UsedIdxs.insert(Idx).second)
4980                 UniqueIdxs.emplace_back(Pos);
4981               ++Pos;
4982             }
4983             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
4984                                             "less than original vector size.");
4985             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
4986             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4987           } else {
4988             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
4989                    "Expected vectorization factor less "
4990                    "than original vector size.");
4991             SmallVector<int> UniformMask(VF, 0);
4992             std::iota(UniformMask.begin(), UniformMask.end(), 0);
4993             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
4994           }
4995         }
4996         return V;
4997       }
4998   }
4999 
5000   // Check that every instruction appears once in this bundle.
5001   SmallVector<int> ReuseShuffleIndicies;
5002   SmallVector<Value *> UniqueValues;
5003   if (VL.size() > 2) {
5004     DenseMap<Value *, unsigned> UniquePositions;
5005     unsigned NumValues =
5006         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
5007                                     return !isa<UndefValue>(V);
5008                                   }).base());
5009     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
5010     int UniqueVals = 0;
5011     bool HasUndefs = false;
5012     for (Value *V : VL.drop_back(VL.size() - VF)) {
5013       if (isa<UndefValue>(V)) {
5014         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
5015         HasUndefs = true;
5016         continue;
5017       }
5018       if (isConstant(V)) {
5019         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
5020         UniqueValues.emplace_back(V);
5021         continue;
5022       }
5023       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5024       ReuseShuffleIndicies.emplace_back(Res.first->second);
5025       if (Res.second) {
5026         UniqueValues.emplace_back(V);
5027         ++UniqueVals;
5028       }
5029     }
5030     if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
5031       // Emit pure splat vector.
5032       // FIXME: why it is not identified as an identity.
5033       unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
5034       if (NumUndefs == ReuseShuffleIndicies.size() - 1)
5035         ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
5036                                     UndefMaskElem);
5037       else
5038         ReuseShuffleIndicies.assign(VF, 0);
5039     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
5040       ReuseShuffleIndicies.clear();
5041       UniqueValues.clear();
5042       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
5043     }
5044     UniqueValues.append(VF - UniqueValues.size(),
5045                         PoisonValue::get(VL[0]->getType()));
5046     VL = UniqueValues;
5047   }
5048 
5049   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5050   Value *Vec = gather(VL);
5051   if (!ReuseShuffleIndicies.empty()) {
5052     ShuffleBuilder.addMask(ReuseShuffleIndicies);
5053     Vec = ShuffleBuilder.finalize(Vec);
5054     if (auto *I = dyn_cast<Instruction>(Vec)) {
5055       GatherSeq.insert(I);
5056       CSEBlocks.insert(I->getParent());
5057     }
5058   }
5059   return Vec;
5060 }
5061 
5062 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
5063   IRBuilder<>::InsertPointGuard Guard(Builder);
5064 
5065   if (E->VectorizedValue) {
5066     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
5067     return E->VectorizedValue;
5068   }
5069 
5070   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5071   unsigned VF = E->Scalars.size();
5072   if (NeedToShuffleReuses)
5073     VF = E->ReuseShuffleIndices.size();
5074   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5075   if (E->State == TreeEntry::NeedToGather) {
5076     setInsertPointAfterBundle(E);
5077     Value *Vec;
5078     SmallVector<int> Mask;
5079     SmallVector<const TreeEntry *> Entries;
5080     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5081         isGatherShuffledEntry(E, Mask, Entries);
5082     if (Shuffle.hasValue()) {
5083       assert((Entries.size() == 1 || Entries.size() == 2) &&
5084              "Expected shuffle of 1 or 2 entries.");
5085       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
5086                                         Entries.back()->VectorizedValue, Mask);
5087     } else {
5088       Vec = gather(E->Scalars);
5089     }
5090     if (NeedToShuffleReuses) {
5091       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5092       Vec = ShuffleBuilder.finalize(Vec);
5093       if (auto *I = dyn_cast<Instruction>(Vec)) {
5094         GatherSeq.insert(I);
5095         CSEBlocks.insert(I->getParent());
5096       }
5097     }
5098     E->VectorizedValue = Vec;
5099     return Vec;
5100   }
5101 
5102   assert((E->State == TreeEntry::Vectorize ||
5103           E->State == TreeEntry::ScatterVectorize) &&
5104          "Unhandled state");
5105   unsigned ShuffleOrOp =
5106       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5107   Instruction *VL0 = E->getMainOp();
5108   Type *ScalarTy = VL0->getType();
5109   if (auto *Store = dyn_cast<StoreInst>(VL0))
5110     ScalarTy = Store->getValueOperand()->getType();
5111   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
5112     ScalarTy = IE->getOperand(1)->getType();
5113   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
5114   switch (ShuffleOrOp) {
5115     case Instruction::PHI: {
5116       auto *PH = cast<PHINode>(VL0);
5117       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
5118       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5119       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
5120       Value *V = NewPhi;
5121       if (NeedToShuffleReuses)
5122         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
5123 
5124       E->VectorizedValue = V;
5125 
5126       // PHINodes may have multiple entries from the same block. We want to
5127       // visit every block once.
5128       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
5129 
5130       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
5131         ValueList Operands;
5132         BasicBlock *IBB = PH->getIncomingBlock(i);
5133 
5134         if (!VisitedBBs.insert(IBB).second) {
5135           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
5136           continue;
5137         }
5138 
5139         Builder.SetInsertPoint(IBB->getTerminator());
5140         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5141         Value *Vec = vectorizeTree(E->getOperand(i));
5142         NewPhi->addIncoming(Vec, IBB);
5143       }
5144 
5145       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
5146              "Invalid number of incoming values");
5147       return V;
5148     }
5149 
5150     case Instruction::ExtractElement: {
5151       Value *V = E->getSingleOperand(0);
5152       Builder.SetInsertPoint(VL0);
5153       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5154       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5155       V = ShuffleBuilder.finalize(V);
5156       E->VectorizedValue = V;
5157       return V;
5158     }
5159     case Instruction::ExtractValue: {
5160       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
5161       Builder.SetInsertPoint(LI);
5162       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
5163       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
5164       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
5165       Value *NewV = propagateMetadata(V, E->Scalars);
5166       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5167       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5168       NewV = ShuffleBuilder.finalize(NewV);
5169       E->VectorizedValue = NewV;
5170       return NewV;
5171     }
5172     case Instruction::InsertElement: {
5173       Builder.SetInsertPoint(VL0);
5174       Value *V = vectorizeTree(E->getOperand(1));
5175 
5176       const unsigned NumElts =
5177           cast<FixedVectorType>(VL0->getType())->getNumElements();
5178       const unsigned NumScalars = E->Scalars.size();
5179 
5180       // Create InsertVector shuffle if necessary
5181       Instruction *FirstInsert = nullptr;
5182       bool IsIdentity = true;
5183       unsigned Offset = UINT_MAX;
5184       for (unsigned I = 0; I < NumScalars; ++I) {
5185         Value *Scalar = E->Scalars[I];
5186         if (!FirstInsert &&
5187             !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
5188           FirstInsert = cast<Instruction>(Scalar);
5189         Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5190         if (!InsertIdx || *InsertIdx == UndefMaskElem)
5191           continue;
5192         unsigned Idx = *InsertIdx;
5193         if (Idx < Offset) {
5194           Offset = Idx;
5195           IsIdentity &= I == 0;
5196         } else {
5197           assert(Idx >= Offset && "Failed to find vector index offset");
5198           IsIdentity &= Idx - Offset == I;
5199         }
5200       }
5201       assert(Offset < NumElts && "Failed to find vector index offset");
5202 
5203       // Create shuffle to resize vector
5204       SmallVector<int> Mask(NumElts, UndefMaskElem);
5205       if (!IsIdentity) {
5206         for (unsigned I = 0; I < NumScalars; ++I) {
5207           Value *Scalar = E->Scalars[I];
5208           Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5209           if (!InsertIdx || *InsertIdx == UndefMaskElem)
5210             continue;
5211           Mask[*InsertIdx - Offset] = I;
5212         }
5213       } else {
5214         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5215       }
5216       if (!IsIdentity || NumElts != NumScalars)
5217         V = Builder.CreateShuffleVector(V, Mask);
5218 
5219       if (NumElts != NumScalars) {
5220         SmallVector<int> InsertMask(NumElts);
5221         std::iota(InsertMask.begin(), InsertMask.end(), 0);
5222         for (unsigned I = 0; I < NumElts; I++) {
5223           if (Mask[I] != UndefMaskElem)
5224             InsertMask[Offset + I] = NumElts + I;
5225         }
5226 
5227         V = Builder.CreateShuffleVector(
5228             FirstInsert->getOperand(0), V, InsertMask,
5229             cast<Instruction>(E->Scalars.back())->getName());
5230       }
5231 
5232       ++NumVectorInstructions;
5233       E->VectorizedValue = V;
5234       return V;
5235     }
5236     case Instruction::ZExt:
5237     case Instruction::SExt:
5238     case Instruction::FPToUI:
5239     case Instruction::FPToSI:
5240     case Instruction::FPExt:
5241     case Instruction::PtrToInt:
5242     case Instruction::IntToPtr:
5243     case Instruction::SIToFP:
5244     case Instruction::UIToFP:
5245     case Instruction::Trunc:
5246     case Instruction::FPTrunc:
5247     case Instruction::BitCast: {
5248       setInsertPointAfterBundle(E);
5249 
5250       Value *InVec = vectorizeTree(E->getOperand(0));
5251 
5252       if (E->VectorizedValue) {
5253         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5254         return E->VectorizedValue;
5255       }
5256 
5257       auto *CI = cast<CastInst>(VL0);
5258       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
5259       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5260       V = ShuffleBuilder.finalize(V);
5261 
5262       E->VectorizedValue = V;
5263       ++NumVectorInstructions;
5264       return V;
5265     }
5266     case Instruction::FCmp:
5267     case Instruction::ICmp: {
5268       setInsertPointAfterBundle(E);
5269 
5270       Value *L = vectorizeTree(E->getOperand(0));
5271       Value *R = vectorizeTree(E->getOperand(1));
5272 
5273       if (E->VectorizedValue) {
5274         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5275         return E->VectorizedValue;
5276       }
5277 
5278       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5279       Value *V = Builder.CreateCmp(P0, L, R);
5280       propagateIRFlags(V, E->Scalars, VL0);
5281       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5282       V = ShuffleBuilder.finalize(V);
5283 
5284       E->VectorizedValue = V;
5285       ++NumVectorInstructions;
5286       return V;
5287     }
5288     case Instruction::Select: {
5289       setInsertPointAfterBundle(E);
5290 
5291       Value *Cond = vectorizeTree(E->getOperand(0));
5292       Value *True = vectorizeTree(E->getOperand(1));
5293       Value *False = vectorizeTree(E->getOperand(2));
5294 
5295       if (E->VectorizedValue) {
5296         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5297         return E->VectorizedValue;
5298       }
5299 
5300       Value *V = Builder.CreateSelect(Cond, True, False);
5301       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5302       V = ShuffleBuilder.finalize(V);
5303 
5304       E->VectorizedValue = V;
5305       ++NumVectorInstructions;
5306       return V;
5307     }
5308     case Instruction::FNeg: {
5309       setInsertPointAfterBundle(E);
5310 
5311       Value *Op = vectorizeTree(E->getOperand(0));
5312 
5313       if (E->VectorizedValue) {
5314         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5315         return E->VectorizedValue;
5316       }
5317 
5318       Value *V = Builder.CreateUnOp(
5319           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
5320       propagateIRFlags(V, E->Scalars, VL0);
5321       if (auto *I = dyn_cast<Instruction>(V))
5322         V = propagateMetadata(I, E->Scalars);
5323 
5324       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5325       V = ShuffleBuilder.finalize(V);
5326 
5327       E->VectorizedValue = V;
5328       ++NumVectorInstructions;
5329 
5330       return V;
5331     }
5332     case Instruction::Add:
5333     case Instruction::FAdd:
5334     case Instruction::Sub:
5335     case Instruction::FSub:
5336     case Instruction::Mul:
5337     case Instruction::FMul:
5338     case Instruction::UDiv:
5339     case Instruction::SDiv:
5340     case Instruction::FDiv:
5341     case Instruction::URem:
5342     case Instruction::SRem:
5343     case Instruction::FRem:
5344     case Instruction::Shl:
5345     case Instruction::LShr:
5346     case Instruction::AShr:
5347     case Instruction::And:
5348     case Instruction::Or:
5349     case Instruction::Xor: {
5350       setInsertPointAfterBundle(E);
5351 
5352       Value *LHS = vectorizeTree(E->getOperand(0));
5353       Value *RHS = vectorizeTree(E->getOperand(1));
5354 
5355       if (E->VectorizedValue) {
5356         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5357         return E->VectorizedValue;
5358       }
5359 
5360       Value *V = Builder.CreateBinOp(
5361           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
5362           RHS);
5363       propagateIRFlags(V, E->Scalars, VL0);
5364       if (auto *I = dyn_cast<Instruction>(V))
5365         V = propagateMetadata(I, E->Scalars);
5366 
5367       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5368       V = ShuffleBuilder.finalize(V);
5369 
5370       E->VectorizedValue = V;
5371       ++NumVectorInstructions;
5372 
5373       return V;
5374     }
5375     case Instruction::Load: {
5376       // Loads are inserted at the head of the tree because we don't want to
5377       // sink them all the way down past store instructions.
5378       bool IsReorder = E->updateStateIfReorder();
5379       if (IsReorder)
5380         VL0 = E->getMainOp();
5381       setInsertPointAfterBundle(E);
5382 
5383       LoadInst *LI = cast<LoadInst>(VL0);
5384       Instruction *NewLI;
5385       unsigned AS = LI->getPointerAddressSpace();
5386       Value *PO = LI->getPointerOperand();
5387       if (E->State == TreeEntry::Vectorize) {
5388 
5389         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
5390 
5391         // The pointer operand uses an in-tree scalar so we add the new BitCast
5392         // to ExternalUses list to make sure that an extract will be generated
5393         // in the future.
5394         if (getTreeEntry(PO))
5395           ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
5396 
5397         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
5398       } else {
5399         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
5400         Value *VecPtr = vectorizeTree(E->getOperand(0));
5401         // Use the minimum alignment of the gathered loads.
5402         Align CommonAlignment = LI->getAlign();
5403         for (Value *V : E->Scalars)
5404           CommonAlignment =
5405               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5406         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
5407       }
5408       Value *V = propagateMetadata(NewLI, E->Scalars);
5409 
5410       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5411       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5412       V = ShuffleBuilder.finalize(V);
5413       E->VectorizedValue = V;
5414       ++NumVectorInstructions;
5415       return V;
5416     }
5417     case Instruction::Store: {
5418       bool IsReorder = !E->ReorderIndices.empty();
5419       auto *SI = cast<StoreInst>(
5420           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
5421       unsigned AS = SI->getPointerAddressSpace();
5422 
5423       setInsertPointAfterBundle(E);
5424 
5425       Value *VecValue = vectorizeTree(E->getOperand(0));
5426       ShuffleBuilder.addMask(E->ReorderIndices);
5427       VecValue = ShuffleBuilder.finalize(VecValue);
5428 
5429       Value *ScalarPtr = SI->getPointerOperand();
5430       Value *VecPtr = Builder.CreateBitCast(
5431           ScalarPtr, VecValue->getType()->getPointerTo(AS));
5432       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
5433                                                  SI->getAlign());
5434 
5435       // The pointer operand uses an in-tree scalar, so add the new BitCast to
5436       // ExternalUses to make sure that an extract will be generated in the
5437       // future.
5438       if (getTreeEntry(ScalarPtr))
5439         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
5440 
5441       Value *V = propagateMetadata(ST, E->Scalars);
5442 
5443       E->VectorizedValue = V;
5444       ++NumVectorInstructions;
5445       return V;
5446     }
5447     case Instruction::GetElementPtr: {
5448       setInsertPointAfterBundle(E);
5449 
5450       Value *Op0 = vectorizeTree(E->getOperand(0));
5451 
5452       std::vector<Value *> OpVecs;
5453       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
5454            ++j) {
5455         ValueList &VL = E->getOperand(j);
5456         // Need to cast all elements to the same type before vectorization to
5457         // avoid crash.
5458         Type *VL0Ty = VL0->getOperand(j)->getType();
5459         Type *Ty = llvm::all_of(
5460                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
5461                        ? VL0Ty
5462                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5463                                               ->getPointerOperandType()
5464                                               ->getScalarType());
5465         for (Value *&V : VL) {
5466           auto *CI = cast<ConstantInt>(V);
5467           V = ConstantExpr::getIntegerCast(CI, Ty,
5468                                            CI->getValue().isSignBitSet());
5469         }
5470         Value *OpVec = vectorizeTree(VL);
5471         OpVecs.push_back(OpVec);
5472       }
5473 
5474       Value *V = Builder.CreateGEP(
5475           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
5476       if (Instruction *I = dyn_cast<Instruction>(V))
5477         V = propagateMetadata(I, E->Scalars);
5478 
5479       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5480       V = ShuffleBuilder.finalize(V);
5481 
5482       E->VectorizedValue = V;
5483       ++NumVectorInstructions;
5484 
5485       return V;
5486     }
5487     case Instruction::Call: {
5488       CallInst *CI = cast<CallInst>(VL0);
5489       setInsertPointAfterBundle(E);
5490 
5491       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
5492       if (Function *FI = CI->getCalledFunction())
5493         IID = FI->getIntrinsicID();
5494 
5495       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5496 
5497       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5498       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5499                           VecCallCosts.first <= VecCallCosts.second;
5500 
5501       Value *ScalarArg = nullptr;
5502       std::vector<Value *> OpVecs;
5503       SmallVector<Type *, 2> TysForDecl =
5504           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5505       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5506         ValueList OpVL;
5507         // Some intrinsics have scalar arguments. This argument should not be
5508         // vectorized.
5509         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5510           CallInst *CEI = cast<CallInst>(VL0);
5511           ScalarArg = CEI->getArgOperand(j);
5512           OpVecs.push_back(CEI->getArgOperand(j));
5513           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
5514             TysForDecl.push_back(ScalarArg->getType());
5515           continue;
5516         }
5517 
5518         Value *OpVec = vectorizeTree(E->getOperand(j));
5519         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
5520         OpVecs.push_back(OpVec);
5521       }
5522 
5523       Function *CF;
5524       if (!UseIntrinsic) {
5525         VFShape Shape =
5526             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5527                                   VecTy->getNumElements())),
5528                          false /*HasGlobalPred*/);
5529         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5530       } else {
5531         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
5532       }
5533 
5534       SmallVector<OperandBundleDef, 1> OpBundles;
5535       CI->getOperandBundlesAsDefs(OpBundles);
5536       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5537 
5538       // The scalar argument uses an in-tree scalar so we add the new vectorized
5539       // call to ExternalUses list to make sure that an extract will be
5540       // generated in the future.
5541       if (ScalarArg && getTreeEntry(ScalarArg))
5542         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5543 
5544       propagateIRFlags(V, E->Scalars, VL0);
5545       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5546       V = ShuffleBuilder.finalize(V);
5547 
5548       E->VectorizedValue = V;
5549       ++NumVectorInstructions;
5550       return V;
5551     }
5552     case Instruction::ShuffleVector: {
5553       assert(E->isAltShuffle() &&
5554              ((Instruction::isBinaryOp(E->getOpcode()) &&
5555                Instruction::isBinaryOp(E->getAltOpcode())) ||
5556               (Instruction::isCast(E->getOpcode()) &&
5557                Instruction::isCast(E->getAltOpcode()))) &&
5558              "Invalid Shuffle Vector Operand");
5559 
5560       Value *LHS = nullptr, *RHS = nullptr;
5561       if (Instruction::isBinaryOp(E->getOpcode())) {
5562         setInsertPointAfterBundle(E);
5563         LHS = vectorizeTree(E->getOperand(0));
5564         RHS = vectorizeTree(E->getOperand(1));
5565       } else {
5566         setInsertPointAfterBundle(E);
5567         LHS = vectorizeTree(E->getOperand(0));
5568       }
5569 
5570       if (E->VectorizedValue) {
5571         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5572         return E->VectorizedValue;
5573       }
5574 
5575       Value *V0, *V1;
5576       if (Instruction::isBinaryOp(E->getOpcode())) {
5577         V0 = Builder.CreateBinOp(
5578             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5579         V1 = Builder.CreateBinOp(
5580             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5581       } else {
5582         V0 = Builder.CreateCast(
5583             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5584         V1 = Builder.CreateCast(
5585             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5586       }
5587 
5588       // Create shuffle to take alternate operations from the vector.
5589       // Also, gather up main and alt scalar ops to propagate IR flags to
5590       // each vector operation.
5591       ValueList OpScalars, AltScalars;
5592       unsigned e = E->Scalars.size();
5593       SmallVector<int, 8> Mask(e);
5594       for (unsigned i = 0; i < e; ++i) {
5595         auto *OpInst = cast<Instruction>(E->Scalars[i]);
5596         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5597         if (OpInst->getOpcode() == E->getAltOpcode()) {
5598           Mask[i] = e + i;
5599           AltScalars.push_back(E->Scalars[i]);
5600         } else {
5601           Mask[i] = i;
5602           OpScalars.push_back(E->Scalars[i]);
5603         }
5604       }
5605 
5606       propagateIRFlags(V0, OpScalars);
5607       propagateIRFlags(V1, AltScalars);
5608 
5609       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5610       if (Instruction *I = dyn_cast<Instruction>(V))
5611         V = propagateMetadata(I, E->Scalars);
5612       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5613       V = ShuffleBuilder.finalize(V);
5614 
5615       E->VectorizedValue = V;
5616       ++NumVectorInstructions;
5617 
5618       return V;
5619     }
5620     default:
5621     llvm_unreachable("unknown inst");
5622   }
5623   return nullptr;
5624 }
5625 
5626 Value *BoUpSLP::vectorizeTree() {
5627   ExtraValueToDebugLocsMap ExternallyUsedValues;
5628   return vectorizeTree(ExternallyUsedValues);
5629 }
5630 
5631 Value *
5632 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5633   // All blocks must be scheduled before any instructions are inserted.
5634   for (auto &BSIter : BlocksSchedules) {
5635     scheduleBlock(BSIter.second.get());
5636   }
5637 
5638   Builder.SetInsertPoint(&F->getEntryBlock().front());
5639   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5640 
5641   // If the vectorized tree can be rewritten in a smaller type, we truncate the
5642   // vectorized root. InstCombine will then rewrite the entire expression. We
5643   // sign extend the extracted values below.
5644   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5645   if (MinBWs.count(ScalarRoot)) {
5646     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5647       // If current instr is a phi and not the last phi, insert it after the
5648       // last phi node.
5649       if (isa<PHINode>(I))
5650         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5651       else
5652         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5653     }
5654     auto BundleWidth = VectorizableTree[0]->Scalars.size();
5655     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5656     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5657     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5658     VectorizableTree[0]->VectorizedValue = Trunc;
5659   }
5660 
5661   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5662                     << " values .\n");
5663 
5664   // Extract all of the elements with the external uses.
5665   for (const auto &ExternalUse : ExternalUses) {
5666     Value *Scalar = ExternalUse.Scalar;
5667     llvm::User *User = ExternalUse.User;
5668 
5669     // Skip users that we already RAUW. This happens when one instruction
5670     // has multiple uses of the same value.
5671     if (User && !is_contained(Scalar->users(), User))
5672       continue;
5673     TreeEntry *E = getTreeEntry(Scalar);
5674     assert(E && "Invalid scalar");
5675     assert(E->State != TreeEntry::NeedToGather &&
5676            "Extracting from a gather list");
5677 
5678     Value *Vec = E->VectorizedValue;
5679     assert(Vec && "Can't find vectorizable value");
5680 
5681     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5682     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
5683       if (Scalar->getType() != Vec->getType()) {
5684         Value *Ex;
5685         // "Reuse" the existing extract to improve final codegen.
5686         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
5687           Ex = Builder.CreateExtractElement(ES->getOperand(0),
5688                                             ES->getOperand(1));
5689         } else {
5690           Ex = Builder.CreateExtractElement(Vec, Lane);
5691         }
5692         // If necessary, sign-extend or zero-extend ScalarRoot
5693         // to the larger type.
5694         if (!MinBWs.count(ScalarRoot))
5695           return Ex;
5696         if (MinBWs[ScalarRoot].second)
5697           return Builder.CreateSExt(Ex, Scalar->getType());
5698         return Builder.CreateZExt(Ex, Scalar->getType());
5699       }
5700       assert(isa<FixedVectorType>(Scalar->getType()) &&
5701              isa<InsertElementInst>(Scalar) &&
5702              "In-tree scalar of vector type is not insertelement?");
5703       return Vec;
5704     };
5705     // If User == nullptr, the Scalar is used as extra arg. Generate
5706     // ExtractElement instruction and update the record for this scalar in
5707     // ExternallyUsedValues.
5708     if (!User) {
5709       assert(ExternallyUsedValues.count(Scalar) &&
5710              "Scalar with nullptr as an external user must be registered in "
5711              "ExternallyUsedValues map");
5712       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5713         Builder.SetInsertPoint(VecI->getParent(),
5714                                std::next(VecI->getIterator()));
5715       } else {
5716         Builder.SetInsertPoint(&F->getEntryBlock().front());
5717       }
5718       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5719       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5720       auto &NewInstLocs = ExternallyUsedValues[NewInst];
5721       auto It = ExternallyUsedValues.find(Scalar);
5722       assert(It != ExternallyUsedValues.end() &&
5723              "Externally used scalar is not found in ExternallyUsedValues");
5724       NewInstLocs.append(It->second);
5725       ExternallyUsedValues.erase(Scalar);
5726       // Required to update internally referenced instructions.
5727       Scalar->replaceAllUsesWith(NewInst);
5728       continue;
5729     }
5730 
5731     // Generate extracts for out-of-tree users.
5732     // Find the insertion point for the extractelement lane.
5733     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5734       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5735         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5736           if (PH->getIncomingValue(i) == Scalar) {
5737             Instruction *IncomingTerminator =
5738                 PH->getIncomingBlock(i)->getTerminator();
5739             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5740               Builder.SetInsertPoint(VecI->getParent(),
5741                                      std::next(VecI->getIterator()));
5742             } else {
5743               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5744             }
5745             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5746             CSEBlocks.insert(PH->getIncomingBlock(i));
5747             PH->setOperand(i, NewInst);
5748           }
5749         }
5750       } else {
5751         Builder.SetInsertPoint(cast<Instruction>(User));
5752         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5753         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5754         User->replaceUsesOfWith(Scalar, NewInst);
5755       }
5756     } else {
5757       Builder.SetInsertPoint(&F->getEntryBlock().front());
5758       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5759       CSEBlocks.insert(&F->getEntryBlock());
5760       User->replaceUsesOfWith(Scalar, NewInst);
5761     }
5762 
5763     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5764   }
5765 
5766   // For each vectorized value:
5767   for (auto &TEPtr : VectorizableTree) {
5768     TreeEntry *Entry = TEPtr.get();
5769 
5770     // No need to handle users of gathered values.
5771     if (Entry->State == TreeEntry::NeedToGather)
5772       continue;
5773 
5774     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5775 
5776     // For each lane:
5777     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5778       Value *Scalar = Entry->Scalars[Lane];
5779 
5780 #ifndef NDEBUG
5781       Type *Ty = Scalar->getType();
5782       if (!Ty->isVoidTy()) {
5783         for (User *U : Scalar->users()) {
5784           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5785 
5786           // It is legal to delete users in the ignorelist.
5787           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5788                  "Deleting out-of-tree value");
5789         }
5790       }
5791 #endif
5792       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5793       eraseInstruction(cast<Instruction>(Scalar));
5794     }
5795   }
5796 
5797   Builder.ClearInsertionPoint();
5798   InstrElementSize.clear();
5799 
5800   return VectorizableTree[0]->VectorizedValue;
5801 }
5802 
5803 void BoUpSLP::optimizeGatherSequence() {
5804   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5805                     << " gather sequences instructions.\n");
5806   // LICM InsertElementInst sequences.
5807   for (Instruction *I : GatherSeq) {
5808     if (isDeleted(I))
5809       continue;
5810 
5811     // Check if this block is inside a loop.
5812     Loop *L = LI->getLoopFor(I->getParent());
5813     if (!L)
5814       continue;
5815 
5816     // Check if it has a preheader.
5817     BasicBlock *PreHeader = L->getLoopPreheader();
5818     if (!PreHeader)
5819       continue;
5820 
5821     // If the vector or the element that we insert into it are
5822     // instructions that are defined in this basic block then we can't
5823     // hoist this instruction.
5824     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5825     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5826     if (Op0 && L->contains(Op0))
5827       continue;
5828     if (Op1 && L->contains(Op1))
5829       continue;
5830 
5831     // We can hoist this instruction. Move it to the pre-header.
5832     I->moveBefore(PreHeader->getTerminator());
5833   }
5834 
5835   // Make a list of all reachable blocks in our CSE queue.
5836   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5837   CSEWorkList.reserve(CSEBlocks.size());
5838   for (BasicBlock *BB : CSEBlocks)
5839     if (DomTreeNode *N = DT->getNode(BB)) {
5840       assert(DT->isReachableFromEntry(N));
5841       CSEWorkList.push_back(N);
5842     }
5843 
5844   // Sort blocks by domination. This ensures we visit a block after all blocks
5845   // dominating it are visited.
5846   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
5847     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
5848            "Different nodes should have different DFS numbers");
5849     return A->getDFSNumIn() < B->getDFSNumIn();
5850   });
5851 
5852   // Perform O(N^2) search over the gather sequences and merge identical
5853   // instructions. TODO: We can further optimize this scan if we split the
5854   // instructions into different buckets based on the insert lane.
5855   SmallVector<Instruction *, 16> Visited;
5856   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5857     assert(*I &&
5858            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5859            "Worklist not sorted properly!");
5860     BasicBlock *BB = (*I)->getBlock();
5861     // For all instructions in blocks containing gather sequences:
5862     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5863       Instruction *In = &*it++;
5864       if (isDeleted(In))
5865         continue;
5866       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5867         continue;
5868 
5869       // Check if we can replace this instruction with any of the
5870       // visited instructions.
5871       for (Instruction *v : Visited) {
5872         if (In->isIdenticalTo(v) &&
5873             DT->dominates(v->getParent(), In->getParent())) {
5874           In->replaceAllUsesWith(v);
5875           eraseInstruction(In);
5876           In = nullptr;
5877           break;
5878         }
5879       }
5880       if (In) {
5881         assert(!is_contained(Visited, In));
5882         Visited.push_back(In);
5883       }
5884     }
5885   }
5886   CSEBlocks.clear();
5887   GatherSeq.clear();
5888 }
5889 
5890 // Groups the instructions to a bundle (which is then a single scheduling entity)
5891 // and schedules instructions until the bundle gets ready.
5892 Optional<BoUpSLP::ScheduleData *>
5893 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5894                                             const InstructionsState &S) {
5895   if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue))
5896     return nullptr;
5897 
5898   // Initialize the instruction bundle.
5899   Instruction *OldScheduleEnd = ScheduleEnd;
5900   ScheduleData *PrevInBundle = nullptr;
5901   ScheduleData *Bundle = nullptr;
5902   bool ReSchedule = false;
5903   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5904 
5905   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5906                                                          ScheduleData *Bundle) {
5907     // The scheduling region got new instructions at the lower end (or it is a
5908     // new region for the first bundle). This makes it necessary to
5909     // recalculate all dependencies.
5910     // It is seldom that this needs to be done a second time after adding the
5911     // initial bundle to the region.
5912     if (ScheduleEnd != OldScheduleEnd) {
5913       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5914         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5915       ReSchedule = true;
5916     }
5917     if (ReSchedule) {
5918       resetSchedule();
5919       initialFillReadyList(ReadyInsts);
5920     }
5921     if (Bundle) {
5922       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5923                         << " in block " << BB->getName() << "\n");
5924       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5925     }
5926 
5927     // Now try to schedule the new bundle or (if no bundle) just calculate
5928     // dependencies. As soon as the bundle is "ready" it means that there are no
5929     // cyclic dependencies and we can schedule it. Note that's important that we
5930     // don't "schedule" the bundle yet (see cancelScheduling).
5931     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5932            !ReadyInsts.empty()) {
5933       ScheduleData *Picked = ReadyInsts.pop_back_val();
5934       if (Picked->isSchedulingEntity() && Picked->isReady())
5935         schedule(Picked, ReadyInsts);
5936     }
5937   };
5938 
5939   // Make sure that the scheduling region contains all
5940   // instructions of the bundle.
5941   for (Value *V : VL) {
5942     if (!extendSchedulingRegion(V, S)) {
5943       // If the scheduling region got new instructions at the lower end (or it
5944       // is a new region for the first bundle). This makes it necessary to
5945       // recalculate all dependencies.
5946       // Otherwise the compiler may crash trying to incorrectly calculate
5947       // dependencies and emit instruction in the wrong order at the actual
5948       // scheduling.
5949       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5950       return None;
5951     }
5952   }
5953 
5954   for (Value *V : VL) {
5955     ScheduleData *BundleMember = getScheduleData(V);
5956     assert(BundleMember &&
5957            "no ScheduleData for bundle member (maybe not in same basic block)");
5958     if (BundleMember->IsScheduled) {
5959       // A bundle member was scheduled as single instruction before and now
5960       // needs to be scheduled as part of the bundle. We just get rid of the
5961       // existing schedule.
5962       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
5963                         << " was already scheduled\n");
5964       ReSchedule = true;
5965     }
5966     assert(BundleMember->isSchedulingEntity() &&
5967            "bundle member already part of other bundle");
5968     if (PrevInBundle) {
5969       PrevInBundle->NextInBundle = BundleMember;
5970     } else {
5971       Bundle = BundleMember;
5972     }
5973     BundleMember->UnscheduledDepsInBundle = 0;
5974     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5975 
5976     // Group the instructions to a bundle.
5977     BundleMember->FirstInBundle = Bundle;
5978     PrevInBundle = BundleMember;
5979   }
5980   assert(Bundle && "Failed to find schedule bundle");
5981   TryScheduleBundle(ReSchedule, Bundle);
5982   if (!Bundle->isReady()) {
5983     cancelScheduling(VL, S.OpValue);
5984     return None;
5985   }
5986   return Bundle;
5987 }
5988 
5989 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5990                                                 Value *OpValue) {
5991   if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue))
5992     return;
5993 
5994   ScheduleData *Bundle = getScheduleData(OpValue);
5995   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
5996   assert(!Bundle->IsScheduled &&
5997          "Can't cancel bundle which is already scheduled");
5998   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
5999          "tried to unbundle something which is not a bundle");
6000 
6001   // Un-bundle: make single instructions out of the bundle.
6002   ScheduleData *BundleMember = Bundle;
6003   while (BundleMember) {
6004     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
6005     BundleMember->FirstInBundle = BundleMember;
6006     ScheduleData *Next = BundleMember->NextInBundle;
6007     BundleMember->NextInBundle = nullptr;
6008     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
6009     if (BundleMember->UnscheduledDepsInBundle == 0) {
6010       ReadyInsts.insert(BundleMember);
6011     }
6012     BundleMember = Next;
6013   }
6014 }
6015 
6016 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6017   // Allocate a new ScheduleData for the instruction.
6018   if (ChunkPos >= ChunkSize) {
6019     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
6020     ChunkPos = 0;
6021   }
6022   return &(ScheduleDataChunks.back()[ChunkPos++]);
6023 }
6024 
6025 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
6026                                                       const InstructionsState &S) {
6027   if (getScheduleData(V, isOneOf(S, V)))
6028     return true;
6029   Instruction *I = dyn_cast<Instruction>(V);
6030   assert(I && "bundle member must be an instruction");
6031   assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) &&
6032          "phi nodes/insertelements don't need to be scheduled");
6033   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
6034     ScheduleData *ISD = getScheduleData(I);
6035     if (!ISD)
6036       return false;
6037     assert(isInSchedulingRegion(ISD) &&
6038            "ScheduleData not in scheduling region");
6039     ScheduleData *SD = allocateScheduleDataChunks();
6040     SD->Inst = I;
6041     SD->init(SchedulingRegionID, S.OpValue);
6042     ExtraScheduleDataMap[I][S.OpValue] = SD;
6043     return true;
6044   };
6045   if (CheckSheduleForI(I))
6046     return true;
6047   if (!ScheduleStart) {
6048     // It's the first instruction in the new region.
6049     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
6050     ScheduleStart = I;
6051     ScheduleEnd = I->getNextNode();
6052     if (isOneOf(S, I) != I)
6053       CheckSheduleForI(I);
6054     assert(ScheduleEnd && "tried to vectorize a terminator?");
6055     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
6056     return true;
6057   }
6058   // Search up and down at the same time, because we don't know if the new
6059   // instruction is above or below the existing scheduling region.
6060   BasicBlock::reverse_iterator UpIter =
6061       ++ScheduleStart->getIterator().getReverse();
6062   BasicBlock::reverse_iterator UpperEnd = BB->rend();
6063   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
6064   BasicBlock::iterator LowerEnd = BB->end();
6065   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
6066          &*DownIter != I) {
6067     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
6068       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
6069       return false;
6070     }
6071 
6072     ++UpIter;
6073     ++DownIter;
6074   }
6075   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
6076     assert(I->getParent() == ScheduleStart->getParent() &&
6077            "Instruction is in wrong basic block.");
6078     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
6079     ScheduleStart = I;
6080     if (isOneOf(S, I) != I)
6081       CheckSheduleForI(I);
6082     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
6083                       << "\n");
6084     return true;
6085   }
6086   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
6087          "Expected to reach top of the basic block or instruction down the "
6088          "lower end.");
6089   assert(I->getParent() == ScheduleEnd->getParent() &&
6090          "Instruction is in wrong basic block.");
6091   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
6092                    nullptr);
6093   ScheduleEnd = I->getNextNode();
6094   if (isOneOf(S, I) != I)
6095     CheckSheduleForI(I);
6096   assert(ScheduleEnd && "tried to vectorize a terminator?");
6097   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
6098   return true;
6099 }
6100 
6101 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
6102                                                 Instruction *ToI,
6103                                                 ScheduleData *PrevLoadStore,
6104                                                 ScheduleData *NextLoadStore) {
6105   ScheduleData *CurrentLoadStore = PrevLoadStore;
6106   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
6107     ScheduleData *SD = ScheduleDataMap[I];
6108     if (!SD) {
6109       SD = allocateScheduleDataChunks();
6110       ScheduleDataMap[I] = SD;
6111       SD->Inst = I;
6112     }
6113     assert(!isInSchedulingRegion(SD) &&
6114            "new ScheduleData already in scheduling region");
6115     SD->init(SchedulingRegionID, I);
6116 
6117     if (I->mayReadOrWriteMemory() &&
6118         (!isa<IntrinsicInst>(I) ||
6119          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
6120           cast<IntrinsicInst>(I)->getIntrinsicID() !=
6121               Intrinsic::pseudoprobe))) {
6122       // Update the linked list of memory accessing instructions.
6123       if (CurrentLoadStore) {
6124         CurrentLoadStore->NextLoadStore = SD;
6125       } else {
6126         FirstLoadStoreInRegion = SD;
6127       }
6128       CurrentLoadStore = SD;
6129     }
6130   }
6131   if (NextLoadStore) {
6132     if (CurrentLoadStore)
6133       CurrentLoadStore->NextLoadStore = NextLoadStore;
6134   } else {
6135     LastLoadStoreInRegion = CurrentLoadStore;
6136   }
6137 }
6138 
6139 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
6140                                                      bool InsertInReadyList,
6141                                                      BoUpSLP *SLP) {
6142   assert(SD->isSchedulingEntity());
6143 
6144   SmallVector<ScheduleData *, 10> WorkList;
6145   WorkList.push_back(SD);
6146 
6147   while (!WorkList.empty()) {
6148     ScheduleData *SD = WorkList.pop_back_val();
6149 
6150     ScheduleData *BundleMember = SD;
6151     while (BundleMember) {
6152       assert(isInSchedulingRegion(BundleMember));
6153       if (!BundleMember->hasValidDependencies()) {
6154 
6155         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
6156                           << "\n");
6157         BundleMember->Dependencies = 0;
6158         BundleMember->resetUnscheduledDeps();
6159 
6160         // Handle def-use chain dependencies.
6161         if (BundleMember->OpValue != BundleMember->Inst) {
6162           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
6163           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6164             BundleMember->Dependencies++;
6165             ScheduleData *DestBundle = UseSD->FirstInBundle;
6166             if (!DestBundle->IsScheduled)
6167               BundleMember->incrementUnscheduledDeps(1);
6168             if (!DestBundle->hasValidDependencies())
6169               WorkList.push_back(DestBundle);
6170           }
6171         } else {
6172           for (User *U : BundleMember->Inst->users()) {
6173             if (isa<Instruction>(U)) {
6174               ScheduleData *UseSD = getScheduleData(U);
6175               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6176                 BundleMember->Dependencies++;
6177                 ScheduleData *DestBundle = UseSD->FirstInBundle;
6178                 if (!DestBundle->IsScheduled)
6179                   BundleMember->incrementUnscheduledDeps(1);
6180                 if (!DestBundle->hasValidDependencies())
6181                   WorkList.push_back(DestBundle);
6182               }
6183             } else {
6184               // I'm not sure if this can ever happen. But we need to be safe.
6185               // This lets the instruction/bundle never be scheduled and
6186               // eventually disable vectorization.
6187               BundleMember->Dependencies++;
6188               BundleMember->incrementUnscheduledDeps(1);
6189             }
6190           }
6191         }
6192 
6193         // Handle the memory dependencies.
6194         ScheduleData *DepDest = BundleMember->NextLoadStore;
6195         if (DepDest) {
6196           Instruction *SrcInst = BundleMember->Inst;
6197           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
6198           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
6199           unsigned numAliased = 0;
6200           unsigned DistToSrc = 1;
6201 
6202           while (DepDest) {
6203             assert(isInSchedulingRegion(DepDest));
6204 
6205             // We have two limits to reduce the complexity:
6206             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6207             //    SLP->isAliased (which is the expensive part in this loop).
6208             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6209             //    the whole loop (even if the loop is fast, it's quadratic).
6210             //    It's important for the loop break condition (see below) to
6211             //    check this limit even between two read-only instructions.
6212             if (DistToSrc >= MaxMemDepDistance ||
6213                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
6214                      (numAliased >= AliasedCheckLimit ||
6215                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
6216 
6217               // We increment the counter only if the locations are aliased
6218               // (instead of counting all alias checks). This gives a better
6219               // balance between reduced runtime and accurate dependencies.
6220               numAliased++;
6221 
6222               DepDest->MemoryDependencies.push_back(BundleMember);
6223               BundleMember->Dependencies++;
6224               ScheduleData *DestBundle = DepDest->FirstInBundle;
6225               if (!DestBundle->IsScheduled) {
6226                 BundleMember->incrementUnscheduledDeps(1);
6227               }
6228               if (!DestBundle->hasValidDependencies()) {
6229                 WorkList.push_back(DestBundle);
6230               }
6231             }
6232             DepDest = DepDest->NextLoadStore;
6233 
6234             // Example, explaining the loop break condition: Let's assume our
6235             // starting instruction is i0 and MaxMemDepDistance = 3.
6236             //
6237             //                      +--------v--v--v
6238             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
6239             //             +--------^--^--^
6240             //
6241             // MaxMemDepDistance let us stop alias-checking at i3 and we add
6242             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6243             // Previously we already added dependencies from i3 to i6,i7,i8
6244             // (because of MaxMemDepDistance). As we added a dependency from
6245             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6246             // and we can abort this loop at i6.
6247             if (DistToSrc >= 2 * MaxMemDepDistance)
6248               break;
6249             DistToSrc++;
6250           }
6251         }
6252       }
6253       BundleMember = BundleMember->NextInBundle;
6254     }
6255     if (InsertInReadyList && SD->isReady()) {
6256       ReadyInsts.push_back(SD);
6257       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
6258                         << "\n");
6259     }
6260   }
6261 }
6262 
6263 void BoUpSLP::BlockScheduling::resetSchedule() {
6264   assert(ScheduleStart &&
6265          "tried to reset schedule on block which has not been scheduled");
6266   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
6267     doForAllOpcodes(I, [&](ScheduleData *SD) {
6268       assert(isInSchedulingRegion(SD) &&
6269              "ScheduleData not in scheduling region");
6270       SD->IsScheduled = false;
6271       SD->resetUnscheduledDeps();
6272     });
6273   }
6274   ReadyInsts.clear();
6275 }
6276 
6277 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
6278   if (!BS->ScheduleStart)
6279     return;
6280 
6281   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
6282 
6283   BS->resetSchedule();
6284 
6285   // For the real scheduling we use a more sophisticated ready-list: it is
6286   // sorted by the original instruction location. This lets the final schedule
6287   // be as  close as possible to the original instruction order.
6288   struct ScheduleDataCompare {
6289     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
6290       return SD2->SchedulingPriority < SD1->SchedulingPriority;
6291     }
6292   };
6293   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
6294 
6295   // Ensure that all dependency data is updated and fill the ready-list with
6296   // initial instructions.
6297   int Idx = 0;
6298   int NumToSchedule = 0;
6299   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6300        I = I->getNextNode()) {
6301     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
6302       assert((isa<InsertElementInst>(SD->Inst) ||
6303               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
6304              "scheduler and vectorizer bundle mismatch");
6305       SD->FirstInBundle->SchedulingPriority = Idx++;
6306       if (SD->isSchedulingEntity()) {
6307         BS->calculateDependencies(SD, false, this);
6308         NumToSchedule++;
6309       }
6310     });
6311   }
6312   BS->initialFillReadyList(ReadyInsts);
6313 
6314   Instruction *LastScheduledInst = BS->ScheduleEnd;
6315 
6316   // Do the "real" scheduling.
6317   while (!ReadyInsts.empty()) {
6318     ScheduleData *picked = *ReadyInsts.begin();
6319     ReadyInsts.erase(ReadyInsts.begin());
6320 
6321     // Move the scheduled instruction(s) to their dedicated places, if not
6322     // there yet.
6323     ScheduleData *BundleMember = picked;
6324     while (BundleMember) {
6325       Instruction *pickedInst = BundleMember->Inst;
6326       if (pickedInst->getNextNode() != LastScheduledInst) {
6327         BS->BB->getInstList().remove(pickedInst);
6328         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
6329                                      pickedInst);
6330       }
6331       LastScheduledInst = pickedInst;
6332       BundleMember = BundleMember->NextInBundle;
6333     }
6334 
6335     BS->schedule(picked, ReadyInsts);
6336     NumToSchedule--;
6337   }
6338   assert(NumToSchedule == 0 && "could not schedule all instructions");
6339 
6340   // Avoid duplicate scheduling of the block.
6341   BS->ScheduleStart = nullptr;
6342 }
6343 
6344 unsigned BoUpSLP::getVectorElementSize(Value *V) {
6345   // If V is a store, just return the width of the stored value (or value
6346   // truncated just before storing) without traversing the expression tree.
6347   // This is the common case.
6348   if (auto *Store = dyn_cast<StoreInst>(V)) {
6349     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
6350       return DL->getTypeSizeInBits(Trunc->getSrcTy());
6351     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
6352   }
6353 
6354   if (auto *IEI = dyn_cast<InsertElementInst>(V))
6355     return getVectorElementSize(IEI->getOperand(1));
6356 
6357   auto E = InstrElementSize.find(V);
6358   if (E != InstrElementSize.end())
6359     return E->second;
6360 
6361   // If V is not a store, we can traverse the expression tree to find loads
6362   // that feed it. The type of the loaded value may indicate a more suitable
6363   // width than V's type. We want to base the vector element size on the width
6364   // of memory operations where possible.
6365   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
6366   SmallPtrSet<Instruction *, 16> Visited;
6367   if (auto *I = dyn_cast<Instruction>(V)) {
6368     Worklist.emplace_back(I, I->getParent());
6369     Visited.insert(I);
6370   }
6371 
6372   // Traverse the expression tree in bottom-up order looking for loads. If we
6373   // encounter an instruction we don't yet handle, we give up.
6374   auto Width = 0u;
6375   while (!Worklist.empty()) {
6376     Instruction *I;
6377     BasicBlock *Parent;
6378     std::tie(I, Parent) = Worklist.pop_back_val();
6379 
6380     // We should only be looking at scalar instructions here. If the current
6381     // instruction has a vector type, skip.
6382     auto *Ty = I->getType();
6383     if (isa<VectorType>(Ty))
6384       continue;
6385 
6386     // If the current instruction is a load, update MaxWidth to reflect the
6387     // width of the loaded value.
6388     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
6389         isa<ExtractValueInst>(I))
6390       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
6391 
6392     // Otherwise, we need to visit the operands of the instruction. We only
6393     // handle the interesting cases from buildTree here. If an operand is an
6394     // instruction we haven't yet visited and from the same basic block as the
6395     // user or the use is a PHI node, we add it to the worklist.
6396     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6397              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
6398              isa<UnaryOperator>(I)) {
6399       for (Use &U : I->operands())
6400         if (auto *J = dyn_cast<Instruction>(U.get()))
6401           if (Visited.insert(J).second &&
6402               (isa<PHINode>(I) || J->getParent() == Parent))
6403             Worklist.emplace_back(J, J->getParent());
6404     } else {
6405       break;
6406     }
6407   }
6408 
6409   // If we didn't encounter a memory access in the expression tree, or if we
6410   // gave up for some reason, just return the width of V. Otherwise, return the
6411   // maximum width we found.
6412   if (!Width) {
6413     if (auto *CI = dyn_cast<CmpInst>(V))
6414       V = CI->getOperand(0);
6415     Width = DL->getTypeSizeInBits(V->getType());
6416   }
6417 
6418   for (Instruction *I : Visited)
6419     InstrElementSize[I] = Width;
6420 
6421   return Width;
6422 }
6423 
6424 // Determine if a value V in a vectorizable expression Expr can be demoted to a
6425 // smaller type with a truncation. We collect the values that will be demoted
6426 // in ToDemote and additional roots that require investigating in Roots.
6427 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
6428                                   SmallVectorImpl<Value *> &ToDemote,
6429                                   SmallVectorImpl<Value *> &Roots) {
6430   // We can always demote constants.
6431   if (isa<Constant>(V)) {
6432     ToDemote.push_back(V);
6433     return true;
6434   }
6435 
6436   // If the value is not an instruction in the expression with only one use, it
6437   // cannot be demoted.
6438   auto *I = dyn_cast<Instruction>(V);
6439   if (!I || !I->hasOneUse() || !Expr.count(I))
6440     return false;
6441 
6442   switch (I->getOpcode()) {
6443 
6444   // We can always demote truncations and extensions. Since truncations can
6445   // seed additional demotion, we save the truncated value.
6446   case Instruction::Trunc:
6447     Roots.push_back(I->getOperand(0));
6448     break;
6449   case Instruction::ZExt:
6450   case Instruction::SExt:
6451     if (isa<ExtractElementInst>(I->getOperand(0)) ||
6452         isa<InsertElementInst>(I->getOperand(0)))
6453       return false;
6454     break;
6455 
6456   // We can demote certain binary operations if we can demote both of their
6457   // operands.
6458   case Instruction::Add:
6459   case Instruction::Sub:
6460   case Instruction::Mul:
6461   case Instruction::And:
6462   case Instruction::Or:
6463   case Instruction::Xor:
6464     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
6465         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
6466       return false;
6467     break;
6468 
6469   // We can demote selects if we can demote their true and false values.
6470   case Instruction::Select: {
6471     SelectInst *SI = cast<SelectInst>(I);
6472     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
6473         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
6474       return false;
6475     break;
6476   }
6477 
6478   // We can demote phis if we can demote all their incoming operands. Note that
6479   // we don't need to worry about cycles since we ensure single use above.
6480   case Instruction::PHI: {
6481     PHINode *PN = cast<PHINode>(I);
6482     for (Value *IncValue : PN->incoming_values())
6483       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
6484         return false;
6485     break;
6486   }
6487 
6488   // Otherwise, conservatively give up.
6489   default:
6490     return false;
6491   }
6492 
6493   // Record the value that we can demote.
6494   ToDemote.push_back(V);
6495   return true;
6496 }
6497 
6498 void BoUpSLP::computeMinimumValueSizes() {
6499   // If there are no external uses, the expression tree must be rooted by a
6500   // store. We can't demote in-memory values, so there is nothing to do here.
6501   if (ExternalUses.empty())
6502     return;
6503 
6504   // We only attempt to truncate integer expressions.
6505   auto &TreeRoot = VectorizableTree[0]->Scalars;
6506   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6507   if (!TreeRootIT)
6508     return;
6509 
6510   // If the expression is not rooted by a store, these roots should have
6511   // external uses. We will rely on InstCombine to rewrite the expression in
6512   // the narrower type. However, InstCombine only rewrites single-use values.
6513   // This means that if a tree entry other than a root is used externally, it
6514   // must have multiple uses and InstCombine will not rewrite it. The code
6515   // below ensures that only the roots are used externally.
6516   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6517   for (auto &EU : ExternalUses)
6518     if (!Expr.erase(EU.Scalar))
6519       return;
6520   if (!Expr.empty())
6521     return;
6522 
6523   // Collect the scalar values of the vectorizable expression. We will use this
6524   // context to determine which values can be demoted. If we see a truncation,
6525   // we mark it as seeding another demotion.
6526   for (auto &EntryPtr : VectorizableTree)
6527     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6528 
6529   // Ensure the roots of the vectorizable tree don't form a cycle. They must
6530   // have a single external user that is not in the vectorizable tree.
6531   for (auto *Root : TreeRoot)
6532     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6533       return;
6534 
6535   // Conservatively determine if we can actually truncate the roots of the
6536   // expression. Collect the values that can be demoted in ToDemote and
6537   // additional roots that require investigating in Roots.
6538   SmallVector<Value *, 32> ToDemote;
6539   SmallVector<Value *, 4> Roots;
6540   for (auto *Root : TreeRoot)
6541     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6542       return;
6543 
6544   // The maximum bit width required to represent all the values that can be
6545   // demoted without loss of precision. It would be safe to truncate the roots
6546   // of the expression to this width.
6547   auto MaxBitWidth = 8u;
6548 
6549   // We first check if all the bits of the roots are demanded. If they're not,
6550   // we can truncate the roots to this narrower type.
6551   for (auto *Root : TreeRoot) {
6552     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6553     MaxBitWidth = std::max<unsigned>(
6554         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6555   }
6556 
6557   // True if the roots can be zero-extended back to their original type, rather
6558   // than sign-extended. We know that if the leading bits are not demanded, we
6559   // can safely zero-extend. So we initialize IsKnownPositive to True.
6560   bool IsKnownPositive = true;
6561 
6562   // If all the bits of the roots are demanded, we can try a little harder to
6563   // compute a narrower type. This can happen, for example, if the roots are
6564   // getelementptr indices. InstCombine promotes these indices to the pointer
6565   // width. Thus, all their bits are technically demanded even though the
6566   // address computation might be vectorized in a smaller type.
6567   //
6568   // We start by looking at each entry that can be demoted. We compute the
6569   // maximum bit width required to store the scalar by using ValueTracking to
6570   // compute the number of high-order bits we can truncate.
6571   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6572       llvm::all_of(TreeRoot, [](Value *R) {
6573         assert(R->hasOneUse() && "Root should have only one use!");
6574         return isa<GetElementPtrInst>(R->user_back());
6575       })) {
6576     MaxBitWidth = 8u;
6577 
6578     // Determine if the sign bit of all the roots is known to be zero. If not,
6579     // IsKnownPositive is set to False.
6580     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6581       KnownBits Known = computeKnownBits(R, *DL);
6582       return Known.isNonNegative();
6583     });
6584 
6585     // Determine the maximum number of bits required to store the scalar
6586     // values.
6587     for (auto *Scalar : ToDemote) {
6588       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6589       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6590       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6591     }
6592 
6593     // If we can't prove that the sign bit is zero, we must add one to the
6594     // maximum bit width to account for the unknown sign bit. This preserves
6595     // the existing sign bit so we can safely sign-extend the root back to the
6596     // original type. Otherwise, if we know the sign bit is zero, we will
6597     // zero-extend the root instead.
6598     //
6599     // FIXME: This is somewhat suboptimal, as there will be cases where adding
6600     //        one to the maximum bit width will yield a larger-than-necessary
6601     //        type. In general, we need to add an extra bit only if we can't
6602     //        prove that the upper bit of the original type is equal to the
6603     //        upper bit of the proposed smaller type. If these two bits are the
6604     //        same (either zero or one) we know that sign-extending from the
6605     //        smaller type will result in the same value. Here, since we can't
6606     //        yet prove this, we are just making the proposed smaller type
6607     //        larger to ensure correctness.
6608     if (!IsKnownPositive)
6609       ++MaxBitWidth;
6610   }
6611 
6612   // Round MaxBitWidth up to the next power-of-two.
6613   if (!isPowerOf2_64(MaxBitWidth))
6614     MaxBitWidth = NextPowerOf2(MaxBitWidth);
6615 
6616   // If the maximum bit width we compute is less than the with of the roots'
6617   // type, we can proceed with the narrowing. Otherwise, do nothing.
6618   if (MaxBitWidth >= TreeRootIT->getBitWidth())
6619     return;
6620 
6621   // If we can truncate the root, we must collect additional values that might
6622   // be demoted as a result. That is, those seeded by truncations we will
6623   // modify.
6624   while (!Roots.empty())
6625     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6626 
6627   // Finally, map the values we can demote to the maximum bit with we computed.
6628   for (auto *Scalar : ToDemote)
6629     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6630 }
6631 
6632 namespace {
6633 
6634 /// The SLPVectorizer Pass.
6635 struct SLPVectorizer : public FunctionPass {
6636   SLPVectorizerPass Impl;
6637 
6638   /// Pass identification, replacement for typeid
6639   static char ID;
6640 
6641   explicit SLPVectorizer() : FunctionPass(ID) {
6642     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6643   }
6644 
6645   bool doInitialization(Module &M) override {
6646     return false;
6647   }
6648 
6649   bool runOnFunction(Function &F) override {
6650     if (skipFunction(F))
6651       return false;
6652 
6653     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6654     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6655     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6656     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6657     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6658     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6659     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6660     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6661     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6662     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6663 
6664     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6665   }
6666 
6667   void getAnalysisUsage(AnalysisUsage &AU) const override {
6668     FunctionPass::getAnalysisUsage(AU);
6669     AU.addRequired<AssumptionCacheTracker>();
6670     AU.addRequired<ScalarEvolutionWrapperPass>();
6671     AU.addRequired<AAResultsWrapperPass>();
6672     AU.addRequired<TargetTransformInfoWrapperPass>();
6673     AU.addRequired<LoopInfoWrapperPass>();
6674     AU.addRequired<DominatorTreeWrapperPass>();
6675     AU.addRequired<DemandedBitsWrapperPass>();
6676     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6677     AU.addRequired<InjectTLIMappingsLegacy>();
6678     AU.addPreserved<LoopInfoWrapperPass>();
6679     AU.addPreserved<DominatorTreeWrapperPass>();
6680     AU.addPreserved<AAResultsWrapperPass>();
6681     AU.addPreserved<GlobalsAAWrapperPass>();
6682     AU.setPreservesCFG();
6683   }
6684 };
6685 
6686 } // end anonymous namespace
6687 
6688 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6689   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6690   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6691   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6692   auto *AA = &AM.getResult<AAManager>(F);
6693   auto *LI = &AM.getResult<LoopAnalysis>(F);
6694   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6695   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6696   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6697   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6698 
6699   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6700   if (!Changed)
6701     return PreservedAnalyses::all();
6702 
6703   PreservedAnalyses PA;
6704   PA.preserveSet<CFGAnalyses>();
6705   return PA;
6706 }
6707 
6708 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6709                                 TargetTransformInfo *TTI_,
6710                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6711                                 LoopInfo *LI_, DominatorTree *DT_,
6712                                 AssumptionCache *AC_, DemandedBits *DB_,
6713                                 OptimizationRemarkEmitter *ORE_) {
6714   if (!RunSLPVectorization)
6715     return false;
6716   SE = SE_;
6717   TTI = TTI_;
6718   TLI = TLI_;
6719   AA = AA_;
6720   LI = LI_;
6721   DT = DT_;
6722   AC = AC_;
6723   DB = DB_;
6724   DL = &F.getParent()->getDataLayout();
6725 
6726   Stores.clear();
6727   GEPs.clear();
6728   bool Changed = false;
6729 
6730   // If the target claims to have no vector registers don't attempt
6731   // vectorization.
6732   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6733     return false;
6734 
6735   // Don't vectorize when the attribute NoImplicitFloat is used.
6736   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6737     return false;
6738 
6739   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6740 
6741   // Use the bottom up slp vectorizer to construct chains that start with
6742   // store instructions.
6743   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6744 
6745   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6746   // delete instructions.
6747 
6748   // Update DFS numbers now so that we can use them for ordering.
6749   DT->updateDFSNumbers();
6750 
6751   // Scan the blocks in the function in post order.
6752   for (auto BB : post_order(&F.getEntryBlock())) {
6753     collectSeedInstructions(BB);
6754 
6755     // Vectorize trees that end at stores.
6756     if (!Stores.empty()) {
6757       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6758                         << " underlying objects.\n");
6759       Changed |= vectorizeStoreChains(R);
6760     }
6761 
6762     // Vectorize trees that end at reductions.
6763     Changed |= vectorizeChainsInBlock(BB, R);
6764 
6765     // Vectorize the index computations of getelementptr instructions. This
6766     // is primarily intended to catch gather-like idioms ending at
6767     // non-consecutive loads.
6768     if (!GEPs.empty()) {
6769       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6770                         << " underlying objects.\n");
6771       Changed |= vectorizeGEPIndices(BB, R);
6772     }
6773   }
6774 
6775   if (Changed) {
6776     R.optimizeGatherSequence();
6777     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6778   }
6779   return Changed;
6780 }
6781 
6782 /// Order may have elements assigned special value (size) which is out of
6783 /// bounds. Such indices only appear on places which correspond to undef values
6784 /// (see canReuseExtract for details) and used in order to avoid undef values
6785 /// have effect on operands ordering.
6786 /// The first loop below simply finds all unused indices and then the next loop
6787 /// nest assigns these indices for undef values positions.
6788 /// As an example below Order has two undef positions and they have assigned
6789 /// values 3 and 7 respectively:
6790 /// before:  6 9 5 4 9 2 1 0
6791 /// after:   6 3 5 4 7 2 1 0
6792 /// \returns Fixed ordering.
6793 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
6794   BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
6795   const unsigned Sz = NewOrder.size();
6796   SmallBitVector UsedIndices(Sz);
6797   SmallVector<int> MaskedIndices;
6798   for (int I = 0, E = NewOrder.size(); I < E; ++I) {
6799     if (NewOrder[I] < Sz)
6800       UsedIndices.set(NewOrder[I]);
6801     else
6802       MaskedIndices.push_back(I);
6803   }
6804   if (MaskedIndices.empty())
6805     return NewOrder;
6806   SmallVector<int> AvailableIndices(MaskedIndices.size());
6807   unsigned Cnt = 0;
6808   int Idx = UsedIndices.find_first();
6809   do {
6810     AvailableIndices[Cnt] = Idx;
6811     Idx = UsedIndices.find_next(Idx);
6812     ++Cnt;
6813   } while (Idx > 0);
6814   assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
6815   for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
6816     NewOrder[MaskedIndices[I]] = AvailableIndices[I];
6817   return NewOrder;
6818 }
6819 
6820 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6821                                             unsigned Idx) {
6822   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6823                     << "\n");
6824   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6825   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6826   unsigned VF = Chain.size();
6827 
6828   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6829     return false;
6830 
6831   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6832                     << "\n");
6833 
6834   R.buildTree(Chain);
6835   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6836   // TODO: Handle orders of size less than number of elements in the vector.
6837   if (Order && Order->size() == Chain.size()) {
6838     // TODO: reorder tree nodes without tree rebuilding.
6839     SmallVector<Value *, 4> ReorderedOps(Chain.size());
6840     transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
6841               [Chain](const unsigned Idx) { return Chain[Idx]; });
6842     R.buildTree(ReorderedOps);
6843   }
6844   if (R.isTreeTinyAndNotFullyVectorizable())
6845     return false;
6846   if (R.isLoadCombineCandidate())
6847     return false;
6848 
6849   R.computeMinimumValueSizes();
6850 
6851   InstructionCost Cost = R.getTreeCost();
6852 
6853   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6854   if (Cost < -SLPCostThreshold) {
6855     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6856 
6857     using namespace ore;
6858 
6859     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6860                                         cast<StoreInst>(Chain[0]))
6861                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6862                      << " and with tree size "
6863                      << NV("TreeSize", R.getTreeSize()));
6864 
6865     R.vectorizeTree();
6866     return true;
6867   }
6868 
6869   return false;
6870 }
6871 
6872 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6873                                         BoUpSLP &R) {
6874   // We may run into multiple chains that merge into a single chain. We mark the
6875   // stores that we vectorized so that we don't visit the same store twice.
6876   BoUpSLP::ValueSet VectorizedStores;
6877   bool Changed = false;
6878 
6879   int E = Stores.size();
6880   SmallBitVector Tails(E, false);
6881   int MaxIter = MaxStoreLookup.getValue();
6882   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6883       E, std::make_pair(E, INT_MAX));
6884   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6885   int IterCnt;
6886   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6887                                   &CheckedPairs,
6888                                   &ConsecutiveChain](int K, int Idx) {
6889     if (IterCnt >= MaxIter)
6890       return true;
6891     if (CheckedPairs[Idx].test(K))
6892       return ConsecutiveChain[K].second == 1 &&
6893              ConsecutiveChain[K].first == Idx;
6894     ++IterCnt;
6895     CheckedPairs[Idx].set(K);
6896     CheckedPairs[K].set(Idx);
6897     Optional<int> Diff = getPointersDiff(
6898         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
6899         Stores[Idx]->getValueOperand()->getType(),
6900         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
6901     if (!Diff || *Diff == 0)
6902       return false;
6903     int Val = *Diff;
6904     if (Val < 0) {
6905       if (ConsecutiveChain[Idx].second > -Val) {
6906         Tails.set(K);
6907         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6908       }
6909       return false;
6910     }
6911     if (ConsecutiveChain[K].second <= Val)
6912       return false;
6913 
6914     Tails.set(Idx);
6915     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6916     return Val == 1;
6917   };
6918   // Do a quadratic search on all of the given stores in reverse order and find
6919   // all of the pairs of stores that follow each other.
6920   for (int Idx = E - 1; Idx >= 0; --Idx) {
6921     // If a store has multiple consecutive store candidates, search according
6922     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6923     // This is because usually pairing with immediate succeeding or preceding
6924     // candidate create the best chance to find slp vectorization opportunity.
6925     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6926     IterCnt = 0;
6927     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6928       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6929           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6930         break;
6931   }
6932 
6933   // Tracks if we tried to vectorize stores starting from the given tail
6934   // already.
6935   SmallBitVector TriedTails(E, false);
6936   // For stores that start but don't end a link in the chain:
6937   for (int Cnt = E; Cnt > 0; --Cnt) {
6938     int I = Cnt - 1;
6939     if (ConsecutiveChain[I].first == E || Tails.test(I))
6940       continue;
6941     // We found a store instr that starts a chain. Now follow the chain and try
6942     // to vectorize it.
6943     BoUpSLP::ValueList Operands;
6944     // Collect the chain into a list.
6945     while (I != E && !VectorizedStores.count(Stores[I])) {
6946       Operands.push_back(Stores[I]);
6947       Tails.set(I);
6948       if (ConsecutiveChain[I].second != 1) {
6949         // Mark the new end in the chain and go back, if required. It might be
6950         // required if the original stores come in reversed order, for example.
6951         if (ConsecutiveChain[I].first != E &&
6952             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6953             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6954           TriedTails.set(I);
6955           Tails.reset(ConsecutiveChain[I].first);
6956           if (Cnt < ConsecutiveChain[I].first + 2)
6957             Cnt = ConsecutiveChain[I].first + 2;
6958         }
6959         break;
6960       }
6961       // Move to the next value in the chain.
6962       I = ConsecutiveChain[I].first;
6963     }
6964     assert(!Operands.empty() && "Expected non-empty list of stores.");
6965 
6966     unsigned MaxVecRegSize = R.getMaxVecRegSize();
6967     unsigned EltSize = R.getVectorElementSize(Operands[0]);
6968     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6969 
6970     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6971     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6972                               MaxElts);
6973 
6974     // FIXME: Is division-by-2 the correct step? Should we assert that the
6975     // register size is a power-of-2?
6976     unsigned StartIdx = 0;
6977     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6978       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6979         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6980         if (!VectorizedStores.count(Slice.front()) &&
6981             !VectorizedStores.count(Slice.back()) &&
6982             vectorizeStoreChain(Slice, R, Cnt)) {
6983           // Mark the vectorized stores so that we don't vectorize them again.
6984           VectorizedStores.insert(Slice.begin(), Slice.end());
6985           Changed = true;
6986           // If we vectorized initial block, no need to try to vectorize it
6987           // again.
6988           if (Cnt == StartIdx)
6989             StartIdx += Size;
6990           Cnt += Size;
6991           continue;
6992         }
6993         ++Cnt;
6994       }
6995       // Check if the whole array was vectorized already - exit.
6996       if (StartIdx >= Operands.size())
6997         break;
6998     }
6999   }
7000 
7001   return Changed;
7002 }
7003 
7004 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
7005   // Initialize the collections. We will make a single pass over the block.
7006   Stores.clear();
7007   GEPs.clear();
7008 
7009   // Visit the store and getelementptr instructions in BB and organize them in
7010   // Stores and GEPs according to the underlying objects of their pointer
7011   // operands.
7012   for (Instruction &I : *BB) {
7013     // Ignore store instructions that are volatile or have a pointer operand
7014     // that doesn't point to a scalar type.
7015     if (auto *SI = dyn_cast<StoreInst>(&I)) {
7016       if (!SI->isSimple())
7017         continue;
7018       if (!isValidElementType(SI->getValueOperand()->getType()))
7019         continue;
7020       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
7021     }
7022 
7023     // Ignore getelementptr instructions that have more than one index, a
7024     // constant index, or a pointer operand that doesn't point to a scalar
7025     // type.
7026     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
7027       auto Idx = GEP->idx_begin()->get();
7028       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
7029         continue;
7030       if (!isValidElementType(Idx->getType()))
7031         continue;
7032       if (GEP->getType()->isVectorTy())
7033         continue;
7034       GEPs[GEP->getPointerOperand()].push_back(GEP);
7035     }
7036   }
7037 }
7038 
7039 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
7040   if (!A || !B)
7041     return false;
7042   Value *VL[] = {A, B};
7043   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
7044 }
7045 
7046 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
7047                                            bool AllowReorder) {
7048   if (VL.size() < 2)
7049     return false;
7050 
7051   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
7052                     << VL.size() << ".\n");
7053 
7054   // Check that all of the parts are instructions of the same type,
7055   // we permit an alternate opcode via InstructionsState.
7056   InstructionsState S = getSameOpcode(VL);
7057   if (!S.getOpcode())
7058     return false;
7059 
7060   Instruction *I0 = cast<Instruction>(S.OpValue);
7061   // Make sure invalid types (including vector type) are rejected before
7062   // determining vectorization factor for scalar instructions.
7063   for (Value *V : VL) {
7064     Type *Ty = V->getType();
7065     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
7066       // NOTE: the following will give user internal llvm type name, which may
7067       // not be useful.
7068       R.getORE()->emit([&]() {
7069         std::string type_str;
7070         llvm::raw_string_ostream rso(type_str);
7071         Ty->print(rso);
7072         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
7073                << "Cannot SLP vectorize list: type "
7074                << rso.str() + " is unsupported by vectorizer";
7075       });
7076       return false;
7077     }
7078   }
7079 
7080   unsigned Sz = R.getVectorElementSize(I0);
7081   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
7082   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
7083   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
7084   if (MaxVF < 2) {
7085     R.getORE()->emit([&]() {
7086       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
7087              << "Cannot SLP vectorize list: vectorization factor "
7088              << "less than 2 is not supported";
7089     });
7090     return false;
7091   }
7092 
7093   bool Changed = false;
7094   bool CandidateFound = false;
7095   InstructionCost MinCost = SLPCostThreshold.getValue();
7096   Type *ScalarTy = VL[0]->getType();
7097   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7098     ScalarTy = IE->getOperand(1)->getType();
7099 
7100   unsigned NextInst = 0, MaxInst = VL.size();
7101   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
7102     // No actual vectorization should happen, if number of parts is the same as
7103     // provided vectorization factor (i.e. the scalar type is used for vector
7104     // code during codegen).
7105     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
7106     if (TTI->getNumberOfParts(VecTy) == VF)
7107       continue;
7108     for (unsigned I = NextInst; I < MaxInst; ++I) {
7109       unsigned OpsWidth = 0;
7110 
7111       if (I + VF > MaxInst)
7112         OpsWidth = MaxInst - I;
7113       else
7114         OpsWidth = VF;
7115 
7116       if (!isPowerOf2_32(OpsWidth))
7117         continue;
7118 
7119       if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
7120         break;
7121 
7122       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
7123       // Check that a previous iteration of this loop did not delete the Value.
7124       if (llvm::any_of(Ops, [&R](Value *V) {
7125             auto *I = dyn_cast<Instruction>(V);
7126             return I && R.isDeleted(I);
7127           }))
7128         continue;
7129 
7130       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
7131                         << "\n");
7132 
7133       R.buildTree(Ops);
7134       if (AllowReorder) {
7135         Optional<ArrayRef<unsigned>> Order = R.bestOrder();
7136         if (Order) {
7137           // TODO: reorder tree nodes without tree rebuilding.
7138           SmallVector<Value *, 4> ReorderedOps(Ops.size());
7139           transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7140                     [Ops](const unsigned Idx) { return Ops[Idx]; });
7141           R.buildTree(ReorderedOps);
7142         }
7143       }
7144       if (R.isTreeTinyAndNotFullyVectorizable())
7145         continue;
7146 
7147       R.computeMinimumValueSizes();
7148       InstructionCost Cost = R.getTreeCost();
7149       CandidateFound = true;
7150       MinCost = std::min(MinCost, Cost);
7151 
7152       if (Cost < -SLPCostThreshold) {
7153         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
7154         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
7155                                                     cast<Instruction>(Ops[0]))
7156                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
7157                                  << " and with tree size "
7158                                  << ore::NV("TreeSize", R.getTreeSize()));
7159 
7160         R.vectorizeTree();
7161         // Move to the next bundle.
7162         I += VF - 1;
7163         NextInst = I + 1;
7164         Changed = true;
7165       }
7166     }
7167   }
7168 
7169   if (!Changed && CandidateFound) {
7170     R.getORE()->emit([&]() {
7171       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
7172              << "List vectorization was possible but not beneficial with cost "
7173              << ore::NV("Cost", MinCost) << " >= "
7174              << ore::NV("Treshold", -SLPCostThreshold);
7175     });
7176   } else if (!Changed) {
7177     R.getORE()->emit([&]() {
7178       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
7179              << "Cannot SLP vectorize list: vectorization was impossible"
7180              << " with available vectorization factors";
7181     });
7182   }
7183   return Changed;
7184 }
7185 
7186 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
7187   if (!I)
7188     return false;
7189 
7190   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
7191     return false;
7192 
7193   Value *P = I->getParent();
7194 
7195   // Vectorize in current basic block only.
7196   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
7197   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
7198   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
7199     return false;
7200 
7201   // Try to vectorize V.
7202   if (tryToVectorizePair(Op0, Op1, R))
7203     return true;
7204 
7205   auto *A = dyn_cast<BinaryOperator>(Op0);
7206   auto *B = dyn_cast<BinaryOperator>(Op1);
7207   // Try to skip B.
7208   if (B && B->hasOneUse()) {
7209     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
7210     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
7211     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
7212       return true;
7213     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
7214       return true;
7215   }
7216 
7217   // Try to skip A.
7218   if (A && A->hasOneUse()) {
7219     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
7220     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
7221     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
7222       return true;
7223     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
7224       return true;
7225   }
7226   return false;
7227 }
7228 
7229 namespace {
7230 
7231 /// Model horizontal reductions.
7232 ///
7233 /// A horizontal reduction is a tree of reduction instructions that has values
7234 /// that can be put into a vector as its leaves. For example:
7235 ///
7236 /// mul mul mul mul
7237 ///  \  /    \  /
7238 ///   +       +
7239 ///    \     /
7240 ///       +
7241 /// This tree has "mul" as its leaf values and "+" as its reduction
7242 /// instructions. A reduction can feed into a store or a binary operation
7243 /// feeding a phi.
7244 ///    ...
7245 ///    \  /
7246 ///     +
7247 ///     |
7248 ///  phi +=
7249 ///
7250 ///  Or:
7251 ///    ...
7252 ///    \  /
7253 ///     +
7254 ///     |
7255 ///   *p =
7256 ///
7257 class HorizontalReduction {
7258   using ReductionOpsType = SmallVector<Value *, 16>;
7259   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
7260   ReductionOpsListType ReductionOps;
7261   SmallVector<Value *, 32> ReducedVals;
7262   // Use map vector to make stable output.
7263   MapVector<Instruction *, Value *> ExtraArgs;
7264   WeakTrackingVH ReductionRoot;
7265   /// The type of reduction operation.
7266   RecurKind RdxKind;
7267 
7268   /// Checks if instruction is associative and can be vectorized.
7269   static bool isVectorizable(RecurKind Kind, Instruction *I) {
7270     if (Kind == RecurKind::None)
7271       return false;
7272     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
7273       return true;
7274 
7275     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
7276       // FP min/max are associative except for NaN and -0.0. We do not
7277       // have to rule out -0.0 here because the intrinsic semantics do not
7278       // specify a fixed result for it.
7279       return I->getFastMathFlags().noNaNs();
7280     }
7281 
7282     return I->isAssociative();
7283   }
7284 
7285   /// Checks if the ParentStackElem.first should be marked as a reduction
7286   /// operation with an extra argument or as extra argument itself.
7287   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
7288                     Value *ExtraArg) {
7289     if (ExtraArgs.count(ParentStackElem.first)) {
7290       ExtraArgs[ParentStackElem.first] = nullptr;
7291       // We ran into something like:
7292       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7293       // The whole ParentStackElem.first should be considered as an extra value
7294       // in this case.
7295       // Do not perform analysis of remaining operands of ParentStackElem.first
7296       // instruction, this whole instruction is an extra argument.
7297       ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
7298     } else {
7299       // We ran into something like:
7300       // ParentStackElem.first += ... + ExtraArg + ...
7301       ExtraArgs[ParentStackElem.first] = ExtraArg;
7302     }
7303   }
7304 
7305   /// Creates reduction operation with the current opcode.
7306   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
7307                          Value *RHS, const Twine &Name, bool UseSelect) {
7308     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
7309     switch (Kind) {
7310     case RecurKind::Add:
7311     case RecurKind::Mul:
7312     case RecurKind::Or:
7313     case RecurKind::And:
7314     case RecurKind::Xor:
7315     case RecurKind::FAdd:
7316     case RecurKind::FMul:
7317       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
7318                                  Name);
7319     case RecurKind::FMax:
7320       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
7321     case RecurKind::FMin:
7322       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
7323     case RecurKind::SMax:
7324       if (UseSelect) {
7325         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
7326         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7327       }
7328       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
7329     case RecurKind::SMin:
7330       if (UseSelect) {
7331         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
7332         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7333       }
7334       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
7335     case RecurKind::UMax:
7336       if (UseSelect) {
7337         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
7338         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7339       }
7340       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
7341     case RecurKind::UMin:
7342       if (UseSelect) {
7343         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
7344         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7345       }
7346       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
7347     default:
7348       llvm_unreachable("Unknown reduction operation.");
7349     }
7350   }
7351 
7352   /// Creates reduction operation with the current opcode with the IR flags
7353   /// from \p ReductionOps.
7354   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7355                          Value *RHS, const Twine &Name,
7356                          const ReductionOpsListType &ReductionOps) {
7357     bool UseSelect = ReductionOps.size() == 2;
7358     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
7359            "Expected cmp + select pairs for reduction");
7360     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
7361     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7362       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
7363         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
7364         propagateIRFlags(Op, ReductionOps[1]);
7365         return Op;
7366       }
7367     }
7368     propagateIRFlags(Op, ReductionOps[0]);
7369     return Op;
7370   }
7371 
7372   /// Creates reduction operation with the current opcode with the IR flags
7373   /// from \p I.
7374   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7375                          Value *RHS, const Twine &Name, Instruction *I) {
7376     auto *SelI = dyn_cast<SelectInst>(I);
7377     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
7378     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7379       if (auto *Sel = dyn_cast<SelectInst>(Op))
7380         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
7381     }
7382     propagateIRFlags(Op, I);
7383     return Op;
7384   }
7385 
7386   static RecurKind getRdxKind(Instruction *I) {
7387     assert(I && "Expected instruction for reduction matching");
7388     TargetTransformInfo::ReductionFlags RdxFlags;
7389     if (match(I, m_Add(m_Value(), m_Value())))
7390       return RecurKind::Add;
7391     if (match(I, m_Mul(m_Value(), m_Value())))
7392       return RecurKind::Mul;
7393     if (match(I, m_And(m_Value(), m_Value())))
7394       return RecurKind::And;
7395     if (match(I, m_Or(m_Value(), m_Value())))
7396       return RecurKind::Or;
7397     if (match(I, m_Xor(m_Value(), m_Value())))
7398       return RecurKind::Xor;
7399     if (match(I, m_FAdd(m_Value(), m_Value())))
7400       return RecurKind::FAdd;
7401     if (match(I, m_FMul(m_Value(), m_Value())))
7402       return RecurKind::FMul;
7403 
7404     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
7405       return RecurKind::FMax;
7406     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
7407       return RecurKind::FMin;
7408 
7409     // This matches either cmp+select or intrinsics. SLP is expected to handle
7410     // either form.
7411     // TODO: If we are canonicalizing to intrinsics, we can remove several
7412     //       special-case paths that deal with selects.
7413     if (match(I, m_SMax(m_Value(), m_Value())))
7414       return RecurKind::SMax;
7415     if (match(I, m_SMin(m_Value(), m_Value())))
7416       return RecurKind::SMin;
7417     if (match(I, m_UMax(m_Value(), m_Value())))
7418       return RecurKind::UMax;
7419     if (match(I, m_UMin(m_Value(), m_Value())))
7420       return RecurKind::UMin;
7421 
7422     if (auto *Select = dyn_cast<SelectInst>(I)) {
7423       // Try harder: look for min/max pattern based on instructions producing
7424       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7425       // During the intermediate stages of SLP, it's very common to have
7426       // pattern like this (since optimizeGatherSequence is run only once
7427       // at the end):
7428       // %1 = extractelement <2 x i32> %a, i32 0
7429       // %2 = extractelement <2 x i32> %a, i32 1
7430       // %cond = icmp sgt i32 %1, %2
7431       // %3 = extractelement <2 x i32> %a, i32 0
7432       // %4 = extractelement <2 x i32> %a, i32 1
7433       // %select = select i1 %cond, i32 %3, i32 %4
7434       CmpInst::Predicate Pred;
7435       Instruction *L1;
7436       Instruction *L2;
7437 
7438       Value *LHS = Select->getTrueValue();
7439       Value *RHS = Select->getFalseValue();
7440       Value *Cond = Select->getCondition();
7441 
7442       // TODO: Support inverse predicates.
7443       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
7444         if (!isa<ExtractElementInst>(RHS) ||
7445             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7446           return RecurKind::None;
7447       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
7448         if (!isa<ExtractElementInst>(LHS) ||
7449             !L1->isIdenticalTo(cast<Instruction>(LHS)))
7450           return RecurKind::None;
7451       } else {
7452         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
7453           return RecurKind::None;
7454         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
7455             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
7456             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7457           return RecurKind::None;
7458       }
7459 
7460       TargetTransformInfo::ReductionFlags RdxFlags;
7461       switch (Pred) {
7462       default:
7463         return RecurKind::None;
7464       case CmpInst::ICMP_SGT:
7465       case CmpInst::ICMP_SGE:
7466         return RecurKind::SMax;
7467       case CmpInst::ICMP_SLT:
7468       case CmpInst::ICMP_SLE:
7469         return RecurKind::SMin;
7470       case CmpInst::ICMP_UGT:
7471       case CmpInst::ICMP_UGE:
7472         return RecurKind::UMax;
7473       case CmpInst::ICMP_ULT:
7474       case CmpInst::ICMP_ULE:
7475         return RecurKind::UMin;
7476       }
7477     }
7478     return RecurKind::None;
7479   }
7480 
7481   /// Get the index of the first operand.
7482   static unsigned getFirstOperandIndex(Instruction *I) {
7483     return isa<SelectInst>(I) ? 1 : 0;
7484   }
7485 
7486   /// Total number of operands in the reduction operation.
7487   static unsigned getNumberOfOperands(Instruction *I) {
7488     return isa<SelectInst>(I) ? 3 : 2;
7489   }
7490 
7491   /// Checks if the instruction is in basic block \p BB.
7492   /// For a min/max reduction check that both compare and select are in \p BB.
7493   static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
7494     auto *Sel = dyn_cast<SelectInst>(I);
7495     if (IsRedOp && Sel) {
7496       auto *Cmp = cast<Instruction>(Sel->getCondition());
7497       return Sel->getParent() == BB && Cmp->getParent() == BB;
7498     }
7499     return I->getParent() == BB;
7500   }
7501 
7502   /// Expected number of uses for reduction operations/reduced values.
7503   static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
7504     // SelectInst must be used twice while the condition op must have single
7505     // use only.
7506     if (MatchCmpSel) {
7507       if (auto *Sel = dyn_cast<SelectInst>(I))
7508         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7509       return I->hasNUses(2);
7510     }
7511 
7512     // Arithmetic reduction operation must be used once only.
7513     return I->hasOneUse();
7514   }
7515 
7516   /// Initializes the list of reduction operations.
7517   void initReductionOps(Instruction *I) {
7518     if (isa<SelectInst>(I))
7519       ReductionOps.assign(2, ReductionOpsType());
7520     else
7521       ReductionOps.assign(1, ReductionOpsType());
7522   }
7523 
7524   /// Add all reduction operations for the reduction instruction \p I.
7525   void addReductionOps(Instruction *I) {
7526     if (auto *Sel = dyn_cast<SelectInst>(I)) {
7527       ReductionOps[0].emplace_back(Sel->getCondition());
7528       ReductionOps[1].emplace_back(Sel);
7529     } else {
7530       ReductionOps[0].emplace_back(I);
7531     }
7532   }
7533 
7534   static Value *getLHS(RecurKind Kind, Instruction *I) {
7535     if (Kind == RecurKind::None)
7536       return nullptr;
7537     return I->getOperand(getFirstOperandIndex(I));
7538   }
7539   static Value *getRHS(RecurKind Kind, Instruction *I) {
7540     if (Kind == RecurKind::None)
7541       return nullptr;
7542     return I->getOperand(getFirstOperandIndex(I) + 1);
7543   }
7544 
7545 public:
7546   HorizontalReduction() = default;
7547 
7548   /// Try to find a reduction tree.
7549   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
7550     assert((!Phi || is_contained(Phi->operands(), B)) &&
7551            "Phi needs to use the binary operator");
7552 
7553     RdxKind = getRdxKind(B);
7554 
7555     // We could have a initial reductions that is not an add.
7556     //  r *= v1 + v2 + v3 + v4
7557     // In such a case start looking for a tree rooted in the first '+'.
7558     if (Phi) {
7559       if (getLHS(RdxKind, B) == Phi) {
7560         Phi = nullptr;
7561         B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7562         if (!B)
7563           return false;
7564         RdxKind = getRdxKind(B);
7565       } else if (getRHS(RdxKind, B) == Phi) {
7566         Phi = nullptr;
7567         B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7568         if (!B)
7569           return false;
7570         RdxKind = getRdxKind(B);
7571       }
7572     }
7573 
7574     if (!isVectorizable(RdxKind, B))
7575       return false;
7576 
7577     // Analyze "regular" integer/FP types for reductions - no target-specific
7578     // types or pointers.
7579     Type *Ty = B->getType();
7580     if (!isValidElementType(Ty) || Ty->isPointerTy())
7581       return false;
7582 
7583     // Though the ultimate reduction may have multiple uses, its condition must
7584     // have only single use.
7585     if (auto *SI = dyn_cast<SelectInst>(B))
7586       if (!SI->getCondition()->hasOneUse())
7587         return false;
7588 
7589     ReductionRoot = B;
7590 
7591     // The opcode for leaf values that we perform a reduction on.
7592     // For example: load(x) + load(y) + load(z) + fptoui(w)
7593     // The leaf opcode for 'w' does not match, so we don't include it as a
7594     // potential candidate for the reduction.
7595     unsigned LeafOpcode = 0;
7596 
7597     // Post order traverse the reduction tree starting at B. We only handle true
7598     // trees containing only binary operators.
7599     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7600     Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7601     initReductionOps(B);
7602     while (!Stack.empty()) {
7603       Instruction *TreeN = Stack.back().first;
7604       unsigned EdgeToVisit = Stack.back().second++;
7605       const RecurKind TreeRdxKind = getRdxKind(TreeN);
7606       bool IsReducedValue = TreeRdxKind != RdxKind;
7607 
7608       // Postorder visit.
7609       if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7610         if (IsReducedValue)
7611           ReducedVals.push_back(TreeN);
7612         else {
7613           auto ExtraArgsIter = ExtraArgs.find(TreeN);
7614           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7615             // Check if TreeN is an extra argument of its parent operation.
7616             if (Stack.size() <= 1) {
7617               // TreeN can't be an extra argument as it is a root reduction
7618               // operation.
7619               return false;
7620             }
7621             // Yes, TreeN is an extra argument, do not add it to a list of
7622             // reduction operations.
7623             // Stack[Stack.size() - 2] always points to the parent operation.
7624             markExtraArg(Stack[Stack.size() - 2], TreeN);
7625             ExtraArgs.erase(TreeN);
7626           } else
7627             addReductionOps(TreeN);
7628         }
7629         // Retract.
7630         Stack.pop_back();
7631         continue;
7632       }
7633 
7634       // Visit left or right.
7635       Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7636       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7637       if (!EdgeInst) {
7638         // Edge value is not a reduction instruction or a leaf instruction.
7639         // (It may be a constant, function argument, or something else.)
7640         markExtraArg(Stack.back(), EdgeVal);
7641         continue;
7642       }
7643       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7644       // Continue analysis if the next operand is a reduction operation or
7645       // (possibly) a leaf value. If the leaf value opcode is not set,
7646       // the first met operation != reduction operation is considered as the
7647       // leaf opcode.
7648       // Only handle trees in the current basic block.
7649       // Each tree node needs to have minimal number of users except for the
7650       // ultimate reduction.
7651       const bool IsRdxInst = EdgeRdxKind == RdxKind;
7652       if (EdgeInst != Phi && EdgeInst != B &&
7653           hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7654           hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7655           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7656         if (IsRdxInst) {
7657           // We need to be able to reassociate the reduction operations.
7658           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7659             // I is an extra argument for TreeN (its parent operation).
7660             markExtraArg(Stack.back(), EdgeInst);
7661             continue;
7662           }
7663         } else if (!LeafOpcode) {
7664           LeafOpcode = EdgeInst->getOpcode();
7665         }
7666         Stack.push_back(
7667             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7668         continue;
7669       }
7670       // I is an extra argument for TreeN (its parent operation).
7671       markExtraArg(Stack.back(), EdgeInst);
7672     }
7673     return true;
7674   }
7675 
7676   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7677   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7678     // If there are a sufficient number of reduction values, reduce
7679     // to a nearby power-of-2. We can safely generate oversized
7680     // vectors and rely on the backend to split them to legal sizes.
7681     unsigned NumReducedVals = ReducedVals.size();
7682     if (NumReducedVals < 4)
7683       return false;
7684 
7685     // Intersect the fast-math-flags from all reduction operations.
7686     FastMathFlags RdxFMF;
7687     RdxFMF.set();
7688     for (ReductionOpsType &RdxOp : ReductionOps) {
7689       for (Value *RdxVal : RdxOp) {
7690         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7691           RdxFMF &= FPMO->getFastMathFlags();
7692       }
7693     }
7694 
7695     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7696     Builder.setFastMathFlags(RdxFMF);
7697 
7698     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7699     // The same extra argument may be used several times, so log each attempt
7700     // to use it.
7701     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7702       assert(Pair.first && "DebugLoc must be set.");
7703       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7704     }
7705 
7706     // The compare instruction of a min/max is the insertion point for new
7707     // instructions and may be replaced with a new compare instruction.
7708     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7709       assert(isa<SelectInst>(RdxRootInst) &&
7710              "Expected min/max reduction to have select root instruction");
7711       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7712       assert(isa<Instruction>(ScalarCond) &&
7713              "Expected min/max reduction to have compare condition");
7714       return cast<Instruction>(ScalarCond);
7715     };
7716 
7717     // The reduction root is used as the insertion point for new instructions,
7718     // so set it as externally used to prevent it from being deleted.
7719     ExternallyUsedValues[ReductionRoot];
7720     SmallVector<Value *, 16> IgnoreList;
7721     for (ReductionOpsType &RdxOp : ReductionOps)
7722       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7723 
7724     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7725     if (NumReducedVals > ReduxWidth) {
7726       // In the loop below, we are building a tree based on a window of
7727       // 'ReduxWidth' values.
7728       // If the operands of those values have common traits (compare predicate,
7729       // constant operand, etc), then we want to group those together to
7730       // minimize the cost of the reduction.
7731 
7732       // TODO: This should be extended to count common operands for
7733       //       compares and binops.
7734 
7735       // Step 1: Count the number of times each compare predicate occurs.
7736       SmallDenseMap<unsigned, unsigned> PredCountMap;
7737       for (Value *RdxVal : ReducedVals) {
7738         CmpInst::Predicate Pred;
7739         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7740           ++PredCountMap[Pred];
7741       }
7742       // Step 2: Sort the values so the most common predicates come first.
7743       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7744         CmpInst::Predicate PredA, PredB;
7745         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7746             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7747           return PredCountMap[PredA] > PredCountMap[PredB];
7748         }
7749         return false;
7750       });
7751     }
7752 
7753     Value *VectorizedTree = nullptr;
7754     unsigned i = 0;
7755     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7756       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7757       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7758       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7759       if (Order) {
7760         assert(Order->size() == VL.size() &&
7761                "Order size must be the same as number of vectorized "
7762                "instructions.");
7763         // TODO: reorder tree nodes without tree rebuilding.
7764         SmallVector<Value *, 4> ReorderedOps(VL.size());
7765         transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7766                   [VL](const unsigned Idx) { return VL[Idx]; });
7767         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7768       }
7769       if (V.isTreeTinyAndNotFullyVectorizable())
7770         break;
7771       if (V.isLoadCombineReductionCandidate(RdxKind))
7772         break;
7773 
7774       V.computeMinimumValueSizes();
7775 
7776       // Estimate cost.
7777       InstructionCost TreeCost =
7778           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
7779       InstructionCost ReductionCost =
7780           getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7781       InstructionCost Cost = TreeCost + ReductionCost;
7782       if (!Cost.isValid()) {
7783         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7784         return false;
7785       }
7786       if (Cost >= -SLPCostThreshold) {
7787         V.getORE()->emit([&]() {
7788           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7789                                           cast<Instruction>(VL[0]))
7790                  << "Vectorizing horizontal reduction is possible"
7791                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7792                  << " and threshold "
7793                  << ore::NV("Threshold", -SLPCostThreshold);
7794         });
7795         break;
7796       }
7797 
7798       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7799                         << Cost << ". (HorRdx)\n");
7800       V.getORE()->emit([&]() {
7801         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7802                                   cast<Instruction>(VL[0]))
7803                << "Vectorized horizontal reduction with cost "
7804                << ore::NV("Cost", Cost) << " and with tree size "
7805                << ore::NV("TreeSize", V.getTreeSize());
7806       });
7807 
7808       // Vectorize a tree.
7809       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7810       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7811 
7812       // Emit a reduction. If the root is a select (min/max idiom), the insert
7813       // point is the compare condition of that select.
7814       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7815       if (isa<SelectInst>(RdxRootInst))
7816         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7817       else
7818         Builder.SetInsertPoint(RdxRootInst);
7819 
7820       Value *ReducedSubTree =
7821           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7822 
7823       if (!VectorizedTree) {
7824         // Initialize the final value in the reduction.
7825         VectorizedTree = ReducedSubTree;
7826       } else {
7827         // Update the final value in the reduction.
7828         Builder.SetCurrentDebugLocation(Loc);
7829         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7830                                   ReducedSubTree, "op.rdx", ReductionOps);
7831       }
7832       i += ReduxWidth;
7833       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7834     }
7835 
7836     if (VectorizedTree) {
7837       // Finish the reduction.
7838       for (; i < NumReducedVals; ++i) {
7839         auto *I = cast<Instruction>(ReducedVals[i]);
7840         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7841         VectorizedTree =
7842             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7843       }
7844       for (auto &Pair : ExternallyUsedValues) {
7845         // Add each externally used value to the final reduction.
7846         for (auto *I : Pair.second) {
7847           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7848           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7849                                     Pair.first, "op.extra", I);
7850         }
7851       }
7852 
7853       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7854 
7855       // Mark all scalar reduction ops for deletion, they are replaced by the
7856       // vector reductions.
7857       V.eraseInstructions(IgnoreList);
7858     }
7859     return VectorizedTree != nullptr;
7860   }
7861 
7862   unsigned numReductionValues() const { return ReducedVals.size(); }
7863 
7864 private:
7865   /// Calculate the cost of a reduction.
7866   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7867                                    Value *FirstReducedVal,
7868                                    unsigned ReduxWidth) {
7869     Type *ScalarTy = FirstReducedVal->getType();
7870     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7871     InstructionCost VectorCost, ScalarCost;
7872     switch (RdxKind) {
7873     case RecurKind::Add:
7874     case RecurKind::Mul:
7875     case RecurKind::Or:
7876     case RecurKind::And:
7877     case RecurKind::Xor:
7878     case RecurKind::FAdd:
7879     case RecurKind::FMul: {
7880       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7881       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7882                                                    /*IsPairwiseForm=*/false);
7883       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7884       break;
7885     }
7886     case RecurKind::FMax:
7887     case RecurKind::FMin: {
7888       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7889       VectorCost =
7890           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7891                                       /*pairwise=*/false, /*unsigned=*/false);
7892       ScalarCost =
7893           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7894           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7895                                   CmpInst::makeCmpResultType(ScalarTy));
7896       break;
7897     }
7898     case RecurKind::SMax:
7899     case RecurKind::SMin:
7900     case RecurKind::UMax:
7901     case RecurKind::UMin: {
7902       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7903       bool IsUnsigned =
7904           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7905       VectorCost =
7906           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7907                                       /*IsPairwiseForm=*/false, IsUnsigned);
7908       ScalarCost =
7909           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7910           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7911                                   CmpInst::makeCmpResultType(ScalarTy));
7912       break;
7913     }
7914     default:
7915       llvm_unreachable("Expected arithmetic or min/max reduction operation");
7916     }
7917 
7918     // Scalar cost is repeated for N-1 elements.
7919     ScalarCost *= (ReduxWidth - 1);
7920     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
7921                       << " for reduction that starts with " << *FirstReducedVal
7922                       << " (It is a splitting reduction)\n");
7923     return VectorCost - ScalarCost;
7924   }
7925 
7926   /// Emit a horizontal reduction of the vectorized value.
7927   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7928                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7929     assert(VectorizedValue && "Need to have a vectorized tree node");
7930     assert(isPowerOf2_32(ReduxWidth) &&
7931            "We only handle power-of-two reductions for now");
7932 
7933     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7934                                        ReductionOps.back());
7935   }
7936 };
7937 
7938 } // end anonymous namespace
7939 
7940 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7941   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7942     return cast<FixedVectorType>(IE->getType())->getNumElements();
7943 
7944   unsigned AggregateSize = 1;
7945   auto *IV = cast<InsertValueInst>(InsertInst);
7946   Type *CurrentType = IV->getType();
7947   do {
7948     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7949       for (auto *Elt : ST->elements())
7950         if (Elt != ST->getElementType(0)) // check homogeneity
7951           return None;
7952       AggregateSize *= ST->getNumElements();
7953       CurrentType = ST->getElementType(0);
7954     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7955       AggregateSize *= AT->getNumElements();
7956       CurrentType = AT->getElementType();
7957     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7958       AggregateSize *= VT->getNumElements();
7959       return AggregateSize;
7960     } else if (CurrentType->isSingleValueType()) {
7961       return AggregateSize;
7962     } else {
7963       return None;
7964     }
7965   } while (true);
7966 }
7967 
7968 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7969                                    TargetTransformInfo *TTI,
7970                                    SmallVectorImpl<Value *> &BuildVectorOpds,
7971                                    SmallVectorImpl<Value *> &InsertElts,
7972                                    unsigned OperandOffset) {
7973   do {
7974     Value *InsertedOperand = LastInsertInst->getOperand(1);
7975     Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
7976     if (!OperandIndex)
7977       return false;
7978     if (isa<InsertElementInst>(InsertedOperand) ||
7979         isa<InsertValueInst>(InsertedOperand)) {
7980       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7981                                   BuildVectorOpds, InsertElts, *OperandIndex))
7982         return false;
7983     } else {
7984       BuildVectorOpds[*OperandIndex] = InsertedOperand;
7985       InsertElts[*OperandIndex] = LastInsertInst;
7986     }
7987     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7988   } while (LastInsertInst != nullptr &&
7989            (isa<InsertValueInst>(LastInsertInst) ||
7990             isa<InsertElementInst>(LastInsertInst)) &&
7991            LastInsertInst->hasOneUse());
7992   return true;
7993 }
7994 
7995 /// Recognize construction of vectors like
7996 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
7997 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7998 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7999 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
8000 ///  starting from the last insertelement or insertvalue instruction.
8001 ///
8002 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
8003 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
8004 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8005 ///
8006 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8007 ///
8008 /// \return true if it matches.
8009 static bool findBuildAggregate(Instruction *LastInsertInst,
8010                                TargetTransformInfo *TTI,
8011                                SmallVectorImpl<Value *> &BuildVectorOpds,
8012                                SmallVectorImpl<Value *> &InsertElts) {
8013 
8014   assert((isa<InsertElementInst>(LastInsertInst) ||
8015           isa<InsertValueInst>(LastInsertInst)) &&
8016          "Expected insertelement or insertvalue instruction!");
8017 
8018   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
8019          "Expected empty result vectors!");
8020 
8021   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
8022   if (!AggregateSize)
8023     return false;
8024   BuildVectorOpds.resize(*AggregateSize);
8025   InsertElts.resize(*AggregateSize);
8026 
8027   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
8028                              0)) {
8029     llvm::erase_value(BuildVectorOpds, nullptr);
8030     llvm::erase_value(InsertElts, nullptr);
8031     if (BuildVectorOpds.size() >= 2)
8032       return true;
8033   }
8034 
8035   return false;
8036 }
8037 
8038 /// Try and get a reduction value from a phi node.
8039 ///
8040 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8041 /// if they come from either \p ParentBB or a containing loop latch.
8042 ///
8043 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
8044 /// if not possible.
8045 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
8046                                 BasicBlock *ParentBB, LoopInfo *LI) {
8047   // There are situations where the reduction value is not dominated by the
8048   // reduction phi. Vectorizing such cases has been reported to cause
8049   // miscompiles. See PR25787.
8050   auto DominatedReduxValue = [&](Value *R) {
8051     return isa<Instruction>(R) &&
8052            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
8053   };
8054 
8055   Value *Rdx = nullptr;
8056 
8057   // Return the incoming value if it comes from the same BB as the phi node.
8058   if (P->getIncomingBlock(0) == ParentBB) {
8059     Rdx = P->getIncomingValue(0);
8060   } else if (P->getIncomingBlock(1) == ParentBB) {
8061     Rdx = P->getIncomingValue(1);
8062   }
8063 
8064   if (Rdx && DominatedReduxValue(Rdx))
8065     return Rdx;
8066 
8067   // Otherwise, check whether we have a loop latch to look at.
8068   Loop *BBL = LI->getLoopFor(ParentBB);
8069   if (!BBL)
8070     return nullptr;
8071   BasicBlock *BBLatch = BBL->getLoopLatch();
8072   if (!BBLatch)
8073     return nullptr;
8074 
8075   // There is a loop latch, return the incoming value if it comes from
8076   // that. This reduction pattern occasionally turns up.
8077   if (P->getIncomingBlock(0) == BBLatch) {
8078     Rdx = P->getIncomingValue(0);
8079   } else if (P->getIncomingBlock(1) == BBLatch) {
8080     Rdx = P->getIncomingValue(1);
8081   }
8082 
8083   if (Rdx && DominatedReduxValue(Rdx))
8084     return Rdx;
8085 
8086   return nullptr;
8087 }
8088 
8089 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
8090   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
8091     return true;
8092   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
8093     return true;
8094   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
8095     return true;
8096   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
8097     return true;
8098   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
8099     return true;
8100   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
8101     return true;
8102   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
8103     return true;
8104   return false;
8105 }
8106 
8107 /// Attempt to reduce a horizontal reduction.
8108 /// If it is legal to match a horizontal reduction feeding the phi node \a P
8109 /// with reduction operators \a Root (or one of its operands) in a basic block
8110 /// \a BB, then check if it can be done. If horizontal reduction is not found
8111 /// and root instruction is a binary operation, vectorization of the operands is
8112 /// attempted.
8113 /// \returns true if a horizontal reduction was matched and reduced or operands
8114 /// of one of the binary instruction were vectorized.
8115 /// \returns false if a horizontal reduction was not matched (or not possible)
8116 /// or no vectorization of any binary operation feeding \a Root instruction was
8117 /// performed.
8118 static bool tryToVectorizeHorReductionOrInstOperands(
8119     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
8120     TargetTransformInfo *TTI,
8121     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
8122   if (!ShouldVectorizeHor)
8123     return false;
8124 
8125   if (!Root)
8126     return false;
8127 
8128   if (Root->getParent() != BB || isa<PHINode>(Root))
8129     return false;
8130   // Start analysis starting from Root instruction. If horizontal reduction is
8131   // found, try to vectorize it. If it is not a horizontal reduction or
8132   // vectorization is not possible or not effective, and currently analyzed
8133   // instruction is a binary operation, try to vectorize the operands, using
8134   // pre-order DFS traversal order. If the operands were not vectorized, repeat
8135   // the same procedure considering each operand as a possible root of the
8136   // horizontal reduction.
8137   // Interrupt the process if the Root instruction itself was vectorized or all
8138   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8139   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8140   // CmpInsts so we can skip extra attempts in
8141   // tryToVectorizeHorReductionOrInstOperands and save compile time.
8142   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
8143   SmallPtrSet<Value *, 8> VisitedInstrs;
8144   bool Res = false;
8145   while (!Stack.empty()) {
8146     Instruction *Inst;
8147     unsigned Level;
8148     std::tie(Inst, Level) = Stack.pop_back_val();
8149     Value *B0, *B1;
8150     bool IsBinop = matchRdxBop(Inst, B0, B1);
8151     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
8152     if (IsBinop || IsSelect) {
8153       HorizontalReduction HorRdx;
8154       if (HorRdx.matchAssociativeReduction(P, Inst)) {
8155         if (HorRdx.tryToReduce(R, TTI)) {
8156           Res = true;
8157           // Set P to nullptr to avoid re-analysis of phi node in
8158           // matchAssociativeReduction function unless this is the root node.
8159           P = nullptr;
8160           continue;
8161         }
8162       }
8163       if (P && IsBinop) {
8164         Inst = dyn_cast<Instruction>(B0);
8165         if (Inst == P)
8166           Inst = dyn_cast<Instruction>(B1);
8167         if (!Inst) {
8168           // Set P to nullptr to avoid re-analysis of phi node in
8169           // matchAssociativeReduction function unless this is the root node.
8170           P = nullptr;
8171           continue;
8172         }
8173       }
8174     }
8175     // Set P to nullptr to avoid re-analysis of phi node in
8176     // matchAssociativeReduction function unless this is the root node.
8177     P = nullptr;
8178     // Do not try to vectorize CmpInst operands, this is done separately.
8179     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
8180       Res = true;
8181       continue;
8182     }
8183 
8184     // Try to vectorize operands.
8185     // Continue analysis for the instruction from the same basic block only to
8186     // save compile time.
8187     if (++Level < RecursionMaxDepth)
8188       for (auto *Op : Inst->operand_values())
8189         if (VisitedInstrs.insert(Op).second)
8190           if (auto *I = dyn_cast<Instruction>(Op))
8191             // Do not try to vectorize CmpInst operands,  this is done
8192             // separately.
8193             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
8194                 I->getParent() == BB)
8195               Stack.emplace_back(I, Level);
8196   }
8197   return Res;
8198 }
8199 
8200 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
8201                                                  BasicBlock *BB, BoUpSLP &R,
8202                                                  TargetTransformInfo *TTI) {
8203   auto *I = dyn_cast_or_null<Instruction>(V);
8204   if (!I)
8205     return false;
8206 
8207   if (!isa<BinaryOperator>(I))
8208     P = nullptr;
8209   // Try to match and vectorize a horizontal reduction.
8210   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
8211     return tryToVectorize(I, R);
8212   };
8213   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
8214                                                   ExtraVectorization);
8215 }
8216 
8217 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
8218                                                  BasicBlock *BB, BoUpSLP &R) {
8219   const DataLayout &DL = BB->getModule()->getDataLayout();
8220   if (!R.canMapToVector(IVI->getType(), DL))
8221     return false;
8222 
8223   SmallVector<Value *, 16> BuildVectorOpds;
8224   SmallVector<Value *, 16> BuildVectorInsts;
8225   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
8226     return false;
8227 
8228   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
8229   // Aggregate value is unlikely to be processed in vector register, we need to
8230   // extract scalars into scalar registers, so NeedExtraction is set true.
8231   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
8232 }
8233 
8234 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
8235                                                    BasicBlock *BB, BoUpSLP &R) {
8236   SmallVector<Value *, 16> BuildVectorInsts;
8237   SmallVector<Value *, 16> BuildVectorOpds;
8238   SmallVector<int> Mask;
8239   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
8240       (llvm::all_of(BuildVectorOpds,
8241                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
8242        isShuffle(BuildVectorOpds, Mask)))
8243     return false;
8244 
8245   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
8246   return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true);
8247 }
8248 
8249 bool SLPVectorizerPass::vectorizeSimpleInstructions(
8250     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
8251     bool AtTerminator) {
8252   bool OpsChanged = false;
8253   SmallVector<Instruction *, 4> PostponedCmps;
8254   for (auto *I : reverse(Instructions)) {
8255     if (R.isDeleted(I))
8256       continue;
8257     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
8258       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
8259     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
8260       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
8261     else if (isa<CmpInst>(I))
8262       PostponedCmps.push_back(I);
8263   }
8264   if (AtTerminator) {
8265     // Try to find reductions first.
8266     for (Instruction *I : PostponedCmps) {
8267       if (R.isDeleted(I))
8268         continue;
8269       for (Value *Op : I->operands())
8270         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
8271     }
8272     // Try to vectorize operands as vector bundles.
8273     for (Instruction *I : PostponedCmps) {
8274       if (R.isDeleted(I))
8275         continue;
8276       OpsChanged |= tryToVectorize(I, R);
8277     }
8278     Instructions.clear();
8279   } else {
8280     // Insert in reverse order since the PostponedCmps vector was filled in
8281     // reverse order.
8282     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
8283   }
8284   return OpsChanged;
8285 }
8286 
8287 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
8288   bool Changed = false;
8289   SmallVector<Value *, 4> Incoming;
8290   SmallPtrSet<Value *, 16> VisitedInstrs;
8291   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
8292   // node. Allows better to identify the chains that can be vectorized in the
8293   // better way.
8294   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
8295 
8296   bool HaveVectorizedPhiNodes = true;
8297   while (HaveVectorizedPhiNodes) {
8298     HaveVectorizedPhiNodes = false;
8299 
8300     // Collect the incoming values from the PHIs.
8301     Incoming.clear();
8302     for (Instruction &I : *BB) {
8303       PHINode *P = dyn_cast<PHINode>(&I);
8304       if (!P)
8305         break;
8306 
8307       // No need to analyze deleted, vectorized and non-vectorizable
8308       // instructions.
8309       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
8310           !P->getType()->isVectorTy())
8311         Incoming.push_back(P);
8312     }
8313 
8314     // Find the corresponding non-phi nodes for better matching when trying to
8315     // build the tree.
8316     for (Value *V : Incoming) {
8317       SmallVectorImpl<Value *> &Opcodes =
8318           PHIToOpcodes.try_emplace(V).first->getSecond();
8319       if (!Opcodes.empty())
8320         continue;
8321       SmallVector<Value *, 4> Nodes(1, V);
8322       SmallPtrSet<Value *, 4> Visited;
8323       while (!Nodes.empty()) {
8324         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
8325         if (!Visited.insert(PHI).second)
8326           continue;
8327         for (Value *V : PHI->incoming_values()) {
8328           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
8329             Nodes.push_back(PHI1);
8330             continue;
8331           }
8332           Opcodes.emplace_back(V);
8333         }
8334       }
8335     }
8336 
8337     // Sort by type, parent, operands.
8338     stable_sort(Incoming, [&PHIToOpcodes](Value *V1, Value *V2) {
8339       if (V1->getType() < V2->getType())
8340         return true;
8341       if (V1->getType() > V2->getType())
8342         return false;
8343       ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8344       ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8345       if (Opcodes1.size() < Opcodes2.size())
8346         return true;
8347       if (Opcodes1.size() > Opcodes2.size())
8348         return false;
8349       for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8350         // Undefs are compatible with any other value.
8351         if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8352           continue;
8353         if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8354           if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8355             if (I1->getParent() < I2->getParent())
8356               return true;
8357             if (I1->getParent() > I2->getParent())
8358               return false;
8359             InstructionsState S = getSameOpcode({I1, I2});
8360             if (S.getOpcode())
8361               continue;
8362             return I1->getOpcode() < I2->getOpcode();
8363           }
8364         if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8365           continue;
8366         if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
8367           return true;
8368         if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
8369           return false;
8370       }
8371       return false;
8372     });
8373 
8374     auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
8375       if (V1 == V2)
8376         return true;
8377       if (V1->getType() != V2->getType())
8378         return false;
8379       ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8380       ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8381       if (Opcodes1.size() != Opcodes2.size())
8382         return false;
8383       for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8384         // Undefs are compatible with any other value.
8385         if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8386           continue;
8387         if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8388           if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8389             if (I1->getParent() != I2->getParent())
8390               return false;
8391             InstructionsState S = getSameOpcode({I1, I2});
8392             if (S.getOpcode())
8393               continue;
8394             return false;
8395           }
8396         if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8397           continue;
8398         if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
8399           return false;
8400       }
8401       return true;
8402     };
8403 
8404     // Try to vectorize elements base on their type.
8405     SmallVector<Value *, 4> Candidates;
8406     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
8407                                            E = Incoming.end();
8408          IncIt != E;) {
8409 
8410       // Look for the next elements with the same type, parent and operand
8411       // kinds.
8412       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
8413       while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) {
8414         VisitedInstrs.insert(*SameTypeIt);
8415         ++SameTypeIt;
8416       }
8417 
8418       // Try to vectorize them.
8419       unsigned NumElts = (SameTypeIt - IncIt);
8420       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
8421                         << NumElts << ")\n");
8422       // The order in which the phi nodes appear in the program does not matter.
8423       // So allow tryToVectorizeList to reorder them if it is beneficial. This
8424       // is done when there are exactly two elements since tryToVectorizeList
8425       // asserts that there are only two values when AllowReorder is true.
8426       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
8427                                             /*AllowReorder=*/true)) {
8428         // Success start over because instructions might have been changed.
8429         HaveVectorizedPhiNodes = true;
8430         Changed = true;
8431       } else if (NumElts < 4 &&
8432                  (Candidates.empty() ||
8433                   Candidates.front()->getType() == (*IncIt)->getType())) {
8434         Candidates.append(IncIt, std::next(IncIt, NumElts));
8435       }
8436       // Final attempt to vectorize phis with the same types.
8437       if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) {
8438         if (Candidates.size() > 1 &&
8439             tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) {
8440           // Success start over because instructions might have been changed.
8441           HaveVectorizedPhiNodes = true;
8442           Changed = true;
8443         }
8444         Candidates.clear();
8445       }
8446 
8447       // Start over at the next instruction of a different type (or the end).
8448       IncIt = SameTypeIt;
8449     }
8450   }
8451 
8452   VisitedInstrs.clear();
8453 
8454   SmallVector<Instruction *, 8> PostProcessInstructions;
8455   SmallDenseSet<Instruction *, 4> KeyNodes;
8456   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
8457     // Skip instructions with scalable type. The num of elements is unknown at
8458     // compile-time for scalable type.
8459     if (isa<ScalableVectorType>(it->getType()))
8460       continue;
8461 
8462     // Skip instructions marked for the deletion.
8463     if (R.isDeleted(&*it))
8464       continue;
8465     // We may go through BB multiple times so skip the one we have checked.
8466     if (!VisitedInstrs.insert(&*it).second) {
8467       if (it->use_empty() && KeyNodes.contains(&*it) &&
8468           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8469                                       it->isTerminator())) {
8470         // We would like to start over since some instructions are deleted
8471         // and the iterator may become invalid value.
8472         Changed = true;
8473         it = BB->begin();
8474         e = BB->end();
8475       }
8476       continue;
8477     }
8478 
8479     if (isa<DbgInfoIntrinsic>(it))
8480       continue;
8481 
8482     // Try to vectorize reductions that use PHINodes.
8483     if (PHINode *P = dyn_cast<PHINode>(it)) {
8484       // Check that the PHI is a reduction PHI.
8485       if (P->getNumIncomingValues() == 2) {
8486         // Try to match and vectorize a horizontal reduction.
8487         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
8488                                      TTI)) {
8489           Changed = true;
8490           it = BB->begin();
8491           e = BB->end();
8492           continue;
8493         }
8494       }
8495       // Try to vectorize the incoming values of the PHI, to catch reductions
8496       // that feed into PHIs.
8497       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
8498         // Skip if the incoming block is the current BB for now. Also, bypass
8499         // unreachable IR for efficiency and to avoid crashing.
8500         // TODO: Collect the skipped incoming values and try to vectorize them
8501         // after processing BB.
8502         if (BB == P->getIncomingBlock(I) ||
8503             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
8504           continue;
8505 
8506         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
8507                                             P->getIncomingBlock(I), R, TTI);
8508       }
8509       continue;
8510     }
8511 
8512     // Ran into an instruction without users, like terminator, or function call
8513     // with ignored return value, store. Ignore unused instructions (basing on
8514     // instruction type, except for CallInst and InvokeInst).
8515     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
8516                             isa<InvokeInst>(it))) {
8517       KeyNodes.insert(&*it);
8518       bool OpsChanged = false;
8519       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
8520         for (auto *V : it->operand_values()) {
8521           // Try to match and vectorize a horizontal reduction.
8522           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
8523         }
8524       }
8525       // Start vectorization of post-process list of instructions from the
8526       // top-tree instructions to try to vectorize as many instructions as
8527       // possible.
8528       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8529                                                 it->isTerminator());
8530       if (OpsChanged) {
8531         // We would like to start over since some instructions are deleted
8532         // and the iterator may become invalid value.
8533         Changed = true;
8534         it = BB->begin();
8535         e = BB->end();
8536         continue;
8537       }
8538     }
8539 
8540     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
8541         isa<InsertValueInst>(it))
8542       PostProcessInstructions.push_back(&*it);
8543   }
8544 
8545   return Changed;
8546 }
8547 
8548 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
8549   auto Changed = false;
8550   for (auto &Entry : GEPs) {
8551     // If the getelementptr list has fewer than two elements, there's nothing
8552     // to do.
8553     if (Entry.second.size() < 2)
8554       continue;
8555 
8556     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
8557                       << Entry.second.size() << ".\n");
8558 
8559     // Process the GEP list in chunks suitable for the target's supported
8560     // vector size. If a vector register can't hold 1 element, we are done. We
8561     // are trying to vectorize the index computations, so the maximum number of
8562     // elements is based on the size of the index expression, rather than the
8563     // size of the GEP itself (the target's pointer size).
8564     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8565     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
8566     if (MaxVecRegSize < EltSize)
8567       continue;
8568 
8569     unsigned MaxElts = MaxVecRegSize / EltSize;
8570     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8571       auto Len = std::min<unsigned>(BE - BI, MaxElts);
8572       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8573 
8574       // Initialize a set a candidate getelementptrs. Note that we use a
8575       // SetVector here to preserve program order. If the index computations
8576       // are vectorizable and begin with loads, we want to minimize the chance
8577       // of having to reorder them later.
8578       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8579 
8580       // Some of the candidates may have already been vectorized after we
8581       // initially collected them. If so, they are marked as deleted, so remove
8582       // them from the set of candidates.
8583       Candidates.remove_if(
8584           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8585 
8586       // Remove from the set of candidates all pairs of getelementptrs with
8587       // constant differences. Such getelementptrs are likely not good
8588       // candidates for vectorization in a bottom-up phase since one can be
8589       // computed from the other. We also ensure all candidate getelementptr
8590       // indices are unique.
8591       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8592         auto *GEPI = GEPList[I];
8593         if (!Candidates.count(GEPI))
8594           continue;
8595         auto *SCEVI = SE->getSCEV(GEPList[I]);
8596         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8597           auto *GEPJ = GEPList[J];
8598           auto *SCEVJ = SE->getSCEV(GEPList[J]);
8599           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8600             Candidates.remove(GEPI);
8601             Candidates.remove(GEPJ);
8602           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8603             Candidates.remove(GEPJ);
8604           }
8605         }
8606       }
8607 
8608       // We break out of the above computation as soon as we know there are
8609       // fewer than two candidates remaining.
8610       if (Candidates.size() < 2)
8611         continue;
8612 
8613       // Add the single, non-constant index of each candidate to the bundle. We
8614       // ensured the indices met these constraints when we originally collected
8615       // the getelementptrs.
8616       SmallVector<Value *, 16> Bundle(Candidates.size());
8617       auto BundleIndex = 0u;
8618       for (auto *V : Candidates) {
8619         auto *GEP = cast<GetElementPtrInst>(V);
8620         auto *GEPIdx = GEP->idx_begin()->get();
8621         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
8622         Bundle[BundleIndex++] = GEPIdx;
8623       }
8624 
8625       // Try and vectorize the indices. We are currently only interested in
8626       // gather-like cases of the form:
8627       //
8628       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8629       //
8630       // where the loads of "a", the loads of "b", and the subtractions can be
8631       // performed in parallel. It's likely that detecting this pattern in a
8632       // bottom-up phase will be simpler and less costly than building a
8633       // full-blown top-down phase beginning at the consecutive loads.
8634       Changed |= tryToVectorizeList(Bundle, R);
8635     }
8636   }
8637   return Changed;
8638 }
8639 
8640 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8641   bool Changed = false;
8642   // Attempt to sort and vectorize each of the store-groups.
8643   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8644        ++it) {
8645     if (it->second.size() < 2)
8646       continue;
8647 
8648     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8649                       << it->second.size() << ".\n");
8650 
8651     Changed |= vectorizeStores(it->second, R);
8652   }
8653   return Changed;
8654 }
8655 
8656 char SLPVectorizer::ID = 0;
8657 
8658 static const char lv_name[] = "SLP Vectorizer";
8659 
8660 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8661 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8662 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8663 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8664 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8665 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8666 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8667 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8668 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8669 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8670 
8671 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
8672