1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns true if all of the instructions in \p VL are in the same block or 204 /// false otherwise. 205 static bool allSameBlock(ArrayRef<Value *> VL) { 206 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 207 if (!I0) 208 return false; 209 BasicBlock *BB = I0->getParent(); 210 for (int I = 1, E = VL.size(); I < E; I++) { 211 auto *II = dyn_cast<Instruction>(VL[I]); 212 if (!II) 213 return false; 214 215 if (BB != II->getParent()) 216 return false; 217 } 218 return true; 219 } 220 221 /// \returns True if the value is a constant (but not globals/constant 222 /// expressions). 223 static bool isConstant(Value *V) { 224 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 225 } 226 227 /// \returns True if all of the values in \p VL are constants (but not 228 /// globals/constant expressions). 229 static bool allConstant(ArrayRef<Value *> VL) { 230 // Constant expressions and globals can't be vectorized like normal integer/FP 231 // constants. 232 return all_of(VL, isConstant); 233 } 234 235 /// \returns True if all of the values in \p VL are identical. 236 static bool isSplat(ArrayRef<Value *> VL) { 237 for (unsigned i = 1, e = VL.size(); i < e; ++i) 238 if (VL[i] != VL[0]) 239 return false; 240 return true; 241 } 242 243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 244 static bool isCommutative(Instruction *I) { 245 if (auto *Cmp = dyn_cast<CmpInst>(I)) 246 return Cmp->isCommutative(); 247 if (auto *BO = dyn_cast<BinaryOperator>(I)) 248 return BO->isCommutative(); 249 // TODO: This should check for generic Instruction::isCommutative(), but 250 // we need to confirm that the caller code correctly handles Intrinsics 251 // for example (does not have 2 operands). 252 return false; 253 } 254 255 /// Checks if the vector of instructions can be represented as a shuffle, like: 256 /// %x0 = extractelement <4 x i8> %x, i32 0 257 /// %x3 = extractelement <4 x i8> %x, i32 3 258 /// %y1 = extractelement <4 x i8> %y, i32 1 259 /// %y2 = extractelement <4 x i8> %y, i32 2 260 /// %x0x0 = mul i8 %x0, %x0 261 /// %x3x3 = mul i8 %x3, %x3 262 /// %y1y1 = mul i8 %y1, %y1 263 /// %y2y2 = mul i8 %y2, %y2 264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 268 /// ret <4 x i8> %ins4 269 /// can be transformed into: 270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 271 /// i32 6> 272 /// %2 = mul <4 x i8> %1, %1 273 /// ret <4 x i8> %2 274 /// We convert this initially to something like: 275 /// %x0 = extractelement <4 x i8> %x, i32 0 276 /// %x3 = extractelement <4 x i8> %x, i32 3 277 /// %y1 = extractelement <4 x i8> %y, i32 1 278 /// %y2 = extractelement <4 x i8> %y, i32 2 279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 283 /// %5 = mul <4 x i8> %4, %4 284 /// %6 = extractelement <4 x i8> %5, i32 0 285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 286 /// %7 = extractelement <4 x i8> %5, i32 1 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 288 /// %8 = extractelement <4 x i8> %5, i32 2 289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 290 /// %9 = extractelement <4 x i8> %5, i32 3 291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 292 /// ret <4 x i8> %ins4 293 /// InstCombiner transforms this into a shuffle and vector mul 294 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 295 /// TODO: Can we split off and reuse the shuffle mask detection from 296 /// TargetTransformInfo::getInstructionThroughput? 297 static Optional<TargetTransformInfo::ShuffleKind> 298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 299 auto *EI0 = cast<ExtractElementInst>(VL[0]); 300 unsigned Size = 301 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 302 Value *Vec1 = nullptr; 303 Value *Vec2 = nullptr; 304 enum ShuffleMode { Unknown, Select, Permute }; 305 ShuffleMode CommonShuffleMode = Unknown; 306 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 307 auto *EI = cast<ExtractElementInst>(VL[I]); 308 auto *Vec = EI->getVectorOperand(); 309 // All vector operands must have the same number of vector elements. 310 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 311 return None; 312 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 313 if (!Idx) 314 return None; 315 // Undefined behavior if Idx is negative or >= Size. 316 if (Idx->getValue().uge(Size)) { 317 Mask.push_back(UndefMaskElem); 318 continue; 319 } 320 unsigned IntIdx = Idx->getValue().getZExtValue(); 321 Mask.push_back(IntIdx); 322 // We can extractelement from undef or poison vector. 323 if (isa<UndefValue>(Vec)) 324 continue; 325 // For correct shuffling we have to have at most 2 different vector operands 326 // in all extractelement instructions. 327 if (!Vec1 || Vec1 == Vec) 328 Vec1 = Vec; 329 else if (!Vec2 || Vec2 == Vec) 330 Vec2 = Vec; 331 else 332 return None; 333 if (CommonShuffleMode == Permute) 334 continue; 335 // If the extract index is not the same as the operation number, it is a 336 // permutation. 337 if (IntIdx != I) { 338 CommonShuffleMode = Permute; 339 continue; 340 } 341 CommonShuffleMode = Select; 342 } 343 // If we're not crossing lanes in different vectors, consider it as blending. 344 if (CommonShuffleMode == Select && Vec2) 345 return TargetTransformInfo::SK_Select; 346 // If Vec2 was never used, we have a permutation of a single vector, otherwise 347 // we have permutation of 2 vectors. 348 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 349 : TargetTransformInfo::SK_PermuteSingleSrc; 350 } 351 352 namespace { 353 354 /// Main data required for vectorization of instructions. 355 struct InstructionsState { 356 /// The very first instruction in the list with the main opcode. 357 Value *OpValue = nullptr; 358 359 /// The main/alternate instruction. 360 Instruction *MainOp = nullptr; 361 Instruction *AltOp = nullptr; 362 363 /// The main/alternate opcodes for the list of instructions. 364 unsigned getOpcode() const { 365 return MainOp ? MainOp->getOpcode() : 0; 366 } 367 368 unsigned getAltOpcode() const { 369 return AltOp ? AltOp->getOpcode() : 0; 370 } 371 372 /// Some of the instructions in the list have alternate opcodes. 373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 374 375 bool isOpcodeOrAlt(Instruction *I) const { 376 unsigned CheckedOpcode = I->getOpcode(); 377 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 378 } 379 380 InstructionsState() = delete; 381 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 382 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 383 }; 384 385 } // end anonymous namespace 386 387 /// Chooses the correct key for scheduling data. If \p Op has the same (or 388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 389 /// OpValue. 390 static Value *isOneOf(const InstructionsState &S, Value *Op) { 391 auto *I = dyn_cast<Instruction>(Op); 392 if (I && S.isOpcodeOrAlt(I)) 393 return Op; 394 return S.OpValue; 395 } 396 397 /// \returns true if \p Opcode is allowed as part of of the main/alternate 398 /// instruction for SLP vectorization. 399 /// 400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 401 /// "shuffled out" lane would result in division by zero. 402 static bool isValidForAlternation(unsigned Opcode) { 403 if (Instruction::isIntDivRem(Opcode)) 404 return false; 405 406 return true; 407 } 408 409 /// \returns analysis of the Instructions in \p VL described in 410 /// InstructionsState, the Opcode that we suppose the whole list 411 /// could be vectorized even if its structure is diverse. 412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 413 unsigned BaseIndex = 0) { 414 // Make sure these are all Instructions. 415 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 416 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 417 418 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 419 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 420 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 421 unsigned AltOpcode = Opcode; 422 unsigned AltIndex = BaseIndex; 423 424 // Check for one alternate opcode from another BinaryOperator. 425 // TODO - generalize to support all operators (types, calls etc.). 426 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 427 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 428 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 429 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 430 continue; 431 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 432 isValidForAlternation(Opcode)) { 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 438 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 439 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 440 if (Ty0 == Ty1) { 441 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 442 continue; 443 if (Opcode == AltOpcode) { 444 assert(isValidForAlternation(Opcode) && 445 isValidForAlternation(InstOpcode) && 446 "Cast isn't safe for alternation, logic needs to be updated!"); 447 AltOpcode = InstOpcode; 448 AltIndex = Cnt; 449 continue; 450 } 451 } 452 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 453 continue; 454 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 455 } 456 457 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 458 cast<Instruction>(VL[AltIndex])); 459 } 460 461 /// \returns true if all of the values in \p VL have the same type or false 462 /// otherwise. 463 static bool allSameType(ArrayRef<Value *> VL) { 464 Type *Ty = VL[0]->getType(); 465 for (int i = 1, e = VL.size(); i < e; i++) 466 if (VL[i]->getType() != Ty) 467 return false; 468 469 return true; 470 } 471 472 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 473 static Optional<unsigned> getExtractIndex(Instruction *E) { 474 unsigned Opcode = E->getOpcode(); 475 assert((Opcode == Instruction::ExtractElement || 476 Opcode == Instruction::ExtractValue) && 477 "Expected extractelement or extractvalue instruction."); 478 if (Opcode == Instruction::ExtractElement) { 479 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 480 if (!CI) 481 return None; 482 return CI->getZExtValue(); 483 } 484 ExtractValueInst *EI = cast<ExtractValueInst>(E); 485 if (EI->getNumIndices() != 1) 486 return None; 487 return *EI->idx_begin(); 488 } 489 490 /// \returns True if in-tree use also needs extract. This refers to 491 /// possible scalar operand in vectorized instruction. 492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 493 TargetLibraryInfo *TLI) { 494 unsigned Opcode = UserInst->getOpcode(); 495 switch (Opcode) { 496 case Instruction::Load: { 497 LoadInst *LI = cast<LoadInst>(UserInst); 498 return (LI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Store: { 501 StoreInst *SI = cast<StoreInst>(UserInst); 502 return (SI->getPointerOperand() == Scalar); 503 } 504 case Instruction::Call: { 505 CallInst *CI = cast<CallInst>(UserInst); 506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 508 if (hasVectorInstrinsicScalarOpd(ID, i)) 509 return (CI->getArgOperand(i) == Scalar); 510 } 511 LLVM_FALLTHROUGH; 512 } 513 default: 514 return false; 515 } 516 } 517 518 /// \returns the AA location that is being access by the instruction. 519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 520 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 521 return MemoryLocation::get(SI); 522 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 523 return MemoryLocation::get(LI); 524 return MemoryLocation(); 525 } 526 527 /// \returns True if the instruction is not a volatile or atomic load/store. 528 static bool isSimple(Instruction *I) { 529 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 530 return LI->isSimple(); 531 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 532 return SI->isSimple(); 533 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 534 return !MI->isVolatile(); 535 return true; 536 } 537 538 namespace llvm { 539 540 static void inversePermutation(ArrayRef<unsigned> Indices, 541 SmallVectorImpl<int> &Mask) { 542 Mask.clear(); 543 const unsigned E = Indices.size(); 544 Mask.resize(E, E + 1); 545 for (unsigned I = 0; I < E; ++I) 546 Mask[Indices[I]] = I; 547 } 548 549 /// \returns inserting index of InsertElement or InsertValue instruction, 550 /// using Offset as base offset for index. 551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 552 int Index = Offset; 553 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 554 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 555 auto *VT = cast<FixedVectorType>(IE->getType()); 556 if (CI->getValue().uge(VT->getNumElements())) 557 return UndefMaskElem; 558 Index *= VT->getNumElements(); 559 Index += CI->getZExtValue(); 560 return Index; 561 } 562 if (isa<UndefValue>(IE->getOperand(2))) 563 return UndefMaskElem; 564 return None; 565 } 566 567 auto *IV = cast<InsertValueInst>(InsertInst); 568 Type *CurrentType = IV->getType(); 569 for (unsigned I : IV->indices()) { 570 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 571 Index *= ST->getNumElements(); 572 CurrentType = ST->getElementType(I); 573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 574 Index *= AT->getNumElements(); 575 CurrentType = AT->getElementType(); 576 } else { 577 return None; 578 } 579 Index += I; 580 } 581 return Index; 582 } 583 584 namespace slpvectorizer { 585 586 /// Bottom Up SLP Vectorizer. 587 class BoUpSLP { 588 struct TreeEntry; 589 struct ScheduleData; 590 591 public: 592 using ValueList = SmallVector<Value *, 8>; 593 using InstrList = SmallVector<Instruction *, 16>; 594 using ValueSet = SmallPtrSet<Value *, 16>; 595 using StoreList = SmallVector<StoreInst *, 8>; 596 using ExtraValueToDebugLocsMap = 597 MapVector<Value *, SmallVector<Instruction *, 2>>; 598 using OrdersType = SmallVector<unsigned, 4>; 599 600 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 601 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 602 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 603 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 604 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 605 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 606 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 607 // Use the vector register size specified by the target unless overridden 608 // by a command-line option. 609 // TODO: It would be better to limit the vectorization factor based on 610 // data type rather than just register size. For example, x86 AVX has 611 // 256-bit registers, but it does not support integer operations 612 // at that width (that requires AVX2). 613 if (MaxVectorRegSizeOption.getNumOccurrences()) 614 MaxVecRegSize = MaxVectorRegSizeOption; 615 else 616 MaxVecRegSize = 617 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 618 .getFixedSize(); 619 620 if (MinVectorRegSizeOption.getNumOccurrences()) 621 MinVecRegSize = MinVectorRegSizeOption; 622 else 623 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 624 } 625 626 /// Vectorize the tree that starts with the elements in \p VL. 627 /// Returns the vectorized root. 628 Value *vectorizeTree(); 629 630 /// Vectorize the tree but with the list of externally used values \p 631 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 632 /// generated extractvalue instructions. 633 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 634 635 /// \returns the cost incurred by unwanted spills and fills, caused by 636 /// holding live values over call sites. 637 InstructionCost getSpillCost() const; 638 639 /// \returns the vectorization cost of the subtree that starts at \p VL. 640 /// A negative number means that this is profitable. 641 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 642 643 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 644 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 645 void buildTree(ArrayRef<Value *> Roots, 646 ArrayRef<Value *> UserIgnoreLst = None); 647 648 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 649 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 650 /// into account (and updating it, if required) list of externally used 651 /// values stored in \p ExternallyUsedValues. 652 void buildTree(ArrayRef<Value *> Roots, 653 ExtraValueToDebugLocsMap &ExternallyUsedValues, 654 ArrayRef<Value *> UserIgnoreLst = None); 655 656 /// Clear the internal data structures that are created by 'buildTree'. 657 void deleteTree() { 658 VectorizableTree.clear(); 659 ScalarToTreeEntry.clear(); 660 MustGather.clear(); 661 ExternalUses.clear(); 662 NumOpsWantToKeepOrder.clear(); 663 NumOpsWantToKeepOriginalOrder = 0; 664 for (auto &Iter : BlocksSchedules) { 665 BlockScheduling *BS = Iter.second.get(); 666 BS->clear(); 667 } 668 MinBWs.clear(); 669 InstrElementSize.clear(); 670 } 671 672 unsigned getTreeSize() const { return VectorizableTree.size(); } 673 674 /// Perform LICM and CSE on the newly generated gather sequences. 675 void optimizeGatherSequence(); 676 677 /// \returns The best order of instructions for vectorization. 678 Optional<ArrayRef<unsigned>> bestOrder() const { 679 assert(llvm::all_of( 680 NumOpsWantToKeepOrder, 681 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 682 return D.getFirst().size() == 683 VectorizableTree[0]->Scalars.size(); 684 }) && 685 "All orders must have the same size as number of instructions in " 686 "tree node."); 687 auto I = std::max_element( 688 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 689 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 690 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 691 return D1.second < D2.second; 692 }); 693 if (I == NumOpsWantToKeepOrder.end() || 694 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 695 return None; 696 697 return makeArrayRef(I->getFirst()); 698 } 699 700 /// Builds the correct order for root instructions. 701 /// If some leaves have the same instructions to be vectorized, we may 702 /// incorrectly evaluate the best order for the root node (it is built for the 703 /// vector of instructions without repeated instructions and, thus, has less 704 /// elements than the root node). This function builds the correct order for 705 /// the root node. 706 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 707 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 708 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 709 /// be reordered, the best order will be \<1, 0\>. We need to extend this 710 /// order for the root node. For the root node this order should look like 711 /// \<3, 0, 1, 2\>. This function extends the order for the reused 712 /// instructions. 713 void findRootOrder(OrdersType &Order) { 714 // If the leaf has the same number of instructions to vectorize as the root 715 // - order must be set already. 716 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 717 if (Order.size() == RootSize) 718 return; 719 SmallVector<unsigned, 4> RealOrder(Order.size()); 720 std::swap(Order, RealOrder); 721 SmallVector<int, 4> Mask; 722 inversePermutation(RealOrder, Mask); 723 Order.assign(Mask.begin(), Mask.end()); 724 // The leaf has less number of instructions - need to find the true order of 725 // the root. 726 // Scan the nodes starting from the leaf back to the root. 727 const TreeEntry *PNode = VectorizableTree.back().get(); 728 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 729 SmallPtrSet<const TreeEntry *, 4> Visited; 730 while (!Nodes.empty() && Order.size() != RootSize) { 731 const TreeEntry *PNode = Nodes.pop_back_val(); 732 if (!Visited.insert(PNode).second) 733 continue; 734 const TreeEntry &Node = *PNode; 735 for (const EdgeInfo &EI : Node.UserTreeIndices) 736 if (EI.UserTE) 737 Nodes.push_back(EI.UserTE); 738 if (Node.ReuseShuffleIndices.empty()) 739 continue; 740 // Build the order for the parent node. 741 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 742 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 743 // The algorithm of the order extension is: 744 // 1. Calculate the number of the same instructions for the order. 745 // 2. Calculate the index of the new order: total number of instructions 746 // with order less than the order of the current instruction + reuse 747 // number of the current instruction. 748 // 3. The new order is just the index of the instruction in the original 749 // vector of the instructions. 750 for (unsigned I : Node.ReuseShuffleIndices) 751 ++OrderCounter[Order[I]]; 752 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 753 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 754 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 755 unsigned OrderIdx = Order[ReusedIdx]; 756 unsigned NewIdx = 0; 757 for (unsigned J = 0; J < OrderIdx; ++J) 758 NewIdx += OrderCounter[J]; 759 NewIdx += CurrentCounter[OrderIdx]; 760 ++CurrentCounter[OrderIdx]; 761 assert(NewOrder[NewIdx] == RootSize && 762 "The order index should not be written already."); 763 NewOrder[NewIdx] = I; 764 } 765 std::swap(Order, NewOrder); 766 } 767 assert(Order.size() == RootSize && 768 "Root node is expected or the size of the order must be the same as " 769 "the number of elements in the root node."); 770 assert(llvm::all_of(Order, 771 [RootSize](unsigned Val) { return Val != RootSize; }) && 772 "All indices must be initialized"); 773 } 774 775 /// \return The vector element size in bits to use when vectorizing the 776 /// expression tree ending at \p V. If V is a store, the size is the width of 777 /// the stored value. Otherwise, the size is the width of the largest loaded 778 /// value reaching V. This method is used by the vectorizer to calculate 779 /// vectorization factors. 780 unsigned getVectorElementSize(Value *V); 781 782 /// Compute the minimum type sizes required to represent the entries in a 783 /// vectorizable tree. 784 void computeMinimumValueSizes(); 785 786 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 787 unsigned getMaxVecRegSize() const { 788 return MaxVecRegSize; 789 } 790 791 // \returns minimum vector register size as set by cl::opt. 792 unsigned getMinVecRegSize() const { 793 return MinVecRegSize; 794 } 795 796 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 797 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 798 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 799 return MaxVF ? MaxVF : UINT_MAX; 800 } 801 802 /// Check if homogeneous aggregate is isomorphic to some VectorType. 803 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 804 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 805 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 806 /// 807 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 808 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 809 810 /// \returns True if the VectorizableTree is both tiny and not fully 811 /// vectorizable. We do not vectorize such trees. 812 bool isTreeTinyAndNotFullyVectorizable() const; 813 814 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 815 /// can be load combined in the backend. Load combining may not be allowed in 816 /// the IR optimizer, so we do not want to alter the pattern. For example, 817 /// partially transforming a scalar bswap() pattern into vector code is 818 /// effectively impossible for the backend to undo. 819 /// TODO: If load combining is allowed in the IR optimizer, this analysis 820 /// may not be necessary. 821 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 822 823 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 824 /// can be load combined in the backend. Load combining may not be allowed in 825 /// the IR optimizer, so we do not want to alter the pattern. For example, 826 /// partially transforming a scalar bswap() pattern into vector code is 827 /// effectively impossible for the backend to undo. 828 /// TODO: If load combining is allowed in the IR optimizer, this analysis 829 /// may not be necessary. 830 bool isLoadCombineCandidate() const; 831 832 OptimizationRemarkEmitter *getORE() { return ORE; } 833 834 /// This structure holds any data we need about the edges being traversed 835 /// during buildTree_rec(). We keep track of: 836 /// (i) the user TreeEntry index, and 837 /// (ii) the index of the edge. 838 struct EdgeInfo { 839 EdgeInfo() = default; 840 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 841 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 842 /// The user TreeEntry. 843 TreeEntry *UserTE = nullptr; 844 /// The operand index of the use. 845 unsigned EdgeIdx = UINT_MAX; 846 #ifndef NDEBUG 847 friend inline raw_ostream &operator<<(raw_ostream &OS, 848 const BoUpSLP::EdgeInfo &EI) { 849 EI.dump(OS); 850 return OS; 851 } 852 /// Debug print. 853 void dump(raw_ostream &OS) const { 854 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 855 << " EdgeIdx:" << EdgeIdx << "}"; 856 } 857 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 858 #endif 859 }; 860 861 /// A helper data structure to hold the operands of a vector of instructions. 862 /// This supports a fixed vector length for all operand vectors. 863 class VLOperands { 864 /// For each operand we need (i) the value, and (ii) the opcode that it 865 /// would be attached to if the expression was in a left-linearized form. 866 /// This is required to avoid illegal operand reordering. 867 /// For example: 868 /// \verbatim 869 /// 0 Op1 870 /// |/ 871 /// Op1 Op2 Linearized + Op2 872 /// \ / ----------> |/ 873 /// - - 874 /// 875 /// Op1 - Op2 (0 + Op1) - Op2 876 /// \endverbatim 877 /// 878 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 879 /// 880 /// Another way to think of this is to track all the operations across the 881 /// path from the operand all the way to the root of the tree and to 882 /// calculate the operation that corresponds to this path. For example, the 883 /// path from Op2 to the root crosses the RHS of the '-', therefore the 884 /// corresponding operation is a '-' (which matches the one in the 885 /// linearized tree, as shown above). 886 /// 887 /// For lack of a better term, we refer to this operation as Accumulated 888 /// Path Operation (APO). 889 struct OperandData { 890 OperandData() = default; 891 OperandData(Value *V, bool APO, bool IsUsed) 892 : V(V), APO(APO), IsUsed(IsUsed) {} 893 /// The operand value. 894 Value *V = nullptr; 895 /// TreeEntries only allow a single opcode, or an alternate sequence of 896 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 897 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 898 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 899 /// (e.g., Add/Mul) 900 bool APO = false; 901 /// Helper data for the reordering function. 902 bool IsUsed = false; 903 }; 904 905 /// During operand reordering, we are trying to select the operand at lane 906 /// that matches best with the operand at the neighboring lane. Our 907 /// selection is based on the type of value we are looking for. For example, 908 /// if the neighboring lane has a load, we need to look for a load that is 909 /// accessing a consecutive address. These strategies are summarized in the 910 /// 'ReorderingMode' enumerator. 911 enum class ReorderingMode { 912 Load, ///< Matching loads to consecutive memory addresses 913 Opcode, ///< Matching instructions based on opcode (same or alternate) 914 Constant, ///< Matching constants 915 Splat, ///< Matching the same instruction multiple times (broadcast) 916 Failed, ///< We failed to create a vectorizable group 917 }; 918 919 using OperandDataVec = SmallVector<OperandData, 2>; 920 921 /// A vector of operand vectors. 922 SmallVector<OperandDataVec, 4> OpsVec; 923 924 const DataLayout &DL; 925 ScalarEvolution &SE; 926 const BoUpSLP &R; 927 928 /// \returns the operand data at \p OpIdx and \p Lane. 929 OperandData &getData(unsigned OpIdx, unsigned Lane) { 930 return OpsVec[OpIdx][Lane]; 931 } 932 933 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 934 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 935 return OpsVec[OpIdx][Lane]; 936 } 937 938 /// Clears the used flag for all entries. 939 void clearUsed() { 940 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 941 OpIdx != NumOperands; ++OpIdx) 942 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 943 ++Lane) 944 OpsVec[OpIdx][Lane].IsUsed = false; 945 } 946 947 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 948 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 949 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 950 } 951 952 // The hard-coded scores listed here are not very important. When computing 953 // the scores of matching one sub-tree with another, we are basically 954 // counting the number of values that are matching. So even if all scores 955 // are set to 1, we would still get a decent matching result. 956 // However, sometimes we have to break ties. For example we may have to 957 // choose between matching loads vs matching opcodes. This is what these 958 // scores are helping us with: they provide the order of preference. 959 960 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 961 static const int ScoreConsecutiveLoads = 3; 962 /// ExtractElementInst from same vector and consecutive indexes. 963 static const int ScoreConsecutiveExtracts = 3; 964 /// Constants. 965 static const int ScoreConstants = 2; 966 /// Instructions with the same opcode. 967 static const int ScoreSameOpcode = 2; 968 /// Instructions with alt opcodes (e.g, add + sub). 969 static const int ScoreAltOpcodes = 1; 970 /// Identical instructions (a.k.a. splat or broadcast). 971 static const int ScoreSplat = 1; 972 /// Matching with an undef is preferable to failing. 973 static const int ScoreUndef = 1; 974 /// Score for failing to find a decent match. 975 static const int ScoreFail = 0; 976 /// User exteranl to the vectorized code. 977 static const int ExternalUseCost = 1; 978 /// The user is internal but in a different lane. 979 static const int UserInDiffLaneCost = ExternalUseCost; 980 981 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 982 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 983 ScalarEvolution &SE) { 984 auto *LI1 = dyn_cast<LoadInst>(V1); 985 auto *LI2 = dyn_cast<LoadInst>(V2); 986 if (LI1 && LI2) { 987 if (LI1->getParent() != LI2->getParent()) 988 return VLOperands::ScoreFail; 989 990 Optional<int> Dist = getPointersDiff( 991 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 992 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 993 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 994 : VLOperands::ScoreFail; 995 } 996 997 auto *C1 = dyn_cast<Constant>(V1); 998 auto *C2 = dyn_cast<Constant>(V2); 999 if (C1 && C2) 1000 return VLOperands::ScoreConstants; 1001 1002 // Extracts from consecutive indexes of the same vector better score as 1003 // the extracts could be optimized away. 1004 Value *EV; 1005 ConstantInt *Ex1Idx, *Ex2Idx; 1006 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1007 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1008 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1009 return VLOperands::ScoreConsecutiveExtracts; 1010 1011 auto *I1 = dyn_cast<Instruction>(V1); 1012 auto *I2 = dyn_cast<Instruction>(V2); 1013 if (I1 && I2) { 1014 if (I1 == I2) 1015 return VLOperands::ScoreSplat; 1016 InstructionsState S = getSameOpcode({I1, I2}); 1017 // Note: Only consider instructions with <= 2 operands to avoid 1018 // complexity explosion. 1019 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1020 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1021 : VLOperands::ScoreSameOpcode; 1022 } 1023 1024 if (isa<UndefValue>(V2)) 1025 return VLOperands::ScoreUndef; 1026 1027 return VLOperands::ScoreFail; 1028 } 1029 1030 /// Holds the values and their lane that are taking part in the look-ahead 1031 /// score calculation. This is used in the external uses cost calculation. 1032 SmallDenseMap<Value *, int> InLookAheadValues; 1033 1034 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1035 /// either external to the vectorized code, or require shuffling. 1036 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1037 const std::pair<Value *, int> &RHS) { 1038 int Cost = 0; 1039 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1040 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1041 Value *V = Values[Idx].first; 1042 if (isa<Constant>(V)) { 1043 // Since this is a function pass, it doesn't make semantic sense to 1044 // walk the users of a subclass of Constant. The users could be in 1045 // another function, or even another module that happens to be in 1046 // the same LLVMContext. 1047 continue; 1048 } 1049 1050 // Calculate the absolute lane, using the minimum relative lane of LHS 1051 // and RHS as base and Idx as the offset. 1052 int Ln = std::min(LHS.second, RHS.second) + Idx; 1053 assert(Ln >= 0 && "Bad lane calculation"); 1054 unsigned UsersBudget = LookAheadUsersBudget; 1055 for (User *U : V->users()) { 1056 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1057 // The user is in the VectorizableTree. Check if we need to insert. 1058 auto It = llvm::find(UserTE->Scalars, U); 1059 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1060 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1061 assert(UserLn >= 0 && "Bad lane"); 1062 if (UserLn != Ln) 1063 Cost += UserInDiffLaneCost; 1064 } else { 1065 // Check if the user is in the look-ahead code. 1066 auto It2 = InLookAheadValues.find(U); 1067 if (It2 != InLookAheadValues.end()) { 1068 // The user is in the look-ahead code. Check the lane. 1069 if (It2->second != Ln) 1070 Cost += UserInDiffLaneCost; 1071 } else { 1072 // The user is neither in SLP tree nor in the look-ahead code. 1073 Cost += ExternalUseCost; 1074 } 1075 } 1076 // Limit the number of visited uses to cap compilation time. 1077 if (--UsersBudget == 0) 1078 break; 1079 } 1080 } 1081 return Cost; 1082 } 1083 1084 /// Go through the operands of \p LHS and \p RHS recursively until \p 1085 /// MaxLevel, and return the cummulative score. For example: 1086 /// \verbatim 1087 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1088 /// \ / \ / \ / \ / 1089 /// + + + + 1090 /// G1 G2 G3 G4 1091 /// \endverbatim 1092 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1093 /// each level recursively, accumulating the score. It starts from matching 1094 /// the additions at level 0, then moves on to the loads (level 1). The 1095 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1096 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1097 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1098 /// Please note that the order of the operands does not matter, as we 1099 /// evaluate the score of all profitable combinations of operands. In 1100 /// other words the score of G1 and G4 is the same as G1 and G2. This 1101 /// heuristic is based on ideas described in: 1102 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1103 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1104 /// Luís F. W. Góes 1105 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1106 const std::pair<Value *, int> &RHS, int CurrLevel, 1107 int MaxLevel) { 1108 1109 Value *V1 = LHS.first; 1110 Value *V2 = RHS.first; 1111 // Get the shallow score of V1 and V2. 1112 int ShallowScoreAtThisLevel = 1113 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1114 getExternalUsesCost(LHS, RHS)); 1115 int Lane1 = LHS.second; 1116 int Lane2 = RHS.second; 1117 1118 // If reached MaxLevel, 1119 // or if V1 and V2 are not instructions, 1120 // or if they are SPLAT, 1121 // or if they are not consecutive, early return the current cost. 1122 auto *I1 = dyn_cast<Instruction>(V1); 1123 auto *I2 = dyn_cast<Instruction>(V2); 1124 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1125 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1126 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1127 return ShallowScoreAtThisLevel; 1128 assert(I1 && I2 && "Should have early exited."); 1129 1130 // Keep track of in-tree values for determining the external-use cost. 1131 InLookAheadValues[V1] = Lane1; 1132 InLookAheadValues[V2] = Lane2; 1133 1134 // Contains the I2 operand indexes that got matched with I1 operands. 1135 SmallSet<unsigned, 4> Op2Used; 1136 1137 // Recursion towards the operands of I1 and I2. We are trying all possbile 1138 // operand pairs, and keeping track of the best score. 1139 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1140 OpIdx1 != NumOperands1; ++OpIdx1) { 1141 // Try to pair op1I with the best operand of I2. 1142 int MaxTmpScore = 0; 1143 unsigned MaxOpIdx2 = 0; 1144 bool FoundBest = false; 1145 // If I2 is commutative try all combinations. 1146 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1147 unsigned ToIdx = isCommutative(I2) 1148 ? I2->getNumOperands() 1149 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1150 assert(FromIdx <= ToIdx && "Bad index"); 1151 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1152 // Skip operands already paired with OpIdx1. 1153 if (Op2Used.count(OpIdx2)) 1154 continue; 1155 // Recursively calculate the cost at each level 1156 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1157 {I2->getOperand(OpIdx2), Lane2}, 1158 CurrLevel + 1, MaxLevel); 1159 // Look for the best score. 1160 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1161 MaxTmpScore = TmpScore; 1162 MaxOpIdx2 = OpIdx2; 1163 FoundBest = true; 1164 } 1165 } 1166 if (FoundBest) { 1167 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1168 Op2Used.insert(MaxOpIdx2); 1169 ShallowScoreAtThisLevel += MaxTmpScore; 1170 } 1171 } 1172 return ShallowScoreAtThisLevel; 1173 } 1174 1175 /// \Returns the look-ahead score, which tells us how much the sub-trees 1176 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1177 /// score. This helps break ties in an informed way when we cannot decide on 1178 /// the order of the operands by just considering the immediate 1179 /// predecessors. 1180 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1181 const std::pair<Value *, int> &RHS) { 1182 InLookAheadValues.clear(); 1183 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1184 } 1185 1186 // Search all operands in Ops[*][Lane] for the one that matches best 1187 // Ops[OpIdx][LastLane] and return its opreand index. 1188 // If no good match can be found, return None. 1189 Optional<unsigned> 1190 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1191 ArrayRef<ReorderingMode> ReorderingModes) { 1192 unsigned NumOperands = getNumOperands(); 1193 1194 // The operand of the previous lane at OpIdx. 1195 Value *OpLastLane = getData(OpIdx, LastLane).V; 1196 1197 // Our strategy mode for OpIdx. 1198 ReorderingMode RMode = ReorderingModes[OpIdx]; 1199 1200 // The linearized opcode of the operand at OpIdx, Lane. 1201 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1202 1203 // The best operand index and its score. 1204 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1205 // are using the score to differentiate between the two. 1206 struct BestOpData { 1207 Optional<unsigned> Idx = None; 1208 unsigned Score = 0; 1209 } BestOp; 1210 1211 // Iterate through all unused operands and look for the best. 1212 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1213 // Get the operand at Idx and Lane. 1214 OperandData &OpData = getData(Idx, Lane); 1215 Value *Op = OpData.V; 1216 bool OpAPO = OpData.APO; 1217 1218 // Skip already selected operands. 1219 if (OpData.IsUsed) 1220 continue; 1221 1222 // Skip if we are trying to move the operand to a position with a 1223 // different opcode in the linearized tree form. This would break the 1224 // semantics. 1225 if (OpAPO != OpIdxAPO) 1226 continue; 1227 1228 // Look for an operand that matches the current mode. 1229 switch (RMode) { 1230 case ReorderingMode::Load: 1231 case ReorderingMode::Constant: 1232 case ReorderingMode::Opcode: { 1233 bool LeftToRight = Lane > LastLane; 1234 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1235 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1236 unsigned Score = 1237 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1238 if (Score > BestOp.Score) { 1239 BestOp.Idx = Idx; 1240 BestOp.Score = Score; 1241 } 1242 break; 1243 } 1244 case ReorderingMode::Splat: 1245 if (Op == OpLastLane) 1246 BestOp.Idx = Idx; 1247 break; 1248 case ReorderingMode::Failed: 1249 return None; 1250 } 1251 } 1252 1253 if (BestOp.Idx) { 1254 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1255 return BestOp.Idx; 1256 } 1257 // If we could not find a good match return None. 1258 return None; 1259 } 1260 1261 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1262 /// reordering from. This is the one which has the least number of operands 1263 /// that can freely move about. 1264 unsigned getBestLaneToStartReordering() const { 1265 unsigned BestLane = 0; 1266 unsigned Min = UINT_MAX; 1267 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1268 ++Lane) { 1269 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1270 if (NumFreeOps < Min) { 1271 Min = NumFreeOps; 1272 BestLane = Lane; 1273 } 1274 } 1275 return BestLane; 1276 } 1277 1278 /// \Returns the maximum number of operands that are allowed to be reordered 1279 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1280 /// start operand reordering. 1281 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1282 unsigned CntTrue = 0; 1283 unsigned NumOperands = getNumOperands(); 1284 // Operands with the same APO can be reordered. We therefore need to count 1285 // how many of them we have for each APO, like this: Cnt[APO] = x. 1286 // Since we only have two APOs, namely true and false, we can avoid using 1287 // a map. Instead we can simply count the number of operands that 1288 // correspond to one of them (in this case the 'true' APO), and calculate 1289 // the other by subtracting it from the total number of operands. 1290 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1291 if (getData(OpIdx, Lane).APO) 1292 ++CntTrue; 1293 unsigned CntFalse = NumOperands - CntTrue; 1294 return std::max(CntTrue, CntFalse); 1295 } 1296 1297 /// Go through the instructions in VL and append their operands. 1298 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1299 assert(!VL.empty() && "Bad VL"); 1300 assert((empty() || VL.size() == getNumLanes()) && 1301 "Expected same number of lanes"); 1302 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1303 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1304 OpsVec.resize(NumOperands); 1305 unsigned NumLanes = VL.size(); 1306 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1307 OpsVec[OpIdx].resize(NumLanes); 1308 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1309 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1310 // Our tree has just 3 nodes: the root and two operands. 1311 // It is therefore trivial to get the APO. We only need to check the 1312 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1313 // RHS operand. The LHS operand of both add and sub is never attached 1314 // to an inversese operation in the linearized form, therefore its APO 1315 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1316 1317 // Since operand reordering is performed on groups of commutative 1318 // operations or alternating sequences (e.g., +, -), we can safely 1319 // tell the inverse operations by checking commutativity. 1320 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1321 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1322 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1323 APO, false}; 1324 } 1325 } 1326 } 1327 1328 /// \returns the number of operands. 1329 unsigned getNumOperands() const { return OpsVec.size(); } 1330 1331 /// \returns the number of lanes. 1332 unsigned getNumLanes() const { return OpsVec[0].size(); } 1333 1334 /// \returns the operand value at \p OpIdx and \p Lane. 1335 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1336 return getData(OpIdx, Lane).V; 1337 } 1338 1339 /// \returns true if the data structure is empty. 1340 bool empty() const { return OpsVec.empty(); } 1341 1342 /// Clears the data. 1343 void clear() { OpsVec.clear(); } 1344 1345 /// \Returns true if there are enough operands identical to \p Op to fill 1346 /// the whole vector. 1347 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1348 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1349 bool OpAPO = getData(OpIdx, Lane).APO; 1350 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1351 if (Ln == Lane) 1352 continue; 1353 // This is set to true if we found a candidate for broadcast at Lane. 1354 bool FoundCandidate = false; 1355 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1356 OperandData &Data = getData(OpI, Ln); 1357 if (Data.APO != OpAPO || Data.IsUsed) 1358 continue; 1359 if (Data.V == Op) { 1360 FoundCandidate = true; 1361 Data.IsUsed = true; 1362 break; 1363 } 1364 } 1365 if (!FoundCandidate) 1366 return false; 1367 } 1368 return true; 1369 } 1370 1371 public: 1372 /// Initialize with all the operands of the instruction vector \p RootVL. 1373 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1374 ScalarEvolution &SE, const BoUpSLP &R) 1375 : DL(DL), SE(SE), R(R) { 1376 // Append all the operands of RootVL. 1377 appendOperandsOfVL(RootVL); 1378 } 1379 1380 /// \Returns a value vector with the operands across all lanes for the 1381 /// opearnd at \p OpIdx. 1382 ValueList getVL(unsigned OpIdx) const { 1383 ValueList OpVL(OpsVec[OpIdx].size()); 1384 assert(OpsVec[OpIdx].size() == getNumLanes() && 1385 "Expected same num of lanes across all operands"); 1386 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1387 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1388 return OpVL; 1389 } 1390 1391 // Performs operand reordering for 2 or more operands. 1392 // The original operands are in OrigOps[OpIdx][Lane]. 1393 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1394 void reorder() { 1395 unsigned NumOperands = getNumOperands(); 1396 unsigned NumLanes = getNumLanes(); 1397 // Each operand has its own mode. We are using this mode to help us select 1398 // the instructions for each lane, so that they match best with the ones 1399 // we have selected so far. 1400 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1401 1402 // This is a greedy single-pass algorithm. We are going over each lane 1403 // once and deciding on the best order right away with no back-tracking. 1404 // However, in order to increase its effectiveness, we start with the lane 1405 // that has operands that can move the least. For example, given the 1406 // following lanes: 1407 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1408 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1409 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1410 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1411 // we will start at Lane 1, since the operands of the subtraction cannot 1412 // be reordered. Then we will visit the rest of the lanes in a circular 1413 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1414 1415 // Find the first lane that we will start our search from. 1416 unsigned FirstLane = getBestLaneToStartReordering(); 1417 1418 // Initialize the modes. 1419 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1420 Value *OpLane0 = getValue(OpIdx, FirstLane); 1421 // Keep track if we have instructions with all the same opcode on one 1422 // side. 1423 if (isa<LoadInst>(OpLane0)) 1424 ReorderingModes[OpIdx] = ReorderingMode::Load; 1425 else if (isa<Instruction>(OpLane0)) { 1426 // Check if OpLane0 should be broadcast. 1427 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1428 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1429 else 1430 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1431 } 1432 else if (isa<Constant>(OpLane0)) 1433 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1434 else if (isa<Argument>(OpLane0)) 1435 // Our best hope is a Splat. It may save some cost in some cases. 1436 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1437 else 1438 // NOTE: This should be unreachable. 1439 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1440 } 1441 1442 // If the initial strategy fails for any of the operand indexes, then we 1443 // perform reordering again in a second pass. This helps avoid assigning 1444 // high priority to the failed strategy, and should improve reordering for 1445 // the non-failed operand indexes. 1446 for (int Pass = 0; Pass != 2; ++Pass) { 1447 // Skip the second pass if the first pass did not fail. 1448 bool StrategyFailed = false; 1449 // Mark all operand data as free to use. 1450 clearUsed(); 1451 // We keep the original operand order for the FirstLane, so reorder the 1452 // rest of the lanes. We are visiting the nodes in a circular fashion, 1453 // using FirstLane as the center point and increasing the radius 1454 // distance. 1455 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1456 // Visit the lane on the right and then the lane on the left. 1457 for (int Direction : {+1, -1}) { 1458 int Lane = FirstLane + Direction * Distance; 1459 if (Lane < 0 || Lane >= (int)NumLanes) 1460 continue; 1461 int LastLane = Lane - Direction; 1462 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1463 "Out of bounds"); 1464 // Look for a good match for each operand. 1465 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1466 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1467 Optional<unsigned> BestIdx = 1468 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1469 // By not selecting a value, we allow the operands that follow to 1470 // select a better matching value. We will get a non-null value in 1471 // the next run of getBestOperand(). 1472 if (BestIdx) { 1473 // Swap the current operand with the one returned by 1474 // getBestOperand(). 1475 swap(OpIdx, BestIdx.getValue(), Lane); 1476 } else { 1477 // We failed to find a best operand, set mode to 'Failed'. 1478 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1479 // Enable the second pass. 1480 StrategyFailed = true; 1481 } 1482 } 1483 } 1484 } 1485 // Skip second pass if the strategy did not fail. 1486 if (!StrategyFailed) 1487 break; 1488 } 1489 } 1490 1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1492 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1493 switch (RMode) { 1494 case ReorderingMode::Load: 1495 return "Load"; 1496 case ReorderingMode::Opcode: 1497 return "Opcode"; 1498 case ReorderingMode::Constant: 1499 return "Constant"; 1500 case ReorderingMode::Splat: 1501 return "Splat"; 1502 case ReorderingMode::Failed: 1503 return "Failed"; 1504 } 1505 llvm_unreachable("Unimplemented Reordering Type"); 1506 } 1507 1508 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1509 raw_ostream &OS) { 1510 return OS << getModeStr(RMode); 1511 } 1512 1513 /// Debug print. 1514 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1515 printMode(RMode, dbgs()); 1516 } 1517 1518 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1519 return printMode(RMode, OS); 1520 } 1521 1522 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1523 const unsigned Indent = 2; 1524 unsigned Cnt = 0; 1525 for (const OperandDataVec &OpDataVec : OpsVec) { 1526 OS << "Operand " << Cnt++ << "\n"; 1527 for (const OperandData &OpData : OpDataVec) { 1528 OS.indent(Indent) << "{"; 1529 if (Value *V = OpData.V) 1530 OS << *V; 1531 else 1532 OS << "null"; 1533 OS << ", APO:" << OpData.APO << "}\n"; 1534 } 1535 OS << "\n"; 1536 } 1537 return OS; 1538 } 1539 1540 /// Debug print. 1541 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1542 #endif 1543 }; 1544 1545 /// Checks if the instruction is marked for deletion. 1546 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1547 1548 /// Marks values operands for later deletion by replacing them with Undefs. 1549 void eraseInstructions(ArrayRef<Value *> AV); 1550 1551 ~BoUpSLP(); 1552 1553 private: 1554 /// Checks if all users of \p I are the part of the vectorization tree. 1555 bool areAllUsersVectorized(Instruction *I, 1556 ArrayRef<Value *> VectorizedVals) const; 1557 1558 /// \returns the cost of the vectorizable entry. 1559 InstructionCost getEntryCost(const TreeEntry *E, 1560 ArrayRef<Value *> VectorizedVals); 1561 1562 /// This is the recursive part of buildTree. 1563 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1564 const EdgeInfo &EI); 1565 1566 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1567 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1568 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1569 /// returns false, setting \p CurrentOrder to either an empty vector or a 1570 /// non-identity permutation that allows to reuse extract instructions. 1571 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1572 SmallVectorImpl<unsigned> &CurrentOrder) const; 1573 1574 /// Vectorize a single entry in the tree. 1575 Value *vectorizeTree(TreeEntry *E); 1576 1577 /// Vectorize a single entry in the tree, starting in \p VL. 1578 Value *vectorizeTree(ArrayRef<Value *> VL); 1579 1580 /// \returns the scalarization cost for this type. Scalarization in this 1581 /// context means the creation of vectors from a group of scalars. 1582 InstructionCost 1583 getGatherCost(FixedVectorType *Ty, 1584 const DenseSet<unsigned> &ShuffledIndices) const; 1585 1586 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1587 /// tree entries. 1588 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1589 /// previous tree entries. \p Mask is filled with the shuffle mask. 1590 Optional<TargetTransformInfo::ShuffleKind> 1591 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1592 SmallVectorImpl<const TreeEntry *> &Entries); 1593 1594 /// \returns the scalarization cost for this list of values. Assuming that 1595 /// this subtree gets vectorized, we may need to extract the values from the 1596 /// roots. This method calculates the cost of extracting the values. 1597 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1598 1599 /// Set the Builder insert point to one after the last instruction in 1600 /// the bundle 1601 void setInsertPointAfterBundle(const TreeEntry *E); 1602 1603 /// \returns a vector from a collection of scalars in \p VL. 1604 Value *gather(ArrayRef<Value *> VL); 1605 1606 /// \returns whether the VectorizableTree is fully vectorizable and will 1607 /// be beneficial even the tree height is tiny. 1608 bool isFullyVectorizableTinyTree() const; 1609 1610 /// Reorder commutative or alt operands to get better probability of 1611 /// generating vectorized code. 1612 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1613 SmallVectorImpl<Value *> &Left, 1614 SmallVectorImpl<Value *> &Right, 1615 const DataLayout &DL, 1616 ScalarEvolution &SE, 1617 const BoUpSLP &R); 1618 struct TreeEntry { 1619 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1620 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1621 1622 /// \returns true if the scalars in VL are equal to this entry. 1623 bool isSame(ArrayRef<Value *> VL) const { 1624 if (VL.size() == Scalars.size()) 1625 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1626 return VL.size() == ReuseShuffleIndices.size() && 1627 std::equal( 1628 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1629 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1630 } 1631 1632 /// A vector of scalars. 1633 ValueList Scalars; 1634 1635 /// The Scalars are vectorized into this value. It is initialized to Null. 1636 Value *VectorizedValue = nullptr; 1637 1638 /// Do we need to gather this sequence or vectorize it 1639 /// (either with vector instruction or with scatter/gather 1640 /// intrinsics for store/load)? 1641 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1642 EntryState State; 1643 1644 /// Does this sequence require some shuffling? 1645 SmallVector<int, 4> ReuseShuffleIndices; 1646 1647 /// Does this entry require reordering? 1648 SmallVector<unsigned, 4> ReorderIndices; 1649 1650 /// Points back to the VectorizableTree. 1651 /// 1652 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1653 /// to be a pointer and needs to be able to initialize the child iterator. 1654 /// Thus we need a reference back to the container to translate the indices 1655 /// to entries. 1656 VecTreeTy &Container; 1657 1658 /// The TreeEntry index containing the user of this entry. We can actually 1659 /// have multiple users so the data structure is not truly a tree. 1660 SmallVector<EdgeInfo, 1> UserTreeIndices; 1661 1662 /// The index of this treeEntry in VectorizableTree. 1663 int Idx = -1; 1664 1665 private: 1666 /// The operands of each instruction in each lane Operands[op_index][lane]. 1667 /// Note: This helps avoid the replication of the code that performs the 1668 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1669 SmallVector<ValueList, 2> Operands; 1670 1671 /// The main/alternate instruction. 1672 Instruction *MainOp = nullptr; 1673 Instruction *AltOp = nullptr; 1674 1675 public: 1676 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1677 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1678 if (Operands.size() < OpIdx + 1) 1679 Operands.resize(OpIdx + 1); 1680 assert(Operands[OpIdx].empty() && "Already resized?"); 1681 Operands[OpIdx].resize(Scalars.size()); 1682 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1683 Operands[OpIdx][Lane] = OpVL[Lane]; 1684 } 1685 1686 /// Set the operands of this bundle in their original order. 1687 void setOperandsInOrder() { 1688 assert(Operands.empty() && "Already initialized?"); 1689 auto *I0 = cast<Instruction>(Scalars[0]); 1690 Operands.resize(I0->getNumOperands()); 1691 unsigned NumLanes = Scalars.size(); 1692 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1693 OpIdx != NumOperands; ++OpIdx) { 1694 Operands[OpIdx].resize(NumLanes); 1695 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1696 auto *I = cast<Instruction>(Scalars[Lane]); 1697 assert(I->getNumOperands() == NumOperands && 1698 "Expected same number of operands"); 1699 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1700 } 1701 } 1702 } 1703 1704 /// \returns the \p OpIdx operand of this TreeEntry. 1705 ValueList &getOperand(unsigned OpIdx) { 1706 assert(OpIdx < Operands.size() && "Off bounds"); 1707 return Operands[OpIdx]; 1708 } 1709 1710 /// \returns the number of operands. 1711 unsigned getNumOperands() const { return Operands.size(); } 1712 1713 /// \return the single \p OpIdx operand. 1714 Value *getSingleOperand(unsigned OpIdx) const { 1715 assert(OpIdx < Operands.size() && "Off bounds"); 1716 assert(!Operands[OpIdx].empty() && "No operand available"); 1717 return Operands[OpIdx][0]; 1718 } 1719 1720 /// Some of the instructions in the list have alternate opcodes. 1721 bool isAltShuffle() const { 1722 return getOpcode() != getAltOpcode(); 1723 } 1724 1725 bool isOpcodeOrAlt(Instruction *I) const { 1726 unsigned CheckedOpcode = I->getOpcode(); 1727 return (getOpcode() == CheckedOpcode || 1728 getAltOpcode() == CheckedOpcode); 1729 } 1730 1731 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1732 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1733 /// \p OpValue. 1734 Value *isOneOf(Value *Op) const { 1735 auto *I = dyn_cast<Instruction>(Op); 1736 if (I && isOpcodeOrAlt(I)) 1737 return Op; 1738 return MainOp; 1739 } 1740 1741 void setOperations(const InstructionsState &S) { 1742 MainOp = S.MainOp; 1743 AltOp = S.AltOp; 1744 } 1745 1746 Instruction *getMainOp() const { 1747 return MainOp; 1748 } 1749 1750 Instruction *getAltOp() const { 1751 return AltOp; 1752 } 1753 1754 /// The main/alternate opcodes for the list of instructions. 1755 unsigned getOpcode() const { 1756 return MainOp ? MainOp->getOpcode() : 0; 1757 } 1758 1759 unsigned getAltOpcode() const { 1760 return AltOp ? AltOp->getOpcode() : 0; 1761 } 1762 1763 /// Update operations state of this entry if reorder occurred. 1764 bool updateStateIfReorder() { 1765 if (ReorderIndices.empty()) 1766 return false; 1767 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1768 setOperations(S); 1769 return true; 1770 } 1771 /// When ReuseShuffleIndices is empty it just returns position of \p V 1772 /// within vector of Scalars. Otherwise, try to remap on its reuse index. 1773 int findLaneForValue(Value *V) const { 1774 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1775 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1776 if (!ReuseShuffleIndices.empty()) { 1777 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1778 find(ReuseShuffleIndices, FoundLane)); 1779 } 1780 return FoundLane; 1781 } 1782 1783 #ifndef NDEBUG 1784 /// Debug printer. 1785 LLVM_DUMP_METHOD void dump() const { 1786 dbgs() << Idx << ".\n"; 1787 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1788 dbgs() << "Operand " << OpI << ":\n"; 1789 for (const Value *V : Operands[OpI]) 1790 dbgs().indent(2) << *V << "\n"; 1791 } 1792 dbgs() << "Scalars: \n"; 1793 for (Value *V : Scalars) 1794 dbgs().indent(2) << *V << "\n"; 1795 dbgs() << "State: "; 1796 switch (State) { 1797 case Vectorize: 1798 dbgs() << "Vectorize\n"; 1799 break; 1800 case ScatterVectorize: 1801 dbgs() << "ScatterVectorize\n"; 1802 break; 1803 case NeedToGather: 1804 dbgs() << "NeedToGather\n"; 1805 break; 1806 } 1807 dbgs() << "MainOp: "; 1808 if (MainOp) 1809 dbgs() << *MainOp << "\n"; 1810 else 1811 dbgs() << "NULL\n"; 1812 dbgs() << "AltOp: "; 1813 if (AltOp) 1814 dbgs() << *AltOp << "\n"; 1815 else 1816 dbgs() << "NULL\n"; 1817 dbgs() << "VectorizedValue: "; 1818 if (VectorizedValue) 1819 dbgs() << *VectorizedValue << "\n"; 1820 else 1821 dbgs() << "NULL\n"; 1822 dbgs() << "ReuseShuffleIndices: "; 1823 if (ReuseShuffleIndices.empty()) 1824 dbgs() << "Empty"; 1825 else 1826 for (unsigned ReuseIdx : ReuseShuffleIndices) 1827 dbgs() << ReuseIdx << ", "; 1828 dbgs() << "\n"; 1829 dbgs() << "ReorderIndices: "; 1830 for (unsigned ReorderIdx : ReorderIndices) 1831 dbgs() << ReorderIdx << ", "; 1832 dbgs() << "\n"; 1833 dbgs() << "UserTreeIndices: "; 1834 for (const auto &EInfo : UserTreeIndices) 1835 dbgs() << EInfo << ", "; 1836 dbgs() << "\n"; 1837 } 1838 #endif 1839 }; 1840 1841 #ifndef NDEBUG 1842 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1843 InstructionCost VecCost, 1844 InstructionCost ScalarCost) const { 1845 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1846 dbgs() << "SLP: Costs:\n"; 1847 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1848 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1849 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1850 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1851 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1852 } 1853 #endif 1854 1855 /// Create a new VectorizableTree entry. 1856 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1857 const InstructionsState &S, 1858 const EdgeInfo &UserTreeIdx, 1859 ArrayRef<unsigned> ReuseShuffleIndices = None, 1860 ArrayRef<unsigned> ReorderIndices = None) { 1861 TreeEntry::EntryState EntryState = 1862 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1863 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1864 ReuseShuffleIndices, ReorderIndices); 1865 } 1866 1867 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1868 TreeEntry::EntryState EntryState, 1869 Optional<ScheduleData *> Bundle, 1870 const InstructionsState &S, 1871 const EdgeInfo &UserTreeIdx, 1872 ArrayRef<unsigned> ReuseShuffleIndices = None, 1873 ArrayRef<unsigned> ReorderIndices = None) { 1874 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1875 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1876 "Need to vectorize gather entry?"); 1877 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1878 TreeEntry *Last = VectorizableTree.back().get(); 1879 Last->Idx = VectorizableTree.size() - 1; 1880 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1881 Last->State = EntryState; 1882 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1883 ReuseShuffleIndices.end()); 1884 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1885 Last->setOperations(S); 1886 if (Last->State != TreeEntry::NeedToGather) { 1887 for (Value *V : VL) { 1888 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1889 ScalarToTreeEntry[V] = Last; 1890 } 1891 // Update the scheduler bundle to point to this TreeEntry. 1892 unsigned Lane = 0; 1893 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1894 BundleMember = BundleMember->NextInBundle) { 1895 BundleMember->TE = Last; 1896 BundleMember->Lane = Lane; 1897 ++Lane; 1898 } 1899 assert((!Bundle.getValue() || Lane == VL.size()) && 1900 "Bundle and VL out of sync"); 1901 } else { 1902 MustGather.insert(VL.begin(), VL.end()); 1903 } 1904 1905 if (UserTreeIdx.UserTE) 1906 Last->UserTreeIndices.push_back(UserTreeIdx); 1907 1908 return Last; 1909 } 1910 1911 /// -- Vectorization State -- 1912 /// Holds all of the tree entries. 1913 TreeEntry::VecTreeTy VectorizableTree; 1914 1915 #ifndef NDEBUG 1916 /// Debug printer. 1917 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1918 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1919 VectorizableTree[Id]->dump(); 1920 dbgs() << "\n"; 1921 } 1922 } 1923 #endif 1924 1925 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1926 1927 const TreeEntry *getTreeEntry(Value *V) const { 1928 return ScalarToTreeEntry.lookup(V); 1929 } 1930 1931 /// Maps a specific scalar to its tree entry. 1932 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1933 1934 /// Maps a value to the proposed vectorizable size. 1935 SmallDenseMap<Value *, unsigned> InstrElementSize; 1936 1937 /// A list of scalars that we found that we need to keep as scalars. 1938 ValueSet MustGather; 1939 1940 /// This POD struct describes one external user in the vectorized tree. 1941 struct ExternalUser { 1942 ExternalUser(Value *S, llvm::User *U, int L) 1943 : Scalar(S), User(U), Lane(L) {} 1944 1945 // Which scalar in our function. 1946 Value *Scalar; 1947 1948 // Which user that uses the scalar. 1949 llvm::User *User; 1950 1951 // Which lane does the scalar belong to. 1952 int Lane; 1953 }; 1954 using UserList = SmallVector<ExternalUser, 16>; 1955 1956 /// Checks if two instructions may access the same memory. 1957 /// 1958 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1959 /// is invariant in the calling loop. 1960 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1961 Instruction *Inst2) { 1962 // First check if the result is already in the cache. 1963 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1964 Optional<bool> &result = AliasCache[key]; 1965 if (result.hasValue()) { 1966 return result.getValue(); 1967 } 1968 MemoryLocation Loc2 = getLocation(Inst2, AA); 1969 bool aliased = true; 1970 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1971 // Do the alias check. 1972 aliased = !AA->isNoAlias(Loc1, Loc2); 1973 } 1974 // Store the result in the cache. 1975 result = aliased; 1976 return aliased; 1977 } 1978 1979 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1980 1981 /// Cache for alias results. 1982 /// TODO: consider moving this to the AliasAnalysis itself. 1983 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1984 1985 /// Removes an instruction from its block and eventually deletes it. 1986 /// It's like Instruction::eraseFromParent() except that the actual deletion 1987 /// is delayed until BoUpSLP is destructed. 1988 /// This is required to ensure that there are no incorrect collisions in the 1989 /// AliasCache, which can happen if a new instruction is allocated at the 1990 /// same address as a previously deleted instruction. 1991 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1992 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1993 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1994 } 1995 1996 /// Temporary store for deleted instructions. Instructions will be deleted 1997 /// eventually when the BoUpSLP is destructed. 1998 DenseMap<Instruction *, bool> DeletedInstructions; 1999 2000 /// A list of values that need to extracted out of the tree. 2001 /// This list holds pairs of (Internal Scalar : External User). External User 2002 /// can be nullptr, it means that this Internal Scalar will be used later, 2003 /// after vectorization. 2004 UserList ExternalUses; 2005 2006 /// Values used only by @llvm.assume calls. 2007 SmallPtrSet<const Value *, 32> EphValues; 2008 2009 /// Holds all of the instructions that we gathered. 2010 SetVector<Instruction *> GatherSeq; 2011 2012 /// A list of blocks that we are going to CSE. 2013 SetVector<BasicBlock *> CSEBlocks; 2014 2015 /// Contains all scheduling relevant data for an instruction. 2016 /// A ScheduleData either represents a single instruction or a member of an 2017 /// instruction bundle (= a group of instructions which is combined into a 2018 /// vector instruction). 2019 struct ScheduleData { 2020 // The initial value for the dependency counters. It means that the 2021 // dependencies are not calculated yet. 2022 enum { InvalidDeps = -1 }; 2023 2024 ScheduleData() = default; 2025 2026 void init(int BlockSchedulingRegionID, Value *OpVal) { 2027 FirstInBundle = this; 2028 NextInBundle = nullptr; 2029 NextLoadStore = nullptr; 2030 IsScheduled = false; 2031 SchedulingRegionID = BlockSchedulingRegionID; 2032 UnscheduledDepsInBundle = UnscheduledDeps; 2033 clearDependencies(); 2034 OpValue = OpVal; 2035 TE = nullptr; 2036 Lane = -1; 2037 } 2038 2039 /// Returns true if the dependency information has been calculated. 2040 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2041 2042 /// Returns true for single instructions and for bundle representatives 2043 /// (= the head of a bundle). 2044 bool isSchedulingEntity() const { return FirstInBundle == this; } 2045 2046 /// Returns true if it represents an instruction bundle and not only a 2047 /// single instruction. 2048 bool isPartOfBundle() const { 2049 return NextInBundle != nullptr || FirstInBundle != this; 2050 } 2051 2052 /// Returns true if it is ready for scheduling, i.e. it has no more 2053 /// unscheduled depending instructions/bundles. 2054 bool isReady() const { 2055 assert(isSchedulingEntity() && 2056 "can't consider non-scheduling entity for ready list"); 2057 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2058 } 2059 2060 /// Modifies the number of unscheduled dependencies, also updating it for 2061 /// the whole bundle. 2062 int incrementUnscheduledDeps(int Incr) { 2063 UnscheduledDeps += Incr; 2064 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2065 } 2066 2067 /// Sets the number of unscheduled dependencies to the number of 2068 /// dependencies. 2069 void resetUnscheduledDeps() { 2070 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2071 } 2072 2073 /// Clears all dependency information. 2074 void clearDependencies() { 2075 Dependencies = InvalidDeps; 2076 resetUnscheduledDeps(); 2077 MemoryDependencies.clear(); 2078 } 2079 2080 void dump(raw_ostream &os) const { 2081 if (!isSchedulingEntity()) { 2082 os << "/ " << *Inst; 2083 } else if (NextInBundle) { 2084 os << '[' << *Inst; 2085 ScheduleData *SD = NextInBundle; 2086 while (SD) { 2087 os << ';' << *SD->Inst; 2088 SD = SD->NextInBundle; 2089 } 2090 os << ']'; 2091 } else { 2092 os << *Inst; 2093 } 2094 } 2095 2096 Instruction *Inst = nullptr; 2097 2098 /// Points to the head in an instruction bundle (and always to this for 2099 /// single instructions). 2100 ScheduleData *FirstInBundle = nullptr; 2101 2102 /// Single linked list of all instructions in a bundle. Null if it is a 2103 /// single instruction. 2104 ScheduleData *NextInBundle = nullptr; 2105 2106 /// Single linked list of all memory instructions (e.g. load, store, call) 2107 /// in the block - until the end of the scheduling region. 2108 ScheduleData *NextLoadStore = nullptr; 2109 2110 /// The dependent memory instructions. 2111 /// This list is derived on demand in calculateDependencies(). 2112 SmallVector<ScheduleData *, 4> MemoryDependencies; 2113 2114 /// This ScheduleData is in the current scheduling region if this matches 2115 /// the current SchedulingRegionID of BlockScheduling. 2116 int SchedulingRegionID = 0; 2117 2118 /// Used for getting a "good" final ordering of instructions. 2119 int SchedulingPriority = 0; 2120 2121 /// The number of dependencies. Constitutes of the number of users of the 2122 /// instruction plus the number of dependent memory instructions (if any). 2123 /// This value is calculated on demand. 2124 /// If InvalidDeps, the number of dependencies is not calculated yet. 2125 int Dependencies = InvalidDeps; 2126 2127 /// The number of dependencies minus the number of dependencies of scheduled 2128 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2129 /// for scheduling. 2130 /// Note that this is negative as long as Dependencies is not calculated. 2131 int UnscheduledDeps = InvalidDeps; 2132 2133 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2134 /// single instructions. 2135 int UnscheduledDepsInBundle = InvalidDeps; 2136 2137 /// True if this instruction is scheduled (or considered as scheduled in the 2138 /// dry-run). 2139 bool IsScheduled = false; 2140 2141 /// Opcode of the current instruction in the schedule data. 2142 Value *OpValue = nullptr; 2143 2144 /// The TreeEntry that this instruction corresponds to. 2145 TreeEntry *TE = nullptr; 2146 2147 /// The lane of this node in the TreeEntry. 2148 int Lane = -1; 2149 }; 2150 2151 #ifndef NDEBUG 2152 friend inline raw_ostream &operator<<(raw_ostream &os, 2153 const BoUpSLP::ScheduleData &SD) { 2154 SD.dump(os); 2155 return os; 2156 } 2157 #endif 2158 2159 friend struct GraphTraits<BoUpSLP *>; 2160 friend struct DOTGraphTraits<BoUpSLP *>; 2161 2162 /// Contains all scheduling data for a basic block. 2163 struct BlockScheduling { 2164 BlockScheduling(BasicBlock *BB) 2165 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2166 2167 void clear() { 2168 ReadyInsts.clear(); 2169 ScheduleStart = nullptr; 2170 ScheduleEnd = nullptr; 2171 FirstLoadStoreInRegion = nullptr; 2172 LastLoadStoreInRegion = nullptr; 2173 2174 // Reduce the maximum schedule region size by the size of the 2175 // previous scheduling run. 2176 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2177 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2178 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2179 ScheduleRegionSize = 0; 2180 2181 // Make a new scheduling region, i.e. all existing ScheduleData is not 2182 // in the new region yet. 2183 ++SchedulingRegionID; 2184 } 2185 2186 ScheduleData *getScheduleData(Value *V) { 2187 ScheduleData *SD = ScheduleDataMap[V]; 2188 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2189 return SD; 2190 return nullptr; 2191 } 2192 2193 ScheduleData *getScheduleData(Value *V, Value *Key) { 2194 if (V == Key) 2195 return getScheduleData(V); 2196 auto I = ExtraScheduleDataMap.find(V); 2197 if (I != ExtraScheduleDataMap.end()) { 2198 ScheduleData *SD = I->second[Key]; 2199 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2200 return SD; 2201 } 2202 return nullptr; 2203 } 2204 2205 bool isInSchedulingRegion(ScheduleData *SD) const { 2206 return SD->SchedulingRegionID == SchedulingRegionID; 2207 } 2208 2209 /// Marks an instruction as scheduled and puts all dependent ready 2210 /// instructions into the ready-list. 2211 template <typename ReadyListType> 2212 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2213 SD->IsScheduled = true; 2214 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2215 2216 ScheduleData *BundleMember = SD; 2217 while (BundleMember) { 2218 if (BundleMember->Inst != BundleMember->OpValue) { 2219 BundleMember = BundleMember->NextInBundle; 2220 continue; 2221 } 2222 // Handle the def-use chain dependencies. 2223 2224 // Decrement the unscheduled counter and insert to ready list if ready. 2225 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2226 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2227 if (OpDef && OpDef->hasValidDependencies() && 2228 OpDef->incrementUnscheduledDeps(-1) == 0) { 2229 // There are no more unscheduled dependencies after 2230 // decrementing, so we can put the dependent instruction 2231 // into the ready list. 2232 ScheduleData *DepBundle = OpDef->FirstInBundle; 2233 assert(!DepBundle->IsScheduled && 2234 "already scheduled bundle gets ready"); 2235 ReadyList.insert(DepBundle); 2236 LLVM_DEBUG(dbgs() 2237 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2238 } 2239 }); 2240 }; 2241 2242 // If BundleMember is a vector bundle, its operands may have been 2243 // reordered duiring buildTree(). We therefore need to get its operands 2244 // through the TreeEntry. 2245 if (TreeEntry *TE = BundleMember->TE) { 2246 int Lane = BundleMember->Lane; 2247 assert(Lane >= 0 && "Lane not set"); 2248 2249 // Since vectorization tree is being built recursively this assertion 2250 // ensures that the tree entry has all operands set before reaching 2251 // this code. Couple of exceptions known at the moment are extracts 2252 // where their second (immediate) operand is not added. Since 2253 // immediates do not affect scheduler behavior this is considered 2254 // okay. 2255 auto *In = TE->getMainOp(); 2256 assert(In && 2257 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2258 In->getNumOperands() == TE->getNumOperands()) && 2259 "Missed TreeEntry operands?"); 2260 (void)In; // fake use to avoid build failure when assertions disabled 2261 2262 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2263 OpIdx != NumOperands; ++OpIdx) 2264 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2265 DecrUnsched(I); 2266 } else { 2267 // If BundleMember is a stand-alone instruction, no operand reordering 2268 // has taken place, so we directly access its operands. 2269 for (Use &U : BundleMember->Inst->operands()) 2270 if (auto *I = dyn_cast<Instruction>(U.get())) 2271 DecrUnsched(I); 2272 } 2273 // Handle the memory dependencies. 2274 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2275 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2276 // There are no more unscheduled dependencies after decrementing, 2277 // so we can put the dependent instruction into the ready list. 2278 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2279 assert(!DepBundle->IsScheduled && 2280 "already scheduled bundle gets ready"); 2281 ReadyList.insert(DepBundle); 2282 LLVM_DEBUG(dbgs() 2283 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2284 } 2285 } 2286 BundleMember = BundleMember->NextInBundle; 2287 } 2288 } 2289 2290 void doForAllOpcodes(Value *V, 2291 function_ref<void(ScheduleData *SD)> Action) { 2292 if (ScheduleData *SD = getScheduleData(V)) 2293 Action(SD); 2294 auto I = ExtraScheduleDataMap.find(V); 2295 if (I != ExtraScheduleDataMap.end()) 2296 for (auto &P : I->second) 2297 if (P.second->SchedulingRegionID == SchedulingRegionID) 2298 Action(P.second); 2299 } 2300 2301 /// Put all instructions into the ReadyList which are ready for scheduling. 2302 template <typename ReadyListType> 2303 void initialFillReadyList(ReadyListType &ReadyList) { 2304 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2305 doForAllOpcodes(I, [&](ScheduleData *SD) { 2306 if (SD->isSchedulingEntity() && SD->isReady()) { 2307 ReadyList.insert(SD); 2308 LLVM_DEBUG(dbgs() 2309 << "SLP: initially in ready list: " << *I << "\n"); 2310 } 2311 }); 2312 } 2313 } 2314 2315 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2316 /// cyclic dependencies. This is only a dry-run, no instructions are 2317 /// actually moved at this stage. 2318 /// \returns the scheduling bundle. The returned Optional value is non-None 2319 /// if \p VL is allowed to be scheduled. 2320 Optional<ScheduleData *> 2321 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2322 const InstructionsState &S); 2323 2324 /// Un-bundles a group of instructions. 2325 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2326 2327 /// Allocates schedule data chunk. 2328 ScheduleData *allocateScheduleDataChunks(); 2329 2330 /// Extends the scheduling region so that V is inside the region. 2331 /// \returns true if the region size is within the limit. 2332 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2333 2334 /// Initialize the ScheduleData structures for new instructions in the 2335 /// scheduling region. 2336 void initScheduleData(Instruction *FromI, Instruction *ToI, 2337 ScheduleData *PrevLoadStore, 2338 ScheduleData *NextLoadStore); 2339 2340 /// Updates the dependency information of a bundle and of all instructions/ 2341 /// bundles which depend on the original bundle. 2342 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2343 BoUpSLP *SLP); 2344 2345 /// Sets all instruction in the scheduling region to un-scheduled. 2346 void resetSchedule(); 2347 2348 BasicBlock *BB; 2349 2350 /// Simple memory allocation for ScheduleData. 2351 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2352 2353 /// The size of a ScheduleData array in ScheduleDataChunks. 2354 int ChunkSize; 2355 2356 /// The allocator position in the current chunk, which is the last entry 2357 /// of ScheduleDataChunks. 2358 int ChunkPos; 2359 2360 /// Attaches ScheduleData to Instruction. 2361 /// Note that the mapping survives during all vectorization iterations, i.e. 2362 /// ScheduleData structures are recycled. 2363 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2364 2365 /// Attaches ScheduleData to Instruction with the leading key. 2366 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2367 ExtraScheduleDataMap; 2368 2369 struct ReadyList : SmallVector<ScheduleData *, 8> { 2370 void insert(ScheduleData *SD) { push_back(SD); } 2371 }; 2372 2373 /// The ready-list for scheduling (only used for the dry-run). 2374 ReadyList ReadyInsts; 2375 2376 /// The first instruction of the scheduling region. 2377 Instruction *ScheduleStart = nullptr; 2378 2379 /// The first instruction _after_ the scheduling region. 2380 Instruction *ScheduleEnd = nullptr; 2381 2382 /// The first memory accessing instruction in the scheduling region 2383 /// (can be null). 2384 ScheduleData *FirstLoadStoreInRegion = nullptr; 2385 2386 /// The last memory accessing instruction in the scheduling region 2387 /// (can be null). 2388 ScheduleData *LastLoadStoreInRegion = nullptr; 2389 2390 /// The current size of the scheduling region. 2391 int ScheduleRegionSize = 0; 2392 2393 /// The maximum size allowed for the scheduling region. 2394 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2395 2396 /// The ID of the scheduling region. For a new vectorization iteration this 2397 /// is incremented which "removes" all ScheduleData from the region. 2398 // Make sure that the initial SchedulingRegionID is greater than the 2399 // initial SchedulingRegionID in ScheduleData (which is 0). 2400 int SchedulingRegionID = 1; 2401 }; 2402 2403 /// Attaches the BlockScheduling structures to basic blocks. 2404 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2405 2406 /// Performs the "real" scheduling. Done before vectorization is actually 2407 /// performed in a basic block. 2408 void scheduleBlock(BlockScheduling *BS); 2409 2410 /// List of users to ignore during scheduling and that don't need extracting. 2411 ArrayRef<Value *> UserIgnoreList; 2412 2413 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2414 /// sorted SmallVectors of unsigned. 2415 struct OrdersTypeDenseMapInfo { 2416 static OrdersType getEmptyKey() { 2417 OrdersType V; 2418 V.push_back(~1U); 2419 return V; 2420 } 2421 2422 static OrdersType getTombstoneKey() { 2423 OrdersType V; 2424 V.push_back(~2U); 2425 return V; 2426 } 2427 2428 static unsigned getHashValue(const OrdersType &V) { 2429 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2430 } 2431 2432 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2433 return LHS == RHS; 2434 } 2435 }; 2436 2437 /// Contains orders of operations along with the number of bundles that have 2438 /// operations in this order. It stores only those orders that require 2439 /// reordering, if reordering is not required it is counted using \a 2440 /// NumOpsWantToKeepOriginalOrder. 2441 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2442 /// Number of bundles that do not require reordering. 2443 unsigned NumOpsWantToKeepOriginalOrder = 0; 2444 2445 // Analysis and block reference. 2446 Function *F; 2447 ScalarEvolution *SE; 2448 TargetTransformInfo *TTI; 2449 TargetLibraryInfo *TLI; 2450 AAResults *AA; 2451 LoopInfo *LI; 2452 DominatorTree *DT; 2453 AssumptionCache *AC; 2454 DemandedBits *DB; 2455 const DataLayout *DL; 2456 OptimizationRemarkEmitter *ORE; 2457 2458 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2459 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2460 2461 /// Instruction builder to construct the vectorized tree. 2462 IRBuilder<> Builder; 2463 2464 /// A map of scalar integer values to the smallest bit width with which they 2465 /// can legally be represented. The values map to (width, signed) pairs, 2466 /// where "width" indicates the minimum bit width and "signed" is True if the 2467 /// value must be signed-extended, rather than zero-extended, back to its 2468 /// original width. 2469 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2470 }; 2471 2472 } // end namespace slpvectorizer 2473 2474 template <> struct GraphTraits<BoUpSLP *> { 2475 using TreeEntry = BoUpSLP::TreeEntry; 2476 2477 /// NodeRef has to be a pointer per the GraphWriter. 2478 using NodeRef = TreeEntry *; 2479 2480 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2481 2482 /// Add the VectorizableTree to the index iterator to be able to return 2483 /// TreeEntry pointers. 2484 struct ChildIteratorType 2485 : public iterator_adaptor_base< 2486 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2487 ContainerTy &VectorizableTree; 2488 2489 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2490 ContainerTy &VT) 2491 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2492 2493 NodeRef operator*() { return I->UserTE; } 2494 }; 2495 2496 static NodeRef getEntryNode(BoUpSLP &R) { 2497 return R.VectorizableTree[0].get(); 2498 } 2499 2500 static ChildIteratorType child_begin(NodeRef N) { 2501 return {N->UserTreeIndices.begin(), N->Container}; 2502 } 2503 2504 static ChildIteratorType child_end(NodeRef N) { 2505 return {N->UserTreeIndices.end(), N->Container}; 2506 } 2507 2508 /// For the node iterator we just need to turn the TreeEntry iterator into a 2509 /// TreeEntry* iterator so that it dereferences to NodeRef. 2510 class nodes_iterator { 2511 using ItTy = ContainerTy::iterator; 2512 ItTy It; 2513 2514 public: 2515 nodes_iterator(const ItTy &It2) : It(It2) {} 2516 NodeRef operator*() { return It->get(); } 2517 nodes_iterator operator++() { 2518 ++It; 2519 return *this; 2520 } 2521 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2522 }; 2523 2524 static nodes_iterator nodes_begin(BoUpSLP *R) { 2525 return nodes_iterator(R->VectorizableTree.begin()); 2526 } 2527 2528 static nodes_iterator nodes_end(BoUpSLP *R) { 2529 return nodes_iterator(R->VectorizableTree.end()); 2530 } 2531 2532 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2533 }; 2534 2535 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2536 using TreeEntry = BoUpSLP::TreeEntry; 2537 2538 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2539 2540 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2541 std::string Str; 2542 raw_string_ostream OS(Str); 2543 if (isSplat(Entry->Scalars)) { 2544 OS << "<splat> " << *Entry->Scalars[0]; 2545 return Str; 2546 } 2547 for (auto V : Entry->Scalars) { 2548 OS << *V; 2549 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2550 return EU.Scalar == V; 2551 })) 2552 OS << " <extract>"; 2553 OS << "\n"; 2554 } 2555 return Str; 2556 } 2557 2558 static std::string getNodeAttributes(const TreeEntry *Entry, 2559 const BoUpSLP *) { 2560 if (Entry->State == TreeEntry::NeedToGather) 2561 return "color=red"; 2562 return ""; 2563 } 2564 }; 2565 2566 } // end namespace llvm 2567 2568 BoUpSLP::~BoUpSLP() { 2569 for (const auto &Pair : DeletedInstructions) { 2570 // Replace operands of ignored instructions with Undefs in case if they were 2571 // marked for deletion. 2572 if (Pair.getSecond()) { 2573 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2574 Pair.getFirst()->replaceAllUsesWith(Undef); 2575 } 2576 Pair.getFirst()->dropAllReferences(); 2577 } 2578 for (const auto &Pair : DeletedInstructions) { 2579 assert(Pair.getFirst()->use_empty() && 2580 "trying to erase instruction with users."); 2581 Pair.getFirst()->eraseFromParent(); 2582 } 2583 #ifdef EXPENSIVE_CHECKS 2584 // If we could guarantee that this call is not extremely slow, we could 2585 // remove the ifdef limitation (see PR47712). 2586 assert(!verifyFunction(*F, &dbgs())); 2587 #endif 2588 } 2589 2590 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2591 for (auto *V : AV) { 2592 if (auto *I = dyn_cast<Instruction>(V)) 2593 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2594 }; 2595 } 2596 2597 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2598 ArrayRef<Value *> UserIgnoreLst) { 2599 ExtraValueToDebugLocsMap ExternallyUsedValues; 2600 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2601 } 2602 2603 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2604 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2605 ArrayRef<Value *> UserIgnoreLst) { 2606 deleteTree(); 2607 UserIgnoreList = UserIgnoreLst; 2608 if (!allSameType(Roots)) 2609 return; 2610 buildTree_rec(Roots, 0, EdgeInfo()); 2611 2612 // Collect the values that we need to extract from the tree. 2613 for (auto &TEPtr : VectorizableTree) { 2614 TreeEntry *Entry = TEPtr.get(); 2615 2616 // No need to handle users of gathered values. 2617 if (Entry->State == TreeEntry::NeedToGather) 2618 continue; 2619 2620 // For each lane: 2621 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2622 Value *Scalar = Entry->Scalars[Lane]; 2623 int FoundLane = Entry->findLaneForValue(Scalar); 2624 2625 // Check if the scalar is externally used as an extra arg. 2626 auto ExtI = ExternallyUsedValues.find(Scalar); 2627 if (ExtI != ExternallyUsedValues.end()) { 2628 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2629 << Lane << " from " << *Scalar << ".\n"); 2630 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2631 } 2632 for (User *U : Scalar->users()) { 2633 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2634 2635 Instruction *UserInst = dyn_cast<Instruction>(U); 2636 if (!UserInst) 2637 continue; 2638 2639 // Skip in-tree scalars that become vectors 2640 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2641 Value *UseScalar = UseEntry->Scalars[0]; 2642 // Some in-tree scalars will remain as scalar in vectorized 2643 // instructions. If that is the case, the one in Lane 0 will 2644 // be used. 2645 if (UseScalar != U || 2646 UseEntry->State == TreeEntry::ScatterVectorize || 2647 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2648 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2649 << ".\n"); 2650 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2651 continue; 2652 } 2653 } 2654 2655 // Ignore users in the user ignore list. 2656 if (is_contained(UserIgnoreList, UserInst)) 2657 continue; 2658 2659 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2660 << Lane << " from " << *Scalar << ".\n"); 2661 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2662 } 2663 } 2664 } 2665 } 2666 2667 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2668 const EdgeInfo &UserTreeIdx) { 2669 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2670 2671 InstructionsState S = getSameOpcode(VL); 2672 if (Depth == RecursionMaxDepth) { 2673 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2674 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2675 return; 2676 } 2677 2678 // Don't handle vectors. 2679 if (S.OpValue->getType()->isVectorTy() && 2680 !isa<InsertElementInst>(S.OpValue)) { 2681 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2682 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2683 return; 2684 } 2685 2686 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2687 if (SI->getValueOperand()->getType()->isVectorTy()) { 2688 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2689 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2690 return; 2691 } 2692 2693 // If all of the operands are identical or constant we have a simple solution. 2694 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2695 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2697 return; 2698 } 2699 2700 // We now know that this is a vector of instructions of the same type from 2701 // the same block. 2702 2703 // Don't vectorize ephemeral values. 2704 for (Value *V : VL) { 2705 if (EphValues.count(V)) { 2706 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2707 << ") is ephemeral.\n"); 2708 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2709 return; 2710 } 2711 } 2712 2713 // Check if this is a duplicate of another entry. 2714 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2715 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2716 if (!E->isSame(VL)) { 2717 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2718 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2719 return; 2720 } 2721 // Record the reuse of the tree node. FIXME, currently this is only used to 2722 // properly draw the graph rather than for the actual vectorization. 2723 E->UserTreeIndices.push_back(UserTreeIdx); 2724 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2725 << ".\n"); 2726 return; 2727 } 2728 2729 // Check that none of the instructions in the bundle are already in the tree. 2730 for (Value *V : VL) { 2731 auto *I = dyn_cast<Instruction>(V); 2732 if (!I) 2733 continue; 2734 if (getTreeEntry(I)) { 2735 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2736 << ") is already in tree.\n"); 2737 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2738 return; 2739 } 2740 } 2741 2742 // If any of the scalars is marked as a value that needs to stay scalar, then 2743 // we need to gather the scalars. 2744 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2745 for (Value *V : VL) { 2746 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2747 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2748 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2749 return; 2750 } 2751 } 2752 2753 // Check that all of the users of the scalars that we want to vectorize are 2754 // schedulable. 2755 auto *VL0 = cast<Instruction>(S.OpValue); 2756 BasicBlock *BB = VL0->getParent(); 2757 2758 if (!DT->isReachableFromEntry(BB)) { 2759 // Don't go into unreachable blocks. They may contain instructions with 2760 // dependency cycles which confuse the final scheduling. 2761 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2762 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2763 return; 2764 } 2765 2766 // Check that every instruction appears once in this bundle. 2767 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2768 SmallVector<Value *, 4> UniqueValues; 2769 DenseMap<Value *, unsigned> UniquePositions; 2770 for (Value *V : VL) { 2771 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2772 ReuseShuffleIndicies.emplace_back(Res.first->second); 2773 if (Res.second) 2774 UniqueValues.emplace_back(V); 2775 } 2776 size_t NumUniqueScalarValues = UniqueValues.size(); 2777 if (NumUniqueScalarValues == VL.size()) { 2778 ReuseShuffleIndicies.clear(); 2779 } else { 2780 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2781 if (NumUniqueScalarValues <= 1 || 2782 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2783 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2784 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2785 return; 2786 } 2787 VL = UniqueValues; 2788 } 2789 2790 auto &BSRef = BlocksSchedules[BB]; 2791 if (!BSRef) 2792 BSRef = std::make_unique<BlockScheduling>(BB); 2793 2794 BlockScheduling &BS = *BSRef.get(); 2795 2796 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2797 if (!Bundle) { 2798 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2799 assert((!BS.getScheduleData(VL0) || 2800 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2801 "tryScheduleBundle should cancelScheduling on failure"); 2802 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2803 ReuseShuffleIndicies); 2804 return; 2805 } 2806 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2807 2808 unsigned ShuffleOrOp = S.isAltShuffle() ? 2809 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2810 switch (ShuffleOrOp) { 2811 case Instruction::PHI: { 2812 auto *PH = cast<PHINode>(VL0); 2813 2814 // Check for terminator values (e.g. invoke). 2815 for (Value *V : VL) 2816 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2817 Instruction *Term = dyn_cast<Instruction>( 2818 cast<PHINode>(V)->getIncomingValueForBlock( 2819 PH->getIncomingBlock(I))); 2820 if (Term && Term->isTerminator()) { 2821 LLVM_DEBUG(dbgs() 2822 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2823 BS.cancelScheduling(VL, VL0); 2824 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2825 ReuseShuffleIndicies); 2826 return; 2827 } 2828 } 2829 2830 TreeEntry *TE = 2831 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2832 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2833 2834 // Keeps the reordered operands to avoid code duplication. 2835 SmallVector<ValueList, 2> OperandsVec; 2836 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2837 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 2838 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 2839 TE->setOperand(I, Operands); 2840 OperandsVec.push_back(Operands); 2841 continue; 2842 } 2843 ValueList Operands; 2844 // Prepare the operand vector. 2845 for (Value *V : VL) 2846 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2847 PH->getIncomingBlock(I))); 2848 TE->setOperand(I, Operands); 2849 OperandsVec.push_back(Operands); 2850 } 2851 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2852 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2853 return; 2854 } 2855 case Instruction::ExtractValue: 2856 case Instruction::ExtractElement: { 2857 OrdersType CurrentOrder; 2858 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2859 if (Reuse) { 2860 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2861 ++NumOpsWantToKeepOriginalOrder; 2862 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2863 ReuseShuffleIndicies); 2864 // This is a special case, as it does not gather, but at the same time 2865 // we are not extending buildTree_rec() towards the operands. 2866 ValueList Op0; 2867 Op0.assign(VL.size(), VL0->getOperand(0)); 2868 VectorizableTree.back()->setOperand(0, Op0); 2869 return; 2870 } 2871 if (!CurrentOrder.empty()) { 2872 LLVM_DEBUG({ 2873 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2874 "with order"; 2875 for (unsigned Idx : CurrentOrder) 2876 dbgs() << " " << Idx; 2877 dbgs() << "\n"; 2878 }); 2879 // Insert new order with initial value 0, if it does not exist, 2880 // otherwise return the iterator to the existing one. 2881 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2882 ReuseShuffleIndicies, CurrentOrder); 2883 findRootOrder(CurrentOrder); 2884 ++NumOpsWantToKeepOrder[CurrentOrder]; 2885 // This is a special case, as it does not gather, but at the same time 2886 // we are not extending buildTree_rec() towards the operands. 2887 ValueList Op0; 2888 Op0.assign(VL.size(), VL0->getOperand(0)); 2889 VectorizableTree.back()->setOperand(0, Op0); 2890 return; 2891 } 2892 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2893 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2894 ReuseShuffleIndicies); 2895 BS.cancelScheduling(VL, VL0); 2896 return; 2897 } 2898 case Instruction::InsertElement: { 2899 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 2900 2901 // Check that we have a buildvector and not a shuffle of 2 or more 2902 // different vectors. 2903 ValueSet SourceVectors; 2904 for (Value *V : VL) 2905 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 2906 2907 if (count_if(VL, [&SourceVectors](Value *V) { 2908 return !SourceVectors.contains(V); 2909 }) >= 2) { 2910 // Found 2nd source vector - cancel. 2911 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 2912 "different source vectors.\n"); 2913 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2914 ReuseShuffleIndicies); 2915 BS.cancelScheduling(VL, VL0); 2916 return; 2917 } 2918 2919 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 2920 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 2921 2922 constexpr int NumOps = 2; 2923 ValueList VectorOperands[NumOps]; 2924 for (int I = 0; I < NumOps; ++I) { 2925 for (Value *V : VL) 2926 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 2927 2928 TE->setOperand(I, VectorOperands[I]); 2929 } 2930 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 2931 return; 2932 } 2933 case Instruction::Load: { 2934 // Check that a vectorized load would load the same memory as a scalar 2935 // load. For example, we don't want to vectorize loads that are smaller 2936 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2937 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2938 // from such a struct, we read/write packed bits disagreeing with the 2939 // unvectorized version. 2940 Type *ScalarTy = VL0->getType(); 2941 2942 if (DL->getTypeSizeInBits(ScalarTy) != 2943 DL->getTypeAllocSizeInBits(ScalarTy)) { 2944 BS.cancelScheduling(VL, VL0); 2945 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2946 ReuseShuffleIndicies); 2947 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2948 return; 2949 } 2950 2951 // Make sure all loads in the bundle are simple - we can't vectorize 2952 // atomic or volatile loads. 2953 SmallVector<Value *, 4> PointerOps(VL.size()); 2954 auto POIter = PointerOps.begin(); 2955 for (Value *V : VL) { 2956 auto *L = cast<LoadInst>(V); 2957 if (!L->isSimple()) { 2958 BS.cancelScheduling(VL, VL0); 2959 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2960 ReuseShuffleIndicies); 2961 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2962 return; 2963 } 2964 *POIter = L->getPointerOperand(); 2965 ++POIter; 2966 } 2967 2968 OrdersType CurrentOrder; 2969 // Check the order of pointer operands. 2970 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 2971 Value *Ptr0; 2972 Value *PtrN; 2973 if (CurrentOrder.empty()) { 2974 Ptr0 = PointerOps.front(); 2975 PtrN = PointerOps.back(); 2976 } else { 2977 Ptr0 = PointerOps[CurrentOrder.front()]; 2978 PtrN = PointerOps[CurrentOrder.back()]; 2979 } 2980 Optional<int> Diff = getPointersDiff( 2981 ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 2982 // Check that the sorted loads are consecutive. 2983 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2984 if (CurrentOrder.empty()) { 2985 // Original loads are consecutive and does not require reordering. 2986 ++NumOpsWantToKeepOriginalOrder; 2987 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2988 UserTreeIdx, ReuseShuffleIndicies); 2989 TE->setOperandsInOrder(); 2990 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2991 } else { 2992 // Need to reorder. 2993 TreeEntry *TE = 2994 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2995 ReuseShuffleIndicies, CurrentOrder); 2996 TE->setOperandsInOrder(); 2997 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2998 findRootOrder(CurrentOrder); 2999 ++NumOpsWantToKeepOrder[CurrentOrder]; 3000 } 3001 return; 3002 } 3003 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3004 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3005 UserTreeIdx, ReuseShuffleIndicies); 3006 TE->setOperandsInOrder(); 3007 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3008 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3009 return; 3010 } 3011 3012 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3013 BS.cancelScheduling(VL, VL0); 3014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3015 ReuseShuffleIndicies); 3016 return; 3017 } 3018 case Instruction::ZExt: 3019 case Instruction::SExt: 3020 case Instruction::FPToUI: 3021 case Instruction::FPToSI: 3022 case Instruction::FPExt: 3023 case Instruction::PtrToInt: 3024 case Instruction::IntToPtr: 3025 case Instruction::SIToFP: 3026 case Instruction::UIToFP: 3027 case Instruction::Trunc: 3028 case Instruction::FPTrunc: 3029 case Instruction::BitCast: { 3030 Type *SrcTy = VL0->getOperand(0)->getType(); 3031 for (Value *V : VL) { 3032 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3033 if (Ty != SrcTy || !isValidElementType(Ty)) { 3034 BS.cancelScheduling(VL, VL0); 3035 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3036 ReuseShuffleIndicies); 3037 LLVM_DEBUG(dbgs() 3038 << "SLP: Gathering casts with different src types.\n"); 3039 return; 3040 } 3041 } 3042 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3043 ReuseShuffleIndicies); 3044 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3045 3046 TE->setOperandsInOrder(); 3047 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3048 ValueList Operands; 3049 // Prepare the operand vector. 3050 for (Value *V : VL) 3051 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3052 3053 buildTree_rec(Operands, Depth + 1, {TE, i}); 3054 } 3055 return; 3056 } 3057 case Instruction::ICmp: 3058 case Instruction::FCmp: { 3059 // Check that all of the compares have the same predicate. 3060 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3061 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3062 Type *ComparedTy = VL0->getOperand(0)->getType(); 3063 for (Value *V : VL) { 3064 CmpInst *Cmp = cast<CmpInst>(V); 3065 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3066 Cmp->getOperand(0)->getType() != ComparedTy) { 3067 BS.cancelScheduling(VL, VL0); 3068 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3069 ReuseShuffleIndicies); 3070 LLVM_DEBUG(dbgs() 3071 << "SLP: Gathering cmp with different predicate.\n"); 3072 return; 3073 } 3074 } 3075 3076 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3077 ReuseShuffleIndicies); 3078 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3079 3080 ValueList Left, Right; 3081 if (cast<CmpInst>(VL0)->isCommutative()) { 3082 // Commutative predicate - collect + sort operands of the instructions 3083 // so that each side is more likely to have the same opcode. 3084 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3085 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3086 } else { 3087 // Collect operands - commute if it uses the swapped predicate. 3088 for (Value *V : VL) { 3089 auto *Cmp = cast<CmpInst>(V); 3090 Value *LHS = Cmp->getOperand(0); 3091 Value *RHS = Cmp->getOperand(1); 3092 if (Cmp->getPredicate() != P0) 3093 std::swap(LHS, RHS); 3094 Left.push_back(LHS); 3095 Right.push_back(RHS); 3096 } 3097 } 3098 TE->setOperand(0, Left); 3099 TE->setOperand(1, Right); 3100 buildTree_rec(Left, Depth + 1, {TE, 0}); 3101 buildTree_rec(Right, Depth + 1, {TE, 1}); 3102 return; 3103 } 3104 case Instruction::Select: 3105 case Instruction::FNeg: 3106 case Instruction::Add: 3107 case Instruction::FAdd: 3108 case Instruction::Sub: 3109 case Instruction::FSub: 3110 case Instruction::Mul: 3111 case Instruction::FMul: 3112 case Instruction::UDiv: 3113 case Instruction::SDiv: 3114 case Instruction::FDiv: 3115 case Instruction::URem: 3116 case Instruction::SRem: 3117 case Instruction::FRem: 3118 case Instruction::Shl: 3119 case Instruction::LShr: 3120 case Instruction::AShr: 3121 case Instruction::And: 3122 case Instruction::Or: 3123 case Instruction::Xor: { 3124 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3125 ReuseShuffleIndicies); 3126 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3127 3128 // Sort operands of the instructions so that each side is more likely to 3129 // have the same opcode. 3130 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3131 ValueList Left, Right; 3132 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3133 TE->setOperand(0, Left); 3134 TE->setOperand(1, Right); 3135 buildTree_rec(Left, Depth + 1, {TE, 0}); 3136 buildTree_rec(Right, Depth + 1, {TE, 1}); 3137 return; 3138 } 3139 3140 TE->setOperandsInOrder(); 3141 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3142 ValueList Operands; 3143 // Prepare the operand vector. 3144 for (Value *V : VL) 3145 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3146 3147 buildTree_rec(Operands, Depth + 1, {TE, i}); 3148 } 3149 return; 3150 } 3151 case Instruction::GetElementPtr: { 3152 // We don't combine GEPs with complicated (nested) indexing. 3153 for (Value *V : VL) { 3154 if (cast<Instruction>(V)->getNumOperands() != 2) { 3155 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3156 BS.cancelScheduling(VL, VL0); 3157 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3158 ReuseShuffleIndicies); 3159 return; 3160 } 3161 } 3162 3163 // We can't combine several GEPs into one vector if they operate on 3164 // different types. 3165 Type *Ty0 = VL0->getOperand(0)->getType(); 3166 for (Value *V : VL) { 3167 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3168 if (Ty0 != CurTy) { 3169 LLVM_DEBUG(dbgs() 3170 << "SLP: not-vectorizable GEP (different types).\n"); 3171 BS.cancelScheduling(VL, VL0); 3172 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3173 ReuseShuffleIndicies); 3174 return; 3175 } 3176 } 3177 3178 // We don't combine GEPs with non-constant indexes. 3179 Type *Ty1 = VL0->getOperand(1)->getType(); 3180 for (Value *V : VL) { 3181 auto Op = cast<Instruction>(V)->getOperand(1); 3182 if (!isa<ConstantInt>(Op) || 3183 (Op->getType() != Ty1 && 3184 Op->getType()->getScalarSizeInBits() > 3185 DL->getIndexSizeInBits( 3186 V->getType()->getPointerAddressSpace()))) { 3187 LLVM_DEBUG(dbgs() 3188 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3189 BS.cancelScheduling(VL, VL0); 3190 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3191 ReuseShuffleIndicies); 3192 return; 3193 } 3194 } 3195 3196 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3197 ReuseShuffleIndicies); 3198 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3199 TE->setOperandsInOrder(); 3200 for (unsigned i = 0, e = 2; i < e; ++i) { 3201 ValueList Operands; 3202 // Prepare the operand vector. 3203 for (Value *V : VL) 3204 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3205 3206 buildTree_rec(Operands, Depth + 1, {TE, i}); 3207 } 3208 return; 3209 } 3210 case Instruction::Store: { 3211 // Check if the stores are consecutive or if we need to swizzle them. 3212 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3213 // Avoid types that are padded when being allocated as scalars, while 3214 // being packed together in a vector (such as i1). 3215 if (DL->getTypeSizeInBits(ScalarTy) != 3216 DL->getTypeAllocSizeInBits(ScalarTy)) { 3217 BS.cancelScheduling(VL, VL0); 3218 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3219 ReuseShuffleIndicies); 3220 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3221 return; 3222 } 3223 // Make sure all stores in the bundle are simple - we can't vectorize 3224 // atomic or volatile stores. 3225 SmallVector<Value *, 4> PointerOps(VL.size()); 3226 ValueList Operands(VL.size()); 3227 auto POIter = PointerOps.begin(); 3228 auto OIter = Operands.begin(); 3229 for (Value *V : VL) { 3230 auto *SI = cast<StoreInst>(V); 3231 if (!SI->isSimple()) { 3232 BS.cancelScheduling(VL, VL0); 3233 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3234 ReuseShuffleIndicies); 3235 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3236 return; 3237 } 3238 *POIter = SI->getPointerOperand(); 3239 *OIter = SI->getValueOperand(); 3240 ++POIter; 3241 ++OIter; 3242 } 3243 3244 OrdersType CurrentOrder; 3245 // Check the order of pointer operands. 3246 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3247 Value *Ptr0; 3248 Value *PtrN; 3249 if (CurrentOrder.empty()) { 3250 Ptr0 = PointerOps.front(); 3251 PtrN = PointerOps.back(); 3252 } else { 3253 Ptr0 = PointerOps[CurrentOrder.front()]; 3254 PtrN = PointerOps[CurrentOrder.back()]; 3255 } 3256 Optional<int> Dist = 3257 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3258 // Check that the sorted pointer operands are consecutive. 3259 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3260 if (CurrentOrder.empty()) { 3261 // Original stores are consecutive and does not require reordering. 3262 ++NumOpsWantToKeepOriginalOrder; 3263 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3264 UserTreeIdx, ReuseShuffleIndicies); 3265 TE->setOperandsInOrder(); 3266 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3267 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3268 } else { 3269 TreeEntry *TE = 3270 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3271 ReuseShuffleIndicies, CurrentOrder); 3272 TE->setOperandsInOrder(); 3273 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3274 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3275 findRootOrder(CurrentOrder); 3276 ++NumOpsWantToKeepOrder[CurrentOrder]; 3277 } 3278 return; 3279 } 3280 } 3281 3282 BS.cancelScheduling(VL, VL0); 3283 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3284 ReuseShuffleIndicies); 3285 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3286 return; 3287 } 3288 case Instruction::Call: { 3289 // Check if the calls are all to the same vectorizable intrinsic or 3290 // library function. 3291 CallInst *CI = cast<CallInst>(VL0); 3292 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3293 3294 VFShape Shape = VFShape::get( 3295 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3296 false /*HasGlobalPred*/); 3297 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3298 3299 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3300 BS.cancelScheduling(VL, VL0); 3301 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3302 ReuseShuffleIndicies); 3303 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3304 return; 3305 } 3306 Function *F = CI->getCalledFunction(); 3307 unsigned NumArgs = CI->getNumArgOperands(); 3308 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3309 for (unsigned j = 0; j != NumArgs; ++j) 3310 if (hasVectorInstrinsicScalarOpd(ID, j)) 3311 ScalarArgs[j] = CI->getArgOperand(j); 3312 for (Value *V : VL) { 3313 CallInst *CI2 = dyn_cast<CallInst>(V); 3314 if (!CI2 || CI2->getCalledFunction() != F || 3315 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3316 (VecFunc && 3317 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3318 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3319 BS.cancelScheduling(VL, VL0); 3320 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3321 ReuseShuffleIndicies); 3322 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3323 << "\n"); 3324 return; 3325 } 3326 // Some intrinsics have scalar arguments and should be same in order for 3327 // them to be vectorized. 3328 for (unsigned j = 0; j != NumArgs; ++j) { 3329 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3330 Value *A1J = CI2->getArgOperand(j); 3331 if (ScalarArgs[j] != A1J) { 3332 BS.cancelScheduling(VL, VL0); 3333 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3334 ReuseShuffleIndicies); 3335 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3336 << " argument " << ScalarArgs[j] << "!=" << A1J 3337 << "\n"); 3338 return; 3339 } 3340 } 3341 } 3342 // Verify that the bundle operands are identical between the two calls. 3343 if (CI->hasOperandBundles() && 3344 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3345 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3346 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3347 BS.cancelScheduling(VL, VL0); 3348 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3349 ReuseShuffleIndicies); 3350 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3351 << *CI << "!=" << *V << '\n'); 3352 return; 3353 } 3354 } 3355 3356 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3357 ReuseShuffleIndicies); 3358 TE->setOperandsInOrder(); 3359 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3360 ValueList Operands; 3361 // Prepare the operand vector. 3362 for (Value *V : VL) { 3363 auto *CI2 = cast<CallInst>(V); 3364 Operands.push_back(CI2->getArgOperand(i)); 3365 } 3366 buildTree_rec(Operands, Depth + 1, {TE, i}); 3367 } 3368 return; 3369 } 3370 case Instruction::ShuffleVector: { 3371 // If this is not an alternate sequence of opcode like add-sub 3372 // then do not vectorize this instruction. 3373 if (!S.isAltShuffle()) { 3374 BS.cancelScheduling(VL, VL0); 3375 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3376 ReuseShuffleIndicies); 3377 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3378 return; 3379 } 3380 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3381 ReuseShuffleIndicies); 3382 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3383 3384 // Reorder operands if reordering would enable vectorization. 3385 if (isa<BinaryOperator>(VL0)) { 3386 ValueList Left, Right; 3387 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3388 TE->setOperand(0, Left); 3389 TE->setOperand(1, Right); 3390 buildTree_rec(Left, Depth + 1, {TE, 0}); 3391 buildTree_rec(Right, Depth + 1, {TE, 1}); 3392 return; 3393 } 3394 3395 TE->setOperandsInOrder(); 3396 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3397 ValueList Operands; 3398 // Prepare the operand vector. 3399 for (Value *V : VL) 3400 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3401 3402 buildTree_rec(Operands, Depth + 1, {TE, i}); 3403 } 3404 return; 3405 } 3406 default: 3407 BS.cancelScheduling(VL, VL0); 3408 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3409 ReuseShuffleIndicies); 3410 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3411 return; 3412 } 3413 } 3414 3415 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3416 unsigned N = 1; 3417 Type *EltTy = T; 3418 3419 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3420 isa<VectorType>(EltTy)) { 3421 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3422 // Check that struct is homogeneous. 3423 for (const auto *Ty : ST->elements()) 3424 if (Ty != *ST->element_begin()) 3425 return 0; 3426 N *= ST->getNumElements(); 3427 EltTy = *ST->element_begin(); 3428 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3429 N *= AT->getNumElements(); 3430 EltTy = AT->getElementType(); 3431 } else { 3432 auto *VT = cast<FixedVectorType>(EltTy); 3433 N *= VT->getNumElements(); 3434 EltTy = VT->getElementType(); 3435 } 3436 } 3437 3438 if (!isValidElementType(EltTy)) 3439 return 0; 3440 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3441 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3442 return 0; 3443 return N; 3444 } 3445 3446 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3447 SmallVectorImpl<unsigned> &CurrentOrder) const { 3448 Instruction *E0 = cast<Instruction>(OpValue); 3449 assert(E0->getOpcode() == Instruction::ExtractElement || 3450 E0->getOpcode() == Instruction::ExtractValue); 3451 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3452 // Check if all of the extracts come from the same vector and from the 3453 // correct offset. 3454 Value *Vec = E0->getOperand(0); 3455 3456 CurrentOrder.clear(); 3457 3458 // We have to extract from a vector/aggregate with the same number of elements. 3459 unsigned NElts; 3460 if (E0->getOpcode() == Instruction::ExtractValue) { 3461 const DataLayout &DL = E0->getModule()->getDataLayout(); 3462 NElts = canMapToVector(Vec->getType(), DL); 3463 if (!NElts) 3464 return false; 3465 // Check if load can be rewritten as load of vector. 3466 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3467 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3468 return false; 3469 } else { 3470 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3471 } 3472 3473 if (NElts != VL.size()) 3474 return false; 3475 3476 // Check that all of the indices extract from the correct offset. 3477 bool ShouldKeepOrder = true; 3478 unsigned E = VL.size(); 3479 // Assign to all items the initial value E + 1 so we can check if the extract 3480 // instruction index was used already. 3481 // Also, later we can check that all the indices are used and we have a 3482 // consecutive access in the extract instructions, by checking that no 3483 // element of CurrentOrder still has value E + 1. 3484 CurrentOrder.assign(E, E + 1); 3485 unsigned I = 0; 3486 for (; I < E; ++I) { 3487 auto *Inst = cast<Instruction>(VL[I]); 3488 if (Inst->getOperand(0) != Vec) 3489 break; 3490 Optional<unsigned> Idx = getExtractIndex(Inst); 3491 if (!Idx) 3492 break; 3493 const unsigned ExtIdx = *Idx; 3494 if (ExtIdx != I) { 3495 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3496 break; 3497 ShouldKeepOrder = false; 3498 CurrentOrder[ExtIdx] = I; 3499 } else { 3500 if (CurrentOrder[I] != E + 1) 3501 break; 3502 CurrentOrder[I] = I; 3503 } 3504 } 3505 if (I < E) { 3506 CurrentOrder.clear(); 3507 return false; 3508 } 3509 3510 return ShouldKeepOrder; 3511 } 3512 3513 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 3514 ArrayRef<Value *> VectorizedVals) const { 3515 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 3516 llvm::all_of(I->users(), [this](User *U) { 3517 return ScalarToTreeEntry.count(U) > 0; 3518 }); 3519 } 3520 3521 static std::pair<InstructionCost, InstructionCost> 3522 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3523 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3524 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3525 3526 // Calculate the cost of the scalar and vector calls. 3527 SmallVector<Type *, 4> VecTys; 3528 for (Use &Arg : CI->args()) 3529 VecTys.push_back( 3530 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3531 FastMathFlags FMF; 3532 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3533 FMF = FPCI->getFastMathFlags(); 3534 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3535 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3536 dyn_cast<IntrinsicInst>(CI)); 3537 auto IntrinsicCost = 3538 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3539 3540 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3541 VecTy->getNumElements())), 3542 false /*HasGlobalPred*/); 3543 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3544 auto LibCost = IntrinsicCost; 3545 if (!CI->isNoBuiltin() && VecFunc) { 3546 // Calculate the cost of the vector library call. 3547 // If the corresponding vector call is cheaper, return its cost. 3548 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3549 TTI::TCK_RecipThroughput); 3550 } 3551 return {IntrinsicCost, LibCost}; 3552 } 3553 3554 /// Compute the cost of creating a vector of type \p VecTy containing the 3555 /// extracted values from \p VL. 3556 static InstructionCost 3557 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3558 TargetTransformInfo::ShuffleKind ShuffleKind, 3559 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3560 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3561 3562 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3563 VecTy->getNumElements() < NumOfParts) 3564 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3565 3566 bool AllConsecutive = true; 3567 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3568 unsigned Idx = -1; 3569 InstructionCost Cost = 0; 3570 3571 // Process extracts in blocks of EltsPerVector to check if the source vector 3572 // operand can be re-used directly. If not, add the cost of creating a shuffle 3573 // to extract the values into a vector register. 3574 for (auto *V : VL) { 3575 ++Idx; 3576 3577 // Reached the start of a new vector registers. 3578 if (Idx % EltsPerVector == 0) { 3579 AllConsecutive = true; 3580 continue; 3581 } 3582 3583 // Check all extracts for a vector register on the target directly 3584 // extract values in order. 3585 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3586 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3587 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3588 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3589 3590 if (AllConsecutive) 3591 continue; 3592 3593 // Skip all indices, except for the last index per vector block. 3594 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3595 continue; 3596 3597 // If we have a series of extracts which are not consecutive and hence 3598 // cannot re-use the source vector register directly, compute the shuffle 3599 // cost to extract the a vector with EltsPerVector elements. 3600 Cost += TTI.getShuffleCost( 3601 TargetTransformInfo::SK_PermuteSingleSrc, 3602 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3603 } 3604 return Cost; 3605 } 3606 3607 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 3608 ArrayRef<Value *> VectorizedVals) { 3609 ArrayRef<Value*> VL = E->Scalars; 3610 3611 Type *ScalarTy = VL[0]->getType(); 3612 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3613 ScalarTy = SI->getValueOperand()->getType(); 3614 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3615 ScalarTy = CI->getOperand(0)->getType(); 3616 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 3617 ScalarTy = IE->getOperand(1)->getType(); 3618 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3619 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3620 3621 // If we have computed a smaller type for the expression, update VecTy so 3622 // that the costs will be accurate. 3623 if (MinBWs.count(VL[0])) 3624 VecTy = FixedVectorType::get( 3625 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3626 3627 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3628 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3629 InstructionCost ReuseShuffleCost = 0; 3630 if (NeedToShuffleReuses) { 3631 ReuseShuffleCost = 3632 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3633 E->ReuseShuffleIndices); 3634 } 3635 // FIXME: it tries to fix a problem with MSVC buildbots. 3636 TargetTransformInfo &TTIRef = *TTI; 3637 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 3638 VectorizedVals](InstructionCost &Cost, 3639 bool IsGather) { 3640 DenseMap<Value *, int> ExtractVectorsTys; 3641 for (auto *V : VL) { 3642 // If all users of instruction are going to be vectorized and this 3643 // instruction itself is not going to be vectorized, consider this 3644 // instruction as dead and remove its cost from the final cost of the 3645 // vectorized tree. 3646 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 3647 (IsGather && ScalarToTreeEntry.count(V))) 3648 continue; 3649 auto *EE = cast<ExtractElementInst>(V); 3650 unsigned Idx = *getExtractIndex(EE); 3651 if (TTIRef.getNumberOfParts(VecTy) != 3652 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3653 auto It = 3654 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3655 It->getSecond() = std::min<int>(It->second, Idx); 3656 } 3657 // Take credit for instruction that will become dead. 3658 if (EE->hasOneUse()) { 3659 Instruction *Ext = EE->user_back(); 3660 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3661 all_of(Ext->users(), 3662 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3663 // Use getExtractWithExtendCost() to calculate the cost of 3664 // extractelement/ext pair. 3665 Cost -= 3666 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3667 EE->getVectorOperandType(), Idx); 3668 // Add back the cost of s|zext which is subtracted separately. 3669 Cost += TTIRef.getCastInstrCost( 3670 Ext->getOpcode(), Ext->getType(), EE->getType(), 3671 TTI::getCastContextHint(Ext), CostKind, Ext); 3672 continue; 3673 } 3674 } 3675 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3676 EE->getVectorOperandType(), Idx); 3677 } 3678 // Add a cost for subvector extracts/inserts if required. 3679 for (const auto &Data : ExtractVectorsTys) { 3680 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3681 unsigned NumElts = VecTy->getNumElements(); 3682 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 3683 unsigned Idx = (Data.second / NumElts) * NumElts; 3684 unsigned EENumElts = EEVTy->getNumElements(); 3685 if (Idx + NumElts <= EENumElts) { 3686 Cost += 3687 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3688 EEVTy, None, Idx, VecTy); 3689 } else { 3690 // Need to round up the subvector type vectorization factor to avoid a 3691 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 3692 // <= EENumElts. 3693 auto *SubVT = 3694 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 3695 Cost += 3696 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3697 EEVTy, None, Idx, SubVT); 3698 } 3699 } else { 3700 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3701 VecTy, None, 0, EEVTy); 3702 } 3703 } 3704 }; 3705 if (E->State == TreeEntry::NeedToGather) { 3706 if (allConstant(VL)) 3707 return 0; 3708 if (isa<InsertElementInst>(VL[0])) 3709 return InstructionCost::getInvalid(); 3710 SmallVector<int> Mask; 3711 SmallVector<const TreeEntry *> Entries; 3712 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3713 isGatherShuffledEntry(E, Mask, Entries); 3714 if (Shuffle.hasValue()) { 3715 InstructionCost GatherCost = 0; 3716 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3717 // Perfect match in the graph, will reuse the previously vectorized 3718 // node. Cost is 0. 3719 LLVM_DEBUG( 3720 dbgs() 3721 << "SLP: perfect diamond match for gather bundle that starts with " 3722 << *VL.front() << ".\n"); 3723 } else { 3724 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3725 << " entries for bundle that starts with " 3726 << *VL.front() << ".\n"); 3727 // Detected that instead of gather we can emit a shuffle of single/two 3728 // previously vectorized nodes. Add the cost of the permutation rather 3729 // than gather. 3730 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3731 } 3732 return ReuseShuffleCost + GatherCost; 3733 } 3734 if (isSplat(VL)) { 3735 // Found the broadcasting of the single scalar, calculate the cost as the 3736 // broadcast. 3737 return ReuseShuffleCost + 3738 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3739 0); 3740 } 3741 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 3742 allSameBlock(VL)) { 3743 // Check that gather of extractelements can be represented as just a 3744 // shuffle of a single/two vectors the scalars are extracted from. 3745 SmallVector<int> Mask; 3746 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3747 isShuffle(VL, Mask); 3748 if (ShuffleKind.hasValue()) { 3749 // Found the bunch of extractelement instructions that must be gathered 3750 // into a vector and can be represented as a permutation elements in a 3751 // single input vector or of 2 input vectors. 3752 InstructionCost Cost = 3753 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3754 AdjustExtractsCost(Cost, /*IsGather=*/true); 3755 return ReuseShuffleCost + Cost; 3756 } 3757 } 3758 return ReuseShuffleCost + getGatherCost(VL); 3759 } 3760 assert((E->State == TreeEntry::Vectorize || 3761 E->State == TreeEntry::ScatterVectorize) && 3762 "Unhandled state"); 3763 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3764 Instruction *VL0 = E->getMainOp(); 3765 unsigned ShuffleOrOp = 3766 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3767 switch (ShuffleOrOp) { 3768 case Instruction::PHI: 3769 return 0; 3770 3771 case Instruction::ExtractValue: 3772 case Instruction::ExtractElement: { 3773 // The common cost of removal ExtractElement/ExtractValue instructions + 3774 // the cost of shuffles, if required to resuffle the original vector. 3775 InstructionCost CommonCost = 0; 3776 if (NeedToShuffleReuses) { 3777 unsigned Idx = 0; 3778 for (unsigned I : E->ReuseShuffleIndices) { 3779 if (ShuffleOrOp == Instruction::ExtractElement) { 3780 auto *EE = cast<ExtractElementInst>(VL[I]); 3781 ReuseShuffleCost -= TTI->getVectorInstrCost( 3782 Instruction::ExtractElement, EE->getVectorOperandType(), 3783 *getExtractIndex(EE)); 3784 } else { 3785 ReuseShuffleCost -= TTI->getVectorInstrCost( 3786 Instruction::ExtractElement, VecTy, Idx); 3787 ++Idx; 3788 } 3789 } 3790 Idx = ReuseShuffleNumbers; 3791 for (Value *V : VL) { 3792 if (ShuffleOrOp == Instruction::ExtractElement) { 3793 auto *EE = cast<ExtractElementInst>(V); 3794 ReuseShuffleCost += TTI->getVectorInstrCost( 3795 Instruction::ExtractElement, EE->getVectorOperandType(), 3796 *getExtractIndex(EE)); 3797 } else { 3798 --Idx; 3799 ReuseShuffleCost += TTI->getVectorInstrCost( 3800 Instruction::ExtractElement, VecTy, Idx); 3801 } 3802 } 3803 CommonCost = ReuseShuffleCost; 3804 } else if (!E->ReorderIndices.empty()) { 3805 SmallVector<int> NewMask; 3806 inversePermutation(E->ReorderIndices, NewMask); 3807 CommonCost = TTI->getShuffleCost( 3808 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3809 } 3810 if (ShuffleOrOp == Instruction::ExtractValue) { 3811 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3812 auto *EI = cast<Instruction>(VL[I]); 3813 // Take credit for instruction that will become dead. 3814 if (EI->hasOneUse()) { 3815 Instruction *Ext = EI->user_back(); 3816 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3817 all_of(Ext->users(), 3818 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3819 // Use getExtractWithExtendCost() to calculate the cost of 3820 // extractelement/ext pair. 3821 CommonCost -= TTI->getExtractWithExtendCost( 3822 Ext->getOpcode(), Ext->getType(), VecTy, I); 3823 // Add back the cost of s|zext which is subtracted separately. 3824 CommonCost += TTI->getCastInstrCost( 3825 Ext->getOpcode(), Ext->getType(), EI->getType(), 3826 TTI::getCastContextHint(Ext), CostKind, Ext); 3827 continue; 3828 } 3829 } 3830 CommonCost -= 3831 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3832 } 3833 } else { 3834 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3835 } 3836 return CommonCost; 3837 } 3838 case Instruction::InsertElement: { 3839 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 3840 3841 unsigned const NumElts = SrcVecTy->getNumElements(); 3842 unsigned const NumScalars = VL.size(); 3843 APInt DemandedElts = APInt::getNullValue(NumElts); 3844 // TODO: Add support for Instruction::InsertValue. 3845 unsigned Offset = UINT_MAX; 3846 bool IsIdentity = true; 3847 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 3848 for (unsigned I = 0; I < NumScalars; ++I) { 3849 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 3850 if (!InsertIdx || *InsertIdx == UndefMaskElem) 3851 continue; 3852 unsigned Idx = *InsertIdx; 3853 DemandedElts.setBit(Idx); 3854 if (Idx < Offset) { 3855 Offset = Idx; 3856 IsIdentity &= I == 0; 3857 } else { 3858 assert(Idx >= Offset && "Failed to find vector index offset"); 3859 IsIdentity &= Idx - Offset == I; 3860 } 3861 ShuffleMask[Idx] = I; 3862 } 3863 assert(Offset < NumElts && "Failed to find vector index offset"); 3864 3865 InstructionCost Cost = 0; 3866 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 3867 /*Insert*/ true, /*Extract*/ false); 3868 3869 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) 3870 Cost += TTI->getShuffleCost( 3871 TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None, 3872 Offset, 3873 FixedVectorType::get(SrcVecTy->getElementType(), NumScalars)); 3874 else if (!IsIdentity) 3875 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 3876 ShuffleMask); 3877 3878 return Cost; 3879 } 3880 case Instruction::ZExt: 3881 case Instruction::SExt: 3882 case Instruction::FPToUI: 3883 case Instruction::FPToSI: 3884 case Instruction::FPExt: 3885 case Instruction::PtrToInt: 3886 case Instruction::IntToPtr: 3887 case Instruction::SIToFP: 3888 case Instruction::UIToFP: 3889 case Instruction::Trunc: 3890 case Instruction::FPTrunc: 3891 case Instruction::BitCast: { 3892 Type *SrcTy = VL0->getOperand(0)->getType(); 3893 InstructionCost ScalarEltCost = 3894 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3895 TTI::getCastContextHint(VL0), CostKind, VL0); 3896 if (NeedToShuffleReuses) { 3897 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3898 } 3899 3900 // Calculate the cost of this instruction. 3901 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3902 3903 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3904 InstructionCost VecCost = 0; 3905 // Check if the values are candidates to demote. 3906 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3907 VecCost = 3908 ReuseShuffleCost + 3909 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3910 TTI::getCastContextHint(VL0), CostKind, VL0); 3911 } 3912 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3913 return VecCost - ScalarCost; 3914 } 3915 case Instruction::FCmp: 3916 case Instruction::ICmp: 3917 case Instruction::Select: { 3918 // Calculate the cost of this instruction. 3919 InstructionCost ScalarEltCost = 3920 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3921 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3922 if (NeedToShuffleReuses) { 3923 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3924 } 3925 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3926 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3927 3928 // Check if all entries in VL are either compares or selects with compares 3929 // as condition that have the same predicates. 3930 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3931 bool First = true; 3932 for (auto *V : VL) { 3933 CmpInst::Predicate CurrentPred; 3934 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3935 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3936 !match(V, MatchCmp)) || 3937 (!First && VecPred != CurrentPred)) { 3938 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3939 break; 3940 } 3941 First = false; 3942 VecPred = CurrentPred; 3943 } 3944 3945 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3946 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3947 // Check if it is possible and profitable to use min/max for selects in 3948 // VL. 3949 // 3950 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3951 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3952 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3953 {VecTy, VecTy}); 3954 InstructionCost IntrinsicCost = 3955 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3956 // If the selects are the only uses of the compares, they will be dead 3957 // and we can adjust the cost by removing their cost. 3958 if (IntrinsicAndUse.second) 3959 IntrinsicCost -= 3960 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3961 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3962 VecCost = std::min(VecCost, IntrinsicCost); 3963 } 3964 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3965 return ReuseShuffleCost + VecCost - ScalarCost; 3966 } 3967 case Instruction::FNeg: 3968 case Instruction::Add: 3969 case Instruction::FAdd: 3970 case Instruction::Sub: 3971 case Instruction::FSub: 3972 case Instruction::Mul: 3973 case Instruction::FMul: 3974 case Instruction::UDiv: 3975 case Instruction::SDiv: 3976 case Instruction::FDiv: 3977 case Instruction::URem: 3978 case Instruction::SRem: 3979 case Instruction::FRem: 3980 case Instruction::Shl: 3981 case Instruction::LShr: 3982 case Instruction::AShr: 3983 case Instruction::And: 3984 case Instruction::Or: 3985 case Instruction::Xor: { 3986 // Certain instructions can be cheaper to vectorize if they have a 3987 // constant second vector operand. 3988 TargetTransformInfo::OperandValueKind Op1VK = 3989 TargetTransformInfo::OK_AnyValue; 3990 TargetTransformInfo::OperandValueKind Op2VK = 3991 TargetTransformInfo::OK_UniformConstantValue; 3992 TargetTransformInfo::OperandValueProperties Op1VP = 3993 TargetTransformInfo::OP_None; 3994 TargetTransformInfo::OperandValueProperties Op2VP = 3995 TargetTransformInfo::OP_PowerOf2; 3996 3997 // If all operands are exactly the same ConstantInt then set the 3998 // operand kind to OK_UniformConstantValue. 3999 // If instead not all operands are constants, then set the operand kind 4000 // to OK_AnyValue. If all operands are constants but not the same, 4001 // then set the operand kind to OK_NonUniformConstantValue. 4002 ConstantInt *CInt0 = nullptr; 4003 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4004 const Instruction *I = cast<Instruction>(VL[i]); 4005 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4006 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4007 if (!CInt) { 4008 Op2VK = TargetTransformInfo::OK_AnyValue; 4009 Op2VP = TargetTransformInfo::OP_None; 4010 break; 4011 } 4012 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4013 !CInt->getValue().isPowerOf2()) 4014 Op2VP = TargetTransformInfo::OP_None; 4015 if (i == 0) { 4016 CInt0 = CInt; 4017 continue; 4018 } 4019 if (CInt0 != CInt) 4020 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4021 } 4022 4023 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4024 InstructionCost ScalarEltCost = 4025 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4026 Op2VK, Op1VP, Op2VP, Operands, VL0); 4027 if (NeedToShuffleReuses) { 4028 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4029 } 4030 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4031 InstructionCost VecCost = 4032 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4033 Op2VK, Op1VP, Op2VP, Operands, VL0); 4034 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4035 return ReuseShuffleCost + VecCost - ScalarCost; 4036 } 4037 case Instruction::GetElementPtr: { 4038 TargetTransformInfo::OperandValueKind Op1VK = 4039 TargetTransformInfo::OK_AnyValue; 4040 TargetTransformInfo::OperandValueKind Op2VK = 4041 TargetTransformInfo::OK_UniformConstantValue; 4042 4043 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4044 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4045 if (NeedToShuffleReuses) { 4046 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4047 } 4048 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4049 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4050 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4051 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4052 return ReuseShuffleCost + VecCost - ScalarCost; 4053 } 4054 case Instruction::Load: { 4055 // Cost of wide load - cost of scalar loads. 4056 Align alignment = cast<LoadInst>(VL0)->getAlign(); 4057 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4058 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 4059 if (NeedToShuffleReuses) { 4060 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4061 } 4062 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4063 InstructionCost VecLdCost; 4064 if (E->State == TreeEntry::Vectorize) { 4065 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 4066 CostKind, VL0); 4067 } else { 4068 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4069 VecLdCost = TTI->getGatherScatterOpCost( 4070 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4071 /*VariableMask=*/false, alignment, CostKind, VL0); 4072 } 4073 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 4074 SmallVector<int> NewMask; 4075 inversePermutation(E->ReorderIndices, NewMask); 4076 VecLdCost += TTI->getShuffleCost( 4077 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4078 } 4079 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 4080 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 4081 } 4082 case Instruction::Store: { 4083 // We know that we can merge the stores. Calculate the cost. 4084 bool IsReorder = !E->ReorderIndices.empty(); 4085 auto *SI = 4086 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4087 Align Alignment = SI->getAlign(); 4088 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4089 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4090 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4091 InstructionCost VecStCost = TTI->getMemoryOpCost( 4092 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4093 if (IsReorder) { 4094 SmallVector<int> NewMask; 4095 inversePermutation(E->ReorderIndices, NewMask); 4096 VecStCost += TTI->getShuffleCost( 4097 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4098 } 4099 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 4100 return VecStCost - ScalarStCost; 4101 } 4102 case Instruction::Call: { 4103 CallInst *CI = cast<CallInst>(VL0); 4104 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4105 4106 // Calculate the cost of the scalar and vector calls. 4107 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4108 InstructionCost ScalarEltCost = 4109 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4110 if (NeedToShuffleReuses) { 4111 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4112 } 4113 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4114 4115 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4116 InstructionCost VecCallCost = 4117 std::min(VecCallCosts.first, VecCallCosts.second); 4118 4119 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4120 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4121 << " for " << *CI << "\n"); 4122 4123 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 4124 } 4125 case Instruction::ShuffleVector: { 4126 assert(E->isAltShuffle() && 4127 ((Instruction::isBinaryOp(E->getOpcode()) && 4128 Instruction::isBinaryOp(E->getAltOpcode())) || 4129 (Instruction::isCast(E->getOpcode()) && 4130 Instruction::isCast(E->getAltOpcode()))) && 4131 "Invalid Shuffle Vector Operand"); 4132 InstructionCost ScalarCost = 0; 4133 if (NeedToShuffleReuses) { 4134 for (unsigned Idx : E->ReuseShuffleIndices) { 4135 Instruction *I = cast<Instruction>(VL[Idx]); 4136 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 4137 } 4138 for (Value *V : VL) { 4139 Instruction *I = cast<Instruction>(V); 4140 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 4141 } 4142 } 4143 for (Value *V : VL) { 4144 Instruction *I = cast<Instruction>(V); 4145 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4146 ScalarCost += TTI->getInstructionCost(I, CostKind); 4147 } 4148 // VecCost is equal to sum of the cost of creating 2 vectors 4149 // and the cost of creating shuffle. 4150 InstructionCost VecCost = 0; 4151 if (Instruction::isBinaryOp(E->getOpcode())) { 4152 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4153 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4154 CostKind); 4155 } else { 4156 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4157 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4158 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4159 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4160 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4161 TTI::CastContextHint::None, CostKind); 4162 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4163 TTI::CastContextHint::None, CostKind); 4164 } 4165 4166 SmallVector<int> Mask(E->Scalars.size()); 4167 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4168 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4169 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4170 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4171 } 4172 VecCost += 4173 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4174 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4175 return ReuseShuffleCost + VecCost - ScalarCost; 4176 } 4177 default: 4178 llvm_unreachable("Unknown instruction"); 4179 } 4180 } 4181 4182 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4183 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4184 << VectorizableTree.size() << " is fully vectorizable .\n"); 4185 4186 // We only handle trees of heights 1 and 2. 4187 if (VectorizableTree.size() == 1 && 4188 VectorizableTree[0]->State == TreeEntry::Vectorize) 4189 return true; 4190 4191 if (VectorizableTree.size() != 2) 4192 return false; 4193 4194 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4195 // with the second gather nodes if they have less scalar operands rather than 4196 // the initial tree element (may be profitable to shuffle the second gather) 4197 // or they are extractelements, which form shuffle. 4198 SmallVector<int> Mask; 4199 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4200 (allConstant(VectorizableTree[1]->Scalars) || 4201 isSplat(VectorizableTree[1]->Scalars) || 4202 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4203 VectorizableTree[1]->Scalars.size() < 4204 VectorizableTree[0]->Scalars.size()) || 4205 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4206 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4207 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4208 return true; 4209 4210 // Gathering cost would be too much for tiny trees. 4211 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4212 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4213 return false; 4214 4215 return true; 4216 } 4217 4218 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4219 TargetTransformInfo *TTI, 4220 bool MustMatchOrInst) { 4221 // Look past the root to find a source value. Arbitrarily follow the 4222 // path through operand 0 of any 'or'. Also, peek through optional 4223 // shift-left-by-multiple-of-8-bits. 4224 Value *ZextLoad = Root; 4225 const APInt *ShAmtC; 4226 bool FoundOr = false; 4227 while (!isa<ConstantExpr>(ZextLoad) && 4228 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4229 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4230 ShAmtC->urem(8) == 0))) { 4231 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4232 ZextLoad = BinOp->getOperand(0); 4233 if (BinOp->getOpcode() == Instruction::Or) 4234 FoundOr = true; 4235 } 4236 // Check if the input is an extended load of the required or/shift expression. 4237 Value *LoadPtr; 4238 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4239 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4240 return false; 4241 4242 // Require that the total load bit width is a legal integer type. 4243 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4244 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4245 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4246 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4247 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4248 return false; 4249 4250 // Everything matched - assume that we can fold the whole sequence using 4251 // load combining. 4252 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4253 << *(cast<Instruction>(Root)) << "\n"); 4254 4255 return true; 4256 } 4257 4258 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4259 if (RdxKind != RecurKind::Or) 4260 return false; 4261 4262 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4263 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4264 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4265 /* MatchOr */ false); 4266 } 4267 4268 bool BoUpSLP::isLoadCombineCandidate() const { 4269 // Peek through a final sequence of stores and check if all operations are 4270 // likely to be load-combined. 4271 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4272 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4273 Value *X; 4274 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4275 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4276 return false; 4277 } 4278 return true; 4279 } 4280 4281 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4282 // No need to vectorize inserts of gathered values. 4283 if (VectorizableTree.size() == 2 && 4284 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4285 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4286 return true; 4287 4288 // We can vectorize the tree if its size is greater than or equal to the 4289 // minimum size specified by the MinTreeSize command line option. 4290 if (VectorizableTree.size() >= MinTreeSize) 4291 return false; 4292 4293 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4294 // can vectorize it if we can prove it fully vectorizable. 4295 if (isFullyVectorizableTinyTree()) 4296 return false; 4297 4298 assert(VectorizableTree.empty() 4299 ? ExternalUses.empty() 4300 : true && "We shouldn't have any external users"); 4301 4302 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4303 // vectorizable. 4304 return true; 4305 } 4306 4307 InstructionCost BoUpSLP::getSpillCost() const { 4308 // Walk from the bottom of the tree to the top, tracking which values are 4309 // live. When we see a call instruction that is not part of our tree, 4310 // query TTI to see if there is a cost to keeping values live over it 4311 // (for example, if spills and fills are required). 4312 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4313 InstructionCost Cost = 0; 4314 4315 SmallPtrSet<Instruction*, 4> LiveValues; 4316 Instruction *PrevInst = nullptr; 4317 4318 // The entries in VectorizableTree are not necessarily ordered by their 4319 // position in basic blocks. Collect them and order them by dominance so later 4320 // instructions are guaranteed to be visited first. For instructions in 4321 // different basic blocks, we only scan to the beginning of the block, so 4322 // their order does not matter, as long as all instructions in a basic block 4323 // are grouped together. Using dominance ensures a deterministic order. 4324 SmallVector<Instruction *, 16> OrderedScalars; 4325 for (const auto &TEPtr : VectorizableTree) { 4326 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4327 if (!Inst) 4328 continue; 4329 OrderedScalars.push_back(Inst); 4330 } 4331 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4332 auto *NodeA = DT->getNode(A->getParent()); 4333 auto *NodeB = DT->getNode(B->getParent()); 4334 assert(NodeA && "Should only process reachable instructions"); 4335 assert(NodeB && "Should only process reachable instructions"); 4336 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 4337 "Different nodes should have different DFS numbers"); 4338 if (NodeA != NodeB) 4339 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 4340 return B->comesBefore(A); 4341 }); 4342 4343 for (Instruction *Inst : OrderedScalars) { 4344 if (!PrevInst) { 4345 PrevInst = Inst; 4346 continue; 4347 } 4348 4349 // Update LiveValues. 4350 LiveValues.erase(PrevInst); 4351 for (auto &J : PrevInst->operands()) { 4352 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4353 LiveValues.insert(cast<Instruction>(&*J)); 4354 } 4355 4356 LLVM_DEBUG({ 4357 dbgs() << "SLP: #LV: " << LiveValues.size(); 4358 for (auto *X : LiveValues) 4359 dbgs() << " " << X->getName(); 4360 dbgs() << ", Looking at "; 4361 Inst->dump(); 4362 }); 4363 4364 // Now find the sequence of instructions between PrevInst and Inst. 4365 unsigned NumCalls = 0; 4366 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4367 PrevInstIt = 4368 PrevInst->getIterator().getReverse(); 4369 while (InstIt != PrevInstIt) { 4370 if (PrevInstIt == PrevInst->getParent()->rend()) { 4371 PrevInstIt = Inst->getParent()->rbegin(); 4372 continue; 4373 } 4374 4375 // Debug information does not impact spill cost. 4376 if ((isa<CallInst>(&*PrevInstIt) && 4377 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4378 &*PrevInstIt != PrevInst) 4379 NumCalls++; 4380 4381 ++PrevInstIt; 4382 } 4383 4384 if (NumCalls) { 4385 SmallVector<Type*, 4> V; 4386 for (auto *II : LiveValues) { 4387 auto *ScalarTy = II->getType(); 4388 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4389 ScalarTy = VectorTy->getElementType(); 4390 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4391 } 4392 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4393 } 4394 4395 PrevInst = Inst; 4396 } 4397 4398 return Cost; 4399 } 4400 4401 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 4402 InstructionCost Cost = 0; 4403 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4404 << VectorizableTree.size() << ".\n"); 4405 4406 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4407 4408 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4409 TreeEntry &TE = *VectorizableTree[I].get(); 4410 4411 InstructionCost C = getEntryCost(&TE, VectorizedVals); 4412 Cost += C; 4413 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4414 << " for bundle that starts with " << *TE.Scalars[0] 4415 << ".\n" 4416 << "SLP: Current total cost = " << Cost << "\n"); 4417 } 4418 4419 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4420 InstructionCost ExtractCost = 0; 4421 SmallBitVector IsIdentity; 4422 SmallVector<unsigned> VF; 4423 SmallVector<SmallVector<int>> ShuffleMask; 4424 SmallVector<Value *> FirstUsers; 4425 SmallVector<APInt> DemandedElts; 4426 for (ExternalUser &EU : ExternalUses) { 4427 // We only add extract cost once for the same scalar. 4428 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4429 continue; 4430 4431 // Uses by ephemeral values are free (because the ephemeral value will be 4432 // removed prior to code generation, and so the extraction will be 4433 // removed as well). 4434 if (EphValues.count(EU.User)) 4435 continue; 4436 4437 // No extract cost for vector "scalar" 4438 if (isa<FixedVectorType>(EU.Scalar->getType())) 4439 continue; 4440 4441 // Already counted the cost for external uses when tried to adjust the cost 4442 // for extractelements, no need to add it again. 4443 if (isa<ExtractElementInst>(EU.Scalar)) 4444 continue; 4445 4446 // If found user is an insertelement, do not calculate extract cost but try 4447 // to detect it as a final shuffled/identity match. 4448 if (EU.User && isa<InsertElementInst>(EU.User)) { 4449 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4450 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4451 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4452 continue; 4453 Value *VU = EU.User; 4454 auto *It = find_if(FirstUsers, [VU](Value *V) { 4455 // Checks if 2 insertelements are from the same buildvector. 4456 if (VU->getType() != V->getType()) 4457 return false; 4458 auto *IE1 = cast<InsertElementInst>(VU); 4459 auto *IE2 = cast<InsertElementInst>(V); 4460 // Go though of insertelement instructions trying to find either VU as 4461 // the original vector for IE2 or V as the original vector for IE1. 4462 do { 4463 if (IE1 == VU || IE2 == V) 4464 return true; 4465 if (IE1) 4466 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4467 if (IE2) 4468 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4469 } while (IE1 || IE2); 4470 return false; 4471 }); 4472 int VecId = -1; 4473 if (It == FirstUsers.end()) { 4474 VF.push_back(FTy->getNumElements()); 4475 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 4476 FirstUsers.push_back(EU.User); 4477 DemandedElts.push_back(APInt::getNullValue(VF.back())); 4478 IsIdentity.push_back(true); 4479 VecId = FirstUsers.size() - 1; 4480 } else { 4481 VecId = std::distance(FirstUsers.begin(), It); 4482 } 4483 int Idx = *InsertIdx; 4484 ShuffleMask[VecId][Idx] = EU.Lane; 4485 IsIdentity.set(IsIdentity.test(VecId) & 4486 (EU.Lane == Idx || EU.Lane == UndefMaskElem)); 4487 DemandedElts[VecId].setBit(Idx); 4488 } 4489 } 4490 4491 // If we plan to rewrite the tree in a smaller type, we will need to sign 4492 // extend the extracted value back to the original type. Here, we account 4493 // for the extract and the added cost of the sign extend if needed. 4494 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4495 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4496 if (MinBWs.count(ScalarRoot)) { 4497 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4498 auto Extend = 4499 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4500 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4501 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4502 VecTy, EU.Lane); 4503 } else { 4504 ExtractCost += 4505 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4506 } 4507 } 4508 4509 InstructionCost SpillCost = getSpillCost(); 4510 Cost += SpillCost + ExtractCost; 4511 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 4512 if (!IsIdentity.test(I)) { 4513 InstructionCost C = TTI->getShuffleCost( 4514 TTI::SK_PermuteSingleSrc, 4515 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 4516 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4517 << " for final shuffle of insertelement external users " 4518 << *VectorizableTree.front()->Scalars.front() << ".\n" 4519 << "SLP: Current total cost = " << Cost << "\n"); 4520 Cost += C; 4521 } 4522 unsigned VF = ShuffleMask[I].size(); 4523 for (int &Mask : ShuffleMask[I]) 4524 Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask; 4525 InstructionCost C = TTI->getShuffleCost( 4526 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 4527 ShuffleMask[I]); 4528 LLVM_DEBUG( 4529 dbgs() 4530 << "SLP: Adding cost " << C 4531 << " for final shuffle of vector node and external insertelement users " 4532 << *VectorizableTree.front()->Scalars.front() << ".\n" 4533 << "SLP: Current total cost = " << Cost << "\n"); 4534 Cost += C; 4535 InstructionCost InsertCost = TTI->getScalarizationOverhead( 4536 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 4537 /*Insert*/ true, 4538 /*Extract*/ false); 4539 Cost -= InsertCost; 4540 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 4541 << " for insertelements gather.\n" 4542 << "SLP: Current total cost = " << Cost << "\n"); 4543 } 4544 4545 #ifndef NDEBUG 4546 SmallString<256> Str; 4547 { 4548 raw_svector_ostream OS(Str); 4549 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4550 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4551 << "SLP: Total Cost = " << Cost << ".\n"; 4552 } 4553 LLVM_DEBUG(dbgs() << Str); 4554 if (ViewSLPTree) 4555 ViewGraph(this, "SLP" + F->getName(), false, Str); 4556 #endif 4557 4558 return Cost; 4559 } 4560 4561 Optional<TargetTransformInfo::ShuffleKind> 4562 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4563 SmallVectorImpl<const TreeEntry *> &Entries) { 4564 // TODO: currently checking only for Scalars in the tree entry, need to count 4565 // reused elements too for better cost estimation. 4566 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4567 Entries.clear(); 4568 // Build a lists of values to tree entries. 4569 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 4570 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 4571 if (EntryPtr.get() == TE) 4572 break; 4573 if (EntryPtr->State != TreeEntry::NeedToGather) 4574 continue; 4575 for (Value *V : EntryPtr->Scalars) 4576 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 4577 } 4578 // Find all tree entries used by the gathered values. If no common entries 4579 // found - not a shuffle. 4580 // Here we build a set of tree nodes for each gathered value and trying to 4581 // find the intersection between these sets. If we have at least one common 4582 // tree node for each gathered value - we have just a permutation of the 4583 // single vector. If we have 2 different sets, we're in situation where we 4584 // have a permutation of 2 input vectors. 4585 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 4586 DenseMap<Value *, int> UsedValuesEntry; 4587 for (Value *V : TE->Scalars) { 4588 if (isa<UndefValue>(V)) 4589 continue; 4590 // Build a list of tree entries where V is used. 4591 SmallPtrSet<const TreeEntry *, 4> VToTEs; 4592 auto It = ValueToTEs.find(V); 4593 if (It != ValueToTEs.end()) 4594 VToTEs = It->second; 4595 if (const TreeEntry *VTE = getTreeEntry(V)) 4596 VToTEs.insert(VTE); 4597 if (VToTEs.empty()) 4598 return None; 4599 if (UsedTEs.empty()) { 4600 // The first iteration, just insert the list of nodes to vector. 4601 UsedTEs.push_back(VToTEs); 4602 } else { 4603 // Need to check if there are any previously used tree nodes which use V. 4604 // If there are no such nodes, consider that we have another one input 4605 // vector. 4606 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 4607 unsigned Idx = 0; 4608 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 4609 // Do we have a non-empty intersection of previously listed tree entries 4610 // and tree entries using current V? 4611 set_intersect(VToTEs, Set); 4612 if (!VToTEs.empty()) { 4613 // Yes, write the new subset and continue analysis for the next 4614 // scalar. 4615 Set.swap(VToTEs); 4616 break; 4617 } 4618 VToTEs = SavedVToTEs; 4619 ++Idx; 4620 } 4621 // No non-empty intersection found - need to add a second set of possible 4622 // source vectors. 4623 if (Idx == UsedTEs.size()) { 4624 // If the number of input vectors is greater than 2 - not a permutation, 4625 // fallback to the regular gather. 4626 if (UsedTEs.size() == 2) 4627 return None; 4628 UsedTEs.push_back(SavedVToTEs); 4629 Idx = UsedTEs.size() - 1; 4630 } 4631 UsedValuesEntry.try_emplace(V, Idx); 4632 } 4633 } 4634 4635 unsigned VF = 0; 4636 if (UsedTEs.size() == 1) { 4637 // Try to find the perfect match in another gather node at first. 4638 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 4639 return EntryPtr->isSame(TE->Scalars); 4640 }); 4641 if (It != UsedTEs.front().end()) { 4642 Entries.push_back(*It); 4643 std::iota(Mask.begin(), Mask.end(), 0); 4644 return TargetTransformInfo::SK_PermuteSingleSrc; 4645 } 4646 // No perfect match, just shuffle, so choose the first tree node. 4647 Entries.push_back(*UsedTEs.front().begin()); 4648 } else { 4649 // Try to find nodes with the same vector factor. 4650 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 4651 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 4652 // landed. 4653 auto &&GetVF = [](const TreeEntry *TE) { 4654 if (!TE->ReuseShuffleIndices.empty()) 4655 return TE->ReuseShuffleIndices.size(); 4656 return TE->Scalars.size(); 4657 }; 4658 DenseMap<int, const TreeEntry *> VFToTE; 4659 for (const TreeEntry *TE : UsedTEs.front()) 4660 VFToTE.try_emplace(GetVF(TE), TE); 4661 for (const TreeEntry *TE : UsedTEs.back()) { 4662 auto It = VFToTE.find(GetVF(TE)); 4663 if (It != VFToTE.end()) { 4664 VF = It->first; 4665 Entries.push_back(It->second); 4666 Entries.push_back(TE); 4667 break; 4668 } 4669 } 4670 // No 2 source vectors with the same vector factor - give up and do regular 4671 // gather. 4672 if (Entries.empty()) 4673 return None; 4674 } 4675 4676 // Build a shuffle mask for better cost estimation and vector emission. 4677 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4678 Value *V = TE->Scalars[I]; 4679 if (isa<UndefValue>(V)) 4680 continue; 4681 unsigned Idx = UsedValuesEntry.lookup(V); 4682 const TreeEntry *VTE = Entries[Idx]; 4683 int FoundLane = VTE->findLaneForValue(V); 4684 Mask[I] = Idx * VF + FoundLane; 4685 // Extra check required by isSingleSourceMaskImpl function (called by 4686 // ShuffleVectorInst::isSingleSourceMask). 4687 if (Mask[I] >= 2 * E) 4688 return None; 4689 } 4690 switch (Entries.size()) { 4691 case 1: 4692 return TargetTransformInfo::SK_PermuteSingleSrc; 4693 case 2: 4694 return TargetTransformInfo::SK_PermuteTwoSrc; 4695 default: 4696 break; 4697 } 4698 return None; 4699 } 4700 4701 InstructionCost 4702 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4703 const DenseSet<unsigned> &ShuffledIndices) const { 4704 unsigned NumElts = Ty->getNumElements(); 4705 APInt DemandedElts = APInt::getNullValue(NumElts); 4706 for (unsigned I = 0; I < NumElts; ++I) 4707 if (!ShuffledIndices.count(I)) 4708 DemandedElts.setBit(I); 4709 InstructionCost Cost = 4710 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4711 /*Extract*/ false); 4712 if (!ShuffledIndices.empty()) 4713 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4714 return Cost; 4715 } 4716 4717 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4718 // Find the type of the operands in VL. 4719 Type *ScalarTy = VL[0]->getType(); 4720 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4721 ScalarTy = SI->getValueOperand()->getType(); 4722 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4723 // Find the cost of inserting/extracting values from the vector. 4724 // Check if the same elements are inserted several times and count them as 4725 // shuffle candidates. 4726 DenseSet<unsigned> ShuffledElements; 4727 DenseSet<Value *> UniqueElements; 4728 // Iterate in reverse order to consider insert elements with the high cost. 4729 for (unsigned I = VL.size(); I > 0; --I) { 4730 unsigned Idx = I - 1; 4731 if (isConstant(VL[Idx])) 4732 continue; 4733 if (!UniqueElements.insert(VL[Idx]).second) 4734 ShuffledElements.insert(Idx); 4735 } 4736 return getGatherCost(VecTy, ShuffledElements); 4737 } 4738 4739 // Perform operand reordering on the instructions in VL and return the reordered 4740 // operands in Left and Right. 4741 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4742 SmallVectorImpl<Value *> &Left, 4743 SmallVectorImpl<Value *> &Right, 4744 const DataLayout &DL, 4745 ScalarEvolution &SE, 4746 const BoUpSLP &R) { 4747 if (VL.empty()) 4748 return; 4749 VLOperands Ops(VL, DL, SE, R); 4750 // Reorder the operands in place. 4751 Ops.reorder(); 4752 Left = Ops.getVL(0); 4753 Right = Ops.getVL(1); 4754 } 4755 4756 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 4757 // Get the basic block this bundle is in. All instructions in the bundle 4758 // should be in this block. 4759 auto *Front = E->getMainOp(); 4760 auto *BB = Front->getParent(); 4761 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4762 auto *I = cast<Instruction>(V); 4763 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4764 })); 4765 4766 // The last instruction in the bundle in program order. 4767 Instruction *LastInst = nullptr; 4768 4769 // Find the last instruction. The common case should be that BB has been 4770 // scheduled, and the last instruction is VL.back(). So we start with 4771 // VL.back() and iterate over schedule data until we reach the end of the 4772 // bundle. The end of the bundle is marked by null ScheduleData. 4773 if (BlocksSchedules.count(BB)) { 4774 auto *Bundle = 4775 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4776 if (Bundle && Bundle->isPartOfBundle()) 4777 for (; Bundle; Bundle = Bundle->NextInBundle) 4778 if (Bundle->OpValue == Bundle->Inst) 4779 LastInst = Bundle->Inst; 4780 } 4781 4782 // LastInst can still be null at this point if there's either not an entry 4783 // for BB in BlocksSchedules or there's no ScheduleData available for 4784 // VL.back(). This can be the case if buildTree_rec aborts for various 4785 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4786 // size is reached, etc.). ScheduleData is initialized in the scheduling 4787 // "dry-run". 4788 // 4789 // If this happens, we can still find the last instruction by brute force. We 4790 // iterate forwards from Front (inclusive) until we either see all 4791 // instructions in the bundle or reach the end of the block. If Front is the 4792 // last instruction in program order, LastInst will be set to Front, and we 4793 // will visit all the remaining instructions in the block. 4794 // 4795 // One of the reasons we exit early from buildTree_rec is to place an upper 4796 // bound on compile-time. Thus, taking an additional compile-time hit here is 4797 // not ideal. However, this should be exceedingly rare since it requires that 4798 // we both exit early from buildTree_rec and that the bundle be out-of-order 4799 // (causing us to iterate all the way to the end of the block). 4800 if (!LastInst) { 4801 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4802 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4803 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4804 LastInst = &I; 4805 if (Bundle.empty()) 4806 break; 4807 } 4808 } 4809 assert(LastInst && "Failed to find last instruction in bundle"); 4810 4811 // Set the insertion point after the last instruction in the bundle. Set the 4812 // debug location to Front. 4813 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4814 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4815 } 4816 4817 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4818 // List of instructions/lanes from current block and/or the blocks which are 4819 // part of the current loop. These instructions will be inserted at the end to 4820 // make it possible to optimize loops and hoist invariant instructions out of 4821 // the loops body with better chances for success. 4822 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 4823 SmallSet<int, 4> PostponedIndices; 4824 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 4825 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 4826 SmallPtrSet<BasicBlock *, 4> Visited; 4827 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 4828 InsertBB = InsertBB->getSinglePredecessor(); 4829 return InsertBB && InsertBB == InstBB; 4830 }; 4831 for (int I = 0, E = VL.size(); I < E; ++I) { 4832 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 4833 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 4834 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 4835 PostponedIndices.insert(I).second) 4836 PostponedInsts.emplace_back(Inst, I); 4837 } 4838 4839 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 4840 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 4841 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4842 if (!InsElt) 4843 return Vec; 4844 GatherSeq.insert(InsElt); 4845 CSEBlocks.insert(InsElt->getParent()); 4846 // Add to our 'need-to-extract' list. 4847 if (TreeEntry *Entry = getTreeEntry(V)) { 4848 // Find which lane we need to extract. 4849 unsigned FoundLane = Entry->findLaneForValue(V); 4850 ExternalUses.emplace_back(V, InsElt, FoundLane); 4851 } 4852 return Vec; 4853 }; 4854 Value *Val0 = 4855 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4856 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4857 Value *Vec = PoisonValue::get(VecTy); 4858 SmallVector<int> NonConsts; 4859 // Insert constant values at first. 4860 for (int I = 0, E = VL.size(); I < E; ++I) { 4861 if (PostponedIndices.contains(I)) 4862 continue; 4863 if (!isConstant(VL[I])) { 4864 NonConsts.push_back(I); 4865 continue; 4866 } 4867 Vec = CreateInsertElement(Vec, VL[I], I); 4868 } 4869 // Insert non-constant values. 4870 for (int I : NonConsts) 4871 Vec = CreateInsertElement(Vec, VL[I], I); 4872 // Append instructions, which are/may be part of the loop, in the end to make 4873 // it possible to hoist non-loop-based instructions. 4874 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 4875 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 4876 4877 return Vec; 4878 } 4879 4880 namespace { 4881 /// Merges shuffle masks and emits final shuffle instruction, if required. 4882 class ShuffleInstructionBuilder { 4883 IRBuilderBase &Builder; 4884 const unsigned VF = 0; 4885 bool IsFinalized = false; 4886 SmallVector<int, 4> Mask; 4887 4888 public: 4889 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 4890 : Builder(Builder), VF(VF) {} 4891 4892 /// Adds a mask, inverting it before applying. 4893 void addInversedMask(ArrayRef<unsigned> SubMask) { 4894 if (SubMask.empty()) 4895 return; 4896 SmallVector<int, 4> NewMask; 4897 inversePermutation(SubMask, NewMask); 4898 addMask(NewMask); 4899 } 4900 4901 /// Functions adds masks, merging them into single one. 4902 void addMask(ArrayRef<unsigned> SubMask) { 4903 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4904 addMask(NewMask); 4905 } 4906 4907 void addMask(ArrayRef<int> SubMask) { 4908 if (SubMask.empty()) 4909 return; 4910 if (Mask.empty()) { 4911 Mask.append(SubMask.begin(), SubMask.end()); 4912 return; 4913 } 4914 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4915 int TermValue = std::min(Mask.size(), SubMask.size()); 4916 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4917 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 4918 Mask[SubMask[I]] >= TermValue) { 4919 NewMask[I] = UndefMaskElem; 4920 continue; 4921 } 4922 NewMask[I] = Mask[SubMask[I]]; 4923 } 4924 Mask.swap(NewMask); 4925 } 4926 4927 Value *finalize(Value *V) { 4928 IsFinalized = true; 4929 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 4930 if (VF == ValueVF && Mask.empty()) 4931 return V; 4932 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 4933 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 4934 addMask(NormalizedMask); 4935 4936 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 4937 return V; 4938 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4939 } 4940 4941 ~ShuffleInstructionBuilder() { 4942 assert((IsFinalized || Mask.empty()) && 4943 "Shuffle construction must be finalized."); 4944 } 4945 }; 4946 } // namespace 4947 4948 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4949 unsigned VF = VL.size(); 4950 InstructionsState S = getSameOpcode(VL); 4951 if (S.getOpcode()) { 4952 if (TreeEntry *E = getTreeEntry(S.OpValue)) 4953 if (E->isSame(VL)) { 4954 Value *V = vectorizeTree(E); 4955 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 4956 if (!E->ReuseShuffleIndices.empty()) { 4957 // Reshuffle to get only unique values. 4958 // If some of the scalars are duplicated in the vectorization tree 4959 // entry, we do not vectorize them but instead generate a mask for 4960 // the reuses. But if there are several users of the same entry, 4961 // they may have different vectorization factors. This is especially 4962 // important for PHI nodes. In this case, we need to adapt the 4963 // resulting instruction for the user vectorization factor and have 4964 // to reshuffle it again to take only unique elements of the vector. 4965 // Without this code the function incorrectly returns reduced vector 4966 // instruction with the same elements, not with the unique ones. 4967 4968 // block: 4969 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4970 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4971 // ... (use %2) 4972 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4973 // br %block 4974 SmallVector<int> UniqueIdxs; 4975 SmallSet<int, 4> UsedIdxs; 4976 int Pos = 0; 4977 int Sz = VL.size(); 4978 for (int Idx : E->ReuseShuffleIndices) { 4979 if (Idx != Sz && UsedIdxs.insert(Idx).second) 4980 UniqueIdxs.emplace_back(Pos); 4981 ++Pos; 4982 } 4983 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 4984 "less than original vector size."); 4985 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 4986 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4987 } else { 4988 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 4989 "Expected vectorization factor less " 4990 "than original vector size."); 4991 SmallVector<int> UniformMask(VF, 0); 4992 std::iota(UniformMask.begin(), UniformMask.end(), 0); 4993 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 4994 } 4995 } 4996 return V; 4997 } 4998 } 4999 5000 // Check that every instruction appears once in this bundle. 5001 SmallVector<int> ReuseShuffleIndicies; 5002 SmallVector<Value *> UniqueValues; 5003 if (VL.size() > 2) { 5004 DenseMap<Value *, unsigned> UniquePositions; 5005 unsigned NumValues = 5006 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5007 return !isa<UndefValue>(V); 5008 }).base()); 5009 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5010 int UniqueVals = 0; 5011 bool HasUndefs = false; 5012 for (Value *V : VL.drop_back(VL.size() - VF)) { 5013 if (isa<UndefValue>(V)) { 5014 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5015 HasUndefs = true; 5016 continue; 5017 } 5018 if (isConstant(V)) { 5019 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5020 UniqueValues.emplace_back(V); 5021 continue; 5022 } 5023 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5024 ReuseShuffleIndicies.emplace_back(Res.first->second); 5025 if (Res.second) { 5026 UniqueValues.emplace_back(V); 5027 ++UniqueVals; 5028 } 5029 } 5030 if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) { 5031 // Emit pure splat vector. 5032 // FIXME: why it is not identified as an identity. 5033 unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem); 5034 if (NumUndefs == ReuseShuffleIndicies.size() - 1) 5035 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5036 UndefMaskElem); 5037 else 5038 ReuseShuffleIndicies.assign(VF, 0); 5039 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5040 ReuseShuffleIndicies.clear(); 5041 UniqueValues.clear(); 5042 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5043 } 5044 UniqueValues.append(VF - UniqueValues.size(), 5045 PoisonValue::get(VL[0]->getType())); 5046 VL = UniqueValues; 5047 } 5048 5049 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5050 Value *Vec = gather(VL); 5051 if (!ReuseShuffleIndicies.empty()) { 5052 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5053 Vec = ShuffleBuilder.finalize(Vec); 5054 if (auto *I = dyn_cast<Instruction>(Vec)) { 5055 GatherSeq.insert(I); 5056 CSEBlocks.insert(I->getParent()); 5057 } 5058 } 5059 return Vec; 5060 } 5061 5062 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5063 IRBuilder<>::InsertPointGuard Guard(Builder); 5064 5065 if (E->VectorizedValue) { 5066 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5067 return E->VectorizedValue; 5068 } 5069 5070 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5071 unsigned VF = E->Scalars.size(); 5072 if (NeedToShuffleReuses) 5073 VF = E->ReuseShuffleIndices.size(); 5074 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5075 if (E->State == TreeEntry::NeedToGather) { 5076 setInsertPointAfterBundle(E); 5077 Value *Vec; 5078 SmallVector<int> Mask; 5079 SmallVector<const TreeEntry *> Entries; 5080 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5081 isGatherShuffledEntry(E, Mask, Entries); 5082 if (Shuffle.hasValue()) { 5083 assert((Entries.size() == 1 || Entries.size() == 2) && 5084 "Expected shuffle of 1 or 2 entries."); 5085 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5086 Entries.back()->VectorizedValue, Mask); 5087 } else { 5088 Vec = gather(E->Scalars); 5089 } 5090 if (NeedToShuffleReuses) { 5091 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5092 Vec = ShuffleBuilder.finalize(Vec); 5093 if (auto *I = dyn_cast<Instruction>(Vec)) { 5094 GatherSeq.insert(I); 5095 CSEBlocks.insert(I->getParent()); 5096 } 5097 } 5098 E->VectorizedValue = Vec; 5099 return Vec; 5100 } 5101 5102 assert((E->State == TreeEntry::Vectorize || 5103 E->State == TreeEntry::ScatterVectorize) && 5104 "Unhandled state"); 5105 unsigned ShuffleOrOp = 5106 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5107 Instruction *VL0 = E->getMainOp(); 5108 Type *ScalarTy = VL0->getType(); 5109 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5110 ScalarTy = Store->getValueOperand()->getType(); 5111 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5112 ScalarTy = IE->getOperand(1)->getType(); 5113 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5114 switch (ShuffleOrOp) { 5115 case Instruction::PHI: { 5116 auto *PH = cast<PHINode>(VL0); 5117 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5118 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5119 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5120 Value *V = NewPhi; 5121 if (NeedToShuffleReuses) 5122 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 5123 5124 E->VectorizedValue = V; 5125 5126 // PHINodes may have multiple entries from the same block. We want to 5127 // visit every block once. 5128 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5129 5130 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5131 ValueList Operands; 5132 BasicBlock *IBB = PH->getIncomingBlock(i); 5133 5134 if (!VisitedBBs.insert(IBB).second) { 5135 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5136 continue; 5137 } 5138 5139 Builder.SetInsertPoint(IBB->getTerminator()); 5140 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5141 Value *Vec = vectorizeTree(E->getOperand(i)); 5142 NewPhi->addIncoming(Vec, IBB); 5143 } 5144 5145 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5146 "Invalid number of incoming values"); 5147 return V; 5148 } 5149 5150 case Instruction::ExtractElement: { 5151 Value *V = E->getSingleOperand(0); 5152 Builder.SetInsertPoint(VL0); 5153 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5154 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5155 V = ShuffleBuilder.finalize(V); 5156 E->VectorizedValue = V; 5157 return V; 5158 } 5159 case Instruction::ExtractValue: { 5160 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5161 Builder.SetInsertPoint(LI); 5162 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5163 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5164 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5165 Value *NewV = propagateMetadata(V, E->Scalars); 5166 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5167 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5168 NewV = ShuffleBuilder.finalize(NewV); 5169 E->VectorizedValue = NewV; 5170 return NewV; 5171 } 5172 case Instruction::InsertElement: { 5173 Builder.SetInsertPoint(VL0); 5174 Value *V = vectorizeTree(E->getOperand(1)); 5175 5176 const unsigned NumElts = 5177 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5178 const unsigned NumScalars = E->Scalars.size(); 5179 5180 // Create InsertVector shuffle if necessary 5181 Instruction *FirstInsert = nullptr; 5182 bool IsIdentity = true; 5183 unsigned Offset = UINT_MAX; 5184 for (unsigned I = 0; I < NumScalars; ++I) { 5185 Value *Scalar = E->Scalars[I]; 5186 if (!FirstInsert && 5187 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5188 FirstInsert = cast<Instruction>(Scalar); 5189 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5190 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5191 continue; 5192 unsigned Idx = *InsertIdx; 5193 if (Idx < Offset) { 5194 Offset = Idx; 5195 IsIdentity &= I == 0; 5196 } else { 5197 assert(Idx >= Offset && "Failed to find vector index offset"); 5198 IsIdentity &= Idx - Offset == I; 5199 } 5200 } 5201 assert(Offset < NumElts && "Failed to find vector index offset"); 5202 5203 // Create shuffle to resize vector 5204 SmallVector<int> Mask(NumElts, UndefMaskElem); 5205 if (!IsIdentity) { 5206 for (unsigned I = 0; I < NumScalars; ++I) { 5207 Value *Scalar = E->Scalars[I]; 5208 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5209 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5210 continue; 5211 Mask[*InsertIdx - Offset] = I; 5212 } 5213 } else { 5214 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5215 } 5216 if (!IsIdentity || NumElts != NumScalars) 5217 V = Builder.CreateShuffleVector(V, Mask); 5218 5219 if (NumElts != NumScalars) { 5220 SmallVector<int> InsertMask(NumElts); 5221 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5222 for (unsigned I = 0; I < NumElts; I++) { 5223 if (Mask[I] != UndefMaskElem) 5224 InsertMask[Offset + I] = NumElts + I; 5225 } 5226 5227 V = Builder.CreateShuffleVector( 5228 FirstInsert->getOperand(0), V, InsertMask, 5229 cast<Instruction>(E->Scalars.back())->getName()); 5230 } 5231 5232 ++NumVectorInstructions; 5233 E->VectorizedValue = V; 5234 return V; 5235 } 5236 case Instruction::ZExt: 5237 case Instruction::SExt: 5238 case Instruction::FPToUI: 5239 case Instruction::FPToSI: 5240 case Instruction::FPExt: 5241 case Instruction::PtrToInt: 5242 case Instruction::IntToPtr: 5243 case Instruction::SIToFP: 5244 case Instruction::UIToFP: 5245 case Instruction::Trunc: 5246 case Instruction::FPTrunc: 5247 case Instruction::BitCast: { 5248 setInsertPointAfterBundle(E); 5249 5250 Value *InVec = vectorizeTree(E->getOperand(0)); 5251 5252 if (E->VectorizedValue) { 5253 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5254 return E->VectorizedValue; 5255 } 5256 5257 auto *CI = cast<CastInst>(VL0); 5258 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5259 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5260 V = ShuffleBuilder.finalize(V); 5261 5262 E->VectorizedValue = V; 5263 ++NumVectorInstructions; 5264 return V; 5265 } 5266 case Instruction::FCmp: 5267 case Instruction::ICmp: { 5268 setInsertPointAfterBundle(E); 5269 5270 Value *L = vectorizeTree(E->getOperand(0)); 5271 Value *R = vectorizeTree(E->getOperand(1)); 5272 5273 if (E->VectorizedValue) { 5274 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5275 return E->VectorizedValue; 5276 } 5277 5278 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5279 Value *V = Builder.CreateCmp(P0, L, R); 5280 propagateIRFlags(V, E->Scalars, VL0); 5281 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5282 V = ShuffleBuilder.finalize(V); 5283 5284 E->VectorizedValue = V; 5285 ++NumVectorInstructions; 5286 return V; 5287 } 5288 case Instruction::Select: { 5289 setInsertPointAfterBundle(E); 5290 5291 Value *Cond = vectorizeTree(E->getOperand(0)); 5292 Value *True = vectorizeTree(E->getOperand(1)); 5293 Value *False = vectorizeTree(E->getOperand(2)); 5294 5295 if (E->VectorizedValue) { 5296 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5297 return E->VectorizedValue; 5298 } 5299 5300 Value *V = Builder.CreateSelect(Cond, True, False); 5301 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5302 V = ShuffleBuilder.finalize(V); 5303 5304 E->VectorizedValue = V; 5305 ++NumVectorInstructions; 5306 return V; 5307 } 5308 case Instruction::FNeg: { 5309 setInsertPointAfterBundle(E); 5310 5311 Value *Op = vectorizeTree(E->getOperand(0)); 5312 5313 if (E->VectorizedValue) { 5314 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5315 return E->VectorizedValue; 5316 } 5317 5318 Value *V = Builder.CreateUnOp( 5319 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5320 propagateIRFlags(V, E->Scalars, VL0); 5321 if (auto *I = dyn_cast<Instruction>(V)) 5322 V = propagateMetadata(I, E->Scalars); 5323 5324 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5325 V = ShuffleBuilder.finalize(V); 5326 5327 E->VectorizedValue = V; 5328 ++NumVectorInstructions; 5329 5330 return V; 5331 } 5332 case Instruction::Add: 5333 case Instruction::FAdd: 5334 case Instruction::Sub: 5335 case Instruction::FSub: 5336 case Instruction::Mul: 5337 case Instruction::FMul: 5338 case Instruction::UDiv: 5339 case Instruction::SDiv: 5340 case Instruction::FDiv: 5341 case Instruction::URem: 5342 case Instruction::SRem: 5343 case Instruction::FRem: 5344 case Instruction::Shl: 5345 case Instruction::LShr: 5346 case Instruction::AShr: 5347 case Instruction::And: 5348 case Instruction::Or: 5349 case Instruction::Xor: { 5350 setInsertPointAfterBundle(E); 5351 5352 Value *LHS = vectorizeTree(E->getOperand(0)); 5353 Value *RHS = vectorizeTree(E->getOperand(1)); 5354 5355 if (E->VectorizedValue) { 5356 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5357 return E->VectorizedValue; 5358 } 5359 5360 Value *V = Builder.CreateBinOp( 5361 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5362 RHS); 5363 propagateIRFlags(V, E->Scalars, VL0); 5364 if (auto *I = dyn_cast<Instruction>(V)) 5365 V = propagateMetadata(I, E->Scalars); 5366 5367 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5368 V = ShuffleBuilder.finalize(V); 5369 5370 E->VectorizedValue = V; 5371 ++NumVectorInstructions; 5372 5373 return V; 5374 } 5375 case Instruction::Load: { 5376 // Loads are inserted at the head of the tree because we don't want to 5377 // sink them all the way down past store instructions. 5378 bool IsReorder = E->updateStateIfReorder(); 5379 if (IsReorder) 5380 VL0 = E->getMainOp(); 5381 setInsertPointAfterBundle(E); 5382 5383 LoadInst *LI = cast<LoadInst>(VL0); 5384 Instruction *NewLI; 5385 unsigned AS = LI->getPointerAddressSpace(); 5386 Value *PO = LI->getPointerOperand(); 5387 if (E->State == TreeEntry::Vectorize) { 5388 5389 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5390 5391 // The pointer operand uses an in-tree scalar so we add the new BitCast 5392 // to ExternalUses list to make sure that an extract will be generated 5393 // in the future. 5394 if (getTreeEntry(PO)) 5395 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5396 5397 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5398 } else { 5399 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5400 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5401 // Use the minimum alignment of the gathered loads. 5402 Align CommonAlignment = LI->getAlign(); 5403 for (Value *V : E->Scalars) 5404 CommonAlignment = 5405 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5406 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 5407 } 5408 Value *V = propagateMetadata(NewLI, E->Scalars); 5409 5410 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5411 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5412 V = ShuffleBuilder.finalize(V); 5413 E->VectorizedValue = V; 5414 ++NumVectorInstructions; 5415 return V; 5416 } 5417 case Instruction::Store: { 5418 bool IsReorder = !E->ReorderIndices.empty(); 5419 auto *SI = cast<StoreInst>( 5420 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5421 unsigned AS = SI->getPointerAddressSpace(); 5422 5423 setInsertPointAfterBundle(E); 5424 5425 Value *VecValue = vectorizeTree(E->getOperand(0)); 5426 ShuffleBuilder.addMask(E->ReorderIndices); 5427 VecValue = ShuffleBuilder.finalize(VecValue); 5428 5429 Value *ScalarPtr = SI->getPointerOperand(); 5430 Value *VecPtr = Builder.CreateBitCast( 5431 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5432 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5433 SI->getAlign()); 5434 5435 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5436 // ExternalUses to make sure that an extract will be generated in the 5437 // future. 5438 if (getTreeEntry(ScalarPtr)) 5439 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5440 5441 Value *V = propagateMetadata(ST, E->Scalars); 5442 5443 E->VectorizedValue = V; 5444 ++NumVectorInstructions; 5445 return V; 5446 } 5447 case Instruction::GetElementPtr: { 5448 setInsertPointAfterBundle(E); 5449 5450 Value *Op0 = vectorizeTree(E->getOperand(0)); 5451 5452 std::vector<Value *> OpVecs; 5453 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5454 ++j) { 5455 ValueList &VL = E->getOperand(j); 5456 // Need to cast all elements to the same type before vectorization to 5457 // avoid crash. 5458 Type *VL0Ty = VL0->getOperand(j)->getType(); 5459 Type *Ty = llvm::all_of( 5460 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5461 ? VL0Ty 5462 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5463 ->getPointerOperandType() 5464 ->getScalarType()); 5465 for (Value *&V : VL) { 5466 auto *CI = cast<ConstantInt>(V); 5467 V = ConstantExpr::getIntegerCast(CI, Ty, 5468 CI->getValue().isSignBitSet()); 5469 } 5470 Value *OpVec = vectorizeTree(VL); 5471 OpVecs.push_back(OpVec); 5472 } 5473 5474 Value *V = Builder.CreateGEP( 5475 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5476 if (Instruction *I = dyn_cast<Instruction>(V)) 5477 V = propagateMetadata(I, E->Scalars); 5478 5479 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5480 V = ShuffleBuilder.finalize(V); 5481 5482 E->VectorizedValue = V; 5483 ++NumVectorInstructions; 5484 5485 return V; 5486 } 5487 case Instruction::Call: { 5488 CallInst *CI = cast<CallInst>(VL0); 5489 setInsertPointAfterBundle(E); 5490 5491 Intrinsic::ID IID = Intrinsic::not_intrinsic; 5492 if (Function *FI = CI->getCalledFunction()) 5493 IID = FI->getIntrinsicID(); 5494 5495 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5496 5497 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5498 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5499 VecCallCosts.first <= VecCallCosts.second; 5500 5501 Value *ScalarArg = nullptr; 5502 std::vector<Value *> OpVecs; 5503 SmallVector<Type *, 2> TysForDecl = 5504 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5505 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5506 ValueList OpVL; 5507 // Some intrinsics have scalar arguments. This argument should not be 5508 // vectorized. 5509 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5510 CallInst *CEI = cast<CallInst>(VL0); 5511 ScalarArg = CEI->getArgOperand(j); 5512 OpVecs.push_back(CEI->getArgOperand(j)); 5513 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 5514 TysForDecl.push_back(ScalarArg->getType()); 5515 continue; 5516 } 5517 5518 Value *OpVec = vectorizeTree(E->getOperand(j)); 5519 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5520 OpVecs.push_back(OpVec); 5521 } 5522 5523 Function *CF; 5524 if (!UseIntrinsic) { 5525 VFShape Shape = 5526 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5527 VecTy->getNumElements())), 5528 false /*HasGlobalPred*/); 5529 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5530 } else { 5531 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 5532 } 5533 5534 SmallVector<OperandBundleDef, 1> OpBundles; 5535 CI->getOperandBundlesAsDefs(OpBundles); 5536 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5537 5538 // The scalar argument uses an in-tree scalar so we add the new vectorized 5539 // call to ExternalUses list to make sure that an extract will be 5540 // generated in the future. 5541 if (ScalarArg && getTreeEntry(ScalarArg)) 5542 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5543 5544 propagateIRFlags(V, E->Scalars, VL0); 5545 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5546 V = ShuffleBuilder.finalize(V); 5547 5548 E->VectorizedValue = V; 5549 ++NumVectorInstructions; 5550 return V; 5551 } 5552 case Instruction::ShuffleVector: { 5553 assert(E->isAltShuffle() && 5554 ((Instruction::isBinaryOp(E->getOpcode()) && 5555 Instruction::isBinaryOp(E->getAltOpcode())) || 5556 (Instruction::isCast(E->getOpcode()) && 5557 Instruction::isCast(E->getAltOpcode()))) && 5558 "Invalid Shuffle Vector Operand"); 5559 5560 Value *LHS = nullptr, *RHS = nullptr; 5561 if (Instruction::isBinaryOp(E->getOpcode())) { 5562 setInsertPointAfterBundle(E); 5563 LHS = vectorizeTree(E->getOperand(0)); 5564 RHS = vectorizeTree(E->getOperand(1)); 5565 } else { 5566 setInsertPointAfterBundle(E); 5567 LHS = vectorizeTree(E->getOperand(0)); 5568 } 5569 5570 if (E->VectorizedValue) { 5571 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5572 return E->VectorizedValue; 5573 } 5574 5575 Value *V0, *V1; 5576 if (Instruction::isBinaryOp(E->getOpcode())) { 5577 V0 = Builder.CreateBinOp( 5578 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5579 V1 = Builder.CreateBinOp( 5580 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5581 } else { 5582 V0 = Builder.CreateCast( 5583 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5584 V1 = Builder.CreateCast( 5585 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5586 } 5587 5588 // Create shuffle to take alternate operations from the vector. 5589 // Also, gather up main and alt scalar ops to propagate IR flags to 5590 // each vector operation. 5591 ValueList OpScalars, AltScalars; 5592 unsigned e = E->Scalars.size(); 5593 SmallVector<int, 8> Mask(e); 5594 for (unsigned i = 0; i < e; ++i) { 5595 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5596 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5597 if (OpInst->getOpcode() == E->getAltOpcode()) { 5598 Mask[i] = e + i; 5599 AltScalars.push_back(E->Scalars[i]); 5600 } else { 5601 Mask[i] = i; 5602 OpScalars.push_back(E->Scalars[i]); 5603 } 5604 } 5605 5606 propagateIRFlags(V0, OpScalars); 5607 propagateIRFlags(V1, AltScalars); 5608 5609 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5610 if (Instruction *I = dyn_cast<Instruction>(V)) 5611 V = propagateMetadata(I, E->Scalars); 5612 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5613 V = ShuffleBuilder.finalize(V); 5614 5615 E->VectorizedValue = V; 5616 ++NumVectorInstructions; 5617 5618 return V; 5619 } 5620 default: 5621 llvm_unreachable("unknown inst"); 5622 } 5623 return nullptr; 5624 } 5625 5626 Value *BoUpSLP::vectorizeTree() { 5627 ExtraValueToDebugLocsMap ExternallyUsedValues; 5628 return vectorizeTree(ExternallyUsedValues); 5629 } 5630 5631 Value * 5632 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5633 // All blocks must be scheduled before any instructions are inserted. 5634 for (auto &BSIter : BlocksSchedules) { 5635 scheduleBlock(BSIter.second.get()); 5636 } 5637 5638 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5639 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5640 5641 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5642 // vectorized root. InstCombine will then rewrite the entire expression. We 5643 // sign extend the extracted values below. 5644 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5645 if (MinBWs.count(ScalarRoot)) { 5646 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5647 // If current instr is a phi and not the last phi, insert it after the 5648 // last phi node. 5649 if (isa<PHINode>(I)) 5650 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5651 else 5652 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5653 } 5654 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5655 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5656 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5657 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5658 VectorizableTree[0]->VectorizedValue = Trunc; 5659 } 5660 5661 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5662 << " values .\n"); 5663 5664 // Extract all of the elements with the external uses. 5665 for (const auto &ExternalUse : ExternalUses) { 5666 Value *Scalar = ExternalUse.Scalar; 5667 llvm::User *User = ExternalUse.User; 5668 5669 // Skip users that we already RAUW. This happens when one instruction 5670 // has multiple uses of the same value. 5671 if (User && !is_contained(Scalar->users(), User)) 5672 continue; 5673 TreeEntry *E = getTreeEntry(Scalar); 5674 assert(E && "Invalid scalar"); 5675 assert(E->State != TreeEntry::NeedToGather && 5676 "Extracting from a gather list"); 5677 5678 Value *Vec = E->VectorizedValue; 5679 assert(Vec && "Can't find vectorizable value"); 5680 5681 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5682 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 5683 if (Scalar->getType() != Vec->getType()) { 5684 Value *Ex; 5685 // "Reuse" the existing extract to improve final codegen. 5686 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 5687 Ex = Builder.CreateExtractElement(ES->getOperand(0), 5688 ES->getOperand(1)); 5689 } else { 5690 Ex = Builder.CreateExtractElement(Vec, Lane); 5691 } 5692 // If necessary, sign-extend or zero-extend ScalarRoot 5693 // to the larger type. 5694 if (!MinBWs.count(ScalarRoot)) 5695 return Ex; 5696 if (MinBWs[ScalarRoot].second) 5697 return Builder.CreateSExt(Ex, Scalar->getType()); 5698 return Builder.CreateZExt(Ex, Scalar->getType()); 5699 } 5700 assert(isa<FixedVectorType>(Scalar->getType()) && 5701 isa<InsertElementInst>(Scalar) && 5702 "In-tree scalar of vector type is not insertelement?"); 5703 return Vec; 5704 }; 5705 // If User == nullptr, the Scalar is used as extra arg. Generate 5706 // ExtractElement instruction and update the record for this scalar in 5707 // ExternallyUsedValues. 5708 if (!User) { 5709 assert(ExternallyUsedValues.count(Scalar) && 5710 "Scalar with nullptr as an external user must be registered in " 5711 "ExternallyUsedValues map"); 5712 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5713 Builder.SetInsertPoint(VecI->getParent(), 5714 std::next(VecI->getIterator())); 5715 } else { 5716 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5717 } 5718 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5719 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5720 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 5721 auto It = ExternallyUsedValues.find(Scalar); 5722 assert(It != ExternallyUsedValues.end() && 5723 "Externally used scalar is not found in ExternallyUsedValues"); 5724 NewInstLocs.append(It->second); 5725 ExternallyUsedValues.erase(Scalar); 5726 // Required to update internally referenced instructions. 5727 Scalar->replaceAllUsesWith(NewInst); 5728 continue; 5729 } 5730 5731 // Generate extracts for out-of-tree users. 5732 // Find the insertion point for the extractelement lane. 5733 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5734 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5735 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5736 if (PH->getIncomingValue(i) == Scalar) { 5737 Instruction *IncomingTerminator = 5738 PH->getIncomingBlock(i)->getTerminator(); 5739 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5740 Builder.SetInsertPoint(VecI->getParent(), 5741 std::next(VecI->getIterator())); 5742 } else { 5743 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5744 } 5745 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5746 CSEBlocks.insert(PH->getIncomingBlock(i)); 5747 PH->setOperand(i, NewInst); 5748 } 5749 } 5750 } else { 5751 Builder.SetInsertPoint(cast<Instruction>(User)); 5752 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5753 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5754 User->replaceUsesOfWith(Scalar, NewInst); 5755 } 5756 } else { 5757 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5758 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5759 CSEBlocks.insert(&F->getEntryBlock()); 5760 User->replaceUsesOfWith(Scalar, NewInst); 5761 } 5762 5763 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5764 } 5765 5766 // For each vectorized value: 5767 for (auto &TEPtr : VectorizableTree) { 5768 TreeEntry *Entry = TEPtr.get(); 5769 5770 // No need to handle users of gathered values. 5771 if (Entry->State == TreeEntry::NeedToGather) 5772 continue; 5773 5774 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5775 5776 // For each lane: 5777 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5778 Value *Scalar = Entry->Scalars[Lane]; 5779 5780 #ifndef NDEBUG 5781 Type *Ty = Scalar->getType(); 5782 if (!Ty->isVoidTy()) { 5783 for (User *U : Scalar->users()) { 5784 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5785 5786 // It is legal to delete users in the ignorelist. 5787 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5788 "Deleting out-of-tree value"); 5789 } 5790 } 5791 #endif 5792 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5793 eraseInstruction(cast<Instruction>(Scalar)); 5794 } 5795 } 5796 5797 Builder.ClearInsertionPoint(); 5798 InstrElementSize.clear(); 5799 5800 return VectorizableTree[0]->VectorizedValue; 5801 } 5802 5803 void BoUpSLP::optimizeGatherSequence() { 5804 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5805 << " gather sequences instructions.\n"); 5806 // LICM InsertElementInst sequences. 5807 for (Instruction *I : GatherSeq) { 5808 if (isDeleted(I)) 5809 continue; 5810 5811 // Check if this block is inside a loop. 5812 Loop *L = LI->getLoopFor(I->getParent()); 5813 if (!L) 5814 continue; 5815 5816 // Check if it has a preheader. 5817 BasicBlock *PreHeader = L->getLoopPreheader(); 5818 if (!PreHeader) 5819 continue; 5820 5821 // If the vector or the element that we insert into it are 5822 // instructions that are defined in this basic block then we can't 5823 // hoist this instruction. 5824 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5825 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5826 if (Op0 && L->contains(Op0)) 5827 continue; 5828 if (Op1 && L->contains(Op1)) 5829 continue; 5830 5831 // We can hoist this instruction. Move it to the pre-header. 5832 I->moveBefore(PreHeader->getTerminator()); 5833 } 5834 5835 // Make a list of all reachable blocks in our CSE queue. 5836 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5837 CSEWorkList.reserve(CSEBlocks.size()); 5838 for (BasicBlock *BB : CSEBlocks) 5839 if (DomTreeNode *N = DT->getNode(BB)) { 5840 assert(DT->isReachableFromEntry(N)); 5841 CSEWorkList.push_back(N); 5842 } 5843 5844 // Sort blocks by domination. This ensures we visit a block after all blocks 5845 // dominating it are visited. 5846 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 5847 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 5848 "Different nodes should have different DFS numbers"); 5849 return A->getDFSNumIn() < B->getDFSNumIn(); 5850 }); 5851 5852 // Perform O(N^2) search over the gather sequences and merge identical 5853 // instructions. TODO: We can further optimize this scan if we split the 5854 // instructions into different buckets based on the insert lane. 5855 SmallVector<Instruction *, 16> Visited; 5856 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5857 assert(*I && 5858 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5859 "Worklist not sorted properly!"); 5860 BasicBlock *BB = (*I)->getBlock(); 5861 // For all instructions in blocks containing gather sequences: 5862 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5863 Instruction *In = &*it++; 5864 if (isDeleted(In)) 5865 continue; 5866 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5867 continue; 5868 5869 // Check if we can replace this instruction with any of the 5870 // visited instructions. 5871 for (Instruction *v : Visited) { 5872 if (In->isIdenticalTo(v) && 5873 DT->dominates(v->getParent(), In->getParent())) { 5874 In->replaceAllUsesWith(v); 5875 eraseInstruction(In); 5876 In = nullptr; 5877 break; 5878 } 5879 } 5880 if (In) { 5881 assert(!is_contained(Visited, In)); 5882 Visited.push_back(In); 5883 } 5884 } 5885 } 5886 CSEBlocks.clear(); 5887 GatherSeq.clear(); 5888 } 5889 5890 // Groups the instructions to a bundle (which is then a single scheduling entity) 5891 // and schedules instructions until the bundle gets ready. 5892 Optional<BoUpSLP::ScheduleData *> 5893 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5894 const InstructionsState &S) { 5895 if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue)) 5896 return nullptr; 5897 5898 // Initialize the instruction bundle. 5899 Instruction *OldScheduleEnd = ScheduleEnd; 5900 ScheduleData *PrevInBundle = nullptr; 5901 ScheduleData *Bundle = nullptr; 5902 bool ReSchedule = false; 5903 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5904 5905 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5906 ScheduleData *Bundle) { 5907 // The scheduling region got new instructions at the lower end (or it is a 5908 // new region for the first bundle). This makes it necessary to 5909 // recalculate all dependencies. 5910 // It is seldom that this needs to be done a second time after adding the 5911 // initial bundle to the region. 5912 if (ScheduleEnd != OldScheduleEnd) { 5913 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5914 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5915 ReSchedule = true; 5916 } 5917 if (ReSchedule) { 5918 resetSchedule(); 5919 initialFillReadyList(ReadyInsts); 5920 } 5921 if (Bundle) { 5922 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5923 << " in block " << BB->getName() << "\n"); 5924 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5925 } 5926 5927 // Now try to schedule the new bundle or (if no bundle) just calculate 5928 // dependencies. As soon as the bundle is "ready" it means that there are no 5929 // cyclic dependencies and we can schedule it. Note that's important that we 5930 // don't "schedule" the bundle yet (see cancelScheduling). 5931 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5932 !ReadyInsts.empty()) { 5933 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5934 if (Picked->isSchedulingEntity() && Picked->isReady()) 5935 schedule(Picked, ReadyInsts); 5936 } 5937 }; 5938 5939 // Make sure that the scheduling region contains all 5940 // instructions of the bundle. 5941 for (Value *V : VL) { 5942 if (!extendSchedulingRegion(V, S)) { 5943 // If the scheduling region got new instructions at the lower end (or it 5944 // is a new region for the first bundle). This makes it necessary to 5945 // recalculate all dependencies. 5946 // Otherwise the compiler may crash trying to incorrectly calculate 5947 // dependencies and emit instruction in the wrong order at the actual 5948 // scheduling. 5949 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5950 return None; 5951 } 5952 } 5953 5954 for (Value *V : VL) { 5955 ScheduleData *BundleMember = getScheduleData(V); 5956 assert(BundleMember && 5957 "no ScheduleData for bundle member (maybe not in same basic block)"); 5958 if (BundleMember->IsScheduled) { 5959 // A bundle member was scheduled as single instruction before and now 5960 // needs to be scheduled as part of the bundle. We just get rid of the 5961 // existing schedule. 5962 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5963 << " was already scheduled\n"); 5964 ReSchedule = true; 5965 } 5966 assert(BundleMember->isSchedulingEntity() && 5967 "bundle member already part of other bundle"); 5968 if (PrevInBundle) { 5969 PrevInBundle->NextInBundle = BundleMember; 5970 } else { 5971 Bundle = BundleMember; 5972 } 5973 BundleMember->UnscheduledDepsInBundle = 0; 5974 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5975 5976 // Group the instructions to a bundle. 5977 BundleMember->FirstInBundle = Bundle; 5978 PrevInBundle = BundleMember; 5979 } 5980 assert(Bundle && "Failed to find schedule bundle"); 5981 TryScheduleBundle(ReSchedule, Bundle); 5982 if (!Bundle->isReady()) { 5983 cancelScheduling(VL, S.OpValue); 5984 return None; 5985 } 5986 return Bundle; 5987 } 5988 5989 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5990 Value *OpValue) { 5991 if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue)) 5992 return; 5993 5994 ScheduleData *Bundle = getScheduleData(OpValue); 5995 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5996 assert(!Bundle->IsScheduled && 5997 "Can't cancel bundle which is already scheduled"); 5998 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5999 "tried to unbundle something which is not a bundle"); 6000 6001 // Un-bundle: make single instructions out of the bundle. 6002 ScheduleData *BundleMember = Bundle; 6003 while (BundleMember) { 6004 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6005 BundleMember->FirstInBundle = BundleMember; 6006 ScheduleData *Next = BundleMember->NextInBundle; 6007 BundleMember->NextInBundle = nullptr; 6008 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6009 if (BundleMember->UnscheduledDepsInBundle == 0) { 6010 ReadyInsts.insert(BundleMember); 6011 } 6012 BundleMember = Next; 6013 } 6014 } 6015 6016 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6017 // Allocate a new ScheduleData for the instruction. 6018 if (ChunkPos >= ChunkSize) { 6019 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6020 ChunkPos = 0; 6021 } 6022 return &(ScheduleDataChunks.back()[ChunkPos++]); 6023 } 6024 6025 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6026 const InstructionsState &S) { 6027 if (getScheduleData(V, isOneOf(S, V))) 6028 return true; 6029 Instruction *I = dyn_cast<Instruction>(V); 6030 assert(I && "bundle member must be an instruction"); 6031 assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) && 6032 "phi nodes/insertelements don't need to be scheduled"); 6033 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6034 ScheduleData *ISD = getScheduleData(I); 6035 if (!ISD) 6036 return false; 6037 assert(isInSchedulingRegion(ISD) && 6038 "ScheduleData not in scheduling region"); 6039 ScheduleData *SD = allocateScheduleDataChunks(); 6040 SD->Inst = I; 6041 SD->init(SchedulingRegionID, S.OpValue); 6042 ExtraScheduleDataMap[I][S.OpValue] = SD; 6043 return true; 6044 }; 6045 if (CheckSheduleForI(I)) 6046 return true; 6047 if (!ScheduleStart) { 6048 // It's the first instruction in the new region. 6049 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6050 ScheduleStart = I; 6051 ScheduleEnd = I->getNextNode(); 6052 if (isOneOf(S, I) != I) 6053 CheckSheduleForI(I); 6054 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6055 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6056 return true; 6057 } 6058 // Search up and down at the same time, because we don't know if the new 6059 // instruction is above or below the existing scheduling region. 6060 BasicBlock::reverse_iterator UpIter = 6061 ++ScheduleStart->getIterator().getReverse(); 6062 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6063 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6064 BasicBlock::iterator LowerEnd = BB->end(); 6065 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6066 &*DownIter != I) { 6067 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6068 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6069 return false; 6070 } 6071 6072 ++UpIter; 6073 ++DownIter; 6074 } 6075 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6076 assert(I->getParent() == ScheduleStart->getParent() && 6077 "Instruction is in wrong basic block."); 6078 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6079 ScheduleStart = I; 6080 if (isOneOf(S, I) != I) 6081 CheckSheduleForI(I); 6082 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6083 << "\n"); 6084 return true; 6085 } 6086 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6087 "Expected to reach top of the basic block or instruction down the " 6088 "lower end."); 6089 assert(I->getParent() == ScheduleEnd->getParent() && 6090 "Instruction is in wrong basic block."); 6091 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6092 nullptr); 6093 ScheduleEnd = I->getNextNode(); 6094 if (isOneOf(S, I) != I) 6095 CheckSheduleForI(I); 6096 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6097 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6098 return true; 6099 } 6100 6101 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6102 Instruction *ToI, 6103 ScheduleData *PrevLoadStore, 6104 ScheduleData *NextLoadStore) { 6105 ScheduleData *CurrentLoadStore = PrevLoadStore; 6106 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6107 ScheduleData *SD = ScheduleDataMap[I]; 6108 if (!SD) { 6109 SD = allocateScheduleDataChunks(); 6110 ScheduleDataMap[I] = SD; 6111 SD->Inst = I; 6112 } 6113 assert(!isInSchedulingRegion(SD) && 6114 "new ScheduleData already in scheduling region"); 6115 SD->init(SchedulingRegionID, I); 6116 6117 if (I->mayReadOrWriteMemory() && 6118 (!isa<IntrinsicInst>(I) || 6119 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6120 cast<IntrinsicInst>(I)->getIntrinsicID() != 6121 Intrinsic::pseudoprobe))) { 6122 // Update the linked list of memory accessing instructions. 6123 if (CurrentLoadStore) { 6124 CurrentLoadStore->NextLoadStore = SD; 6125 } else { 6126 FirstLoadStoreInRegion = SD; 6127 } 6128 CurrentLoadStore = SD; 6129 } 6130 } 6131 if (NextLoadStore) { 6132 if (CurrentLoadStore) 6133 CurrentLoadStore->NextLoadStore = NextLoadStore; 6134 } else { 6135 LastLoadStoreInRegion = CurrentLoadStore; 6136 } 6137 } 6138 6139 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6140 bool InsertInReadyList, 6141 BoUpSLP *SLP) { 6142 assert(SD->isSchedulingEntity()); 6143 6144 SmallVector<ScheduleData *, 10> WorkList; 6145 WorkList.push_back(SD); 6146 6147 while (!WorkList.empty()) { 6148 ScheduleData *SD = WorkList.pop_back_val(); 6149 6150 ScheduleData *BundleMember = SD; 6151 while (BundleMember) { 6152 assert(isInSchedulingRegion(BundleMember)); 6153 if (!BundleMember->hasValidDependencies()) { 6154 6155 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6156 << "\n"); 6157 BundleMember->Dependencies = 0; 6158 BundleMember->resetUnscheduledDeps(); 6159 6160 // Handle def-use chain dependencies. 6161 if (BundleMember->OpValue != BundleMember->Inst) { 6162 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6163 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6164 BundleMember->Dependencies++; 6165 ScheduleData *DestBundle = UseSD->FirstInBundle; 6166 if (!DestBundle->IsScheduled) 6167 BundleMember->incrementUnscheduledDeps(1); 6168 if (!DestBundle->hasValidDependencies()) 6169 WorkList.push_back(DestBundle); 6170 } 6171 } else { 6172 for (User *U : BundleMember->Inst->users()) { 6173 if (isa<Instruction>(U)) { 6174 ScheduleData *UseSD = getScheduleData(U); 6175 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6176 BundleMember->Dependencies++; 6177 ScheduleData *DestBundle = UseSD->FirstInBundle; 6178 if (!DestBundle->IsScheduled) 6179 BundleMember->incrementUnscheduledDeps(1); 6180 if (!DestBundle->hasValidDependencies()) 6181 WorkList.push_back(DestBundle); 6182 } 6183 } else { 6184 // I'm not sure if this can ever happen. But we need to be safe. 6185 // This lets the instruction/bundle never be scheduled and 6186 // eventually disable vectorization. 6187 BundleMember->Dependencies++; 6188 BundleMember->incrementUnscheduledDeps(1); 6189 } 6190 } 6191 } 6192 6193 // Handle the memory dependencies. 6194 ScheduleData *DepDest = BundleMember->NextLoadStore; 6195 if (DepDest) { 6196 Instruction *SrcInst = BundleMember->Inst; 6197 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6198 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6199 unsigned numAliased = 0; 6200 unsigned DistToSrc = 1; 6201 6202 while (DepDest) { 6203 assert(isInSchedulingRegion(DepDest)); 6204 6205 // We have two limits to reduce the complexity: 6206 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6207 // SLP->isAliased (which is the expensive part in this loop). 6208 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6209 // the whole loop (even if the loop is fast, it's quadratic). 6210 // It's important for the loop break condition (see below) to 6211 // check this limit even between two read-only instructions. 6212 if (DistToSrc >= MaxMemDepDistance || 6213 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6214 (numAliased >= AliasedCheckLimit || 6215 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6216 6217 // We increment the counter only if the locations are aliased 6218 // (instead of counting all alias checks). This gives a better 6219 // balance between reduced runtime and accurate dependencies. 6220 numAliased++; 6221 6222 DepDest->MemoryDependencies.push_back(BundleMember); 6223 BundleMember->Dependencies++; 6224 ScheduleData *DestBundle = DepDest->FirstInBundle; 6225 if (!DestBundle->IsScheduled) { 6226 BundleMember->incrementUnscheduledDeps(1); 6227 } 6228 if (!DestBundle->hasValidDependencies()) { 6229 WorkList.push_back(DestBundle); 6230 } 6231 } 6232 DepDest = DepDest->NextLoadStore; 6233 6234 // Example, explaining the loop break condition: Let's assume our 6235 // starting instruction is i0 and MaxMemDepDistance = 3. 6236 // 6237 // +--------v--v--v 6238 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6239 // +--------^--^--^ 6240 // 6241 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6242 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6243 // Previously we already added dependencies from i3 to i6,i7,i8 6244 // (because of MaxMemDepDistance). As we added a dependency from 6245 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6246 // and we can abort this loop at i6. 6247 if (DistToSrc >= 2 * MaxMemDepDistance) 6248 break; 6249 DistToSrc++; 6250 } 6251 } 6252 } 6253 BundleMember = BundleMember->NextInBundle; 6254 } 6255 if (InsertInReadyList && SD->isReady()) { 6256 ReadyInsts.push_back(SD); 6257 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6258 << "\n"); 6259 } 6260 } 6261 } 6262 6263 void BoUpSLP::BlockScheduling::resetSchedule() { 6264 assert(ScheduleStart && 6265 "tried to reset schedule on block which has not been scheduled"); 6266 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6267 doForAllOpcodes(I, [&](ScheduleData *SD) { 6268 assert(isInSchedulingRegion(SD) && 6269 "ScheduleData not in scheduling region"); 6270 SD->IsScheduled = false; 6271 SD->resetUnscheduledDeps(); 6272 }); 6273 } 6274 ReadyInsts.clear(); 6275 } 6276 6277 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6278 if (!BS->ScheduleStart) 6279 return; 6280 6281 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6282 6283 BS->resetSchedule(); 6284 6285 // For the real scheduling we use a more sophisticated ready-list: it is 6286 // sorted by the original instruction location. This lets the final schedule 6287 // be as close as possible to the original instruction order. 6288 struct ScheduleDataCompare { 6289 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6290 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6291 } 6292 }; 6293 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6294 6295 // Ensure that all dependency data is updated and fill the ready-list with 6296 // initial instructions. 6297 int Idx = 0; 6298 int NumToSchedule = 0; 6299 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6300 I = I->getNextNode()) { 6301 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6302 assert((isa<InsertElementInst>(SD->Inst) || 6303 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 6304 "scheduler and vectorizer bundle mismatch"); 6305 SD->FirstInBundle->SchedulingPriority = Idx++; 6306 if (SD->isSchedulingEntity()) { 6307 BS->calculateDependencies(SD, false, this); 6308 NumToSchedule++; 6309 } 6310 }); 6311 } 6312 BS->initialFillReadyList(ReadyInsts); 6313 6314 Instruction *LastScheduledInst = BS->ScheduleEnd; 6315 6316 // Do the "real" scheduling. 6317 while (!ReadyInsts.empty()) { 6318 ScheduleData *picked = *ReadyInsts.begin(); 6319 ReadyInsts.erase(ReadyInsts.begin()); 6320 6321 // Move the scheduled instruction(s) to their dedicated places, if not 6322 // there yet. 6323 ScheduleData *BundleMember = picked; 6324 while (BundleMember) { 6325 Instruction *pickedInst = BundleMember->Inst; 6326 if (pickedInst->getNextNode() != LastScheduledInst) { 6327 BS->BB->getInstList().remove(pickedInst); 6328 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6329 pickedInst); 6330 } 6331 LastScheduledInst = pickedInst; 6332 BundleMember = BundleMember->NextInBundle; 6333 } 6334 6335 BS->schedule(picked, ReadyInsts); 6336 NumToSchedule--; 6337 } 6338 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6339 6340 // Avoid duplicate scheduling of the block. 6341 BS->ScheduleStart = nullptr; 6342 } 6343 6344 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6345 // If V is a store, just return the width of the stored value (or value 6346 // truncated just before storing) without traversing the expression tree. 6347 // This is the common case. 6348 if (auto *Store = dyn_cast<StoreInst>(V)) { 6349 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6350 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6351 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6352 } 6353 6354 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6355 return getVectorElementSize(IEI->getOperand(1)); 6356 6357 auto E = InstrElementSize.find(V); 6358 if (E != InstrElementSize.end()) 6359 return E->second; 6360 6361 // If V is not a store, we can traverse the expression tree to find loads 6362 // that feed it. The type of the loaded value may indicate a more suitable 6363 // width than V's type. We want to base the vector element size on the width 6364 // of memory operations where possible. 6365 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6366 SmallPtrSet<Instruction *, 16> Visited; 6367 if (auto *I = dyn_cast<Instruction>(V)) { 6368 Worklist.emplace_back(I, I->getParent()); 6369 Visited.insert(I); 6370 } 6371 6372 // Traverse the expression tree in bottom-up order looking for loads. If we 6373 // encounter an instruction we don't yet handle, we give up. 6374 auto Width = 0u; 6375 while (!Worklist.empty()) { 6376 Instruction *I; 6377 BasicBlock *Parent; 6378 std::tie(I, Parent) = Worklist.pop_back_val(); 6379 6380 // We should only be looking at scalar instructions here. If the current 6381 // instruction has a vector type, skip. 6382 auto *Ty = I->getType(); 6383 if (isa<VectorType>(Ty)) 6384 continue; 6385 6386 // If the current instruction is a load, update MaxWidth to reflect the 6387 // width of the loaded value. 6388 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6389 isa<ExtractValueInst>(I)) 6390 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6391 6392 // Otherwise, we need to visit the operands of the instruction. We only 6393 // handle the interesting cases from buildTree here. If an operand is an 6394 // instruction we haven't yet visited and from the same basic block as the 6395 // user or the use is a PHI node, we add it to the worklist. 6396 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6397 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6398 isa<UnaryOperator>(I)) { 6399 for (Use &U : I->operands()) 6400 if (auto *J = dyn_cast<Instruction>(U.get())) 6401 if (Visited.insert(J).second && 6402 (isa<PHINode>(I) || J->getParent() == Parent)) 6403 Worklist.emplace_back(J, J->getParent()); 6404 } else { 6405 break; 6406 } 6407 } 6408 6409 // If we didn't encounter a memory access in the expression tree, or if we 6410 // gave up for some reason, just return the width of V. Otherwise, return the 6411 // maximum width we found. 6412 if (!Width) { 6413 if (auto *CI = dyn_cast<CmpInst>(V)) 6414 V = CI->getOperand(0); 6415 Width = DL->getTypeSizeInBits(V->getType()); 6416 } 6417 6418 for (Instruction *I : Visited) 6419 InstrElementSize[I] = Width; 6420 6421 return Width; 6422 } 6423 6424 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6425 // smaller type with a truncation. We collect the values that will be demoted 6426 // in ToDemote and additional roots that require investigating in Roots. 6427 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6428 SmallVectorImpl<Value *> &ToDemote, 6429 SmallVectorImpl<Value *> &Roots) { 6430 // We can always demote constants. 6431 if (isa<Constant>(V)) { 6432 ToDemote.push_back(V); 6433 return true; 6434 } 6435 6436 // If the value is not an instruction in the expression with only one use, it 6437 // cannot be demoted. 6438 auto *I = dyn_cast<Instruction>(V); 6439 if (!I || !I->hasOneUse() || !Expr.count(I)) 6440 return false; 6441 6442 switch (I->getOpcode()) { 6443 6444 // We can always demote truncations and extensions. Since truncations can 6445 // seed additional demotion, we save the truncated value. 6446 case Instruction::Trunc: 6447 Roots.push_back(I->getOperand(0)); 6448 break; 6449 case Instruction::ZExt: 6450 case Instruction::SExt: 6451 if (isa<ExtractElementInst>(I->getOperand(0)) || 6452 isa<InsertElementInst>(I->getOperand(0))) 6453 return false; 6454 break; 6455 6456 // We can demote certain binary operations if we can demote both of their 6457 // operands. 6458 case Instruction::Add: 6459 case Instruction::Sub: 6460 case Instruction::Mul: 6461 case Instruction::And: 6462 case Instruction::Or: 6463 case Instruction::Xor: 6464 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6465 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6466 return false; 6467 break; 6468 6469 // We can demote selects if we can demote their true and false values. 6470 case Instruction::Select: { 6471 SelectInst *SI = cast<SelectInst>(I); 6472 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 6473 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 6474 return false; 6475 break; 6476 } 6477 6478 // We can demote phis if we can demote all their incoming operands. Note that 6479 // we don't need to worry about cycles since we ensure single use above. 6480 case Instruction::PHI: { 6481 PHINode *PN = cast<PHINode>(I); 6482 for (Value *IncValue : PN->incoming_values()) 6483 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 6484 return false; 6485 break; 6486 } 6487 6488 // Otherwise, conservatively give up. 6489 default: 6490 return false; 6491 } 6492 6493 // Record the value that we can demote. 6494 ToDemote.push_back(V); 6495 return true; 6496 } 6497 6498 void BoUpSLP::computeMinimumValueSizes() { 6499 // If there are no external uses, the expression tree must be rooted by a 6500 // store. We can't demote in-memory values, so there is nothing to do here. 6501 if (ExternalUses.empty()) 6502 return; 6503 6504 // We only attempt to truncate integer expressions. 6505 auto &TreeRoot = VectorizableTree[0]->Scalars; 6506 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 6507 if (!TreeRootIT) 6508 return; 6509 6510 // If the expression is not rooted by a store, these roots should have 6511 // external uses. We will rely on InstCombine to rewrite the expression in 6512 // the narrower type. However, InstCombine only rewrites single-use values. 6513 // This means that if a tree entry other than a root is used externally, it 6514 // must have multiple uses and InstCombine will not rewrite it. The code 6515 // below ensures that only the roots are used externally. 6516 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6517 for (auto &EU : ExternalUses) 6518 if (!Expr.erase(EU.Scalar)) 6519 return; 6520 if (!Expr.empty()) 6521 return; 6522 6523 // Collect the scalar values of the vectorizable expression. We will use this 6524 // context to determine which values can be demoted. If we see a truncation, 6525 // we mark it as seeding another demotion. 6526 for (auto &EntryPtr : VectorizableTree) 6527 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6528 6529 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6530 // have a single external user that is not in the vectorizable tree. 6531 for (auto *Root : TreeRoot) 6532 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6533 return; 6534 6535 // Conservatively determine if we can actually truncate the roots of the 6536 // expression. Collect the values that can be demoted in ToDemote and 6537 // additional roots that require investigating in Roots. 6538 SmallVector<Value *, 32> ToDemote; 6539 SmallVector<Value *, 4> Roots; 6540 for (auto *Root : TreeRoot) 6541 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6542 return; 6543 6544 // The maximum bit width required to represent all the values that can be 6545 // demoted without loss of precision. It would be safe to truncate the roots 6546 // of the expression to this width. 6547 auto MaxBitWidth = 8u; 6548 6549 // We first check if all the bits of the roots are demanded. If they're not, 6550 // we can truncate the roots to this narrower type. 6551 for (auto *Root : TreeRoot) { 6552 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6553 MaxBitWidth = std::max<unsigned>( 6554 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6555 } 6556 6557 // True if the roots can be zero-extended back to their original type, rather 6558 // than sign-extended. We know that if the leading bits are not demanded, we 6559 // can safely zero-extend. So we initialize IsKnownPositive to True. 6560 bool IsKnownPositive = true; 6561 6562 // If all the bits of the roots are demanded, we can try a little harder to 6563 // compute a narrower type. This can happen, for example, if the roots are 6564 // getelementptr indices. InstCombine promotes these indices to the pointer 6565 // width. Thus, all their bits are technically demanded even though the 6566 // address computation might be vectorized in a smaller type. 6567 // 6568 // We start by looking at each entry that can be demoted. We compute the 6569 // maximum bit width required to store the scalar by using ValueTracking to 6570 // compute the number of high-order bits we can truncate. 6571 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6572 llvm::all_of(TreeRoot, [](Value *R) { 6573 assert(R->hasOneUse() && "Root should have only one use!"); 6574 return isa<GetElementPtrInst>(R->user_back()); 6575 })) { 6576 MaxBitWidth = 8u; 6577 6578 // Determine if the sign bit of all the roots is known to be zero. If not, 6579 // IsKnownPositive is set to False. 6580 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6581 KnownBits Known = computeKnownBits(R, *DL); 6582 return Known.isNonNegative(); 6583 }); 6584 6585 // Determine the maximum number of bits required to store the scalar 6586 // values. 6587 for (auto *Scalar : ToDemote) { 6588 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6589 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6590 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6591 } 6592 6593 // If we can't prove that the sign bit is zero, we must add one to the 6594 // maximum bit width to account for the unknown sign bit. This preserves 6595 // the existing sign bit so we can safely sign-extend the root back to the 6596 // original type. Otherwise, if we know the sign bit is zero, we will 6597 // zero-extend the root instead. 6598 // 6599 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6600 // one to the maximum bit width will yield a larger-than-necessary 6601 // type. In general, we need to add an extra bit only if we can't 6602 // prove that the upper bit of the original type is equal to the 6603 // upper bit of the proposed smaller type. If these two bits are the 6604 // same (either zero or one) we know that sign-extending from the 6605 // smaller type will result in the same value. Here, since we can't 6606 // yet prove this, we are just making the proposed smaller type 6607 // larger to ensure correctness. 6608 if (!IsKnownPositive) 6609 ++MaxBitWidth; 6610 } 6611 6612 // Round MaxBitWidth up to the next power-of-two. 6613 if (!isPowerOf2_64(MaxBitWidth)) 6614 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6615 6616 // If the maximum bit width we compute is less than the with of the roots' 6617 // type, we can proceed with the narrowing. Otherwise, do nothing. 6618 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6619 return; 6620 6621 // If we can truncate the root, we must collect additional values that might 6622 // be demoted as a result. That is, those seeded by truncations we will 6623 // modify. 6624 while (!Roots.empty()) 6625 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6626 6627 // Finally, map the values we can demote to the maximum bit with we computed. 6628 for (auto *Scalar : ToDemote) 6629 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6630 } 6631 6632 namespace { 6633 6634 /// The SLPVectorizer Pass. 6635 struct SLPVectorizer : public FunctionPass { 6636 SLPVectorizerPass Impl; 6637 6638 /// Pass identification, replacement for typeid 6639 static char ID; 6640 6641 explicit SLPVectorizer() : FunctionPass(ID) { 6642 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6643 } 6644 6645 bool doInitialization(Module &M) override { 6646 return false; 6647 } 6648 6649 bool runOnFunction(Function &F) override { 6650 if (skipFunction(F)) 6651 return false; 6652 6653 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6654 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6655 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6656 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6657 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6658 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6659 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6660 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6661 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6662 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6663 6664 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6665 } 6666 6667 void getAnalysisUsage(AnalysisUsage &AU) const override { 6668 FunctionPass::getAnalysisUsage(AU); 6669 AU.addRequired<AssumptionCacheTracker>(); 6670 AU.addRequired<ScalarEvolutionWrapperPass>(); 6671 AU.addRequired<AAResultsWrapperPass>(); 6672 AU.addRequired<TargetTransformInfoWrapperPass>(); 6673 AU.addRequired<LoopInfoWrapperPass>(); 6674 AU.addRequired<DominatorTreeWrapperPass>(); 6675 AU.addRequired<DemandedBitsWrapperPass>(); 6676 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6677 AU.addRequired<InjectTLIMappingsLegacy>(); 6678 AU.addPreserved<LoopInfoWrapperPass>(); 6679 AU.addPreserved<DominatorTreeWrapperPass>(); 6680 AU.addPreserved<AAResultsWrapperPass>(); 6681 AU.addPreserved<GlobalsAAWrapperPass>(); 6682 AU.setPreservesCFG(); 6683 } 6684 }; 6685 6686 } // end anonymous namespace 6687 6688 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6689 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6690 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6691 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6692 auto *AA = &AM.getResult<AAManager>(F); 6693 auto *LI = &AM.getResult<LoopAnalysis>(F); 6694 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6695 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6696 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6697 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6698 6699 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6700 if (!Changed) 6701 return PreservedAnalyses::all(); 6702 6703 PreservedAnalyses PA; 6704 PA.preserveSet<CFGAnalyses>(); 6705 return PA; 6706 } 6707 6708 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6709 TargetTransformInfo *TTI_, 6710 TargetLibraryInfo *TLI_, AAResults *AA_, 6711 LoopInfo *LI_, DominatorTree *DT_, 6712 AssumptionCache *AC_, DemandedBits *DB_, 6713 OptimizationRemarkEmitter *ORE_) { 6714 if (!RunSLPVectorization) 6715 return false; 6716 SE = SE_; 6717 TTI = TTI_; 6718 TLI = TLI_; 6719 AA = AA_; 6720 LI = LI_; 6721 DT = DT_; 6722 AC = AC_; 6723 DB = DB_; 6724 DL = &F.getParent()->getDataLayout(); 6725 6726 Stores.clear(); 6727 GEPs.clear(); 6728 bool Changed = false; 6729 6730 // If the target claims to have no vector registers don't attempt 6731 // vectorization. 6732 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6733 return false; 6734 6735 // Don't vectorize when the attribute NoImplicitFloat is used. 6736 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6737 return false; 6738 6739 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6740 6741 // Use the bottom up slp vectorizer to construct chains that start with 6742 // store instructions. 6743 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6744 6745 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6746 // delete instructions. 6747 6748 // Update DFS numbers now so that we can use them for ordering. 6749 DT->updateDFSNumbers(); 6750 6751 // Scan the blocks in the function in post order. 6752 for (auto BB : post_order(&F.getEntryBlock())) { 6753 collectSeedInstructions(BB); 6754 6755 // Vectorize trees that end at stores. 6756 if (!Stores.empty()) { 6757 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6758 << " underlying objects.\n"); 6759 Changed |= vectorizeStoreChains(R); 6760 } 6761 6762 // Vectorize trees that end at reductions. 6763 Changed |= vectorizeChainsInBlock(BB, R); 6764 6765 // Vectorize the index computations of getelementptr instructions. This 6766 // is primarily intended to catch gather-like idioms ending at 6767 // non-consecutive loads. 6768 if (!GEPs.empty()) { 6769 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6770 << " underlying objects.\n"); 6771 Changed |= vectorizeGEPIndices(BB, R); 6772 } 6773 } 6774 6775 if (Changed) { 6776 R.optimizeGatherSequence(); 6777 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6778 } 6779 return Changed; 6780 } 6781 6782 /// Order may have elements assigned special value (size) which is out of 6783 /// bounds. Such indices only appear on places which correspond to undef values 6784 /// (see canReuseExtract for details) and used in order to avoid undef values 6785 /// have effect on operands ordering. 6786 /// The first loop below simply finds all unused indices and then the next loop 6787 /// nest assigns these indices for undef values positions. 6788 /// As an example below Order has two undef positions and they have assigned 6789 /// values 3 and 7 respectively: 6790 /// before: 6 9 5 4 9 2 1 0 6791 /// after: 6 3 5 4 7 2 1 0 6792 /// \returns Fixed ordering. 6793 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) { 6794 BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end()); 6795 const unsigned Sz = NewOrder.size(); 6796 SmallBitVector UsedIndices(Sz); 6797 SmallVector<int> MaskedIndices; 6798 for (int I = 0, E = NewOrder.size(); I < E; ++I) { 6799 if (NewOrder[I] < Sz) 6800 UsedIndices.set(NewOrder[I]); 6801 else 6802 MaskedIndices.push_back(I); 6803 } 6804 if (MaskedIndices.empty()) 6805 return NewOrder; 6806 SmallVector<int> AvailableIndices(MaskedIndices.size()); 6807 unsigned Cnt = 0; 6808 int Idx = UsedIndices.find_first(); 6809 do { 6810 AvailableIndices[Cnt] = Idx; 6811 Idx = UsedIndices.find_next(Idx); 6812 ++Cnt; 6813 } while (Idx > 0); 6814 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 6815 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 6816 NewOrder[MaskedIndices[I]] = AvailableIndices[I]; 6817 return NewOrder; 6818 } 6819 6820 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6821 unsigned Idx) { 6822 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6823 << "\n"); 6824 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6825 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6826 unsigned VF = Chain.size(); 6827 6828 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6829 return false; 6830 6831 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6832 << "\n"); 6833 6834 R.buildTree(Chain); 6835 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6836 // TODO: Handle orders of size less than number of elements in the vector. 6837 if (Order && Order->size() == Chain.size()) { 6838 // TODO: reorder tree nodes without tree rebuilding. 6839 SmallVector<Value *, 4> ReorderedOps(Chain.size()); 6840 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 6841 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6842 R.buildTree(ReorderedOps); 6843 } 6844 if (R.isTreeTinyAndNotFullyVectorizable()) 6845 return false; 6846 if (R.isLoadCombineCandidate()) 6847 return false; 6848 6849 R.computeMinimumValueSizes(); 6850 6851 InstructionCost Cost = R.getTreeCost(); 6852 6853 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6854 if (Cost < -SLPCostThreshold) { 6855 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6856 6857 using namespace ore; 6858 6859 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6860 cast<StoreInst>(Chain[0])) 6861 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6862 << " and with tree size " 6863 << NV("TreeSize", R.getTreeSize())); 6864 6865 R.vectorizeTree(); 6866 return true; 6867 } 6868 6869 return false; 6870 } 6871 6872 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6873 BoUpSLP &R) { 6874 // We may run into multiple chains that merge into a single chain. We mark the 6875 // stores that we vectorized so that we don't visit the same store twice. 6876 BoUpSLP::ValueSet VectorizedStores; 6877 bool Changed = false; 6878 6879 int E = Stores.size(); 6880 SmallBitVector Tails(E, false); 6881 int MaxIter = MaxStoreLookup.getValue(); 6882 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6883 E, std::make_pair(E, INT_MAX)); 6884 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6885 int IterCnt; 6886 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6887 &CheckedPairs, 6888 &ConsecutiveChain](int K, int Idx) { 6889 if (IterCnt >= MaxIter) 6890 return true; 6891 if (CheckedPairs[Idx].test(K)) 6892 return ConsecutiveChain[K].second == 1 && 6893 ConsecutiveChain[K].first == Idx; 6894 ++IterCnt; 6895 CheckedPairs[Idx].set(K); 6896 CheckedPairs[K].set(Idx); 6897 Optional<int> Diff = getPointersDiff( 6898 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 6899 Stores[Idx]->getValueOperand()->getType(), 6900 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 6901 if (!Diff || *Diff == 0) 6902 return false; 6903 int Val = *Diff; 6904 if (Val < 0) { 6905 if (ConsecutiveChain[Idx].second > -Val) { 6906 Tails.set(K); 6907 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6908 } 6909 return false; 6910 } 6911 if (ConsecutiveChain[K].second <= Val) 6912 return false; 6913 6914 Tails.set(Idx); 6915 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6916 return Val == 1; 6917 }; 6918 // Do a quadratic search on all of the given stores in reverse order and find 6919 // all of the pairs of stores that follow each other. 6920 for (int Idx = E - 1; Idx >= 0; --Idx) { 6921 // If a store has multiple consecutive store candidates, search according 6922 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6923 // This is because usually pairing with immediate succeeding or preceding 6924 // candidate create the best chance to find slp vectorization opportunity. 6925 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6926 IterCnt = 0; 6927 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6928 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6929 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6930 break; 6931 } 6932 6933 // Tracks if we tried to vectorize stores starting from the given tail 6934 // already. 6935 SmallBitVector TriedTails(E, false); 6936 // For stores that start but don't end a link in the chain: 6937 for (int Cnt = E; Cnt > 0; --Cnt) { 6938 int I = Cnt - 1; 6939 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6940 continue; 6941 // We found a store instr that starts a chain. Now follow the chain and try 6942 // to vectorize it. 6943 BoUpSLP::ValueList Operands; 6944 // Collect the chain into a list. 6945 while (I != E && !VectorizedStores.count(Stores[I])) { 6946 Operands.push_back(Stores[I]); 6947 Tails.set(I); 6948 if (ConsecutiveChain[I].second != 1) { 6949 // Mark the new end in the chain and go back, if required. It might be 6950 // required if the original stores come in reversed order, for example. 6951 if (ConsecutiveChain[I].first != E && 6952 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6953 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6954 TriedTails.set(I); 6955 Tails.reset(ConsecutiveChain[I].first); 6956 if (Cnt < ConsecutiveChain[I].first + 2) 6957 Cnt = ConsecutiveChain[I].first + 2; 6958 } 6959 break; 6960 } 6961 // Move to the next value in the chain. 6962 I = ConsecutiveChain[I].first; 6963 } 6964 assert(!Operands.empty() && "Expected non-empty list of stores."); 6965 6966 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6967 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6968 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6969 6970 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6971 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6972 MaxElts); 6973 6974 // FIXME: Is division-by-2 the correct step? Should we assert that the 6975 // register size is a power-of-2? 6976 unsigned StartIdx = 0; 6977 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6978 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6979 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6980 if (!VectorizedStores.count(Slice.front()) && 6981 !VectorizedStores.count(Slice.back()) && 6982 vectorizeStoreChain(Slice, R, Cnt)) { 6983 // Mark the vectorized stores so that we don't vectorize them again. 6984 VectorizedStores.insert(Slice.begin(), Slice.end()); 6985 Changed = true; 6986 // If we vectorized initial block, no need to try to vectorize it 6987 // again. 6988 if (Cnt == StartIdx) 6989 StartIdx += Size; 6990 Cnt += Size; 6991 continue; 6992 } 6993 ++Cnt; 6994 } 6995 // Check if the whole array was vectorized already - exit. 6996 if (StartIdx >= Operands.size()) 6997 break; 6998 } 6999 } 7000 7001 return Changed; 7002 } 7003 7004 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7005 // Initialize the collections. We will make a single pass over the block. 7006 Stores.clear(); 7007 GEPs.clear(); 7008 7009 // Visit the store and getelementptr instructions in BB and organize them in 7010 // Stores and GEPs according to the underlying objects of their pointer 7011 // operands. 7012 for (Instruction &I : *BB) { 7013 // Ignore store instructions that are volatile or have a pointer operand 7014 // that doesn't point to a scalar type. 7015 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7016 if (!SI->isSimple()) 7017 continue; 7018 if (!isValidElementType(SI->getValueOperand()->getType())) 7019 continue; 7020 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7021 } 7022 7023 // Ignore getelementptr instructions that have more than one index, a 7024 // constant index, or a pointer operand that doesn't point to a scalar 7025 // type. 7026 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7027 auto Idx = GEP->idx_begin()->get(); 7028 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7029 continue; 7030 if (!isValidElementType(Idx->getType())) 7031 continue; 7032 if (GEP->getType()->isVectorTy()) 7033 continue; 7034 GEPs[GEP->getPointerOperand()].push_back(GEP); 7035 } 7036 } 7037 } 7038 7039 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7040 if (!A || !B) 7041 return false; 7042 Value *VL[] = {A, B}; 7043 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 7044 } 7045 7046 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7047 bool AllowReorder) { 7048 if (VL.size() < 2) 7049 return false; 7050 7051 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7052 << VL.size() << ".\n"); 7053 7054 // Check that all of the parts are instructions of the same type, 7055 // we permit an alternate opcode via InstructionsState. 7056 InstructionsState S = getSameOpcode(VL); 7057 if (!S.getOpcode()) 7058 return false; 7059 7060 Instruction *I0 = cast<Instruction>(S.OpValue); 7061 // Make sure invalid types (including vector type) are rejected before 7062 // determining vectorization factor for scalar instructions. 7063 for (Value *V : VL) { 7064 Type *Ty = V->getType(); 7065 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7066 // NOTE: the following will give user internal llvm type name, which may 7067 // not be useful. 7068 R.getORE()->emit([&]() { 7069 std::string type_str; 7070 llvm::raw_string_ostream rso(type_str); 7071 Ty->print(rso); 7072 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7073 << "Cannot SLP vectorize list: type " 7074 << rso.str() + " is unsupported by vectorizer"; 7075 }); 7076 return false; 7077 } 7078 } 7079 7080 unsigned Sz = R.getVectorElementSize(I0); 7081 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 7082 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7083 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7084 if (MaxVF < 2) { 7085 R.getORE()->emit([&]() { 7086 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7087 << "Cannot SLP vectorize list: vectorization factor " 7088 << "less than 2 is not supported"; 7089 }); 7090 return false; 7091 } 7092 7093 bool Changed = false; 7094 bool CandidateFound = false; 7095 InstructionCost MinCost = SLPCostThreshold.getValue(); 7096 Type *ScalarTy = VL[0]->getType(); 7097 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7098 ScalarTy = IE->getOperand(1)->getType(); 7099 7100 unsigned NextInst = 0, MaxInst = VL.size(); 7101 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7102 // No actual vectorization should happen, if number of parts is the same as 7103 // provided vectorization factor (i.e. the scalar type is used for vector 7104 // code during codegen). 7105 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7106 if (TTI->getNumberOfParts(VecTy) == VF) 7107 continue; 7108 for (unsigned I = NextInst; I < MaxInst; ++I) { 7109 unsigned OpsWidth = 0; 7110 7111 if (I + VF > MaxInst) 7112 OpsWidth = MaxInst - I; 7113 else 7114 OpsWidth = VF; 7115 7116 if (!isPowerOf2_32(OpsWidth)) 7117 continue; 7118 7119 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7120 break; 7121 7122 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7123 // Check that a previous iteration of this loop did not delete the Value. 7124 if (llvm::any_of(Ops, [&R](Value *V) { 7125 auto *I = dyn_cast<Instruction>(V); 7126 return I && R.isDeleted(I); 7127 })) 7128 continue; 7129 7130 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7131 << "\n"); 7132 7133 R.buildTree(Ops); 7134 if (AllowReorder) { 7135 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 7136 if (Order) { 7137 // TODO: reorder tree nodes without tree rebuilding. 7138 SmallVector<Value *, 4> ReorderedOps(Ops.size()); 7139 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7140 [Ops](const unsigned Idx) { return Ops[Idx]; }); 7141 R.buildTree(ReorderedOps); 7142 } 7143 } 7144 if (R.isTreeTinyAndNotFullyVectorizable()) 7145 continue; 7146 7147 R.computeMinimumValueSizes(); 7148 InstructionCost Cost = R.getTreeCost(); 7149 CandidateFound = true; 7150 MinCost = std::min(MinCost, Cost); 7151 7152 if (Cost < -SLPCostThreshold) { 7153 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7154 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7155 cast<Instruction>(Ops[0])) 7156 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7157 << " and with tree size " 7158 << ore::NV("TreeSize", R.getTreeSize())); 7159 7160 R.vectorizeTree(); 7161 // Move to the next bundle. 7162 I += VF - 1; 7163 NextInst = I + 1; 7164 Changed = true; 7165 } 7166 } 7167 } 7168 7169 if (!Changed && CandidateFound) { 7170 R.getORE()->emit([&]() { 7171 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7172 << "List vectorization was possible but not beneficial with cost " 7173 << ore::NV("Cost", MinCost) << " >= " 7174 << ore::NV("Treshold", -SLPCostThreshold); 7175 }); 7176 } else if (!Changed) { 7177 R.getORE()->emit([&]() { 7178 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7179 << "Cannot SLP vectorize list: vectorization was impossible" 7180 << " with available vectorization factors"; 7181 }); 7182 } 7183 return Changed; 7184 } 7185 7186 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7187 if (!I) 7188 return false; 7189 7190 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7191 return false; 7192 7193 Value *P = I->getParent(); 7194 7195 // Vectorize in current basic block only. 7196 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7197 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7198 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7199 return false; 7200 7201 // Try to vectorize V. 7202 if (tryToVectorizePair(Op0, Op1, R)) 7203 return true; 7204 7205 auto *A = dyn_cast<BinaryOperator>(Op0); 7206 auto *B = dyn_cast<BinaryOperator>(Op1); 7207 // Try to skip B. 7208 if (B && B->hasOneUse()) { 7209 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7210 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7211 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7212 return true; 7213 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7214 return true; 7215 } 7216 7217 // Try to skip A. 7218 if (A && A->hasOneUse()) { 7219 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7220 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7221 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7222 return true; 7223 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7224 return true; 7225 } 7226 return false; 7227 } 7228 7229 namespace { 7230 7231 /// Model horizontal reductions. 7232 /// 7233 /// A horizontal reduction is a tree of reduction instructions that has values 7234 /// that can be put into a vector as its leaves. For example: 7235 /// 7236 /// mul mul mul mul 7237 /// \ / \ / 7238 /// + + 7239 /// \ / 7240 /// + 7241 /// This tree has "mul" as its leaf values and "+" as its reduction 7242 /// instructions. A reduction can feed into a store or a binary operation 7243 /// feeding a phi. 7244 /// ... 7245 /// \ / 7246 /// + 7247 /// | 7248 /// phi += 7249 /// 7250 /// Or: 7251 /// ... 7252 /// \ / 7253 /// + 7254 /// | 7255 /// *p = 7256 /// 7257 class HorizontalReduction { 7258 using ReductionOpsType = SmallVector<Value *, 16>; 7259 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7260 ReductionOpsListType ReductionOps; 7261 SmallVector<Value *, 32> ReducedVals; 7262 // Use map vector to make stable output. 7263 MapVector<Instruction *, Value *> ExtraArgs; 7264 WeakTrackingVH ReductionRoot; 7265 /// The type of reduction operation. 7266 RecurKind RdxKind; 7267 7268 /// Checks if instruction is associative and can be vectorized. 7269 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7270 if (Kind == RecurKind::None) 7271 return false; 7272 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 7273 return true; 7274 7275 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7276 // FP min/max are associative except for NaN and -0.0. We do not 7277 // have to rule out -0.0 here because the intrinsic semantics do not 7278 // specify a fixed result for it. 7279 return I->getFastMathFlags().noNaNs(); 7280 } 7281 7282 return I->isAssociative(); 7283 } 7284 7285 /// Checks if the ParentStackElem.first should be marked as a reduction 7286 /// operation with an extra argument or as extra argument itself. 7287 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7288 Value *ExtraArg) { 7289 if (ExtraArgs.count(ParentStackElem.first)) { 7290 ExtraArgs[ParentStackElem.first] = nullptr; 7291 // We ran into something like: 7292 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7293 // The whole ParentStackElem.first should be considered as an extra value 7294 // in this case. 7295 // Do not perform analysis of remaining operands of ParentStackElem.first 7296 // instruction, this whole instruction is an extra argument. 7297 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 7298 } else { 7299 // We ran into something like: 7300 // ParentStackElem.first += ... + ExtraArg + ... 7301 ExtraArgs[ParentStackElem.first] = ExtraArg; 7302 } 7303 } 7304 7305 /// Creates reduction operation with the current opcode. 7306 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7307 Value *RHS, const Twine &Name, bool UseSelect) { 7308 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7309 switch (Kind) { 7310 case RecurKind::Add: 7311 case RecurKind::Mul: 7312 case RecurKind::Or: 7313 case RecurKind::And: 7314 case RecurKind::Xor: 7315 case RecurKind::FAdd: 7316 case RecurKind::FMul: 7317 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7318 Name); 7319 case RecurKind::FMax: 7320 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7321 case RecurKind::FMin: 7322 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7323 case RecurKind::SMax: 7324 if (UseSelect) { 7325 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7326 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7327 } 7328 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7329 case RecurKind::SMin: 7330 if (UseSelect) { 7331 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7332 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7333 } 7334 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7335 case RecurKind::UMax: 7336 if (UseSelect) { 7337 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7338 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7339 } 7340 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7341 case RecurKind::UMin: 7342 if (UseSelect) { 7343 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7344 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7345 } 7346 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7347 default: 7348 llvm_unreachable("Unknown reduction operation."); 7349 } 7350 } 7351 7352 /// Creates reduction operation with the current opcode with the IR flags 7353 /// from \p ReductionOps. 7354 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7355 Value *RHS, const Twine &Name, 7356 const ReductionOpsListType &ReductionOps) { 7357 bool UseSelect = ReductionOps.size() == 2; 7358 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7359 "Expected cmp + select pairs for reduction"); 7360 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7361 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7362 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7363 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7364 propagateIRFlags(Op, ReductionOps[1]); 7365 return Op; 7366 } 7367 } 7368 propagateIRFlags(Op, ReductionOps[0]); 7369 return Op; 7370 } 7371 7372 /// Creates reduction operation with the current opcode with the IR flags 7373 /// from \p I. 7374 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7375 Value *RHS, const Twine &Name, Instruction *I) { 7376 auto *SelI = dyn_cast<SelectInst>(I); 7377 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7378 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7379 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7380 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7381 } 7382 propagateIRFlags(Op, I); 7383 return Op; 7384 } 7385 7386 static RecurKind getRdxKind(Instruction *I) { 7387 assert(I && "Expected instruction for reduction matching"); 7388 TargetTransformInfo::ReductionFlags RdxFlags; 7389 if (match(I, m_Add(m_Value(), m_Value()))) 7390 return RecurKind::Add; 7391 if (match(I, m_Mul(m_Value(), m_Value()))) 7392 return RecurKind::Mul; 7393 if (match(I, m_And(m_Value(), m_Value()))) 7394 return RecurKind::And; 7395 if (match(I, m_Or(m_Value(), m_Value()))) 7396 return RecurKind::Or; 7397 if (match(I, m_Xor(m_Value(), m_Value()))) 7398 return RecurKind::Xor; 7399 if (match(I, m_FAdd(m_Value(), m_Value()))) 7400 return RecurKind::FAdd; 7401 if (match(I, m_FMul(m_Value(), m_Value()))) 7402 return RecurKind::FMul; 7403 7404 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7405 return RecurKind::FMax; 7406 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7407 return RecurKind::FMin; 7408 7409 // This matches either cmp+select or intrinsics. SLP is expected to handle 7410 // either form. 7411 // TODO: If we are canonicalizing to intrinsics, we can remove several 7412 // special-case paths that deal with selects. 7413 if (match(I, m_SMax(m_Value(), m_Value()))) 7414 return RecurKind::SMax; 7415 if (match(I, m_SMin(m_Value(), m_Value()))) 7416 return RecurKind::SMin; 7417 if (match(I, m_UMax(m_Value(), m_Value()))) 7418 return RecurKind::UMax; 7419 if (match(I, m_UMin(m_Value(), m_Value()))) 7420 return RecurKind::UMin; 7421 7422 if (auto *Select = dyn_cast<SelectInst>(I)) { 7423 // Try harder: look for min/max pattern based on instructions producing 7424 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7425 // During the intermediate stages of SLP, it's very common to have 7426 // pattern like this (since optimizeGatherSequence is run only once 7427 // at the end): 7428 // %1 = extractelement <2 x i32> %a, i32 0 7429 // %2 = extractelement <2 x i32> %a, i32 1 7430 // %cond = icmp sgt i32 %1, %2 7431 // %3 = extractelement <2 x i32> %a, i32 0 7432 // %4 = extractelement <2 x i32> %a, i32 1 7433 // %select = select i1 %cond, i32 %3, i32 %4 7434 CmpInst::Predicate Pred; 7435 Instruction *L1; 7436 Instruction *L2; 7437 7438 Value *LHS = Select->getTrueValue(); 7439 Value *RHS = Select->getFalseValue(); 7440 Value *Cond = Select->getCondition(); 7441 7442 // TODO: Support inverse predicates. 7443 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7444 if (!isa<ExtractElementInst>(RHS) || 7445 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7446 return RecurKind::None; 7447 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7448 if (!isa<ExtractElementInst>(LHS) || 7449 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7450 return RecurKind::None; 7451 } else { 7452 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7453 return RecurKind::None; 7454 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7455 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7456 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7457 return RecurKind::None; 7458 } 7459 7460 TargetTransformInfo::ReductionFlags RdxFlags; 7461 switch (Pred) { 7462 default: 7463 return RecurKind::None; 7464 case CmpInst::ICMP_SGT: 7465 case CmpInst::ICMP_SGE: 7466 return RecurKind::SMax; 7467 case CmpInst::ICMP_SLT: 7468 case CmpInst::ICMP_SLE: 7469 return RecurKind::SMin; 7470 case CmpInst::ICMP_UGT: 7471 case CmpInst::ICMP_UGE: 7472 return RecurKind::UMax; 7473 case CmpInst::ICMP_ULT: 7474 case CmpInst::ICMP_ULE: 7475 return RecurKind::UMin; 7476 } 7477 } 7478 return RecurKind::None; 7479 } 7480 7481 /// Get the index of the first operand. 7482 static unsigned getFirstOperandIndex(Instruction *I) { 7483 return isa<SelectInst>(I) ? 1 : 0; 7484 } 7485 7486 /// Total number of operands in the reduction operation. 7487 static unsigned getNumberOfOperands(Instruction *I) { 7488 return isa<SelectInst>(I) ? 3 : 2; 7489 } 7490 7491 /// Checks if the instruction is in basic block \p BB. 7492 /// For a min/max reduction check that both compare and select are in \p BB. 7493 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 7494 auto *Sel = dyn_cast<SelectInst>(I); 7495 if (IsRedOp && Sel) { 7496 auto *Cmp = cast<Instruction>(Sel->getCondition()); 7497 return Sel->getParent() == BB && Cmp->getParent() == BB; 7498 } 7499 return I->getParent() == BB; 7500 } 7501 7502 /// Expected number of uses for reduction operations/reduced values. 7503 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 7504 // SelectInst must be used twice while the condition op must have single 7505 // use only. 7506 if (MatchCmpSel) { 7507 if (auto *Sel = dyn_cast<SelectInst>(I)) 7508 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 7509 return I->hasNUses(2); 7510 } 7511 7512 // Arithmetic reduction operation must be used once only. 7513 return I->hasOneUse(); 7514 } 7515 7516 /// Initializes the list of reduction operations. 7517 void initReductionOps(Instruction *I) { 7518 if (isa<SelectInst>(I)) 7519 ReductionOps.assign(2, ReductionOpsType()); 7520 else 7521 ReductionOps.assign(1, ReductionOpsType()); 7522 } 7523 7524 /// Add all reduction operations for the reduction instruction \p I. 7525 void addReductionOps(Instruction *I) { 7526 if (auto *Sel = dyn_cast<SelectInst>(I)) { 7527 ReductionOps[0].emplace_back(Sel->getCondition()); 7528 ReductionOps[1].emplace_back(Sel); 7529 } else { 7530 ReductionOps[0].emplace_back(I); 7531 } 7532 } 7533 7534 static Value *getLHS(RecurKind Kind, Instruction *I) { 7535 if (Kind == RecurKind::None) 7536 return nullptr; 7537 return I->getOperand(getFirstOperandIndex(I)); 7538 } 7539 static Value *getRHS(RecurKind Kind, Instruction *I) { 7540 if (Kind == RecurKind::None) 7541 return nullptr; 7542 return I->getOperand(getFirstOperandIndex(I) + 1); 7543 } 7544 7545 public: 7546 HorizontalReduction() = default; 7547 7548 /// Try to find a reduction tree. 7549 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 7550 assert((!Phi || is_contained(Phi->operands(), B)) && 7551 "Phi needs to use the binary operator"); 7552 7553 RdxKind = getRdxKind(B); 7554 7555 // We could have a initial reductions that is not an add. 7556 // r *= v1 + v2 + v3 + v4 7557 // In such a case start looking for a tree rooted in the first '+'. 7558 if (Phi) { 7559 if (getLHS(RdxKind, B) == Phi) { 7560 Phi = nullptr; 7561 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7562 if (!B) 7563 return false; 7564 RdxKind = getRdxKind(B); 7565 } else if (getRHS(RdxKind, B) == Phi) { 7566 Phi = nullptr; 7567 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7568 if (!B) 7569 return false; 7570 RdxKind = getRdxKind(B); 7571 } 7572 } 7573 7574 if (!isVectorizable(RdxKind, B)) 7575 return false; 7576 7577 // Analyze "regular" integer/FP types for reductions - no target-specific 7578 // types or pointers. 7579 Type *Ty = B->getType(); 7580 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7581 return false; 7582 7583 // Though the ultimate reduction may have multiple uses, its condition must 7584 // have only single use. 7585 if (auto *SI = dyn_cast<SelectInst>(B)) 7586 if (!SI->getCondition()->hasOneUse()) 7587 return false; 7588 7589 ReductionRoot = B; 7590 7591 // The opcode for leaf values that we perform a reduction on. 7592 // For example: load(x) + load(y) + load(z) + fptoui(w) 7593 // The leaf opcode for 'w' does not match, so we don't include it as a 7594 // potential candidate for the reduction. 7595 unsigned LeafOpcode = 0; 7596 7597 // Post order traverse the reduction tree starting at B. We only handle true 7598 // trees containing only binary operators. 7599 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7600 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7601 initReductionOps(B); 7602 while (!Stack.empty()) { 7603 Instruction *TreeN = Stack.back().first; 7604 unsigned EdgeToVisit = Stack.back().second++; 7605 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7606 bool IsReducedValue = TreeRdxKind != RdxKind; 7607 7608 // Postorder visit. 7609 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7610 if (IsReducedValue) 7611 ReducedVals.push_back(TreeN); 7612 else { 7613 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7614 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7615 // Check if TreeN is an extra argument of its parent operation. 7616 if (Stack.size() <= 1) { 7617 // TreeN can't be an extra argument as it is a root reduction 7618 // operation. 7619 return false; 7620 } 7621 // Yes, TreeN is an extra argument, do not add it to a list of 7622 // reduction operations. 7623 // Stack[Stack.size() - 2] always points to the parent operation. 7624 markExtraArg(Stack[Stack.size() - 2], TreeN); 7625 ExtraArgs.erase(TreeN); 7626 } else 7627 addReductionOps(TreeN); 7628 } 7629 // Retract. 7630 Stack.pop_back(); 7631 continue; 7632 } 7633 7634 // Visit left or right. 7635 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7636 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7637 if (!EdgeInst) { 7638 // Edge value is not a reduction instruction or a leaf instruction. 7639 // (It may be a constant, function argument, or something else.) 7640 markExtraArg(Stack.back(), EdgeVal); 7641 continue; 7642 } 7643 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7644 // Continue analysis if the next operand is a reduction operation or 7645 // (possibly) a leaf value. If the leaf value opcode is not set, 7646 // the first met operation != reduction operation is considered as the 7647 // leaf opcode. 7648 // Only handle trees in the current basic block. 7649 // Each tree node needs to have minimal number of users except for the 7650 // ultimate reduction. 7651 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7652 if (EdgeInst != Phi && EdgeInst != B && 7653 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7654 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7655 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7656 if (IsRdxInst) { 7657 // We need to be able to reassociate the reduction operations. 7658 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7659 // I is an extra argument for TreeN (its parent operation). 7660 markExtraArg(Stack.back(), EdgeInst); 7661 continue; 7662 } 7663 } else if (!LeafOpcode) { 7664 LeafOpcode = EdgeInst->getOpcode(); 7665 } 7666 Stack.push_back( 7667 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7668 continue; 7669 } 7670 // I is an extra argument for TreeN (its parent operation). 7671 markExtraArg(Stack.back(), EdgeInst); 7672 } 7673 return true; 7674 } 7675 7676 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7677 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7678 // If there are a sufficient number of reduction values, reduce 7679 // to a nearby power-of-2. We can safely generate oversized 7680 // vectors and rely on the backend to split them to legal sizes. 7681 unsigned NumReducedVals = ReducedVals.size(); 7682 if (NumReducedVals < 4) 7683 return false; 7684 7685 // Intersect the fast-math-flags from all reduction operations. 7686 FastMathFlags RdxFMF; 7687 RdxFMF.set(); 7688 for (ReductionOpsType &RdxOp : ReductionOps) { 7689 for (Value *RdxVal : RdxOp) { 7690 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7691 RdxFMF &= FPMO->getFastMathFlags(); 7692 } 7693 } 7694 7695 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7696 Builder.setFastMathFlags(RdxFMF); 7697 7698 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7699 // The same extra argument may be used several times, so log each attempt 7700 // to use it. 7701 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7702 assert(Pair.first && "DebugLoc must be set."); 7703 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7704 } 7705 7706 // The compare instruction of a min/max is the insertion point for new 7707 // instructions and may be replaced with a new compare instruction. 7708 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7709 assert(isa<SelectInst>(RdxRootInst) && 7710 "Expected min/max reduction to have select root instruction"); 7711 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7712 assert(isa<Instruction>(ScalarCond) && 7713 "Expected min/max reduction to have compare condition"); 7714 return cast<Instruction>(ScalarCond); 7715 }; 7716 7717 // The reduction root is used as the insertion point for new instructions, 7718 // so set it as externally used to prevent it from being deleted. 7719 ExternallyUsedValues[ReductionRoot]; 7720 SmallVector<Value *, 16> IgnoreList; 7721 for (ReductionOpsType &RdxOp : ReductionOps) 7722 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7723 7724 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7725 if (NumReducedVals > ReduxWidth) { 7726 // In the loop below, we are building a tree based on a window of 7727 // 'ReduxWidth' values. 7728 // If the operands of those values have common traits (compare predicate, 7729 // constant operand, etc), then we want to group those together to 7730 // minimize the cost of the reduction. 7731 7732 // TODO: This should be extended to count common operands for 7733 // compares and binops. 7734 7735 // Step 1: Count the number of times each compare predicate occurs. 7736 SmallDenseMap<unsigned, unsigned> PredCountMap; 7737 for (Value *RdxVal : ReducedVals) { 7738 CmpInst::Predicate Pred; 7739 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7740 ++PredCountMap[Pred]; 7741 } 7742 // Step 2: Sort the values so the most common predicates come first. 7743 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7744 CmpInst::Predicate PredA, PredB; 7745 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7746 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7747 return PredCountMap[PredA] > PredCountMap[PredB]; 7748 } 7749 return false; 7750 }); 7751 } 7752 7753 Value *VectorizedTree = nullptr; 7754 unsigned i = 0; 7755 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7756 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7757 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7758 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7759 if (Order) { 7760 assert(Order->size() == VL.size() && 7761 "Order size must be the same as number of vectorized " 7762 "instructions."); 7763 // TODO: reorder tree nodes without tree rebuilding. 7764 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7765 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7766 [VL](const unsigned Idx) { return VL[Idx]; }); 7767 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7768 } 7769 if (V.isTreeTinyAndNotFullyVectorizable()) 7770 break; 7771 if (V.isLoadCombineReductionCandidate(RdxKind)) 7772 break; 7773 7774 V.computeMinimumValueSizes(); 7775 7776 // Estimate cost. 7777 InstructionCost TreeCost = 7778 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 7779 InstructionCost ReductionCost = 7780 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7781 InstructionCost Cost = TreeCost + ReductionCost; 7782 if (!Cost.isValid()) { 7783 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7784 return false; 7785 } 7786 if (Cost >= -SLPCostThreshold) { 7787 V.getORE()->emit([&]() { 7788 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7789 cast<Instruction>(VL[0])) 7790 << "Vectorizing horizontal reduction is possible" 7791 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7792 << " and threshold " 7793 << ore::NV("Threshold", -SLPCostThreshold); 7794 }); 7795 break; 7796 } 7797 7798 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7799 << Cost << ". (HorRdx)\n"); 7800 V.getORE()->emit([&]() { 7801 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7802 cast<Instruction>(VL[0])) 7803 << "Vectorized horizontal reduction with cost " 7804 << ore::NV("Cost", Cost) << " and with tree size " 7805 << ore::NV("TreeSize", V.getTreeSize()); 7806 }); 7807 7808 // Vectorize a tree. 7809 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7810 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7811 7812 // Emit a reduction. If the root is a select (min/max idiom), the insert 7813 // point is the compare condition of that select. 7814 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7815 if (isa<SelectInst>(RdxRootInst)) 7816 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7817 else 7818 Builder.SetInsertPoint(RdxRootInst); 7819 7820 Value *ReducedSubTree = 7821 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7822 7823 if (!VectorizedTree) { 7824 // Initialize the final value in the reduction. 7825 VectorizedTree = ReducedSubTree; 7826 } else { 7827 // Update the final value in the reduction. 7828 Builder.SetCurrentDebugLocation(Loc); 7829 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7830 ReducedSubTree, "op.rdx", ReductionOps); 7831 } 7832 i += ReduxWidth; 7833 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7834 } 7835 7836 if (VectorizedTree) { 7837 // Finish the reduction. 7838 for (; i < NumReducedVals; ++i) { 7839 auto *I = cast<Instruction>(ReducedVals[i]); 7840 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7841 VectorizedTree = 7842 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7843 } 7844 for (auto &Pair : ExternallyUsedValues) { 7845 // Add each externally used value to the final reduction. 7846 for (auto *I : Pair.second) { 7847 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7848 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7849 Pair.first, "op.extra", I); 7850 } 7851 } 7852 7853 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7854 7855 // Mark all scalar reduction ops for deletion, they are replaced by the 7856 // vector reductions. 7857 V.eraseInstructions(IgnoreList); 7858 } 7859 return VectorizedTree != nullptr; 7860 } 7861 7862 unsigned numReductionValues() const { return ReducedVals.size(); } 7863 7864 private: 7865 /// Calculate the cost of a reduction. 7866 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7867 Value *FirstReducedVal, 7868 unsigned ReduxWidth) { 7869 Type *ScalarTy = FirstReducedVal->getType(); 7870 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7871 InstructionCost VectorCost, ScalarCost; 7872 switch (RdxKind) { 7873 case RecurKind::Add: 7874 case RecurKind::Mul: 7875 case RecurKind::Or: 7876 case RecurKind::And: 7877 case RecurKind::Xor: 7878 case RecurKind::FAdd: 7879 case RecurKind::FMul: { 7880 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7881 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7882 /*IsPairwiseForm=*/false); 7883 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7884 break; 7885 } 7886 case RecurKind::FMax: 7887 case RecurKind::FMin: { 7888 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7889 VectorCost = 7890 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7891 /*pairwise=*/false, /*unsigned=*/false); 7892 ScalarCost = 7893 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7894 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7895 CmpInst::makeCmpResultType(ScalarTy)); 7896 break; 7897 } 7898 case RecurKind::SMax: 7899 case RecurKind::SMin: 7900 case RecurKind::UMax: 7901 case RecurKind::UMin: { 7902 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7903 bool IsUnsigned = 7904 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7905 VectorCost = 7906 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7907 /*IsPairwiseForm=*/false, IsUnsigned); 7908 ScalarCost = 7909 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7910 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7911 CmpInst::makeCmpResultType(ScalarTy)); 7912 break; 7913 } 7914 default: 7915 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7916 } 7917 7918 // Scalar cost is repeated for N-1 elements. 7919 ScalarCost *= (ReduxWidth - 1); 7920 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7921 << " for reduction that starts with " << *FirstReducedVal 7922 << " (It is a splitting reduction)\n"); 7923 return VectorCost - ScalarCost; 7924 } 7925 7926 /// Emit a horizontal reduction of the vectorized value. 7927 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7928 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7929 assert(VectorizedValue && "Need to have a vectorized tree node"); 7930 assert(isPowerOf2_32(ReduxWidth) && 7931 "We only handle power-of-two reductions for now"); 7932 7933 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7934 ReductionOps.back()); 7935 } 7936 }; 7937 7938 } // end anonymous namespace 7939 7940 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7941 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7942 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7943 7944 unsigned AggregateSize = 1; 7945 auto *IV = cast<InsertValueInst>(InsertInst); 7946 Type *CurrentType = IV->getType(); 7947 do { 7948 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7949 for (auto *Elt : ST->elements()) 7950 if (Elt != ST->getElementType(0)) // check homogeneity 7951 return None; 7952 AggregateSize *= ST->getNumElements(); 7953 CurrentType = ST->getElementType(0); 7954 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7955 AggregateSize *= AT->getNumElements(); 7956 CurrentType = AT->getElementType(); 7957 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7958 AggregateSize *= VT->getNumElements(); 7959 return AggregateSize; 7960 } else if (CurrentType->isSingleValueType()) { 7961 return AggregateSize; 7962 } else { 7963 return None; 7964 } 7965 } while (true); 7966 } 7967 7968 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7969 TargetTransformInfo *TTI, 7970 SmallVectorImpl<Value *> &BuildVectorOpds, 7971 SmallVectorImpl<Value *> &InsertElts, 7972 unsigned OperandOffset) { 7973 do { 7974 Value *InsertedOperand = LastInsertInst->getOperand(1); 7975 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 7976 if (!OperandIndex) 7977 return false; 7978 if (isa<InsertElementInst>(InsertedOperand) || 7979 isa<InsertValueInst>(InsertedOperand)) { 7980 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7981 BuildVectorOpds, InsertElts, *OperandIndex)) 7982 return false; 7983 } else { 7984 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7985 InsertElts[*OperandIndex] = LastInsertInst; 7986 } 7987 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7988 } while (LastInsertInst != nullptr && 7989 (isa<InsertValueInst>(LastInsertInst) || 7990 isa<InsertElementInst>(LastInsertInst)) && 7991 LastInsertInst->hasOneUse()); 7992 return true; 7993 } 7994 7995 /// Recognize construction of vectors like 7996 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7997 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7998 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7999 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8000 /// starting from the last insertelement or insertvalue instruction. 8001 /// 8002 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8003 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8004 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8005 /// 8006 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8007 /// 8008 /// \return true if it matches. 8009 static bool findBuildAggregate(Instruction *LastInsertInst, 8010 TargetTransformInfo *TTI, 8011 SmallVectorImpl<Value *> &BuildVectorOpds, 8012 SmallVectorImpl<Value *> &InsertElts) { 8013 8014 assert((isa<InsertElementInst>(LastInsertInst) || 8015 isa<InsertValueInst>(LastInsertInst)) && 8016 "Expected insertelement or insertvalue instruction!"); 8017 8018 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8019 "Expected empty result vectors!"); 8020 8021 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8022 if (!AggregateSize) 8023 return false; 8024 BuildVectorOpds.resize(*AggregateSize); 8025 InsertElts.resize(*AggregateSize); 8026 8027 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8028 0)) { 8029 llvm::erase_value(BuildVectorOpds, nullptr); 8030 llvm::erase_value(InsertElts, nullptr); 8031 if (BuildVectorOpds.size() >= 2) 8032 return true; 8033 } 8034 8035 return false; 8036 } 8037 8038 /// Try and get a reduction value from a phi node. 8039 /// 8040 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8041 /// if they come from either \p ParentBB or a containing loop latch. 8042 /// 8043 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8044 /// if not possible. 8045 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8046 BasicBlock *ParentBB, LoopInfo *LI) { 8047 // There are situations where the reduction value is not dominated by the 8048 // reduction phi. Vectorizing such cases has been reported to cause 8049 // miscompiles. See PR25787. 8050 auto DominatedReduxValue = [&](Value *R) { 8051 return isa<Instruction>(R) && 8052 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8053 }; 8054 8055 Value *Rdx = nullptr; 8056 8057 // Return the incoming value if it comes from the same BB as the phi node. 8058 if (P->getIncomingBlock(0) == ParentBB) { 8059 Rdx = P->getIncomingValue(0); 8060 } else if (P->getIncomingBlock(1) == ParentBB) { 8061 Rdx = P->getIncomingValue(1); 8062 } 8063 8064 if (Rdx && DominatedReduxValue(Rdx)) 8065 return Rdx; 8066 8067 // Otherwise, check whether we have a loop latch to look at. 8068 Loop *BBL = LI->getLoopFor(ParentBB); 8069 if (!BBL) 8070 return nullptr; 8071 BasicBlock *BBLatch = BBL->getLoopLatch(); 8072 if (!BBLatch) 8073 return nullptr; 8074 8075 // There is a loop latch, return the incoming value if it comes from 8076 // that. This reduction pattern occasionally turns up. 8077 if (P->getIncomingBlock(0) == BBLatch) { 8078 Rdx = P->getIncomingValue(0); 8079 } else if (P->getIncomingBlock(1) == BBLatch) { 8080 Rdx = P->getIncomingValue(1); 8081 } 8082 8083 if (Rdx && DominatedReduxValue(Rdx)) 8084 return Rdx; 8085 8086 return nullptr; 8087 } 8088 8089 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8090 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8091 return true; 8092 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8093 return true; 8094 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8095 return true; 8096 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8097 return true; 8098 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8099 return true; 8100 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8101 return true; 8102 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8103 return true; 8104 return false; 8105 } 8106 8107 /// Attempt to reduce a horizontal reduction. 8108 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8109 /// with reduction operators \a Root (or one of its operands) in a basic block 8110 /// \a BB, then check if it can be done. If horizontal reduction is not found 8111 /// and root instruction is a binary operation, vectorization of the operands is 8112 /// attempted. 8113 /// \returns true if a horizontal reduction was matched and reduced or operands 8114 /// of one of the binary instruction were vectorized. 8115 /// \returns false if a horizontal reduction was not matched (or not possible) 8116 /// or no vectorization of any binary operation feeding \a Root instruction was 8117 /// performed. 8118 static bool tryToVectorizeHorReductionOrInstOperands( 8119 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8120 TargetTransformInfo *TTI, 8121 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8122 if (!ShouldVectorizeHor) 8123 return false; 8124 8125 if (!Root) 8126 return false; 8127 8128 if (Root->getParent() != BB || isa<PHINode>(Root)) 8129 return false; 8130 // Start analysis starting from Root instruction. If horizontal reduction is 8131 // found, try to vectorize it. If it is not a horizontal reduction or 8132 // vectorization is not possible or not effective, and currently analyzed 8133 // instruction is a binary operation, try to vectorize the operands, using 8134 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8135 // the same procedure considering each operand as a possible root of the 8136 // horizontal reduction. 8137 // Interrupt the process if the Root instruction itself was vectorized or all 8138 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8139 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8140 // CmpInsts so we can skip extra attempts in 8141 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8142 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8143 SmallPtrSet<Value *, 8> VisitedInstrs; 8144 bool Res = false; 8145 while (!Stack.empty()) { 8146 Instruction *Inst; 8147 unsigned Level; 8148 std::tie(Inst, Level) = Stack.pop_back_val(); 8149 Value *B0, *B1; 8150 bool IsBinop = matchRdxBop(Inst, B0, B1); 8151 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8152 if (IsBinop || IsSelect) { 8153 HorizontalReduction HorRdx; 8154 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8155 if (HorRdx.tryToReduce(R, TTI)) { 8156 Res = true; 8157 // Set P to nullptr to avoid re-analysis of phi node in 8158 // matchAssociativeReduction function unless this is the root node. 8159 P = nullptr; 8160 continue; 8161 } 8162 } 8163 if (P && IsBinop) { 8164 Inst = dyn_cast<Instruction>(B0); 8165 if (Inst == P) 8166 Inst = dyn_cast<Instruction>(B1); 8167 if (!Inst) { 8168 // Set P to nullptr to avoid re-analysis of phi node in 8169 // matchAssociativeReduction function unless this is the root node. 8170 P = nullptr; 8171 continue; 8172 } 8173 } 8174 } 8175 // Set P to nullptr to avoid re-analysis of phi node in 8176 // matchAssociativeReduction function unless this is the root node. 8177 P = nullptr; 8178 // Do not try to vectorize CmpInst operands, this is done separately. 8179 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8180 Res = true; 8181 continue; 8182 } 8183 8184 // Try to vectorize operands. 8185 // Continue analysis for the instruction from the same basic block only to 8186 // save compile time. 8187 if (++Level < RecursionMaxDepth) 8188 for (auto *Op : Inst->operand_values()) 8189 if (VisitedInstrs.insert(Op).second) 8190 if (auto *I = dyn_cast<Instruction>(Op)) 8191 // Do not try to vectorize CmpInst operands, this is done 8192 // separately. 8193 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8194 I->getParent() == BB) 8195 Stack.emplace_back(I, Level); 8196 } 8197 return Res; 8198 } 8199 8200 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8201 BasicBlock *BB, BoUpSLP &R, 8202 TargetTransformInfo *TTI) { 8203 auto *I = dyn_cast_or_null<Instruction>(V); 8204 if (!I) 8205 return false; 8206 8207 if (!isa<BinaryOperator>(I)) 8208 P = nullptr; 8209 // Try to match and vectorize a horizontal reduction. 8210 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8211 return tryToVectorize(I, R); 8212 }; 8213 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8214 ExtraVectorization); 8215 } 8216 8217 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8218 BasicBlock *BB, BoUpSLP &R) { 8219 const DataLayout &DL = BB->getModule()->getDataLayout(); 8220 if (!R.canMapToVector(IVI->getType(), DL)) 8221 return false; 8222 8223 SmallVector<Value *, 16> BuildVectorOpds; 8224 SmallVector<Value *, 16> BuildVectorInsts; 8225 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8226 return false; 8227 8228 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8229 // Aggregate value is unlikely to be processed in vector register, we need to 8230 // extract scalars into scalar registers, so NeedExtraction is set true. 8231 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false); 8232 } 8233 8234 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8235 BasicBlock *BB, BoUpSLP &R) { 8236 SmallVector<Value *, 16> BuildVectorInsts; 8237 SmallVector<Value *, 16> BuildVectorOpds; 8238 SmallVector<int> Mask; 8239 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8240 (llvm::all_of(BuildVectorOpds, 8241 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8242 isShuffle(BuildVectorOpds, Mask))) 8243 return false; 8244 8245 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8246 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true); 8247 } 8248 8249 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8250 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8251 bool AtTerminator) { 8252 bool OpsChanged = false; 8253 SmallVector<Instruction *, 4> PostponedCmps; 8254 for (auto *I : reverse(Instructions)) { 8255 if (R.isDeleted(I)) 8256 continue; 8257 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8258 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8259 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8260 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8261 else if (isa<CmpInst>(I)) 8262 PostponedCmps.push_back(I); 8263 } 8264 if (AtTerminator) { 8265 // Try to find reductions first. 8266 for (Instruction *I : PostponedCmps) { 8267 if (R.isDeleted(I)) 8268 continue; 8269 for (Value *Op : I->operands()) 8270 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8271 } 8272 // Try to vectorize operands as vector bundles. 8273 for (Instruction *I : PostponedCmps) { 8274 if (R.isDeleted(I)) 8275 continue; 8276 OpsChanged |= tryToVectorize(I, R); 8277 } 8278 Instructions.clear(); 8279 } else { 8280 // Insert in reverse order since the PostponedCmps vector was filled in 8281 // reverse order. 8282 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8283 } 8284 return OpsChanged; 8285 } 8286 8287 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8288 bool Changed = false; 8289 SmallVector<Value *, 4> Incoming; 8290 SmallPtrSet<Value *, 16> VisitedInstrs; 8291 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 8292 // node. Allows better to identify the chains that can be vectorized in the 8293 // better way. 8294 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 8295 8296 bool HaveVectorizedPhiNodes = true; 8297 while (HaveVectorizedPhiNodes) { 8298 HaveVectorizedPhiNodes = false; 8299 8300 // Collect the incoming values from the PHIs. 8301 Incoming.clear(); 8302 for (Instruction &I : *BB) { 8303 PHINode *P = dyn_cast<PHINode>(&I); 8304 if (!P) 8305 break; 8306 8307 // No need to analyze deleted, vectorized and non-vectorizable 8308 // instructions. 8309 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 8310 !P->getType()->isVectorTy()) 8311 Incoming.push_back(P); 8312 } 8313 8314 // Find the corresponding non-phi nodes for better matching when trying to 8315 // build the tree. 8316 for (Value *V : Incoming) { 8317 SmallVectorImpl<Value *> &Opcodes = 8318 PHIToOpcodes.try_emplace(V).first->getSecond(); 8319 if (!Opcodes.empty()) 8320 continue; 8321 SmallVector<Value *, 4> Nodes(1, V); 8322 SmallPtrSet<Value *, 4> Visited; 8323 while (!Nodes.empty()) { 8324 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 8325 if (!Visited.insert(PHI).second) 8326 continue; 8327 for (Value *V : PHI->incoming_values()) { 8328 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 8329 Nodes.push_back(PHI1); 8330 continue; 8331 } 8332 Opcodes.emplace_back(V); 8333 } 8334 } 8335 } 8336 8337 // Sort by type, parent, operands. 8338 stable_sort(Incoming, [&PHIToOpcodes](Value *V1, Value *V2) { 8339 if (V1->getType() < V2->getType()) 8340 return true; 8341 if (V1->getType() > V2->getType()) 8342 return false; 8343 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8344 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8345 if (Opcodes1.size() < Opcodes2.size()) 8346 return true; 8347 if (Opcodes1.size() > Opcodes2.size()) 8348 return false; 8349 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8350 // Undefs are compatible with any other value. 8351 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8352 continue; 8353 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8354 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8355 if (I1->getParent() < I2->getParent()) 8356 return true; 8357 if (I1->getParent() > I2->getParent()) 8358 return false; 8359 InstructionsState S = getSameOpcode({I1, I2}); 8360 if (S.getOpcode()) 8361 continue; 8362 return I1->getOpcode() < I2->getOpcode(); 8363 } 8364 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8365 continue; 8366 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 8367 return true; 8368 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 8369 return false; 8370 } 8371 return false; 8372 }); 8373 8374 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 8375 if (V1 == V2) 8376 return true; 8377 if (V1->getType() != V2->getType()) 8378 return false; 8379 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8380 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8381 if (Opcodes1.size() != Opcodes2.size()) 8382 return false; 8383 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8384 // Undefs are compatible with any other value. 8385 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8386 continue; 8387 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8388 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8389 if (I1->getParent() != I2->getParent()) 8390 return false; 8391 InstructionsState S = getSameOpcode({I1, I2}); 8392 if (S.getOpcode()) 8393 continue; 8394 return false; 8395 } 8396 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8397 continue; 8398 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 8399 return false; 8400 } 8401 return true; 8402 }; 8403 8404 // Try to vectorize elements base on their type. 8405 SmallVector<Value *, 4> Candidates; 8406 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8407 E = Incoming.end(); 8408 IncIt != E;) { 8409 8410 // Look for the next elements with the same type, parent and operand 8411 // kinds. 8412 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8413 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) { 8414 VisitedInstrs.insert(*SameTypeIt); 8415 ++SameTypeIt; 8416 } 8417 8418 // Try to vectorize them. 8419 unsigned NumElts = (SameTypeIt - IncIt); 8420 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8421 << NumElts << ")\n"); 8422 // The order in which the phi nodes appear in the program does not matter. 8423 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8424 // is done when there are exactly two elements since tryToVectorizeList 8425 // asserts that there are only two values when AllowReorder is true. 8426 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 8427 /*AllowReorder=*/true)) { 8428 // Success start over because instructions might have been changed. 8429 HaveVectorizedPhiNodes = true; 8430 Changed = true; 8431 } else if (NumElts < 4 && 8432 (Candidates.empty() || 8433 Candidates.front()->getType() == (*IncIt)->getType())) { 8434 Candidates.append(IncIt, std::next(IncIt, NumElts)); 8435 } 8436 // Final attempt to vectorize phis with the same types. 8437 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) { 8438 if (Candidates.size() > 1 && 8439 tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) { 8440 // Success start over because instructions might have been changed. 8441 HaveVectorizedPhiNodes = true; 8442 Changed = true; 8443 } 8444 Candidates.clear(); 8445 } 8446 8447 // Start over at the next instruction of a different type (or the end). 8448 IncIt = SameTypeIt; 8449 } 8450 } 8451 8452 VisitedInstrs.clear(); 8453 8454 SmallVector<Instruction *, 8> PostProcessInstructions; 8455 SmallDenseSet<Instruction *, 4> KeyNodes; 8456 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8457 // Skip instructions with scalable type. The num of elements is unknown at 8458 // compile-time for scalable type. 8459 if (isa<ScalableVectorType>(it->getType())) 8460 continue; 8461 8462 // Skip instructions marked for the deletion. 8463 if (R.isDeleted(&*it)) 8464 continue; 8465 // We may go through BB multiple times so skip the one we have checked. 8466 if (!VisitedInstrs.insert(&*it).second) { 8467 if (it->use_empty() && KeyNodes.contains(&*it) && 8468 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8469 it->isTerminator())) { 8470 // We would like to start over since some instructions are deleted 8471 // and the iterator may become invalid value. 8472 Changed = true; 8473 it = BB->begin(); 8474 e = BB->end(); 8475 } 8476 continue; 8477 } 8478 8479 if (isa<DbgInfoIntrinsic>(it)) 8480 continue; 8481 8482 // Try to vectorize reductions that use PHINodes. 8483 if (PHINode *P = dyn_cast<PHINode>(it)) { 8484 // Check that the PHI is a reduction PHI. 8485 if (P->getNumIncomingValues() == 2) { 8486 // Try to match and vectorize a horizontal reduction. 8487 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 8488 TTI)) { 8489 Changed = true; 8490 it = BB->begin(); 8491 e = BB->end(); 8492 continue; 8493 } 8494 } 8495 // Try to vectorize the incoming values of the PHI, to catch reductions 8496 // that feed into PHIs. 8497 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 8498 // Skip if the incoming block is the current BB for now. Also, bypass 8499 // unreachable IR for efficiency and to avoid crashing. 8500 // TODO: Collect the skipped incoming values and try to vectorize them 8501 // after processing BB. 8502 if (BB == P->getIncomingBlock(I) || 8503 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 8504 continue; 8505 8506 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 8507 P->getIncomingBlock(I), R, TTI); 8508 } 8509 continue; 8510 } 8511 8512 // Ran into an instruction without users, like terminator, or function call 8513 // with ignored return value, store. Ignore unused instructions (basing on 8514 // instruction type, except for CallInst and InvokeInst). 8515 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 8516 isa<InvokeInst>(it))) { 8517 KeyNodes.insert(&*it); 8518 bool OpsChanged = false; 8519 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 8520 for (auto *V : it->operand_values()) { 8521 // Try to match and vectorize a horizontal reduction. 8522 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 8523 } 8524 } 8525 // Start vectorization of post-process list of instructions from the 8526 // top-tree instructions to try to vectorize as many instructions as 8527 // possible. 8528 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8529 it->isTerminator()); 8530 if (OpsChanged) { 8531 // We would like to start over since some instructions are deleted 8532 // and the iterator may become invalid value. 8533 Changed = true; 8534 it = BB->begin(); 8535 e = BB->end(); 8536 continue; 8537 } 8538 } 8539 8540 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 8541 isa<InsertValueInst>(it)) 8542 PostProcessInstructions.push_back(&*it); 8543 } 8544 8545 return Changed; 8546 } 8547 8548 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 8549 auto Changed = false; 8550 for (auto &Entry : GEPs) { 8551 // If the getelementptr list has fewer than two elements, there's nothing 8552 // to do. 8553 if (Entry.second.size() < 2) 8554 continue; 8555 8556 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 8557 << Entry.second.size() << ".\n"); 8558 8559 // Process the GEP list in chunks suitable for the target's supported 8560 // vector size. If a vector register can't hold 1 element, we are done. We 8561 // are trying to vectorize the index computations, so the maximum number of 8562 // elements is based on the size of the index expression, rather than the 8563 // size of the GEP itself (the target's pointer size). 8564 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8565 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 8566 if (MaxVecRegSize < EltSize) 8567 continue; 8568 8569 unsigned MaxElts = MaxVecRegSize / EltSize; 8570 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 8571 auto Len = std::min<unsigned>(BE - BI, MaxElts); 8572 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 8573 8574 // Initialize a set a candidate getelementptrs. Note that we use a 8575 // SetVector here to preserve program order. If the index computations 8576 // are vectorizable and begin with loads, we want to minimize the chance 8577 // of having to reorder them later. 8578 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 8579 8580 // Some of the candidates may have already been vectorized after we 8581 // initially collected them. If so, they are marked as deleted, so remove 8582 // them from the set of candidates. 8583 Candidates.remove_if( 8584 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8585 8586 // Remove from the set of candidates all pairs of getelementptrs with 8587 // constant differences. Such getelementptrs are likely not good 8588 // candidates for vectorization in a bottom-up phase since one can be 8589 // computed from the other. We also ensure all candidate getelementptr 8590 // indices are unique. 8591 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8592 auto *GEPI = GEPList[I]; 8593 if (!Candidates.count(GEPI)) 8594 continue; 8595 auto *SCEVI = SE->getSCEV(GEPList[I]); 8596 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8597 auto *GEPJ = GEPList[J]; 8598 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8599 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8600 Candidates.remove(GEPI); 8601 Candidates.remove(GEPJ); 8602 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8603 Candidates.remove(GEPJ); 8604 } 8605 } 8606 } 8607 8608 // We break out of the above computation as soon as we know there are 8609 // fewer than two candidates remaining. 8610 if (Candidates.size() < 2) 8611 continue; 8612 8613 // Add the single, non-constant index of each candidate to the bundle. We 8614 // ensured the indices met these constraints when we originally collected 8615 // the getelementptrs. 8616 SmallVector<Value *, 16> Bundle(Candidates.size()); 8617 auto BundleIndex = 0u; 8618 for (auto *V : Candidates) { 8619 auto *GEP = cast<GetElementPtrInst>(V); 8620 auto *GEPIdx = GEP->idx_begin()->get(); 8621 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8622 Bundle[BundleIndex++] = GEPIdx; 8623 } 8624 8625 // Try and vectorize the indices. We are currently only interested in 8626 // gather-like cases of the form: 8627 // 8628 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8629 // 8630 // where the loads of "a", the loads of "b", and the subtractions can be 8631 // performed in parallel. It's likely that detecting this pattern in a 8632 // bottom-up phase will be simpler and less costly than building a 8633 // full-blown top-down phase beginning at the consecutive loads. 8634 Changed |= tryToVectorizeList(Bundle, R); 8635 } 8636 } 8637 return Changed; 8638 } 8639 8640 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8641 bool Changed = false; 8642 // Attempt to sort and vectorize each of the store-groups. 8643 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8644 ++it) { 8645 if (it->second.size() < 2) 8646 continue; 8647 8648 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8649 << it->second.size() << ".\n"); 8650 8651 Changed |= vectorizeStores(it->second, R); 8652 } 8653 return Changed; 8654 } 8655 8656 char SLPVectorizer::ID = 0; 8657 8658 static const char lv_name[] = "SLP Vectorizer"; 8659 8660 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8661 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8662 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8663 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8664 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8665 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8666 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8667 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8668 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8669 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8670 8671 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8672