1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int I = 1, E = VL.size(); I < E; I++) { 204 auto *II = dyn_cast<Instruction>(VL[I]); 205 if (!II) 206 return false; 207 208 if (BB != II->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 static void inversePermutation(ArrayRef<unsigned> Indices, 527 SmallVectorImpl<int> &Mask) { 528 Mask.clear(); 529 const unsigned E = Indices.size(); 530 Mask.resize(E, E + 1); 531 for (unsigned I = 0; I < E; ++I) 532 Mask[Indices[I]] = I; 533 } 534 535 namespace slpvectorizer { 536 537 /// Bottom Up SLP Vectorizer. 538 class BoUpSLP { 539 struct TreeEntry; 540 struct ScheduleData; 541 542 public: 543 using ValueList = SmallVector<Value *, 8>; 544 using InstrList = SmallVector<Instruction *, 16>; 545 using ValueSet = SmallPtrSet<Value *, 16>; 546 using StoreList = SmallVector<StoreInst *, 8>; 547 using ExtraValueToDebugLocsMap = 548 MapVector<Value *, SmallVector<Instruction *, 2>>; 549 using OrdersType = SmallVector<unsigned, 4>; 550 551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 554 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 557 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 558 // Use the vector register size specified by the target unless overridden 559 // by a command-line option. 560 // TODO: It would be better to limit the vectorization factor based on 561 // data type rather than just register size. For example, x86 AVX has 562 // 256-bit registers, but it does not support integer operations 563 // at that width (that requires AVX2). 564 if (MaxVectorRegSizeOption.getNumOccurrences()) 565 MaxVecRegSize = MaxVectorRegSizeOption; 566 else 567 MaxVecRegSize = TTI->getRegisterBitWidth(true); 568 569 if (MinVectorRegSizeOption.getNumOccurrences()) 570 MinVecRegSize = MinVectorRegSizeOption; 571 else 572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 573 } 574 575 /// Vectorize the tree that starts with the elements in \p VL. 576 /// Returns the vectorized root. 577 Value *vectorizeTree(); 578 579 /// Vectorize the tree but with the list of externally used values \p 580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 581 /// generated extractvalue instructions. 582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 583 584 /// \returns the cost incurred by unwanted spills and fills, caused by 585 /// holding live values over call sites. 586 int getSpillCost() const; 587 588 /// \returns the vectorization cost of the subtree that starts at \p VL. 589 /// A negative number means that this is profitable. 590 int getTreeCost(); 591 592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 594 void buildTree(ArrayRef<Value *> Roots, 595 ArrayRef<Value *> UserIgnoreLst = None); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 599 /// into account (and updating it, if required) list of externally used 600 /// values stored in \p ExternallyUsedValues. 601 void buildTree(ArrayRef<Value *> Roots, 602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 603 ArrayRef<Value *> UserIgnoreLst = None); 604 605 /// Clear the internal data structures that are created by 'buildTree'. 606 void deleteTree() { 607 VectorizableTree.clear(); 608 ScalarToTreeEntry.clear(); 609 MustGather.clear(); 610 ExternalUses.clear(); 611 NumOpsWantToKeepOrder.clear(); 612 NumOpsWantToKeepOriginalOrder = 0; 613 for (auto &Iter : BlocksSchedules) { 614 BlockScheduling *BS = Iter.second.get(); 615 BS->clear(); 616 } 617 MinBWs.clear(); 618 } 619 620 unsigned getTreeSize() const { return VectorizableTree.size(); } 621 622 /// Perform LICM and CSE on the newly generated gather sequences. 623 void optimizeGatherSequence(); 624 625 /// \returns The best order of instructions for vectorization. 626 Optional<ArrayRef<unsigned>> bestOrder() const { 627 assert(llvm::all_of( 628 NumOpsWantToKeepOrder, 629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 630 return D.getFirst().size() == 631 VectorizableTree[0]->Scalars.size(); 632 }) && 633 "All orders must have the same size as number of instructions in " 634 "tree node."); 635 auto I = std::max_element( 636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 639 return D1.second < D2.second; 640 }); 641 if (I == NumOpsWantToKeepOrder.end() || 642 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 643 return None; 644 645 return makeArrayRef(I->getFirst()); 646 } 647 648 /// Builds the correct order for root instructions. 649 /// If some leaves have the same instructions to be vectorized, we may 650 /// incorrectly evaluate the best order for the root node (it is built for the 651 /// vector of instructions without repeated instructions and, thus, has less 652 /// elements than the root node). This function builds the correct order for 653 /// the root node. 654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 657 /// be reordered, the best order will be \<1, 0\>. We need to extend this 658 /// order for the root node. For the root node this order should look like 659 /// \<3, 0, 1, 2\>. This function extends the order for the reused 660 /// instructions. 661 void findRootOrder(OrdersType &Order) { 662 // If the leaf has the same number of instructions to vectorize as the root 663 // - order must be set already. 664 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 665 if (Order.size() == RootSize) 666 return; 667 SmallVector<unsigned, 4> RealOrder(Order.size()); 668 std::swap(Order, RealOrder); 669 SmallVector<int, 4> Mask; 670 inversePermutation(RealOrder, Mask); 671 Order.assign(Mask.begin(), Mask.end()); 672 // The leaf has less number of instructions - need to find the true order of 673 // the root. 674 // Scan the nodes starting from the leaf back to the root. 675 const TreeEntry *PNode = VectorizableTree.back().get(); 676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 677 SmallPtrSet<const TreeEntry *, 4> Visited; 678 while (!Nodes.empty() && Order.size() != RootSize) { 679 const TreeEntry *PNode = Nodes.pop_back_val(); 680 if (!Visited.insert(PNode).second) 681 continue; 682 const TreeEntry &Node = *PNode; 683 for (const EdgeInfo &EI : Node.UserTreeIndices) 684 if (EI.UserTE) 685 Nodes.push_back(EI.UserTE); 686 if (Node.ReuseShuffleIndices.empty()) 687 continue; 688 // Build the order for the parent node. 689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 691 // The algorithm of the order extension is: 692 // 1. Calculate the number of the same instructions for the order. 693 // 2. Calculate the index of the new order: total number of instructions 694 // with order less than the order of the current instruction + reuse 695 // number of the current instruction. 696 // 3. The new order is just the index of the instruction in the original 697 // vector of the instructions. 698 for (unsigned I : Node.ReuseShuffleIndices) 699 ++OrderCounter[Order[I]]; 700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 703 unsigned OrderIdx = Order[ReusedIdx]; 704 unsigned NewIdx = 0; 705 for (unsigned J = 0; J < OrderIdx; ++J) 706 NewIdx += OrderCounter[J]; 707 NewIdx += CurrentCounter[OrderIdx]; 708 ++CurrentCounter[OrderIdx]; 709 assert(NewOrder[NewIdx] == RootSize && 710 "The order index should not be written already."); 711 NewOrder[NewIdx] = I; 712 } 713 std::swap(Order, NewOrder); 714 } 715 assert(Order.size() == RootSize && 716 "Root node is expected or the size of the order must be the same as " 717 "the number of elements in the root node."); 718 assert(llvm::all_of(Order, 719 [RootSize](unsigned Val) { return Val != RootSize; }) && 720 "All indices must be initialized"); 721 } 722 723 /// \return The vector element size in bits to use when vectorizing the 724 /// expression tree ending at \p V. If V is a store, the size is the width of 725 /// the stored value. Otherwise, the size is the width of the largest loaded 726 /// value reaching V. This method is used by the vectorizer to calculate 727 /// vectorization factors. 728 unsigned getVectorElementSize(Value *V); 729 730 /// Compute the minimum type sizes required to represent the entries in a 731 /// vectorizable tree. 732 void computeMinimumValueSizes(); 733 734 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 735 unsigned getMaxVecRegSize() const { 736 return MaxVecRegSize; 737 } 738 739 // \returns minimum vector register size as set by cl::opt. 740 unsigned getMinVecRegSize() const { 741 return MinVecRegSize; 742 } 743 744 /// Check if homogeneous aggregate is isomorphic to some VectorType. 745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 748 /// 749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 750 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 751 752 /// \returns True if the VectorizableTree is both tiny and not fully 753 /// vectorizable. We do not vectorize such trees. 754 bool isTreeTinyAndNotFullyVectorizable() const; 755 756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 757 /// can be load combined in the backend. Load combining may not be allowed in 758 /// the IR optimizer, so we do not want to alter the pattern. For example, 759 /// partially transforming a scalar bswap() pattern into vector code is 760 /// effectively impossible for the backend to undo. 761 /// TODO: If load combining is allowed in the IR optimizer, this analysis 762 /// may not be necessary. 763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 764 765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 766 /// can be load combined in the backend. Load combining may not be allowed in 767 /// the IR optimizer, so we do not want to alter the pattern. For example, 768 /// partially transforming a scalar bswap() pattern into vector code is 769 /// effectively impossible for the backend to undo. 770 /// TODO: If load combining is allowed in the IR optimizer, this analysis 771 /// may not be necessary. 772 bool isLoadCombineCandidate() const; 773 774 OptimizationRemarkEmitter *getORE() { return ORE; } 775 776 /// This structure holds any data we need about the edges being traversed 777 /// during buildTree_rec(). We keep track of: 778 /// (i) the user TreeEntry index, and 779 /// (ii) the index of the edge. 780 struct EdgeInfo { 781 EdgeInfo() = default; 782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 784 /// The user TreeEntry. 785 TreeEntry *UserTE = nullptr; 786 /// The operand index of the use. 787 unsigned EdgeIdx = UINT_MAX; 788 #ifndef NDEBUG 789 friend inline raw_ostream &operator<<(raw_ostream &OS, 790 const BoUpSLP::EdgeInfo &EI) { 791 EI.dump(OS); 792 return OS; 793 } 794 /// Debug print. 795 void dump(raw_ostream &OS) const { 796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 797 << " EdgeIdx:" << EdgeIdx << "}"; 798 } 799 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 800 #endif 801 }; 802 803 /// A helper data structure to hold the operands of a vector of instructions. 804 /// This supports a fixed vector length for all operand vectors. 805 class VLOperands { 806 /// For each operand we need (i) the value, and (ii) the opcode that it 807 /// would be attached to if the expression was in a left-linearized form. 808 /// This is required to avoid illegal operand reordering. 809 /// For example: 810 /// \verbatim 811 /// 0 Op1 812 /// |/ 813 /// Op1 Op2 Linearized + Op2 814 /// \ / ----------> |/ 815 /// - - 816 /// 817 /// Op1 - Op2 (0 + Op1) - Op2 818 /// \endverbatim 819 /// 820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 821 /// 822 /// Another way to think of this is to track all the operations across the 823 /// path from the operand all the way to the root of the tree and to 824 /// calculate the operation that corresponds to this path. For example, the 825 /// path from Op2 to the root crosses the RHS of the '-', therefore the 826 /// corresponding operation is a '-' (which matches the one in the 827 /// linearized tree, as shown above). 828 /// 829 /// For lack of a better term, we refer to this operation as Accumulated 830 /// Path Operation (APO). 831 struct OperandData { 832 OperandData() = default; 833 OperandData(Value *V, bool APO, bool IsUsed) 834 : V(V), APO(APO), IsUsed(IsUsed) {} 835 /// The operand value. 836 Value *V = nullptr; 837 /// TreeEntries only allow a single opcode, or an alternate sequence of 838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 841 /// (e.g., Add/Mul) 842 bool APO = false; 843 /// Helper data for the reordering function. 844 bool IsUsed = false; 845 }; 846 847 /// During operand reordering, we are trying to select the operand at lane 848 /// that matches best with the operand at the neighboring lane. Our 849 /// selection is based on the type of value we are looking for. For example, 850 /// if the neighboring lane has a load, we need to look for a load that is 851 /// accessing a consecutive address. These strategies are summarized in the 852 /// 'ReorderingMode' enumerator. 853 enum class ReorderingMode { 854 Load, ///< Matching loads to consecutive memory addresses 855 Opcode, ///< Matching instructions based on opcode (same or alternate) 856 Constant, ///< Matching constants 857 Splat, ///< Matching the same instruction multiple times (broadcast) 858 Failed, ///< We failed to create a vectorizable group 859 }; 860 861 using OperandDataVec = SmallVector<OperandData, 2>; 862 863 /// A vector of operand vectors. 864 SmallVector<OperandDataVec, 4> OpsVec; 865 866 const DataLayout &DL; 867 ScalarEvolution &SE; 868 const BoUpSLP &R; 869 870 /// \returns the operand data at \p OpIdx and \p Lane. 871 OperandData &getData(unsigned OpIdx, unsigned Lane) { 872 return OpsVec[OpIdx][Lane]; 873 } 874 875 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 877 return OpsVec[OpIdx][Lane]; 878 } 879 880 /// Clears the used flag for all entries. 881 void clearUsed() { 882 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 883 OpIdx != NumOperands; ++OpIdx) 884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 885 ++Lane) 886 OpsVec[OpIdx][Lane].IsUsed = false; 887 } 888 889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 892 } 893 894 // The hard-coded scores listed here are not very important. When computing 895 // the scores of matching one sub-tree with another, we are basically 896 // counting the number of values that are matching. So even if all scores 897 // are set to 1, we would still get a decent matching result. 898 // However, sometimes we have to break ties. For example we may have to 899 // choose between matching loads vs matching opcodes. This is what these 900 // scores are helping us with: they provide the order of preference. 901 902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 903 static const int ScoreConsecutiveLoads = 3; 904 /// ExtractElementInst from same vector and consecutive indexes. 905 static const int ScoreConsecutiveExtracts = 3; 906 /// Constants. 907 static const int ScoreConstants = 2; 908 /// Instructions with the same opcode. 909 static const int ScoreSameOpcode = 2; 910 /// Instructions with alt opcodes (e.g, add + sub). 911 static const int ScoreAltOpcodes = 1; 912 /// Identical instructions (a.k.a. splat or broadcast). 913 static const int ScoreSplat = 1; 914 /// Matching with an undef is preferable to failing. 915 static const int ScoreUndef = 1; 916 /// Score for failing to find a decent match. 917 static const int ScoreFail = 0; 918 /// User exteranl to the vectorized code. 919 static const int ExternalUseCost = 1; 920 /// The user is internal but in a different lane. 921 static const int UserInDiffLaneCost = ExternalUseCost; 922 923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 925 ScalarEvolution &SE) { 926 auto *LI1 = dyn_cast<LoadInst>(V1); 927 auto *LI2 = dyn_cast<LoadInst>(V2); 928 if (LI1 && LI2) 929 return isConsecutiveAccess(LI1, LI2, DL, SE) 930 ? VLOperands::ScoreConsecutiveLoads 931 : VLOperands::ScoreFail; 932 933 auto *C1 = dyn_cast<Constant>(V1); 934 auto *C2 = dyn_cast<Constant>(V2); 935 if (C1 && C2) 936 return VLOperands::ScoreConstants; 937 938 // Extracts from consecutive indexes of the same vector better score as 939 // the extracts could be optimized away. 940 Value *EV; 941 ConstantInt *Ex1Idx, *Ex2Idx; 942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 945 return VLOperands::ScoreConsecutiveExtracts; 946 947 auto *I1 = dyn_cast<Instruction>(V1); 948 auto *I2 = dyn_cast<Instruction>(V2); 949 if (I1 && I2) { 950 if (I1 == I2) 951 return VLOperands::ScoreSplat; 952 InstructionsState S = getSameOpcode({I1, I2}); 953 // Note: Only consider instructions with <= 2 operands to avoid 954 // complexity explosion. 955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 957 : VLOperands::ScoreSameOpcode; 958 } 959 960 if (isa<UndefValue>(V2)) 961 return VLOperands::ScoreUndef; 962 963 return VLOperands::ScoreFail; 964 } 965 966 /// Holds the values and their lane that are taking part in the look-ahead 967 /// score calculation. This is used in the external uses cost calculation. 968 SmallDenseMap<Value *, int> InLookAheadValues; 969 970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 971 /// either external to the vectorized code, or require shuffling. 972 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 973 const std::pair<Value *, int> &RHS) { 974 int Cost = 0; 975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 977 Value *V = Values[Idx].first; 978 // Calculate the absolute lane, using the minimum relative lane of LHS 979 // and RHS as base and Idx as the offset. 980 int Ln = std::min(LHS.second, RHS.second) + Idx; 981 assert(Ln >= 0 && "Bad lane calculation"); 982 unsigned UsersBudget = LookAheadUsersBudget; 983 for (User *U : V->users()) { 984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 985 // The user is in the VectorizableTree. Check if we need to insert. 986 auto It = llvm::find(UserTE->Scalars, U); 987 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 988 int UserLn = std::distance(UserTE->Scalars.begin(), It); 989 assert(UserLn >= 0 && "Bad lane"); 990 if (UserLn != Ln) 991 Cost += UserInDiffLaneCost; 992 } else { 993 // Check if the user is in the look-ahead code. 994 auto It2 = InLookAheadValues.find(U); 995 if (It2 != InLookAheadValues.end()) { 996 // The user is in the look-ahead code. Check the lane. 997 if (It2->second != Ln) 998 Cost += UserInDiffLaneCost; 999 } else { 1000 // The user is neither in SLP tree nor in the look-ahead code. 1001 Cost += ExternalUseCost; 1002 } 1003 } 1004 // Limit the number of visited uses to cap compilation time. 1005 if (--UsersBudget == 0) 1006 break; 1007 } 1008 } 1009 return Cost; 1010 } 1011 1012 /// Go through the operands of \p LHS and \p RHS recursively until \p 1013 /// MaxLevel, and return the cummulative score. For example: 1014 /// \verbatim 1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1016 /// \ / \ / \ / \ / 1017 /// + + + + 1018 /// G1 G2 G3 G4 1019 /// \endverbatim 1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1021 /// each level recursively, accumulating the score. It starts from matching 1022 /// the additions at level 0, then moves on to the loads (level 1). The 1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1026 /// Please note that the order of the operands does not matter, as we 1027 /// evaluate the score of all profitable combinations of operands. In 1028 /// other words the score of G1 and G4 is the same as G1 and G2. This 1029 /// heuristic is based on ideas described in: 1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1032 /// Luís F. W. Góes 1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS, int CurrLevel, 1035 int MaxLevel) { 1036 1037 Value *V1 = LHS.first; 1038 Value *V2 = RHS.first; 1039 // Get the shallow score of V1 and V2. 1040 int ShallowScoreAtThisLevel = 1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1042 getExternalUsesCost(LHS, RHS)); 1043 int Lane1 = LHS.second; 1044 int Lane2 = RHS.second; 1045 1046 // If reached MaxLevel, 1047 // or if V1 and V2 are not instructions, 1048 // or if they are SPLAT, 1049 // or if they are not consecutive, early return the current cost. 1050 auto *I1 = dyn_cast<Instruction>(V1); 1051 auto *I2 = dyn_cast<Instruction>(V2); 1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1055 return ShallowScoreAtThisLevel; 1056 assert(I1 && I2 && "Should have early exited."); 1057 1058 // Keep track of in-tree values for determining the external-use cost. 1059 InLookAheadValues[V1] = Lane1; 1060 InLookAheadValues[V2] = Lane2; 1061 1062 // Contains the I2 operand indexes that got matched with I1 operands. 1063 SmallSet<unsigned, 4> Op2Used; 1064 1065 // Recursion towards the operands of I1 and I2. We are trying all possbile 1066 // operand pairs, and keeping track of the best score. 1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1068 OpIdx1 != NumOperands1; ++OpIdx1) { 1069 // Try to pair op1I with the best operand of I2. 1070 int MaxTmpScore = 0; 1071 unsigned MaxOpIdx2 = 0; 1072 bool FoundBest = false; 1073 // If I2 is commutative try all combinations. 1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1075 unsigned ToIdx = isCommutative(I2) 1076 ? I2->getNumOperands() 1077 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1078 assert(FromIdx <= ToIdx && "Bad index"); 1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1080 // Skip operands already paired with OpIdx1. 1081 if (Op2Used.count(OpIdx2)) 1082 continue; 1083 // Recursively calculate the cost at each level 1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1085 {I2->getOperand(OpIdx2), Lane2}, 1086 CurrLevel + 1, MaxLevel); 1087 // Look for the best score. 1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1089 MaxTmpScore = TmpScore; 1090 MaxOpIdx2 = OpIdx2; 1091 FoundBest = true; 1092 } 1093 } 1094 if (FoundBest) { 1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1096 Op2Used.insert(MaxOpIdx2); 1097 ShallowScoreAtThisLevel += MaxTmpScore; 1098 } 1099 } 1100 return ShallowScoreAtThisLevel; 1101 } 1102 1103 /// \Returns the look-ahead score, which tells us how much the sub-trees 1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1105 /// score. This helps break ties in an informed way when we cannot decide on 1106 /// the order of the operands by just considering the immediate 1107 /// predecessors. 1108 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1109 const std::pair<Value *, int> &RHS) { 1110 InLookAheadValues.clear(); 1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1112 } 1113 1114 // Search all operands in Ops[*][Lane] for the one that matches best 1115 // Ops[OpIdx][LastLane] and return its opreand index. 1116 // If no good match can be found, return None. 1117 Optional<unsigned> 1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1119 ArrayRef<ReorderingMode> ReorderingModes) { 1120 unsigned NumOperands = getNumOperands(); 1121 1122 // The operand of the previous lane at OpIdx. 1123 Value *OpLastLane = getData(OpIdx, LastLane).V; 1124 1125 // Our strategy mode for OpIdx. 1126 ReorderingMode RMode = ReorderingModes[OpIdx]; 1127 1128 // The linearized opcode of the operand at OpIdx, Lane. 1129 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1130 1131 // The best operand index and its score. 1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1133 // are using the score to differentiate between the two. 1134 struct BestOpData { 1135 Optional<unsigned> Idx = None; 1136 unsigned Score = 0; 1137 } BestOp; 1138 1139 // Iterate through all unused operands and look for the best. 1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1141 // Get the operand at Idx and Lane. 1142 OperandData &OpData = getData(Idx, Lane); 1143 Value *Op = OpData.V; 1144 bool OpAPO = OpData.APO; 1145 1146 // Skip already selected operands. 1147 if (OpData.IsUsed) 1148 continue; 1149 1150 // Skip if we are trying to move the operand to a position with a 1151 // different opcode in the linearized tree form. This would break the 1152 // semantics. 1153 if (OpAPO != OpIdxAPO) 1154 continue; 1155 1156 // Look for an operand that matches the current mode. 1157 switch (RMode) { 1158 case ReorderingMode::Load: 1159 case ReorderingMode::Constant: 1160 case ReorderingMode::Opcode: { 1161 bool LeftToRight = Lane > LastLane; 1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1164 unsigned Score = 1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1166 if (Score > BestOp.Score) { 1167 BestOp.Idx = Idx; 1168 BestOp.Score = Score; 1169 } 1170 break; 1171 } 1172 case ReorderingMode::Splat: 1173 if (Op == OpLastLane) 1174 BestOp.Idx = Idx; 1175 break; 1176 case ReorderingMode::Failed: 1177 return None; 1178 } 1179 } 1180 1181 if (BestOp.Idx) { 1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1183 return BestOp.Idx; 1184 } 1185 // If we could not find a good match return None. 1186 return None; 1187 } 1188 1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1190 /// reordering from. This is the one which has the least number of operands 1191 /// that can freely move about. 1192 unsigned getBestLaneToStartReordering() const { 1193 unsigned BestLane = 0; 1194 unsigned Min = UINT_MAX; 1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1196 ++Lane) { 1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1198 if (NumFreeOps < Min) { 1199 Min = NumFreeOps; 1200 BestLane = Lane; 1201 } 1202 } 1203 return BestLane; 1204 } 1205 1206 /// \Returns the maximum number of operands that are allowed to be reordered 1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1208 /// start operand reordering. 1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1210 unsigned CntTrue = 0; 1211 unsigned NumOperands = getNumOperands(); 1212 // Operands with the same APO can be reordered. We therefore need to count 1213 // how many of them we have for each APO, like this: Cnt[APO] = x. 1214 // Since we only have two APOs, namely true and false, we can avoid using 1215 // a map. Instead we can simply count the number of operands that 1216 // correspond to one of them (in this case the 'true' APO), and calculate 1217 // the other by subtracting it from the total number of operands. 1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1219 if (getData(OpIdx, Lane).APO) 1220 ++CntTrue; 1221 unsigned CntFalse = NumOperands - CntTrue; 1222 return std::max(CntTrue, CntFalse); 1223 } 1224 1225 /// Go through the instructions in VL and append their operands. 1226 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1227 assert(!VL.empty() && "Bad VL"); 1228 assert((empty() || VL.size() == getNumLanes()) && 1229 "Expected same number of lanes"); 1230 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1232 OpsVec.resize(NumOperands); 1233 unsigned NumLanes = VL.size(); 1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1235 OpsVec[OpIdx].resize(NumLanes); 1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1238 // Our tree has just 3 nodes: the root and two operands. 1239 // It is therefore trivial to get the APO. We only need to check the 1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1241 // RHS operand. The LHS operand of both add and sub is never attached 1242 // to an inversese operation in the linearized form, therefore its APO 1243 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1244 1245 // Since operand reordering is performed on groups of commutative 1246 // operations or alternating sequences (e.g., +, -), we can safely 1247 // tell the inverse operations by checking commutativity. 1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1251 APO, false}; 1252 } 1253 } 1254 } 1255 1256 /// \returns the number of operands. 1257 unsigned getNumOperands() const { return OpsVec.size(); } 1258 1259 /// \returns the number of lanes. 1260 unsigned getNumLanes() const { return OpsVec[0].size(); } 1261 1262 /// \returns the operand value at \p OpIdx and \p Lane. 1263 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1264 return getData(OpIdx, Lane).V; 1265 } 1266 1267 /// \returns true if the data structure is empty. 1268 bool empty() const { return OpsVec.empty(); } 1269 1270 /// Clears the data. 1271 void clear() { OpsVec.clear(); } 1272 1273 /// \Returns true if there are enough operands identical to \p Op to fill 1274 /// the whole vector. 1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1277 bool OpAPO = getData(OpIdx, Lane).APO; 1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1279 if (Ln == Lane) 1280 continue; 1281 // This is set to true if we found a candidate for broadcast at Lane. 1282 bool FoundCandidate = false; 1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1284 OperandData &Data = getData(OpI, Ln); 1285 if (Data.APO != OpAPO || Data.IsUsed) 1286 continue; 1287 if (Data.V == Op) { 1288 FoundCandidate = true; 1289 Data.IsUsed = true; 1290 break; 1291 } 1292 } 1293 if (!FoundCandidate) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 public: 1300 /// Initialize with all the operands of the instruction vector \p RootVL. 1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1302 ScalarEvolution &SE, const BoUpSLP &R) 1303 : DL(DL), SE(SE), R(R) { 1304 // Append all the operands of RootVL. 1305 appendOperandsOfVL(RootVL); 1306 } 1307 1308 /// \Returns a value vector with the operands across all lanes for the 1309 /// opearnd at \p OpIdx. 1310 ValueList getVL(unsigned OpIdx) const { 1311 ValueList OpVL(OpsVec[OpIdx].size()); 1312 assert(OpsVec[OpIdx].size() == getNumLanes() && 1313 "Expected same num of lanes across all operands"); 1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1316 return OpVL; 1317 } 1318 1319 // Performs operand reordering for 2 or more operands. 1320 // The original operands are in OrigOps[OpIdx][Lane]. 1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1322 void reorder() { 1323 unsigned NumOperands = getNumOperands(); 1324 unsigned NumLanes = getNumLanes(); 1325 // Each operand has its own mode. We are using this mode to help us select 1326 // the instructions for each lane, so that they match best with the ones 1327 // we have selected so far. 1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1329 1330 // This is a greedy single-pass algorithm. We are going over each lane 1331 // once and deciding on the best order right away with no back-tracking. 1332 // However, in order to increase its effectiveness, we start with the lane 1333 // that has operands that can move the least. For example, given the 1334 // following lanes: 1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1339 // we will start at Lane 1, since the operands of the subtraction cannot 1340 // be reordered. Then we will visit the rest of the lanes in a circular 1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1342 1343 // Find the first lane that we will start our search from. 1344 unsigned FirstLane = getBestLaneToStartReordering(); 1345 1346 // Initialize the modes. 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 Value *OpLane0 = getValue(OpIdx, FirstLane); 1349 // Keep track if we have instructions with all the same opcode on one 1350 // side. 1351 if (isa<LoadInst>(OpLane0)) 1352 ReorderingModes[OpIdx] = ReorderingMode::Load; 1353 else if (isa<Instruction>(OpLane0)) { 1354 // Check if OpLane0 should be broadcast. 1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1356 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1357 else 1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1359 } 1360 else if (isa<Constant>(OpLane0)) 1361 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1362 else if (isa<Argument>(OpLane0)) 1363 // Our best hope is a Splat. It may save some cost in some cases. 1364 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1365 else 1366 // NOTE: This should be unreachable. 1367 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1368 } 1369 1370 // If the initial strategy fails for any of the operand indexes, then we 1371 // perform reordering again in a second pass. This helps avoid assigning 1372 // high priority to the failed strategy, and should improve reordering for 1373 // the non-failed operand indexes. 1374 for (int Pass = 0; Pass != 2; ++Pass) { 1375 // Skip the second pass if the first pass did not fail. 1376 bool StrategyFailed = false; 1377 // Mark all operand data as free to use. 1378 clearUsed(); 1379 // We keep the original operand order for the FirstLane, so reorder the 1380 // rest of the lanes. We are visiting the nodes in a circular fashion, 1381 // using FirstLane as the center point and increasing the radius 1382 // distance. 1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1384 // Visit the lane on the right and then the lane on the left. 1385 for (int Direction : {+1, -1}) { 1386 int Lane = FirstLane + Direction * Distance; 1387 if (Lane < 0 || Lane >= (int)NumLanes) 1388 continue; 1389 int LastLane = Lane - Direction; 1390 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1391 "Out of bounds"); 1392 // Look for a good match for each operand. 1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1395 Optional<unsigned> BestIdx = 1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1397 // By not selecting a value, we allow the operands that follow to 1398 // select a better matching value. We will get a non-null value in 1399 // the next run of getBestOperand(). 1400 if (BestIdx) { 1401 // Swap the current operand with the one returned by 1402 // getBestOperand(). 1403 swap(OpIdx, BestIdx.getValue(), Lane); 1404 } else { 1405 // We failed to find a best operand, set mode to 'Failed'. 1406 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1407 // Enable the second pass. 1408 StrategyFailed = true; 1409 } 1410 } 1411 } 1412 } 1413 // Skip second pass if the strategy did not fail. 1414 if (!StrategyFailed) 1415 break; 1416 } 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1421 switch (RMode) { 1422 case ReorderingMode::Load: 1423 return "Load"; 1424 case ReorderingMode::Opcode: 1425 return "Opcode"; 1426 case ReorderingMode::Constant: 1427 return "Constant"; 1428 case ReorderingMode::Splat: 1429 return "Splat"; 1430 case ReorderingMode::Failed: 1431 return "Failed"; 1432 } 1433 llvm_unreachable("Unimplemented Reordering Type"); 1434 } 1435 1436 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1437 raw_ostream &OS) { 1438 return OS << getModeStr(RMode); 1439 } 1440 1441 /// Debug print. 1442 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1443 printMode(RMode, dbgs()); 1444 } 1445 1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1447 return printMode(RMode, OS); 1448 } 1449 1450 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1451 const unsigned Indent = 2; 1452 unsigned Cnt = 0; 1453 for (const OperandDataVec &OpDataVec : OpsVec) { 1454 OS << "Operand " << Cnt++ << "\n"; 1455 for (const OperandData &OpData : OpDataVec) { 1456 OS.indent(Indent) << "{"; 1457 if (Value *V = OpData.V) 1458 OS << *V; 1459 else 1460 OS << "null"; 1461 OS << ", APO:" << OpData.APO << "}\n"; 1462 } 1463 OS << "\n"; 1464 } 1465 return OS; 1466 } 1467 1468 /// Debug print. 1469 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1470 #endif 1471 }; 1472 1473 /// Checks if the instruction is marked for deletion. 1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1475 1476 /// Marks values operands for later deletion by replacing them with Undefs. 1477 void eraseInstructions(ArrayRef<Value *> AV); 1478 1479 ~BoUpSLP(); 1480 1481 private: 1482 /// Checks if all users of \p I are the part of the vectorization tree. 1483 bool areAllUsersVectorized(Instruction *I) const; 1484 1485 /// \returns the cost of the vectorizable entry. 1486 int getEntryCost(TreeEntry *E); 1487 1488 /// This is the recursive part of buildTree. 1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1490 const EdgeInfo &EI); 1491 1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1495 /// returns false, setting \p CurrentOrder to either an empty vector or a 1496 /// non-identity permutation that allows to reuse extract instructions. 1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1498 SmallVectorImpl<unsigned> &CurrentOrder) const; 1499 1500 /// Vectorize a single entry in the tree. 1501 Value *vectorizeTree(TreeEntry *E); 1502 1503 /// Vectorize a single entry in the tree, starting in \p VL. 1504 Value *vectorizeTree(ArrayRef<Value *> VL); 1505 1506 /// \returns the scalarization cost for this type. Scalarization in this 1507 /// context means the creation of vectors from a group of scalars. 1508 int getGatherCost(FixedVectorType *Ty, 1509 const DenseSet<unsigned> &ShuffledIndices) const; 1510 1511 /// \returns the scalarization cost for this list of values. Assuming that 1512 /// this subtree gets vectorized, we may need to extract the values from the 1513 /// roots. This method calculates the cost of extracting the values. 1514 int getGatherCost(ArrayRef<Value *> VL) const; 1515 1516 /// Set the Builder insert point to one after the last instruction in 1517 /// the bundle 1518 void setInsertPointAfterBundle(TreeEntry *E); 1519 1520 /// \returns a vector from a collection of scalars in \p VL. 1521 Value *gather(ArrayRef<Value *> VL); 1522 1523 /// \returns whether the VectorizableTree is fully vectorizable and will 1524 /// be beneficial even the tree height is tiny. 1525 bool isFullyVectorizableTinyTree() const; 1526 1527 /// Reorder commutative or alt operands to get better probability of 1528 /// generating vectorized code. 1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1530 SmallVectorImpl<Value *> &Left, 1531 SmallVectorImpl<Value *> &Right, 1532 const DataLayout &DL, 1533 ScalarEvolution &SE, 1534 const BoUpSLP &R); 1535 struct TreeEntry { 1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1537 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1538 1539 /// \returns true if the scalars in VL are equal to this entry. 1540 bool isSame(ArrayRef<Value *> VL) const { 1541 if (VL.size() == Scalars.size()) 1542 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1543 return VL.size() == ReuseShuffleIndices.size() && 1544 std::equal( 1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1547 } 1548 1549 /// A vector of scalars. 1550 ValueList Scalars; 1551 1552 /// The Scalars are vectorized into this value. It is initialized to Null. 1553 Value *VectorizedValue = nullptr; 1554 1555 /// Do we need to gather this sequence or vectorize it 1556 /// (either with vector instruction or with scatter/gather 1557 /// intrinsics for store/load)? 1558 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1559 EntryState State; 1560 1561 /// Does this sequence require some shuffling? 1562 SmallVector<int, 4> ReuseShuffleIndices; 1563 1564 /// Does this entry require reordering? 1565 SmallVector<unsigned, 4> ReorderIndices; 1566 1567 /// Points back to the VectorizableTree. 1568 /// 1569 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1570 /// to be a pointer and needs to be able to initialize the child iterator. 1571 /// Thus we need a reference back to the container to translate the indices 1572 /// to entries. 1573 VecTreeTy &Container; 1574 1575 /// The TreeEntry index containing the user of this entry. We can actually 1576 /// have multiple users so the data structure is not truly a tree. 1577 SmallVector<EdgeInfo, 1> UserTreeIndices; 1578 1579 /// The index of this treeEntry in VectorizableTree. 1580 int Idx = -1; 1581 1582 private: 1583 /// The operands of each instruction in each lane Operands[op_index][lane]. 1584 /// Note: This helps avoid the replication of the code that performs the 1585 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1586 SmallVector<ValueList, 2> Operands; 1587 1588 /// The main/alternate instruction. 1589 Instruction *MainOp = nullptr; 1590 Instruction *AltOp = nullptr; 1591 1592 public: 1593 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1594 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1595 if (Operands.size() < OpIdx + 1) 1596 Operands.resize(OpIdx + 1); 1597 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1598 Operands[OpIdx].resize(Scalars.size()); 1599 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1600 Operands[OpIdx][Lane] = OpVL[Lane]; 1601 } 1602 1603 /// Set the operands of this bundle in their original order. 1604 void setOperandsInOrder() { 1605 assert(Operands.empty() && "Already initialized?"); 1606 auto *I0 = cast<Instruction>(Scalars[0]); 1607 Operands.resize(I0->getNumOperands()); 1608 unsigned NumLanes = Scalars.size(); 1609 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1610 OpIdx != NumOperands; ++OpIdx) { 1611 Operands[OpIdx].resize(NumLanes); 1612 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1613 auto *I = cast<Instruction>(Scalars[Lane]); 1614 assert(I->getNumOperands() == NumOperands && 1615 "Expected same number of operands"); 1616 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1617 } 1618 } 1619 } 1620 1621 /// \returns the \p OpIdx operand of this TreeEntry. 1622 ValueList &getOperand(unsigned OpIdx) { 1623 assert(OpIdx < Operands.size() && "Off bounds"); 1624 return Operands[OpIdx]; 1625 } 1626 1627 /// \returns the number of operands. 1628 unsigned getNumOperands() const { return Operands.size(); } 1629 1630 /// \return the single \p OpIdx operand. 1631 Value *getSingleOperand(unsigned OpIdx) const { 1632 assert(OpIdx < Operands.size() && "Off bounds"); 1633 assert(!Operands[OpIdx].empty() && "No operand available"); 1634 return Operands[OpIdx][0]; 1635 } 1636 1637 /// Some of the instructions in the list have alternate opcodes. 1638 bool isAltShuffle() const { 1639 return getOpcode() != getAltOpcode(); 1640 } 1641 1642 bool isOpcodeOrAlt(Instruction *I) const { 1643 unsigned CheckedOpcode = I->getOpcode(); 1644 return (getOpcode() == CheckedOpcode || 1645 getAltOpcode() == CheckedOpcode); 1646 } 1647 1648 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1649 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1650 /// \p OpValue. 1651 Value *isOneOf(Value *Op) const { 1652 auto *I = dyn_cast<Instruction>(Op); 1653 if (I && isOpcodeOrAlt(I)) 1654 return Op; 1655 return MainOp; 1656 } 1657 1658 void setOperations(const InstructionsState &S) { 1659 MainOp = S.MainOp; 1660 AltOp = S.AltOp; 1661 } 1662 1663 Instruction *getMainOp() const { 1664 return MainOp; 1665 } 1666 1667 Instruction *getAltOp() const { 1668 return AltOp; 1669 } 1670 1671 /// The main/alternate opcodes for the list of instructions. 1672 unsigned getOpcode() const { 1673 return MainOp ? MainOp->getOpcode() : 0; 1674 } 1675 1676 unsigned getAltOpcode() const { 1677 return AltOp ? AltOp->getOpcode() : 0; 1678 } 1679 1680 /// Update operations state of this entry if reorder occurred. 1681 bool updateStateIfReorder() { 1682 if (ReorderIndices.empty()) 1683 return false; 1684 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1685 setOperations(S); 1686 return true; 1687 } 1688 1689 #ifndef NDEBUG 1690 /// Debug printer. 1691 LLVM_DUMP_METHOD void dump() const { 1692 dbgs() << Idx << ".\n"; 1693 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1694 dbgs() << "Operand " << OpI << ":\n"; 1695 for (const Value *V : Operands[OpI]) 1696 dbgs().indent(2) << *V << "\n"; 1697 } 1698 dbgs() << "Scalars: \n"; 1699 for (Value *V : Scalars) 1700 dbgs().indent(2) << *V << "\n"; 1701 dbgs() << "State: "; 1702 switch (State) { 1703 case Vectorize: 1704 dbgs() << "Vectorize\n"; 1705 break; 1706 case ScatterVectorize: 1707 dbgs() << "ScatterVectorize\n"; 1708 break; 1709 case NeedToGather: 1710 dbgs() << "NeedToGather\n"; 1711 break; 1712 } 1713 dbgs() << "MainOp: "; 1714 if (MainOp) 1715 dbgs() << *MainOp << "\n"; 1716 else 1717 dbgs() << "NULL\n"; 1718 dbgs() << "AltOp: "; 1719 if (AltOp) 1720 dbgs() << *AltOp << "\n"; 1721 else 1722 dbgs() << "NULL\n"; 1723 dbgs() << "VectorizedValue: "; 1724 if (VectorizedValue) 1725 dbgs() << *VectorizedValue << "\n"; 1726 else 1727 dbgs() << "NULL\n"; 1728 dbgs() << "ReuseShuffleIndices: "; 1729 if (ReuseShuffleIndices.empty()) 1730 dbgs() << "Emtpy"; 1731 else 1732 for (unsigned ReuseIdx : ReuseShuffleIndices) 1733 dbgs() << ReuseIdx << ", "; 1734 dbgs() << "\n"; 1735 dbgs() << "ReorderIndices: "; 1736 for (unsigned ReorderIdx : ReorderIndices) 1737 dbgs() << ReorderIdx << ", "; 1738 dbgs() << "\n"; 1739 dbgs() << "UserTreeIndices: "; 1740 for (const auto &EInfo : UserTreeIndices) 1741 dbgs() << EInfo << ", "; 1742 dbgs() << "\n"; 1743 } 1744 #endif 1745 }; 1746 1747 /// Create a new VectorizableTree entry. 1748 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1749 const InstructionsState &S, 1750 const EdgeInfo &UserTreeIdx, 1751 ArrayRef<unsigned> ReuseShuffleIndices = None, 1752 ArrayRef<unsigned> ReorderIndices = None) { 1753 TreeEntry::EntryState EntryState = 1754 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1755 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1756 ReuseShuffleIndices, ReorderIndices); 1757 } 1758 1759 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1760 TreeEntry::EntryState EntryState, 1761 Optional<ScheduleData *> Bundle, 1762 const InstructionsState &S, 1763 const EdgeInfo &UserTreeIdx, 1764 ArrayRef<unsigned> ReuseShuffleIndices = None, 1765 ArrayRef<unsigned> ReorderIndices = None) { 1766 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1767 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1768 "Need to vectorize gather entry?"); 1769 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1770 TreeEntry *Last = VectorizableTree.back().get(); 1771 Last->Idx = VectorizableTree.size() - 1; 1772 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1773 Last->State = EntryState; 1774 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1775 ReuseShuffleIndices.end()); 1776 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1777 Last->setOperations(S); 1778 if (Last->State != TreeEntry::NeedToGather) { 1779 for (Value *V : VL) { 1780 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1781 ScalarToTreeEntry[V] = Last; 1782 } 1783 // Update the scheduler bundle to point to this TreeEntry. 1784 unsigned Lane = 0; 1785 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1786 BundleMember = BundleMember->NextInBundle) { 1787 BundleMember->TE = Last; 1788 BundleMember->Lane = Lane; 1789 ++Lane; 1790 } 1791 assert((!Bundle.getValue() || Lane == VL.size()) && 1792 "Bundle and VL out of sync"); 1793 } else { 1794 MustGather.insert(VL.begin(), VL.end()); 1795 } 1796 1797 if (UserTreeIdx.UserTE) 1798 Last->UserTreeIndices.push_back(UserTreeIdx); 1799 1800 return Last; 1801 } 1802 1803 /// -- Vectorization State -- 1804 /// Holds all of the tree entries. 1805 TreeEntry::VecTreeTy VectorizableTree; 1806 1807 #ifndef NDEBUG 1808 /// Debug printer. 1809 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1810 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1811 VectorizableTree[Id]->dump(); 1812 dbgs() << "\n"; 1813 } 1814 } 1815 #endif 1816 1817 TreeEntry *getTreeEntry(Value *V) { 1818 auto I = ScalarToTreeEntry.find(V); 1819 if (I != ScalarToTreeEntry.end()) 1820 return I->second; 1821 return nullptr; 1822 } 1823 1824 const TreeEntry *getTreeEntry(Value *V) const { 1825 auto I = ScalarToTreeEntry.find(V); 1826 if (I != ScalarToTreeEntry.end()) 1827 return I->second; 1828 return nullptr; 1829 } 1830 1831 /// Maps a specific scalar to its tree entry. 1832 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1833 1834 /// Maps a value to the proposed vectorizable size. 1835 SmallDenseMap<Value *, unsigned> InstrElementSize; 1836 1837 /// A list of scalars that we found that we need to keep as scalars. 1838 ValueSet MustGather; 1839 1840 /// This POD struct describes one external user in the vectorized tree. 1841 struct ExternalUser { 1842 ExternalUser(Value *S, llvm::User *U, int L) 1843 : Scalar(S), User(U), Lane(L) {} 1844 1845 // Which scalar in our function. 1846 Value *Scalar; 1847 1848 // Which user that uses the scalar. 1849 llvm::User *User; 1850 1851 // Which lane does the scalar belong to. 1852 int Lane; 1853 }; 1854 using UserList = SmallVector<ExternalUser, 16>; 1855 1856 /// Checks if two instructions may access the same memory. 1857 /// 1858 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1859 /// is invariant in the calling loop. 1860 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1861 Instruction *Inst2) { 1862 // First check if the result is already in the cache. 1863 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1864 Optional<bool> &result = AliasCache[key]; 1865 if (result.hasValue()) { 1866 return result.getValue(); 1867 } 1868 MemoryLocation Loc2 = getLocation(Inst2, AA); 1869 bool aliased = true; 1870 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1871 // Do the alias check. 1872 aliased = AA->alias(Loc1, Loc2); 1873 } 1874 // Store the result in the cache. 1875 result = aliased; 1876 return aliased; 1877 } 1878 1879 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1880 1881 /// Cache for alias results. 1882 /// TODO: consider moving this to the AliasAnalysis itself. 1883 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1884 1885 /// Removes an instruction from its block and eventually deletes it. 1886 /// It's like Instruction::eraseFromParent() except that the actual deletion 1887 /// is delayed until BoUpSLP is destructed. 1888 /// This is required to ensure that there are no incorrect collisions in the 1889 /// AliasCache, which can happen if a new instruction is allocated at the 1890 /// same address as a previously deleted instruction. 1891 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1892 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1893 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1894 } 1895 1896 /// Temporary store for deleted instructions. Instructions will be deleted 1897 /// eventually when the BoUpSLP is destructed. 1898 DenseMap<Instruction *, bool> DeletedInstructions; 1899 1900 /// A list of values that need to extracted out of the tree. 1901 /// This list holds pairs of (Internal Scalar : External User). External User 1902 /// can be nullptr, it means that this Internal Scalar will be used later, 1903 /// after vectorization. 1904 UserList ExternalUses; 1905 1906 /// Values used only by @llvm.assume calls. 1907 SmallPtrSet<const Value *, 32> EphValues; 1908 1909 /// Holds all of the instructions that we gathered. 1910 SetVector<Instruction *> GatherSeq; 1911 1912 /// A list of blocks that we are going to CSE. 1913 SetVector<BasicBlock *> CSEBlocks; 1914 1915 /// Contains all scheduling relevant data for an instruction. 1916 /// A ScheduleData either represents a single instruction or a member of an 1917 /// instruction bundle (= a group of instructions which is combined into a 1918 /// vector instruction). 1919 struct ScheduleData { 1920 // The initial value for the dependency counters. It means that the 1921 // dependencies are not calculated yet. 1922 enum { InvalidDeps = -1 }; 1923 1924 ScheduleData() = default; 1925 1926 void init(int BlockSchedulingRegionID, Value *OpVal) { 1927 FirstInBundle = this; 1928 NextInBundle = nullptr; 1929 NextLoadStore = nullptr; 1930 IsScheduled = false; 1931 SchedulingRegionID = BlockSchedulingRegionID; 1932 UnscheduledDepsInBundle = UnscheduledDeps; 1933 clearDependencies(); 1934 OpValue = OpVal; 1935 TE = nullptr; 1936 Lane = -1; 1937 } 1938 1939 /// Returns true if the dependency information has been calculated. 1940 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1941 1942 /// Returns true for single instructions and for bundle representatives 1943 /// (= the head of a bundle). 1944 bool isSchedulingEntity() const { return FirstInBundle == this; } 1945 1946 /// Returns true if it represents an instruction bundle and not only a 1947 /// single instruction. 1948 bool isPartOfBundle() const { 1949 return NextInBundle != nullptr || FirstInBundle != this; 1950 } 1951 1952 /// Returns true if it is ready for scheduling, i.e. it has no more 1953 /// unscheduled depending instructions/bundles. 1954 bool isReady() const { 1955 assert(isSchedulingEntity() && 1956 "can't consider non-scheduling entity for ready list"); 1957 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1958 } 1959 1960 /// Modifies the number of unscheduled dependencies, also updating it for 1961 /// the whole bundle. 1962 int incrementUnscheduledDeps(int Incr) { 1963 UnscheduledDeps += Incr; 1964 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1965 } 1966 1967 /// Sets the number of unscheduled dependencies to the number of 1968 /// dependencies. 1969 void resetUnscheduledDeps() { 1970 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1971 } 1972 1973 /// Clears all dependency information. 1974 void clearDependencies() { 1975 Dependencies = InvalidDeps; 1976 resetUnscheduledDeps(); 1977 MemoryDependencies.clear(); 1978 } 1979 1980 void dump(raw_ostream &os) const { 1981 if (!isSchedulingEntity()) { 1982 os << "/ " << *Inst; 1983 } else if (NextInBundle) { 1984 os << '[' << *Inst; 1985 ScheduleData *SD = NextInBundle; 1986 while (SD) { 1987 os << ';' << *SD->Inst; 1988 SD = SD->NextInBundle; 1989 } 1990 os << ']'; 1991 } else { 1992 os << *Inst; 1993 } 1994 } 1995 1996 Instruction *Inst = nullptr; 1997 1998 /// Points to the head in an instruction bundle (and always to this for 1999 /// single instructions). 2000 ScheduleData *FirstInBundle = nullptr; 2001 2002 /// Single linked list of all instructions in a bundle. Null if it is a 2003 /// single instruction. 2004 ScheduleData *NextInBundle = nullptr; 2005 2006 /// Single linked list of all memory instructions (e.g. load, store, call) 2007 /// in the block - until the end of the scheduling region. 2008 ScheduleData *NextLoadStore = nullptr; 2009 2010 /// The dependent memory instructions. 2011 /// This list is derived on demand in calculateDependencies(). 2012 SmallVector<ScheduleData *, 4> MemoryDependencies; 2013 2014 /// This ScheduleData is in the current scheduling region if this matches 2015 /// the current SchedulingRegionID of BlockScheduling. 2016 int SchedulingRegionID = 0; 2017 2018 /// Used for getting a "good" final ordering of instructions. 2019 int SchedulingPriority = 0; 2020 2021 /// The number of dependencies. Constitutes of the number of users of the 2022 /// instruction plus the number of dependent memory instructions (if any). 2023 /// This value is calculated on demand. 2024 /// If InvalidDeps, the number of dependencies is not calculated yet. 2025 int Dependencies = InvalidDeps; 2026 2027 /// The number of dependencies minus the number of dependencies of scheduled 2028 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2029 /// for scheduling. 2030 /// Note that this is negative as long as Dependencies is not calculated. 2031 int UnscheduledDeps = InvalidDeps; 2032 2033 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2034 /// single instructions. 2035 int UnscheduledDepsInBundle = InvalidDeps; 2036 2037 /// True if this instruction is scheduled (or considered as scheduled in the 2038 /// dry-run). 2039 bool IsScheduled = false; 2040 2041 /// Opcode of the current instruction in the schedule data. 2042 Value *OpValue = nullptr; 2043 2044 /// The TreeEntry that this instruction corresponds to. 2045 TreeEntry *TE = nullptr; 2046 2047 /// The lane of this node in the TreeEntry. 2048 int Lane = -1; 2049 }; 2050 2051 #ifndef NDEBUG 2052 friend inline raw_ostream &operator<<(raw_ostream &os, 2053 const BoUpSLP::ScheduleData &SD) { 2054 SD.dump(os); 2055 return os; 2056 } 2057 #endif 2058 2059 friend struct GraphTraits<BoUpSLP *>; 2060 friend struct DOTGraphTraits<BoUpSLP *>; 2061 2062 /// Contains all scheduling data for a basic block. 2063 struct BlockScheduling { 2064 BlockScheduling(BasicBlock *BB) 2065 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2066 2067 void clear() { 2068 ReadyInsts.clear(); 2069 ScheduleStart = nullptr; 2070 ScheduleEnd = nullptr; 2071 FirstLoadStoreInRegion = nullptr; 2072 LastLoadStoreInRegion = nullptr; 2073 2074 // Reduce the maximum schedule region size by the size of the 2075 // previous scheduling run. 2076 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2077 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2078 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2079 ScheduleRegionSize = 0; 2080 2081 // Make a new scheduling region, i.e. all existing ScheduleData is not 2082 // in the new region yet. 2083 ++SchedulingRegionID; 2084 } 2085 2086 ScheduleData *getScheduleData(Value *V) { 2087 ScheduleData *SD = ScheduleDataMap[V]; 2088 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2089 return SD; 2090 return nullptr; 2091 } 2092 2093 ScheduleData *getScheduleData(Value *V, Value *Key) { 2094 if (V == Key) 2095 return getScheduleData(V); 2096 auto I = ExtraScheduleDataMap.find(V); 2097 if (I != ExtraScheduleDataMap.end()) { 2098 ScheduleData *SD = I->second[Key]; 2099 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2100 return SD; 2101 } 2102 return nullptr; 2103 } 2104 2105 bool isInSchedulingRegion(ScheduleData *SD) const { 2106 return SD->SchedulingRegionID == SchedulingRegionID; 2107 } 2108 2109 /// Marks an instruction as scheduled and puts all dependent ready 2110 /// instructions into the ready-list. 2111 template <typename ReadyListType> 2112 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2113 SD->IsScheduled = true; 2114 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2115 2116 ScheduleData *BundleMember = SD; 2117 while (BundleMember) { 2118 if (BundleMember->Inst != BundleMember->OpValue) { 2119 BundleMember = BundleMember->NextInBundle; 2120 continue; 2121 } 2122 // Handle the def-use chain dependencies. 2123 2124 // Decrement the unscheduled counter and insert to ready list if ready. 2125 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2126 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2127 if (OpDef && OpDef->hasValidDependencies() && 2128 OpDef->incrementUnscheduledDeps(-1) == 0) { 2129 // There are no more unscheduled dependencies after 2130 // decrementing, so we can put the dependent instruction 2131 // into the ready list. 2132 ScheduleData *DepBundle = OpDef->FirstInBundle; 2133 assert(!DepBundle->IsScheduled && 2134 "already scheduled bundle gets ready"); 2135 ReadyList.insert(DepBundle); 2136 LLVM_DEBUG(dbgs() 2137 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2138 } 2139 }); 2140 }; 2141 2142 // If BundleMember is a vector bundle, its operands may have been 2143 // reordered duiring buildTree(). We therefore need to get its operands 2144 // through the TreeEntry. 2145 if (TreeEntry *TE = BundleMember->TE) { 2146 int Lane = BundleMember->Lane; 2147 assert(Lane >= 0 && "Lane not set"); 2148 2149 // Since vectorization tree is being built recursively this assertion 2150 // ensures that the tree entry has all operands set before reaching 2151 // this code. Couple of exceptions known at the moment are extracts 2152 // where their second (immediate) operand is not added. Since 2153 // immediates do not affect scheduler behavior this is considered 2154 // okay. 2155 auto *In = TE->getMainOp(); 2156 assert(In && 2157 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2158 In->getNumOperands() == TE->getNumOperands()) && 2159 "Missed TreeEntry operands?"); 2160 (void)In; // fake use to avoid build failure when assertions disabled 2161 2162 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2163 OpIdx != NumOperands; ++OpIdx) 2164 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2165 DecrUnsched(I); 2166 } else { 2167 // If BundleMember is a stand-alone instruction, no operand reordering 2168 // has taken place, so we directly access its operands. 2169 for (Use &U : BundleMember->Inst->operands()) 2170 if (auto *I = dyn_cast<Instruction>(U.get())) 2171 DecrUnsched(I); 2172 } 2173 // Handle the memory dependencies. 2174 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2175 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2176 // There are no more unscheduled dependencies after decrementing, 2177 // so we can put the dependent instruction into the ready list. 2178 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2179 assert(!DepBundle->IsScheduled && 2180 "already scheduled bundle gets ready"); 2181 ReadyList.insert(DepBundle); 2182 LLVM_DEBUG(dbgs() 2183 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2184 } 2185 } 2186 BundleMember = BundleMember->NextInBundle; 2187 } 2188 } 2189 2190 void doForAllOpcodes(Value *V, 2191 function_ref<void(ScheduleData *SD)> Action) { 2192 if (ScheduleData *SD = getScheduleData(V)) 2193 Action(SD); 2194 auto I = ExtraScheduleDataMap.find(V); 2195 if (I != ExtraScheduleDataMap.end()) 2196 for (auto &P : I->second) 2197 if (P.second->SchedulingRegionID == SchedulingRegionID) 2198 Action(P.second); 2199 } 2200 2201 /// Put all instructions into the ReadyList which are ready for scheduling. 2202 template <typename ReadyListType> 2203 void initialFillReadyList(ReadyListType &ReadyList) { 2204 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2205 doForAllOpcodes(I, [&](ScheduleData *SD) { 2206 if (SD->isSchedulingEntity() && SD->isReady()) { 2207 ReadyList.insert(SD); 2208 LLVM_DEBUG(dbgs() 2209 << "SLP: initially in ready list: " << *I << "\n"); 2210 } 2211 }); 2212 } 2213 } 2214 2215 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2216 /// cyclic dependencies. This is only a dry-run, no instructions are 2217 /// actually moved at this stage. 2218 /// \returns the scheduling bundle. The returned Optional value is non-None 2219 /// if \p VL is allowed to be scheduled. 2220 Optional<ScheduleData *> 2221 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2222 const InstructionsState &S); 2223 2224 /// Un-bundles a group of instructions. 2225 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2226 2227 /// Allocates schedule data chunk. 2228 ScheduleData *allocateScheduleDataChunks(); 2229 2230 /// Extends the scheduling region so that V is inside the region. 2231 /// \returns true if the region size is within the limit. 2232 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2233 2234 /// Initialize the ScheduleData structures for new instructions in the 2235 /// scheduling region. 2236 void initScheduleData(Instruction *FromI, Instruction *ToI, 2237 ScheduleData *PrevLoadStore, 2238 ScheduleData *NextLoadStore); 2239 2240 /// Updates the dependency information of a bundle and of all instructions/ 2241 /// bundles which depend on the original bundle. 2242 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2243 BoUpSLP *SLP); 2244 2245 /// Sets all instruction in the scheduling region to un-scheduled. 2246 void resetSchedule(); 2247 2248 BasicBlock *BB; 2249 2250 /// Simple memory allocation for ScheduleData. 2251 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2252 2253 /// The size of a ScheduleData array in ScheduleDataChunks. 2254 int ChunkSize; 2255 2256 /// The allocator position in the current chunk, which is the last entry 2257 /// of ScheduleDataChunks. 2258 int ChunkPos; 2259 2260 /// Attaches ScheduleData to Instruction. 2261 /// Note that the mapping survives during all vectorization iterations, i.e. 2262 /// ScheduleData structures are recycled. 2263 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2264 2265 /// Attaches ScheduleData to Instruction with the leading key. 2266 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2267 ExtraScheduleDataMap; 2268 2269 struct ReadyList : SmallVector<ScheduleData *, 8> { 2270 void insert(ScheduleData *SD) { push_back(SD); } 2271 }; 2272 2273 /// The ready-list for scheduling (only used for the dry-run). 2274 ReadyList ReadyInsts; 2275 2276 /// The first instruction of the scheduling region. 2277 Instruction *ScheduleStart = nullptr; 2278 2279 /// The first instruction _after_ the scheduling region. 2280 Instruction *ScheduleEnd = nullptr; 2281 2282 /// The first memory accessing instruction in the scheduling region 2283 /// (can be null). 2284 ScheduleData *FirstLoadStoreInRegion = nullptr; 2285 2286 /// The last memory accessing instruction in the scheduling region 2287 /// (can be null). 2288 ScheduleData *LastLoadStoreInRegion = nullptr; 2289 2290 /// The current size of the scheduling region. 2291 int ScheduleRegionSize = 0; 2292 2293 /// The maximum size allowed for the scheduling region. 2294 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2295 2296 /// The ID of the scheduling region. For a new vectorization iteration this 2297 /// is incremented which "removes" all ScheduleData from the region. 2298 // Make sure that the initial SchedulingRegionID is greater than the 2299 // initial SchedulingRegionID in ScheduleData (which is 0). 2300 int SchedulingRegionID = 1; 2301 }; 2302 2303 /// Attaches the BlockScheduling structures to basic blocks. 2304 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2305 2306 /// Performs the "real" scheduling. Done before vectorization is actually 2307 /// performed in a basic block. 2308 void scheduleBlock(BlockScheduling *BS); 2309 2310 /// List of users to ignore during scheduling and that don't need extracting. 2311 ArrayRef<Value *> UserIgnoreList; 2312 2313 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2314 /// sorted SmallVectors of unsigned. 2315 struct OrdersTypeDenseMapInfo { 2316 static OrdersType getEmptyKey() { 2317 OrdersType V; 2318 V.push_back(~1U); 2319 return V; 2320 } 2321 2322 static OrdersType getTombstoneKey() { 2323 OrdersType V; 2324 V.push_back(~2U); 2325 return V; 2326 } 2327 2328 static unsigned getHashValue(const OrdersType &V) { 2329 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2330 } 2331 2332 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2333 return LHS == RHS; 2334 } 2335 }; 2336 2337 /// Contains orders of operations along with the number of bundles that have 2338 /// operations in this order. It stores only those orders that require 2339 /// reordering, if reordering is not required it is counted using \a 2340 /// NumOpsWantToKeepOriginalOrder. 2341 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2342 /// Number of bundles that do not require reordering. 2343 unsigned NumOpsWantToKeepOriginalOrder = 0; 2344 2345 // Analysis and block reference. 2346 Function *F; 2347 ScalarEvolution *SE; 2348 TargetTransformInfo *TTI; 2349 TargetLibraryInfo *TLI; 2350 AAResults *AA; 2351 LoopInfo *LI; 2352 DominatorTree *DT; 2353 AssumptionCache *AC; 2354 DemandedBits *DB; 2355 const DataLayout *DL; 2356 OptimizationRemarkEmitter *ORE; 2357 2358 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2359 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2360 2361 /// Instruction builder to construct the vectorized tree. 2362 IRBuilder<> Builder; 2363 2364 /// A map of scalar integer values to the smallest bit width with which they 2365 /// can legally be represented. The values map to (width, signed) pairs, 2366 /// where "width" indicates the minimum bit width and "signed" is True if the 2367 /// value must be signed-extended, rather than zero-extended, back to its 2368 /// original width. 2369 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2370 }; 2371 2372 } // end namespace slpvectorizer 2373 2374 template <> struct GraphTraits<BoUpSLP *> { 2375 using TreeEntry = BoUpSLP::TreeEntry; 2376 2377 /// NodeRef has to be a pointer per the GraphWriter. 2378 using NodeRef = TreeEntry *; 2379 2380 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2381 2382 /// Add the VectorizableTree to the index iterator to be able to return 2383 /// TreeEntry pointers. 2384 struct ChildIteratorType 2385 : public iterator_adaptor_base< 2386 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2387 ContainerTy &VectorizableTree; 2388 2389 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2390 ContainerTy &VT) 2391 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2392 2393 NodeRef operator*() { return I->UserTE; } 2394 }; 2395 2396 static NodeRef getEntryNode(BoUpSLP &R) { 2397 return R.VectorizableTree[0].get(); 2398 } 2399 2400 static ChildIteratorType child_begin(NodeRef N) { 2401 return {N->UserTreeIndices.begin(), N->Container}; 2402 } 2403 2404 static ChildIteratorType child_end(NodeRef N) { 2405 return {N->UserTreeIndices.end(), N->Container}; 2406 } 2407 2408 /// For the node iterator we just need to turn the TreeEntry iterator into a 2409 /// TreeEntry* iterator so that it dereferences to NodeRef. 2410 class nodes_iterator { 2411 using ItTy = ContainerTy::iterator; 2412 ItTy It; 2413 2414 public: 2415 nodes_iterator(const ItTy &It2) : It(It2) {} 2416 NodeRef operator*() { return It->get(); } 2417 nodes_iterator operator++() { 2418 ++It; 2419 return *this; 2420 } 2421 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2422 }; 2423 2424 static nodes_iterator nodes_begin(BoUpSLP *R) { 2425 return nodes_iterator(R->VectorizableTree.begin()); 2426 } 2427 2428 static nodes_iterator nodes_end(BoUpSLP *R) { 2429 return nodes_iterator(R->VectorizableTree.end()); 2430 } 2431 2432 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2433 }; 2434 2435 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2436 using TreeEntry = BoUpSLP::TreeEntry; 2437 2438 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2439 2440 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2441 std::string Str; 2442 raw_string_ostream OS(Str); 2443 if (isSplat(Entry->Scalars)) { 2444 OS << "<splat> " << *Entry->Scalars[0]; 2445 return Str; 2446 } 2447 for (auto V : Entry->Scalars) { 2448 OS << *V; 2449 if (std::any_of( 2450 R->ExternalUses.begin(), R->ExternalUses.end(), 2451 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2452 OS << " <extract>"; 2453 OS << "\n"; 2454 } 2455 return Str; 2456 } 2457 2458 static std::string getNodeAttributes(const TreeEntry *Entry, 2459 const BoUpSLP *) { 2460 if (Entry->State == TreeEntry::NeedToGather) 2461 return "color=red"; 2462 return ""; 2463 } 2464 }; 2465 2466 } // end namespace llvm 2467 2468 BoUpSLP::~BoUpSLP() { 2469 for (const auto &Pair : DeletedInstructions) { 2470 // Replace operands of ignored instructions with Undefs in case if they were 2471 // marked for deletion. 2472 if (Pair.getSecond()) { 2473 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2474 Pair.getFirst()->replaceAllUsesWith(Undef); 2475 } 2476 Pair.getFirst()->dropAllReferences(); 2477 } 2478 for (const auto &Pair : DeletedInstructions) { 2479 assert(Pair.getFirst()->use_empty() && 2480 "trying to erase instruction with users."); 2481 Pair.getFirst()->eraseFromParent(); 2482 } 2483 assert(!verifyFunction(*F, &dbgs())); 2484 } 2485 2486 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2487 for (auto *V : AV) { 2488 if (auto *I = dyn_cast<Instruction>(V)) 2489 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2490 }; 2491 } 2492 2493 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2494 ArrayRef<Value *> UserIgnoreLst) { 2495 ExtraValueToDebugLocsMap ExternallyUsedValues; 2496 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2497 } 2498 2499 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2500 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2501 ArrayRef<Value *> UserIgnoreLst) { 2502 deleteTree(); 2503 UserIgnoreList = UserIgnoreLst; 2504 if (!allSameType(Roots)) 2505 return; 2506 buildTree_rec(Roots, 0, EdgeInfo()); 2507 2508 // Collect the values that we need to extract from the tree. 2509 for (auto &TEPtr : VectorizableTree) { 2510 TreeEntry *Entry = TEPtr.get(); 2511 2512 // No need to handle users of gathered values. 2513 if (Entry->State == TreeEntry::NeedToGather) 2514 continue; 2515 2516 // For each lane: 2517 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2518 Value *Scalar = Entry->Scalars[Lane]; 2519 int FoundLane = Lane; 2520 if (!Entry->ReuseShuffleIndices.empty()) { 2521 FoundLane = 2522 std::distance(Entry->ReuseShuffleIndices.begin(), 2523 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2524 } 2525 2526 // Check if the scalar is externally used as an extra arg. 2527 auto ExtI = ExternallyUsedValues.find(Scalar); 2528 if (ExtI != ExternallyUsedValues.end()) { 2529 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2530 << Lane << " from " << *Scalar << ".\n"); 2531 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2532 } 2533 for (User *U : Scalar->users()) { 2534 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2535 2536 Instruction *UserInst = dyn_cast<Instruction>(U); 2537 if (!UserInst) 2538 continue; 2539 2540 // Skip in-tree scalars that become vectors 2541 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2542 Value *UseScalar = UseEntry->Scalars[0]; 2543 // Some in-tree scalars will remain as scalar in vectorized 2544 // instructions. If that is the case, the one in Lane 0 will 2545 // be used. 2546 if (UseScalar != U || 2547 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2548 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2549 << ".\n"); 2550 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2551 continue; 2552 } 2553 } 2554 2555 // Ignore users in the user ignore list. 2556 if (is_contained(UserIgnoreList, UserInst)) 2557 continue; 2558 2559 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2560 << Lane << " from " << *Scalar << ".\n"); 2561 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2562 } 2563 } 2564 } 2565 } 2566 2567 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2568 const EdgeInfo &UserTreeIdx) { 2569 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2570 2571 InstructionsState S = getSameOpcode(VL); 2572 if (Depth == RecursionMaxDepth) { 2573 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2574 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2575 return; 2576 } 2577 2578 // Don't handle vectors. 2579 if (S.OpValue->getType()->isVectorTy()) { 2580 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2581 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2582 return; 2583 } 2584 2585 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2586 if (SI->getValueOperand()->getType()->isVectorTy()) { 2587 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2588 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2589 return; 2590 } 2591 2592 // If all of the operands are identical or constant we have a simple solution. 2593 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2594 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2595 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2596 return; 2597 } 2598 2599 // We now know that this is a vector of instructions of the same type from 2600 // the same block. 2601 2602 // Don't vectorize ephemeral values. 2603 for (Value *V : VL) { 2604 if (EphValues.count(V)) { 2605 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2606 << ") is ephemeral.\n"); 2607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2608 return; 2609 } 2610 } 2611 2612 // Check if this is a duplicate of another entry. 2613 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2614 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2615 if (!E->isSame(VL)) { 2616 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2617 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2618 return; 2619 } 2620 // Record the reuse of the tree node. FIXME, currently this is only used to 2621 // properly draw the graph rather than for the actual vectorization. 2622 E->UserTreeIndices.push_back(UserTreeIdx); 2623 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2624 << ".\n"); 2625 return; 2626 } 2627 2628 // Check that none of the instructions in the bundle are already in the tree. 2629 for (Value *V : VL) { 2630 auto *I = dyn_cast<Instruction>(V); 2631 if (!I) 2632 continue; 2633 if (getTreeEntry(I)) { 2634 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2635 << ") is already in tree.\n"); 2636 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2637 return; 2638 } 2639 } 2640 2641 // If any of the scalars is marked as a value that needs to stay scalar, then 2642 // we need to gather the scalars. 2643 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2644 for (Value *V : VL) { 2645 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2646 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2647 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2648 return; 2649 } 2650 } 2651 2652 // Check that all of the users of the scalars that we want to vectorize are 2653 // schedulable. 2654 auto *VL0 = cast<Instruction>(S.OpValue); 2655 BasicBlock *BB = VL0->getParent(); 2656 2657 if (!DT->isReachableFromEntry(BB)) { 2658 // Don't go into unreachable blocks. They may contain instructions with 2659 // dependency cycles which confuse the final scheduling. 2660 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2661 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2662 return; 2663 } 2664 2665 // Check that every instruction appears once in this bundle. 2666 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2667 SmallVector<Value *, 4> UniqueValues; 2668 DenseMap<Value *, unsigned> UniquePositions; 2669 for (Value *V : VL) { 2670 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2671 ReuseShuffleIndicies.emplace_back(Res.first->second); 2672 if (Res.second) 2673 UniqueValues.emplace_back(V); 2674 } 2675 size_t NumUniqueScalarValues = UniqueValues.size(); 2676 if (NumUniqueScalarValues == VL.size()) { 2677 ReuseShuffleIndicies.clear(); 2678 } else { 2679 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2680 if (NumUniqueScalarValues <= 1 || 2681 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2682 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2684 return; 2685 } 2686 VL = UniqueValues; 2687 } 2688 2689 auto &BSRef = BlocksSchedules[BB]; 2690 if (!BSRef) 2691 BSRef = std::make_unique<BlockScheduling>(BB); 2692 2693 BlockScheduling &BS = *BSRef.get(); 2694 2695 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2696 if (!Bundle) { 2697 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2698 assert((!BS.getScheduleData(VL0) || 2699 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2700 "tryScheduleBundle should cancelScheduling on failure"); 2701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2702 ReuseShuffleIndicies); 2703 return; 2704 } 2705 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2706 2707 unsigned ShuffleOrOp = S.isAltShuffle() ? 2708 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2709 switch (ShuffleOrOp) { 2710 case Instruction::PHI: { 2711 auto *PH = cast<PHINode>(VL0); 2712 2713 // Check for terminator values (e.g. invoke). 2714 for (Value *V : VL) 2715 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2716 Instruction *Term = dyn_cast<Instruction>( 2717 cast<PHINode>(V)->getIncomingValueForBlock( 2718 PH->getIncomingBlock(I))); 2719 if (Term && Term->isTerminator()) { 2720 LLVM_DEBUG(dbgs() 2721 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2722 BS.cancelScheduling(VL, VL0); 2723 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2724 ReuseShuffleIndicies); 2725 return; 2726 } 2727 } 2728 2729 TreeEntry *TE = 2730 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2731 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2732 2733 // Keeps the reordered operands to avoid code duplication. 2734 SmallVector<ValueList, 2> OperandsVec; 2735 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2736 ValueList Operands; 2737 // Prepare the operand vector. 2738 for (Value *V : VL) 2739 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2740 PH->getIncomingBlock(I))); 2741 TE->setOperand(I, Operands); 2742 OperandsVec.push_back(Operands); 2743 } 2744 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2745 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2746 return; 2747 } 2748 case Instruction::ExtractValue: 2749 case Instruction::ExtractElement: { 2750 OrdersType CurrentOrder; 2751 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2752 if (Reuse) { 2753 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2754 ++NumOpsWantToKeepOriginalOrder; 2755 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2756 ReuseShuffleIndicies); 2757 // This is a special case, as it does not gather, but at the same time 2758 // we are not extending buildTree_rec() towards the operands. 2759 ValueList Op0; 2760 Op0.assign(VL.size(), VL0->getOperand(0)); 2761 VectorizableTree.back()->setOperand(0, Op0); 2762 return; 2763 } 2764 if (!CurrentOrder.empty()) { 2765 LLVM_DEBUG({ 2766 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2767 "with order"; 2768 for (unsigned Idx : CurrentOrder) 2769 dbgs() << " " << Idx; 2770 dbgs() << "\n"; 2771 }); 2772 // Insert new order with initial value 0, if it does not exist, 2773 // otherwise return the iterator to the existing one. 2774 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2775 ReuseShuffleIndicies, CurrentOrder); 2776 findRootOrder(CurrentOrder); 2777 ++NumOpsWantToKeepOrder[CurrentOrder]; 2778 // This is a special case, as it does not gather, but at the same time 2779 // we are not extending buildTree_rec() towards the operands. 2780 ValueList Op0; 2781 Op0.assign(VL.size(), VL0->getOperand(0)); 2782 VectorizableTree.back()->setOperand(0, Op0); 2783 return; 2784 } 2785 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2786 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2787 ReuseShuffleIndicies); 2788 BS.cancelScheduling(VL, VL0); 2789 return; 2790 } 2791 case Instruction::Load: { 2792 // Check that a vectorized load would load the same memory as a scalar 2793 // load. For example, we don't want to vectorize loads that are smaller 2794 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2795 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2796 // from such a struct, we read/write packed bits disagreeing with the 2797 // unvectorized version. 2798 Type *ScalarTy = VL0->getType(); 2799 2800 if (DL->getTypeSizeInBits(ScalarTy) != 2801 DL->getTypeAllocSizeInBits(ScalarTy)) { 2802 BS.cancelScheduling(VL, VL0); 2803 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2804 ReuseShuffleIndicies); 2805 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2806 return; 2807 } 2808 2809 // Make sure all loads in the bundle are simple - we can't vectorize 2810 // atomic or volatile loads. 2811 SmallVector<Value *, 4> PointerOps(VL.size()); 2812 auto POIter = PointerOps.begin(); 2813 for (Value *V : VL) { 2814 auto *L = cast<LoadInst>(V); 2815 if (!L->isSimple()) { 2816 BS.cancelScheduling(VL, VL0); 2817 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2818 ReuseShuffleIndicies); 2819 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2820 return; 2821 } 2822 *POIter = L->getPointerOperand(); 2823 ++POIter; 2824 } 2825 2826 OrdersType CurrentOrder; 2827 // Check the order of pointer operands. 2828 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2829 Value *Ptr0; 2830 Value *PtrN; 2831 if (CurrentOrder.empty()) { 2832 Ptr0 = PointerOps.front(); 2833 PtrN = PointerOps.back(); 2834 } else { 2835 Ptr0 = PointerOps[CurrentOrder.front()]; 2836 PtrN = PointerOps[CurrentOrder.back()]; 2837 } 2838 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2839 const SCEV *ScevN = SE->getSCEV(PtrN); 2840 const auto *Diff = 2841 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2842 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2843 // Check that the sorted loads are consecutive. 2844 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2845 if (CurrentOrder.empty()) { 2846 // Original loads are consecutive and does not require reordering. 2847 ++NumOpsWantToKeepOriginalOrder; 2848 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2849 UserTreeIdx, ReuseShuffleIndicies); 2850 TE->setOperandsInOrder(); 2851 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2852 } else { 2853 // Need to reorder. 2854 TreeEntry *TE = 2855 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2856 ReuseShuffleIndicies, CurrentOrder); 2857 TE->setOperandsInOrder(); 2858 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2859 findRootOrder(CurrentOrder); 2860 ++NumOpsWantToKeepOrder[CurrentOrder]; 2861 } 2862 return; 2863 } 2864 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2865 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2866 UserTreeIdx, ReuseShuffleIndicies); 2867 TE->setOperandsInOrder(); 2868 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2869 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2870 return; 2871 } 2872 2873 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2874 BS.cancelScheduling(VL, VL0); 2875 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2876 ReuseShuffleIndicies); 2877 return; 2878 } 2879 case Instruction::ZExt: 2880 case Instruction::SExt: 2881 case Instruction::FPToUI: 2882 case Instruction::FPToSI: 2883 case Instruction::FPExt: 2884 case Instruction::PtrToInt: 2885 case Instruction::IntToPtr: 2886 case Instruction::SIToFP: 2887 case Instruction::UIToFP: 2888 case Instruction::Trunc: 2889 case Instruction::FPTrunc: 2890 case Instruction::BitCast: { 2891 Type *SrcTy = VL0->getOperand(0)->getType(); 2892 for (Value *V : VL) { 2893 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2894 if (Ty != SrcTy || !isValidElementType(Ty)) { 2895 BS.cancelScheduling(VL, VL0); 2896 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2897 ReuseShuffleIndicies); 2898 LLVM_DEBUG(dbgs() 2899 << "SLP: Gathering casts with different src types.\n"); 2900 return; 2901 } 2902 } 2903 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2904 ReuseShuffleIndicies); 2905 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2906 2907 TE->setOperandsInOrder(); 2908 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2909 ValueList Operands; 2910 // Prepare the operand vector. 2911 for (Value *V : VL) 2912 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2913 2914 buildTree_rec(Operands, Depth + 1, {TE, i}); 2915 } 2916 return; 2917 } 2918 case Instruction::ICmp: 2919 case Instruction::FCmp: { 2920 // Check that all of the compares have the same predicate. 2921 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2922 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2923 Type *ComparedTy = VL0->getOperand(0)->getType(); 2924 for (Value *V : VL) { 2925 CmpInst *Cmp = cast<CmpInst>(V); 2926 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2927 Cmp->getOperand(0)->getType() != ComparedTy) { 2928 BS.cancelScheduling(VL, VL0); 2929 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2930 ReuseShuffleIndicies); 2931 LLVM_DEBUG(dbgs() 2932 << "SLP: Gathering cmp with different predicate.\n"); 2933 return; 2934 } 2935 } 2936 2937 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2938 ReuseShuffleIndicies); 2939 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2940 2941 ValueList Left, Right; 2942 if (cast<CmpInst>(VL0)->isCommutative()) { 2943 // Commutative predicate - collect + sort operands of the instructions 2944 // so that each side is more likely to have the same opcode. 2945 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2946 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2947 } else { 2948 // Collect operands - commute if it uses the swapped predicate. 2949 for (Value *V : VL) { 2950 auto *Cmp = cast<CmpInst>(V); 2951 Value *LHS = Cmp->getOperand(0); 2952 Value *RHS = Cmp->getOperand(1); 2953 if (Cmp->getPredicate() != P0) 2954 std::swap(LHS, RHS); 2955 Left.push_back(LHS); 2956 Right.push_back(RHS); 2957 } 2958 } 2959 TE->setOperand(0, Left); 2960 TE->setOperand(1, Right); 2961 buildTree_rec(Left, Depth + 1, {TE, 0}); 2962 buildTree_rec(Right, Depth + 1, {TE, 1}); 2963 return; 2964 } 2965 case Instruction::Select: 2966 case Instruction::FNeg: 2967 case Instruction::Add: 2968 case Instruction::FAdd: 2969 case Instruction::Sub: 2970 case Instruction::FSub: 2971 case Instruction::Mul: 2972 case Instruction::FMul: 2973 case Instruction::UDiv: 2974 case Instruction::SDiv: 2975 case Instruction::FDiv: 2976 case Instruction::URem: 2977 case Instruction::SRem: 2978 case Instruction::FRem: 2979 case Instruction::Shl: 2980 case Instruction::LShr: 2981 case Instruction::AShr: 2982 case Instruction::And: 2983 case Instruction::Or: 2984 case Instruction::Xor: { 2985 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2986 ReuseShuffleIndicies); 2987 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2988 2989 // Sort operands of the instructions so that each side is more likely to 2990 // have the same opcode. 2991 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2992 ValueList Left, Right; 2993 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2994 TE->setOperand(0, Left); 2995 TE->setOperand(1, Right); 2996 buildTree_rec(Left, Depth + 1, {TE, 0}); 2997 buildTree_rec(Right, Depth + 1, {TE, 1}); 2998 return; 2999 } 3000 3001 TE->setOperandsInOrder(); 3002 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3003 ValueList Operands; 3004 // Prepare the operand vector. 3005 for (Value *V : VL) 3006 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3007 3008 buildTree_rec(Operands, Depth + 1, {TE, i}); 3009 } 3010 return; 3011 } 3012 case Instruction::GetElementPtr: { 3013 // We don't combine GEPs with complicated (nested) indexing. 3014 for (Value *V : VL) { 3015 if (cast<Instruction>(V)->getNumOperands() != 2) { 3016 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3017 BS.cancelScheduling(VL, VL0); 3018 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3019 ReuseShuffleIndicies); 3020 return; 3021 } 3022 } 3023 3024 // We can't combine several GEPs into one vector if they operate on 3025 // different types. 3026 Type *Ty0 = VL0->getOperand(0)->getType(); 3027 for (Value *V : VL) { 3028 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3029 if (Ty0 != CurTy) { 3030 LLVM_DEBUG(dbgs() 3031 << "SLP: not-vectorizable GEP (different types).\n"); 3032 BS.cancelScheduling(VL, VL0); 3033 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3034 ReuseShuffleIndicies); 3035 return; 3036 } 3037 } 3038 3039 // We don't combine GEPs with non-constant indexes. 3040 Type *Ty1 = VL0->getOperand(1)->getType(); 3041 for (Value *V : VL) { 3042 auto Op = cast<Instruction>(V)->getOperand(1); 3043 if (!isa<ConstantInt>(Op) || 3044 (Op->getType() != Ty1 && 3045 Op->getType()->getScalarSizeInBits() > 3046 DL->getIndexSizeInBits( 3047 V->getType()->getPointerAddressSpace()))) { 3048 LLVM_DEBUG(dbgs() 3049 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3050 BS.cancelScheduling(VL, VL0); 3051 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3052 ReuseShuffleIndicies); 3053 return; 3054 } 3055 } 3056 3057 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3058 ReuseShuffleIndicies); 3059 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3060 TE->setOperandsInOrder(); 3061 for (unsigned i = 0, e = 2; i < e; ++i) { 3062 ValueList Operands; 3063 // Prepare the operand vector. 3064 for (Value *V : VL) 3065 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3066 3067 buildTree_rec(Operands, Depth + 1, {TE, i}); 3068 } 3069 return; 3070 } 3071 case Instruction::Store: { 3072 // Check if the stores are consecutive or if we need to swizzle them. 3073 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3074 // Make sure all stores in the bundle are simple - we can't vectorize 3075 // atomic or volatile stores. 3076 SmallVector<Value *, 4> PointerOps(VL.size()); 3077 ValueList Operands(VL.size()); 3078 auto POIter = PointerOps.begin(); 3079 auto OIter = Operands.begin(); 3080 for (Value *V : VL) { 3081 auto *SI = cast<StoreInst>(V); 3082 if (!SI->isSimple()) { 3083 BS.cancelScheduling(VL, VL0); 3084 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3085 ReuseShuffleIndicies); 3086 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3087 return; 3088 } 3089 *POIter = SI->getPointerOperand(); 3090 *OIter = SI->getValueOperand(); 3091 ++POIter; 3092 ++OIter; 3093 } 3094 3095 OrdersType CurrentOrder; 3096 // Check the order of pointer operands. 3097 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3098 Value *Ptr0; 3099 Value *PtrN; 3100 if (CurrentOrder.empty()) { 3101 Ptr0 = PointerOps.front(); 3102 PtrN = PointerOps.back(); 3103 } else { 3104 Ptr0 = PointerOps[CurrentOrder.front()]; 3105 PtrN = PointerOps[CurrentOrder.back()]; 3106 } 3107 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3108 const SCEV *ScevN = SE->getSCEV(PtrN); 3109 const auto *Diff = 3110 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3111 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3112 // Check that the sorted pointer operands are consecutive. 3113 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3114 if (CurrentOrder.empty()) { 3115 // Original stores are consecutive and does not require reordering. 3116 ++NumOpsWantToKeepOriginalOrder; 3117 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3118 UserTreeIdx, ReuseShuffleIndicies); 3119 TE->setOperandsInOrder(); 3120 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3121 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3122 } else { 3123 TreeEntry *TE = 3124 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3125 ReuseShuffleIndicies, CurrentOrder); 3126 TE->setOperandsInOrder(); 3127 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3128 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3129 findRootOrder(CurrentOrder); 3130 ++NumOpsWantToKeepOrder[CurrentOrder]; 3131 } 3132 return; 3133 } 3134 } 3135 3136 BS.cancelScheduling(VL, VL0); 3137 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3138 ReuseShuffleIndicies); 3139 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3140 return; 3141 } 3142 case Instruction::Call: { 3143 // Check if the calls are all to the same vectorizable intrinsic or 3144 // library function. 3145 CallInst *CI = cast<CallInst>(VL0); 3146 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3147 3148 VFShape Shape = VFShape::get( 3149 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3150 false /*HasGlobalPred*/); 3151 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3152 3153 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3154 BS.cancelScheduling(VL, VL0); 3155 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3156 ReuseShuffleIndicies); 3157 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3158 return; 3159 } 3160 Function *F = CI->getCalledFunction(); 3161 unsigned NumArgs = CI->getNumArgOperands(); 3162 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3163 for (unsigned j = 0; j != NumArgs; ++j) 3164 if (hasVectorInstrinsicScalarOpd(ID, j)) 3165 ScalarArgs[j] = CI->getArgOperand(j); 3166 for (Value *V : VL) { 3167 CallInst *CI2 = dyn_cast<CallInst>(V); 3168 if (!CI2 || CI2->getCalledFunction() != F || 3169 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3170 (VecFunc && 3171 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3172 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3173 BS.cancelScheduling(VL, VL0); 3174 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3175 ReuseShuffleIndicies); 3176 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3177 << "\n"); 3178 return; 3179 } 3180 // Some intrinsics have scalar arguments and should be same in order for 3181 // them to be vectorized. 3182 for (unsigned j = 0; j != NumArgs; ++j) { 3183 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3184 Value *A1J = CI2->getArgOperand(j); 3185 if (ScalarArgs[j] != A1J) { 3186 BS.cancelScheduling(VL, VL0); 3187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3188 ReuseShuffleIndicies); 3189 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3190 << " argument " << ScalarArgs[j] << "!=" << A1J 3191 << "\n"); 3192 return; 3193 } 3194 } 3195 } 3196 // Verify that the bundle operands are identical between the two calls. 3197 if (CI->hasOperandBundles() && 3198 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3199 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3200 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3201 BS.cancelScheduling(VL, VL0); 3202 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3203 ReuseShuffleIndicies); 3204 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3205 << *CI << "!=" << *V << '\n'); 3206 return; 3207 } 3208 } 3209 3210 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3211 ReuseShuffleIndicies); 3212 TE->setOperandsInOrder(); 3213 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3214 ValueList Operands; 3215 // Prepare the operand vector. 3216 for (Value *V : VL) { 3217 auto *CI2 = cast<CallInst>(V); 3218 Operands.push_back(CI2->getArgOperand(i)); 3219 } 3220 buildTree_rec(Operands, Depth + 1, {TE, i}); 3221 } 3222 return; 3223 } 3224 case Instruction::ShuffleVector: { 3225 // If this is not an alternate sequence of opcode like add-sub 3226 // then do not vectorize this instruction. 3227 if (!S.isAltShuffle()) { 3228 BS.cancelScheduling(VL, VL0); 3229 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3230 ReuseShuffleIndicies); 3231 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3232 return; 3233 } 3234 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3235 ReuseShuffleIndicies); 3236 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3237 3238 // Reorder operands if reordering would enable vectorization. 3239 if (isa<BinaryOperator>(VL0)) { 3240 ValueList Left, Right; 3241 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3242 TE->setOperand(0, Left); 3243 TE->setOperand(1, Right); 3244 buildTree_rec(Left, Depth + 1, {TE, 0}); 3245 buildTree_rec(Right, Depth + 1, {TE, 1}); 3246 return; 3247 } 3248 3249 TE->setOperandsInOrder(); 3250 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3251 ValueList Operands; 3252 // Prepare the operand vector. 3253 for (Value *V : VL) 3254 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3255 3256 buildTree_rec(Operands, Depth + 1, {TE, i}); 3257 } 3258 return; 3259 } 3260 default: 3261 BS.cancelScheduling(VL, VL0); 3262 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3263 ReuseShuffleIndicies); 3264 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3265 return; 3266 } 3267 } 3268 3269 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3270 unsigned N = 1; 3271 Type *EltTy = T; 3272 3273 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3274 isa<VectorType>(EltTy)) { 3275 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3276 // Check that struct is homogeneous. 3277 for (const auto *Ty : ST->elements()) 3278 if (Ty != *ST->element_begin()) 3279 return 0; 3280 N *= ST->getNumElements(); 3281 EltTy = *ST->element_begin(); 3282 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3283 N *= AT->getNumElements(); 3284 EltTy = AT->getElementType(); 3285 } else { 3286 auto *VT = cast<FixedVectorType>(EltTy); 3287 N *= VT->getNumElements(); 3288 EltTy = VT->getElementType(); 3289 } 3290 } 3291 3292 if (!isValidElementType(EltTy)) 3293 return 0; 3294 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3295 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3296 return 0; 3297 return N; 3298 } 3299 3300 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3301 SmallVectorImpl<unsigned> &CurrentOrder) const { 3302 Instruction *E0 = cast<Instruction>(OpValue); 3303 assert(E0->getOpcode() == Instruction::ExtractElement || 3304 E0->getOpcode() == Instruction::ExtractValue); 3305 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3306 // Check if all of the extracts come from the same vector and from the 3307 // correct offset. 3308 Value *Vec = E0->getOperand(0); 3309 3310 CurrentOrder.clear(); 3311 3312 // We have to extract from a vector/aggregate with the same number of elements. 3313 unsigned NElts; 3314 if (E0->getOpcode() == Instruction::ExtractValue) { 3315 const DataLayout &DL = E0->getModule()->getDataLayout(); 3316 NElts = canMapToVector(Vec->getType(), DL); 3317 if (!NElts) 3318 return false; 3319 // Check if load can be rewritten as load of vector. 3320 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3321 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3322 return false; 3323 } else { 3324 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3325 } 3326 3327 if (NElts != VL.size()) 3328 return false; 3329 3330 // Check that all of the indices extract from the correct offset. 3331 bool ShouldKeepOrder = true; 3332 unsigned E = VL.size(); 3333 // Assign to all items the initial value E + 1 so we can check if the extract 3334 // instruction index was used already. 3335 // Also, later we can check that all the indices are used and we have a 3336 // consecutive access in the extract instructions, by checking that no 3337 // element of CurrentOrder still has value E + 1. 3338 CurrentOrder.assign(E, E + 1); 3339 unsigned I = 0; 3340 for (; I < E; ++I) { 3341 auto *Inst = cast<Instruction>(VL[I]); 3342 if (Inst->getOperand(0) != Vec) 3343 break; 3344 Optional<unsigned> Idx = getExtractIndex(Inst); 3345 if (!Idx) 3346 break; 3347 const unsigned ExtIdx = *Idx; 3348 if (ExtIdx != I) { 3349 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3350 break; 3351 ShouldKeepOrder = false; 3352 CurrentOrder[ExtIdx] = I; 3353 } else { 3354 if (CurrentOrder[I] != E + 1) 3355 break; 3356 CurrentOrder[I] = I; 3357 } 3358 } 3359 if (I < E) { 3360 CurrentOrder.clear(); 3361 return false; 3362 } 3363 3364 return ShouldKeepOrder; 3365 } 3366 3367 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3368 return I->hasOneUse() || 3369 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3370 return ScalarToTreeEntry.count(U) > 0; 3371 }); 3372 } 3373 3374 static std::pair<unsigned, unsigned> 3375 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3376 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3377 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3378 3379 // Calculate the cost of the scalar and vector calls. 3380 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3381 int IntrinsicCost = 3382 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3383 3384 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3385 VecTy->getNumElements())), 3386 false /*HasGlobalPred*/); 3387 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3388 int LibCost = IntrinsicCost; 3389 if (!CI->isNoBuiltin() && VecFunc) { 3390 // Calculate the cost of the vector library call. 3391 SmallVector<Type *, 4> VecTys; 3392 for (Use &Arg : CI->args()) 3393 VecTys.push_back( 3394 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3395 3396 // If the corresponding vector call is cheaper, return its cost. 3397 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3398 TTI::TCK_RecipThroughput); 3399 } 3400 return {IntrinsicCost, LibCost}; 3401 } 3402 3403 int BoUpSLP::getEntryCost(TreeEntry *E) { 3404 ArrayRef<Value*> VL = E->Scalars; 3405 3406 Type *ScalarTy = VL[0]->getType(); 3407 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3408 ScalarTy = SI->getValueOperand()->getType(); 3409 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3410 ScalarTy = CI->getOperand(0)->getType(); 3411 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3412 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3413 3414 // If we have computed a smaller type for the expression, update VecTy so 3415 // that the costs will be accurate. 3416 if (MinBWs.count(VL[0])) 3417 VecTy = FixedVectorType::get( 3418 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3419 3420 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3421 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3422 int ReuseShuffleCost = 0; 3423 if (NeedToShuffleReuses) { 3424 ReuseShuffleCost = 3425 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3426 } 3427 if (E->State == TreeEntry::NeedToGather) { 3428 if (allConstant(VL)) 3429 return 0; 3430 if (isSplat(VL)) { 3431 return ReuseShuffleCost + 3432 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3433 } 3434 if (E->getOpcode() == Instruction::ExtractElement && 3435 allSameType(VL) && allSameBlock(VL)) { 3436 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3437 if (ShuffleKind.hasValue()) { 3438 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3439 for (auto *V : VL) { 3440 // If all users of instruction are going to be vectorized and this 3441 // instruction itself is not going to be vectorized, consider this 3442 // instruction as dead and remove its cost from the final cost of the 3443 // vectorized tree. 3444 if (areAllUsersVectorized(cast<Instruction>(V)) && 3445 !ScalarToTreeEntry.count(V)) { 3446 auto *IO = cast<ConstantInt>( 3447 cast<ExtractElementInst>(V)->getIndexOperand()); 3448 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3449 IO->getZExtValue()); 3450 } 3451 } 3452 return ReuseShuffleCost + Cost; 3453 } 3454 } 3455 return ReuseShuffleCost + getGatherCost(VL); 3456 } 3457 assert((E->State == TreeEntry::Vectorize || 3458 E->State == TreeEntry::ScatterVectorize) && 3459 "Unhandled state"); 3460 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3461 Instruction *VL0 = E->getMainOp(); 3462 unsigned ShuffleOrOp = 3463 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3464 switch (ShuffleOrOp) { 3465 case Instruction::PHI: 3466 return 0; 3467 3468 case Instruction::ExtractValue: 3469 case Instruction::ExtractElement: { 3470 if (NeedToShuffleReuses) { 3471 unsigned Idx = 0; 3472 for (unsigned I : E->ReuseShuffleIndices) { 3473 if (ShuffleOrOp == Instruction::ExtractElement) { 3474 auto *IO = cast<ConstantInt>( 3475 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3476 Idx = IO->getZExtValue(); 3477 ReuseShuffleCost -= TTI->getVectorInstrCost( 3478 Instruction::ExtractElement, VecTy, Idx); 3479 } else { 3480 ReuseShuffleCost -= TTI->getVectorInstrCost( 3481 Instruction::ExtractElement, VecTy, Idx); 3482 ++Idx; 3483 } 3484 } 3485 Idx = ReuseShuffleNumbers; 3486 for (Value *V : VL) { 3487 if (ShuffleOrOp == Instruction::ExtractElement) { 3488 auto *IO = cast<ConstantInt>( 3489 cast<ExtractElementInst>(V)->getIndexOperand()); 3490 Idx = IO->getZExtValue(); 3491 } else { 3492 --Idx; 3493 } 3494 ReuseShuffleCost += 3495 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3496 } 3497 } 3498 int DeadCost = ReuseShuffleCost; 3499 if (!E->ReorderIndices.empty()) { 3500 // TODO: Merge this shuffle with the ReuseShuffleCost. 3501 DeadCost += TTI->getShuffleCost( 3502 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3503 } 3504 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3505 Instruction *EI = cast<Instruction>(VL[I]); 3506 // If all users are going to be vectorized, instruction can be 3507 // considered as dead. 3508 // The same, if have only one user, it will be vectorized for sure. 3509 if (areAllUsersVectorized(EI)) { 3510 // Take credit for instruction that will become dead. 3511 if (EI->hasOneUse()) { 3512 Instruction *Ext = EI->user_back(); 3513 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3514 all_of(Ext->users(), 3515 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3516 // Use getExtractWithExtendCost() to calculate the cost of 3517 // extractelement/ext pair. 3518 DeadCost -= TTI->getExtractWithExtendCost( 3519 Ext->getOpcode(), Ext->getType(), VecTy, I); 3520 // Add back the cost of s|zext which is subtracted separately. 3521 DeadCost += TTI->getCastInstrCost( 3522 Ext->getOpcode(), Ext->getType(), EI->getType(), 3523 TTI::getCastContextHint(Ext), CostKind, Ext); 3524 continue; 3525 } 3526 } 3527 DeadCost -= 3528 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3529 } 3530 } 3531 return DeadCost; 3532 } 3533 case Instruction::ZExt: 3534 case Instruction::SExt: 3535 case Instruction::FPToUI: 3536 case Instruction::FPToSI: 3537 case Instruction::FPExt: 3538 case Instruction::PtrToInt: 3539 case Instruction::IntToPtr: 3540 case Instruction::SIToFP: 3541 case Instruction::UIToFP: 3542 case Instruction::Trunc: 3543 case Instruction::FPTrunc: 3544 case Instruction::BitCast: { 3545 Type *SrcTy = VL0->getOperand(0)->getType(); 3546 int ScalarEltCost = 3547 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3548 TTI::getCastContextHint(VL0), CostKind, VL0); 3549 if (NeedToShuffleReuses) { 3550 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3551 } 3552 3553 // Calculate the cost of this instruction. 3554 int ScalarCost = VL.size() * ScalarEltCost; 3555 3556 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3557 int VecCost = 0; 3558 // Check if the values are candidates to demote. 3559 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3560 VecCost = 3561 ReuseShuffleCost + 3562 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3563 TTI::getCastContextHint(VL0), CostKind, VL0); 3564 } 3565 return VecCost - ScalarCost; 3566 } 3567 case Instruction::FCmp: 3568 case Instruction::ICmp: 3569 case Instruction::Select: { 3570 // Calculate the cost of this instruction. 3571 int ScalarEltCost = 3572 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3573 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3574 if (NeedToShuffleReuses) { 3575 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3576 } 3577 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3578 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3579 3580 // Check if all entries in VL are either compares or selects with compares 3581 // as condition that have the same predicates. 3582 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3583 bool First = true; 3584 for (auto *V : VL) { 3585 CmpInst::Predicate CurrentPred; 3586 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3587 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3588 !match(V, MatchCmp)) || 3589 (!First && VecPred != CurrentPred)) { 3590 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3591 break; 3592 } 3593 First = false; 3594 VecPred = CurrentPred; 3595 } 3596 3597 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3598 VecPred, CostKind, VL0); 3599 // Check if it is possible and profitable to use min/max for selects in 3600 // VL. 3601 // 3602 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3603 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3604 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3605 {VecTy, VecTy}); 3606 int IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3607 // If the selects are the only uses of the compares, they will be dead 3608 // and we can adjust the cost by removing their cost. 3609 if (IntrinsicAndUse.second) 3610 IntrinsicCost -= 3611 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3612 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3613 VecCost = std::min(VecCost, IntrinsicCost); 3614 } 3615 return ReuseShuffleCost + VecCost - ScalarCost; 3616 } 3617 case Instruction::FNeg: 3618 case Instruction::Add: 3619 case Instruction::FAdd: 3620 case Instruction::Sub: 3621 case Instruction::FSub: 3622 case Instruction::Mul: 3623 case Instruction::FMul: 3624 case Instruction::UDiv: 3625 case Instruction::SDiv: 3626 case Instruction::FDiv: 3627 case Instruction::URem: 3628 case Instruction::SRem: 3629 case Instruction::FRem: 3630 case Instruction::Shl: 3631 case Instruction::LShr: 3632 case Instruction::AShr: 3633 case Instruction::And: 3634 case Instruction::Or: 3635 case Instruction::Xor: { 3636 // Certain instructions can be cheaper to vectorize if they have a 3637 // constant second vector operand. 3638 TargetTransformInfo::OperandValueKind Op1VK = 3639 TargetTransformInfo::OK_AnyValue; 3640 TargetTransformInfo::OperandValueKind Op2VK = 3641 TargetTransformInfo::OK_UniformConstantValue; 3642 TargetTransformInfo::OperandValueProperties Op1VP = 3643 TargetTransformInfo::OP_None; 3644 TargetTransformInfo::OperandValueProperties Op2VP = 3645 TargetTransformInfo::OP_PowerOf2; 3646 3647 // If all operands are exactly the same ConstantInt then set the 3648 // operand kind to OK_UniformConstantValue. 3649 // If instead not all operands are constants, then set the operand kind 3650 // to OK_AnyValue. If all operands are constants but not the same, 3651 // then set the operand kind to OK_NonUniformConstantValue. 3652 ConstantInt *CInt0 = nullptr; 3653 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3654 const Instruction *I = cast<Instruction>(VL[i]); 3655 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3656 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3657 if (!CInt) { 3658 Op2VK = TargetTransformInfo::OK_AnyValue; 3659 Op2VP = TargetTransformInfo::OP_None; 3660 break; 3661 } 3662 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3663 !CInt->getValue().isPowerOf2()) 3664 Op2VP = TargetTransformInfo::OP_None; 3665 if (i == 0) { 3666 CInt0 = CInt; 3667 continue; 3668 } 3669 if (CInt0 != CInt) 3670 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3671 } 3672 3673 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3674 int ScalarEltCost = TTI->getArithmeticInstrCost( 3675 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3676 Operands, VL0); 3677 if (NeedToShuffleReuses) { 3678 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3679 } 3680 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3681 int VecCost = TTI->getArithmeticInstrCost( 3682 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3683 Operands, VL0); 3684 return ReuseShuffleCost + VecCost - ScalarCost; 3685 } 3686 case Instruction::GetElementPtr: { 3687 TargetTransformInfo::OperandValueKind Op1VK = 3688 TargetTransformInfo::OK_AnyValue; 3689 TargetTransformInfo::OperandValueKind Op2VK = 3690 TargetTransformInfo::OK_UniformConstantValue; 3691 3692 int ScalarEltCost = 3693 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3694 Op1VK, Op2VK); 3695 if (NeedToShuffleReuses) { 3696 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3697 } 3698 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3699 int VecCost = 3700 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3701 Op1VK, Op2VK); 3702 return ReuseShuffleCost + VecCost - ScalarCost; 3703 } 3704 case Instruction::Load: { 3705 // Cost of wide load - cost of scalar loads. 3706 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3707 int ScalarEltCost = 3708 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3709 CostKind, VL0); 3710 if (NeedToShuffleReuses) { 3711 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3712 } 3713 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3714 int VecLdCost; 3715 if (E->State == TreeEntry::Vectorize) { 3716 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3717 CostKind, VL0); 3718 } else { 3719 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3720 VecLdCost = TTI->getGatherScatterOpCost( 3721 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3722 /*VariableMask=*/false, alignment, CostKind, VL0); 3723 } 3724 if (!E->ReorderIndices.empty()) { 3725 // TODO: Merge this shuffle with the ReuseShuffleCost. 3726 VecLdCost += TTI->getShuffleCost( 3727 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3728 } 3729 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3730 } 3731 case Instruction::Store: { 3732 // We know that we can merge the stores. Calculate the cost. 3733 bool IsReorder = !E->ReorderIndices.empty(); 3734 auto *SI = 3735 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3736 Align Alignment = SI->getAlign(); 3737 int ScalarEltCost = 3738 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3739 CostKind, VL0); 3740 if (NeedToShuffleReuses) 3741 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3742 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3743 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3744 VecTy, Alignment, 0, CostKind, VL0); 3745 if (IsReorder) { 3746 // TODO: Merge this shuffle with the ReuseShuffleCost. 3747 VecStCost += TTI->getShuffleCost( 3748 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3749 } 3750 return ReuseShuffleCost + VecStCost - ScalarStCost; 3751 } 3752 case Instruction::Call: { 3753 CallInst *CI = cast<CallInst>(VL0); 3754 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3755 3756 // Calculate the cost of the scalar and vector calls. 3757 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3758 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3759 if (NeedToShuffleReuses) { 3760 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3761 } 3762 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3763 3764 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3765 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3766 3767 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3768 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3769 << " for " << *CI << "\n"); 3770 3771 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3772 } 3773 case Instruction::ShuffleVector: { 3774 assert(E->isAltShuffle() && 3775 ((Instruction::isBinaryOp(E->getOpcode()) && 3776 Instruction::isBinaryOp(E->getAltOpcode())) || 3777 (Instruction::isCast(E->getOpcode()) && 3778 Instruction::isCast(E->getAltOpcode()))) && 3779 "Invalid Shuffle Vector Operand"); 3780 int ScalarCost = 0; 3781 if (NeedToShuffleReuses) { 3782 for (unsigned Idx : E->ReuseShuffleIndices) { 3783 Instruction *I = cast<Instruction>(VL[Idx]); 3784 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3785 } 3786 for (Value *V : VL) { 3787 Instruction *I = cast<Instruction>(V); 3788 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3789 } 3790 } 3791 for (Value *V : VL) { 3792 Instruction *I = cast<Instruction>(V); 3793 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3794 ScalarCost += TTI->getInstructionCost(I, CostKind); 3795 } 3796 // VecCost is equal to sum of the cost of creating 2 vectors 3797 // and the cost of creating shuffle. 3798 int VecCost = 0; 3799 if (Instruction::isBinaryOp(E->getOpcode())) { 3800 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3801 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3802 CostKind); 3803 } else { 3804 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3805 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3806 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3807 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3808 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3809 TTI::CastContextHint::None, CostKind); 3810 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3811 TTI::CastContextHint::None, CostKind); 3812 } 3813 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3814 return ReuseShuffleCost + VecCost - ScalarCost; 3815 } 3816 default: 3817 llvm_unreachable("Unknown instruction"); 3818 } 3819 } 3820 3821 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3822 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3823 << VectorizableTree.size() << " is fully vectorizable .\n"); 3824 3825 // We only handle trees of heights 1 and 2. 3826 if (VectorizableTree.size() == 1 && 3827 VectorizableTree[0]->State == TreeEntry::Vectorize) 3828 return true; 3829 3830 if (VectorizableTree.size() != 2) 3831 return false; 3832 3833 // Handle splat and all-constants stores. 3834 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3835 (allConstant(VectorizableTree[1]->Scalars) || 3836 isSplat(VectorizableTree[1]->Scalars))) 3837 return true; 3838 3839 // Gathering cost would be too much for tiny trees. 3840 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3841 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3842 return false; 3843 3844 return true; 3845 } 3846 3847 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3848 TargetTransformInfo *TTI) { 3849 // Look past the root to find a source value. Arbitrarily follow the 3850 // path through operand 0 of any 'or'. Also, peek through optional 3851 // shift-left-by-multiple-of-8-bits. 3852 Value *ZextLoad = Root; 3853 const APInt *ShAmtC; 3854 while (!isa<ConstantExpr>(ZextLoad) && 3855 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3856 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3857 ShAmtC->urem(8) == 0))) 3858 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3859 3860 // Check if the input is an extended load of the required or/shift expression. 3861 Value *LoadPtr; 3862 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3863 return false; 3864 3865 // Require that the total load bit width is a legal integer type. 3866 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3867 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3868 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3869 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3870 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3871 return false; 3872 3873 // Everything matched - assume that we can fold the whole sequence using 3874 // load combining. 3875 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3876 << *(cast<Instruction>(Root)) << "\n"); 3877 3878 return true; 3879 } 3880 3881 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3882 if (RdxOpcode != Instruction::Or) 3883 return false; 3884 3885 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3886 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3887 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3888 } 3889 3890 bool BoUpSLP::isLoadCombineCandidate() const { 3891 // Peek through a final sequence of stores and check if all operations are 3892 // likely to be load-combined. 3893 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3894 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3895 Value *X; 3896 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3897 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3898 return false; 3899 } 3900 return true; 3901 } 3902 3903 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3904 // We can vectorize the tree if its size is greater than or equal to the 3905 // minimum size specified by the MinTreeSize command line option. 3906 if (VectorizableTree.size() >= MinTreeSize) 3907 return false; 3908 3909 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3910 // can vectorize it if we can prove it fully vectorizable. 3911 if (isFullyVectorizableTinyTree()) 3912 return false; 3913 3914 assert(VectorizableTree.empty() 3915 ? ExternalUses.empty() 3916 : true && "We shouldn't have any external users"); 3917 3918 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3919 // vectorizable. 3920 return true; 3921 } 3922 3923 int BoUpSLP::getSpillCost() const { 3924 // Walk from the bottom of the tree to the top, tracking which values are 3925 // live. When we see a call instruction that is not part of our tree, 3926 // query TTI to see if there is a cost to keeping values live over it 3927 // (for example, if spills and fills are required). 3928 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3929 int Cost = 0; 3930 3931 SmallPtrSet<Instruction*, 4> LiveValues; 3932 Instruction *PrevInst = nullptr; 3933 3934 // The entries in VectorizableTree are not necessarily ordered by their 3935 // position in basic blocks. Collect them and order them by dominance so later 3936 // instructions are guaranteed to be visited first. For instructions in 3937 // different basic blocks, we only scan to the beginning of the block, so 3938 // their order does not matter, as long as all instructions in a basic block 3939 // are grouped together. Using dominance ensures a deterministic order. 3940 SmallVector<Instruction *, 16> OrderedScalars; 3941 for (const auto &TEPtr : VectorizableTree) { 3942 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3943 if (!Inst) 3944 continue; 3945 OrderedScalars.push_back(Inst); 3946 } 3947 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3948 return DT->dominates(B, A); 3949 }); 3950 3951 for (Instruction *Inst : OrderedScalars) { 3952 if (!PrevInst) { 3953 PrevInst = Inst; 3954 continue; 3955 } 3956 3957 // Update LiveValues. 3958 LiveValues.erase(PrevInst); 3959 for (auto &J : PrevInst->operands()) { 3960 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3961 LiveValues.insert(cast<Instruction>(&*J)); 3962 } 3963 3964 LLVM_DEBUG({ 3965 dbgs() << "SLP: #LV: " << LiveValues.size(); 3966 for (auto *X : LiveValues) 3967 dbgs() << " " << X->getName(); 3968 dbgs() << ", Looking at "; 3969 Inst->dump(); 3970 }); 3971 3972 // Now find the sequence of instructions between PrevInst and Inst. 3973 unsigned NumCalls = 0; 3974 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3975 PrevInstIt = 3976 PrevInst->getIterator().getReverse(); 3977 while (InstIt != PrevInstIt) { 3978 if (PrevInstIt == PrevInst->getParent()->rend()) { 3979 PrevInstIt = Inst->getParent()->rbegin(); 3980 continue; 3981 } 3982 3983 // Debug information does not impact spill cost. 3984 if ((isa<CallInst>(&*PrevInstIt) && 3985 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3986 &*PrevInstIt != PrevInst) 3987 NumCalls++; 3988 3989 ++PrevInstIt; 3990 } 3991 3992 if (NumCalls) { 3993 SmallVector<Type*, 4> V; 3994 for (auto *II : LiveValues) 3995 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3996 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3997 } 3998 3999 PrevInst = Inst; 4000 } 4001 4002 return Cost; 4003 } 4004 4005 int BoUpSLP::getTreeCost() { 4006 int Cost = 0; 4007 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4008 << VectorizableTree.size() << ".\n"); 4009 4010 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4011 4012 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4013 TreeEntry &TE = *VectorizableTree[I].get(); 4014 4015 // We create duplicate tree entries for gather sequences that have multiple 4016 // uses. However, we should not compute the cost of duplicate sequences. 4017 // For example, if we have a build vector (i.e., insertelement sequence) 4018 // that is used by more than one vector instruction, we only need to 4019 // compute the cost of the insertelement instructions once. The redundant 4020 // instructions will be eliminated by CSE. 4021 // 4022 // We should consider not creating duplicate tree entries for gather 4023 // sequences, and instead add additional edges to the tree representing 4024 // their uses. Since such an approach results in fewer total entries, 4025 // existing heuristics based on tree size may yield different results. 4026 // 4027 if (TE.State == TreeEntry::NeedToGather && 4028 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4029 VectorizableTree.end(), 4030 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4031 return EntryPtr->State == TreeEntry::NeedToGather && 4032 EntryPtr->isSame(TE.Scalars); 4033 })) 4034 continue; 4035 4036 int C = getEntryCost(&TE); 4037 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4038 << " for bundle that starts with " << *TE.Scalars[0] 4039 << ".\n"); 4040 Cost += C; 4041 } 4042 4043 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4044 int ExtractCost = 0; 4045 for (ExternalUser &EU : ExternalUses) { 4046 // We only add extract cost once for the same scalar. 4047 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4048 continue; 4049 4050 // Uses by ephemeral values are free (because the ephemeral value will be 4051 // removed prior to code generation, and so the extraction will be 4052 // removed as well). 4053 if (EphValues.count(EU.User)) 4054 continue; 4055 4056 // If we plan to rewrite the tree in a smaller type, we will need to sign 4057 // extend the extracted value back to the original type. Here, we account 4058 // for the extract and the added cost of the sign extend if needed. 4059 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4060 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4061 if (MinBWs.count(ScalarRoot)) { 4062 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4063 auto Extend = 4064 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4065 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4066 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4067 VecTy, EU.Lane); 4068 } else { 4069 ExtractCost += 4070 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4071 } 4072 } 4073 4074 int SpillCost = getSpillCost(); 4075 Cost += SpillCost + ExtractCost; 4076 4077 #ifndef NDEBUG 4078 SmallString<256> Str; 4079 { 4080 raw_svector_ostream OS(Str); 4081 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4082 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4083 << "SLP: Total Cost = " << Cost << ".\n"; 4084 } 4085 LLVM_DEBUG(dbgs() << Str); 4086 if (ViewSLPTree) 4087 ViewGraph(this, "SLP" + F->getName(), false, Str); 4088 #endif 4089 4090 return Cost; 4091 } 4092 4093 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4094 const DenseSet<unsigned> &ShuffledIndices) const { 4095 unsigned NumElts = Ty->getNumElements(); 4096 APInt DemandedElts = APInt::getNullValue(NumElts); 4097 for (unsigned I = 0; I < NumElts; ++I) 4098 if (!ShuffledIndices.count(I)) 4099 DemandedElts.setBit(I); 4100 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4101 /*Extract*/ false); 4102 if (!ShuffledIndices.empty()) 4103 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4104 return Cost; 4105 } 4106 4107 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4108 // Find the type of the operands in VL. 4109 Type *ScalarTy = VL[0]->getType(); 4110 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4111 ScalarTy = SI->getValueOperand()->getType(); 4112 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4113 // Find the cost of inserting/extracting values from the vector. 4114 // Check if the same elements are inserted several times and count them as 4115 // shuffle candidates. 4116 DenseSet<unsigned> ShuffledElements; 4117 DenseSet<Value *> UniqueElements; 4118 // Iterate in reverse order to consider insert elements with the high cost. 4119 for (unsigned I = VL.size(); I > 0; --I) { 4120 unsigned Idx = I - 1; 4121 if (!UniqueElements.insert(VL[Idx]).second) 4122 ShuffledElements.insert(Idx); 4123 } 4124 return getGatherCost(VecTy, ShuffledElements); 4125 } 4126 4127 // Perform operand reordering on the instructions in VL and return the reordered 4128 // operands in Left and Right. 4129 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4130 SmallVectorImpl<Value *> &Left, 4131 SmallVectorImpl<Value *> &Right, 4132 const DataLayout &DL, 4133 ScalarEvolution &SE, 4134 const BoUpSLP &R) { 4135 if (VL.empty()) 4136 return; 4137 VLOperands Ops(VL, DL, SE, R); 4138 // Reorder the operands in place. 4139 Ops.reorder(); 4140 Left = Ops.getVL(0); 4141 Right = Ops.getVL(1); 4142 } 4143 4144 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4145 // Get the basic block this bundle is in. All instructions in the bundle 4146 // should be in this block. 4147 auto *Front = E->getMainOp(); 4148 auto *BB = Front->getParent(); 4149 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4150 [=](Value *V) -> bool { 4151 auto *I = cast<Instruction>(V); 4152 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4153 })); 4154 4155 // The last instruction in the bundle in program order. 4156 Instruction *LastInst = nullptr; 4157 4158 // Find the last instruction. The common case should be that BB has been 4159 // scheduled, and the last instruction is VL.back(). So we start with 4160 // VL.back() and iterate over schedule data until we reach the end of the 4161 // bundle. The end of the bundle is marked by null ScheduleData. 4162 if (BlocksSchedules.count(BB)) { 4163 auto *Bundle = 4164 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4165 if (Bundle && Bundle->isPartOfBundle()) 4166 for (; Bundle; Bundle = Bundle->NextInBundle) 4167 if (Bundle->OpValue == Bundle->Inst) 4168 LastInst = Bundle->Inst; 4169 } 4170 4171 // LastInst can still be null at this point if there's either not an entry 4172 // for BB in BlocksSchedules or there's no ScheduleData available for 4173 // VL.back(). This can be the case if buildTree_rec aborts for various 4174 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4175 // size is reached, etc.). ScheduleData is initialized in the scheduling 4176 // "dry-run". 4177 // 4178 // If this happens, we can still find the last instruction by brute force. We 4179 // iterate forwards from Front (inclusive) until we either see all 4180 // instructions in the bundle or reach the end of the block. If Front is the 4181 // last instruction in program order, LastInst will be set to Front, and we 4182 // will visit all the remaining instructions in the block. 4183 // 4184 // One of the reasons we exit early from buildTree_rec is to place an upper 4185 // bound on compile-time. Thus, taking an additional compile-time hit here is 4186 // not ideal. However, this should be exceedingly rare since it requires that 4187 // we both exit early from buildTree_rec and that the bundle be out-of-order 4188 // (causing us to iterate all the way to the end of the block). 4189 if (!LastInst) { 4190 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4191 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4192 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4193 LastInst = &I; 4194 if (Bundle.empty()) 4195 break; 4196 } 4197 } 4198 assert(LastInst && "Failed to find last instruction in bundle"); 4199 4200 // Set the insertion point after the last instruction in the bundle. Set the 4201 // debug location to Front. 4202 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4203 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4204 } 4205 4206 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4207 Value *Val0 = 4208 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4209 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4210 Value *Vec = UndefValue::get(VecTy); 4211 unsigned InsIndex = 0; 4212 for (Value *Val : VL) { 4213 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4214 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4215 if (!InsElt) 4216 continue; 4217 GatherSeq.insert(InsElt); 4218 CSEBlocks.insert(InsElt->getParent()); 4219 // Add to our 'need-to-extract' list. 4220 if (TreeEntry *Entry = getTreeEntry(Val)) { 4221 // Find which lane we need to extract. 4222 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4223 find(Entry->Scalars, Val)); 4224 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4225 if (!Entry->ReuseShuffleIndices.empty()) { 4226 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4227 find(Entry->ReuseShuffleIndices, FoundLane)); 4228 } 4229 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4230 } 4231 } 4232 4233 return Vec; 4234 } 4235 4236 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4237 InstructionsState S = getSameOpcode(VL); 4238 if (S.getOpcode()) { 4239 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4240 if (E->isSame(VL)) { 4241 Value *V = vectorizeTree(E); 4242 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4243 // We need to get the vectorized value but without shuffle. 4244 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4245 V = SV->getOperand(0); 4246 } else { 4247 // Reshuffle to get only unique values. 4248 SmallVector<int, 4> UniqueIdxs; 4249 SmallSet<int, 4> UsedIdxs; 4250 for (int Idx : E->ReuseShuffleIndices) 4251 if (UsedIdxs.insert(Idx).second) 4252 UniqueIdxs.emplace_back(Idx); 4253 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4254 } 4255 } 4256 return V; 4257 } 4258 } 4259 } 4260 4261 // Check that every instruction appears once in this bundle. 4262 SmallVector<int, 4> ReuseShuffleIndicies; 4263 SmallVector<Value *, 4> UniqueValues; 4264 if (VL.size() > 2) { 4265 DenseMap<Value *, unsigned> UniquePositions; 4266 for (Value *V : VL) { 4267 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4268 ReuseShuffleIndicies.emplace_back(Res.first->second); 4269 if (Res.second || isa<Constant>(V)) 4270 UniqueValues.emplace_back(V); 4271 } 4272 // Do not shuffle single element or if number of unique values is not power 4273 // of 2. 4274 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4275 !llvm::isPowerOf2_32(UniqueValues.size())) 4276 ReuseShuffleIndicies.clear(); 4277 else 4278 VL = UniqueValues; 4279 } 4280 4281 Value *Vec = gather(VL); 4282 if (!ReuseShuffleIndicies.empty()) { 4283 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4284 if (auto *I = dyn_cast<Instruction>(Vec)) { 4285 GatherSeq.insert(I); 4286 CSEBlocks.insert(I->getParent()); 4287 } 4288 } 4289 return Vec; 4290 } 4291 4292 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4293 IRBuilder<>::InsertPointGuard Guard(Builder); 4294 4295 if (E->VectorizedValue) { 4296 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4297 return E->VectorizedValue; 4298 } 4299 4300 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4301 if (E->State == TreeEntry::NeedToGather) { 4302 setInsertPointAfterBundle(E); 4303 Value *Vec = gather(E->Scalars); 4304 if (NeedToShuffleReuses) { 4305 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4306 if (auto *I = dyn_cast<Instruction>(Vec)) { 4307 GatherSeq.insert(I); 4308 CSEBlocks.insert(I->getParent()); 4309 } 4310 } 4311 E->VectorizedValue = Vec; 4312 return Vec; 4313 } 4314 4315 assert((E->State == TreeEntry::Vectorize || 4316 E->State == TreeEntry::ScatterVectorize) && 4317 "Unhandled state"); 4318 unsigned ShuffleOrOp = 4319 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4320 Instruction *VL0 = E->getMainOp(); 4321 Type *ScalarTy = VL0->getType(); 4322 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4323 ScalarTy = Store->getValueOperand()->getType(); 4324 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4325 switch (ShuffleOrOp) { 4326 case Instruction::PHI: { 4327 auto *PH = cast<PHINode>(VL0); 4328 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4329 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4330 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4331 Value *V = NewPhi; 4332 if (NeedToShuffleReuses) 4333 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4334 4335 E->VectorizedValue = V; 4336 4337 // PHINodes may have multiple entries from the same block. We want to 4338 // visit every block once. 4339 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4340 4341 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4342 ValueList Operands; 4343 BasicBlock *IBB = PH->getIncomingBlock(i); 4344 4345 if (!VisitedBBs.insert(IBB).second) { 4346 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4347 continue; 4348 } 4349 4350 Builder.SetInsertPoint(IBB->getTerminator()); 4351 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4352 Value *Vec = vectorizeTree(E->getOperand(i)); 4353 NewPhi->addIncoming(Vec, IBB); 4354 } 4355 4356 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4357 "Invalid number of incoming values"); 4358 return V; 4359 } 4360 4361 case Instruction::ExtractElement: { 4362 Value *V = E->getSingleOperand(0); 4363 if (!E->ReorderIndices.empty()) { 4364 SmallVector<int, 4> Mask; 4365 inversePermutation(E->ReorderIndices, Mask); 4366 Builder.SetInsertPoint(VL0); 4367 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4368 } 4369 if (NeedToShuffleReuses) { 4370 // TODO: Merge this shuffle with the ReorderShuffleMask. 4371 if (E->ReorderIndices.empty()) 4372 Builder.SetInsertPoint(VL0); 4373 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4374 } 4375 E->VectorizedValue = V; 4376 return V; 4377 } 4378 case Instruction::ExtractValue: { 4379 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4380 Builder.SetInsertPoint(LI); 4381 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4382 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4383 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4384 Value *NewV = propagateMetadata(V, E->Scalars); 4385 if (!E->ReorderIndices.empty()) { 4386 SmallVector<int, 4> Mask; 4387 inversePermutation(E->ReorderIndices, Mask); 4388 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4389 } 4390 if (NeedToShuffleReuses) { 4391 // TODO: Merge this shuffle with the ReorderShuffleMask. 4392 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4393 "shuffle"); 4394 } 4395 E->VectorizedValue = NewV; 4396 return NewV; 4397 } 4398 case Instruction::ZExt: 4399 case Instruction::SExt: 4400 case Instruction::FPToUI: 4401 case Instruction::FPToSI: 4402 case Instruction::FPExt: 4403 case Instruction::PtrToInt: 4404 case Instruction::IntToPtr: 4405 case Instruction::SIToFP: 4406 case Instruction::UIToFP: 4407 case Instruction::Trunc: 4408 case Instruction::FPTrunc: 4409 case Instruction::BitCast: { 4410 setInsertPointAfterBundle(E); 4411 4412 Value *InVec = vectorizeTree(E->getOperand(0)); 4413 4414 if (E->VectorizedValue) { 4415 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4416 return E->VectorizedValue; 4417 } 4418 4419 auto *CI = cast<CastInst>(VL0); 4420 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4421 if (NeedToShuffleReuses) 4422 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4423 4424 E->VectorizedValue = V; 4425 ++NumVectorInstructions; 4426 return V; 4427 } 4428 case Instruction::FCmp: 4429 case Instruction::ICmp: { 4430 setInsertPointAfterBundle(E); 4431 4432 Value *L = vectorizeTree(E->getOperand(0)); 4433 Value *R = vectorizeTree(E->getOperand(1)); 4434 4435 if (E->VectorizedValue) { 4436 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4437 return E->VectorizedValue; 4438 } 4439 4440 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4441 Value *V = Builder.CreateCmp(P0, L, R); 4442 propagateIRFlags(V, E->Scalars, VL0); 4443 if (NeedToShuffleReuses) 4444 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4445 4446 E->VectorizedValue = V; 4447 ++NumVectorInstructions; 4448 return V; 4449 } 4450 case Instruction::Select: { 4451 setInsertPointAfterBundle(E); 4452 4453 Value *Cond = vectorizeTree(E->getOperand(0)); 4454 Value *True = vectorizeTree(E->getOperand(1)); 4455 Value *False = vectorizeTree(E->getOperand(2)); 4456 4457 if (E->VectorizedValue) { 4458 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4459 return E->VectorizedValue; 4460 } 4461 4462 Value *V = Builder.CreateSelect(Cond, True, False); 4463 if (NeedToShuffleReuses) 4464 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4465 4466 E->VectorizedValue = V; 4467 ++NumVectorInstructions; 4468 return V; 4469 } 4470 case Instruction::FNeg: { 4471 setInsertPointAfterBundle(E); 4472 4473 Value *Op = vectorizeTree(E->getOperand(0)); 4474 4475 if (E->VectorizedValue) { 4476 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4477 return E->VectorizedValue; 4478 } 4479 4480 Value *V = Builder.CreateUnOp( 4481 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4482 propagateIRFlags(V, E->Scalars, VL0); 4483 if (auto *I = dyn_cast<Instruction>(V)) 4484 V = propagateMetadata(I, E->Scalars); 4485 4486 if (NeedToShuffleReuses) 4487 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4488 4489 E->VectorizedValue = V; 4490 ++NumVectorInstructions; 4491 4492 return V; 4493 } 4494 case Instruction::Add: 4495 case Instruction::FAdd: 4496 case Instruction::Sub: 4497 case Instruction::FSub: 4498 case Instruction::Mul: 4499 case Instruction::FMul: 4500 case Instruction::UDiv: 4501 case Instruction::SDiv: 4502 case Instruction::FDiv: 4503 case Instruction::URem: 4504 case Instruction::SRem: 4505 case Instruction::FRem: 4506 case Instruction::Shl: 4507 case Instruction::LShr: 4508 case Instruction::AShr: 4509 case Instruction::And: 4510 case Instruction::Or: 4511 case Instruction::Xor: { 4512 setInsertPointAfterBundle(E); 4513 4514 Value *LHS = vectorizeTree(E->getOperand(0)); 4515 Value *RHS = vectorizeTree(E->getOperand(1)); 4516 4517 if (E->VectorizedValue) { 4518 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4519 return E->VectorizedValue; 4520 } 4521 4522 Value *V = Builder.CreateBinOp( 4523 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4524 RHS); 4525 propagateIRFlags(V, E->Scalars, VL0); 4526 if (auto *I = dyn_cast<Instruction>(V)) 4527 V = propagateMetadata(I, E->Scalars); 4528 4529 if (NeedToShuffleReuses) 4530 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4531 4532 E->VectorizedValue = V; 4533 ++NumVectorInstructions; 4534 4535 return V; 4536 } 4537 case Instruction::Load: { 4538 // Loads are inserted at the head of the tree because we don't want to 4539 // sink them all the way down past store instructions. 4540 bool IsReorder = E->updateStateIfReorder(); 4541 if (IsReorder) 4542 VL0 = E->getMainOp(); 4543 setInsertPointAfterBundle(E); 4544 4545 LoadInst *LI = cast<LoadInst>(VL0); 4546 Instruction *NewLI; 4547 unsigned AS = LI->getPointerAddressSpace(); 4548 Value *PO = LI->getPointerOperand(); 4549 if (E->State == TreeEntry::Vectorize) { 4550 4551 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4552 4553 // The pointer operand uses an in-tree scalar so we add the new BitCast 4554 // to ExternalUses list to make sure that an extract will be generated 4555 // in the future. 4556 if (getTreeEntry(PO)) 4557 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4558 4559 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4560 } else { 4561 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4562 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4563 // Use the minimum alignment of the gathered loads. 4564 Align CommonAlignment = LI->getAlign(); 4565 for (Value *V : E->Scalars) 4566 CommonAlignment = 4567 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4568 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4569 } 4570 Value *V = propagateMetadata(NewLI, E->Scalars); 4571 4572 if (IsReorder) { 4573 SmallVector<int, 4> Mask; 4574 inversePermutation(E->ReorderIndices, Mask); 4575 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4576 } 4577 if (NeedToShuffleReuses) { 4578 // TODO: Merge this shuffle with the ReorderShuffleMask. 4579 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4580 } 4581 E->VectorizedValue = V; 4582 ++NumVectorInstructions; 4583 return V; 4584 } 4585 case Instruction::Store: { 4586 bool IsReorder = !E->ReorderIndices.empty(); 4587 auto *SI = cast<StoreInst>( 4588 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4589 unsigned AS = SI->getPointerAddressSpace(); 4590 4591 setInsertPointAfterBundle(E); 4592 4593 Value *VecValue = vectorizeTree(E->getOperand(0)); 4594 if (IsReorder) { 4595 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4596 E->ReorderIndices.end()); 4597 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4598 } 4599 Value *ScalarPtr = SI->getPointerOperand(); 4600 Value *VecPtr = Builder.CreateBitCast( 4601 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4602 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4603 SI->getAlign()); 4604 4605 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4606 // ExternalUses to make sure that an extract will be generated in the 4607 // future. 4608 if (getTreeEntry(ScalarPtr)) 4609 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4610 4611 Value *V = propagateMetadata(ST, E->Scalars); 4612 if (NeedToShuffleReuses) 4613 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4614 4615 E->VectorizedValue = V; 4616 ++NumVectorInstructions; 4617 return V; 4618 } 4619 case Instruction::GetElementPtr: { 4620 setInsertPointAfterBundle(E); 4621 4622 Value *Op0 = vectorizeTree(E->getOperand(0)); 4623 4624 std::vector<Value *> OpVecs; 4625 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4626 ++j) { 4627 ValueList &VL = E->getOperand(j); 4628 // Need to cast all elements to the same type before vectorization to 4629 // avoid crash. 4630 Type *VL0Ty = VL0->getOperand(j)->getType(); 4631 Type *Ty = llvm::all_of( 4632 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4633 ? VL0Ty 4634 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4635 ->getPointerOperandType() 4636 ->getScalarType()); 4637 for (Value *&V : VL) { 4638 auto *CI = cast<ConstantInt>(V); 4639 V = ConstantExpr::getIntegerCast(CI, Ty, 4640 CI->getValue().isSignBitSet()); 4641 } 4642 Value *OpVec = vectorizeTree(VL); 4643 OpVecs.push_back(OpVec); 4644 } 4645 4646 Value *V = Builder.CreateGEP( 4647 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4648 if (Instruction *I = dyn_cast<Instruction>(V)) 4649 V = propagateMetadata(I, E->Scalars); 4650 4651 if (NeedToShuffleReuses) 4652 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4653 4654 E->VectorizedValue = V; 4655 ++NumVectorInstructions; 4656 4657 return V; 4658 } 4659 case Instruction::Call: { 4660 CallInst *CI = cast<CallInst>(VL0); 4661 setInsertPointAfterBundle(E); 4662 4663 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4664 if (Function *FI = CI->getCalledFunction()) 4665 IID = FI->getIntrinsicID(); 4666 4667 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4668 4669 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4670 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4671 VecCallCosts.first <= VecCallCosts.second; 4672 4673 Value *ScalarArg = nullptr; 4674 std::vector<Value *> OpVecs; 4675 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4676 ValueList OpVL; 4677 // Some intrinsics have scalar arguments. This argument should not be 4678 // vectorized. 4679 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4680 CallInst *CEI = cast<CallInst>(VL0); 4681 ScalarArg = CEI->getArgOperand(j); 4682 OpVecs.push_back(CEI->getArgOperand(j)); 4683 continue; 4684 } 4685 4686 Value *OpVec = vectorizeTree(E->getOperand(j)); 4687 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4688 OpVecs.push_back(OpVec); 4689 } 4690 4691 Function *CF; 4692 if (!UseIntrinsic) { 4693 VFShape Shape = 4694 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4695 VecTy->getNumElements())), 4696 false /*HasGlobalPred*/); 4697 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4698 } else { 4699 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4700 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4701 } 4702 4703 SmallVector<OperandBundleDef, 1> OpBundles; 4704 CI->getOperandBundlesAsDefs(OpBundles); 4705 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4706 4707 // The scalar argument uses an in-tree scalar so we add the new vectorized 4708 // call to ExternalUses list to make sure that an extract will be 4709 // generated in the future. 4710 if (ScalarArg && getTreeEntry(ScalarArg)) 4711 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4712 4713 propagateIRFlags(V, E->Scalars, VL0); 4714 if (NeedToShuffleReuses) 4715 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4716 4717 E->VectorizedValue = V; 4718 ++NumVectorInstructions; 4719 return V; 4720 } 4721 case Instruction::ShuffleVector: { 4722 assert(E->isAltShuffle() && 4723 ((Instruction::isBinaryOp(E->getOpcode()) && 4724 Instruction::isBinaryOp(E->getAltOpcode())) || 4725 (Instruction::isCast(E->getOpcode()) && 4726 Instruction::isCast(E->getAltOpcode()))) && 4727 "Invalid Shuffle Vector Operand"); 4728 4729 Value *LHS = nullptr, *RHS = nullptr; 4730 if (Instruction::isBinaryOp(E->getOpcode())) { 4731 setInsertPointAfterBundle(E); 4732 LHS = vectorizeTree(E->getOperand(0)); 4733 RHS = vectorizeTree(E->getOperand(1)); 4734 } else { 4735 setInsertPointAfterBundle(E); 4736 LHS = vectorizeTree(E->getOperand(0)); 4737 } 4738 4739 if (E->VectorizedValue) { 4740 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4741 return E->VectorizedValue; 4742 } 4743 4744 Value *V0, *V1; 4745 if (Instruction::isBinaryOp(E->getOpcode())) { 4746 V0 = Builder.CreateBinOp( 4747 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4748 V1 = Builder.CreateBinOp( 4749 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4750 } else { 4751 V0 = Builder.CreateCast( 4752 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4753 V1 = Builder.CreateCast( 4754 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4755 } 4756 4757 // Create shuffle to take alternate operations from the vector. 4758 // Also, gather up main and alt scalar ops to propagate IR flags to 4759 // each vector operation. 4760 ValueList OpScalars, AltScalars; 4761 unsigned e = E->Scalars.size(); 4762 SmallVector<int, 8> Mask(e); 4763 for (unsigned i = 0; i < e; ++i) { 4764 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4765 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4766 if (OpInst->getOpcode() == E->getAltOpcode()) { 4767 Mask[i] = e + i; 4768 AltScalars.push_back(E->Scalars[i]); 4769 } else { 4770 Mask[i] = i; 4771 OpScalars.push_back(E->Scalars[i]); 4772 } 4773 } 4774 4775 propagateIRFlags(V0, OpScalars); 4776 propagateIRFlags(V1, AltScalars); 4777 4778 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4779 if (Instruction *I = dyn_cast<Instruction>(V)) 4780 V = propagateMetadata(I, E->Scalars); 4781 if (NeedToShuffleReuses) 4782 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4783 4784 E->VectorizedValue = V; 4785 ++NumVectorInstructions; 4786 4787 return V; 4788 } 4789 default: 4790 llvm_unreachable("unknown inst"); 4791 } 4792 return nullptr; 4793 } 4794 4795 Value *BoUpSLP::vectorizeTree() { 4796 ExtraValueToDebugLocsMap ExternallyUsedValues; 4797 return vectorizeTree(ExternallyUsedValues); 4798 } 4799 4800 Value * 4801 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4802 // All blocks must be scheduled before any instructions are inserted. 4803 for (auto &BSIter : BlocksSchedules) { 4804 scheduleBlock(BSIter.second.get()); 4805 } 4806 4807 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4808 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4809 4810 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4811 // vectorized root. InstCombine will then rewrite the entire expression. We 4812 // sign extend the extracted values below. 4813 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4814 if (MinBWs.count(ScalarRoot)) { 4815 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4816 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4817 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4818 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4819 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4820 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4821 VectorizableTree[0]->VectorizedValue = Trunc; 4822 } 4823 4824 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4825 << " values .\n"); 4826 4827 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4828 // specified by ScalarType. 4829 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4830 if (!MinBWs.count(ScalarRoot)) 4831 return Ex; 4832 if (MinBWs[ScalarRoot].second) 4833 return Builder.CreateSExt(Ex, ScalarType); 4834 return Builder.CreateZExt(Ex, ScalarType); 4835 }; 4836 4837 // Extract all of the elements with the external uses. 4838 for (const auto &ExternalUse : ExternalUses) { 4839 Value *Scalar = ExternalUse.Scalar; 4840 llvm::User *User = ExternalUse.User; 4841 4842 // Skip users that we already RAUW. This happens when one instruction 4843 // has multiple uses of the same value. 4844 if (User && !is_contained(Scalar->users(), User)) 4845 continue; 4846 TreeEntry *E = getTreeEntry(Scalar); 4847 assert(E && "Invalid scalar"); 4848 assert(E->State != TreeEntry::NeedToGather && 4849 "Extracting from a gather list"); 4850 4851 Value *Vec = E->VectorizedValue; 4852 assert(Vec && "Can't find vectorizable value"); 4853 4854 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4855 // If User == nullptr, the Scalar is used as extra arg. Generate 4856 // ExtractElement instruction and update the record for this scalar in 4857 // ExternallyUsedValues. 4858 if (!User) { 4859 assert(ExternallyUsedValues.count(Scalar) && 4860 "Scalar with nullptr as an external user must be registered in " 4861 "ExternallyUsedValues map"); 4862 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4863 Builder.SetInsertPoint(VecI->getParent(), 4864 std::next(VecI->getIterator())); 4865 } else { 4866 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4867 } 4868 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4869 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4870 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4871 auto &Locs = ExternallyUsedValues[Scalar]; 4872 ExternallyUsedValues.insert({Ex, Locs}); 4873 ExternallyUsedValues.erase(Scalar); 4874 // Required to update internally referenced instructions. 4875 Scalar->replaceAllUsesWith(Ex); 4876 continue; 4877 } 4878 4879 // Generate extracts for out-of-tree users. 4880 // Find the insertion point for the extractelement lane. 4881 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4882 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4883 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4884 if (PH->getIncomingValue(i) == Scalar) { 4885 Instruction *IncomingTerminator = 4886 PH->getIncomingBlock(i)->getTerminator(); 4887 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4888 Builder.SetInsertPoint(VecI->getParent(), 4889 std::next(VecI->getIterator())); 4890 } else { 4891 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4892 } 4893 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4894 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4895 CSEBlocks.insert(PH->getIncomingBlock(i)); 4896 PH->setOperand(i, Ex); 4897 } 4898 } 4899 } else { 4900 Builder.SetInsertPoint(cast<Instruction>(User)); 4901 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4902 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4903 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4904 User->replaceUsesOfWith(Scalar, Ex); 4905 } 4906 } else { 4907 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4908 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4909 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4910 CSEBlocks.insert(&F->getEntryBlock()); 4911 User->replaceUsesOfWith(Scalar, Ex); 4912 } 4913 4914 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4915 } 4916 4917 // For each vectorized value: 4918 for (auto &TEPtr : VectorizableTree) { 4919 TreeEntry *Entry = TEPtr.get(); 4920 4921 // No need to handle users of gathered values. 4922 if (Entry->State == TreeEntry::NeedToGather) 4923 continue; 4924 4925 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4926 4927 // For each lane: 4928 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4929 Value *Scalar = Entry->Scalars[Lane]; 4930 4931 #ifndef NDEBUG 4932 Type *Ty = Scalar->getType(); 4933 if (!Ty->isVoidTy()) { 4934 for (User *U : Scalar->users()) { 4935 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4936 4937 // It is legal to delete users in the ignorelist. 4938 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4939 "Deleting out-of-tree value"); 4940 } 4941 } 4942 #endif 4943 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4944 eraseInstruction(cast<Instruction>(Scalar)); 4945 } 4946 } 4947 4948 Builder.ClearInsertionPoint(); 4949 InstrElementSize.clear(); 4950 4951 return VectorizableTree[0]->VectorizedValue; 4952 } 4953 4954 void BoUpSLP::optimizeGatherSequence() { 4955 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4956 << " gather sequences instructions.\n"); 4957 // LICM InsertElementInst sequences. 4958 for (Instruction *I : GatherSeq) { 4959 if (isDeleted(I)) 4960 continue; 4961 4962 // Check if this block is inside a loop. 4963 Loop *L = LI->getLoopFor(I->getParent()); 4964 if (!L) 4965 continue; 4966 4967 // Check if it has a preheader. 4968 BasicBlock *PreHeader = L->getLoopPreheader(); 4969 if (!PreHeader) 4970 continue; 4971 4972 // If the vector or the element that we insert into it are 4973 // instructions that are defined in this basic block then we can't 4974 // hoist this instruction. 4975 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4976 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4977 if (Op0 && L->contains(Op0)) 4978 continue; 4979 if (Op1 && L->contains(Op1)) 4980 continue; 4981 4982 // We can hoist this instruction. Move it to the pre-header. 4983 I->moveBefore(PreHeader->getTerminator()); 4984 } 4985 4986 // Make a list of all reachable blocks in our CSE queue. 4987 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4988 CSEWorkList.reserve(CSEBlocks.size()); 4989 for (BasicBlock *BB : CSEBlocks) 4990 if (DomTreeNode *N = DT->getNode(BB)) { 4991 assert(DT->isReachableFromEntry(N)); 4992 CSEWorkList.push_back(N); 4993 } 4994 4995 // Sort blocks by domination. This ensures we visit a block after all blocks 4996 // dominating it are visited. 4997 llvm::stable_sort(CSEWorkList, 4998 [this](const DomTreeNode *A, const DomTreeNode *B) { 4999 return DT->properlyDominates(A, B); 5000 }); 5001 5002 // Perform O(N^2) search over the gather sequences and merge identical 5003 // instructions. TODO: We can further optimize this scan if we split the 5004 // instructions into different buckets based on the insert lane. 5005 SmallVector<Instruction *, 16> Visited; 5006 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5007 assert(*I && 5008 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5009 "Worklist not sorted properly!"); 5010 BasicBlock *BB = (*I)->getBlock(); 5011 // For all instructions in blocks containing gather sequences: 5012 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5013 Instruction *In = &*it++; 5014 if (isDeleted(In)) 5015 continue; 5016 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5017 continue; 5018 5019 // Check if we can replace this instruction with any of the 5020 // visited instructions. 5021 for (Instruction *v : Visited) { 5022 if (In->isIdenticalTo(v) && 5023 DT->dominates(v->getParent(), In->getParent())) { 5024 In->replaceAllUsesWith(v); 5025 eraseInstruction(In); 5026 In = nullptr; 5027 break; 5028 } 5029 } 5030 if (In) { 5031 assert(!is_contained(Visited, In)); 5032 Visited.push_back(In); 5033 } 5034 } 5035 } 5036 CSEBlocks.clear(); 5037 GatherSeq.clear(); 5038 } 5039 5040 // Groups the instructions to a bundle (which is then a single scheduling entity) 5041 // and schedules instructions until the bundle gets ready. 5042 Optional<BoUpSLP::ScheduleData *> 5043 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5044 const InstructionsState &S) { 5045 if (isa<PHINode>(S.OpValue)) 5046 return nullptr; 5047 5048 // Initialize the instruction bundle. 5049 Instruction *OldScheduleEnd = ScheduleEnd; 5050 ScheduleData *PrevInBundle = nullptr; 5051 ScheduleData *Bundle = nullptr; 5052 bool ReSchedule = false; 5053 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5054 5055 // Make sure that the scheduling region contains all 5056 // instructions of the bundle. 5057 for (Value *V : VL) { 5058 if (!extendSchedulingRegion(V, S)) 5059 return None; 5060 } 5061 5062 for (Value *V : VL) { 5063 ScheduleData *BundleMember = getScheduleData(V); 5064 assert(BundleMember && 5065 "no ScheduleData for bundle member (maybe not in same basic block)"); 5066 if (BundleMember->IsScheduled) { 5067 // A bundle member was scheduled as single instruction before and now 5068 // needs to be scheduled as part of the bundle. We just get rid of the 5069 // existing schedule. 5070 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5071 << " was already scheduled\n"); 5072 ReSchedule = true; 5073 } 5074 assert(BundleMember->isSchedulingEntity() && 5075 "bundle member already part of other bundle"); 5076 if (PrevInBundle) { 5077 PrevInBundle->NextInBundle = BundleMember; 5078 } else { 5079 Bundle = BundleMember; 5080 } 5081 BundleMember->UnscheduledDepsInBundle = 0; 5082 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5083 5084 // Group the instructions to a bundle. 5085 BundleMember->FirstInBundle = Bundle; 5086 PrevInBundle = BundleMember; 5087 } 5088 if (ScheduleEnd != OldScheduleEnd) { 5089 // The scheduling region got new instructions at the lower end (or it is a 5090 // new region for the first bundle). This makes it necessary to 5091 // recalculate all dependencies. 5092 // It is seldom that this needs to be done a second time after adding the 5093 // initial bundle to the region. 5094 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5095 doForAllOpcodes(I, [](ScheduleData *SD) { 5096 SD->clearDependencies(); 5097 }); 5098 } 5099 ReSchedule = true; 5100 } 5101 if (ReSchedule) { 5102 resetSchedule(); 5103 initialFillReadyList(ReadyInsts); 5104 } 5105 assert(Bundle && "Failed to find schedule bundle"); 5106 5107 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5108 << BB->getName() << "\n"); 5109 5110 calculateDependencies(Bundle, true, SLP); 5111 5112 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5113 // means that there are no cyclic dependencies and we can schedule it. 5114 // Note that's important that we don't "schedule" the bundle yet (see 5115 // cancelScheduling). 5116 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5117 5118 ScheduleData *pickedSD = ReadyInsts.back(); 5119 ReadyInsts.pop_back(); 5120 5121 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5122 schedule(pickedSD, ReadyInsts); 5123 } 5124 } 5125 if (!Bundle->isReady()) { 5126 cancelScheduling(VL, S.OpValue); 5127 return None; 5128 } 5129 return Bundle; 5130 } 5131 5132 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5133 Value *OpValue) { 5134 if (isa<PHINode>(OpValue)) 5135 return; 5136 5137 ScheduleData *Bundle = getScheduleData(OpValue); 5138 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5139 assert(!Bundle->IsScheduled && 5140 "Can't cancel bundle which is already scheduled"); 5141 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5142 "tried to unbundle something which is not a bundle"); 5143 5144 // Un-bundle: make single instructions out of the bundle. 5145 ScheduleData *BundleMember = Bundle; 5146 while (BundleMember) { 5147 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5148 BundleMember->FirstInBundle = BundleMember; 5149 ScheduleData *Next = BundleMember->NextInBundle; 5150 BundleMember->NextInBundle = nullptr; 5151 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5152 if (BundleMember->UnscheduledDepsInBundle == 0) { 5153 ReadyInsts.insert(BundleMember); 5154 } 5155 BundleMember = Next; 5156 } 5157 } 5158 5159 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5160 // Allocate a new ScheduleData for the instruction. 5161 if (ChunkPos >= ChunkSize) { 5162 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5163 ChunkPos = 0; 5164 } 5165 return &(ScheduleDataChunks.back()[ChunkPos++]); 5166 } 5167 5168 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5169 const InstructionsState &S) { 5170 if (getScheduleData(V, isOneOf(S, V))) 5171 return true; 5172 Instruction *I = dyn_cast<Instruction>(V); 5173 assert(I && "bundle member must be an instruction"); 5174 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5175 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5176 ScheduleData *ISD = getScheduleData(I); 5177 if (!ISD) 5178 return false; 5179 assert(isInSchedulingRegion(ISD) && 5180 "ScheduleData not in scheduling region"); 5181 ScheduleData *SD = allocateScheduleDataChunks(); 5182 SD->Inst = I; 5183 SD->init(SchedulingRegionID, S.OpValue); 5184 ExtraScheduleDataMap[I][S.OpValue] = SD; 5185 return true; 5186 }; 5187 if (CheckSheduleForI(I)) 5188 return true; 5189 if (!ScheduleStart) { 5190 // It's the first instruction in the new region. 5191 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5192 ScheduleStart = I; 5193 ScheduleEnd = I->getNextNode(); 5194 if (isOneOf(S, I) != I) 5195 CheckSheduleForI(I); 5196 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5197 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5198 return true; 5199 } 5200 // Search up and down at the same time, because we don't know if the new 5201 // instruction is above or below the existing scheduling region. 5202 BasicBlock::reverse_iterator UpIter = 5203 ++ScheduleStart->getIterator().getReverse(); 5204 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5205 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5206 BasicBlock::iterator LowerEnd = BB->end(); 5207 while (true) { 5208 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5209 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5210 return false; 5211 } 5212 5213 if (UpIter != UpperEnd) { 5214 if (&*UpIter == I) { 5215 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5216 ScheduleStart = I; 5217 if (isOneOf(S, I) != I) 5218 CheckSheduleForI(I); 5219 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5220 << "\n"); 5221 return true; 5222 } 5223 ++UpIter; 5224 } 5225 if (DownIter != LowerEnd) { 5226 if (&*DownIter == I) { 5227 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5228 nullptr); 5229 ScheduleEnd = I->getNextNode(); 5230 if (isOneOf(S, I) != I) 5231 CheckSheduleForI(I); 5232 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5233 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5234 << "\n"); 5235 return true; 5236 } 5237 ++DownIter; 5238 } 5239 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5240 "instruction not found in block"); 5241 } 5242 return true; 5243 } 5244 5245 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5246 Instruction *ToI, 5247 ScheduleData *PrevLoadStore, 5248 ScheduleData *NextLoadStore) { 5249 ScheduleData *CurrentLoadStore = PrevLoadStore; 5250 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5251 ScheduleData *SD = ScheduleDataMap[I]; 5252 if (!SD) { 5253 SD = allocateScheduleDataChunks(); 5254 ScheduleDataMap[I] = SD; 5255 SD->Inst = I; 5256 } 5257 assert(!isInSchedulingRegion(SD) && 5258 "new ScheduleData already in scheduling region"); 5259 SD->init(SchedulingRegionID, I); 5260 5261 if (I->mayReadOrWriteMemory() && 5262 (!isa<IntrinsicInst>(I) || 5263 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5264 cast<IntrinsicInst>(I)->getIntrinsicID() != 5265 Intrinsic::pseudoprobe))) { 5266 // Update the linked list of memory accessing instructions. 5267 if (CurrentLoadStore) { 5268 CurrentLoadStore->NextLoadStore = SD; 5269 } else { 5270 FirstLoadStoreInRegion = SD; 5271 } 5272 CurrentLoadStore = SD; 5273 } 5274 } 5275 if (NextLoadStore) { 5276 if (CurrentLoadStore) 5277 CurrentLoadStore->NextLoadStore = NextLoadStore; 5278 } else { 5279 LastLoadStoreInRegion = CurrentLoadStore; 5280 } 5281 } 5282 5283 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5284 bool InsertInReadyList, 5285 BoUpSLP *SLP) { 5286 assert(SD->isSchedulingEntity()); 5287 5288 SmallVector<ScheduleData *, 10> WorkList; 5289 WorkList.push_back(SD); 5290 5291 while (!WorkList.empty()) { 5292 ScheduleData *SD = WorkList.back(); 5293 WorkList.pop_back(); 5294 5295 ScheduleData *BundleMember = SD; 5296 while (BundleMember) { 5297 assert(isInSchedulingRegion(BundleMember)); 5298 if (!BundleMember->hasValidDependencies()) { 5299 5300 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5301 << "\n"); 5302 BundleMember->Dependencies = 0; 5303 BundleMember->resetUnscheduledDeps(); 5304 5305 // Handle def-use chain dependencies. 5306 if (BundleMember->OpValue != BundleMember->Inst) { 5307 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5308 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5309 BundleMember->Dependencies++; 5310 ScheduleData *DestBundle = UseSD->FirstInBundle; 5311 if (!DestBundle->IsScheduled) 5312 BundleMember->incrementUnscheduledDeps(1); 5313 if (!DestBundle->hasValidDependencies()) 5314 WorkList.push_back(DestBundle); 5315 } 5316 } else { 5317 for (User *U : BundleMember->Inst->users()) { 5318 if (isa<Instruction>(U)) { 5319 ScheduleData *UseSD = getScheduleData(U); 5320 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5321 BundleMember->Dependencies++; 5322 ScheduleData *DestBundle = UseSD->FirstInBundle; 5323 if (!DestBundle->IsScheduled) 5324 BundleMember->incrementUnscheduledDeps(1); 5325 if (!DestBundle->hasValidDependencies()) 5326 WorkList.push_back(DestBundle); 5327 } 5328 } else { 5329 // I'm not sure if this can ever happen. But we need to be safe. 5330 // This lets the instruction/bundle never be scheduled and 5331 // eventually disable vectorization. 5332 BundleMember->Dependencies++; 5333 BundleMember->incrementUnscheduledDeps(1); 5334 } 5335 } 5336 } 5337 5338 // Handle the memory dependencies. 5339 ScheduleData *DepDest = BundleMember->NextLoadStore; 5340 if (DepDest) { 5341 Instruction *SrcInst = BundleMember->Inst; 5342 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5343 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5344 unsigned numAliased = 0; 5345 unsigned DistToSrc = 1; 5346 5347 while (DepDest) { 5348 assert(isInSchedulingRegion(DepDest)); 5349 5350 // We have two limits to reduce the complexity: 5351 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5352 // SLP->isAliased (which is the expensive part in this loop). 5353 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5354 // the whole loop (even if the loop is fast, it's quadratic). 5355 // It's important for the loop break condition (see below) to 5356 // check this limit even between two read-only instructions. 5357 if (DistToSrc >= MaxMemDepDistance || 5358 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5359 (numAliased >= AliasedCheckLimit || 5360 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5361 5362 // We increment the counter only if the locations are aliased 5363 // (instead of counting all alias checks). This gives a better 5364 // balance between reduced runtime and accurate dependencies. 5365 numAliased++; 5366 5367 DepDest->MemoryDependencies.push_back(BundleMember); 5368 BundleMember->Dependencies++; 5369 ScheduleData *DestBundle = DepDest->FirstInBundle; 5370 if (!DestBundle->IsScheduled) { 5371 BundleMember->incrementUnscheduledDeps(1); 5372 } 5373 if (!DestBundle->hasValidDependencies()) { 5374 WorkList.push_back(DestBundle); 5375 } 5376 } 5377 DepDest = DepDest->NextLoadStore; 5378 5379 // Example, explaining the loop break condition: Let's assume our 5380 // starting instruction is i0 and MaxMemDepDistance = 3. 5381 // 5382 // +--------v--v--v 5383 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5384 // +--------^--^--^ 5385 // 5386 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5387 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5388 // Previously we already added dependencies from i3 to i6,i7,i8 5389 // (because of MaxMemDepDistance). As we added a dependency from 5390 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5391 // and we can abort this loop at i6. 5392 if (DistToSrc >= 2 * MaxMemDepDistance) 5393 break; 5394 DistToSrc++; 5395 } 5396 } 5397 } 5398 BundleMember = BundleMember->NextInBundle; 5399 } 5400 if (InsertInReadyList && SD->isReady()) { 5401 ReadyInsts.push_back(SD); 5402 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5403 << "\n"); 5404 } 5405 } 5406 } 5407 5408 void BoUpSLP::BlockScheduling::resetSchedule() { 5409 assert(ScheduleStart && 5410 "tried to reset schedule on block which has not been scheduled"); 5411 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5412 doForAllOpcodes(I, [&](ScheduleData *SD) { 5413 assert(isInSchedulingRegion(SD) && 5414 "ScheduleData not in scheduling region"); 5415 SD->IsScheduled = false; 5416 SD->resetUnscheduledDeps(); 5417 }); 5418 } 5419 ReadyInsts.clear(); 5420 } 5421 5422 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5423 if (!BS->ScheduleStart) 5424 return; 5425 5426 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5427 5428 BS->resetSchedule(); 5429 5430 // For the real scheduling we use a more sophisticated ready-list: it is 5431 // sorted by the original instruction location. This lets the final schedule 5432 // be as close as possible to the original instruction order. 5433 struct ScheduleDataCompare { 5434 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5435 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5436 } 5437 }; 5438 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5439 5440 // Ensure that all dependency data is updated and fill the ready-list with 5441 // initial instructions. 5442 int Idx = 0; 5443 int NumToSchedule = 0; 5444 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5445 I = I->getNextNode()) { 5446 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5447 assert(SD->isPartOfBundle() == 5448 (getTreeEntry(SD->Inst) != nullptr) && 5449 "scheduler and vectorizer bundle mismatch"); 5450 SD->FirstInBundle->SchedulingPriority = Idx++; 5451 if (SD->isSchedulingEntity()) { 5452 BS->calculateDependencies(SD, false, this); 5453 NumToSchedule++; 5454 } 5455 }); 5456 } 5457 BS->initialFillReadyList(ReadyInsts); 5458 5459 Instruction *LastScheduledInst = BS->ScheduleEnd; 5460 5461 // Do the "real" scheduling. 5462 while (!ReadyInsts.empty()) { 5463 ScheduleData *picked = *ReadyInsts.begin(); 5464 ReadyInsts.erase(ReadyInsts.begin()); 5465 5466 // Move the scheduled instruction(s) to their dedicated places, if not 5467 // there yet. 5468 ScheduleData *BundleMember = picked; 5469 while (BundleMember) { 5470 Instruction *pickedInst = BundleMember->Inst; 5471 if (LastScheduledInst->getNextNode() != pickedInst) { 5472 BS->BB->getInstList().remove(pickedInst); 5473 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5474 pickedInst); 5475 } 5476 LastScheduledInst = pickedInst; 5477 BundleMember = BundleMember->NextInBundle; 5478 } 5479 5480 BS->schedule(picked, ReadyInsts); 5481 NumToSchedule--; 5482 } 5483 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5484 5485 // Avoid duplicate scheduling of the block. 5486 BS->ScheduleStart = nullptr; 5487 } 5488 5489 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5490 // If V is a store, just return the width of the stored value without 5491 // traversing the expression tree. This is the common case. 5492 if (auto *Store = dyn_cast<StoreInst>(V)) 5493 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5494 5495 auto E = InstrElementSize.find(V); 5496 if (E != InstrElementSize.end()) 5497 return E->second; 5498 5499 // If V is not a store, we can traverse the expression tree to find loads 5500 // that feed it. The type of the loaded value may indicate a more suitable 5501 // width than V's type. We want to base the vector element size on the width 5502 // of memory operations where possible. 5503 SmallVector<Instruction *, 16> Worklist; 5504 SmallPtrSet<Instruction *, 16> Visited; 5505 if (auto *I = dyn_cast<Instruction>(V)) { 5506 Worklist.push_back(I); 5507 Visited.insert(I); 5508 } 5509 5510 // Traverse the expression tree in bottom-up order looking for loads. If we 5511 // encounter an instruction we don't yet handle, we give up. 5512 auto MaxWidth = 0u; 5513 auto FoundUnknownInst = false; 5514 while (!Worklist.empty() && !FoundUnknownInst) { 5515 auto *I = Worklist.pop_back_val(); 5516 5517 // We should only be looking at scalar instructions here. If the current 5518 // instruction has a vector type, give up. 5519 auto *Ty = I->getType(); 5520 if (isa<VectorType>(Ty)) 5521 FoundUnknownInst = true; 5522 5523 // If the current instruction is a load, update MaxWidth to reflect the 5524 // width of the loaded value. 5525 else if (isa<LoadInst>(I)) 5526 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5527 5528 // Otherwise, we need to visit the operands of the instruction. We only 5529 // handle the interesting cases from buildTree here. If an operand is an 5530 // instruction we haven't yet visited, we add it to the worklist. 5531 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5532 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5533 for (Use &U : I->operands()) 5534 if (auto *J = dyn_cast<Instruction>(U.get())) 5535 if (Visited.insert(J).second) 5536 Worklist.push_back(J); 5537 } 5538 5539 // If we don't yet handle the instruction, give up. 5540 else 5541 FoundUnknownInst = true; 5542 } 5543 5544 int Width = MaxWidth; 5545 // If we didn't encounter a memory access in the expression tree, or if we 5546 // gave up for some reason, just return the width of V. Otherwise, return the 5547 // maximum width we found. 5548 if (!MaxWidth || FoundUnknownInst) 5549 Width = DL->getTypeSizeInBits(V->getType()); 5550 5551 for (Instruction *I : Visited) 5552 InstrElementSize[I] = Width; 5553 5554 return Width; 5555 } 5556 5557 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5558 // smaller type with a truncation. We collect the values that will be demoted 5559 // in ToDemote and additional roots that require investigating in Roots. 5560 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5561 SmallVectorImpl<Value *> &ToDemote, 5562 SmallVectorImpl<Value *> &Roots) { 5563 // We can always demote constants. 5564 if (isa<Constant>(V)) { 5565 ToDemote.push_back(V); 5566 return true; 5567 } 5568 5569 // If the value is not an instruction in the expression with only one use, it 5570 // cannot be demoted. 5571 auto *I = dyn_cast<Instruction>(V); 5572 if (!I || !I->hasOneUse() || !Expr.count(I)) 5573 return false; 5574 5575 switch (I->getOpcode()) { 5576 5577 // We can always demote truncations and extensions. Since truncations can 5578 // seed additional demotion, we save the truncated value. 5579 case Instruction::Trunc: 5580 Roots.push_back(I->getOperand(0)); 5581 break; 5582 case Instruction::ZExt: 5583 case Instruction::SExt: 5584 break; 5585 5586 // We can demote certain binary operations if we can demote both of their 5587 // operands. 5588 case Instruction::Add: 5589 case Instruction::Sub: 5590 case Instruction::Mul: 5591 case Instruction::And: 5592 case Instruction::Or: 5593 case Instruction::Xor: 5594 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5595 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5596 return false; 5597 break; 5598 5599 // We can demote selects if we can demote their true and false values. 5600 case Instruction::Select: { 5601 SelectInst *SI = cast<SelectInst>(I); 5602 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5603 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5604 return false; 5605 break; 5606 } 5607 5608 // We can demote phis if we can demote all their incoming operands. Note that 5609 // we don't need to worry about cycles since we ensure single use above. 5610 case Instruction::PHI: { 5611 PHINode *PN = cast<PHINode>(I); 5612 for (Value *IncValue : PN->incoming_values()) 5613 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5614 return false; 5615 break; 5616 } 5617 5618 // Otherwise, conservatively give up. 5619 default: 5620 return false; 5621 } 5622 5623 // Record the value that we can demote. 5624 ToDemote.push_back(V); 5625 return true; 5626 } 5627 5628 void BoUpSLP::computeMinimumValueSizes() { 5629 // If there are no external uses, the expression tree must be rooted by a 5630 // store. We can't demote in-memory values, so there is nothing to do here. 5631 if (ExternalUses.empty()) 5632 return; 5633 5634 // We only attempt to truncate integer expressions. 5635 auto &TreeRoot = VectorizableTree[0]->Scalars; 5636 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5637 if (!TreeRootIT) 5638 return; 5639 5640 // If the expression is not rooted by a store, these roots should have 5641 // external uses. We will rely on InstCombine to rewrite the expression in 5642 // the narrower type. However, InstCombine only rewrites single-use values. 5643 // This means that if a tree entry other than a root is used externally, it 5644 // must have multiple uses and InstCombine will not rewrite it. The code 5645 // below ensures that only the roots are used externally. 5646 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5647 for (auto &EU : ExternalUses) 5648 if (!Expr.erase(EU.Scalar)) 5649 return; 5650 if (!Expr.empty()) 5651 return; 5652 5653 // Collect the scalar values of the vectorizable expression. We will use this 5654 // context to determine which values can be demoted. If we see a truncation, 5655 // we mark it as seeding another demotion. 5656 for (auto &EntryPtr : VectorizableTree) 5657 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5658 5659 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5660 // have a single external user that is not in the vectorizable tree. 5661 for (auto *Root : TreeRoot) 5662 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5663 return; 5664 5665 // Conservatively determine if we can actually truncate the roots of the 5666 // expression. Collect the values that can be demoted in ToDemote and 5667 // additional roots that require investigating in Roots. 5668 SmallVector<Value *, 32> ToDemote; 5669 SmallVector<Value *, 4> Roots; 5670 for (auto *Root : TreeRoot) 5671 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5672 return; 5673 5674 // The maximum bit width required to represent all the values that can be 5675 // demoted without loss of precision. It would be safe to truncate the roots 5676 // of the expression to this width. 5677 auto MaxBitWidth = 8u; 5678 5679 // We first check if all the bits of the roots are demanded. If they're not, 5680 // we can truncate the roots to this narrower type. 5681 for (auto *Root : TreeRoot) { 5682 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5683 MaxBitWidth = std::max<unsigned>( 5684 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5685 } 5686 5687 // True if the roots can be zero-extended back to their original type, rather 5688 // than sign-extended. We know that if the leading bits are not demanded, we 5689 // can safely zero-extend. So we initialize IsKnownPositive to True. 5690 bool IsKnownPositive = true; 5691 5692 // If all the bits of the roots are demanded, we can try a little harder to 5693 // compute a narrower type. This can happen, for example, if the roots are 5694 // getelementptr indices. InstCombine promotes these indices to the pointer 5695 // width. Thus, all their bits are technically demanded even though the 5696 // address computation might be vectorized in a smaller type. 5697 // 5698 // We start by looking at each entry that can be demoted. We compute the 5699 // maximum bit width required to store the scalar by using ValueTracking to 5700 // compute the number of high-order bits we can truncate. 5701 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5702 llvm::all_of(TreeRoot, [](Value *R) { 5703 assert(R->hasOneUse() && "Root should have only one use!"); 5704 return isa<GetElementPtrInst>(R->user_back()); 5705 })) { 5706 MaxBitWidth = 8u; 5707 5708 // Determine if the sign bit of all the roots is known to be zero. If not, 5709 // IsKnownPositive is set to False. 5710 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5711 KnownBits Known = computeKnownBits(R, *DL); 5712 return Known.isNonNegative(); 5713 }); 5714 5715 // Determine the maximum number of bits required to store the scalar 5716 // values. 5717 for (auto *Scalar : ToDemote) { 5718 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5719 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5720 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5721 } 5722 5723 // If we can't prove that the sign bit is zero, we must add one to the 5724 // maximum bit width to account for the unknown sign bit. This preserves 5725 // the existing sign bit so we can safely sign-extend the root back to the 5726 // original type. Otherwise, if we know the sign bit is zero, we will 5727 // zero-extend the root instead. 5728 // 5729 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5730 // one to the maximum bit width will yield a larger-than-necessary 5731 // type. In general, we need to add an extra bit only if we can't 5732 // prove that the upper bit of the original type is equal to the 5733 // upper bit of the proposed smaller type. If these two bits are the 5734 // same (either zero or one) we know that sign-extending from the 5735 // smaller type will result in the same value. Here, since we can't 5736 // yet prove this, we are just making the proposed smaller type 5737 // larger to ensure correctness. 5738 if (!IsKnownPositive) 5739 ++MaxBitWidth; 5740 } 5741 5742 // Round MaxBitWidth up to the next power-of-two. 5743 if (!isPowerOf2_64(MaxBitWidth)) 5744 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5745 5746 // If the maximum bit width we compute is less than the with of the roots' 5747 // type, we can proceed with the narrowing. Otherwise, do nothing. 5748 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5749 return; 5750 5751 // If we can truncate the root, we must collect additional values that might 5752 // be demoted as a result. That is, those seeded by truncations we will 5753 // modify. 5754 while (!Roots.empty()) 5755 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5756 5757 // Finally, map the values we can demote to the maximum bit with we computed. 5758 for (auto *Scalar : ToDemote) 5759 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5760 } 5761 5762 namespace { 5763 5764 /// The SLPVectorizer Pass. 5765 struct SLPVectorizer : public FunctionPass { 5766 SLPVectorizerPass Impl; 5767 5768 /// Pass identification, replacement for typeid 5769 static char ID; 5770 5771 explicit SLPVectorizer() : FunctionPass(ID) { 5772 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5773 } 5774 5775 bool doInitialization(Module &M) override { 5776 return false; 5777 } 5778 5779 bool runOnFunction(Function &F) override { 5780 if (skipFunction(F)) 5781 return false; 5782 5783 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5784 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5785 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5786 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5787 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5788 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5789 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5790 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5791 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5792 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5793 5794 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5795 } 5796 5797 void getAnalysisUsage(AnalysisUsage &AU) const override { 5798 FunctionPass::getAnalysisUsage(AU); 5799 AU.addRequired<AssumptionCacheTracker>(); 5800 AU.addRequired<ScalarEvolutionWrapperPass>(); 5801 AU.addRequired<AAResultsWrapperPass>(); 5802 AU.addRequired<TargetTransformInfoWrapperPass>(); 5803 AU.addRequired<LoopInfoWrapperPass>(); 5804 AU.addRequired<DominatorTreeWrapperPass>(); 5805 AU.addRequired<DemandedBitsWrapperPass>(); 5806 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5807 AU.addRequired<InjectTLIMappingsLegacy>(); 5808 AU.addPreserved<LoopInfoWrapperPass>(); 5809 AU.addPreserved<DominatorTreeWrapperPass>(); 5810 AU.addPreserved<AAResultsWrapperPass>(); 5811 AU.addPreserved<GlobalsAAWrapperPass>(); 5812 AU.setPreservesCFG(); 5813 } 5814 }; 5815 5816 } // end anonymous namespace 5817 5818 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5819 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5820 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5821 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5822 auto *AA = &AM.getResult<AAManager>(F); 5823 auto *LI = &AM.getResult<LoopAnalysis>(F); 5824 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5825 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5826 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5827 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5828 5829 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5830 if (!Changed) 5831 return PreservedAnalyses::all(); 5832 5833 PreservedAnalyses PA; 5834 PA.preserveSet<CFGAnalyses>(); 5835 PA.preserve<AAManager>(); 5836 PA.preserve<GlobalsAA>(); 5837 return PA; 5838 } 5839 5840 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5841 TargetTransformInfo *TTI_, 5842 TargetLibraryInfo *TLI_, AAResults *AA_, 5843 LoopInfo *LI_, DominatorTree *DT_, 5844 AssumptionCache *AC_, DemandedBits *DB_, 5845 OptimizationRemarkEmitter *ORE_) { 5846 if (!RunSLPVectorization) 5847 return false; 5848 SE = SE_; 5849 TTI = TTI_; 5850 TLI = TLI_; 5851 AA = AA_; 5852 LI = LI_; 5853 DT = DT_; 5854 AC = AC_; 5855 DB = DB_; 5856 DL = &F.getParent()->getDataLayout(); 5857 5858 Stores.clear(); 5859 GEPs.clear(); 5860 bool Changed = false; 5861 5862 // If the target claims to have no vector registers don't attempt 5863 // vectorization. 5864 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5865 return false; 5866 5867 // Don't vectorize when the attribute NoImplicitFloat is used. 5868 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5869 return false; 5870 5871 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5872 5873 // Use the bottom up slp vectorizer to construct chains that start with 5874 // store instructions. 5875 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5876 5877 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5878 // delete instructions. 5879 5880 // Scan the blocks in the function in post order. 5881 for (auto BB : post_order(&F.getEntryBlock())) { 5882 collectSeedInstructions(BB); 5883 5884 // Vectorize trees that end at stores. 5885 if (!Stores.empty()) { 5886 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5887 << " underlying objects.\n"); 5888 Changed |= vectorizeStoreChains(R); 5889 } 5890 5891 // Vectorize trees that end at reductions. 5892 Changed |= vectorizeChainsInBlock(BB, R); 5893 5894 // Vectorize the index computations of getelementptr instructions. This 5895 // is primarily intended to catch gather-like idioms ending at 5896 // non-consecutive loads. 5897 if (!GEPs.empty()) { 5898 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5899 << " underlying objects.\n"); 5900 Changed |= vectorizeGEPIndices(BB, R); 5901 } 5902 } 5903 5904 if (Changed) { 5905 R.optimizeGatherSequence(); 5906 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5907 } 5908 return Changed; 5909 } 5910 5911 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5912 unsigned Idx) { 5913 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5914 << "\n"); 5915 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5916 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5917 unsigned VF = Chain.size(); 5918 5919 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5920 return false; 5921 5922 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5923 << "\n"); 5924 5925 R.buildTree(Chain); 5926 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5927 // TODO: Handle orders of size less than number of elements in the vector. 5928 if (Order && Order->size() == Chain.size()) { 5929 // TODO: reorder tree nodes without tree rebuilding. 5930 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5931 llvm::transform(*Order, ReorderedOps.begin(), 5932 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5933 R.buildTree(ReorderedOps); 5934 } 5935 if (R.isTreeTinyAndNotFullyVectorizable()) 5936 return false; 5937 if (R.isLoadCombineCandidate()) 5938 return false; 5939 5940 R.computeMinimumValueSizes(); 5941 5942 int Cost = R.getTreeCost(); 5943 5944 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5945 if (Cost < -SLPCostThreshold) { 5946 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5947 5948 using namespace ore; 5949 5950 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5951 cast<StoreInst>(Chain[0])) 5952 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5953 << " and with tree size " 5954 << NV("TreeSize", R.getTreeSize())); 5955 5956 R.vectorizeTree(); 5957 return true; 5958 } 5959 5960 return false; 5961 } 5962 5963 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5964 BoUpSLP &R) { 5965 // We may run into multiple chains that merge into a single chain. We mark the 5966 // stores that we vectorized so that we don't visit the same store twice. 5967 BoUpSLP::ValueSet VectorizedStores; 5968 bool Changed = false; 5969 5970 int E = Stores.size(); 5971 SmallBitVector Tails(E, false); 5972 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5973 int MaxIter = MaxStoreLookup.getValue(); 5974 int IterCnt; 5975 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5976 &ConsecutiveChain](int K, int Idx) { 5977 if (IterCnt >= MaxIter) 5978 return true; 5979 ++IterCnt; 5980 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5981 return false; 5982 5983 Tails.set(Idx); 5984 ConsecutiveChain[K] = Idx; 5985 return true; 5986 }; 5987 // Do a quadratic search on all of the given stores in reverse order and find 5988 // all of the pairs of stores that follow each other. 5989 for (int Idx = E - 1; Idx >= 0; --Idx) { 5990 // If a store has multiple consecutive store candidates, search according 5991 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5992 // This is because usually pairing with immediate succeeding or preceding 5993 // candidate create the best chance to find slp vectorization opportunity. 5994 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5995 IterCnt = 0; 5996 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5997 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5998 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5999 break; 6000 } 6001 6002 // For stores that start but don't end a link in the chain: 6003 for (int Cnt = E; Cnt > 0; --Cnt) { 6004 int I = Cnt - 1; 6005 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6006 continue; 6007 // We found a store instr that starts a chain. Now follow the chain and try 6008 // to vectorize it. 6009 BoUpSLP::ValueList Operands; 6010 // Collect the chain into a list. 6011 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6012 Operands.push_back(Stores[I]); 6013 // Move to the next value in the chain. 6014 I = ConsecutiveChain[I]; 6015 } 6016 6017 // If a vector register can't hold 1 element, we are done. 6018 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6019 unsigned EltSize = R.getVectorElementSize(Stores[0]); 6020 if (MaxVecRegSize % EltSize != 0) 6021 continue; 6022 6023 unsigned MaxElts = MaxVecRegSize / EltSize; 6024 // FIXME: Is division-by-2 the correct step? Should we assert that the 6025 // register size is a power-of-2? 6026 unsigned StartIdx = 0; 6027 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6028 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6029 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6030 if (!VectorizedStores.count(Slice.front()) && 6031 !VectorizedStores.count(Slice.back()) && 6032 vectorizeStoreChain(Slice, R, Cnt)) { 6033 // Mark the vectorized stores so that we don't vectorize them again. 6034 VectorizedStores.insert(Slice.begin(), Slice.end()); 6035 Changed = true; 6036 // If we vectorized initial block, no need to try to vectorize it 6037 // again. 6038 if (Cnt == StartIdx) 6039 StartIdx += Size; 6040 Cnt += Size; 6041 continue; 6042 } 6043 ++Cnt; 6044 } 6045 // Check if the whole array was vectorized already - exit. 6046 if (StartIdx >= Operands.size()) 6047 break; 6048 } 6049 } 6050 6051 return Changed; 6052 } 6053 6054 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6055 // Initialize the collections. We will make a single pass over the block. 6056 Stores.clear(); 6057 GEPs.clear(); 6058 6059 // Visit the store and getelementptr instructions in BB and organize them in 6060 // Stores and GEPs according to the underlying objects of their pointer 6061 // operands. 6062 for (Instruction &I : *BB) { 6063 // Ignore store instructions that are volatile or have a pointer operand 6064 // that doesn't point to a scalar type. 6065 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6066 if (!SI->isSimple()) 6067 continue; 6068 if (!isValidElementType(SI->getValueOperand()->getType())) 6069 continue; 6070 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6071 } 6072 6073 // Ignore getelementptr instructions that have more than one index, a 6074 // constant index, or a pointer operand that doesn't point to a scalar 6075 // type. 6076 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6077 auto Idx = GEP->idx_begin()->get(); 6078 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6079 continue; 6080 if (!isValidElementType(Idx->getType())) 6081 continue; 6082 if (GEP->getType()->isVectorTy()) 6083 continue; 6084 GEPs[GEP->getPointerOperand()].push_back(GEP); 6085 } 6086 } 6087 } 6088 6089 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6090 if (!A || !B) 6091 return false; 6092 Value *VL[] = {A, B}; 6093 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6094 } 6095 6096 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6097 bool AllowReorder, 6098 ArrayRef<Value *> InsertUses) { 6099 if (VL.size() < 2) 6100 return false; 6101 6102 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6103 << VL.size() << ".\n"); 6104 6105 // Check that all of the parts are instructions of the same type, 6106 // we permit an alternate opcode via InstructionsState. 6107 InstructionsState S = getSameOpcode(VL); 6108 if (!S.getOpcode()) 6109 return false; 6110 6111 Instruction *I0 = cast<Instruction>(S.OpValue); 6112 // Make sure invalid types (including vector type) are rejected before 6113 // determining vectorization factor for scalar instructions. 6114 for (Value *V : VL) { 6115 Type *Ty = V->getType(); 6116 if (!isValidElementType(Ty)) { 6117 // NOTE: the following will give user internal llvm type name, which may 6118 // not be useful. 6119 R.getORE()->emit([&]() { 6120 std::string type_str; 6121 llvm::raw_string_ostream rso(type_str); 6122 Ty->print(rso); 6123 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6124 << "Cannot SLP vectorize list: type " 6125 << rso.str() + " is unsupported by vectorizer"; 6126 }); 6127 return false; 6128 } 6129 } 6130 6131 unsigned Sz = R.getVectorElementSize(I0); 6132 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6133 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6134 if (MaxVF < 2) { 6135 R.getORE()->emit([&]() { 6136 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6137 << "Cannot SLP vectorize list: vectorization factor " 6138 << "less than 2 is not supported"; 6139 }); 6140 return false; 6141 } 6142 6143 bool Changed = false; 6144 bool CandidateFound = false; 6145 int MinCost = SLPCostThreshold; 6146 6147 bool CompensateUseCost = 6148 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6149 return V && isa<InsertElementInst>(V); 6150 }); 6151 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6152 "Each scalar expected to have an associated InsertElement user."); 6153 6154 unsigned NextInst = 0, MaxInst = VL.size(); 6155 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6156 // No actual vectorization should happen, if number of parts is the same as 6157 // provided vectorization factor (i.e. the scalar type is used for vector 6158 // code during codegen). 6159 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6160 if (TTI->getNumberOfParts(VecTy) == VF) 6161 continue; 6162 for (unsigned I = NextInst; I < MaxInst; ++I) { 6163 unsigned OpsWidth = 0; 6164 6165 if (I + VF > MaxInst) 6166 OpsWidth = MaxInst - I; 6167 else 6168 OpsWidth = VF; 6169 6170 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6171 break; 6172 6173 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6174 // Check that a previous iteration of this loop did not delete the Value. 6175 if (llvm::any_of(Ops, [&R](Value *V) { 6176 auto *I = dyn_cast<Instruction>(V); 6177 return I && R.isDeleted(I); 6178 })) 6179 continue; 6180 6181 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6182 << "\n"); 6183 6184 R.buildTree(Ops); 6185 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6186 // TODO: check if we can allow reordering for more cases. 6187 if (AllowReorder && Order) { 6188 // TODO: reorder tree nodes without tree rebuilding. 6189 // Conceptually, there is nothing actually preventing us from trying to 6190 // reorder a larger list. In fact, we do exactly this when vectorizing 6191 // reductions. However, at this point, we only expect to get here when 6192 // there are exactly two operations. 6193 assert(Ops.size() == 2); 6194 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6195 R.buildTree(ReorderedOps, None); 6196 } 6197 if (R.isTreeTinyAndNotFullyVectorizable()) 6198 continue; 6199 6200 R.computeMinimumValueSizes(); 6201 int Cost = R.getTreeCost(); 6202 CandidateFound = true; 6203 if (CompensateUseCost) { 6204 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6205 // rather than sum of single inserts as the latter may overestimate 6206 // cost. This work should imply improving cost estimation for extracts 6207 // that added in for external (for vectorization tree) users,i.e. that 6208 // part should also switch to same interface. 6209 // For example, the following case is projected code after SLP: 6210 // %4 = extractelement <4 x i64> %3, i32 0 6211 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6212 // %5 = extractelement <4 x i64> %3, i32 1 6213 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6214 // %6 = extractelement <4 x i64> %3, i32 2 6215 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6216 // %7 = extractelement <4 x i64> %3, i32 3 6217 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6218 // 6219 // Extracts here added by SLP in order to feed users (the inserts) of 6220 // original scalars and contribute to "ExtractCost" at cost evaluation. 6221 // The inserts in turn form sequence to build an aggregate that 6222 // detected by findBuildAggregate routine. 6223 // SLP makes an assumption that such sequence will be optimized away 6224 // later (instcombine) so it tries to compensate ExctractCost with 6225 // cost of insert sequence. 6226 // Current per element cost calculation approach is not quite accurate 6227 // and tends to create bias toward favoring vectorization. 6228 // Switching to the TTI interface might help a bit. 6229 // Alternative solution could be pattern-match to detect a no-op or 6230 // shuffle. 6231 unsigned UserCost = 0; 6232 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6233 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6234 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6235 UserCost += TTI->getVectorInstrCost( 6236 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6237 } 6238 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6239 << ".\n"); 6240 Cost -= UserCost; 6241 } 6242 6243 MinCost = std::min(MinCost, Cost); 6244 6245 if (Cost < -SLPCostThreshold) { 6246 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6247 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6248 cast<Instruction>(Ops[0])) 6249 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6250 << " and with tree size " 6251 << ore::NV("TreeSize", R.getTreeSize())); 6252 6253 R.vectorizeTree(); 6254 // Move to the next bundle. 6255 I += VF - 1; 6256 NextInst = I + 1; 6257 Changed = true; 6258 } 6259 } 6260 } 6261 6262 if (!Changed && CandidateFound) { 6263 R.getORE()->emit([&]() { 6264 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6265 << "List vectorization was possible but not beneficial with cost " 6266 << ore::NV("Cost", MinCost) << " >= " 6267 << ore::NV("Treshold", -SLPCostThreshold); 6268 }); 6269 } else if (!Changed) { 6270 R.getORE()->emit([&]() { 6271 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6272 << "Cannot SLP vectorize list: vectorization was impossible" 6273 << " with available vectorization factors"; 6274 }); 6275 } 6276 return Changed; 6277 } 6278 6279 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6280 if (!I) 6281 return false; 6282 6283 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6284 return false; 6285 6286 Value *P = I->getParent(); 6287 6288 // Vectorize in current basic block only. 6289 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6290 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6291 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6292 return false; 6293 6294 // Try to vectorize V. 6295 if (tryToVectorizePair(Op0, Op1, R)) 6296 return true; 6297 6298 auto *A = dyn_cast<BinaryOperator>(Op0); 6299 auto *B = dyn_cast<BinaryOperator>(Op1); 6300 // Try to skip B. 6301 if (B && B->hasOneUse()) { 6302 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6303 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6304 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6305 return true; 6306 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6307 return true; 6308 } 6309 6310 // Try to skip A. 6311 if (A && A->hasOneUse()) { 6312 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6313 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6314 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6315 return true; 6316 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6317 return true; 6318 } 6319 return false; 6320 } 6321 6322 /// Generate a shuffle mask to be used in a reduction tree. 6323 /// 6324 /// \param VecLen The length of the vector to be reduced. 6325 /// \param NumEltsToRdx The number of elements that should be reduced in the 6326 /// vector. 6327 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6328 /// reduction. A pairwise reduction will generate a mask of 6329 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6330 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6331 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6332 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6333 unsigned NumEltsToRdx, 6334 bool IsPairwise, bool IsLeft) { 6335 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6336 6337 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6338 6339 if (IsPairwise) 6340 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6341 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6342 ShuffleMask[i] = 2 * i + !IsLeft; 6343 else 6344 // Move the upper half of the vector to the lower half. 6345 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6346 ShuffleMask[i] = NumEltsToRdx + i; 6347 6348 return ShuffleMask; 6349 } 6350 6351 namespace { 6352 6353 /// Model horizontal reductions. 6354 /// 6355 /// A horizontal reduction is a tree of reduction operations (currently add and 6356 /// fadd) that has operations that can be put into a vector as its leaf. 6357 /// For example, this tree: 6358 /// 6359 /// mul mul mul mul 6360 /// \ / \ / 6361 /// + + 6362 /// \ / 6363 /// + 6364 /// This tree has "mul" as its reduced values and "+" as its reduction 6365 /// operations. A reduction might be feeding into a store or a binary operation 6366 /// feeding a phi. 6367 /// ... 6368 /// \ / 6369 /// + 6370 /// | 6371 /// phi += 6372 /// 6373 /// Or: 6374 /// ... 6375 /// \ / 6376 /// + 6377 /// | 6378 /// *p = 6379 /// 6380 class HorizontalReduction { 6381 using ReductionOpsType = SmallVector<Value *, 16>; 6382 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6383 ReductionOpsListType ReductionOps; 6384 SmallVector<Value *, 32> ReducedVals; 6385 // Use map vector to make stable output. 6386 MapVector<Instruction *, Value *> ExtraArgs; 6387 6388 /// Kind of the reduction data. 6389 enum ReductionKind { 6390 RK_None, /// Not a reduction. 6391 RK_Arithmetic, /// Binary reduction data. 6392 RK_SMin, /// Signed minimum reduction data. 6393 RK_UMin, /// Unsigned minimum reduction data. 6394 RK_SMax, /// Signed maximum reduction data. 6395 RK_UMax, /// Unsigned maximum reduction data. 6396 }; 6397 6398 /// Contains info about operation, like its opcode, left and right operands. 6399 class OperationData { 6400 /// Opcode of the instruction. 6401 unsigned Opcode = 0; 6402 6403 /// Kind of the reduction operation. 6404 ReductionKind Kind = RK_None; 6405 6406 /// Checks if the reduction operation can be vectorized. 6407 bool isVectorizable() const { 6408 // We currently only support add/mul/logical && min/max reductions. 6409 return ((Kind == RK_Arithmetic && 6410 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6411 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6412 Opcode == Instruction::And || Opcode == Instruction::Or || 6413 Opcode == Instruction::Xor)) || 6414 (Opcode == Instruction::ICmp && 6415 (Kind == RK_SMin || Kind == RK_SMax || 6416 Kind == RK_UMin || Kind == RK_UMax))); 6417 } 6418 6419 /// Creates reduction operation with the current opcode. 6420 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6421 const Twine &Name) const { 6422 assert(isVectorizable() && 6423 "Expected add|fadd or min/max reduction operation."); 6424 Value *Cmp = nullptr; 6425 switch (Kind) { 6426 case RK_Arithmetic: 6427 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6428 Name); 6429 case RK_SMin: 6430 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6431 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6432 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6433 case RK_SMax: 6434 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6435 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6436 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6437 case RK_UMin: 6438 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6439 Cmp = Builder.CreateICmpULT(LHS, RHS); 6440 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6441 case RK_UMax: 6442 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6443 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6444 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6445 case RK_None: 6446 break; 6447 } 6448 llvm_unreachable("Unknown reduction operation."); 6449 } 6450 6451 public: 6452 explicit OperationData() = default; 6453 6454 /// Construction for reduced values. They are identified by opcode only and 6455 /// don't have associated LHS/RHS values. 6456 explicit OperationData(Instruction &I) { 6457 Opcode = I.getOpcode(); 6458 } 6459 6460 /// Constructor for reduction operations with opcode and its left and 6461 /// right operands. 6462 OperationData(unsigned Opcode, ReductionKind Kind) 6463 : Opcode(Opcode), Kind(Kind) { 6464 assert(Kind != RK_None && "One of the reduction operations is expected."); 6465 } 6466 6467 explicit operator bool() const { return Opcode; } 6468 6469 /// Return true if this operation is any kind of minimum or maximum. 6470 bool isMinMax() const { 6471 switch (Kind) { 6472 case RK_Arithmetic: 6473 return false; 6474 case RK_SMin: 6475 case RK_SMax: 6476 case RK_UMin: 6477 case RK_UMax: 6478 return true; 6479 case RK_None: 6480 break; 6481 } 6482 llvm_unreachable("Reduction kind is not set"); 6483 } 6484 6485 /// Get the index of the first operand. 6486 unsigned getFirstOperandIndex() const { 6487 assert(!!*this && "The opcode is not set."); 6488 // We allow calling this before 'Kind' is set, so handle that specially. 6489 if (Kind == RK_None) 6490 return 0; 6491 return isMinMax() ? 1 : 0; 6492 } 6493 6494 /// Total number of operands in the reduction operation. 6495 unsigned getNumberOfOperands() const { 6496 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6497 return isMinMax() ? 3 : 2; 6498 } 6499 6500 /// Checks if the instruction is in basic block \p BB. 6501 /// For a min/max reduction check that both compare and select are in \p BB. 6502 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6503 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6504 if (IsRedOp && isMinMax()) { 6505 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6506 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6507 } 6508 return I->getParent() == BB; 6509 } 6510 6511 /// Expected number of uses for reduction operations/reduced values. 6512 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6513 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6514 // SelectInst must be used twice while the condition op must have single 6515 // use only. 6516 if (isMinMax()) 6517 return I->hasNUses(2) && 6518 (!IsReductionOp || 6519 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6520 6521 // Arithmetic reduction operation must be used once only. 6522 return I->hasOneUse(); 6523 } 6524 6525 /// Initializes the list of reduction operations. 6526 void initReductionOps(ReductionOpsListType &ReductionOps) { 6527 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6528 if (isMinMax()) 6529 ReductionOps.assign(2, ReductionOpsType()); 6530 else 6531 ReductionOps.assign(1, ReductionOpsType()); 6532 } 6533 6534 /// Add all reduction operations for the reduction instruction \p I. 6535 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6536 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6537 if (isMinMax()) { 6538 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6539 ReductionOps[1].emplace_back(I); 6540 } else { 6541 ReductionOps[0].emplace_back(I); 6542 } 6543 } 6544 6545 /// Checks if instruction is associative and can be vectorized. 6546 bool isAssociative(Instruction *I) const { 6547 assert(Kind != RK_None && *this && "Expected reduction operation."); 6548 switch (Kind) { 6549 case RK_Arithmetic: 6550 return I->isAssociative(); 6551 case RK_SMin: 6552 case RK_SMax: 6553 case RK_UMin: 6554 case RK_UMax: 6555 assert(Opcode == Instruction::ICmp && 6556 "Only integer compare operation is expected."); 6557 return true; 6558 case RK_None: 6559 break; 6560 } 6561 llvm_unreachable("Reduction kind is not set"); 6562 } 6563 6564 /// Checks if the reduction operation can be vectorized. 6565 bool isVectorizable(Instruction *I) const { 6566 return isVectorizable() && isAssociative(I); 6567 } 6568 6569 /// Checks if two operation data are both a reduction op or both a reduced 6570 /// value. 6571 bool operator==(const OperationData &OD) const { 6572 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6573 "One of the comparing operations is incorrect."); 6574 return Kind == OD.Kind && Opcode == OD.Opcode; 6575 } 6576 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6577 void clear() { 6578 Opcode = 0; 6579 Kind = RK_None; 6580 } 6581 6582 /// Get the opcode of the reduction operation. 6583 unsigned getOpcode() const { 6584 assert(isVectorizable() && "Expected vectorizable operation."); 6585 return Opcode; 6586 } 6587 6588 /// Get kind of reduction data. 6589 ReductionKind getKind() const { return Kind; } 6590 Value *getLHS(Instruction *I) const { 6591 if (Kind == RK_None) 6592 return nullptr; 6593 return I->getOperand(getFirstOperandIndex()); 6594 } 6595 Value *getRHS(Instruction *I) const { 6596 if (Kind == RK_None) 6597 return nullptr; 6598 return I->getOperand(getFirstOperandIndex() + 1); 6599 } 6600 6601 /// Creates reduction operation with the current opcode with the IR flags 6602 /// from \p ReductionOps. 6603 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6604 const Twine &Name, 6605 const ReductionOpsListType &ReductionOps) const { 6606 assert(isVectorizable() && 6607 "Expected add|fadd or min/max reduction operation."); 6608 auto *Op = createOp(Builder, LHS, RHS, Name); 6609 switch (Kind) { 6610 case RK_Arithmetic: 6611 propagateIRFlags(Op, ReductionOps[0]); 6612 return Op; 6613 case RK_SMin: 6614 case RK_SMax: 6615 case RK_UMin: 6616 case RK_UMax: 6617 if (auto *SI = dyn_cast<SelectInst>(Op)) 6618 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6619 propagateIRFlags(Op, ReductionOps[1]); 6620 return Op; 6621 case RK_None: 6622 break; 6623 } 6624 llvm_unreachable("Unknown reduction operation."); 6625 } 6626 /// Creates reduction operation with the current opcode with the IR flags 6627 /// from \p I. 6628 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6629 const Twine &Name, Instruction *I) const { 6630 assert(isVectorizable() && 6631 "Expected add|fadd or min/max reduction operation."); 6632 auto *Op = createOp(Builder, LHS, RHS, Name); 6633 switch (Kind) { 6634 case RK_Arithmetic: 6635 propagateIRFlags(Op, I); 6636 return Op; 6637 case RK_SMin: 6638 case RK_SMax: 6639 case RK_UMin: 6640 case RK_UMax: 6641 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6642 propagateIRFlags(SI->getCondition(), 6643 cast<SelectInst>(I)->getCondition()); 6644 } 6645 propagateIRFlags(Op, I); 6646 return Op; 6647 case RK_None: 6648 break; 6649 } 6650 llvm_unreachable("Unknown reduction operation."); 6651 } 6652 6653 TargetTransformInfo::ReductionFlags getFlags() const { 6654 TargetTransformInfo::ReductionFlags Flags; 6655 switch (Kind) { 6656 case RK_Arithmetic: 6657 break; 6658 case RK_SMin: 6659 Flags.IsSigned = true; 6660 Flags.IsMaxOp = false; 6661 break; 6662 case RK_SMax: 6663 Flags.IsSigned = true; 6664 Flags.IsMaxOp = true; 6665 break; 6666 case RK_UMin: 6667 Flags.IsSigned = false; 6668 Flags.IsMaxOp = false; 6669 break; 6670 case RK_UMax: 6671 Flags.IsSigned = false; 6672 Flags.IsMaxOp = true; 6673 break; 6674 case RK_None: 6675 llvm_unreachable("Reduction kind is not set"); 6676 } 6677 return Flags; 6678 } 6679 }; 6680 6681 WeakTrackingVH ReductionRoot; 6682 6683 /// The operation data of the reduction operation. 6684 OperationData ReductionData; 6685 6686 /// The operation data of the values we perform a reduction on. 6687 OperationData ReducedValueData; 6688 6689 /// Should we model this reduction as a pairwise reduction tree or a tree that 6690 /// splits the vector in halves and adds those halves. 6691 bool IsPairwiseReduction = false; 6692 6693 /// Checks if the ParentStackElem.first should be marked as a reduction 6694 /// operation with an extra argument or as extra argument itself. 6695 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6696 Value *ExtraArg) { 6697 if (ExtraArgs.count(ParentStackElem.first)) { 6698 ExtraArgs[ParentStackElem.first] = nullptr; 6699 // We ran into something like: 6700 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6701 // The whole ParentStackElem.first should be considered as an extra value 6702 // in this case. 6703 // Do not perform analysis of remaining operands of ParentStackElem.first 6704 // instruction, this whole instruction is an extra argument. 6705 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6706 } else { 6707 // We ran into something like: 6708 // ParentStackElem.first += ... + ExtraArg + ... 6709 ExtraArgs[ParentStackElem.first] = ExtraArg; 6710 } 6711 } 6712 6713 static OperationData getOperationData(Instruction *I) { 6714 if (!I) 6715 return OperationData(); 6716 6717 Value *LHS; 6718 Value *RHS; 6719 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6720 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6721 } 6722 if (auto *Select = dyn_cast<SelectInst>(I)) { 6723 // Look for a min/max pattern. 6724 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6725 return OperationData(Instruction::ICmp, RK_UMin); 6726 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6727 return OperationData(Instruction::ICmp, RK_SMin); 6728 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6729 return OperationData(Instruction::ICmp, RK_UMax); 6730 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6731 return OperationData(Instruction::ICmp, RK_SMax); 6732 } else { 6733 // Try harder: look for min/max pattern based on instructions producing 6734 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6735 // During the intermediate stages of SLP, it's very common to have 6736 // pattern like this (since optimizeGatherSequence is run only once 6737 // at the end): 6738 // %1 = extractelement <2 x i32> %a, i32 0 6739 // %2 = extractelement <2 x i32> %a, i32 1 6740 // %cond = icmp sgt i32 %1, %2 6741 // %3 = extractelement <2 x i32> %a, i32 0 6742 // %4 = extractelement <2 x i32> %a, i32 1 6743 // %select = select i1 %cond, i32 %3, i32 %4 6744 CmpInst::Predicate Pred; 6745 Instruction *L1; 6746 Instruction *L2; 6747 6748 LHS = Select->getTrueValue(); 6749 RHS = Select->getFalseValue(); 6750 Value *Cond = Select->getCondition(); 6751 6752 // TODO: Support inverse predicates. 6753 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6754 if (!isa<ExtractElementInst>(RHS) || 6755 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6756 return OperationData(*I); 6757 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6758 if (!isa<ExtractElementInst>(LHS) || 6759 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6760 return OperationData(*I); 6761 } else { 6762 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6763 return OperationData(*I); 6764 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6765 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6766 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6767 return OperationData(*I); 6768 } 6769 switch (Pred) { 6770 default: 6771 return OperationData(*I); 6772 6773 case CmpInst::ICMP_ULT: 6774 case CmpInst::ICMP_ULE: 6775 return OperationData(Instruction::ICmp, RK_UMin); 6776 6777 case CmpInst::ICMP_SLT: 6778 case CmpInst::ICMP_SLE: 6779 return OperationData(Instruction::ICmp, RK_SMin); 6780 6781 case CmpInst::ICMP_UGT: 6782 case CmpInst::ICMP_UGE: 6783 return OperationData(Instruction::ICmp, RK_UMax); 6784 6785 case CmpInst::ICMP_SGT: 6786 case CmpInst::ICMP_SGE: 6787 return OperationData(Instruction::ICmp, RK_SMax); 6788 } 6789 } 6790 } 6791 return OperationData(*I); 6792 } 6793 6794 public: 6795 HorizontalReduction() = default; 6796 6797 /// Try to find a reduction tree. 6798 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6799 assert((!Phi || is_contained(Phi->operands(), B)) && 6800 "Thi phi needs to use the binary operator"); 6801 6802 ReductionData = getOperationData(B); 6803 6804 // We could have a initial reductions that is not an add. 6805 // r *= v1 + v2 + v3 + v4 6806 // In such a case start looking for a tree rooted in the first '+'. 6807 if (Phi) { 6808 if (ReductionData.getLHS(B) == Phi) { 6809 Phi = nullptr; 6810 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6811 ReductionData = getOperationData(B); 6812 } else if (ReductionData.getRHS(B) == Phi) { 6813 Phi = nullptr; 6814 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6815 ReductionData = getOperationData(B); 6816 } 6817 } 6818 6819 if (!ReductionData.isVectorizable(B)) 6820 return false; 6821 6822 Type *Ty = B->getType(); 6823 if (!isValidElementType(Ty)) 6824 return false; 6825 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6826 return false; 6827 6828 ReducedValueData.clear(); 6829 ReductionRoot = B; 6830 6831 // Post order traverse the reduction tree starting at B. We only handle true 6832 // trees containing only binary operators. 6833 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6834 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6835 ReductionData.initReductionOps(ReductionOps); 6836 while (!Stack.empty()) { 6837 Instruction *TreeN = Stack.back().first; 6838 unsigned EdgeToVist = Stack.back().second++; 6839 OperationData OpData = getOperationData(TreeN); 6840 bool IsReducedValue = OpData != ReductionData; 6841 6842 // Postorder vist. 6843 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6844 if (IsReducedValue) 6845 ReducedVals.push_back(TreeN); 6846 else { 6847 auto I = ExtraArgs.find(TreeN); 6848 if (I != ExtraArgs.end() && !I->second) { 6849 // Check if TreeN is an extra argument of its parent operation. 6850 if (Stack.size() <= 1) { 6851 // TreeN can't be an extra argument as it is a root reduction 6852 // operation. 6853 return false; 6854 } 6855 // Yes, TreeN is an extra argument, do not add it to a list of 6856 // reduction operations. 6857 // Stack[Stack.size() - 2] always points to the parent operation. 6858 markExtraArg(Stack[Stack.size() - 2], TreeN); 6859 ExtraArgs.erase(TreeN); 6860 } else 6861 ReductionData.addReductionOps(TreeN, ReductionOps); 6862 } 6863 // Retract. 6864 Stack.pop_back(); 6865 continue; 6866 } 6867 6868 // Visit left or right. 6869 Value *NextV = TreeN->getOperand(EdgeToVist); 6870 if (NextV != Phi) { 6871 auto *I = dyn_cast<Instruction>(NextV); 6872 OpData = getOperationData(I); 6873 // Continue analysis if the next operand is a reduction operation or 6874 // (possibly) a reduced value. If the reduced value opcode is not set, 6875 // the first met operation != reduction operation is considered as the 6876 // reduced value class. 6877 if (I && (!ReducedValueData || OpData == ReducedValueData || 6878 OpData == ReductionData)) { 6879 const bool IsReductionOperation = OpData == ReductionData; 6880 // Only handle trees in the current basic block. 6881 if (!ReductionData.hasSameParent(I, B->getParent(), 6882 IsReductionOperation)) { 6883 // I is an extra argument for TreeN (its parent operation). 6884 markExtraArg(Stack.back(), I); 6885 continue; 6886 } 6887 6888 // Each tree node needs to have minimal number of users except for the 6889 // ultimate reduction. 6890 if (!ReductionData.hasRequiredNumberOfUses(I, 6891 OpData == ReductionData) && 6892 I != B) { 6893 // I is an extra argument for TreeN (its parent operation). 6894 markExtraArg(Stack.back(), I); 6895 continue; 6896 } 6897 6898 if (IsReductionOperation) { 6899 // We need to be able to reassociate the reduction operations. 6900 if (!OpData.isAssociative(I)) { 6901 // I is an extra argument for TreeN (its parent operation). 6902 markExtraArg(Stack.back(), I); 6903 continue; 6904 } 6905 } else if (ReducedValueData && 6906 ReducedValueData != OpData) { 6907 // Make sure that the opcodes of the operations that we are going to 6908 // reduce match. 6909 // I is an extra argument for TreeN (its parent operation). 6910 markExtraArg(Stack.back(), I); 6911 continue; 6912 } else if (!ReducedValueData) 6913 ReducedValueData = OpData; 6914 6915 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6916 continue; 6917 } 6918 } 6919 // NextV is an extra argument for TreeN (its parent operation). 6920 markExtraArg(Stack.back(), NextV); 6921 } 6922 return true; 6923 } 6924 6925 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6926 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6927 // If there are a sufficient number of reduction values, reduce 6928 // to a nearby power-of-2. We can safely generate oversized 6929 // vectors and rely on the backend to split them to legal sizes. 6930 unsigned NumReducedVals = ReducedVals.size(); 6931 if (NumReducedVals < 4) 6932 return false; 6933 6934 // FIXME: Fast-math-flags should be set based on the instructions in the 6935 // reduction (not all of 'fast' are required). 6936 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6937 FastMathFlags Unsafe; 6938 Unsafe.setFast(); 6939 Builder.setFastMathFlags(Unsafe); 6940 6941 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6942 // The same extra argument may be used several times, so log each attempt 6943 // to use it. 6944 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6945 assert(Pair.first && "DebugLoc must be set."); 6946 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6947 } 6948 6949 // The compare instruction of a min/max is the insertion point for new 6950 // instructions and may be replaced with a new compare instruction. 6951 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6952 assert(isa<SelectInst>(RdxRootInst) && 6953 "Expected min/max reduction to have select root instruction"); 6954 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6955 assert(isa<Instruction>(ScalarCond) && 6956 "Expected min/max reduction to have compare condition"); 6957 return cast<Instruction>(ScalarCond); 6958 }; 6959 6960 // The reduction root is used as the insertion point for new instructions, 6961 // so set it as externally used to prevent it from being deleted. 6962 ExternallyUsedValues[ReductionRoot]; 6963 SmallVector<Value *, 16> IgnoreList; 6964 for (ReductionOpsType &RdxOp : ReductionOps) 6965 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6966 6967 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6968 if (NumReducedVals > ReduxWidth) { 6969 // In the loop below, we are building a tree based on a window of 6970 // 'ReduxWidth' values. 6971 // If the operands of those values have common traits (compare predicate, 6972 // constant operand, etc), then we want to group those together to 6973 // minimize the cost of the reduction. 6974 6975 // TODO: This should be extended to count common operands for 6976 // compares and binops. 6977 6978 // Step 1: Count the number of times each compare predicate occurs. 6979 SmallDenseMap<unsigned, unsigned> PredCountMap; 6980 for (Value *RdxVal : ReducedVals) { 6981 CmpInst::Predicate Pred; 6982 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6983 ++PredCountMap[Pred]; 6984 } 6985 // Step 2: Sort the values so the most common predicates come first. 6986 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6987 CmpInst::Predicate PredA, PredB; 6988 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6989 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6990 return PredCountMap[PredA] > PredCountMap[PredB]; 6991 } 6992 return false; 6993 }); 6994 } 6995 6996 Value *VectorizedTree = nullptr; 6997 unsigned i = 0; 6998 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6999 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7000 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7001 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7002 if (Order) { 7003 assert(Order->size() == VL.size() && 7004 "Order size must be the same as number of vectorized " 7005 "instructions."); 7006 // TODO: reorder tree nodes without tree rebuilding. 7007 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7008 llvm::transform(*Order, ReorderedOps.begin(), 7009 [VL](const unsigned Idx) { return VL[Idx]; }); 7010 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7011 } 7012 if (V.isTreeTinyAndNotFullyVectorizable()) 7013 break; 7014 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 7015 break; 7016 7017 V.computeMinimumValueSizes(); 7018 7019 // Estimate cost. 7020 int TreeCost = V.getTreeCost(); 7021 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7022 int Cost = TreeCost + ReductionCost; 7023 if (Cost >= -SLPCostThreshold) { 7024 V.getORE()->emit([&]() { 7025 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7026 cast<Instruction>(VL[0])) 7027 << "Vectorizing horizontal reduction is possible" 7028 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7029 << " and threshold " 7030 << ore::NV("Threshold", -SLPCostThreshold); 7031 }); 7032 break; 7033 } 7034 7035 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7036 << Cost << ". (HorRdx)\n"); 7037 V.getORE()->emit([&]() { 7038 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7039 cast<Instruction>(VL[0])) 7040 << "Vectorized horizontal reduction with cost " 7041 << ore::NV("Cost", Cost) << " and with tree size " 7042 << ore::NV("TreeSize", V.getTreeSize()); 7043 }); 7044 7045 // Vectorize a tree. 7046 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7047 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7048 7049 // Emit a reduction. For min/max, the root is a select, but the insertion 7050 // point is the compare condition of that select. 7051 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7052 if (ReductionData.isMinMax()) 7053 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7054 else 7055 Builder.SetInsertPoint(RdxRootInst); 7056 7057 Value *ReducedSubTree = 7058 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7059 7060 if (!VectorizedTree) { 7061 // Initialize the final value in the reduction. 7062 VectorizedTree = ReducedSubTree; 7063 } else { 7064 // Update the final value in the reduction. 7065 Builder.SetCurrentDebugLocation(Loc); 7066 VectorizedTree = ReductionData.createOp( 7067 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7068 } 7069 i += ReduxWidth; 7070 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7071 } 7072 7073 if (VectorizedTree) { 7074 // Finish the reduction. 7075 for (; i < NumReducedVals; ++i) { 7076 auto *I = cast<Instruction>(ReducedVals[i]); 7077 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7078 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7079 ReductionOps); 7080 } 7081 for (auto &Pair : ExternallyUsedValues) { 7082 // Add each externally used value to the final reduction. 7083 for (auto *I : Pair.second) { 7084 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7085 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7086 Pair.first, "op.extra", I); 7087 } 7088 } 7089 7090 // Update users. For a min/max reduction that ends with a compare and 7091 // select, we also have to RAUW for the compare instruction feeding the 7092 // reduction root. That's because the original compare may have extra uses 7093 // besides the final select of the reduction. 7094 if (ReductionData.isMinMax()) { 7095 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7096 Instruction *ScalarCmp = 7097 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7098 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7099 } 7100 } 7101 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7102 7103 // Mark all scalar reduction ops for deletion, they are replaced by the 7104 // vector reductions. 7105 V.eraseInstructions(IgnoreList); 7106 } 7107 return VectorizedTree != nullptr; 7108 } 7109 7110 unsigned numReductionValues() const { 7111 return ReducedVals.size(); 7112 } 7113 7114 private: 7115 /// Calculate the cost of a reduction. 7116 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7117 unsigned ReduxWidth) { 7118 Type *ScalarTy = FirstReducedVal->getType(); 7119 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7120 7121 int PairwiseRdxCost; 7122 int SplittingRdxCost; 7123 switch (ReductionData.getKind()) { 7124 case RK_Arithmetic: 7125 PairwiseRdxCost = 7126 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7127 /*IsPairwiseForm=*/true); 7128 SplittingRdxCost = 7129 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7130 /*IsPairwiseForm=*/false); 7131 break; 7132 case RK_SMin: 7133 case RK_SMax: 7134 case RK_UMin: 7135 case RK_UMax: { 7136 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7137 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7138 ReductionData.getKind() == RK_UMax; 7139 PairwiseRdxCost = 7140 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7141 /*IsPairwiseForm=*/true, IsUnsigned); 7142 SplittingRdxCost = 7143 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7144 /*IsPairwiseForm=*/false, IsUnsigned); 7145 break; 7146 } 7147 case RK_None: 7148 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7149 } 7150 7151 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7152 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7153 7154 int ScalarReduxCost = 0; 7155 switch (ReductionData.getKind()) { 7156 case RK_Arithmetic: 7157 ScalarReduxCost = 7158 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7159 break; 7160 case RK_SMin: 7161 case RK_SMax: 7162 case RK_UMin: 7163 case RK_UMax: 7164 ScalarReduxCost = 7165 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7166 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7167 CmpInst::makeCmpResultType(ScalarTy)); 7168 break; 7169 case RK_None: 7170 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7171 } 7172 ScalarReduxCost *= (ReduxWidth - 1); 7173 7174 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7175 << " for reduction that starts with " << *FirstReducedVal 7176 << " (It is a " 7177 << (IsPairwiseReduction ? "pairwise" : "splitting") 7178 << " reduction)\n"); 7179 7180 return VecReduxCost - ScalarReduxCost; 7181 } 7182 7183 /// Emit a horizontal reduction of the vectorized value. 7184 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7185 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7186 assert(VectorizedValue && "Need to have a vectorized tree node"); 7187 assert(isPowerOf2_32(ReduxWidth) && 7188 "We only handle power-of-two reductions for now"); 7189 7190 if (!IsPairwiseReduction) { 7191 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7192 // to 'fast'. 7193 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7194 return createSimpleTargetReduction( 7195 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7196 ReductionData.getFlags(), ReductionOps.back()); 7197 } 7198 7199 Value *TmpVec = VectorizedValue; 7200 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7201 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7202 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7203 7204 Value *LeftShuf = 7205 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7206 Value *RightShuf = 7207 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7208 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7209 ReductionOps); 7210 } 7211 7212 // The result is in the first element of the vector. 7213 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7214 } 7215 }; 7216 7217 } // end anonymous namespace 7218 7219 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7220 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7221 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7222 7223 unsigned AggregateSize = 1; 7224 auto *IV = cast<InsertValueInst>(InsertInst); 7225 Type *CurrentType = IV->getType(); 7226 do { 7227 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7228 for (auto *Elt : ST->elements()) 7229 if (Elt != ST->getElementType(0)) // check homogeneity 7230 return None; 7231 AggregateSize *= ST->getNumElements(); 7232 CurrentType = ST->getElementType(0); 7233 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7234 AggregateSize *= AT->getNumElements(); 7235 CurrentType = AT->getElementType(); 7236 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7237 AggregateSize *= VT->getNumElements(); 7238 return AggregateSize; 7239 } else if (CurrentType->isSingleValueType()) { 7240 return AggregateSize; 7241 } else { 7242 return None; 7243 } 7244 } while (true); 7245 } 7246 7247 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7248 unsigned OperandOffset) { 7249 unsigned OperandIndex = OperandOffset; 7250 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7251 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7252 auto *VT = cast<FixedVectorType>(IE->getType()); 7253 OperandIndex *= VT->getNumElements(); 7254 OperandIndex += CI->getZExtValue(); 7255 return OperandIndex; 7256 } 7257 return None; 7258 } 7259 7260 auto *IV = cast<InsertValueInst>(InsertInst); 7261 Type *CurrentType = IV->getType(); 7262 for (unsigned int Index : IV->indices()) { 7263 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7264 OperandIndex *= ST->getNumElements(); 7265 CurrentType = ST->getElementType(Index); 7266 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7267 OperandIndex *= AT->getNumElements(); 7268 CurrentType = AT->getElementType(); 7269 } else { 7270 return None; 7271 } 7272 OperandIndex += Index; 7273 } 7274 return OperandIndex; 7275 } 7276 7277 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7278 TargetTransformInfo *TTI, 7279 SmallVectorImpl<Value *> &BuildVectorOpds, 7280 SmallVectorImpl<Value *> &InsertElts, 7281 unsigned OperandOffset) { 7282 do { 7283 Value *InsertedOperand = LastInsertInst->getOperand(1); 7284 Optional<unsigned> OperandIndex = 7285 getOperandIndex(LastInsertInst, OperandOffset); 7286 if (!OperandIndex) 7287 return false; 7288 if (isa<InsertElementInst>(InsertedOperand) || 7289 isa<InsertValueInst>(InsertedOperand)) { 7290 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7291 BuildVectorOpds, InsertElts, *OperandIndex)) 7292 return false; 7293 } else { 7294 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7295 InsertElts[*OperandIndex] = LastInsertInst; 7296 } 7297 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7298 return true; 7299 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7300 } while (LastInsertInst != nullptr && 7301 (isa<InsertValueInst>(LastInsertInst) || 7302 isa<InsertElementInst>(LastInsertInst)) && 7303 LastInsertInst->hasOneUse()); 7304 return false; 7305 } 7306 7307 /// Recognize construction of vectors like 7308 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7309 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7310 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7311 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7312 /// starting from the last insertelement or insertvalue instruction. 7313 /// 7314 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7315 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7316 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7317 /// 7318 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7319 /// 7320 /// \return true if it matches. 7321 static bool findBuildAggregate(Instruction *LastInsertInst, 7322 TargetTransformInfo *TTI, 7323 SmallVectorImpl<Value *> &BuildVectorOpds, 7324 SmallVectorImpl<Value *> &InsertElts) { 7325 7326 assert((isa<InsertElementInst>(LastInsertInst) || 7327 isa<InsertValueInst>(LastInsertInst)) && 7328 "Expected insertelement or insertvalue instruction!"); 7329 7330 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7331 "Expected empty result vectors!"); 7332 7333 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7334 if (!AggregateSize) 7335 return false; 7336 BuildVectorOpds.resize(*AggregateSize); 7337 InsertElts.resize(*AggregateSize); 7338 7339 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7340 0)) { 7341 llvm::erase_if(BuildVectorOpds, 7342 [](const Value *V) { return V == nullptr; }); 7343 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7344 if (BuildVectorOpds.size() >= 2) 7345 return true; 7346 } 7347 7348 return false; 7349 } 7350 7351 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7352 return V->getType() < V2->getType(); 7353 } 7354 7355 /// Try and get a reduction value from a phi node. 7356 /// 7357 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7358 /// if they come from either \p ParentBB or a containing loop latch. 7359 /// 7360 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7361 /// if not possible. 7362 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7363 BasicBlock *ParentBB, LoopInfo *LI) { 7364 // There are situations where the reduction value is not dominated by the 7365 // reduction phi. Vectorizing such cases has been reported to cause 7366 // miscompiles. See PR25787. 7367 auto DominatedReduxValue = [&](Value *R) { 7368 return isa<Instruction>(R) && 7369 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7370 }; 7371 7372 Value *Rdx = nullptr; 7373 7374 // Return the incoming value if it comes from the same BB as the phi node. 7375 if (P->getIncomingBlock(0) == ParentBB) { 7376 Rdx = P->getIncomingValue(0); 7377 } else if (P->getIncomingBlock(1) == ParentBB) { 7378 Rdx = P->getIncomingValue(1); 7379 } 7380 7381 if (Rdx && DominatedReduxValue(Rdx)) 7382 return Rdx; 7383 7384 // Otherwise, check whether we have a loop latch to look at. 7385 Loop *BBL = LI->getLoopFor(ParentBB); 7386 if (!BBL) 7387 return nullptr; 7388 BasicBlock *BBLatch = BBL->getLoopLatch(); 7389 if (!BBLatch) 7390 return nullptr; 7391 7392 // There is a loop latch, return the incoming value if it comes from 7393 // that. This reduction pattern occasionally turns up. 7394 if (P->getIncomingBlock(0) == BBLatch) { 7395 Rdx = P->getIncomingValue(0); 7396 } else if (P->getIncomingBlock(1) == BBLatch) { 7397 Rdx = P->getIncomingValue(1); 7398 } 7399 7400 if (Rdx && DominatedReduxValue(Rdx)) 7401 return Rdx; 7402 7403 return nullptr; 7404 } 7405 7406 /// Attempt to reduce a horizontal reduction. 7407 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7408 /// with reduction operators \a Root (or one of its operands) in a basic block 7409 /// \a BB, then check if it can be done. If horizontal reduction is not found 7410 /// and root instruction is a binary operation, vectorization of the operands is 7411 /// attempted. 7412 /// \returns true if a horizontal reduction was matched and reduced or operands 7413 /// of one of the binary instruction were vectorized. 7414 /// \returns false if a horizontal reduction was not matched (or not possible) 7415 /// or no vectorization of any binary operation feeding \a Root instruction was 7416 /// performed. 7417 static bool tryToVectorizeHorReductionOrInstOperands( 7418 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7419 TargetTransformInfo *TTI, 7420 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7421 if (!ShouldVectorizeHor) 7422 return false; 7423 7424 if (!Root) 7425 return false; 7426 7427 if (Root->getParent() != BB || isa<PHINode>(Root)) 7428 return false; 7429 // Start analysis starting from Root instruction. If horizontal reduction is 7430 // found, try to vectorize it. If it is not a horizontal reduction or 7431 // vectorization is not possible or not effective, and currently analyzed 7432 // instruction is a binary operation, try to vectorize the operands, using 7433 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7434 // the same procedure considering each operand as a possible root of the 7435 // horizontal reduction. 7436 // Interrupt the process if the Root instruction itself was vectorized or all 7437 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7438 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7439 SmallPtrSet<Value *, 8> VisitedInstrs; 7440 bool Res = false; 7441 while (!Stack.empty()) { 7442 Instruction *Inst; 7443 unsigned Level; 7444 std::tie(Inst, Level) = Stack.pop_back_val(); 7445 auto *BI = dyn_cast<BinaryOperator>(Inst); 7446 auto *SI = dyn_cast<SelectInst>(Inst); 7447 if (BI || SI) { 7448 HorizontalReduction HorRdx; 7449 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7450 if (HorRdx.tryToReduce(R, TTI)) { 7451 Res = true; 7452 // Set P to nullptr to avoid re-analysis of phi node in 7453 // matchAssociativeReduction function unless this is the root node. 7454 P = nullptr; 7455 continue; 7456 } 7457 } 7458 if (P && BI) { 7459 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7460 if (Inst == P) 7461 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7462 if (!Inst) { 7463 // Set P to nullptr to avoid re-analysis of phi node in 7464 // matchAssociativeReduction function unless this is the root node. 7465 P = nullptr; 7466 continue; 7467 } 7468 } 7469 } 7470 // Set P to nullptr to avoid re-analysis of phi node in 7471 // matchAssociativeReduction function unless this is the root node. 7472 P = nullptr; 7473 if (Vectorize(Inst, R)) { 7474 Res = true; 7475 continue; 7476 } 7477 7478 // Try to vectorize operands. 7479 // Continue analysis for the instruction from the same basic block only to 7480 // save compile time. 7481 if (++Level < RecursionMaxDepth) 7482 for (auto *Op : Inst->operand_values()) 7483 if (VisitedInstrs.insert(Op).second) 7484 if (auto *I = dyn_cast<Instruction>(Op)) 7485 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7486 Stack.emplace_back(I, Level); 7487 } 7488 return Res; 7489 } 7490 7491 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7492 BasicBlock *BB, BoUpSLP &R, 7493 TargetTransformInfo *TTI) { 7494 auto *I = dyn_cast_or_null<Instruction>(V); 7495 if (!I) 7496 return false; 7497 7498 if (!isa<BinaryOperator>(I)) 7499 P = nullptr; 7500 // Try to match and vectorize a horizontal reduction. 7501 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7502 return tryToVectorize(I, R); 7503 }; 7504 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7505 ExtraVectorization); 7506 } 7507 7508 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7509 BasicBlock *BB, BoUpSLP &R) { 7510 const DataLayout &DL = BB->getModule()->getDataLayout(); 7511 if (!R.canMapToVector(IVI->getType(), DL)) 7512 return false; 7513 7514 SmallVector<Value *, 16> BuildVectorOpds; 7515 SmallVector<Value *, 16> BuildVectorInsts; 7516 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7517 return false; 7518 7519 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7520 // Aggregate value is unlikely to be processed in vector register, we need to 7521 // extract scalars into scalar registers, so NeedExtraction is set true. 7522 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7523 BuildVectorInsts); 7524 } 7525 7526 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7527 BasicBlock *BB, BoUpSLP &R) { 7528 SmallVector<Value *, 16> BuildVectorInsts; 7529 SmallVector<Value *, 16> BuildVectorOpds; 7530 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7531 (llvm::all_of(BuildVectorOpds, 7532 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7533 isShuffle(BuildVectorOpds))) 7534 return false; 7535 7536 // Vectorize starting with the build vector operands ignoring the BuildVector 7537 // instructions for the purpose of scheduling and user extraction. 7538 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7539 BuildVectorInsts); 7540 } 7541 7542 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7543 BoUpSLP &R) { 7544 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7545 return true; 7546 7547 bool OpsChanged = false; 7548 for (int Idx = 0; Idx < 2; ++Idx) { 7549 OpsChanged |= 7550 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7551 } 7552 return OpsChanged; 7553 } 7554 7555 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7556 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7557 bool OpsChanged = false; 7558 for (auto *I : reverse(Instructions)) { 7559 if (R.isDeleted(I)) 7560 continue; 7561 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7562 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7563 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7564 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7565 else if (auto *CI = dyn_cast<CmpInst>(I)) 7566 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7567 } 7568 Instructions.clear(); 7569 return OpsChanged; 7570 } 7571 7572 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7573 bool Changed = false; 7574 SmallVector<Value *, 4> Incoming; 7575 SmallPtrSet<Value *, 16> VisitedInstrs; 7576 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7577 7578 bool HaveVectorizedPhiNodes = true; 7579 while (HaveVectorizedPhiNodes) { 7580 HaveVectorizedPhiNodes = false; 7581 7582 // Collect the incoming values from the PHIs. 7583 Incoming.clear(); 7584 for (Instruction &I : *BB) { 7585 PHINode *P = dyn_cast<PHINode>(&I); 7586 if (!P) 7587 break; 7588 7589 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7590 Incoming.push_back(P); 7591 } 7592 7593 // Sort by type. 7594 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7595 7596 // Try to vectorize elements base on their type. 7597 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7598 E = Incoming.end(); 7599 IncIt != E;) { 7600 7601 // Look for the next elements with the same type. 7602 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7603 Type *EltTy = (*IncIt)->getType(); 7604 7605 assert(EltTy->isSized() && 7606 "Instructions should all be sized at this point"); 7607 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7608 if (EltTS.isScalable()) { 7609 // For now, just ignore vectorizing scalable types. 7610 ++IncIt; 7611 continue; 7612 } 7613 7614 unsigned EltSize = EltTS.getFixedSize(); 7615 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7616 if (MaxNumElts < 2) { 7617 ++IncIt; 7618 continue; 7619 } 7620 7621 while (SameTypeIt != E && 7622 (*SameTypeIt)->getType() == EltTy && 7623 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7624 VisitedInstrs.insert(*SameTypeIt); 7625 ++SameTypeIt; 7626 } 7627 7628 // Try to vectorize them. 7629 unsigned NumElts = (SameTypeIt - IncIt); 7630 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7631 << NumElts << ")\n"); 7632 // The order in which the phi nodes appear in the program does not matter. 7633 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7634 // is done when there are exactly two elements since tryToVectorizeList 7635 // asserts that there are only two values when AllowReorder is true. 7636 bool AllowReorder = NumElts == 2; 7637 if (NumElts > 1 && 7638 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7639 // Success start over because instructions might have been changed. 7640 HaveVectorizedPhiNodes = true; 7641 Changed = true; 7642 break; 7643 } 7644 7645 // Start over at the next instruction of a different type (or the end). 7646 IncIt = SameTypeIt; 7647 } 7648 } 7649 7650 VisitedInstrs.clear(); 7651 7652 SmallVector<Instruction *, 8> PostProcessInstructions; 7653 SmallDenseSet<Instruction *, 4> KeyNodes; 7654 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7655 // Skip instructions with scalable type. The num of elements is unknown at 7656 // compile-time for scalable type. 7657 if (isa<ScalableVectorType>(it->getType())) 7658 continue; 7659 7660 // Skip instructions marked for the deletion. 7661 if (R.isDeleted(&*it)) 7662 continue; 7663 // We may go through BB multiple times so skip the one we have checked. 7664 if (!VisitedInstrs.insert(&*it).second) { 7665 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7666 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7667 // We would like to start over since some instructions are deleted 7668 // and the iterator may become invalid value. 7669 Changed = true; 7670 it = BB->begin(); 7671 e = BB->end(); 7672 } 7673 continue; 7674 } 7675 7676 if (isa<DbgInfoIntrinsic>(it)) 7677 continue; 7678 7679 // Try to vectorize reductions that use PHINodes. 7680 if (PHINode *P = dyn_cast<PHINode>(it)) { 7681 // Check that the PHI is a reduction PHI. 7682 if (P->getNumIncomingValues() == 2) { 7683 // Try to match and vectorize a horizontal reduction. 7684 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7685 TTI)) { 7686 Changed = true; 7687 it = BB->begin(); 7688 e = BB->end(); 7689 continue; 7690 } 7691 } 7692 // Try to vectorize the incoming values of the PHI, to catch reductions 7693 // that feed into PHIs. 7694 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7695 // Skip if the incoming block is the current BB for now. Also, bypass 7696 // unreachable IR for efficiency and to avoid crashing. 7697 // TODO: Collect the skipped incoming values and try to vectorize them 7698 // after processing BB. 7699 if (BB == P->getIncomingBlock(I) || 7700 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7701 continue; 7702 7703 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7704 P->getIncomingBlock(I), R, TTI); 7705 } 7706 continue; 7707 } 7708 7709 // Ran into an instruction without users, like terminator, or function call 7710 // with ignored return value, store. Ignore unused instructions (basing on 7711 // instruction type, except for CallInst and InvokeInst). 7712 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7713 isa<InvokeInst>(it))) { 7714 KeyNodes.insert(&*it); 7715 bool OpsChanged = false; 7716 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7717 for (auto *V : it->operand_values()) { 7718 // Try to match and vectorize a horizontal reduction. 7719 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7720 } 7721 } 7722 // Start vectorization of post-process list of instructions from the 7723 // top-tree instructions to try to vectorize as many instructions as 7724 // possible. 7725 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7726 if (OpsChanged) { 7727 // We would like to start over since some instructions are deleted 7728 // and the iterator may become invalid value. 7729 Changed = true; 7730 it = BB->begin(); 7731 e = BB->end(); 7732 continue; 7733 } 7734 } 7735 7736 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7737 isa<InsertValueInst>(it)) 7738 PostProcessInstructions.push_back(&*it); 7739 } 7740 7741 return Changed; 7742 } 7743 7744 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7745 auto Changed = false; 7746 for (auto &Entry : GEPs) { 7747 // If the getelementptr list has fewer than two elements, there's nothing 7748 // to do. 7749 if (Entry.second.size() < 2) 7750 continue; 7751 7752 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7753 << Entry.second.size() << ".\n"); 7754 7755 // Process the GEP list in chunks suitable for the target's supported 7756 // vector size. If a vector register can't hold 1 element, we are done. We 7757 // are trying to vectorize the index computations, so the maximum number of 7758 // elements is based on the size of the index expression, rather than the 7759 // size of the GEP itself (the target's pointer size). 7760 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7761 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7762 if (MaxVecRegSize < EltSize) 7763 continue; 7764 7765 unsigned MaxElts = MaxVecRegSize / EltSize; 7766 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7767 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7768 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7769 7770 // Initialize a set a candidate getelementptrs. Note that we use a 7771 // SetVector here to preserve program order. If the index computations 7772 // are vectorizable and begin with loads, we want to minimize the chance 7773 // of having to reorder them later. 7774 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7775 7776 // Some of the candidates may have already been vectorized after we 7777 // initially collected them. If so, they are marked as deleted, so remove 7778 // them from the set of candidates. 7779 Candidates.remove_if( 7780 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7781 7782 // Remove from the set of candidates all pairs of getelementptrs with 7783 // constant differences. Such getelementptrs are likely not good 7784 // candidates for vectorization in a bottom-up phase since one can be 7785 // computed from the other. We also ensure all candidate getelementptr 7786 // indices are unique. 7787 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7788 auto *GEPI = GEPList[I]; 7789 if (!Candidates.count(GEPI)) 7790 continue; 7791 auto *SCEVI = SE->getSCEV(GEPList[I]); 7792 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7793 auto *GEPJ = GEPList[J]; 7794 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7795 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7796 Candidates.remove(GEPI); 7797 Candidates.remove(GEPJ); 7798 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7799 Candidates.remove(GEPJ); 7800 } 7801 } 7802 } 7803 7804 // We break out of the above computation as soon as we know there are 7805 // fewer than two candidates remaining. 7806 if (Candidates.size() < 2) 7807 continue; 7808 7809 // Add the single, non-constant index of each candidate to the bundle. We 7810 // ensured the indices met these constraints when we originally collected 7811 // the getelementptrs. 7812 SmallVector<Value *, 16> Bundle(Candidates.size()); 7813 auto BundleIndex = 0u; 7814 for (auto *V : Candidates) { 7815 auto *GEP = cast<GetElementPtrInst>(V); 7816 auto *GEPIdx = GEP->idx_begin()->get(); 7817 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7818 Bundle[BundleIndex++] = GEPIdx; 7819 } 7820 7821 // Try and vectorize the indices. We are currently only interested in 7822 // gather-like cases of the form: 7823 // 7824 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7825 // 7826 // where the loads of "a", the loads of "b", and the subtractions can be 7827 // performed in parallel. It's likely that detecting this pattern in a 7828 // bottom-up phase will be simpler and less costly than building a 7829 // full-blown top-down phase beginning at the consecutive loads. 7830 Changed |= tryToVectorizeList(Bundle, R); 7831 } 7832 } 7833 return Changed; 7834 } 7835 7836 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7837 bool Changed = false; 7838 // Attempt to sort and vectorize each of the store-groups. 7839 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7840 ++it) { 7841 if (it->second.size() < 2) 7842 continue; 7843 7844 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7845 << it->second.size() << ".\n"); 7846 7847 Changed |= vectorizeStores(it->second, R); 7848 } 7849 return Changed; 7850 } 7851 7852 char SLPVectorizer::ID = 0; 7853 7854 static const char lv_name[] = "SLP Vectorizer"; 7855 7856 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7857 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7858 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7859 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7860 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7861 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7862 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7863 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7864 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7865 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7866 7867 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7868