1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// TODO: Can we split off and reuse the shuffle mask detection from 291 /// TargetTransformInfo::getInstructionThroughput? 292 static Optional<TargetTransformInfo::ShuffleKind> 293 isShuffle(ArrayRef<Value *> VL) { 294 auto *EI0 = cast<ExtractElementInst>(VL[0]); 295 unsigned Size = 296 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 297 Value *Vec1 = nullptr; 298 Value *Vec2 = nullptr; 299 enum ShuffleMode { Unknown, Select, Permute }; 300 ShuffleMode CommonShuffleMode = Unknown; 301 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 302 auto *EI = cast<ExtractElementInst>(VL[I]); 303 auto *Vec = EI->getVectorOperand(); 304 // All vector operands must have the same number of vector elements. 305 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 306 return None; 307 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 308 if (!Idx) 309 return None; 310 // Undefined behavior if Idx is negative or >= Size. 311 if (Idx->getValue().uge(Size)) 312 continue; 313 unsigned IntIdx = Idx->getValue().getZExtValue(); 314 // We can extractelement from undef or poison vector. 315 if (isa<UndefValue>(Vec)) 316 continue; 317 // For correct shuffling we have to have at most 2 different vector operands 318 // in all extractelement instructions. 319 if (!Vec1 || Vec1 == Vec) 320 Vec1 = Vec; 321 else if (!Vec2 || Vec2 == Vec) 322 Vec2 = Vec; 323 else 324 return None; 325 if (CommonShuffleMode == Permute) 326 continue; 327 // If the extract index is not the same as the operation number, it is a 328 // permutation. 329 if (IntIdx != I) { 330 CommonShuffleMode = Permute; 331 continue; 332 } 333 CommonShuffleMode = Select; 334 } 335 // If we're not crossing lanes in different vectors, consider it as blending. 336 if (CommonShuffleMode == Select && Vec2) 337 return TargetTransformInfo::SK_Select; 338 // If Vec2 was never used, we have a permutation of a single vector, otherwise 339 // we have permutation of 2 vectors. 340 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 341 : TargetTransformInfo::SK_PermuteSingleSrc; 342 } 343 344 namespace { 345 346 /// Main data required for vectorization of instructions. 347 struct InstructionsState { 348 /// The very first instruction in the list with the main opcode. 349 Value *OpValue = nullptr; 350 351 /// The main/alternate instruction. 352 Instruction *MainOp = nullptr; 353 Instruction *AltOp = nullptr; 354 355 /// The main/alternate opcodes for the list of instructions. 356 unsigned getOpcode() const { 357 return MainOp ? MainOp->getOpcode() : 0; 358 } 359 360 unsigned getAltOpcode() const { 361 return AltOp ? AltOp->getOpcode() : 0; 362 } 363 364 /// Some of the instructions in the list have alternate opcodes. 365 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 366 367 bool isOpcodeOrAlt(Instruction *I) const { 368 unsigned CheckedOpcode = I->getOpcode(); 369 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 370 } 371 372 InstructionsState() = delete; 373 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 374 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 375 }; 376 377 } // end anonymous namespace 378 379 /// Chooses the correct key for scheduling data. If \p Op has the same (or 380 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 381 /// OpValue. 382 static Value *isOneOf(const InstructionsState &S, Value *Op) { 383 auto *I = dyn_cast<Instruction>(Op); 384 if (I && S.isOpcodeOrAlt(I)) 385 return Op; 386 return S.OpValue; 387 } 388 389 /// \returns true if \p Opcode is allowed as part of of the main/alternate 390 /// instruction for SLP vectorization. 391 /// 392 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 393 /// "shuffled out" lane would result in division by zero. 394 static bool isValidForAlternation(unsigned Opcode) { 395 if (Instruction::isIntDivRem(Opcode)) 396 return false; 397 398 return true; 399 } 400 401 /// \returns analysis of the Instructions in \p VL described in 402 /// InstructionsState, the Opcode that we suppose the whole list 403 /// could be vectorized even if its structure is diverse. 404 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 405 unsigned BaseIndex = 0) { 406 // Make sure these are all Instructions. 407 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 408 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 409 410 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 411 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 412 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 413 unsigned AltOpcode = Opcode; 414 unsigned AltIndex = BaseIndex; 415 416 // Check for one alternate opcode from another BinaryOperator. 417 // TODO - generalize to support all operators (types, calls etc.). 418 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 419 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 420 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 421 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 422 continue; 423 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 424 isValidForAlternation(Opcode)) { 425 AltOpcode = InstOpcode; 426 AltIndex = Cnt; 427 continue; 428 } 429 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 430 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 431 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 432 if (Ty0 == Ty1) { 433 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 434 continue; 435 if (Opcode == AltOpcode) { 436 assert(isValidForAlternation(Opcode) && 437 isValidForAlternation(InstOpcode) && 438 "Cast isn't safe for alternation, logic needs to be updated!"); 439 AltOpcode = InstOpcode; 440 AltIndex = Cnt; 441 continue; 442 } 443 } 444 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 445 continue; 446 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 447 } 448 449 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 450 cast<Instruction>(VL[AltIndex])); 451 } 452 453 /// \returns true if all of the values in \p VL have the same type or false 454 /// otherwise. 455 static bool allSameType(ArrayRef<Value *> VL) { 456 Type *Ty = VL[0]->getType(); 457 for (int i = 1, e = VL.size(); i < e; i++) 458 if (VL[i]->getType() != Ty) 459 return false; 460 461 return true; 462 } 463 464 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 465 static Optional<unsigned> getExtractIndex(Instruction *E) { 466 unsigned Opcode = E->getOpcode(); 467 assert((Opcode == Instruction::ExtractElement || 468 Opcode == Instruction::ExtractValue) && 469 "Expected extractelement or extractvalue instruction."); 470 if (Opcode == Instruction::ExtractElement) { 471 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 472 if (!CI) 473 return None; 474 return CI->getZExtValue(); 475 } 476 ExtractValueInst *EI = cast<ExtractValueInst>(E); 477 if (EI->getNumIndices() != 1) 478 return None; 479 return *EI->idx_begin(); 480 } 481 482 /// \returns True if in-tree use also needs extract. This refers to 483 /// possible scalar operand in vectorized instruction. 484 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 485 TargetLibraryInfo *TLI) { 486 unsigned Opcode = UserInst->getOpcode(); 487 switch (Opcode) { 488 case Instruction::Load: { 489 LoadInst *LI = cast<LoadInst>(UserInst); 490 return (LI->getPointerOperand() == Scalar); 491 } 492 case Instruction::Store: { 493 StoreInst *SI = cast<StoreInst>(UserInst); 494 return (SI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Call: { 497 CallInst *CI = cast<CallInst>(UserInst); 498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 499 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 500 if (hasVectorInstrinsicScalarOpd(ID, i)) 501 return (CI->getArgOperand(i) == Scalar); 502 } 503 LLVM_FALLTHROUGH; 504 } 505 default: 506 return false; 507 } 508 } 509 510 /// \returns the AA location that is being access by the instruction. 511 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return MemoryLocation::get(SI); 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return MemoryLocation::get(LI); 516 return MemoryLocation(); 517 } 518 519 /// \returns True if the instruction is not a volatile or atomic load/store. 520 static bool isSimple(Instruction *I) { 521 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 522 return LI->isSimple(); 523 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 524 return SI->isSimple(); 525 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 526 return !MI->isVolatile(); 527 return true; 528 } 529 530 namespace llvm { 531 532 static void inversePermutation(ArrayRef<unsigned> Indices, 533 SmallVectorImpl<int> &Mask) { 534 Mask.clear(); 535 const unsigned E = Indices.size(); 536 Mask.resize(E, E + 1); 537 for (unsigned I = 0; I < E; ++I) 538 Mask[Indices[I]] = I; 539 } 540 541 namespace slpvectorizer { 542 543 /// Bottom Up SLP Vectorizer. 544 class BoUpSLP { 545 struct TreeEntry; 546 struct ScheduleData; 547 548 public: 549 using ValueList = SmallVector<Value *, 8>; 550 using InstrList = SmallVector<Instruction *, 16>; 551 using ValueSet = SmallPtrSet<Value *, 16>; 552 using StoreList = SmallVector<StoreInst *, 8>; 553 using ExtraValueToDebugLocsMap = 554 MapVector<Value *, SmallVector<Instruction *, 2>>; 555 using OrdersType = SmallVector<unsigned, 4>; 556 557 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 558 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 559 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 560 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 561 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 562 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 563 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 564 // Use the vector register size specified by the target unless overridden 565 // by a command-line option. 566 // TODO: It would be better to limit the vectorization factor based on 567 // data type rather than just register size. For example, x86 AVX has 568 // 256-bit registers, but it does not support integer operations 569 // at that width (that requires AVX2). 570 if (MaxVectorRegSizeOption.getNumOccurrences()) 571 MaxVecRegSize = MaxVectorRegSizeOption; 572 else 573 MaxVecRegSize = TTI->getRegisterBitWidth(true); 574 575 if (MinVectorRegSizeOption.getNumOccurrences()) 576 MinVecRegSize = MinVectorRegSizeOption; 577 else 578 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 579 } 580 581 /// Vectorize the tree that starts with the elements in \p VL. 582 /// Returns the vectorized root. 583 Value *vectorizeTree(); 584 585 /// Vectorize the tree but with the list of externally used values \p 586 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 587 /// generated extractvalue instructions. 588 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 589 590 /// \returns the cost incurred by unwanted spills and fills, caused by 591 /// holding live values over call sites. 592 InstructionCost getSpillCost() const; 593 594 /// \returns the vectorization cost of the subtree that starts at \p VL. 595 /// A negative number means that this is profitable. 596 InstructionCost getTreeCost(); 597 598 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 599 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 600 void buildTree(ArrayRef<Value *> Roots, 601 ArrayRef<Value *> UserIgnoreLst = None); 602 603 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 604 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 605 /// into account (and updating it, if required) list of externally used 606 /// values stored in \p ExternallyUsedValues. 607 void buildTree(ArrayRef<Value *> Roots, 608 ExtraValueToDebugLocsMap &ExternallyUsedValues, 609 ArrayRef<Value *> UserIgnoreLst = None); 610 611 /// Clear the internal data structures that are created by 'buildTree'. 612 void deleteTree() { 613 VectorizableTree.clear(); 614 ScalarToTreeEntry.clear(); 615 MustGather.clear(); 616 ExternalUses.clear(); 617 NumOpsWantToKeepOrder.clear(); 618 NumOpsWantToKeepOriginalOrder = 0; 619 for (auto &Iter : BlocksSchedules) { 620 BlockScheduling *BS = Iter.second.get(); 621 BS->clear(); 622 } 623 MinBWs.clear(); 624 } 625 626 unsigned getTreeSize() const { return VectorizableTree.size(); } 627 628 /// Perform LICM and CSE on the newly generated gather sequences. 629 void optimizeGatherSequence(); 630 631 /// \returns The best order of instructions for vectorization. 632 Optional<ArrayRef<unsigned>> bestOrder() const { 633 assert(llvm::all_of( 634 NumOpsWantToKeepOrder, 635 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 636 return D.getFirst().size() == 637 VectorizableTree[0]->Scalars.size(); 638 }) && 639 "All orders must have the same size as number of instructions in " 640 "tree node."); 641 auto I = std::max_element( 642 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 643 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 644 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 645 return D1.second < D2.second; 646 }); 647 if (I == NumOpsWantToKeepOrder.end() || 648 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 649 return None; 650 651 return makeArrayRef(I->getFirst()); 652 } 653 654 /// Builds the correct order for root instructions. 655 /// If some leaves have the same instructions to be vectorized, we may 656 /// incorrectly evaluate the best order for the root node (it is built for the 657 /// vector of instructions without repeated instructions and, thus, has less 658 /// elements than the root node). This function builds the correct order for 659 /// the root node. 660 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 661 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 662 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 663 /// be reordered, the best order will be \<1, 0\>. We need to extend this 664 /// order for the root node. For the root node this order should look like 665 /// \<3, 0, 1, 2\>. This function extends the order for the reused 666 /// instructions. 667 void findRootOrder(OrdersType &Order) { 668 // If the leaf has the same number of instructions to vectorize as the root 669 // - order must be set already. 670 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 671 if (Order.size() == RootSize) 672 return; 673 SmallVector<unsigned, 4> RealOrder(Order.size()); 674 std::swap(Order, RealOrder); 675 SmallVector<int, 4> Mask; 676 inversePermutation(RealOrder, Mask); 677 Order.assign(Mask.begin(), Mask.end()); 678 // The leaf has less number of instructions - need to find the true order of 679 // the root. 680 // Scan the nodes starting from the leaf back to the root. 681 const TreeEntry *PNode = VectorizableTree.back().get(); 682 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 683 SmallPtrSet<const TreeEntry *, 4> Visited; 684 while (!Nodes.empty() && Order.size() != RootSize) { 685 const TreeEntry *PNode = Nodes.pop_back_val(); 686 if (!Visited.insert(PNode).second) 687 continue; 688 const TreeEntry &Node = *PNode; 689 for (const EdgeInfo &EI : Node.UserTreeIndices) 690 if (EI.UserTE) 691 Nodes.push_back(EI.UserTE); 692 if (Node.ReuseShuffleIndices.empty()) 693 continue; 694 // Build the order for the parent node. 695 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 696 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 697 // The algorithm of the order extension is: 698 // 1. Calculate the number of the same instructions for the order. 699 // 2. Calculate the index of the new order: total number of instructions 700 // with order less than the order of the current instruction + reuse 701 // number of the current instruction. 702 // 3. The new order is just the index of the instruction in the original 703 // vector of the instructions. 704 for (unsigned I : Node.ReuseShuffleIndices) 705 ++OrderCounter[Order[I]]; 706 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 707 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 708 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 709 unsigned OrderIdx = Order[ReusedIdx]; 710 unsigned NewIdx = 0; 711 for (unsigned J = 0; J < OrderIdx; ++J) 712 NewIdx += OrderCounter[J]; 713 NewIdx += CurrentCounter[OrderIdx]; 714 ++CurrentCounter[OrderIdx]; 715 assert(NewOrder[NewIdx] == RootSize && 716 "The order index should not be written already."); 717 NewOrder[NewIdx] = I; 718 } 719 std::swap(Order, NewOrder); 720 } 721 assert(Order.size() == RootSize && 722 "Root node is expected or the size of the order must be the same as " 723 "the number of elements in the root node."); 724 assert(llvm::all_of(Order, 725 [RootSize](unsigned Val) { return Val != RootSize; }) && 726 "All indices must be initialized"); 727 } 728 729 /// \return The vector element size in bits to use when vectorizing the 730 /// expression tree ending at \p V. If V is a store, the size is the width of 731 /// the stored value. Otherwise, the size is the width of the largest loaded 732 /// value reaching V. This method is used by the vectorizer to calculate 733 /// vectorization factors. 734 unsigned getVectorElementSize(Value *V); 735 736 /// Compute the minimum type sizes required to represent the entries in a 737 /// vectorizable tree. 738 void computeMinimumValueSizes(); 739 740 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 741 unsigned getMaxVecRegSize() const { 742 return MaxVecRegSize; 743 } 744 745 // \returns minimum vector register size as set by cl::opt. 746 unsigned getMinVecRegSize() const { 747 return MinVecRegSize; 748 } 749 750 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 751 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 752 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 753 return MaxVF ? MaxVF : UINT_MAX; 754 } 755 756 /// Check if homogeneous aggregate is isomorphic to some VectorType. 757 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 758 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 759 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 760 /// 761 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 762 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 763 764 /// \returns True if the VectorizableTree is both tiny and not fully 765 /// vectorizable. We do not vectorize such trees. 766 bool isTreeTinyAndNotFullyVectorizable() const; 767 768 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 776 777 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 778 /// can be load combined in the backend. Load combining may not be allowed in 779 /// the IR optimizer, so we do not want to alter the pattern. For example, 780 /// partially transforming a scalar bswap() pattern into vector code is 781 /// effectively impossible for the backend to undo. 782 /// TODO: If load combining is allowed in the IR optimizer, this analysis 783 /// may not be necessary. 784 bool isLoadCombineCandidate() const; 785 786 OptimizationRemarkEmitter *getORE() { return ORE; } 787 788 /// This structure holds any data we need about the edges being traversed 789 /// during buildTree_rec(). We keep track of: 790 /// (i) the user TreeEntry index, and 791 /// (ii) the index of the edge. 792 struct EdgeInfo { 793 EdgeInfo() = default; 794 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 795 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 796 /// The user TreeEntry. 797 TreeEntry *UserTE = nullptr; 798 /// The operand index of the use. 799 unsigned EdgeIdx = UINT_MAX; 800 #ifndef NDEBUG 801 friend inline raw_ostream &operator<<(raw_ostream &OS, 802 const BoUpSLP::EdgeInfo &EI) { 803 EI.dump(OS); 804 return OS; 805 } 806 /// Debug print. 807 void dump(raw_ostream &OS) const { 808 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 809 << " EdgeIdx:" << EdgeIdx << "}"; 810 } 811 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 812 #endif 813 }; 814 815 /// A helper data structure to hold the operands of a vector of instructions. 816 /// This supports a fixed vector length for all operand vectors. 817 class VLOperands { 818 /// For each operand we need (i) the value, and (ii) the opcode that it 819 /// would be attached to if the expression was in a left-linearized form. 820 /// This is required to avoid illegal operand reordering. 821 /// For example: 822 /// \verbatim 823 /// 0 Op1 824 /// |/ 825 /// Op1 Op2 Linearized + Op2 826 /// \ / ----------> |/ 827 /// - - 828 /// 829 /// Op1 - Op2 (0 + Op1) - Op2 830 /// \endverbatim 831 /// 832 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 833 /// 834 /// Another way to think of this is to track all the operations across the 835 /// path from the operand all the way to the root of the tree and to 836 /// calculate the operation that corresponds to this path. For example, the 837 /// path from Op2 to the root crosses the RHS of the '-', therefore the 838 /// corresponding operation is a '-' (which matches the one in the 839 /// linearized tree, as shown above). 840 /// 841 /// For lack of a better term, we refer to this operation as Accumulated 842 /// Path Operation (APO). 843 struct OperandData { 844 OperandData() = default; 845 OperandData(Value *V, bool APO, bool IsUsed) 846 : V(V), APO(APO), IsUsed(IsUsed) {} 847 /// The operand value. 848 Value *V = nullptr; 849 /// TreeEntries only allow a single opcode, or an alternate sequence of 850 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 851 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 852 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 853 /// (e.g., Add/Mul) 854 bool APO = false; 855 /// Helper data for the reordering function. 856 bool IsUsed = false; 857 }; 858 859 /// During operand reordering, we are trying to select the operand at lane 860 /// that matches best with the operand at the neighboring lane. Our 861 /// selection is based on the type of value we are looking for. For example, 862 /// if the neighboring lane has a load, we need to look for a load that is 863 /// accessing a consecutive address. These strategies are summarized in the 864 /// 'ReorderingMode' enumerator. 865 enum class ReorderingMode { 866 Load, ///< Matching loads to consecutive memory addresses 867 Opcode, ///< Matching instructions based on opcode (same or alternate) 868 Constant, ///< Matching constants 869 Splat, ///< Matching the same instruction multiple times (broadcast) 870 Failed, ///< We failed to create a vectorizable group 871 }; 872 873 using OperandDataVec = SmallVector<OperandData, 2>; 874 875 /// A vector of operand vectors. 876 SmallVector<OperandDataVec, 4> OpsVec; 877 878 const DataLayout &DL; 879 ScalarEvolution &SE; 880 const BoUpSLP &R; 881 882 /// \returns the operand data at \p OpIdx and \p Lane. 883 OperandData &getData(unsigned OpIdx, unsigned Lane) { 884 return OpsVec[OpIdx][Lane]; 885 } 886 887 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 888 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 889 return OpsVec[OpIdx][Lane]; 890 } 891 892 /// Clears the used flag for all entries. 893 void clearUsed() { 894 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 895 OpIdx != NumOperands; ++OpIdx) 896 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 897 ++Lane) 898 OpsVec[OpIdx][Lane].IsUsed = false; 899 } 900 901 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 902 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 903 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 904 } 905 906 // The hard-coded scores listed here are not very important. When computing 907 // the scores of matching one sub-tree with another, we are basically 908 // counting the number of values that are matching. So even if all scores 909 // are set to 1, we would still get a decent matching result. 910 // However, sometimes we have to break ties. For example we may have to 911 // choose between matching loads vs matching opcodes. This is what these 912 // scores are helping us with: they provide the order of preference. 913 914 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 915 static const int ScoreConsecutiveLoads = 3; 916 /// ExtractElementInst from same vector and consecutive indexes. 917 static const int ScoreConsecutiveExtracts = 3; 918 /// Constants. 919 static const int ScoreConstants = 2; 920 /// Instructions with the same opcode. 921 static const int ScoreSameOpcode = 2; 922 /// Instructions with alt opcodes (e.g, add + sub). 923 static const int ScoreAltOpcodes = 1; 924 /// Identical instructions (a.k.a. splat or broadcast). 925 static const int ScoreSplat = 1; 926 /// Matching with an undef is preferable to failing. 927 static const int ScoreUndef = 1; 928 /// Score for failing to find a decent match. 929 static const int ScoreFail = 0; 930 /// User exteranl to the vectorized code. 931 static const int ExternalUseCost = 1; 932 /// The user is internal but in a different lane. 933 static const int UserInDiffLaneCost = ExternalUseCost; 934 935 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 936 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 937 ScalarEvolution &SE) { 938 auto *LI1 = dyn_cast<LoadInst>(V1); 939 auto *LI2 = dyn_cast<LoadInst>(V2); 940 if (LI1 && LI2) 941 return isConsecutiveAccess(LI1, LI2, DL, SE) 942 ? VLOperands::ScoreConsecutiveLoads 943 : VLOperands::ScoreFail; 944 945 auto *C1 = dyn_cast<Constant>(V1); 946 auto *C2 = dyn_cast<Constant>(V2); 947 if (C1 && C2) 948 return VLOperands::ScoreConstants; 949 950 // Extracts from consecutive indexes of the same vector better score as 951 // the extracts could be optimized away. 952 Value *EV; 953 ConstantInt *Ex1Idx, *Ex2Idx; 954 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 955 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 956 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 957 return VLOperands::ScoreConsecutiveExtracts; 958 959 auto *I1 = dyn_cast<Instruction>(V1); 960 auto *I2 = dyn_cast<Instruction>(V2); 961 if (I1 && I2) { 962 if (I1 == I2) 963 return VLOperands::ScoreSplat; 964 InstructionsState S = getSameOpcode({I1, I2}); 965 // Note: Only consider instructions with <= 2 operands to avoid 966 // complexity explosion. 967 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 968 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 969 : VLOperands::ScoreSameOpcode; 970 } 971 972 if (isa<UndefValue>(V2)) 973 return VLOperands::ScoreUndef; 974 975 return VLOperands::ScoreFail; 976 } 977 978 /// Holds the values and their lane that are taking part in the look-ahead 979 /// score calculation. This is used in the external uses cost calculation. 980 SmallDenseMap<Value *, int> InLookAheadValues; 981 982 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 983 /// either external to the vectorized code, or require shuffling. 984 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 985 const std::pair<Value *, int> &RHS) { 986 int Cost = 0; 987 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 988 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 989 Value *V = Values[Idx].first; 990 if (isa<Constant>(V)) { 991 // Since this is a function pass, it doesn't make semantic sense to 992 // walk the users of a subclass of Constant. The users could be in 993 // another function, or even another module that happens to be in 994 // the same LLVMContext. 995 continue; 996 } 997 998 // Calculate the absolute lane, using the minimum relative lane of LHS 999 // and RHS as base and Idx as the offset. 1000 int Ln = std::min(LHS.second, RHS.second) + Idx; 1001 assert(Ln >= 0 && "Bad lane calculation"); 1002 unsigned UsersBudget = LookAheadUsersBudget; 1003 for (User *U : V->users()) { 1004 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1005 // The user is in the VectorizableTree. Check if we need to insert. 1006 auto It = llvm::find(UserTE->Scalars, U); 1007 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1008 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1009 assert(UserLn >= 0 && "Bad lane"); 1010 if (UserLn != Ln) 1011 Cost += UserInDiffLaneCost; 1012 } else { 1013 // Check if the user is in the look-ahead code. 1014 auto It2 = InLookAheadValues.find(U); 1015 if (It2 != InLookAheadValues.end()) { 1016 // The user is in the look-ahead code. Check the lane. 1017 if (It2->second != Ln) 1018 Cost += UserInDiffLaneCost; 1019 } else { 1020 // The user is neither in SLP tree nor in the look-ahead code. 1021 Cost += ExternalUseCost; 1022 } 1023 } 1024 // Limit the number of visited uses to cap compilation time. 1025 if (--UsersBudget == 0) 1026 break; 1027 } 1028 } 1029 return Cost; 1030 } 1031 1032 /// Go through the operands of \p LHS and \p RHS recursively until \p 1033 /// MaxLevel, and return the cummulative score. For example: 1034 /// \verbatim 1035 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1036 /// \ / \ / \ / \ / 1037 /// + + + + 1038 /// G1 G2 G3 G4 1039 /// \endverbatim 1040 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1041 /// each level recursively, accumulating the score. It starts from matching 1042 /// the additions at level 0, then moves on to the loads (level 1). The 1043 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1044 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1045 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1046 /// Please note that the order of the operands does not matter, as we 1047 /// evaluate the score of all profitable combinations of operands. In 1048 /// other words the score of G1 and G4 is the same as G1 and G2. This 1049 /// heuristic is based on ideas described in: 1050 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1051 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1052 /// Luís F. W. Góes 1053 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1054 const std::pair<Value *, int> &RHS, int CurrLevel, 1055 int MaxLevel) { 1056 1057 Value *V1 = LHS.first; 1058 Value *V2 = RHS.first; 1059 // Get the shallow score of V1 and V2. 1060 int ShallowScoreAtThisLevel = 1061 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1062 getExternalUsesCost(LHS, RHS)); 1063 int Lane1 = LHS.second; 1064 int Lane2 = RHS.second; 1065 1066 // If reached MaxLevel, 1067 // or if V1 and V2 are not instructions, 1068 // or if they are SPLAT, 1069 // or if they are not consecutive, early return the current cost. 1070 auto *I1 = dyn_cast<Instruction>(V1); 1071 auto *I2 = dyn_cast<Instruction>(V2); 1072 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1073 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1074 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1075 return ShallowScoreAtThisLevel; 1076 assert(I1 && I2 && "Should have early exited."); 1077 1078 // Keep track of in-tree values for determining the external-use cost. 1079 InLookAheadValues[V1] = Lane1; 1080 InLookAheadValues[V2] = Lane2; 1081 1082 // Contains the I2 operand indexes that got matched with I1 operands. 1083 SmallSet<unsigned, 4> Op2Used; 1084 1085 // Recursion towards the operands of I1 and I2. We are trying all possbile 1086 // operand pairs, and keeping track of the best score. 1087 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1088 OpIdx1 != NumOperands1; ++OpIdx1) { 1089 // Try to pair op1I with the best operand of I2. 1090 int MaxTmpScore = 0; 1091 unsigned MaxOpIdx2 = 0; 1092 bool FoundBest = false; 1093 // If I2 is commutative try all combinations. 1094 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1095 unsigned ToIdx = isCommutative(I2) 1096 ? I2->getNumOperands() 1097 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1098 assert(FromIdx <= ToIdx && "Bad index"); 1099 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1100 // Skip operands already paired with OpIdx1. 1101 if (Op2Used.count(OpIdx2)) 1102 continue; 1103 // Recursively calculate the cost at each level 1104 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1105 {I2->getOperand(OpIdx2), Lane2}, 1106 CurrLevel + 1, MaxLevel); 1107 // Look for the best score. 1108 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1109 MaxTmpScore = TmpScore; 1110 MaxOpIdx2 = OpIdx2; 1111 FoundBest = true; 1112 } 1113 } 1114 if (FoundBest) { 1115 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1116 Op2Used.insert(MaxOpIdx2); 1117 ShallowScoreAtThisLevel += MaxTmpScore; 1118 } 1119 } 1120 return ShallowScoreAtThisLevel; 1121 } 1122 1123 /// \Returns the look-ahead score, which tells us how much the sub-trees 1124 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1125 /// score. This helps break ties in an informed way when we cannot decide on 1126 /// the order of the operands by just considering the immediate 1127 /// predecessors. 1128 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1129 const std::pair<Value *, int> &RHS) { 1130 InLookAheadValues.clear(); 1131 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1132 } 1133 1134 // Search all operands in Ops[*][Lane] for the one that matches best 1135 // Ops[OpIdx][LastLane] and return its opreand index. 1136 // If no good match can be found, return None. 1137 Optional<unsigned> 1138 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1139 ArrayRef<ReorderingMode> ReorderingModes) { 1140 unsigned NumOperands = getNumOperands(); 1141 1142 // The operand of the previous lane at OpIdx. 1143 Value *OpLastLane = getData(OpIdx, LastLane).V; 1144 1145 // Our strategy mode for OpIdx. 1146 ReorderingMode RMode = ReorderingModes[OpIdx]; 1147 1148 // The linearized opcode of the operand at OpIdx, Lane. 1149 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1150 1151 // The best operand index and its score. 1152 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1153 // are using the score to differentiate between the two. 1154 struct BestOpData { 1155 Optional<unsigned> Idx = None; 1156 unsigned Score = 0; 1157 } BestOp; 1158 1159 // Iterate through all unused operands and look for the best. 1160 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1161 // Get the operand at Idx and Lane. 1162 OperandData &OpData = getData(Idx, Lane); 1163 Value *Op = OpData.V; 1164 bool OpAPO = OpData.APO; 1165 1166 // Skip already selected operands. 1167 if (OpData.IsUsed) 1168 continue; 1169 1170 // Skip if we are trying to move the operand to a position with a 1171 // different opcode in the linearized tree form. This would break the 1172 // semantics. 1173 if (OpAPO != OpIdxAPO) 1174 continue; 1175 1176 // Look for an operand that matches the current mode. 1177 switch (RMode) { 1178 case ReorderingMode::Load: 1179 case ReorderingMode::Constant: 1180 case ReorderingMode::Opcode: { 1181 bool LeftToRight = Lane > LastLane; 1182 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1183 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1184 unsigned Score = 1185 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1186 if (Score > BestOp.Score) { 1187 BestOp.Idx = Idx; 1188 BestOp.Score = Score; 1189 } 1190 break; 1191 } 1192 case ReorderingMode::Splat: 1193 if (Op == OpLastLane) 1194 BestOp.Idx = Idx; 1195 break; 1196 case ReorderingMode::Failed: 1197 return None; 1198 } 1199 } 1200 1201 if (BestOp.Idx) { 1202 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1203 return BestOp.Idx; 1204 } 1205 // If we could not find a good match return None. 1206 return None; 1207 } 1208 1209 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1210 /// reordering from. This is the one which has the least number of operands 1211 /// that can freely move about. 1212 unsigned getBestLaneToStartReordering() const { 1213 unsigned BestLane = 0; 1214 unsigned Min = UINT_MAX; 1215 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1216 ++Lane) { 1217 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1218 if (NumFreeOps < Min) { 1219 Min = NumFreeOps; 1220 BestLane = Lane; 1221 } 1222 } 1223 return BestLane; 1224 } 1225 1226 /// \Returns the maximum number of operands that are allowed to be reordered 1227 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1228 /// start operand reordering. 1229 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1230 unsigned CntTrue = 0; 1231 unsigned NumOperands = getNumOperands(); 1232 // Operands with the same APO can be reordered. We therefore need to count 1233 // how many of them we have for each APO, like this: Cnt[APO] = x. 1234 // Since we only have two APOs, namely true and false, we can avoid using 1235 // a map. Instead we can simply count the number of operands that 1236 // correspond to one of them (in this case the 'true' APO), and calculate 1237 // the other by subtracting it from the total number of operands. 1238 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1239 if (getData(OpIdx, Lane).APO) 1240 ++CntTrue; 1241 unsigned CntFalse = NumOperands - CntTrue; 1242 return std::max(CntTrue, CntFalse); 1243 } 1244 1245 /// Go through the instructions in VL and append their operands. 1246 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1247 assert(!VL.empty() && "Bad VL"); 1248 assert((empty() || VL.size() == getNumLanes()) && 1249 "Expected same number of lanes"); 1250 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1251 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1252 OpsVec.resize(NumOperands); 1253 unsigned NumLanes = VL.size(); 1254 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1255 OpsVec[OpIdx].resize(NumLanes); 1256 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1257 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1258 // Our tree has just 3 nodes: the root and two operands. 1259 // It is therefore trivial to get the APO. We only need to check the 1260 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1261 // RHS operand. The LHS operand of both add and sub is never attached 1262 // to an inversese operation in the linearized form, therefore its APO 1263 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1264 1265 // Since operand reordering is performed on groups of commutative 1266 // operations or alternating sequences (e.g., +, -), we can safely 1267 // tell the inverse operations by checking commutativity. 1268 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1269 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1270 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1271 APO, false}; 1272 } 1273 } 1274 } 1275 1276 /// \returns the number of operands. 1277 unsigned getNumOperands() const { return OpsVec.size(); } 1278 1279 /// \returns the number of lanes. 1280 unsigned getNumLanes() const { return OpsVec[0].size(); } 1281 1282 /// \returns the operand value at \p OpIdx and \p Lane. 1283 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1284 return getData(OpIdx, Lane).V; 1285 } 1286 1287 /// \returns true if the data structure is empty. 1288 bool empty() const { return OpsVec.empty(); } 1289 1290 /// Clears the data. 1291 void clear() { OpsVec.clear(); } 1292 1293 /// \Returns true if there are enough operands identical to \p Op to fill 1294 /// the whole vector. 1295 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1296 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1297 bool OpAPO = getData(OpIdx, Lane).APO; 1298 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1299 if (Ln == Lane) 1300 continue; 1301 // This is set to true if we found a candidate for broadcast at Lane. 1302 bool FoundCandidate = false; 1303 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1304 OperandData &Data = getData(OpI, Ln); 1305 if (Data.APO != OpAPO || Data.IsUsed) 1306 continue; 1307 if (Data.V == Op) { 1308 FoundCandidate = true; 1309 Data.IsUsed = true; 1310 break; 1311 } 1312 } 1313 if (!FoundCandidate) 1314 return false; 1315 } 1316 return true; 1317 } 1318 1319 public: 1320 /// Initialize with all the operands of the instruction vector \p RootVL. 1321 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1322 ScalarEvolution &SE, const BoUpSLP &R) 1323 : DL(DL), SE(SE), R(R) { 1324 // Append all the operands of RootVL. 1325 appendOperandsOfVL(RootVL); 1326 } 1327 1328 /// \Returns a value vector with the operands across all lanes for the 1329 /// opearnd at \p OpIdx. 1330 ValueList getVL(unsigned OpIdx) const { 1331 ValueList OpVL(OpsVec[OpIdx].size()); 1332 assert(OpsVec[OpIdx].size() == getNumLanes() && 1333 "Expected same num of lanes across all operands"); 1334 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1335 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1336 return OpVL; 1337 } 1338 1339 // Performs operand reordering for 2 or more operands. 1340 // The original operands are in OrigOps[OpIdx][Lane]. 1341 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1342 void reorder() { 1343 unsigned NumOperands = getNumOperands(); 1344 unsigned NumLanes = getNumLanes(); 1345 // Each operand has its own mode. We are using this mode to help us select 1346 // the instructions for each lane, so that they match best with the ones 1347 // we have selected so far. 1348 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1349 1350 // This is a greedy single-pass algorithm. We are going over each lane 1351 // once and deciding on the best order right away with no back-tracking. 1352 // However, in order to increase its effectiveness, we start with the lane 1353 // that has operands that can move the least. For example, given the 1354 // following lanes: 1355 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1356 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1357 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1358 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1359 // we will start at Lane 1, since the operands of the subtraction cannot 1360 // be reordered. Then we will visit the rest of the lanes in a circular 1361 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1362 1363 // Find the first lane that we will start our search from. 1364 unsigned FirstLane = getBestLaneToStartReordering(); 1365 1366 // Initialize the modes. 1367 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1368 Value *OpLane0 = getValue(OpIdx, FirstLane); 1369 // Keep track if we have instructions with all the same opcode on one 1370 // side. 1371 if (isa<LoadInst>(OpLane0)) 1372 ReorderingModes[OpIdx] = ReorderingMode::Load; 1373 else if (isa<Instruction>(OpLane0)) { 1374 // Check if OpLane0 should be broadcast. 1375 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1376 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1377 else 1378 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1379 } 1380 else if (isa<Constant>(OpLane0)) 1381 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1382 else if (isa<Argument>(OpLane0)) 1383 // Our best hope is a Splat. It may save some cost in some cases. 1384 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1385 else 1386 // NOTE: This should be unreachable. 1387 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1388 } 1389 1390 // If the initial strategy fails for any of the operand indexes, then we 1391 // perform reordering again in a second pass. This helps avoid assigning 1392 // high priority to the failed strategy, and should improve reordering for 1393 // the non-failed operand indexes. 1394 for (int Pass = 0; Pass != 2; ++Pass) { 1395 // Skip the second pass if the first pass did not fail. 1396 bool StrategyFailed = false; 1397 // Mark all operand data as free to use. 1398 clearUsed(); 1399 // We keep the original operand order for the FirstLane, so reorder the 1400 // rest of the lanes. We are visiting the nodes in a circular fashion, 1401 // using FirstLane as the center point and increasing the radius 1402 // distance. 1403 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1404 // Visit the lane on the right and then the lane on the left. 1405 for (int Direction : {+1, -1}) { 1406 int Lane = FirstLane + Direction * Distance; 1407 if (Lane < 0 || Lane >= (int)NumLanes) 1408 continue; 1409 int LastLane = Lane - Direction; 1410 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1411 "Out of bounds"); 1412 // Look for a good match for each operand. 1413 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1414 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1415 Optional<unsigned> BestIdx = 1416 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1417 // By not selecting a value, we allow the operands that follow to 1418 // select a better matching value. We will get a non-null value in 1419 // the next run of getBestOperand(). 1420 if (BestIdx) { 1421 // Swap the current operand with the one returned by 1422 // getBestOperand(). 1423 swap(OpIdx, BestIdx.getValue(), Lane); 1424 } else { 1425 // We failed to find a best operand, set mode to 'Failed'. 1426 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1427 // Enable the second pass. 1428 StrategyFailed = true; 1429 } 1430 } 1431 } 1432 } 1433 // Skip second pass if the strategy did not fail. 1434 if (!StrategyFailed) 1435 break; 1436 } 1437 } 1438 1439 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1440 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1441 switch (RMode) { 1442 case ReorderingMode::Load: 1443 return "Load"; 1444 case ReorderingMode::Opcode: 1445 return "Opcode"; 1446 case ReorderingMode::Constant: 1447 return "Constant"; 1448 case ReorderingMode::Splat: 1449 return "Splat"; 1450 case ReorderingMode::Failed: 1451 return "Failed"; 1452 } 1453 llvm_unreachable("Unimplemented Reordering Type"); 1454 } 1455 1456 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1457 raw_ostream &OS) { 1458 return OS << getModeStr(RMode); 1459 } 1460 1461 /// Debug print. 1462 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1463 printMode(RMode, dbgs()); 1464 } 1465 1466 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1467 return printMode(RMode, OS); 1468 } 1469 1470 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1471 const unsigned Indent = 2; 1472 unsigned Cnt = 0; 1473 for (const OperandDataVec &OpDataVec : OpsVec) { 1474 OS << "Operand " << Cnt++ << "\n"; 1475 for (const OperandData &OpData : OpDataVec) { 1476 OS.indent(Indent) << "{"; 1477 if (Value *V = OpData.V) 1478 OS << *V; 1479 else 1480 OS << "null"; 1481 OS << ", APO:" << OpData.APO << "}\n"; 1482 } 1483 OS << "\n"; 1484 } 1485 return OS; 1486 } 1487 1488 /// Debug print. 1489 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1490 #endif 1491 }; 1492 1493 /// Checks if the instruction is marked for deletion. 1494 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1495 1496 /// Marks values operands for later deletion by replacing them with Undefs. 1497 void eraseInstructions(ArrayRef<Value *> AV); 1498 1499 ~BoUpSLP(); 1500 1501 private: 1502 /// Checks if all users of \p I are the part of the vectorization tree. 1503 bool areAllUsersVectorized(Instruction *I) const; 1504 1505 /// \returns the cost of the vectorizable entry. 1506 InstructionCost getEntryCost(TreeEntry *E); 1507 1508 /// This is the recursive part of buildTree. 1509 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1510 const EdgeInfo &EI); 1511 1512 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1513 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1514 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1515 /// returns false, setting \p CurrentOrder to either an empty vector or a 1516 /// non-identity permutation that allows to reuse extract instructions. 1517 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1518 SmallVectorImpl<unsigned> &CurrentOrder) const; 1519 1520 /// Vectorize a single entry in the tree. 1521 Value *vectorizeTree(TreeEntry *E); 1522 1523 /// Vectorize a single entry in the tree, starting in \p VL. 1524 Value *vectorizeTree(ArrayRef<Value *> VL); 1525 1526 /// \returns the scalarization cost for this type. Scalarization in this 1527 /// context means the creation of vectors from a group of scalars. 1528 InstructionCost 1529 getGatherCost(FixedVectorType *Ty, 1530 const DenseSet<unsigned> &ShuffledIndices) const; 1531 1532 /// \returns the scalarization cost for this list of values. Assuming that 1533 /// this subtree gets vectorized, we may need to extract the values from the 1534 /// roots. This method calculates the cost of extracting the values. 1535 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1536 1537 /// Set the Builder insert point to one after the last instruction in 1538 /// the bundle 1539 void setInsertPointAfterBundle(TreeEntry *E); 1540 1541 /// \returns a vector from a collection of scalars in \p VL. 1542 Value *gather(ArrayRef<Value *> VL); 1543 1544 /// \returns whether the VectorizableTree is fully vectorizable and will 1545 /// be beneficial even the tree height is tiny. 1546 bool isFullyVectorizableTinyTree() const; 1547 1548 /// Reorder commutative or alt operands to get better probability of 1549 /// generating vectorized code. 1550 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1551 SmallVectorImpl<Value *> &Left, 1552 SmallVectorImpl<Value *> &Right, 1553 const DataLayout &DL, 1554 ScalarEvolution &SE, 1555 const BoUpSLP &R); 1556 struct TreeEntry { 1557 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1558 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1559 1560 /// \returns true if the scalars in VL are equal to this entry. 1561 bool isSame(ArrayRef<Value *> VL) const { 1562 if (VL.size() == Scalars.size()) 1563 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1564 return VL.size() == ReuseShuffleIndices.size() && 1565 std::equal( 1566 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1567 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1568 } 1569 1570 /// A vector of scalars. 1571 ValueList Scalars; 1572 1573 /// The Scalars are vectorized into this value. It is initialized to Null. 1574 Value *VectorizedValue = nullptr; 1575 1576 /// Do we need to gather this sequence or vectorize it 1577 /// (either with vector instruction or with scatter/gather 1578 /// intrinsics for store/load)? 1579 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1580 EntryState State; 1581 1582 /// Does this sequence require some shuffling? 1583 SmallVector<int, 4> ReuseShuffleIndices; 1584 1585 /// Does this entry require reordering? 1586 SmallVector<unsigned, 4> ReorderIndices; 1587 1588 /// Points back to the VectorizableTree. 1589 /// 1590 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1591 /// to be a pointer and needs to be able to initialize the child iterator. 1592 /// Thus we need a reference back to the container to translate the indices 1593 /// to entries. 1594 VecTreeTy &Container; 1595 1596 /// The TreeEntry index containing the user of this entry. We can actually 1597 /// have multiple users so the data structure is not truly a tree. 1598 SmallVector<EdgeInfo, 1> UserTreeIndices; 1599 1600 /// The index of this treeEntry in VectorizableTree. 1601 int Idx = -1; 1602 1603 private: 1604 /// The operands of each instruction in each lane Operands[op_index][lane]. 1605 /// Note: This helps avoid the replication of the code that performs the 1606 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1607 SmallVector<ValueList, 2> Operands; 1608 1609 /// The main/alternate instruction. 1610 Instruction *MainOp = nullptr; 1611 Instruction *AltOp = nullptr; 1612 1613 public: 1614 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1615 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1616 if (Operands.size() < OpIdx + 1) 1617 Operands.resize(OpIdx + 1); 1618 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1619 Operands[OpIdx].resize(Scalars.size()); 1620 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1621 Operands[OpIdx][Lane] = OpVL[Lane]; 1622 } 1623 1624 /// Set the operands of this bundle in their original order. 1625 void setOperandsInOrder() { 1626 assert(Operands.empty() && "Already initialized?"); 1627 auto *I0 = cast<Instruction>(Scalars[0]); 1628 Operands.resize(I0->getNumOperands()); 1629 unsigned NumLanes = Scalars.size(); 1630 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1631 OpIdx != NumOperands; ++OpIdx) { 1632 Operands[OpIdx].resize(NumLanes); 1633 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1634 auto *I = cast<Instruction>(Scalars[Lane]); 1635 assert(I->getNumOperands() == NumOperands && 1636 "Expected same number of operands"); 1637 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1638 } 1639 } 1640 } 1641 1642 /// \returns the \p OpIdx operand of this TreeEntry. 1643 ValueList &getOperand(unsigned OpIdx) { 1644 assert(OpIdx < Operands.size() && "Off bounds"); 1645 return Operands[OpIdx]; 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return Operands.size(); } 1650 1651 /// \return the single \p OpIdx operand. 1652 Value *getSingleOperand(unsigned OpIdx) const { 1653 assert(OpIdx < Operands.size() && "Off bounds"); 1654 assert(!Operands[OpIdx].empty() && "No operand available"); 1655 return Operands[OpIdx][0]; 1656 } 1657 1658 /// Some of the instructions in the list have alternate opcodes. 1659 bool isAltShuffle() const { 1660 return getOpcode() != getAltOpcode(); 1661 } 1662 1663 bool isOpcodeOrAlt(Instruction *I) const { 1664 unsigned CheckedOpcode = I->getOpcode(); 1665 return (getOpcode() == CheckedOpcode || 1666 getAltOpcode() == CheckedOpcode); 1667 } 1668 1669 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1670 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1671 /// \p OpValue. 1672 Value *isOneOf(Value *Op) const { 1673 auto *I = dyn_cast<Instruction>(Op); 1674 if (I && isOpcodeOrAlt(I)) 1675 return Op; 1676 return MainOp; 1677 } 1678 1679 void setOperations(const InstructionsState &S) { 1680 MainOp = S.MainOp; 1681 AltOp = S.AltOp; 1682 } 1683 1684 Instruction *getMainOp() const { 1685 return MainOp; 1686 } 1687 1688 Instruction *getAltOp() const { 1689 return AltOp; 1690 } 1691 1692 /// The main/alternate opcodes for the list of instructions. 1693 unsigned getOpcode() const { 1694 return MainOp ? MainOp->getOpcode() : 0; 1695 } 1696 1697 unsigned getAltOpcode() const { 1698 return AltOp ? AltOp->getOpcode() : 0; 1699 } 1700 1701 /// Update operations state of this entry if reorder occurred. 1702 bool updateStateIfReorder() { 1703 if (ReorderIndices.empty()) 1704 return false; 1705 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1706 setOperations(S); 1707 return true; 1708 } 1709 1710 #ifndef NDEBUG 1711 /// Debug printer. 1712 LLVM_DUMP_METHOD void dump() const { 1713 dbgs() << Idx << ".\n"; 1714 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1715 dbgs() << "Operand " << OpI << ":\n"; 1716 for (const Value *V : Operands[OpI]) 1717 dbgs().indent(2) << *V << "\n"; 1718 } 1719 dbgs() << "Scalars: \n"; 1720 for (Value *V : Scalars) 1721 dbgs().indent(2) << *V << "\n"; 1722 dbgs() << "State: "; 1723 switch (State) { 1724 case Vectorize: 1725 dbgs() << "Vectorize\n"; 1726 break; 1727 case ScatterVectorize: 1728 dbgs() << "ScatterVectorize\n"; 1729 break; 1730 case NeedToGather: 1731 dbgs() << "NeedToGather\n"; 1732 break; 1733 } 1734 dbgs() << "MainOp: "; 1735 if (MainOp) 1736 dbgs() << *MainOp << "\n"; 1737 else 1738 dbgs() << "NULL\n"; 1739 dbgs() << "AltOp: "; 1740 if (AltOp) 1741 dbgs() << *AltOp << "\n"; 1742 else 1743 dbgs() << "NULL\n"; 1744 dbgs() << "VectorizedValue: "; 1745 if (VectorizedValue) 1746 dbgs() << *VectorizedValue << "\n"; 1747 else 1748 dbgs() << "NULL\n"; 1749 dbgs() << "ReuseShuffleIndices: "; 1750 if (ReuseShuffleIndices.empty()) 1751 dbgs() << "Empty"; 1752 else 1753 for (unsigned ReuseIdx : ReuseShuffleIndices) 1754 dbgs() << ReuseIdx << ", "; 1755 dbgs() << "\n"; 1756 dbgs() << "ReorderIndices: "; 1757 for (unsigned ReorderIdx : ReorderIndices) 1758 dbgs() << ReorderIdx << ", "; 1759 dbgs() << "\n"; 1760 dbgs() << "UserTreeIndices: "; 1761 for (const auto &EInfo : UserTreeIndices) 1762 dbgs() << EInfo << ", "; 1763 dbgs() << "\n"; 1764 } 1765 #endif 1766 }; 1767 1768 #ifndef NDEBUG 1769 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1770 InstructionCost VecCost, 1771 InstructionCost ScalarCost) const { 1772 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1773 dbgs() << "SLP: Costs:\n"; 1774 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1775 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1776 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1777 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1778 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1779 } 1780 #endif 1781 1782 /// Create a new VectorizableTree entry. 1783 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1784 const InstructionsState &S, 1785 const EdgeInfo &UserTreeIdx, 1786 ArrayRef<unsigned> ReuseShuffleIndices = None, 1787 ArrayRef<unsigned> ReorderIndices = None) { 1788 TreeEntry::EntryState EntryState = 1789 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1790 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1791 ReuseShuffleIndices, ReorderIndices); 1792 } 1793 1794 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1795 TreeEntry::EntryState EntryState, 1796 Optional<ScheduleData *> Bundle, 1797 const InstructionsState &S, 1798 const EdgeInfo &UserTreeIdx, 1799 ArrayRef<unsigned> ReuseShuffleIndices = None, 1800 ArrayRef<unsigned> ReorderIndices = None) { 1801 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1802 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1803 "Need to vectorize gather entry?"); 1804 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1805 TreeEntry *Last = VectorizableTree.back().get(); 1806 Last->Idx = VectorizableTree.size() - 1; 1807 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1808 Last->State = EntryState; 1809 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1810 ReuseShuffleIndices.end()); 1811 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1812 Last->setOperations(S); 1813 if (Last->State != TreeEntry::NeedToGather) { 1814 for (Value *V : VL) { 1815 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1816 ScalarToTreeEntry[V] = Last; 1817 } 1818 // Update the scheduler bundle to point to this TreeEntry. 1819 unsigned Lane = 0; 1820 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1821 BundleMember = BundleMember->NextInBundle) { 1822 BundleMember->TE = Last; 1823 BundleMember->Lane = Lane; 1824 ++Lane; 1825 } 1826 assert((!Bundle.getValue() || Lane == VL.size()) && 1827 "Bundle and VL out of sync"); 1828 } else { 1829 MustGather.insert(VL.begin(), VL.end()); 1830 } 1831 1832 if (UserTreeIdx.UserTE) 1833 Last->UserTreeIndices.push_back(UserTreeIdx); 1834 1835 return Last; 1836 } 1837 1838 /// -- Vectorization State -- 1839 /// Holds all of the tree entries. 1840 TreeEntry::VecTreeTy VectorizableTree; 1841 1842 #ifndef NDEBUG 1843 /// Debug printer. 1844 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1845 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1846 VectorizableTree[Id]->dump(); 1847 dbgs() << "\n"; 1848 } 1849 } 1850 #endif 1851 1852 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1853 1854 const TreeEntry *getTreeEntry(Value *V) const { 1855 return ScalarToTreeEntry.lookup(V); 1856 } 1857 1858 /// Maps a specific scalar to its tree entry. 1859 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1860 1861 /// Maps a value to the proposed vectorizable size. 1862 SmallDenseMap<Value *, unsigned> InstrElementSize; 1863 1864 /// A list of scalars that we found that we need to keep as scalars. 1865 ValueSet MustGather; 1866 1867 /// This POD struct describes one external user in the vectorized tree. 1868 struct ExternalUser { 1869 ExternalUser(Value *S, llvm::User *U, int L) 1870 : Scalar(S), User(U), Lane(L) {} 1871 1872 // Which scalar in our function. 1873 Value *Scalar; 1874 1875 // Which user that uses the scalar. 1876 llvm::User *User; 1877 1878 // Which lane does the scalar belong to. 1879 int Lane; 1880 }; 1881 using UserList = SmallVector<ExternalUser, 16>; 1882 1883 /// Checks if two instructions may access the same memory. 1884 /// 1885 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1886 /// is invariant in the calling loop. 1887 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1888 Instruction *Inst2) { 1889 // First check if the result is already in the cache. 1890 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1891 Optional<bool> &result = AliasCache[key]; 1892 if (result.hasValue()) { 1893 return result.getValue(); 1894 } 1895 MemoryLocation Loc2 = getLocation(Inst2, AA); 1896 bool aliased = true; 1897 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1898 // Do the alias check. 1899 aliased = AA->alias(Loc1, Loc2); 1900 } 1901 // Store the result in the cache. 1902 result = aliased; 1903 return aliased; 1904 } 1905 1906 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1907 1908 /// Cache for alias results. 1909 /// TODO: consider moving this to the AliasAnalysis itself. 1910 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1911 1912 /// Removes an instruction from its block and eventually deletes it. 1913 /// It's like Instruction::eraseFromParent() except that the actual deletion 1914 /// is delayed until BoUpSLP is destructed. 1915 /// This is required to ensure that there are no incorrect collisions in the 1916 /// AliasCache, which can happen if a new instruction is allocated at the 1917 /// same address as a previously deleted instruction. 1918 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1919 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1920 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1921 } 1922 1923 /// Temporary store for deleted instructions. Instructions will be deleted 1924 /// eventually when the BoUpSLP is destructed. 1925 DenseMap<Instruction *, bool> DeletedInstructions; 1926 1927 /// A list of values that need to extracted out of the tree. 1928 /// This list holds pairs of (Internal Scalar : External User). External User 1929 /// can be nullptr, it means that this Internal Scalar will be used later, 1930 /// after vectorization. 1931 UserList ExternalUses; 1932 1933 /// Values used only by @llvm.assume calls. 1934 SmallPtrSet<const Value *, 32> EphValues; 1935 1936 /// Holds all of the instructions that we gathered. 1937 SetVector<Instruction *> GatherSeq; 1938 1939 /// A list of blocks that we are going to CSE. 1940 SetVector<BasicBlock *> CSEBlocks; 1941 1942 /// Contains all scheduling relevant data for an instruction. 1943 /// A ScheduleData either represents a single instruction or a member of an 1944 /// instruction bundle (= a group of instructions which is combined into a 1945 /// vector instruction). 1946 struct ScheduleData { 1947 // The initial value for the dependency counters. It means that the 1948 // dependencies are not calculated yet. 1949 enum { InvalidDeps = -1 }; 1950 1951 ScheduleData() = default; 1952 1953 void init(int BlockSchedulingRegionID, Value *OpVal) { 1954 FirstInBundle = this; 1955 NextInBundle = nullptr; 1956 NextLoadStore = nullptr; 1957 IsScheduled = false; 1958 SchedulingRegionID = BlockSchedulingRegionID; 1959 UnscheduledDepsInBundle = UnscheduledDeps; 1960 clearDependencies(); 1961 OpValue = OpVal; 1962 TE = nullptr; 1963 Lane = -1; 1964 } 1965 1966 /// Returns true if the dependency information has been calculated. 1967 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1968 1969 /// Returns true for single instructions and for bundle representatives 1970 /// (= the head of a bundle). 1971 bool isSchedulingEntity() const { return FirstInBundle == this; } 1972 1973 /// Returns true if it represents an instruction bundle and not only a 1974 /// single instruction. 1975 bool isPartOfBundle() const { 1976 return NextInBundle != nullptr || FirstInBundle != this; 1977 } 1978 1979 /// Returns true if it is ready for scheduling, i.e. it has no more 1980 /// unscheduled depending instructions/bundles. 1981 bool isReady() const { 1982 assert(isSchedulingEntity() && 1983 "can't consider non-scheduling entity for ready list"); 1984 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1985 } 1986 1987 /// Modifies the number of unscheduled dependencies, also updating it for 1988 /// the whole bundle. 1989 int incrementUnscheduledDeps(int Incr) { 1990 UnscheduledDeps += Incr; 1991 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1992 } 1993 1994 /// Sets the number of unscheduled dependencies to the number of 1995 /// dependencies. 1996 void resetUnscheduledDeps() { 1997 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1998 } 1999 2000 /// Clears all dependency information. 2001 void clearDependencies() { 2002 Dependencies = InvalidDeps; 2003 resetUnscheduledDeps(); 2004 MemoryDependencies.clear(); 2005 } 2006 2007 void dump(raw_ostream &os) const { 2008 if (!isSchedulingEntity()) { 2009 os << "/ " << *Inst; 2010 } else if (NextInBundle) { 2011 os << '[' << *Inst; 2012 ScheduleData *SD = NextInBundle; 2013 while (SD) { 2014 os << ';' << *SD->Inst; 2015 SD = SD->NextInBundle; 2016 } 2017 os << ']'; 2018 } else { 2019 os << *Inst; 2020 } 2021 } 2022 2023 Instruction *Inst = nullptr; 2024 2025 /// Points to the head in an instruction bundle (and always to this for 2026 /// single instructions). 2027 ScheduleData *FirstInBundle = nullptr; 2028 2029 /// Single linked list of all instructions in a bundle. Null if it is a 2030 /// single instruction. 2031 ScheduleData *NextInBundle = nullptr; 2032 2033 /// Single linked list of all memory instructions (e.g. load, store, call) 2034 /// in the block - until the end of the scheduling region. 2035 ScheduleData *NextLoadStore = nullptr; 2036 2037 /// The dependent memory instructions. 2038 /// This list is derived on demand in calculateDependencies(). 2039 SmallVector<ScheduleData *, 4> MemoryDependencies; 2040 2041 /// This ScheduleData is in the current scheduling region if this matches 2042 /// the current SchedulingRegionID of BlockScheduling. 2043 int SchedulingRegionID = 0; 2044 2045 /// Used for getting a "good" final ordering of instructions. 2046 int SchedulingPriority = 0; 2047 2048 /// The number of dependencies. Constitutes of the number of users of the 2049 /// instruction plus the number of dependent memory instructions (if any). 2050 /// This value is calculated on demand. 2051 /// If InvalidDeps, the number of dependencies is not calculated yet. 2052 int Dependencies = InvalidDeps; 2053 2054 /// The number of dependencies minus the number of dependencies of scheduled 2055 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2056 /// for scheduling. 2057 /// Note that this is negative as long as Dependencies is not calculated. 2058 int UnscheduledDeps = InvalidDeps; 2059 2060 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2061 /// single instructions. 2062 int UnscheduledDepsInBundle = InvalidDeps; 2063 2064 /// True if this instruction is scheduled (or considered as scheduled in the 2065 /// dry-run). 2066 bool IsScheduled = false; 2067 2068 /// Opcode of the current instruction in the schedule data. 2069 Value *OpValue = nullptr; 2070 2071 /// The TreeEntry that this instruction corresponds to. 2072 TreeEntry *TE = nullptr; 2073 2074 /// The lane of this node in the TreeEntry. 2075 int Lane = -1; 2076 }; 2077 2078 #ifndef NDEBUG 2079 friend inline raw_ostream &operator<<(raw_ostream &os, 2080 const BoUpSLP::ScheduleData &SD) { 2081 SD.dump(os); 2082 return os; 2083 } 2084 #endif 2085 2086 friend struct GraphTraits<BoUpSLP *>; 2087 friend struct DOTGraphTraits<BoUpSLP *>; 2088 2089 /// Contains all scheduling data for a basic block. 2090 struct BlockScheduling { 2091 BlockScheduling(BasicBlock *BB) 2092 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2093 2094 void clear() { 2095 ReadyInsts.clear(); 2096 ScheduleStart = nullptr; 2097 ScheduleEnd = nullptr; 2098 FirstLoadStoreInRegion = nullptr; 2099 LastLoadStoreInRegion = nullptr; 2100 2101 // Reduce the maximum schedule region size by the size of the 2102 // previous scheduling run. 2103 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2104 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2105 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2106 ScheduleRegionSize = 0; 2107 2108 // Make a new scheduling region, i.e. all existing ScheduleData is not 2109 // in the new region yet. 2110 ++SchedulingRegionID; 2111 } 2112 2113 ScheduleData *getScheduleData(Value *V) { 2114 ScheduleData *SD = ScheduleDataMap[V]; 2115 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2116 return SD; 2117 return nullptr; 2118 } 2119 2120 ScheduleData *getScheduleData(Value *V, Value *Key) { 2121 if (V == Key) 2122 return getScheduleData(V); 2123 auto I = ExtraScheduleDataMap.find(V); 2124 if (I != ExtraScheduleDataMap.end()) { 2125 ScheduleData *SD = I->second[Key]; 2126 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2127 return SD; 2128 } 2129 return nullptr; 2130 } 2131 2132 bool isInSchedulingRegion(ScheduleData *SD) const { 2133 return SD->SchedulingRegionID == SchedulingRegionID; 2134 } 2135 2136 /// Marks an instruction as scheduled and puts all dependent ready 2137 /// instructions into the ready-list. 2138 template <typename ReadyListType> 2139 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2140 SD->IsScheduled = true; 2141 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2142 2143 ScheduleData *BundleMember = SD; 2144 while (BundleMember) { 2145 if (BundleMember->Inst != BundleMember->OpValue) { 2146 BundleMember = BundleMember->NextInBundle; 2147 continue; 2148 } 2149 // Handle the def-use chain dependencies. 2150 2151 // Decrement the unscheduled counter and insert to ready list if ready. 2152 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2153 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2154 if (OpDef && OpDef->hasValidDependencies() && 2155 OpDef->incrementUnscheduledDeps(-1) == 0) { 2156 // There are no more unscheduled dependencies after 2157 // decrementing, so we can put the dependent instruction 2158 // into the ready list. 2159 ScheduleData *DepBundle = OpDef->FirstInBundle; 2160 assert(!DepBundle->IsScheduled && 2161 "already scheduled bundle gets ready"); 2162 ReadyList.insert(DepBundle); 2163 LLVM_DEBUG(dbgs() 2164 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2165 } 2166 }); 2167 }; 2168 2169 // If BundleMember is a vector bundle, its operands may have been 2170 // reordered duiring buildTree(). We therefore need to get its operands 2171 // through the TreeEntry. 2172 if (TreeEntry *TE = BundleMember->TE) { 2173 int Lane = BundleMember->Lane; 2174 assert(Lane >= 0 && "Lane not set"); 2175 2176 // Since vectorization tree is being built recursively this assertion 2177 // ensures that the tree entry has all operands set before reaching 2178 // this code. Couple of exceptions known at the moment are extracts 2179 // where their second (immediate) operand is not added. Since 2180 // immediates do not affect scheduler behavior this is considered 2181 // okay. 2182 auto *In = TE->getMainOp(); 2183 assert(In && 2184 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2185 In->getNumOperands() == TE->getNumOperands()) && 2186 "Missed TreeEntry operands?"); 2187 (void)In; // fake use to avoid build failure when assertions disabled 2188 2189 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2190 OpIdx != NumOperands; ++OpIdx) 2191 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2192 DecrUnsched(I); 2193 } else { 2194 // If BundleMember is a stand-alone instruction, no operand reordering 2195 // has taken place, so we directly access its operands. 2196 for (Use &U : BundleMember->Inst->operands()) 2197 if (auto *I = dyn_cast<Instruction>(U.get())) 2198 DecrUnsched(I); 2199 } 2200 // Handle the memory dependencies. 2201 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2202 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2203 // There are no more unscheduled dependencies after decrementing, 2204 // so we can put the dependent instruction into the ready list. 2205 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2206 assert(!DepBundle->IsScheduled && 2207 "already scheduled bundle gets ready"); 2208 ReadyList.insert(DepBundle); 2209 LLVM_DEBUG(dbgs() 2210 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2211 } 2212 } 2213 BundleMember = BundleMember->NextInBundle; 2214 } 2215 } 2216 2217 void doForAllOpcodes(Value *V, 2218 function_ref<void(ScheduleData *SD)> Action) { 2219 if (ScheduleData *SD = getScheduleData(V)) 2220 Action(SD); 2221 auto I = ExtraScheduleDataMap.find(V); 2222 if (I != ExtraScheduleDataMap.end()) 2223 for (auto &P : I->second) 2224 if (P.second->SchedulingRegionID == SchedulingRegionID) 2225 Action(P.second); 2226 } 2227 2228 /// Put all instructions into the ReadyList which are ready for scheduling. 2229 template <typename ReadyListType> 2230 void initialFillReadyList(ReadyListType &ReadyList) { 2231 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2232 doForAllOpcodes(I, [&](ScheduleData *SD) { 2233 if (SD->isSchedulingEntity() && SD->isReady()) { 2234 ReadyList.insert(SD); 2235 LLVM_DEBUG(dbgs() 2236 << "SLP: initially in ready list: " << *I << "\n"); 2237 } 2238 }); 2239 } 2240 } 2241 2242 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2243 /// cyclic dependencies. This is only a dry-run, no instructions are 2244 /// actually moved at this stage. 2245 /// \returns the scheduling bundle. The returned Optional value is non-None 2246 /// if \p VL is allowed to be scheduled. 2247 Optional<ScheduleData *> 2248 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2249 const InstructionsState &S); 2250 2251 /// Un-bundles a group of instructions. 2252 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2253 2254 /// Allocates schedule data chunk. 2255 ScheduleData *allocateScheduleDataChunks(); 2256 2257 /// Extends the scheduling region so that V is inside the region. 2258 /// \returns true if the region size is within the limit. 2259 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2260 2261 /// Initialize the ScheduleData structures for new instructions in the 2262 /// scheduling region. 2263 void initScheduleData(Instruction *FromI, Instruction *ToI, 2264 ScheduleData *PrevLoadStore, 2265 ScheduleData *NextLoadStore); 2266 2267 /// Updates the dependency information of a bundle and of all instructions/ 2268 /// bundles which depend on the original bundle. 2269 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2270 BoUpSLP *SLP); 2271 2272 /// Sets all instruction in the scheduling region to un-scheduled. 2273 void resetSchedule(); 2274 2275 BasicBlock *BB; 2276 2277 /// Simple memory allocation for ScheduleData. 2278 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2279 2280 /// The size of a ScheduleData array in ScheduleDataChunks. 2281 int ChunkSize; 2282 2283 /// The allocator position in the current chunk, which is the last entry 2284 /// of ScheduleDataChunks. 2285 int ChunkPos; 2286 2287 /// Attaches ScheduleData to Instruction. 2288 /// Note that the mapping survives during all vectorization iterations, i.e. 2289 /// ScheduleData structures are recycled. 2290 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2291 2292 /// Attaches ScheduleData to Instruction with the leading key. 2293 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2294 ExtraScheduleDataMap; 2295 2296 struct ReadyList : SmallVector<ScheduleData *, 8> { 2297 void insert(ScheduleData *SD) { push_back(SD); } 2298 }; 2299 2300 /// The ready-list for scheduling (only used for the dry-run). 2301 ReadyList ReadyInsts; 2302 2303 /// The first instruction of the scheduling region. 2304 Instruction *ScheduleStart = nullptr; 2305 2306 /// The first instruction _after_ the scheduling region. 2307 Instruction *ScheduleEnd = nullptr; 2308 2309 /// The first memory accessing instruction in the scheduling region 2310 /// (can be null). 2311 ScheduleData *FirstLoadStoreInRegion = nullptr; 2312 2313 /// The last memory accessing instruction in the scheduling region 2314 /// (can be null). 2315 ScheduleData *LastLoadStoreInRegion = nullptr; 2316 2317 /// The current size of the scheduling region. 2318 int ScheduleRegionSize = 0; 2319 2320 /// The maximum size allowed for the scheduling region. 2321 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2322 2323 /// The ID of the scheduling region. For a new vectorization iteration this 2324 /// is incremented which "removes" all ScheduleData from the region. 2325 // Make sure that the initial SchedulingRegionID is greater than the 2326 // initial SchedulingRegionID in ScheduleData (which is 0). 2327 int SchedulingRegionID = 1; 2328 }; 2329 2330 /// Attaches the BlockScheduling structures to basic blocks. 2331 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2332 2333 /// Performs the "real" scheduling. Done before vectorization is actually 2334 /// performed in a basic block. 2335 void scheduleBlock(BlockScheduling *BS); 2336 2337 /// List of users to ignore during scheduling and that don't need extracting. 2338 ArrayRef<Value *> UserIgnoreList; 2339 2340 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2341 /// sorted SmallVectors of unsigned. 2342 struct OrdersTypeDenseMapInfo { 2343 static OrdersType getEmptyKey() { 2344 OrdersType V; 2345 V.push_back(~1U); 2346 return V; 2347 } 2348 2349 static OrdersType getTombstoneKey() { 2350 OrdersType V; 2351 V.push_back(~2U); 2352 return V; 2353 } 2354 2355 static unsigned getHashValue(const OrdersType &V) { 2356 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2357 } 2358 2359 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2360 return LHS == RHS; 2361 } 2362 }; 2363 2364 /// Contains orders of operations along with the number of bundles that have 2365 /// operations in this order. It stores only those orders that require 2366 /// reordering, if reordering is not required it is counted using \a 2367 /// NumOpsWantToKeepOriginalOrder. 2368 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2369 /// Number of bundles that do not require reordering. 2370 unsigned NumOpsWantToKeepOriginalOrder = 0; 2371 2372 // Analysis and block reference. 2373 Function *F; 2374 ScalarEvolution *SE; 2375 TargetTransformInfo *TTI; 2376 TargetLibraryInfo *TLI; 2377 AAResults *AA; 2378 LoopInfo *LI; 2379 DominatorTree *DT; 2380 AssumptionCache *AC; 2381 DemandedBits *DB; 2382 const DataLayout *DL; 2383 OptimizationRemarkEmitter *ORE; 2384 2385 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2386 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2387 2388 /// Instruction builder to construct the vectorized tree. 2389 IRBuilder<> Builder; 2390 2391 /// A map of scalar integer values to the smallest bit width with which they 2392 /// can legally be represented. The values map to (width, signed) pairs, 2393 /// where "width" indicates the minimum bit width and "signed" is True if the 2394 /// value must be signed-extended, rather than zero-extended, back to its 2395 /// original width. 2396 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2397 }; 2398 2399 } // end namespace slpvectorizer 2400 2401 template <> struct GraphTraits<BoUpSLP *> { 2402 using TreeEntry = BoUpSLP::TreeEntry; 2403 2404 /// NodeRef has to be a pointer per the GraphWriter. 2405 using NodeRef = TreeEntry *; 2406 2407 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2408 2409 /// Add the VectorizableTree to the index iterator to be able to return 2410 /// TreeEntry pointers. 2411 struct ChildIteratorType 2412 : public iterator_adaptor_base< 2413 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2414 ContainerTy &VectorizableTree; 2415 2416 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2417 ContainerTy &VT) 2418 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2419 2420 NodeRef operator*() { return I->UserTE; } 2421 }; 2422 2423 static NodeRef getEntryNode(BoUpSLP &R) { 2424 return R.VectorizableTree[0].get(); 2425 } 2426 2427 static ChildIteratorType child_begin(NodeRef N) { 2428 return {N->UserTreeIndices.begin(), N->Container}; 2429 } 2430 2431 static ChildIteratorType child_end(NodeRef N) { 2432 return {N->UserTreeIndices.end(), N->Container}; 2433 } 2434 2435 /// For the node iterator we just need to turn the TreeEntry iterator into a 2436 /// TreeEntry* iterator so that it dereferences to NodeRef. 2437 class nodes_iterator { 2438 using ItTy = ContainerTy::iterator; 2439 ItTy It; 2440 2441 public: 2442 nodes_iterator(const ItTy &It2) : It(It2) {} 2443 NodeRef operator*() { return It->get(); } 2444 nodes_iterator operator++() { 2445 ++It; 2446 return *this; 2447 } 2448 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2449 }; 2450 2451 static nodes_iterator nodes_begin(BoUpSLP *R) { 2452 return nodes_iterator(R->VectorizableTree.begin()); 2453 } 2454 2455 static nodes_iterator nodes_end(BoUpSLP *R) { 2456 return nodes_iterator(R->VectorizableTree.end()); 2457 } 2458 2459 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2460 }; 2461 2462 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2463 using TreeEntry = BoUpSLP::TreeEntry; 2464 2465 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2466 2467 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2468 std::string Str; 2469 raw_string_ostream OS(Str); 2470 if (isSplat(Entry->Scalars)) { 2471 OS << "<splat> " << *Entry->Scalars[0]; 2472 return Str; 2473 } 2474 for (auto V : Entry->Scalars) { 2475 OS << *V; 2476 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2477 return EU.Scalar == V; 2478 })) 2479 OS << " <extract>"; 2480 OS << "\n"; 2481 } 2482 return Str; 2483 } 2484 2485 static std::string getNodeAttributes(const TreeEntry *Entry, 2486 const BoUpSLP *) { 2487 if (Entry->State == TreeEntry::NeedToGather) 2488 return "color=red"; 2489 return ""; 2490 } 2491 }; 2492 2493 } // end namespace llvm 2494 2495 BoUpSLP::~BoUpSLP() { 2496 for (const auto &Pair : DeletedInstructions) { 2497 // Replace operands of ignored instructions with Undefs in case if they were 2498 // marked for deletion. 2499 if (Pair.getSecond()) { 2500 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2501 Pair.getFirst()->replaceAllUsesWith(Undef); 2502 } 2503 Pair.getFirst()->dropAllReferences(); 2504 } 2505 for (const auto &Pair : DeletedInstructions) { 2506 assert(Pair.getFirst()->use_empty() && 2507 "trying to erase instruction with users."); 2508 Pair.getFirst()->eraseFromParent(); 2509 } 2510 #ifdef EXPENSIVE_CHECKS 2511 // If we could guarantee that this call is not extremely slow, we could 2512 // remove the ifdef limitation (see PR47712). 2513 assert(!verifyFunction(*F, &dbgs())); 2514 #endif 2515 } 2516 2517 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2518 for (auto *V : AV) { 2519 if (auto *I = dyn_cast<Instruction>(V)) 2520 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2521 }; 2522 } 2523 2524 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2525 ArrayRef<Value *> UserIgnoreLst) { 2526 ExtraValueToDebugLocsMap ExternallyUsedValues; 2527 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2528 } 2529 2530 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2531 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2532 ArrayRef<Value *> UserIgnoreLst) { 2533 deleteTree(); 2534 UserIgnoreList = UserIgnoreLst; 2535 if (!allSameType(Roots)) 2536 return; 2537 buildTree_rec(Roots, 0, EdgeInfo()); 2538 2539 // Collect the values that we need to extract from the tree. 2540 for (auto &TEPtr : VectorizableTree) { 2541 TreeEntry *Entry = TEPtr.get(); 2542 2543 // No need to handle users of gathered values. 2544 if (Entry->State == TreeEntry::NeedToGather) 2545 continue; 2546 2547 // For each lane: 2548 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2549 Value *Scalar = Entry->Scalars[Lane]; 2550 int FoundLane = Lane; 2551 if (!Entry->ReuseShuffleIndices.empty()) { 2552 FoundLane = 2553 std::distance(Entry->ReuseShuffleIndices.begin(), 2554 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2555 } 2556 2557 // Check if the scalar is externally used as an extra arg. 2558 auto ExtI = ExternallyUsedValues.find(Scalar); 2559 if (ExtI != ExternallyUsedValues.end()) { 2560 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2561 << Lane << " from " << *Scalar << ".\n"); 2562 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2563 } 2564 for (User *U : Scalar->users()) { 2565 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2566 2567 Instruction *UserInst = dyn_cast<Instruction>(U); 2568 if (!UserInst) 2569 continue; 2570 2571 // Skip in-tree scalars that become vectors 2572 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2573 Value *UseScalar = UseEntry->Scalars[0]; 2574 // Some in-tree scalars will remain as scalar in vectorized 2575 // instructions. If that is the case, the one in Lane 0 will 2576 // be used. 2577 if (UseScalar != U || 2578 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2579 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2580 << ".\n"); 2581 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2582 continue; 2583 } 2584 } 2585 2586 // Ignore users in the user ignore list. 2587 if (is_contained(UserIgnoreList, UserInst)) 2588 continue; 2589 2590 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2591 << Lane << " from " << *Scalar << ".\n"); 2592 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2593 } 2594 } 2595 } 2596 } 2597 2598 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2599 const EdgeInfo &UserTreeIdx) { 2600 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2601 2602 InstructionsState S = getSameOpcode(VL); 2603 if (Depth == RecursionMaxDepth) { 2604 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2605 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2606 return; 2607 } 2608 2609 // Don't handle vectors. 2610 if (S.OpValue->getType()->isVectorTy()) { 2611 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2612 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2613 return; 2614 } 2615 2616 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2617 if (SI->getValueOperand()->getType()->isVectorTy()) { 2618 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2619 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2620 return; 2621 } 2622 2623 // If all of the operands are identical or constant we have a simple solution. 2624 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2625 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2627 return; 2628 } 2629 2630 // We now know that this is a vector of instructions of the same type from 2631 // the same block. 2632 2633 // Don't vectorize ephemeral values. 2634 for (Value *V : VL) { 2635 if (EphValues.count(V)) { 2636 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2637 << ") is ephemeral.\n"); 2638 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2639 return; 2640 } 2641 } 2642 2643 // Check if this is a duplicate of another entry. 2644 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2645 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2646 if (!E->isSame(VL)) { 2647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2649 return; 2650 } 2651 // Record the reuse of the tree node. FIXME, currently this is only used to 2652 // properly draw the graph rather than for the actual vectorization. 2653 E->UserTreeIndices.push_back(UserTreeIdx); 2654 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2655 << ".\n"); 2656 return; 2657 } 2658 2659 // Check that none of the instructions in the bundle are already in the tree. 2660 for (Value *V : VL) { 2661 auto *I = dyn_cast<Instruction>(V); 2662 if (!I) 2663 continue; 2664 if (getTreeEntry(I)) { 2665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2666 << ") is already in tree.\n"); 2667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2668 return; 2669 } 2670 } 2671 2672 // If any of the scalars is marked as a value that needs to stay scalar, then 2673 // we need to gather the scalars. 2674 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2675 for (Value *V : VL) { 2676 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2677 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2678 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2679 return; 2680 } 2681 } 2682 2683 // Check that all of the users of the scalars that we want to vectorize are 2684 // schedulable. 2685 auto *VL0 = cast<Instruction>(S.OpValue); 2686 BasicBlock *BB = VL0->getParent(); 2687 2688 if (!DT->isReachableFromEntry(BB)) { 2689 // Don't go into unreachable blocks. They may contain instructions with 2690 // dependency cycles which confuse the final scheduling. 2691 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2693 return; 2694 } 2695 2696 // Check that every instruction appears once in this bundle. 2697 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2698 SmallVector<Value *, 4> UniqueValues; 2699 DenseMap<Value *, unsigned> UniquePositions; 2700 for (Value *V : VL) { 2701 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2702 ReuseShuffleIndicies.emplace_back(Res.first->second); 2703 if (Res.second) 2704 UniqueValues.emplace_back(V); 2705 } 2706 size_t NumUniqueScalarValues = UniqueValues.size(); 2707 if (NumUniqueScalarValues == VL.size()) { 2708 ReuseShuffleIndicies.clear(); 2709 } else { 2710 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2711 if (NumUniqueScalarValues <= 1 || 2712 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2713 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2714 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2715 return; 2716 } 2717 VL = UniqueValues; 2718 } 2719 2720 auto &BSRef = BlocksSchedules[BB]; 2721 if (!BSRef) 2722 BSRef = std::make_unique<BlockScheduling>(BB); 2723 2724 BlockScheduling &BS = *BSRef.get(); 2725 2726 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2727 if (!Bundle) { 2728 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2729 assert((!BS.getScheduleData(VL0) || 2730 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2731 "tryScheduleBundle should cancelScheduling on failure"); 2732 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2733 ReuseShuffleIndicies); 2734 return; 2735 } 2736 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2737 2738 unsigned ShuffleOrOp = S.isAltShuffle() ? 2739 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2740 switch (ShuffleOrOp) { 2741 case Instruction::PHI: { 2742 auto *PH = cast<PHINode>(VL0); 2743 2744 // Check for terminator values (e.g. invoke). 2745 for (Value *V : VL) 2746 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2747 Instruction *Term = dyn_cast<Instruction>( 2748 cast<PHINode>(V)->getIncomingValueForBlock( 2749 PH->getIncomingBlock(I))); 2750 if (Term && Term->isTerminator()) { 2751 LLVM_DEBUG(dbgs() 2752 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2753 BS.cancelScheduling(VL, VL0); 2754 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2755 ReuseShuffleIndicies); 2756 return; 2757 } 2758 } 2759 2760 TreeEntry *TE = 2761 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2762 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2763 2764 // Keeps the reordered operands to avoid code duplication. 2765 SmallVector<ValueList, 2> OperandsVec; 2766 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2767 ValueList Operands; 2768 // Prepare the operand vector. 2769 for (Value *V : VL) 2770 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2771 PH->getIncomingBlock(I))); 2772 TE->setOperand(I, Operands); 2773 OperandsVec.push_back(Operands); 2774 } 2775 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2776 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2777 return; 2778 } 2779 case Instruction::ExtractValue: 2780 case Instruction::ExtractElement: { 2781 OrdersType CurrentOrder; 2782 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2783 if (Reuse) { 2784 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2785 ++NumOpsWantToKeepOriginalOrder; 2786 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2787 ReuseShuffleIndicies); 2788 // This is a special case, as it does not gather, but at the same time 2789 // we are not extending buildTree_rec() towards the operands. 2790 ValueList Op0; 2791 Op0.assign(VL.size(), VL0->getOperand(0)); 2792 VectorizableTree.back()->setOperand(0, Op0); 2793 return; 2794 } 2795 if (!CurrentOrder.empty()) { 2796 LLVM_DEBUG({ 2797 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2798 "with order"; 2799 for (unsigned Idx : CurrentOrder) 2800 dbgs() << " " << Idx; 2801 dbgs() << "\n"; 2802 }); 2803 // Insert new order with initial value 0, if it does not exist, 2804 // otherwise return the iterator to the existing one. 2805 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2806 ReuseShuffleIndicies, CurrentOrder); 2807 findRootOrder(CurrentOrder); 2808 ++NumOpsWantToKeepOrder[CurrentOrder]; 2809 // This is a special case, as it does not gather, but at the same time 2810 // we are not extending buildTree_rec() towards the operands. 2811 ValueList Op0; 2812 Op0.assign(VL.size(), VL0->getOperand(0)); 2813 VectorizableTree.back()->setOperand(0, Op0); 2814 return; 2815 } 2816 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2817 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2818 ReuseShuffleIndicies); 2819 BS.cancelScheduling(VL, VL0); 2820 return; 2821 } 2822 case Instruction::Load: { 2823 // Check that a vectorized load would load the same memory as a scalar 2824 // load. For example, we don't want to vectorize loads that are smaller 2825 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2826 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2827 // from such a struct, we read/write packed bits disagreeing with the 2828 // unvectorized version. 2829 Type *ScalarTy = VL0->getType(); 2830 2831 if (DL->getTypeSizeInBits(ScalarTy) != 2832 DL->getTypeAllocSizeInBits(ScalarTy)) { 2833 BS.cancelScheduling(VL, VL0); 2834 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2835 ReuseShuffleIndicies); 2836 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2837 return; 2838 } 2839 2840 // Make sure all loads in the bundle are simple - we can't vectorize 2841 // atomic or volatile loads. 2842 SmallVector<Value *, 4> PointerOps(VL.size()); 2843 auto POIter = PointerOps.begin(); 2844 for (Value *V : VL) { 2845 auto *L = cast<LoadInst>(V); 2846 if (!L->isSimple()) { 2847 BS.cancelScheduling(VL, VL0); 2848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2849 ReuseShuffleIndicies); 2850 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2851 return; 2852 } 2853 *POIter = L->getPointerOperand(); 2854 ++POIter; 2855 } 2856 2857 OrdersType CurrentOrder; 2858 // Check the order of pointer operands. 2859 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2860 Value *Ptr0; 2861 Value *PtrN; 2862 if (CurrentOrder.empty()) { 2863 Ptr0 = PointerOps.front(); 2864 PtrN = PointerOps.back(); 2865 } else { 2866 Ptr0 = PointerOps[CurrentOrder.front()]; 2867 PtrN = PointerOps[CurrentOrder.back()]; 2868 } 2869 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2870 const SCEV *ScevN = SE->getSCEV(PtrN); 2871 const auto *Diff = 2872 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2873 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2874 // Check that the sorted loads are consecutive. 2875 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2876 if (CurrentOrder.empty()) { 2877 // Original loads are consecutive and does not require reordering. 2878 ++NumOpsWantToKeepOriginalOrder; 2879 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2880 UserTreeIdx, ReuseShuffleIndicies); 2881 TE->setOperandsInOrder(); 2882 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2883 } else { 2884 // Need to reorder. 2885 TreeEntry *TE = 2886 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2887 ReuseShuffleIndicies, CurrentOrder); 2888 TE->setOperandsInOrder(); 2889 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2890 findRootOrder(CurrentOrder); 2891 ++NumOpsWantToKeepOrder[CurrentOrder]; 2892 } 2893 return; 2894 } 2895 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2896 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2897 UserTreeIdx, ReuseShuffleIndicies); 2898 TE->setOperandsInOrder(); 2899 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2900 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2901 return; 2902 } 2903 2904 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2905 BS.cancelScheduling(VL, VL0); 2906 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2907 ReuseShuffleIndicies); 2908 return; 2909 } 2910 case Instruction::ZExt: 2911 case Instruction::SExt: 2912 case Instruction::FPToUI: 2913 case Instruction::FPToSI: 2914 case Instruction::FPExt: 2915 case Instruction::PtrToInt: 2916 case Instruction::IntToPtr: 2917 case Instruction::SIToFP: 2918 case Instruction::UIToFP: 2919 case Instruction::Trunc: 2920 case Instruction::FPTrunc: 2921 case Instruction::BitCast: { 2922 Type *SrcTy = VL0->getOperand(0)->getType(); 2923 for (Value *V : VL) { 2924 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2925 if (Ty != SrcTy || !isValidElementType(Ty)) { 2926 BS.cancelScheduling(VL, VL0); 2927 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2928 ReuseShuffleIndicies); 2929 LLVM_DEBUG(dbgs() 2930 << "SLP: Gathering casts with different src types.\n"); 2931 return; 2932 } 2933 } 2934 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2935 ReuseShuffleIndicies); 2936 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2937 2938 TE->setOperandsInOrder(); 2939 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2940 ValueList Operands; 2941 // Prepare the operand vector. 2942 for (Value *V : VL) 2943 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2944 2945 buildTree_rec(Operands, Depth + 1, {TE, i}); 2946 } 2947 return; 2948 } 2949 case Instruction::ICmp: 2950 case Instruction::FCmp: { 2951 // Check that all of the compares have the same predicate. 2952 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2953 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2954 Type *ComparedTy = VL0->getOperand(0)->getType(); 2955 for (Value *V : VL) { 2956 CmpInst *Cmp = cast<CmpInst>(V); 2957 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2958 Cmp->getOperand(0)->getType() != ComparedTy) { 2959 BS.cancelScheduling(VL, VL0); 2960 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2961 ReuseShuffleIndicies); 2962 LLVM_DEBUG(dbgs() 2963 << "SLP: Gathering cmp with different predicate.\n"); 2964 return; 2965 } 2966 } 2967 2968 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2969 ReuseShuffleIndicies); 2970 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2971 2972 ValueList Left, Right; 2973 if (cast<CmpInst>(VL0)->isCommutative()) { 2974 // Commutative predicate - collect + sort operands of the instructions 2975 // so that each side is more likely to have the same opcode. 2976 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2977 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2978 } else { 2979 // Collect operands - commute if it uses the swapped predicate. 2980 for (Value *V : VL) { 2981 auto *Cmp = cast<CmpInst>(V); 2982 Value *LHS = Cmp->getOperand(0); 2983 Value *RHS = Cmp->getOperand(1); 2984 if (Cmp->getPredicate() != P0) 2985 std::swap(LHS, RHS); 2986 Left.push_back(LHS); 2987 Right.push_back(RHS); 2988 } 2989 } 2990 TE->setOperand(0, Left); 2991 TE->setOperand(1, Right); 2992 buildTree_rec(Left, Depth + 1, {TE, 0}); 2993 buildTree_rec(Right, Depth + 1, {TE, 1}); 2994 return; 2995 } 2996 case Instruction::Select: 2997 case Instruction::FNeg: 2998 case Instruction::Add: 2999 case Instruction::FAdd: 3000 case Instruction::Sub: 3001 case Instruction::FSub: 3002 case Instruction::Mul: 3003 case Instruction::FMul: 3004 case Instruction::UDiv: 3005 case Instruction::SDiv: 3006 case Instruction::FDiv: 3007 case Instruction::URem: 3008 case Instruction::SRem: 3009 case Instruction::FRem: 3010 case Instruction::Shl: 3011 case Instruction::LShr: 3012 case Instruction::AShr: 3013 case Instruction::And: 3014 case Instruction::Or: 3015 case Instruction::Xor: { 3016 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3017 ReuseShuffleIndicies); 3018 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3019 3020 // Sort operands of the instructions so that each side is more likely to 3021 // have the same opcode. 3022 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3023 ValueList Left, Right; 3024 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3025 TE->setOperand(0, Left); 3026 TE->setOperand(1, Right); 3027 buildTree_rec(Left, Depth + 1, {TE, 0}); 3028 buildTree_rec(Right, Depth + 1, {TE, 1}); 3029 return; 3030 } 3031 3032 TE->setOperandsInOrder(); 3033 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3034 ValueList Operands; 3035 // Prepare the operand vector. 3036 for (Value *V : VL) 3037 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3038 3039 buildTree_rec(Operands, Depth + 1, {TE, i}); 3040 } 3041 return; 3042 } 3043 case Instruction::GetElementPtr: { 3044 // We don't combine GEPs with complicated (nested) indexing. 3045 for (Value *V : VL) { 3046 if (cast<Instruction>(V)->getNumOperands() != 2) { 3047 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3048 BS.cancelScheduling(VL, VL0); 3049 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3050 ReuseShuffleIndicies); 3051 return; 3052 } 3053 } 3054 3055 // We can't combine several GEPs into one vector if they operate on 3056 // different types. 3057 Type *Ty0 = VL0->getOperand(0)->getType(); 3058 for (Value *V : VL) { 3059 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3060 if (Ty0 != CurTy) { 3061 LLVM_DEBUG(dbgs() 3062 << "SLP: not-vectorizable GEP (different types).\n"); 3063 BS.cancelScheduling(VL, VL0); 3064 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3065 ReuseShuffleIndicies); 3066 return; 3067 } 3068 } 3069 3070 // We don't combine GEPs with non-constant indexes. 3071 Type *Ty1 = VL0->getOperand(1)->getType(); 3072 for (Value *V : VL) { 3073 auto Op = cast<Instruction>(V)->getOperand(1); 3074 if (!isa<ConstantInt>(Op) || 3075 (Op->getType() != Ty1 && 3076 Op->getType()->getScalarSizeInBits() > 3077 DL->getIndexSizeInBits( 3078 V->getType()->getPointerAddressSpace()))) { 3079 LLVM_DEBUG(dbgs() 3080 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3081 BS.cancelScheduling(VL, VL0); 3082 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3083 ReuseShuffleIndicies); 3084 return; 3085 } 3086 } 3087 3088 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3089 ReuseShuffleIndicies); 3090 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3091 TE->setOperandsInOrder(); 3092 for (unsigned i = 0, e = 2; i < e; ++i) { 3093 ValueList Operands; 3094 // Prepare the operand vector. 3095 for (Value *V : VL) 3096 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3097 3098 buildTree_rec(Operands, Depth + 1, {TE, i}); 3099 } 3100 return; 3101 } 3102 case Instruction::Store: { 3103 // Check if the stores are consecutive or if we need to swizzle them. 3104 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3105 // Avoid types that are padded when being allocated as scalars, while 3106 // being packed together in a vector (such as i1). 3107 if (DL->getTypeSizeInBits(ScalarTy) != 3108 DL->getTypeAllocSizeInBits(ScalarTy)) { 3109 BS.cancelScheduling(VL, VL0); 3110 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3111 ReuseShuffleIndicies); 3112 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3113 return; 3114 } 3115 // Make sure all stores in the bundle are simple - we can't vectorize 3116 // atomic or volatile stores. 3117 SmallVector<Value *, 4> PointerOps(VL.size()); 3118 ValueList Operands(VL.size()); 3119 auto POIter = PointerOps.begin(); 3120 auto OIter = Operands.begin(); 3121 for (Value *V : VL) { 3122 auto *SI = cast<StoreInst>(V); 3123 if (!SI->isSimple()) { 3124 BS.cancelScheduling(VL, VL0); 3125 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3126 ReuseShuffleIndicies); 3127 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3128 return; 3129 } 3130 *POIter = SI->getPointerOperand(); 3131 *OIter = SI->getValueOperand(); 3132 ++POIter; 3133 ++OIter; 3134 } 3135 3136 OrdersType CurrentOrder; 3137 // Check the order of pointer operands. 3138 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3139 Value *Ptr0; 3140 Value *PtrN; 3141 if (CurrentOrder.empty()) { 3142 Ptr0 = PointerOps.front(); 3143 PtrN = PointerOps.back(); 3144 } else { 3145 Ptr0 = PointerOps[CurrentOrder.front()]; 3146 PtrN = PointerOps[CurrentOrder.back()]; 3147 } 3148 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3149 const SCEV *ScevN = SE->getSCEV(PtrN); 3150 const auto *Diff = 3151 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3152 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3153 // Check that the sorted pointer operands are consecutive. 3154 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3155 if (CurrentOrder.empty()) { 3156 // Original stores are consecutive and does not require reordering. 3157 ++NumOpsWantToKeepOriginalOrder; 3158 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3159 UserTreeIdx, ReuseShuffleIndicies); 3160 TE->setOperandsInOrder(); 3161 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3162 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3163 } else { 3164 TreeEntry *TE = 3165 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3166 ReuseShuffleIndicies, CurrentOrder); 3167 TE->setOperandsInOrder(); 3168 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3169 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3170 findRootOrder(CurrentOrder); 3171 ++NumOpsWantToKeepOrder[CurrentOrder]; 3172 } 3173 return; 3174 } 3175 } 3176 3177 BS.cancelScheduling(VL, VL0); 3178 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3179 ReuseShuffleIndicies); 3180 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3181 return; 3182 } 3183 case Instruction::Call: { 3184 // Check if the calls are all to the same vectorizable intrinsic or 3185 // library function. 3186 CallInst *CI = cast<CallInst>(VL0); 3187 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3188 3189 VFShape Shape = VFShape::get( 3190 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3191 false /*HasGlobalPred*/); 3192 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3193 3194 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3195 BS.cancelScheduling(VL, VL0); 3196 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3197 ReuseShuffleIndicies); 3198 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3199 return; 3200 } 3201 Function *F = CI->getCalledFunction(); 3202 unsigned NumArgs = CI->getNumArgOperands(); 3203 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3204 for (unsigned j = 0; j != NumArgs; ++j) 3205 if (hasVectorInstrinsicScalarOpd(ID, j)) 3206 ScalarArgs[j] = CI->getArgOperand(j); 3207 for (Value *V : VL) { 3208 CallInst *CI2 = dyn_cast<CallInst>(V); 3209 if (!CI2 || CI2->getCalledFunction() != F || 3210 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3211 (VecFunc && 3212 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3213 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3214 BS.cancelScheduling(VL, VL0); 3215 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3216 ReuseShuffleIndicies); 3217 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3218 << "\n"); 3219 return; 3220 } 3221 // Some intrinsics have scalar arguments and should be same in order for 3222 // them to be vectorized. 3223 for (unsigned j = 0; j != NumArgs; ++j) { 3224 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3225 Value *A1J = CI2->getArgOperand(j); 3226 if (ScalarArgs[j] != A1J) { 3227 BS.cancelScheduling(VL, VL0); 3228 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3229 ReuseShuffleIndicies); 3230 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3231 << " argument " << ScalarArgs[j] << "!=" << A1J 3232 << "\n"); 3233 return; 3234 } 3235 } 3236 } 3237 // Verify that the bundle operands are identical between the two calls. 3238 if (CI->hasOperandBundles() && 3239 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3240 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3241 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3242 BS.cancelScheduling(VL, VL0); 3243 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3244 ReuseShuffleIndicies); 3245 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3246 << *CI << "!=" << *V << '\n'); 3247 return; 3248 } 3249 } 3250 3251 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3252 ReuseShuffleIndicies); 3253 TE->setOperandsInOrder(); 3254 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3255 ValueList Operands; 3256 // Prepare the operand vector. 3257 for (Value *V : VL) { 3258 auto *CI2 = cast<CallInst>(V); 3259 Operands.push_back(CI2->getArgOperand(i)); 3260 } 3261 buildTree_rec(Operands, Depth + 1, {TE, i}); 3262 } 3263 return; 3264 } 3265 case Instruction::ShuffleVector: { 3266 // If this is not an alternate sequence of opcode like add-sub 3267 // then do not vectorize this instruction. 3268 if (!S.isAltShuffle()) { 3269 BS.cancelScheduling(VL, VL0); 3270 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3271 ReuseShuffleIndicies); 3272 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3273 return; 3274 } 3275 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3276 ReuseShuffleIndicies); 3277 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3278 3279 // Reorder operands if reordering would enable vectorization. 3280 if (isa<BinaryOperator>(VL0)) { 3281 ValueList Left, Right; 3282 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3283 TE->setOperand(0, Left); 3284 TE->setOperand(1, Right); 3285 buildTree_rec(Left, Depth + 1, {TE, 0}); 3286 buildTree_rec(Right, Depth + 1, {TE, 1}); 3287 return; 3288 } 3289 3290 TE->setOperandsInOrder(); 3291 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3292 ValueList Operands; 3293 // Prepare the operand vector. 3294 for (Value *V : VL) 3295 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3296 3297 buildTree_rec(Operands, Depth + 1, {TE, i}); 3298 } 3299 return; 3300 } 3301 default: 3302 BS.cancelScheduling(VL, VL0); 3303 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3304 ReuseShuffleIndicies); 3305 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3306 return; 3307 } 3308 } 3309 3310 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3311 unsigned N = 1; 3312 Type *EltTy = T; 3313 3314 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3315 isa<VectorType>(EltTy)) { 3316 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3317 // Check that struct is homogeneous. 3318 for (const auto *Ty : ST->elements()) 3319 if (Ty != *ST->element_begin()) 3320 return 0; 3321 N *= ST->getNumElements(); 3322 EltTy = *ST->element_begin(); 3323 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3324 N *= AT->getNumElements(); 3325 EltTy = AT->getElementType(); 3326 } else { 3327 auto *VT = cast<FixedVectorType>(EltTy); 3328 N *= VT->getNumElements(); 3329 EltTy = VT->getElementType(); 3330 } 3331 } 3332 3333 if (!isValidElementType(EltTy)) 3334 return 0; 3335 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3336 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3337 return 0; 3338 return N; 3339 } 3340 3341 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3342 SmallVectorImpl<unsigned> &CurrentOrder) const { 3343 Instruction *E0 = cast<Instruction>(OpValue); 3344 assert(E0->getOpcode() == Instruction::ExtractElement || 3345 E0->getOpcode() == Instruction::ExtractValue); 3346 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3347 // Check if all of the extracts come from the same vector and from the 3348 // correct offset. 3349 Value *Vec = E0->getOperand(0); 3350 3351 CurrentOrder.clear(); 3352 3353 // We have to extract from a vector/aggregate with the same number of elements. 3354 unsigned NElts; 3355 if (E0->getOpcode() == Instruction::ExtractValue) { 3356 const DataLayout &DL = E0->getModule()->getDataLayout(); 3357 NElts = canMapToVector(Vec->getType(), DL); 3358 if (!NElts) 3359 return false; 3360 // Check if load can be rewritten as load of vector. 3361 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3362 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3363 return false; 3364 } else { 3365 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3366 } 3367 3368 if (NElts != VL.size()) 3369 return false; 3370 3371 // Check that all of the indices extract from the correct offset. 3372 bool ShouldKeepOrder = true; 3373 unsigned E = VL.size(); 3374 // Assign to all items the initial value E + 1 so we can check if the extract 3375 // instruction index was used already. 3376 // Also, later we can check that all the indices are used and we have a 3377 // consecutive access in the extract instructions, by checking that no 3378 // element of CurrentOrder still has value E + 1. 3379 CurrentOrder.assign(E, E + 1); 3380 unsigned I = 0; 3381 for (; I < E; ++I) { 3382 auto *Inst = cast<Instruction>(VL[I]); 3383 if (Inst->getOperand(0) != Vec) 3384 break; 3385 Optional<unsigned> Idx = getExtractIndex(Inst); 3386 if (!Idx) 3387 break; 3388 const unsigned ExtIdx = *Idx; 3389 if (ExtIdx != I) { 3390 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3391 break; 3392 ShouldKeepOrder = false; 3393 CurrentOrder[ExtIdx] = I; 3394 } else { 3395 if (CurrentOrder[I] != E + 1) 3396 break; 3397 CurrentOrder[I] = I; 3398 } 3399 } 3400 if (I < E) { 3401 CurrentOrder.clear(); 3402 return false; 3403 } 3404 3405 return ShouldKeepOrder; 3406 } 3407 3408 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3409 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3410 return ScalarToTreeEntry.count(U) > 0; 3411 }); 3412 } 3413 3414 static std::pair<InstructionCost, InstructionCost> 3415 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3416 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3417 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3418 3419 // Calculate the cost of the scalar and vector calls. 3420 SmallVector<Type *, 4> VecTys; 3421 for (Use &Arg : CI->args()) 3422 VecTys.push_back( 3423 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3424 FastMathFlags FMF; 3425 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3426 FMF = FPCI->getFastMathFlags(); 3427 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3428 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3429 dyn_cast<IntrinsicInst>(CI)); 3430 auto IntrinsicCost = 3431 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3432 3433 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3434 VecTy->getNumElements())), 3435 false /*HasGlobalPred*/); 3436 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3437 auto LibCost = IntrinsicCost; 3438 if (!CI->isNoBuiltin() && VecFunc) { 3439 // Calculate the cost of the vector library call. 3440 // If the corresponding vector call is cheaper, return its cost. 3441 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3442 TTI::TCK_RecipThroughput); 3443 } 3444 return {IntrinsicCost, LibCost}; 3445 } 3446 3447 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3448 ArrayRef<Value*> VL = E->Scalars; 3449 3450 Type *ScalarTy = VL[0]->getType(); 3451 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3452 ScalarTy = SI->getValueOperand()->getType(); 3453 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3454 ScalarTy = CI->getOperand(0)->getType(); 3455 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3456 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3457 3458 // If we have computed a smaller type for the expression, update VecTy so 3459 // that the costs will be accurate. 3460 if (MinBWs.count(VL[0])) 3461 VecTy = FixedVectorType::get( 3462 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3463 3464 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3465 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3466 InstructionCost ReuseShuffleCost = 0; 3467 if (NeedToShuffleReuses) { 3468 ReuseShuffleCost = 3469 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3470 } 3471 if (E->State == TreeEntry::NeedToGather) { 3472 if (allConstant(VL)) 3473 return 0; 3474 if (isSplat(VL)) { 3475 return ReuseShuffleCost + 3476 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3477 } 3478 if (E->getOpcode() == Instruction::ExtractElement && 3479 allSameType(VL) && allSameBlock(VL)) { 3480 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3481 if (ShuffleKind.hasValue()) { 3482 InstructionCost Cost = 3483 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3484 for (auto *V : VL) { 3485 // If all users of instruction are going to be vectorized and this 3486 // instruction itself is not going to be vectorized, consider this 3487 // instruction as dead and remove its cost from the final cost of the 3488 // vectorized tree. 3489 if (areAllUsersVectorized(cast<Instruction>(V)) && 3490 !ScalarToTreeEntry.count(V)) { 3491 auto *IO = cast<ConstantInt>( 3492 cast<ExtractElementInst>(V)->getIndexOperand()); 3493 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3494 IO->getZExtValue()); 3495 } 3496 } 3497 return ReuseShuffleCost + Cost; 3498 } 3499 } 3500 return ReuseShuffleCost + getGatherCost(VL); 3501 } 3502 assert((E->State == TreeEntry::Vectorize || 3503 E->State == TreeEntry::ScatterVectorize) && 3504 "Unhandled state"); 3505 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3506 Instruction *VL0 = E->getMainOp(); 3507 unsigned ShuffleOrOp = 3508 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3509 switch (ShuffleOrOp) { 3510 case Instruction::PHI: 3511 return 0; 3512 3513 case Instruction::ExtractValue: 3514 case Instruction::ExtractElement: { 3515 if (NeedToShuffleReuses) { 3516 unsigned Idx = 0; 3517 for (unsigned I : E->ReuseShuffleIndices) { 3518 if (ShuffleOrOp == Instruction::ExtractElement) { 3519 auto *IO = cast<ConstantInt>( 3520 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3521 Idx = IO->getZExtValue(); 3522 ReuseShuffleCost -= TTI->getVectorInstrCost( 3523 Instruction::ExtractElement, VecTy, Idx); 3524 } else { 3525 ReuseShuffleCost -= TTI->getVectorInstrCost( 3526 Instruction::ExtractElement, VecTy, Idx); 3527 ++Idx; 3528 } 3529 } 3530 Idx = ReuseShuffleNumbers; 3531 for (Value *V : VL) { 3532 if (ShuffleOrOp == Instruction::ExtractElement) { 3533 auto *IO = cast<ConstantInt>( 3534 cast<ExtractElementInst>(V)->getIndexOperand()); 3535 Idx = IO->getZExtValue(); 3536 } else { 3537 --Idx; 3538 } 3539 ReuseShuffleCost += 3540 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3541 } 3542 } 3543 InstructionCost DeadCost = ReuseShuffleCost; 3544 if (!E->ReorderIndices.empty()) { 3545 // TODO: Merge this shuffle with the ReuseShuffleCost. 3546 DeadCost += TTI->getShuffleCost( 3547 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3548 } 3549 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3550 Instruction *EI = cast<Instruction>(VL[I]); 3551 // If all users are going to be vectorized, instruction can be 3552 // considered as dead. 3553 // The same, if have only one user, it will be vectorized for sure. 3554 if (areAllUsersVectorized(EI)) { 3555 // Take credit for instruction that will become dead. 3556 if (EI->hasOneUse()) { 3557 Instruction *Ext = EI->user_back(); 3558 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3559 all_of(Ext->users(), 3560 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3561 // Use getExtractWithExtendCost() to calculate the cost of 3562 // extractelement/ext pair. 3563 DeadCost -= TTI->getExtractWithExtendCost( 3564 Ext->getOpcode(), Ext->getType(), VecTy, I); 3565 // Add back the cost of s|zext which is subtracted separately. 3566 DeadCost += TTI->getCastInstrCost( 3567 Ext->getOpcode(), Ext->getType(), EI->getType(), 3568 TTI::getCastContextHint(Ext), CostKind, Ext); 3569 continue; 3570 } 3571 } 3572 DeadCost -= 3573 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3574 } 3575 } 3576 return DeadCost; 3577 } 3578 case Instruction::ZExt: 3579 case Instruction::SExt: 3580 case Instruction::FPToUI: 3581 case Instruction::FPToSI: 3582 case Instruction::FPExt: 3583 case Instruction::PtrToInt: 3584 case Instruction::IntToPtr: 3585 case Instruction::SIToFP: 3586 case Instruction::UIToFP: 3587 case Instruction::Trunc: 3588 case Instruction::FPTrunc: 3589 case Instruction::BitCast: { 3590 Type *SrcTy = VL0->getOperand(0)->getType(); 3591 InstructionCost ScalarEltCost = 3592 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3593 TTI::getCastContextHint(VL0), CostKind, VL0); 3594 if (NeedToShuffleReuses) { 3595 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3596 } 3597 3598 // Calculate the cost of this instruction. 3599 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3600 3601 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3602 InstructionCost VecCost = 0; 3603 // Check if the values are candidates to demote. 3604 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3605 VecCost = 3606 ReuseShuffleCost + 3607 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3608 TTI::getCastContextHint(VL0), CostKind, VL0); 3609 } 3610 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3611 return VecCost - ScalarCost; 3612 } 3613 case Instruction::FCmp: 3614 case Instruction::ICmp: 3615 case Instruction::Select: { 3616 // Calculate the cost of this instruction. 3617 InstructionCost ScalarEltCost = 3618 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3619 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3620 if (NeedToShuffleReuses) { 3621 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3622 } 3623 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3624 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3625 3626 // Check if all entries in VL are either compares or selects with compares 3627 // as condition that have the same predicates. 3628 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3629 bool First = true; 3630 for (auto *V : VL) { 3631 CmpInst::Predicate CurrentPred; 3632 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3633 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3634 !match(V, MatchCmp)) || 3635 (!First && VecPred != CurrentPred)) { 3636 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3637 break; 3638 } 3639 First = false; 3640 VecPred = CurrentPred; 3641 } 3642 3643 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3644 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3645 // Check if it is possible and profitable to use min/max for selects in 3646 // VL. 3647 // 3648 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3649 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3650 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3651 {VecTy, VecTy}); 3652 InstructionCost IntrinsicCost = 3653 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3654 // If the selects are the only uses of the compares, they will be dead 3655 // and we can adjust the cost by removing their cost. 3656 if (IntrinsicAndUse.second) 3657 IntrinsicCost -= 3658 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3659 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3660 VecCost = std::min(VecCost, IntrinsicCost); 3661 } 3662 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3663 return ReuseShuffleCost + VecCost - ScalarCost; 3664 } 3665 case Instruction::FNeg: 3666 case Instruction::Add: 3667 case Instruction::FAdd: 3668 case Instruction::Sub: 3669 case Instruction::FSub: 3670 case Instruction::Mul: 3671 case Instruction::FMul: 3672 case Instruction::UDiv: 3673 case Instruction::SDiv: 3674 case Instruction::FDiv: 3675 case Instruction::URem: 3676 case Instruction::SRem: 3677 case Instruction::FRem: 3678 case Instruction::Shl: 3679 case Instruction::LShr: 3680 case Instruction::AShr: 3681 case Instruction::And: 3682 case Instruction::Or: 3683 case Instruction::Xor: { 3684 // Certain instructions can be cheaper to vectorize if they have a 3685 // constant second vector operand. 3686 TargetTransformInfo::OperandValueKind Op1VK = 3687 TargetTransformInfo::OK_AnyValue; 3688 TargetTransformInfo::OperandValueKind Op2VK = 3689 TargetTransformInfo::OK_UniformConstantValue; 3690 TargetTransformInfo::OperandValueProperties Op1VP = 3691 TargetTransformInfo::OP_None; 3692 TargetTransformInfo::OperandValueProperties Op2VP = 3693 TargetTransformInfo::OP_PowerOf2; 3694 3695 // If all operands are exactly the same ConstantInt then set the 3696 // operand kind to OK_UniformConstantValue. 3697 // If instead not all operands are constants, then set the operand kind 3698 // to OK_AnyValue. If all operands are constants but not the same, 3699 // then set the operand kind to OK_NonUniformConstantValue. 3700 ConstantInt *CInt0 = nullptr; 3701 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3702 const Instruction *I = cast<Instruction>(VL[i]); 3703 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3704 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3705 if (!CInt) { 3706 Op2VK = TargetTransformInfo::OK_AnyValue; 3707 Op2VP = TargetTransformInfo::OP_None; 3708 break; 3709 } 3710 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3711 !CInt->getValue().isPowerOf2()) 3712 Op2VP = TargetTransformInfo::OP_None; 3713 if (i == 0) { 3714 CInt0 = CInt; 3715 continue; 3716 } 3717 if (CInt0 != CInt) 3718 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3719 } 3720 3721 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3722 InstructionCost ScalarEltCost = 3723 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3724 Op2VK, Op1VP, Op2VP, Operands, VL0); 3725 if (NeedToShuffleReuses) { 3726 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3727 } 3728 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3729 InstructionCost VecCost = 3730 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3731 Op2VK, Op1VP, Op2VP, Operands, VL0); 3732 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3733 return ReuseShuffleCost + VecCost - ScalarCost; 3734 } 3735 case Instruction::GetElementPtr: { 3736 TargetTransformInfo::OperandValueKind Op1VK = 3737 TargetTransformInfo::OK_AnyValue; 3738 TargetTransformInfo::OperandValueKind Op2VK = 3739 TargetTransformInfo::OK_UniformConstantValue; 3740 3741 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3742 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3743 if (NeedToShuffleReuses) { 3744 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3745 } 3746 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3747 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3748 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3749 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3750 return ReuseShuffleCost + VecCost - ScalarCost; 3751 } 3752 case Instruction::Load: { 3753 // Cost of wide load - cost of scalar loads. 3754 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3755 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3756 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3757 if (NeedToShuffleReuses) { 3758 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3759 } 3760 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3761 InstructionCost VecLdCost; 3762 if (E->State == TreeEntry::Vectorize) { 3763 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3764 CostKind, VL0); 3765 } else { 3766 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3767 VecLdCost = TTI->getGatherScatterOpCost( 3768 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3769 /*VariableMask=*/false, alignment, CostKind, VL0); 3770 } 3771 if (!E->ReorderIndices.empty()) { 3772 // TODO: Merge this shuffle with the ReuseShuffleCost. 3773 VecLdCost += TTI->getShuffleCost( 3774 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3775 } 3776 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3777 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3778 } 3779 case Instruction::Store: { 3780 // We know that we can merge the stores. Calculate the cost. 3781 bool IsReorder = !E->ReorderIndices.empty(); 3782 auto *SI = 3783 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3784 Align Alignment = SI->getAlign(); 3785 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3786 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3787 if (NeedToShuffleReuses) 3788 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3789 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3790 InstructionCost VecStCost = TTI->getMemoryOpCost( 3791 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3792 if (IsReorder) { 3793 // TODO: Merge this shuffle with the ReuseShuffleCost. 3794 VecStCost += TTI->getShuffleCost( 3795 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3796 } 3797 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3798 return ReuseShuffleCost + VecStCost - ScalarStCost; 3799 } 3800 case Instruction::Call: { 3801 CallInst *CI = cast<CallInst>(VL0); 3802 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3803 3804 // Calculate the cost of the scalar and vector calls. 3805 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3806 InstructionCost ScalarEltCost = 3807 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3808 if (NeedToShuffleReuses) { 3809 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3810 } 3811 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3812 3813 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3814 InstructionCost VecCallCost = 3815 std::min(VecCallCosts.first, VecCallCosts.second); 3816 3817 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3818 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3819 << " for " << *CI << "\n"); 3820 3821 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3822 } 3823 case Instruction::ShuffleVector: { 3824 assert(E->isAltShuffle() && 3825 ((Instruction::isBinaryOp(E->getOpcode()) && 3826 Instruction::isBinaryOp(E->getAltOpcode())) || 3827 (Instruction::isCast(E->getOpcode()) && 3828 Instruction::isCast(E->getAltOpcode()))) && 3829 "Invalid Shuffle Vector Operand"); 3830 InstructionCost ScalarCost = 0; 3831 if (NeedToShuffleReuses) { 3832 for (unsigned Idx : E->ReuseShuffleIndices) { 3833 Instruction *I = cast<Instruction>(VL[Idx]); 3834 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3835 } 3836 for (Value *V : VL) { 3837 Instruction *I = cast<Instruction>(V); 3838 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3839 } 3840 } 3841 for (Value *V : VL) { 3842 Instruction *I = cast<Instruction>(V); 3843 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3844 ScalarCost += TTI->getInstructionCost(I, CostKind); 3845 } 3846 // VecCost is equal to sum of the cost of creating 2 vectors 3847 // and the cost of creating shuffle. 3848 InstructionCost VecCost = 0; 3849 if (Instruction::isBinaryOp(E->getOpcode())) { 3850 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3851 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3852 CostKind); 3853 } else { 3854 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3855 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3856 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3857 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3858 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3859 TTI::CastContextHint::None, CostKind); 3860 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3861 TTI::CastContextHint::None, CostKind); 3862 } 3863 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3864 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3865 return ReuseShuffleCost + VecCost - ScalarCost; 3866 } 3867 default: 3868 llvm_unreachable("Unknown instruction"); 3869 } 3870 } 3871 3872 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3873 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3874 << VectorizableTree.size() << " is fully vectorizable .\n"); 3875 3876 // We only handle trees of heights 1 and 2. 3877 if (VectorizableTree.size() == 1 && 3878 VectorizableTree[0]->State == TreeEntry::Vectorize) 3879 return true; 3880 3881 if (VectorizableTree.size() != 2) 3882 return false; 3883 3884 // Handle splat and all-constants stores. 3885 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3886 (allConstant(VectorizableTree[1]->Scalars) || 3887 isSplat(VectorizableTree[1]->Scalars))) 3888 return true; 3889 3890 // Gathering cost would be too much for tiny trees. 3891 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3892 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3893 return false; 3894 3895 return true; 3896 } 3897 3898 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3899 TargetTransformInfo *TTI) { 3900 // Look past the root to find a source value. Arbitrarily follow the 3901 // path through operand 0 of any 'or'. Also, peek through optional 3902 // shift-left-by-multiple-of-8-bits. 3903 Value *ZextLoad = Root; 3904 const APInt *ShAmtC; 3905 while (!isa<ConstantExpr>(ZextLoad) && 3906 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3907 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3908 ShAmtC->urem(8) == 0))) 3909 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3910 3911 // Check if the input is an extended load of the required or/shift expression. 3912 Value *LoadPtr; 3913 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3914 return false; 3915 3916 // Require that the total load bit width is a legal integer type. 3917 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3918 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3919 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3920 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3921 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3922 return false; 3923 3924 // Everything matched - assume that we can fold the whole sequence using 3925 // load combining. 3926 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3927 << *(cast<Instruction>(Root)) << "\n"); 3928 3929 return true; 3930 } 3931 3932 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3933 if (RdxKind != RecurKind::Or) 3934 return false; 3935 3936 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3937 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3938 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3939 } 3940 3941 bool BoUpSLP::isLoadCombineCandidate() const { 3942 // Peek through a final sequence of stores and check if all operations are 3943 // likely to be load-combined. 3944 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3945 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3946 Value *X; 3947 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3948 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3949 return false; 3950 } 3951 return true; 3952 } 3953 3954 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3955 // We can vectorize the tree if its size is greater than or equal to the 3956 // minimum size specified by the MinTreeSize command line option. 3957 if (VectorizableTree.size() >= MinTreeSize) 3958 return false; 3959 3960 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3961 // can vectorize it if we can prove it fully vectorizable. 3962 if (isFullyVectorizableTinyTree()) 3963 return false; 3964 3965 assert(VectorizableTree.empty() 3966 ? ExternalUses.empty() 3967 : true && "We shouldn't have any external users"); 3968 3969 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3970 // vectorizable. 3971 return true; 3972 } 3973 3974 InstructionCost BoUpSLP::getSpillCost() const { 3975 // Walk from the bottom of the tree to the top, tracking which values are 3976 // live. When we see a call instruction that is not part of our tree, 3977 // query TTI to see if there is a cost to keeping values live over it 3978 // (for example, if spills and fills are required). 3979 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3980 InstructionCost Cost = 0; 3981 3982 SmallPtrSet<Instruction*, 4> LiveValues; 3983 Instruction *PrevInst = nullptr; 3984 3985 // The entries in VectorizableTree are not necessarily ordered by their 3986 // position in basic blocks. Collect them and order them by dominance so later 3987 // instructions are guaranteed to be visited first. For instructions in 3988 // different basic blocks, we only scan to the beginning of the block, so 3989 // their order does not matter, as long as all instructions in a basic block 3990 // are grouped together. Using dominance ensures a deterministic order. 3991 SmallVector<Instruction *, 16> OrderedScalars; 3992 for (const auto &TEPtr : VectorizableTree) { 3993 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3994 if (!Inst) 3995 continue; 3996 OrderedScalars.push_back(Inst); 3997 } 3998 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3999 return DT->dominates(B, A); 4000 }); 4001 4002 for (Instruction *Inst : OrderedScalars) { 4003 if (!PrevInst) { 4004 PrevInst = Inst; 4005 continue; 4006 } 4007 4008 // Update LiveValues. 4009 LiveValues.erase(PrevInst); 4010 for (auto &J : PrevInst->operands()) { 4011 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4012 LiveValues.insert(cast<Instruction>(&*J)); 4013 } 4014 4015 LLVM_DEBUG({ 4016 dbgs() << "SLP: #LV: " << LiveValues.size(); 4017 for (auto *X : LiveValues) 4018 dbgs() << " " << X->getName(); 4019 dbgs() << ", Looking at "; 4020 Inst->dump(); 4021 }); 4022 4023 // Now find the sequence of instructions between PrevInst and Inst. 4024 unsigned NumCalls = 0; 4025 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4026 PrevInstIt = 4027 PrevInst->getIterator().getReverse(); 4028 while (InstIt != PrevInstIt) { 4029 if (PrevInstIt == PrevInst->getParent()->rend()) { 4030 PrevInstIt = Inst->getParent()->rbegin(); 4031 continue; 4032 } 4033 4034 // Debug information does not impact spill cost. 4035 if ((isa<CallInst>(&*PrevInstIt) && 4036 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4037 &*PrevInstIt != PrevInst) 4038 NumCalls++; 4039 4040 ++PrevInstIt; 4041 } 4042 4043 if (NumCalls) { 4044 SmallVector<Type*, 4> V; 4045 for (auto *II : LiveValues) 4046 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4047 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4048 } 4049 4050 PrevInst = Inst; 4051 } 4052 4053 return Cost; 4054 } 4055 4056 InstructionCost BoUpSLP::getTreeCost() { 4057 InstructionCost Cost = 0; 4058 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4059 << VectorizableTree.size() << ".\n"); 4060 4061 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4062 4063 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4064 TreeEntry &TE = *VectorizableTree[I].get(); 4065 4066 // We create duplicate tree entries for gather sequences that have multiple 4067 // uses. However, we should not compute the cost of duplicate sequences. 4068 // For example, if we have a build vector (i.e., insertelement sequence) 4069 // that is used by more than one vector instruction, we only need to 4070 // compute the cost of the insertelement instructions once. The redundant 4071 // instructions will be eliminated by CSE. 4072 // 4073 // We should consider not creating duplicate tree entries for gather 4074 // sequences, and instead add additional edges to the tree representing 4075 // their uses. Since such an approach results in fewer total entries, 4076 // existing heuristics based on tree size may yield different results. 4077 // 4078 if (TE.State == TreeEntry::NeedToGather && 4079 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4080 VectorizableTree.end(), 4081 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4082 return EntryPtr->State == TreeEntry::NeedToGather && 4083 EntryPtr->isSame(TE.Scalars); 4084 })) 4085 continue; 4086 4087 InstructionCost C = getEntryCost(&TE); 4088 Cost += C; 4089 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4090 << " for bundle that starts with " << *TE.Scalars[0] 4091 << ".\n" 4092 << "SLP: Current total cost = " << Cost << "\n"); 4093 } 4094 4095 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4096 InstructionCost ExtractCost = 0; 4097 for (ExternalUser &EU : ExternalUses) { 4098 // We only add extract cost once for the same scalar. 4099 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4100 continue; 4101 4102 // Uses by ephemeral values are free (because the ephemeral value will be 4103 // removed prior to code generation, and so the extraction will be 4104 // removed as well). 4105 if (EphValues.count(EU.User)) 4106 continue; 4107 4108 // If we plan to rewrite the tree in a smaller type, we will need to sign 4109 // extend the extracted value back to the original type. Here, we account 4110 // for the extract and the added cost of the sign extend if needed. 4111 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4112 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4113 if (MinBWs.count(ScalarRoot)) { 4114 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4115 auto Extend = 4116 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4117 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4118 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4119 VecTy, EU.Lane); 4120 } else { 4121 ExtractCost += 4122 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4123 } 4124 } 4125 4126 InstructionCost SpillCost = getSpillCost(); 4127 Cost += SpillCost + ExtractCost; 4128 4129 #ifndef NDEBUG 4130 SmallString<256> Str; 4131 { 4132 raw_svector_ostream OS(Str); 4133 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4134 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4135 << "SLP: Total Cost = " << Cost << ".\n"; 4136 } 4137 LLVM_DEBUG(dbgs() << Str); 4138 if (ViewSLPTree) 4139 ViewGraph(this, "SLP" + F->getName(), false, Str); 4140 #endif 4141 4142 return Cost; 4143 } 4144 4145 InstructionCost 4146 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4147 const DenseSet<unsigned> &ShuffledIndices) const { 4148 unsigned NumElts = Ty->getNumElements(); 4149 APInt DemandedElts = APInt::getNullValue(NumElts); 4150 for (unsigned I = 0; I < NumElts; ++I) 4151 if (!ShuffledIndices.count(I)) 4152 DemandedElts.setBit(I); 4153 InstructionCost Cost = 4154 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4155 /*Extract*/ false); 4156 if (!ShuffledIndices.empty()) 4157 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4158 return Cost; 4159 } 4160 4161 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4162 // Find the type of the operands in VL. 4163 Type *ScalarTy = VL[0]->getType(); 4164 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4165 ScalarTy = SI->getValueOperand()->getType(); 4166 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4167 // Find the cost of inserting/extracting values from the vector. 4168 // Check if the same elements are inserted several times and count them as 4169 // shuffle candidates. 4170 DenseSet<unsigned> ShuffledElements; 4171 DenseSet<Value *> UniqueElements; 4172 // Iterate in reverse order to consider insert elements with the high cost. 4173 for (unsigned I = VL.size(); I > 0; --I) { 4174 unsigned Idx = I - 1; 4175 if (!UniqueElements.insert(VL[Idx]).second) 4176 ShuffledElements.insert(Idx); 4177 } 4178 return getGatherCost(VecTy, ShuffledElements); 4179 } 4180 4181 // Perform operand reordering on the instructions in VL and return the reordered 4182 // operands in Left and Right. 4183 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4184 SmallVectorImpl<Value *> &Left, 4185 SmallVectorImpl<Value *> &Right, 4186 const DataLayout &DL, 4187 ScalarEvolution &SE, 4188 const BoUpSLP &R) { 4189 if (VL.empty()) 4190 return; 4191 VLOperands Ops(VL, DL, SE, R); 4192 // Reorder the operands in place. 4193 Ops.reorder(); 4194 Left = Ops.getVL(0); 4195 Right = Ops.getVL(1); 4196 } 4197 4198 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4199 // Get the basic block this bundle is in. All instructions in the bundle 4200 // should be in this block. 4201 auto *Front = E->getMainOp(); 4202 auto *BB = Front->getParent(); 4203 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4204 auto *I = cast<Instruction>(V); 4205 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4206 })); 4207 4208 // The last instruction in the bundle in program order. 4209 Instruction *LastInst = nullptr; 4210 4211 // Find the last instruction. The common case should be that BB has been 4212 // scheduled, and the last instruction is VL.back(). So we start with 4213 // VL.back() and iterate over schedule data until we reach the end of the 4214 // bundle. The end of the bundle is marked by null ScheduleData. 4215 if (BlocksSchedules.count(BB)) { 4216 auto *Bundle = 4217 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4218 if (Bundle && Bundle->isPartOfBundle()) 4219 for (; Bundle; Bundle = Bundle->NextInBundle) 4220 if (Bundle->OpValue == Bundle->Inst) 4221 LastInst = Bundle->Inst; 4222 } 4223 4224 // LastInst can still be null at this point if there's either not an entry 4225 // for BB in BlocksSchedules or there's no ScheduleData available for 4226 // VL.back(). This can be the case if buildTree_rec aborts for various 4227 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4228 // size is reached, etc.). ScheduleData is initialized in the scheduling 4229 // "dry-run". 4230 // 4231 // If this happens, we can still find the last instruction by brute force. We 4232 // iterate forwards from Front (inclusive) until we either see all 4233 // instructions in the bundle or reach the end of the block. If Front is the 4234 // last instruction in program order, LastInst will be set to Front, and we 4235 // will visit all the remaining instructions in the block. 4236 // 4237 // One of the reasons we exit early from buildTree_rec is to place an upper 4238 // bound on compile-time. Thus, taking an additional compile-time hit here is 4239 // not ideal. However, this should be exceedingly rare since it requires that 4240 // we both exit early from buildTree_rec and that the bundle be out-of-order 4241 // (causing us to iterate all the way to the end of the block). 4242 if (!LastInst) { 4243 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4244 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4245 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4246 LastInst = &I; 4247 if (Bundle.empty()) 4248 break; 4249 } 4250 } 4251 assert(LastInst && "Failed to find last instruction in bundle"); 4252 4253 // Set the insertion point after the last instruction in the bundle. Set the 4254 // debug location to Front. 4255 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4256 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4257 } 4258 4259 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4260 Value *Val0 = 4261 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4262 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4263 Value *Vec = PoisonValue::get(VecTy); 4264 unsigned InsIndex = 0; 4265 for (Value *Val : VL) { 4266 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4267 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4268 if (!InsElt) 4269 continue; 4270 GatherSeq.insert(InsElt); 4271 CSEBlocks.insert(InsElt->getParent()); 4272 // Add to our 'need-to-extract' list. 4273 if (TreeEntry *Entry = getTreeEntry(Val)) { 4274 // Find which lane we need to extract. 4275 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4276 find(Entry->Scalars, Val)); 4277 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4278 if (!Entry->ReuseShuffleIndices.empty()) { 4279 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4280 find(Entry->ReuseShuffleIndices, FoundLane)); 4281 } 4282 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4283 } 4284 } 4285 4286 return Vec; 4287 } 4288 4289 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4290 InstructionsState S = getSameOpcode(VL); 4291 if (S.getOpcode()) { 4292 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4293 if (E->isSame(VL)) { 4294 Value *V = vectorizeTree(E); 4295 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4296 // We need to get the vectorized value but without shuffle. 4297 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4298 V = SV->getOperand(0); 4299 } else { 4300 // Reshuffle to get only unique values. 4301 SmallVector<int, 4> UniqueIdxs; 4302 SmallSet<int, 4> UsedIdxs; 4303 for (int Idx : E->ReuseShuffleIndices) 4304 if (UsedIdxs.insert(Idx).second) 4305 UniqueIdxs.emplace_back(Idx); 4306 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4307 } 4308 } 4309 return V; 4310 } 4311 } 4312 } 4313 4314 // Check that every instruction appears once in this bundle. 4315 SmallVector<int, 4> ReuseShuffleIndicies; 4316 SmallVector<Value *, 4> UniqueValues; 4317 if (VL.size() > 2) { 4318 DenseMap<Value *, unsigned> UniquePositions; 4319 for (Value *V : VL) { 4320 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4321 ReuseShuffleIndicies.emplace_back(Res.first->second); 4322 if (Res.second || isa<Constant>(V)) 4323 UniqueValues.emplace_back(V); 4324 } 4325 // Do not shuffle single element or if number of unique values is not power 4326 // of 2. 4327 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4328 !llvm::isPowerOf2_32(UniqueValues.size())) 4329 ReuseShuffleIndicies.clear(); 4330 else 4331 VL = UniqueValues; 4332 } 4333 4334 Value *Vec = gather(VL); 4335 if (!ReuseShuffleIndicies.empty()) { 4336 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4337 if (auto *I = dyn_cast<Instruction>(Vec)) { 4338 GatherSeq.insert(I); 4339 CSEBlocks.insert(I->getParent()); 4340 } 4341 } 4342 return Vec; 4343 } 4344 4345 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4346 IRBuilder<>::InsertPointGuard Guard(Builder); 4347 4348 if (E->VectorizedValue) { 4349 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4350 return E->VectorizedValue; 4351 } 4352 4353 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4354 if (E->State == TreeEntry::NeedToGather) { 4355 setInsertPointAfterBundle(E); 4356 Value *Vec = gather(E->Scalars); 4357 if (NeedToShuffleReuses) { 4358 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4359 if (auto *I = dyn_cast<Instruction>(Vec)) { 4360 GatherSeq.insert(I); 4361 CSEBlocks.insert(I->getParent()); 4362 } 4363 } 4364 E->VectorizedValue = Vec; 4365 return Vec; 4366 } 4367 4368 assert((E->State == TreeEntry::Vectorize || 4369 E->State == TreeEntry::ScatterVectorize) && 4370 "Unhandled state"); 4371 unsigned ShuffleOrOp = 4372 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4373 Instruction *VL0 = E->getMainOp(); 4374 Type *ScalarTy = VL0->getType(); 4375 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4376 ScalarTy = Store->getValueOperand()->getType(); 4377 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4378 switch (ShuffleOrOp) { 4379 case Instruction::PHI: { 4380 auto *PH = cast<PHINode>(VL0); 4381 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4382 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4383 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4384 Value *V = NewPhi; 4385 if (NeedToShuffleReuses) 4386 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4387 4388 E->VectorizedValue = V; 4389 4390 // PHINodes may have multiple entries from the same block. We want to 4391 // visit every block once. 4392 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4393 4394 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4395 ValueList Operands; 4396 BasicBlock *IBB = PH->getIncomingBlock(i); 4397 4398 if (!VisitedBBs.insert(IBB).second) { 4399 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4400 continue; 4401 } 4402 4403 Builder.SetInsertPoint(IBB->getTerminator()); 4404 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4405 Value *Vec = vectorizeTree(E->getOperand(i)); 4406 NewPhi->addIncoming(Vec, IBB); 4407 } 4408 4409 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4410 "Invalid number of incoming values"); 4411 return V; 4412 } 4413 4414 case Instruction::ExtractElement: { 4415 Value *V = E->getSingleOperand(0); 4416 if (!E->ReorderIndices.empty()) { 4417 SmallVector<int, 4> Mask; 4418 inversePermutation(E->ReorderIndices, Mask); 4419 Builder.SetInsertPoint(VL0); 4420 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4421 } 4422 if (NeedToShuffleReuses) { 4423 // TODO: Merge this shuffle with the ReorderShuffleMask. 4424 if (E->ReorderIndices.empty()) 4425 Builder.SetInsertPoint(VL0); 4426 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4427 } 4428 E->VectorizedValue = V; 4429 return V; 4430 } 4431 case Instruction::ExtractValue: { 4432 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4433 Builder.SetInsertPoint(LI); 4434 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4435 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4436 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4437 Value *NewV = propagateMetadata(V, E->Scalars); 4438 if (!E->ReorderIndices.empty()) { 4439 SmallVector<int, 4> Mask; 4440 inversePermutation(E->ReorderIndices, Mask); 4441 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4442 } 4443 if (NeedToShuffleReuses) { 4444 // TODO: Merge this shuffle with the ReorderShuffleMask. 4445 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4446 "shuffle"); 4447 } 4448 E->VectorizedValue = NewV; 4449 return NewV; 4450 } 4451 case Instruction::ZExt: 4452 case Instruction::SExt: 4453 case Instruction::FPToUI: 4454 case Instruction::FPToSI: 4455 case Instruction::FPExt: 4456 case Instruction::PtrToInt: 4457 case Instruction::IntToPtr: 4458 case Instruction::SIToFP: 4459 case Instruction::UIToFP: 4460 case Instruction::Trunc: 4461 case Instruction::FPTrunc: 4462 case Instruction::BitCast: { 4463 setInsertPointAfterBundle(E); 4464 4465 Value *InVec = vectorizeTree(E->getOperand(0)); 4466 4467 if (E->VectorizedValue) { 4468 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4469 return E->VectorizedValue; 4470 } 4471 4472 auto *CI = cast<CastInst>(VL0); 4473 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4474 if (NeedToShuffleReuses) 4475 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4476 4477 E->VectorizedValue = V; 4478 ++NumVectorInstructions; 4479 return V; 4480 } 4481 case Instruction::FCmp: 4482 case Instruction::ICmp: { 4483 setInsertPointAfterBundle(E); 4484 4485 Value *L = vectorizeTree(E->getOperand(0)); 4486 Value *R = vectorizeTree(E->getOperand(1)); 4487 4488 if (E->VectorizedValue) { 4489 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4490 return E->VectorizedValue; 4491 } 4492 4493 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4494 Value *V = Builder.CreateCmp(P0, L, R); 4495 propagateIRFlags(V, E->Scalars, VL0); 4496 if (NeedToShuffleReuses) 4497 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4498 4499 E->VectorizedValue = V; 4500 ++NumVectorInstructions; 4501 return V; 4502 } 4503 case Instruction::Select: { 4504 setInsertPointAfterBundle(E); 4505 4506 Value *Cond = vectorizeTree(E->getOperand(0)); 4507 Value *True = vectorizeTree(E->getOperand(1)); 4508 Value *False = vectorizeTree(E->getOperand(2)); 4509 4510 if (E->VectorizedValue) { 4511 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4512 return E->VectorizedValue; 4513 } 4514 4515 Value *V = Builder.CreateSelect(Cond, True, False); 4516 if (NeedToShuffleReuses) 4517 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4518 4519 E->VectorizedValue = V; 4520 ++NumVectorInstructions; 4521 return V; 4522 } 4523 case Instruction::FNeg: { 4524 setInsertPointAfterBundle(E); 4525 4526 Value *Op = vectorizeTree(E->getOperand(0)); 4527 4528 if (E->VectorizedValue) { 4529 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4530 return E->VectorizedValue; 4531 } 4532 4533 Value *V = Builder.CreateUnOp( 4534 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4535 propagateIRFlags(V, E->Scalars, VL0); 4536 if (auto *I = dyn_cast<Instruction>(V)) 4537 V = propagateMetadata(I, E->Scalars); 4538 4539 if (NeedToShuffleReuses) 4540 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4541 4542 E->VectorizedValue = V; 4543 ++NumVectorInstructions; 4544 4545 return V; 4546 } 4547 case Instruction::Add: 4548 case Instruction::FAdd: 4549 case Instruction::Sub: 4550 case Instruction::FSub: 4551 case Instruction::Mul: 4552 case Instruction::FMul: 4553 case Instruction::UDiv: 4554 case Instruction::SDiv: 4555 case Instruction::FDiv: 4556 case Instruction::URem: 4557 case Instruction::SRem: 4558 case Instruction::FRem: 4559 case Instruction::Shl: 4560 case Instruction::LShr: 4561 case Instruction::AShr: 4562 case Instruction::And: 4563 case Instruction::Or: 4564 case Instruction::Xor: { 4565 setInsertPointAfterBundle(E); 4566 4567 Value *LHS = vectorizeTree(E->getOperand(0)); 4568 Value *RHS = vectorizeTree(E->getOperand(1)); 4569 4570 if (E->VectorizedValue) { 4571 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4572 return E->VectorizedValue; 4573 } 4574 4575 Value *V = Builder.CreateBinOp( 4576 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4577 RHS); 4578 propagateIRFlags(V, E->Scalars, VL0); 4579 if (auto *I = dyn_cast<Instruction>(V)) 4580 V = propagateMetadata(I, E->Scalars); 4581 4582 if (NeedToShuffleReuses) 4583 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4584 4585 E->VectorizedValue = V; 4586 ++NumVectorInstructions; 4587 4588 return V; 4589 } 4590 case Instruction::Load: { 4591 // Loads are inserted at the head of the tree because we don't want to 4592 // sink them all the way down past store instructions. 4593 bool IsReorder = E->updateStateIfReorder(); 4594 if (IsReorder) 4595 VL0 = E->getMainOp(); 4596 setInsertPointAfterBundle(E); 4597 4598 LoadInst *LI = cast<LoadInst>(VL0); 4599 Instruction *NewLI; 4600 unsigned AS = LI->getPointerAddressSpace(); 4601 Value *PO = LI->getPointerOperand(); 4602 if (E->State == TreeEntry::Vectorize) { 4603 4604 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4605 4606 // The pointer operand uses an in-tree scalar so we add the new BitCast 4607 // to ExternalUses list to make sure that an extract will be generated 4608 // in the future. 4609 if (getTreeEntry(PO)) 4610 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4611 4612 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4613 } else { 4614 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4615 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4616 // Use the minimum alignment of the gathered loads. 4617 Align CommonAlignment = LI->getAlign(); 4618 for (Value *V : E->Scalars) 4619 CommonAlignment = 4620 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4621 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4622 } 4623 Value *V = propagateMetadata(NewLI, E->Scalars); 4624 4625 if (IsReorder) { 4626 SmallVector<int, 4> Mask; 4627 inversePermutation(E->ReorderIndices, Mask); 4628 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4629 } 4630 if (NeedToShuffleReuses) { 4631 // TODO: Merge this shuffle with the ReorderShuffleMask. 4632 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4633 } 4634 E->VectorizedValue = V; 4635 ++NumVectorInstructions; 4636 return V; 4637 } 4638 case Instruction::Store: { 4639 bool IsReorder = !E->ReorderIndices.empty(); 4640 auto *SI = cast<StoreInst>( 4641 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4642 unsigned AS = SI->getPointerAddressSpace(); 4643 4644 setInsertPointAfterBundle(E); 4645 4646 Value *VecValue = vectorizeTree(E->getOperand(0)); 4647 if (IsReorder) { 4648 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4649 E->ReorderIndices.end()); 4650 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4651 } 4652 Value *ScalarPtr = SI->getPointerOperand(); 4653 Value *VecPtr = Builder.CreateBitCast( 4654 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4655 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4656 SI->getAlign()); 4657 4658 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4659 // ExternalUses to make sure that an extract will be generated in the 4660 // future. 4661 if (getTreeEntry(ScalarPtr)) 4662 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4663 4664 Value *V = propagateMetadata(ST, E->Scalars); 4665 if (NeedToShuffleReuses) 4666 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4667 4668 E->VectorizedValue = V; 4669 ++NumVectorInstructions; 4670 return V; 4671 } 4672 case Instruction::GetElementPtr: { 4673 setInsertPointAfterBundle(E); 4674 4675 Value *Op0 = vectorizeTree(E->getOperand(0)); 4676 4677 std::vector<Value *> OpVecs; 4678 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4679 ++j) { 4680 ValueList &VL = E->getOperand(j); 4681 // Need to cast all elements to the same type before vectorization to 4682 // avoid crash. 4683 Type *VL0Ty = VL0->getOperand(j)->getType(); 4684 Type *Ty = llvm::all_of( 4685 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4686 ? VL0Ty 4687 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4688 ->getPointerOperandType() 4689 ->getScalarType()); 4690 for (Value *&V : VL) { 4691 auto *CI = cast<ConstantInt>(V); 4692 V = ConstantExpr::getIntegerCast(CI, Ty, 4693 CI->getValue().isSignBitSet()); 4694 } 4695 Value *OpVec = vectorizeTree(VL); 4696 OpVecs.push_back(OpVec); 4697 } 4698 4699 Value *V = Builder.CreateGEP( 4700 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4701 if (Instruction *I = dyn_cast<Instruction>(V)) 4702 V = propagateMetadata(I, E->Scalars); 4703 4704 if (NeedToShuffleReuses) 4705 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4706 4707 E->VectorizedValue = V; 4708 ++NumVectorInstructions; 4709 4710 return V; 4711 } 4712 case Instruction::Call: { 4713 CallInst *CI = cast<CallInst>(VL0); 4714 setInsertPointAfterBundle(E); 4715 4716 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4717 if (Function *FI = CI->getCalledFunction()) 4718 IID = FI->getIntrinsicID(); 4719 4720 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4721 4722 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4723 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4724 VecCallCosts.first <= VecCallCosts.second; 4725 4726 Value *ScalarArg = nullptr; 4727 std::vector<Value *> OpVecs; 4728 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4729 ValueList OpVL; 4730 // Some intrinsics have scalar arguments. This argument should not be 4731 // vectorized. 4732 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4733 CallInst *CEI = cast<CallInst>(VL0); 4734 ScalarArg = CEI->getArgOperand(j); 4735 OpVecs.push_back(CEI->getArgOperand(j)); 4736 continue; 4737 } 4738 4739 Value *OpVec = vectorizeTree(E->getOperand(j)); 4740 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4741 OpVecs.push_back(OpVec); 4742 } 4743 4744 Function *CF; 4745 if (!UseIntrinsic) { 4746 VFShape Shape = 4747 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4748 VecTy->getNumElements())), 4749 false /*HasGlobalPred*/); 4750 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4751 } else { 4752 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4753 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4754 } 4755 4756 SmallVector<OperandBundleDef, 1> OpBundles; 4757 CI->getOperandBundlesAsDefs(OpBundles); 4758 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4759 4760 // The scalar argument uses an in-tree scalar so we add the new vectorized 4761 // call to ExternalUses list to make sure that an extract will be 4762 // generated in the future. 4763 if (ScalarArg && getTreeEntry(ScalarArg)) 4764 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4765 4766 propagateIRFlags(V, E->Scalars, VL0); 4767 if (NeedToShuffleReuses) 4768 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4769 4770 E->VectorizedValue = V; 4771 ++NumVectorInstructions; 4772 return V; 4773 } 4774 case Instruction::ShuffleVector: { 4775 assert(E->isAltShuffle() && 4776 ((Instruction::isBinaryOp(E->getOpcode()) && 4777 Instruction::isBinaryOp(E->getAltOpcode())) || 4778 (Instruction::isCast(E->getOpcode()) && 4779 Instruction::isCast(E->getAltOpcode()))) && 4780 "Invalid Shuffle Vector Operand"); 4781 4782 Value *LHS = nullptr, *RHS = nullptr; 4783 if (Instruction::isBinaryOp(E->getOpcode())) { 4784 setInsertPointAfterBundle(E); 4785 LHS = vectorizeTree(E->getOperand(0)); 4786 RHS = vectorizeTree(E->getOperand(1)); 4787 } else { 4788 setInsertPointAfterBundle(E); 4789 LHS = vectorizeTree(E->getOperand(0)); 4790 } 4791 4792 if (E->VectorizedValue) { 4793 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4794 return E->VectorizedValue; 4795 } 4796 4797 Value *V0, *V1; 4798 if (Instruction::isBinaryOp(E->getOpcode())) { 4799 V0 = Builder.CreateBinOp( 4800 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4801 V1 = Builder.CreateBinOp( 4802 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4803 } else { 4804 V0 = Builder.CreateCast( 4805 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4806 V1 = Builder.CreateCast( 4807 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4808 } 4809 4810 // Create shuffle to take alternate operations from the vector. 4811 // Also, gather up main and alt scalar ops to propagate IR flags to 4812 // each vector operation. 4813 ValueList OpScalars, AltScalars; 4814 unsigned e = E->Scalars.size(); 4815 SmallVector<int, 8> Mask(e); 4816 for (unsigned i = 0; i < e; ++i) { 4817 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4818 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4819 if (OpInst->getOpcode() == E->getAltOpcode()) { 4820 Mask[i] = e + i; 4821 AltScalars.push_back(E->Scalars[i]); 4822 } else { 4823 Mask[i] = i; 4824 OpScalars.push_back(E->Scalars[i]); 4825 } 4826 } 4827 4828 propagateIRFlags(V0, OpScalars); 4829 propagateIRFlags(V1, AltScalars); 4830 4831 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4832 if (Instruction *I = dyn_cast<Instruction>(V)) 4833 V = propagateMetadata(I, E->Scalars); 4834 if (NeedToShuffleReuses) 4835 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4836 4837 E->VectorizedValue = V; 4838 ++NumVectorInstructions; 4839 4840 return V; 4841 } 4842 default: 4843 llvm_unreachable("unknown inst"); 4844 } 4845 return nullptr; 4846 } 4847 4848 Value *BoUpSLP::vectorizeTree() { 4849 ExtraValueToDebugLocsMap ExternallyUsedValues; 4850 return vectorizeTree(ExternallyUsedValues); 4851 } 4852 4853 Value * 4854 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4855 // All blocks must be scheduled before any instructions are inserted. 4856 for (auto &BSIter : BlocksSchedules) { 4857 scheduleBlock(BSIter.second.get()); 4858 } 4859 4860 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4861 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4862 4863 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4864 // vectorized root. InstCombine will then rewrite the entire expression. We 4865 // sign extend the extracted values below. 4866 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4867 if (MinBWs.count(ScalarRoot)) { 4868 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4869 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4870 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4871 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4872 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4873 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4874 VectorizableTree[0]->VectorizedValue = Trunc; 4875 } 4876 4877 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4878 << " values .\n"); 4879 4880 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4881 // specified by ScalarType. 4882 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4883 if (!MinBWs.count(ScalarRoot)) 4884 return Ex; 4885 if (MinBWs[ScalarRoot].second) 4886 return Builder.CreateSExt(Ex, ScalarType); 4887 return Builder.CreateZExt(Ex, ScalarType); 4888 }; 4889 4890 // Extract all of the elements with the external uses. 4891 for (const auto &ExternalUse : ExternalUses) { 4892 Value *Scalar = ExternalUse.Scalar; 4893 llvm::User *User = ExternalUse.User; 4894 4895 // Skip users that we already RAUW. This happens when one instruction 4896 // has multiple uses of the same value. 4897 if (User && !is_contained(Scalar->users(), User)) 4898 continue; 4899 TreeEntry *E = getTreeEntry(Scalar); 4900 assert(E && "Invalid scalar"); 4901 assert(E->State != TreeEntry::NeedToGather && 4902 "Extracting from a gather list"); 4903 4904 Value *Vec = E->VectorizedValue; 4905 assert(Vec && "Can't find vectorizable value"); 4906 4907 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4908 // If User == nullptr, the Scalar is used as extra arg. Generate 4909 // ExtractElement instruction and update the record for this scalar in 4910 // ExternallyUsedValues. 4911 if (!User) { 4912 assert(ExternallyUsedValues.count(Scalar) && 4913 "Scalar with nullptr as an external user must be registered in " 4914 "ExternallyUsedValues map"); 4915 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4916 Builder.SetInsertPoint(VecI->getParent(), 4917 std::next(VecI->getIterator())); 4918 } else { 4919 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4920 } 4921 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4922 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4923 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4924 auto &Locs = ExternallyUsedValues[Scalar]; 4925 ExternallyUsedValues.insert({Ex, Locs}); 4926 ExternallyUsedValues.erase(Scalar); 4927 // Required to update internally referenced instructions. 4928 Scalar->replaceAllUsesWith(Ex); 4929 continue; 4930 } 4931 4932 // Generate extracts for out-of-tree users. 4933 // Find the insertion point for the extractelement lane. 4934 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4935 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4936 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4937 if (PH->getIncomingValue(i) == Scalar) { 4938 Instruction *IncomingTerminator = 4939 PH->getIncomingBlock(i)->getTerminator(); 4940 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4941 Builder.SetInsertPoint(VecI->getParent(), 4942 std::next(VecI->getIterator())); 4943 } else { 4944 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4945 } 4946 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4947 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4948 CSEBlocks.insert(PH->getIncomingBlock(i)); 4949 PH->setOperand(i, Ex); 4950 } 4951 } 4952 } else { 4953 Builder.SetInsertPoint(cast<Instruction>(User)); 4954 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4955 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4956 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4957 User->replaceUsesOfWith(Scalar, Ex); 4958 } 4959 } else { 4960 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4961 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4962 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4963 CSEBlocks.insert(&F->getEntryBlock()); 4964 User->replaceUsesOfWith(Scalar, Ex); 4965 } 4966 4967 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4968 } 4969 4970 // For each vectorized value: 4971 for (auto &TEPtr : VectorizableTree) { 4972 TreeEntry *Entry = TEPtr.get(); 4973 4974 // No need to handle users of gathered values. 4975 if (Entry->State == TreeEntry::NeedToGather) 4976 continue; 4977 4978 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4979 4980 // For each lane: 4981 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4982 Value *Scalar = Entry->Scalars[Lane]; 4983 4984 #ifndef NDEBUG 4985 Type *Ty = Scalar->getType(); 4986 if (!Ty->isVoidTy()) { 4987 for (User *U : Scalar->users()) { 4988 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4989 4990 // It is legal to delete users in the ignorelist. 4991 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4992 "Deleting out-of-tree value"); 4993 } 4994 } 4995 #endif 4996 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4997 eraseInstruction(cast<Instruction>(Scalar)); 4998 } 4999 } 5000 5001 Builder.ClearInsertionPoint(); 5002 InstrElementSize.clear(); 5003 5004 return VectorizableTree[0]->VectorizedValue; 5005 } 5006 5007 void BoUpSLP::optimizeGatherSequence() { 5008 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5009 << " gather sequences instructions.\n"); 5010 // LICM InsertElementInst sequences. 5011 for (Instruction *I : GatherSeq) { 5012 if (isDeleted(I)) 5013 continue; 5014 5015 // Check if this block is inside a loop. 5016 Loop *L = LI->getLoopFor(I->getParent()); 5017 if (!L) 5018 continue; 5019 5020 // Check if it has a preheader. 5021 BasicBlock *PreHeader = L->getLoopPreheader(); 5022 if (!PreHeader) 5023 continue; 5024 5025 // If the vector or the element that we insert into it are 5026 // instructions that are defined in this basic block then we can't 5027 // hoist this instruction. 5028 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5029 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5030 if (Op0 && L->contains(Op0)) 5031 continue; 5032 if (Op1 && L->contains(Op1)) 5033 continue; 5034 5035 // We can hoist this instruction. Move it to the pre-header. 5036 I->moveBefore(PreHeader->getTerminator()); 5037 } 5038 5039 // Make a list of all reachable blocks in our CSE queue. 5040 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5041 CSEWorkList.reserve(CSEBlocks.size()); 5042 for (BasicBlock *BB : CSEBlocks) 5043 if (DomTreeNode *N = DT->getNode(BB)) { 5044 assert(DT->isReachableFromEntry(N)); 5045 CSEWorkList.push_back(N); 5046 } 5047 5048 // Sort blocks by domination. This ensures we visit a block after all blocks 5049 // dominating it are visited. 5050 llvm::stable_sort(CSEWorkList, 5051 [this](const DomTreeNode *A, const DomTreeNode *B) { 5052 return DT->properlyDominates(A, B); 5053 }); 5054 5055 // Perform O(N^2) search over the gather sequences and merge identical 5056 // instructions. TODO: We can further optimize this scan if we split the 5057 // instructions into different buckets based on the insert lane. 5058 SmallVector<Instruction *, 16> Visited; 5059 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5060 assert(*I && 5061 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5062 "Worklist not sorted properly!"); 5063 BasicBlock *BB = (*I)->getBlock(); 5064 // For all instructions in blocks containing gather sequences: 5065 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5066 Instruction *In = &*it++; 5067 if (isDeleted(In)) 5068 continue; 5069 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5070 continue; 5071 5072 // Check if we can replace this instruction with any of the 5073 // visited instructions. 5074 for (Instruction *v : Visited) { 5075 if (In->isIdenticalTo(v) && 5076 DT->dominates(v->getParent(), In->getParent())) { 5077 In->replaceAllUsesWith(v); 5078 eraseInstruction(In); 5079 In = nullptr; 5080 break; 5081 } 5082 } 5083 if (In) { 5084 assert(!is_contained(Visited, In)); 5085 Visited.push_back(In); 5086 } 5087 } 5088 } 5089 CSEBlocks.clear(); 5090 GatherSeq.clear(); 5091 } 5092 5093 // Groups the instructions to a bundle (which is then a single scheduling entity) 5094 // and schedules instructions until the bundle gets ready. 5095 Optional<BoUpSLP::ScheduleData *> 5096 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5097 const InstructionsState &S) { 5098 if (isa<PHINode>(S.OpValue)) 5099 return nullptr; 5100 5101 // Initialize the instruction bundle. 5102 Instruction *OldScheduleEnd = ScheduleEnd; 5103 ScheduleData *PrevInBundle = nullptr; 5104 ScheduleData *Bundle = nullptr; 5105 bool ReSchedule = false; 5106 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5107 5108 // Make sure that the scheduling region contains all 5109 // instructions of the bundle. 5110 for (Value *V : VL) { 5111 if (!extendSchedulingRegion(V, S)) 5112 return None; 5113 } 5114 5115 for (Value *V : VL) { 5116 ScheduleData *BundleMember = getScheduleData(V); 5117 assert(BundleMember && 5118 "no ScheduleData for bundle member (maybe not in same basic block)"); 5119 if (BundleMember->IsScheduled) { 5120 // A bundle member was scheduled as single instruction before and now 5121 // needs to be scheduled as part of the bundle. We just get rid of the 5122 // existing schedule. 5123 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5124 << " was already scheduled\n"); 5125 ReSchedule = true; 5126 } 5127 assert(BundleMember->isSchedulingEntity() && 5128 "bundle member already part of other bundle"); 5129 if (PrevInBundle) { 5130 PrevInBundle->NextInBundle = BundleMember; 5131 } else { 5132 Bundle = BundleMember; 5133 } 5134 BundleMember->UnscheduledDepsInBundle = 0; 5135 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5136 5137 // Group the instructions to a bundle. 5138 BundleMember->FirstInBundle = Bundle; 5139 PrevInBundle = BundleMember; 5140 } 5141 if (ScheduleEnd != OldScheduleEnd) { 5142 // The scheduling region got new instructions at the lower end (or it is a 5143 // new region for the first bundle). This makes it necessary to 5144 // recalculate all dependencies. 5145 // It is seldom that this needs to be done a second time after adding the 5146 // initial bundle to the region. 5147 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5148 doForAllOpcodes(I, [](ScheduleData *SD) { 5149 SD->clearDependencies(); 5150 }); 5151 } 5152 ReSchedule = true; 5153 } 5154 if (ReSchedule) { 5155 resetSchedule(); 5156 initialFillReadyList(ReadyInsts); 5157 } 5158 assert(Bundle && "Failed to find schedule bundle"); 5159 5160 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5161 << BB->getName() << "\n"); 5162 5163 calculateDependencies(Bundle, true, SLP); 5164 5165 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5166 // means that there are no cyclic dependencies and we can schedule it. 5167 // Note that's important that we don't "schedule" the bundle yet (see 5168 // cancelScheduling). 5169 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5170 5171 ScheduleData *pickedSD = ReadyInsts.pop_back_val(); 5172 5173 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5174 schedule(pickedSD, ReadyInsts); 5175 } 5176 } 5177 if (!Bundle->isReady()) { 5178 cancelScheduling(VL, S.OpValue); 5179 return None; 5180 } 5181 return Bundle; 5182 } 5183 5184 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5185 Value *OpValue) { 5186 if (isa<PHINode>(OpValue)) 5187 return; 5188 5189 ScheduleData *Bundle = getScheduleData(OpValue); 5190 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5191 assert(!Bundle->IsScheduled && 5192 "Can't cancel bundle which is already scheduled"); 5193 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5194 "tried to unbundle something which is not a bundle"); 5195 5196 // Un-bundle: make single instructions out of the bundle. 5197 ScheduleData *BundleMember = Bundle; 5198 while (BundleMember) { 5199 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5200 BundleMember->FirstInBundle = BundleMember; 5201 ScheduleData *Next = BundleMember->NextInBundle; 5202 BundleMember->NextInBundle = nullptr; 5203 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5204 if (BundleMember->UnscheduledDepsInBundle == 0) { 5205 ReadyInsts.insert(BundleMember); 5206 } 5207 BundleMember = Next; 5208 } 5209 } 5210 5211 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5212 // Allocate a new ScheduleData for the instruction. 5213 if (ChunkPos >= ChunkSize) { 5214 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5215 ChunkPos = 0; 5216 } 5217 return &(ScheduleDataChunks.back()[ChunkPos++]); 5218 } 5219 5220 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5221 const InstructionsState &S) { 5222 if (getScheduleData(V, isOneOf(S, V))) 5223 return true; 5224 Instruction *I = dyn_cast<Instruction>(V); 5225 assert(I && "bundle member must be an instruction"); 5226 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5227 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5228 ScheduleData *ISD = getScheduleData(I); 5229 if (!ISD) 5230 return false; 5231 assert(isInSchedulingRegion(ISD) && 5232 "ScheduleData not in scheduling region"); 5233 ScheduleData *SD = allocateScheduleDataChunks(); 5234 SD->Inst = I; 5235 SD->init(SchedulingRegionID, S.OpValue); 5236 ExtraScheduleDataMap[I][S.OpValue] = SD; 5237 return true; 5238 }; 5239 if (CheckSheduleForI(I)) 5240 return true; 5241 if (!ScheduleStart) { 5242 // It's the first instruction in the new region. 5243 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5244 ScheduleStart = I; 5245 ScheduleEnd = I->getNextNode(); 5246 if (isOneOf(S, I) != I) 5247 CheckSheduleForI(I); 5248 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5249 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5250 return true; 5251 } 5252 // Search up and down at the same time, because we don't know if the new 5253 // instruction is above or below the existing scheduling region. 5254 BasicBlock::reverse_iterator UpIter = 5255 ++ScheduleStart->getIterator().getReverse(); 5256 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5257 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5258 BasicBlock::iterator LowerEnd = BB->end(); 5259 while (true) { 5260 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5261 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5262 return false; 5263 } 5264 5265 if (UpIter != UpperEnd) { 5266 if (&*UpIter == I) { 5267 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5268 ScheduleStart = I; 5269 if (isOneOf(S, I) != I) 5270 CheckSheduleForI(I); 5271 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5272 << "\n"); 5273 return true; 5274 } 5275 ++UpIter; 5276 } 5277 if (DownIter != LowerEnd) { 5278 if (&*DownIter == I) { 5279 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5280 nullptr); 5281 ScheduleEnd = I->getNextNode(); 5282 if (isOneOf(S, I) != I) 5283 CheckSheduleForI(I); 5284 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5285 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5286 << "\n"); 5287 return true; 5288 } 5289 ++DownIter; 5290 } 5291 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5292 "instruction not found in block"); 5293 } 5294 return true; 5295 } 5296 5297 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5298 Instruction *ToI, 5299 ScheduleData *PrevLoadStore, 5300 ScheduleData *NextLoadStore) { 5301 ScheduleData *CurrentLoadStore = PrevLoadStore; 5302 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5303 ScheduleData *SD = ScheduleDataMap[I]; 5304 if (!SD) { 5305 SD = allocateScheduleDataChunks(); 5306 ScheduleDataMap[I] = SD; 5307 SD->Inst = I; 5308 } 5309 assert(!isInSchedulingRegion(SD) && 5310 "new ScheduleData already in scheduling region"); 5311 SD->init(SchedulingRegionID, I); 5312 5313 if (I->mayReadOrWriteMemory() && 5314 (!isa<IntrinsicInst>(I) || 5315 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5316 cast<IntrinsicInst>(I)->getIntrinsicID() != 5317 Intrinsic::pseudoprobe))) { 5318 // Update the linked list of memory accessing instructions. 5319 if (CurrentLoadStore) { 5320 CurrentLoadStore->NextLoadStore = SD; 5321 } else { 5322 FirstLoadStoreInRegion = SD; 5323 } 5324 CurrentLoadStore = SD; 5325 } 5326 } 5327 if (NextLoadStore) { 5328 if (CurrentLoadStore) 5329 CurrentLoadStore->NextLoadStore = NextLoadStore; 5330 } else { 5331 LastLoadStoreInRegion = CurrentLoadStore; 5332 } 5333 } 5334 5335 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5336 bool InsertInReadyList, 5337 BoUpSLP *SLP) { 5338 assert(SD->isSchedulingEntity()); 5339 5340 SmallVector<ScheduleData *, 10> WorkList; 5341 WorkList.push_back(SD); 5342 5343 while (!WorkList.empty()) { 5344 ScheduleData *SD = WorkList.pop_back_val(); 5345 5346 ScheduleData *BundleMember = SD; 5347 while (BundleMember) { 5348 assert(isInSchedulingRegion(BundleMember)); 5349 if (!BundleMember->hasValidDependencies()) { 5350 5351 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5352 << "\n"); 5353 BundleMember->Dependencies = 0; 5354 BundleMember->resetUnscheduledDeps(); 5355 5356 // Handle def-use chain dependencies. 5357 if (BundleMember->OpValue != BundleMember->Inst) { 5358 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5359 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5360 BundleMember->Dependencies++; 5361 ScheduleData *DestBundle = UseSD->FirstInBundle; 5362 if (!DestBundle->IsScheduled) 5363 BundleMember->incrementUnscheduledDeps(1); 5364 if (!DestBundle->hasValidDependencies()) 5365 WorkList.push_back(DestBundle); 5366 } 5367 } else { 5368 for (User *U : BundleMember->Inst->users()) { 5369 if (isa<Instruction>(U)) { 5370 ScheduleData *UseSD = getScheduleData(U); 5371 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5372 BundleMember->Dependencies++; 5373 ScheduleData *DestBundle = UseSD->FirstInBundle; 5374 if (!DestBundle->IsScheduled) 5375 BundleMember->incrementUnscheduledDeps(1); 5376 if (!DestBundle->hasValidDependencies()) 5377 WorkList.push_back(DestBundle); 5378 } 5379 } else { 5380 // I'm not sure if this can ever happen. But we need to be safe. 5381 // This lets the instruction/bundle never be scheduled and 5382 // eventually disable vectorization. 5383 BundleMember->Dependencies++; 5384 BundleMember->incrementUnscheduledDeps(1); 5385 } 5386 } 5387 } 5388 5389 // Handle the memory dependencies. 5390 ScheduleData *DepDest = BundleMember->NextLoadStore; 5391 if (DepDest) { 5392 Instruction *SrcInst = BundleMember->Inst; 5393 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5394 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5395 unsigned numAliased = 0; 5396 unsigned DistToSrc = 1; 5397 5398 while (DepDest) { 5399 assert(isInSchedulingRegion(DepDest)); 5400 5401 // We have two limits to reduce the complexity: 5402 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5403 // SLP->isAliased (which is the expensive part in this loop). 5404 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5405 // the whole loop (even if the loop is fast, it's quadratic). 5406 // It's important for the loop break condition (see below) to 5407 // check this limit even between two read-only instructions. 5408 if (DistToSrc >= MaxMemDepDistance || 5409 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5410 (numAliased >= AliasedCheckLimit || 5411 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5412 5413 // We increment the counter only if the locations are aliased 5414 // (instead of counting all alias checks). This gives a better 5415 // balance between reduced runtime and accurate dependencies. 5416 numAliased++; 5417 5418 DepDest->MemoryDependencies.push_back(BundleMember); 5419 BundleMember->Dependencies++; 5420 ScheduleData *DestBundle = DepDest->FirstInBundle; 5421 if (!DestBundle->IsScheduled) { 5422 BundleMember->incrementUnscheduledDeps(1); 5423 } 5424 if (!DestBundle->hasValidDependencies()) { 5425 WorkList.push_back(DestBundle); 5426 } 5427 } 5428 DepDest = DepDest->NextLoadStore; 5429 5430 // Example, explaining the loop break condition: Let's assume our 5431 // starting instruction is i0 and MaxMemDepDistance = 3. 5432 // 5433 // +--------v--v--v 5434 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5435 // +--------^--^--^ 5436 // 5437 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5438 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5439 // Previously we already added dependencies from i3 to i6,i7,i8 5440 // (because of MaxMemDepDistance). As we added a dependency from 5441 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5442 // and we can abort this loop at i6. 5443 if (DistToSrc >= 2 * MaxMemDepDistance) 5444 break; 5445 DistToSrc++; 5446 } 5447 } 5448 } 5449 BundleMember = BundleMember->NextInBundle; 5450 } 5451 if (InsertInReadyList && SD->isReady()) { 5452 ReadyInsts.push_back(SD); 5453 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5454 << "\n"); 5455 } 5456 } 5457 } 5458 5459 void BoUpSLP::BlockScheduling::resetSchedule() { 5460 assert(ScheduleStart && 5461 "tried to reset schedule on block which has not been scheduled"); 5462 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5463 doForAllOpcodes(I, [&](ScheduleData *SD) { 5464 assert(isInSchedulingRegion(SD) && 5465 "ScheduleData not in scheduling region"); 5466 SD->IsScheduled = false; 5467 SD->resetUnscheduledDeps(); 5468 }); 5469 } 5470 ReadyInsts.clear(); 5471 } 5472 5473 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5474 if (!BS->ScheduleStart) 5475 return; 5476 5477 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5478 5479 BS->resetSchedule(); 5480 5481 // For the real scheduling we use a more sophisticated ready-list: it is 5482 // sorted by the original instruction location. This lets the final schedule 5483 // be as close as possible to the original instruction order. 5484 struct ScheduleDataCompare { 5485 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5486 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5487 } 5488 }; 5489 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5490 5491 // Ensure that all dependency data is updated and fill the ready-list with 5492 // initial instructions. 5493 int Idx = 0; 5494 int NumToSchedule = 0; 5495 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5496 I = I->getNextNode()) { 5497 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5498 assert(SD->isPartOfBundle() == 5499 (getTreeEntry(SD->Inst) != nullptr) && 5500 "scheduler and vectorizer bundle mismatch"); 5501 SD->FirstInBundle->SchedulingPriority = Idx++; 5502 if (SD->isSchedulingEntity()) { 5503 BS->calculateDependencies(SD, false, this); 5504 NumToSchedule++; 5505 } 5506 }); 5507 } 5508 BS->initialFillReadyList(ReadyInsts); 5509 5510 Instruction *LastScheduledInst = BS->ScheduleEnd; 5511 5512 // Do the "real" scheduling. 5513 while (!ReadyInsts.empty()) { 5514 ScheduleData *picked = *ReadyInsts.begin(); 5515 ReadyInsts.erase(ReadyInsts.begin()); 5516 5517 // Move the scheduled instruction(s) to their dedicated places, if not 5518 // there yet. 5519 ScheduleData *BundleMember = picked; 5520 while (BundleMember) { 5521 Instruction *pickedInst = BundleMember->Inst; 5522 if (LastScheduledInst->getNextNode() != pickedInst) { 5523 BS->BB->getInstList().remove(pickedInst); 5524 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5525 pickedInst); 5526 } 5527 LastScheduledInst = pickedInst; 5528 BundleMember = BundleMember->NextInBundle; 5529 } 5530 5531 BS->schedule(picked, ReadyInsts); 5532 NumToSchedule--; 5533 } 5534 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5535 5536 // Avoid duplicate scheduling of the block. 5537 BS->ScheduleStart = nullptr; 5538 } 5539 5540 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5541 // If V is a store, just return the width of the stored value (or value 5542 // truncated just before storing) without traversing the expression tree. 5543 // This is the common case. 5544 if (auto *Store = dyn_cast<StoreInst>(V)) { 5545 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5546 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5547 else 5548 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5549 } 5550 5551 auto E = InstrElementSize.find(V); 5552 if (E != InstrElementSize.end()) 5553 return E->second; 5554 5555 // If V is not a store, we can traverse the expression tree to find loads 5556 // that feed it. The type of the loaded value may indicate a more suitable 5557 // width than V's type. We want to base the vector element size on the width 5558 // of memory operations where possible. 5559 SmallVector<Instruction *, 16> Worklist; 5560 SmallPtrSet<Instruction *, 16> Visited; 5561 if (auto *I = dyn_cast<Instruction>(V)) { 5562 Worklist.push_back(I); 5563 Visited.insert(I); 5564 } 5565 5566 // Traverse the expression tree in bottom-up order looking for loads. If we 5567 // encounter an instruction we don't yet handle, we give up. 5568 auto MaxWidth = 0u; 5569 auto FoundUnknownInst = false; 5570 while (!Worklist.empty() && !FoundUnknownInst) { 5571 auto *I = Worklist.pop_back_val(); 5572 5573 // We should only be looking at scalar instructions here. If the current 5574 // instruction has a vector type, give up. 5575 auto *Ty = I->getType(); 5576 if (isa<VectorType>(Ty)) 5577 FoundUnknownInst = true; 5578 5579 // If the current instruction is a load, update MaxWidth to reflect the 5580 // width of the loaded value. 5581 else if (isa<LoadInst>(I)) 5582 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5583 5584 // Otherwise, we need to visit the operands of the instruction. We only 5585 // handle the interesting cases from buildTree here. If an operand is an 5586 // instruction we haven't yet visited, we add it to the worklist. 5587 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5588 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5589 for (Use &U : I->operands()) 5590 if (auto *J = dyn_cast<Instruction>(U.get())) 5591 if (Visited.insert(J).second) 5592 Worklist.push_back(J); 5593 } 5594 5595 // If we don't yet handle the instruction, give up. 5596 else 5597 FoundUnknownInst = true; 5598 } 5599 5600 int Width = MaxWidth; 5601 // If we didn't encounter a memory access in the expression tree, or if we 5602 // gave up for some reason, just return the width of V. Otherwise, return the 5603 // maximum width we found. 5604 if (!MaxWidth || FoundUnknownInst) 5605 Width = DL->getTypeSizeInBits(V->getType()); 5606 5607 for (Instruction *I : Visited) 5608 InstrElementSize[I] = Width; 5609 5610 return Width; 5611 } 5612 5613 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5614 // smaller type with a truncation. We collect the values that will be demoted 5615 // in ToDemote and additional roots that require investigating in Roots. 5616 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5617 SmallVectorImpl<Value *> &ToDemote, 5618 SmallVectorImpl<Value *> &Roots) { 5619 // We can always demote constants. 5620 if (isa<Constant>(V)) { 5621 ToDemote.push_back(V); 5622 return true; 5623 } 5624 5625 // If the value is not an instruction in the expression with only one use, it 5626 // cannot be demoted. 5627 auto *I = dyn_cast<Instruction>(V); 5628 if (!I || !I->hasOneUse() || !Expr.count(I)) 5629 return false; 5630 5631 switch (I->getOpcode()) { 5632 5633 // We can always demote truncations and extensions. Since truncations can 5634 // seed additional demotion, we save the truncated value. 5635 case Instruction::Trunc: 5636 Roots.push_back(I->getOperand(0)); 5637 break; 5638 case Instruction::ZExt: 5639 case Instruction::SExt: 5640 break; 5641 5642 // We can demote certain binary operations if we can demote both of their 5643 // operands. 5644 case Instruction::Add: 5645 case Instruction::Sub: 5646 case Instruction::Mul: 5647 case Instruction::And: 5648 case Instruction::Or: 5649 case Instruction::Xor: 5650 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5651 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5652 return false; 5653 break; 5654 5655 // We can demote selects if we can demote their true and false values. 5656 case Instruction::Select: { 5657 SelectInst *SI = cast<SelectInst>(I); 5658 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5659 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5660 return false; 5661 break; 5662 } 5663 5664 // We can demote phis if we can demote all their incoming operands. Note that 5665 // we don't need to worry about cycles since we ensure single use above. 5666 case Instruction::PHI: { 5667 PHINode *PN = cast<PHINode>(I); 5668 for (Value *IncValue : PN->incoming_values()) 5669 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5670 return false; 5671 break; 5672 } 5673 5674 // Otherwise, conservatively give up. 5675 default: 5676 return false; 5677 } 5678 5679 // Record the value that we can demote. 5680 ToDemote.push_back(V); 5681 return true; 5682 } 5683 5684 void BoUpSLP::computeMinimumValueSizes() { 5685 // If there are no external uses, the expression tree must be rooted by a 5686 // store. We can't demote in-memory values, so there is nothing to do here. 5687 if (ExternalUses.empty()) 5688 return; 5689 5690 // We only attempt to truncate integer expressions. 5691 auto &TreeRoot = VectorizableTree[0]->Scalars; 5692 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5693 if (!TreeRootIT) 5694 return; 5695 5696 // If the expression is not rooted by a store, these roots should have 5697 // external uses. We will rely on InstCombine to rewrite the expression in 5698 // the narrower type. However, InstCombine only rewrites single-use values. 5699 // This means that if a tree entry other than a root is used externally, it 5700 // must have multiple uses and InstCombine will not rewrite it. The code 5701 // below ensures that only the roots are used externally. 5702 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5703 for (auto &EU : ExternalUses) 5704 if (!Expr.erase(EU.Scalar)) 5705 return; 5706 if (!Expr.empty()) 5707 return; 5708 5709 // Collect the scalar values of the vectorizable expression. We will use this 5710 // context to determine which values can be demoted. If we see a truncation, 5711 // we mark it as seeding another demotion. 5712 for (auto &EntryPtr : VectorizableTree) 5713 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5714 5715 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5716 // have a single external user that is not in the vectorizable tree. 5717 for (auto *Root : TreeRoot) 5718 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5719 return; 5720 5721 // Conservatively determine if we can actually truncate the roots of the 5722 // expression. Collect the values that can be demoted in ToDemote and 5723 // additional roots that require investigating in Roots. 5724 SmallVector<Value *, 32> ToDemote; 5725 SmallVector<Value *, 4> Roots; 5726 for (auto *Root : TreeRoot) 5727 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5728 return; 5729 5730 // The maximum bit width required to represent all the values that can be 5731 // demoted without loss of precision. It would be safe to truncate the roots 5732 // of the expression to this width. 5733 auto MaxBitWidth = 8u; 5734 5735 // We first check if all the bits of the roots are demanded. If they're not, 5736 // we can truncate the roots to this narrower type. 5737 for (auto *Root : TreeRoot) { 5738 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5739 MaxBitWidth = std::max<unsigned>( 5740 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5741 } 5742 5743 // True if the roots can be zero-extended back to their original type, rather 5744 // than sign-extended. We know that if the leading bits are not demanded, we 5745 // can safely zero-extend. So we initialize IsKnownPositive to True. 5746 bool IsKnownPositive = true; 5747 5748 // If all the bits of the roots are demanded, we can try a little harder to 5749 // compute a narrower type. This can happen, for example, if the roots are 5750 // getelementptr indices. InstCombine promotes these indices to the pointer 5751 // width. Thus, all their bits are technically demanded even though the 5752 // address computation might be vectorized in a smaller type. 5753 // 5754 // We start by looking at each entry that can be demoted. We compute the 5755 // maximum bit width required to store the scalar by using ValueTracking to 5756 // compute the number of high-order bits we can truncate. 5757 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5758 llvm::all_of(TreeRoot, [](Value *R) { 5759 assert(R->hasOneUse() && "Root should have only one use!"); 5760 return isa<GetElementPtrInst>(R->user_back()); 5761 })) { 5762 MaxBitWidth = 8u; 5763 5764 // Determine if the sign bit of all the roots is known to be zero. If not, 5765 // IsKnownPositive is set to False. 5766 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5767 KnownBits Known = computeKnownBits(R, *DL); 5768 return Known.isNonNegative(); 5769 }); 5770 5771 // Determine the maximum number of bits required to store the scalar 5772 // values. 5773 for (auto *Scalar : ToDemote) { 5774 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5775 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5776 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5777 } 5778 5779 // If we can't prove that the sign bit is zero, we must add one to the 5780 // maximum bit width to account for the unknown sign bit. This preserves 5781 // the existing sign bit so we can safely sign-extend the root back to the 5782 // original type. Otherwise, if we know the sign bit is zero, we will 5783 // zero-extend the root instead. 5784 // 5785 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5786 // one to the maximum bit width will yield a larger-than-necessary 5787 // type. In general, we need to add an extra bit only if we can't 5788 // prove that the upper bit of the original type is equal to the 5789 // upper bit of the proposed smaller type. If these two bits are the 5790 // same (either zero or one) we know that sign-extending from the 5791 // smaller type will result in the same value. Here, since we can't 5792 // yet prove this, we are just making the proposed smaller type 5793 // larger to ensure correctness. 5794 if (!IsKnownPositive) 5795 ++MaxBitWidth; 5796 } 5797 5798 // Round MaxBitWidth up to the next power-of-two. 5799 if (!isPowerOf2_64(MaxBitWidth)) 5800 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5801 5802 // If the maximum bit width we compute is less than the with of the roots' 5803 // type, we can proceed with the narrowing. Otherwise, do nothing. 5804 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5805 return; 5806 5807 // If we can truncate the root, we must collect additional values that might 5808 // be demoted as a result. That is, those seeded by truncations we will 5809 // modify. 5810 while (!Roots.empty()) 5811 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5812 5813 // Finally, map the values we can demote to the maximum bit with we computed. 5814 for (auto *Scalar : ToDemote) 5815 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5816 } 5817 5818 namespace { 5819 5820 /// The SLPVectorizer Pass. 5821 struct SLPVectorizer : public FunctionPass { 5822 SLPVectorizerPass Impl; 5823 5824 /// Pass identification, replacement for typeid 5825 static char ID; 5826 5827 explicit SLPVectorizer() : FunctionPass(ID) { 5828 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5829 } 5830 5831 bool doInitialization(Module &M) override { 5832 return false; 5833 } 5834 5835 bool runOnFunction(Function &F) override { 5836 if (skipFunction(F)) 5837 return false; 5838 5839 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5840 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5841 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5842 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5843 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5844 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5845 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5846 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5847 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5848 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5849 5850 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5851 } 5852 5853 void getAnalysisUsage(AnalysisUsage &AU) const override { 5854 FunctionPass::getAnalysisUsage(AU); 5855 AU.addRequired<AssumptionCacheTracker>(); 5856 AU.addRequired<ScalarEvolutionWrapperPass>(); 5857 AU.addRequired<AAResultsWrapperPass>(); 5858 AU.addRequired<TargetTransformInfoWrapperPass>(); 5859 AU.addRequired<LoopInfoWrapperPass>(); 5860 AU.addRequired<DominatorTreeWrapperPass>(); 5861 AU.addRequired<DemandedBitsWrapperPass>(); 5862 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5863 AU.addRequired<InjectTLIMappingsLegacy>(); 5864 AU.addPreserved<LoopInfoWrapperPass>(); 5865 AU.addPreserved<DominatorTreeWrapperPass>(); 5866 AU.addPreserved<AAResultsWrapperPass>(); 5867 AU.addPreserved<GlobalsAAWrapperPass>(); 5868 AU.setPreservesCFG(); 5869 } 5870 }; 5871 5872 } // end anonymous namespace 5873 5874 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5875 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5876 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5877 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5878 auto *AA = &AM.getResult<AAManager>(F); 5879 auto *LI = &AM.getResult<LoopAnalysis>(F); 5880 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5881 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5882 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5883 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5884 5885 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5886 if (!Changed) 5887 return PreservedAnalyses::all(); 5888 5889 PreservedAnalyses PA; 5890 PA.preserveSet<CFGAnalyses>(); 5891 PA.preserve<AAManager>(); 5892 PA.preserve<GlobalsAA>(); 5893 return PA; 5894 } 5895 5896 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5897 TargetTransformInfo *TTI_, 5898 TargetLibraryInfo *TLI_, AAResults *AA_, 5899 LoopInfo *LI_, DominatorTree *DT_, 5900 AssumptionCache *AC_, DemandedBits *DB_, 5901 OptimizationRemarkEmitter *ORE_) { 5902 if (!RunSLPVectorization) 5903 return false; 5904 SE = SE_; 5905 TTI = TTI_; 5906 TLI = TLI_; 5907 AA = AA_; 5908 LI = LI_; 5909 DT = DT_; 5910 AC = AC_; 5911 DB = DB_; 5912 DL = &F.getParent()->getDataLayout(); 5913 5914 Stores.clear(); 5915 GEPs.clear(); 5916 bool Changed = false; 5917 5918 // If the target claims to have no vector registers don't attempt 5919 // vectorization. 5920 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5921 return false; 5922 5923 // Don't vectorize when the attribute NoImplicitFloat is used. 5924 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5925 return false; 5926 5927 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5928 5929 // Use the bottom up slp vectorizer to construct chains that start with 5930 // store instructions. 5931 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5932 5933 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5934 // delete instructions. 5935 5936 // Scan the blocks in the function in post order. 5937 for (auto BB : post_order(&F.getEntryBlock())) { 5938 collectSeedInstructions(BB); 5939 5940 // Vectorize trees that end at stores. 5941 if (!Stores.empty()) { 5942 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5943 << " underlying objects.\n"); 5944 Changed |= vectorizeStoreChains(R); 5945 } 5946 5947 // Vectorize trees that end at reductions. 5948 Changed |= vectorizeChainsInBlock(BB, R); 5949 5950 // Vectorize the index computations of getelementptr instructions. This 5951 // is primarily intended to catch gather-like idioms ending at 5952 // non-consecutive loads. 5953 if (!GEPs.empty()) { 5954 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5955 << " underlying objects.\n"); 5956 Changed |= vectorizeGEPIndices(BB, R); 5957 } 5958 } 5959 5960 if (Changed) { 5961 R.optimizeGatherSequence(); 5962 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5963 } 5964 return Changed; 5965 } 5966 5967 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5968 unsigned Idx) { 5969 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5970 << "\n"); 5971 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5972 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5973 unsigned VF = Chain.size(); 5974 5975 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5976 return false; 5977 5978 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5979 << "\n"); 5980 5981 R.buildTree(Chain); 5982 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5983 // TODO: Handle orders of size less than number of elements in the vector. 5984 if (Order && Order->size() == Chain.size()) { 5985 // TODO: reorder tree nodes without tree rebuilding. 5986 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5987 llvm::transform(*Order, ReorderedOps.begin(), 5988 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5989 R.buildTree(ReorderedOps); 5990 } 5991 if (R.isTreeTinyAndNotFullyVectorizable()) 5992 return false; 5993 if (R.isLoadCombineCandidate()) 5994 return false; 5995 5996 R.computeMinimumValueSizes(); 5997 5998 InstructionCost Cost = R.getTreeCost(); 5999 6000 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6001 if (Cost < -SLPCostThreshold) { 6002 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6003 6004 using namespace ore; 6005 6006 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6007 cast<StoreInst>(Chain[0])) 6008 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6009 << " and with tree size " 6010 << NV("TreeSize", R.getTreeSize())); 6011 6012 R.vectorizeTree(); 6013 return true; 6014 } 6015 6016 return false; 6017 } 6018 6019 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6020 BoUpSLP &R) { 6021 // We may run into multiple chains that merge into a single chain. We mark the 6022 // stores that we vectorized so that we don't visit the same store twice. 6023 BoUpSLP::ValueSet VectorizedStores; 6024 bool Changed = false; 6025 6026 int E = Stores.size(); 6027 SmallBitVector Tails(E, false); 6028 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6029 int MaxIter = MaxStoreLookup.getValue(); 6030 int IterCnt; 6031 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6032 &ConsecutiveChain](int K, int Idx) { 6033 if (IterCnt >= MaxIter) 6034 return true; 6035 ++IterCnt; 6036 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6037 return false; 6038 6039 Tails.set(Idx); 6040 ConsecutiveChain[K] = Idx; 6041 return true; 6042 }; 6043 // Do a quadratic search on all of the given stores in reverse order and find 6044 // all of the pairs of stores that follow each other. 6045 for (int Idx = E - 1; Idx >= 0; --Idx) { 6046 // If a store has multiple consecutive store candidates, search according 6047 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6048 // This is because usually pairing with immediate succeeding or preceding 6049 // candidate create the best chance to find slp vectorization opportunity. 6050 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6051 IterCnt = 0; 6052 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6053 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6054 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6055 break; 6056 } 6057 6058 // For stores that start but don't end a link in the chain: 6059 for (int Cnt = E; Cnt > 0; --Cnt) { 6060 int I = Cnt - 1; 6061 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6062 continue; 6063 // We found a store instr that starts a chain. Now follow the chain and try 6064 // to vectorize it. 6065 BoUpSLP::ValueList Operands; 6066 // Collect the chain into a list. 6067 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6068 Operands.push_back(Stores[I]); 6069 // Move to the next value in the chain. 6070 I = ConsecutiveChain[I]; 6071 } 6072 6073 // If a vector register can't hold 1 element, we are done. 6074 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6075 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6076 if (MaxVecRegSize % EltSize != 0) 6077 continue; 6078 6079 unsigned MaxElts = MaxVecRegSize / EltSize; 6080 // FIXME: Is division-by-2 the correct step? Should we assert that the 6081 // register size is a power-of-2? 6082 unsigned StartIdx = 0; 6083 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6084 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6085 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6086 if (!VectorizedStores.count(Slice.front()) && 6087 !VectorizedStores.count(Slice.back()) && 6088 vectorizeStoreChain(Slice, R, Cnt)) { 6089 // Mark the vectorized stores so that we don't vectorize them again. 6090 VectorizedStores.insert(Slice.begin(), Slice.end()); 6091 Changed = true; 6092 // If we vectorized initial block, no need to try to vectorize it 6093 // again. 6094 if (Cnt == StartIdx) 6095 StartIdx += Size; 6096 Cnt += Size; 6097 continue; 6098 } 6099 ++Cnt; 6100 } 6101 // Check if the whole array was vectorized already - exit. 6102 if (StartIdx >= Operands.size()) 6103 break; 6104 } 6105 } 6106 6107 return Changed; 6108 } 6109 6110 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6111 // Initialize the collections. We will make a single pass over the block. 6112 Stores.clear(); 6113 GEPs.clear(); 6114 6115 // Visit the store and getelementptr instructions in BB and organize them in 6116 // Stores and GEPs according to the underlying objects of their pointer 6117 // operands. 6118 for (Instruction &I : *BB) { 6119 // Ignore store instructions that are volatile or have a pointer operand 6120 // that doesn't point to a scalar type. 6121 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6122 if (!SI->isSimple()) 6123 continue; 6124 if (!isValidElementType(SI->getValueOperand()->getType())) 6125 continue; 6126 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6127 } 6128 6129 // Ignore getelementptr instructions that have more than one index, a 6130 // constant index, or a pointer operand that doesn't point to a scalar 6131 // type. 6132 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6133 auto Idx = GEP->idx_begin()->get(); 6134 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6135 continue; 6136 if (!isValidElementType(Idx->getType())) 6137 continue; 6138 if (GEP->getType()->isVectorTy()) 6139 continue; 6140 GEPs[GEP->getPointerOperand()].push_back(GEP); 6141 } 6142 } 6143 } 6144 6145 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6146 if (!A || !B) 6147 return false; 6148 Value *VL[] = {A, B}; 6149 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6150 } 6151 6152 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6153 bool AllowReorder, 6154 ArrayRef<Value *> InsertUses) { 6155 if (VL.size() < 2) 6156 return false; 6157 6158 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6159 << VL.size() << ".\n"); 6160 6161 // Check that all of the parts are instructions of the same type, 6162 // we permit an alternate opcode via InstructionsState. 6163 InstructionsState S = getSameOpcode(VL); 6164 if (!S.getOpcode()) 6165 return false; 6166 6167 Instruction *I0 = cast<Instruction>(S.OpValue); 6168 // Make sure invalid types (including vector type) are rejected before 6169 // determining vectorization factor for scalar instructions. 6170 for (Value *V : VL) { 6171 Type *Ty = V->getType(); 6172 if (!isValidElementType(Ty)) { 6173 // NOTE: the following will give user internal llvm type name, which may 6174 // not be useful. 6175 R.getORE()->emit([&]() { 6176 std::string type_str; 6177 llvm::raw_string_ostream rso(type_str); 6178 Ty->print(rso); 6179 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6180 << "Cannot SLP vectorize list: type " 6181 << rso.str() + " is unsupported by vectorizer"; 6182 }); 6183 return false; 6184 } 6185 } 6186 6187 unsigned Sz = R.getVectorElementSize(I0); 6188 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6189 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6190 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6191 if (MaxVF < 2) { 6192 R.getORE()->emit([&]() { 6193 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6194 << "Cannot SLP vectorize list: vectorization factor " 6195 << "less than 2 is not supported"; 6196 }); 6197 return false; 6198 } 6199 6200 bool Changed = false; 6201 bool CandidateFound = false; 6202 InstructionCost MinCost = SLPCostThreshold.getValue(); 6203 6204 bool CompensateUseCost = 6205 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6206 return V && isa<InsertElementInst>(V); 6207 }); 6208 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6209 "Each scalar expected to have an associated InsertElement user."); 6210 6211 unsigned NextInst = 0, MaxInst = VL.size(); 6212 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6213 // No actual vectorization should happen, if number of parts is the same as 6214 // provided vectorization factor (i.e. the scalar type is used for vector 6215 // code during codegen). 6216 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6217 if (TTI->getNumberOfParts(VecTy) == VF) 6218 continue; 6219 for (unsigned I = NextInst; I < MaxInst; ++I) { 6220 unsigned OpsWidth = 0; 6221 6222 if (I + VF > MaxInst) 6223 OpsWidth = MaxInst - I; 6224 else 6225 OpsWidth = VF; 6226 6227 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6228 break; 6229 6230 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6231 // Check that a previous iteration of this loop did not delete the Value. 6232 if (llvm::any_of(Ops, [&R](Value *V) { 6233 auto *I = dyn_cast<Instruction>(V); 6234 return I && R.isDeleted(I); 6235 })) 6236 continue; 6237 6238 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6239 << "\n"); 6240 6241 R.buildTree(Ops); 6242 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6243 // TODO: check if we can allow reordering for more cases. 6244 if (AllowReorder && Order) { 6245 // TODO: reorder tree nodes without tree rebuilding. 6246 // Conceptually, there is nothing actually preventing us from trying to 6247 // reorder a larger list. In fact, we do exactly this when vectorizing 6248 // reductions. However, at this point, we only expect to get here when 6249 // there are exactly two operations. 6250 assert(Ops.size() == 2); 6251 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6252 R.buildTree(ReorderedOps, None); 6253 } 6254 if (R.isTreeTinyAndNotFullyVectorizable()) 6255 continue; 6256 6257 R.computeMinimumValueSizes(); 6258 InstructionCost Cost = R.getTreeCost(); 6259 CandidateFound = true; 6260 if (CompensateUseCost) { 6261 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6262 // rather than sum of single inserts as the latter may overestimate 6263 // cost. This work should imply improving cost estimation for extracts 6264 // that added in for external (for vectorization tree) users,i.e. that 6265 // part should also switch to same interface. 6266 // For example, the following case is projected code after SLP: 6267 // %4 = extractelement <4 x i64> %3, i32 0 6268 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6269 // %5 = extractelement <4 x i64> %3, i32 1 6270 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6271 // %6 = extractelement <4 x i64> %3, i32 2 6272 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6273 // %7 = extractelement <4 x i64> %3, i32 3 6274 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6275 // 6276 // Extracts here added by SLP in order to feed users (the inserts) of 6277 // original scalars and contribute to "ExtractCost" at cost evaluation. 6278 // The inserts in turn form sequence to build an aggregate that 6279 // detected by findBuildAggregate routine. 6280 // SLP makes an assumption that such sequence will be optimized away 6281 // later (instcombine) so it tries to compensate ExctractCost with 6282 // cost of insert sequence. 6283 // Current per element cost calculation approach is not quite accurate 6284 // and tends to create bias toward favoring vectorization. 6285 // Switching to the TTI interface might help a bit. 6286 // Alternative solution could be pattern-match to detect a no-op or 6287 // shuffle. 6288 InstructionCost UserCost = 0; 6289 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6290 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6291 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6292 UserCost += TTI->getVectorInstrCost( 6293 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6294 } 6295 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6296 << ".\n"); 6297 Cost -= UserCost; 6298 } 6299 6300 MinCost = std::min(MinCost, Cost); 6301 6302 if (Cost < -SLPCostThreshold) { 6303 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6304 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6305 cast<Instruction>(Ops[0])) 6306 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6307 << " and with tree size " 6308 << ore::NV("TreeSize", R.getTreeSize())); 6309 6310 R.vectorizeTree(); 6311 // Move to the next bundle. 6312 I += VF - 1; 6313 NextInst = I + 1; 6314 Changed = true; 6315 } 6316 } 6317 } 6318 6319 if (!Changed && CandidateFound) { 6320 R.getORE()->emit([&]() { 6321 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6322 << "List vectorization was possible but not beneficial with cost " 6323 << ore::NV("Cost", MinCost) << " >= " 6324 << ore::NV("Treshold", -SLPCostThreshold); 6325 }); 6326 } else if (!Changed) { 6327 R.getORE()->emit([&]() { 6328 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6329 << "Cannot SLP vectorize list: vectorization was impossible" 6330 << " with available vectorization factors"; 6331 }); 6332 } 6333 return Changed; 6334 } 6335 6336 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6337 if (!I) 6338 return false; 6339 6340 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6341 return false; 6342 6343 Value *P = I->getParent(); 6344 6345 // Vectorize in current basic block only. 6346 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6347 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6348 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6349 return false; 6350 6351 // Try to vectorize V. 6352 if (tryToVectorizePair(Op0, Op1, R)) 6353 return true; 6354 6355 auto *A = dyn_cast<BinaryOperator>(Op0); 6356 auto *B = dyn_cast<BinaryOperator>(Op1); 6357 // Try to skip B. 6358 if (B && B->hasOneUse()) { 6359 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6360 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6361 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6362 return true; 6363 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6364 return true; 6365 } 6366 6367 // Try to skip A. 6368 if (A && A->hasOneUse()) { 6369 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6370 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6371 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6372 return true; 6373 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6374 return true; 6375 } 6376 return false; 6377 } 6378 6379 namespace { 6380 6381 /// Model horizontal reductions. 6382 /// 6383 /// A horizontal reduction is a tree of reduction instructions that has values 6384 /// that can be put into a vector as its leaves. For example: 6385 /// 6386 /// mul mul mul mul 6387 /// \ / \ / 6388 /// + + 6389 /// \ / 6390 /// + 6391 /// This tree has "mul" as its leaf values and "+" as its reduction 6392 /// instructions. A reduction can feed into a store or a binary operation 6393 /// feeding a phi. 6394 /// ... 6395 /// \ / 6396 /// + 6397 /// | 6398 /// phi += 6399 /// 6400 /// Or: 6401 /// ... 6402 /// \ / 6403 /// + 6404 /// | 6405 /// *p = 6406 /// 6407 class HorizontalReduction { 6408 using ReductionOpsType = SmallVector<Value *, 16>; 6409 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6410 ReductionOpsListType ReductionOps; 6411 SmallVector<Value *, 32> ReducedVals; 6412 // Use map vector to make stable output. 6413 MapVector<Instruction *, Value *> ExtraArgs; 6414 WeakTrackingVH ReductionRoot; 6415 /// The type of reduction operation. 6416 RecurKind RdxKind; 6417 6418 /// Checks if instruction is associative and can be vectorized. 6419 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6420 if (Kind == RecurKind::None) 6421 return false; 6422 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6423 return true; 6424 6425 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6426 // FP min/max are associative except for NaN and -0.0. We do not 6427 // have to rule out -0.0 here because the intrinsic semantics do not 6428 // specify a fixed result for it. 6429 return I->getFastMathFlags().noNaNs(); 6430 } 6431 6432 return I->isAssociative(); 6433 } 6434 6435 /// Checks if the ParentStackElem.first should be marked as a reduction 6436 /// operation with an extra argument or as extra argument itself. 6437 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6438 Value *ExtraArg) { 6439 if (ExtraArgs.count(ParentStackElem.first)) { 6440 ExtraArgs[ParentStackElem.first] = nullptr; 6441 // We ran into something like: 6442 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6443 // The whole ParentStackElem.first should be considered as an extra value 6444 // in this case. 6445 // Do not perform analysis of remaining operands of ParentStackElem.first 6446 // instruction, this whole instruction is an extra argument. 6447 RecurKind ParentRdxKind = getRdxKind(ParentStackElem.first); 6448 ParentStackElem.second = getNumberOfOperands(ParentRdxKind); 6449 } else { 6450 // We ran into something like: 6451 // ParentStackElem.first += ... + ExtraArg + ... 6452 ExtraArgs[ParentStackElem.first] = ExtraArg; 6453 } 6454 } 6455 6456 /// Creates reduction operation with the current opcode. 6457 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6458 Value *RHS, const Twine &Name) { 6459 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6460 switch (Kind) { 6461 case RecurKind::Add: 6462 case RecurKind::Mul: 6463 case RecurKind::Or: 6464 case RecurKind::And: 6465 case RecurKind::Xor: 6466 case RecurKind::FAdd: 6467 case RecurKind::FMul: 6468 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6469 Name); 6470 case RecurKind::FMax: 6471 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6472 case RecurKind::FMin: 6473 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6474 6475 case RecurKind::SMax: { 6476 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6477 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6478 } 6479 case RecurKind::SMin: { 6480 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6481 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6482 } 6483 case RecurKind::UMax: { 6484 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6485 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6486 } 6487 case RecurKind::UMin: { 6488 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6489 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6490 } 6491 default: 6492 llvm_unreachable("Unknown reduction operation."); 6493 } 6494 } 6495 6496 /// Creates reduction operation with the current opcode with the IR flags 6497 /// from \p ReductionOps. 6498 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6499 Value *RHS, const Twine &Name, 6500 const ReductionOpsListType &ReductionOps) { 6501 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6502 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6503 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6504 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6505 propagateIRFlags(Op, ReductionOps[1]); 6506 return Op; 6507 } 6508 propagateIRFlags(Op, ReductionOps[0]); 6509 return Op; 6510 } 6511 /// Creates reduction operation with the current opcode with the IR flags 6512 /// from \p I. 6513 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6514 Value *RHS, const Twine &Name, Instruction *I) { 6515 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6516 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6517 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6518 propagateIRFlags(Sel->getCondition(), 6519 cast<SelectInst>(I)->getCondition()); 6520 } 6521 } 6522 propagateIRFlags(Op, I); 6523 return Op; 6524 } 6525 6526 static RecurKind getRdxKind(Instruction *I) { 6527 assert(I && "Expected instruction for reduction matching"); 6528 TargetTransformInfo::ReductionFlags RdxFlags; 6529 if (match(I, m_Add(m_Value(), m_Value()))) 6530 return RecurKind::Add; 6531 if (match(I, m_Mul(m_Value(), m_Value()))) 6532 return RecurKind::Mul; 6533 if (match(I, m_And(m_Value(), m_Value()))) 6534 return RecurKind::And; 6535 if (match(I, m_Or(m_Value(), m_Value()))) 6536 return RecurKind::Or; 6537 if (match(I, m_Xor(m_Value(), m_Value()))) 6538 return RecurKind::Xor; 6539 if (match(I, m_FAdd(m_Value(), m_Value()))) 6540 return RecurKind::FAdd; 6541 if (match(I, m_FMul(m_Value(), m_Value()))) 6542 return RecurKind::FMul; 6543 6544 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6545 return RecurKind::FMax; 6546 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6547 return RecurKind::FMin; 6548 6549 if (match(I, m_SMax(m_Value(), m_Value()))) 6550 return RecurKind::SMax; 6551 if (match(I, m_SMin(m_Value(), m_Value()))) 6552 return RecurKind::SMin; 6553 if (match(I, m_UMax(m_Value(), m_Value()))) 6554 return RecurKind::UMax; 6555 if (match(I, m_UMin(m_Value(), m_Value()))) 6556 return RecurKind::UMin; 6557 6558 if (auto *Select = dyn_cast<SelectInst>(I)) { 6559 // Try harder: look for min/max pattern based on instructions producing 6560 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6561 // During the intermediate stages of SLP, it's very common to have 6562 // pattern like this (since optimizeGatherSequence is run only once 6563 // at the end): 6564 // %1 = extractelement <2 x i32> %a, i32 0 6565 // %2 = extractelement <2 x i32> %a, i32 1 6566 // %cond = icmp sgt i32 %1, %2 6567 // %3 = extractelement <2 x i32> %a, i32 0 6568 // %4 = extractelement <2 x i32> %a, i32 1 6569 // %select = select i1 %cond, i32 %3, i32 %4 6570 CmpInst::Predicate Pred; 6571 Instruction *L1; 6572 Instruction *L2; 6573 6574 Value *LHS = Select->getTrueValue(); 6575 Value *RHS = Select->getFalseValue(); 6576 Value *Cond = Select->getCondition(); 6577 6578 // TODO: Support inverse predicates. 6579 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6580 if (!isa<ExtractElementInst>(RHS) || 6581 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6582 return RecurKind::None; 6583 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6584 if (!isa<ExtractElementInst>(LHS) || 6585 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6586 return RecurKind::None; 6587 } else { 6588 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6589 return RecurKind::None; 6590 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6591 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6592 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6593 return RecurKind::None; 6594 } 6595 6596 TargetTransformInfo::ReductionFlags RdxFlags; 6597 switch (Pred) { 6598 default: 6599 return RecurKind::None; 6600 case CmpInst::ICMP_SGT: 6601 case CmpInst::ICMP_SGE: 6602 return RecurKind::SMax; 6603 case CmpInst::ICMP_SLT: 6604 case CmpInst::ICMP_SLE: 6605 return RecurKind::SMin; 6606 case CmpInst::ICMP_UGT: 6607 case CmpInst::ICMP_UGE: 6608 return RecurKind::UMax; 6609 case CmpInst::ICMP_ULT: 6610 case CmpInst::ICMP_ULE: 6611 return RecurKind::UMin; 6612 } 6613 } 6614 return RecurKind::None; 6615 } 6616 6617 /// Return true if this operation is a cmp+select idiom. 6618 static bool isCmpSel(RecurKind Kind) { 6619 return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); 6620 } 6621 6622 /// Get the index of the first operand. 6623 static unsigned getFirstOperandIndex(RecurKind Kind) { 6624 // We allow calling this before 'Kind' is set, so handle that specially. 6625 if (Kind == RecurKind::None) 6626 return 0; 6627 return isCmpSel(Kind) ? 1 : 0; 6628 } 6629 6630 /// Total number of operands in the reduction operation. 6631 static unsigned getNumberOfOperands(RecurKind Kind) { 6632 return isCmpSel(Kind) ? 3 : 2; 6633 } 6634 6635 /// Checks if the instruction is in basic block \p BB. 6636 /// For a min/max reduction check that both compare and select are in \p BB. 6637 static bool hasSameParent(RecurKind Kind, Instruction *I, BasicBlock *BB, 6638 bool IsRedOp) { 6639 if (IsRedOp && isCmpSel(Kind)) { 6640 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6641 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6642 } 6643 return I->getParent() == BB; 6644 } 6645 6646 /// Expected number of uses for reduction operations/reduced values. 6647 static bool hasRequiredNumberOfUses(RecurKind Kind, Instruction *I, 6648 bool IsReductionOp) { 6649 // SelectInst must be used twice while the condition op must have single 6650 // use only. 6651 if (isCmpSel(Kind)) 6652 return I->hasNUses(2) && 6653 (!IsReductionOp || 6654 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6655 6656 // Arithmetic reduction operation must be used once only. 6657 return I->hasOneUse(); 6658 } 6659 6660 /// Initializes the list of reduction operations. 6661 void initReductionOps(RecurKind Kind) { 6662 if (isCmpSel(Kind)) 6663 ReductionOps.assign(2, ReductionOpsType()); 6664 else 6665 ReductionOps.assign(1, ReductionOpsType()); 6666 } 6667 6668 /// Add all reduction operations for the reduction instruction \p I. 6669 void addReductionOps(RecurKind Kind, Instruction *I) { 6670 assert(Kind != RecurKind::None && "Expected reduction operation."); 6671 if (isCmpSel(Kind)) { 6672 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6673 ReductionOps[1].emplace_back(I); 6674 } else { 6675 ReductionOps[0].emplace_back(I); 6676 } 6677 } 6678 6679 static Value *getLHS(RecurKind Kind, Instruction *I) { 6680 if (Kind == RecurKind::None) 6681 return nullptr; 6682 return I->getOperand(getFirstOperandIndex(Kind)); 6683 } 6684 static Value *getRHS(RecurKind Kind, Instruction *I) { 6685 if (Kind == RecurKind::None) 6686 return nullptr; 6687 return I->getOperand(getFirstOperandIndex(Kind) + 1); 6688 } 6689 6690 public: 6691 HorizontalReduction() = default; 6692 6693 /// Try to find a reduction tree. 6694 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6695 assert((!Phi || is_contained(Phi->operands(), B)) && 6696 "Phi needs to use the binary operator"); 6697 6698 RdxKind = getRdxKind(B); 6699 6700 // We could have a initial reductions that is not an add. 6701 // r *= v1 + v2 + v3 + v4 6702 // In such a case start looking for a tree rooted in the first '+'. 6703 if (Phi) { 6704 if (getLHS(RdxKind, B) == Phi) { 6705 Phi = nullptr; 6706 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 6707 if (!B) 6708 return false; 6709 RdxKind = getRdxKind(B); 6710 } else if (getRHS(RdxKind, B) == Phi) { 6711 Phi = nullptr; 6712 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 6713 if (!B) 6714 return false; 6715 RdxKind = getRdxKind(B); 6716 } 6717 } 6718 6719 if (!isVectorizable(RdxKind, B)) 6720 return false; 6721 6722 // Analyze "regular" integer/FP types for reductions - no target-specific 6723 // types or pointers. 6724 Type *Ty = B->getType(); 6725 if (!isValidElementType(Ty) || Ty->isPointerTy()) 6726 return false; 6727 6728 ReductionRoot = B; 6729 6730 // The opcode for leaf values that we perform a reduction on. 6731 // For example: load(x) + load(y) + load(z) + fptoui(w) 6732 // The leaf opcode for 'w' does not match, so we don't include it as a 6733 // potential candidate for the reduction. 6734 unsigned LeafOpcode = 0; 6735 6736 // Post order traverse the reduction tree starting at B. We only handle true 6737 // trees containing only binary operators. 6738 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6739 Stack.push_back(std::make_pair(B, getFirstOperandIndex(RdxKind))); 6740 initReductionOps(RdxKind); 6741 while (!Stack.empty()) { 6742 Instruction *TreeN = Stack.back().first; 6743 unsigned EdgeToVisit = Stack.back().second++; 6744 const RecurKind TreeRdxKind = getRdxKind(TreeN); 6745 bool IsReducedValue = TreeRdxKind != RdxKind; 6746 6747 // Postorder visit. 6748 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeRdxKind)) { 6749 if (IsReducedValue) 6750 ReducedVals.push_back(TreeN); 6751 else { 6752 auto I = ExtraArgs.find(TreeN); 6753 if (I != ExtraArgs.end() && !I->second) { 6754 // Check if TreeN is an extra argument of its parent operation. 6755 if (Stack.size() <= 1) { 6756 // TreeN can't be an extra argument as it is a root reduction 6757 // operation. 6758 return false; 6759 } 6760 // Yes, TreeN is an extra argument, do not add it to a list of 6761 // reduction operations. 6762 // Stack[Stack.size() - 2] always points to the parent operation. 6763 markExtraArg(Stack[Stack.size() - 2], TreeN); 6764 ExtraArgs.erase(TreeN); 6765 } else 6766 addReductionOps(RdxKind, TreeN); 6767 } 6768 // Retract. 6769 Stack.pop_back(); 6770 continue; 6771 } 6772 6773 // Visit left or right. 6774 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 6775 auto *I = dyn_cast<Instruction>(EdgeVal); 6776 if (!I) { 6777 // Edge value is not a reduction instruction or a leaf instruction. 6778 // (It may be a constant, function argument, or something else.) 6779 markExtraArg(Stack.back(), EdgeVal); 6780 continue; 6781 } 6782 RecurKind EdgeRdxKind = getRdxKind(I); 6783 // Continue analysis if the next operand is a reduction operation or 6784 // (possibly) a leaf value. If the leaf value opcode is not set, 6785 // the first met operation != reduction operation is considered as the 6786 // leaf opcode. 6787 // Only handle trees in the current basic block. 6788 // Each tree node needs to have minimal number of users except for the 6789 // ultimate reduction. 6790 const bool IsRdxInst = EdgeRdxKind == RdxKind; 6791 if (I != Phi && I != B && 6792 hasSameParent(RdxKind, I, B->getParent(), IsRdxInst) && 6793 hasRequiredNumberOfUses(RdxKind, I, IsRdxInst) && 6794 (!LeafOpcode || LeafOpcode == I->getOpcode() || IsRdxInst)) { 6795 if (IsRdxInst) { 6796 // We need to be able to reassociate the reduction operations. 6797 if (!isVectorizable(EdgeRdxKind, I)) { 6798 // I is an extra argument for TreeN (its parent operation). 6799 markExtraArg(Stack.back(), I); 6800 continue; 6801 } 6802 } else if (!LeafOpcode) { 6803 LeafOpcode = I->getOpcode(); 6804 } 6805 Stack.push_back(std::make_pair(I, getFirstOperandIndex(EdgeRdxKind))); 6806 continue; 6807 } 6808 // I is an extra argument for TreeN (its parent operation). 6809 markExtraArg(Stack.back(), I); 6810 } 6811 return true; 6812 } 6813 6814 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6815 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6816 // If there are a sufficient number of reduction values, reduce 6817 // to a nearby power-of-2. We can safely generate oversized 6818 // vectors and rely on the backend to split them to legal sizes. 6819 unsigned NumReducedVals = ReducedVals.size(); 6820 if (NumReducedVals < 4) 6821 return false; 6822 6823 // Intersect the fast-math-flags from all reduction operations. 6824 FastMathFlags RdxFMF; 6825 RdxFMF.set(); 6826 for (ReductionOpsType &RdxOp : ReductionOps) { 6827 for (Value *RdxVal : RdxOp) { 6828 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 6829 RdxFMF &= FPMO->getFastMathFlags(); 6830 } 6831 } 6832 6833 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6834 Builder.setFastMathFlags(RdxFMF); 6835 6836 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6837 // The same extra argument may be used several times, so log each attempt 6838 // to use it. 6839 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6840 assert(Pair.first && "DebugLoc must be set."); 6841 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6842 } 6843 6844 // The compare instruction of a min/max is the insertion point for new 6845 // instructions and may be replaced with a new compare instruction. 6846 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6847 assert(isa<SelectInst>(RdxRootInst) && 6848 "Expected min/max reduction to have select root instruction"); 6849 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6850 assert(isa<Instruction>(ScalarCond) && 6851 "Expected min/max reduction to have compare condition"); 6852 return cast<Instruction>(ScalarCond); 6853 }; 6854 6855 // The reduction root is used as the insertion point for new instructions, 6856 // so set it as externally used to prevent it from being deleted. 6857 ExternallyUsedValues[ReductionRoot]; 6858 SmallVector<Value *, 16> IgnoreList; 6859 for (ReductionOpsType &RdxOp : ReductionOps) 6860 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6861 6862 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6863 if (NumReducedVals > ReduxWidth) { 6864 // In the loop below, we are building a tree based on a window of 6865 // 'ReduxWidth' values. 6866 // If the operands of those values have common traits (compare predicate, 6867 // constant operand, etc), then we want to group those together to 6868 // minimize the cost of the reduction. 6869 6870 // TODO: This should be extended to count common operands for 6871 // compares and binops. 6872 6873 // Step 1: Count the number of times each compare predicate occurs. 6874 SmallDenseMap<unsigned, unsigned> PredCountMap; 6875 for (Value *RdxVal : ReducedVals) { 6876 CmpInst::Predicate Pred; 6877 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6878 ++PredCountMap[Pred]; 6879 } 6880 // Step 2: Sort the values so the most common predicates come first. 6881 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6882 CmpInst::Predicate PredA, PredB; 6883 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6884 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6885 return PredCountMap[PredA] > PredCountMap[PredB]; 6886 } 6887 return false; 6888 }); 6889 } 6890 6891 Value *VectorizedTree = nullptr; 6892 unsigned i = 0; 6893 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6894 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6895 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6896 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6897 if (Order) { 6898 assert(Order->size() == VL.size() && 6899 "Order size must be the same as number of vectorized " 6900 "instructions."); 6901 // TODO: reorder tree nodes without tree rebuilding. 6902 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6903 llvm::transform(*Order, ReorderedOps.begin(), 6904 [VL](const unsigned Idx) { return VL[Idx]; }); 6905 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6906 } 6907 if (V.isTreeTinyAndNotFullyVectorizable()) 6908 break; 6909 if (V.isLoadCombineReductionCandidate(RdxKind)) 6910 break; 6911 6912 V.computeMinimumValueSizes(); 6913 6914 // Estimate cost. 6915 InstructionCost TreeCost = V.getTreeCost(); 6916 InstructionCost ReductionCost = 6917 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6918 InstructionCost Cost = TreeCost + ReductionCost; 6919 if (!Cost.isValid()) { 6920 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 6921 return false; 6922 } 6923 if (Cost >= -SLPCostThreshold) { 6924 V.getORE()->emit([&]() { 6925 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6926 cast<Instruction>(VL[0])) 6927 << "Vectorizing horizontal reduction is possible" 6928 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6929 << " and threshold " 6930 << ore::NV("Threshold", -SLPCostThreshold); 6931 }); 6932 break; 6933 } 6934 6935 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6936 << Cost << ". (HorRdx)\n"); 6937 V.getORE()->emit([&]() { 6938 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6939 cast<Instruction>(VL[0])) 6940 << "Vectorized horizontal reduction with cost " 6941 << ore::NV("Cost", Cost) << " and with tree size " 6942 << ore::NV("TreeSize", V.getTreeSize()); 6943 }); 6944 6945 // Vectorize a tree. 6946 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6947 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6948 6949 // Emit a reduction. If the root is a select (min/max idiom), the insert 6950 // point is the compare condition of that select. 6951 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6952 if (isCmpSel(RdxKind)) 6953 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6954 else 6955 Builder.SetInsertPoint(RdxRootInst); 6956 6957 Value *ReducedSubTree = 6958 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6959 6960 if (!VectorizedTree) { 6961 // Initialize the final value in the reduction. 6962 VectorizedTree = ReducedSubTree; 6963 } else { 6964 // Update the final value in the reduction. 6965 Builder.SetCurrentDebugLocation(Loc); 6966 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 6967 ReducedSubTree, "op.rdx", ReductionOps); 6968 } 6969 i += ReduxWidth; 6970 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6971 } 6972 6973 if (VectorizedTree) { 6974 // Finish the reduction. 6975 for (; i < NumReducedVals; ++i) { 6976 auto *I = cast<Instruction>(ReducedVals[i]); 6977 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6978 VectorizedTree = 6979 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 6980 } 6981 for (auto &Pair : ExternallyUsedValues) { 6982 // Add each externally used value to the final reduction. 6983 for (auto *I : Pair.second) { 6984 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6985 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 6986 Pair.first, "op.extra", I); 6987 } 6988 } 6989 6990 // Update users. For a min/max reduction that ends with a compare and 6991 // select, we also have to RAUW for the compare instruction feeding the 6992 // reduction root. That's because the original compare may have extra uses 6993 // besides the final select of the reduction. 6994 if (isCmpSel(RdxKind)) { 6995 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6996 Instruction *ScalarCmp = 6997 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6998 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6999 } 7000 } 7001 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7002 7003 // Mark all scalar reduction ops for deletion, they are replaced by the 7004 // vector reductions. 7005 V.eraseInstructions(IgnoreList); 7006 } 7007 return VectorizedTree != nullptr; 7008 } 7009 7010 unsigned numReductionValues() const { return ReducedVals.size(); } 7011 7012 private: 7013 /// Calculate the cost of a reduction. 7014 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7015 Value *FirstReducedVal, 7016 unsigned ReduxWidth) { 7017 Type *ScalarTy = FirstReducedVal->getType(); 7018 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7019 InstructionCost VectorCost, ScalarCost; 7020 switch (RdxKind) { 7021 case RecurKind::Add: 7022 case RecurKind::Mul: 7023 case RecurKind::Or: 7024 case RecurKind::And: 7025 case RecurKind::Xor: 7026 case RecurKind::FAdd: 7027 case RecurKind::FMul: { 7028 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7029 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7030 /*IsPairwiseForm=*/false); 7031 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7032 break; 7033 } 7034 case RecurKind::FMax: 7035 case RecurKind::FMin: { 7036 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7037 VectorCost = 7038 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7039 /*pairwise=*/false, /*unsigned=*/false); 7040 ScalarCost = 7041 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7042 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7043 CmpInst::makeCmpResultType(ScalarTy)); 7044 break; 7045 } 7046 case RecurKind::SMax: 7047 case RecurKind::SMin: 7048 case RecurKind::UMax: 7049 case RecurKind::UMin: { 7050 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7051 bool IsUnsigned = 7052 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7053 VectorCost = 7054 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7055 /*IsPairwiseForm=*/false, IsUnsigned); 7056 ScalarCost = 7057 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7058 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7059 CmpInst::makeCmpResultType(ScalarTy)); 7060 break; 7061 } 7062 default: 7063 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7064 } 7065 7066 // Scalar cost is repeated for N-1 elements. 7067 ScalarCost *= (ReduxWidth - 1); 7068 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7069 << " for reduction that starts with " << *FirstReducedVal 7070 << " (It is a splitting reduction)\n"); 7071 return VectorCost - ScalarCost; 7072 } 7073 7074 /// Emit a horizontal reduction of the vectorized value. 7075 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7076 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7077 assert(VectorizedValue && "Need to have a vectorized tree node"); 7078 assert(isPowerOf2_32(ReduxWidth) && 7079 "We only handle power-of-two reductions for now"); 7080 7081 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7082 ReductionOps.back()); 7083 } 7084 }; 7085 7086 } // end anonymous namespace 7087 7088 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7089 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7090 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7091 7092 unsigned AggregateSize = 1; 7093 auto *IV = cast<InsertValueInst>(InsertInst); 7094 Type *CurrentType = IV->getType(); 7095 do { 7096 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7097 for (auto *Elt : ST->elements()) 7098 if (Elt != ST->getElementType(0)) // check homogeneity 7099 return None; 7100 AggregateSize *= ST->getNumElements(); 7101 CurrentType = ST->getElementType(0); 7102 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7103 AggregateSize *= AT->getNumElements(); 7104 CurrentType = AT->getElementType(); 7105 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7106 AggregateSize *= VT->getNumElements(); 7107 return AggregateSize; 7108 } else if (CurrentType->isSingleValueType()) { 7109 return AggregateSize; 7110 } else { 7111 return None; 7112 } 7113 } while (true); 7114 } 7115 7116 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7117 unsigned OperandOffset) { 7118 unsigned OperandIndex = OperandOffset; 7119 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7120 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7121 auto *VT = cast<FixedVectorType>(IE->getType()); 7122 OperandIndex *= VT->getNumElements(); 7123 OperandIndex += CI->getZExtValue(); 7124 return OperandIndex; 7125 } 7126 return None; 7127 } 7128 7129 auto *IV = cast<InsertValueInst>(InsertInst); 7130 Type *CurrentType = IV->getType(); 7131 for (unsigned int Index : IV->indices()) { 7132 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7133 OperandIndex *= ST->getNumElements(); 7134 CurrentType = ST->getElementType(Index); 7135 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7136 OperandIndex *= AT->getNumElements(); 7137 CurrentType = AT->getElementType(); 7138 } else { 7139 return None; 7140 } 7141 OperandIndex += Index; 7142 } 7143 return OperandIndex; 7144 } 7145 7146 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7147 TargetTransformInfo *TTI, 7148 SmallVectorImpl<Value *> &BuildVectorOpds, 7149 SmallVectorImpl<Value *> &InsertElts, 7150 unsigned OperandOffset) { 7151 do { 7152 Value *InsertedOperand = LastInsertInst->getOperand(1); 7153 Optional<unsigned> OperandIndex = 7154 getOperandIndex(LastInsertInst, OperandOffset); 7155 if (!OperandIndex) 7156 return false; 7157 if (isa<InsertElementInst>(InsertedOperand) || 7158 isa<InsertValueInst>(InsertedOperand)) { 7159 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7160 BuildVectorOpds, InsertElts, *OperandIndex)) 7161 return false; 7162 } else { 7163 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7164 InsertElts[*OperandIndex] = LastInsertInst; 7165 } 7166 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7167 return true; 7168 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7169 } while (LastInsertInst != nullptr && 7170 (isa<InsertValueInst>(LastInsertInst) || 7171 isa<InsertElementInst>(LastInsertInst)) && 7172 LastInsertInst->hasOneUse()); 7173 return false; 7174 } 7175 7176 /// Recognize construction of vectors like 7177 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7178 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7179 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7180 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7181 /// starting from the last insertelement or insertvalue instruction. 7182 /// 7183 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7184 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7185 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7186 /// 7187 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7188 /// 7189 /// \return true if it matches. 7190 static bool findBuildAggregate(Instruction *LastInsertInst, 7191 TargetTransformInfo *TTI, 7192 SmallVectorImpl<Value *> &BuildVectorOpds, 7193 SmallVectorImpl<Value *> &InsertElts) { 7194 7195 assert((isa<InsertElementInst>(LastInsertInst) || 7196 isa<InsertValueInst>(LastInsertInst)) && 7197 "Expected insertelement or insertvalue instruction!"); 7198 7199 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7200 "Expected empty result vectors!"); 7201 7202 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7203 if (!AggregateSize) 7204 return false; 7205 BuildVectorOpds.resize(*AggregateSize); 7206 InsertElts.resize(*AggregateSize); 7207 7208 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7209 0)) { 7210 llvm::erase_value(BuildVectorOpds, nullptr); 7211 llvm::erase_value(InsertElts, nullptr); 7212 if (BuildVectorOpds.size() >= 2) 7213 return true; 7214 } 7215 7216 return false; 7217 } 7218 7219 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7220 return V->getType() < V2->getType(); 7221 } 7222 7223 /// Try and get a reduction value from a phi node. 7224 /// 7225 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7226 /// if they come from either \p ParentBB or a containing loop latch. 7227 /// 7228 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7229 /// if not possible. 7230 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7231 BasicBlock *ParentBB, LoopInfo *LI) { 7232 // There are situations where the reduction value is not dominated by the 7233 // reduction phi. Vectorizing such cases has been reported to cause 7234 // miscompiles. See PR25787. 7235 auto DominatedReduxValue = [&](Value *R) { 7236 return isa<Instruction>(R) && 7237 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7238 }; 7239 7240 Value *Rdx = nullptr; 7241 7242 // Return the incoming value if it comes from the same BB as the phi node. 7243 if (P->getIncomingBlock(0) == ParentBB) { 7244 Rdx = P->getIncomingValue(0); 7245 } else if (P->getIncomingBlock(1) == ParentBB) { 7246 Rdx = P->getIncomingValue(1); 7247 } 7248 7249 if (Rdx && DominatedReduxValue(Rdx)) 7250 return Rdx; 7251 7252 // Otherwise, check whether we have a loop latch to look at. 7253 Loop *BBL = LI->getLoopFor(ParentBB); 7254 if (!BBL) 7255 return nullptr; 7256 BasicBlock *BBLatch = BBL->getLoopLatch(); 7257 if (!BBLatch) 7258 return nullptr; 7259 7260 // There is a loop latch, return the incoming value if it comes from 7261 // that. This reduction pattern occasionally turns up. 7262 if (P->getIncomingBlock(0) == BBLatch) { 7263 Rdx = P->getIncomingValue(0); 7264 } else if (P->getIncomingBlock(1) == BBLatch) { 7265 Rdx = P->getIncomingValue(1); 7266 } 7267 7268 if (Rdx && DominatedReduxValue(Rdx)) 7269 return Rdx; 7270 7271 return nullptr; 7272 } 7273 7274 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7275 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7276 return true; 7277 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7278 return true; 7279 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7280 return true; 7281 return false; 7282 } 7283 7284 /// Attempt to reduce a horizontal reduction. 7285 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7286 /// with reduction operators \a Root (or one of its operands) in a basic block 7287 /// \a BB, then check if it can be done. If horizontal reduction is not found 7288 /// and root instruction is a binary operation, vectorization of the operands is 7289 /// attempted. 7290 /// \returns true if a horizontal reduction was matched and reduced or operands 7291 /// of one of the binary instruction were vectorized. 7292 /// \returns false if a horizontal reduction was not matched (or not possible) 7293 /// or no vectorization of any binary operation feeding \a Root instruction was 7294 /// performed. 7295 static bool tryToVectorizeHorReductionOrInstOperands( 7296 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7297 TargetTransformInfo *TTI, 7298 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7299 if (!ShouldVectorizeHor) 7300 return false; 7301 7302 if (!Root) 7303 return false; 7304 7305 if (Root->getParent() != BB || isa<PHINode>(Root)) 7306 return false; 7307 // Start analysis starting from Root instruction. If horizontal reduction is 7308 // found, try to vectorize it. If it is not a horizontal reduction or 7309 // vectorization is not possible or not effective, and currently analyzed 7310 // instruction is a binary operation, try to vectorize the operands, using 7311 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7312 // the same procedure considering each operand as a possible root of the 7313 // horizontal reduction. 7314 // Interrupt the process if the Root instruction itself was vectorized or all 7315 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7316 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7317 SmallPtrSet<Value *, 8> VisitedInstrs; 7318 bool Res = false; 7319 while (!Stack.empty()) { 7320 Instruction *Inst; 7321 unsigned Level; 7322 std::tie(Inst, Level) = Stack.pop_back_val(); 7323 Value *B0, *B1; 7324 bool IsBinop = matchRdxBop(Inst, B0, B1); 7325 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7326 if (IsBinop || IsSelect) { 7327 HorizontalReduction HorRdx; 7328 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7329 if (HorRdx.tryToReduce(R, TTI)) { 7330 Res = true; 7331 // Set P to nullptr to avoid re-analysis of phi node in 7332 // matchAssociativeReduction function unless this is the root node. 7333 P = nullptr; 7334 continue; 7335 } 7336 } 7337 if (P && IsBinop) { 7338 Inst = dyn_cast<Instruction>(B0); 7339 if (Inst == P) 7340 Inst = dyn_cast<Instruction>(B1); 7341 if (!Inst) { 7342 // Set P to nullptr to avoid re-analysis of phi node in 7343 // matchAssociativeReduction function unless this is the root node. 7344 P = nullptr; 7345 continue; 7346 } 7347 } 7348 } 7349 // Set P to nullptr to avoid re-analysis of phi node in 7350 // matchAssociativeReduction function unless this is the root node. 7351 P = nullptr; 7352 if (Vectorize(Inst, R)) { 7353 Res = true; 7354 continue; 7355 } 7356 7357 // Try to vectorize operands. 7358 // Continue analysis for the instruction from the same basic block only to 7359 // save compile time. 7360 if (++Level < RecursionMaxDepth) 7361 for (auto *Op : Inst->operand_values()) 7362 if (VisitedInstrs.insert(Op).second) 7363 if (auto *I = dyn_cast<Instruction>(Op)) 7364 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7365 Stack.emplace_back(I, Level); 7366 } 7367 return Res; 7368 } 7369 7370 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7371 BasicBlock *BB, BoUpSLP &R, 7372 TargetTransformInfo *TTI) { 7373 auto *I = dyn_cast_or_null<Instruction>(V); 7374 if (!I) 7375 return false; 7376 7377 if (!isa<BinaryOperator>(I)) 7378 P = nullptr; 7379 // Try to match and vectorize a horizontal reduction. 7380 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7381 return tryToVectorize(I, R); 7382 }; 7383 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7384 ExtraVectorization); 7385 } 7386 7387 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7388 BasicBlock *BB, BoUpSLP &R) { 7389 const DataLayout &DL = BB->getModule()->getDataLayout(); 7390 if (!R.canMapToVector(IVI->getType(), DL)) 7391 return false; 7392 7393 SmallVector<Value *, 16> BuildVectorOpds; 7394 SmallVector<Value *, 16> BuildVectorInsts; 7395 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7396 return false; 7397 7398 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7399 // Aggregate value is unlikely to be processed in vector register, we need to 7400 // extract scalars into scalar registers, so NeedExtraction is set true. 7401 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7402 BuildVectorInsts); 7403 } 7404 7405 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7406 BasicBlock *BB, BoUpSLP &R) { 7407 SmallVector<Value *, 16> BuildVectorInsts; 7408 SmallVector<Value *, 16> BuildVectorOpds; 7409 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7410 (llvm::all_of(BuildVectorOpds, 7411 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7412 isShuffle(BuildVectorOpds))) 7413 return false; 7414 7415 // Vectorize starting with the build vector operands ignoring the BuildVector 7416 // instructions for the purpose of scheduling and user extraction. 7417 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7418 BuildVectorInsts); 7419 } 7420 7421 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7422 BoUpSLP &R) { 7423 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7424 return true; 7425 7426 bool OpsChanged = false; 7427 for (int Idx = 0; Idx < 2; ++Idx) { 7428 OpsChanged |= 7429 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7430 } 7431 return OpsChanged; 7432 } 7433 7434 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7435 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7436 bool OpsChanged = false; 7437 for (auto *I : reverse(Instructions)) { 7438 if (R.isDeleted(I)) 7439 continue; 7440 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7441 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7442 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7443 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7444 else if (auto *CI = dyn_cast<CmpInst>(I)) 7445 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7446 } 7447 Instructions.clear(); 7448 return OpsChanged; 7449 } 7450 7451 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7452 bool Changed = false; 7453 SmallVector<Value *, 4> Incoming; 7454 SmallPtrSet<Value *, 16> VisitedInstrs; 7455 7456 bool HaveVectorizedPhiNodes = true; 7457 while (HaveVectorizedPhiNodes) { 7458 HaveVectorizedPhiNodes = false; 7459 7460 // Collect the incoming values from the PHIs. 7461 Incoming.clear(); 7462 for (Instruction &I : *BB) { 7463 PHINode *P = dyn_cast<PHINode>(&I); 7464 if (!P) 7465 break; 7466 7467 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7468 Incoming.push_back(P); 7469 } 7470 7471 // Sort by type. 7472 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7473 7474 // Try to vectorize elements base on their type. 7475 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7476 E = Incoming.end(); 7477 IncIt != E;) { 7478 7479 // Look for the next elements with the same type. 7480 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7481 while (SameTypeIt != E && 7482 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7483 VisitedInstrs.insert(*SameTypeIt); 7484 ++SameTypeIt; 7485 } 7486 7487 // Try to vectorize them. 7488 unsigned NumElts = (SameTypeIt - IncIt); 7489 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7490 << NumElts << ")\n"); 7491 // The order in which the phi nodes appear in the program does not matter. 7492 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7493 // is done when there are exactly two elements since tryToVectorizeList 7494 // asserts that there are only two values when AllowReorder is true. 7495 bool AllowReorder = NumElts == 2; 7496 if (NumElts > 1 && 7497 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7498 // Success start over because instructions might have been changed. 7499 HaveVectorizedPhiNodes = true; 7500 Changed = true; 7501 break; 7502 } 7503 7504 // Start over at the next instruction of a different type (or the end). 7505 IncIt = SameTypeIt; 7506 } 7507 } 7508 7509 VisitedInstrs.clear(); 7510 7511 SmallVector<Instruction *, 8> PostProcessInstructions; 7512 SmallDenseSet<Instruction *, 4> KeyNodes; 7513 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7514 // Skip instructions with scalable type. The num of elements is unknown at 7515 // compile-time for scalable type. 7516 if (isa<ScalableVectorType>(it->getType())) 7517 continue; 7518 7519 // Skip instructions marked for the deletion. 7520 if (R.isDeleted(&*it)) 7521 continue; 7522 // We may go through BB multiple times so skip the one we have checked. 7523 if (!VisitedInstrs.insert(&*it).second) { 7524 if (it->use_empty() && KeyNodes.contains(&*it) && 7525 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7526 // We would like to start over since some instructions are deleted 7527 // and the iterator may become invalid value. 7528 Changed = true; 7529 it = BB->begin(); 7530 e = BB->end(); 7531 } 7532 continue; 7533 } 7534 7535 if (isa<DbgInfoIntrinsic>(it)) 7536 continue; 7537 7538 // Try to vectorize reductions that use PHINodes. 7539 if (PHINode *P = dyn_cast<PHINode>(it)) { 7540 // Check that the PHI is a reduction PHI. 7541 if (P->getNumIncomingValues() == 2) { 7542 // Try to match and vectorize a horizontal reduction. 7543 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7544 TTI)) { 7545 Changed = true; 7546 it = BB->begin(); 7547 e = BB->end(); 7548 continue; 7549 } 7550 } 7551 // Try to vectorize the incoming values of the PHI, to catch reductions 7552 // that feed into PHIs. 7553 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7554 // Skip if the incoming block is the current BB for now. Also, bypass 7555 // unreachable IR for efficiency and to avoid crashing. 7556 // TODO: Collect the skipped incoming values and try to vectorize them 7557 // after processing BB. 7558 if (BB == P->getIncomingBlock(I) || 7559 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7560 continue; 7561 7562 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7563 P->getIncomingBlock(I), R, TTI); 7564 } 7565 continue; 7566 } 7567 7568 // Ran into an instruction without users, like terminator, or function call 7569 // with ignored return value, store. Ignore unused instructions (basing on 7570 // instruction type, except for CallInst and InvokeInst). 7571 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7572 isa<InvokeInst>(it))) { 7573 KeyNodes.insert(&*it); 7574 bool OpsChanged = false; 7575 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7576 for (auto *V : it->operand_values()) { 7577 // Try to match and vectorize a horizontal reduction. 7578 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7579 } 7580 } 7581 // Start vectorization of post-process list of instructions from the 7582 // top-tree instructions to try to vectorize as many instructions as 7583 // possible. 7584 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7585 if (OpsChanged) { 7586 // We would like to start over since some instructions are deleted 7587 // and the iterator may become invalid value. 7588 Changed = true; 7589 it = BB->begin(); 7590 e = BB->end(); 7591 continue; 7592 } 7593 } 7594 7595 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7596 isa<InsertValueInst>(it)) 7597 PostProcessInstructions.push_back(&*it); 7598 } 7599 7600 return Changed; 7601 } 7602 7603 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7604 auto Changed = false; 7605 for (auto &Entry : GEPs) { 7606 // If the getelementptr list has fewer than two elements, there's nothing 7607 // to do. 7608 if (Entry.second.size() < 2) 7609 continue; 7610 7611 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7612 << Entry.second.size() << ".\n"); 7613 7614 // Process the GEP list in chunks suitable for the target's supported 7615 // vector size. If a vector register can't hold 1 element, we are done. We 7616 // are trying to vectorize the index computations, so the maximum number of 7617 // elements is based on the size of the index expression, rather than the 7618 // size of the GEP itself (the target's pointer size). 7619 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7620 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7621 if (MaxVecRegSize < EltSize) 7622 continue; 7623 7624 unsigned MaxElts = MaxVecRegSize / EltSize; 7625 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7626 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7627 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7628 7629 // Initialize a set a candidate getelementptrs. Note that we use a 7630 // SetVector here to preserve program order. If the index computations 7631 // are vectorizable and begin with loads, we want to minimize the chance 7632 // of having to reorder them later. 7633 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7634 7635 // Some of the candidates may have already been vectorized after we 7636 // initially collected them. If so, they are marked as deleted, so remove 7637 // them from the set of candidates. 7638 Candidates.remove_if( 7639 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7640 7641 // Remove from the set of candidates all pairs of getelementptrs with 7642 // constant differences. Such getelementptrs are likely not good 7643 // candidates for vectorization in a bottom-up phase since one can be 7644 // computed from the other. We also ensure all candidate getelementptr 7645 // indices are unique. 7646 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7647 auto *GEPI = GEPList[I]; 7648 if (!Candidates.count(GEPI)) 7649 continue; 7650 auto *SCEVI = SE->getSCEV(GEPList[I]); 7651 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7652 auto *GEPJ = GEPList[J]; 7653 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7654 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7655 Candidates.remove(GEPI); 7656 Candidates.remove(GEPJ); 7657 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7658 Candidates.remove(GEPJ); 7659 } 7660 } 7661 } 7662 7663 // We break out of the above computation as soon as we know there are 7664 // fewer than two candidates remaining. 7665 if (Candidates.size() < 2) 7666 continue; 7667 7668 // Add the single, non-constant index of each candidate to the bundle. We 7669 // ensured the indices met these constraints when we originally collected 7670 // the getelementptrs. 7671 SmallVector<Value *, 16> Bundle(Candidates.size()); 7672 auto BundleIndex = 0u; 7673 for (auto *V : Candidates) { 7674 auto *GEP = cast<GetElementPtrInst>(V); 7675 auto *GEPIdx = GEP->idx_begin()->get(); 7676 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7677 Bundle[BundleIndex++] = GEPIdx; 7678 } 7679 7680 // Try and vectorize the indices. We are currently only interested in 7681 // gather-like cases of the form: 7682 // 7683 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7684 // 7685 // where the loads of "a", the loads of "b", and the subtractions can be 7686 // performed in parallel. It's likely that detecting this pattern in a 7687 // bottom-up phase will be simpler and less costly than building a 7688 // full-blown top-down phase beginning at the consecutive loads. 7689 Changed |= tryToVectorizeList(Bundle, R); 7690 } 7691 } 7692 return Changed; 7693 } 7694 7695 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7696 bool Changed = false; 7697 // Attempt to sort and vectorize each of the store-groups. 7698 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7699 ++it) { 7700 if (it->second.size() < 2) 7701 continue; 7702 7703 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7704 << it->second.size() << ".\n"); 7705 7706 Changed |= vectorizeStores(it->second, R); 7707 } 7708 return Changed; 7709 } 7710 7711 char SLPVectorizer::ID = 0; 7712 7713 static const char lv_name[] = "SLP Vectorizer"; 7714 7715 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7716 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7717 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7718 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7719 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7720 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7721 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7722 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7723 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7724 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7725 7726 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7727