1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/NoFolder.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/VectorUtils.h" 43 #include <algorithm> 44 #include <map> 45 46 using namespace llvm; 47 48 #define SV_NAME "slp-vectorizer" 49 #define DEBUG_TYPE "SLP" 50 51 static cl::opt<int> 52 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 53 cl::desc("Only vectorize if you gain more than this " 54 "number ")); 55 56 static cl::opt<bool> 57 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 58 cl::desc("Attempt to vectorize horizontal reductions")); 59 60 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 61 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 62 cl::desc( 63 "Attempt to vectorize horizontal reductions feeding into a store")); 64 65 namespace { 66 67 static const unsigned MinVecRegSize = 128; 68 69 static const unsigned RecursionMaxDepth = 12; 70 71 /// A helper class for numbering instructions in multiple blocks. 72 /// Numbers start at zero for each basic block. 73 struct BlockNumbering { 74 75 BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {} 76 77 void numberInstructions() { 78 unsigned Loc = 0; 79 InstrIdx.clear(); 80 InstrVec.clear(); 81 // Number the instructions in the block. 82 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 83 InstrIdx[it] = Loc++; 84 InstrVec.push_back(it); 85 assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation"); 86 } 87 Valid = true; 88 } 89 90 int getIndex(Instruction *I) { 91 assert(I->getParent() == BB && "Invalid instruction"); 92 if (!Valid) 93 numberInstructions(); 94 assert(InstrIdx.count(I) && "Unknown instruction"); 95 return InstrIdx[I]; 96 } 97 98 Instruction *getInstruction(unsigned loc) { 99 if (!Valid) 100 numberInstructions(); 101 assert(InstrVec.size() > loc && "Invalid Index"); 102 return InstrVec[loc]; 103 } 104 105 void forget() { Valid = false; } 106 107 private: 108 /// The block we are numbering. 109 BasicBlock *BB; 110 /// Is the block numbered. 111 bool Valid; 112 /// Maps instructions to numbers and back. 113 SmallDenseMap<Instruction *, int> InstrIdx; 114 /// Maps integers to Instructions. 115 SmallVector<Instruction *, 32> InstrVec; 116 }; 117 118 /// \returns the parent basic block if all of the instructions in \p VL 119 /// are in the same block or null otherwise. 120 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return nullptr; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return nullptr; 129 130 if (BB != I->getParent()) 131 return nullptr; 132 } 133 return BB; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (unsigned i = 0, e = VL.size(); i < e; ++i) 139 if (!isa<Constant>(VL[i])) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 /// \returns The opcode if all of the Instructions in \p VL have the same 153 /// opcode, or zero. 154 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 155 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 156 if (!I0) 157 return 0; 158 unsigned Opcode = I0->getOpcode(); 159 for (int i = 1, e = VL.size(); i < e; i++) { 160 Instruction *I = dyn_cast<Instruction>(VL[i]); 161 if (!I || Opcode != I->getOpcode()) 162 return 0; 163 } 164 return Opcode; 165 } 166 167 /// \returns \p I after propagating metadata from \p VL. 168 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 169 Instruction *I0 = cast<Instruction>(VL[0]); 170 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 171 I0->getAllMetadataOtherThanDebugLoc(Metadata); 172 173 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 174 unsigned Kind = Metadata[i].first; 175 MDNode *MD = Metadata[i].second; 176 177 for (int i = 1, e = VL.size(); MD && i != e; i++) { 178 Instruction *I = cast<Instruction>(VL[i]); 179 MDNode *IMD = I->getMetadata(Kind); 180 181 switch (Kind) { 182 default: 183 MD = nullptr; // Remove unknown metadata 184 break; 185 case LLVMContext::MD_tbaa: 186 MD = MDNode::getMostGenericTBAA(MD, IMD); 187 break; 188 case LLVMContext::MD_fpmath: 189 MD = MDNode::getMostGenericFPMath(MD, IMD); 190 break; 191 } 192 } 193 I->setMetadata(Kind, MD); 194 } 195 return I; 196 } 197 198 /// \returns The type that all of the values in \p VL have or null if there 199 /// are different types. 200 static Type* getSameType(ArrayRef<Value *> VL) { 201 Type *Ty = VL[0]->getType(); 202 for (int i = 1, e = VL.size(); i < e; i++) 203 if (VL[i]->getType() != Ty) 204 return nullptr; 205 206 return Ty; 207 } 208 209 /// \returns True if the ExtractElement instructions in VL can be vectorized 210 /// to use the original vector. 211 static bool CanReuseExtract(ArrayRef<Value *> VL) { 212 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 213 // Check if all of the extracts come from the same vector and from the 214 // correct offset. 215 Value *VL0 = VL[0]; 216 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 217 Value *Vec = E0->getOperand(0); 218 219 // We have to extract from the same vector type. 220 unsigned NElts = Vec->getType()->getVectorNumElements(); 221 222 if (NElts != VL.size()) 223 return false; 224 225 // Check that all of the indices extract from the correct offset. 226 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 227 if (!CI || CI->getZExtValue()) 228 return false; 229 230 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 231 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 232 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 233 234 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 235 return false; 236 } 237 238 return true; 239 } 240 241 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 242 SmallVectorImpl<Value *> &Left, 243 SmallVectorImpl<Value *> &Right) { 244 245 SmallVector<Value *, 16> OrigLeft, OrigRight; 246 247 bool AllSameOpcodeLeft = true; 248 bool AllSameOpcodeRight = true; 249 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 250 Instruction *I = cast<Instruction>(VL[i]); 251 Value *V0 = I->getOperand(0); 252 Value *V1 = I->getOperand(1); 253 254 OrigLeft.push_back(V0); 255 OrigRight.push_back(V1); 256 257 Instruction *I0 = dyn_cast<Instruction>(V0); 258 Instruction *I1 = dyn_cast<Instruction>(V1); 259 260 // Check whether all operands on one side have the same opcode. In this case 261 // we want to preserve the original order and not make things worse by 262 // reordering. 263 AllSameOpcodeLeft = I0; 264 AllSameOpcodeRight = I1; 265 266 if (i && AllSameOpcodeLeft) { 267 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 268 if(P0->getOpcode() != I0->getOpcode()) 269 AllSameOpcodeLeft = false; 270 } else 271 AllSameOpcodeLeft = false; 272 } 273 if (i && AllSameOpcodeRight) { 274 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 275 if(P1->getOpcode() != I1->getOpcode()) 276 AllSameOpcodeRight = false; 277 } else 278 AllSameOpcodeRight = false; 279 } 280 281 // Sort two opcodes. In the code below we try to preserve the ability to use 282 // broadcast of values instead of individual inserts. 283 // vl1 = load 284 // vl2 = phi 285 // vr1 = load 286 // vr2 = vr2 287 // = vl1 x vr1 288 // = vl2 x vr2 289 // If we just sorted according to opcode we would leave the first line in 290 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 291 // = vl1 x vr1 292 // = vr2 x vl2 293 // Because vr2 and vr1 are from the same load we loose the opportunity of a 294 // broadcast for the packed right side in the backend: we have [vr1, vl2] 295 // instead of [vr1, vr2=vr1]. 296 if (I0 && I1) { 297 if(!i && I0->getOpcode() > I1->getOpcode()) { 298 Left.push_back(I1); 299 Right.push_back(I0); 300 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 301 // Try not to destroy a broad cast for no apparent benefit. 302 Left.push_back(I1); 303 Right.push_back(I0); 304 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 305 // Try preserve broadcasts. 306 Left.push_back(I1); 307 Right.push_back(I0); 308 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 309 // Try preserve broadcasts. 310 Left.push_back(I1); 311 Right.push_back(I0); 312 } else { 313 Left.push_back(I0); 314 Right.push_back(I1); 315 } 316 continue; 317 } 318 // One opcode, put the instruction on the right. 319 if (I0) { 320 Left.push_back(V1); 321 Right.push_back(I0); 322 continue; 323 } 324 Left.push_back(V0); 325 Right.push_back(V1); 326 } 327 328 bool LeftBroadcast = isSplat(Left); 329 bool RightBroadcast = isSplat(Right); 330 331 // Don't reorder if the operands where good to begin with. 332 if (!(LeftBroadcast || RightBroadcast) && 333 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 334 Left = OrigLeft; 335 Right = OrigRight; 336 } 337 } 338 339 /// Bottom Up SLP Vectorizer. 340 class BoUpSLP { 341 public: 342 typedef SmallVector<Value *, 8> ValueList; 343 typedef SmallVector<Instruction *, 16> InstrList; 344 typedef SmallPtrSet<Value *, 16> ValueSet; 345 typedef SmallVector<StoreInst *, 8> StoreList; 346 347 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl, 348 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, 349 LoopInfo *Li, DominatorTree *Dt) 350 : F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 351 Builder(Se->getContext()) {} 352 353 /// \brief Vectorize the tree that starts with the elements in \p VL. 354 /// Returns the vectorized root. 355 Value *vectorizeTree(); 356 357 /// \returns the vectorization cost of the subtree that starts at \p VL. 358 /// A negative number means that this is profitable. 359 int getTreeCost(); 360 361 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 362 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 363 void buildTree(ArrayRef<Value *> Roots, 364 ArrayRef<Value *> UserIgnoreLst = None); 365 366 /// Clear the internal data structures that are created by 'buildTree'. 367 void deleteTree() { 368 VectorizableTree.clear(); 369 ScalarToTreeEntry.clear(); 370 MustGather.clear(); 371 ExternalUses.clear(); 372 MemBarrierIgnoreList.clear(); 373 } 374 375 /// \returns true if the memory operations A and B are consecutive. 376 bool isConsecutiveAccess(Value *A, Value *B); 377 378 /// \brief Perform LICM and CSE on the newly generated gather sequences. 379 void optimizeGatherSequence(); 380 private: 381 struct TreeEntry; 382 383 /// \returns the cost of the vectorizable entry. 384 int getEntryCost(TreeEntry *E); 385 386 /// This is the recursive part of buildTree. 387 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 388 389 /// Vectorize a single entry in the tree. 390 Value *vectorizeTree(TreeEntry *E); 391 392 /// Vectorize a single entry in the tree, starting in \p VL. 393 Value *vectorizeTree(ArrayRef<Value *> VL); 394 395 /// \returns the pointer to the vectorized value if \p VL is already 396 /// vectorized, or NULL. They may happen in cycles. 397 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 398 399 /// \brief Take the pointer operand from the Load/Store instruction. 400 /// \returns NULL if this is not a valid Load/Store instruction. 401 static Value *getPointerOperand(Value *I); 402 403 /// \brief Take the address space operand from the Load/Store instruction. 404 /// \returns -1 if this is not a valid Load/Store instruction. 405 static unsigned getAddressSpaceOperand(Value *I); 406 407 /// \returns the scalarization cost for this type. Scalarization in this 408 /// context means the creation of vectors from a group of scalars. 409 int getGatherCost(Type *Ty); 410 411 /// \returns the scalarization cost for this list of values. Assuming that 412 /// this subtree gets vectorized, we may need to extract the values from the 413 /// roots. This method calculates the cost of extracting the values. 414 int getGatherCost(ArrayRef<Value *> VL); 415 416 /// \returns the AA location that is being access by the instruction. 417 AliasAnalysis::Location getLocation(Instruction *I); 418 419 /// \brief Checks if it is possible to sink an instruction from 420 /// \p Src to \p Dst. 421 /// \returns the pointer to the barrier instruction if we can't sink. 422 Value *getSinkBarrier(Instruction *Src, Instruction *Dst); 423 424 /// \returns the index of the last instruction in the BB from \p VL. 425 int getLastIndex(ArrayRef<Value *> VL); 426 427 /// \returns the Instruction in the bundle \p VL. 428 Instruction *getLastInstruction(ArrayRef<Value *> VL); 429 430 /// \brief Set the Builder insert point to one after the last instruction in 431 /// the bundle 432 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 433 434 /// \returns a vector from a collection of scalars in \p VL. 435 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 436 437 /// \returns whether the VectorizableTree is fully vectoriable and will 438 /// be beneficial even the tree height is tiny. 439 bool isFullyVectorizableTinyTree(); 440 441 struct TreeEntry { 442 TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0), 443 NeedToGather(0) {} 444 445 /// \returns true if the scalars in VL are equal to this entry. 446 bool isSame(ArrayRef<Value *> VL) const { 447 assert(VL.size() == Scalars.size() && "Invalid size"); 448 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 449 } 450 451 /// A vector of scalars. 452 ValueList Scalars; 453 454 /// The Scalars are vectorized into this value. It is initialized to Null. 455 Value *VectorizedValue; 456 457 /// The index in the basic block of the last scalar. 458 int LastScalarIndex; 459 460 /// Do we need to gather this sequence ? 461 bool NeedToGather; 462 }; 463 464 /// Create a new VectorizableTree entry. 465 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 466 VectorizableTree.push_back(TreeEntry()); 467 int idx = VectorizableTree.size() - 1; 468 TreeEntry *Last = &VectorizableTree[idx]; 469 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 470 Last->NeedToGather = !Vectorized; 471 if (Vectorized) { 472 Last->LastScalarIndex = getLastIndex(VL); 473 for (int i = 0, e = VL.size(); i != e; ++i) { 474 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 475 ScalarToTreeEntry[VL[i]] = idx; 476 } 477 } else { 478 Last->LastScalarIndex = 0; 479 MustGather.insert(VL.begin(), VL.end()); 480 } 481 return Last; 482 } 483 484 /// -- Vectorization State -- 485 /// Holds all of the tree entries. 486 std::vector<TreeEntry> VectorizableTree; 487 488 /// Maps a specific scalar to its tree entry. 489 SmallDenseMap<Value*, int> ScalarToTreeEntry; 490 491 /// A list of scalars that we found that we need to keep as scalars. 492 ValueSet MustGather; 493 494 /// This POD struct describes one external user in the vectorized tree. 495 struct ExternalUser { 496 ExternalUser (Value *S, llvm::User *U, int L) : 497 Scalar(S), User(U), Lane(L){}; 498 // Which scalar in our function. 499 Value *Scalar; 500 // Which user that uses the scalar. 501 llvm::User *User; 502 // Which lane does the scalar belong to. 503 int Lane; 504 }; 505 typedef SmallVector<ExternalUser, 16> UserList; 506 507 /// A list of values that need to extracted out of the tree. 508 /// This list holds pairs of (Internal Scalar : External User). 509 UserList ExternalUses; 510 511 /// A list of instructions to ignore while sinking 512 /// memory instructions. This map must be reset between runs of getCost. 513 ValueSet MemBarrierIgnoreList; 514 515 /// Holds all of the instructions that we gathered. 516 SetVector<Instruction *> GatherSeq; 517 /// A list of blocks that we are going to CSE. 518 SetVector<BasicBlock *> CSEBlocks; 519 520 /// Numbers instructions in different blocks. 521 DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers; 522 523 /// \brief Get the corresponding instruction numbering list for a given 524 /// BasicBlock. The list is allocated lazily. 525 BlockNumbering &getBlockNumbering(BasicBlock *BB) { 526 auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB))); 527 return I.first->second; 528 } 529 530 /// List of users to ignore during scheduling and that don't need extracting. 531 ArrayRef<Value *> UserIgnoreList; 532 533 // Analysis and block reference. 534 Function *F; 535 ScalarEvolution *SE; 536 const DataLayout *DL; 537 TargetTransformInfo *TTI; 538 TargetLibraryInfo *TLI; 539 AliasAnalysis *AA; 540 LoopInfo *LI; 541 DominatorTree *DT; 542 /// Instruction builder to construct the vectorized tree. 543 IRBuilder<> Builder; 544 }; 545 546 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 547 ArrayRef<Value *> UserIgnoreLst) { 548 deleteTree(); 549 UserIgnoreList = UserIgnoreLst; 550 if (!getSameType(Roots)) 551 return; 552 buildTree_rec(Roots, 0); 553 554 // Collect the values that we need to extract from the tree. 555 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 556 TreeEntry *Entry = &VectorizableTree[EIdx]; 557 558 // For each lane: 559 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 560 Value *Scalar = Entry->Scalars[Lane]; 561 562 // No need to handle users of gathered values. 563 if (Entry->NeedToGather) 564 continue; 565 566 for (User *U : Scalar->users()) { 567 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 568 569 // Skip in-tree scalars that become vectors. 570 if (ScalarToTreeEntry.count(U)) { 571 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << 572 *U << ".\n"); 573 int Idx = ScalarToTreeEntry[U]; (void) Idx; 574 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 575 continue; 576 } 577 Instruction *UserInst = dyn_cast<Instruction>(U); 578 if (!UserInst) 579 continue; 580 581 // Ignore users in the user ignore list. 582 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 583 UserIgnoreList.end()) 584 continue; 585 586 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 587 Lane << " from " << *Scalar << ".\n"); 588 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 589 } 590 } 591 } 592 } 593 594 595 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 596 bool SameTy = getSameType(VL); (void)SameTy; 597 assert(SameTy && "Invalid types!"); 598 599 if (Depth == RecursionMaxDepth) { 600 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 601 newTreeEntry(VL, false); 602 return; 603 } 604 605 // Don't handle vectors. 606 if (VL[0]->getType()->isVectorTy()) { 607 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 608 newTreeEntry(VL, false); 609 return; 610 } 611 612 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 613 if (SI->getValueOperand()->getType()->isVectorTy()) { 614 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 615 newTreeEntry(VL, false); 616 return; 617 } 618 619 // If all of the operands are identical or constant we have a simple solution. 620 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || 621 !getSameOpcode(VL)) { 622 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 623 newTreeEntry(VL, false); 624 return; 625 } 626 627 // We now know that this is a vector of instructions of the same type from 628 // the same block. 629 630 // Check if this is a duplicate of another entry. 631 if (ScalarToTreeEntry.count(VL[0])) { 632 int Idx = ScalarToTreeEntry[VL[0]]; 633 TreeEntry *E = &VectorizableTree[Idx]; 634 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 635 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 636 if (E->Scalars[i] != VL[i]) { 637 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 638 newTreeEntry(VL, false); 639 return; 640 } 641 } 642 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 643 return; 644 } 645 646 // Check that none of the instructions in the bundle are already in the tree. 647 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 648 if (ScalarToTreeEntry.count(VL[i])) { 649 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 650 ") is already in tree.\n"); 651 newTreeEntry(VL, false); 652 return; 653 } 654 } 655 656 // If any of the scalars appears in the table OR it is marked as a value that 657 // needs to stat scalar then we need to gather the scalars. 658 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 659 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { 660 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); 661 newTreeEntry(VL, false); 662 return; 663 } 664 } 665 666 // Check that all of the users of the scalars that we want to vectorize are 667 // schedulable. 668 Instruction *VL0 = cast<Instruction>(VL[0]); 669 int MyLastIndex = getLastIndex(VL); 670 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 671 672 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 673 Instruction *Scalar = cast<Instruction>(VL[i]); 674 DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n"); 675 for (User *U : Scalar->users()) { 676 DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n"); 677 Instruction *UI = dyn_cast<Instruction>(U); 678 if (!UI) { 679 DEBUG(dbgs() << "SLP: Gathering due unknown user. \n"); 680 newTreeEntry(VL, false); 681 return; 682 } 683 684 // We don't care if the user is in a different basic block. 685 BasicBlock *UserBlock = UI->getParent(); 686 if (UserBlock != BB) { 687 DEBUG(dbgs() << "SLP: User from a different basic block " 688 << *UI << ". \n"); 689 continue; 690 } 691 692 // If this is a PHINode within this basic block then we can place the 693 // extract wherever we want. 694 if (isa<PHINode>(*UI)) { 695 DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n"); 696 continue; 697 } 698 699 // Check if this is a safe in-tree user. 700 if (ScalarToTreeEntry.count(UI)) { 701 int Idx = ScalarToTreeEntry[UI]; 702 int VecLocation = VectorizableTree[Idx].LastScalarIndex; 703 if (VecLocation <= MyLastIndex) { 704 DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n"); 705 newTreeEntry(VL, false); 706 return; 707 } 708 DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" << 709 VecLocation << " vector value (" << *Scalar << ") at #" 710 << MyLastIndex << ".\n"); 711 continue; 712 } 713 714 // Ignore users in the user ignore list. 715 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) != 716 UserIgnoreList.end()) 717 continue; 718 719 // Make sure that we can schedule this unknown user. 720 BlockNumbering &BN = getBlockNumbering(BB); 721 int UserIndex = BN.getIndex(UI); 722 if (UserIndex < MyLastIndex) { 723 724 DEBUG(dbgs() << "SLP: Can't schedule extractelement for " 725 << *UI << ". \n"); 726 newTreeEntry(VL, false); 727 return; 728 } 729 } 730 } 731 732 // Check that every instructions appears once in this bundle. 733 for (unsigned i = 0, e = VL.size(); i < e; ++i) 734 for (unsigned j = i+1; j < e; ++j) 735 if (VL[i] == VL[j]) { 736 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 737 newTreeEntry(VL, false); 738 return; 739 } 740 741 // Check that instructions in this bundle don't reference other instructions. 742 // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4. 743 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 744 for (User *U : VL[i]->users()) { 745 for (unsigned j = 0; j < e; ++j) { 746 if (i != j && U == VL[j]) { 747 DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n"); 748 newTreeEntry(VL, false); 749 return; 750 } 751 } 752 } 753 } 754 755 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 756 757 unsigned Opcode = getSameOpcode(VL); 758 759 // Check if it is safe to sink the loads or the stores. 760 if (Opcode == Instruction::Load || Opcode == Instruction::Store) { 761 Instruction *Last = getLastInstruction(VL); 762 763 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 764 if (VL[i] == Last) 765 continue; 766 Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last); 767 if (Barrier) { 768 DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last 769 << "\n because of " << *Barrier << ". Gathering.\n"); 770 newTreeEntry(VL, false); 771 return; 772 } 773 } 774 } 775 776 switch (Opcode) { 777 case Instruction::PHI: { 778 PHINode *PH = dyn_cast<PHINode>(VL0); 779 780 // Check for terminator values (e.g. invoke). 781 for (unsigned j = 0; j < VL.size(); ++j) 782 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 783 TerminatorInst *Term = dyn_cast<TerminatorInst>( 784 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 785 if (Term) { 786 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 787 newTreeEntry(VL, false); 788 return; 789 } 790 } 791 792 newTreeEntry(VL, true); 793 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 794 795 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 796 ValueList Operands; 797 // Prepare the operand vector. 798 for (unsigned j = 0; j < VL.size(); ++j) 799 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 800 PH->getIncomingBlock(i))); 801 802 buildTree_rec(Operands, Depth + 1); 803 } 804 return; 805 } 806 case Instruction::ExtractElement: { 807 bool Reuse = CanReuseExtract(VL); 808 if (Reuse) { 809 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 810 } 811 newTreeEntry(VL, Reuse); 812 return; 813 } 814 case Instruction::Load: { 815 // Check if the loads are consecutive or of we need to swizzle them. 816 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 817 LoadInst *L = cast<LoadInst>(VL[i]); 818 if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) { 819 newTreeEntry(VL, false); 820 DEBUG(dbgs() << "SLP: Need to swizzle loads.\n"); 821 return; 822 } 823 } 824 newTreeEntry(VL, true); 825 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 826 return; 827 } 828 case Instruction::ZExt: 829 case Instruction::SExt: 830 case Instruction::FPToUI: 831 case Instruction::FPToSI: 832 case Instruction::FPExt: 833 case Instruction::PtrToInt: 834 case Instruction::IntToPtr: 835 case Instruction::SIToFP: 836 case Instruction::UIToFP: 837 case Instruction::Trunc: 838 case Instruction::FPTrunc: 839 case Instruction::BitCast: { 840 Type *SrcTy = VL0->getOperand(0)->getType(); 841 for (unsigned i = 0; i < VL.size(); ++i) { 842 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 843 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 844 newTreeEntry(VL, false); 845 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 846 return; 847 } 848 } 849 newTreeEntry(VL, true); 850 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 851 852 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 853 ValueList Operands; 854 // Prepare the operand vector. 855 for (unsigned j = 0; j < VL.size(); ++j) 856 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 857 858 buildTree_rec(Operands, Depth+1); 859 } 860 return; 861 } 862 case Instruction::ICmp: 863 case Instruction::FCmp: { 864 // Check that all of the compares have the same predicate. 865 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 866 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 867 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 868 CmpInst *Cmp = cast<CmpInst>(VL[i]); 869 if (Cmp->getPredicate() != P0 || 870 Cmp->getOperand(0)->getType() != ComparedTy) { 871 newTreeEntry(VL, false); 872 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 873 return; 874 } 875 } 876 877 newTreeEntry(VL, true); 878 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 879 880 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 881 ValueList Operands; 882 // Prepare the operand vector. 883 for (unsigned j = 0; j < VL.size(); ++j) 884 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 885 886 buildTree_rec(Operands, Depth+1); 887 } 888 return; 889 } 890 case Instruction::Select: 891 case Instruction::Add: 892 case Instruction::FAdd: 893 case Instruction::Sub: 894 case Instruction::FSub: 895 case Instruction::Mul: 896 case Instruction::FMul: 897 case Instruction::UDiv: 898 case Instruction::SDiv: 899 case Instruction::FDiv: 900 case Instruction::URem: 901 case Instruction::SRem: 902 case Instruction::FRem: 903 case Instruction::Shl: 904 case Instruction::LShr: 905 case Instruction::AShr: 906 case Instruction::And: 907 case Instruction::Or: 908 case Instruction::Xor: { 909 newTreeEntry(VL, true); 910 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 911 912 // Sort operands of the instructions so that each side is more likely to 913 // have the same opcode. 914 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 915 ValueList Left, Right; 916 reorderInputsAccordingToOpcode(VL, Left, Right); 917 buildTree_rec(Left, Depth + 1); 918 buildTree_rec(Right, Depth + 1); 919 return; 920 } 921 922 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 923 ValueList Operands; 924 // Prepare the operand vector. 925 for (unsigned j = 0; j < VL.size(); ++j) 926 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 927 928 buildTree_rec(Operands, Depth+1); 929 } 930 return; 931 } 932 case Instruction::Store: { 933 // Check if the stores are consecutive or of we need to swizzle them. 934 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 935 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 936 newTreeEntry(VL, false); 937 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 938 return; 939 } 940 941 newTreeEntry(VL, true); 942 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 943 944 ValueList Operands; 945 for (unsigned j = 0; j < VL.size(); ++j) 946 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 947 948 // We can ignore these values because we are sinking them down. 949 MemBarrierIgnoreList.insert(VL.begin(), VL.end()); 950 buildTree_rec(Operands, Depth + 1); 951 return; 952 } 953 case Instruction::Call: { 954 // Check if the calls are all to the same vectorizable intrinsic. 955 CallInst *CI = cast<CallInst>(VL[0]); 956 // Check if this is an Intrinsic call or something that can be 957 // represented by an intrinsic call 958 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 959 if (!isTriviallyVectorizable(ID)) { 960 newTreeEntry(VL, false); 961 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 962 return; 963 } 964 965 Function *Int = CI->getCalledFunction(); 966 967 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 968 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 969 if (!CI2 || CI2->getCalledFunction() != Int || 970 getIntrinsicIDForCall(CI2, TLI) != ID) { 971 newTreeEntry(VL, false); 972 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 973 << "\n"); 974 return; 975 } 976 } 977 978 newTreeEntry(VL, true); 979 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 980 ValueList Operands; 981 // Prepare the operand vector. 982 for (unsigned j = 0; j < VL.size(); ++j) { 983 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 984 Operands.push_back(CI2->getArgOperand(i)); 985 } 986 buildTree_rec(Operands, Depth + 1); 987 } 988 return; 989 } 990 default: 991 newTreeEntry(VL, false); 992 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 993 return; 994 } 995 } 996 997 int BoUpSLP::getEntryCost(TreeEntry *E) { 998 ArrayRef<Value*> VL = E->Scalars; 999 1000 Type *ScalarTy = VL[0]->getType(); 1001 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1002 ScalarTy = SI->getValueOperand()->getType(); 1003 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1004 1005 if (E->NeedToGather) { 1006 if (allConstant(VL)) 1007 return 0; 1008 if (isSplat(VL)) { 1009 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1010 } 1011 return getGatherCost(E->Scalars); 1012 } 1013 1014 assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) && 1015 "Invalid VL"); 1016 Instruction *VL0 = cast<Instruction>(VL[0]); 1017 unsigned Opcode = VL0->getOpcode(); 1018 switch (Opcode) { 1019 case Instruction::PHI: { 1020 return 0; 1021 } 1022 case Instruction::ExtractElement: { 1023 if (CanReuseExtract(VL)) { 1024 int DeadCost = 0; 1025 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1026 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1027 if (E->hasOneUse()) 1028 // Take credit for instruction that will become dead. 1029 DeadCost += 1030 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1031 } 1032 return -DeadCost; 1033 } 1034 return getGatherCost(VecTy); 1035 } 1036 case Instruction::ZExt: 1037 case Instruction::SExt: 1038 case Instruction::FPToUI: 1039 case Instruction::FPToSI: 1040 case Instruction::FPExt: 1041 case Instruction::PtrToInt: 1042 case Instruction::IntToPtr: 1043 case Instruction::SIToFP: 1044 case Instruction::UIToFP: 1045 case Instruction::Trunc: 1046 case Instruction::FPTrunc: 1047 case Instruction::BitCast: { 1048 Type *SrcTy = VL0->getOperand(0)->getType(); 1049 1050 // Calculate the cost of this instruction. 1051 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1052 VL0->getType(), SrcTy); 1053 1054 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1055 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1056 return VecCost - ScalarCost; 1057 } 1058 case Instruction::FCmp: 1059 case Instruction::ICmp: 1060 case Instruction::Select: 1061 case Instruction::Add: 1062 case Instruction::FAdd: 1063 case Instruction::Sub: 1064 case Instruction::FSub: 1065 case Instruction::Mul: 1066 case Instruction::FMul: 1067 case Instruction::UDiv: 1068 case Instruction::SDiv: 1069 case Instruction::FDiv: 1070 case Instruction::URem: 1071 case Instruction::SRem: 1072 case Instruction::FRem: 1073 case Instruction::Shl: 1074 case Instruction::LShr: 1075 case Instruction::AShr: 1076 case Instruction::And: 1077 case Instruction::Or: 1078 case Instruction::Xor: { 1079 // Calculate the cost of this instruction. 1080 int ScalarCost = 0; 1081 int VecCost = 0; 1082 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1083 Opcode == Instruction::Select) { 1084 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1085 ScalarCost = VecTy->getNumElements() * 1086 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1087 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1088 } else { 1089 // Certain instructions can be cheaper to vectorize if they have a 1090 // constant second vector operand. 1091 TargetTransformInfo::OperandValueKind Op1VK = 1092 TargetTransformInfo::OK_AnyValue; 1093 TargetTransformInfo::OperandValueKind Op2VK = 1094 TargetTransformInfo::OK_UniformConstantValue; 1095 1096 // If all operands are exactly the same ConstantInt then set the 1097 // operand kind to OK_UniformConstantValue. 1098 // If instead not all operands are constants, then set the operand kind 1099 // to OK_AnyValue. If all operands are constants but not the same, 1100 // then set the operand kind to OK_NonUniformConstantValue. 1101 ConstantInt *CInt = nullptr; 1102 for (unsigned i = 0; i < VL.size(); ++i) { 1103 const Instruction *I = cast<Instruction>(VL[i]); 1104 if (!isa<ConstantInt>(I->getOperand(1))) { 1105 Op2VK = TargetTransformInfo::OK_AnyValue; 1106 break; 1107 } 1108 if (i == 0) { 1109 CInt = cast<ConstantInt>(I->getOperand(1)); 1110 continue; 1111 } 1112 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1113 CInt != cast<ConstantInt>(I->getOperand(1))) 1114 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1115 } 1116 1117 ScalarCost = 1118 VecTy->getNumElements() * 1119 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK); 1120 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK); 1121 } 1122 return VecCost - ScalarCost; 1123 } 1124 case Instruction::Load: { 1125 // Cost of wide load - cost of scalar loads. 1126 int ScalarLdCost = VecTy->getNumElements() * 1127 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1128 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1129 return VecLdCost - ScalarLdCost; 1130 } 1131 case Instruction::Store: { 1132 // We know that we can merge the stores. Calculate the cost. 1133 int ScalarStCost = VecTy->getNumElements() * 1134 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1135 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1136 return VecStCost - ScalarStCost; 1137 } 1138 case Instruction::Call: { 1139 CallInst *CI = cast<CallInst>(VL0); 1140 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1141 1142 // Calculate the cost of the scalar and vector calls. 1143 SmallVector<Type*, 4> ScalarTys, VecTys; 1144 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1145 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1146 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1147 VecTy->getNumElements())); 1148 } 1149 1150 int ScalarCallCost = VecTy->getNumElements() * 1151 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1152 1153 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1154 1155 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1156 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1157 << " for " << *CI << "\n"); 1158 1159 return VecCallCost - ScalarCallCost; 1160 } 1161 default: 1162 llvm_unreachable("Unknown instruction"); 1163 } 1164 } 1165 1166 bool BoUpSLP::isFullyVectorizableTinyTree() { 1167 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1168 VectorizableTree.size() << " is fully vectorizable .\n"); 1169 1170 // We only handle trees of height 2. 1171 if (VectorizableTree.size() != 2) 1172 return false; 1173 1174 // Handle splat stores. 1175 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1176 return true; 1177 1178 // Gathering cost would be too much for tiny trees. 1179 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 int BoUpSLP::getTreeCost() { 1186 int Cost = 0; 1187 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1188 VectorizableTree.size() << ".\n"); 1189 1190 // We only vectorize tiny trees if it is fully vectorizable. 1191 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1192 if (!VectorizableTree.size()) { 1193 assert(!ExternalUses.size() && "We should not have any external users"); 1194 } 1195 return INT_MAX; 1196 } 1197 1198 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1199 1200 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1201 int C = getEntryCost(&VectorizableTree[i]); 1202 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1203 << *VectorizableTree[i].Scalars[0] << " .\n"); 1204 Cost += C; 1205 } 1206 1207 SmallSet<Value *, 16> ExtractCostCalculated; 1208 int ExtractCost = 0; 1209 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1210 I != E; ++I) { 1211 // We only add extract cost once for the same scalar. 1212 if (!ExtractCostCalculated.insert(I->Scalar)) 1213 continue; 1214 1215 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1216 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1217 I->Lane); 1218 } 1219 1220 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1221 return Cost + ExtractCost; 1222 } 1223 1224 int BoUpSLP::getGatherCost(Type *Ty) { 1225 int Cost = 0; 1226 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1227 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1228 return Cost; 1229 } 1230 1231 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1232 // Find the type of the operands in VL. 1233 Type *ScalarTy = VL[0]->getType(); 1234 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1235 ScalarTy = SI->getValueOperand()->getType(); 1236 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1237 // Find the cost of inserting/extracting values from the vector. 1238 return getGatherCost(VecTy); 1239 } 1240 1241 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) { 1242 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1243 return AA->getLocation(SI); 1244 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1245 return AA->getLocation(LI); 1246 return AliasAnalysis::Location(); 1247 } 1248 1249 Value *BoUpSLP::getPointerOperand(Value *I) { 1250 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1251 return LI->getPointerOperand(); 1252 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1253 return SI->getPointerOperand(); 1254 return nullptr; 1255 } 1256 1257 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1258 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1259 return L->getPointerAddressSpace(); 1260 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1261 return S->getPointerAddressSpace(); 1262 return -1; 1263 } 1264 1265 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1266 Value *PtrA = getPointerOperand(A); 1267 Value *PtrB = getPointerOperand(B); 1268 unsigned ASA = getAddressSpaceOperand(A); 1269 unsigned ASB = getAddressSpaceOperand(B); 1270 1271 // Check that the address spaces match and that the pointers are valid. 1272 if (!PtrA || !PtrB || (ASA != ASB)) 1273 return false; 1274 1275 // Make sure that A and B are different pointers of the same type. 1276 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1277 return false; 1278 1279 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1280 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1281 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1282 1283 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1284 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1285 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1286 1287 APInt OffsetDelta = OffsetB - OffsetA; 1288 1289 // Check if they are based on the same pointer. That makes the offsets 1290 // sufficient. 1291 if (PtrA == PtrB) 1292 return OffsetDelta == Size; 1293 1294 // Compute the necessary base pointer delta to have the necessary final delta 1295 // equal to the size. 1296 APInt BaseDelta = Size - OffsetDelta; 1297 1298 // Otherwise compute the distance with SCEV between the base pointers. 1299 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1300 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1301 const SCEV *C = SE->getConstant(BaseDelta); 1302 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1303 return X == PtrSCEVB; 1304 } 1305 1306 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) { 1307 assert(Src->getParent() == Dst->getParent() && "Not the same BB"); 1308 BasicBlock::iterator I = Src, E = Dst; 1309 /// Scan all of the instruction from SRC to DST and check if 1310 /// the source may alias. 1311 for (++I; I != E; ++I) { 1312 // Ignore store instructions that are marked as 'ignore'. 1313 if (MemBarrierIgnoreList.count(I)) 1314 continue; 1315 if (Src->mayWriteToMemory()) /* Write */ { 1316 if (!I->mayReadOrWriteMemory()) 1317 continue; 1318 } else /* Read */ { 1319 if (!I->mayWriteToMemory()) 1320 continue; 1321 } 1322 AliasAnalysis::Location A = getLocation(&*I); 1323 AliasAnalysis::Location B = getLocation(Src); 1324 1325 if (!A.Ptr || !B.Ptr || AA->alias(A, B)) 1326 return I; 1327 } 1328 return nullptr; 1329 } 1330 1331 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) { 1332 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1333 assert(BB == getSameBlock(VL) && "Invalid block"); 1334 BlockNumbering &BN = getBlockNumbering(BB); 1335 1336 int MaxIdx = BN.getIndex(BB->getFirstNonPHI()); 1337 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1338 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1339 return MaxIdx; 1340 } 1341 1342 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) { 1343 BasicBlock *BB = cast<Instruction>(VL[0])->getParent(); 1344 assert(BB == getSameBlock(VL) && "Invalid block"); 1345 BlockNumbering &BN = getBlockNumbering(BB); 1346 1347 int MaxIdx = BN.getIndex(cast<Instruction>(VL[0])); 1348 for (unsigned i = 1, e = VL.size(); i < e; ++i) 1349 MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i]))); 1350 Instruction *I = BN.getInstruction(MaxIdx); 1351 assert(I && "bad location"); 1352 return I; 1353 } 1354 1355 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1356 Instruction *VL0 = cast<Instruction>(VL[0]); 1357 Instruction *LastInst = getLastInstruction(VL); 1358 BasicBlock::iterator NextInst = LastInst; 1359 ++NextInst; 1360 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1361 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1362 } 1363 1364 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1365 Value *Vec = UndefValue::get(Ty); 1366 // Generate the 'InsertElement' instruction. 1367 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1368 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1369 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1370 GatherSeq.insert(Insrt); 1371 CSEBlocks.insert(Insrt->getParent()); 1372 1373 // Add to our 'need-to-extract' list. 1374 if (ScalarToTreeEntry.count(VL[i])) { 1375 int Idx = ScalarToTreeEntry[VL[i]]; 1376 TreeEntry *E = &VectorizableTree[Idx]; 1377 // Find which lane we need to extract. 1378 int FoundLane = -1; 1379 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1380 // Is this the lane of the scalar that we are looking for ? 1381 if (E->Scalars[Lane] == VL[i]) { 1382 FoundLane = Lane; 1383 break; 1384 } 1385 } 1386 assert(FoundLane >= 0 && "Could not find the correct lane"); 1387 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1388 } 1389 } 1390 } 1391 1392 return Vec; 1393 } 1394 1395 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1396 SmallDenseMap<Value*, int>::const_iterator Entry 1397 = ScalarToTreeEntry.find(VL[0]); 1398 if (Entry != ScalarToTreeEntry.end()) { 1399 int Idx = Entry->second; 1400 const TreeEntry *En = &VectorizableTree[Idx]; 1401 if (En->isSame(VL) && En->VectorizedValue) 1402 return En->VectorizedValue; 1403 } 1404 return nullptr; 1405 } 1406 1407 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1408 if (ScalarToTreeEntry.count(VL[0])) { 1409 int Idx = ScalarToTreeEntry[VL[0]]; 1410 TreeEntry *E = &VectorizableTree[Idx]; 1411 if (E->isSame(VL)) 1412 return vectorizeTree(E); 1413 } 1414 1415 Type *ScalarTy = VL[0]->getType(); 1416 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1417 ScalarTy = SI->getValueOperand()->getType(); 1418 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1419 1420 return Gather(VL, VecTy); 1421 } 1422 1423 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1424 IRBuilder<>::InsertPointGuard Guard(Builder); 1425 1426 if (E->VectorizedValue) { 1427 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1428 return E->VectorizedValue; 1429 } 1430 1431 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1432 Type *ScalarTy = VL0->getType(); 1433 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1434 ScalarTy = SI->getValueOperand()->getType(); 1435 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1436 1437 if (E->NeedToGather) { 1438 setInsertPointAfterBundle(E->Scalars); 1439 return Gather(E->Scalars, VecTy); 1440 } 1441 1442 unsigned Opcode = VL0->getOpcode(); 1443 assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode"); 1444 1445 switch (Opcode) { 1446 case Instruction::PHI: { 1447 PHINode *PH = dyn_cast<PHINode>(VL0); 1448 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1449 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1450 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1451 E->VectorizedValue = NewPhi; 1452 1453 // PHINodes may have multiple entries from the same block. We want to 1454 // visit every block once. 1455 SmallSet<BasicBlock*, 4> VisitedBBs; 1456 1457 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1458 ValueList Operands; 1459 BasicBlock *IBB = PH->getIncomingBlock(i); 1460 1461 if (!VisitedBBs.insert(IBB)) { 1462 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1463 continue; 1464 } 1465 1466 // Prepare the operand vector. 1467 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1468 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1469 getIncomingValueForBlock(IBB)); 1470 1471 Builder.SetInsertPoint(IBB->getTerminator()); 1472 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1473 Value *Vec = vectorizeTree(Operands); 1474 NewPhi->addIncoming(Vec, IBB); 1475 } 1476 1477 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1478 "Invalid number of incoming values"); 1479 return NewPhi; 1480 } 1481 1482 case Instruction::ExtractElement: { 1483 if (CanReuseExtract(E->Scalars)) { 1484 Value *V = VL0->getOperand(0); 1485 E->VectorizedValue = V; 1486 return V; 1487 } 1488 return Gather(E->Scalars, VecTy); 1489 } 1490 case Instruction::ZExt: 1491 case Instruction::SExt: 1492 case Instruction::FPToUI: 1493 case Instruction::FPToSI: 1494 case Instruction::FPExt: 1495 case Instruction::PtrToInt: 1496 case Instruction::IntToPtr: 1497 case Instruction::SIToFP: 1498 case Instruction::UIToFP: 1499 case Instruction::Trunc: 1500 case Instruction::FPTrunc: 1501 case Instruction::BitCast: { 1502 ValueList INVL; 1503 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1504 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1505 1506 setInsertPointAfterBundle(E->Scalars); 1507 1508 Value *InVec = vectorizeTree(INVL); 1509 1510 if (Value *V = alreadyVectorized(E->Scalars)) 1511 return V; 1512 1513 CastInst *CI = dyn_cast<CastInst>(VL0); 1514 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 1515 E->VectorizedValue = V; 1516 return V; 1517 } 1518 case Instruction::FCmp: 1519 case Instruction::ICmp: { 1520 ValueList LHSV, RHSV; 1521 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1522 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1523 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1524 } 1525 1526 setInsertPointAfterBundle(E->Scalars); 1527 1528 Value *L = vectorizeTree(LHSV); 1529 Value *R = vectorizeTree(RHSV); 1530 1531 if (Value *V = alreadyVectorized(E->Scalars)) 1532 return V; 1533 1534 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1535 Value *V; 1536 if (Opcode == Instruction::FCmp) 1537 V = Builder.CreateFCmp(P0, L, R); 1538 else 1539 V = Builder.CreateICmp(P0, L, R); 1540 1541 E->VectorizedValue = V; 1542 return V; 1543 } 1544 case Instruction::Select: { 1545 ValueList TrueVec, FalseVec, CondVec; 1546 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1547 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1548 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1549 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 1550 } 1551 1552 setInsertPointAfterBundle(E->Scalars); 1553 1554 Value *Cond = vectorizeTree(CondVec); 1555 Value *True = vectorizeTree(TrueVec); 1556 Value *False = vectorizeTree(FalseVec); 1557 1558 if (Value *V = alreadyVectorized(E->Scalars)) 1559 return V; 1560 1561 Value *V = Builder.CreateSelect(Cond, True, False); 1562 E->VectorizedValue = V; 1563 return V; 1564 } 1565 case Instruction::Add: 1566 case Instruction::FAdd: 1567 case Instruction::Sub: 1568 case Instruction::FSub: 1569 case Instruction::Mul: 1570 case Instruction::FMul: 1571 case Instruction::UDiv: 1572 case Instruction::SDiv: 1573 case Instruction::FDiv: 1574 case Instruction::URem: 1575 case Instruction::SRem: 1576 case Instruction::FRem: 1577 case Instruction::Shl: 1578 case Instruction::LShr: 1579 case Instruction::AShr: 1580 case Instruction::And: 1581 case Instruction::Or: 1582 case Instruction::Xor: { 1583 ValueList LHSVL, RHSVL; 1584 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 1585 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 1586 else 1587 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1588 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1589 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1590 } 1591 1592 setInsertPointAfterBundle(E->Scalars); 1593 1594 Value *LHS = vectorizeTree(LHSVL); 1595 Value *RHS = vectorizeTree(RHSVL); 1596 1597 if (LHS == RHS && isa<Instruction>(LHS)) { 1598 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 1599 } 1600 1601 if (Value *V = alreadyVectorized(E->Scalars)) 1602 return V; 1603 1604 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 1605 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 1606 E->VectorizedValue = V; 1607 1608 if (Instruction *I = dyn_cast<Instruction>(V)) 1609 return propagateMetadata(I, E->Scalars); 1610 1611 return V; 1612 } 1613 case Instruction::Load: { 1614 // Loads are inserted at the head of the tree because we don't want to 1615 // sink them all the way down past store instructions. 1616 setInsertPointAfterBundle(E->Scalars); 1617 1618 LoadInst *LI = cast<LoadInst>(VL0); 1619 unsigned AS = LI->getPointerAddressSpace(); 1620 1621 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 1622 VecTy->getPointerTo(AS)); 1623 unsigned Alignment = LI->getAlignment(); 1624 LI = Builder.CreateLoad(VecPtr); 1625 if (!Alignment) 1626 Alignment = DL->getABITypeAlignment(LI->getPointerOperand()->getType()); 1627 LI->setAlignment(Alignment); 1628 E->VectorizedValue = LI; 1629 return propagateMetadata(LI, E->Scalars); 1630 } 1631 case Instruction::Store: { 1632 StoreInst *SI = cast<StoreInst>(VL0); 1633 unsigned Alignment = SI->getAlignment(); 1634 unsigned AS = SI->getPointerAddressSpace(); 1635 1636 ValueList ValueOp; 1637 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1638 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 1639 1640 setInsertPointAfterBundle(E->Scalars); 1641 1642 Value *VecValue = vectorizeTree(ValueOp); 1643 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 1644 VecTy->getPointerTo(AS)); 1645 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 1646 if (!Alignment) 1647 Alignment = DL->getABITypeAlignment(SI->getPointerOperand()->getType()); 1648 S->setAlignment(Alignment); 1649 E->VectorizedValue = S; 1650 return propagateMetadata(S, E->Scalars); 1651 } 1652 case Instruction::Call: { 1653 CallInst *CI = cast<CallInst>(VL0); 1654 setInsertPointAfterBundle(E->Scalars); 1655 std::vector<Value *> OpVecs; 1656 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 1657 ValueList OpVL; 1658 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1659 CallInst *CEI = cast<CallInst>(E->Scalars[i]); 1660 OpVL.push_back(CEI->getArgOperand(j)); 1661 } 1662 1663 Value *OpVec = vectorizeTree(OpVL); 1664 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 1665 OpVecs.push_back(OpVec); 1666 } 1667 1668 Module *M = F->getParent(); 1669 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1670 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 1671 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 1672 Value *V = Builder.CreateCall(CF, OpVecs); 1673 E->VectorizedValue = V; 1674 return V; 1675 } 1676 default: 1677 llvm_unreachable("unknown inst"); 1678 } 1679 return nullptr; 1680 } 1681 1682 Value *BoUpSLP::vectorizeTree() { 1683 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1684 vectorizeTree(&VectorizableTree[0]); 1685 1686 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 1687 1688 // Extract all of the elements with the external uses. 1689 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 1690 it != e; ++it) { 1691 Value *Scalar = it->Scalar; 1692 llvm::User *User = it->User; 1693 1694 // Skip users that we already RAUW. This happens when one instruction 1695 // has multiple uses of the same value. 1696 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 1697 Scalar->user_end()) 1698 continue; 1699 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 1700 1701 int Idx = ScalarToTreeEntry[Scalar]; 1702 TreeEntry *E = &VectorizableTree[Idx]; 1703 assert(!E->NeedToGather && "Extracting from a gather list"); 1704 1705 Value *Vec = E->VectorizedValue; 1706 assert(Vec && "Can't find vectorizable value"); 1707 1708 Value *Lane = Builder.getInt32(it->Lane); 1709 // Generate extracts for out-of-tree users. 1710 // Find the insertion point for the extractelement lane. 1711 if (isa<Instruction>(Vec)){ 1712 if (PHINode *PH = dyn_cast<PHINode>(User)) { 1713 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 1714 if (PH->getIncomingValue(i) == Scalar) { 1715 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 1716 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1717 CSEBlocks.insert(PH->getIncomingBlock(i)); 1718 PH->setOperand(i, Ex); 1719 } 1720 } 1721 } else { 1722 Builder.SetInsertPoint(cast<Instruction>(User)); 1723 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1724 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 1725 User->replaceUsesOfWith(Scalar, Ex); 1726 } 1727 } else { 1728 Builder.SetInsertPoint(F->getEntryBlock().begin()); 1729 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 1730 CSEBlocks.insert(&F->getEntryBlock()); 1731 User->replaceUsesOfWith(Scalar, Ex); 1732 } 1733 1734 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 1735 } 1736 1737 // For each vectorized value: 1738 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 1739 TreeEntry *Entry = &VectorizableTree[EIdx]; 1740 1741 // For each lane: 1742 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1743 Value *Scalar = Entry->Scalars[Lane]; 1744 1745 // No need to handle users of gathered values. 1746 if (Entry->NeedToGather) 1747 continue; 1748 1749 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 1750 1751 Type *Ty = Scalar->getType(); 1752 if (!Ty->isVoidTy()) { 1753 #ifndef NDEBUG 1754 for (User *U : Scalar->users()) { 1755 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 1756 1757 assert((ScalarToTreeEntry.count(U) || 1758 // It is legal to replace users in the ignorelist by undef. 1759 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 1760 UserIgnoreList.end())) && 1761 "Replacing out-of-tree value with undef"); 1762 } 1763 #endif 1764 Value *Undef = UndefValue::get(Ty); 1765 Scalar->replaceAllUsesWith(Undef); 1766 } 1767 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 1768 cast<Instruction>(Scalar)->eraseFromParent(); 1769 } 1770 } 1771 1772 for (auto &BN : BlocksNumbers) 1773 BN.second.forget(); 1774 1775 Builder.ClearInsertionPoint(); 1776 1777 return VectorizableTree[0].VectorizedValue; 1778 } 1779 1780 void BoUpSLP::optimizeGatherSequence() { 1781 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 1782 << " gather sequences instructions.\n"); 1783 // LICM InsertElementInst sequences. 1784 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 1785 e = GatherSeq.end(); it != e; ++it) { 1786 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 1787 1788 if (!Insert) 1789 continue; 1790 1791 // Check if this block is inside a loop. 1792 Loop *L = LI->getLoopFor(Insert->getParent()); 1793 if (!L) 1794 continue; 1795 1796 // Check if it has a preheader. 1797 BasicBlock *PreHeader = L->getLoopPreheader(); 1798 if (!PreHeader) 1799 continue; 1800 1801 // If the vector or the element that we insert into it are 1802 // instructions that are defined in this basic block then we can't 1803 // hoist this instruction. 1804 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 1805 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 1806 if (CurrVec && L->contains(CurrVec)) 1807 continue; 1808 if (NewElem && L->contains(NewElem)) 1809 continue; 1810 1811 // We can hoist this instruction. Move it to the pre-header. 1812 Insert->moveBefore(PreHeader->getTerminator()); 1813 } 1814 1815 // Make a list of all reachable blocks in our CSE queue. 1816 SmallVector<const DomTreeNode *, 8> CSEWorkList; 1817 CSEWorkList.reserve(CSEBlocks.size()); 1818 for (BasicBlock *BB : CSEBlocks) 1819 if (DomTreeNode *N = DT->getNode(BB)) { 1820 assert(DT->isReachableFromEntry(N)); 1821 CSEWorkList.push_back(N); 1822 } 1823 1824 // Sort blocks by domination. This ensures we visit a block after all blocks 1825 // dominating it are visited. 1826 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 1827 [this](const DomTreeNode *A, const DomTreeNode *B) { 1828 return DT->properlyDominates(A, B); 1829 }); 1830 1831 // Perform O(N^2) search over the gather sequences and merge identical 1832 // instructions. TODO: We can further optimize this scan if we split the 1833 // instructions into different buckets based on the insert lane. 1834 SmallVector<Instruction *, 16> Visited; 1835 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 1836 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 1837 "Worklist not sorted properly!"); 1838 BasicBlock *BB = (*I)->getBlock(); 1839 // For all instructions in blocks containing gather sequences: 1840 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 1841 Instruction *In = it++; 1842 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 1843 continue; 1844 1845 // Check if we can replace this instruction with any of the 1846 // visited instructions. 1847 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 1848 ve = Visited.end(); 1849 v != ve; ++v) { 1850 if (In->isIdenticalTo(*v) && 1851 DT->dominates((*v)->getParent(), In->getParent())) { 1852 In->replaceAllUsesWith(*v); 1853 In->eraseFromParent(); 1854 In = nullptr; 1855 break; 1856 } 1857 } 1858 if (In) { 1859 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 1860 Visited.push_back(In); 1861 } 1862 } 1863 } 1864 CSEBlocks.clear(); 1865 GatherSeq.clear(); 1866 } 1867 1868 /// The SLPVectorizer Pass. 1869 struct SLPVectorizer : public FunctionPass { 1870 typedef SmallVector<StoreInst *, 8> StoreList; 1871 typedef MapVector<Value *, StoreList> StoreListMap; 1872 1873 /// Pass identification, replacement for typeid 1874 static char ID; 1875 1876 explicit SLPVectorizer() : FunctionPass(ID) { 1877 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 1878 } 1879 1880 ScalarEvolution *SE; 1881 const DataLayout *DL; 1882 TargetTransformInfo *TTI; 1883 TargetLibraryInfo *TLI; 1884 AliasAnalysis *AA; 1885 LoopInfo *LI; 1886 DominatorTree *DT; 1887 1888 bool runOnFunction(Function &F) override { 1889 if (skipOptnoneFunction(F)) 1890 return false; 1891 1892 SE = &getAnalysis<ScalarEvolution>(); 1893 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1894 DL = DLP ? &DLP->getDataLayout() : nullptr; 1895 TTI = &getAnalysis<TargetTransformInfo>(); 1896 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1897 AA = &getAnalysis<AliasAnalysis>(); 1898 LI = &getAnalysis<LoopInfo>(); 1899 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1900 1901 StoreRefs.clear(); 1902 bool Changed = false; 1903 1904 // If the target claims to have no vector registers don't attempt 1905 // vectorization. 1906 if (!TTI->getNumberOfRegisters(true)) 1907 return false; 1908 1909 // Must have DataLayout. We can't require it because some tests run w/o 1910 // triple. 1911 if (!DL) 1912 return false; 1913 1914 // Don't vectorize when the attribute NoImplicitFloat is used. 1915 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 1916 return false; 1917 1918 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 1919 1920 // Use the bottom up slp vectorizer to construct chains that start with 1921 // he store instructions. 1922 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT); 1923 1924 // Scan the blocks in the function in post order. 1925 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 1926 e = po_end(&F.getEntryBlock()); it != e; ++it) { 1927 BasicBlock *BB = *it; 1928 1929 // Vectorize trees that end at stores. 1930 if (unsigned count = collectStores(BB, R)) { 1931 (void)count; 1932 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 1933 Changed |= vectorizeStoreChains(R); 1934 } 1935 1936 // Vectorize trees that end at reductions. 1937 Changed |= vectorizeChainsInBlock(BB, R); 1938 } 1939 1940 if (Changed) { 1941 R.optimizeGatherSequence(); 1942 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 1943 DEBUG(verifyFunction(F)); 1944 } 1945 return Changed; 1946 } 1947 1948 void getAnalysisUsage(AnalysisUsage &AU) const override { 1949 FunctionPass::getAnalysisUsage(AU); 1950 AU.addRequired<ScalarEvolution>(); 1951 AU.addRequired<AliasAnalysis>(); 1952 AU.addRequired<TargetTransformInfo>(); 1953 AU.addRequired<LoopInfo>(); 1954 AU.addRequired<DominatorTreeWrapperPass>(); 1955 AU.addPreserved<LoopInfo>(); 1956 AU.addPreserved<DominatorTreeWrapperPass>(); 1957 AU.setPreservesCFG(); 1958 } 1959 1960 private: 1961 1962 /// \brief Collect memory references and sort them according to their base 1963 /// object. We sort the stores to their base objects to reduce the cost of the 1964 /// quadratic search on the stores. TODO: We can further reduce this cost 1965 /// if we flush the chain creation every time we run into a memory barrier. 1966 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 1967 1968 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 1969 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 1970 1971 /// \brief Try to vectorize a list of operands. 1972 /// \@param BuildVector A list of users to ignore for the purpose of 1973 /// scheduling and that don't need extracting. 1974 /// \returns true if a value was vectorized. 1975 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 1976 ArrayRef<Value *> BuildVector = None); 1977 1978 /// \brief Try to vectorize a chain that may start at the operands of \V; 1979 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 1980 1981 /// \brief Vectorize the stores that were collected in StoreRefs. 1982 bool vectorizeStoreChains(BoUpSLP &R); 1983 1984 /// \brief Scan the basic block and look for patterns that are likely to start 1985 /// a vectorization chain. 1986 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 1987 1988 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 1989 BoUpSLP &R); 1990 1991 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 1992 BoUpSLP &R); 1993 private: 1994 StoreListMap StoreRefs; 1995 }; 1996 1997 /// \brief Check that the Values in the slice in VL array are still existent in 1998 /// the WeakVH array. 1999 /// Vectorization of part of the VL array may cause later values in the VL array 2000 /// to become invalid. We track when this has happened in the WeakVH array. 2001 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL, 2002 SmallVectorImpl<WeakVH> &VH, 2003 unsigned SliceBegin, 2004 unsigned SliceSize) { 2005 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) 2006 if (VH[i] != VL[i]) 2007 return true; 2008 2009 return false; 2010 } 2011 2012 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 2013 int CostThreshold, BoUpSLP &R) { 2014 unsigned ChainLen = Chain.size(); 2015 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 2016 << "\n"); 2017 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 2018 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 2019 unsigned VF = MinVecRegSize / Sz; 2020 2021 if (!isPowerOf2_32(Sz) || VF < 2) 2022 return false; 2023 2024 // Keep track of values that were deleted by vectorizing in the loop below. 2025 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 2026 2027 bool Changed = false; 2028 // Look for profitable vectorizable trees at all offsets, starting at zero. 2029 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 2030 if (i + VF > e) 2031 break; 2032 2033 // Check that a previous iteration of this loop did not delete the Value. 2034 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 2035 continue; 2036 2037 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 2038 << "\n"); 2039 ArrayRef<Value *> Operands = Chain.slice(i, VF); 2040 2041 R.buildTree(Operands); 2042 2043 int Cost = R.getTreeCost(); 2044 2045 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 2046 if (Cost < CostThreshold) { 2047 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 2048 R.vectorizeTree(); 2049 2050 // Move to the next bundle. 2051 i += VF - 1; 2052 Changed = true; 2053 } 2054 } 2055 2056 return Changed; 2057 } 2058 2059 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 2060 int costThreshold, BoUpSLP &R) { 2061 SetVector<Value *> Heads, Tails; 2062 SmallDenseMap<Value *, Value *> ConsecutiveChain; 2063 2064 // We may run into multiple chains that merge into a single chain. We mark the 2065 // stores that we vectorized so that we don't visit the same store twice. 2066 BoUpSLP::ValueSet VectorizedStores; 2067 bool Changed = false; 2068 2069 // Do a quadratic search on all of the given stores and find 2070 // all of the pairs of stores that follow each other. 2071 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 2072 for (unsigned j = 0; j < e; ++j) { 2073 if (i == j) 2074 continue; 2075 2076 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 2077 Tails.insert(Stores[j]); 2078 Heads.insert(Stores[i]); 2079 ConsecutiveChain[Stores[i]] = Stores[j]; 2080 } 2081 } 2082 } 2083 2084 // For stores that start but don't end a link in the chain: 2085 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 2086 it != e; ++it) { 2087 if (Tails.count(*it)) 2088 continue; 2089 2090 // We found a store instr that starts a chain. Now follow the chain and try 2091 // to vectorize it. 2092 BoUpSLP::ValueList Operands; 2093 Value *I = *it; 2094 // Collect the chain into a list. 2095 while (Tails.count(I) || Heads.count(I)) { 2096 if (VectorizedStores.count(I)) 2097 break; 2098 Operands.push_back(I); 2099 // Move to the next value in the chain. 2100 I = ConsecutiveChain[I]; 2101 } 2102 2103 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 2104 2105 // Mark the vectorized stores so that we don't vectorize them again. 2106 if (Vectorized) 2107 VectorizedStores.insert(Operands.begin(), Operands.end()); 2108 Changed |= Vectorized; 2109 } 2110 2111 return Changed; 2112 } 2113 2114 2115 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 2116 unsigned count = 0; 2117 StoreRefs.clear(); 2118 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2119 StoreInst *SI = dyn_cast<StoreInst>(it); 2120 if (!SI) 2121 continue; 2122 2123 // Don't touch volatile stores. 2124 if (!SI->isSimple()) 2125 continue; 2126 2127 // Check that the pointer points to scalars. 2128 Type *Ty = SI->getValueOperand()->getType(); 2129 if (Ty->isAggregateType() || Ty->isVectorTy()) 2130 continue; 2131 2132 // Find the base pointer. 2133 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 2134 2135 // Save the store locations. 2136 StoreRefs[Ptr].push_back(SI); 2137 count++; 2138 } 2139 return count; 2140 } 2141 2142 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 2143 if (!A || !B) 2144 return false; 2145 Value *VL[] = { A, B }; 2146 return tryToVectorizeList(VL, R); 2147 } 2148 2149 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2150 ArrayRef<Value *> BuildVector) { 2151 if (VL.size() < 2) 2152 return false; 2153 2154 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 2155 2156 // Check that all of the parts are scalar instructions of the same type. 2157 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 2158 if (!I0) 2159 return false; 2160 2161 unsigned Opcode0 = I0->getOpcode(); 2162 2163 Type *Ty0 = I0->getType(); 2164 unsigned Sz = DL->getTypeSizeInBits(Ty0); 2165 unsigned VF = MinVecRegSize / Sz; 2166 2167 for (int i = 0, e = VL.size(); i < e; ++i) { 2168 Type *Ty = VL[i]->getType(); 2169 if (Ty->isAggregateType() || Ty->isVectorTy()) 2170 return false; 2171 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 2172 if (!Inst || Inst->getOpcode() != Opcode0) 2173 return false; 2174 } 2175 2176 bool Changed = false; 2177 2178 // Keep track of values that were deleted by vectorizing in the loop below. 2179 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 2180 2181 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2182 unsigned OpsWidth = 0; 2183 2184 if (i + VF > e) 2185 OpsWidth = e - i; 2186 else 2187 OpsWidth = VF; 2188 2189 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 2190 break; 2191 2192 // Check that a previous iteration of this loop did not delete the Value. 2193 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 2194 continue; 2195 2196 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 2197 << "\n"); 2198 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 2199 2200 ArrayRef<Value *> BuildVectorSlice; 2201 if (!BuildVector.empty()) 2202 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 2203 2204 R.buildTree(Ops, BuildVectorSlice); 2205 int Cost = R.getTreeCost(); 2206 2207 if (Cost < -SLPCostThreshold) { 2208 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 2209 Value *VectorizedRoot = R.vectorizeTree(); 2210 2211 // Reconstruct the build vector by extracting the vectorized root. This 2212 // way we handle the case where some elements of the vector are undefined. 2213 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 2214 if (!BuildVectorSlice.empty()) { 2215 // The insert point is the last build vector instruction. The vectorized 2216 // root will precede it. This guarantees that we get an instruction. The 2217 // vectorized tree could have been constant folded. 2218 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 2219 unsigned VecIdx = 0; 2220 for (auto &V : BuildVectorSlice) { 2221 IRBuilder<true, NoFolder> Builder( 2222 ++BasicBlock::iterator(InsertAfter)); 2223 InsertElementInst *IE = cast<InsertElementInst>(V); 2224 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 2225 VectorizedRoot, Builder.getInt32(VecIdx++))); 2226 IE->setOperand(1, Extract); 2227 IE->removeFromParent(); 2228 IE->insertAfter(Extract); 2229 InsertAfter = IE; 2230 } 2231 } 2232 // Move to the next bundle. 2233 i += VF - 1; 2234 Changed = true; 2235 } 2236 } 2237 2238 return Changed; 2239 } 2240 2241 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 2242 if (!V) 2243 return false; 2244 2245 // Try to vectorize V. 2246 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 2247 return true; 2248 2249 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 2250 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 2251 // Try to skip B. 2252 if (B && B->hasOneUse()) { 2253 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 2254 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 2255 if (tryToVectorizePair(A, B0, R)) { 2256 B->moveBefore(V); 2257 return true; 2258 } 2259 if (tryToVectorizePair(A, B1, R)) { 2260 B->moveBefore(V); 2261 return true; 2262 } 2263 } 2264 2265 // Try to skip A. 2266 if (A && A->hasOneUse()) { 2267 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 2268 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 2269 if (tryToVectorizePair(A0, B, R)) { 2270 A->moveBefore(V); 2271 return true; 2272 } 2273 if (tryToVectorizePair(A1, B, R)) { 2274 A->moveBefore(V); 2275 return true; 2276 } 2277 } 2278 return 0; 2279 } 2280 2281 /// \brief Generate a shuffle mask to be used in a reduction tree. 2282 /// 2283 /// \param VecLen The length of the vector to be reduced. 2284 /// \param NumEltsToRdx The number of elements that should be reduced in the 2285 /// vector. 2286 /// \param IsPairwise Whether the reduction is a pairwise or splitting 2287 /// reduction. A pairwise reduction will generate a mask of 2288 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 2289 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 2290 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 2291 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 2292 bool IsPairwise, bool IsLeft, 2293 IRBuilder<> &Builder) { 2294 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 2295 2296 SmallVector<Constant *, 32> ShuffleMask( 2297 VecLen, UndefValue::get(Builder.getInt32Ty())); 2298 2299 if (IsPairwise) 2300 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 2301 for (unsigned i = 0; i != NumEltsToRdx; ++i) 2302 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 2303 else 2304 // Move the upper half of the vector to the lower half. 2305 for (unsigned i = 0; i != NumEltsToRdx; ++i) 2306 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 2307 2308 return ConstantVector::get(ShuffleMask); 2309 } 2310 2311 2312 /// Model horizontal reductions. 2313 /// 2314 /// A horizontal reduction is a tree of reduction operations (currently add and 2315 /// fadd) that has operations that can be put into a vector as its leaf. 2316 /// For example, this tree: 2317 /// 2318 /// mul mul mul mul 2319 /// \ / \ / 2320 /// + + 2321 /// \ / 2322 /// + 2323 /// This tree has "mul" as its reduced values and "+" as its reduction 2324 /// operations. A reduction might be feeding into a store or a binary operation 2325 /// feeding a phi. 2326 /// ... 2327 /// \ / 2328 /// + 2329 /// | 2330 /// phi += 2331 /// 2332 /// Or: 2333 /// ... 2334 /// \ / 2335 /// + 2336 /// | 2337 /// *p = 2338 /// 2339 class HorizontalReduction { 2340 SmallVector<Value *, 16> ReductionOps; 2341 SmallVector<Value *, 32> ReducedVals; 2342 2343 BinaryOperator *ReductionRoot; 2344 PHINode *ReductionPHI; 2345 2346 /// The opcode of the reduction. 2347 unsigned ReductionOpcode; 2348 /// The opcode of the values we perform a reduction on. 2349 unsigned ReducedValueOpcode; 2350 /// The width of one full horizontal reduction operation. 2351 unsigned ReduxWidth; 2352 /// Should we model this reduction as a pairwise reduction tree or a tree that 2353 /// splits the vector in halves and adds those halves. 2354 bool IsPairwiseReduction; 2355 2356 public: 2357 HorizontalReduction() 2358 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 2359 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 2360 2361 /// \brief Try to find a reduction tree. 2362 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 2363 const DataLayout *DL) { 2364 assert((!Phi || 2365 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 2366 "Thi phi needs to use the binary operator"); 2367 2368 // We could have a initial reductions that is not an add. 2369 // r *= v1 + v2 + v3 + v4 2370 // In such a case start looking for a tree rooted in the first '+'. 2371 if (Phi) { 2372 if (B->getOperand(0) == Phi) { 2373 Phi = nullptr; 2374 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 2375 } else if (B->getOperand(1) == Phi) { 2376 Phi = nullptr; 2377 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 2378 } 2379 } 2380 2381 if (!B) 2382 return false; 2383 2384 Type *Ty = B->getType(); 2385 if (Ty->isVectorTy()) 2386 return false; 2387 2388 ReductionOpcode = B->getOpcode(); 2389 ReducedValueOpcode = 0; 2390 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 2391 ReductionRoot = B; 2392 ReductionPHI = Phi; 2393 2394 if (ReduxWidth < 4) 2395 return false; 2396 2397 // We currently only support adds. 2398 if (ReductionOpcode != Instruction::Add && 2399 ReductionOpcode != Instruction::FAdd) 2400 return false; 2401 2402 // Post order traverse the reduction tree starting at B. We only handle true 2403 // trees containing only binary operators. 2404 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 2405 Stack.push_back(std::make_pair(B, 0)); 2406 while (!Stack.empty()) { 2407 BinaryOperator *TreeN = Stack.back().first; 2408 unsigned EdgeToVist = Stack.back().second++; 2409 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 2410 2411 // Only handle trees in the current basic block. 2412 if (TreeN->getParent() != B->getParent()) 2413 return false; 2414 2415 // Each tree node needs to have one user except for the ultimate 2416 // reduction. 2417 if (!TreeN->hasOneUse() && TreeN != B) 2418 return false; 2419 2420 // Postorder vist. 2421 if (EdgeToVist == 2 || IsReducedValue) { 2422 if (IsReducedValue) { 2423 // Make sure that the opcodes of the operations that we are going to 2424 // reduce match. 2425 if (!ReducedValueOpcode) 2426 ReducedValueOpcode = TreeN->getOpcode(); 2427 else if (ReducedValueOpcode != TreeN->getOpcode()) 2428 return false; 2429 ReducedVals.push_back(TreeN); 2430 } else { 2431 // We need to be able to reassociate the adds. 2432 if (!TreeN->isAssociative()) 2433 return false; 2434 ReductionOps.push_back(TreeN); 2435 } 2436 // Retract. 2437 Stack.pop_back(); 2438 continue; 2439 } 2440 2441 // Visit left or right. 2442 Value *NextV = TreeN->getOperand(EdgeToVist); 2443 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 2444 if (Next) 2445 Stack.push_back(std::make_pair(Next, 0)); 2446 else if (NextV != Phi) 2447 return false; 2448 } 2449 return true; 2450 } 2451 2452 /// \brief Attempt to vectorize the tree found by 2453 /// matchAssociativeReduction. 2454 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 2455 if (ReducedVals.empty()) 2456 return false; 2457 2458 unsigned NumReducedVals = ReducedVals.size(); 2459 if (NumReducedVals < ReduxWidth) 2460 return false; 2461 2462 Value *VectorizedTree = nullptr; 2463 IRBuilder<> Builder(ReductionRoot); 2464 FastMathFlags Unsafe; 2465 Unsafe.setUnsafeAlgebra(); 2466 Builder.SetFastMathFlags(Unsafe); 2467 unsigned i = 0; 2468 2469 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 2470 ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth); 2471 V.buildTree(ValsToReduce, ReductionOps); 2472 2473 // Estimate cost. 2474 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 2475 if (Cost >= -SLPCostThreshold) 2476 break; 2477 2478 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 2479 << ". (HorRdx)\n"); 2480 2481 // Vectorize a tree. 2482 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 2483 Value *VectorizedRoot = V.vectorizeTree(); 2484 2485 // Emit a reduction. 2486 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 2487 if (VectorizedTree) { 2488 Builder.SetCurrentDebugLocation(Loc); 2489 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 2490 ReducedSubTree, "bin.rdx"); 2491 } else 2492 VectorizedTree = ReducedSubTree; 2493 } 2494 2495 if (VectorizedTree) { 2496 // Finish the reduction. 2497 for (; i < NumReducedVals; ++i) { 2498 Builder.SetCurrentDebugLocation( 2499 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 2500 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 2501 ReducedVals[i]); 2502 } 2503 // Update users. 2504 if (ReductionPHI) { 2505 assert(ReductionRoot && "Need a reduction operation"); 2506 ReductionRoot->setOperand(0, VectorizedTree); 2507 ReductionRoot->setOperand(1, ReductionPHI); 2508 } else 2509 ReductionRoot->replaceAllUsesWith(VectorizedTree); 2510 } 2511 return VectorizedTree != nullptr; 2512 } 2513 2514 private: 2515 2516 /// \brief Calcuate the cost of a reduction. 2517 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 2518 Type *ScalarTy = FirstReducedVal->getType(); 2519 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 2520 2521 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 2522 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 2523 2524 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 2525 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 2526 2527 int ScalarReduxCost = 2528 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 2529 2530 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 2531 << " for reduction that starts with " << *FirstReducedVal 2532 << " (It is a " 2533 << (IsPairwiseReduction ? "pairwise" : "splitting") 2534 << " reduction)\n"); 2535 2536 return VecReduxCost - ScalarReduxCost; 2537 } 2538 2539 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 2540 Value *R, const Twine &Name = "") { 2541 if (Opcode == Instruction::FAdd) 2542 return Builder.CreateFAdd(L, R, Name); 2543 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 2544 } 2545 2546 /// \brief Emit a horizontal reduction of the vectorized value. 2547 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 2548 assert(VectorizedValue && "Need to have a vectorized tree node"); 2549 Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue); 2550 assert(isPowerOf2_32(ReduxWidth) && 2551 "We only handle power-of-two reductions for now"); 2552 2553 Value *TmpVec = ValToReduce; 2554 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 2555 if (IsPairwiseReduction) { 2556 Value *LeftMask = 2557 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 2558 Value *RightMask = 2559 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 2560 2561 Value *LeftShuf = Builder.CreateShuffleVector( 2562 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 2563 Value *RightShuf = Builder.CreateShuffleVector( 2564 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 2565 "rdx.shuf.r"); 2566 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 2567 "bin.rdx"); 2568 } else { 2569 Value *UpperHalf = 2570 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 2571 Value *Shuf = Builder.CreateShuffleVector( 2572 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 2573 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 2574 } 2575 } 2576 2577 // The result is in the first element of the vector. 2578 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 2579 } 2580 }; 2581 2582 /// \brief Recognize construction of vectors like 2583 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 2584 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 2585 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 2586 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 2587 /// 2588 /// Returns true if it matches 2589 /// 2590 static bool findBuildVector(InsertElementInst *FirstInsertElem, 2591 SmallVectorImpl<Value *> &BuildVector, 2592 SmallVectorImpl<Value *> &BuildVectorOpds) { 2593 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 2594 return false; 2595 2596 InsertElementInst *IE = FirstInsertElem; 2597 while (true) { 2598 BuildVector.push_back(IE); 2599 BuildVectorOpds.push_back(IE->getOperand(1)); 2600 2601 if (IE->use_empty()) 2602 return false; 2603 2604 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 2605 if (!NextUse) 2606 return true; 2607 2608 // If this isn't the final use, make sure the next insertelement is the only 2609 // use. It's OK if the final constructed vector is used multiple times 2610 if (!IE->hasOneUse()) 2611 return false; 2612 2613 IE = NextUse; 2614 } 2615 2616 return false; 2617 } 2618 2619 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 2620 return V->getType() < V2->getType(); 2621 } 2622 2623 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 2624 bool Changed = false; 2625 SmallVector<Value *, 4> Incoming; 2626 SmallSet<Value *, 16> VisitedInstrs; 2627 2628 bool HaveVectorizedPhiNodes = true; 2629 while (HaveVectorizedPhiNodes) { 2630 HaveVectorizedPhiNodes = false; 2631 2632 // Collect the incoming values from the PHIs. 2633 Incoming.clear(); 2634 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 2635 ++instr) { 2636 PHINode *P = dyn_cast<PHINode>(instr); 2637 if (!P) 2638 break; 2639 2640 if (!VisitedInstrs.count(P)) 2641 Incoming.push_back(P); 2642 } 2643 2644 // Sort by type. 2645 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 2646 2647 // Try to vectorize elements base on their type. 2648 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 2649 E = Incoming.end(); 2650 IncIt != E;) { 2651 2652 // Look for the next elements with the same type. 2653 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 2654 while (SameTypeIt != E && 2655 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 2656 VisitedInstrs.insert(*SameTypeIt); 2657 ++SameTypeIt; 2658 } 2659 2660 // Try to vectorize them. 2661 unsigned NumElts = (SameTypeIt - IncIt); 2662 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 2663 if (NumElts > 1 && 2664 tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) { 2665 // Success start over because instructions might have been changed. 2666 HaveVectorizedPhiNodes = true; 2667 Changed = true; 2668 break; 2669 } 2670 2671 // Start over at the next instruction of a different type (or the end). 2672 IncIt = SameTypeIt; 2673 } 2674 } 2675 2676 VisitedInstrs.clear(); 2677 2678 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 2679 // We may go through BB multiple times so skip the one we have checked. 2680 if (!VisitedInstrs.insert(it)) 2681 continue; 2682 2683 if (isa<DbgInfoIntrinsic>(it)) 2684 continue; 2685 2686 // Try to vectorize reductions that use PHINodes. 2687 if (PHINode *P = dyn_cast<PHINode>(it)) { 2688 // Check that the PHI is a reduction PHI. 2689 if (P->getNumIncomingValues() != 2) 2690 return Changed; 2691 Value *Rdx = 2692 (P->getIncomingBlock(0) == BB 2693 ? (P->getIncomingValue(0)) 2694 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 2695 : nullptr)); 2696 // Check if this is a Binary Operator. 2697 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 2698 if (!BI) 2699 continue; 2700 2701 // Try to match and vectorize a horizontal reduction. 2702 HorizontalReduction HorRdx; 2703 if (ShouldVectorizeHor && 2704 HorRdx.matchAssociativeReduction(P, BI, DL) && 2705 HorRdx.tryToReduce(R, TTI)) { 2706 Changed = true; 2707 it = BB->begin(); 2708 e = BB->end(); 2709 continue; 2710 } 2711 2712 Value *Inst = BI->getOperand(0); 2713 if (Inst == P) 2714 Inst = BI->getOperand(1); 2715 2716 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 2717 // We would like to start over since some instructions are deleted 2718 // and the iterator may become invalid value. 2719 Changed = true; 2720 it = BB->begin(); 2721 e = BB->end(); 2722 continue; 2723 } 2724 2725 continue; 2726 } 2727 2728 // Try to vectorize horizontal reductions feeding into a store. 2729 if (ShouldStartVectorizeHorAtStore) 2730 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 2731 if (BinaryOperator *BinOp = 2732 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 2733 HorizontalReduction HorRdx; 2734 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) && 2735 HorRdx.tryToReduce(R, TTI)) || 2736 tryToVectorize(BinOp, R))) { 2737 Changed = true; 2738 it = BB->begin(); 2739 e = BB->end(); 2740 continue; 2741 } 2742 } 2743 2744 // Try to vectorize trees that start at compare instructions. 2745 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 2746 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 2747 Changed = true; 2748 // We would like to start over since some instructions are deleted 2749 // and the iterator may become invalid value. 2750 it = BB->begin(); 2751 e = BB->end(); 2752 continue; 2753 } 2754 2755 for (int i = 0; i < 2; ++i) { 2756 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 2757 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 2758 Changed = true; 2759 // We would like to start over since some instructions are deleted 2760 // and the iterator may become invalid value. 2761 it = BB->begin(); 2762 e = BB->end(); 2763 } 2764 } 2765 } 2766 continue; 2767 } 2768 2769 // Try to vectorize trees that start at insertelement instructions. 2770 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 2771 SmallVector<Value *, 16> BuildVector; 2772 SmallVector<Value *, 16> BuildVectorOpds; 2773 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 2774 continue; 2775 2776 // Vectorize starting with the build vector operands ignoring the 2777 // BuildVector instructions for the purpose of scheduling and user 2778 // extraction. 2779 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 2780 Changed = true; 2781 it = BB->begin(); 2782 e = BB->end(); 2783 } 2784 2785 continue; 2786 } 2787 } 2788 2789 return Changed; 2790 } 2791 2792 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 2793 bool Changed = false; 2794 // Attempt to sort and vectorize each of the store-groups. 2795 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 2796 it != e; ++it) { 2797 if (it->second.size() < 2) 2798 continue; 2799 2800 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 2801 << it->second.size() << ".\n"); 2802 2803 // Process the stores in chunks of 16. 2804 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 2805 unsigned Len = std::min<unsigned>(CE - CI, 16); 2806 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len); 2807 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); 2808 } 2809 } 2810 return Changed; 2811 } 2812 2813 } // end anonymous namespace 2814 2815 char SLPVectorizer::ID = 0; 2816 static const char lv_name[] = "SLP Vectorizer"; 2817 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 2818 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 2819 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 2820 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 2821 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 2822 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 2823 2824 namespace llvm { 2825 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 2826 } 2827