1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 456 assert(Opcode == Instruction::ExtractElement || 457 Opcode == Instruction::ExtractValue); 458 if (Opcode == Instruction::ExtractElement) { 459 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 460 return CI && CI->getZExtValue() == Idx; 461 } else { 462 ExtractValueInst *EI = cast<ExtractValueInst>(E); 463 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 464 } 465 } 466 467 /// \returns True if in-tree use also needs extract. This refers to 468 /// possible scalar operand in vectorized instruction. 469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 470 TargetLibraryInfo *TLI) { 471 unsigned Opcode = UserInst->getOpcode(); 472 switch (Opcode) { 473 case Instruction::Load: { 474 LoadInst *LI = cast<LoadInst>(UserInst); 475 return (LI->getPointerOperand() == Scalar); 476 } 477 case Instruction::Store: { 478 StoreInst *SI = cast<StoreInst>(UserInst); 479 return (SI->getPointerOperand() == Scalar); 480 } 481 case Instruction::Call: { 482 CallInst *CI = cast<CallInst>(UserInst); 483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 484 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 485 return (CI->getArgOperand(1) == Scalar); 486 } 487 LLVM_FALLTHROUGH; 488 } 489 default: 490 return false; 491 } 492 } 493 494 /// \returns the AA location that is being access by the instruction. 495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 496 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 497 return MemoryLocation::get(SI); 498 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 499 return MemoryLocation::get(LI); 500 return MemoryLocation(); 501 } 502 503 /// \returns True if the instruction is not a volatile or atomic load/store. 504 static bool isSimple(Instruction *I) { 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return LI->isSimple(); 507 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 508 return SI->isSimple(); 509 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 510 return !MI->isVolatile(); 511 return true; 512 } 513 514 namespace llvm { 515 516 namespace slpvectorizer { 517 518 /// Bottom Up SLP Vectorizer. 519 class BoUpSLP { 520 public: 521 using ValueList = SmallVector<Value *, 8>; 522 using InstrList = SmallVector<Instruction *, 16>; 523 using ValueSet = SmallPtrSet<Value *, 16>; 524 using StoreList = SmallVector<StoreInst *, 8>; 525 using ExtraValueToDebugLocsMap = 526 MapVector<Value *, SmallVector<Instruction *, 2>>; 527 528 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 529 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 530 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 531 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 532 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 533 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 534 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 535 // Use the vector register size specified by the target unless overridden 536 // by a command-line option. 537 // TODO: It would be better to limit the vectorization factor based on 538 // data type rather than just register size. For example, x86 AVX has 539 // 256-bit registers, but it does not support integer operations 540 // at that width (that requires AVX2). 541 if (MaxVectorRegSizeOption.getNumOccurrences()) 542 MaxVecRegSize = MaxVectorRegSizeOption; 543 else 544 MaxVecRegSize = TTI->getRegisterBitWidth(true); 545 546 if (MinVectorRegSizeOption.getNumOccurrences()) 547 MinVecRegSize = MinVectorRegSizeOption; 548 else 549 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 550 } 551 552 /// \brief Vectorize the tree that starts with the elements in \p VL. 553 /// Returns the vectorized root. 554 Value *vectorizeTree(); 555 556 /// Vectorize the tree but with the list of externally used values \p 557 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 558 /// generated extractvalue instructions. 559 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 560 561 /// \returns the cost incurred by unwanted spills and fills, caused by 562 /// holding live values over call sites. 563 int getSpillCost(); 564 565 /// \returns the vectorization cost of the subtree that starts at \p VL. 566 /// A negative number means that this is profitable. 567 int getTreeCost(); 568 569 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 570 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 571 void buildTree(ArrayRef<Value *> Roots, 572 ArrayRef<Value *> UserIgnoreLst = None); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 576 /// into account (anf updating it, if required) list of externally used 577 /// values stored in \p ExternallyUsedValues. 578 void buildTree(ArrayRef<Value *> Roots, 579 ExtraValueToDebugLocsMap &ExternallyUsedValues, 580 ArrayRef<Value *> UserIgnoreLst = None); 581 582 /// Clear the internal data structures that are created by 'buildTree'. 583 void deleteTree() { 584 VectorizableTree.clear(); 585 ScalarToTreeEntry.clear(); 586 MustGather.clear(); 587 ExternalUses.clear(); 588 NumLoadsWantToKeepOrder = 0; 589 NumLoadsWantToChangeOrder = 0; 590 for (auto &Iter : BlocksSchedules) { 591 BlockScheduling *BS = Iter.second.get(); 592 BS->clear(); 593 } 594 MinBWs.clear(); 595 } 596 597 unsigned getTreeSize() const { return VectorizableTree.size(); } 598 599 /// \brief Perform LICM and CSE on the newly generated gather sequences. 600 void optimizeGatherSequence(Function &F); 601 602 /// \returns true if it is beneficial to reverse the vector order. 603 bool shouldReorder() const { 604 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 605 } 606 607 /// \return The vector element size in bits to use when vectorizing the 608 /// expression tree ending at \p V. If V is a store, the size is the width of 609 /// the stored value. Otherwise, the size is the width of the largest loaded 610 /// value reaching V. This method is used by the vectorizer to calculate 611 /// vectorization factors. 612 unsigned getVectorElementSize(Value *V); 613 614 /// Compute the minimum type sizes required to represent the entries in a 615 /// vectorizable tree. 616 void computeMinimumValueSizes(); 617 618 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 619 unsigned getMaxVecRegSize() const { 620 return MaxVecRegSize; 621 } 622 623 // \returns minimum vector register size as set by cl::opt. 624 unsigned getMinVecRegSize() const { 625 return MinVecRegSize; 626 } 627 628 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 629 /// 630 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 631 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 632 633 /// \returns True if the VectorizableTree is both tiny and not fully 634 /// vectorizable. We do not vectorize such trees. 635 bool isTreeTinyAndNotFullyVectorizable(); 636 637 OptimizationRemarkEmitter *getORE() { return ORE; } 638 639 private: 640 struct TreeEntry; 641 642 /// Checks if all users of \p I are the part of the vectorization tree. 643 bool areAllUsersVectorized(Instruction *I) const; 644 645 /// \returns the cost of the vectorizable entry. 646 int getEntryCost(TreeEntry *E); 647 648 /// This is the recursive part of buildTree. 649 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int UserIndx = -1, 650 int OpdNum = 0); 651 652 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 653 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 654 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 655 656 /// Vectorize a single entry in the tree.\p OpdNum indicate the ordinality of 657 /// operand corrsponding to this tree entry \p E for the user tree entry 658 /// indicated by \p UserIndx. 659 // In other words, "E == TreeEntry[UserIndx].getOperand(OpdNum)". 660 Value *vectorizeTree(TreeEntry *E, int OpdNum = 0, int UserIndx = -1); 661 662 /// Vectorize a single entry in the tree, starting in \p VL.\p OpdNum indicate 663 /// the ordinality of operand corrsponding to the \p VL of scalar values for the 664 /// user indicated by \p UserIndx this \p VL feeds into. 665 Value *vectorizeTree(ArrayRef<Value *> VL, int OpdNum = 0, int UserIndx = -1); 666 667 /// \returns the pointer to the vectorized value if \p VL is already 668 /// vectorized, or NULL. They may happen in cycles. 669 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 670 671 /// \returns the scalarization cost for this type. Scalarization in this 672 /// context means the creation of vectors from a group of scalars. 673 int getGatherCost(Type *Ty); 674 675 /// \returns the scalarization cost for this list of values. Assuming that 676 /// this subtree gets vectorized, we may need to extract the values from the 677 /// roots. This method calculates the cost of extracting the values. 678 int getGatherCost(ArrayRef<Value *> VL); 679 680 /// \brief Set the Builder insert point to one after the last instruction in 681 /// the bundle 682 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 683 684 /// \returns a vector from a collection of scalars in \p VL. 685 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 686 687 /// \returns whether the VectorizableTree is fully vectorizable and will 688 /// be beneficial even the tree height is tiny. 689 bool isFullyVectorizableTinyTree(); 690 691 /// \reorder commutative operands in alt shuffle if they result in 692 /// vectorized code. 693 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 694 SmallVectorImpl<Value *> &Left, 695 SmallVectorImpl<Value *> &Right); 696 697 /// \reorder commutative operands to get better probability of 698 /// generating vectorized code. 699 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 700 SmallVectorImpl<Value *> &Left, 701 SmallVectorImpl<Value *> &Right); 702 struct TreeEntry { 703 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 704 705 /// \returns true if the scalars in VL are equal to this entry. 706 bool isSame(ArrayRef<Value *> VL) const { 707 assert(VL.size() == Scalars.size() && "Invalid size"); 708 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 709 } 710 711 /// \returns true if the scalars in VL are found in this tree entry. 712 bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL, 713 ScalarEvolution &SE) const { 714 assert(VL.size() == Scalars.size() && "Invalid size"); 715 SmallVector<Value *, 8> List; 716 if (!sortLoadAccesses(VL, DL, SE, List)) 717 return false; 718 return std::equal(List.begin(), List.end(), Scalars.begin()); 719 } 720 721 /// A vector of scalars. 722 ValueList Scalars; 723 724 /// The Scalars are vectorized into this value. It is initialized to Null. 725 Value *VectorizedValue = nullptr; 726 727 /// Do we need to gather this sequence ? 728 bool NeedToGather = false; 729 730 /// Records optional shuffle mask for the uses of jumbled memory accesses. 731 /// For example, a non-empty ShuffleMask[1] represents the permutation of 732 /// lanes that operand #1 of this vectorized instruction should undergo 733 /// before feeding this vectorized instruction, whereas an empty 734 /// ShuffleMask[0] indicates that the lanes of operand #0 of this vectorized 735 /// instruction need not be permuted at all. 736 SmallVector<SmallVector<unsigned, 4>, 2> ShuffleMask; 737 738 /// Points back to the VectorizableTree. 739 /// 740 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 741 /// to be a pointer and needs to be able to initialize the child iterator. 742 /// Thus we need a reference back to the container to translate the indices 743 /// to entries. 744 std::vector<TreeEntry> &Container; 745 746 /// The TreeEntry index containing the user of this entry. We can actually 747 /// have multiple users so the data structure is not truly a tree. 748 SmallVector<int, 1> UserTreeIndices; 749 }; 750 751 /// Create a new VectorizableTree entry. 752 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 753 int &UserTreeIdx, const InstructionsState &S, 754 ArrayRef<unsigned> ShuffleMask = None, 755 int OpdNum = 0) { 756 assert((!Vectorized || S.Opcode != 0) && 757 "Vectorized TreeEntry without opcode"); 758 VectorizableTree.emplace_back(VectorizableTree); 759 760 int idx = VectorizableTree.size() - 1; 761 TreeEntry *Last = &VectorizableTree[idx]; 762 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 763 Last->NeedToGather = !Vectorized; 764 765 TreeEntry *UserTreeEntry = nullptr; 766 if (UserTreeIdx != -1) 767 UserTreeEntry = &VectorizableTree[UserTreeIdx]; 768 769 if (UserTreeEntry && !ShuffleMask.empty()) { 770 if ((unsigned)OpdNum >= UserTreeEntry->ShuffleMask.size()) 771 UserTreeEntry->ShuffleMask.resize(OpdNum + 1); 772 assert(UserTreeEntry->ShuffleMask[OpdNum].empty() && 773 "Mask already present"); 774 using mask = SmallVector<unsigned, 4>; 775 mask tempMask(ShuffleMask.begin(), ShuffleMask.end()); 776 UserTreeEntry->ShuffleMask[OpdNum] = tempMask; 777 } 778 if (Vectorized) { 779 for (int i = 0, e = VL.size(); i != e; ++i) { 780 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 781 ScalarToTreeEntry[VL[i]] = idx; 782 } 783 } else { 784 MustGather.insert(VL.begin(), VL.end()); 785 } 786 787 if (UserTreeIdx >= 0) 788 Last->UserTreeIndices.push_back(UserTreeIdx); 789 UserTreeIdx = idx; 790 return Last; 791 } 792 793 /// -- Vectorization State -- 794 /// Holds all of the tree entries. 795 std::vector<TreeEntry> VectorizableTree; 796 797 TreeEntry *getTreeEntry(Value *V) { 798 auto I = ScalarToTreeEntry.find(V); 799 if (I != ScalarToTreeEntry.end()) 800 return &VectorizableTree[I->second]; 801 return nullptr; 802 } 803 804 const TreeEntry *getTreeEntry(Value *V) const { 805 auto I = ScalarToTreeEntry.find(V); 806 if (I != ScalarToTreeEntry.end()) 807 return &VectorizableTree[I->second]; 808 return nullptr; 809 } 810 811 /// Maps a specific scalar to its tree entry. 812 SmallDenseMap<Value*, int> ScalarToTreeEntry; 813 814 /// A list of scalars that we found that we need to keep as scalars. 815 ValueSet MustGather; 816 817 /// This POD struct describes one external user in the vectorized tree. 818 struct ExternalUser { 819 ExternalUser(Value *S, llvm::User *U, int L) 820 : Scalar(S), User(U), Lane(L) {} 821 822 // Which scalar in our function. 823 Value *Scalar; 824 825 // Which user that uses the scalar. 826 llvm::User *User; 827 828 // Which lane does the scalar belong to. 829 int Lane; 830 }; 831 using UserList = SmallVector<ExternalUser, 16>; 832 833 /// Checks if two instructions may access the same memory. 834 /// 835 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 836 /// is invariant in the calling loop. 837 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 838 Instruction *Inst2) { 839 // First check if the result is already in the cache. 840 AliasCacheKey key = std::make_pair(Inst1, Inst2); 841 Optional<bool> &result = AliasCache[key]; 842 if (result.hasValue()) { 843 return result.getValue(); 844 } 845 MemoryLocation Loc2 = getLocation(Inst2, AA); 846 bool aliased = true; 847 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 848 // Do the alias check. 849 aliased = AA->alias(Loc1, Loc2); 850 } 851 // Store the result in the cache. 852 result = aliased; 853 return aliased; 854 } 855 856 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 857 858 /// Cache for alias results. 859 /// TODO: consider moving this to the AliasAnalysis itself. 860 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 861 862 /// Removes an instruction from its block and eventually deletes it. 863 /// It's like Instruction::eraseFromParent() except that the actual deletion 864 /// is delayed until BoUpSLP is destructed. 865 /// This is required to ensure that there are no incorrect collisions in the 866 /// AliasCache, which can happen if a new instruction is allocated at the 867 /// same address as a previously deleted instruction. 868 void eraseInstruction(Instruction *I) { 869 I->removeFromParent(); 870 I->dropAllReferences(); 871 DeletedInstructions.emplace_back(I); 872 } 873 874 /// Temporary store for deleted instructions. Instructions will be deleted 875 /// eventually when the BoUpSLP is destructed. 876 SmallVector<unique_value, 8> DeletedInstructions; 877 878 /// A list of values that need to extracted out of the tree. 879 /// This list holds pairs of (Internal Scalar : External User). External User 880 /// can be nullptr, it means that this Internal Scalar will be used later, 881 /// after vectorization. 882 UserList ExternalUses; 883 884 /// Values used only by @llvm.assume calls. 885 SmallPtrSet<const Value *, 32> EphValues; 886 887 /// Holds all of the instructions that we gathered. 888 SetVector<Instruction *> GatherSeq; 889 890 /// A list of blocks that we are going to CSE. 891 SetVector<BasicBlock *> CSEBlocks; 892 893 /// Contains all scheduling relevant data for an instruction. 894 /// A ScheduleData either represents a single instruction or a member of an 895 /// instruction bundle (= a group of instructions which is combined into a 896 /// vector instruction). 897 struct ScheduleData { 898 // The initial value for the dependency counters. It means that the 899 // dependencies are not calculated yet. 900 enum { InvalidDeps = -1 }; 901 902 ScheduleData() = default; 903 904 void init(int BlockSchedulingRegionID, Value *OpVal) { 905 FirstInBundle = this; 906 NextInBundle = nullptr; 907 NextLoadStore = nullptr; 908 IsScheduled = false; 909 SchedulingRegionID = BlockSchedulingRegionID; 910 UnscheduledDepsInBundle = UnscheduledDeps; 911 clearDependencies(); 912 OpValue = OpVal; 913 } 914 915 /// Returns true if the dependency information has been calculated. 916 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 917 918 /// Returns true for single instructions and for bundle representatives 919 /// (= the head of a bundle). 920 bool isSchedulingEntity() const { return FirstInBundle == this; } 921 922 /// Returns true if it represents an instruction bundle and not only a 923 /// single instruction. 924 bool isPartOfBundle() const { 925 return NextInBundle != nullptr || FirstInBundle != this; 926 } 927 928 /// Returns true if it is ready for scheduling, i.e. it has no more 929 /// unscheduled depending instructions/bundles. 930 bool isReady() const { 931 assert(isSchedulingEntity() && 932 "can't consider non-scheduling entity for ready list"); 933 return UnscheduledDepsInBundle == 0 && !IsScheduled; 934 } 935 936 /// Modifies the number of unscheduled dependencies, also updating it for 937 /// the whole bundle. 938 int incrementUnscheduledDeps(int Incr) { 939 UnscheduledDeps += Incr; 940 return FirstInBundle->UnscheduledDepsInBundle += Incr; 941 } 942 943 /// Sets the number of unscheduled dependencies to the number of 944 /// dependencies. 945 void resetUnscheduledDeps() { 946 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 947 } 948 949 /// Clears all dependency information. 950 void clearDependencies() { 951 Dependencies = InvalidDeps; 952 resetUnscheduledDeps(); 953 MemoryDependencies.clear(); 954 } 955 956 void dump(raw_ostream &os) const { 957 if (!isSchedulingEntity()) { 958 os << "/ " << *Inst; 959 } else if (NextInBundle) { 960 os << '[' << *Inst; 961 ScheduleData *SD = NextInBundle; 962 while (SD) { 963 os << ';' << *SD->Inst; 964 SD = SD->NextInBundle; 965 } 966 os << ']'; 967 } else { 968 os << *Inst; 969 } 970 } 971 972 Instruction *Inst = nullptr; 973 974 /// Points to the head in an instruction bundle (and always to this for 975 /// single instructions). 976 ScheduleData *FirstInBundle = nullptr; 977 978 /// Single linked list of all instructions in a bundle. Null if it is a 979 /// single instruction. 980 ScheduleData *NextInBundle = nullptr; 981 982 /// Single linked list of all memory instructions (e.g. load, store, call) 983 /// in the block - until the end of the scheduling region. 984 ScheduleData *NextLoadStore = nullptr; 985 986 /// The dependent memory instructions. 987 /// This list is derived on demand in calculateDependencies(). 988 SmallVector<ScheduleData *, 4> MemoryDependencies; 989 990 /// This ScheduleData is in the current scheduling region if this matches 991 /// the current SchedulingRegionID of BlockScheduling. 992 int SchedulingRegionID = 0; 993 994 /// Used for getting a "good" final ordering of instructions. 995 int SchedulingPriority = 0; 996 997 /// The number of dependencies. Constitutes of the number of users of the 998 /// instruction plus the number of dependent memory instructions (if any). 999 /// This value is calculated on demand. 1000 /// If InvalidDeps, the number of dependencies is not calculated yet. 1001 int Dependencies = InvalidDeps; 1002 1003 /// The number of dependencies minus the number of dependencies of scheduled 1004 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1005 /// for scheduling. 1006 /// Note that this is negative as long as Dependencies is not calculated. 1007 int UnscheduledDeps = InvalidDeps; 1008 1009 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1010 /// single instructions. 1011 int UnscheduledDepsInBundle = InvalidDeps; 1012 1013 /// True if this instruction is scheduled (or considered as scheduled in the 1014 /// dry-run). 1015 bool IsScheduled = false; 1016 1017 /// Opcode of the current instruction in the schedule data. 1018 Value *OpValue = nullptr; 1019 }; 1020 1021 #ifndef NDEBUG 1022 friend inline raw_ostream &operator<<(raw_ostream &os, 1023 const BoUpSLP::ScheduleData &SD) { 1024 SD.dump(os); 1025 return os; 1026 } 1027 #endif 1028 1029 friend struct GraphTraits<BoUpSLP *>; 1030 friend struct DOTGraphTraits<BoUpSLP *>; 1031 1032 /// Contains all scheduling data for a basic block. 1033 struct BlockScheduling { 1034 BlockScheduling(BasicBlock *BB) 1035 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1036 1037 void clear() { 1038 ReadyInsts.clear(); 1039 ScheduleStart = nullptr; 1040 ScheduleEnd = nullptr; 1041 FirstLoadStoreInRegion = nullptr; 1042 LastLoadStoreInRegion = nullptr; 1043 1044 // Reduce the maximum schedule region size by the size of the 1045 // previous scheduling run. 1046 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1047 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1048 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1049 ScheduleRegionSize = 0; 1050 1051 // Make a new scheduling region, i.e. all existing ScheduleData is not 1052 // in the new region yet. 1053 ++SchedulingRegionID; 1054 } 1055 1056 ScheduleData *getScheduleData(Value *V) { 1057 ScheduleData *SD = ScheduleDataMap[V]; 1058 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1059 return SD; 1060 return nullptr; 1061 } 1062 1063 ScheduleData *getScheduleData(Value *V, Value *Key) { 1064 if (V == Key) 1065 return getScheduleData(V); 1066 auto I = ExtraScheduleDataMap.find(V); 1067 if (I != ExtraScheduleDataMap.end()) { 1068 ScheduleData *SD = I->second[Key]; 1069 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1070 return SD; 1071 } 1072 return nullptr; 1073 } 1074 1075 bool isInSchedulingRegion(ScheduleData *SD) { 1076 return SD->SchedulingRegionID == SchedulingRegionID; 1077 } 1078 1079 /// Marks an instruction as scheduled and puts all dependent ready 1080 /// instructions into the ready-list. 1081 template <typename ReadyListType> 1082 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1083 SD->IsScheduled = true; 1084 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1085 1086 ScheduleData *BundleMember = SD; 1087 while (BundleMember) { 1088 if (BundleMember->Inst != BundleMember->OpValue) { 1089 BundleMember = BundleMember->NextInBundle; 1090 continue; 1091 } 1092 // Handle the def-use chain dependencies. 1093 for (Use &U : BundleMember->Inst->operands()) { 1094 auto *I = dyn_cast<Instruction>(U.get()); 1095 if (!I) 1096 continue; 1097 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1098 if (OpDef && OpDef->hasValidDependencies() && 1099 OpDef->incrementUnscheduledDeps(-1) == 0) { 1100 // There are no more unscheduled dependencies after 1101 // decrementing, so we can put the dependent instruction 1102 // into the ready list. 1103 ScheduleData *DepBundle = OpDef->FirstInBundle; 1104 assert(!DepBundle->IsScheduled && 1105 "already scheduled bundle gets ready"); 1106 ReadyList.insert(DepBundle); 1107 DEBUG(dbgs() 1108 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1109 } 1110 }); 1111 } 1112 // Handle the memory dependencies. 1113 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1114 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1115 // There are no more unscheduled dependencies after decrementing, 1116 // so we can put the dependent instruction into the ready list. 1117 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1118 assert(!DepBundle->IsScheduled && 1119 "already scheduled bundle gets ready"); 1120 ReadyList.insert(DepBundle); 1121 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1122 << "\n"); 1123 } 1124 } 1125 BundleMember = BundleMember->NextInBundle; 1126 } 1127 } 1128 1129 void doForAllOpcodes(Value *V, 1130 function_ref<void(ScheduleData *SD)> Action) { 1131 if (ScheduleData *SD = getScheduleData(V)) 1132 Action(SD); 1133 auto I = ExtraScheduleDataMap.find(V); 1134 if (I != ExtraScheduleDataMap.end()) 1135 for (auto &P : I->second) 1136 if (P.second->SchedulingRegionID == SchedulingRegionID) 1137 Action(P.second); 1138 } 1139 1140 /// Put all instructions into the ReadyList which are ready for scheduling. 1141 template <typename ReadyListType> 1142 void initialFillReadyList(ReadyListType &ReadyList) { 1143 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1144 doForAllOpcodes(I, [&](ScheduleData *SD) { 1145 if (SD->isSchedulingEntity() && SD->isReady()) { 1146 ReadyList.insert(SD); 1147 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1148 } 1149 }); 1150 } 1151 } 1152 1153 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1154 /// cyclic dependencies. This is only a dry-run, no instructions are 1155 /// actually moved at this stage. 1156 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1157 1158 /// Un-bundles a group of instructions. 1159 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1160 1161 /// Allocates schedule data chunk. 1162 ScheduleData *allocateScheduleDataChunks(); 1163 1164 /// Extends the scheduling region so that V is inside the region. 1165 /// \returns true if the region size is within the limit. 1166 bool extendSchedulingRegion(Value *V, Value *OpValue); 1167 1168 /// Initialize the ScheduleData structures for new instructions in the 1169 /// scheduling region. 1170 void initScheduleData(Instruction *FromI, Instruction *ToI, 1171 ScheduleData *PrevLoadStore, 1172 ScheduleData *NextLoadStore); 1173 1174 /// Updates the dependency information of a bundle and of all instructions/ 1175 /// bundles which depend on the original bundle. 1176 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1177 BoUpSLP *SLP); 1178 1179 /// Sets all instruction in the scheduling region to un-scheduled. 1180 void resetSchedule(); 1181 1182 BasicBlock *BB; 1183 1184 /// Simple memory allocation for ScheduleData. 1185 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1186 1187 /// The size of a ScheduleData array in ScheduleDataChunks. 1188 int ChunkSize; 1189 1190 /// The allocator position in the current chunk, which is the last entry 1191 /// of ScheduleDataChunks. 1192 int ChunkPos; 1193 1194 /// Attaches ScheduleData to Instruction. 1195 /// Note that the mapping survives during all vectorization iterations, i.e. 1196 /// ScheduleData structures are recycled. 1197 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1198 1199 /// Attaches ScheduleData to Instruction with the leading key. 1200 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1201 ExtraScheduleDataMap; 1202 1203 struct ReadyList : SmallVector<ScheduleData *, 8> { 1204 void insert(ScheduleData *SD) { push_back(SD); } 1205 }; 1206 1207 /// The ready-list for scheduling (only used for the dry-run). 1208 ReadyList ReadyInsts; 1209 1210 /// The first instruction of the scheduling region. 1211 Instruction *ScheduleStart = nullptr; 1212 1213 /// The first instruction _after_ the scheduling region. 1214 Instruction *ScheduleEnd = nullptr; 1215 1216 /// The first memory accessing instruction in the scheduling region 1217 /// (can be null). 1218 ScheduleData *FirstLoadStoreInRegion = nullptr; 1219 1220 /// The last memory accessing instruction in the scheduling region 1221 /// (can be null). 1222 ScheduleData *LastLoadStoreInRegion = nullptr; 1223 1224 /// The current size of the scheduling region. 1225 int ScheduleRegionSize = 0; 1226 1227 /// The maximum size allowed for the scheduling region. 1228 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1229 1230 /// The ID of the scheduling region. For a new vectorization iteration this 1231 /// is incremented which "removes" all ScheduleData from the region. 1232 // Make sure that the initial SchedulingRegionID is greater than the 1233 // initial SchedulingRegionID in ScheduleData (which is 0). 1234 int SchedulingRegionID = 1; 1235 }; 1236 1237 /// Attaches the BlockScheduling structures to basic blocks. 1238 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1239 1240 /// Performs the "real" scheduling. Done before vectorization is actually 1241 /// performed in a basic block. 1242 void scheduleBlock(BlockScheduling *BS); 1243 1244 /// List of users to ignore during scheduling and that don't need extracting. 1245 ArrayRef<Value *> UserIgnoreList; 1246 1247 // Number of load bundles that contain consecutive loads. 1248 int NumLoadsWantToKeepOrder = 0; 1249 1250 // Number of load bundles that contain consecutive loads in reversed order. 1251 int NumLoadsWantToChangeOrder = 0; 1252 1253 // Analysis and block reference. 1254 Function *F; 1255 ScalarEvolution *SE; 1256 TargetTransformInfo *TTI; 1257 TargetLibraryInfo *TLI; 1258 AliasAnalysis *AA; 1259 LoopInfo *LI; 1260 DominatorTree *DT; 1261 AssumptionCache *AC; 1262 DemandedBits *DB; 1263 const DataLayout *DL; 1264 OptimizationRemarkEmitter *ORE; 1265 1266 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1267 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1268 1269 /// Instruction builder to construct the vectorized tree. 1270 IRBuilder<> Builder; 1271 1272 /// A map of scalar integer values to the smallest bit width with which they 1273 /// can legally be represented. The values map to (width, signed) pairs, 1274 /// where "width" indicates the minimum bit width and "signed" is True if the 1275 /// value must be signed-extended, rather than zero-extended, back to its 1276 /// original width. 1277 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1278 }; 1279 1280 } // end namespace slpvectorizer 1281 1282 template <> struct GraphTraits<BoUpSLP *> { 1283 using TreeEntry = BoUpSLP::TreeEntry; 1284 1285 /// NodeRef has to be a pointer per the GraphWriter. 1286 using NodeRef = TreeEntry *; 1287 1288 /// \brief Add the VectorizableTree to the index iterator to be able to return 1289 /// TreeEntry pointers. 1290 struct ChildIteratorType 1291 : public iterator_adaptor_base<ChildIteratorType, 1292 SmallVector<int, 1>::iterator> { 1293 std::vector<TreeEntry> &VectorizableTree; 1294 1295 ChildIteratorType(SmallVector<int, 1>::iterator W, 1296 std::vector<TreeEntry> &VT) 1297 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1298 1299 NodeRef operator*() { return &VectorizableTree[*I]; } 1300 }; 1301 1302 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1303 1304 static ChildIteratorType child_begin(NodeRef N) { 1305 return {N->UserTreeIndices.begin(), N->Container}; 1306 } 1307 1308 static ChildIteratorType child_end(NodeRef N) { 1309 return {N->UserTreeIndices.end(), N->Container}; 1310 } 1311 1312 /// For the node iterator we just need to turn the TreeEntry iterator into a 1313 /// TreeEntry* iterator so that it dereferences to NodeRef. 1314 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1315 1316 static nodes_iterator nodes_begin(BoUpSLP *R) { 1317 return nodes_iterator(R->VectorizableTree.begin()); 1318 } 1319 1320 static nodes_iterator nodes_end(BoUpSLP *R) { 1321 return nodes_iterator(R->VectorizableTree.end()); 1322 } 1323 1324 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1325 }; 1326 1327 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1328 using TreeEntry = BoUpSLP::TreeEntry; 1329 1330 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1331 1332 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1333 std::string Str; 1334 raw_string_ostream OS(Str); 1335 if (isSplat(Entry->Scalars)) { 1336 OS << "<splat> " << *Entry->Scalars[0]; 1337 return Str; 1338 } 1339 for (auto V : Entry->Scalars) { 1340 OS << *V; 1341 if (std::any_of( 1342 R->ExternalUses.begin(), R->ExternalUses.end(), 1343 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1344 OS << " <extract>"; 1345 OS << "\n"; 1346 } 1347 return Str; 1348 } 1349 1350 static std::string getNodeAttributes(const TreeEntry *Entry, 1351 const BoUpSLP *) { 1352 if (Entry->NeedToGather) 1353 return "color=red"; 1354 return ""; 1355 } 1356 }; 1357 1358 } // end namespace llvm 1359 1360 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1361 ArrayRef<Value *> UserIgnoreLst) { 1362 ExtraValueToDebugLocsMap ExternallyUsedValues; 1363 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1364 } 1365 1366 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1367 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1368 ArrayRef<Value *> UserIgnoreLst) { 1369 deleteTree(); 1370 UserIgnoreList = UserIgnoreLst; 1371 if (!allSameType(Roots)) 1372 return; 1373 buildTree_rec(Roots, 0, -1); 1374 1375 // Collect the values that we need to extract from the tree. 1376 for (TreeEntry &EIdx : VectorizableTree) { 1377 TreeEntry *Entry = &EIdx; 1378 1379 // No need to handle users of gathered values. 1380 if (Entry->NeedToGather) 1381 continue; 1382 1383 // For each lane: 1384 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1385 Value *Scalar = Entry->Scalars[Lane]; 1386 1387 // Check if the scalar is externally used as an extra arg. 1388 auto ExtI = ExternallyUsedValues.find(Scalar); 1389 if (ExtI != ExternallyUsedValues.end()) { 1390 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1391 Lane << " from " << *Scalar << ".\n"); 1392 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1393 continue; 1394 } 1395 for (User *U : Scalar->users()) { 1396 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1397 1398 Instruction *UserInst = dyn_cast<Instruction>(U); 1399 if (!UserInst) 1400 continue; 1401 1402 // Skip in-tree scalars that become vectors 1403 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1404 Value *UseScalar = UseEntry->Scalars[0]; 1405 // Some in-tree scalars will remain as scalar in vectorized 1406 // instructions. If that is the case, the one in Lane 0 will 1407 // be used. 1408 if (UseScalar != U || 1409 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1410 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1411 << ".\n"); 1412 assert(!UseEntry->NeedToGather && "Bad state"); 1413 continue; 1414 } 1415 } 1416 1417 // Ignore users in the user ignore list. 1418 if (is_contained(UserIgnoreList, UserInst)) 1419 continue; 1420 1421 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1422 Lane << " from " << *Scalar << ".\n"); 1423 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1424 } 1425 } 1426 } 1427 } 1428 1429 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1430 int UserTreeIdx, int OpdNum) { 1431 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1432 1433 InstructionsState S = getSameOpcode(VL); 1434 if (Depth == RecursionMaxDepth) { 1435 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1436 newTreeEntry(VL, false, UserTreeIdx, S); 1437 return; 1438 } 1439 1440 // Don't handle vectors. 1441 if (S.OpValue->getType()->isVectorTy()) { 1442 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1443 newTreeEntry(VL, false, UserTreeIdx, S); 1444 return; 1445 } 1446 1447 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1448 if (SI->getValueOperand()->getType()->isVectorTy()) { 1449 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1450 newTreeEntry(VL, false, UserTreeIdx, S); 1451 return; 1452 } 1453 1454 // If all of the operands are identical or constant we have a simple solution. 1455 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1456 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1457 newTreeEntry(VL, false, UserTreeIdx, S); 1458 return; 1459 } 1460 1461 // We now know that this is a vector of instructions of the same type from 1462 // the same block. 1463 1464 // Don't vectorize ephemeral values. 1465 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1466 if (EphValues.count(VL[i])) { 1467 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1468 ") is ephemeral.\n"); 1469 newTreeEntry(VL, false, UserTreeIdx, S); 1470 return; 1471 } 1472 } 1473 1474 // Check if this is a duplicate of another entry. 1475 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1476 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1477 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1478 if (E->Scalars[i] != VL[i]) { 1479 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1480 newTreeEntry(VL, false, UserTreeIdx, S); 1481 return; 1482 } 1483 } 1484 // Record the reuse of the tree node. FIXME, currently this is only used to 1485 // properly draw the graph rather than for the actual vectorization. 1486 E->UserTreeIndices.push_back(UserTreeIdx); 1487 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1488 return; 1489 } 1490 1491 // Check that none of the instructions in the bundle are already in the tree. 1492 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1493 auto *I = dyn_cast<Instruction>(VL[i]); 1494 if (!I) 1495 continue; 1496 if (getTreeEntry(I)) { 1497 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1498 ") is already in tree.\n"); 1499 newTreeEntry(VL, false, UserTreeIdx, S); 1500 return; 1501 } 1502 } 1503 1504 // If any of the scalars is marked as a value that needs to stay scalar, then 1505 // we need to gather the scalars. 1506 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1507 if (MustGather.count(VL[i])) { 1508 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1509 newTreeEntry(VL, false, UserTreeIdx, S); 1510 return; 1511 } 1512 } 1513 1514 // Check that all of the users of the scalars that we want to vectorize are 1515 // schedulable. 1516 auto *VL0 = cast<Instruction>(S.OpValue); 1517 BasicBlock *BB = VL0->getParent(); 1518 1519 if (!DT->isReachableFromEntry(BB)) { 1520 // Don't go into unreachable blocks. They may contain instructions with 1521 // dependency cycles which confuse the final scheduling. 1522 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1523 newTreeEntry(VL, false, UserTreeIdx, S); 1524 return; 1525 } 1526 1527 // Check that every instruction appears once in this bundle. 1528 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1529 for (unsigned j = i + 1; j < e; ++j) 1530 if (VL[i] == VL[j]) { 1531 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1532 newTreeEntry(VL, false, UserTreeIdx, S); 1533 return; 1534 } 1535 1536 auto &BSRef = BlocksSchedules[BB]; 1537 if (!BSRef) 1538 BSRef = llvm::make_unique<BlockScheduling>(BB); 1539 1540 BlockScheduling &BS = *BSRef.get(); 1541 1542 if (!BS.tryScheduleBundle(VL, this, S.OpValue)) { 1543 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1544 assert((!BS.getScheduleData(VL0) || 1545 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1546 "tryScheduleBundle should cancelScheduling on failure"); 1547 newTreeEntry(VL, false, UserTreeIdx, S); 1548 return; 1549 } 1550 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1551 1552 unsigned ShuffleOrOp = S.IsAltShuffle ? 1553 (unsigned) Instruction::ShuffleVector : S.Opcode; 1554 switch (ShuffleOrOp) { 1555 case Instruction::PHI: { 1556 PHINode *PH = dyn_cast<PHINode>(VL0); 1557 1558 // Check for terminator values (e.g. invoke). 1559 for (unsigned j = 0; j < VL.size(); ++j) 1560 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1561 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1562 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1563 if (Term) { 1564 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1565 BS.cancelScheduling(VL, VL0); 1566 newTreeEntry(VL, false, UserTreeIdx, S); 1567 return; 1568 } 1569 } 1570 1571 newTreeEntry(VL, true, UserTreeIdx, S); 1572 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1573 1574 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1575 ValueList Operands; 1576 // Prepare the operand vector. 1577 for (Value *j : VL) 1578 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1579 PH->getIncomingBlock(i))); 1580 1581 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1582 } 1583 return; 1584 } 1585 case Instruction::ExtractValue: 1586 case Instruction::ExtractElement: { 1587 bool Reuse = canReuseExtract(VL, VL0); 1588 if (Reuse) { 1589 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1590 } else { 1591 BS.cancelScheduling(VL, VL0); 1592 } 1593 newTreeEntry(VL, Reuse, UserTreeIdx, S); 1594 return; 1595 } 1596 case Instruction::Load: { 1597 // Check that a vectorized load would load the same memory as a scalar 1598 // load. For example, we don't want to vectorize loads that are smaller 1599 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1600 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1601 // from such a struct, we read/write packed bits disagreeing with the 1602 // unvectorized version. 1603 Type *ScalarTy = VL0->getType(); 1604 1605 if (DL->getTypeSizeInBits(ScalarTy) != 1606 DL->getTypeAllocSizeInBits(ScalarTy)) { 1607 BS.cancelScheduling(VL, VL0); 1608 newTreeEntry(VL, false, UserTreeIdx, S); 1609 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1610 return; 1611 } 1612 1613 // Make sure all loads in the bundle are simple - we can't vectorize 1614 // atomic or volatile loads. 1615 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1616 LoadInst *L = cast<LoadInst>(VL[i]); 1617 if (!L->isSimple()) { 1618 BS.cancelScheduling(VL, VL0); 1619 newTreeEntry(VL, false, UserTreeIdx, S); 1620 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1621 return; 1622 } 1623 } 1624 1625 // Check if the loads are consecutive, reversed, or neither. 1626 bool Consecutive = true; 1627 bool ReverseConsecutive = true; 1628 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1629 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1630 Consecutive = false; 1631 break; 1632 } else { 1633 ReverseConsecutive = false; 1634 } 1635 } 1636 1637 if (Consecutive) { 1638 ++NumLoadsWantToKeepOrder; 1639 newTreeEntry(VL, true, UserTreeIdx, S); 1640 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1641 return; 1642 } 1643 1644 // If none of the load pairs were consecutive when checked in order, 1645 // check the reverse order. 1646 if (ReverseConsecutive) 1647 for (unsigned i = VL.size() - 1; i > 0; --i) 1648 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1649 ReverseConsecutive = false; 1650 break; 1651 } 1652 1653 if (ReverseConsecutive) { 1654 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1655 ++NumLoadsWantToChangeOrder; 1656 BS.cancelScheduling(VL, VL0); 1657 newTreeEntry(VL, false, UserTreeIdx, S); 1658 return; 1659 } 1660 1661 if (VL.size() > 2) { 1662 bool ShuffledLoads = true; 1663 SmallVector<Value *, 8> Sorted; 1664 SmallVector<unsigned, 4> Mask; 1665 if (sortLoadAccesses(VL, *DL, *SE, Sorted, &Mask)) { 1666 auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end()); 1667 for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { 1668 if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { 1669 ShuffledLoads = false; 1670 break; 1671 } 1672 } 1673 // TODO: Tracking how many load wants to have arbitrary shuffled order 1674 // would be usefull. 1675 if (ShuffledLoads) { 1676 DEBUG(dbgs() << "SLP: added a vector of loads which needs " 1677 "permutation of loaded lanes.\n"); 1678 newTreeEntry(NewVL, true, UserTreeIdx, S, 1679 makeArrayRef(Mask.begin(), Mask.end()), OpdNum); 1680 return; 1681 } 1682 } 1683 } 1684 1685 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1686 BS.cancelScheduling(VL, VL0); 1687 newTreeEntry(VL, false, UserTreeIdx, S); 1688 return; 1689 } 1690 case Instruction::ZExt: 1691 case Instruction::SExt: 1692 case Instruction::FPToUI: 1693 case Instruction::FPToSI: 1694 case Instruction::FPExt: 1695 case Instruction::PtrToInt: 1696 case Instruction::IntToPtr: 1697 case Instruction::SIToFP: 1698 case Instruction::UIToFP: 1699 case Instruction::Trunc: 1700 case Instruction::FPTrunc: 1701 case Instruction::BitCast: { 1702 Type *SrcTy = VL0->getOperand(0)->getType(); 1703 for (unsigned i = 0; i < VL.size(); ++i) { 1704 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1705 if (Ty != SrcTy || !isValidElementType(Ty)) { 1706 BS.cancelScheduling(VL, VL0); 1707 newTreeEntry(VL, false, UserTreeIdx, S); 1708 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1709 return; 1710 } 1711 } 1712 newTreeEntry(VL, true, UserTreeIdx, S); 1713 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1714 1715 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1716 ValueList Operands; 1717 // Prepare the operand vector. 1718 for (Value *j : VL) 1719 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1720 1721 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1722 } 1723 return; 1724 } 1725 case Instruction::ICmp: 1726 case Instruction::FCmp: { 1727 // Check that all of the compares have the same predicate. 1728 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1729 Type *ComparedTy = VL0->getOperand(0)->getType(); 1730 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1731 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1732 if (Cmp->getPredicate() != P0 || 1733 Cmp->getOperand(0)->getType() != ComparedTy) { 1734 BS.cancelScheduling(VL, VL0); 1735 newTreeEntry(VL, false, UserTreeIdx, S); 1736 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1737 return; 1738 } 1739 } 1740 1741 newTreeEntry(VL, true, UserTreeIdx, S); 1742 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1743 1744 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1745 ValueList Operands; 1746 // Prepare the operand vector. 1747 for (Value *j : VL) 1748 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1749 1750 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1751 } 1752 return; 1753 } 1754 case Instruction::Select: 1755 case Instruction::Add: 1756 case Instruction::FAdd: 1757 case Instruction::Sub: 1758 case Instruction::FSub: 1759 case Instruction::Mul: 1760 case Instruction::FMul: 1761 case Instruction::UDiv: 1762 case Instruction::SDiv: 1763 case Instruction::FDiv: 1764 case Instruction::URem: 1765 case Instruction::SRem: 1766 case Instruction::FRem: 1767 case Instruction::Shl: 1768 case Instruction::LShr: 1769 case Instruction::AShr: 1770 case Instruction::And: 1771 case Instruction::Or: 1772 case Instruction::Xor: 1773 newTreeEntry(VL, true, UserTreeIdx, S); 1774 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1775 1776 // Sort operands of the instructions so that each side is more likely to 1777 // have the same opcode. 1778 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1779 ValueList Left, Right; 1780 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1781 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1782 buildTree_rec(Right, Depth + 1, UserTreeIdx, 1); 1783 return; 1784 } 1785 1786 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1787 ValueList Operands; 1788 // Prepare the operand vector. 1789 for (Value *j : VL) 1790 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1791 1792 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1793 } 1794 return; 1795 1796 case Instruction::GetElementPtr: { 1797 // We don't combine GEPs with complicated (nested) indexing. 1798 for (unsigned j = 0; j < VL.size(); ++j) { 1799 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1800 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1801 BS.cancelScheduling(VL, VL0); 1802 newTreeEntry(VL, false, UserTreeIdx, S); 1803 return; 1804 } 1805 } 1806 1807 // We can't combine several GEPs into one vector if they operate on 1808 // different types. 1809 Type *Ty0 = VL0->getOperand(0)->getType(); 1810 for (unsigned j = 0; j < VL.size(); ++j) { 1811 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1812 if (Ty0 != CurTy) { 1813 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1814 BS.cancelScheduling(VL, VL0); 1815 newTreeEntry(VL, false, UserTreeIdx, S); 1816 return; 1817 } 1818 } 1819 1820 // We don't combine GEPs with non-constant indexes. 1821 for (unsigned j = 0; j < VL.size(); ++j) { 1822 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1823 if (!isa<ConstantInt>(Op)) { 1824 DEBUG( 1825 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1826 BS.cancelScheduling(VL, VL0); 1827 newTreeEntry(VL, false, UserTreeIdx, S); 1828 return; 1829 } 1830 } 1831 1832 newTreeEntry(VL, true, UserTreeIdx, S); 1833 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1834 for (unsigned i = 0, e = 2; i < e; ++i) { 1835 ValueList Operands; 1836 // Prepare the operand vector. 1837 for (Value *j : VL) 1838 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1839 1840 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1841 } 1842 return; 1843 } 1844 case Instruction::Store: { 1845 // Check if the stores are consecutive or of we need to swizzle them. 1846 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1847 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1848 BS.cancelScheduling(VL, VL0); 1849 newTreeEntry(VL, false, UserTreeIdx, S); 1850 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1851 return; 1852 } 1853 1854 newTreeEntry(VL, true, UserTreeIdx, S); 1855 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1856 1857 ValueList Operands; 1858 for (Value *j : VL) 1859 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1860 1861 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1862 return; 1863 } 1864 case Instruction::Call: { 1865 // Check if the calls are all to the same vectorizable intrinsic. 1866 CallInst *CI = cast<CallInst>(VL0); 1867 // Check if this is an Intrinsic call or something that can be 1868 // represented by an intrinsic call 1869 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1870 if (!isTriviallyVectorizable(ID)) { 1871 BS.cancelScheduling(VL, VL0); 1872 newTreeEntry(VL, false, UserTreeIdx, S); 1873 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1874 return; 1875 } 1876 Function *Int = CI->getCalledFunction(); 1877 Value *A1I = nullptr; 1878 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1879 A1I = CI->getArgOperand(1); 1880 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1881 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1882 if (!CI2 || CI2->getCalledFunction() != Int || 1883 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1884 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1885 BS.cancelScheduling(VL, VL0); 1886 newTreeEntry(VL, false, UserTreeIdx, S); 1887 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1888 << "\n"); 1889 return; 1890 } 1891 // ctlz,cttz and powi are special intrinsics whose second argument 1892 // should be same in order for them to be vectorized. 1893 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1894 Value *A1J = CI2->getArgOperand(1); 1895 if (A1I != A1J) { 1896 BS.cancelScheduling(VL, VL0); 1897 newTreeEntry(VL, false, UserTreeIdx, S); 1898 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1899 << " argument "<< A1I<<"!=" << A1J 1900 << "\n"); 1901 return; 1902 } 1903 } 1904 // Verify that the bundle operands are identical between the two calls. 1905 if (CI->hasOperandBundles() && 1906 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1907 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1908 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1909 BS.cancelScheduling(VL, VL0); 1910 newTreeEntry(VL, false, UserTreeIdx, S); 1911 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1912 << *VL[i] << '\n'); 1913 return; 1914 } 1915 } 1916 1917 newTreeEntry(VL, true, UserTreeIdx, S); 1918 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1919 ValueList Operands; 1920 // Prepare the operand vector. 1921 for (Value *j : VL) { 1922 CallInst *CI2 = dyn_cast<CallInst>(j); 1923 Operands.push_back(CI2->getArgOperand(i)); 1924 } 1925 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1926 } 1927 return; 1928 } 1929 case Instruction::ShuffleVector: 1930 // If this is not an alternate sequence of opcode like add-sub 1931 // then do not vectorize this instruction. 1932 if (!S.IsAltShuffle) { 1933 BS.cancelScheduling(VL, VL0); 1934 newTreeEntry(VL, false, UserTreeIdx, S); 1935 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1936 return; 1937 } 1938 newTreeEntry(VL, true, UserTreeIdx, S); 1939 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1940 1941 // Reorder operands if reordering would enable vectorization. 1942 if (isa<BinaryOperator>(VL0)) { 1943 ValueList Left, Right; 1944 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1945 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1946 buildTree_rec(Right, Depth + 1, UserTreeIdx, 1); 1947 return; 1948 } 1949 1950 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1951 ValueList Operands; 1952 // Prepare the operand vector. 1953 for (Value *j : VL) 1954 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1955 1956 buildTree_rec(Operands, Depth + 1, UserTreeIdx, i); 1957 } 1958 return; 1959 1960 default: 1961 BS.cancelScheduling(VL, VL0); 1962 newTreeEntry(VL, false, UserTreeIdx, S); 1963 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1964 return; 1965 } 1966 } 1967 1968 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1969 unsigned N; 1970 Type *EltTy; 1971 auto *ST = dyn_cast<StructType>(T); 1972 if (ST) { 1973 N = ST->getNumElements(); 1974 EltTy = *ST->element_begin(); 1975 } else { 1976 N = cast<ArrayType>(T)->getNumElements(); 1977 EltTy = cast<ArrayType>(T)->getElementType(); 1978 } 1979 if (!isValidElementType(EltTy)) 1980 return 0; 1981 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1982 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1983 return 0; 1984 if (ST) { 1985 // Check that struct is homogeneous. 1986 for (const auto *Ty : ST->elements()) 1987 if (Ty != EltTy) 1988 return 0; 1989 } 1990 return N; 1991 } 1992 1993 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1994 Instruction *E0 = cast<Instruction>(OpValue); 1995 assert(E0->getOpcode() == Instruction::ExtractElement || 1996 E0->getOpcode() == Instruction::ExtractValue); 1997 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1998 // Check if all of the extracts come from the same vector and from the 1999 // correct offset. 2000 Value *Vec = E0->getOperand(0); 2001 2002 // We have to extract from a vector/aggregate with the same number of elements. 2003 unsigned NElts; 2004 if (E0->getOpcode() == Instruction::ExtractValue) { 2005 const DataLayout &DL = E0->getModule()->getDataLayout(); 2006 NElts = canMapToVector(Vec->getType(), DL); 2007 if (!NElts) 2008 return false; 2009 // Check if load can be rewritten as load of vector. 2010 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2011 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2012 return false; 2013 } else { 2014 NElts = Vec->getType()->getVectorNumElements(); 2015 } 2016 2017 if (NElts != VL.size()) 2018 return false; 2019 2020 // Check that all of the indices extract from the correct offset. 2021 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 2022 Instruction *Inst = cast<Instruction>(VL[I]); 2023 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 2024 return false; 2025 if (Inst->getOperand(0) != Vec) 2026 return false; 2027 } 2028 2029 return true; 2030 } 2031 2032 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2033 return I->hasOneUse() || 2034 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2035 return ScalarToTreeEntry.count(U) > 0; 2036 }); 2037 } 2038 2039 int BoUpSLP::getEntryCost(TreeEntry *E) { 2040 ArrayRef<Value*> VL = E->Scalars; 2041 2042 Type *ScalarTy = VL[0]->getType(); 2043 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2044 ScalarTy = SI->getValueOperand()->getType(); 2045 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2046 ScalarTy = CI->getOperand(0)->getType(); 2047 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2048 2049 // If we have computed a smaller type for the expression, update VecTy so 2050 // that the costs will be accurate. 2051 if (MinBWs.count(VL[0])) 2052 VecTy = VectorType::get( 2053 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2054 2055 if (E->NeedToGather) { 2056 if (allConstant(VL)) 2057 return 0; 2058 if (isSplat(VL)) { 2059 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2060 } 2061 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) { 2062 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2063 if (ShuffleKind.hasValue()) { 2064 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2065 for (auto *V : VL) { 2066 // If all users of instruction are going to be vectorized and this 2067 // instruction itself is not going to be vectorized, consider this 2068 // instruction as dead and remove its cost from the final cost of the 2069 // vectorized tree. 2070 if (areAllUsersVectorized(cast<Instruction>(V)) && 2071 !ScalarToTreeEntry.count(V)) { 2072 auto *IO = cast<ConstantInt>( 2073 cast<ExtractElementInst>(V)->getIndexOperand()); 2074 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2075 IO->getZExtValue()); 2076 } 2077 } 2078 return Cost; 2079 } 2080 } 2081 return getGatherCost(E->Scalars); 2082 } 2083 InstructionsState S = getSameOpcode(VL); 2084 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2085 Instruction *VL0 = cast<Instruction>(S.OpValue); 2086 unsigned ShuffleOrOp = S.IsAltShuffle ? 2087 (unsigned) Instruction::ShuffleVector : S.Opcode; 2088 switch (ShuffleOrOp) { 2089 case Instruction::PHI: 2090 return 0; 2091 2092 case Instruction::ExtractValue: 2093 case Instruction::ExtractElement: 2094 if (canReuseExtract(VL, S.OpValue)) { 2095 int DeadCost = 0; 2096 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2097 Instruction *E = cast<Instruction>(VL[i]); 2098 // If all users are going to be vectorized, instruction can be 2099 // considered as dead. 2100 // The same, if have only one user, it will be vectorized for sure. 2101 if (areAllUsersVectorized(E)) 2102 // Take credit for instruction that will become dead. 2103 DeadCost += 2104 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2105 } 2106 return -DeadCost; 2107 } 2108 return getGatherCost(VecTy); 2109 2110 case Instruction::ZExt: 2111 case Instruction::SExt: 2112 case Instruction::FPToUI: 2113 case Instruction::FPToSI: 2114 case Instruction::FPExt: 2115 case Instruction::PtrToInt: 2116 case Instruction::IntToPtr: 2117 case Instruction::SIToFP: 2118 case Instruction::UIToFP: 2119 case Instruction::Trunc: 2120 case Instruction::FPTrunc: 2121 case Instruction::BitCast: { 2122 Type *SrcTy = VL0->getOperand(0)->getType(); 2123 2124 // Calculate the cost of this instruction. 2125 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2126 VL0->getType(), SrcTy, VL0); 2127 2128 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2129 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2130 return VecCost - ScalarCost; 2131 } 2132 case Instruction::FCmp: 2133 case Instruction::ICmp: 2134 case Instruction::Select: { 2135 // Calculate the cost of this instruction. 2136 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2137 int ScalarCost = VecTy->getNumElements() * 2138 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2139 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2140 return VecCost - ScalarCost; 2141 } 2142 case Instruction::Add: 2143 case Instruction::FAdd: 2144 case Instruction::Sub: 2145 case Instruction::FSub: 2146 case Instruction::Mul: 2147 case Instruction::FMul: 2148 case Instruction::UDiv: 2149 case Instruction::SDiv: 2150 case Instruction::FDiv: 2151 case Instruction::URem: 2152 case Instruction::SRem: 2153 case Instruction::FRem: 2154 case Instruction::Shl: 2155 case Instruction::LShr: 2156 case Instruction::AShr: 2157 case Instruction::And: 2158 case Instruction::Or: 2159 case Instruction::Xor: { 2160 // Certain instructions can be cheaper to vectorize if they have a 2161 // constant second vector operand. 2162 TargetTransformInfo::OperandValueKind Op1VK = 2163 TargetTransformInfo::OK_AnyValue; 2164 TargetTransformInfo::OperandValueKind Op2VK = 2165 TargetTransformInfo::OK_UniformConstantValue; 2166 TargetTransformInfo::OperandValueProperties Op1VP = 2167 TargetTransformInfo::OP_None; 2168 TargetTransformInfo::OperandValueProperties Op2VP = 2169 TargetTransformInfo::OP_None; 2170 2171 // If all operands are exactly the same ConstantInt then set the 2172 // operand kind to OK_UniformConstantValue. 2173 // If instead not all operands are constants, then set the operand kind 2174 // to OK_AnyValue. If all operands are constants but not the same, 2175 // then set the operand kind to OK_NonUniformConstantValue. 2176 ConstantInt *CInt = nullptr; 2177 for (unsigned i = 0; i < VL.size(); ++i) { 2178 const Instruction *I = cast<Instruction>(VL[i]); 2179 if (!isa<ConstantInt>(I->getOperand(1))) { 2180 Op2VK = TargetTransformInfo::OK_AnyValue; 2181 break; 2182 } 2183 if (i == 0) { 2184 CInt = cast<ConstantInt>(I->getOperand(1)); 2185 continue; 2186 } 2187 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2188 CInt != cast<ConstantInt>(I->getOperand(1))) 2189 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2190 } 2191 // FIXME: Currently cost of model modification for division by power of 2192 // 2 is handled for X86 and AArch64. Add support for other targets. 2193 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2194 CInt->getValue().isPowerOf2()) 2195 Op2VP = TargetTransformInfo::OP_PowerOf2; 2196 2197 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2198 int ScalarCost = 2199 VecTy->getNumElements() * 2200 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2201 Op2VP, Operands); 2202 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2203 Op1VP, Op2VP, Operands); 2204 return VecCost - ScalarCost; 2205 } 2206 case Instruction::GetElementPtr: { 2207 TargetTransformInfo::OperandValueKind Op1VK = 2208 TargetTransformInfo::OK_AnyValue; 2209 TargetTransformInfo::OperandValueKind Op2VK = 2210 TargetTransformInfo::OK_UniformConstantValue; 2211 2212 int ScalarCost = 2213 VecTy->getNumElements() * 2214 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2215 int VecCost = 2216 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2217 2218 return VecCost - ScalarCost; 2219 } 2220 case Instruction::Load: { 2221 // Cost of wide load - cost of scalar loads. 2222 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2223 int ScalarLdCost = VecTy->getNumElements() * 2224 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2225 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2226 VecTy, alignment, 0, VL0); 2227 return VecLdCost - ScalarLdCost; 2228 } 2229 case Instruction::Store: { 2230 // We know that we can merge the stores. Calculate the cost. 2231 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2232 int ScalarStCost = VecTy->getNumElements() * 2233 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2234 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2235 VecTy, alignment, 0, VL0); 2236 return VecStCost - ScalarStCost; 2237 } 2238 case Instruction::Call: { 2239 CallInst *CI = cast<CallInst>(VL0); 2240 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2241 2242 // Calculate the cost of the scalar and vector calls. 2243 SmallVector<Type*, 4> ScalarTys; 2244 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2245 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2246 2247 FastMathFlags FMF; 2248 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2249 FMF = FPMO->getFastMathFlags(); 2250 2251 int ScalarCallCost = VecTy->getNumElements() * 2252 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2253 2254 SmallVector<Value *, 4> Args(CI->arg_operands()); 2255 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2256 VecTy->getNumElements()); 2257 2258 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2259 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2260 << " for " << *CI << "\n"); 2261 2262 return VecCallCost - ScalarCallCost; 2263 } 2264 case Instruction::ShuffleVector: { 2265 TargetTransformInfo::OperandValueKind Op1VK = 2266 TargetTransformInfo::OK_AnyValue; 2267 TargetTransformInfo::OperandValueKind Op2VK = 2268 TargetTransformInfo::OK_AnyValue; 2269 int ScalarCost = 0; 2270 int VecCost = 0; 2271 for (Value *i : VL) { 2272 Instruction *I = cast<Instruction>(i); 2273 if (!I) 2274 break; 2275 ScalarCost += 2276 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2277 } 2278 // VecCost is equal to sum of the cost of creating 2 vectors 2279 // and the cost of creating shuffle. 2280 Instruction *I0 = cast<Instruction>(VL[0]); 2281 VecCost = 2282 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2283 Instruction *I1 = cast<Instruction>(VL[1]); 2284 VecCost += 2285 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2286 VecCost += 2287 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2288 return VecCost - ScalarCost; 2289 } 2290 default: 2291 llvm_unreachable("Unknown instruction"); 2292 } 2293 } 2294 2295 bool BoUpSLP::isFullyVectorizableTinyTree() { 2296 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2297 VectorizableTree.size() << " is fully vectorizable .\n"); 2298 2299 // We only handle trees of heights 1 and 2. 2300 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2301 return true; 2302 2303 if (VectorizableTree.size() != 2) 2304 return false; 2305 2306 // Handle splat and all-constants stores. 2307 if (!VectorizableTree[0].NeedToGather && 2308 (allConstant(VectorizableTree[1].Scalars) || 2309 isSplat(VectorizableTree[1].Scalars))) 2310 return true; 2311 2312 // Gathering cost would be too much for tiny trees. 2313 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2314 return false; 2315 2316 return true; 2317 } 2318 2319 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2320 // We can vectorize the tree if its size is greater than or equal to the 2321 // minimum size specified by the MinTreeSize command line option. 2322 if (VectorizableTree.size() >= MinTreeSize) 2323 return false; 2324 2325 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2326 // can vectorize it if we can prove it fully vectorizable. 2327 if (isFullyVectorizableTinyTree()) 2328 return false; 2329 2330 assert(VectorizableTree.empty() 2331 ? ExternalUses.empty() 2332 : true && "We shouldn't have any external users"); 2333 2334 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2335 // vectorizable. 2336 return true; 2337 } 2338 2339 int BoUpSLP::getSpillCost() { 2340 // Walk from the bottom of the tree to the top, tracking which values are 2341 // live. When we see a call instruction that is not part of our tree, 2342 // query TTI to see if there is a cost to keeping values live over it 2343 // (for example, if spills and fills are required). 2344 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2345 int Cost = 0; 2346 2347 SmallPtrSet<Instruction*, 4> LiveValues; 2348 Instruction *PrevInst = nullptr; 2349 2350 for (const auto &N : VectorizableTree) { 2351 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2352 if (!Inst) 2353 continue; 2354 2355 if (!PrevInst) { 2356 PrevInst = Inst; 2357 continue; 2358 } 2359 2360 // Update LiveValues. 2361 LiveValues.erase(PrevInst); 2362 for (auto &J : PrevInst->operands()) { 2363 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2364 LiveValues.insert(cast<Instruction>(&*J)); 2365 } 2366 2367 DEBUG( 2368 dbgs() << "SLP: #LV: " << LiveValues.size(); 2369 for (auto *X : LiveValues) 2370 dbgs() << " " << X->getName(); 2371 dbgs() << ", Looking at "; 2372 Inst->dump(); 2373 ); 2374 2375 // Now find the sequence of instructions between PrevInst and Inst. 2376 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2377 PrevInstIt = 2378 PrevInst->getIterator().getReverse(); 2379 while (InstIt != PrevInstIt) { 2380 if (PrevInstIt == PrevInst->getParent()->rend()) { 2381 PrevInstIt = Inst->getParent()->rbegin(); 2382 continue; 2383 } 2384 2385 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2386 SmallVector<Type*, 4> V; 2387 for (auto *II : LiveValues) 2388 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2389 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2390 } 2391 2392 ++PrevInstIt; 2393 } 2394 2395 PrevInst = Inst; 2396 } 2397 2398 return Cost; 2399 } 2400 2401 int BoUpSLP::getTreeCost() { 2402 int Cost = 0; 2403 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2404 VectorizableTree.size() << ".\n"); 2405 2406 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2407 2408 for (TreeEntry &TE : VectorizableTree) { 2409 int C = getEntryCost(&TE); 2410 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2411 << *TE.Scalars[0] << ".\n"); 2412 Cost += C; 2413 } 2414 2415 SmallSet<Value *, 16> ExtractCostCalculated; 2416 int ExtractCost = 0; 2417 for (ExternalUser &EU : ExternalUses) { 2418 // We only add extract cost once for the same scalar. 2419 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2420 continue; 2421 2422 // Uses by ephemeral values are free (because the ephemeral value will be 2423 // removed prior to code generation, and so the extraction will be 2424 // removed as well). 2425 if (EphValues.count(EU.User)) 2426 continue; 2427 2428 // If we plan to rewrite the tree in a smaller type, we will need to sign 2429 // extend the extracted value back to the original type. Here, we account 2430 // for the extract and the added cost of the sign extend if needed. 2431 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2432 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2433 if (MinBWs.count(ScalarRoot)) { 2434 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2435 auto Extend = 2436 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2437 VecTy = VectorType::get(MinTy, BundleWidth); 2438 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2439 VecTy, EU.Lane); 2440 } else { 2441 ExtractCost += 2442 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2443 } 2444 } 2445 2446 int SpillCost = getSpillCost(); 2447 Cost += SpillCost + ExtractCost; 2448 2449 std::string Str; 2450 { 2451 raw_string_ostream OS(Str); 2452 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2453 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2454 << "SLP: Total Cost = " << Cost << ".\n"; 2455 } 2456 DEBUG(dbgs() << Str); 2457 2458 if (ViewSLPTree) 2459 ViewGraph(this, "SLP" + F->getName(), false, Str); 2460 2461 return Cost; 2462 } 2463 2464 int BoUpSLP::getGatherCost(Type *Ty) { 2465 int Cost = 0; 2466 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2467 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2468 return Cost; 2469 } 2470 2471 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2472 // Find the type of the operands in VL. 2473 Type *ScalarTy = VL[0]->getType(); 2474 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2475 ScalarTy = SI->getValueOperand()->getType(); 2476 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2477 // Find the cost of inserting/extracting values from the vector. 2478 return getGatherCost(VecTy); 2479 } 2480 2481 // Reorder commutative operations in alternate shuffle if the resulting vectors 2482 // are consecutive loads. This would allow us to vectorize the tree. 2483 // If we have something like- 2484 // load a[0] - load b[0] 2485 // load b[1] + load a[1] 2486 // load a[2] - load b[2] 2487 // load a[3] + load b[3] 2488 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2489 // code. 2490 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2491 SmallVectorImpl<Value *> &Left, 2492 SmallVectorImpl<Value *> &Right) { 2493 // Push left and right operands of binary operation into Left and Right 2494 unsigned AltOpcode = getAltOpcode(Opcode); 2495 (void)AltOpcode; 2496 for (Value *V : VL) { 2497 auto *I = cast<Instruction>(V); 2498 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2499 "Incorrect instruction in vector"); 2500 Left.push_back(I->getOperand(0)); 2501 Right.push_back(I->getOperand(1)); 2502 } 2503 2504 // Reorder if we have a commutative operation and consecutive access 2505 // are on either side of the alternate instructions. 2506 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2507 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2508 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2509 Instruction *VL1 = cast<Instruction>(VL[j]); 2510 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2511 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2512 std::swap(Left[j], Right[j]); 2513 continue; 2514 } else if (VL2->isCommutative() && 2515 isConsecutiveAccess(L, L1, *DL, *SE)) { 2516 std::swap(Left[j + 1], Right[j + 1]); 2517 continue; 2518 } 2519 // else unchanged 2520 } 2521 } 2522 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2523 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2524 Instruction *VL1 = cast<Instruction>(VL[j]); 2525 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2526 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2527 std::swap(Left[j], Right[j]); 2528 continue; 2529 } else if (VL2->isCommutative() && 2530 isConsecutiveAccess(L, L1, *DL, *SE)) { 2531 std::swap(Left[j + 1], Right[j + 1]); 2532 continue; 2533 } 2534 // else unchanged 2535 } 2536 } 2537 } 2538 } 2539 2540 // Return true if I should be commuted before adding it's left and right 2541 // operands to the arrays Left and Right. 2542 // 2543 // The vectorizer is trying to either have all elements one side being 2544 // instruction with the same opcode to enable further vectorization, or having 2545 // a splat to lower the vectorizing cost. 2546 static bool shouldReorderOperands( 2547 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2548 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2549 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2550 VLeft = I.getOperand(0); 2551 VRight = I.getOperand(1); 2552 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2553 if (SplatRight) { 2554 if (VRight == Right[i - 1]) 2555 // Preserve SplatRight 2556 return false; 2557 if (VLeft == Right[i - 1]) { 2558 // Commuting would preserve SplatRight, but we don't want to break 2559 // SplatLeft either, i.e. preserve the original order if possible. 2560 // (FIXME: why do we care?) 2561 if (SplatLeft && VLeft == Left[i - 1]) 2562 return false; 2563 return true; 2564 } 2565 } 2566 // Symmetrically handle Right side. 2567 if (SplatLeft) { 2568 if (VLeft == Left[i - 1]) 2569 // Preserve SplatLeft 2570 return false; 2571 if (VRight == Left[i - 1]) 2572 return true; 2573 } 2574 2575 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2576 Instruction *IRight = dyn_cast<Instruction>(VRight); 2577 2578 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2579 // it and not the right, in this case we want to commute. 2580 if (AllSameOpcodeRight) { 2581 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2582 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2583 // Do not commute, a match on the right preserves AllSameOpcodeRight 2584 return false; 2585 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2586 // We have a match and may want to commute, but first check if there is 2587 // not also a match on the existing operands on the Left to preserve 2588 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2589 // (FIXME: why do we care?) 2590 if (AllSameOpcodeLeft && ILeft && 2591 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2592 return false; 2593 return true; 2594 } 2595 } 2596 // Symmetrically handle Left side. 2597 if (AllSameOpcodeLeft) { 2598 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2599 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2600 return false; 2601 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2602 return true; 2603 } 2604 return false; 2605 } 2606 2607 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2608 ArrayRef<Value *> VL, 2609 SmallVectorImpl<Value *> &Left, 2610 SmallVectorImpl<Value *> &Right) { 2611 if (!VL.empty()) { 2612 // Peel the first iteration out of the loop since there's nothing 2613 // interesting to do anyway and it simplifies the checks in the loop. 2614 auto *I = cast<Instruction>(VL[0]); 2615 Value *VLeft = I->getOperand(0); 2616 Value *VRight = I->getOperand(1); 2617 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2618 // Favor having instruction to the right. FIXME: why? 2619 std::swap(VLeft, VRight); 2620 Left.push_back(VLeft); 2621 Right.push_back(VRight); 2622 } 2623 2624 // Keep track if we have instructions with all the same opcode on one side. 2625 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2626 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2627 // Keep track if we have one side with all the same value (broadcast). 2628 bool SplatLeft = true; 2629 bool SplatRight = true; 2630 2631 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2632 Instruction *I = cast<Instruction>(VL[i]); 2633 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2634 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2635 "Can only process commutative instruction"); 2636 // Commute to favor either a splat or maximizing having the same opcodes on 2637 // one side. 2638 Value *VLeft; 2639 Value *VRight; 2640 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2641 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2642 VRight)) { 2643 Left.push_back(VRight); 2644 Right.push_back(VLeft); 2645 } else { 2646 Left.push_back(VLeft); 2647 Right.push_back(VRight); 2648 } 2649 // Update Splat* and AllSameOpcode* after the insertion. 2650 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2651 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2652 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2653 (cast<Instruction>(Left[i - 1])->getOpcode() == 2654 cast<Instruction>(Left[i])->getOpcode()); 2655 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2656 (cast<Instruction>(Right[i - 1])->getOpcode() == 2657 cast<Instruction>(Right[i])->getOpcode()); 2658 } 2659 2660 // If one operand end up being broadcast, return this operand order. 2661 if (SplatRight || SplatLeft) 2662 return; 2663 2664 // Finally check if we can get longer vectorizable chain by reordering 2665 // without breaking the good operand order detected above. 2666 // E.g. If we have something like- 2667 // load a[0] load b[0] 2668 // load b[1] load a[1] 2669 // load a[2] load b[2] 2670 // load a[3] load b[3] 2671 // Reordering the second load b[1] load a[1] would allow us to vectorize 2672 // this code and we still retain AllSameOpcode property. 2673 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2674 // such as- 2675 // add a[0],c[0] load b[0] 2676 // add a[1],c[2] load b[1] 2677 // b[2] load b[2] 2678 // add a[3],c[3] load b[3] 2679 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2680 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2681 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2682 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2683 std::swap(Left[j + 1], Right[j + 1]); 2684 continue; 2685 } 2686 } 2687 } 2688 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2689 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2690 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2691 std::swap(Left[j + 1], Right[j + 1]); 2692 continue; 2693 } 2694 } 2695 } 2696 // else unchanged 2697 } 2698 } 2699 2700 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2701 // Get the basic block this bundle is in. All instructions in the bundle 2702 // should be in this block. 2703 auto *Front = cast<Instruction>(OpValue); 2704 auto *BB = Front->getParent(); 2705 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2706 const unsigned AltOpcode = getAltOpcode(Opcode); 2707 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2708 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2709 cast<Instruction>(V)->getOpcode()) || 2710 cast<Instruction>(V)->getParent() == BB; 2711 })); 2712 2713 // The last instruction in the bundle in program order. 2714 Instruction *LastInst = nullptr; 2715 2716 // Find the last instruction. The common case should be that BB has been 2717 // scheduled, and the last instruction is VL.back(). So we start with 2718 // VL.back() and iterate over schedule data until we reach the end of the 2719 // bundle. The end of the bundle is marked by null ScheduleData. 2720 if (BlocksSchedules.count(BB)) { 2721 auto *Bundle = 2722 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2723 if (Bundle && Bundle->isPartOfBundle()) 2724 for (; Bundle; Bundle = Bundle->NextInBundle) 2725 if (Bundle->OpValue == Bundle->Inst) 2726 LastInst = Bundle->Inst; 2727 } 2728 2729 // LastInst can still be null at this point if there's either not an entry 2730 // for BB in BlocksSchedules or there's no ScheduleData available for 2731 // VL.back(). This can be the case if buildTree_rec aborts for various 2732 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2733 // size is reached, etc.). ScheduleData is initialized in the scheduling 2734 // "dry-run". 2735 // 2736 // If this happens, we can still find the last instruction by brute force. We 2737 // iterate forwards from Front (inclusive) until we either see all 2738 // instructions in the bundle or reach the end of the block. If Front is the 2739 // last instruction in program order, LastInst will be set to Front, and we 2740 // will visit all the remaining instructions in the block. 2741 // 2742 // One of the reasons we exit early from buildTree_rec is to place an upper 2743 // bound on compile-time. Thus, taking an additional compile-time hit here is 2744 // not ideal. However, this should be exceedingly rare since it requires that 2745 // we both exit early from buildTree_rec and that the bundle be out-of-order 2746 // (causing us to iterate all the way to the end of the block). 2747 if (!LastInst) { 2748 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2749 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2750 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2751 LastInst = &I; 2752 if (Bundle.empty()) 2753 break; 2754 } 2755 } 2756 2757 // Set the insertion point after the last instruction in the bundle. Set the 2758 // debug location to Front. 2759 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2760 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2761 } 2762 2763 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2764 Value *Vec = UndefValue::get(Ty); 2765 // Generate the 'InsertElement' instruction. 2766 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2767 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2768 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2769 GatherSeq.insert(Insrt); 2770 CSEBlocks.insert(Insrt->getParent()); 2771 2772 // Add to our 'need-to-extract' list. 2773 if (TreeEntry *E = getTreeEntry(VL[i])) { 2774 // Find which lane we need to extract. 2775 int FoundLane = -1; 2776 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2777 // Is this the lane of the scalar that we are looking for ? 2778 if (E->Scalars[Lane] == VL[i]) { 2779 FoundLane = Lane; 2780 break; 2781 } 2782 } 2783 assert(FoundLane >= 0 && "Could not find the correct lane"); 2784 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2785 } 2786 } 2787 } 2788 2789 return Vec; 2790 } 2791 2792 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2793 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2794 if (En->isSame(VL) && En->VectorizedValue) 2795 return En->VectorizedValue; 2796 } 2797 return nullptr; 2798 } 2799 2800 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int OpdNum, int UserIndx) { 2801 InstructionsState S = getSameOpcode(VL); 2802 if (S.Opcode) { 2803 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2804 TreeEntry *UserTreeEntry = nullptr; 2805 if (UserIndx != -1) 2806 UserTreeEntry = &VectorizableTree[UserIndx]; 2807 2808 if (E->isSame(VL) || 2809 (UserTreeEntry && 2810 (unsigned)OpdNum < UserTreeEntry->ShuffleMask.size() && 2811 !UserTreeEntry->ShuffleMask[OpdNum].empty() && 2812 E->isFoundJumbled(VL, *DL, *SE))) 2813 return vectorizeTree(E, OpdNum, UserIndx); 2814 } 2815 } 2816 2817 Type *ScalarTy = S.OpValue->getType(); 2818 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2819 ScalarTy = SI->getValueOperand()->getType(); 2820 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2821 2822 return Gather(VL, VecTy); 2823 } 2824 2825 Value *BoUpSLP::vectorizeTree(TreeEntry *E, int OpdNum, int UserIndx) { 2826 IRBuilder<>::InsertPointGuard Guard(Builder); 2827 2828 TreeEntry *UserTreeEntry = nullptr; 2829 if (E->VectorizedValue) { 2830 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2831 return E->VectorizedValue; 2832 } 2833 2834 InstructionsState S = getSameOpcode(E->Scalars); 2835 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2836 Type *ScalarTy = VL0->getType(); 2837 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2838 ScalarTy = SI->getValueOperand()->getType(); 2839 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2840 2841 if (E->NeedToGather) { 2842 setInsertPointAfterBundle(E->Scalars, VL0); 2843 auto *V = Gather(E->Scalars, VecTy); 2844 E->VectorizedValue = V; 2845 return V; 2846 } 2847 2848 assert(ScalarToTreeEntry.count(E->Scalars[0]) && 2849 "Expected user tree entry, missing!"); 2850 int CurrIndx = ScalarToTreeEntry[E->Scalars[0]]; 2851 2852 unsigned ShuffleOrOp = S.IsAltShuffle ? 2853 (unsigned) Instruction::ShuffleVector : S.Opcode; 2854 switch (ShuffleOrOp) { 2855 case Instruction::PHI: { 2856 PHINode *PH = dyn_cast<PHINode>(VL0); 2857 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2858 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2859 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2860 E->VectorizedValue = NewPhi; 2861 2862 // PHINodes may have multiple entries from the same block. We want to 2863 // visit every block once. 2864 SmallSet<BasicBlock*, 4> VisitedBBs; 2865 2866 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2867 ValueList Operands; 2868 BasicBlock *IBB = PH->getIncomingBlock(i); 2869 2870 if (!VisitedBBs.insert(IBB).second) { 2871 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2872 continue; 2873 } 2874 2875 // Prepare the operand vector. 2876 for (Value *V : E->Scalars) 2877 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2878 2879 Builder.SetInsertPoint(IBB->getTerminator()); 2880 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2881 Value *Vec = vectorizeTree(Operands, i, CurrIndx); 2882 NewPhi->addIncoming(Vec, IBB); 2883 } 2884 2885 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2886 "Invalid number of incoming values"); 2887 return NewPhi; 2888 } 2889 2890 case Instruction::ExtractElement: { 2891 if (canReuseExtract(E->Scalars, VL0)) { 2892 Value *V = VL0->getOperand(0); 2893 E->VectorizedValue = V; 2894 return V; 2895 } 2896 setInsertPointAfterBundle(E->Scalars, VL0); 2897 auto *V = Gather(E->Scalars, VecTy); 2898 E->VectorizedValue = V; 2899 return V; 2900 } 2901 case Instruction::ExtractValue: { 2902 if (canReuseExtract(E->Scalars, VL0)) { 2903 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2904 Builder.SetInsertPoint(LI); 2905 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2906 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2907 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2908 E->VectorizedValue = V; 2909 return propagateMetadata(V, E->Scalars); 2910 } 2911 setInsertPointAfterBundle(E->Scalars, VL0); 2912 auto *V = Gather(E->Scalars, VecTy); 2913 E->VectorizedValue = V; 2914 return V; 2915 } 2916 case Instruction::ZExt: 2917 case Instruction::SExt: 2918 case Instruction::FPToUI: 2919 case Instruction::FPToSI: 2920 case Instruction::FPExt: 2921 case Instruction::PtrToInt: 2922 case Instruction::IntToPtr: 2923 case Instruction::SIToFP: 2924 case Instruction::UIToFP: 2925 case Instruction::Trunc: 2926 case Instruction::FPTrunc: 2927 case Instruction::BitCast: { 2928 ValueList INVL; 2929 for (Value *V : E->Scalars) 2930 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2931 2932 setInsertPointAfterBundle(E->Scalars, VL0); 2933 2934 Value *InVec = vectorizeTree(INVL, 0, CurrIndx); 2935 2936 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2937 return V; 2938 2939 CastInst *CI = dyn_cast<CastInst>(VL0); 2940 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2941 E->VectorizedValue = V; 2942 ++NumVectorInstructions; 2943 return V; 2944 } 2945 case Instruction::FCmp: 2946 case Instruction::ICmp: { 2947 ValueList LHSV, RHSV; 2948 for (Value *V : E->Scalars) { 2949 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2950 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2951 } 2952 2953 setInsertPointAfterBundle(E->Scalars, VL0); 2954 2955 Value *L = vectorizeTree(LHSV, 0, CurrIndx); 2956 Value *R = vectorizeTree(RHSV, 1, CurrIndx); 2957 2958 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2959 return V; 2960 2961 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2962 Value *V; 2963 if (S.Opcode == Instruction::FCmp) 2964 V = Builder.CreateFCmp(P0, L, R); 2965 else 2966 V = Builder.CreateICmp(P0, L, R); 2967 2968 E->VectorizedValue = V; 2969 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2970 ++NumVectorInstructions; 2971 return V; 2972 } 2973 case Instruction::Select: { 2974 ValueList TrueVec, FalseVec, CondVec; 2975 for (Value *V : E->Scalars) { 2976 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2977 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2978 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2979 } 2980 2981 setInsertPointAfterBundle(E->Scalars, VL0); 2982 2983 Value *Cond = vectorizeTree(CondVec, 0, CurrIndx); 2984 Value *True = vectorizeTree(TrueVec, 1, CurrIndx); 2985 Value *False = vectorizeTree(FalseVec, 2, CurrIndx); 2986 2987 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2988 return V; 2989 2990 Value *V = Builder.CreateSelect(Cond, True, False); 2991 E->VectorizedValue = V; 2992 ++NumVectorInstructions; 2993 return V; 2994 } 2995 case Instruction::Add: 2996 case Instruction::FAdd: 2997 case Instruction::Sub: 2998 case Instruction::FSub: 2999 case Instruction::Mul: 3000 case Instruction::FMul: 3001 case Instruction::UDiv: 3002 case Instruction::SDiv: 3003 case Instruction::FDiv: 3004 case Instruction::URem: 3005 case Instruction::SRem: 3006 case Instruction::FRem: 3007 case Instruction::Shl: 3008 case Instruction::LShr: 3009 case Instruction::AShr: 3010 case Instruction::And: 3011 case Instruction::Or: 3012 case Instruction::Xor: { 3013 ValueList LHSVL, RHSVL; 3014 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3015 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3016 RHSVL); 3017 else 3018 for (Value *V : E->Scalars) { 3019 auto *I = cast<Instruction>(V); 3020 LHSVL.push_back(I->getOperand(0)); 3021 RHSVL.push_back(I->getOperand(1)); 3022 } 3023 3024 setInsertPointAfterBundle(E->Scalars, VL0); 3025 3026 Value *LHS = vectorizeTree(LHSVL, 0, CurrIndx); 3027 Value *RHS = vectorizeTree(RHSVL, 1, CurrIndx); 3028 3029 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3030 return V; 3031 3032 Value *V = Builder.CreateBinOp( 3033 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3034 E->VectorizedValue = V; 3035 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3036 ++NumVectorInstructions; 3037 3038 if (Instruction *I = dyn_cast<Instruction>(V)) 3039 return propagateMetadata(I, E->Scalars); 3040 3041 return V; 3042 } 3043 case Instruction::Load: { 3044 // Loads are inserted at the head of the tree because we don't want to 3045 // sink them all the way down past store instructions. 3046 setInsertPointAfterBundle(E->Scalars, VL0); 3047 3048 if (UserIndx != -1) 3049 UserTreeEntry = &VectorizableTree[UserIndx]; 3050 3051 bool isJumbled = false; 3052 LoadInst *LI = NULL; 3053 if (UserTreeEntry && 3054 (unsigned)OpdNum < UserTreeEntry->ShuffleMask.size() && 3055 !UserTreeEntry->ShuffleMask[OpdNum].empty()) { 3056 isJumbled = true; 3057 LI = cast<LoadInst>(E->Scalars[0]); 3058 } else { 3059 LI = cast<LoadInst>(VL0); 3060 } 3061 3062 Type *ScalarLoadTy = LI->getType(); 3063 unsigned AS = LI->getPointerAddressSpace(); 3064 3065 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3066 VecTy->getPointerTo(AS)); 3067 3068 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3069 // ExternalUses list to make sure that an extract will be generated in the 3070 // future. 3071 Value *PO = LI->getPointerOperand(); 3072 if (getTreeEntry(PO)) 3073 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3074 3075 unsigned Alignment = LI->getAlignment(); 3076 LI = Builder.CreateLoad(VecPtr); 3077 if (!Alignment) { 3078 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3079 } 3080 LI->setAlignment(Alignment); 3081 E->VectorizedValue = LI; 3082 ++NumVectorInstructions; 3083 propagateMetadata(LI, E->Scalars); 3084 3085 if (isJumbled) { 3086 SmallVector<Constant *, 8> Mask; 3087 for (unsigned LaneEntry : UserTreeEntry->ShuffleMask[OpdNum]) 3088 Mask.push_back(Builder.getInt32(LaneEntry)); 3089 // Generate shuffle for jumbled memory access 3090 Value *Undef = UndefValue::get(VecTy); 3091 Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, 3092 ConstantVector::get(Mask)); 3093 E->VectorizedValue = Shuf; 3094 ++NumVectorInstructions; 3095 return Shuf; 3096 } 3097 return LI; 3098 } 3099 case Instruction::Store: { 3100 StoreInst *SI = cast<StoreInst>(VL0); 3101 unsigned Alignment = SI->getAlignment(); 3102 unsigned AS = SI->getPointerAddressSpace(); 3103 3104 ValueList ScalarStoreValues; 3105 for (Value *V : E->Scalars) 3106 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3107 3108 setInsertPointAfterBundle(E->Scalars, VL0); 3109 3110 Value *VecValue = vectorizeTree(ScalarStoreValues, 0, CurrIndx); 3111 Value *ScalarPtr = SI->getPointerOperand(); 3112 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3113 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3114 3115 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3116 // ExternalUses to make sure that an extract will be generated in the 3117 // future. 3118 if (getTreeEntry(ScalarPtr)) 3119 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3120 3121 if (!Alignment) 3122 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3123 3124 S->setAlignment(Alignment); 3125 E->VectorizedValue = S; 3126 ++NumVectorInstructions; 3127 return propagateMetadata(S, E->Scalars); 3128 } 3129 case Instruction::GetElementPtr: { 3130 setInsertPointAfterBundle(E->Scalars, VL0); 3131 3132 ValueList Op0VL; 3133 for (Value *V : E->Scalars) 3134 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3135 3136 Value *Op0 = vectorizeTree(Op0VL, 0, CurrIndx); 3137 3138 std::vector<Value *> OpVecs; 3139 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3140 ++j) { 3141 ValueList OpVL; 3142 for (Value *V : E->Scalars) 3143 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3144 3145 Value *OpVec = vectorizeTree(OpVL, j, CurrIndx); 3146 OpVecs.push_back(OpVec); 3147 } 3148 3149 Value *V = Builder.CreateGEP( 3150 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3151 E->VectorizedValue = V; 3152 ++NumVectorInstructions; 3153 3154 if (Instruction *I = dyn_cast<Instruction>(V)) 3155 return propagateMetadata(I, E->Scalars); 3156 3157 return V; 3158 } 3159 case Instruction::Call: { 3160 CallInst *CI = cast<CallInst>(VL0); 3161 setInsertPointAfterBundle(E->Scalars, VL0); 3162 Function *FI; 3163 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3164 Value *ScalarArg = nullptr; 3165 if (CI && (FI = CI->getCalledFunction())) { 3166 IID = FI->getIntrinsicID(); 3167 } 3168 std::vector<Value *> OpVecs; 3169 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3170 ValueList OpVL; 3171 // ctlz,cttz and powi are special intrinsics whose second argument is 3172 // a scalar. This argument should not be vectorized. 3173 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3174 CallInst *CEI = cast<CallInst>(VL0); 3175 ScalarArg = CEI->getArgOperand(j); 3176 OpVecs.push_back(CEI->getArgOperand(j)); 3177 continue; 3178 } 3179 for (Value *V : E->Scalars) { 3180 CallInst *CEI = cast<CallInst>(V); 3181 OpVL.push_back(CEI->getArgOperand(j)); 3182 } 3183 3184 Value *OpVec = vectorizeTree(OpVL, j, CurrIndx); 3185 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3186 OpVecs.push_back(OpVec); 3187 } 3188 3189 Module *M = F->getParent(); 3190 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3191 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3192 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3193 SmallVector<OperandBundleDef, 1> OpBundles; 3194 CI->getOperandBundlesAsDefs(OpBundles); 3195 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3196 3197 // The scalar argument uses an in-tree scalar so we add the new vectorized 3198 // call to ExternalUses list to make sure that an extract will be 3199 // generated in the future. 3200 if (ScalarArg && getTreeEntry(ScalarArg)) 3201 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3202 3203 E->VectorizedValue = V; 3204 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3205 ++NumVectorInstructions; 3206 return V; 3207 } 3208 case Instruction::ShuffleVector: { 3209 ValueList LHSVL, RHSVL; 3210 assert(Instruction::isBinaryOp(S.Opcode) && 3211 "Invalid Shuffle Vector Operand"); 3212 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3213 setInsertPointAfterBundle(E->Scalars, VL0); 3214 3215 Value *LHS = vectorizeTree(LHSVL, 0, CurrIndx); 3216 Value *RHS = vectorizeTree(RHSVL, 1, CurrIndx); 3217 3218 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3219 return V; 3220 3221 // Create a vector of LHS op1 RHS 3222 Value *V0 = Builder.CreateBinOp( 3223 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3224 3225 unsigned AltOpcode = getAltOpcode(S.Opcode); 3226 // Create a vector of LHS op2 RHS 3227 Value *V1 = Builder.CreateBinOp( 3228 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3229 3230 // Create shuffle to take alternate operations from the vector. 3231 // Also, gather up odd and even scalar ops to propagate IR flags to 3232 // each vector operation. 3233 ValueList OddScalars, EvenScalars; 3234 unsigned e = E->Scalars.size(); 3235 SmallVector<Constant *, 8> Mask(e); 3236 for (unsigned i = 0; i < e; ++i) { 3237 if (isOdd(i)) { 3238 Mask[i] = Builder.getInt32(e + i); 3239 OddScalars.push_back(E->Scalars[i]); 3240 } else { 3241 Mask[i] = Builder.getInt32(i); 3242 EvenScalars.push_back(E->Scalars[i]); 3243 } 3244 } 3245 3246 Value *ShuffleMask = ConstantVector::get(Mask); 3247 propagateIRFlags(V0, EvenScalars); 3248 propagateIRFlags(V1, OddScalars); 3249 3250 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3251 E->VectorizedValue = V; 3252 ++NumVectorInstructions; 3253 if (Instruction *I = dyn_cast<Instruction>(V)) 3254 return propagateMetadata(I, E->Scalars); 3255 3256 return V; 3257 } 3258 default: 3259 llvm_unreachable("unknown inst"); 3260 } 3261 return nullptr; 3262 } 3263 3264 Value *BoUpSLP::vectorizeTree() { 3265 ExtraValueToDebugLocsMap ExternallyUsedValues; 3266 return vectorizeTree(ExternallyUsedValues); 3267 } 3268 3269 Value * 3270 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3271 // All blocks must be scheduled before any instructions are inserted. 3272 for (auto &BSIter : BlocksSchedules) { 3273 scheduleBlock(BSIter.second.get()); 3274 } 3275 3276 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3277 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3278 3279 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3280 // vectorized root. InstCombine will then rewrite the entire expression. We 3281 // sign extend the extracted values below. 3282 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3283 if (MinBWs.count(ScalarRoot)) { 3284 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3285 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3286 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3287 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3288 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3289 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3290 VectorizableTree[0].VectorizedValue = Trunc; 3291 } 3292 3293 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3294 3295 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3296 // specified by ScalarType. 3297 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3298 if (!MinBWs.count(ScalarRoot)) 3299 return Ex; 3300 if (MinBWs[ScalarRoot].second) 3301 return Builder.CreateSExt(Ex, ScalarType); 3302 return Builder.CreateZExt(Ex, ScalarType); 3303 }; 3304 3305 // Extract all of the elements with the external uses. 3306 for (const auto &ExternalUse : ExternalUses) { 3307 Value *Scalar = ExternalUse.Scalar; 3308 llvm::User *User = ExternalUse.User; 3309 3310 // Skip users that we already RAUW. This happens when one instruction 3311 // has multiple uses of the same value. 3312 if (User && !is_contained(Scalar->users(), User)) 3313 continue; 3314 TreeEntry *E = getTreeEntry(Scalar); 3315 assert(E && "Invalid scalar"); 3316 assert((!E->NeedToGather) && "Extracting from a gather list"); 3317 3318 Value *Vec = dyn_cast<ShuffleVectorInst>(E->VectorizedValue); 3319 if (Vec && dyn_cast<LoadInst>(cast<Instruction>(Vec)->getOperand(0))) { 3320 Vec = cast<Instruction>(E->VectorizedValue)->getOperand(0); 3321 } else { 3322 Vec = E->VectorizedValue; 3323 } 3324 assert(Vec && "Can't find vectorizable value"); 3325 3326 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3327 // If User == nullptr, the Scalar is used as extra arg. Generate 3328 // ExtractElement instruction and update the record for this scalar in 3329 // ExternallyUsedValues. 3330 if (!User) { 3331 assert(ExternallyUsedValues.count(Scalar) && 3332 "Scalar with nullptr as an external user must be registered in " 3333 "ExternallyUsedValues map"); 3334 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3335 Builder.SetInsertPoint(VecI->getParent(), 3336 std::next(VecI->getIterator())); 3337 } else { 3338 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3339 } 3340 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3341 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3342 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3343 auto &Locs = ExternallyUsedValues[Scalar]; 3344 ExternallyUsedValues.insert({Ex, Locs}); 3345 ExternallyUsedValues.erase(Scalar); 3346 continue; 3347 } 3348 3349 // Generate extracts for out-of-tree users. 3350 // Find the insertion point for the extractelement lane. 3351 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3352 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3353 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3354 if (PH->getIncomingValue(i) == Scalar) { 3355 TerminatorInst *IncomingTerminator = 3356 PH->getIncomingBlock(i)->getTerminator(); 3357 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3358 Builder.SetInsertPoint(VecI->getParent(), 3359 std::next(VecI->getIterator())); 3360 } else { 3361 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3362 } 3363 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3364 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3365 CSEBlocks.insert(PH->getIncomingBlock(i)); 3366 PH->setOperand(i, Ex); 3367 } 3368 } 3369 } else { 3370 Builder.SetInsertPoint(cast<Instruction>(User)); 3371 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3372 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3373 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3374 User->replaceUsesOfWith(Scalar, Ex); 3375 } 3376 } else { 3377 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3378 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3379 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3380 CSEBlocks.insert(&F->getEntryBlock()); 3381 User->replaceUsesOfWith(Scalar, Ex); 3382 } 3383 3384 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3385 } 3386 3387 // For each vectorized value: 3388 for (TreeEntry &EIdx : VectorizableTree) { 3389 TreeEntry *Entry = &EIdx; 3390 3391 // No need to handle users of gathered values. 3392 if (Entry->NeedToGather) 3393 continue; 3394 3395 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3396 3397 // For each lane: 3398 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3399 Value *Scalar = Entry->Scalars[Lane]; 3400 3401 Type *Ty = Scalar->getType(); 3402 if (!Ty->isVoidTy()) { 3403 #ifndef NDEBUG 3404 for (User *U : Scalar->users()) { 3405 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3406 3407 // It is legal to replace users in the ignorelist by undef. 3408 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3409 "Replacing out-of-tree value with undef"); 3410 } 3411 #endif 3412 Value *Undef = UndefValue::get(Ty); 3413 Scalar->replaceAllUsesWith(Undef); 3414 } 3415 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3416 eraseInstruction(cast<Instruction>(Scalar)); 3417 } 3418 } 3419 3420 Builder.ClearInsertionPoint(); 3421 3422 return VectorizableTree[0].VectorizedValue; 3423 } 3424 3425 void BoUpSLP::optimizeGatherSequence(Function &F) { 3426 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3427 << " gather sequences instructions.\n"); 3428 // LICM InsertElementInst sequences. 3429 for (Instruction *it : GatherSeq) { 3430 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3431 3432 if (!Insert) 3433 continue; 3434 3435 // Check if this block is inside a loop. 3436 Loop *L = LI->getLoopFor(Insert->getParent()); 3437 if (!L) 3438 continue; 3439 3440 // Check if it has a preheader. 3441 BasicBlock *PreHeader = L->getLoopPreheader(); 3442 if (!PreHeader) 3443 continue; 3444 3445 // If the vector or the element that we insert into it are 3446 // instructions that are defined in this basic block then we can't 3447 // hoist this instruction. 3448 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3449 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3450 if (CurrVec && L->contains(CurrVec)) 3451 continue; 3452 if (NewElem && L->contains(NewElem)) 3453 continue; 3454 3455 // We can hoist this instruction. Move it to the pre-header. 3456 Insert->moveBefore(PreHeader->getTerminator()); 3457 } 3458 3459 // Perform O(N^2) search over the gather sequences and merge identical 3460 // instructions. TODO: We can further optimize this scan if we split the 3461 // instructions into different buckets based on the insert lane. 3462 SmallVector<Instruction *, 16> Visited; 3463 ReversePostOrderTraversal<Function *> RPOT(&F); 3464 for (auto BB : RPOT) { 3465 // Traverse CSEBlocks by RPOT order. 3466 if (!CSEBlocks.count(BB)) 3467 continue; 3468 3469 // For all instructions in blocks containing gather sequences: 3470 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3471 Instruction *In = &*it++; 3472 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3473 continue; 3474 3475 // Check if we can replace this instruction with any of the 3476 // visited instructions. 3477 for (Instruction *v : Visited) { 3478 if (In->isIdenticalTo(v) && 3479 DT->dominates(v->getParent(), In->getParent())) { 3480 In->replaceAllUsesWith(v); 3481 eraseInstruction(In); 3482 In = nullptr; 3483 break; 3484 } 3485 } 3486 if (In) { 3487 assert(!is_contained(Visited, In)); 3488 Visited.push_back(In); 3489 } 3490 } 3491 } 3492 CSEBlocks.clear(); 3493 GatherSeq.clear(); 3494 } 3495 3496 // Groups the instructions to a bundle (which is then a single scheduling entity) 3497 // and schedules instructions until the bundle gets ready. 3498 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3499 BoUpSLP *SLP, Value *OpValue) { 3500 if (isa<PHINode>(OpValue)) 3501 return true; 3502 3503 // Initialize the instruction bundle. 3504 Instruction *OldScheduleEnd = ScheduleEnd; 3505 ScheduleData *PrevInBundle = nullptr; 3506 ScheduleData *Bundle = nullptr; 3507 bool ReSchedule = false; 3508 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3509 3510 // Make sure that the scheduling region contains all 3511 // instructions of the bundle. 3512 for (Value *V : VL) { 3513 if (!extendSchedulingRegion(V, OpValue)) 3514 return false; 3515 } 3516 3517 for (Value *V : VL) { 3518 ScheduleData *BundleMember = getScheduleData(V); 3519 assert(BundleMember && 3520 "no ScheduleData for bundle member (maybe not in same basic block)"); 3521 if (BundleMember->IsScheduled) { 3522 // A bundle member was scheduled as single instruction before and now 3523 // needs to be scheduled as part of the bundle. We just get rid of the 3524 // existing schedule. 3525 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3526 << " was already scheduled\n"); 3527 ReSchedule = true; 3528 } 3529 assert(BundleMember->isSchedulingEntity() && 3530 "bundle member already part of other bundle"); 3531 if (PrevInBundle) { 3532 PrevInBundle->NextInBundle = BundleMember; 3533 } else { 3534 Bundle = BundleMember; 3535 } 3536 BundleMember->UnscheduledDepsInBundle = 0; 3537 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3538 3539 // Group the instructions to a bundle. 3540 BundleMember->FirstInBundle = Bundle; 3541 PrevInBundle = BundleMember; 3542 } 3543 if (ScheduleEnd != OldScheduleEnd) { 3544 // The scheduling region got new instructions at the lower end (or it is a 3545 // new region for the first bundle). This makes it necessary to 3546 // recalculate all dependencies. 3547 // It is seldom that this needs to be done a second time after adding the 3548 // initial bundle to the region. 3549 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3550 doForAllOpcodes(I, [](ScheduleData *SD) { 3551 SD->clearDependencies(); 3552 }); 3553 } 3554 ReSchedule = true; 3555 } 3556 if (ReSchedule) { 3557 resetSchedule(); 3558 initialFillReadyList(ReadyInsts); 3559 } 3560 3561 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3562 << BB->getName() << "\n"); 3563 3564 calculateDependencies(Bundle, true, SLP); 3565 3566 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3567 // means that there are no cyclic dependencies and we can schedule it. 3568 // Note that's important that we don't "schedule" the bundle yet (see 3569 // cancelScheduling). 3570 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3571 3572 ScheduleData *pickedSD = ReadyInsts.back(); 3573 ReadyInsts.pop_back(); 3574 3575 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3576 schedule(pickedSD, ReadyInsts); 3577 } 3578 } 3579 if (!Bundle->isReady()) { 3580 cancelScheduling(VL, OpValue); 3581 return false; 3582 } 3583 return true; 3584 } 3585 3586 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3587 Value *OpValue) { 3588 if (isa<PHINode>(OpValue)) 3589 return; 3590 3591 ScheduleData *Bundle = getScheduleData(OpValue); 3592 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3593 assert(!Bundle->IsScheduled && 3594 "Can't cancel bundle which is already scheduled"); 3595 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3596 "tried to unbundle something which is not a bundle"); 3597 3598 // Un-bundle: make single instructions out of the bundle. 3599 ScheduleData *BundleMember = Bundle; 3600 while (BundleMember) { 3601 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3602 BundleMember->FirstInBundle = BundleMember; 3603 ScheduleData *Next = BundleMember->NextInBundle; 3604 BundleMember->NextInBundle = nullptr; 3605 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3606 if (BundleMember->UnscheduledDepsInBundle == 0) { 3607 ReadyInsts.insert(BundleMember); 3608 } 3609 BundleMember = Next; 3610 } 3611 } 3612 3613 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3614 // Allocate a new ScheduleData for the instruction. 3615 if (ChunkPos >= ChunkSize) { 3616 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3617 ChunkPos = 0; 3618 } 3619 return &(ScheduleDataChunks.back()[ChunkPos++]); 3620 } 3621 3622 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3623 Value *OpValue) { 3624 if (getScheduleData(V, isOneOf(OpValue, V))) 3625 return true; 3626 Instruction *I = dyn_cast<Instruction>(V); 3627 assert(I && "bundle member must be an instruction"); 3628 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3629 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3630 ScheduleData *ISD = getScheduleData(I); 3631 if (!ISD) 3632 return false; 3633 assert(isInSchedulingRegion(ISD) && 3634 "ScheduleData not in scheduling region"); 3635 ScheduleData *SD = allocateScheduleDataChunks(); 3636 SD->Inst = I; 3637 SD->init(SchedulingRegionID, OpValue); 3638 ExtraScheduleDataMap[I][OpValue] = SD; 3639 return true; 3640 }; 3641 if (CheckSheduleForI(I)) 3642 return true; 3643 if (!ScheduleStart) { 3644 // It's the first instruction in the new region. 3645 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3646 ScheduleStart = I; 3647 ScheduleEnd = I->getNextNode(); 3648 if (isOneOf(OpValue, I) != I) 3649 CheckSheduleForI(I); 3650 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3651 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3652 return true; 3653 } 3654 // Search up and down at the same time, because we don't know if the new 3655 // instruction is above or below the existing scheduling region. 3656 BasicBlock::reverse_iterator UpIter = 3657 ++ScheduleStart->getIterator().getReverse(); 3658 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3659 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3660 BasicBlock::iterator LowerEnd = BB->end(); 3661 while (true) { 3662 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3663 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3664 return false; 3665 } 3666 3667 if (UpIter != UpperEnd) { 3668 if (&*UpIter == I) { 3669 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3670 ScheduleStart = I; 3671 if (isOneOf(OpValue, I) != I) 3672 CheckSheduleForI(I); 3673 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3674 return true; 3675 } 3676 UpIter++; 3677 } 3678 if (DownIter != LowerEnd) { 3679 if (&*DownIter == I) { 3680 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3681 nullptr); 3682 ScheduleEnd = I->getNextNode(); 3683 if (isOneOf(OpValue, I) != I) 3684 CheckSheduleForI(I); 3685 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3686 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3687 return true; 3688 } 3689 DownIter++; 3690 } 3691 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3692 "instruction not found in block"); 3693 } 3694 return true; 3695 } 3696 3697 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3698 Instruction *ToI, 3699 ScheduleData *PrevLoadStore, 3700 ScheduleData *NextLoadStore) { 3701 ScheduleData *CurrentLoadStore = PrevLoadStore; 3702 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3703 ScheduleData *SD = ScheduleDataMap[I]; 3704 if (!SD) { 3705 SD = allocateScheduleDataChunks(); 3706 ScheduleDataMap[I] = SD; 3707 SD->Inst = I; 3708 } 3709 assert(!isInSchedulingRegion(SD) && 3710 "new ScheduleData already in scheduling region"); 3711 SD->init(SchedulingRegionID, I); 3712 3713 if (I->mayReadOrWriteMemory() && 3714 (!isa<IntrinsicInst>(I) || 3715 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3716 // Update the linked list of memory accessing instructions. 3717 if (CurrentLoadStore) { 3718 CurrentLoadStore->NextLoadStore = SD; 3719 } else { 3720 FirstLoadStoreInRegion = SD; 3721 } 3722 CurrentLoadStore = SD; 3723 } 3724 } 3725 if (NextLoadStore) { 3726 if (CurrentLoadStore) 3727 CurrentLoadStore->NextLoadStore = NextLoadStore; 3728 } else { 3729 LastLoadStoreInRegion = CurrentLoadStore; 3730 } 3731 } 3732 3733 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3734 bool InsertInReadyList, 3735 BoUpSLP *SLP) { 3736 assert(SD->isSchedulingEntity()); 3737 3738 SmallVector<ScheduleData *, 10> WorkList; 3739 WorkList.push_back(SD); 3740 3741 while (!WorkList.empty()) { 3742 ScheduleData *SD = WorkList.back(); 3743 WorkList.pop_back(); 3744 3745 ScheduleData *BundleMember = SD; 3746 while (BundleMember) { 3747 assert(isInSchedulingRegion(BundleMember)); 3748 if (!BundleMember->hasValidDependencies()) { 3749 3750 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3751 BundleMember->Dependencies = 0; 3752 BundleMember->resetUnscheduledDeps(); 3753 3754 // Handle def-use chain dependencies. 3755 if (BundleMember->OpValue != BundleMember->Inst) { 3756 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3757 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3758 BundleMember->Dependencies++; 3759 ScheduleData *DestBundle = UseSD->FirstInBundle; 3760 if (!DestBundle->IsScheduled) 3761 BundleMember->incrementUnscheduledDeps(1); 3762 if (!DestBundle->hasValidDependencies()) 3763 WorkList.push_back(DestBundle); 3764 } 3765 } else { 3766 for (User *U : BundleMember->Inst->users()) { 3767 if (isa<Instruction>(U)) { 3768 ScheduleData *UseSD = getScheduleData(U); 3769 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3770 BundleMember->Dependencies++; 3771 ScheduleData *DestBundle = UseSD->FirstInBundle; 3772 if (!DestBundle->IsScheduled) 3773 BundleMember->incrementUnscheduledDeps(1); 3774 if (!DestBundle->hasValidDependencies()) 3775 WorkList.push_back(DestBundle); 3776 } 3777 } else { 3778 // I'm not sure if this can ever happen. But we need to be safe. 3779 // This lets the instruction/bundle never be scheduled and 3780 // eventually disable vectorization. 3781 BundleMember->Dependencies++; 3782 BundleMember->incrementUnscheduledDeps(1); 3783 } 3784 } 3785 } 3786 3787 // Handle the memory dependencies. 3788 ScheduleData *DepDest = BundleMember->NextLoadStore; 3789 if (DepDest) { 3790 Instruction *SrcInst = BundleMember->Inst; 3791 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3792 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3793 unsigned numAliased = 0; 3794 unsigned DistToSrc = 1; 3795 3796 while (DepDest) { 3797 assert(isInSchedulingRegion(DepDest)); 3798 3799 // We have two limits to reduce the complexity: 3800 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3801 // SLP->isAliased (which is the expensive part in this loop). 3802 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3803 // the whole loop (even if the loop is fast, it's quadratic). 3804 // It's important for the loop break condition (see below) to 3805 // check this limit even between two read-only instructions. 3806 if (DistToSrc >= MaxMemDepDistance || 3807 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3808 (numAliased >= AliasedCheckLimit || 3809 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3810 3811 // We increment the counter only if the locations are aliased 3812 // (instead of counting all alias checks). This gives a better 3813 // balance between reduced runtime and accurate dependencies. 3814 numAliased++; 3815 3816 DepDest->MemoryDependencies.push_back(BundleMember); 3817 BundleMember->Dependencies++; 3818 ScheduleData *DestBundle = DepDest->FirstInBundle; 3819 if (!DestBundle->IsScheduled) { 3820 BundleMember->incrementUnscheduledDeps(1); 3821 } 3822 if (!DestBundle->hasValidDependencies()) { 3823 WorkList.push_back(DestBundle); 3824 } 3825 } 3826 DepDest = DepDest->NextLoadStore; 3827 3828 // Example, explaining the loop break condition: Let's assume our 3829 // starting instruction is i0 and MaxMemDepDistance = 3. 3830 // 3831 // +--------v--v--v 3832 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3833 // +--------^--^--^ 3834 // 3835 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3836 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3837 // Previously we already added dependencies from i3 to i6,i7,i8 3838 // (because of MaxMemDepDistance). As we added a dependency from 3839 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3840 // and we can abort this loop at i6. 3841 if (DistToSrc >= 2 * MaxMemDepDistance) 3842 break; 3843 DistToSrc++; 3844 } 3845 } 3846 } 3847 BundleMember = BundleMember->NextInBundle; 3848 } 3849 if (InsertInReadyList && SD->isReady()) { 3850 ReadyInsts.push_back(SD); 3851 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3852 } 3853 } 3854 } 3855 3856 void BoUpSLP::BlockScheduling::resetSchedule() { 3857 assert(ScheduleStart && 3858 "tried to reset schedule on block which has not been scheduled"); 3859 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3860 doForAllOpcodes(I, [&](ScheduleData *SD) { 3861 assert(isInSchedulingRegion(SD) && 3862 "ScheduleData not in scheduling region"); 3863 SD->IsScheduled = false; 3864 SD->resetUnscheduledDeps(); 3865 }); 3866 } 3867 ReadyInsts.clear(); 3868 } 3869 3870 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3871 if (!BS->ScheduleStart) 3872 return; 3873 3874 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3875 3876 BS->resetSchedule(); 3877 3878 // For the real scheduling we use a more sophisticated ready-list: it is 3879 // sorted by the original instruction location. This lets the final schedule 3880 // be as close as possible to the original instruction order. 3881 struct ScheduleDataCompare { 3882 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3883 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3884 } 3885 }; 3886 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3887 3888 // Ensure that all dependency data is updated and fill the ready-list with 3889 // initial instructions. 3890 int Idx = 0; 3891 int NumToSchedule = 0; 3892 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3893 I = I->getNextNode()) { 3894 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 3895 assert(SD->isPartOfBundle() == 3896 (getTreeEntry(SD->Inst) != nullptr) && 3897 "scheduler and vectorizer bundle mismatch"); 3898 SD->FirstInBundle->SchedulingPriority = Idx++; 3899 if (SD->isSchedulingEntity()) { 3900 BS->calculateDependencies(SD, false, this); 3901 NumToSchedule++; 3902 } 3903 }); 3904 } 3905 BS->initialFillReadyList(ReadyInsts); 3906 3907 Instruction *LastScheduledInst = BS->ScheduleEnd; 3908 3909 // Do the "real" scheduling. 3910 while (!ReadyInsts.empty()) { 3911 ScheduleData *picked = *ReadyInsts.begin(); 3912 ReadyInsts.erase(ReadyInsts.begin()); 3913 3914 // Move the scheduled instruction(s) to their dedicated places, if not 3915 // there yet. 3916 ScheduleData *BundleMember = picked; 3917 while (BundleMember) { 3918 Instruction *pickedInst = BundleMember->Inst; 3919 if (LastScheduledInst->getNextNode() != pickedInst) { 3920 BS->BB->getInstList().remove(pickedInst); 3921 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3922 pickedInst); 3923 } 3924 LastScheduledInst = pickedInst; 3925 BundleMember = BundleMember->NextInBundle; 3926 } 3927 3928 BS->schedule(picked, ReadyInsts); 3929 NumToSchedule--; 3930 } 3931 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3932 3933 // Avoid duplicate scheduling of the block. 3934 BS->ScheduleStart = nullptr; 3935 } 3936 3937 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3938 // If V is a store, just return the width of the stored value without 3939 // traversing the expression tree. This is the common case. 3940 if (auto *Store = dyn_cast<StoreInst>(V)) 3941 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3942 3943 // If V is not a store, we can traverse the expression tree to find loads 3944 // that feed it. The type of the loaded value may indicate a more suitable 3945 // width than V's type. We want to base the vector element size on the width 3946 // of memory operations where possible. 3947 SmallVector<Instruction *, 16> Worklist; 3948 SmallPtrSet<Instruction *, 16> Visited; 3949 if (auto *I = dyn_cast<Instruction>(V)) 3950 Worklist.push_back(I); 3951 3952 // Traverse the expression tree in bottom-up order looking for loads. If we 3953 // encounter an instruciton we don't yet handle, we give up. 3954 auto MaxWidth = 0u; 3955 auto FoundUnknownInst = false; 3956 while (!Worklist.empty() && !FoundUnknownInst) { 3957 auto *I = Worklist.pop_back_val(); 3958 Visited.insert(I); 3959 3960 // We should only be looking at scalar instructions here. If the current 3961 // instruction has a vector type, give up. 3962 auto *Ty = I->getType(); 3963 if (isa<VectorType>(Ty)) 3964 FoundUnknownInst = true; 3965 3966 // If the current instruction is a load, update MaxWidth to reflect the 3967 // width of the loaded value. 3968 else if (isa<LoadInst>(I)) 3969 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3970 3971 // Otherwise, we need to visit the operands of the instruction. We only 3972 // handle the interesting cases from buildTree here. If an operand is an 3973 // instruction we haven't yet visited, we add it to the worklist. 3974 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3975 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3976 for (Use &U : I->operands()) 3977 if (auto *J = dyn_cast<Instruction>(U.get())) 3978 if (!Visited.count(J)) 3979 Worklist.push_back(J); 3980 } 3981 3982 // If we don't yet handle the instruction, give up. 3983 else 3984 FoundUnknownInst = true; 3985 } 3986 3987 // If we didn't encounter a memory access in the expression tree, or if we 3988 // gave up for some reason, just return the width of V. 3989 if (!MaxWidth || FoundUnknownInst) 3990 return DL->getTypeSizeInBits(V->getType()); 3991 3992 // Otherwise, return the maximum width we found. 3993 return MaxWidth; 3994 } 3995 3996 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3997 // smaller type with a truncation. We collect the values that will be demoted 3998 // in ToDemote and additional roots that require investigating in Roots. 3999 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4000 SmallVectorImpl<Value *> &ToDemote, 4001 SmallVectorImpl<Value *> &Roots) { 4002 // We can always demote constants. 4003 if (isa<Constant>(V)) { 4004 ToDemote.push_back(V); 4005 return true; 4006 } 4007 4008 // If the value is not an instruction in the expression with only one use, it 4009 // cannot be demoted. 4010 auto *I = dyn_cast<Instruction>(V); 4011 if (!I || !I->hasOneUse() || !Expr.count(I)) 4012 return false; 4013 4014 switch (I->getOpcode()) { 4015 4016 // We can always demote truncations and extensions. Since truncations can 4017 // seed additional demotion, we save the truncated value. 4018 case Instruction::Trunc: 4019 Roots.push_back(I->getOperand(0)); 4020 case Instruction::ZExt: 4021 case Instruction::SExt: 4022 break; 4023 4024 // We can demote certain binary operations if we can demote both of their 4025 // operands. 4026 case Instruction::Add: 4027 case Instruction::Sub: 4028 case Instruction::Mul: 4029 case Instruction::And: 4030 case Instruction::Or: 4031 case Instruction::Xor: 4032 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4033 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4034 return false; 4035 break; 4036 4037 // We can demote selects if we can demote their true and false values. 4038 case Instruction::Select: { 4039 SelectInst *SI = cast<SelectInst>(I); 4040 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4041 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4042 return false; 4043 break; 4044 } 4045 4046 // We can demote phis if we can demote all their incoming operands. Note that 4047 // we don't need to worry about cycles since we ensure single use above. 4048 case Instruction::PHI: { 4049 PHINode *PN = cast<PHINode>(I); 4050 for (Value *IncValue : PN->incoming_values()) 4051 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4052 return false; 4053 break; 4054 } 4055 4056 // Otherwise, conservatively give up. 4057 default: 4058 return false; 4059 } 4060 4061 // Record the value that we can demote. 4062 ToDemote.push_back(V); 4063 return true; 4064 } 4065 4066 void BoUpSLP::computeMinimumValueSizes() { 4067 // If there are no external uses, the expression tree must be rooted by a 4068 // store. We can't demote in-memory values, so there is nothing to do here. 4069 if (ExternalUses.empty()) 4070 return; 4071 4072 // We only attempt to truncate integer expressions. 4073 auto &TreeRoot = VectorizableTree[0].Scalars; 4074 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4075 if (!TreeRootIT) 4076 return; 4077 4078 // If the expression is not rooted by a store, these roots should have 4079 // external uses. We will rely on InstCombine to rewrite the expression in 4080 // the narrower type. However, InstCombine only rewrites single-use values. 4081 // This means that if a tree entry other than a root is used externally, it 4082 // must have multiple uses and InstCombine will not rewrite it. The code 4083 // below ensures that only the roots are used externally. 4084 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4085 for (auto &EU : ExternalUses) 4086 if (!Expr.erase(EU.Scalar)) 4087 return; 4088 if (!Expr.empty()) 4089 return; 4090 4091 // Collect the scalar values of the vectorizable expression. We will use this 4092 // context to determine which values can be demoted. If we see a truncation, 4093 // we mark it as seeding another demotion. 4094 for (auto &Entry : VectorizableTree) 4095 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4096 4097 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4098 // have a single external user that is not in the vectorizable tree. 4099 for (auto *Root : TreeRoot) 4100 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4101 return; 4102 4103 // Conservatively determine if we can actually truncate the roots of the 4104 // expression. Collect the values that can be demoted in ToDemote and 4105 // additional roots that require investigating in Roots. 4106 SmallVector<Value *, 32> ToDemote; 4107 SmallVector<Value *, 4> Roots; 4108 for (auto *Root : TreeRoot) 4109 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4110 return; 4111 4112 // The maximum bit width required to represent all the values that can be 4113 // demoted without loss of precision. It would be safe to truncate the roots 4114 // of the expression to this width. 4115 auto MaxBitWidth = 8u; 4116 4117 // We first check if all the bits of the roots are demanded. If they're not, 4118 // we can truncate the roots to this narrower type. 4119 for (auto *Root : TreeRoot) { 4120 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4121 MaxBitWidth = std::max<unsigned>( 4122 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4123 } 4124 4125 // True if the roots can be zero-extended back to their original type, rather 4126 // than sign-extended. We know that if the leading bits are not demanded, we 4127 // can safely zero-extend. So we initialize IsKnownPositive to True. 4128 bool IsKnownPositive = true; 4129 4130 // If all the bits of the roots are demanded, we can try a little harder to 4131 // compute a narrower type. This can happen, for example, if the roots are 4132 // getelementptr indices. InstCombine promotes these indices to the pointer 4133 // width. Thus, all their bits are technically demanded even though the 4134 // address computation might be vectorized in a smaller type. 4135 // 4136 // We start by looking at each entry that can be demoted. We compute the 4137 // maximum bit width required to store the scalar by using ValueTracking to 4138 // compute the number of high-order bits we can truncate. 4139 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4140 MaxBitWidth = 8u; 4141 4142 // Determine if the sign bit of all the roots is known to be zero. If not, 4143 // IsKnownPositive is set to False. 4144 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4145 KnownBits Known = computeKnownBits(R, *DL); 4146 return Known.isNonNegative(); 4147 }); 4148 4149 // Determine the maximum number of bits required to store the scalar 4150 // values. 4151 for (auto *Scalar : ToDemote) { 4152 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4153 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4154 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4155 } 4156 4157 // If we can't prove that the sign bit is zero, we must add one to the 4158 // maximum bit width to account for the unknown sign bit. This preserves 4159 // the existing sign bit so we can safely sign-extend the root back to the 4160 // original type. Otherwise, if we know the sign bit is zero, we will 4161 // zero-extend the root instead. 4162 // 4163 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4164 // one to the maximum bit width will yield a larger-than-necessary 4165 // type. In general, we need to add an extra bit only if we can't 4166 // prove that the upper bit of the original type is equal to the 4167 // upper bit of the proposed smaller type. If these two bits are the 4168 // same (either zero or one) we know that sign-extending from the 4169 // smaller type will result in the same value. Here, since we can't 4170 // yet prove this, we are just making the proposed smaller type 4171 // larger to ensure correctness. 4172 if (!IsKnownPositive) 4173 ++MaxBitWidth; 4174 } 4175 4176 // Round MaxBitWidth up to the next power-of-two. 4177 if (!isPowerOf2_64(MaxBitWidth)) 4178 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4179 4180 // If the maximum bit width we compute is less than the with of the roots' 4181 // type, we can proceed with the narrowing. Otherwise, do nothing. 4182 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4183 return; 4184 4185 // If we can truncate the root, we must collect additional values that might 4186 // be demoted as a result. That is, those seeded by truncations we will 4187 // modify. 4188 while (!Roots.empty()) 4189 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4190 4191 // Finally, map the values we can demote to the maximum bit with we computed. 4192 for (auto *Scalar : ToDemote) 4193 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4194 } 4195 4196 namespace { 4197 4198 /// The SLPVectorizer Pass. 4199 struct SLPVectorizer : public FunctionPass { 4200 SLPVectorizerPass Impl; 4201 4202 /// Pass identification, replacement for typeid 4203 static char ID; 4204 4205 explicit SLPVectorizer() : FunctionPass(ID) { 4206 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4207 } 4208 4209 bool doInitialization(Module &M) override { 4210 return false; 4211 } 4212 4213 bool runOnFunction(Function &F) override { 4214 if (skipFunction(F)) 4215 return false; 4216 4217 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4218 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4219 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4220 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4221 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4222 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4223 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4224 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4225 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4226 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4227 4228 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4229 } 4230 4231 void getAnalysisUsage(AnalysisUsage &AU) const override { 4232 FunctionPass::getAnalysisUsage(AU); 4233 AU.addRequired<AssumptionCacheTracker>(); 4234 AU.addRequired<ScalarEvolutionWrapperPass>(); 4235 AU.addRequired<AAResultsWrapperPass>(); 4236 AU.addRequired<TargetTransformInfoWrapperPass>(); 4237 AU.addRequired<LoopInfoWrapperPass>(); 4238 AU.addRequired<DominatorTreeWrapperPass>(); 4239 AU.addRequired<DemandedBitsWrapperPass>(); 4240 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4241 AU.addPreserved<LoopInfoWrapperPass>(); 4242 AU.addPreserved<DominatorTreeWrapperPass>(); 4243 AU.addPreserved<AAResultsWrapperPass>(); 4244 AU.addPreserved<GlobalsAAWrapperPass>(); 4245 AU.setPreservesCFG(); 4246 } 4247 }; 4248 4249 } // end anonymous namespace 4250 4251 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4252 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4253 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4254 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4255 auto *AA = &AM.getResult<AAManager>(F); 4256 auto *LI = &AM.getResult<LoopAnalysis>(F); 4257 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4258 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4259 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4260 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4261 4262 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4263 if (!Changed) 4264 return PreservedAnalyses::all(); 4265 4266 PreservedAnalyses PA; 4267 PA.preserveSet<CFGAnalyses>(); 4268 PA.preserve<AAManager>(); 4269 PA.preserve<GlobalsAA>(); 4270 return PA; 4271 } 4272 4273 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4274 TargetTransformInfo *TTI_, 4275 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4276 LoopInfo *LI_, DominatorTree *DT_, 4277 AssumptionCache *AC_, DemandedBits *DB_, 4278 OptimizationRemarkEmitter *ORE_) { 4279 SE = SE_; 4280 TTI = TTI_; 4281 TLI = TLI_; 4282 AA = AA_; 4283 LI = LI_; 4284 DT = DT_; 4285 AC = AC_; 4286 DB = DB_; 4287 DL = &F.getParent()->getDataLayout(); 4288 4289 Stores.clear(); 4290 GEPs.clear(); 4291 bool Changed = false; 4292 4293 // If the target claims to have no vector registers don't attempt 4294 // vectorization. 4295 if (!TTI->getNumberOfRegisters(true)) 4296 return false; 4297 4298 // Don't vectorize when the attribute NoImplicitFloat is used. 4299 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4300 return false; 4301 4302 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4303 4304 // Use the bottom up slp vectorizer to construct chains that start with 4305 // store instructions. 4306 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4307 4308 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4309 // delete instructions. 4310 4311 // Scan the blocks in the function in post order. 4312 for (auto BB : post_order(&F.getEntryBlock())) { 4313 collectSeedInstructions(BB); 4314 4315 // Vectorize trees that end at stores. 4316 if (!Stores.empty()) { 4317 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4318 << " underlying objects.\n"); 4319 Changed |= vectorizeStoreChains(R); 4320 } 4321 4322 // Vectorize trees that end at reductions. 4323 Changed |= vectorizeChainsInBlock(BB, R); 4324 4325 // Vectorize the index computations of getelementptr instructions. This 4326 // is primarily intended to catch gather-like idioms ending at 4327 // non-consecutive loads. 4328 if (!GEPs.empty()) { 4329 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4330 << " underlying objects.\n"); 4331 Changed |= vectorizeGEPIndices(BB, R); 4332 } 4333 } 4334 4335 if (Changed) { 4336 R.optimizeGatherSequence(F); 4337 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4338 DEBUG(verifyFunction(F)); 4339 } 4340 return Changed; 4341 } 4342 4343 /// \brief Check that the Values in the slice in VL array are still existent in 4344 /// the WeakTrackingVH array. 4345 /// Vectorization of part of the VL array may cause later values in the VL array 4346 /// to become invalid. We track when this has happened in the WeakTrackingVH 4347 /// array. 4348 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4349 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4350 unsigned SliceSize) { 4351 VL = VL.slice(SliceBegin, SliceSize); 4352 VH = VH.slice(SliceBegin, SliceSize); 4353 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4354 } 4355 4356 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4357 unsigned VecRegSize) { 4358 unsigned ChainLen = Chain.size(); 4359 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4360 << "\n"); 4361 unsigned Sz = R.getVectorElementSize(Chain[0]); 4362 unsigned VF = VecRegSize / Sz; 4363 4364 if (!isPowerOf2_32(Sz) || VF < 2) 4365 return false; 4366 4367 // Keep track of values that were deleted by vectorizing in the loop below. 4368 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4369 4370 bool Changed = false; 4371 // Look for profitable vectorizable trees at all offsets, starting at zero. 4372 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4373 if (i + VF > e) 4374 break; 4375 4376 // Check that a previous iteration of this loop did not delete the Value. 4377 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4378 continue; 4379 4380 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4381 << "\n"); 4382 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4383 4384 R.buildTree(Operands); 4385 if (R.isTreeTinyAndNotFullyVectorizable()) 4386 continue; 4387 4388 R.computeMinimumValueSizes(); 4389 4390 int Cost = R.getTreeCost(); 4391 4392 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4393 if (Cost < -SLPCostThreshold) { 4394 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4395 4396 using namespace ore; 4397 4398 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4399 cast<StoreInst>(Chain[i])) 4400 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4401 << " and with tree size " 4402 << NV("TreeSize", R.getTreeSize())); 4403 4404 R.vectorizeTree(); 4405 4406 // Move to the next bundle. 4407 i += VF - 1; 4408 Changed = true; 4409 } 4410 } 4411 4412 return Changed; 4413 } 4414 4415 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4416 BoUpSLP &R) { 4417 SetVector<StoreInst *> Heads; 4418 SmallDenseSet<StoreInst *> Tails; 4419 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4420 4421 // We may run into multiple chains that merge into a single chain. We mark the 4422 // stores that we vectorized so that we don't visit the same store twice. 4423 BoUpSLP::ValueSet VectorizedStores; 4424 bool Changed = false; 4425 4426 // Do a quadratic search on all of the given stores in reverse order and find 4427 // all of the pairs of stores that follow each other. 4428 SmallVector<unsigned, 16> IndexQueue; 4429 unsigned E = Stores.size(); 4430 IndexQueue.resize(E - 1); 4431 for (unsigned I = E; I > 0; --I) { 4432 unsigned Idx = I - 1; 4433 // If a store has multiple consecutive store candidates, search Stores 4434 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4435 // This is because usually pairing with immediate succeeding or preceding 4436 // candidate create the best chance to find slp vectorization opportunity. 4437 unsigned Offset = 1; 4438 unsigned Cnt = 0; 4439 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4440 if (Idx >= Offset) { 4441 IndexQueue[Cnt] = Idx - Offset; 4442 ++Cnt; 4443 } 4444 if (Idx + Offset < E) { 4445 IndexQueue[Cnt] = Idx + Offset; 4446 ++Cnt; 4447 } 4448 } 4449 4450 for (auto K : IndexQueue) { 4451 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4452 Tails.insert(Stores[Idx]); 4453 Heads.insert(Stores[K]); 4454 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4455 break; 4456 } 4457 } 4458 } 4459 4460 // For stores that start but don't end a link in the chain: 4461 for (auto *SI : llvm::reverse(Heads)) { 4462 if (Tails.count(SI)) 4463 continue; 4464 4465 // We found a store instr that starts a chain. Now follow the chain and try 4466 // to vectorize it. 4467 BoUpSLP::ValueList Operands; 4468 StoreInst *I = SI; 4469 // Collect the chain into a list. 4470 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4471 Operands.push_back(I); 4472 // Move to the next value in the chain. 4473 I = ConsecutiveChain[I]; 4474 } 4475 4476 // FIXME: Is division-by-2 the correct step? Should we assert that the 4477 // register size is a power-of-2? 4478 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4479 Size /= 2) { 4480 if (vectorizeStoreChain(Operands, R, Size)) { 4481 // Mark the vectorized stores so that we don't vectorize them again. 4482 VectorizedStores.insert(Operands.begin(), Operands.end()); 4483 Changed = true; 4484 break; 4485 } 4486 } 4487 } 4488 4489 return Changed; 4490 } 4491 4492 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4493 // Initialize the collections. We will make a single pass over the block. 4494 Stores.clear(); 4495 GEPs.clear(); 4496 4497 // Visit the store and getelementptr instructions in BB and organize them in 4498 // Stores and GEPs according to the underlying objects of their pointer 4499 // operands. 4500 for (Instruction &I : *BB) { 4501 // Ignore store instructions that are volatile or have a pointer operand 4502 // that doesn't point to a scalar type. 4503 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4504 if (!SI->isSimple()) 4505 continue; 4506 if (!isValidElementType(SI->getValueOperand()->getType())) 4507 continue; 4508 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4509 } 4510 4511 // Ignore getelementptr instructions that have more than one index, a 4512 // constant index, or a pointer operand that doesn't point to a scalar 4513 // type. 4514 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4515 auto Idx = GEP->idx_begin()->get(); 4516 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4517 continue; 4518 if (!isValidElementType(Idx->getType())) 4519 continue; 4520 if (GEP->getType()->isVectorTy()) 4521 continue; 4522 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4523 } 4524 } 4525 } 4526 4527 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4528 if (!A || !B) 4529 return false; 4530 Value *VL[] = { A, B }; 4531 return tryToVectorizeList(VL, R, None, true); 4532 } 4533 4534 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4535 ArrayRef<Value *> BuildVector, 4536 bool AllowReorder) { 4537 if (VL.size() < 2) 4538 return false; 4539 4540 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4541 << ".\n"); 4542 4543 // Check that all of the parts are scalar instructions of the same type. 4544 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4545 if (!I0) 4546 return false; 4547 4548 unsigned Opcode0 = I0->getOpcode(); 4549 4550 unsigned Sz = R.getVectorElementSize(I0); 4551 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4552 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4553 if (MaxVF < 2) { 4554 R.getORE()->emit([&]() { 4555 return OptimizationRemarkMissed( 4556 SV_NAME, "SmallVF", I0) 4557 << "Cannot SLP vectorize list: vectorization factor " 4558 << "less than 2 is not supported"; 4559 }); 4560 return false; 4561 } 4562 4563 for (Value *V : VL) { 4564 Type *Ty = V->getType(); 4565 if (!isValidElementType(Ty)) { 4566 // NOTE: the following will give user internal llvm type name, which may not be useful 4567 R.getORE()->emit([&]() { 4568 std::string type_str; 4569 llvm::raw_string_ostream rso(type_str); 4570 Ty->print(rso); 4571 return OptimizationRemarkMissed( 4572 SV_NAME, "UnsupportedType", I0) 4573 << "Cannot SLP vectorize list: type " 4574 << rso.str() + " is unsupported by vectorizer"; 4575 }); 4576 return false; 4577 } 4578 Instruction *Inst = dyn_cast<Instruction>(V); 4579 4580 if (!Inst) 4581 return false; 4582 if (Inst->getOpcode() != Opcode0) { 4583 R.getORE()->emit([&]() { 4584 return OptimizationRemarkMissed( 4585 SV_NAME, "InequableTypes", I0) 4586 << "Cannot SLP vectorize list: not all of the " 4587 << "parts of scalar instructions are of the same type: " 4588 << ore::NV("Instruction1Opcode", I0) << " and " 4589 << ore::NV("Instruction2Opcode", Inst); 4590 }); 4591 return false; 4592 } 4593 } 4594 4595 bool Changed = false; 4596 bool CandidateFound = false; 4597 int MinCost = SLPCostThreshold; 4598 4599 // Keep track of values that were deleted by vectorizing in the loop below. 4600 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4601 4602 unsigned NextInst = 0, MaxInst = VL.size(); 4603 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4604 VF /= 2) { 4605 // No actual vectorization should happen, if number of parts is the same as 4606 // provided vectorization factor (i.e. the scalar type is used for vector 4607 // code during codegen). 4608 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4609 if (TTI->getNumberOfParts(VecTy) == VF) 4610 continue; 4611 for (unsigned I = NextInst; I < MaxInst; ++I) { 4612 unsigned OpsWidth = 0; 4613 4614 if (I + VF > MaxInst) 4615 OpsWidth = MaxInst - I; 4616 else 4617 OpsWidth = VF; 4618 4619 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4620 break; 4621 4622 // Check that a previous iteration of this loop did not delete the Value. 4623 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4624 continue; 4625 4626 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4627 << "\n"); 4628 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4629 4630 ArrayRef<Value *> BuildVectorSlice; 4631 if (!BuildVector.empty()) 4632 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4633 4634 R.buildTree(Ops, BuildVectorSlice); 4635 // TODO: check if we can allow reordering for more cases. 4636 if (AllowReorder && R.shouldReorder()) { 4637 // Conceptually, there is nothing actually preventing us from trying to 4638 // reorder a larger list. In fact, we do exactly this when vectorizing 4639 // reductions. However, at this point, we only expect to get here when 4640 // there are exactly two operations. 4641 assert(Ops.size() == 2); 4642 assert(BuildVectorSlice.empty()); 4643 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4644 R.buildTree(ReorderedOps, None); 4645 } 4646 if (R.isTreeTinyAndNotFullyVectorizable()) 4647 continue; 4648 4649 R.computeMinimumValueSizes(); 4650 int Cost = R.getTreeCost(); 4651 CandidateFound = true; 4652 MinCost = std::min(MinCost, Cost); 4653 4654 if (Cost < -SLPCostThreshold) { 4655 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4656 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4657 cast<Instruction>(Ops[0])) 4658 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4659 << " and with tree size " 4660 << ore::NV("TreeSize", R.getTreeSize())); 4661 4662 Value *VectorizedRoot = R.vectorizeTree(); 4663 4664 // Reconstruct the build vector by extracting the vectorized root. This 4665 // way we handle the case where some elements of the vector are 4666 // undefined. 4667 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4668 if (!BuildVectorSlice.empty()) { 4669 // The insert point is the last build vector instruction. The 4670 // vectorized root will precede it. This guarantees that we get an 4671 // instruction. The vectorized tree could have been constant folded. 4672 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4673 unsigned VecIdx = 0; 4674 for (auto &V : BuildVectorSlice) { 4675 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4676 ++BasicBlock::iterator(InsertAfter)); 4677 Instruction *I = cast<Instruction>(V); 4678 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4679 Instruction *Extract = 4680 cast<Instruction>(Builder.CreateExtractElement( 4681 VectorizedRoot, Builder.getInt32(VecIdx++))); 4682 I->setOperand(1, Extract); 4683 I->moveAfter(Extract); 4684 InsertAfter = I; 4685 } 4686 } 4687 // Move to the next bundle. 4688 I += VF - 1; 4689 NextInst = I + 1; 4690 Changed = true; 4691 } 4692 } 4693 } 4694 4695 if (!Changed && CandidateFound) { 4696 R.getORE()->emit([&]() { 4697 return OptimizationRemarkMissed( 4698 SV_NAME, "NotBeneficial", I0) 4699 << "List vectorization was possible but not beneficial with cost " 4700 << ore::NV("Cost", MinCost) << " >= " 4701 << ore::NV("Treshold", -SLPCostThreshold); 4702 }); 4703 } else if (!Changed) { 4704 R.getORE()->emit([&]() { 4705 return OptimizationRemarkMissed( 4706 SV_NAME, "NotPossible", I0) 4707 << "Cannot SLP vectorize list: vectorization was impossible" 4708 << " with available vectorization factors"; 4709 }); 4710 } 4711 return Changed; 4712 } 4713 4714 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4715 if (!I) 4716 return false; 4717 4718 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4719 return false; 4720 4721 Value *P = I->getParent(); 4722 4723 // Vectorize in current basic block only. 4724 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4725 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4726 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4727 return false; 4728 4729 // Try to vectorize V. 4730 if (tryToVectorizePair(Op0, Op1, R)) 4731 return true; 4732 4733 auto *A = dyn_cast<BinaryOperator>(Op0); 4734 auto *B = dyn_cast<BinaryOperator>(Op1); 4735 // Try to skip B. 4736 if (B && B->hasOneUse()) { 4737 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4738 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4739 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4740 return true; 4741 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4742 return true; 4743 } 4744 4745 // Try to skip A. 4746 if (A && A->hasOneUse()) { 4747 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4748 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4749 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4750 return true; 4751 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4752 return true; 4753 } 4754 return false; 4755 } 4756 4757 /// \brief Generate a shuffle mask to be used in a reduction tree. 4758 /// 4759 /// \param VecLen The length of the vector to be reduced. 4760 /// \param NumEltsToRdx The number of elements that should be reduced in the 4761 /// vector. 4762 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4763 /// reduction. A pairwise reduction will generate a mask of 4764 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4765 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4766 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4767 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4768 bool IsPairwise, bool IsLeft, 4769 IRBuilder<> &Builder) { 4770 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4771 4772 SmallVector<Constant *, 32> ShuffleMask( 4773 VecLen, UndefValue::get(Builder.getInt32Ty())); 4774 4775 if (IsPairwise) 4776 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4777 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4778 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4779 else 4780 // Move the upper half of the vector to the lower half. 4781 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4782 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4783 4784 return ConstantVector::get(ShuffleMask); 4785 } 4786 4787 namespace { 4788 4789 /// Model horizontal reductions. 4790 /// 4791 /// A horizontal reduction is a tree of reduction operations (currently add and 4792 /// fadd) that has operations that can be put into a vector as its leaf. 4793 /// For example, this tree: 4794 /// 4795 /// mul mul mul mul 4796 /// \ / \ / 4797 /// + + 4798 /// \ / 4799 /// + 4800 /// This tree has "mul" as its reduced values and "+" as its reduction 4801 /// operations. A reduction might be feeding into a store or a binary operation 4802 /// feeding a phi. 4803 /// ... 4804 /// \ / 4805 /// + 4806 /// | 4807 /// phi += 4808 /// 4809 /// Or: 4810 /// ... 4811 /// \ / 4812 /// + 4813 /// | 4814 /// *p = 4815 /// 4816 class HorizontalReduction { 4817 using ReductionOpsType = SmallVector<Value *, 16>; 4818 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 4819 ReductionOpsListType ReductionOps; 4820 SmallVector<Value *, 32> ReducedVals; 4821 // Use map vector to make stable output. 4822 MapVector<Instruction *, Value *> ExtraArgs; 4823 4824 /// Kind of the reduction data. 4825 enum ReductionKind { 4826 RK_None, /// Not a reduction. 4827 RK_Arithmetic, /// Binary reduction data. 4828 RK_Min, /// Minimum reduction data. 4829 RK_UMin, /// Unsigned minimum reduction data. 4830 RK_Max, /// Maximum reduction data. 4831 RK_UMax, /// Unsigned maximum reduction data. 4832 }; 4833 4834 /// Contains info about operation, like its opcode, left and right operands. 4835 class OperationData { 4836 /// Opcode of the instruction. 4837 unsigned Opcode = 0; 4838 4839 /// Left operand of the reduction operation. 4840 Value *LHS = nullptr; 4841 4842 /// Right operand of the reduction operation. 4843 Value *RHS = nullptr; 4844 4845 /// Kind of the reduction operation. 4846 ReductionKind Kind = RK_None; 4847 4848 /// True if float point min/max reduction has no NaNs. 4849 bool NoNaN = false; 4850 4851 /// Checks if the reduction operation can be vectorized. 4852 bool isVectorizable() const { 4853 return LHS && RHS && 4854 // We currently only support adds && min/max reductions. 4855 ((Kind == RK_Arithmetic && 4856 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 4857 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 4858 (Kind == RK_Min || Kind == RK_Max)) || 4859 (Opcode == Instruction::ICmp && 4860 (Kind == RK_UMin || Kind == RK_UMax))); 4861 } 4862 4863 /// Creates reduction operation with the current opcode. 4864 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 4865 assert(isVectorizable() && 4866 "Expected add|fadd or min/max reduction operation."); 4867 Value *Cmp; 4868 switch (Kind) { 4869 case RK_Arithmetic: 4870 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4871 Name); 4872 case RK_Min: 4873 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 4874 : Builder.CreateFCmpOLT(LHS, RHS); 4875 break; 4876 case RK_Max: 4877 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 4878 : Builder.CreateFCmpOGT(LHS, RHS); 4879 break; 4880 case RK_UMin: 4881 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4882 Cmp = Builder.CreateICmpULT(LHS, RHS); 4883 break; 4884 case RK_UMax: 4885 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4886 Cmp = Builder.CreateICmpUGT(LHS, RHS); 4887 break; 4888 case RK_None: 4889 llvm_unreachable("Unknown reduction operation."); 4890 } 4891 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 4892 } 4893 4894 public: 4895 explicit OperationData() = default; 4896 4897 /// Construction for reduced values. They are identified by opcode only and 4898 /// don't have associated LHS/RHS values. 4899 explicit OperationData(Value *V) { 4900 if (auto *I = dyn_cast<Instruction>(V)) 4901 Opcode = I->getOpcode(); 4902 } 4903 4904 /// Constructor for reduction operations with opcode and its left and 4905 /// right operands. 4906 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 4907 bool NoNaN = false) 4908 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 4909 assert(Kind != RK_None && "One of the reduction operations is expected."); 4910 } 4911 4912 explicit operator bool() const { return Opcode; } 4913 4914 /// Get the index of the first operand. 4915 unsigned getFirstOperandIndex() const { 4916 assert(!!*this && "The opcode is not set."); 4917 switch (Kind) { 4918 case RK_Min: 4919 case RK_UMin: 4920 case RK_Max: 4921 case RK_UMax: 4922 return 1; 4923 case RK_Arithmetic: 4924 case RK_None: 4925 break; 4926 } 4927 return 0; 4928 } 4929 4930 /// Total number of operands in the reduction operation. 4931 unsigned getNumberOfOperands() const { 4932 assert(Kind != RK_None && !!*this && LHS && RHS && 4933 "Expected reduction operation."); 4934 switch (Kind) { 4935 case RK_Arithmetic: 4936 return 2; 4937 case RK_Min: 4938 case RK_UMin: 4939 case RK_Max: 4940 case RK_UMax: 4941 return 3; 4942 case RK_None: 4943 break; 4944 } 4945 llvm_unreachable("Reduction kind is not set"); 4946 } 4947 4948 /// Checks if the operation has the same parent as \p P. 4949 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 4950 assert(Kind != RK_None && !!*this && LHS && RHS && 4951 "Expected reduction operation."); 4952 if (!IsRedOp) 4953 return I->getParent() == P; 4954 switch (Kind) { 4955 case RK_Arithmetic: 4956 // Arithmetic reduction operation must be used once only. 4957 return I->getParent() == P; 4958 case RK_Min: 4959 case RK_UMin: 4960 case RK_Max: 4961 case RK_UMax: { 4962 // SelectInst must be used twice while the condition op must have single 4963 // use only. 4964 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 4965 return I->getParent() == P && Cmp && Cmp->getParent() == P; 4966 } 4967 case RK_None: 4968 break; 4969 } 4970 llvm_unreachable("Reduction kind is not set"); 4971 } 4972 /// Expected number of uses for reduction operations/reduced values. 4973 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 4974 assert(Kind != RK_None && !!*this && LHS && RHS && 4975 "Expected reduction operation."); 4976 switch (Kind) { 4977 case RK_Arithmetic: 4978 return I->hasOneUse(); 4979 case RK_Min: 4980 case RK_UMin: 4981 case RK_Max: 4982 case RK_UMax: 4983 return I->hasNUses(2) && 4984 (!IsReductionOp || 4985 cast<SelectInst>(I)->getCondition()->hasOneUse()); 4986 case RK_None: 4987 break; 4988 } 4989 llvm_unreachable("Reduction kind is not set"); 4990 } 4991 4992 /// Initializes the list of reduction operations. 4993 void initReductionOps(ReductionOpsListType &ReductionOps) { 4994 assert(Kind != RK_None && !!*this && LHS && RHS && 4995 "Expected reduction operation."); 4996 switch (Kind) { 4997 case RK_Arithmetic: 4998 ReductionOps.assign(1, ReductionOpsType()); 4999 break; 5000 case RK_Min: 5001 case RK_UMin: 5002 case RK_Max: 5003 case RK_UMax: 5004 ReductionOps.assign(2, ReductionOpsType()); 5005 break; 5006 case RK_None: 5007 llvm_unreachable("Reduction kind is not set"); 5008 } 5009 } 5010 /// Add all reduction operations for the reduction instruction \p I. 5011 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5012 assert(Kind != RK_None && !!*this && LHS && RHS && 5013 "Expected reduction operation."); 5014 switch (Kind) { 5015 case RK_Arithmetic: 5016 ReductionOps[0].emplace_back(I); 5017 break; 5018 case RK_Min: 5019 case RK_UMin: 5020 case RK_Max: 5021 case RK_UMax: 5022 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5023 ReductionOps[1].emplace_back(I); 5024 break; 5025 case RK_None: 5026 llvm_unreachable("Reduction kind is not set"); 5027 } 5028 } 5029 5030 /// Checks if instruction is associative and can be vectorized. 5031 bool isAssociative(Instruction *I) const { 5032 assert(Kind != RK_None && *this && LHS && RHS && 5033 "Expected reduction operation."); 5034 switch (Kind) { 5035 case RK_Arithmetic: 5036 return I->isAssociative(); 5037 case RK_Min: 5038 case RK_Max: 5039 return Opcode == Instruction::ICmp || 5040 cast<Instruction>(I->getOperand(0))->isFast(); 5041 case RK_UMin: 5042 case RK_UMax: 5043 assert(Opcode == Instruction::ICmp && 5044 "Only integer compare operation is expected."); 5045 return true; 5046 case RK_None: 5047 break; 5048 } 5049 llvm_unreachable("Reduction kind is not set"); 5050 } 5051 5052 /// Checks if the reduction operation can be vectorized. 5053 bool isVectorizable(Instruction *I) const { 5054 return isVectorizable() && isAssociative(I); 5055 } 5056 5057 /// Checks if two operation data are both a reduction op or both a reduced 5058 /// value. 5059 bool operator==(const OperationData &OD) { 5060 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5061 "One of the comparing operations is incorrect."); 5062 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5063 } 5064 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5065 void clear() { 5066 Opcode = 0; 5067 LHS = nullptr; 5068 RHS = nullptr; 5069 Kind = RK_None; 5070 NoNaN = false; 5071 } 5072 5073 /// Get the opcode of the reduction operation. 5074 unsigned getOpcode() const { 5075 assert(isVectorizable() && "Expected vectorizable operation."); 5076 return Opcode; 5077 } 5078 5079 /// Get kind of reduction data. 5080 ReductionKind getKind() const { return Kind; } 5081 Value *getLHS() const { return LHS; } 5082 Value *getRHS() const { return RHS; } 5083 Type *getConditionType() const { 5084 switch (Kind) { 5085 case RK_Arithmetic: 5086 return nullptr; 5087 case RK_Min: 5088 case RK_Max: 5089 case RK_UMin: 5090 case RK_UMax: 5091 return CmpInst::makeCmpResultType(LHS->getType()); 5092 case RK_None: 5093 break; 5094 } 5095 llvm_unreachable("Reduction kind is not set"); 5096 } 5097 5098 /// Creates reduction operation with the current opcode with the IR flags 5099 /// from \p ReductionOps. 5100 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5101 const ReductionOpsListType &ReductionOps) const { 5102 assert(isVectorizable() && 5103 "Expected add|fadd or min/max reduction operation."); 5104 auto *Op = createOp(Builder, Name); 5105 switch (Kind) { 5106 case RK_Arithmetic: 5107 propagateIRFlags(Op, ReductionOps[0]); 5108 return Op; 5109 case RK_Min: 5110 case RK_Max: 5111 case RK_UMin: 5112 case RK_UMax: 5113 if (auto *SI = dyn_cast<SelectInst>(Op)) 5114 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5115 propagateIRFlags(Op, ReductionOps[1]); 5116 return Op; 5117 case RK_None: 5118 break; 5119 } 5120 llvm_unreachable("Unknown reduction operation."); 5121 } 5122 /// Creates reduction operation with the current opcode with the IR flags 5123 /// from \p I. 5124 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5125 Instruction *I) const { 5126 assert(isVectorizable() && 5127 "Expected add|fadd or min/max reduction operation."); 5128 auto *Op = createOp(Builder, Name); 5129 switch (Kind) { 5130 case RK_Arithmetic: 5131 propagateIRFlags(Op, I); 5132 return Op; 5133 case RK_Min: 5134 case RK_Max: 5135 case RK_UMin: 5136 case RK_UMax: 5137 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5138 propagateIRFlags(SI->getCondition(), 5139 cast<SelectInst>(I)->getCondition()); 5140 } 5141 propagateIRFlags(Op, I); 5142 return Op; 5143 case RK_None: 5144 break; 5145 } 5146 llvm_unreachable("Unknown reduction operation."); 5147 } 5148 5149 TargetTransformInfo::ReductionFlags getFlags() const { 5150 TargetTransformInfo::ReductionFlags Flags; 5151 Flags.NoNaN = NoNaN; 5152 switch (Kind) { 5153 case RK_Arithmetic: 5154 break; 5155 case RK_Min: 5156 Flags.IsSigned = Opcode == Instruction::ICmp; 5157 Flags.IsMaxOp = false; 5158 break; 5159 case RK_Max: 5160 Flags.IsSigned = Opcode == Instruction::ICmp; 5161 Flags.IsMaxOp = true; 5162 break; 5163 case RK_UMin: 5164 Flags.IsSigned = false; 5165 Flags.IsMaxOp = false; 5166 break; 5167 case RK_UMax: 5168 Flags.IsSigned = false; 5169 Flags.IsMaxOp = true; 5170 break; 5171 case RK_None: 5172 llvm_unreachable("Reduction kind is not set"); 5173 } 5174 return Flags; 5175 } 5176 }; 5177 5178 Instruction *ReductionRoot = nullptr; 5179 5180 /// The operation data of the reduction operation. 5181 OperationData ReductionData; 5182 5183 /// The operation data of the values we perform a reduction on. 5184 OperationData ReducedValueData; 5185 5186 /// Should we model this reduction as a pairwise reduction tree or a tree that 5187 /// splits the vector in halves and adds those halves. 5188 bool IsPairwiseReduction = false; 5189 5190 /// Checks if the ParentStackElem.first should be marked as a reduction 5191 /// operation with an extra argument or as extra argument itself. 5192 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5193 Value *ExtraArg) { 5194 if (ExtraArgs.count(ParentStackElem.first)) { 5195 ExtraArgs[ParentStackElem.first] = nullptr; 5196 // We ran into something like: 5197 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5198 // The whole ParentStackElem.first should be considered as an extra value 5199 // in this case. 5200 // Do not perform analysis of remaining operands of ParentStackElem.first 5201 // instruction, this whole instruction is an extra argument. 5202 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5203 } else { 5204 // We ran into something like: 5205 // ParentStackElem.first += ... + ExtraArg + ... 5206 ExtraArgs[ParentStackElem.first] = ExtraArg; 5207 } 5208 } 5209 5210 static OperationData getOperationData(Value *V) { 5211 if (!V) 5212 return OperationData(); 5213 5214 Value *LHS; 5215 Value *RHS; 5216 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5217 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5218 RK_Arithmetic); 5219 } 5220 if (auto *Select = dyn_cast<SelectInst>(V)) { 5221 // Look for a min/max pattern. 5222 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5223 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5224 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5225 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5226 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5227 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5228 return OperationData( 5229 Instruction::FCmp, LHS, RHS, RK_Min, 5230 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5231 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5232 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5233 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5234 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5235 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5236 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5237 return OperationData( 5238 Instruction::FCmp, LHS, RHS, RK_Max, 5239 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5240 } 5241 } 5242 return OperationData(V); 5243 } 5244 5245 public: 5246 HorizontalReduction() = default; 5247 5248 /// \brief Try to find a reduction tree. 5249 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5250 assert((!Phi || is_contained(Phi->operands(), B)) && 5251 "Thi phi needs to use the binary operator"); 5252 5253 ReductionData = getOperationData(B); 5254 5255 // We could have a initial reductions that is not an add. 5256 // r *= v1 + v2 + v3 + v4 5257 // In such a case start looking for a tree rooted in the first '+'. 5258 if (Phi) { 5259 if (ReductionData.getLHS() == Phi) { 5260 Phi = nullptr; 5261 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5262 ReductionData = getOperationData(B); 5263 } else if (ReductionData.getRHS() == Phi) { 5264 Phi = nullptr; 5265 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5266 ReductionData = getOperationData(B); 5267 } 5268 } 5269 5270 if (!ReductionData.isVectorizable(B)) 5271 return false; 5272 5273 Type *Ty = B->getType(); 5274 if (!isValidElementType(Ty)) 5275 return false; 5276 5277 ReducedValueData.clear(); 5278 ReductionRoot = B; 5279 5280 // Post order traverse the reduction tree starting at B. We only handle true 5281 // trees containing only binary operators. 5282 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5283 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5284 ReductionData.initReductionOps(ReductionOps); 5285 while (!Stack.empty()) { 5286 Instruction *TreeN = Stack.back().first; 5287 unsigned EdgeToVist = Stack.back().second++; 5288 OperationData OpData = getOperationData(TreeN); 5289 bool IsReducedValue = OpData != ReductionData; 5290 5291 // Postorder vist. 5292 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5293 if (IsReducedValue) 5294 ReducedVals.push_back(TreeN); 5295 else { 5296 auto I = ExtraArgs.find(TreeN); 5297 if (I != ExtraArgs.end() && !I->second) { 5298 // Check if TreeN is an extra argument of its parent operation. 5299 if (Stack.size() <= 1) { 5300 // TreeN can't be an extra argument as it is a root reduction 5301 // operation. 5302 return false; 5303 } 5304 // Yes, TreeN is an extra argument, do not add it to a list of 5305 // reduction operations. 5306 // Stack[Stack.size() - 2] always points to the parent operation. 5307 markExtraArg(Stack[Stack.size() - 2], TreeN); 5308 ExtraArgs.erase(TreeN); 5309 } else 5310 ReductionData.addReductionOps(TreeN, ReductionOps); 5311 } 5312 // Retract. 5313 Stack.pop_back(); 5314 continue; 5315 } 5316 5317 // Visit left or right. 5318 Value *NextV = TreeN->getOperand(EdgeToVist); 5319 if (NextV != Phi) { 5320 auto *I = dyn_cast<Instruction>(NextV); 5321 OpData = getOperationData(I); 5322 // Continue analysis if the next operand is a reduction operation or 5323 // (possibly) a reduced value. If the reduced value opcode is not set, 5324 // the first met operation != reduction operation is considered as the 5325 // reduced value class. 5326 if (I && (!ReducedValueData || OpData == ReducedValueData || 5327 OpData == ReductionData)) { 5328 const bool IsReductionOperation = OpData == ReductionData; 5329 // Only handle trees in the current basic block. 5330 if (!ReductionData.hasSameParent(I, B->getParent(), 5331 IsReductionOperation)) { 5332 // I is an extra argument for TreeN (its parent operation). 5333 markExtraArg(Stack.back(), I); 5334 continue; 5335 } 5336 5337 // Each tree node needs to have minimal number of users except for the 5338 // ultimate reduction. 5339 if (!ReductionData.hasRequiredNumberOfUses(I, 5340 OpData == ReductionData) && 5341 I != B) { 5342 // I is an extra argument for TreeN (its parent operation). 5343 markExtraArg(Stack.back(), I); 5344 continue; 5345 } 5346 5347 if (IsReductionOperation) { 5348 // We need to be able to reassociate the reduction operations. 5349 if (!OpData.isAssociative(I)) { 5350 // I is an extra argument for TreeN (its parent operation). 5351 markExtraArg(Stack.back(), I); 5352 continue; 5353 } 5354 } else if (ReducedValueData && 5355 ReducedValueData != OpData) { 5356 // Make sure that the opcodes of the operations that we are going to 5357 // reduce match. 5358 // I is an extra argument for TreeN (its parent operation). 5359 markExtraArg(Stack.back(), I); 5360 continue; 5361 } else if (!ReducedValueData) 5362 ReducedValueData = OpData; 5363 5364 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5365 continue; 5366 } 5367 } 5368 // NextV is an extra argument for TreeN (its parent operation). 5369 markExtraArg(Stack.back(), NextV); 5370 } 5371 return true; 5372 } 5373 5374 /// \brief Attempt to vectorize the tree found by 5375 /// matchAssociativeReduction. 5376 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5377 if (ReducedVals.empty()) 5378 return false; 5379 5380 // If there is a sufficient number of reduction values, reduce 5381 // to a nearby power-of-2. Can safely generate oversized 5382 // vectors and rely on the backend to split them to legal sizes. 5383 unsigned NumReducedVals = ReducedVals.size(); 5384 if (NumReducedVals < 4) 5385 return false; 5386 5387 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5388 5389 Value *VectorizedTree = nullptr; 5390 IRBuilder<> Builder(ReductionRoot); 5391 FastMathFlags Unsafe; 5392 Unsafe.setFast(); 5393 Builder.setFastMathFlags(Unsafe); 5394 unsigned i = 0; 5395 5396 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5397 // The same extra argument may be used several time, so log each attempt 5398 // to use it. 5399 for (auto &Pair : ExtraArgs) 5400 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5401 SmallVector<Value *, 16> IgnoreList; 5402 for (auto &V : ReductionOps) 5403 IgnoreList.append(V.begin(), V.end()); 5404 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5405 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5406 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5407 if (V.shouldReorder()) { 5408 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5409 V.buildTree(Reversed, ExternallyUsedValues, IgnoreList); 5410 } 5411 if (V.isTreeTinyAndNotFullyVectorizable()) 5412 break; 5413 5414 V.computeMinimumValueSizes(); 5415 5416 // Estimate cost. 5417 int Cost = 5418 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5419 if (Cost >= -SLPCostThreshold) { 5420 V.getORE()->emit([&]() { 5421 return OptimizationRemarkMissed( 5422 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5423 << "Vectorizing horizontal reduction is possible" 5424 << "but not beneficial with cost " 5425 << ore::NV("Cost", Cost) << " and threshold " 5426 << ore::NV("Threshold", -SLPCostThreshold); 5427 }); 5428 break; 5429 } 5430 5431 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5432 << ". (HorRdx)\n"); 5433 V.getORE()->emit([&]() { 5434 return OptimizationRemark( 5435 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5436 << "Vectorized horizontal reduction with cost " 5437 << ore::NV("Cost", Cost) << " and with tree size " 5438 << ore::NV("TreeSize", V.getTreeSize()); 5439 }); 5440 5441 // Vectorize a tree. 5442 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5443 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5444 5445 // Emit a reduction. 5446 Value *ReducedSubTree = 5447 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5448 if (VectorizedTree) { 5449 Builder.SetCurrentDebugLocation(Loc); 5450 OperationData VectReductionData(ReductionData.getOpcode(), 5451 VectorizedTree, ReducedSubTree, 5452 ReductionData.getKind()); 5453 VectorizedTree = 5454 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5455 } else 5456 VectorizedTree = ReducedSubTree; 5457 i += ReduxWidth; 5458 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5459 } 5460 5461 if (VectorizedTree) { 5462 // Finish the reduction. 5463 for (; i < NumReducedVals; ++i) { 5464 auto *I = cast<Instruction>(ReducedVals[i]); 5465 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5466 OperationData VectReductionData(ReductionData.getOpcode(), 5467 VectorizedTree, I, 5468 ReductionData.getKind()); 5469 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5470 } 5471 for (auto &Pair : ExternallyUsedValues) { 5472 assert(!Pair.second.empty() && 5473 "At least one DebugLoc must be inserted"); 5474 // Add each externally used value to the final reduction. 5475 for (auto *I : Pair.second) { 5476 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5477 OperationData VectReductionData(ReductionData.getOpcode(), 5478 VectorizedTree, Pair.first, 5479 ReductionData.getKind()); 5480 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5481 } 5482 } 5483 // Update users. 5484 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5485 } 5486 return VectorizedTree != nullptr; 5487 } 5488 5489 unsigned numReductionValues() const { 5490 return ReducedVals.size(); 5491 } 5492 5493 private: 5494 /// \brief Calculate the cost of a reduction. 5495 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5496 unsigned ReduxWidth) { 5497 Type *ScalarTy = FirstReducedVal->getType(); 5498 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5499 5500 int PairwiseRdxCost; 5501 int SplittingRdxCost; 5502 switch (ReductionData.getKind()) { 5503 case RK_Arithmetic: 5504 PairwiseRdxCost = 5505 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5506 /*IsPairwiseForm=*/true); 5507 SplittingRdxCost = 5508 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5509 /*IsPairwiseForm=*/false); 5510 break; 5511 case RK_Min: 5512 case RK_Max: 5513 case RK_UMin: 5514 case RK_UMax: { 5515 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5516 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5517 ReductionData.getKind() == RK_UMax; 5518 PairwiseRdxCost = 5519 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5520 /*IsPairwiseForm=*/true, IsUnsigned); 5521 SplittingRdxCost = 5522 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5523 /*IsPairwiseForm=*/false, IsUnsigned); 5524 break; 5525 } 5526 case RK_None: 5527 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5528 } 5529 5530 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5531 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5532 5533 int ScalarReduxCost; 5534 switch (ReductionData.getKind()) { 5535 case RK_Arithmetic: 5536 ScalarReduxCost = 5537 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5538 break; 5539 case RK_Min: 5540 case RK_Max: 5541 case RK_UMin: 5542 case RK_UMax: 5543 ScalarReduxCost = 5544 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5545 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5546 CmpInst::makeCmpResultType(ScalarTy)); 5547 break; 5548 case RK_None: 5549 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5550 } 5551 ScalarReduxCost *= (ReduxWidth - 1); 5552 5553 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5554 << " for reduction that starts with " << *FirstReducedVal 5555 << " (It is a " 5556 << (IsPairwiseReduction ? "pairwise" : "splitting") 5557 << " reduction)\n"); 5558 5559 return VecReduxCost - ScalarReduxCost; 5560 } 5561 5562 /// \brief Emit a horizontal reduction of the vectorized value. 5563 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5564 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5565 assert(VectorizedValue && "Need to have a vectorized tree node"); 5566 assert(isPowerOf2_32(ReduxWidth) && 5567 "We only handle power-of-two reductions for now"); 5568 5569 if (!IsPairwiseReduction) 5570 return createSimpleTargetReduction( 5571 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5572 ReductionData.getFlags(), ReductionOps.back()); 5573 5574 Value *TmpVec = VectorizedValue; 5575 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5576 Value *LeftMask = 5577 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5578 Value *RightMask = 5579 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5580 5581 Value *LeftShuf = Builder.CreateShuffleVector( 5582 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5583 Value *RightShuf = Builder.CreateShuffleVector( 5584 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5585 "rdx.shuf.r"); 5586 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5587 RightShuf, ReductionData.getKind()); 5588 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5589 } 5590 5591 // The result is in the first element of the vector. 5592 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5593 } 5594 }; 5595 5596 } // end anonymous namespace 5597 5598 /// \brief Recognize construction of vectors like 5599 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5600 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5601 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5602 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5603 /// starting from the last insertelement instruction. 5604 /// 5605 /// Returns true if it matches 5606 static bool findBuildVector(InsertElementInst *LastInsertElem, 5607 SmallVectorImpl<Value *> &BuildVector, 5608 SmallVectorImpl<Value *> &BuildVectorOpds) { 5609 Value *V = nullptr; 5610 do { 5611 BuildVector.push_back(LastInsertElem); 5612 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5613 V = LastInsertElem->getOperand(0); 5614 if (isa<UndefValue>(V)) 5615 break; 5616 LastInsertElem = dyn_cast<InsertElementInst>(V); 5617 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5618 return false; 5619 } while (true); 5620 std::reverse(BuildVector.begin(), BuildVector.end()); 5621 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5622 return true; 5623 } 5624 5625 /// \brief Like findBuildVector, but looks for construction of aggregate. 5626 /// 5627 /// \return true if it matches. 5628 static bool findBuildAggregate(InsertValueInst *IV, 5629 SmallVectorImpl<Value *> &BuildVector, 5630 SmallVectorImpl<Value *> &BuildVectorOpds) { 5631 Value *V; 5632 do { 5633 BuildVector.push_back(IV); 5634 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5635 V = IV->getAggregateOperand(); 5636 if (isa<UndefValue>(V)) 5637 break; 5638 IV = dyn_cast<InsertValueInst>(V); 5639 if (!IV || !IV->hasOneUse()) 5640 return false; 5641 } while (true); 5642 std::reverse(BuildVector.begin(), BuildVector.end()); 5643 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5644 return true; 5645 } 5646 5647 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5648 return V->getType() < V2->getType(); 5649 } 5650 5651 /// \brief Try and get a reduction value from a phi node. 5652 /// 5653 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5654 /// if they come from either \p ParentBB or a containing loop latch. 5655 /// 5656 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5657 /// if not possible. 5658 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5659 BasicBlock *ParentBB, LoopInfo *LI) { 5660 // There are situations where the reduction value is not dominated by the 5661 // reduction phi. Vectorizing such cases has been reported to cause 5662 // miscompiles. See PR25787. 5663 auto DominatedReduxValue = [&](Value *R) { 5664 return ( 5665 dyn_cast<Instruction>(R) && 5666 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5667 }; 5668 5669 Value *Rdx = nullptr; 5670 5671 // Return the incoming value if it comes from the same BB as the phi node. 5672 if (P->getIncomingBlock(0) == ParentBB) { 5673 Rdx = P->getIncomingValue(0); 5674 } else if (P->getIncomingBlock(1) == ParentBB) { 5675 Rdx = P->getIncomingValue(1); 5676 } 5677 5678 if (Rdx && DominatedReduxValue(Rdx)) 5679 return Rdx; 5680 5681 // Otherwise, check whether we have a loop latch to look at. 5682 Loop *BBL = LI->getLoopFor(ParentBB); 5683 if (!BBL) 5684 return nullptr; 5685 BasicBlock *BBLatch = BBL->getLoopLatch(); 5686 if (!BBLatch) 5687 return nullptr; 5688 5689 // There is a loop latch, return the incoming value if it comes from 5690 // that. This reduction pattern occasionally turns up. 5691 if (P->getIncomingBlock(0) == BBLatch) { 5692 Rdx = P->getIncomingValue(0); 5693 } else if (P->getIncomingBlock(1) == BBLatch) { 5694 Rdx = P->getIncomingValue(1); 5695 } 5696 5697 if (Rdx && DominatedReduxValue(Rdx)) 5698 return Rdx; 5699 5700 return nullptr; 5701 } 5702 5703 /// Attempt to reduce a horizontal reduction. 5704 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5705 /// with reduction operators \a Root (or one of its operands) in a basic block 5706 /// \a BB, then check if it can be done. If horizontal reduction is not found 5707 /// and root instruction is a binary operation, vectorization of the operands is 5708 /// attempted. 5709 /// \returns true if a horizontal reduction was matched and reduced or operands 5710 /// of one of the binary instruction were vectorized. 5711 /// \returns false if a horizontal reduction was not matched (or not possible) 5712 /// or no vectorization of any binary operation feeding \a Root instruction was 5713 /// performed. 5714 static bool tryToVectorizeHorReductionOrInstOperands( 5715 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5716 TargetTransformInfo *TTI, 5717 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5718 if (!ShouldVectorizeHor) 5719 return false; 5720 5721 if (!Root) 5722 return false; 5723 5724 if (Root->getParent() != BB || isa<PHINode>(Root)) 5725 return false; 5726 // Start analysis starting from Root instruction. If horizontal reduction is 5727 // found, try to vectorize it. If it is not a horizontal reduction or 5728 // vectorization is not possible or not effective, and currently analyzed 5729 // instruction is a binary operation, try to vectorize the operands, using 5730 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5731 // the same procedure considering each operand as a possible root of the 5732 // horizontal reduction. 5733 // Interrupt the process if the Root instruction itself was vectorized or all 5734 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5735 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5736 SmallSet<Value *, 8> VisitedInstrs; 5737 bool Res = false; 5738 while (!Stack.empty()) { 5739 Value *V; 5740 unsigned Level; 5741 std::tie(V, Level) = Stack.pop_back_val(); 5742 if (!V) 5743 continue; 5744 auto *Inst = dyn_cast<Instruction>(V); 5745 if (!Inst) 5746 continue; 5747 auto *BI = dyn_cast<BinaryOperator>(Inst); 5748 auto *SI = dyn_cast<SelectInst>(Inst); 5749 if (BI || SI) { 5750 HorizontalReduction HorRdx; 5751 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5752 if (HorRdx.tryToReduce(R, TTI)) { 5753 Res = true; 5754 // Set P to nullptr to avoid re-analysis of phi node in 5755 // matchAssociativeReduction function unless this is the root node. 5756 P = nullptr; 5757 continue; 5758 } 5759 } 5760 if (P && BI) { 5761 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5762 if (Inst == P) 5763 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5764 if (!Inst) { 5765 // Set P to nullptr to avoid re-analysis of phi node in 5766 // matchAssociativeReduction function unless this is the root node. 5767 P = nullptr; 5768 continue; 5769 } 5770 } 5771 } 5772 // Set P to nullptr to avoid re-analysis of phi node in 5773 // matchAssociativeReduction function unless this is the root node. 5774 P = nullptr; 5775 if (Vectorize(Inst, R)) { 5776 Res = true; 5777 continue; 5778 } 5779 5780 // Try to vectorize operands. 5781 // Continue analysis for the instruction from the same basic block only to 5782 // save compile time. 5783 if (++Level < RecursionMaxDepth) 5784 for (auto *Op : Inst->operand_values()) 5785 if (VisitedInstrs.insert(Op).second) 5786 if (auto *I = dyn_cast<Instruction>(Op)) 5787 if (!isa<PHINode>(I) && I->getParent() == BB) 5788 Stack.emplace_back(Op, Level); 5789 } 5790 return Res; 5791 } 5792 5793 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5794 BasicBlock *BB, BoUpSLP &R, 5795 TargetTransformInfo *TTI) { 5796 if (!V) 5797 return false; 5798 auto *I = dyn_cast<Instruction>(V); 5799 if (!I) 5800 return false; 5801 5802 if (!isa<BinaryOperator>(I)) 5803 P = nullptr; 5804 // Try to match and vectorize a horizontal reduction. 5805 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5806 return tryToVectorize(I, R); 5807 }; 5808 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5809 ExtraVectorization); 5810 } 5811 5812 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5813 BasicBlock *BB, BoUpSLP &R) { 5814 const DataLayout &DL = BB->getModule()->getDataLayout(); 5815 if (!R.canMapToVector(IVI->getType(), DL)) 5816 return false; 5817 5818 SmallVector<Value *, 16> BuildVector; 5819 SmallVector<Value *, 16> BuildVectorOpds; 5820 if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds)) 5821 return false; 5822 5823 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5824 return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false); 5825 } 5826 5827 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5828 BasicBlock *BB, BoUpSLP &R) { 5829 SmallVector<Value *, 16> BuildVector; 5830 SmallVector<Value *, 16> BuildVectorOpds; 5831 if (!findBuildVector(IEI, BuildVector, BuildVectorOpds)) 5832 return false; 5833 5834 // Vectorize starting with the build vector operands ignoring the BuildVector 5835 // instructions for the purpose of scheduling and user extraction. 5836 return tryToVectorizeList(BuildVectorOpds, R, BuildVector); 5837 } 5838 5839 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5840 BoUpSLP &R) { 5841 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5842 return true; 5843 5844 bool OpsChanged = false; 5845 for (int Idx = 0; Idx < 2; ++Idx) { 5846 OpsChanged |= 5847 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5848 } 5849 return OpsChanged; 5850 } 5851 5852 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5853 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5854 bool OpsChanged = false; 5855 for (auto &VH : reverse(Instructions)) { 5856 auto *I = dyn_cast_or_null<Instruction>(VH); 5857 if (!I) 5858 continue; 5859 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5860 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5861 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5862 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5863 else if (auto *CI = dyn_cast<CmpInst>(I)) 5864 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5865 } 5866 Instructions.clear(); 5867 return OpsChanged; 5868 } 5869 5870 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5871 bool Changed = false; 5872 SmallVector<Value *, 4> Incoming; 5873 SmallSet<Value *, 16> VisitedInstrs; 5874 5875 bool HaveVectorizedPhiNodes = true; 5876 while (HaveVectorizedPhiNodes) { 5877 HaveVectorizedPhiNodes = false; 5878 5879 // Collect the incoming values from the PHIs. 5880 Incoming.clear(); 5881 for (Instruction &I : *BB) { 5882 PHINode *P = dyn_cast<PHINode>(&I); 5883 if (!P) 5884 break; 5885 5886 if (!VisitedInstrs.count(P)) 5887 Incoming.push_back(P); 5888 } 5889 5890 // Sort by type. 5891 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5892 5893 // Try to vectorize elements base on their type. 5894 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5895 E = Incoming.end(); 5896 IncIt != E;) { 5897 5898 // Look for the next elements with the same type. 5899 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5900 while (SameTypeIt != E && 5901 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5902 VisitedInstrs.insert(*SameTypeIt); 5903 ++SameTypeIt; 5904 } 5905 5906 // Try to vectorize them. 5907 unsigned NumElts = (SameTypeIt - IncIt); 5908 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5909 // The order in which the phi nodes appear in the program does not matter. 5910 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5911 // is done when there are exactly two elements since tryToVectorizeList 5912 // asserts that there are only two values when AllowReorder is true. 5913 bool AllowReorder = NumElts == 2; 5914 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 5915 None, AllowReorder)) { 5916 // Success start over because instructions might have been changed. 5917 HaveVectorizedPhiNodes = true; 5918 Changed = true; 5919 break; 5920 } 5921 5922 // Start over at the next instruction of a different type (or the end). 5923 IncIt = SameTypeIt; 5924 } 5925 } 5926 5927 VisitedInstrs.clear(); 5928 5929 SmallVector<WeakVH, 8> PostProcessInstructions; 5930 SmallDenseSet<Instruction *, 4> KeyNodes; 5931 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5932 // We may go through BB multiple times so skip the one we have checked. 5933 if (!VisitedInstrs.insert(&*it).second) { 5934 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5935 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5936 // We would like to start over since some instructions are deleted 5937 // and the iterator may become invalid value. 5938 Changed = true; 5939 it = BB->begin(); 5940 e = BB->end(); 5941 } 5942 continue; 5943 } 5944 5945 if (isa<DbgInfoIntrinsic>(it)) 5946 continue; 5947 5948 // Try to vectorize reductions that use PHINodes. 5949 if (PHINode *P = dyn_cast<PHINode>(it)) { 5950 // Check that the PHI is a reduction PHI. 5951 if (P->getNumIncomingValues() != 2) 5952 return Changed; 5953 5954 // Try to match and vectorize a horizontal reduction. 5955 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5956 TTI)) { 5957 Changed = true; 5958 it = BB->begin(); 5959 e = BB->end(); 5960 continue; 5961 } 5962 continue; 5963 } 5964 5965 // Ran into an instruction without users, like terminator, or function call 5966 // with ignored return value, store. Ignore unused instructions (basing on 5967 // instruction type, except for CallInst and InvokeInst). 5968 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5969 isa<InvokeInst>(it))) { 5970 KeyNodes.insert(&*it); 5971 bool OpsChanged = false; 5972 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5973 for (auto *V : it->operand_values()) { 5974 // Try to match and vectorize a horizontal reduction. 5975 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5976 } 5977 } 5978 // Start vectorization of post-process list of instructions from the 5979 // top-tree instructions to try to vectorize as many instructions as 5980 // possible. 5981 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5982 if (OpsChanged) { 5983 // We would like to start over since some instructions are deleted 5984 // and the iterator may become invalid value. 5985 Changed = true; 5986 it = BB->begin(); 5987 e = BB->end(); 5988 continue; 5989 } 5990 } 5991 5992 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5993 isa<InsertValueInst>(it)) 5994 PostProcessInstructions.push_back(&*it); 5995 5996 } 5997 5998 return Changed; 5999 } 6000 6001 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6002 auto Changed = false; 6003 for (auto &Entry : GEPs) { 6004 // If the getelementptr list has fewer than two elements, there's nothing 6005 // to do. 6006 if (Entry.second.size() < 2) 6007 continue; 6008 6009 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6010 << Entry.second.size() << ".\n"); 6011 6012 // We process the getelementptr list in chunks of 16 (like we do for 6013 // stores) to minimize compile-time. 6014 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6015 auto Len = std::min<unsigned>(BE - BI, 16); 6016 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6017 6018 // Initialize a set a candidate getelementptrs. Note that we use a 6019 // SetVector here to preserve program order. If the index computations 6020 // are vectorizable and begin with loads, we want to minimize the chance 6021 // of having to reorder them later. 6022 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6023 6024 // Some of the candidates may have already been vectorized after we 6025 // initially collected them. If so, the WeakTrackingVHs will have 6026 // nullified the 6027 // values, so remove them from the set of candidates. 6028 Candidates.remove(nullptr); 6029 6030 // Remove from the set of candidates all pairs of getelementptrs with 6031 // constant differences. Such getelementptrs are likely not good 6032 // candidates for vectorization in a bottom-up phase since one can be 6033 // computed from the other. We also ensure all candidate getelementptr 6034 // indices are unique. 6035 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6036 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6037 if (!Candidates.count(GEPI)) 6038 continue; 6039 auto *SCEVI = SE->getSCEV(GEPList[I]); 6040 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6041 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6042 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6043 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6044 Candidates.remove(GEPList[I]); 6045 Candidates.remove(GEPList[J]); 6046 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6047 Candidates.remove(GEPList[J]); 6048 } 6049 } 6050 } 6051 6052 // We break out of the above computation as soon as we know there are 6053 // fewer than two candidates remaining. 6054 if (Candidates.size() < 2) 6055 continue; 6056 6057 // Add the single, non-constant index of each candidate to the bundle. We 6058 // ensured the indices met these constraints when we originally collected 6059 // the getelementptrs. 6060 SmallVector<Value *, 16> Bundle(Candidates.size()); 6061 auto BundleIndex = 0u; 6062 for (auto *V : Candidates) { 6063 auto *GEP = cast<GetElementPtrInst>(V); 6064 auto *GEPIdx = GEP->idx_begin()->get(); 6065 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6066 Bundle[BundleIndex++] = GEPIdx; 6067 } 6068 6069 // Try and vectorize the indices. We are currently only interested in 6070 // gather-like cases of the form: 6071 // 6072 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6073 // 6074 // where the loads of "a", the loads of "b", and the subtractions can be 6075 // performed in parallel. It's likely that detecting this pattern in a 6076 // bottom-up phase will be simpler and less costly than building a 6077 // full-blown top-down phase beginning at the consecutive loads. 6078 Changed |= tryToVectorizeList(Bundle, R); 6079 } 6080 } 6081 return Changed; 6082 } 6083 6084 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6085 bool Changed = false; 6086 // Attempt to sort and vectorize each of the store-groups. 6087 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6088 ++it) { 6089 if (it->second.size() < 2) 6090 continue; 6091 6092 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6093 << it->second.size() << ".\n"); 6094 6095 // Process the stores in chunks of 16. 6096 // TODO: The limit of 16 inhibits greater vectorization factors. 6097 // For example, AVX2 supports v32i8. Increasing this limit, however, 6098 // may cause a significant compile-time increase. 6099 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6100 unsigned Len = std::min<unsigned>(CE - CI, 16); 6101 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6102 } 6103 } 6104 return Changed; 6105 } 6106 6107 char SLPVectorizer::ID = 0; 6108 6109 static const char lv_name[] = "SLP Vectorizer"; 6110 6111 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6112 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6113 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6114 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6115 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6116 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6117 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6118 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6119 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6120 6121 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6122