1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/MemorySSA.h" 45 #include "llvm/Analysis/MemorySSAUpdater.h" 46 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 47 #include "llvm/Analysis/ScalarEvolution.h" 48 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/Analysis/VectorUtils.h" 53 #include "llvm/IR/Attributes.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/Constant.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/DerivedTypes.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/IRBuilder.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/Verifier.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 static cl::opt<bool> EnableMSSAInSLPVectorizer( 172 "enable-mssa-in-slp-vectorizer", cl::Hidden, cl::init(false), 173 cl::desc("Enable MemorySSA for SLPVectorizer in new pass manager")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns True if the value is a constant (but not globals/constant 201 /// expressions). 202 static bool isConstant(Value *V) { 203 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 204 } 205 206 /// Checks if \p V is one of vector-like instructions, i.e. undef, 207 /// insertelement/extractelement with constant indices for fixed vector type or 208 /// extractvalue instruction. 209 static bool isVectorLikeInstWithConstOps(Value *V) { 210 if (!isa<InsertElementInst, ExtractElementInst>(V) && 211 !isa<ExtractValueInst, UndefValue>(V)) 212 return false; 213 auto *I = dyn_cast<Instruction>(V); 214 if (!I || isa<ExtractValueInst>(I)) 215 return true; 216 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 217 return false; 218 if (isa<ExtractElementInst>(I)) 219 return isConstant(I->getOperand(1)); 220 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 221 return isConstant(I->getOperand(2)); 222 } 223 224 /// \returns true if all of the instructions in \p VL are in the same block or 225 /// false otherwise. 226 static bool allSameBlock(ArrayRef<Value *> VL) { 227 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 228 if (!I0) 229 return false; 230 if (all_of(VL, isVectorLikeInstWithConstOps)) 231 return true; 232 233 BasicBlock *BB = I0->getParent(); 234 for (int I = 1, E = VL.size(); I < E; I++) { 235 auto *II = dyn_cast<Instruction>(VL[I]); 236 if (!II) 237 return false; 238 239 if (BB != II->getParent()) 240 return false; 241 } 242 return true; 243 } 244 245 /// \returns True if all of the values in \p VL are constants (but not 246 /// globals/constant expressions). 247 static bool allConstant(ArrayRef<Value *> VL) { 248 // Constant expressions and globals can't be vectorized like normal integer/FP 249 // constants. 250 return all_of(VL, isConstant); 251 } 252 253 /// \returns True if all of the values in \p VL are identical or some of them 254 /// are UndefValue. 255 static bool isSplat(ArrayRef<Value *> VL) { 256 Value *FirstNonUndef = nullptr; 257 for (Value *V : VL) { 258 if (isa<UndefValue>(V)) 259 continue; 260 if (!FirstNonUndef) { 261 FirstNonUndef = V; 262 continue; 263 } 264 if (V != FirstNonUndef) 265 return false; 266 } 267 return FirstNonUndef != nullptr; 268 } 269 270 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 271 static bool isCommutative(Instruction *I) { 272 if (auto *Cmp = dyn_cast<CmpInst>(I)) 273 return Cmp->isCommutative(); 274 if (auto *BO = dyn_cast<BinaryOperator>(I)) 275 return BO->isCommutative(); 276 // TODO: This should check for generic Instruction::isCommutative(), but 277 // we need to confirm that the caller code correctly handles Intrinsics 278 // for example (does not have 2 operands). 279 return false; 280 } 281 282 /// Checks if the given value is actually an undefined constant vector. 283 static bool isUndefVector(const Value *V) { 284 if (isa<UndefValue>(V)) 285 return true; 286 auto *C = dyn_cast<Constant>(V); 287 if (!C) 288 return false; 289 if (!C->containsUndefOrPoisonElement()) 290 return false; 291 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 292 if (!VecTy) 293 return false; 294 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 295 if (Constant *Elem = C->getAggregateElement(I)) 296 if (!isa<UndefValue>(Elem)) 297 return false; 298 } 299 return true; 300 } 301 302 /// Checks if the vector of instructions can be represented as a shuffle, like: 303 /// %x0 = extractelement <4 x i8> %x, i32 0 304 /// %x3 = extractelement <4 x i8> %x, i32 3 305 /// %y1 = extractelement <4 x i8> %y, i32 1 306 /// %y2 = extractelement <4 x i8> %y, i32 2 307 /// %x0x0 = mul i8 %x0, %x0 308 /// %x3x3 = mul i8 %x3, %x3 309 /// %y1y1 = mul i8 %y1, %y1 310 /// %y2y2 = mul i8 %y2, %y2 311 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 312 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 313 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 314 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 315 /// ret <4 x i8> %ins4 316 /// can be transformed into: 317 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 318 /// i32 6> 319 /// %2 = mul <4 x i8> %1, %1 320 /// ret <4 x i8> %2 321 /// We convert this initially to something like: 322 /// %x0 = extractelement <4 x i8> %x, i32 0 323 /// %x3 = extractelement <4 x i8> %x, i32 3 324 /// %y1 = extractelement <4 x i8> %y, i32 1 325 /// %y2 = extractelement <4 x i8> %y, i32 2 326 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 327 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 328 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 329 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 330 /// %5 = mul <4 x i8> %4, %4 331 /// %6 = extractelement <4 x i8> %5, i32 0 332 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 333 /// %7 = extractelement <4 x i8> %5, i32 1 334 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 335 /// %8 = extractelement <4 x i8> %5, i32 2 336 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 337 /// %9 = extractelement <4 x i8> %5, i32 3 338 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 339 /// ret <4 x i8> %ins4 340 /// InstCombiner transforms this into a shuffle and vector mul 341 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 342 /// TODO: Can we split off and reuse the shuffle mask detection from 343 /// TargetTransformInfo::getInstructionThroughput? 344 static Optional<TargetTransformInfo::ShuffleKind> 345 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 346 const auto *It = 347 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 348 if (It == VL.end()) 349 return None; 350 auto *EI0 = cast<ExtractElementInst>(*It); 351 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 352 return None; 353 unsigned Size = 354 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 355 Value *Vec1 = nullptr; 356 Value *Vec2 = nullptr; 357 enum ShuffleMode { Unknown, Select, Permute }; 358 ShuffleMode CommonShuffleMode = Unknown; 359 Mask.assign(VL.size(), UndefMaskElem); 360 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 361 // Undef can be represented as an undef element in a vector. 362 if (isa<UndefValue>(VL[I])) 363 continue; 364 auto *EI = cast<ExtractElementInst>(VL[I]); 365 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 366 return None; 367 auto *Vec = EI->getVectorOperand(); 368 // We can extractelement from undef or poison vector. 369 if (isUndefVector(Vec)) 370 continue; 371 // All vector operands must have the same number of vector elements. 372 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 373 return None; 374 if (isa<UndefValue>(EI->getIndexOperand())) 375 continue; 376 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 377 if (!Idx) 378 return None; 379 // Undefined behavior if Idx is negative or >= Size. 380 if (Idx->getValue().uge(Size)) 381 continue; 382 unsigned IntIdx = Idx->getValue().getZExtValue(); 383 Mask[I] = IntIdx; 384 // For correct shuffling we have to have at most 2 different vector operands 385 // in all extractelement instructions. 386 if (!Vec1 || Vec1 == Vec) { 387 Vec1 = Vec; 388 } else if (!Vec2 || Vec2 == Vec) { 389 Vec2 = Vec; 390 Mask[I] += Size; 391 } else { 392 return None; 393 } 394 if (CommonShuffleMode == Permute) 395 continue; 396 // If the extract index is not the same as the operation number, it is a 397 // permutation. 398 if (IntIdx != I) { 399 CommonShuffleMode = Permute; 400 continue; 401 } 402 CommonShuffleMode = Select; 403 } 404 // If we're not crossing lanes in different vectors, consider it as blending. 405 if (CommonShuffleMode == Select && Vec2) 406 return TargetTransformInfo::SK_Select; 407 // If Vec2 was never used, we have a permutation of a single vector, otherwise 408 // we have permutation of 2 vectors. 409 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 410 : TargetTransformInfo::SK_PermuteSingleSrc; 411 } 412 413 namespace { 414 415 /// Main data required for vectorization of instructions. 416 struct InstructionsState { 417 /// The very first instruction in the list with the main opcode. 418 Value *OpValue = nullptr; 419 420 /// The main/alternate instruction. 421 Instruction *MainOp = nullptr; 422 Instruction *AltOp = nullptr; 423 424 /// The main/alternate opcodes for the list of instructions. 425 unsigned getOpcode() const { 426 return MainOp ? MainOp->getOpcode() : 0; 427 } 428 429 unsigned getAltOpcode() const { 430 return AltOp ? AltOp->getOpcode() : 0; 431 } 432 433 /// Some of the instructions in the list have alternate opcodes. 434 bool isAltShuffle() const { return AltOp != MainOp; } 435 436 bool isOpcodeOrAlt(Instruction *I) const { 437 unsigned CheckedOpcode = I->getOpcode(); 438 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 439 } 440 441 InstructionsState() = delete; 442 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 443 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 444 }; 445 446 } // end anonymous namespace 447 448 /// Chooses the correct key for scheduling data. If \p Op has the same (or 449 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 450 /// OpValue. 451 static Value *isOneOf(const InstructionsState &S, Value *Op) { 452 auto *I = dyn_cast<Instruction>(Op); 453 if (I && S.isOpcodeOrAlt(I)) 454 return Op; 455 return S.OpValue; 456 } 457 458 /// \returns true if \p Opcode is allowed as part of of the main/alternate 459 /// instruction for SLP vectorization. 460 /// 461 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 462 /// "shuffled out" lane would result in division by zero. 463 static bool isValidForAlternation(unsigned Opcode) { 464 if (Instruction::isIntDivRem(Opcode)) 465 return false; 466 467 return true; 468 } 469 470 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 471 unsigned BaseIndex = 0); 472 473 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 474 /// compatible instructions or constants, or just some other regular values. 475 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 476 Value *Op1) { 477 return (isConstant(BaseOp0) && isConstant(Op0)) || 478 (isConstant(BaseOp1) && isConstant(Op1)) || 479 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 480 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 481 getSameOpcode({BaseOp0, Op0}).getOpcode() || 482 getSameOpcode({BaseOp1, Op1}).getOpcode(); 483 } 484 485 /// \returns analysis of the Instructions in \p VL described in 486 /// InstructionsState, the Opcode that we suppose the whole list 487 /// could be vectorized even if its structure is diverse. 488 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 489 unsigned BaseIndex) { 490 // Make sure these are all Instructions. 491 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 492 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 493 494 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 495 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 496 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 497 CmpInst::Predicate BasePred = 498 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 499 : CmpInst::BAD_ICMP_PREDICATE; 500 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 501 unsigned AltOpcode = Opcode; 502 unsigned AltIndex = BaseIndex; 503 504 // Check for one alternate opcode from another BinaryOperator. 505 // TODO - generalize to support all operators (types, calls etc.). 506 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 507 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 508 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 509 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 510 continue; 511 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 512 isValidForAlternation(Opcode)) { 513 AltOpcode = InstOpcode; 514 AltIndex = Cnt; 515 continue; 516 } 517 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 518 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 519 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 520 if (Ty0 == Ty1) { 521 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 522 continue; 523 if (Opcode == AltOpcode) { 524 assert(isValidForAlternation(Opcode) && 525 isValidForAlternation(InstOpcode) && 526 "Cast isn't safe for alternation, logic needs to be updated!"); 527 AltOpcode = InstOpcode; 528 AltIndex = Cnt; 529 continue; 530 } 531 } 532 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 533 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 534 auto *Inst = cast<Instruction>(VL[Cnt]); 535 Type *Ty0 = BaseInst->getOperand(0)->getType(); 536 Type *Ty1 = Inst->getOperand(0)->getType(); 537 if (Ty0 == Ty1) { 538 Value *BaseOp0 = BaseInst->getOperand(0); 539 Value *BaseOp1 = BaseInst->getOperand(1); 540 Value *Op0 = Inst->getOperand(0); 541 Value *Op1 = Inst->getOperand(1); 542 CmpInst::Predicate CurrentPred = 543 cast<CmpInst>(VL[Cnt])->getPredicate(); 544 CmpInst::Predicate SwappedCurrentPred = 545 CmpInst::getSwappedPredicate(CurrentPred); 546 // Check for compatible operands. If the corresponding operands are not 547 // compatible - need to perform alternate vectorization. 548 if (InstOpcode == Opcode) { 549 if (BasePred == CurrentPred && 550 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 551 continue; 552 if (BasePred == SwappedCurrentPred && 553 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 554 continue; 555 if (E == 2 && 556 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 557 continue; 558 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 559 CmpInst::Predicate AltPred = AltInst->getPredicate(); 560 Value *AltOp0 = AltInst->getOperand(0); 561 Value *AltOp1 = AltInst->getOperand(1); 562 // Check if operands are compatible with alternate operands. 563 if (AltPred == CurrentPred && 564 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 565 continue; 566 if (AltPred == SwappedCurrentPred && 567 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 568 continue; 569 } 570 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 571 assert(isValidForAlternation(Opcode) && 572 isValidForAlternation(InstOpcode) && 573 "Cast isn't safe for alternation, logic needs to be updated!"); 574 AltIndex = Cnt; 575 continue; 576 } 577 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 578 CmpInst::Predicate AltPred = AltInst->getPredicate(); 579 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 580 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 581 continue; 582 } 583 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 584 continue; 585 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 586 } 587 588 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 589 cast<Instruction>(VL[AltIndex])); 590 } 591 592 /// \returns true if all of the values in \p VL have the same type or false 593 /// otherwise. 594 static bool allSameType(ArrayRef<Value *> VL) { 595 Type *Ty = VL[0]->getType(); 596 for (int i = 1, e = VL.size(); i < e; i++) 597 if (VL[i]->getType() != Ty) 598 return false; 599 600 return true; 601 } 602 603 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 604 static Optional<unsigned> getExtractIndex(Instruction *E) { 605 unsigned Opcode = E->getOpcode(); 606 assert((Opcode == Instruction::ExtractElement || 607 Opcode == Instruction::ExtractValue) && 608 "Expected extractelement or extractvalue instruction."); 609 if (Opcode == Instruction::ExtractElement) { 610 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 611 if (!CI) 612 return None; 613 return CI->getZExtValue(); 614 } 615 ExtractValueInst *EI = cast<ExtractValueInst>(E); 616 if (EI->getNumIndices() != 1) 617 return None; 618 return *EI->idx_begin(); 619 } 620 621 /// \returns True if in-tree use also needs extract. This refers to 622 /// possible scalar operand in vectorized instruction. 623 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 624 TargetLibraryInfo *TLI) { 625 unsigned Opcode = UserInst->getOpcode(); 626 switch (Opcode) { 627 case Instruction::Load: { 628 LoadInst *LI = cast<LoadInst>(UserInst); 629 return (LI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Store: { 632 StoreInst *SI = cast<StoreInst>(UserInst); 633 return (SI->getPointerOperand() == Scalar); 634 } 635 case Instruction::Call: { 636 CallInst *CI = cast<CallInst>(UserInst); 637 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 638 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 639 if (hasVectorInstrinsicScalarOpd(ID, i)) 640 return (CI->getArgOperand(i) == Scalar); 641 } 642 LLVM_FALLTHROUGH; 643 } 644 default: 645 return false; 646 } 647 } 648 649 /// \returns the AA location that is being access by the instruction. 650 static MemoryLocation getLocation(Instruction *I) { 651 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 652 return MemoryLocation::get(SI); 653 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 654 return MemoryLocation::get(LI); 655 return MemoryLocation(); 656 } 657 658 /// \returns True if the instruction is not a volatile or atomic load/store. 659 static bool isSimple(Instruction *I) { 660 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 661 return LI->isSimple(); 662 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 663 return SI->isSimple(); 664 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 665 return !MI->isVolatile(); 666 return true; 667 } 668 669 /// Shuffles \p Mask in accordance with the given \p SubMask. 670 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 671 if (SubMask.empty()) 672 return; 673 if (Mask.empty()) { 674 Mask.append(SubMask.begin(), SubMask.end()); 675 return; 676 } 677 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 678 int TermValue = std::min(Mask.size(), SubMask.size()); 679 for (int I = 0, E = SubMask.size(); I < E; ++I) { 680 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 681 Mask[SubMask[I]] >= TermValue) 682 continue; 683 NewMask[I] = Mask[SubMask[I]]; 684 } 685 Mask.swap(NewMask); 686 } 687 688 /// Order may have elements assigned special value (size) which is out of 689 /// bounds. Such indices only appear on places which correspond to undef values 690 /// (see canReuseExtract for details) and used in order to avoid undef values 691 /// have effect on operands ordering. 692 /// The first loop below simply finds all unused indices and then the next loop 693 /// nest assigns these indices for undef values positions. 694 /// As an example below Order has two undef positions and they have assigned 695 /// values 3 and 7 respectively: 696 /// before: 6 9 5 4 9 2 1 0 697 /// after: 6 3 5 4 7 2 1 0 698 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 699 const unsigned Sz = Order.size(); 700 SmallBitVector UnusedIndices(Sz, /*t=*/true); 701 SmallBitVector MaskedIndices(Sz); 702 for (unsigned I = 0; I < Sz; ++I) { 703 if (Order[I] < Sz) 704 UnusedIndices.reset(Order[I]); 705 else 706 MaskedIndices.set(I); 707 } 708 if (MaskedIndices.none()) 709 return; 710 assert(UnusedIndices.count() == MaskedIndices.count() && 711 "Non-synced masked/available indices."); 712 int Idx = UnusedIndices.find_first(); 713 int MIdx = MaskedIndices.find_first(); 714 while (MIdx >= 0) { 715 assert(Idx >= 0 && "Indices must be synced."); 716 Order[MIdx] = Idx; 717 Idx = UnusedIndices.find_next(Idx); 718 MIdx = MaskedIndices.find_next(MIdx); 719 } 720 } 721 722 namespace llvm { 723 724 static void inversePermutation(ArrayRef<unsigned> Indices, 725 SmallVectorImpl<int> &Mask) { 726 Mask.clear(); 727 const unsigned E = Indices.size(); 728 Mask.resize(E, UndefMaskElem); 729 for (unsigned I = 0; I < E; ++I) 730 Mask[Indices[I]] = I; 731 } 732 733 /// \returns inserting index of InsertElement or InsertValue instruction, 734 /// using Offset as base offset for index. 735 static Optional<unsigned> getInsertIndex(Value *InsertInst, 736 unsigned Offset = 0) { 737 int Index = Offset; 738 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 739 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 740 auto *VT = cast<FixedVectorType>(IE->getType()); 741 if (CI->getValue().uge(VT->getNumElements())) 742 return None; 743 Index *= VT->getNumElements(); 744 Index += CI->getZExtValue(); 745 return Index; 746 } 747 return None; 748 } 749 750 auto *IV = cast<InsertValueInst>(InsertInst); 751 Type *CurrentType = IV->getType(); 752 for (unsigned I : IV->indices()) { 753 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 754 Index *= ST->getNumElements(); 755 CurrentType = ST->getElementType(I); 756 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 757 Index *= AT->getNumElements(); 758 CurrentType = AT->getElementType(); 759 } else { 760 return None; 761 } 762 Index += I; 763 } 764 return Index; 765 } 766 767 /// Reorders the list of scalars in accordance with the given \p Mask. 768 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 769 ArrayRef<int> Mask) { 770 assert(!Mask.empty() && "Expected non-empty mask."); 771 SmallVector<Value *> Prev(Scalars.size(), 772 UndefValue::get(Scalars.front()->getType())); 773 Prev.swap(Scalars); 774 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 775 if (Mask[I] != UndefMaskElem) 776 Scalars[Mask[I]] = Prev[I]; 777 } 778 779 namespace slpvectorizer { 780 781 /// Bottom Up SLP Vectorizer. 782 class BoUpSLP { 783 struct TreeEntry; 784 struct ScheduleData; 785 786 public: 787 using ValueList = SmallVector<Value *, 8>; 788 using InstrList = SmallVector<Instruction *, 16>; 789 using ValueSet = SmallPtrSet<Value *, 16>; 790 using StoreList = SmallVector<StoreInst *, 8>; 791 using ExtraValueToDebugLocsMap = 792 MapVector<Value *, SmallVector<Instruction *, 2>>; 793 using OrdersType = SmallVector<unsigned, 4>; 794 795 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 796 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 797 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 798 MemorySSA *MSSA, const DataLayout *DL, OptimizationRemarkEmitter *ORE) 799 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 800 DT(Dt), AC(AC), DB(DB), MSSA(MSSA), DL(DL), ORE(ORE), 801 Builder(Se->getContext()) { 802 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 803 // Use the vector register size specified by the target unless overridden 804 // by a command-line option. 805 // TODO: It would be better to limit the vectorization factor based on 806 // data type rather than just register size. For example, x86 AVX has 807 // 256-bit registers, but it does not support integer operations 808 // at that width (that requires AVX2). 809 if (MaxVectorRegSizeOption.getNumOccurrences()) 810 MaxVecRegSize = MaxVectorRegSizeOption; 811 else 812 MaxVecRegSize = 813 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 814 .getFixedSize(); 815 816 if (MinVectorRegSizeOption.getNumOccurrences()) 817 MinVecRegSize = MinVectorRegSizeOption; 818 else 819 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 820 } 821 822 /// Vectorize the tree that starts with the elements in \p VL. 823 /// Returns the vectorized root. 824 Value *vectorizeTree(); 825 826 /// Vectorize the tree but with the list of externally used values \p 827 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 828 /// generated extractvalue instructions. 829 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 830 831 /// \returns the cost incurred by unwanted spills and fills, caused by 832 /// holding live values over call sites. 833 InstructionCost getSpillCost() const; 834 835 /// \returns the vectorization cost of the subtree that starts at \p VL. 836 /// A negative number means that this is profitable. 837 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 838 839 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 840 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 841 void buildTree(ArrayRef<Value *> Roots, 842 ArrayRef<Value *> UserIgnoreLst = None); 843 844 /// Builds external uses of the vectorized scalars, i.e. the list of 845 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 846 /// ExternallyUsedValues contains additional list of external uses to handle 847 /// vectorization of reductions. 848 void 849 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 850 851 /// Clear the internal data structures that are created by 'buildTree'. 852 void deleteTree() { 853 VectorizableTree.clear(); 854 ScalarToTreeEntry.clear(); 855 MustGather.clear(); 856 ExternalUses.clear(); 857 for (auto &Iter : BlocksSchedules) { 858 BlockScheduling *BS = Iter.second.get(); 859 BS->clear(); 860 } 861 MinBWs.clear(); 862 InstrElementSize.clear(); 863 } 864 865 unsigned getTreeSize() const { return VectorizableTree.size(); } 866 867 /// Perform LICM and CSE on the newly generated gather sequences. 868 void optimizeGatherSequence(); 869 870 /// Checks if the specified gather tree entry \p TE can be represented as a 871 /// shuffled vector entry + (possibly) permutation with other gathers. It 872 /// implements the checks only for possibly ordered scalars (Loads, 873 /// ExtractElement, ExtractValue), which can be part of the graph. 874 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 875 876 /// Gets reordering data for the given tree entry. If the entry is vectorized 877 /// - just return ReorderIndices, otherwise check if the scalars can be 878 /// reordered and return the most optimal order. 879 /// \param TopToBottom If true, include the order of vectorized stores and 880 /// insertelement nodes, otherwise skip them. 881 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 882 883 /// Reorders the current graph to the most profitable order starting from the 884 /// root node to the leaf nodes. The best order is chosen only from the nodes 885 /// of the same size (vectorization factor). Smaller nodes are considered 886 /// parts of subgraph with smaller VF and they are reordered independently. We 887 /// can make it because we still need to extend smaller nodes to the wider VF 888 /// and we can merge reordering shuffles with the widening shuffles. 889 void reorderTopToBottom(); 890 891 /// Reorders the current graph to the most profitable order starting from 892 /// leaves to the root. It allows to rotate small subgraphs and reduce the 893 /// number of reshuffles if the leaf nodes use the same order. In this case we 894 /// can merge the orders and just shuffle user node instead of shuffling its 895 /// operands. Plus, even the leaf nodes have different orders, it allows to 896 /// sink reordering in the graph closer to the root node and merge it later 897 /// during analysis. 898 void reorderBottomToTop(bool IgnoreReorder = false); 899 900 /// \return The vector element size in bits to use when vectorizing the 901 /// expression tree ending at \p V. If V is a store, the size is the width of 902 /// the stored value. Otherwise, the size is the width of the largest loaded 903 /// value reaching V. This method is used by the vectorizer to calculate 904 /// vectorization factors. 905 unsigned getVectorElementSize(Value *V); 906 907 /// Compute the minimum type sizes required to represent the entries in a 908 /// vectorizable tree. 909 void computeMinimumValueSizes(); 910 911 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 912 unsigned getMaxVecRegSize() const { 913 return MaxVecRegSize; 914 } 915 916 // \returns minimum vector register size as set by cl::opt. 917 unsigned getMinVecRegSize() const { 918 return MinVecRegSize; 919 } 920 921 unsigned getMinVF(unsigned Sz) const { 922 return std::max(2U, getMinVecRegSize() / Sz); 923 } 924 925 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 926 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 927 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 928 return MaxVF ? MaxVF : UINT_MAX; 929 } 930 931 /// Check if homogeneous aggregate is isomorphic to some VectorType. 932 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 933 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 934 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 935 /// 936 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 937 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 938 939 /// \returns True if the VectorizableTree is both tiny and not fully 940 /// vectorizable. We do not vectorize such trees. 941 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 942 943 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 944 /// can be load combined in the backend. Load combining may not be allowed in 945 /// the IR optimizer, so we do not want to alter the pattern. For example, 946 /// partially transforming a scalar bswap() pattern into vector code is 947 /// effectively impossible for the backend to undo. 948 /// TODO: If load combining is allowed in the IR optimizer, this analysis 949 /// may not be necessary. 950 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 951 952 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 953 /// can be load combined in the backend. Load combining may not be allowed in 954 /// the IR optimizer, so we do not want to alter the pattern. For example, 955 /// partially transforming a scalar bswap() pattern into vector code is 956 /// effectively impossible for the backend to undo. 957 /// TODO: If load combining is allowed in the IR optimizer, this analysis 958 /// may not be necessary. 959 bool isLoadCombineCandidate() const; 960 961 OptimizationRemarkEmitter *getORE() { return ORE; } 962 963 /// This structure holds any data we need about the edges being traversed 964 /// during buildTree_rec(). We keep track of: 965 /// (i) the user TreeEntry index, and 966 /// (ii) the index of the edge. 967 struct EdgeInfo { 968 EdgeInfo() = default; 969 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 970 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 971 /// The user TreeEntry. 972 TreeEntry *UserTE = nullptr; 973 /// The operand index of the use. 974 unsigned EdgeIdx = UINT_MAX; 975 #ifndef NDEBUG 976 friend inline raw_ostream &operator<<(raw_ostream &OS, 977 const BoUpSLP::EdgeInfo &EI) { 978 EI.dump(OS); 979 return OS; 980 } 981 /// Debug print. 982 void dump(raw_ostream &OS) const { 983 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 984 << " EdgeIdx:" << EdgeIdx << "}"; 985 } 986 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 987 #endif 988 }; 989 990 /// A helper data structure to hold the operands of a vector of instructions. 991 /// This supports a fixed vector length for all operand vectors. 992 class VLOperands { 993 /// For each operand we need (i) the value, and (ii) the opcode that it 994 /// would be attached to if the expression was in a left-linearized form. 995 /// This is required to avoid illegal operand reordering. 996 /// For example: 997 /// \verbatim 998 /// 0 Op1 999 /// |/ 1000 /// Op1 Op2 Linearized + Op2 1001 /// \ / ----------> |/ 1002 /// - - 1003 /// 1004 /// Op1 - Op2 (0 + Op1) - Op2 1005 /// \endverbatim 1006 /// 1007 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1008 /// 1009 /// Another way to think of this is to track all the operations across the 1010 /// path from the operand all the way to the root of the tree and to 1011 /// calculate the operation that corresponds to this path. For example, the 1012 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1013 /// corresponding operation is a '-' (which matches the one in the 1014 /// linearized tree, as shown above). 1015 /// 1016 /// For lack of a better term, we refer to this operation as Accumulated 1017 /// Path Operation (APO). 1018 struct OperandData { 1019 OperandData() = default; 1020 OperandData(Value *V, bool APO, bool IsUsed) 1021 : V(V), APO(APO), IsUsed(IsUsed) {} 1022 /// The operand value. 1023 Value *V = nullptr; 1024 /// TreeEntries only allow a single opcode, or an alternate sequence of 1025 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1026 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1027 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1028 /// (e.g., Add/Mul) 1029 bool APO = false; 1030 /// Helper data for the reordering function. 1031 bool IsUsed = false; 1032 }; 1033 1034 /// During operand reordering, we are trying to select the operand at lane 1035 /// that matches best with the operand at the neighboring lane. Our 1036 /// selection is based on the type of value we are looking for. For example, 1037 /// if the neighboring lane has a load, we need to look for a load that is 1038 /// accessing a consecutive address. These strategies are summarized in the 1039 /// 'ReorderingMode' enumerator. 1040 enum class ReorderingMode { 1041 Load, ///< Matching loads to consecutive memory addresses 1042 Opcode, ///< Matching instructions based on opcode (same or alternate) 1043 Constant, ///< Matching constants 1044 Splat, ///< Matching the same instruction multiple times (broadcast) 1045 Failed, ///< We failed to create a vectorizable group 1046 }; 1047 1048 using OperandDataVec = SmallVector<OperandData, 2>; 1049 1050 /// A vector of operand vectors. 1051 SmallVector<OperandDataVec, 4> OpsVec; 1052 1053 const DataLayout &DL; 1054 ScalarEvolution &SE; 1055 const BoUpSLP &R; 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. 1058 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1063 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1064 return OpsVec[OpIdx][Lane]; 1065 } 1066 1067 /// Clears the used flag for all entries. 1068 void clearUsed() { 1069 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1070 OpIdx != NumOperands; ++OpIdx) 1071 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1072 ++Lane) 1073 OpsVec[OpIdx][Lane].IsUsed = false; 1074 } 1075 1076 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1077 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1078 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1079 } 1080 1081 // The hard-coded scores listed here are not very important, though it shall 1082 // be higher for better matches to improve the resulting cost. When 1083 // computing the scores of matching one sub-tree with another, we are 1084 // basically counting the number of values that are matching. So even if all 1085 // scores are set to 1, we would still get a decent matching result. 1086 // However, sometimes we have to break ties. For example we may have to 1087 // choose between matching loads vs matching opcodes. This is what these 1088 // scores are helping us with: they provide the order of preference. Also, 1089 // this is important if the scalar is externally used or used in another 1090 // tree entry node in the different lane. 1091 1092 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1093 static const int ScoreConsecutiveLoads = 4; 1094 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1095 static const int ScoreReversedLoads = 3; 1096 /// ExtractElementInst from same vector and consecutive indexes. 1097 static const int ScoreConsecutiveExtracts = 4; 1098 /// ExtractElementInst from same vector and reversed indices. 1099 static const int ScoreReversedExtracts = 3; 1100 /// Constants. 1101 static const int ScoreConstants = 2; 1102 /// Instructions with the same opcode. 1103 static const int ScoreSameOpcode = 2; 1104 /// Instructions with alt opcodes (e.g, add + sub). 1105 static const int ScoreAltOpcodes = 1; 1106 /// Identical instructions (a.k.a. splat or broadcast). 1107 static const int ScoreSplat = 1; 1108 /// Matching with an undef is preferable to failing. 1109 static const int ScoreUndef = 1; 1110 /// Score for failing to find a decent match. 1111 static const int ScoreFail = 0; 1112 /// Score if all users are vectorized. 1113 static const int ScoreAllUserVectorized = 1; 1114 1115 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1116 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1117 /// MainAltOps. 1118 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1119 ScalarEvolution &SE, int NumLanes, 1120 ArrayRef<Value *> MainAltOps) { 1121 if (V1 == V2) 1122 return VLOperands::ScoreSplat; 1123 1124 auto *LI1 = dyn_cast<LoadInst>(V1); 1125 auto *LI2 = dyn_cast<LoadInst>(V2); 1126 if (LI1 && LI2) { 1127 if (LI1->getParent() != LI2->getParent()) 1128 return VLOperands::ScoreFail; 1129 1130 Optional<int> Dist = getPointersDiff( 1131 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1132 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1133 if (!Dist || *Dist == 0) 1134 return VLOperands::ScoreFail; 1135 // The distance is too large - still may be profitable to use masked 1136 // loads/gathers. 1137 if (std::abs(*Dist) > NumLanes / 2) 1138 return VLOperands::ScoreAltOpcodes; 1139 // This still will detect consecutive loads, but we might have "holes" 1140 // in some cases. It is ok for non-power-2 vectorization and may produce 1141 // better results. It should not affect current vectorization. 1142 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1143 : VLOperands::ScoreReversedLoads; 1144 } 1145 1146 auto *C1 = dyn_cast<Constant>(V1); 1147 auto *C2 = dyn_cast<Constant>(V2); 1148 if (C1 && C2) 1149 return VLOperands::ScoreConstants; 1150 1151 // Extracts from consecutive indexes of the same vector better score as 1152 // the extracts could be optimized away. 1153 Value *EV1; 1154 ConstantInt *Ex1Idx; 1155 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1156 // Undefs are always profitable for extractelements. 1157 if (isa<UndefValue>(V2)) 1158 return VLOperands::ScoreConsecutiveExtracts; 1159 Value *EV2 = nullptr; 1160 ConstantInt *Ex2Idx = nullptr; 1161 if (match(V2, 1162 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1163 m_Undef())))) { 1164 // Undefs are always profitable for extractelements. 1165 if (!Ex2Idx) 1166 return VLOperands::ScoreConsecutiveExtracts; 1167 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1168 return VLOperands::ScoreConsecutiveExtracts; 1169 if (EV2 == EV1) { 1170 int Idx1 = Ex1Idx->getZExtValue(); 1171 int Idx2 = Ex2Idx->getZExtValue(); 1172 int Dist = Idx2 - Idx1; 1173 // The distance is too large - still may be profitable to use 1174 // shuffles. 1175 if (std::abs(Dist) == 0) 1176 return VLOperands::ScoreSplat; 1177 if (std::abs(Dist) > NumLanes / 2) 1178 return VLOperands::ScoreSameOpcode; 1179 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1180 : VLOperands::ScoreReversedExtracts; 1181 } 1182 return VLOperands::ScoreAltOpcodes; 1183 } 1184 return VLOperands::ScoreFail; 1185 } 1186 1187 auto *I1 = dyn_cast<Instruction>(V1); 1188 auto *I2 = dyn_cast<Instruction>(V2); 1189 if (I1 && I2) { 1190 if (I1->getParent() != I2->getParent()) 1191 return VLOperands::ScoreFail; 1192 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1193 Ops.push_back(I1); 1194 Ops.push_back(I2); 1195 InstructionsState S = getSameOpcode(Ops); 1196 // Note: Only consider instructions with <= 2 operands to avoid 1197 // complexity explosion. 1198 if (S.getOpcode() && 1199 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1200 !S.isAltShuffle()) && 1201 all_of(Ops, [&S](Value *V) { 1202 return cast<Instruction>(V)->getNumOperands() == 1203 S.MainOp->getNumOperands(); 1204 })) 1205 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1206 : VLOperands::ScoreSameOpcode; 1207 } 1208 1209 if (isa<UndefValue>(V2)) 1210 return VLOperands::ScoreUndef; 1211 1212 return VLOperands::ScoreFail; 1213 } 1214 1215 /// \param Lane lane of the operands under analysis. 1216 /// \param OpIdx operand index in \p Lane lane we're looking the best 1217 /// candidate for. 1218 /// \param Idx operand index of the current candidate value. 1219 /// \returns The additional score due to possible broadcasting of the 1220 /// elements in the lane. It is more profitable to have power-of-2 unique 1221 /// elements in the lane, it will be vectorized with higher probability 1222 /// after removing duplicates. Currently the SLP vectorizer supports only 1223 /// vectorization of the power-of-2 number of unique scalars. 1224 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1225 Value *IdxLaneV = getData(Idx, Lane).V; 1226 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1227 return 0; 1228 SmallPtrSet<Value *, 4> Uniques; 1229 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1230 if (Ln == Lane) 1231 continue; 1232 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1233 if (!isa<Instruction>(OpIdxLnV)) 1234 return 0; 1235 Uniques.insert(OpIdxLnV); 1236 } 1237 int UniquesCount = Uniques.size(); 1238 int UniquesCntWithIdxLaneV = 1239 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1240 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1241 int UniquesCntWithOpIdxLaneV = 1242 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1243 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1244 return 0; 1245 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1246 UniquesCntWithOpIdxLaneV) - 1247 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1248 } 1249 1250 /// \param Lane lane of the operands under analysis. 1251 /// \param OpIdx operand index in \p Lane lane we're looking the best 1252 /// candidate for. 1253 /// \param Idx operand index of the current candidate value. 1254 /// \returns The additional score for the scalar which users are all 1255 /// vectorized. 1256 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1257 Value *IdxLaneV = getData(Idx, Lane).V; 1258 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1259 // Do not care about number of uses for vector-like instructions 1260 // (extractelement/extractvalue with constant indices), they are extracts 1261 // themselves and already externally used. Vectorization of such 1262 // instructions does not add extra extractelement instruction, just may 1263 // remove it. 1264 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1265 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1266 return VLOperands::ScoreAllUserVectorized; 1267 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1268 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1269 return 0; 1270 return R.areAllUsersVectorized(IdxLaneI, None) 1271 ? VLOperands::ScoreAllUserVectorized 1272 : 0; 1273 } 1274 1275 /// Go through the operands of \p LHS and \p RHS recursively until \p 1276 /// MaxLevel, and return the cummulative score. For example: 1277 /// \verbatim 1278 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1279 /// \ / \ / \ / \ / 1280 /// + + + + 1281 /// G1 G2 G3 G4 1282 /// \endverbatim 1283 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1284 /// each level recursively, accumulating the score. It starts from matching 1285 /// the additions at level 0, then moves on to the loads (level 1). The 1286 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1287 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1288 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1289 /// Please note that the order of the operands does not matter, as we 1290 /// evaluate the score of all profitable combinations of operands. In 1291 /// other words the score of G1 and G4 is the same as G1 and G2. This 1292 /// heuristic is based on ideas described in: 1293 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1294 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1295 /// Luís F. W. Góes 1296 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1297 ArrayRef<Value *> MainAltOps) { 1298 1299 // Get the shallow score of V1 and V2. 1300 int ShallowScoreAtThisLevel = 1301 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1302 1303 // If reached MaxLevel, 1304 // or if V1 and V2 are not instructions, 1305 // or if they are SPLAT, 1306 // or if they are not consecutive, 1307 // or if profitable to vectorize loads or extractelements, early return 1308 // the current cost. 1309 auto *I1 = dyn_cast<Instruction>(LHS); 1310 auto *I2 = dyn_cast<Instruction>(RHS); 1311 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1312 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1313 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1314 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1315 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1316 ShallowScoreAtThisLevel)) 1317 return ShallowScoreAtThisLevel; 1318 assert(I1 && I2 && "Should have early exited."); 1319 1320 // Contains the I2 operand indexes that got matched with I1 operands. 1321 SmallSet<unsigned, 4> Op2Used; 1322 1323 // Recursion towards the operands of I1 and I2. We are trying all possible 1324 // operand pairs, and keeping track of the best score. 1325 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1326 OpIdx1 != NumOperands1; ++OpIdx1) { 1327 // Try to pair op1I with the best operand of I2. 1328 int MaxTmpScore = 0; 1329 unsigned MaxOpIdx2 = 0; 1330 bool FoundBest = false; 1331 // If I2 is commutative try all combinations. 1332 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1333 unsigned ToIdx = isCommutative(I2) 1334 ? I2->getNumOperands() 1335 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1336 assert(FromIdx <= ToIdx && "Bad index"); 1337 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1338 // Skip operands already paired with OpIdx1. 1339 if (Op2Used.count(OpIdx2)) 1340 continue; 1341 // Recursively calculate the cost at each level 1342 int TmpScore = 1343 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1344 CurrLevel + 1, MaxLevel, None); 1345 // Look for the best score. 1346 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1347 MaxTmpScore = TmpScore; 1348 MaxOpIdx2 = OpIdx2; 1349 FoundBest = true; 1350 } 1351 } 1352 if (FoundBest) { 1353 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1354 Op2Used.insert(MaxOpIdx2); 1355 ShallowScoreAtThisLevel += MaxTmpScore; 1356 } 1357 } 1358 return ShallowScoreAtThisLevel; 1359 } 1360 1361 /// Score scaling factor for fully compatible instructions but with 1362 /// different number of external uses. Allows better selection of the 1363 /// instructions with less external uses. 1364 static const int ScoreScaleFactor = 10; 1365 1366 /// \Returns the look-ahead score, which tells us how much the sub-trees 1367 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1368 /// score. This helps break ties in an informed way when we cannot decide on 1369 /// the order of the operands by just considering the immediate 1370 /// predecessors. 1371 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1372 int Lane, unsigned OpIdx, unsigned Idx, 1373 bool &IsUsed) { 1374 int Score = 1375 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1376 if (Score) { 1377 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1378 if (Score <= -SplatScore) { 1379 // Set the minimum score for splat-like sequence to avoid setting 1380 // failed state. 1381 Score = 1; 1382 } else { 1383 Score += SplatScore; 1384 // Scale score to see the difference between different operands 1385 // and similar operands but all vectorized/not all vectorized 1386 // uses. It does not affect actual selection of the best 1387 // compatible operand in general, just allows to select the 1388 // operand with all vectorized uses. 1389 Score *= ScoreScaleFactor; 1390 Score += getExternalUseScore(Lane, OpIdx, Idx); 1391 IsUsed = true; 1392 } 1393 } 1394 return Score; 1395 } 1396 1397 /// Best defined scores per lanes between the passes. Used to choose the 1398 /// best operand (with the highest score) between the passes. 1399 /// The key - {Operand Index, Lane}. 1400 /// The value - the best score between the passes for the lane and the 1401 /// operand. 1402 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1403 BestScoresPerLanes; 1404 1405 // Search all operands in Ops[*][Lane] for the one that matches best 1406 // Ops[OpIdx][LastLane] and return its opreand index. 1407 // If no good match can be found, return None. 1408 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1409 ArrayRef<ReorderingMode> ReorderingModes, 1410 ArrayRef<Value *> MainAltOps) { 1411 unsigned NumOperands = getNumOperands(); 1412 1413 // The operand of the previous lane at OpIdx. 1414 Value *OpLastLane = getData(OpIdx, LastLane).V; 1415 1416 // Our strategy mode for OpIdx. 1417 ReorderingMode RMode = ReorderingModes[OpIdx]; 1418 if (RMode == ReorderingMode::Failed) 1419 return None; 1420 1421 // The linearized opcode of the operand at OpIdx, Lane. 1422 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1423 1424 // The best operand index and its score. 1425 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1426 // are using the score to differentiate between the two. 1427 struct BestOpData { 1428 Optional<unsigned> Idx = None; 1429 unsigned Score = 0; 1430 } BestOp; 1431 BestOp.Score = 1432 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1433 .first->second; 1434 1435 // Track if the operand must be marked as used. If the operand is set to 1436 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1437 // want to reestimate the operands again on the following iterations). 1438 bool IsUsed = 1439 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1440 // Iterate through all unused operands and look for the best. 1441 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1442 // Get the operand at Idx and Lane. 1443 OperandData &OpData = getData(Idx, Lane); 1444 Value *Op = OpData.V; 1445 bool OpAPO = OpData.APO; 1446 1447 // Skip already selected operands. 1448 if (OpData.IsUsed) 1449 continue; 1450 1451 // Skip if we are trying to move the operand to a position with a 1452 // different opcode in the linearized tree form. This would break the 1453 // semantics. 1454 if (OpAPO != OpIdxAPO) 1455 continue; 1456 1457 // Look for an operand that matches the current mode. 1458 switch (RMode) { 1459 case ReorderingMode::Load: 1460 case ReorderingMode::Constant: 1461 case ReorderingMode::Opcode: { 1462 bool LeftToRight = Lane > LastLane; 1463 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1464 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1465 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1466 OpIdx, Idx, IsUsed); 1467 if (Score > static_cast<int>(BestOp.Score)) { 1468 BestOp.Idx = Idx; 1469 BestOp.Score = Score; 1470 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1471 } 1472 break; 1473 } 1474 case ReorderingMode::Splat: 1475 if (Op == OpLastLane) 1476 BestOp.Idx = Idx; 1477 break; 1478 case ReorderingMode::Failed: 1479 llvm_unreachable("Not expected Failed reordering mode."); 1480 } 1481 } 1482 1483 if (BestOp.Idx) { 1484 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1485 return BestOp.Idx; 1486 } 1487 // If we could not find a good match return None. 1488 return None; 1489 } 1490 1491 /// Helper for reorderOperandVecs. 1492 /// \returns the lane that we should start reordering from. This is the one 1493 /// which has the least number of operands that can freely move about or 1494 /// less profitable because it already has the most optimal set of operands. 1495 unsigned getBestLaneToStartReordering() const { 1496 unsigned Min = UINT_MAX; 1497 unsigned SameOpNumber = 0; 1498 // std::pair<unsigned, unsigned> is used to implement a simple voting 1499 // algorithm and choose the lane with the least number of operands that 1500 // can freely move about or less profitable because it already has the 1501 // most optimal set of operands. The first unsigned is a counter for 1502 // voting, the second unsigned is the counter of lanes with instructions 1503 // with same/alternate opcodes and same parent basic block. 1504 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1505 // Try to be closer to the original results, if we have multiple lanes 1506 // with same cost. If 2 lanes have the same cost, use the one with the 1507 // lowest index. 1508 for (int I = getNumLanes(); I > 0; --I) { 1509 unsigned Lane = I - 1; 1510 OperandsOrderData NumFreeOpsHash = 1511 getMaxNumOperandsThatCanBeReordered(Lane); 1512 // Compare the number of operands that can move and choose the one with 1513 // the least number. 1514 if (NumFreeOpsHash.NumOfAPOs < Min) { 1515 Min = NumFreeOpsHash.NumOfAPOs; 1516 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1517 HashMap.clear(); 1518 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1519 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1520 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1521 // Select the most optimal lane in terms of number of operands that 1522 // should be moved around. 1523 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1526 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1527 auto It = HashMap.find(NumFreeOpsHash.Hash); 1528 if (It == HashMap.end()) 1529 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1530 else 1531 ++It->second.first; 1532 } 1533 } 1534 // Select the lane with the minimum counter. 1535 unsigned BestLane = 0; 1536 unsigned CntMin = UINT_MAX; 1537 for (const auto &Data : reverse(HashMap)) { 1538 if (Data.second.first < CntMin) { 1539 CntMin = Data.second.first; 1540 BestLane = Data.second.second; 1541 } 1542 } 1543 return BestLane; 1544 } 1545 1546 /// Data structure that helps to reorder operands. 1547 struct OperandsOrderData { 1548 /// The best number of operands with the same APOs, which can be 1549 /// reordered. 1550 unsigned NumOfAPOs = UINT_MAX; 1551 /// Number of operands with the same/alternate instruction opcode and 1552 /// parent. 1553 unsigned NumOpsWithSameOpcodeParent = 0; 1554 /// Hash for the actual operands ordering. 1555 /// Used to count operands, actually their position id and opcode 1556 /// value. It is used in the voting mechanism to find the lane with the 1557 /// least number of operands that can freely move about or less profitable 1558 /// because it already has the most optimal set of operands. Can be 1559 /// replaced with SmallVector<unsigned> instead but hash code is faster 1560 /// and requires less memory. 1561 unsigned Hash = 0; 1562 }; 1563 /// \returns the maximum number of operands that are allowed to be reordered 1564 /// for \p Lane and the number of compatible instructions(with the same 1565 /// parent/opcode). This is used as a heuristic for selecting the first lane 1566 /// to start operand reordering. 1567 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1568 unsigned CntTrue = 0; 1569 unsigned NumOperands = getNumOperands(); 1570 // Operands with the same APO can be reordered. We therefore need to count 1571 // how many of them we have for each APO, like this: Cnt[APO] = x. 1572 // Since we only have two APOs, namely true and false, we can avoid using 1573 // a map. Instead we can simply count the number of operands that 1574 // correspond to one of them (in this case the 'true' APO), and calculate 1575 // the other by subtracting it from the total number of operands. 1576 // Operands with the same instruction opcode and parent are more 1577 // profitable since we don't need to move them in many cases, with a high 1578 // probability such lane already can be vectorized effectively. 1579 bool AllUndefs = true; 1580 unsigned NumOpsWithSameOpcodeParent = 0; 1581 Instruction *OpcodeI = nullptr; 1582 BasicBlock *Parent = nullptr; 1583 unsigned Hash = 0; 1584 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1585 const OperandData &OpData = getData(OpIdx, Lane); 1586 if (OpData.APO) 1587 ++CntTrue; 1588 // Use Boyer-Moore majority voting for finding the majority opcode and 1589 // the number of times it occurs. 1590 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1591 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1592 I->getParent() != Parent) { 1593 if (NumOpsWithSameOpcodeParent == 0) { 1594 NumOpsWithSameOpcodeParent = 1; 1595 OpcodeI = I; 1596 Parent = I->getParent(); 1597 } else { 1598 --NumOpsWithSameOpcodeParent; 1599 } 1600 } else { 1601 ++NumOpsWithSameOpcodeParent; 1602 } 1603 } 1604 Hash = hash_combine( 1605 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1606 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1607 } 1608 if (AllUndefs) 1609 return {}; 1610 OperandsOrderData Data; 1611 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1612 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1613 Data.Hash = Hash; 1614 return Data; 1615 } 1616 1617 /// Go through the instructions in VL and append their operands. 1618 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1619 assert(!VL.empty() && "Bad VL"); 1620 assert((empty() || VL.size() == getNumLanes()) && 1621 "Expected same number of lanes"); 1622 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1623 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1624 OpsVec.resize(NumOperands); 1625 unsigned NumLanes = VL.size(); 1626 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1627 OpsVec[OpIdx].resize(NumLanes); 1628 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1629 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1630 // Our tree has just 3 nodes: the root and two operands. 1631 // It is therefore trivial to get the APO. We only need to check the 1632 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1633 // RHS operand. The LHS operand of both add and sub is never attached 1634 // to an inversese operation in the linearized form, therefore its APO 1635 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1636 1637 // Since operand reordering is performed on groups of commutative 1638 // operations or alternating sequences (e.g., +, -), we can safely 1639 // tell the inverse operations by checking commutativity. 1640 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1641 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1642 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1643 APO, false}; 1644 } 1645 } 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return OpsVec.size(); } 1650 1651 /// \returns the number of lanes. 1652 unsigned getNumLanes() const { return OpsVec[0].size(); } 1653 1654 /// \returns the operand value at \p OpIdx and \p Lane. 1655 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1656 return getData(OpIdx, Lane).V; 1657 } 1658 1659 /// \returns true if the data structure is empty. 1660 bool empty() const { return OpsVec.empty(); } 1661 1662 /// Clears the data. 1663 void clear() { OpsVec.clear(); } 1664 1665 /// \Returns true if there are enough operands identical to \p Op to fill 1666 /// the whole vector. 1667 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1668 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1669 bool OpAPO = getData(OpIdx, Lane).APO; 1670 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1671 if (Ln == Lane) 1672 continue; 1673 // This is set to true if we found a candidate for broadcast at Lane. 1674 bool FoundCandidate = false; 1675 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1676 OperandData &Data = getData(OpI, Ln); 1677 if (Data.APO != OpAPO || Data.IsUsed) 1678 continue; 1679 if (Data.V == Op) { 1680 FoundCandidate = true; 1681 Data.IsUsed = true; 1682 break; 1683 } 1684 } 1685 if (!FoundCandidate) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 public: 1692 /// Initialize with all the operands of the instruction vector \p RootVL. 1693 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1694 ScalarEvolution &SE, const BoUpSLP &R) 1695 : DL(DL), SE(SE), R(R) { 1696 // Append all the operands of RootVL. 1697 appendOperandsOfVL(RootVL); 1698 } 1699 1700 /// \Returns a value vector with the operands across all lanes for the 1701 /// opearnd at \p OpIdx. 1702 ValueList getVL(unsigned OpIdx) const { 1703 ValueList OpVL(OpsVec[OpIdx].size()); 1704 assert(OpsVec[OpIdx].size() == getNumLanes() && 1705 "Expected same num of lanes across all operands"); 1706 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1707 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1708 return OpVL; 1709 } 1710 1711 // Performs operand reordering for 2 or more operands. 1712 // The original operands are in OrigOps[OpIdx][Lane]. 1713 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1714 void reorder() { 1715 unsigned NumOperands = getNumOperands(); 1716 unsigned NumLanes = getNumLanes(); 1717 // Each operand has its own mode. We are using this mode to help us select 1718 // the instructions for each lane, so that they match best with the ones 1719 // we have selected so far. 1720 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1721 1722 // This is a greedy single-pass algorithm. We are going over each lane 1723 // once and deciding on the best order right away with no back-tracking. 1724 // However, in order to increase its effectiveness, we start with the lane 1725 // that has operands that can move the least. For example, given the 1726 // following lanes: 1727 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1728 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1729 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1730 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1731 // we will start at Lane 1, since the operands of the subtraction cannot 1732 // be reordered. Then we will visit the rest of the lanes in a circular 1733 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1734 1735 // Find the first lane that we will start our search from. 1736 unsigned FirstLane = getBestLaneToStartReordering(); 1737 1738 // Initialize the modes. 1739 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1740 Value *OpLane0 = getValue(OpIdx, FirstLane); 1741 // Keep track if we have instructions with all the same opcode on one 1742 // side. 1743 if (isa<LoadInst>(OpLane0)) 1744 ReorderingModes[OpIdx] = ReorderingMode::Load; 1745 else if (isa<Instruction>(OpLane0)) { 1746 // Check if OpLane0 should be broadcast. 1747 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1749 else 1750 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1751 } 1752 else if (isa<Constant>(OpLane0)) 1753 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1754 else if (isa<Argument>(OpLane0)) 1755 // Our best hope is a Splat. It may save some cost in some cases. 1756 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1757 else 1758 // NOTE: This should be unreachable. 1759 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1760 } 1761 1762 // Check that we don't have same operands. No need to reorder if operands 1763 // are just perfect diamond or shuffled diamond match. Do not do it only 1764 // for possible broadcasts or non-power of 2 number of scalars (just for 1765 // now). 1766 auto &&SkipReordering = [this]() { 1767 SmallPtrSet<Value *, 4> UniqueValues; 1768 ArrayRef<OperandData> Op0 = OpsVec.front(); 1769 for (const OperandData &Data : Op0) 1770 UniqueValues.insert(Data.V); 1771 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1772 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1773 return !UniqueValues.contains(Data.V); 1774 })) 1775 return false; 1776 } 1777 // TODO: Check if we can remove a check for non-power-2 number of 1778 // scalars after full support of non-power-2 vectorization. 1779 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1780 }; 1781 1782 // If the initial strategy fails for any of the operand indexes, then we 1783 // perform reordering again in a second pass. This helps avoid assigning 1784 // high priority to the failed strategy, and should improve reordering for 1785 // the non-failed operand indexes. 1786 for (int Pass = 0; Pass != 2; ++Pass) { 1787 // Check if no need to reorder operands since they're are perfect or 1788 // shuffled diamond match. 1789 // Need to to do it to avoid extra external use cost counting for 1790 // shuffled matches, which may cause regressions. 1791 if (SkipReordering()) 1792 break; 1793 // Skip the second pass if the first pass did not fail. 1794 bool StrategyFailed = false; 1795 // Mark all operand data as free to use. 1796 clearUsed(); 1797 // We keep the original operand order for the FirstLane, so reorder the 1798 // rest of the lanes. We are visiting the nodes in a circular fashion, 1799 // using FirstLane as the center point and increasing the radius 1800 // distance. 1801 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1802 for (unsigned I = 0; I < NumOperands; ++I) 1803 MainAltOps[I].push_back(getData(I, FirstLane).V); 1804 1805 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1806 // Visit the lane on the right and then the lane on the left. 1807 for (int Direction : {+1, -1}) { 1808 int Lane = FirstLane + Direction * Distance; 1809 if (Lane < 0 || Lane >= (int)NumLanes) 1810 continue; 1811 int LastLane = Lane - Direction; 1812 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1813 "Out of bounds"); 1814 // Look for a good match for each operand. 1815 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1816 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1817 Optional<unsigned> BestIdx = getBestOperand( 1818 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1819 // By not selecting a value, we allow the operands that follow to 1820 // select a better matching value. We will get a non-null value in 1821 // the next run of getBestOperand(). 1822 if (BestIdx) { 1823 // Swap the current operand with the one returned by 1824 // getBestOperand(). 1825 swap(OpIdx, BestIdx.getValue(), Lane); 1826 } else { 1827 // We failed to find a best operand, set mode to 'Failed'. 1828 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1829 // Enable the second pass. 1830 StrategyFailed = true; 1831 } 1832 // Try to get the alternate opcode and follow it during analysis. 1833 if (MainAltOps[OpIdx].size() != 2) { 1834 OperandData &AltOp = getData(OpIdx, Lane); 1835 InstructionsState OpS = 1836 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1837 if (OpS.getOpcode() && OpS.isAltShuffle()) 1838 MainAltOps[OpIdx].push_back(AltOp.V); 1839 } 1840 } 1841 } 1842 } 1843 // Skip second pass if the strategy did not fail. 1844 if (!StrategyFailed) 1845 break; 1846 } 1847 } 1848 1849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1850 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1851 switch (RMode) { 1852 case ReorderingMode::Load: 1853 return "Load"; 1854 case ReorderingMode::Opcode: 1855 return "Opcode"; 1856 case ReorderingMode::Constant: 1857 return "Constant"; 1858 case ReorderingMode::Splat: 1859 return "Splat"; 1860 case ReorderingMode::Failed: 1861 return "Failed"; 1862 } 1863 llvm_unreachable("Unimplemented Reordering Type"); 1864 } 1865 1866 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1867 raw_ostream &OS) { 1868 return OS << getModeStr(RMode); 1869 } 1870 1871 /// Debug print. 1872 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1873 printMode(RMode, dbgs()); 1874 } 1875 1876 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1877 return printMode(RMode, OS); 1878 } 1879 1880 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1881 const unsigned Indent = 2; 1882 unsigned Cnt = 0; 1883 for (const OperandDataVec &OpDataVec : OpsVec) { 1884 OS << "Operand " << Cnt++ << "\n"; 1885 for (const OperandData &OpData : OpDataVec) { 1886 OS.indent(Indent) << "{"; 1887 if (Value *V = OpData.V) 1888 OS << *V; 1889 else 1890 OS << "null"; 1891 OS << ", APO:" << OpData.APO << "}\n"; 1892 } 1893 OS << "\n"; 1894 } 1895 return OS; 1896 } 1897 1898 /// Debug print. 1899 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1900 #endif 1901 }; 1902 1903 /// Checks if the instruction is marked for deletion. 1904 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1905 1906 /// Marks values operands for later deletion by replacing them with Undefs. 1907 void eraseInstructions(ArrayRef<Value *> AV); 1908 1909 ~BoUpSLP(); 1910 1911 private: 1912 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1913 /// reordering (i.e. the operands can be reordered because they have only one 1914 /// user and reordarable). 1915 /// \param NonVectorized List of all gather nodes that require reordering 1916 /// (e.g., gather of extractlements or partially vectorizable loads). 1917 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1918 /// reordering, subset of \p NonVectorized. 1919 bool 1920 canReorderOperands(TreeEntry *UserTE, 1921 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1922 ArrayRef<TreeEntry *> ReorderableGathers, 1923 SmallVectorImpl<TreeEntry *> &GatherOps); 1924 1925 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1926 /// if any. If it is not vectorized (gather node), returns nullptr. 1927 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1928 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1929 TreeEntry *TE = nullptr; 1930 const auto *It = find_if(VL, [this, &TE](Value *V) { 1931 TE = getTreeEntry(V); 1932 return TE; 1933 }); 1934 if (It != VL.end() && TE->isSame(VL)) 1935 return TE; 1936 return nullptr; 1937 } 1938 1939 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1940 /// if any. If it is not vectorized (gather node), returns nullptr. 1941 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1942 unsigned OpIdx) const { 1943 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1944 const_cast<TreeEntry *>(UserTE), OpIdx); 1945 } 1946 1947 /// Checks if all users of \p I are the part of the vectorization tree. 1948 bool areAllUsersVectorized(Instruction *I, 1949 ArrayRef<Value *> VectorizedVals) const; 1950 1951 /// \returns the cost of the vectorizable entry. 1952 InstructionCost getEntryCost(const TreeEntry *E, 1953 ArrayRef<Value *> VectorizedVals); 1954 1955 /// This is the recursive part of buildTree. 1956 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1957 const EdgeInfo &EI); 1958 1959 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1960 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1961 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1962 /// returns false, setting \p CurrentOrder to either an empty vector or a 1963 /// non-identity permutation that allows to reuse extract instructions. 1964 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1965 SmallVectorImpl<unsigned> &CurrentOrder) const; 1966 1967 /// Vectorize a single entry in the tree. 1968 Value *vectorizeTree(TreeEntry *E); 1969 1970 /// Vectorize a single entry in the tree, starting in \p VL. 1971 Value *vectorizeTree(ArrayRef<Value *> VL); 1972 1973 /// Create a new vector from a list of scalar values. Produces a sequence 1974 /// which exploits values reused across lanes, and arranges the inserts 1975 /// for ease of later optimization. 1976 Value *createBuildVector(ArrayRef<Value *> VL); 1977 1978 /// \returns the scalarization cost for this type. Scalarization in this 1979 /// context means the creation of vectors from a group of scalars. If \p 1980 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1981 /// vector elements. 1982 InstructionCost getGatherCost(FixedVectorType *Ty, 1983 const APInt &ShuffledIndices, 1984 bool NeedToShuffle) const; 1985 1986 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1987 /// tree entries. 1988 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1989 /// previous tree entries. \p Mask is filled with the shuffle mask. 1990 Optional<TargetTransformInfo::ShuffleKind> 1991 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1992 SmallVectorImpl<const TreeEntry *> &Entries); 1993 1994 /// \returns the scalarization cost for this list of values. Assuming that 1995 /// this subtree gets vectorized, we may need to extract the values from the 1996 /// roots. This method calculates the cost of extracting the values. 1997 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1998 1999 /// Set the Builder insert point to one after the last instruction in 2000 /// the bundle 2001 void setInsertPointAfterBundle(const TreeEntry *E); 2002 2003 /// \returns a vector from a collection of scalars in \p VL. 2004 Value *gather(ArrayRef<Value *> VL); 2005 2006 /// \returns whether the VectorizableTree is fully vectorizable and will 2007 /// be beneficial even the tree height is tiny. 2008 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2009 2010 /// Reorder commutative or alt operands to get better probability of 2011 /// generating vectorized code. 2012 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2013 SmallVectorImpl<Value *> &Left, 2014 SmallVectorImpl<Value *> &Right, 2015 const DataLayout &DL, 2016 ScalarEvolution &SE, 2017 const BoUpSLP &R); 2018 struct TreeEntry { 2019 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2020 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2021 2022 /// \returns true if the scalars in VL are equal to this entry. 2023 bool isSame(ArrayRef<Value *> VL) const { 2024 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2025 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2026 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2027 return VL.size() == Mask.size() && 2028 std::equal(VL.begin(), VL.end(), Mask.begin(), 2029 [Scalars](Value *V, int Idx) { 2030 return (isa<UndefValue>(V) && 2031 Idx == UndefMaskElem) || 2032 (Idx != UndefMaskElem && V == Scalars[Idx]); 2033 }); 2034 }; 2035 if (!ReorderIndices.empty()) { 2036 // TODO: implement matching if the nodes are just reordered, still can 2037 // treat the vector as the same if the list of scalars matches VL 2038 // directly, without reordering. 2039 SmallVector<int> Mask; 2040 inversePermutation(ReorderIndices, Mask); 2041 if (VL.size() == Scalars.size()) 2042 return IsSame(Scalars, Mask); 2043 if (VL.size() == ReuseShuffleIndices.size()) { 2044 ::addMask(Mask, ReuseShuffleIndices); 2045 return IsSame(Scalars, Mask); 2046 } 2047 return false; 2048 } 2049 return IsSame(Scalars, ReuseShuffleIndices); 2050 } 2051 2052 /// \returns true if current entry has same operands as \p TE. 2053 bool hasEqualOperands(const TreeEntry &TE) const { 2054 if (TE.getNumOperands() != getNumOperands()) 2055 return false; 2056 SmallBitVector Used(getNumOperands()); 2057 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2058 unsigned PrevCount = Used.count(); 2059 for (unsigned K = 0; K < E; ++K) { 2060 if (Used.test(K)) 2061 continue; 2062 if (getOperand(K) == TE.getOperand(I)) { 2063 Used.set(K); 2064 break; 2065 } 2066 } 2067 // Check if we actually found the matching operand. 2068 if (PrevCount == Used.count()) 2069 return false; 2070 } 2071 return true; 2072 } 2073 2074 /// \return Final vectorization factor for the node. Defined by the total 2075 /// number of vectorized scalars, including those, used several times in the 2076 /// entry and counted in the \a ReuseShuffleIndices, if any. 2077 unsigned getVectorFactor() const { 2078 if (!ReuseShuffleIndices.empty()) 2079 return ReuseShuffleIndices.size(); 2080 return Scalars.size(); 2081 }; 2082 2083 /// A vector of scalars. 2084 ValueList Scalars; 2085 2086 /// The Scalars are vectorized into this value. It is initialized to Null. 2087 Value *VectorizedValue = nullptr; 2088 2089 /// Do we need to gather this sequence or vectorize it 2090 /// (either with vector instruction or with scatter/gather 2091 /// intrinsics for store/load)? 2092 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2093 EntryState State; 2094 2095 /// Does this sequence require some shuffling? 2096 SmallVector<int, 4> ReuseShuffleIndices; 2097 2098 /// Does this entry require reordering? 2099 SmallVector<unsigned, 4> ReorderIndices; 2100 2101 /// Points back to the VectorizableTree. 2102 /// 2103 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2104 /// to be a pointer and needs to be able to initialize the child iterator. 2105 /// Thus we need a reference back to the container to translate the indices 2106 /// to entries. 2107 VecTreeTy &Container; 2108 2109 /// The TreeEntry index containing the user of this entry. We can actually 2110 /// have multiple users so the data structure is not truly a tree. 2111 SmallVector<EdgeInfo, 1> UserTreeIndices; 2112 2113 /// The index of this treeEntry in VectorizableTree. 2114 int Idx = -1; 2115 2116 private: 2117 /// The operands of each instruction in each lane Operands[op_index][lane]. 2118 /// Note: This helps avoid the replication of the code that performs the 2119 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2120 SmallVector<ValueList, 2> Operands; 2121 2122 /// The main/alternate instruction. 2123 Instruction *MainOp = nullptr; 2124 Instruction *AltOp = nullptr; 2125 2126 public: 2127 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2128 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2129 if (Operands.size() < OpIdx + 1) 2130 Operands.resize(OpIdx + 1); 2131 assert(Operands[OpIdx].empty() && "Already resized?"); 2132 assert(OpVL.size() <= Scalars.size() && 2133 "Number of operands is greater than the number of scalars."); 2134 Operands[OpIdx].resize(OpVL.size()); 2135 copy(OpVL, Operands[OpIdx].begin()); 2136 } 2137 2138 /// Set the operands of this bundle in their original order. 2139 void setOperandsInOrder() { 2140 assert(Operands.empty() && "Already initialized?"); 2141 auto *I0 = cast<Instruction>(Scalars[0]); 2142 Operands.resize(I0->getNumOperands()); 2143 unsigned NumLanes = Scalars.size(); 2144 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2145 OpIdx != NumOperands; ++OpIdx) { 2146 Operands[OpIdx].resize(NumLanes); 2147 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2148 auto *I = cast<Instruction>(Scalars[Lane]); 2149 assert(I->getNumOperands() == NumOperands && 2150 "Expected same number of operands"); 2151 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2152 } 2153 } 2154 } 2155 2156 /// Reorders operands of the node to the given mask \p Mask. 2157 void reorderOperands(ArrayRef<int> Mask) { 2158 for (ValueList &Operand : Operands) 2159 reorderScalars(Operand, Mask); 2160 } 2161 2162 /// \returns the \p OpIdx operand of this TreeEntry. 2163 ValueList &getOperand(unsigned OpIdx) { 2164 assert(OpIdx < Operands.size() && "Off bounds"); 2165 return Operands[OpIdx]; 2166 } 2167 2168 /// \returns the \p OpIdx operand of this TreeEntry. 2169 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2170 assert(OpIdx < Operands.size() && "Off bounds"); 2171 return Operands[OpIdx]; 2172 } 2173 2174 /// \returns the number of operands. 2175 unsigned getNumOperands() const { return Operands.size(); } 2176 2177 /// \return the single \p OpIdx operand. 2178 Value *getSingleOperand(unsigned OpIdx) const { 2179 assert(OpIdx < Operands.size() && "Off bounds"); 2180 assert(!Operands[OpIdx].empty() && "No operand available"); 2181 return Operands[OpIdx][0]; 2182 } 2183 2184 /// Some of the instructions in the list have alternate opcodes. 2185 bool isAltShuffle() const { return MainOp != AltOp; } 2186 2187 bool isOpcodeOrAlt(Instruction *I) const { 2188 unsigned CheckedOpcode = I->getOpcode(); 2189 return (getOpcode() == CheckedOpcode || 2190 getAltOpcode() == CheckedOpcode); 2191 } 2192 2193 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2194 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2195 /// \p OpValue. 2196 Value *isOneOf(Value *Op) const { 2197 auto *I = dyn_cast<Instruction>(Op); 2198 if (I && isOpcodeOrAlt(I)) 2199 return Op; 2200 return MainOp; 2201 } 2202 2203 void setOperations(const InstructionsState &S) { 2204 MainOp = S.MainOp; 2205 AltOp = S.AltOp; 2206 } 2207 2208 Instruction *getMainOp() const { 2209 return MainOp; 2210 } 2211 2212 Instruction *getAltOp() const { 2213 return AltOp; 2214 } 2215 2216 /// The main/alternate opcodes for the list of instructions. 2217 unsigned getOpcode() const { 2218 return MainOp ? MainOp->getOpcode() : 0; 2219 } 2220 2221 unsigned getAltOpcode() const { 2222 return AltOp ? AltOp->getOpcode() : 0; 2223 } 2224 2225 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2226 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2227 int findLaneForValue(Value *V) const { 2228 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2229 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2230 if (!ReorderIndices.empty()) 2231 FoundLane = ReorderIndices[FoundLane]; 2232 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2233 if (!ReuseShuffleIndices.empty()) { 2234 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2235 find(ReuseShuffleIndices, FoundLane)); 2236 } 2237 return FoundLane; 2238 } 2239 2240 #ifndef NDEBUG 2241 /// Debug printer. 2242 LLVM_DUMP_METHOD void dump() const { 2243 dbgs() << Idx << ".\n"; 2244 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2245 dbgs() << "Operand " << OpI << ":\n"; 2246 for (const Value *V : Operands[OpI]) 2247 dbgs().indent(2) << *V << "\n"; 2248 } 2249 dbgs() << "Scalars: \n"; 2250 for (Value *V : Scalars) 2251 dbgs().indent(2) << *V << "\n"; 2252 dbgs() << "State: "; 2253 switch (State) { 2254 case Vectorize: 2255 dbgs() << "Vectorize\n"; 2256 break; 2257 case ScatterVectorize: 2258 dbgs() << "ScatterVectorize\n"; 2259 break; 2260 case NeedToGather: 2261 dbgs() << "NeedToGather\n"; 2262 break; 2263 } 2264 dbgs() << "MainOp: "; 2265 if (MainOp) 2266 dbgs() << *MainOp << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "AltOp: "; 2270 if (AltOp) 2271 dbgs() << *AltOp << "\n"; 2272 else 2273 dbgs() << "NULL\n"; 2274 dbgs() << "VectorizedValue: "; 2275 if (VectorizedValue) 2276 dbgs() << *VectorizedValue << "\n"; 2277 else 2278 dbgs() << "NULL\n"; 2279 dbgs() << "ReuseShuffleIndices: "; 2280 if (ReuseShuffleIndices.empty()) 2281 dbgs() << "Empty"; 2282 else 2283 for (int ReuseIdx : ReuseShuffleIndices) 2284 dbgs() << ReuseIdx << ", "; 2285 dbgs() << "\n"; 2286 dbgs() << "ReorderIndices: "; 2287 for (unsigned ReorderIdx : ReorderIndices) 2288 dbgs() << ReorderIdx << ", "; 2289 dbgs() << "\n"; 2290 dbgs() << "UserTreeIndices: "; 2291 for (const auto &EInfo : UserTreeIndices) 2292 dbgs() << EInfo << ", "; 2293 dbgs() << "\n"; 2294 } 2295 #endif 2296 }; 2297 2298 #ifndef NDEBUG 2299 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2300 InstructionCost VecCost, 2301 InstructionCost ScalarCost) const { 2302 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2303 dbgs() << "SLP: Costs:\n"; 2304 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2305 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2306 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2307 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2308 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2309 } 2310 #endif 2311 2312 /// Create a new VectorizableTree entry. 2313 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2314 const InstructionsState &S, 2315 const EdgeInfo &UserTreeIdx, 2316 ArrayRef<int> ReuseShuffleIndices = None, 2317 ArrayRef<unsigned> ReorderIndices = None) { 2318 TreeEntry::EntryState EntryState = 2319 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2320 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2321 ReuseShuffleIndices, ReorderIndices); 2322 } 2323 2324 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2325 TreeEntry::EntryState EntryState, 2326 Optional<ScheduleData *> Bundle, 2327 const InstructionsState &S, 2328 const EdgeInfo &UserTreeIdx, 2329 ArrayRef<int> ReuseShuffleIndices = None, 2330 ArrayRef<unsigned> ReorderIndices = None) { 2331 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2332 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2333 "Need to vectorize gather entry?"); 2334 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2335 TreeEntry *Last = VectorizableTree.back().get(); 2336 Last->Idx = VectorizableTree.size() - 1; 2337 Last->State = EntryState; 2338 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2339 ReuseShuffleIndices.end()); 2340 if (ReorderIndices.empty()) { 2341 Last->Scalars.assign(VL.begin(), VL.end()); 2342 Last->setOperations(S); 2343 } else { 2344 // Reorder scalars and build final mask. 2345 Last->Scalars.assign(VL.size(), nullptr); 2346 transform(ReorderIndices, Last->Scalars.begin(), 2347 [VL](unsigned Idx) -> Value * { 2348 if (Idx >= VL.size()) 2349 return UndefValue::get(VL.front()->getType()); 2350 return VL[Idx]; 2351 }); 2352 InstructionsState S = getSameOpcode(Last->Scalars); 2353 Last->setOperations(S); 2354 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2355 } 2356 if (Last->State != TreeEntry::NeedToGather) { 2357 for (Value *V : VL) { 2358 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2359 ScalarToTreeEntry[V] = Last; 2360 } 2361 // Update the scheduler bundle to point to this TreeEntry. 2362 unsigned Lane = 0; 2363 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2364 BundleMember = BundleMember->NextInBundle) { 2365 BundleMember->TE = Last; 2366 BundleMember->Lane = Lane; 2367 ++Lane; 2368 } 2369 assert((!Bundle.getValue() || Lane == VL.size()) && 2370 "Bundle and VL out of sync"); 2371 } else { 2372 MustGather.insert(VL.begin(), VL.end()); 2373 } 2374 2375 if (UserTreeIdx.UserTE) 2376 Last->UserTreeIndices.push_back(UserTreeIdx); 2377 2378 return Last; 2379 } 2380 2381 /// -- Vectorization State -- 2382 /// Holds all of the tree entries. 2383 TreeEntry::VecTreeTy VectorizableTree; 2384 2385 #ifndef NDEBUG 2386 /// Debug printer. 2387 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2388 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2389 VectorizableTree[Id]->dump(); 2390 dbgs() << "\n"; 2391 } 2392 } 2393 #endif 2394 2395 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2396 2397 const TreeEntry *getTreeEntry(Value *V) const { 2398 return ScalarToTreeEntry.lookup(V); 2399 } 2400 2401 /// Maps a specific scalar to its tree entry. 2402 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2403 2404 /// Maps a value to the proposed vectorizable size. 2405 SmallDenseMap<Value *, unsigned> InstrElementSize; 2406 2407 /// A list of scalars that we found that we need to keep as scalars. 2408 ValueSet MustGather; 2409 2410 /// This POD struct describes one external user in the vectorized tree. 2411 struct ExternalUser { 2412 ExternalUser(Value *S, llvm::User *U, int L) 2413 : Scalar(S), User(U), Lane(L) {} 2414 2415 // Which scalar in our function. 2416 Value *Scalar; 2417 2418 // Which user that uses the scalar. 2419 llvm::User *User; 2420 2421 // Which lane does the scalar belong to. 2422 int Lane; 2423 }; 2424 using UserList = SmallVector<ExternalUser, 16>; 2425 2426 /// Checks if two instructions may access the same memory. 2427 /// 2428 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2429 /// is invariant in the calling loop. 2430 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2431 Instruction *Inst2) { 2432 // First check if the result is already in the cache. 2433 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2434 Optional<bool> &result = AliasCache[key]; 2435 if (result.hasValue()) { 2436 return result.getValue(); 2437 } 2438 bool aliased = true; 2439 if (Loc1.Ptr && isSimple(Inst1)) 2440 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2441 // Store the result in the cache. 2442 result = aliased; 2443 return aliased; 2444 } 2445 2446 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2447 2448 /// Cache for alias results. 2449 /// TODO: consider moving this to the AliasAnalysis itself. 2450 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2451 2452 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2453 // globally through SLP because we don't perform any action which 2454 // invalidates capture results. 2455 BatchAAResults BatchAA; 2456 2457 /// Removes an instruction from its block and eventually deletes it. 2458 /// It's like Instruction::eraseFromParent() except that the actual deletion 2459 /// is delayed until BoUpSLP is destructed. 2460 /// This is required to ensure that there are no incorrect collisions in the 2461 /// AliasCache, which can happen if a new instruction is allocated at the 2462 /// same address as a previously deleted instruction. 2463 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2464 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2465 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2466 } 2467 2468 /// Temporary store for deleted instructions. Instructions will be deleted 2469 /// eventually when the BoUpSLP is destructed. 2470 DenseMap<Instruction *, bool> DeletedInstructions; 2471 2472 /// A list of values that need to extracted out of the tree. 2473 /// This list holds pairs of (Internal Scalar : External User). External User 2474 /// can be nullptr, it means that this Internal Scalar will be used later, 2475 /// after vectorization. 2476 UserList ExternalUses; 2477 2478 /// Values used only by @llvm.assume calls. 2479 SmallPtrSet<const Value *, 32> EphValues; 2480 2481 /// Holds all of the instructions that we gathered. 2482 SetVector<Instruction *> GatherShuffleSeq; 2483 2484 /// A list of blocks that we are going to CSE. 2485 SetVector<BasicBlock *> CSEBlocks; 2486 2487 /// Contains all scheduling relevant data for an instruction. 2488 /// A ScheduleData either represents a single instruction or a member of an 2489 /// instruction bundle (= a group of instructions which is combined into a 2490 /// vector instruction). 2491 struct ScheduleData { 2492 // The initial value for the dependency counters. It means that the 2493 // dependencies are not calculated yet. 2494 enum { InvalidDeps = -1 }; 2495 2496 ScheduleData() = default; 2497 2498 void init(int BlockSchedulingRegionID, Value *OpVal) { 2499 FirstInBundle = this; 2500 NextInBundle = nullptr; 2501 NextLoadStore = nullptr; 2502 IsScheduled = false; 2503 SchedulingRegionID = BlockSchedulingRegionID; 2504 clearDependencies(); 2505 OpValue = OpVal; 2506 TE = nullptr; 2507 Lane = -1; 2508 } 2509 2510 /// Verify basic self consistency properties 2511 void verify() { 2512 if (hasValidDependencies()) { 2513 assert(UnscheduledDeps <= Dependencies && "invariant"); 2514 } else { 2515 assert(UnscheduledDeps == Dependencies && "invariant"); 2516 } 2517 2518 if (IsScheduled) { 2519 assert(isSchedulingEntity() && 2520 "unexpected scheduled state"); 2521 for (const ScheduleData *BundleMember = this; BundleMember; 2522 BundleMember = BundleMember->NextInBundle) { 2523 assert(BundleMember->hasValidDependencies() && 2524 BundleMember->UnscheduledDeps == 0 && 2525 "unexpected scheduled state"); 2526 assert((BundleMember == this || !BundleMember->IsScheduled) && 2527 "only bundle is marked scheduled"); 2528 } 2529 } 2530 2531 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2532 "all bundle members must be in same basic block"); 2533 } 2534 2535 /// Returns true if the dependency information has been calculated. 2536 /// Note that depenendency validity can vary between instructions within 2537 /// a single bundle. 2538 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2539 2540 /// Returns true for single instructions and for bundle representatives 2541 /// (= the head of a bundle). 2542 bool isSchedulingEntity() const { return FirstInBundle == this; } 2543 2544 /// Returns true if it represents an instruction bundle and not only a 2545 /// single instruction. 2546 bool isPartOfBundle() const { 2547 return NextInBundle != nullptr || FirstInBundle != this; 2548 } 2549 2550 /// Returns true if it is ready for scheduling, i.e. it has no more 2551 /// unscheduled depending instructions/bundles. 2552 bool isReady() const { 2553 assert(isSchedulingEntity() && 2554 "can't consider non-scheduling entity for ready list"); 2555 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2556 } 2557 2558 /// Modifies the number of unscheduled dependencies for this instruction, 2559 /// and returns the number of remaining dependencies for the containing 2560 /// bundle. 2561 int incrementUnscheduledDeps(int Incr) { 2562 assert(hasValidDependencies() && 2563 "increment of unscheduled deps would be meaningless"); 2564 UnscheduledDeps += Incr; 2565 return FirstInBundle->unscheduledDepsInBundle(); 2566 } 2567 2568 /// Sets the number of unscheduled dependencies to the number of 2569 /// dependencies. 2570 void resetUnscheduledDeps() { 2571 UnscheduledDeps = Dependencies; 2572 } 2573 2574 /// Clears all dependency information. 2575 void clearDependencies() { 2576 Dependencies = InvalidDeps; 2577 resetUnscheduledDeps(); 2578 MemoryDependencies.clear(); 2579 } 2580 2581 int unscheduledDepsInBundle() const { 2582 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2583 int Sum = 0; 2584 for (const ScheduleData *BundleMember = this; BundleMember; 2585 BundleMember = BundleMember->NextInBundle) { 2586 if (BundleMember->UnscheduledDeps == InvalidDeps) 2587 return InvalidDeps; 2588 Sum += BundleMember->UnscheduledDeps; 2589 } 2590 return Sum; 2591 } 2592 2593 void dump(raw_ostream &os) const { 2594 if (!isSchedulingEntity()) { 2595 os << "/ " << *Inst; 2596 } else if (NextInBundle) { 2597 os << '[' << *Inst; 2598 ScheduleData *SD = NextInBundle; 2599 while (SD) { 2600 os << ';' << *SD->Inst; 2601 SD = SD->NextInBundle; 2602 } 2603 os << ']'; 2604 } else { 2605 os << *Inst; 2606 } 2607 } 2608 2609 Instruction *Inst = nullptr; 2610 2611 /// Opcode of the current instruction in the schedule data. 2612 Value *OpValue = nullptr; 2613 2614 /// The TreeEntry that this instruction corresponds to. 2615 TreeEntry *TE = nullptr; 2616 2617 /// Points to the head in an instruction bundle (and always to this for 2618 /// single instructions). 2619 ScheduleData *FirstInBundle = nullptr; 2620 2621 /// Single linked list of all instructions in a bundle. Null if it is a 2622 /// single instruction. 2623 ScheduleData *NextInBundle = nullptr; 2624 2625 /// Single linked list of all memory instructions (e.g. load, store, call) 2626 /// in the block - until the end of the scheduling region. 2627 ScheduleData *NextLoadStore = nullptr; 2628 2629 /// The dependent memory instructions. 2630 /// This list is derived on demand in calculateDependencies(). 2631 SmallVector<ScheduleData *, 4> MemoryDependencies; 2632 2633 /// This ScheduleData is in the current scheduling region if this matches 2634 /// the current SchedulingRegionID of BlockScheduling. 2635 int SchedulingRegionID = 0; 2636 2637 /// Used for getting a "good" final ordering of instructions. 2638 int SchedulingPriority = 0; 2639 2640 /// The number of dependencies. Constitutes of the number of users of the 2641 /// instruction plus the number of dependent memory instructions (if any). 2642 /// This value is calculated on demand. 2643 /// If InvalidDeps, the number of dependencies is not calculated yet. 2644 int Dependencies = InvalidDeps; 2645 2646 /// The number of dependencies minus the number of dependencies of scheduled 2647 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2648 /// for scheduling. 2649 /// Note that this is negative as long as Dependencies is not calculated. 2650 int UnscheduledDeps = InvalidDeps; 2651 2652 /// The lane of this node in the TreeEntry. 2653 int Lane = -1; 2654 2655 /// True if this instruction is scheduled (or considered as scheduled in the 2656 /// dry-run). 2657 bool IsScheduled = false; 2658 }; 2659 2660 #ifndef NDEBUG 2661 friend inline raw_ostream &operator<<(raw_ostream &os, 2662 const BoUpSLP::ScheduleData &SD) { 2663 SD.dump(os); 2664 return os; 2665 } 2666 #endif 2667 2668 friend struct GraphTraits<BoUpSLP *>; 2669 friend struct DOTGraphTraits<BoUpSLP *>; 2670 2671 /// Contains all scheduling data for a basic block. 2672 struct BlockScheduling { 2673 BlockScheduling(BasicBlock *BB) 2674 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2675 2676 void clear() { 2677 ReadyInsts.clear(); 2678 ScheduleStart = nullptr; 2679 ScheduleEnd = nullptr; 2680 FirstLoadStoreInRegion = nullptr; 2681 LastLoadStoreInRegion = nullptr; 2682 2683 // Reduce the maximum schedule region size by the size of the 2684 // previous scheduling run. 2685 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2686 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2687 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2688 ScheduleRegionSize = 0; 2689 2690 // Make a new scheduling region, i.e. all existing ScheduleData is not 2691 // in the new region yet. 2692 ++SchedulingRegionID; 2693 } 2694 2695 ScheduleData *getScheduleData(Instruction *I) { 2696 if (BB != I->getParent()) 2697 // Avoid lookup if can't possibly be in map. 2698 return nullptr; 2699 ScheduleData *SD = ScheduleDataMap[I]; 2700 if (SD && isInSchedulingRegion(SD)) 2701 return SD; 2702 return nullptr; 2703 } 2704 2705 ScheduleData *getScheduleData(Value *V) { 2706 if (auto *I = dyn_cast<Instruction>(V)) 2707 return getScheduleData(I); 2708 return nullptr; 2709 } 2710 2711 ScheduleData *getScheduleData(Value *V, Value *Key) { 2712 if (V == Key) 2713 return getScheduleData(V); 2714 auto I = ExtraScheduleDataMap.find(V); 2715 if (I != ExtraScheduleDataMap.end()) { 2716 ScheduleData *SD = I->second[Key]; 2717 if (SD && isInSchedulingRegion(SD)) 2718 return SD; 2719 } 2720 return nullptr; 2721 } 2722 2723 bool isInSchedulingRegion(ScheduleData *SD) const { 2724 return SD->SchedulingRegionID == SchedulingRegionID; 2725 } 2726 2727 /// Marks an instruction as scheduled and puts all dependent ready 2728 /// instructions into the ready-list. 2729 template <typename ReadyListType> 2730 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2731 SD->IsScheduled = true; 2732 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2733 2734 for (ScheduleData *BundleMember = SD; BundleMember; 2735 BundleMember = BundleMember->NextInBundle) { 2736 if (BundleMember->Inst != BundleMember->OpValue) 2737 continue; 2738 2739 // Handle the def-use chain dependencies. 2740 2741 // Decrement the unscheduled counter and insert to ready list if ready. 2742 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2743 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2744 if (OpDef && OpDef->hasValidDependencies() && 2745 OpDef->incrementUnscheduledDeps(-1) == 0) { 2746 // There are no more unscheduled dependencies after 2747 // decrementing, so we can put the dependent instruction 2748 // into the ready list. 2749 ScheduleData *DepBundle = OpDef->FirstInBundle; 2750 assert(!DepBundle->IsScheduled && 2751 "already scheduled bundle gets ready"); 2752 ReadyList.insert(DepBundle); 2753 LLVM_DEBUG(dbgs() 2754 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2755 } 2756 }); 2757 }; 2758 2759 // If BundleMember is a vector bundle, its operands may have been 2760 // reordered during buildTree(). We therefore need to get its operands 2761 // through the TreeEntry. 2762 if (TreeEntry *TE = BundleMember->TE) { 2763 int Lane = BundleMember->Lane; 2764 assert(Lane >= 0 && "Lane not set"); 2765 2766 // Since vectorization tree is being built recursively this assertion 2767 // ensures that the tree entry has all operands set before reaching 2768 // this code. Couple of exceptions known at the moment are extracts 2769 // where their second (immediate) operand is not added. Since 2770 // immediates do not affect scheduler behavior this is considered 2771 // okay. 2772 auto *In = TE->getMainOp(); 2773 assert(In && 2774 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2775 In->getNumOperands() == TE->getNumOperands()) && 2776 "Missed TreeEntry operands?"); 2777 (void)In; // fake use to avoid build failure when assertions disabled 2778 2779 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2780 OpIdx != NumOperands; ++OpIdx) 2781 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2782 DecrUnsched(I); 2783 } else { 2784 // If BundleMember is a stand-alone instruction, no operand reordering 2785 // has taken place, so we directly access its operands. 2786 for (Use &U : BundleMember->Inst->operands()) 2787 if (auto *I = dyn_cast<Instruction>(U.get())) 2788 DecrUnsched(I); 2789 } 2790 // Handle the memory dependencies. 2791 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2792 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2793 // There are no more unscheduled dependencies after decrementing, 2794 // so we can put the dependent instruction into the ready list. 2795 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2796 assert(!DepBundle->IsScheduled && 2797 "already scheduled bundle gets ready"); 2798 ReadyList.insert(DepBundle); 2799 LLVM_DEBUG(dbgs() 2800 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2801 } 2802 } 2803 } 2804 } 2805 2806 /// Verify basic self consistency properties of the data structure. 2807 void verify() { 2808 if (!ScheduleStart) 2809 return; 2810 2811 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2812 ScheduleStart->comesBefore(ScheduleEnd) && 2813 "Not a valid scheduling region?"); 2814 2815 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2816 auto *SD = getScheduleData(I); 2817 assert(SD && "primary scheduledata must exist in window"); 2818 assert(isInSchedulingRegion(SD) && 2819 "primary schedule data not in window?"); 2820 assert(isInSchedulingRegion(SD->FirstInBundle) && 2821 "entire bundle in window!"); 2822 (void)SD; 2823 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2824 } 2825 2826 for (auto *SD : ReadyInsts) { 2827 assert(SD->isSchedulingEntity() && SD->isReady() && 2828 "item in ready list not ready?"); 2829 (void)SD; 2830 } 2831 } 2832 2833 void doForAllOpcodes(Value *V, 2834 function_ref<void(ScheduleData *SD)> Action) { 2835 if (ScheduleData *SD = getScheduleData(V)) 2836 Action(SD); 2837 auto I = ExtraScheduleDataMap.find(V); 2838 if (I != ExtraScheduleDataMap.end()) 2839 for (auto &P : I->second) 2840 if (isInSchedulingRegion(P.second)) 2841 Action(P.second); 2842 } 2843 2844 /// Put all instructions into the ReadyList which are ready for scheduling. 2845 template <typename ReadyListType> 2846 void initialFillReadyList(ReadyListType &ReadyList) { 2847 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2848 doForAllOpcodes(I, [&](ScheduleData *SD) { 2849 if (SD->isSchedulingEntity() && SD->isReady()) { 2850 ReadyList.insert(SD); 2851 LLVM_DEBUG(dbgs() 2852 << "SLP: initially in ready list: " << *SD << "\n"); 2853 } 2854 }); 2855 } 2856 } 2857 2858 /// Build a bundle from the ScheduleData nodes corresponding to the 2859 /// scalar instruction for each lane. 2860 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2861 2862 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2863 /// cyclic dependencies. This is only a dry-run, no instructions are 2864 /// actually moved at this stage. 2865 /// \returns the scheduling bundle. The returned Optional value is non-None 2866 /// if \p VL is allowed to be scheduled. 2867 Optional<ScheduleData *> 2868 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2869 const InstructionsState &S); 2870 2871 /// Un-bundles a group of instructions. 2872 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2873 2874 /// Allocates schedule data chunk. 2875 ScheduleData *allocateScheduleDataChunks(); 2876 2877 /// Extends the scheduling region so that V is inside the region. 2878 /// \returns true if the region size is within the limit. 2879 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2880 2881 /// Initialize the ScheduleData structures for new instructions in the 2882 /// scheduling region. 2883 void initScheduleData(Instruction *FromI, Instruction *ToI, 2884 ScheduleData *PrevLoadStore, 2885 ScheduleData *NextLoadStore); 2886 2887 /// Updates the dependency information of a bundle and of all instructions/ 2888 /// bundles which depend on the original bundle. 2889 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2890 BoUpSLP *SLP); 2891 2892 /// Sets all instruction in the scheduling region to un-scheduled. 2893 void resetSchedule(); 2894 2895 BasicBlock *BB; 2896 2897 /// Simple memory allocation for ScheduleData. 2898 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2899 2900 /// The size of a ScheduleData array in ScheduleDataChunks. 2901 int ChunkSize; 2902 2903 /// The allocator position in the current chunk, which is the last entry 2904 /// of ScheduleDataChunks. 2905 int ChunkPos; 2906 2907 /// Attaches ScheduleData to Instruction. 2908 /// Note that the mapping survives during all vectorization iterations, i.e. 2909 /// ScheduleData structures are recycled. 2910 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2911 2912 /// Attaches ScheduleData to Instruction with the leading key. 2913 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2914 ExtraScheduleDataMap; 2915 2916 /// The ready-list for scheduling (only used for the dry-run). 2917 SetVector<ScheduleData *> ReadyInsts; 2918 2919 /// The first instruction of the scheduling region. 2920 Instruction *ScheduleStart = nullptr; 2921 2922 /// The first instruction _after_ the scheduling region. 2923 Instruction *ScheduleEnd = nullptr; 2924 2925 /// The first memory accessing instruction in the scheduling region 2926 /// (can be null). 2927 ScheduleData *FirstLoadStoreInRegion = nullptr; 2928 2929 /// The last memory accessing instruction in the scheduling region 2930 /// (can be null). 2931 ScheduleData *LastLoadStoreInRegion = nullptr; 2932 2933 /// The current size of the scheduling region. 2934 int ScheduleRegionSize = 0; 2935 2936 /// The maximum size allowed for the scheduling region. 2937 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2938 2939 /// The ID of the scheduling region. For a new vectorization iteration this 2940 /// is incremented which "removes" all ScheduleData from the region. 2941 /// Make sure that the initial SchedulingRegionID is greater than the 2942 /// initial SchedulingRegionID in ScheduleData (which is 0). 2943 int SchedulingRegionID = 1; 2944 }; 2945 2946 /// Attaches the BlockScheduling structures to basic blocks. 2947 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2948 2949 /// Performs the "real" scheduling. Done before vectorization is actually 2950 /// performed in a basic block. 2951 void scheduleBlock(BlockScheduling *BS); 2952 2953 /// List of users to ignore during scheduling and that don't need extracting. 2954 ArrayRef<Value *> UserIgnoreList; 2955 2956 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2957 /// sorted SmallVectors of unsigned. 2958 struct OrdersTypeDenseMapInfo { 2959 static OrdersType getEmptyKey() { 2960 OrdersType V; 2961 V.push_back(~1U); 2962 return V; 2963 } 2964 2965 static OrdersType getTombstoneKey() { 2966 OrdersType V; 2967 V.push_back(~2U); 2968 return V; 2969 } 2970 2971 static unsigned getHashValue(const OrdersType &V) { 2972 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2973 } 2974 2975 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2976 return LHS == RHS; 2977 } 2978 }; 2979 2980 // Analysis and block reference. 2981 Function *F; 2982 ScalarEvolution *SE; 2983 TargetTransformInfo *TTI; 2984 TargetLibraryInfo *TLI; 2985 LoopInfo *LI; 2986 DominatorTree *DT; 2987 AssumptionCache *AC; 2988 DemandedBits *DB; 2989 MemorySSA *MSSA; 2990 const DataLayout *DL; 2991 OptimizationRemarkEmitter *ORE; 2992 2993 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2994 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2995 2996 /// Instruction builder to construct the vectorized tree. 2997 IRBuilder<> Builder; 2998 2999 /// A map of scalar integer values to the smallest bit width with which they 3000 /// can legally be represented. The values map to (width, signed) pairs, 3001 /// where "width" indicates the minimum bit width and "signed" is True if the 3002 /// value must be signed-extended, rather than zero-extended, back to its 3003 /// original width. 3004 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3005 }; 3006 3007 } // end namespace slpvectorizer 3008 3009 template <> struct GraphTraits<BoUpSLP *> { 3010 using TreeEntry = BoUpSLP::TreeEntry; 3011 3012 /// NodeRef has to be a pointer per the GraphWriter. 3013 using NodeRef = TreeEntry *; 3014 3015 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3016 3017 /// Add the VectorizableTree to the index iterator to be able to return 3018 /// TreeEntry pointers. 3019 struct ChildIteratorType 3020 : public iterator_adaptor_base< 3021 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3022 ContainerTy &VectorizableTree; 3023 3024 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3025 ContainerTy &VT) 3026 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3027 3028 NodeRef operator*() { return I->UserTE; } 3029 }; 3030 3031 static NodeRef getEntryNode(BoUpSLP &R) { 3032 return R.VectorizableTree[0].get(); 3033 } 3034 3035 static ChildIteratorType child_begin(NodeRef N) { 3036 return {N->UserTreeIndices.begin(), N->Container}; 3037 } 3038 3039 static ChildIteratorType child_end(NodeRef N) { 3040 return {N->UserTreeIndices.end(), N->Container}; 3041 } 3042 3043 /// For the node iterator we just need to turn the TreeEntry iterator into a 3044 /// TreeEntry* iterator so that it dereferences to NodeRef. 3045 class nodes_iterator { 3046 using ItTy = ContainerTy::iterator; 3047 ItTy It; 3048 3049 public: 3050 nodes_iterator(const ItTy &It2) : It(It2) {} 3051 NodeRef operator*() { return It->get(); } 3052 nodes_iterator operator++() { 3053 ++It; 3054 return *this; 3055 } 3056 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3057 }; 3058 3059 static nodes_iterator nodes_begin(BoUpSLP *R) { 3060 return nodes_iterator(R->VectorizableTree.begin()); 3061 } 3062 3063 static nodes_iterator nodes_end(BoUpSLP *R) { 3064 return nodes_iterator(R->VectorizableTree.end()); 3065 } 3066 3067 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3068 }; 3069 3070 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3071 using TreeEntry = BoUpSLP::TreeEntry; 3072 3073 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3074 3075 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3076 std::string Str; 3077 raw_string_ostream OS(Str); 3078 if (isSplat(Entry->Scalars)) 3079 OS << "<splat> "; 3080 for (auto V : Entry->Scalars) { 3081 OS << *V; 3082 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3083 return EU.Scalar == V; 3084 })) 3085 OS << " <extract>"; 3086 OS << "\n"; 3087 } 3088 return Str; 3089 } 3090 3091 static std::string getNodeAttributes(const TreeEntry *Entry, 3092 const BoUpSLP *) { 3093 if (Entry->State == TreeEntry::NeedToGather) 3094 return "color=red"; 3095 return ""; 3096 } 3097 }; 3098 3099 } // end namespace llvm 3100 3101 BoUpSLP::~BoUpSLP() { 3102 if (MSSA) { 3103 MemorySSAUpdater MSSAU(MSSA); 3104 for (const auto &Pair : DeletedInstructions) { 3105 if (auto *Access = MSSA->getMemoryAccess(Pair.first)) 3106 MSSAU.removeMemoryAccess(Access); 3107 } 3108 } 3109 for (const auto &Pair : DeletedInstructions) { 3110 // Replace operands of ignored instructions with Undefs in case if they were 3111 // marked for deletion. 3112 if (Pair.getSecond()) { 3113 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3114 Pair.getFirst()->replaceAllUsesWith(Undef); 3115 } 3116 Pair.getFirst()->dropAllReferences(); 3117 } 3118 for (const auto &Pair : DeletedInstructions) { 3119 assert(Pair.getFirst()->use_empty() && 3120 "trying to erase instruction with users."); 3121 Pair.getFirst()->eraseFromParent(); 3122 } 3123 #ifdef EXPENSIVE_CHECKS 3124 // If we could guarantee that this call is not extremely slow, we could 3125 // remove the ifdef limitation (see PR47712). 3126 assert(!verifyFunction(*F, &dbgs())); 3127 #endif 3128 } 3129 3130 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3131 for (auto *V : AV) { 3132 if (auto *I = dyn_cast<Instruction>(V)) 3133 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3134 }; 3135 } 3136 3137 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3138 /// contains original mask for the scalars reused in the node. Procedure 3139 /// transform this mask in accordance with the given \p Mask. 3140 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3141 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3142 "Expected non-empty mask."); 3143 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3144 Prev.swap(Reuses); 3145 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3146 if (Mask[I] != UndefMaskElem) 3147 Reuses[Mask[I]] = Prev[I]; 3148 } 3149 3150 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3151 /// the original order of the scalars. Procedure transforms the provided order 3152 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3153 /// identity order, \p Order is cleared. 3154 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3155 assert(!Mask.empty() && "Expected non-empty mask."); 3156 SmallVector<int> MaskOrder; 3157 if (Order.empty()) { 3158 MaskOrder.resize(Mask.size()); 3159 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3160 } else { 3161 inversePermutation(Order, MaskOrder); 3162 } 3163 reorderReuses(MaskOrder, Mask); 3164 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3165 Order.clear(); 3166 return; 3167 } 3168 Order.assign(Mask.size(), Mask.size()); 3169 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3170 if (MaskOrder[I] != UndefMaskElem) 3171 Order[MaskOrder[I]] = I; 3172 fixupOrderingIndices(Order); 3173 } 3174 3175 Optional<BoUpSLP::OrdersType> 3176 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3177 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3178 unsigned NumScalars = TE.Scalars.size(); 3179 OrdersType CurrentOrder(NumScalars, NumScalars); 3180 SmallVector<int> Positions; 3181 SmallBitVector UsedPositions(NumScalars); 3182 const TreeEntry *STE = nullptr; 3183 // Try to find all gathered scalars that are gets vectorized in other 3184 // vectorize node. Here we can have only one single tree vector node to 3185 // correctly identify order of the gathered scalars. 3186 for (unsigned I = 0; I < NumScalars; ++I) { 3187 Value *V = TE.Scalars[I]; 3188 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3189 continue; 3190 if (const auto *LocalSTE = getTreeEntry(V)) { 3191 if (!STE) 3192 STE = LocalSTE; 3193 else if (STE != LocalSTE) 3194 // Take the order only from the single vector node. 3195 return None; 3196 unsigned Lane = 3197 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3198 if (Lane >= NumScalars) 3199 return None; 3200 if (CurrentOrder[Lane] != NumScalars) { 3201 if (Lane != I) 3202 continue; 3203 UsedPositions.reset(CurrentOrder[Lane]); 3204 } 3205 // The partial identity (where only some elements of the gather node are 3206 // in the identity order) is good. 3207 CurrentOrder[Lane] = I; 3208 UsedPositions.set(I); 3209 } 3210 } 3211 // Need to keep the order if we have a vector entry and at least 2 scalars or 3212 // the vectorized entry has just 2 scalars. 3213 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3214 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3215 for (unsigned I = 0; I < NumScalars; ++I) 3216 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3217 return false; 3218 return true; 3219 }; 3220 if (IsIdentityOrder(CurrentOrder)) { 3221 CurrentOrder.clear(); 3222 return CurrentOrder; 3223 } 3224 auto *It = CurrentOrder.begin(); 3225 for (unsigned I = 0; I < NumScalars;) { 3226 if (UsedPositions.test(I)) { 3227 ++I; 3228 continue; 3229 } 3230 if (*It == NumScalars) { 3231 *It = I; 3232 ++I; 3233 } 3234 ++It; 3235 } 3236 return CurrentOrder; 3237 } 3238 return None; 3239 } 3240 3241 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3242 bool TopToBottom) { 3243 // No need to reorder if need to shuffle reuses, still need to shuffle the 3244 // node. 3245 if (!TE.ReuseShuffleIndices.empty()) 3246 return None; 3247 if (TE.State == TreeEntry::Vectorize && 3248 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3249 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3250 !TE.isAltShuffle()) 3251 return TE.ReorderIndices; 3252 if (TE.State == TreeEntry::NeedToGather) { 3253 // TODO: add analysis of other gather nodes with extractelement 3254 // instructions and other values/instructions, not only undefs. 3255 if (((TE.getOpcode() == Instruction::ExtractElement && 3256 !TE.isAltShuffle()) || 3257 (all_of(TE.Scalars, 3258 [](Value *V) { 3259 return isa<UndefValue, ExtractElementInst>(V); 3260 }) && 3261 any_of(TE.Scalars, 3262 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3263 all_of(TE.Scalars, 3264 [](Value *V) { 3265 auto *EE = dyn_cast<ExtractElementInst>(V); 3266 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3267 }) && 3268 allSameType(TE.Scalars)) { 3269 // Check that gather of extractelements can be represented as 3270 // just a shuffle of a single vector. 3271 OrdersType CurrentOrder; 3272 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3273 if (Reuse || !CurrentOrder.empty()) { 3274 if (!CurrentOrder.empty()) 3275 fixupOrderingIndices(CurrentOrder); 3276 return CurrentOrder; 3277 } 3278 } 3279 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3280 return CurrentOrder; 3281 } 3282 return None; 3283 } 3284 3285 void BoUpSLP::reorderTopToBottom() { 3286 // Maps VF to the graph nodes. 3287 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3288 // ExtractElement gather nodes which can be vectorized and need to handle 3289 // their ordering. 3290 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3291 // Find all reorderable nodes with the given VF. 3292 // Currently the are vectorized stores,loads,extracts + some gathering of 3293 // extracts. 3294 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3295 const std::unique_ptr<TreeEntry> &TE) { 3296 if (Optional<OrdersType> CurrentOrder = 3297 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3298 // Do not include ordering for nodes used in the alt opcode vectorization, 3299 // better to reorder them during bottom-to-top stage. If follow the order 3300 // here, it causes reordering of the whole graph though actually it is 3301 // profitable just to reorder the subgraph that starts from the alternate 3302 // opcode vectorization node. Such nodes already end-up with the shuffle 3303 // instruction and it is just enough to change this shuffle rather than 3304 // rotate the scalars for the whole graph. 3305 unsigned Cnt = 0; 3306 const TreeEntry *UserTE = TE.get(); 3307 while (UserTE && Cnt < RecursionMaxDepth) { 3308 if (UserTE->UserTreeIndices.size() != 1) 3309 break; 3310 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3311 return EI.UserTE->State == TreeEntry::Vectorize && 3312 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3313 })) 3314 return; 3315 if (UserTE->UserTreeIndices.empty()) 3316 UserTE = nullptr; 3317 else 3318 UserTE = UserTE->UserTreeIndices.back().UserTE; 3319 ++Cnt; 3320 } 3321 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3322 if (TE->State != TreeEntry::Vectorize) 3323 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3324 } 3325 }); 3326 3327 // Reorder the graph nodes according to their vectorization factor. 3328 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3329 VF /= 2) { 3330 auto It = VFToOrderedEntries.find(VF); 3331 if (It == VFToOrderedEntries.end()) 3332 continue; 3333 // Try to find the most profitable order. We just are looking for the most 3334 // used order and reorder scalar elements in the nodes according to this 3335 // mostly used order. 3336 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3337 // All operands are reordered and used only in this node - propagate the 3338 // most used order to the user node. 3339 MapVector<OrdersType, unsigned, 3340 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3341 OrdersUses; 3342 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3343 for (const TreeEntry *OpTE : OrderedEntries) { 3344 // No need to reorder this nodes, still need to extend and to use shuffle, 3345 // just need to merge reordering shuffle and the reuse shuffle. 3346 if (!OpTE->ReuseShuffleIndices.empty()) 3347 continue; 3348 // Count number of orders uses. 3349 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3350 if (OpTE->State == TreeEntry::NeedToGather) 3351 return GathersToOrders.find(OpTE)->second; 3352 return OpTE->ReorderIndices; 3353 }(); 3354 // Stores actually store the mask, not the order, need to invert. 3355 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3356 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3357 SmallVector<int> Mask; 3358 inversePermutation(Order, Mask); 3359 unsigned E = Order.size(); 3360 OrdersType CurrentOrder(E, E); 3361 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3362 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3363 }); 3364 fixupOrderingIndices(CurrentOrder); 3365 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3366 } else { 3367 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3368 } 3369 } 3370 // Set order of the user node. 3371 if (OrdersUses.empty()) 3372 continue; 3373 // Choose the most used order. 3374 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3375 unsigned Cnt = OrdersUses.front().second; 3376 for (const auto &Pair : drop_begin(OrdersUses)) { 3377 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3378 BestOrder = Pair.first; 3379 Cnt = Pair.second; 3380 } 3381 } 3382 // Set order of the user node. 3383 if (BestOrder.empty()) 3384 continue; 3385 SmallVector<int> Mask; 3386 inversePermutation(BestOrder, Mask); 3387 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3388 unsigned E = BestOrder.size(); 3389 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3390 return I < E ? static_cast<int>(I) : UndefMaskElem; 3391 }); 3392 // Do an actual reordering, if profitable. 3393 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3394 // Just do the reordering for the nodes with the given VF. 3395 if (TE->Scalars.size() != VF) { 3396 if (TE->ReuseShuffleIndices.size() == VF) { 3397 // Need to reorder the reuses masks of the operands with smaller VF to 3398 // be able to find the match between the graph nodes and scalar 3399 // operands of the given node during vectorization/cost estimation. 3400 assert(all_of(TE->UserTreeIndices, 3401 [VF, &TE](const EdgeInfo &EI) { 3402 return EI.UserTE->Scalars.size() == VF || 3403 EI.UserTE->Scalars.size() == 3404 TE->Scalars.size(); 3405 }) && 3406 "All users must be of VF size."); 3407 // Update ordering of the operands with the smaller VF than the given 3408 // one. 3409 reorderReuses(TE->ReuseShuffleIndices, Mask); 3410 } 3411 continue; 3412 } 3413 if (TE->State == TreeEntry::Vectorize && 3414 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3415 InsertElementInst>(TE->getMainOp()) && 3416 !TE->isAltShuffle()) { 3417 // Build correct orders for extract{element,value}, loads and 3418 // stores. 3419 reorderOrder(TE->ReorderIndices, Mask); 3420 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3421 TE->reorderOperands(Mask); 3422 } else { 3423 // Reorder the node and its operands. 3424 TE->reorderOperands(Mask); 3425 assert(TE->ReorderIndices.empty() && 3426 "Expected empty reorder sequence."); 3427 reorderScalars(TE->Scalars, Mask); 3428 } 3429 if (!TE->ReuseShuffleIndices.empty()) { 3430 // Apply reversed order to keep the original ordering of the reused 3431 // elements to avoid extra reorder indices shuffling. 3432 OrdersType CurrentOrder; 3433 reorderOrder(CurrentOrder, MaskOrder); 3434 SmallVector<int> NewReuses; 3435 inversePermutation(CurrentOrder, NewReuses); 3436 addMask(NewReuses, TE->ReuseShuffleIndices); 3437 TE->ReuseShuffleIndices.swap(NewReuses); 3438 } 3439 } 3440 } 3441 } 3442 3443 bool BoUpSLP::canReorderOperands( 3444 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3445 ArrayRef<TreeEntry *> ReorderableGathers, 3446 SmallVectorImpl<TreeEntry *> &GatherOps) { 3447 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3448 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3449 return OpData.first == I && 3450 OpData.second->State == TreeEntry::Vectorize; 3451 })) 3452 continue; 3453 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3454 // Do not reorder if operand node is used by many user nodes. 3455 if (any_of(TE->UserTreeIndices, 3456 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3457 return false; 3458 // Add the node to the list of the ordered nodes with the identity 3459 // order. 3460 Edges.emplace_back(I, TE); 3461 continue; 3462 } 3463 ArrayRef<Value *> VL = UserTE->getOperand(I); 3464 TreeEntry *Gather = nullptr; 3465 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3466 assert(TE->State != TreeEntry::Vectorize && 3467 "Only non-vectorized nodes are expected."); 3468 if (TE->isSame(VL)) { 3469 Gather = TE; 3470 return true; 3471 } 3472 return false; 3473 }) > 1) 3474 return false; 3475 if (Gather) 3476 GatherOps.push_back(Gather); 3477 } 3478 return true; 3479 } 3480 3481 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3482 SetVector<TreeEntry *> OrderedEntries; 3483 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3484 // Find all reorderable leaf nodes with the given VF. 3485 // Currently the are vectorized loads,extracts without alternate operands + 3486 // some gathering of extracts. 3487 SmallVector<TreeEntry *> NonVectorized; 3488 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3489 &NonVectorized]( 3490 const std::unique_ptr<TreeEntry> &TE) { 3491 if (TE->State != TreeEntry::Vectorize) 3492 NonVectorized.push_back(TE.get()); 3493 if (Optional<OrdersType> CurrentOrder = 3494 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3495 OrderedEntries.insert(TE.get()); 3496 if (TE->State != TreeEntry::Vectorize) 3497 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3498 } 3499 }); 3500 3501 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3502 // I.e., if the node has operands, that are reordered, try to make at least 3503 // one operand order in the natural order and reorder others + reorder the 3504 // user node itself. 3505 SmallPtrSet<const TreeEntry *, 4> Visited; 3506 while (!OrderedEntries.empty()) { 3507 // 1. Filter out only reordered nodes. 3508 // 2. If the entry has multiple uses - skip it and jump to the next node. 3509 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3510 SmallVector<TreeEntry *> Filtered; 3511 for (TreeEntry *TE : OrderedEntries) { 3512 if (!(TE->State == TreeEntry::Vectorize || 3513 (TE->State == TreeEntry::NeedToGather && 3514 GathersToOrders.count(TE))) || 3515 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3516 !all_of(drop_begin(TE->UserTreeIndices), 3517 [TE](const EdgeInfo &EI) { 3518 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3519 }) || 3520 !Visited.insert(TE).second) { 3521 Filtered.push_back(TE); 3522 continue; 3523 } 3524 // Build a map between user nodes and their operands order to speedup 3525 // search. The graph currently does not provide this dependency directly. 3526 for (EdgeInfo &EI : TE->UserTreeIndices) { 3527 TreeEntry *UserTE = EI.UserTE; 3528 auto It = Users.find(UserTE); 3529 if (It == Users.end()) 3530 It = Users.insert({UserTE, {}}).first; 3531 It->second.emplace_back(EI.EdgeIdx, TE); 3532 } 3533 } 3534 // Erase filtered entries. 3535 for_each(Filtered, 3536 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3537 for (auto &Data : Users) { 3538 // Check that operands are used only in the User node. 3539 SmallVector<TreeEntry *> GatherOps; 3540 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3541 GatherOps)) { 3542 for_each(Data.second, 3543 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3544 OrderedEntries.remove(Op.second); 3545 }); 3546 continue; 3547 } 3548 // All operands are reordered and used only in this node - propagate the 3549 // most used order to the user node. 3550 MapVector<OrdersType, unsigned, 3551 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3552 OrdersUses; 3553 // Do the analysis for each tree entry only once, otherwise the order of 3554 // the same node my be considered several times, though might be not 3555 // profitable. 3556 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3557 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3558 for (const auto &Op : Data.second) { 3559 TreeEntry *OpTE = Op.second; 3560 if (!VisitedOps.insert(OpTE).second) 3561 continue; 3562 if (!OpTE->ReuseShuffleIndices.empty() || 3563 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3564 continue; 3565 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3566 if (OpTE->State == TreeEntry::NeedToGather) 3567 return GathersToOrders.find(OpTE)->second; 3568 return OpTE->ReorderIndices; 3569 }(); 3570 unsigned NumOps = count_if( 3571 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3572 return P.second == OpTE; 3573 }); 3574 // Stores actually store the mask, not the order, need to invert. 3575 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3576 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3577 SmallVector<int> Mask; 3578 inversePermutation(Order, Mask); 3579 unsigned E = Order.size(); 3580 OrdersType CurrentOrder(E, E); 3581 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3582 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3583 }); 3584 fixupOrderingIndices(CurrentOrder); 3585 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3586 NumOps; 3587 } else { 3588 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3589 } 3590 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3591 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3592 const TreeEntry *TE) { 3593 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3594 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3595 (IgnoreReorder && TE->Idx == 0)) 3596 return true; 3597 if (TE->State == TreeEntry::NeedToGather) { 3598 auto It = GathersToOrders.find(TE); 3599 if (It != GathersToOrders.end()) 3600 return !It->second.empty(); 3601 return true; 3602 } 3603 return false; 3604 }; 3605 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3606 TreeEntry *UserTE = EI.UserTE; 3607 if (!VisitedUsers.insert(UserTE).second) 3608 continue; 3609 // May reorder user node if it requires reordering, has reused 3610 // scalars, is an alternate op vectorize node or its op nodes require 3611 // reordering. 3612 if (AllowsReordering(UserTE)) 3613 continue; 3614 // Check if users allow reordering. 3615 // Currently look up just 1 level of operands to avoid increase of 3616 // the compile time. 3617 // Profitable to reorder if definitely more operands allow 3618 // reordering rather than those with natural order. 3619 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3620 if (static_cast<unsigned>(count_if( 3621 Ops, [UserTE, &AllowsReordering]( 3622 const std::pair<unsigned, TreeEntry *> &Op) { 3623 return AllowsReordering(Op.second) && 3624 all_of(Op.second->UserTreeIndices, 3625 [UserTE](const EdgeInfo &EI) { 3626 return EI.UserTE == UserTE; 3627 }); 3628 })) <= Ops.size() / 2) 3629 ++Res.first->second; 3630 } 3631 } 3632 // If no orders - skip current nodes and jump to the next one, if any. 3633 if (OrdersUses.empty()) { 3634 for_each(Data.second, 3635 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3636 OrderedEntries.remove(Op.second); 3637 }); 3638 continue; 3639 } 3640 // Choose the best order. 3641 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3642 unsigned Cnt = OrdersUses.front().second; 3643 for (const auto &Pair : drop_begin(OrdersUses)) { 3644 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3645 BestOrder = Pair.first; 3646 Cnt = Pair.second; 3647 } 3648 } 3649 // Set order of the user node (reordering of operands and user nodes). 3650 if (BestOrder.empty()) { 3651 for_each(Data.second, 3652 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3653 OrderedEntries.remove(Op.second); 3654 }); 3655 continue; 3656 } 3657 // Erase operands from OrderedEntries list and adjust their orders. 3658 VisitedOps.clear(); 3659 SmallVector<int> Mask; 3660 inversePermutation(BestOrder, Mask); 3661 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3662 unsigned E = BestOrder.size(); 3663 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3664 return I < E ? static_cast<int>(I) : UndefMaskElem; 3665 }); 3666 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3667 TreeEntry *TE = Op.second; 3668 OrderedEntries.remove(TE); 3669 if (!VisitedOps.insert(TE).second) 3670 continue; 3671 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3672 // Just reorder reuses indices. 3673 reorderReuses(TE->ReuseShuffleIndices, Mask); 3674 continue; 3675 } 3676 // Gathers are processed separately. 3677 if (TE->State != TreeEntry::Vectorize) 3678 continue; 3679 assert((BestOrder.size() == TE->ReorderIndices.size() || 3680 TE->ReorderIndices.empty()) && 3681 "Non-matching sizes of user/operand entries."); 3682 reorderOrder(TE->ReorderIndices, Mask); 3683 } 3684 // For gathers just need to reorder its scalars. 3685 for (TreeEntry *Gather : GatherOps) { 3686 assert(Gather->ReorderIndices.empty() && 3687 "Unexpected reordering of gathers."); 3688 if (!Gather->ReuseShuffleIndices.empty()) { 3689 // Just reorder reuses indices. 3690 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3691 continue; 3692 } 3693 reorderScalars(Gather->Scalars, Mask); 3694 OrderedEntries.remove(Gather); 3695 } 3696 // Reorder operands of the user node and set the ordering for the user 3697 // node itself. 3698 if (Data.first->State != TreeEntry::Vectorize || 3699 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3700 Data.first->getMainOp()) || 3701 Data.first->isAltShuffle()) 3702 Data.first->reorderOperands(Mask); 3703 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3704 Data.first->isAltShuffle()) { 3705 reorderScalars(Data.first->Scalars, Mask); 3706 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3707 if (Data.first->ReuseShuffleIndices.empty() && 3708 !Data.first->ReorderIndices.empty() && 3709 !Data.first->isAltShuffle()) { 3710 // Insert user node to the list to try to sink reordering deeper in 3711 // the graph. 3712 OrderedEntries.insert(Data.first); 3713 } 3714 } else { 3715 reorderOrder(Data.first->ReorderIndices, Mask); 3716 } 3717 } 3718 } 3719 // If the reordering is unnecessary, just remove the reorder. 3720 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3721 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3722 VectorizableTree.front()->ReorderIndices.clear(); 3723 } 3724 3725 void BoUpSLP::buildExternalUses( 3726 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3727 // Collect the values that we need to extract from the tree. 3728 for (auto &TEPtr : VectorizableTree) { 3729 TreeEntry *Entry = TEPtr.get(); 3730 3731 // No need to handle users of gathered values. 3732 if (Entry->State == TreeEntry::NeedToGather) 3733 continue; 3734 3735 // For each lane: 3736 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3737 Value *Scalar = Entry->Scalars[Lane]; 3738 int FoundLane = Entry->findLaneForValue(Scalar); 3739 3740 // Check if the scalar is externally used as an extra arg. 3741 auto ExtI = ExternallyUsedValues.find(Scalar); 3742 if (ExtI != ExternallyUsedValues.end()) { 3743 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3744 << Lane << " from " << *Scalar << ".\n"); 3745 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3746 } 3747 for (User *U : Scalar->users()) { 3748 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3749 3750 Instruction *UserInst = dyn_cast<Instruction>(U); 3751 if (!UserInst) 3752 continue; 3753 3754 if (isDeleted(UserInst)) 3755 continue; 3756 3757 // Skip in-tree scalars that become vectors 3758 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3759 Value *UseScalar = UseEntry->Scalars[0]; 3760 // Some in-tree scalars will remain as scalar in vectorized 3761 // instructions. If that is the case, the one in Lane 0 will 3762 // be used. 3763 if (UseScalar != U || 3764 UseEntry->State == TreeEntry::ScatterVectorize || 3765 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3766 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3767 << ".\n"); 3768 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3769 continue; 3770 } 3771 } 3772 3773 // Ignore users in the user ignore list. 3774 if (is_contained(UserIgnoreList, UserInst)) 3775 continue; 3776 3777 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3778 << Lane << " from " << *Scalar << ".\n"); 3779 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3780 } 3781 } 3782 } 3783 } 3784 3785 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3786 ArrayRef<Value *> UserIgnoreLst) { 3787 deleteTree(); 3788 UserIgnoreList = UserIgnoreLst; 3789 if (!allSameType(Roots)) 3790 return; 3791 buildTree_rec(Roots, 0, EdgeInfo()); 3792 } 3793 3794 namespace { 3795 /// Tracks the state we can represent the loads in the given sequence. 3796 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3797 } // anonymous namespace 3798 3799 /// Checks if the given array of loads can be represented as a vectorized, 3800 /// scatter or just simple gather. 3801 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3802 const TargetTransformInfo &TTI, 3803 const DataLayout &DL, ScalarEvolution &SE, 3804 SmallVectorImpl<unsigned> &Order, 3805 SmallVectorImpl<Value *> &PointerOps) { 3806 // Check that a vectorized load would load the same memory as a scalar 3807 // load. For example, we don't want to vectorize loads that are smaller 3808 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3809 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3810 // from such a struct, we read/write packed bits disagreeing with the 3811 // unvectorized version. 3812 Type *ScalarTy = VL0->getType(); 3813 3814 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3815 return LoadsState::Gather; 3816 3817 // Make sure all loads in the bundle are simple - we can't vectorize 3818 // atomic or volatile loads. 3819 PointerOps.clear(); 3820 PointerOps.resize(VL.size()); 3821 auto *POIter = PointerOps.begin(); 3822 for (Value *V : VL) { 3823 auto *L = cast<LoadInst>(V); 3824 if (!L->isSimple()) 3825 return LoadsState::Gather; 3826 *POIter = L->getPointerOperand(); 3827 ++POIter; 3828 } 3829 3830 Order.clear(); 3831 // Check the order of pointer operands. 3832 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3833 Value *Ptr0; 3834 Value *PtrN; 3835 if (Order.empty()) { 3836 Ptr0 = PointerOps.front(); 3837 PtrN = PointerOps.back(); 3838 } else { 3839 Ptr0 = PointerOps[Order.front()]; 3840 PtrN = PointerOps[Order.back()]; 3841 } 3842 Optional<int> Diff = 3843 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3844 // Check that the sorted loads are consecutive. 3845 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3846 return LoadsState::Vectorize; 3847 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3848 for (Value *V : VL) 3849 CommonAlignment = 3850 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3851 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3852 CommonAlignment)) 3853 return LoadsState::ScatterVectorize; 3854 } 3855 3856 return LoadsState::Gather; 3857 } 3858 3859 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3860 const EdgeInfo &UserTreeIdx) { 3861 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3862 3863 SmallVector<int> ReuseShuffleIndicies; 3864 SmallVector<Value *> UniqueValues; 3865 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3866 &UserTreeIdx, 3867 this](const InstructionsState &S) { 3868 // Check that every instruction appears once in this bundle. 3869 DenseMap<Value *, unsigned> UniquePositions; 3870 for (Value *V : VL) { 3871 if (isConstant(V)) { 3872 ReuseShuffleIndicies.emplace_back( 3873 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3874 UniqueValues.emplace_back(V); 3875 continue; 3876 } 3877 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3878 ReuseShuffleIndicies.emplace_back(Res.first->second); 3879 if (Res.second) 3880 UniqueValues.emplace_back(V); 3881 } 3882 size_t NumUniqueScalarValues = UniqueValues.size(); 3883 if (NumUniqueScalarValues == VL.size()) { 3884 ReuseShuffleIndicies.clear(); 3885 } else { 3886 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3887 if (NumUniqueScalarValues <= 1 || 3888 (UniquePositions.size() == 1 && all_of(UniqueValues, 3889 [](Value *V) { 3890 return isa<UndefValue>(V) || 3891 !isConstant(V); 3892 })) || 3893 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3894 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3895 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3896 return false; 3897 } 3898 VL = UniqueValues; 3899 } 3900 return true; 3901 }; 3902 3903 InstructionsState S = getSameOpcode(VL); 3904 if (Depth == RecursionMaxDepth) { 3905 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3906 if (TryToFindDuplicates(S)) 3907 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3908 ReuseShuffleIndicies); 3909 return; 3910 } 3911 3912 // Don't handle scalable vectors 3913 if (S.getOpcode() == Instruction::ExtractElement && 3914 isa<ScalableVectorType>( 3915 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3916 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3917 if (TryToFindDuplicates(S)) 3918 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3919 ReuseShuffleIndicies); 3920 return; 3921 } 3922 3923 // Don't handle vectors. 3924 if (S.OpValue->getType()->isVectorTy() && 3925 !isa<InsertElementInst>(S.OpValue)) { 3926 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3927 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3928 return; 3929 } 3930 3931 // Avoid attempting to schedule allocas; there are unmodeled dependencies 3932 // for "static" alloca status and for reordering with stacksave calls. 3933 for (Value *V : VL) { 3934 if (isa<AllocaInst>(V)) { 3935 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 3936 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3937 return; 3938 } 3939 } 3940 3941 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3942 if (SI->getValueOperand()->getType()->isVectorTy()) { 3943 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3944 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3945 return; 3946 } 3947 3948 // If all of the operands are identical or constant we have a simple solution. 3949 // If we deal with insert/extract instructions, they all must have constant 3950 // indices, otherwise we should gather them, not try to vectorize. 3951 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3952 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3953 !all_of(VL, isVectorLikeInstWithConstOps))) { 3954 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3955 if (TryToFindDuplicates(S)) 3956 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3957 ReuseShuffleIndicies); 3958 return; 3959 } 3960 3961 // We now know that this is a vector of instructions of the same type from 3962 // the same block. 3963 3964 // Don't vectorize ephemeral values. 3965 for (Value *V : VL) { 3966 if (EphValues.count(V)) { 3967 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3968 << ") is ephemeral.\n"); 3969 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3970 return; 3971 } 3972 } 3973 3974 // Check if this is a duplicate of another entry. 3975 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3976 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3977 if (!E->isSame(VL)) { 3978 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3979 if (TryToFindDuplicates(S)) 3980 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3981 ReuseShuffleIndicies); 3982 return; 3983 } 3984 // Record the reuse of the tree node. FIXME, currently this is only used to 3985 // properly draw the graph rather than for the actual vectorization. 3986 E->UserTreeIndices.push_back(UserTreeIdx); 3987 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3988 << ".\n"); 3989 return; 3990 } 3991 3992 // Check that none of the instructions in the bundle are already in the tree. 3993 for (Value *V : VL) { 3994 auto *I = dyn_cast<Instruction>(V); 3995 if (!I) 3996 continue; 3997 if (getTreeEntry(I)) { 3998 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3999 << ") is already in tree.\n"); 4000 if (TryToFindDuplicates(S)) 4001 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4002 ReuseShuffleIndicies); 4003 return; 4004 } 4005 } 4006 4007 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4008 for (Value *V : VL) { 4009 if (is_contained(UserIgnoreList, V)) { 4010 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4011 if (TryToFindDuplicates(S)) 4012 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4013 ReuseShuffleIndicies); 4014 return; 4015 } 4016 } 4017 4018 // Check that all of the users of the scalars that we want to vectorize are 4019 // schedulable. 4020 auto *VL0 = cast<Instruction>(S.OpValue); 4021 BasicBlock *BB = VL0->getParent(); 4022 4023 if (!DT->isReachableFromEntry(BB)) { 4024 // Don't go into unreachable blocks. They may contain instructions with 4025 // dependency cycles which confuse the final scheduling. 4026 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4027 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4028 return; 4029 } 4030 4031 // Check that every instruction appears once in this bundle. 4032 if (!TryToFindDuplicates(S)) 4033 return; 4034 4035 auto &BSRef = BlocksSchedules[BB]; 4036 if (!BSRef) 4037 BSRef = std::make_unique<BlockScheduling>(BB); 4038 4039 BlockScheduling &BS = *BSRef.get(); 4040 4041 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4042 #ifdef EXPENSIVE_CHECKS 4043 // Make sure we didn't break any internal invariants 4044 BS.verify(); 4045 #endif 4046 if (!Bundle) { 4047 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4048 assert((!BS.getScheduleData(VL0) || 4049 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4050 "tryScheduleBundle should cancelScheduling on failure"); 4051 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4052 ReuseShuffleIndicies); 4053 return; 4054 } 4055 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4056 4057 unsigned ShuffleOrOp = S.isAltShuffle() ? 4058 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4059 switch (ShuffleOrOp) { 4060 case Instruction::PHI: { 4061 auto *PH = cast<PHINode>(VL0); 4062 4063 // Check for terminator values (e.g. invoke). 4064 for (Value *V : VL) 4065 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4066 Instruction *Term = dyn_cast<Instruction>( 4067 cast<PHINode>(V)->getIncomingValueForBlock( 4068 PH->getIncomingBlock(I))); 4069 if (Term && Term->isTerminator()) { 4070 LLVM_DEBUG(dbgs() 4071 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4072 BS.cancelScheduling(VL, VL0); 4073 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4074 ReuseShuffleIndicies); 4075 return; 4076 } 4077 } 4078 4079 TreeEntry *TE = 4080 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4081 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4082 4083 // Keeps the reordered operands to avoid code duplication. 4084 SmallVector<ValueList, 2> OperandsVec; 4085 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4086 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4087 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4088 TE->setOperand(I, Operands); 4089 OperandsVec.push_back(Operands); 4090 continue; 4091 } 4092 ValueList Operands; 4093 // Prepare the operand vector. 4094 for (Value *V : VL) 4095 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4096 PH->getIncomingBlock(I))); 4097 TE->setOperand(I, Operands); 4098 OperandsVec.push_back(Operands); 4099 } 4100 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4101 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4102 return; 4103 } 4104 case Instruction::ExtractValue: 4105 case Instruction::ExtractElement: { 4106 OrdersType CurrentOrder; 4107 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4108 if (Reuse) { 4109 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4110 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4111 ReuseShuffleIndicies); 4112 // This is a special case, as it does not gather, but at the same time 4113 // we are not extending buildTree_rec() towards the operands. 4114 ValueList Op0; 4115 Op0.assign(VL.size(), VL0->getOperand(0)); 4116 VectorizableTree.back()->setOperand(0, Op0); 4117 return; 4118 } 4119 if (!CurrentOrder.empty()) { 4120 LLVM_DEBUG({ 4121 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4122 "with order"; 4123 for (unsigned Idx : CurrentOrder) 4124 dbgs() << " " << Idx; 4125 dbgs() << "\n"; 4126 }); 4127 fixupOrderingIndices(CurrentOrder); 4128 // Insert new order with initial value 0, if it does not exist, 4129 // otherwise return the iterator to the existing one. 4130 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4131 ReuseShuffleIndicies, CurrentOrder); 4132 // This is a special case, as it does not gather, but at the same time 4133 // we are not extending buildTree_rec() towards the operands. 4134 ValueList Op0; 4135 Op0.assign(VL.size(), VL0->getOperand(0)); 4136 VectorizableTree.back()->setOperand(0, Op0); 4137 return; 4138 } 4139 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4140 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4141 ReuseShuffleIndicies); 4142 BS.cancelScheduling(VL, VL0); 4143 return; 4144 } 4145 case Instruction::InsertElement: { 4146 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4147 4148 // Check that we have a buildvector and not a shuffle of 2 or more 4149 // different vectors. 4150 ValueSet SourceVectors; 4151 for (Value *V : VL) { 4152 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4153 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4154 } 4155 4156 if (count_if(VL, [&SourceVectors](Value *V) { 4157 return !SourceVectors.contains(V); 4158 }) >= 2) { 4159 // Found 2nd source vector - cancel. 4160 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4161 "different source vectors.\n"); 4162 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4163 BS.cancelScheduling(VL, VL0); 4164 return; 4165 } 4166 4167 auto OrdCompare = [](const std::pair<int, int> &P1, 4168 const std::pair<int, int> &P2) { 4169 return P1.first > P2.first; 4170 }; 4171 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4172 decltype(OrdCompare)> 4173 Indices(OrdCompare); 4174 for (int I = 0, E = VL.size(); I < E; ++I) { 4175 unsigned Idx = *getInsertIndex(VL[I]); 4176 Indices.emplace(Idx, I); 4177 } 4178 OrdersType CurrentOrder(VL.size(), VL.size()); 4179 bool IsIdentity = true; 4180 for (int I = 0, E = VL.size(); I < E; ++I) { 4181 CurrentOrder[Indices.top().second] = I; 4182 IsIdentity &= Indices.top().second == I; 4183 Indices.pop(); 4184 } 4185 if (IsIdentity) 4186 CurrentOrder.clear(); 4187 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4188 None, CurrentOrder); 4189 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4190 4191 constexpr int NumOps = 2; 4192 ValueList VectorOperands[NumOps]; 4193 for (int I = 0; I < NumOps; ++I) { 4194 for (Value *V : VL) 4195 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4196 4197 TE->setOperand(I, VectorOperands[I]); 4198 } 4199 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4200 return; 4201 } 4202 case Instruction::Load: { 4203 // Check that a vectorized load would load the same memory as a scalar 4204 // load. For example, we don't want to vectorize loads that are smaller 4205 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4206 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4207 // from such a struct, we read/write packed bits disagreeing with the 4208 // unvectorized version. 4209 SmallVector<Value *> PointerOps; 4210 OrdersType CurrentOrder; 4211 TreeEntry *TE = nullptr; 4212 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4213 PointerOps)) { 4214 case LoadsState::Vectorize: 4215 if (CurrentOrder.empty()) { 4216 // Original loads are consecutive and does not require reordering. 4217 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4218 ReuseShuffleIndicies); 4219 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4220 } else { 4221 fixupOrderingIndices(CurrentOrder); 4222 // Need to reorder. 4223 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4224 ReuseShuffleIndicies, CurrentOrder); 4225 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4226 } 4227 TE->setOperandsInOrder(); 4228 break; 4229 case LoadsState::ScatterVectorize: 4230 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4231 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4232 UserTreeIdx, ReuseShuffleIndicies); 4233 TE->setOperandsInOrder(); 4234 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4235 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4236 break; 4237 case LoadsState::Gather: 4238 BS.cancelScheduling(VL, VL0); 4239 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4240 ReuseShuffleIndicies); 4241 #ifndef NDEBUG 4242 Type *ScalarTy = VL0->getType(); 4243 if (DL->getTypeSizeInBits(ScalarTy) != 4244 DL->getTypeAllocSizeInBits(ScalarTy)) 4245 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4246 else if (any_of(VL, [](Value *V) { 4247 return !cast<LoadInst>(V)->isSimple(); 4248 })) 4249 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4250 else 4251 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4252 #endif // NDEBUG 4253 break; 4254 } 4255 return; 4256 } 4257 case Instruction::ZExt: 4258 case Instruction::SExt: 4259 case Instruction::FPToUI: 4260 case Instruction::FPToSI: 4261 case Instruction::FPExt: 4262 case Instruction::PtrToInt: 4263 case Instruction::IntToPtr: 4264 case Instruction::SIToFP: 4265 case Instruction::UIToFP: 4266 case Instruction::Trunc: 4267 case Instruction::FPTrunc: 4268 case Instruction::BitCast: { 4269 Type *SrcTy = VL0->getOperand(0)->getType(); 4270 for (Value *V : VL) { 4271 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4272 if (Ty != SrcTy || !isValidElementType(Ty)) { 4273 BS.cancelScheduling(VL, VL0); 4274 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4275 ReuseShuffleIndicies); 4276 LLVM_DEBUG(dbgs() 4277 << "SLP: Gathering casts with different src types.\n"); 4278 return; 4279 } 4280 } 4281 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4282 ReuseShuffleIndicies); 4283 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4284 4285 TE->setOperandsInOrder(); 4286 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4287 ValueList Operands; 4288 // Prepare the operand vector. 4289 for (Value *V : VL) 4290 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4291 4292 buildTree_rec(Operands, Depth + 1, {TE, i}); 4293 } 4294 return; 4295 } 4296 case Instruction::ICmp: 4297 case Instruction::FCmp: { 4298 // Check that all of the compares have the same predicate. 4299 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4300 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4301 Type *ComparedTy = VL0->getOperand(0)->getType(); 4302 for (Value *V : VL) { 4303 CmpInst *Cmp = cast<CmpInst>(V); 4304 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4305 Cmp->getOperand(0)->getType() != ComparedTy) { 4306 BS.cancelScheduling(VL, VL0); 4307 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4308 ReuseShuffleIndicies); 4309 LLVM_DEBUG(dbgs() 4310 << "SLP: Gathering cmp with different predicate.\n"); 4311 return; 4312 } 4313 } 4314 4315 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4316 ReuseShuffleIndicies); 4317 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4318 4319 ValueList Left, Right; 4320 if (cast<CmpInst>(VL0)->isCommutative()) { 4321 // Commutative predicate - collect + sort operands of the instructions 4322 // so that each side is more likely to have the same opcode. 4323 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4324 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4325 } else { 4326 // Collect operands - commute if it uses the swapped predicate. 4327 for (Value *V : VL) { 4328 auto *Cmp = cast<CmpInst>(V); 4329 Value *LHS = Cmp->getOperand(0); 4330 Value *RHS = Cmp->getOperand(1); 4331 if (Cmp->getPredicate() != P0) 4332 std::swap(LHS, RHS); 4333 Left.push_back(LHS); 4334 Right.push_back(RHS); 4335 } 4336 } 4337 TE->setOperand(0, Left); 4338 TE->setOperand(1, Right); 4339 buildTree_rec(Left, Depth + 1, {TE, 0}); 4340 buildTree_rec(Right, Depth + 1, {TE, 1}); 4341 return; 4342 } 4343 case Instruction::Select: 4344 case Instruction::FNeg: 4345 case Instruction::Add: 4346 case Instruction::FAdd: 4347 case Instruction::Sub: 4348 case Instruction::FSub: 4349 case Instruction::Mul: 4350 case Instruction::FMul: 4351 case Instruction::UDiv: 4352 case Instruction::SDiv: 4353 case Instruction::FDiv: 4354 case Instruction::URem: 4355 case Instruction::SRem: 4356 case Instruction::FRem: 4357 case Instruction::Shl: 4358 case Instruction::LShr: 4359 case Instruction::AShr: 4360 case Instruction::And: 4361 case Instruction::Or: 4362 case Instruction::Xor: { 4363 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4364 ReuseShuffleIndicies); 4365 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4366 4367 // Sort operands of the instructions so that each side is more likely to 4368 // have the same opcode. 4369 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4370 ValueList Left, Right; 4371 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4372 TE->setOperand(0, Left); 4373 TE->setOperand(1, Right); 4374 buildTree_rec(Left, Depth + 1, {TE, 0}); 4375 buildTree_rec(Right, Depth + 1, {TE, 1}); 4376 return; 4377 } 4378 4379 TE->setOperandsInOrder(); 4380 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4381 ValueList Operands; 4382 // Prepare the operand vector. 4383 for (Value *V : VL) 4384 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4385 4386 buildTree_rec(Operands, Depth + 1, {TE, i}); 4387 } 4388 return; 4389 } 4390 case Instruction::GetElementPtr: { 4391 // We don't combine GEPs with complicated (nested) indexing. 4392 for (Value *V : VL) { 4393 if (cast<Instruction>(V)->getNumOperands() != 2) { 4394 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4395 BS.cancelScheduling(VL, VL0); 4396 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4397 ReuseShuffleIndicies); 4398 return; 4399 } 4400 } 4401 4402 // We can't combine several GEPs into one vector if they operate on 4403 // different types. 4404 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4405 for (Value *V : VL) { 4406 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4407 if (Ty0 != CurTy) { 4408 LLVM_DEBUG(dbgs() 4409 << "SLP: not-vectorizable GEP (different types).\n"); 4410 BS.cancelScheduling(VL, VL0); 4411 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4412 ReuseShuffleIndicies); 4413 return; 4414 } 4415 } 4416 4417 // We don't combine GEPs with non-constant indexes. 4418 Type *Ty1 = VL0->getOperand(1)->getType(); 4419 for (Value *V : VL) { 4420 auto Op = cast<Instruction>(V)->getOperand(1); 4421 if (!isa<ConstantInt>(Op) || 4422 (Op->getType() != Ty1 && 4423 Op->getType()->getScalarSizeInBits() > 4424 DL->getIndexSizeInBits( 4425 V->getType()->getPointerAddressSpace()))) { 4426 LLVM_DEBUG(dbgs() 4427 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4428 BS.cancelScheduling(VL, VL0); 4429 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4430 ReuseShuffleIndicies); 4431 return; 4432 } 4433 } 4434 4435 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4436 ReuseShuffleIndicies); 4437 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4438 SmallVector<ValueList, 2> Operands(2); 4439 // Prepare the operand vector for pointer operands. 4440 for (Value *V : VL) 4441 Operands.front().push_back( 4442 cast<GetElementPtrInst>(V)->getPointerOperand()); 4443 TE->setOperand(0, Operands.front()); 4444 // Need to cast all indices to the same type before vectorization to 4445 // avoid crash. 4446 // Required to be able to find correct matches between different gather 4447 // nodes and reuse the vectorized values rather than trying to gather them 4448 // again. 4449 int IndexIdx = 1; 4450 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4451 Type *Ty = all_of(VL, 4452 [VL0Ty, IndexIdx](Value *V) { 4453 return VL0Ty == cast<GetElementPtrInst>(V) 4454 ->getOperand(IndexIdx) 4455 ->getType(); 4456 }) 4457 ? VL0Ty 4458 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4459 ->getPointerOperandType() 4460 ->getScalarType()); 4461 // Prepare the operand vector. 4462 for (Value *V : VL) { 4463 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4464 auto *CI = cast<ConstantInt>(Op); 4465 Operands.back().push_back(ConstantExpr::getIntegerCast( 4466 CI, Ty, CI->getValue().isSignBitSet())); 4467 } 4468 TE->setOperand(IndexIdx, Operands.back()); 4469 4470 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4471 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4472 return; 4473 } 4474 case Instruction::Store: { 4475 // Check if the stores are consecutive or if we need to swizzle them. 4476 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4477 // Avoid types that are padded when being allocated as scalars, while 4478 // being packed together in a vector (such as i1). 4479 if (DL->getTypeSizeInBits(ScalarTy) != 4480 DL->getTypeAllocSizeInBits(ScalarTy)) { 4481 BS.cancelScheduling(VL, VL0); 4482 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4483 ReuseShuffleIndicies); 4484 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4485 return; 4486 } 4487 // Make sure all stores in the bundle are simple - we can't vectorize 4488 // atomic or volatile stores. 4489 SmallVector<Value *, 4> PointerOps(VL.size()); 4490 ValueList Operands(VL.size()); 4491 auto POIter = PointerOps.begin(); 4492 auto OIter = Operands.begin(); 4493 for (Value *V : VL) { 4494 auto *SI = cast<StoreInst>(V); 4495 if (!SI->isSimple()) { 4496 BS.cancelScheduling(VL, VL0); 4497 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4498 ReuseShuffleIndicies); 4499 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4500 return; 4501 } 4502 *POIter = SI->getPointerOperand(); 4503 *OIter = SI->getValueOperand(); 4504 ++POIter; 4505 ++OIter; 4506 } 4507 4508 OrdersType CurrentOrder; 4509 // Check the order of pointer operands. 4510 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4511 Value *Ptr0; 4512 Value *PtrN; 4513 if (CurrentOrder.empty()) { 4514 Ptr0 = PointerOps.front(); 4515 PtrN = PointerOps.back(); 4516 } else { 4517 Ptr0 = PointerOps[CurrentOrder.front()]; 4518 PtrN = PointerOps[CurrentOrder.back()]; 4519 } 4520 Optional<int> Dist = 4521 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4522 // Check that the sorted pointer operands are consecutive. 4523 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4524 if (CurrentOrder.empty()) { 4525 // Original stores are consecutive and does not require reordering. 4526 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4527 UserTreeIdx, ReuseShuffleIndicies); 4528 TE->setOperandsInOrder(); 4529 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4530 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4531 } else { 4532 fixupOrderingIndices(CurrentOrder); 4533 TreeEntry *TE = 4534 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4535 ReuseShuffleIndicies, CurrentOrder); 4536 TE->setOperandsInOrder(); 4537 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4538 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4539 } 4540 return; 4541 } 4542 } 4543 4544 BS.cancelScheduling(VL, VL0); 4545 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4546 ReuseShuffleIndicies); 4547 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4548 return; 4549 } 4550 case Instruction::Call: { 4551 // Check if the calls are all to the same vectorizable intrinsic or 4552 // library function. 4553 CallInst *CI = cast<CallInst>(VL0); 4554 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4555 4556 VFShape Shape = VFShape::get( 4557 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4558 false /*HasGlobalPred*/); 4559 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4560 4561 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4562 BS.cancelScheduling(VL, VL0); 4563 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4564 ReuseShuffleIndicies); 4565 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4566 return; 4567 } 4568 Function *F = CI->getCalledFunction(); 4569 unsigned NumArgs = CI->arg_size(); 4570 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4571 for (unsigned j = 0; j != NumArgs; ++j) 4572 if (hasVectorInstrinsicScalarOpd(ID, j)) 4573 ScalarArgs[j] = CI->getArgOperand(j); 4574 for (Value *V : VL) { 4575 CallInst *CI2 = dyn_cast<CallInst>(V); 4576 if (!CI2 || CI2->getCalledFunction() != F || 4577 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4578 (VecFunc && 4579 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4580 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4581 BS.cancelScheduling(VL, VL0); 4582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4583 ReuseShuffleIndicies); 4584 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4585 << "\n"); 4586 return; 4587 } 4588 // Some intrinsics have scalar arguments and should be same in order for 4589 // them to be vectorized. 4590 for (unsigned j = 0; j != NumArgs; ++j) { 4591 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4592 Value *A1J = CI2->getArgOperand(j); 4593 if (ScalarArgs[j] != A1J) { 4594 BS.cancelScheduling(VL, VL0); 4595 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4596 ReuseShuffleIndicies); 4597 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4598 << " argument " << ScalarArgs[j] << "!=" << A1J 4599 << "\n"); 4600 return; 4601 } 4602 } 4603 } 4604 // Verify that the bundle operands are identical between the two calls. 4605 if (CI->hasOperandBundles() && 4606 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4607 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4608 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4609 BS.cancelScheduling(VL, VL0); 4610 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4611 ReuseShuffleIndicies); 4612 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4613 << *CI << "!=" << *V << '\n'); 4614 return; 4615 } 4616 } 4617 4618 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4619 ReuseShuffleIndicies); 4620 TE->setOperandsInOrder(); 4621 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4622 // For scalar operands no need to to create an entry since no need to 4623 // vectorize it. 4624 if (hasVectorInstrinsicScalarOpd(ID, i)) 4625 continue; 4626 ValueList Operands; 4627 // Prepare the operand vector. 4628 for (Value *V : VL) { 4629 auto *CI2 = cast<CallInst>(V); 4630 Operands.push_back(CI2->getArgOperand(i)); 4631 } 4632 buildTree_rec(Operands, Depth + 1, {TE, i}); 4633 } 4634 return; 4635 } 4636 case Instruction::ShuffleVector: { 4637 // If this is not an alternate sequence of opcode like add-sub 4638 // then do not vectorize this instruction. 4639 if (!S.isAltShuffle()) { 4640 BS.cancelScheduling(VL, VL0); 4641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4642 ReuseShuffleIndicies); 4643 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4644 return; 4645 } 4646 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4647 ReuseShuffleIndicies); 4648 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4649 4650 // Reorder operands if reordering would enable vectorization. 4651 auto *CI = dyn_cast<CmpInst>(VL0); 4652 if (isa<BinaryOperator>(VL0) || CI) { 4653 ValueList Left, Right; 4654 if (!CI || all_of(VL, [](Value *V) { 4655 return cast<CmpInst>(V)->isCommutative(); 4656 })) { 4657 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4658 } else { 4659 CmpInst::Predicate P0 = CI->getPredicate(); 4660 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4661 assert(P0 != AltP0 && 4662 "Expected different main/alternate predicates."); 4663 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4664 Value *BaseOp0 = VL0->getOperand(0); 4665 Value *BaseOp1 = VL0->getOperand(1); 4666 // Collect operands - commute if it uses the swapped predicate or 4667 // alternate operation. 4668 for (Value *V : VL) { 4669 auto *Cmp = cast<CmpInst>(V); 4670 Value *LHS = Cmp->getOperand(0); 4671 Value *RHS = Cmp->getOperand(1); 4672 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4673 if (P0 == AltP0Swapped) { 4674 if (CI != Cmp && S.AltOp != Cmp && 4675 ((P0 == CurrentPred && 4676 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4677 (AltP0 == CurrentPred && 4678 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4679 std::swap(LHS, RHS); 4680 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4681 std::swap(LHS, RHS); 4682 } 4683 Left.push_back(LHS); 4684 Right.push_back(RHS); 4685 } 4686 } 4687 TE->setOperand(0, Left); 4688 TE->setOperand(1, Right); 4689 buildTree_rec(Left, Depth + 1, {TE, 0}); 4690 buildTree_rec(Right, Depth + 1, {TE, 1}); 4691 return; 4692 } 4693 4694 TE->setOperandsInOrder(); 4695 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4696 ValueList Operands; 4697 // Prepare the operand vector. 4698 for (Value *V : VL) 4699 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4700 4701 buildTree_rec(Operands, Depth + 1, {TE, i}); 4702 } 4703 return; 4704 } 4705 default: 4706 BS.cancelScheduling(VL, VL0); 4707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4708 ReuseShuffleIndicies); 4709 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4710 return; 4711 } 4712 } 4713 4714 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4715 unsigned N = 1; 4716 Type *EltTy = T; 4717 4718 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4719 isa<VectorType>(EltTy)) { 4720 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4721 // Check that struct is homogeneous. 4722 for (const auto *Ty : ST->elements()) 4723 if (Ty != *ST->element_begin()) 4724 return 0; 4725 N *= ST->getNumElements(); 4726 EltTy = *ST->element_begin(); 4727 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4728 N *= AT->getNumElements(); 4729 EltTy = AT->getElementType(); 4730 } else { 4731 auto *VT = cast<FixedVectorType>(EltTy); 4732 N *= VT->getNumElements(); 4733 EltTy = VT->getElementType(); 4734 } 4735 } 4736 4737 if (!isValidElementType(EltTy)) 4738 return 0; 4739 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4740 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4741 return 0; 4742 return N; 4743 } 4744 4745 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4746 SmallVectorImpl<unsigned> &CurrentOrder) const { 4747 const auto *It = find_if(VL, [](Value *V) { 4748 return isa<ExtractElementInst, ExtractValueInst>(V); 4749 }); 4750 assert(It != VL.end() && "Expected at least one extract instruction."); 4751 auto *E0 = cast<Instruction>(*It); 4752 assert(all_of(VL, 4753 [](Value *V) { 4754 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4755 V); 4756 }) && 4757 "Invalid opcode"); 4758 // Check if all of the extracts come from the same vector and from the 4759 // correct offset. 4760 Value *Vec = E0->getOperand(0); 4761 4762 CurrentOrder.clear(); 4763 4764 // We have to extract from a vector/aggregate with the same number of elements. 4765 unsigned NElts; 4766 if (E0->getOpcode() == Instruction::ExtractValue) { 4767 const DataLayout &DL = E0->getModule()->getDataLayout(); 4768 NElts = canMapToVector(Vec->getType(), DL); 4769 if (!NElts) 4770 return false; 4771 // Check if load can be rewritten as load of vector. 4772 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4773 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4774 return false; 4775 } else { 4776 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4777 } 4778 4779 if (NElts != VL.size()) 4780 return false; 4781 4782 // Check that all of the indices extract from the correct offset. 4783 bool ShouldKeepOrder = true; 4784 unsigned E = VL.size(); 4785 // Assign to all items the initial value E + 1 so we can check if the extract 4786 // instruction index was used already. 4787 // Also, later we can check that all the indices are used and we have a 4788 // consecutive access in the extract instructions, by checking that no 4789 // element of CurrentOrder still has value E + 1. 4790 CurrentOrder.assign(E, E); 4791 unsigned I = 0; 4792 for (; I < E; ++I) { 4793 auto *Inst = dyn_cast<Instruction>(VL[I]); 4794 if (!Inst) 4795 continue; 4796 if (Inst->getOperand(0) != Vec) 4797 break; 4798 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4799 if (isa<UndefValue>(EE->getIndexOperand())) 4800 continue; 4801 Optional<unsigned> Idx = getExtractIndex(Inst); 4802 if (!Idx) 4803 break; 4804 const unsigned ExtIdx = *Idx; 4805 if (ExtIdx != I) { 4806 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4807 break; 4808 ShouldKeepOrder = false; 4809 CurrentOrder[ExtIdx] = I; 4810 } else { 4811 if (CurrentOrder[I] != E) 4812 break; 4813 CurrentOrder[I] = I; 4814 } 4815 } 4816 if (I < E) { 4817 CurrentOrder.clear(); 4818 return false; 4819 } 4820 if (ShouldKeepOrder) 4821 CurrentOrder.clear(); 4822 4823 return ShouldKeepOrder; 4824 } 4825 4826 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4827 ArrayRef<Value *> VectorizedVals) const { 4828 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4829 all_of(I->users(), [this](User *U) { 4830 return ScalarToTreeEntry.count(U) > 0 || 4831 isVectorLikeInstWithConstOps(U) || 4832 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4833 }); 4834 } 4835 4836 static std::pair<InstructionCost, InstructionCost> 4837 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4838 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4839 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4840 4841 // Calculate the cost of the scalar and vector calls. 4842 SmallVector<Type *, 4> VecTys; 4843 for (Use &Arg : CI->args()) 4844 VecTys.push_back( 4845 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4846 FastMathFlags FMF; 4847 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4848 FMF = FPCI->getFastMathFlags(); 4849 SmallVector<const Value *> Arguments(CI->args()); 4850 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4851 dyn_cast<IntrinsicInst>(CI)); 4852 auto IntrinsicCost = 4853 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4854 4855 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4856 VecTy->getNumElements())), 4857 false /*HasGlobalPred*/); 4858 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4859 auto LibCost = IntrinsicCost; 4860 if (!CI->isNoBuiltin() && VecFunc) { 4861 // Calculate the cost of the vector library call. 4862 // If the corresponding vector call is cheaper, return its cost. 4863 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4864 TTI::TCK_RecipThroughput); 4865 } 4866 return {IntrinsicCost, LibCost}; 4867 } 4868 4869 /// Compute the cost of creating a vector of type \p VecTy containing the 4870 /// extracted values from \p VL. 4871 static InstructionCost 4872 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4873 TargetTransformInfo::ShuffleKind ShuffleKind, 4874 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4875 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4876 4877 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4878 VecTy->getNumElements() < NumOfParts) 4879 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4880 4881 bool AllConsecutive = true; 4882 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4883 unsigned Idx = -1; 4884 InstructionCost Cost = 0; 4885 4886 // Process extracts in blocks of EltsPerVector to check if the source vector 4887 // operand can be re-used directly. If not, add the cost of creating a shuffle 4888 // to extract the values into a vector register. 4889 for (auto *V : VL) { 4890 ++Idx; 4891 4892 // Need to exclude undefs from analysis. 4893 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4894 continue; 4895 4896 // Reached the start of a new vector registers. 4897 if (Idx % EltsPerVector == 0) { 4898 AllConsecutive = true; 4899 continue; 4900 } 4901 4902 // Check all extracts for a vector register on the target directly 4903 // extract values in order. 4904 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4905 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4906 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4907 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4908 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4909 } 4910 4911 if (AllConsecutive) 4912 continue; 4913 4914 // Skip all indices, except for the last index per vector block. 4915 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4916 continue; 4917 4918 // If we have a series of extracts which are not consecutive and hence 4919 // cannot re-use the source vector register directly, compute the shuffle 4920 // cost to extract the a vector with EltsPerVector elements. 4921 Cost += TTI.getShuffleCost( 4922 TargetTransformInfo::SK_PermuteSingleSrc, 4923 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4924 } 4925 return Cost; 4926 } 4927 4928 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4929 /// operations operands. 4930 static void 4931 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4932 ArrayRef<int> ReusesIndices, 4933 const function_ref<bool(Instruction *)> IsAltOp, 4934 SmallVectorImpl<int> &Mask, 4935 SmallVectorImpl<Value *> *OpScalars = nullptr, 4936 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4937 unsigned Sz = VL.size(); 4938 Mask.assign(Sz, UndefMaskElem); 4939 SmallVector<int> OrderMask; 4940 if (!ReorderIndices.empty()) 4941 inversePermutation(ReorderIndices, OrderMask); 4942 for (unsigned I = 0; I < Sz; ++I) { 4943 unsigned Idx = I; 4944 if (!ReorderIndices.empty()) 4945 Idx = OrderMask[I]; 4946 auto *OpInst = cast<Instruction>(VL[Idx]); 4947 if (IsAltOp(OpInst)) { 4948 Mask[I] = Sz + Idx; 4949 if (AltScalars) 4950 AltScalars->push_back(OpInst); 4951 } else { 4952 Mask[I] = Idx; 4953 if (OpScalars) 4954 OpScalars->push_back(OpInst); 4955 } 4956 } 4957 if (!ReusesIndices.empty()) { 4958 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4959 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4960 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4961 }); 4962 Mask.swap(NewMask); 4963 } 4964 } 4965 4966 /// Checks if the specified instruction \p I is an alternate operation for the 4967 /// given \p MainOp and \p AltOp instructions. 4968 static bool isAlternateInstruction(const Instruction *I, 4969 const Instruction *MainOp, 4970 const Instruction *AltOp) { 4971 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4972 auto *AltCI0 = cast<CmpInst>(AltOp); 4973 auto *CI = cast<CmpInst>(I); 4974 CmpInst::Predicate P0 = CI0->getPredicate(); 4975 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4976 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4977 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4978 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4979 if (P0 == AltP0Swapped) 4980 return I == AltCI0 || 4981 (I != MainOp && 4982 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4983 CI->getOperand(0), CI->getOperand(1))); 4984 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4985 } 4986 return I->getOpcode() == AltOp->getOpcode(); 4987 } 4988 4989 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4990 ArrayRef<Value *> VectorizedVals) { 4991 ArrayRef<Value*> VL = E->Scalars; 4992 4993 Type *ScalarTy = VL[0]->getType(); 4994 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4995 ScalarTy = SI->getValueOperand()->getType(); 4996 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4997 ScalarTy = CI->getOperand(0)->getType(); 4998 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4999 ScalarTy = IE->getOperand(1)->getType(); 5000 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5001 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5002 5003 // If we have computed a smaller type for the expression, update VecTy so 5004 // that the costs will be accurate. 5005 if (MinBWs.count(VL[0])) 5006 VecTy = FixedVectorType::get( 5007 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5008 unsigned EntryVF = E->getVectorFactor(); 5009 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5010 5011 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5012 // FIXME: it tries to fix a problem with MSVC buildbots. 5013 TargetTransformInfo &TTIRef = *TTI; 5014 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5015 VectorizedVals, E](InstructionCost &Cost) { 5016 DenseMap<Value *, int> ExtractVectorsTys; 5017 SmallPtrSet<Value *, 4> CheckedExtracts; 5018 for (auto *V : VL) { 5019 if (isa<UndefValue>(V)) 5020 continue; 5021 // If all users of instruction are going to be vectorized and this 5022 // instruction itself is not going to be vectorized, consider this 5023 // instruction as dead and remove its cost from the final cost of the 5024 // vectorized tree. 5025 // Also, avoid adjusting the cost for extractelements with multiple uses 5026 // in different graph entries. 5027 const TreeEntry *VE = getTreeEntry(V); 5028 if (!CheckedExtracts.insert(V).second || 5029 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5030 (VE && VE != E)) 5031 continue; 5032 auto *EE = cast<ExtractElementInst>(V); 5033 Optional<unsigned> EEIdx = getExtractIndex(EE); 5034 if (!EEIdx) 5035 continue; 5036 unsigned Idx = *EEIdx; 5037 if (TTIRef.getNumberOfParts(VecTy) != 5038 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5039 auto It = 5040 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5041 It->getSecond() = std::min<int>(It->second, Idx); 5042 } 5043 // Take credit for instruction that will become dead. 5044 if (EE->hasOneUse()) { 5045 Instruction *Ext = EE->user_back(); 5046 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5047 all_of(Ext->users(), 5048 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5049 // Use getExtractWithExtendCost() to calculate the cost of 5050 // extractelement/ext pair. 5051 Cost -= 5052 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5053 EE->getVectorOperandType(), Idx); 5054 // Add back the cost of s|zext which is subtracted separately. 5055 Cost += TTIRef.getCastInstrCost( 5056 Ext->getOpcode(), Ext->getType(), EE->getType(), 5057 TTI::getCastContextHint(Ext), CostKind, Ext); 5058 continue; 5059 } 5060 } 5061 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5062 EE->getVectorOperandType(), Idx); 5063 } 5064 // Add a cost for subvector extracts/inserts if required. 5065 for (const auto &Data : ExtractVectorsTys) { 5066 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5067 unsigned NumElts = VecTy->getNumElements(); 5068 if (Data.second % NumElts == 0) 5069 continue; 5070 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5071 unsigned Idx = (Data.second / NumElts) * NumElts; 5072 unsigned EENumElts = EEVTy->getNumElements(); 5073 if (Idx + NumElts <= EENumElts) { 5074 Cost += 5075 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5076 EEVTy, None, Idx, VecTy); 5077 } else { 5078 // Need to round up the subvector type vectorization factor to avoid a 5079 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5080 // <= EENumElts. 5081 auto *SubVT = 5082 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5083 Cost += 5084 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5085 EEVTy, None, Idx, SubVT); 5086 } 5087 } else { 5088 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5089 VecTy, None, 0, EEVTy); 5090 } 5091 } 5092 }; 5093 if (E->State == TreeEntry::NeedToGather) { 5094 if (allConstant(VL)) 5095 return 0; 5096 if (isa<InsertElementInst>(VL[0])) 5097 return InstructionCost::getInvalid(); 5098 SmallVector<int> Mask; 5099 SmallVector<const TreeEntry *> Entries; 5100 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5101 isGatherShuffledEntry(E, Mask, Entries); 5102 if (Shuffle.hasValue()) { 5103 InstructionCost GatherCost = 0; 5104 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5105 // Perfect match in the graph, will reuse the previously vectorized 5106 // node. Cost is 0. 5107 LLVM_DEBUG( 5108 dbgs() 5109 << "SLP: perfect diamond match for gather bundle that starts with " 5110 << *VL.front() << ".\n"); 5111 if (NeedToShuffleReuses) 5112 GatherCost = 5113 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5114 FinalVecTy, E->ReuseShuffleIndices); 5115 } else { 5116 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5117 << " entries for bundle that starts with " 5118 << *VL.front() << ".\n"); 5119 // Detected that instead of gather we can emit a shuffle of single/two 5120 // previously vectorized nodes. Add the cost of the permutation rather 5121 // than gather. 5122 ::addMask(Mask, E->ReuseShuffleIndices); 5123 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5124 } 5125 return GatherCost; 5126 } 5127 if ((E->getOpcode() == Instruction::ExtractElement || 5128 all_of(E->Scalars, 5129 [](Value *V) { 5130 return isa<ExtractElementInst, UndefValue>(V); 5131 })) && 5132 allSameType(VL)) { 5133 // Check that gather of extractelements can be represented as just a 5134 // shuffle of a single/two vectors the scalars are extracted from. 5135 SmallVector<int> Mask; 5136 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5137 isFixedVectorShuffle(VL, Mask); 5138 if (ShuffleKind.hasValue()) { 5139 // Found the bunch of extractelement instructions that must be gathered 5140 // into a vector and can be represented as a permutation elements in a 5141 // single input vector or of 2 input vectors. 5142 InstructionCost Cost = 5143 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5144 AdjustExtractsCost(Cost); 5145 if (NeedToShuffleReuses) 5146 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5147 FinalVecTy, E->ReuseShuffleIndices); 5148 return Cost; 5149 } 5150 } 5151 if (isSplat(VL)) { 5152 // Found the broadcasting of the single scalar, calculate the cost as the 5153 // broadcast. 5154 assert(VecTy == FinalVecTy && 5155 "No reused scalars expected for broadcast."); 5156 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5157 } 5158 InstructionCost ReuseShuffleCost = 0; 5159 if (NeedToShuffleReuses) 5160 ReuseShuffleCost = TTI->getShuffleCost( 5161 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5162 // Improve gather cost for gather of loads, if we can group some of the 5163 // loads into vector loads. 5164 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5165 !E->isAltShuffle()) { 5166 BoUpSLP::ValueSet VectorizedLoads; 5167 unsigned StartIdx = 0; 5168 unsigned VF = VL.size() / 2; 5169 unsigned VectorizedCnt = 0; 5170 unsigned ScatterVectorizeCnt = 0; 5171 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5172 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5173 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5174 Cnt += VF) { 5175 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5176 if (!VectorizedLoads.count(Slice.front()) && 5177 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5178 SmallVector<Value *> PointerOps; 5179 OrdersType CurrentOrder; 5180 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5181 *SE, CurrentOrder, PointerOps); 5182 switch (LS) { 5183 case LoadsState::Vectorize: 5184 case LoadsState::ScatterVectorize: 5185 // Mark the vectorized loads so that we don't vectorize them 5186 // again. 5187 if (LS == LoadsState::Vectorize) 5188 ++VectorizedCnt; 5189 else 5190 ++ScatterVectorizeCnt; 5191 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5192 // If we vectorized initial block, no need to try to vectorize it 5193 // again. 5194 if (Cnt == StartIdx) 5195 StartIdx += VF; 5196 break; 5197 case LoadsState::Gather: 5198 break; 5199 } 5200 } 5201 } 5202 // Check if the whole array was vectorized already - exit. 5203 if (StartIdx >= VL.size()) 5204 break; 5205 // Found vectorizable parts - exit. 5206 if (!VectorizedLoads.empty()) 5207 break; 5208 } 5209 if (!VectorizedLoads.empty()) { 5210 InstructionCost GatherCost = 0; 5211 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5212 bool NeedInsertSubvectorAnalysis = 5213 !NumParts || (VL.size() / VF) > NumParts; 5214 // Get the cost for gathered loads. 5215 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5216 if (VectorizedLoads.contains(VL[I])) 5217 continue; 5218 GatherCost += getGatherCost(VL.slice(I, VF)); 5219 } 5220 // The cost for vectorized loads. 5221 InstructionCost ScalarsCost = 0; 5222 for (Value *V : VectorizedLoads) { 5223 auto *LI = cast<LoadInst>(V); 5224 ScalarsCost += TTI->getMemoryOpCost( 5225 Instruction::Load, LI->getType(), LI->getAlign(), 5226 LI->getPointerAddressSpace(), CostKind, LI); 5227 } 5228 auto *LI = cast<LoadInst>(E->getMainOp()); 5229 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5230 Align Alignment = LI->getAlign(); 5231 GatherCost += 5232 VectorizedCnt * 5233 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5234 LI->getPointerAddressSpace(), CostKind, LI); 5235 GatherCost += ScatterVectorizeCnt * 5236 TTI->getGatherScatterOpCost( 5237 Instruction::Load, LoadTy, LI->getPointerOperand(), 5238 /*VariableMask=*/false, Alignment, CostKind, LI); 5239 if (NeedInsertSubvectorAnalysis) { 5240 // Add the cost for the subvectors insert. 5241 for (int I = VF, E = VL.size(); I < E; I += VF) 5242 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5243 None, I, LoadTy); 5244 } 5245 return ReuseShuffleCost + GatherCost - ScalarsCost; 5246 } 5247 } 5248 return ReuseShuffleCost + getGatherCost(VL); 5249 } 5250 InstructionCost CommonCost = 0; 5251 SmallVector<int> Mask; 5252 if (!E->ReorderIndices.empty()) { 5253 SmallVector<int> NewMask; 5254 if (E->getOpcode() == Instruction::Store) { 5255 // For stores the order is actually a mask. 5256 NewMask.resize(E->ReorderIndices.size()); 5257 copy(E->ReorderIndices, NewMask.begin()); 5258 } else { 5259 inversePermutation(E->ReorderIndices, NewMask); 5260 } 5261 ::addMask(Mask, NewMask); 5262 } 5263 if (NeedToShuffleReuses) 5264 ::addMask(Mask, E->ReuseShuffleIndices); 5265 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5266 CommonCost = 5267 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5268 assert((E->State == TreeEntry::Vectorize || 5269 E->State == TreeEntry::ScatterVectorize) && 5270 "Unhandled state"); 5271 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5272 Instruction *VL0 = E->getMainOp(); 5273 unsigned ShuffleOrOp = 5274 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5275 switch (ShuffleOrOp) { 5276 case Instruction::PHI: 5277 return 0; 5278 5279 case Instruction::ExtractValue: 5280 case Instruction::ExtractElement: { 5281 // The common cost of removal ExtractElement/ExtractValue instructions + 5282 // the cost of shuffles, if required to resuffle the original vector. 5283 if (NeedToShuffleReuses) { 5284 unsigned Idx = 0; 5285 for (unsigned I : E->ReuseShuffleIndices) { 5286 if (ShuffleOrOp == Instruction::ExtractElement) { 5287 auto *EE = cast<ExtractElementInst>(VL[I]); 5288 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5289 EE->getVectorOperandType(), 5290 *getExtractIndex(EE)); 5291 } else { 5292 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5293 VecTy, Idx); 5294 ++Idx; 5295 } 5296 } 5297 Idx = EntryVF; 5298 for (Value *V : VL) { 5299 if (ShuffleOrOp == Instruction::ExtractElement) { 5300 auto *EE = cast<ExtractElementInst>(V); 5301 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5302 EE->getVectorOperandType(), 5303 *getExtractIndex(EE)); 5304 } else { 5305 --Idx; 5306 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5307 VecTy, Idx); 5308 } 5309 } 5310 } 5311 if (ShuffleOrOp == Instruction::ExtractValue) { 5312 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5313 auto *EI = cast<Instruction>(VL[I]); 5314 // Take credit for instruction that will become dead. 5315 if (EI->hasOneUse()) { 5316 Instruction *Ext = EI->user_back(); 5317 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5318 all_of(Ext->users(), 5319 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5320 // Use getExtractWithExtendCost() to calculate the cost of 5321 // extractelement/ext pair. 5322 CommonCost -= TTI->getExtractWithExtendCost( 5323 Ext->getOpcode(), Ext->getType(), VecTy, I); 5324 // Add back the cost of s|zext which is subtracted separately. 5325 CommonCost += TTI->getCastInstrCost( 5326 Ext->getOpcode(), Ext->getType(), EI->getType(), 5327 TTI::getCastContextHint(Ext), CostKind, Ext); 5328 continue; 5329 } 5330 } 5331 CommonCost -= 5332 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5333 } 5334 } else { 5335 AdjustExtractsCost(CommonCost); 5336 } 5337 return CommonCost; 5338 } 5339 case Instruction::InsertElement: { 5340 assert(E->ReuseShuffleIndices.empty() && 5341 "Unique insertelements only are expected."); 5342 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5343 5344 unsigned const NumElts = SrcVecTy->getNumElements(); 5345 unsigned const NumScalars = VL.size(); 5346 APInt DemandedElts = APInt::getZero(NumElts); 5347 // TODO: Add support for Instruction::InsertValue. 5348 SmallVector<int> Mask; 5349 if (!E->ReorderIndices.empty()) { 5350 inversePermutation(E->ReorderIndices, Mask); 5351 Mask.append(NumElts - NumScalars, UndefMaskElem); 5352 } else { 5353 Mask.assign(NumElts, UndefMaskElem); 5354 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5355 } 5356 unsigned Offset = *getInsertIndex(VL0); 5357 bool IsIdentity = true; 5358 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5359 Mask.swap(PrevMask); 5360 for (unsigned I = 0; I < NumScalars; ++I) { 5361 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5362 DemandedElts.setBit(InsertIdx); 5363 IsIdentity &= InsertIdx - Offset == I; 5364 Mask[InsertIdx - Offset] = I; 5365 } 5366 assert(Offset < NumElts && "Failed to find vector index offset"); 5367 5368 InstructionCost Cost = 0; 5369 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5370 /*Insert*/ true, /*Extract*/ false); 5371 5372 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5373 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5374 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5375 Cost += TTI->getShuffleCost( 5376 TargetTransformInfo::SK_PermuteSingleSrc, 5377 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5378 } else if (!IsIdentity) { 5379 auto *FirstInsert = 5380 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5381 return !is_contained(E->Scalars, 5382 cast<Instruction>(V)->getOperand(0)); 5383 })); 5384 if (isUndefVector(FirstInsert->getOperand(0))) { 5385 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5386 } else { 5387 SmallVector<int> InsertMask(NumElts); 5388 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5389 for (unsigned I = 0; I < NumElts; I++) { 5390 if (Mask[I] != UndefMaskElem) 5391 InsertMask[Offset + I] = NumElts + I; 5392 } 5393 Cost += 5394 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5395 } 5396 } 5397 5398 return Cost; 5399 } 5400 case Instruction::ZExt: 5401 case Instruction::SExt: 5402 case Instruction::FPToUI: 5403 case Instruction::FPToSI: 5404 case Instruction::FPExt: 5405 case Instruction::PtrToInt: 5406 case Instruction::IntToPtr: 5407 case Instruction::SIToFP: 5408 case Instruction::UIToFP: 5409 case Instruction::Trunc: 5410 case Instruction::FPTrunc: 5411 case Instruction::BitCast: { 5412 Type *SrcTy = VL0->getOperand(0)->getType(); 5413 InstructionCost ScalarEltCost = 5414 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5415 TTI::getCastContextHint(VL0), CostKind, VL0); 5416 if (NeedToShuffleReuses) { 5417 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5418 } 5419 5420 // Calculate the cost of this instruction. 5421 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5422 5423 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5424 InstructionCost VecCost = 0; 5425 // Check if the values are candidates to demote. 5426 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5427 VecCost = CommonCost + TTI->getCastInstrCost( 5428 E->getOpcode(), VecTy, SrcVecTy, 5429 TTI::getCastContextHint(VL0), CostKind, VL0); 5430 } 5431 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5432 return VecCost - ScalarCost; 5433 } 5434 case Instruction::FCmp: 5435 case Instruction::ICmp: 5436 case Instruction::Select: { 5437 // Calculate the cost of this instruction. 5438 InstructionCost ScalarEltCost = 5439 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5440 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5441 if (NeedToShuffleReuses) { 5442 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5443 } 5444 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5445 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5446 5447 // Check if all entries in VL are either compares or selects with compares 5448 // as condition that have the same predicates. 5449 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5450 bool First = true; 5451 for (auto *V : VL) { 5452 CmpInst::Predicate CurrentPred; 5453 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5454 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5455 !match(V, MatchCmp)) || 5456 (!First && VecPred != CurrentPred)) { 5457 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5458 break; 5459 } 5460 First = false; 5461 VecPred = CurrentPred; 5462 } 5463 5464 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5465 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5466 // Check if it is possible and profitable to use min/max for selects in 5467 // VL. 5468 // 5469 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5470 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5471 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5472 {VecTy, VecTy}); 5473 InstructionCost IntrinsicCost = 5474 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5475 // If the selects are the only uses of the compares, they will be dead 5476 // and we can adjust the cost by removing their cost. 5477 if (IntrinsicAndUse.second) 5478 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5479 MaskTy, VecPred, CostKind); 5480 VecCost = std::min(VecCost, IntrinsicCost); 5481 } 5482 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5483 return CommonCost + VecCost - ScalarCost; 5484 } 5485 case Instruction::FNeg: 5486 case Instruction::Add: 5487 case Instruction::FAdd: 5488 case Instruction::Sub: 5489 case Instruction::FSub: 5490 case Instruction::Mul: 5491 case Instruction::FMul: 5492 case Instruction::UDiv: 5493 case Instruction::SDiv: 5494 case Instruction::FDiv: 5495 case Instruction::URem: 5496 case Instruction::SRem: 5497 case Instruction::FRem: 5498 case Instruction::Shl: 5499 case Instruction::LShr: 5500 case Instruction::AShr: 5501 case Instruction::And: 5502 case Instruction::Or: 5503 case Instruction::Xor: { 5504 // Certain instructions can be cheaper to vectorize if they have a 5505 // constant second vector operand. 5506 TargetTransformInfo::OperandValueKind Op1VK = 5507 TargetTransformInfo::OK_AnyValue; 5508 TargetTransformInfo::OperandValueKind Op2VK = 5509 TargetTransformInfo::OK_UniformConstantValue; 5510 TargetTransformInfo::OperandValueProperties Op1VP = 5511 TargetTransformInfo::OP_None; 5512 TargetTransformInfo::OperandValueProperties Op2VP = 5513 TargetTransformInfo::OP_PowerOf2; 5514 5515 // If all operands are exactly the same ConstantInt then set the 5516 // operand kind to OK_UniformConstantValue. 5517 // If instead not all operands are constants, then set the operand kind 5518 // to OK_AnyValue. If all operands are constants but not the same, 5519 // then set the operand kind to OK_NonUniformConstantValue. 5520 ConstantInt *CInt0 = nullptr; 5521 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5522 const Instruction *I = cast<Instruction>(VL[i]); 5523 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5524 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5525 if (!CInt) { 5526 Op2VK = TargetTransformInfo::OK_AnyValue; 5527 Op2VP = TargetTransformInfo::OP_None; 5528 break; 5529 } 5530 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5531 !CInt->getValue().isPowerOf2()) 5532 Op2VP = TargetTransformInfo::OP_None; 5533 if (i == 0) { 5534 CInt0 = CInt; 5535 continue; 5536 } 5537 if (CInt0 != CInt) 5538 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5539 } 5540 5541 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5542 InstructionCost ScalarEltCost = 5543 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5544 Op2VK, Op1VP, Op2VP, Operands, VL0); 5545 if (NeedToShuffleReuses) { 5546 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5547 } 5548 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5549 InstructionCost VecCost = 5550 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5551 Op2VK, Op1VP, Op2VP, Operands, VL0); 5552 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5553 return CommonCost + VecCost - ScalarCost; 5554 } 5555 case Instruction::GetElementPtr: { 5556 TargetTransformInfo::OperandValueKind Op1VK = 5557 TargetTransformInfo::OK_AnyValue; 5558 TargetTransformInfo::OperandValueKind Op2VK = 5559 TargetTransformInfo::OK_UniformConstantValue; 5560 5561 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5562 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5563 if (NeedToShuffleReuses) { 5564 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5565 } 5566 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5567 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5568 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5569 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5570 return CommonCost + VecCost - ScalarCost; 5571 } 5572 case Instruction::Load: { 5573 // Cost of wide load - cost of scalar loads. 5574 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5575 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5576 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5577 if (NeedToShuffleReuses) { 5578 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5579 } 5580 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5581 InstructionCost VecLdCost; 5582 if (E->State == TreeEntry::Vectorize) { 5583 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5584 CostKind, VL0); 5585 } else { 5586 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5587 Align CommonAlignment = Alignment; 5588 for (Value *V : VL) 5589 CommonAlignment = 5590 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5591 VecLdCost = TTI->getGatherScatterOpCost( 5592 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5593 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5594 } 5595 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5596 return CommonCost + VecLdCost - ScalarLdCost; 5597 } 5598 case Instruction::Store: { 5599 // We know that we can merge the stores. Calculate the cost. 5600 bool IsReorder = !E->ReorderIndices.empty(); 5601 auto *SI = 5602 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5603 Align Alignment = SI->getAlign(); 5604 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5605 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5606 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5607 InstructionCost VecStCost = TTI->getMemoryOpCost( 5608 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5609 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5610 return CommonCost + VecStCost - ScalarStCost; 5611 } 5612 case Instruction::Call: { 5613 CallInst *CI = cast<CallInst>(VL0); 5614 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5615 5616 // Calculate the cost of the scalar and vector calls. 5617 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5618 InstructionCost ScalarEltCost = 5619 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5620 if (NeedToShuffleReuses) { 5621 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5622 } 5623 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5624 5625 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5626 InstructionCost VecCallCost = 5627 std::min(VecCallCosts.first, VecCallCosts.second); 5628 5629 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5630 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5631 << " for " << *CI << "\n"); 5632 5633 return CommonCost + VecCallCost - ScalarCallCost; 5634 } 5635 case Instruction::ShuffleVector: { 5636 assert(E->isAltShuffle() && 5637 ((Instruction::isBinaryOp(E->getOpcode()) && 5638 Instruction::isBinaryOp(E->getAltOpcode())) || 5639 (Instruction::isCast(E->getOpcode()) && 5640 Instruction::isCast(E->getAltOpcode())) || 5641 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5642 "Invalid Shuffle Vector Operand"); 5643 InstructionCost ScalarCost = 0; 5644 if (NeedToShuffleReuses) { 5645 for (unsigned Idx : E->ReuseShuffleIndices) { 5646 Instruction *I = cast<Instruction>(VL[Idx]); 5647 CommonCost -= TTI->getInstructionCost(I, CostKind); 5648 } 5649 for (Value *V : VL) { 5650 Instruction *I = cast<Instruction>(V); 5651 CommonCost += TTI->getInstructionCost(I, CostKind); 5652 } 5653 } 5654 for (Value *V : VL) { 5655 Instruction *I = cast<Instruction>(V); 5656 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5657 ScalarCost += TTI->getInstructionCost(I, CostKind); 5658 } 5659 // VecCost is equal to sum of the cost of creating 2 vectors 5660 // and the cost of creating shuffle. 5661 InstructionCost VecCost = 0; 5662 // Try to find the previous shuffle node with the same operands and same 5663 // main/alternate ops. 5664 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5665 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5666 if (TE.get() == E) 5667 break; 5668 if (TE->isAltShuffle() && 5669 ((TE->getOpcode() == E->getOpcode() && 5670 TE->getAltOpcode() == E->getAltOpcode()) || 5671 (TE->getOpcode() == E->getAltOpcode() && 5672 TE->getAltOpcode() == E->getOpcode())) && 5673 TE->hasEqualOperands(*E)) 5674 return true; 5675 } 5676 return false; 5677 }; 5678 if (TryFindNodeWithEqualOperands()) { 5679 LLVM_DEBUG({ 5680 dbgs() << "SLP: diamond match for alternate node found.\n"; 5681 E->dump(); 5682 }); 5683 // No need to add new vector costs here since we're going to reuse 5684 // same main/alternate vector ops, just do different shuffling. 5685 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5686 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5687 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5688 CostKind); 5689 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5690 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5691 Builder.getInt1Ty(), 5692 CI0->getPredicate(), CostKind, VL0); 5693 VecCost += TTI->getCmpSelInstrCost( 5694 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5695 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5696 E->getAltOp()); 5697 } else { 5698 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5699 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5700 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5701 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5702 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5703 TTI::CastContextHint::None, CostKind); 5704 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5705 TTI::CastContextHint::None, CostKind); 5706 } 5707 5708 SmallVector<int> Mask; 5709 buildShuffleEntryMask( 5710 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5711 [E](Instruction *I) { 5712 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5713 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5714 }, 5715 Mask); 5716 CommonCost = 5717 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5718 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5719 return CommonCost + VecCost - ScalarCost; 5720 } 5721 default: 5722 llvm_unreachable("Unknown instruction"); 5723 } 5724 } 5725 5726 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5727 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5728 << VectorizableTree.size() << " is fully vectorizable .\n"); 5729 5730 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5731 SmallVector<int> Mask; 5732 return TE->State == TreeEntry::NeedToGather && 5733 !any_of(TE->Scalars, 5734 [this](Value *V) { return EphValues.contains(V); }) && 5735 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5736 TE->Scalars.size() < Limit || 5737 ((TE->getOpcode() == Instruction::ExtractElement || 5738 all_of(TE->Scalars, 5739 [](Value *V) { 5740 return isa<ExtractElementInst, UndefValue>(V); 5741 })) && 5742 isFixedVectorShuffle(TE->Scalars, Mask)) || 5743 (TE->State == TreeEntry::NeedToGather && 5744 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5745 }; 5746 5747 // We only handle trees of heights 1 and 2. 5748 if (VectorizableTree.size() == 1 && 5749 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5750 (ForReduction && 5751 AreVectorizableGathers(VectorizableTree[0].get(), 5752 VectorizableTree[0]->Scalars.size()) && 5753 VectorizableTree[0]->getVectorFactor() > 2))) 5754 return true; 5755 5756 if (VectorizableTree.size() != 2) 5757 return false; 5758 5759 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5760 // with the second gather nodes if they have less scalar operands rather than 5761 // the initial tree element (may be profitable to shuffle the second gather) 5762 // or they are extractelements, which form shuffle. 5763 SmallVector<int> Mask; 5764 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5765 AreVectorizableGathers(VectorizableTree[1].get(), 5766 VectorizableTree[0]->Scalars.size())) 5767 return true; 5768 5769 // Gathering cost would be too much for tiny trees. 5770 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5771 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5772 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5773 return false; 5774 5775 return true; 5776 } 5777 5778 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5779 TargetTransformInfo *TTI, 5780 bool MustMatchOrInst) { 5781 // Look past the root to find a source value. Arbitrarily follow the 5782 // path through operand 0 of any 'or'. Also, peek through optional 5783 // shift-left-by-multiple-of-8-bits. 5784 Value *ZextLoad = Root; 5785 const APInt *ShAmtC; 5786 bool FoundOr = false; 5787 while (!isa<ConstantExpr>(ZextLoad) && 5788 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5789 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5790 ShAmtC->urem(8) == 0))) { 5791 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5792 ZextLoad = BinOp->getOperand(0); 5793 if (BinOp->getOpcode() == Instruction::Or) 5794 FoundOr = true; 5795 } 5796 // Check if the input is an extended load of the required or/shift expression. 5797 Value *Load; 5798 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5799 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5800 return false; 5801 5802 // Require that the total load bit width is a legal integer type. 5803 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5804 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5805 Type *SrcTy = Load->getType(); 5806 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5807 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5808 return false; 5809 5810 // Everything matched - assume that we can fold the whole sequence using 5811 // load combining. 5812 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5813 << *(cast<Instruction>(Root)) << "\n"); 5814 5815 return true; 5816 } 5817 5818 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5819 if (RdxKind != RecurKind::Or) 5820 return false; 5821 5822 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5823 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5824 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5825 /* MatchOr */ false); 5826 } 5827 5828 bool BoUpSLP::isLoadCombineCandidate() const { 5829 // Peek through a final sequence of stores and check if all operations are 5830 // likely to be load-combined. 5831 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5832 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5833 Value *X; 5834 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5835 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5836 return false; 5837 } 5838 return true; 5839 } 5840 5841 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5842 // No need to vectorize inserts of gathered values. 5843 if (VectorizableTree.size() == 2 && 5844 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5845 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5846 return true; 5847 5848 // We can vectorize the tree if its size is greater than or equal to the 5849 // minimum size specified by the MinTreeSize command line option. 5850 if (VectorizableTree.size() >= MinTreeSize) 5851 return false; 5852 5853 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5854 // can vectorize it if we can prove it fully vectorizable. 5855 if (isFullyVectorizableTinyTree(ForReduction)) 5856 return false; 5857 5858 assert(VectorizableTree.empty() 5859 ? ExternalUses.empty() 5860 : true && "We shouldn't have any external users"); 5861 5862 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5863 // vectorizable. 5864 return true; 5865 } 5866 5867 InstructionCost BoUpSLP::getSpillCost() const { 5868 // Walk from the bottom of the tree to the top, tracking which values are 5869 // live. When we see a call instruction that is not part of our tree, 5870 // query TTI to see if there is a cost to keeping values live over it 5871 // (for example, if spills and fills are required). 5872 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5873 InstructionCost Cost = 0; 5874 5875 SmallPtrSet<Instruction*, 4> LiveValues; 5876 Instruction *PrevInst = nullptr; 5877 5878 // The entries in VectorizableTree are not necessarily ordered by their 5879 // position in basic blocks. Collect them and order them by dominance so later 5880 // instructions are guaranteed to be visited first. For instructions in 5881 // different basic blocks, we only scan to the beginning of the block, so 5882 // their order does not matter, as long as all instructions in a basic block 5883 // are grouped together. Using dominance ensures a deterministic order. 5884 SmallVector<Instruction *, 16> OrderedScalars; 5885 for (const auto &TEPtr : VectorizableTree) { 5886 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5887 if (!Inst) 5888 continue; 5889 OrderedScalars.push_back(Inst); 5890 } 5891 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5892 auto *NodeA = DT->getNode(A->getParent()); 5893 auto *NodeB = DT->getNode(B->getParent()); 5894 assert(NodeA && "Should only process reachable instructions"); 5895 assert(NodeB && "Should only process reachable instructions"); 5896 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5897 "Different nodes should have different DFS numbers"); 5898 if (NodeA != NodeB) 5899 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5900 return B->comesBefore(A); 5901 }); 5902 5903 for (Instruction *Inst : OrderedScalars) { 5904 if (!PrevInst) { 5905 PrevInst = Inst; 5906 continue; 5907 } 5908 5909 // Update LiveValues. 5910 LiveValues.erase(PrevInst); 5911 for (auto &J : PrevInst->operands()) { 5912 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5913 LiveValues.insert(cast<Instruction>(&*J)); 5914 } 5915 5916 LLVM_DEBUG({ 5917 dbgs() << "SLP: #LV: " << LiveValues.size(); 5918 for (auto *X : LiveValues) 5919 dbgs() << " " << X->getName(); 5920 dbgs() << ", Looking at "; 5921 Inst->dump(); 5922 }); 5923 5924 // Now find the sequence of instructions between PrevInst and Inst. 5925 unsigned NumCalls = 0; 5926 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5927 PrevInstIt = 5928 PrevInst->getIterator().getReverse(); 5929 while (InstIt != PrevInstIt) { 5930 if (PrevInstIt == PrevInst->getParent()->rend()) { 5931 PrevInstIt = Inst->getParent()->rbegin(); 5932 continue; 5933 } 5934 5935 // Debug information does not impact spill cost. 5936 if ((isa<CallInst>(&*PrevInstIt) && 5937 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5938 &*PrevInstIt != PrevInst) 5939 NumCalls++; 5940 5941 ++PrevInstIt; 5942 } 5943 5944 if (NumCalls) { 5945 SmallVector<Type*, 4> V; 5946 for (auto *II : LiveValues) { 5947 auto *ScalarTy = II->getType(); 5948 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5949 ScalarTy = VectorTy->getElementType(); 5950 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5951 } 5952 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5953 } 5954 5955 PrevInst = Inst; 5956 } 5957 5958 return Cost; 5959 } 5960 5961 /// Check if two insertelement instructions are from the same buildvector. 5962 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5963 InsertElementInst *V) { 5964 // Instructions must be from the same basic blocks. 5965 if (VU->getParent() != V->getParent()) 5966 return false; 5967 // Checks if 2 insertelements are from the same buildvector. 5968 if (VU->getType() != V->getType()) 5969 return false; 5970 // Multiple used inserts are separate nodes. 5971 if (!VU->hasOneUse() && !V->hasOneUse()) 5972 return false; 5973 auto *IE1 = VU; 5974 auto *IE2 = V; 5975 // Go through the vector operand of insertelement instructions trying to find 5976 // either VU as the original vector for IE2 or V as the original vector for 5977 // IE1. 5978 do { 5979 if (IE2 == VU || IE1 == V) 5980 return true; 5981 if (IE1) { 5982 if (IE1 != VU && !IE1->hasOneUse()) 5983 IE1 = nullptr; 5984 else 5985 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5986 } 5987 if (IE2) { 5988 if (IE2 != V && !IE2->hasOneUse()) 5989 IE2 = nullptr; 5990 else 5991 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5992 } 5993 } while (IE1 || IE2); 5994 return false; 5995 } 5996 5997 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5998 InstructionCost Cost = 0; 5999 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6000 << VectorizableTree.size() << ".\n"); 6001 6002 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6003 6004 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6005 TreeEntry &TE = *VectorizableTree[I].get(); 6006 6007 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6008 Cost += C; 6009 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6010 << " for bundle that starts with " << *TE.Scalars[0] 6011 << ".\n" 6012 << "SLP: Current total cost = " << Cost << "\n"); 6013 } 6014 6015 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6016 InstructionCost ExtractCost = 0; 6017 SmallVector<unsigned> VF; 6018 SmallVector<SmallVector<int>> ShuffleMask; 6019 SmallVector<Value *> FirstUsers; 6020 SmallVector<APInt> DemandedElts; 6021 for (ExternalUser &EU : ExternalUses) { 6022 // We only add extract cost once for the same scalar. 6023 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6024 !ExtractCostCalculated.insert(EU.Scalar).second) 6025 continue; 6026 6027 // Uses by ephemeral values are free (because the ephemeral value will be 6028 // removed prior to code generation, and so the extraction will be 6029 // removed as well). 6030 if (EphValues.count(EU.User)) 6031 continue; 6032 6033 // No extract cost for vector "scalar" 6034 if (isa<FixedVectorType>(EU.Scalar->getType())) 6035 continue; 6036 6037 // Already counted the cost for external uses when tried to adjust the cost 6038 // for extractelements, no need to add it again. 6039 if (isa<ExtractElementInst>(EU.Scalar)) 6040 continue; 6041 6042 // If found user is an insertelement, do not calculate extract cost but try 6043 // to detect it as a final shuffled/identity match. 6044 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6045 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6046 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6047 if (InsertIdx) { 6048 auto *It = find_if(FirstUsers, [VU](Value *V) { 6049 return areTwoInsertFromSameBuildVector(VU, 6050 cast<InsertElementInst>(V)); 6051 }); 6052 int VecId = -1; 6053 if (It == FirstUsers.end()) { 6054 VF.push_back(FTy->getNumElements()); 6055 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6056 // Find the insertvector, vectorized in tree, if any. 6057 Value *Base = VU; 6058 while (isa<InsertElementInst>(Base)) { 6059 // Build the mask for the vectorized insertelement instructions. 6060 if (const TreeEntry *E = getTreeEntry(Base)) { 6061 VU = cast<InsertElementInst>(Base); 6062 do { 6063 int Idx = E->findLaneForValue(Base); 6064 ShuffleMask.back()[Idx] = Idx; 6065 Base = cast<InsertElementInst>(Base)->getOperand(0); 6066 } while (E == getTreeEntry(Base)); 6067 break; 6068 } 6069 Base = cast<InsertElementInst>(Base)->getOperand(0); 6070 } 6071 FirstUsers.push_back(VU); 6072 DemandedElts.push_back(APInt::getZero(VF.back())); 6073 VecId = FirstUsers.size() - 1; 6074 } else { 6075 VecId = std::distance(FirstUsers.begin(), It); 6076 } 6077 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6078 DemandedElts[VecId].setBit(*InsertIdx); 6079 continue; 6080 } 6081 } 6082 } 6083 6084 // If we plan to rewrite the tree in a smaller type, we will need to sign 6085 // extend the extracted value back to the original type. Here, we account 6086 // for the extract and the added cost of the sign extend if needed. 6087 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6088 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6089 if (MinBWs.count(ScalarRoot)) { 6090 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6091 auto Extend = 6092 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6093 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6094 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6095 VecTy, EU.Lane); 6096 } else { 6097 ExtractCost += 6098 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6099 } 6100 } 6101 6102 InstructionCost SpillCost = getSpillCost(); 6103 Cost += SpillCost + ExtractCost; 6104 if (FirstUsers.size() == 1) { 6105 int Limit = ShuffleMask.front().size() * 2; 6106 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6107 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6108 InstructionCost C = TTI->getShuffleCost( 6109 TTI::SK_PermuteSingleSrc, 6110 cast<FixedVectorType>(FirstUsers.front()->getType()), 6111 ShuffleMask.front()); 6112 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6113 << " for final shuffle of insertelement external users " 6114 << *VectorizableTree.front()->Scalars.front() << ".\n" 6115 << "SLP: Current total cost = " << Cost << "\n"); 6116 Cost += C; 6117 } 6118 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6119 cast<FixedVectorType>(FirstUsers.front()->getType()), 6120 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6121 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6122 << " for insertelements gather.\n" 6123 << "SLP: Current total cost = " << Cost << "\n"); 6124 Cost -= InsertCost; 6125 } else if (FirstUsers.size() >= 2) { 6126 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6127 // Combined masks of the first 2 vectors. 6128 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6129 copy(ShuffleMask.front(), CombinedMask.begin()); 6130 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6131 auto *VecTy = FixedVectorType::get( 6132 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6133 MaxVF); 6134 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6135 if (ShuffleMask[1][I] != UndefMaskElem) { 6136 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6137 CombinedDemandedElts.setBit(I); 6138 } 6139 } 6140 InstructionCost C = 6141 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6142 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6143 << " for final shuffle of vector node and external " 6144 "insertelement users " 6145 << *VectorizableTree.front()->Scalars.front() << ".\n" 6146 << "SLP: Current total cost = " << Cost << "\n"); 6147 Cost += C; 6148 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6149 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6150 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6151 << " for insertelements gather.\n" 6152 << "SLP: Current total cost = " << Cost << "\n"); 6153 Cost -= InsertCost; 6154 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6155 // Other elements - permutation of 2 vectors (the initial one and the 6156 // next Ith incoming vector). 6157 unsigned VF = ShuffleMask[I].size(); 6158 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6159 int Mask = ShuffleMask[I][Idx]; 6160 if (Mask != UndefMaskElem) 6161 CombinedMask[Idx] = MaxVF + Mask; 6162 else if (CombinedMask[Idx] != UndefMaskElem) 6163 CombinedMask[Idx] = Idx; 6164 } 6165 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6166 if (CombinedMask[Idx] != UndefMaskElem) 6167 CombinedMask[Idx] = Idx; 6168 InstructionCost C = 6169 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6170 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6171 << " for final shuffle of vector node and external " 6172 "insertelement users " 6173 << *VectorizableTree.front()->Scalars.front() << ".\n" 6174 << "SLP: Current total cost = " << Cost << "\n"); 6175 Cost += C; 6176 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6177 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6178 /*Insert*/ true, /*Extract*/ false); 6179 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6180 << " for insertelements gather.\n" 6181 << "SLP: Current total cost = " << Cost << "\n"); 6182 Cost -= InsertCost; 6183 } 6184 } 6185 6186 #ifndef NDEBUG 6187 SmallString<256> Str; 6188 { 6189 raw_svector_ostream OS(Str); 6190 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6191 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6192 << "SLP: Total Cost = " << Cost << ".\n"; 6193 } 6194 LLVM_DEBUG(dbgs() << Str); 6195 if (ViewSLPTree) 6196 ViewGraph(this, "SLP" + F->getName(), false, Str); 6197 #endif 6198 6199 return Cost; 6200 } 6201 6202 Optional<TargetTransformInfo::ShuffleKind> 6203 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6204 SmallVectorImpl<const TreeEntry *> &Entries) { 6205 // TODO: currently checking only for Scalars in the tree entry, need to count 6206 // reused elements too for better cost estimation. 6207 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6208 Entries.clear(); 6209 // Build a lists of values to tree entries. 6210 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6211 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6212 if (EntryPtr.get() == TE) 6213 break; 6214 if (EntryPtr->State != TreeEntry::NeedToGather) 6215 continue; 6216 for (Value *V : EntryPtr->Scalars) 6217 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6218 } 6219 // Find all tree entries used by the gathered values. If no common entries 6220 // found - not a shuffle. 6221 // Here we build a set of tree nodes for each gathered value and trying to 6222 // find the intersection between these sets. If we have at least one common 6223 // tree node for each gathered value - we have just a permutation of the 6224 // single vector. If we have 2 different sets, we're in situation where we 6225 // have a permutation of 2 input vectors. 6226 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6227 DenseMap<Value *, int> UsedValuesEntry; 6228 for (Value *V : TE->Scalars) { 6229 if (isa<UndefValue>(V)) 6230 continue; 6231 // Build a list of tree entries where V is used. 6232 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6233 auto It = ValueToTEs.find(V); 6234 if (It != ValueToTEs.end()) 6235 VToTEs = It->second; 6236 if (const TreeEntry *VTE = getTreeEntry(V)) 6237 VToTEs.insert(VTE); 6238 if (VToTEs.empty()) 6239 return None; 6240 if (UsedTEs.empty()) { 6241 // The first iteration, just insert the list of nodes to vector. 6242 UsedTEs.push_back(VToTEs); 6243 } else { 6244 // Need to check if there are any previously used tree nodes which use V. 6245 // If there are no such nodes, consider that we have another one input 6246 // vector. 6247 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6248 unsigned Idx = 0; 6249 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6250 // Do we have a non-empty intersection of previously listed tree entries 6251 // and tree entries using current V? 6252 set_intersect(VToTEs, Set); 6253 if (!VToTEs.empty()) { 6254 // Yes, write the new subset and continue analysis for the next 6255 // scalar. 6256 Set.swap(VToTEs); 6257 break; 6258 } 6259 VToTEs = SavedVToTEs; 6260 ++Idx; 6261 } 6262 // No non-empty intersection found - need to add a second set of possible 6263 // source vectors. 6264 if (Idx == UsedTEs.size()) { 6265 // If the number of input vectors is greater than 2 - not a permutation, 6266 // fallback to the regular gather. 6267 if (UsedTEs.size() == 2) 6268 return None; 6269 UsedTEs.push_back(SavedVToTEs); 6270 Idx = UsedTEs.size() - 1; 6271 } 6272 UsedValuesEntry.try_emplace(V, Idx); 6273 } 6274 } 6275 6276 unsigned VF = 0; 6277 if (UsedTEs.size() == 1) { 6278 // Try to find the perfect match in another gather node at first. 6279 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6280 return EntryPtr->isSame(TE->Scalars); 6281 }); 6282 if (It != UsedTEs.front().end()) { 6283 Entries.push_back(*It); 6284 std::iota(Mask.begin(), Mask.end(), 0); 6285 return TargetTransformInfo::SK_PermuteSingleSrc; 6286 } 6287 // No perfect match, just shuffle, so choose the first tree node. 6288 Entries.push_back(*UsedTEs.front().begin()); 6289 } else { 6290 // Try to find nodes with the same vector factor. 6291 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6292 DenseMap<int, const TreeEntry *> VFToTE; 6293 for (const TreeEntry *TE : UsedTEs.front()) 6294 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6295 for (const TreeEntry *TE : UsedTEs.back()) { 6296 auto It = VFToTE.find(TE->getVectorFactor()); 6297 if (It != VFToTE.end()) { 6298 VF = It->first; 6299 Entries.push_back(It->second); 6300 Entries.push_back(TE); 6301 break; 6302 } 6303 } 6304 // No 2 source vectors with the same vector factor - give up and do regular 6305 // gather. 6306 if (Entries.empty()) 6307 return None; 6308 } 6309 6310 // Build a shuffle mask for better cost estimation and vector emission. 6311 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6312 Value *V = TE->Scalars[I]; 6313 if (isa<UndefValue>(V)) 6314 continue; 6315 unsigned Idx = UsedValuesEntry.lookup(V); 6316 const TreeEntry *VTE = Entries[Idx]; 6317 int FoundLane = VTE->findLaneForValue(V); 6318 Mask[I] = Idx * VF + FoundLane; 6319 // Extra check required by isSingleSourceMaskImpl function (called by 6320 // ShuffleVectorInst::isSingleSourceMask). 6321 if (Mask[I] >= 2 * E) 6322 return None; 6323 } 6324 switch (Entries.size()) { 6325 case 1: 6326 return TargetTransformInfo::SK_PermuteSingleSrc; 6327 case 2: 6328 return TargetTransformInfo::SK_PermuteTwoSrc; 6329 default: 6330 break; 6331 } 6332 return None; 6333 } 6334 6335 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6336 const APInt &ShuffledIndices, 6337 bool NeedToShuffle) const { 6338 InstructionCost Cost = 6339 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6340 /*Extract*/ false); 6341 if (NeedToShuffle) 6342 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6343 return Cost; 6344 } 6345 6346 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6347 // Find the type of the operands in VL. 6348 Type *ScalarTy = VL[0]->getType(); 6349 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6350 ScalarTy = SI->getValueOperand()->getType(); 6351 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6352 bool DuplicateNonConst = false; 6353 // Find the cost of inserting/extracting values from the vector. 6354 // Check if the same elements are inserted several times and count them as 6355 // shuffle candidates. 6356 APInt ShuffledElements = APInt::getZero(VL.size()); 6357 DenseSet<Value *> UniqueElements; 6358 // Iterate in reverse order to consider insert elements with the high cost. 6359 for (unsigned I = VL.size(); I > 0; --I) { 6360 unsigned Idx = I - 1; 6361 // No need to shuffle duplicates for constants. 6362 if (isConstant(VL[Idx])) { 6363 ShuffledElements.setBit(Idx); 6364 continue; 6365 } 6366 if (!UniqueElements.insert(VL[Idx]).second) { 6367 DuplicateNonConst = true; 6368 ShuffledElements.setBit(Idx); 6369 } 6370 } 6371 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6372 } 6373 6374 // Perform operand reordering on the instructions in VL and return the reordered 6375 // operands in Left and Right. 6376 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6377 SmallVectorImpl<Value *> &Left, 6378 SmallVectorImpl<Value *> &Right, 6379 const DataLayout &DL, 6380 ScalarEvolution &SE, 6381 const BoUpSLP &R) { 6382 if (VL.empty()) 6383 return; 6384 VLOperands Ops(VL, DL, SE, R); 6385 // Reorder the operands in place. 6386 Ops.reorder(); 6387 Left = Ops.getVL(0); 6388 Right = Ops.getVL(1); 6389 } 6390 6391 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6392 // Get the basic block this bundle is in. All instructions in the bundle 6393 // should be in this block. 6394 auto *Front = E->getMainOp(); 6395 auto *BB = Front->getParent(); 6396 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6397 auto *I = cast<Instruction>(V); 6398 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6399 })); 6400 6401 // The last instruction in the bundle in program order. 6402 Instruction *LastInst = nullptr; 6403 6404 // Find the last instruction. The common case should be that BB has been 6405 // scheduled, and the last instruction is VL.back(). So we start with 6406 // VL.back() and iterate over schedule data until we reach the end of the 6407 // bundle. The end of the bundle is marked by null ScheduleData. 6408 if (BlocksSchedules.count(BB)) { 6409 auto *Bundle = 6410 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6411 if (Bundle && Bundle->isPartOfBundle()) 6412 for (; Bundle; Bundle = Bundle->NextInBundle) 6413 if (Bundle->OpValue == Bundle->Inst) 6414 LastInst = Bundle->Inst; 6415 } 6416 6417 // LastInst can still be null at this point if there's either not an entry 6418 // for BB in BlocksSchedules or there's no ScheduleData available for 6419 // VL.back(). This can be the case if buildTree_rec aborts for various 6420 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6421 // size is reached, etc.). ScheduleData is initialized in the scheduling 6422 // "dry-run". 6423 // 6424 // If this happens, we can still find the last instruction by brute force. We 6425 // iterate forwards from Front (inclusive) until we either see all 6426 // instructions in the bundle or reach the end of the block. If Front is the 6427 // last instruction in program order, LastInst will be set to Front, and we 6428 // will visit all the remaining instructions in the block. 6429 // 6430 // One of the reasons we exit early from buildTree_rec is to place an upper 6431 // bound on compile-time. Thus, taking an additional compile-time hit here is 6432 // not ideal. However, this should be exceedingly rare since it requires that 6433 // we both exit early from buildTree_rec and that the bundle be out-of-order 6434 // (causing us to iterate all the way to the end of the block). 6435 if (!LastInst) { 6436 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6437 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6438 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6439 LastInst = &I; 6440 if (Bundle.empty()) 6441 break; 6442 } 6443 } 6444 assert(LastInst && "Failed to find last instruction in bundle"); 6445 6446 // Set the insertion point after the last instruction in the bundle. Set the 6447 // debug location to Front. 6448 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6449 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6450 } 6451 6452 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6453 // List of instructions/lanes from current block and/or the blocks which are 6454 // part of the current loop. These instructions will be inserted at the end to 6455 // make it possible to optimize loops and hoist invariant instructions out of 6456 // the loops body with better chances for success. 6457 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6458 SmallSet<int, 4> PostponedIndices; 6459 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6460 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6461 SmallPtrSet<BasicBlock *, 4> Visited; 6462 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6463 InsertBB = InsertBB->getSinglePredecessor(); 6464 return InsertBB && InsertBB == InstBB; 6465 }; 6466 for (int I = 0, E = VL.size(); I < E; ++I) { 6467 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6468 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6469 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6470 PostponedIndices.insert(I).second) 6471 PostponedInsts.emplace_back(Inst, I); 6472 } 6473 6474 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6475 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6476 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6477 if (!InsElt) 6478 return Vec; 6479 GatherShuffleSeq.insert(InsElt); 6480 CSEBlocks.insert(InsElt->getParent()); 6481 // Add to our 'need-to-extract' list. 6482 if (TreeEntry *Entry = getTreeEntry(V)) { 6483 // Find which lane we need to extract. 6484 unsigned FoundLane = Entry->findLaneForValue(V); 6485 ExternalUses.emplace_back(V, InsElt, FoundLane); 6486 } 6487 return Vec; 6488 }; 6489 Value *Val0 = 6490 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6491 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6492 Value *Vec = PoisonValue::get(VecTy); 6493 SmallVector<int> NonConsts; 6494 // Insert constant values at first. 6495 for (int I = 0, E = VL.size(); I < E; ++I) { 6496 if (PostponedIndices.contains(I)) 6497 continue; 6498 if (!isConstant(VL[I])) { 6499 NonConsts.push_back(I); 6500 continue; 6501 } 6502 Vec = CreateInsertElement(Vec, VL[I], I); 6503 } 6504 // Insert non-constant values. 6505 for (int I : NonConsts) 6506 Vec = CreateInsertElement(Vec, VL[I], I); 6507 // Append instructions, which are/may be part of the loop, in the end to make 6508 // it possible to hoist non-loop-based instructions. 6509 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6510 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6511 6512 return Vec; 6513 } 6514 6515 namespace { 6516 /// Merges shuffle masks and emits final shuffle instruction, if required. 6517 class ShuffleInstructionBuilder { 6518 IRBuilderBase &Builder; 6519 const unsigned VF = 0; 6520 bool IsFinalized = false; 6521 SmallVector<int, 4> Mask; 6522 /// Holds all of the instructions that we gathered. 6523 SetVector<Instruction *> &GatherShuffleSeq; 6524 /// A list of blocks that we are going to CSE. 6525 SetVector<BasicBlock *> &CSEBlocks; 6526 6527 public: 6528 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6529 SetVector<Instruction *> &GatherShuffleSeq, 6530 SetVector<BasicBlock *> &CSEBlocks) 6531 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6532 CSEBlocks(CSEBlocks) {} 6533 6534 /// Adds a mask, inverting it before applying. 6535 void addInversedMask(ArrayRef<unsigned> SubMask) { 6536 if (SubMask.empty()) 6537 return; 6538 SmallVector<int, 4> NewMask; 6539 inversePermutation(SubMask, NewMask); 6540 addMask(NewMask); 6541 } 6542 6543 /// Functions adds masks, merging them into single one. 6544 void addMask(ArrayRef<unsigned> SubMask) { 6545 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6546 addMask(NewMask); 6547 } 6548 6549 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6550 6551 Value *finalize(Value *V) { 6552 IsFinalized = true; 6553 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6554 if (VF == ValueVF && Mask.empty()) 6555 return V; 6556 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6557 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6558 addMask(NormalizedMask); 6559 6560 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6561 return V; 6562 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6563 if (auto *I = dyn_cast<Instruction>(Vec)) { 6564 GatherShuffleSeq.insert(I); 6565 CSEBlocks.insert(I->getParent()); 6566 } 6567 return Vec; 6568 } 6569 6570 ~ShuffleInstructionBuilder() { 6571 assert((IsFinalized || Mask.empty()) && 6572 "Shuffle construction must be finalized."); 6573 } 6574 }; 6575 } // namespace 6576 6577 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6578 const unsigned VF = VL.size(); 6579 InstructionsState S = getSameOpcode(VL); 6580 if (S.getOpcode()) { 6581 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6582 if (E->isSame(VL)) { 6583 Value *V = vectorizeTree(E); 6584 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6585 if (!E->ReuseShuffleIndices.empty()) { 6586 // Reshuffle to get only unique values. 6587 // If some of the scalars are duplicated in the vectorization tree 6588 // entry, we do not vectorize them but instead generate a mask for 6589 // the reuses. But if there are several users of the same entry, 6590 // they may have different vectorization factors. This is especially 6591 // important for PHI nodes. In this case, we need to adapt the 6592 // resulting instruction for the user vectorization factor and have 6593 // to reshuffle it again to take only unique elements of the vector. 6594 // Without this code the function incorrectly returns reduced vector 6595 // instruction with the same elements, not with the unique ones. 6596 6597 // block: 6598 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6599 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6600 // ... (use %2) 6601 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6602 // br %block 6603 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6604 SmallSet<int, 4> UsedIdxs; 6605 int Pos = 0; 6606 int Sz = VL.size(); 6607 for (int Idx : E->ReuseShuffleIndices) { 6608 if (Idx != Sz && Idx != UndefMaskElem && 6609 UsedIdxs.insert(Idx).second) 6610 UniqueIdxs[Idx] = Pos; 6611 ++Pos; 6612 } 6613 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6614 "less than original vector size."); 6615 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6616 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6617 } else { 6618 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6619 "Expected vectorization factor less " 6620 "than original vector size."); 6621 SmallVector<int> UniformMask(VF, 0); 6622 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6623 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6624 } 6625 if (auto *I = dyn_cast<Instruction>(V)) { 6626 GatherShuffleSeq.insert(I); 6627 CSEBlocks.insert(I->getParent()); 6628 } 6629 } 6630 return V; 6631 } 6632 } 6633 6634 // Can't vectorize this, so simply build a new vector with each lane 6635 // corresponding to the requested value. 6636 return createBuildVector(VL); 6637 } 6638 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6639 unsigned VF = VL.size(); 6640 // Exploit possible reuse of values across lanes. 6641 SmallVector<int> ReuseShuffleIndicies; 6642 SmallVector<Value *> UniqueValues; 6643 if (VL.size() > 2) { 6644 DenseMap<Value *, unsigned> UniquePositions; 6645 unsigned NumValues = 6646 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6647 return !isa<UndefValue>(V); 6648 }).base()); 6649 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6650 int UniqueVals = 0; 6651 for (Value *V : VL.drop_back(VL.size() - VF)) { 6652 if (isa<UndefValue>(V)) { 6653 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6654 continue; 6655 } 6656 if (isConstant(V)) { 6657 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6658 UniqueValues.emplace_back(V); 6659 continue; 6660 } 6661 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6662 ReuseShuffleIndicies.emplace_back(Res.first->second); 6663 if (Res.second) { 6664 UniqueValues.emplace_back(V); 6665 ++UniqueVals; 6666 } 6667 } 6668 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6669 // Emit pure splat vector. 6670 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6671 UndefMaskElem); 6672 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6673 ReuseShuffleIndicies.clear(); 6674 UniqueValues.clear(); 6675 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6676 } 6677 UniqueValues.append(VF - UniqueValues.size(), 6678 PoisonValue::get(VL[0]->getType())); 6679 VL = UniqueValues; 6680 } 6681 6682 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6683 CSEBlocks); 6684 Value *Vec = gather(VL); 6685 if (!ReuseShuffleIndicies.empty()) { 6686 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6687 Vec = ShuffleBuilder.finalize(Vec); 6688 } 6689 return Vec; 6690 } 6691 6692 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6693 IRBuilder<>::InsertPointGuard Guard(Builder); 6694 6695 if (E->VectorizedValue) { 6696 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6697 return E->VectorizedValue; 6698 } 6699 6700 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6701 unsigned VF = E->getVectorFactor(); 6702 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6703 CSEBlocks); 6704 if (E->State == TreeEntry::NeedToGather) { 6705 if (E->getMainOp()) 6706 setInsertPointAfterBundle(E); 6707 Value *Vec; 6708 SmallVector<int> Mask; 6709 SmallVector<const TreeEntry *> Entries; 6710 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6711 isGatherShuffledEntry(E, Mask, Entries); 6712 if (Shuffle.hasValue()) { 6713 assert((Entries.size() == 1 || Entries.size() == 2) && 6714 "Expected shuffle of 1 or 2 entries."); 6715 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6716 Entries.back()->VectorizedValue, Mask); 6717 if (auto *I = dyn_cast<Instruction>(Vec)) { 6718 GatherShuffleSeq.insert(I); 6719 CSEBlocks.insert(I->getParent()); 6720 } 6721 } else { 6722 Vec = gather(E->Scalars); 6723 } 6724 if (NeedToShuffleReuses) { 6725 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6726 Vec = ShuffleBuilder.finalize(Vec); 6727 } 6728 E->VectorizedValue = Vec; 6729 return Vec; 6730 } 6731 6732 assert((E->State == TreeEntry::Vectorize || 6733 E->State == TreeEntry::ScatterVectorize) && 6734 "Unhandled state"); 6735 unsigned ShuffleOrOp = 6736 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6737 Instruction *VL0 = E->getMainOp(); 6738 Type *ScalarTy = VL0->getType(); 6739 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6740 ScalarTy = Store->getValueOperand()->getType(); 6741 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6742 ScalarTy = IE->getOperand(1)->getType(); 6743 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6744 switch (ShuffleOrOp) { 6745 case Instruction::PHI: { 6746 assert( 6747 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6748 "PHI reordering is free."); 6749 auto *PH = cast<PHINode>(VL0); 6750 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6751 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6752 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6753 Value *V = NewPhi; 6754 6755 // Adjust insertion point once all PHI's have been generated. 6756 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6757 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6758 6759 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6760 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6761 V = ShuffleBuilder.finalize(V); 6762 6763 E->VectorizedValue = V; 6764 6765 // PHINodes may have multiple entries from the same block. We want to 6766 // visit every block once. 6767 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6768 6769 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6770 ValueList Operands; 6771 BasicBlock *IBB = PH->getIncomingBlock(i); 6772 6773 if (!VisitedBBs.insert(IBB).second) { 6774 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6775 continue; 6776 } 6777 6778 Builder.SetInsertPoint(IBB->getTerminator()); 6779 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6780 Value *Vec = vectorizeTree(E->getOperand(i)); 6781 NewPhi->addIncoming(Vec, IBB); 6782 } 6783 6784 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6785 "Invalid number of incoming values"); 6786 return V; 6787 } 6788 6789 case Instruction::ExtractElement: { 6790 Value *V = E->getSingleOperand(0); 6791 Builder.SetInsertPoint(VL0); 6792 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6793 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6794 V = ShuffleBuilder.finalize(V); 6795 E->VectorizedValue = V; 6796 return V; 6797 } 6798 case Instruction::ExtractValue: { 6799 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6800 Builder.SetInsertPoint(LI); 6801 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6802 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6803 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6804 if (MSSA) { 6805 MemorySSAUpdater MSSAU(MSSA); 6806 auto *Access = MSSA->getMemoryAccess(LI); 6807 assert(Access); 6808 MemoryUseOrDef *NewAccess = 6809 MSSAU.createMemoryAccessBefore(V, Access->getDefiningAccess(), 6810 Access); 6811 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 6812 } 6813 Value *NewV = propagateMetadata(V, E->Scalars); 6814 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6815 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6816 NewV = ShuffleBuilder.finalize(NewV); 6817 E->VectorizedValue = NewV; 6818 return NewV; 6819 } 6820 case Instruction::InsertElement: { 6821 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6822 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6823 Value *V = vectorizeTree(E->getOperand(1)); 6824 6825 // Create InsertVector shuffle if necessary 6826 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6827 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6828 })); 6829 const unsigned NumElts = 6830 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6831 const unsigned NumScalars = E->Scalars.size(); 6832 6833 unsigned Offset = *getInsertIndex(VL0); 6834 assert(Offset < NumElts && "Failed to find vector index offset"); 6835 6836 // Create shuffle to resize vector 6837 SmallVector<int> Mask; 6838 if (!E->ReorderIndices.empty()) { 6839 inversePermutation(E->ReorderIndices, Mask); 6840 Mask.append(NumElts - NumScalars, UndefMaskElem); 6841 } else { 6842 Mask.assign(NumElts, UndefMaskElem); 6843 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6844 } 6845 // Create InsertVector shuffle if necessary 6846 bool IsIdentity = true; 6847 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6848 Mask.swap(PrevMask); 6849 for (unsigned I = 0; I < NumScalars; ++I) { 6850 Value *Scalar = E->Scalars[PrevMask[I]]; 6851 unsigned InsertIdx = *getInsertIndex(Scalar); 6852 IsIdentity &= InsertIdx - Offset == I; 6853 Mask[InsertIdx - Offset] = I; 6854 } 6855 if (!IsIdentity || NumElts != NumScalars) { 6856 V = Builder.CreateShuffleVector(V, Mask); 6857 if (auto *I = dyn_cast<Instruction>(V)) { 6858 GatherShuffleSeq.insert(I); 6859 CSEBlocks.insert(I->getParent()); 6860 } 6861 } 6862 6863 if ((!IsIdentity || Offset != 0 || 6864 !isUndefVector(FirstInsert->getOperand(0))) && 6865 NumElts != NumScalars) { 6866 SmallVector<int> InsertMask(NumElts); 6867 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6868 for (unsigned I = 0; I < NumElts; I++) { 6869 if (Mask[I] != UndefMaskElem) 6870 InsertMask[Offset + I] = NumElts + I; 6871 } 6872 6873 V = Builder.CreateShuffleVector( 6874 FirstInsert->getOperand(0), V, InsertMask, 6875 cast<Instruction>(E->Scalars.back())->getName()); 6876 if (auto *I = dyn_cast<Instruction>(V)) { 6877 GatherShuffleSeq.insert(I); 6878 CSEBlocks.insert(I->getParent()); 6879 } 6880 } 6881 6882 ++NumVectorInstructions; 6883 E->VectorizedValue = V; 6884 return V; 6885 } 6886 case Instruction::ZExt: 6887 case Instruction::SExt: 6888 case Instruction::FPToUI: 6889 case Instruction::FPToSI: 6890 case Instruction::FPExt: 6891 case Instruction::PtrToInt: 6892 case Instruction::IntToPtr: 6893 case Instruction::SIToFP: 6894 case Instruction::UIToFP: 6895 case Instruction::Trunc: 6896 case Instruction::FPTrunc: 6897 case Instruction::BitCast: { 6898 setInsertPointAfterBundle(E); 6899 6900 Value *InVec = vectorizeTree(E->getOperand(0)); 6901 6902 if (E->VectorizedValue) { 6903 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6904 return E->VectorizedValue; 6905 } 6906 6907 auto *CI = cast<CastInst>(VL0); 6908 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6909 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6910 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6911 V = ShuffleBuilder.finalize(V); 6912 6913 E->VectorizedValue = V; 6914 ++NumVectorInstructions; 6915 return V; 6916 } 6917 case Instruction::FCmp: 6918 case Instruction::ICmp: { 6919 setInsertPointAfterBundle(E); 6920 6921 Value *L = vectorizeTree(E->getOperand(0)); 6922 Value *R = vectorizeTree(E->getOperand(1)); 6923 6924 if (E->VectorizedValue) { 6925 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6926 return E->VectorizedValue; 6927 } 6928 6929 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6930 Value *V = Builder.CreateCmp(P0, L, R); 6931 propagateIRFlags(V, E->Scalars, VL0); 6932 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6933 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6934 V = ShuffleBuilder.finalize(V); 6935 6936 E->VectorizedValue = V; 6937 ++NumVectorInstructions; 6938 return V; 6939 } 6940 case Instruction::Select: { 6941 setInsertPointAfterBundle(E); 6942 6943 Value *Cond = vectorizeTree(E->getOperand(0)); 6944 Value *True = vectorizeTree(E->getOperand(1)); 6945 Value *False = vectorizeTree(E->getOperand(2)); 6946 6947 if (E->VectorizedValue) { 6948 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6949 return E->VectorizedValue; 6950 } 6951 6952 Value *V = Builder.CreateSelect(Cond, True, False); 6953 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6954 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6955 V = ShuffleBuilder.finalize(V); 6956 6957 E->VectorizedValue = V; 6958 ++NumVectorInstructions; 6959 return V; 6960 } 6961 case Instruction::FNeg: { 6962 setInsertPointAfterBundle(E); 6963 6964 Value *Op = vectorizeTree(E->getOperand(0)); 6965 6966 if (E->VectorizedValue) { 6967 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6968 return E->VectorizedValue; 6969 } 6970 6971 Value *V = Builder.CreateUnOp( 6972 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6973 propagateIRFlags(V, E->Scalars, VL0); 6974 if (auto *I = dyn_cast<Instruction>(V)) 6975 V = propagateMetadata(I, E->Scalars); 6976 6977 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6978 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6979 V = ShuffleBuilder.finalize(V); 6980 6981 E->VectorizedValue = V; 6982 ++NumVectorInstructions; 6983 6984 return V; 6985 } 6986 case Instruction::Add: 6987 case Instruction::FAdd: 6988 case Instruction::Sub: 6989 case Instruction::FSub: 6990 case Instruction::Mul: 6991 case Instruction::FMul: 6992 case Instruction::UDiv: 6993 case Instruction::SDiv: 6994 case Instruction::FDiv: 6995 case Instruction::URem: 6996 case Instruction::SRem: 6997 case Instruction::FRem: 6998 case Instruction::Shl: 6999 case Instruction::LShr: 7000 case Instruction::AShr: 7001 case Instruction::And: 7002 case Instruction::Or: 7003 case Instruction::Xor: { 7004 setInsertPointAfterBundle(E); 7005 7006 Value *LHS = vectorizeTree(E->getOperand(0)); 7007 Value *RHS = vectorizeTree(E->getOperand(1)); 7008 7009 if (E->VectorizedValue) { 7010 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7011 return E->VectorizedValue; 7012 } 7013 7014 Value *V = Builder.CreateBinOp( 7015 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7016 RHS); 7017 propagateIRFlags(V, E->Scalars, VL0); 7018 if (auto *I = dyn_cast<Instruction>(V)) 7019 V = propagateMetadata(I, E->Scalars); 7020 7021 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7022 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7023 V = ShuffleBuilder.finalize(V); 7024 7025 E->VectorizedValue = V; 7026 ++NumVectorInstructions; 7027 7028 return V; 7029 } 7030 case Instruction::Load: { 7031 // Loads are inserted at the head of the tree because we don't want to 7032 // sink them all the way down past store instructions. 7033 setInsertPointAfterBundle(E); 7034 7035 LoadInst *LI = cast<LoadInst>(VL0); 7036 Instruction *NewLI; 7037 unsigned AS = LI->getPointerAddressSpace(); 7038 Value *PO = LI->getPointerOperand(); 7039 if (E->State == TreeEntry::Vectorize) { 7040 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7041 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7042 7043 // The pointer operand uses an in-tree scalar so we add the new BitCast 7044 // or LoadInst to ExternalUses list to make sure that an extract will 7045 // be generated in the future. 7046 if (TreeEntry *Entry = getTreeEntry(PO)) { 7047 // Find which lane we need to extract. 7048 unsigned FoundLane = Entry->findLaneForValue(PO); 7049 ExternalUses.emplace_back( 7050 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7051 } 7052 } else { 7053 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7054 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7055 // Use the minimum alignment of the gathered loads. 7056 Align CommonAlignment = LI->getAlign(); 7057 for (Value *V : E->Scalars) 7058 CommonAlignment = 7059 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7060 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7061 } 7062 7063 if (MSSA) { 7064 MemorySSAUpdater MSSAU(MSSA); 7065 auto *Access = MSSA->getMemoryAccess(LI); 7066 assert(Access); 7067 MemoryUseOrDef *NewAccess = 7068 MSSAU.createMemoryAccessAfter(NewLI, Access->getDefiningAccess(), 7069 Access); 7070 MSSAU.insertUse(cast<MemoryUse>(NewAccess), true); 7071 } 7072 7073 Value *V = propagateMetadata(NewLI, E->Scalars); 7074 7075 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7076 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7077 V = ShuffleBuilder.finalize(V); 7078 E->VectorizedValue = V; 7079 ++NumVectorInstructions; 7080 return V; 7081 } 7082 case Instruction::Store: { 7083 auto *SI = cast<StoreInst>(VL0); 7084 unsigned AS = SI->getPointerAddressSpace(); 7085 7086 setInsertPointAfterBundle(E); 7087 7088 Value *VecValue = vectorizeTree(E->getOperand(0)); 7089 ShuffleBuilder.addMask(E->ReorderIndices); 7090 VecValue = ShuffleBuilder.finalize(VecValue); 7091 7092 Value *ScalarPtr = SI->getPointerOperand(); 7093 Value *VecPtr = Builder.CreateBitCast( 7094 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7095 StoreInst *ST = 7096 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7097 7098 if (MSSA) { 7099 MemorySSAUpdater MSSAU(MSSA); 7100 auto *Access = MSSA->getMemoryAccess(SI); 7101 assert(Access); 7102 MemoryUseOrDef *NewAccess = 7103 MSSAU.createMemoryAccessAfter(ST, Access->getDefiningAccess(), 7104 Access); 7105 MSSAU.insertDef(cast<MemoryDef>(NewAccess), true); 7106 } 7107 7108 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7109 // StoreInst to ExternalUses to make sure that an extract will be 7110 // generated in the future. 7111 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7112 // Find which lane we need to extract. 7113 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7114 ExternalUses.push_back(ExternalUser( 7115 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7116 FoundLane)); 7117 } 7118 7119 Value *V = propagateMetadata(ST, E->Scalars); 7120 7121 E->VectorizedValue = V; 7122 ++NumVectorInstructions; 7123 return V; 7124 } 7125 case Instruction::GetElementPtr: { 7126 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7127 setInsertPointAfterBundle(E); 7128 7129 Value *Op0 = vectorizeTree(E->getOperand(0)); 7130 7131 SmallVector<Value *> OpVecs; 7132 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7133 Value *OpVec = vectorizeTree(E->getOperand(J)); 7134 OpVecs.push_back(OpVec); 7135 } 7136 7137 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7138 if (Instruction *I = dyn_cast<Instruction>(V)) 7139 V = propagateMetadata(I, E->Scalars); 7140 7141 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7142 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7143 V = ShuffleBuilder.finalize(V); 7144 7145 E->VectorizedValue = V; 7146 ++NumVectorInstructions; 7147 7148 return V; 7149 } 7150 case Instruction::Call: { 7151 CallInst *CI = cast<CallInst>(VL0); 7152 setInsertPointAfterBundle(E); 7153 7154 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7155 if (Function *FI = CI->getCalledFunction()) 7156 IID = FI->getIntrinsicID(); 7157 7158 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7159 7160 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7161 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7162 VecCallCosts.first <= VecCallCosts.second; 7163 7164 Value *ScalarArg = nullptr; 7165 std::vector<Value *> OpVecs; 7166 SmallVector<Type *, 2> TysForDecl = 7167 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7168 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7169 ValueList OpVL; 7170 // Some intrinsics have scalar arguments. This argument should not be 7171 // vectorized. 7172 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7173 CallInst *CEI = cast<CallInst>(VL0); 7174 ScalarArg = CEI->getArgOperand(j); 7175 OpVecs.push_back(CEI->getArgOperand(j)); 7176 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7177 TysForDecl.push_back(ScalarArg->getType()); 7178 continue; 7179 } 7180 7181 Value *OpVec = vectorizeTree(E->getOperand(j)); 7182 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7183 OpVecs.push_back(OpVec); 7184 } 7185 7186 Function *CF; 7187 if (!UseIntrinsic) { 7188 VFShape Shape = 7189 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7190 VecTy->getNumElements())), 7191 false /*HasGlobalPred*/); 7192 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7193 } else { 7194 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7195 } 7196 7197 SmallVector<OperandBundleDef, 1> OpBundles; 7198 CI->getOperandBundlesAsDefs(OpBundles); 7199 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7200 7201 // The scalar argument uses an in-tree scalar so we add the new vectorized 7202 // call to ExternalUses list to make sure that an extract will be 7203 // generated in the future. 7204 if (ScalarArg) { 7205 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7206 // Find which lane we need to extract. 7207 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7208 ExternalUses.push_back( 7209 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7210 } 7211 } 7212 7213 propagateIRFlags(V, E->Scalars, VL0); 7214 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7215 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7216 V = ShuffleBuilder.finalize(V); 7217 7218 E->VectorizedValue = V; 7219 ++NumVectorInstructions; 7220 return V; 7221 } 7222 case Instruction::ShuffleVector: { 7223 assert(E->isAltShuffle() && 7224 ((Instruction::isBinaryOp(E->getOpcode()) && 7225 Instruction::isBinaryOp(E->getAltOpcode())) || 7226 (Instruction::isCast(E->getOpcode()) && 7227 Instruction::isCast(E->getAltOpcode())) || 7228 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7229 "Invalid Shuffle Vector Operand"); 7230 7231 Value *LHS = nullptr, *RHS = nullptr; 7232 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7233 setInsertPointAfterBundle(E); 7234 LHS = vectorizeTree(E->getOperand(0)); 7235 RHS = vectorizeTree(E->getOperand(1)); 7236 } else { 7237 setInsertPointAfterBundle(E); 7238 LHS = vectorizeTree(E->getOperand(0)); 7239 } 7240 7241 if (E->VectorizedValue) { 7242 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7243 return E->VectorizedValue; 7244 } 7245 7246 Value *V0, *V1; 7247 if (Instruction::isBinaryOp(E->getOpcode())) { 7248 V0 = Builder.CreateBinOp( 7249 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7250 V1 = Builder.CreateBinOp( 7251 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7252 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7253 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7254 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7255 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7256 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7257 } else { 7258 V0 = Builder.CreateCast( 7259 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7260 V1 = Builder.CreateCast( 7261 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7262 } 7263 // Add V0 and V1 to later analysis to try to find and remove matching 7264 // instruction, if any. 7265 for (Value *V : {V0, V1}) { 7266 if (auto *I = dyn_cast<Instruction>(V)) { 7267 GatherShuffleSeq.insert(I); 7268 CSEBlocks.insert(I->getParent()); 7269 } 7270 } 7271 7272 // Create shuffle to take alternate operations from the vector. 7273 // Also, gather up main and alt scalar ops to propagate IR flags to 7274 // each vector operation. 7275 ValueList OpScalars, AltScalars; 7276 SmallVector<int> Mask; 7277 buildShuffleEntryMask( 7278 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7279 [E](Instruction *I) { 7280 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7281 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7282 }, 7283 Mask, &OpScalars, &AltScalars); 7284 7285 propagateIRFlags(V0, OpScalars); 7286 propagateIRFlags(V1, AltScalars); 7287 7288 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7289 if (auto *I = dyn_cast<Instruction>(V)) { 7290 V = propagateMetadata(I, E->Scalars); 7291 GatherShuffleSeq.insert(I); 7292 CSEBlocks.insert(I->getParent()); 7293 } 7294 V = ShuffleBuilder.finalize(V); 7295 7296 E->VectorizedValue = V; 7297 ++NumVectorInstructions; 7298 7299 return V; 7300 } 7301 default: 7302 llvm_unreachable("unknown inst"); 7303 } 7304 return nullptr; 7305 } 7306 7307 Value *BoUpSLP::vectorizeTree() { 7308 ExtraValueToDebugLocsMap ExternallyUsedValues; 7309 return vectorizeTree(ExternallyUsedValues); 7310 } 7311 7312 Value * 7313 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7314 // All blocks must be scheduled before any instructions are inserted. 7315 for (auto &BSIter : BlocksSchedules) { 7316 scheduleBlock(BSIter.second.get()); 7317 } 7318 7319 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7320 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7321 7322 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7323 // vectorized root. InstCombine will then rewrite the entire expression. We 7324 // sign extend the extracted values below. 7325 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7326 if (MinBWs.count(ScalarRoot)) { 7327 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7328 // If current instr is a phi and not the last phi, insert it after the 7329 // last phi node. 7330 if (isa<PHINode>(I)) 7331 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7332 else 7333 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7334 } 7335 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7336 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7337 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7338 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7339 VectorizableTree[0]->VectorizedValue = Trunc; 7340 } 7341 7342 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7343 << " values .\n"); 7344 7345 // Extract all of the elements with the external uses. 7346 for (const auto &ExternalUse : ExternalUses) { 7347 Value *Scalar = ExternalUse.Scalar; 7348 llvm::User *User = ExternalUse.User; 7349 7350 // Skip users that we already RAUW. This happens when one instruction 7351 // has multiple uses of the same value. 7352 if (User && !is_contained(Scalar->users(), User)) 7353 continue; 7354 TreeEntry *E = getTreeEntry(Scalar); 7355 assert(E && "Invalid scalar"); 7356 assert(E->State != TreeEntry::NeedToGather && 7357 "Extracting from a gather list"); 7358 7359 Value *Vec = E->VectorizedValue; 7360 assert(Vec && "Can't find vectorizable value"); 7361 7362 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7363 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7364 if (Scalar->getType() != Vec->getType()) { 7365 Value *Ex; 7366 // "Reuse" the existing extract to improve final codegen. 7367 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7368 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7369 ES->getOperand(1)); 7370 } else { 7371 Ex = Builder.CreateExtractElement(Vec, Lane); 7372 } 7373 // If necessary, sign-extend or zero-extend ScalarRoot 7374 // to the larger type. 7375 if (!MinBWs.count(ScalarRoot)) 7376 return Ex; 7377 if (MinBWs[ScalarRoot].second) 7378 return Builder.CreateSExt(Ex, Scalar->getType()); 7379 return Builder.CreateZExt(Ex, Scalar->getType()); 7380 } 7381 assert(isa<FixedVectorType>(Scalar->getType()) && 7382 isa<InsertElementInst>(Scalar) && 7383 "In-tree scalar of vector type is not insertelement?"); 7384 return Vec; 7385 }; 7386 // If User == nullptr, the Scalar is used as extra arg. Generate 7387 // ExtractElement instruction and update the record for this scalar in 7388 // ExternallyUsedValues. 7389 if (!User) { 7390 assert(ExternallyUsedValues.count(Scalar) && 7391 "Scalar with nullptr as an external user must be registered in " 7392 "ExternallyUsedValues map"); 7393 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7394 Builder.SetInsertPoint(VecI->getParent(), 7395 std::next(VecI->getIterator())); 7396 } else { 7397 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7398 } 7399 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7400 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7401 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7402 auto It = ExternallyUsedValues.find(Scalar); 7403 assert(It != ExternallyUsedValues.end() && 7404 "Externally used scalar is not found in ExternallyUsedValues"); 7405 NewInstLocs.append(It->second); 7406 ExternallyUsedValues.erase(Scalar); 7407 // Required to update internally referenced instructions. 7408 Scalar->replaceAllUsesWith(NewInst); 7409 continue; 7410 } 7411 7412 // Generate extracts for out-of-tree users. 7413 // Find the insertion point for the extractelement lane. 7414 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7415 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7416 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7417 if (PH->getIncomingValue(i) == Scalar) { 7418 Instruction *IncomingTerminator = 7419 PH->getIncomingBlock(i)->getTerminator(); 7420 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7421 Builder.SetInsertPoint(VecI->getParent(), 7422 std::next(VecI->getIterator())); 7423 } else { 7424 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7425 } 7426 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7427 CSEBlocks.insert(PH->getIncomingBlock(i)); 7428 PH->setOperand(i, NewInst); 7429 } 7430 } 7431 } else { 7432 Builder.SetInsertPoint(cast<Instruction>(User)); 7433 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7434 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7435 User->replaceUsesOfWith(Scalar, NewInst); 7436 } 7437 } else { 7438 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7439 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7440 CSEBlocks.insert(&F->getEntryBlock()); 7441 User->replaceUsesOfWith(Scalar, NewInst); 7442 } 7443 7444 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7445 } 7446 7447 // For each vectorized value: 7448 for (auto &TEPtr : VectorizableTree) { 7449 TreeEntry *Entry = TEPtr.get(); 7450 7451 // No need to handle users of gathered values. 7452 if (Entry->State == TreeEntry::NeedToGather) 7453 continue; 7454 7455 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7456 7457 // For each lane: 7458 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7459 Value *Scalar = Entry->Scalars[Lane]; 7460 7461 #ifndef NDEBUG 7462 Type *Ty = Scalar->getType(); 7463 if (!Ty->isVoidTy()) { 7464 for (User *U : Scalar->users()) { 7465 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7466 7467 // It is legal to delete users in the ignorelist. 7468 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7469 (isa_and_nonnull<Instruction>(U) && 7470 isDeleted(cast<Instruction>(U)))) && 7471 "Deleting out-of-tree value"); 7472 } 7473 } 7474 #endif 7475 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7476 eraseInstruction(cast<Instruction>(Scalar)); 7477 } 7478 } 7479 7480 Builder.ClearInsertionPoint(); 7481 InstrElementSize.clear(); 7482 7483 return VectorizableTree[0]->VectorizedValue; 7484 } 7485 7486 void BoUpSLP::optimizeGatherSequence() { 7487 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7488 << " gather sequences instructions.\n"); 7489 // LICM InsertElementInst sequences. 7490 for (Instruction *I : GatherShuffleSeq) { 7491 if (isDeleted(I)) 7492 continue; 7493 7494 // Check if this block is inside a loop. 7495 Loop *L = LI->getLoopFor(I->getParent()); 7496 if (!L) 7497 continue; 7498 7499 // Check if it has a preheader. 7500 BasicBlock *PreHeader = L->getLoopPreheader(); 7501 if (!PreHeader) 7502 continue; 7503 7504 // If the vector or the element that we insert into it are 7505 // instructions that are defined in this basic block then we can't 7506 // hoist this instruction. 7507 if (any_of(I->operands(), [L](Value *V) { 7508 auto *OpI = dyn_cast<Instruction>(V); 7509 return OpI && L->contains(OpI); 7510 })) 7511 continue; 7512 7513 // We can hoist this instruction. Move it to the pre-header. 7514 I->moveBefore(PreHeader->getTerminator()); 7515 } 7516 7517 // Make a list of all reachable blocks in our CSE queue. 7518 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7519 CSEWorkList.reserve(CSEBlocks.size()); 7520 for (BasicBlock *BB : CSEBlocks) 7521 if (DomTreeNode *N = DT->getNode(BB)) { 7522 assert(DT->isReachableFromEntry(N)); 7523 CSEWorkList.push_back(N); 7524 } 7525 7526 // Sort blocks by domination. This ensures we visit a block after all blocks 7527 // dominating it are visited. 7528 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7529 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7530 "Different nodes should have different DFS numbers"); 7531 return A->getDFSNumIn() < B->getDFSNumIn(); 7532 }); 7533 7534 // Less defined shuffles can be replaced by the more defined copies. 7535 // Between two shuffles one is less defined if it has the same vector operands 7536 // and its mask indeces are the same as in the first one or undefs. E.g. 7537 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7538 // poison, <0, 0, 0, 0>. 7539 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7540 SmallVectorImpl<int> &NewMask) { 7541 if (I1->getType() != I2->getType()) 7542 return false; 7543 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7544 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7545 if (!SI1 || !SI2) 7546 return I1->isIdenticalTo(I2); 7547 if (SI1->isIdenticalTo(SI2)) 7548 return true; 7549 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7550 if (SI1->getOperand(I) != SI2->getOperand(I)) 7551 return false; 7552 // Check if the second instruction is more defined than the first one. 7553 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7554 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7555 // Count trailing undefs in the mask to check the final number of used 7556 // registers. 7557 unsigned LastUndefsCnt = 0; 7558 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7559 if (SM1[I] == UndefMaskElem) 7560 ++LastUndefsCnt; 7561 else 7562 LastUndefsCnt = 0; 7563 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7564 NewMask[I] != SM1[I]) 7565 return false; 7566 if (NewMask[I] == UndefMaskElem) 7567 NewMask[I] = SM1[I]; 7568 } 7569 // Check if the last undefs actually change the final number of used vector 7570 // registers. 7571 return SM1.size() - LastUndefsCnt > 1 && 7572 TTI->getNumberOfParts(SI1->getType()) == 7573 TTI->getNumberOfParts( 7574 FixedVectorType::get(SI1->getType()->getElementType(), 7575 SM1.size() - LastUndefsCnt)); 7576 }; 7577 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7578 // instructions. TODO: We can further optimize this scan if we split the 7579 // instructions into different buckets based on the insert lane. 7580 SmallVector<Instruction *, 16> Visited; 7581 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7582 assert(*I && 7583 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7584 "Worklist not sorted properly!"); 7585 BasicBlock *BB = (*I)->getBlock(); 7586 // For all instructions in blocks containing gather sequences: 7587 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7588 if (isDeleted(&In)) 7589 continue; 7590 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7591 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7592 continue; 7593 7594 // Check if we can replace this instruction with any of the 7595 // visited instructions. 7596 bool Replaced = false; 7597 for (Instruction *&V : Visited) { 7598 SmallVector<int> NewMask; 7599 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7600 DT->dominates(V->getParent(), In.getParent())) { 7601 In.replaceAllUsesWith(V); 7602 eraseInstruction(&In); 7603 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7604 if (!NewMask.empty()) 7605 SI->setShuffleMask(NewMask); 7606 Replaced = true; 7607 break; 7608 } 7609 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7610 GatherShuffleSeq.contains(V) && 7611 IsIdenticalOrLessDefined(V, &In, NewMask) && 7612 DT->dominates(In.getParent(), V->getParent())) { 7613 In.moveAfter(V); 7614 V->replaceAllUsesWith(&In); 7615 eraseInstruction(V); 7616 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7617 if (!NewMask.empty()) 7618 SI->setShuffleMask(NewMask); 7619 V = &In; 7620 Replaced = true; 7621 break; 7622 } 7623 } 7624 if (!Replaced) { 7625 assert(!is_contained(Visited, &In)); 7626 Visited.push_back(&In); 7627 } 7628 } 7629 } 7630 CSEBlocks.clear(); 7631 GatherShuffleSeq.clear(); 7632 } 7633 7634 BoUpSLP::ScheduleData * 7635 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7636 ScheduleData *Bundle = nullptr; 7637 ScheduleData *PrevInBundle = nullptr; 7638 for (Value *V : VL) { 7639 ScheduleData *BundleMember = getScheduleData(V); 7640 assert(BundleMember && 7641 "no ScheduleData for bundle member " 7642 "(maybe not in same basic block)"); 7643 assert(BundleMember->isSchedulingEntity() && 7644 "bundle member already part of other bundle"); 7645 if (PrevInBundle) { 7646 PrevInBundle->NextInBundle = BundleMember; 7647 } else { 7648 Bundle = BundleMember; 7649 } 7650 7651 // Group the instructions to a bundle. 7652 BundleMember->FirstInBundle = Bundle; 7653 PrevInBundle = BundleMember; 7654 } 7655 assert(Bundle && "Failed to find schedule bundle"); 7656 return Bundle; 7657 } 7658 7659 // Groups the instructions to a bundle (which is then a single scheduling entity) 7660 // and schedules instructions until the bundle gets ready. 7661 Optional<BoUpSLP::ScheduleData *> 7662 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7663 const InstructionsState &S) { 7664 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7665 // instructions. 7666 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7667 return nullptr; 7668 7669 // Initialize the instruction bundle. 7670 Instruction *OldScheduleEnd = ScheduleEnd; 7671 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7672 7673 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7674 ScheduleData *Bundle) { 7675 // The scheduling region got new instructions at the lower end (or it is a 7676 // new region for the first bundle). This makes it necessary to 7677 // recalculate all dependencies. 7678 // It is seldom that this needs to be done a second time after adding the 7679 // initial bundle to the region. 7680 if (ScheduleEnd != OldScheduleEnd) { 7681 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7682 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7683 ReSchedule = true; 7684 } 7685 if (Bundle) { 7686 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7687 << " in block " << BB->getName() << "\n"); 7688 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7689 } 7690 7691 if (ReSchedule) { 7692 resetSchedule(); 7693 initialFillReadyList(ReadyInsts); 7694 } 7695 7696 // Now try to schedule the new bundle or (if no bundle) just calculate 7697 // dependencies. As soon as the bundle is "ready" it means that there are no 7698 // cyclic dependencies and we can schedule it. Note that's important that we 7699 // don't "schedule" the bundle yet (see cancelScheduling). 7700 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7701 !ReadyInsts.empty()) { 7702 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7703 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7704 "must be ready to schedule"); 7705 schedule(Picked, ReadyInsts); 7706 } 7707 }; 7708 7709 // Make sure that the scheduling region contains all 7710 // instructions of the bundle. 7711 for (Value *V : VL) { 7712 if (!extendSchedulingRegion(V, S)) { 7713 // If the scheduling region got new instructions at the lower end (or it 7714 // is a new region for the first bundle). This makes it necessary to 7715 // recalculate all dependencies. 7716 // Otherwise the compiler may crash trying to incorrectly calculate 7717 // dependencies and emit instruction in the wrong order at the actual 7718 // scheduling. 7719 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7720 return None; 7721 } 7722 } 7723 7724 bool ReSchedule = false; 7725 for (Value *V : VL) { 7726 ScheduleData *BundleMember = getScheduleData(V); 7727 assert(BundleMember && 7728 "no ScheduleData for bundle member (maybe not in same basic block)"); 7729 7730 // Make sure we don't leave the pieces of the bundle in the ready list when 7731 // whole bundle might not be ready. 7732 ReadyInsts.remove(BundleMember); 7733 7734 if (!BundleMember->IsScheduled) 7735 continue; 7736 // A bundle member was scheduled as single instruction before and now 7737 // needs to be scheduled as part of the bundle. We just get rid of the 7738 // existing schedule. 7739 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7740 << " was already scheduled\n"); 7741 ReSchedule = true; 7742 } 7743 7744 auto *Bundle = buildBundle(VL); 7745 TryScheduleBundleImpl(ReSchedule, Bundle); 7746 if (!Bundle->isReady()) { 7747 cancelScheduling(VL, S.OpValue); 7748 return None; 7749 } 7750 return Bundle; 7751 } 7752 7753 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7754 Value *OpValue) { 7755 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7756 return; 7757 7758 ScheduleData *Bundle = getScheduleData(OpValue); 7759 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7760 assert(!Bundle->IsScheduled && 7761 "Can't cancel bundle which is already scheduled"); 7762 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7763 "tried to unbundle something which is not a bundle"); 7764 7765 // Remove the bundle from the ready list. 7766 if (Bundle->isReady()) 7767 ReadyInsts.remove(Bundle); 7768 7769 // Un-bundle: make single instructions out of the bundle. 7770 ScheduleData *BundleMember = Bundle; 7771 while (BundleMember) { 7772 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7773 BundleMember->FirstInBundle = BundleMember; 7774 ScheduleData *Next = BundleMember->NextInBundle; 7775 BundleMember->NextInBundle = nullptr; 7776 if (BundleMember->unscheduledDepsInBundle() == 0) { 7777 ReadyInsts.insert(BundleMember); 7778 } 7779 BundleMember = Next; 7780 } 7781 } 7782 7783 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7784 // Allocate a new ScheduleData for the instruction. 7785 if (ChunkPos >= ChunkSize) { 7786 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7787 ChunkPos = 0; 7788 } 7789 return &(ScheduleDataChunks.back()[ChunkPos++]); 7790 } 7791 7792 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7793 const InstructionsState &S) { 7794 if (getScheduleData(V, isOneOf(S, V))) 7795 return true; 7796 Instruction *I = dyn_cast<Instruction>(V); 7797 assert(I && "bundle member must be an instruction"); 7798 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7799 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7800 "be scheduled"); 7801 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7802 ScheduleData *ISD = getScheduleData(I); 7803 if (!ISD) 7804 return false; 7805 assert(isInSchedulingRegion(ISD) && 7806 "ScheduleData not in scheduling region"); 7807 ScheduleData *SD = allocateScheduleDataChunks(); 7808 SD->Inst = I; 7809 SD->init(SchedulingRegionID, S.OpValue); 7810 ExtraScheduleDataMap[I][S.OpValue] = SD; 7811 return true; 7812 }; 7813 if (CheckScheduleForI(I)) 7814 return true; 7815 if (!ScheduleStart) { 7816 // It's the first instruction in the new region. 7817 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7818 ScheduleStart = I; 7819 ScheduleEnd = I->getNextNode(); 7820 if (isOneOf(S, I) != I) 7821 CheckScheduleForI(I); 7822 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7823 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7824 return true; 7825 } 7826 // Search up and down at the same time, because we don't know if the new 7827 // instruction is above or below the existing scheduling region. 7828 BasicBlock::reverse_iterator UpIter = 7829 ++ScheduleStart->getIterator().getReverse(); 7830 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7831 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7832 BasicBlock::iterator LowerEnd = BB->end(); 7833 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7834 &*DownIter != I) { 7835 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7836 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7837 return false; 7838 } 7839 7840 ++UpIter; 7841 ++DownIter; 7842 } 7843 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7844 assert(I->getParent() == ScheduleStart->getParent() && 7845 "Instruction is in wrong basic block."); 7846 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7847 ScheduleStart = I; 7848 if (isOneOf(S, I) != I) 7849 CheckScheduleForI(I); 7850 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7851 << "\n"); 7852 return true; 7853 } 7854 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7855 "Expected to reach top of the basic block or instruction down the " 7856 "lower end."); 7857 assert(I->getParent() == ScheduleEnd->getParent() && 7858 "Instruction is in wrong basic block."); 7859 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7860 nullptr); 7861 ScheduleEnd = I->getNextNode(); 7862 if (isOneOf(S, I) != I) 7863 CheckScheduleForI(I); 7864 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7865 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7866 return true; 7867 } 7868 7869 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7870 Instruction *ToI, 7871 ScheduleData *PrevLoadStore, 7872 ScheduleData *NextLoadStore) { 7873 ScheduleData *CurrentLoadStore = PrevLoadStore; 7874 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7875 ScheduleData *SD = ScheduleDataMap[I]; 7876 if (!SD) { 7877 SD = allocateScheduleDataChunks(); 7878 ScheduleDataMap[I] = SD; 7879 SD->Inst = I; 7880 } 7881 assert(!isInSchedulingRegion(SD) && 7882 "new ScheduleData already in scheduling region"); 7883 SD->init(SchedulingRegionID, I); 7884 7885 if (I->mayReadOrWriteMemory() && 7886 (!isa<IntrinsicInst>(I) || 7887 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7888 cast<IntrinsicInst>(I)->getIntrinsicID() != 7889 Intrinsic::pseudoprobe))) { 7890 // Update the linked list of memory accessing instructions. 7891 if (CurrentLoadStore) { 7892 CurrentLoadStore->NextLoadStore = SD; 7893 } else { 7894 FirstLoadStoreInRegion = SD; 7895 } 7896 CurrentLoadStore = SD; 7897 } 7898 } 7899 if (NextLoadStore) { 7900 if (CurrentLoadStore) 7901 CurrentLoadStore->NextLoadStore = NextLoadStore; 7902 } else { 7903 LastLoadStoreInRegion = CurrentLoadStore; 7904 } 7905 } 7906 7907 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7908 bool InsertInReadyList, 7909 BoUpSLP *SLP) { 7910 assert(SD->isSchedulingEntity()); 7911 7912 SmallVector<ScheduleData *, 10> WorkList; 7913 WorkList.push_back(SD); 7914 7915 while (!WorkList.empty()) { 7916 ScheduleData *SD = WorkList.pop_back_val(); 7917 for (ScheduleData *BundleMember = SD; BundleMember; 7918 BundleMember = BundleMember->NextInBundle) { 7919 assert(isInSchedulingRegion(BundleMember)); 7920 if (BundleMember->hasValidDependencies()) 7921 continue; 7922 7923 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7924 << "\n"); 7925 BundleMember->Dependencies = 0; 7926 BundleMember->resetUnscheduledDeps(); 7927 7928 // Handle def-use chain dependencies. 7929 if (BundleMember->OpValue != BundleMember->Inst) { 7930 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7931 BundleMember->Dependencies++; 7932 ScheduleData *DestBundle = UseSD->FirstInBundle; 7933 if (!DestBundle->IsScheduled) 7934 BundleMember->incrementUnscheduledDeps(1); 7935 if (!DestBundle->hasValidDependencies()) 7936 WorkList.push_back(DestBundle); 7937 } 7938 } else { 7939 for (User *U : BundleMember->Inst->users()) { 7940 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7941 BundleMember->Dependencies++; 7942 ScheduleData *DestBundle = UseSD->FirstInBundle; 7943 if (!DestBundle->IsScheduled) 7944 BundleMember->incrementUnscheduledDeps(1); 7945 if (!DestBundle->hasValidDependencies()) 7946 WorkList.push_back(DestBundle); 7947 } 7948 } 7949 } 7950 7951 // Handle the memory dependencies (if any). 7952 ScheduleData *DepDest = BundleMember->NextLoadStore; 7953 if (!DepDest) 7954 continue; 7955 Instruction *SrcInst = BundleMember->Inst; 7956 assert(SrcInst->mayReadOrWriteMemory() && 7957 "NextLoadStore list for non memory effecting bundle?"); 7958 MemoryLocation SrcLoc = getLocation(SrcInst); 7959 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7960 unsigned numAliased = 0; 7961 unsigned DistToSrc = 1; 7962 7963 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7964 assert(isInSchedulingRegion(DepDest)); 7965 7966 // We have two limits to reduce the complexity: 7967 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7968 // SLP->isAliased (which is the expensive part in this loop). 7969 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7970 // the whole loop (even if the loop is fast, it's quadratic). 7971 // It's important for the loop break condition (see below) to 7972 // check this limit even between two read-only instructions. 7973 if (DistToSrc >= MaxMemDepDistance || 7974 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7975 (numAliased >= AliasedCheckLimit || 7976 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7977 7978 // We increment the counter only if the locations are aliased 7979 // (instead of counting all alias checks). This gives a better 7980 // balance between reduced runtime and accurate dependencies. 7981 numAliased++; 7982 7983 DepDest->MemoryDependencies.push_back(BundleMember); 7984 BundleMember->Dependencies++; 7985 ScheduleData *DestBundle = DepDest->FirstInBundle; 7986 if (!DestBundle->IsScheduled) { 7987 BundleMember->incrementUnscheduledDeps(1); 7988 } 7989 if (!DestBundle->hasValidDependencies()) { 7990 WorkList.push_back(DestBundle); 7991 } 7992 } 7993 7994 // Example, explaining the loop break condition: Let's assume our 7995 // starting instruction is i0 and MaxMemDepDistance = 3. 7996 // 7997 // +--------v--v--v 7998 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7999 // +--------^--^--^ 8000 // 8001 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8002 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8003 // Previously we already added dependencies from i3 to i6,i7,i8 8004 // (because of MaxMemDepDistance). As we added a dependency from 8005 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8006 // and we can abort this loop at i6. 8007 if (DistToSrc >= 2 * MaxMemDepDistance) 8008 break; 8009 DistToSrc++; 8010 } 8011 } 8012 if (InsertInReadyList && SD->isReady()) { 8013 ReadyInsts.insert(SD); 8014 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8015 << "\n"); 8016 } 8017 } 8018 } 8019 8020 void BoUpSLP::BlockScheduling::resetSchedule() { 8021 assert(ScheduleStart && 8022 "tried to reset schedule on block which has not been scheduled"); 8023 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8024 doForAllOpcodes(I, [&](ScheduleData *SD) { 8025 assert(isInSchedulingRegion(SD) && 8026 "ScheduleData not in scheduling region"); 8027 SD->IsScheduled = false; 8028 SD->resetUnscheduledDeps(); 8029 }); 8030 } 8031 ReadyInsts.clear(); 8032 } 8033 8034 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8035 if (!BS->ScheduleStart) 8036 return; 8037 8038 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8039 8040 BS->resetSchedule(); 8041 8042 // For the real scheduling we use a more sophisticated ready-list: it is 8043 // sorted by the original instruction location. This lets the final schedule 8044 // be as close as possible to the original instruction order. 8045 struct ScheduleDataCompare { 8046 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8047 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8048 } 8049 }; 8050 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8051 8052 // Ensure that all dependency data is updated and fill the ready-list with 8053 // initial instructions. 8054 int Idx = 0; 8055 int NumToSchedule = 0; 8056 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8057 I = I->getNextNode()) { 8058 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8059 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8060 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 8061 "scheduler and vectorizer bundle mismatch"); 8062 SD->FirstInBundle->SchedulingPriority = Idx++; 8063 if (SD->isSchedulingEntity()) { 8064 BS->calculateDependencies(SD, false, this); 8065 NumToSchedule++; 8066 } 8067 }); 8068 } 8069 BS->initialFillReadyList(ReadyInsts); 8070 8071 Instruction *LastScheduledInst = BS->ScheduleEnd; 8072 MemoryAccess *MemInsertPt = nullptr; 8073 if (MSSA) { 8074 for (auto I = LastScheduledInst->getIterator(); I != BS->BB->end(); I++) { 8075 if (auto *Access = MSSA->getMemoryAccess(&*I)) { 8076 MemInsertPt = Access; 8077 break; 8078 } 8079 } 8080 } 8081 8082 // Do the "real" scheduling. 8083 while (!ReadyInsts.empty()) { 8084 ScheduleData *picked = *ReadyInsts.begin(); 8085 ReadyInsts.erase(ReadyInsts.begin()); 8086 8087 // Move the scheduled instruction(s) to their dedicated places, if not 8088 // there yet. 8089 for (ScheduleData *BundleMember = picked; BundleMember; 8090 BundleMember = BundleMember->NextInBundle) { 8091 Instruction *pickedInst = BundleMember->Inst; 8092 if (pickedInst->getNextNode() != LastScheduledInst) { 8093 pickedInst->moveBefore(LastScheduledInst); 8094 if (MSSA) { 8095 MemorySSAUpdater MSSAU(MSSA); 8096 if (auto *Access = MSSA->getMemoryAccess(pickedInst)) { 8097 if (MemInsertPt) 8098 MSSAU.moveBefore(Access, cast<MemoryUseOrDef>(MemInsertPt)); 8099 else 8100 MSSAU.moveToPlace(Access, BS->BB, 8101 MemorySSA::InsertionPlace::End); 8102 } 8103 } 8104 } 8105 8106 LastScheduledInst = pickedInst; 8107 if (MSSA) 8108 if (auto *Access = MSSA->getMemoryAccess(LastScheduledInst)) 8109 MemInsertPt = Access; 8110 } 8111 8112 BS->schedule(picked, ReadyInsts); 8113 NumToSchedule--; 8114 } 8115 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8116 8117 // Check that we didn't break any of our invariants. 8118 #ifdef EXPENSIVE_CHECKS 8119 BS->verify(); 8120 #endif 8121 8122 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8123 // Check that all schedulable entities got scheduled 8124 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8125 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8126 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8127 assert(SD->IsScheduled && "must be scheduled at this point"); 8128 } 8129 }); 8130 } 8131 #endif 8132 8133 // Avoid duplicate scheduling of the block. 8134 BS->ScheduleStart = nullptr; 8135 } 8136 8137 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8138 // If V is a store, just return the width of the stored value (or value 8139 // truncated just before storing) without traversing the expression tree. 8140 // This is the common case. 8141 if (auto *Store = dyn_cast<StoreInst>(V)) { 8142 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8143 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8144 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8145 } 8146 8147 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8148 return getVectorElementSize(IEI->getOperand(1)); 8149 8150 auto E = InstrElementSize.find(V); 8151 if (E != InstrElementSize.end()) 8152 return E->second; 8153 8154 // If V is not a store, we can traverse the expression tree to find loads 8155 // that feed it. The type of the loaded value may indicate a more suitable 8156 // width than V's type. We want to base the vector element size on the width 8157 // of memory operations where possible. 8158 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8159 SmallPtrSet<Instruction *, 16> Visited; 8160 if (auto *I = dyn_cast<Instruction>(V)) { 8161 Worklist.emplace_back(I, I->getParent()); 8162 Visited.insert(I); 8163 } 8164 8165 // Traverse the expression tree in bottom-up order looking for loads. If we 8166 // encounter an instruction we don't yet handle, we give up. 8167 auto Width = 0u; 8168 while (!Worklist.empty()) { 8169 Instruction *I; 8170 BasicBlock *Parent; 8171 std::tie(I, Parent) = Worklist.pop_back_val(); 8172 8173 // We should only be looking at scalar instructions here. If the current 8174 // instruction has a vector type, skip. 8175 auto *Ty = I->getType(); 8176 if (isa<VectorType>(Ty)) 8177 continue; 8178 8179 // If the current instruction is a load, update MaxWidth to reflect the 8180 // width of the loaded value. 8181 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8182 isa<ExtractValueInst>(I)) 8183 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8184 8185 // Otherwise, we need to visit the operands of the instruction. We only 8186 // handle the interesting cases from buildTree here. If an operand is an 8187 // instruction we haven't yet visited and from the same basic block as the 8188 // user or the use is a PHI node, we add it to the worklist. 8189 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8190 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8191 isa<UnaryOperator>(I)) { 8192 for (Use &U : I->operands()) 8193 if (auto *J = dyn_cast<Instruction>(U.get())) 8194 if (Visited.insert(J).second && 8195 (isa<PHINode>(I) || J->getParent() == Parent)) 8196 Worklist.emplace_back(J, J->getParent()); 8197 } else { 8198 break; 8199 } 8200 } 8201 8202 // If we didn't encounter a memory access in the expression tree, or if we 8203 // gave up for some reason, just return the width of V. Otherwise, return the 8204 // maximum width we found. 8205 if (!Width) { 8206 if (auto *CI = dyn_cast<CmpInst>(V)) 8207 V = CI->getOperand(0); 8208 Width = DL->getTypeSizeInBits(V->getType()); 8209 } 8210 8211 for (Instruction *I : Visited) 8212 InstrElementSize[I] = Width; 8213 8214 return Width; 8215 } 8216 8217 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8218 // smaller type with a truncation. We collect the values that will be demoted 8219 // in ToDemote and additional roots that require investigating in Roots. 8220 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8221 SmallVectorImpl<Value *> &ToDemote, 8222 SmallVectorImpl<Value *> &Roots) { 8223 // We can always demote constants. 8224 if (isa<Constant>(V)) { 8225 ToDemote.push_back(V); 8226 return true; 8227 } 8228 8229 // If the value is not an instruction in the expression with only one use, it 8230 // cannot be demoted. 8231 auto *I = dyn_cast<Instruction>(V); 8232 if (!I || !I->hasOneUse() || !Expr.count(I)) 8233 return false; 8234 8235 switch (I->getOpcode()) { 8236 8237 // We can always demote truncations and extensions. Since truncations can 8238 // seed additional demotion, we save the truncated value. 8239 case Instruction::Trunc: 8240 Roots.push_back(I->getOperand(0)); 8241 break; 8242 case Instruction::ZExt: 8243 case Instruction::SExt: 8244 if (isa<ExtractElementInst>(I->getOperand(0)) || 8245 isa<InsertElementInst>(I->getOperand(0))) 8246 return false; 8247 break; 8248 8249 // We can demote certain binary operations if we can demote both of their 8250 // operands. 8251 case Instruction::Add: 8252 case Instruction::Sub: 8253 case Instruction::Mul: 8254 case Instruction::And: 8255 case Instruction::Or: 8256 case Instruction::Xor: 8257 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8258 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8259 return false; 8260 break; 8261 8262 // We can demote selects if we can demote their true and false values. 8263 case Instruction::Select: { 8264 SelectInst *SI = cast<SelectInst>(I); 8265 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8266 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8267 return false; 8268 break; 8269 } 8270 8271 // We can demote phis if we can demote all their incoming operands. Note that 8272 // we don't need to worry about cycles since we ensure single use above. 8273 case Instruction::PHI: { 8274 PHINode *PN = cast<PHINode>(I); 8275 for (Value *IncValue : PN->incoming_values()) 8276 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8277 return false; 8278 break; 8279 } 8280 8281 // Otherwise, conservatively give up. 8282 default: 8283 return false; 8284 } 8285 8286 // Record the value that we can demote. 8287 ToDemote.push_back(V); 8288 return true; 8289 } 8290 8291 void BoUpSLP::computeMinimumValueSizes() { 8292 // If there are no external uses, the expression tree must be rooted by a 8293 // store. We can't demote in-memory values, so there is nothing to do here. 8294 if (ExternalUses.empty()) 8295 return; 8296 8297 // We only attempt to truncate integer expressions. 8298 auto &TreeRoot = VectorizableTree[0]->Scalars; 8299 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8300 if (!TreeRootIT) 8301 return; 8302 8303 // If the expression is not rooted by a store, these roots should have 8304 // external uses. We will rely on InstCombine to rewrite the expression in 8305 // the narrower type. However, InstCombine only rewrites single-use values. 8306 // This means that if a tree entry other than a root is used externally, it 8307 // must have multiple uses and InstCombine will not rewrite it. The code 8308 // below ensures that only the roots are used externally. 8309 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8310 for (auto &EU : ExternalUses) 8311 if (!Expr.erase(EU.Scalar)) 8312 return; 8313 if (!Expr.empty()) 8314 return; 8315 8316 // Collect the scalar values of the vectorizable expression. We will use this 8317 // context to determine which values can be demoted. If we see a truncation, 8318 // we mark it as seeding another demotion. 8319 for (auto &EntryPtr : VectorizableTree) 8320 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8321 8322 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8323 // have a single external user that is not in the vectorizable tree. 8324 for (auto *Root : TreeRoot) 8325 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8326 return; 8327 8328 // Conservatively determine if we can actually truncate the roots of the 8329 // expression. Collect the values that can be demoted in ToDemote and 8330 // additional roots that require investigating in Roots. 8331 SmallVector<Value *, 32> ToDemote; 8332 SmallVector<Value *, 4> Roots; 8333 for (auto *Root : TreeRoot) 8334 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8335 return; 8336 8337 // The maximum bit width required to represent all the values that can be 8338 // demoted without loss of precision. It would be safe to truncate the roots 8339 // of the expression to this width. 8340 auto MaxBitWidth = 8u; 8341 8342 // We first check if all the bits of the roots are demanded. If they're not, 8343 // we can truncate the roots to this narrower type. 8344 for (auto *Root : TreeRoot) { 8345 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8346 MaxBitWidth = std::max<unsigned>( 8347 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8348 } 8349 8350 // True if the roots can be zero-extended back to their original type, rather 8351 // than sign-extended. We know that if the leading bits are not demanded, we 8352 // can safely zero-extend. So we initialize IsKnownPositive to True. 8353 bool IsKnownPositive = true; 8354 8355 // If all the bits of the roots are demanded, we can try a little harder to 8356 // compute a narrower type. This can happen, for example, if the roots are 8357 // getelementptr indices. InstCombine promotes these indices to the pointer 8358 // width. Thus, all their bits are technically demanded even though the 8359 // address computation might be vectorized in a smaller type. 8360 // 8361 // We start by looking at each entry that can be demoted. We compute the 8362 // maximum bit width required to store the scalar by using ValueTracking to 8363 // compute the number of high-order bits we can truncate. 8364 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8365 llvm::all_of(TreeRoot, [](Value *R) { 8366 assert(R->hasOneUse() && "Root should have only one use!"); 8367 return isa<GetElementPtrInst>(R->user_back()); 8368 })) { 8369 MaxBitWidth = 8u; 8370 8371 // Determine if the sign bit of all the roots is known to be zero. If not, 8372 // IsKnownPositive is set to False. 8373 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8374 KnownBits Known = computeKnownBits(R, *DL); 8375 return Known.isNonNegative(); 8376 }); 8377 8378 // Determine the maximum number of bits required to store the scalar 8379 // values. 8380 for (auto *Scalar : ToDemote) { 8381 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8382 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8383 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8384 } 8385 8386 // If we can't prove that the sign bit is zero, we must add one to the 8387 // maximum bit width to account for the unknown sign bit. This preserves 8388 // the existing sign bit so we can safely sign-extend the root back to the 8389 // original type. Otherwise, if we know the sign bit is zero, we will 8390 // zero-extend the root instead. 8391 // 8392 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8393 // one to the maximum bit width will yield a larger-than-necessary 8394 // type. In general, we need to add an extra bit only if we can't 8395 // prove that the upper bit of the original type is equal to the 8396 // upper bit of the proposed smaller type. If these two bits are the 8397 // same (either zero or one) we know that sign-extending from the 8398 // smaller type will result in the same value. Here, since we can't 8399 // yet prove this, we are just making the proposed smaller type 8400 // larger to ensure correctness. 8401 if (!IsKnownPositive) 8402 ++MaxBitWidth; 8403 } 8404 8405 // Round MaxBitWidth up to the next power-of-two. 8406 if (!isPowerOf2_64(MaxBitWidth)) 8407 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8408 8409 // If the maximum bit width we compute is less than the with of the roots' 8410 // type, we can proceed with the narrowing. Otherwise, do nothing. 8411 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8412 return; 8413 8414 // If we can truncate the root, we must collect additional values that might 8415 // be demoted as a result. That is, those seeded by truncations we will 8416 // modify. 8417 while (!Roots.empty()) 8418 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8419 8420 // Finally, map the values we can demote to the maximum bit with we computed. 8421 for (auto *Scalar : ToDemote) 8422 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8423 } 8424 8425 namespace { 8426 8427 /// The SLPVectorizer Pass. 8428 struct SLPVectorizer : public FunctionPass { 8429 SLPVectorizerPass Impl; 8430 8431 /// Pass identification, replacement for typeid 8432 static char ID; 8433 8434 explicit SLPVectorizer() : FunctionPass(ID) { 8435 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8436 } 8437 8438 bool doInitialization(Module &M) override { return false; } 8439 8440 bool runOnFunction(Function &F) override { 8441 if (skipFunction(F)) 8442 return false; 8443 8444 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8445 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8446 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8447 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8448 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8449 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8450 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8451 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8452 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8453 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8454 8455 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, /*MSSA*/nullptr, ORE); 8456 } 8457 8458 void getAnalysisUsage(AnalysisUsage &AU) const override { 8459 FunctionPass::getAnalysisUsage(AU); 8460 AU.addRequired<AssumptionCacheTracker>(); 8461 AU.addRequired<ScalarEvolutionWrapperPass>(); 8462 AU.addRequired<AAResultsWrapperPass>(); 8463 AU.addRequired<TargetTransformInfoWrapperPass>(); 8464 AU.addRequired<LoopInfoWrapperPass>(); 8465 AU.addRequired<DominatorTreeWrapperPass>(); 8466 AU.addRequired<DemandedBitsWrapperPass>(); 8467 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8468 AU.addRequired<InjectTLIMappingsLegacy>(); 8469 AU.addPreserved<LoopInfoWrapperPass>(); 8470 AU.addPreserved<DominatorTreeWrapperPass>(); 8471 AU.addPreserved<AAResultsWrapperPass>(); 8472 AU.addPreserved<GlobalsAAWrapperPass>(); 8473 AU.setPreservesCFG(); 8474 } 8475 }; 8476 8477 } // end anonymous namespace 8478 8479 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8480 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8481 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8482 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8483 auto *AA = &AM.getResult<AAManager>(F); 8484 auto *LI = &AM.getResult<LoopAnalysis>(F); 8485 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8486 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8487 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8488 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8489 auto *MSSA = EnableMSSAInSLPVectorizer ? 8490 &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : (MemorySSA*)nullptr; 8491 8492 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, ORE); 8493 if (!Changed) 8494 return PreservedAnalyses::all(); 8495 8496 PreservedAnalyses PA; 8497 PA.preserveSet<CFGAnalyses>(); 8498 if (MSSA) { 8499 #ifdef EXPENSIVE_CHECKS 8500 MSSA->verifyMemorySSA(); 8501 #endif 8502 PA.preserve<MemorySSAAnalysis>(); 8503 } 8504 return PA; 8505 } 8506 8507 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8508 TargetTransformInfo *TTI_, 8509 TargetLibraryInfo *TLI_, AAResults *AA_, 8510 LoopInfo *LI_, DominatorTree *DT_, 8511 AssumptionCache *AC_, DemandedBits *DB_, 8512 MemorySSA *MSSA, 8513 OptimizationRemarkEmitter *ORE_) { 8514 if (!RunSLPVectorization) 8515 return false; 8516 SE = SE_; 8517 TTI = TTI_; 8518 TLI = TLI_; 8519 AA = AA_; 8520 LI = LI_; 8521 DT = DT_; 8522 AC = AC_; 8523 DB = DB_; 8524 DL = &F.getParent()->getDataLayout(); 8525 8526 Stores.clear(); 8527 GEPs.clear(); 8528 bool Changed = false; 8529 8530 // If the target claims to have no vector registers don't attempt 8531 // vectorization. 8532 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8533 LLVM_DEBUG( 8534 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8535 return false; 8536 } 8537 8538 // Don't vectorize when the attribute NoImplicitFloat is used. 8539 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8540 return false; 8541 8542 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8543 8544 // Use the bottom up slp vectorizer to construct chains that start with 8545 // store instructions. 8546 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, MSSA, DL, ORE_); 8547 8548 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8549 // delete instructions. 8550 8551 // Update DFS numbers now so that we can use them for ordering. 8552 DT->updateDFSNumbers(); 8553 8554 // Scan the blocks in the function in post order. 8555 for (auto BB : post_order(&F.getEntryBlock())) { 8556 collectSeedInstructions(BB); 8557 8558 // Vectorize trees that end at stores. 8559 if (!Stores.empty()) { 8560 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8561 << " underlying objects.\n"); 8562 Changed |= vectorizeStoreChains(R); 8563 } 8564 8565 // Vectorize trees that end at reductions. 8566 Changed |= vectorizeChainsInBlock(BB, R); 8567 8568 // Vectorize the index computations of getelementptr instructions. This 8569 // is primarily intended to catch gather-like idioms ending at 8570 // non-consecutive loads. 8571 if (!GEPs.empty()) { 8572 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8573 << " underlying objects.\n"); 8574 Changed |= vectorizeGEPIndices(BB, R); 8575 } 8576 } 8577 8578 if (Changed) { 8579 R.optimizeGatherSequence(); 8580 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8581 } 8582 return Changed; 8583 } 8584 8585 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8586 unsigned Idx) { 8587 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8588 << "\n"); 8589 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8590 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8591 unsigned VF = Chain.size(); 8592 8593 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8594 return false; 8595 8596 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8597 << "\n"); 8598 8599 R.buildTree(Chain); 8600 if (R.isTreeTinyAndNotFullyVectorizable()) 8601 return false; 8602 if (R.isLoadCombineCandidate()) 8603 return false; 8604 R.reorderTopToBottom(); 8605 R.reorderBottomToTop(); 8606 R.buildExternalUses(); 8607 8608 R.computeMinimumValueSizes(); 8609 8610 InstructionCost Cost = R.getTreeCost(); 8611 8612 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8613 if (Cost < -SLPCostThreshold) { 8614 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8615 8616 using namespace ore; 8617 8618 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8619 cast<StoreInst>(Chain[0])) 8620 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8621 << " and with tree size " 8622 << NV("TreeSize", R.getTreeSize())); 8623 8624 R.vectorizeTree(); 8625 return true; 8626 } 8627 8628 return false; 8629 } 8630 8631 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8632 BoUpSLP &R) { 8633 // We may run into multiple chains that merge into a single chain. We mark the 8634 // stores that we vectorized so that we don't visit the same store twice. 8635 BoUpSLP::ValueSet VectorizedStores; 8636 bool Changed = false; 8637 8638 int E = Stores.size(); 8639 SmallBitVector Tails(E, false); 8640 int MaxIter = MaxStoreLookup.getValue(); 8641 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8642 E, std::make_pair(E, INT_MAX)); 8643 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8644 int IterCnt; 8645 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8646 &CheckedPairs, 8647 &ConsecutiveChain](int K, int Idx) { 8648 if (IterCnt >= MaxIter) 8649 return true; 8650 if (CheckedPairs[Idx].test(K)) 8651 return ConsecutiveChain[K].second == 1 && 8652 ConsecutiveChain[K].first == Idx; 8653 ++IterCnt; 8654 CheckedPairs[Idx].set(K); 8655 CheckedPairs[K].set(Idx); 8656 Optional<int> Diff = getPointersDiff( 8657 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8658 Stores[Idx]->getValueOperand()->getType(), 8659 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8660 if (!Diff || *Diff == 0) 8661 return false; 8662 int Val = *Diff; 8663 if (Val < 0) { 8664 if (ConsecutiveChain[Idx].second > -Val) { 8665 Tails.set(K); 8666 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8667 } 8668 return false; 8669 } 8670 if (ConsecutiveChain[K].second <= Val) 8671 return false; 8672 8673 Tails.set(Idx); 8674 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8675 return Val == 1; 8676 }; 8677 // Do a quadratic search on all of the given stores in reverse order and find 8678 // all of the pairs of stores that follow each other. 8679 for (int Idx = E - 1; Idx >= 0; --Idx) { 8680 // If a store has multiple consecutive store candidates, search according 8681 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8682 // This is because usually pairing with immediate succeeding or preceding 8683 // candidate create the best chance to find slp vectorization opportunity. 8684 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8685 IterCnt = 0; 8686 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8687 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8688 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8689 break; 8690 } 8691 8692 // Tracks if we tried to vectorize stores starting from the given tail 8693 // already. 8694 SmallBitVector TriedTails(E, false); 8695 // For stores that start but don't end a link in the chain: 8696 for (int Cnt = E; Cnt > 0; --Cnt) { 8697 int I = Cnt - 1; 8698 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8699 continue; 8700 // We found a store instr that starts a chain. Now follow the chain and try 8701 // to vectorize it. 8702 BoUpSLP::ValueList Operands; 8703 // Collect the chain into a list. 8704 while (I != E && !VectorizedStores.count(Stores[I])) { 8705 Operands.push_back(Stores[I]); 8706 Tails.set(I); 8707 if (ConsecutiveChain[I].second != 1) { 8708 // Mark the new end in the chain and go back, if required. It might be 8709 // required if the original stores come in reversed order, for example. 8710 if (ConsecutiveChain[I].first != E && 8711 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8712 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8713 TriedTails.set(I); 8714 Tails.reset(ConsecutiveChain[I].first); 8715 if (Cnt < ConsecutiveChain[I].first + 2) 8716 Cnt = ConsecutiveChain[I].first + 2; 8717 } 8718 break; 8719 } 8720 // Move to the next value in the chain. 8721 I = ConsecutiveChain[I].first; 8722 } 8723 assert(!Operands.empty() && "Expected non-empty list of stores."); 8724 8725 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8726 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8727 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8728 8729 unsigned MinVF = R.getMinVF(EltSize); 8730 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8731 MaxElts); 8732 8733 // FIXME: Is division-by-2 the correct step? Should we assert that the 8734 // register size is a power-of-2? 8735 unsigned StartIdx = 0; 8736 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8737 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8738 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8739 if (!VectorizedStores.count(Slice.front()) && 8740 !VectorizedStores.count(Slice.back()) && 8741 vectorizeStoreChain(Slice, R, Cnt)) { 8742 // Mark the vectorized stores so that we don't vectorize them again. 8743 VectorizedStores.insert(Slice.begin(), Slice.end()); 8744 Changed = true; 8745 // If we vectorized initial block, no need to try to vectorize it 8746 // again. 8747 if (Cnt == StartIdx) 8748 StartIdx += Size; 8749 Cnt += Size; 8750 continue; 8751 } 8752 ++Cnt; 8753 } 8754 // Check if the whole array was vectorized already - exit. 8755 if (StartIdx >= Operands.size()) 8756 break; 8757 } 8758 } 8759 8760 return Changed; 8761 } 8762 8763 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8764 // Initialize the collections. We will make a single pass over the block. 8765 Stores.clear(); 8766 GEPs.clear(); 8767 8768 // Visit the store and getelementptr instructions in BB and organize them in 8769 // Stores and GEPs according to the underlying objects of their pointer 8770 // operands. 8771 for (Instruction &I : *BB) { 8772 // Ignore store instructions that are volatile or have a pointer operand 8773 // that doesn't point to a scalar type. 8774 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8775 if (!SI->isSimple()) 8776 continue; 8777 if (!isValidElementType(SI->getValueOperand()->getType())) 8778 continue; 8779 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8780 } 8781 8782 // Ignore getelementptr instructions that have more than one index, a 8783 // constant index, or a pointer operand that doesn't point to a scalar 8784 // type. 8785 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8786 auto Idx = GEP->idx_begin()->get(); 8787 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8788 continue; 8789 if (!isValidElementType(Idx->getType())) 8790 continue; 8791 if (GEP->getType()->isVectorTy()) 8792 continue; 8793 GEPs[GEP->getPointerOperand()].push_back(GEP); 8794 } 8795 } 8796 } 8797 8798 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8799 if (!A || !B) 8800 return false; 8801 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8802 return false; 8803 Value *VL[] = {A, B}; 8804 return tryToVectorizeList(VL, R); 8805 } 8806 8807 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8808 bool LimitForRegisterSize) { 8809 if (VL.size() < 2) 8810 return false; 8811 8812 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8813 << VL.size() << ".\n"); 8814 8815 // Check that all of the parts are instructions of the same type, 8816 // we permit an alternate opcode via InstructionsState. 8817 InstructionsState S = getSameOpcode(VL); 8818 if (!S.getOpcode()) 8819 return false; 8820 8821 Instruction *I0 = cast<Instruction>(S.OpValue); 8822 // Make sure invalid types (including vector type) are rejected before 8823 // determining vectorization factor for scalar instructions. 8824 for (Value *V : VL) { 8825 Type *Ty = V->getType(); 8826 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8827 // NOTE: the following will give user internal llvm type name, which may 8828 // not be useful. 8829 R.getORE()->emit([&]() { 8830 std::string type_str; 8831 llvm::raw_string_ostream rso(type_str); 8832 Ty->print(rso); 8833 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8834 << "Cannot SLP vectorize list: type " 8835 << rso.str() + " is unsupported by vectorizer"; 8836 }); 8837 return false; 8838 } 8839 } 8840 8841 unsigned Sz = R.getVectorElementSize(I0); 8842 unsigned MinVF = R.getMinVF(Sz); 8843 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8844 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8845 if (MaxVF < 2) { 8846 R.getORE()->emit([&]() { 8847 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8848 << "Cannot SLP vectorize list: vectorization factor " 8849 << "less than 2 is not supported"; 8850 }); 8851 return false; 8852 } 8853 8854 bool Changed = false; 8855 bool CandidateFound = false; 8856 InstructionCost MinCost = SLPCostThreshold.getValue(); 8857 Type *ScalarTy = VL[0]->getType(); 8858 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8859 ScalarTy = IE->getOperand(1)->getType(); 8860 8861 unsigned NextInst = 0, MaxInst = VL.size(); 8862 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8863 // No actual vectorization should happen, if number of parts is the same as 8864 // provided vectorization factor (i.e. the scalar type is used for vector 8865 // code during codegen). 8866 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8867 if (TTI->getNumberOfParts(VecTy) == VF) 8868 continue; 8869 for (unsigned I = NextInst; I < MaxInst; ++I) { 8870 unsigned OpsWidth = 0; 8871 8872 if (I + VF > MaxInst) 8873 OpsWidth = MaxInst - I; 8874 else 8875 OpsWidth = VF; 8876 8877 if (!isPowerOf2_32(OpsWidth)) 8878 continue; 8879 8880 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8881 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8882 break; 8883 8884 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8885 // Check that a previous iteration of this loop did not delete the Value. 8886 if (llvm::any_of(Ops, [&R](Value *V) { 8887 auto *I = dyn_cast<Instruction>(V); 8888 return I && R.isDeleted(I); 8889 })) 8890 continue; 8891 8892 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8893 << "\n"); 8894 8895 R.buildTree(Ops); 8896 if (R.isTreeTinyAndNotFullyVectorizable()) 8897 continue; 8898 R.reorderTopToBottom(); 8899 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8900 R.buildExternalUses(); 8901 8902 R.computeMinimumValueSizes(); 8903 InstructionCost Cost = R.getTreeCost(); 8904 CandidateFound = true; 8905 MinCost = std::min(MinCost, Cost); 8906 8907 if (Cost < -SLPCostThreshold) { 8908 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8909 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8910 cast<Instruction>(Ops[0])) 8911 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8912 << " and with tree size " 8913 << ore::NV("TreeSize", R.getTreeSize())); 8914 8915 R.vectorizeTree(); 8916 // Move to the next bundle. 8917 I += VF - 1; 8918 NextInst = I + 1; 8919 Changed = true; 8920 } 8921 } 8922 } 8923 8924 if (!Changed && CandidateFound) { 8925 R.getORE()->emit([&]() { 8926 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8927 << "List vectorization was possible but not beneficial with cost " 8928 << ore::NV("Cost", MinCost) << " >= " 8929 << ore::NV("Treshold", -SLPCostThreshold); 8930 }); 8931 } else if (!Changed) { 8932 R.getORE()->emit([&]() { 8933 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8934 << "Cannot SLP vectorize list: vectorization was impossible" 8935 << " with available vectorization factors"; 8936 }); 8937 } 8938 return Changed; 8939 } 8940 8941 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8942 if (!I) 8943 return false; 8944 8945 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8946 return false; 8947 8948 Value *P = I->getParent(); 8949 8950 // Vectorize in current basic block only. 8951 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8952 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8953 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8954 return false; 8955 8956 // Try to vectorize V. 8957 if (tryToVectorizePair(Op0, Op1, R)) 8958 return true; 8959 8960 auto *A = dyn_cast<BinaryOperator>(Op0); 8961 auto *B = dyn_cast<BinaryOperator>(Op1); 8962 // Try to skip B. 8963 if (B && B->hasOneUse()) { 8964 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8965 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8966 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8967 return true; 8968 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8969 return true; 8970 } 8971 8972 // Try to skip A. 8973 if (A && A->hasOneUse()) { 8974 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8975 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8976 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8977 return true; 8978 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8979 return true; 8980 } 8981 return false; 8982 } 8983 8984 namespace { 8985 8986 /// Model horizontal reductions. 8987 /// 8988 /// A horizontal reduction is a tree of reduction instructions that has values 8989 /// that can be put into a vector as its leaves. For example: 8990 /// 8991 /// mul mul mul mul 8992 /// \ / \ / 8993 /// + + 8994 /// \ / 8995 /// + 8996 /// This tree has "mul" as its leaf values and "+" as its reduction 8997 /// instructions. A reduction can feed into a store or a binary operation 8998 /// feeding a phi. 8999 /// ... 9000 /// \ / 9001 /// + 9002 /// | 9003 /// phi += 9004 /// 9005 /// Or: 9006 /// ... 9007 /// \ / 9008 /// + 9009 /// | 9010 /// *p = 9011 /// 9012 class HorizontalReduction { 9013 using ReductionOpsType = SmallVector<Value *, 16>; 9014 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9015 ReductionOpsListType ReductionOps; 9016 SmallVector<Value *, 32> ReducedVals; 9017 // Use map vector to make stable output. 9018 MapVector<Instruction *, Value *> ExtraArgs; 9019 WeakTrackingVH ReductionRoot; 9020 /// The type of reduction operation. 9021 RecurKind RdxKind; 9022 9023 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9024 9025 static bool isCmpSelMinMax(Instruction *I) { 9026 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9027 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9028 } 9029 9030 // And/or are potentially poison-safe logical patterns like: 9031 // select x, y, false 9032 // select x, true, y 9033 static bool isBoolLogicOp(Instruction *I) { 9034 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9035 match(I, m_LogicalOr(m_Value(), m_Value())); 9036 } 9037 9038 /// Checks if instruction is associative and can be vectorized. 9039 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9040 if (Kind == RecurKind::None) 9041 return false; 9042 9043 // Integer ops that map to select instructions or intrinsics are fine. 9044 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9045 isBoolLogicOp(I)) 9046 return true; 9047 9048 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9049 // FP min/max are associative except for NaN and -0.0. We do not 9050 // have to rule out -0.0 here because the intrinsic semantics do not 9051 // specify a fixed result for it. 9052 return I->getFastMathFlags().noNaNs(); 9053 } 9054 9055 return I->isAssociative(); 9056 } 9057 9058 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9059 // Poison-safe 'or' takes the form: select X, true, Y 9060 // To make that work with the normal operand processing, we skip the 9061 // true value operand. 9062 // TODO: Change the code and data structures to handle this without a hack. 9063 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9064 return I->getOperand(2); 9065 return I->getOperand(Index); 9066 } 9067 9068 /// Checks if the ParentStackElem.first should be marked as a reduction 9069 /// operation with an extra argument or as extra argument itself. 9070 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9071 Value *ExtraArg) { 9072 if (ExtraArgs.count(ParentStackElem.first)) { 9073 ExtraArgs[ParentStackElem.first] = nullptr; 9074 // We ran into something like: 9075 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9076 // The whole ParentStackElem.first should be considered as an extra value 9077 // in this case. 9078 // Do not perform analysis of remaining operands of ParentStackElem.first 9079 // instruction, this whole instruction is an extra argument. 9080 ParentStackElem.second = INVALID_OPERAND_INDEX; 9081 } else { 9082 // We ran into something like: 9083 // ParentStackElem.first += ... + ExtraArg + ... 9084 ExtraArgs[ParentStackElem.first] = ExtraArg; 9085 } 9086 } 9087 9088 /// Creates reduction operation with the current opcode. 9089 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9090 Value *RHS, const Twine &Name, bool UseSelect) { 9091 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9092 switch (Kind) { 9093 case RecurKind::Or: 9094 if (UseSelect && 9095 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9096 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9097 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9098 Name); 9099 case RecurKind::And: 9100 if (UseSelect && 9101 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9102 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9103 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9104 Name); 9105 case RecurKind::Add: 9106 case RecurKind::Mul: 9107 case RecurKind::Xor: 9108 case RecurKind::FAdd: 9109 case RecurKind::FMul: 9110 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9111 Name); 9112 case RecurKind::FMax: 9113 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9114 case RecurKind::FMin: 9115 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9116 case RecurKind::SMax: 9117 if (UseSelect) { 9118 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9119 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9120 } 9121 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9122 case RecurKind::SMin: 9123 if (UseSelect) { 9124 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9125 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9126 } 9127 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9128 case RecurKind::UMax: 9129 if (UseSelect) { 9130 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9131 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9132 } 9133 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9134 case RecurKind::UMin: 9135 if (UseSelect) { 9136 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9137 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9138 } 9139 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9140 default: 9141 llvm_unreachable("Unknown reduction operation."); 9142 } 9143 } 9144 9145 /// Creates reduction operation with the current opcode with the IR flags 9146 /// from \p ReductionOps. 9147 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9148 Value *RHS, const Twine &Name, 9149 const ReductionOpsListType &ReductionOps) { 9150 bool UseSelect = ReductionOps.size() == 2 || 9151 // Logical or/and. 9152 (ReductionOps.size() == 1 && 9153 isa<SelectInst>(ReductionOps.front().front())); 9154 assert((!UseSelect || ReductionOps.size() != 2 || 9155 isa<SelectInst>(ReductionOps[1][0])) && 9156 "Expected cmp + select pairs for reduction"); 9157 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9158 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9159 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9160 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9161 propagateIRFlags(Op, ReductionOps[1]); 9162 return Op; 9163 } 9164 } 9165 propagateIRFlags(Op, ReductionOps[0]); 9166 return Op; 9167 } 9168 9169 /// Creates reduction operation with the current opcode with the IR flags 9170 /// from \p I. 9171 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9172 Value *RHS, const Twine &Name, Instruction *I) { 9173 auto *SelI = dyn_cast<SelectInst>(I); 9174 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9175 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9176 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9177 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9178 } 9179 propagateIRFlags(Op, I); 9180 return Op; 9181 } 9182 9183 static RecurKind getRdxKind(Instruction *I) { 9184 assert(I && "Expected instruction for reduction matching"); 9185 if (match(I, m_Add(m_Value(), m_Value()))) 9186 return RecurKind::Add; 9187 if (match(I, m_Mul(m_Value(), m_Value()))) 9188 return RecurKind::Mul; 9189 if (match(I, m_And(m_Value(), m_Value())) || 9190 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9191 return RecurKind::And; 9192 if (match(I, m_Or(m_Value(), m_Value())) || 9193 match(I, m_LogicalOr(m_Value(), m_Value()))) 9194 return RecurKind::Or; 9195 if (match(I, m_Xor(m_Value(), m_Value()))) 9196 return RecurKind::Xor; 9197 if (match(I, m_FAdd(m_Value(), m_Value()))) 9198 return RecurKind::FAdd; 9199 if (match(I, m_FMul(m_Value(), m_Value()))) 9200 return RecurKind::FMul; 9201 9202 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9203 return RecurKind::FMax; 9204 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9205 return RecurKind::FMin; 9206 9207 // This matches either cmp+select or intrinsics. SLP is expected to handle 9208 // either form. 9209 // TODO: If we are canonicalizing to intrinsics, we can remove several 9210 // special-case paths that deal with selects. 9211 if (match(I, m_SMax(m_Value(), m_Value()))) 9212 return RecurKind::SMax; 9213 if (match(I, m_SMin(m_Value(), m_Value()))) 9214 return RecurKind::SMin; 9215 if (match(I, m_UMax(m_Value(), m_Value()))) 9216 return RecurKind::UMax; 9217 if (match(I, m_UMin(m_Value(), m_Value()))) 9218 return RecurKind::UMin; 9219 9220 if (auto *Select = dyn_cast<SelectInst>(I)) { 9221 // Try harder: look for min/max pattern based on instructions producing 9222 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9223 // During the intermediate stages of SLP, it's very common to have 9224 // pattern like this (since optimizeGatherSequence is run only once 9225 // at the end): 9226 // %1 = extractelement <2 x i32> %a, i32 0 9227 // %2 = extractelement <2 x i32> %a, i32 1 9228 // %cond = icmp sgt i32 %1, %2 9229 // %3 = extractelement <2 x i32> %a, i32 0 9230 // %4 = extractelement <2 x i32> %a, i32 1 9231 // %select = select i1 %cond, i32 %3, i32 %4 9232 CmpInst::Predicate Pred; 9233 Instruction *L1; 9234 Instruction *L2; 9235 9236 Value *LHS = Select->getTrueValue(); 9237 Value *RHS = Select->getFalseValue(); 9238 Value *Cond = Select->getCondition(); 9239 9240 // TODO: Support inverse predicates. 9241 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9242 if (!isa<ExtractElementInst>(RHS) || 9243 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9244 return RecurKind::None; 9245 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9246 if (!isa<ExtractElementInst>(LHS) || 9247 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9248 return RecurKind::None; 9249 } else { 9250 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9251 return RecurKind::None; 9252 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9253 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9254 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9255 return RecurKind::None; 9256 } 9257 9258 switch (Pred) { 9259 default: 9260 return RecurKind::None; 9261 case CmpInst::ICMP_SGT: 9262 case CmpInst::ICMP_SGE: 9263 return RecurKind::SMax; 9264 case CmpInst::ICMP_SLT: 9265 case CmpInst::ICMP_SLE: 9266 return RecurKind::SMin; 9267 case CmpInst::ICMP_UGT: 9268 case CmpInst::ICMP_UGE: 9269 return RecurKind::UMax; 9270 case CmpInst::ICMP_ULT: 9271 case CmpInst::ICMP_ULE: 9272 return RecurKind::UMin; 9273 } 9274 } 9275 return RecurKind::None; 9276 } 9277 9278 /// Get the index of the first operand. 9279 static unsigned getFirstOperandIndex(Instruction *I) { 9280 return isCmpSelMinMax(I) ? 1 : 0; 9281 } 9282 9283 /// Total number of operands in the reduction operation. 9284 static unsigned getNumberOfOperands(Instruction *I) { 9285 return isCmpSelMinMax(I) ? 3 : 2; 9286 } 9287 9288 /// Checks if the instruction is in basic block \p BB. 9289 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9290 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9291 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9292 auto *Sel = cast<SelectInst>(I); 9293 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9294 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9295 } 9296 return I->getParent() == BB; 9297 } 9298 9299 /// Expected number of uses for reduction operations/reduced values. 9300 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9301 if (IsCmpSelMinMax) { 9302 // SelectInst must be used twice while the condition op must have single 9303 // use only. 9304 if (auto *Sel = dyn_cast<SelectInst>(I)) 9305 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9306 return I->hasNUses(2); 9307 } 9308 9309 // Arithmetic reduction operation must be used once only. 9310 return I->hasOneUse(); 9311 } 9312 9313 /// Initializes the list of reduction operations. 9314 void initReductionOps(Instruction *I) { 9315 if (isCmpSelMinMax(I)) 9316 ReductionOps.assign(2, ReductionOpsType()); 9317 else 9318 ReductionOps.assign(1, ReductionOpsType()); 9319 } 9320 9321 /// Add all reduction operations for the reduction instruction \p I. 9322 void addReductionOps(Instruction *I) { 9323 if (isCmpSelMinMax(I)) { 9324 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9325 ReductionOps[1].emplace_back(I); 9326 } else { 9327 ReductionOps[0].emplace_back(I); 9328 } 9329 } 9330 9331 static Value *getLHS(RecurKind Kind, Instruction *I) { 9332 if (Kind == RecurKind::None) 9333 return nullptr; 9334 return I->getOperand(getFirstOperandIndex(I)); 9335 } 9336 static Value *getRHS(RecurKind Kind, Instruction *I) { 9337 if (Kind == RecurKind::None) 9338 return nullptr; 9339 return I->getOperand(getFirstOperandIndex(I) + 1); 9340 } 9341 9342 public: 9343 HorizontalReduction() = default; 9344 9345 /// Try to find a reduction tree. 9346 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9347 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9348 "Phi needs to use the binary operator"); 9349 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9350 isa<IntrinsicInst>(Inst)) && 9351 "Expected binop, select, or intrinsic for reduction matching"); 9352 RdxKind = getRdxKind(Inst); 9353 9354 // We could have a initial reductions that is not an add. 9355 // r *= v1 + v2 + v3 + v4 9356 // In such a case start looking for a tree rooted in the first '+'. 9357 if (Phi) { 9358 if (getLHS(RdxKind, Inst) == Phi) { 9359 Phi = nullptr; 9360 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9361 if (!Inst) 9362 return false; 9363 RdxKind = getRdxKind(Inst); 9364 } else if (getRHS(RdxKind, Inst) == Phi) { 9365 Phi = nullptr; 9366 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9367 if (!Inst) 9368 return false; 9369 RdxKind = getRdxKind(Inst); 9370 } 9371 } 9372 9373 if (!isVectorizable(RdxKind, Inst)) 9374 return false; 9375 9376 // Analyze "regular" integer/FP types for reductions - no target-specific 9377 // types or pointers. 9378 Type *Ty = Inst->getType(); 9379 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9380 return false; 9381 9382 // Though the ultimate reduction may have multiple uses, its condition must 9383 // have only single use. 9384 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9385 if (!Sel->getCondition()->hasOneUse()) 9386 return false; 9387 9388 ReductionRoot = Inst; 9389 9390 // The opcode for leaf values that we perform a reduction on. 9391 // For example: load(x) + load(y) + load(z) + fptoui(w) 9392 // The leaf opcode for 'w' does not match, so we don't include it as a 9393 // potential candidate for the reduction. 9394 unsigned LeafOpcode = 0; 9395 9396 // Post-order traverse the reduction tree starting at Inst. We only handle 9397 // true trees containing binary operators or selects. 9398 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9399 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9400 initReductionOps(Inst); 9401 while (!Stack.empty()) { 9402 Instruction *TreeN = Stack.back().first; 9403 unsigned EdgeToVisit = Stack.back().second++; 9404 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9405 bool IsReducedValue = TreeRdxKind != RdxKind; 9406 9407 // Postorder visit. 9408 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9409 if (IsReducedValue) 9410 ReducedVals.push_back(TreeN); 9411 else { 9412 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9413 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9414 // Check if TreeN is an extra argument of its parent operation. 9415 if (Stack.size() <= 1) { 9416 // TreeN can't be an extra argument as it is a root reduction 9417 // operation. 9418 return false; 9419 } 9420 // Yes, TreeN is an extra argument, do not add it to a list of 9421 // reduction operations. 9422 // Stack[Stack.size() - 2] always points to the parent operation. 9423 markExtraArg(Stack[Stack.size() - 2], TreeN); 9424 ExtraArgs.erase(TreeN); 9425 } else 9426 addReductionOps(TreeN); 9427 } 9428 // Retract. 9429 Stack.pop_back(); 9430 continue; 9431 } 9432 9433 // Visit operands. 9434 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9435 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9436 if (!EdgeInst) { 9437 // Edge value is not a reduction instruction or a leaf instruction. 9438 // (It may be a constant, function argument, or something else.) 9439 markExtraArg(Stack.back(), EdgeVal); 9440 continue; 9441 } 9442 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9443 // Continue analysis if the next operand is a reduction operation or 9444 // (possibly) a leaf value. If the leaf value opcode is not set, 9445 // the first met operation != reduction operation is considered as the 9446 // leaf opcode. 9447 // Only handle trees in the current basic block. 9448 // Each tree node needs to have minimal number of users except for the 9449 // ultimate reduction. 9450 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9451 if (EdgeInst != Phi && EdgeInst != Inst && 9452 hasSameParent(EdgeInst, Inst->getParent()) && 9453 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9454 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9455 if (IsRdxInst) { 9456 // We need to be able to reassociate the reduction operations. 9457 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9458 // I is an extra argument for TreeN (its parent operation). 9459 markExtraArg(Stack.back(), EdgeInst); 9460 continue; 9461 } 9462 } else if (!LeafOpcode) { 9463 LeafOpcode = EdgeInst->getOpcode(); 9464 } 9465 Stack.push_back( 9466 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9467 continue; 9468 } 9469 // I is an extra argument for TreeN (its parent operation). 9470 markExtraArg(Stack.back(), EdgeInst); 9471 } 9472 return true; 9473 } 9474 9475 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9476 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9477 // If there are a sufficient number of reduction values, reduce 9478 // to a nearby power-of-2. We can safely generate oversized 9479 // vectors and rely on the backend to split them to legal sizes. 9480 unsigned NumReducedVals = ReducedVals.size(); 9481 if (NumReducedVals < 4) 9482 return nullptr; 9483 9484 // Intersect the fast-math-flags from all reduction operations. 9485 FastMathFlags RdxFMF; 9486 RdxFMF.set(); 9487 for (ReductionOpsType &RdxOp : ReductionOps) { 9488 for (Value *RdxVal : RdxOp) { 9489 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9490 RdxFMF &= FPMO->getFastMathFlags(); 9491 } 9492 } 9493 9494 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9495 Builder.setFastMathFlags(RdxFMF); 9496 9497 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9498 // The same extra argument may be used several times, so log each attempt 9499 // to use it. 9500 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9501 assert(Pair.first && "DebugLoc must be set."); 9502 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9503 } 9504 9505 // The compare instruction of a min/max is the insertion point for new 9506 // instructions and may be replaced with a new compare instruction. 9507 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9508 assert(isa<SelectInst>(RdxRootInst) && 9509 "Expected min/max reduction to have select root instruction"); 9510 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9511 assert(isa<Instruction>(ScalarCond) && 9512 "Expected min/max reduction to have compare condition"); 9513 return cast<Instruction>(ScalarCond); 9514 }; 9515 9516 // The reduction root is used as the insertion point for new instructions, 9517 // so set it as externally used to prevent it from being deleted. 9518 ExternallyUsedValues[ReductionRoot]; 9519 SmallVector<Value *, 16> IgnoreList; 9520 for (ReductionOpsType &RdxOp : ReductionOps) 9521 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9522 9523 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9524 if (NumReducedVals > ReduxWidth) { 9525 // In the loop below, we are building a tree based on a window of 9526 // 'ReduxWidth' values. 9527 // If the operands of those values have common traits (compare predicate, 9528 // constant operand, etc), then we want to group those together to 9529 // minimize the cost of the reduction. 9530 9531 // TODO: This should be extended to count common operands for 9532 // compares and binops. 9533 9534 // Step 1: Count the number of times each compare predicate occurs. 9535 SmallDenseMap<unsigned, unsigned> PredCountMap; 9536 for (Value *RdxVal : ReducedVals) { 9537 CmpInst::Predicate Pred; 9538 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9539 ++PredCountMap[Pred]; 9540 } 9541 // Step 2: Sort the values so the most common predicates come first. 9542 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9543 CmpInst::Predicate PredA, PredB; 9544 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9545 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9546 return PredCountMap[PredA] > PredCountMap[PredB]; 9547 } 9548 return false; 9549 }); 9550 } 9551 9552 Value *VectorizedTree = nullptr; 9553 unsigned i = 0; 9554 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9555 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9556 V.buildTree(VL, IgnoreList); 9557 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9558 break; 9559 if (V.isLoadCombineReductionCandidate(RdxKind)) 9560 break; 9561 V.reorderTopToBottom(); 9562 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9563 V.buildExternalUses(ExternallyUsedValues); 9564 9565 // For a poison-safe boolean logic reduction, do not replace select 9566 // instructions with logic ops. All reduced values will be frozen (see 9567 // below) to prevent leaking poison. 9568 if (isa<SelectInst>(ReductionRoot) && 9569 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9570 NumReducedVals != ReduxWidth) 9571 break; 9572 9573 V.computeMinimumValueSizes(); 9574 9575 // Estimate cost. 9576 InstructionCost TreeCost = 9577 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9578 InstructionCost ReductionCost = 9579 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9580 InstructionCost Cost = TreeCost + ReductionCost; 9581 if (!Cost.isValid()) { 9582 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9583 return nullptr; 9584 } 9585 if (Cost >= -SLPCostThreshold) { 9586 V.getORE()->emit([&]() { 9587 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9588 cast<Instruction>(VL[0])) 9589 << "Vectorizing horizontal reduction is possible" 9590 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9591 << " and threshold " 9592 << ore::NV("Threshold", -SLPCostThreshold); 9593 }); 9594 break; 9595 } 9596 9597 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9598 << Cost << ". (HorRdx)\n"); 9599 V.getORE()->emit([&]() { 9600 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9601 cast<Instruction>(VL[0])) 9602 << "Vectorized horizontal reduction with cost " 9603 << ore::NV("Cost", Cost) << " and with tree size " 9604 << ore::NV("TreeSize", V.getTreeSize()); 9605 }); 9606 9607 // Vectorize a tree. 9608 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9609 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9610 9611 // Emit a reduction. If the root is a select (min/max idiom), the insert 9612 // point is the compare condition of that select. 9613 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9614 if (isCmpSelMinMax(RdxRootInst)) 9615 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9616 else 9617 Builder.SetInsertPoint(RdxRootInst); 9618 9619 // To prevent poison from leaking across what used to be sequential, safe, 9620 // scalar boolean logic operations, the reduction operand must be frozen. 9621 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9622 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9623 9624 Value *ReducedSubTree = 9625 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9626 9627 if (!VectorizedTree) { 9628 // Initialize the final value in the reduction. 9629 VectorizedTree = ReducedSubTree; 9630 } else { 9631 // Update the final value in the reduction. 9632 Builder.SetCurrentDebugLocation(Loc); 9633 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9634 ReducedSubTree, "op.rdx", ReductionOps); 9635 } 9636 i += ReduxWidth; 9637 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9638 } 9639 9640 if (VectorizedTree) { 9641 // Finish the reduction. 9642 for (; i < NumReducedVals; ++i) { 9643 auto *I = cast<Instruction>(ReducedVals[i]); 9644 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9645 VectorizedTree = 9646 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9647 } 9648 for (auto &Pair : ExternallyUsedValues) { 9649 // Add each externally used value to the final reduction. 9650 for (auto *I : Pair.second) { 9651 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9652 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9653 Pair.first, "op.extra", I); 9654 } 9655 } 9656 9657 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9658 9659 // Mark all scalar reduction ops for deletion, they are replaced by the 9660 // vector reductions. 9661 V.eraseInstructions(IgnoreList); 9662 } 9663 return VectorizedTree; 9664 } 9665 9666 unsigned numReductionValues() const { return ReducedVals.size(); } 9667 9668 private: 9669 /// Calculate the cost of a reduction. 9670 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9671 Value *FirstReducedVal, unsigned ReduxWidth, 9672 FastMathFlags FMF) { 9673 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9674 Type *ScalarTy = FirstReducedVal->getType(); 9675 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9676 InstructionCost VectorCost, ScalarCost; 9677 switch (RdxKind) { 9678 case RecurKind::Add: 9679 case RecurKind::Mul: 9680 case RecurKind::Or: 9681 case RecurKind::And: 9682 case RecurKind::Xor: 9683 case RecurKind::FAdd: 9684 case RecurKind::FMul: { 9685 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9686 VectorCost = 9687 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9688 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9689 break; 9690 } 9691 case RecurKind::FMax: 9692 case RecurKind::FMin: { 9693 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9694 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9695 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9696 /*IsUnsigned=*/false, CostKind); 9697 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9698 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9699 SclCondTy, RdxPred, CostKind) + 9700 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9701 SclCondTy, RdxPred, CostKind); 9702 break; 9703 } 9704 case RecurKind::SMax: 9705 case RecurKind::SMin: 9706 case RecurKind::UMax: 9707 case RecurKind::UMin: { 9708 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9709 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9710 bool IsUnsigned = 9711 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9712 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9713 CostKind); 9714 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9715 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9716 SclCondTy, RdxPred, CostKind) + 9717 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9718 SclCondTy, RdxPred, CostKind); 9719 break; 9720 } 9721 default: 9722 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9723 } 9724 9725 // Scalar cost is repeated for N-1 elements. 9726 ScalarCost *= (ReduxWidth - 1); 9727 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9728 << " for reduction that starts with " << *FirstReducedVal 9729 << " (It is a splitting reduction)\n"); 9730 return VectorCost - ScalarCost; 9731 } 9732 9733 /// Emit a horizontal reduction of the vectorized value. 9734 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9735 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9736 assert(VectorizedValue && "Need to have a vectorized tree node"); 9737 assert(isPowerOf2_32(ReduxWidth) && 9738 "We only handle power-of-two reductions for now"); 9739 assert(RdxKind != RecurKind::FMulAdd && 9740 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9741 9742 ++NumVectorInstructions; 9743 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9744 } 9745 }; 9746 9747 } // end anonymous namespace 9748 9749 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9750 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9751 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9752 9753 unsigned AggregateSize = 1; 9754 auto *IV = cast<InsertValueInst>(InsertInst); 9755 Type *CurrentType = IV->getType(); 9756 do { 9757 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9758 for (auto *Elt : ST->elements()) 9759 if (Elt != ST->getElementType(0)) // check homogeneity 9760 return None; 9761 AggregateSize *= ST->getNumElements(); 9762 CurrentType = ST->getElementType(0); 9763 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9764 AggregateSize *= AT->getNumElements(); 9765 CurrentType = AT->getElementType(); 9766 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9767 AggregateSize *= VT->getNumElements(); 9768 return AggregateSize; 9769 } else if (CurrentType->isSingleValueType()) { 9770 return AggregateSize; 9771 } else { 9772 return None; 9773 } 9774 } while (true); 9775 } 9776 9777 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9778 TargetTransformInfo *TTI, 9779 SmallVectorImpl<Value *> &BuildVectorOpds, 9780 SmallVectorImpl<Value *> &InsertElts, 9781 unsigned OperandOffset) { 9782 do { 9783 Value *InsertedOperand = LastInsertInst->getOperand(1); 9784 Optional<unsigned> OperandIndex = 9785 getInsertIndex(LastInsertInst, OperandOffset); 9786 if (!OperandIndex) 9787 return; 9788 if (isa<InsertElementInst>(InsertedOperand) || 9789 isa<InsertValueInst>(InsertedOperand)) { 9790 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9791 BuildVectorOpds, InsertElts, *OperandIndex); 9792 9793 } else { 9794 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9795 InsertElts[*OperandIndex] = LastInsertInst; 9796 } 9797 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9798 } while (LastInsertInst != nullptr && 9799 (isa<InsertValueInst>(LastInsertInst) || 9800 isa<InsertElementInst>(LastInsertInst)) && 9801 LastInsertInst->hasOneUse()); 9802 } 9803 9804 /// Recognize construction of vectors like 9805 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9806 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9807 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9808 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9809 /// starting from the last insertelement or insertvalue instruction. 9810 /// 9811 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9812 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9813 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9814 /// 9815 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9816 /// 9817 /// \return true if it matches. 9818 static bool findBuildAggregate(Instruction *LastInsertInst, 9819 TargetTransformInfo *TTI, 9820 SmallVectorImpl<Value *> &BuildVectorOpds, 9821 SmallVectorImpl<Value *> &InsertElts) { 9822 9823 assert((isa<InsertElementInst>(LastInsertInst) || 9824 isa<InsertValueInst>(LastInsertInst)) && 9825 "Expected insertelement or insertvalue instruction!"); 9826 9827 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9828 "Expected empty result vectors!"); 9829 9830 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9831 if (!AggregateSize) 9832 return false; 9833 BuildVectorOpds.resize(*AggregateSize); 9834 InsertElts.resize(*AggregateSize); 9835 9836 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9837 llvm::erase_value(BuildVectorOpds, nullptr); 9838 llvm::erase_value(InsertElts, nullptr); 9839 if (BuildVectorOpds.size() >= 2) 9840 return true; 9841 9842 return false; 9843 } 9844 9845 /// Try and get a reduction value from a phi node. 9846 /// 9847 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9848 /// if they come from either \p ParentBB or a containing loop latch. 9849 /// 9850 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9851 /// if not possible. 9852 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9853 BasicBlock *ParentBB, LoopInfo *LI) { 9854 // There are situations where the reduction value is not dominated by the 9855 // reduction phi. Vectorizing such cases has been reported to cause 9856 // miscompiles. See PR25787. 9857 auto DominatedReduxValue = [&](Value *R) { 9858 return isa<Instruction>(R) && 9859 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9860 }; 9861 9862 Value *Rdx = nullptr; 9863 9864 // Return the incoming value if it comes from the same BB as the phi node. 9865 if (P->getIncomingBlock(0) == ParentBB) { 9866 Rdx = P->getIncomingValue(0); 9867 } else if (P->getIncomingBlock(1) == ParentBB) { 9868 Rdx = P->getIncomingValue(1); 9869 } 9870 9871 if (Rdx && DominatedReduxValue(Rdx)) 9872 return Rdx; 9873 9874 // Otherwise, check whether we have a loop latch to look at. 9875 Loop *BBL = LI->getLoopFor(ParentBB); 9876 if (!BBL) 9877 return nullptr; 9878 BasicBlock *BBLatch = BBL->getLoopLatch(); 9879 if (!BBLatch) 9880 return nullptr; 9881 9882 // There is a loop latch, return the incoming value if it comes from 9883 // that. This reduction pattern occasionally turns up. 9884 if (P->getIncomingBlock(0) == BBLatch) { 9885 Rdx = P->getIncomingValue(0); 9886 } else if (P->getIncomingBlock(1) == BBLatch) { 9887 Rdx = P->getIncomingValue(1); 9888 } 9889 9890 if (Rdx && DominatedReduxValue(Rdx)) 9891 return Rdx; 9892 9893 return nullptr; 9894 } 9895 9896 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9897 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9898 return true; 9899 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9900 return true; 9901 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9902 return true; 9903 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9904 return true; 9905 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9906 return true; 9907 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9908 return true; 9909 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9910 return true; 9911 return false; 9912 } 9913 9914 /// Attempt to reduce a horizontal reduction. 9915 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9916 /// with reduction operators \a Root (or one of its operands) in a basic block 9917 /// \a BB, then check if it can be done. If horizontal reduction is not found 9918 /// and root instruction is a binary operation, vectorization of the operands is 9919 /// attempted. 9920 /// \returns true if a horizontal reduction was matched and reduced or operands 9921 /// of one of the binary instruction were vectorized. 9922 /// \returns false if a horizontal reduction was not matched (or not possible) 9923 /// or no vectorization of any binary operation feeding \a Root instruction was 9924 /// performed. 9925 static bool tryToVectorizeHorReductionOrInstOperands( 9926 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9927 TargetTransformInfo *TTI, 9928 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9929 if (!ShouldVectorizeHor) 9930 return false; 9931 9932 if (!Root) 9933 return false; 9934 9935 if (Root->getParent() != BB || isa<PHINode>(Root)) 9936 return false; 9937 // Start analysis starting from Root instruction. If horizontal reduction is 9938 // found, try to vectorize it. If it is not a horizontal reduction or 9939 // vectorization is not possible or not effective, and currently analyzed 9940 // instruction is a binary operation, try to vectorize the operands, using 9941 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9942 // the same procedure considering each operand as a possible root of the 9943 // horizontal reduction. 9944 // Interrupt the process if the Root instruction itself was vectorized or all 9945 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9946 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9947 // CmpInsts so we can skip extra attempts in 9948 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9949 std::queue<std::pair<Instruction *, unsigned>> Stack; 9950 Stack.emplace(Root, 0); 9951 SmallPtrSet<Value *, 8> VisitedInstrs; 9952 SmallVector<WeakTrackingVH> PostponedInsts; 9953 bool Res = false; 9954 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9955 Value *&B1) -> Value * { 9956 bool IsBinop = matchRdxBop(Inst, B0, B1); 9957 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9958 if (IsBinop || IsSelect) { 9959 HorizontalReduction HorRdx; 9960 if (HorRdx.matchAssociativeReduction(P, Inst)) 9961 return HorRdx.tryToReduce(R, TTI); 9962 } 9963 return nullptr; 9964 }; 9965 while (!Stack.empty()) { 9966 Instruction *Inst; 9967 unsigned Level; 9968 std::tie(Inst, Level) = Stack.front(); 9969 Stack.pop(); 9970 // Do not try to analyze instruction that has already been vectorized. 9971 // This may happen when we vectorize instruction operands on a previous 9972 // iteration while stack was populated before that happened. 9973 if (R.isDeleted(Inst)) 9974 continue; 9975 Value *B0 = nullptr, *B1 = nullptr; 9976 if (Value *V = TryToReduce(Inst, B0, B1)) { 9977 Res = true; 9978 // Set P to nullptr to avoid re-analysis of phi node in 9979 // matchAssociativeReduction function unless this is the root node. 9980 P = nullptr; 9981 if (auto *I = dyn_cast<Instruction>(V)) { 9982 // Try to find another reduction. 9983 Stack.emplace(I, Level); 9984 continue; 9985 } 9986 } else { 9987 bool IsBinop = B0 && B1; 9988 if (P && IsBinop) { 9989 Inst = dyn_cast<Instruction>(B0); 9990 if (Inst == P) 9991 Inst = dyn_cast<Instruction>(B1); 9992 if (!Inst) { 9993 // Set P to nullptr to avoid re-analysis of phi node in 9994 // matchAssociativeReduction function unless this is the root node. 9995 P = nullptr; 9996 continue; 9997 } 9998 } 9999 // Set P to nullptr to avoid re-analysis of phi node in 10000 // matchAssociativeReduction function unless this is the root node. 10001 P = nullptr; 10002 // Do not try to vectorize CmpInst operands, this is done separately. 10003 // Final attempt for binop args vectorization should happen after the loop 10004 // to try to find reductions. 10005 if (!isa<CmpInst>(Inst)) 10006 PostponedInsts.push_back(Inst); 10007 } 10008 10009 // Try to vectorize operands. 10010 // Continue analysis for the instruction from the same basic block only to 10011 // save compile time. 10012 if (++Level < RecursionMaxDepth) 10013 for (auto *Op : Inst->operand_values()) 10014 if (VisitedInstrs.insert(Op).second) 10015 if (auto *I = dyn_cast<Instruction>(Op)) 10016 // Do not try to vectorize CmpInst operands, this is done 10017 // separately. 10018 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10019 I->getParent() == BB) 10020 Stack.emplace(I, Level); 10021 } 10022 // Try to vectorized binops where reductions were not found. 10023 for (Value *V : PostponedInsts) 10024 if (auto *Inst = dyn_cast<Instruction>(V)) 10025 if (!R.isDeleted(Inst)) 10026 Res |= Vectorize(Inst, R); 10027 return Res; 10028 } 10029 10030 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10031 BasicBlock *BB, BoUpSLP &R, 10032 TargetTransformInfo *TTI) { 10033 auto *I = dyn_cast_or_null<Instruction>(V); 10034 if (!I) 10035 return false; 10036 10037 if (!isa<BinaryOperator>(I)) 10038 P = nullptr; 10039 // Try to match and vectorize a horizontal reduction. 10040 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10041 return tryToVectorize(I, R); 10042 }; 10043 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10044 ExtraVectorization); 10045 } 10046 10047 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10048 BasicBlock *BB, BoUpSLP &R) { 10049 const DataLayout &DL = BB->getModule()->getDataLayout(); 10050 if (!R.canMapToVector(IVI->getType(), DL)) 10051 return false; 10052 10053 SmallVector<Value *, 16> BuildVectorOpds; 10054 SmallVector<Value *, 16> BuildVectorInsts; 10055 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10056 return false; 10057 10058 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10059 // Aggregate value is unlikely to be processed in vector register. 10060 return tryToVectorizeList(BuildVectorOpds, R); 10061 } 10062 10063 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10064 BasicBlock *BB, BoUpSLP &R) { 10065 SmallVector<Value *, 16> BuildVectorInsts; 10066 SmallVector<Value *, 16> BuildVectorOpds; 10067 SmallVector<int> Mask; 10068 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10069 (llvm::all_of( 10070 BuildVectorOpds, 10071 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10072 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10073 return false; 10074 10075 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10076 return tryToVectorizeList(BuildVectorInsts, R); 10077 } 10078 10079 template <typename T> 10080 static bool 10081 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10082 function_ref<unsigned(T *)> Limit, 10083 function_ref<bool(T *, T *)> Comparator, 10084 function_ref<bool(T *, T *)> AreCompatible, 10085 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10086 bool LimitForRegisterSize) { 10087 bool Changed = false; 10088 // Sort by type, parent, operands. 10089 stable_sort(Incoming, Comparator); 10090 10091 // Try to vectorize elements base on their type. 10092 SmallVector<T *> Candidates; 10093 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10094 // Look for the next elements with the same type, parent and operand 10095 // kinds. 10096 auto *SameTypeIt = IncIt; 10097 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10098 ++SameTypeIt; 10099 10100 // Try to vectorize them. 10101 unsigned NumElts = (SameTypeIt - IncIt); 10102 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10103 << NumElts << ")\n"); 10104 // The vectorization is a 3-state attempt: 10105 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10106 // size of maximal register at first. 10107 // 2. Try to vectorize remaining instructions with the same type, if 10108 // possible. This may result in the better vectorization results rather than 10109 // if we try just to vectorize instructions with the same/alternate opcodes. 10110 // 3. Final attempt to try to vectorize all instructions with the 10111 // same/alternate ops only, this may result in some extra final 10112 // vectorization. 10113 if (NumElts > 1 && 10114 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10115 // Success start over because instructions might have been changed. 10116 Changed = true; 10117 } else if (NumElts < Limit(*IncIt) && 10118 (Candidates.empty() || 10119 Candidates.front()->getType() == (*IncIt)->getType())) { 10120 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10121 } 10122 // Final attempt to vectorize instructions with the same types. 10123 if (Candidates.size() > 1 && 10124 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10125 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10126 // Success start over because instructions might have been changed. 10127 Changed = true; 10128 } else if (LimitForRegisterSize) { 10129 // Try to vectorize using small vectors. 10130 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10131 It != End;) { 10132 auto *SameTypeIt = It; 10133 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10134 ++SameTypeIt; 10135 unsigned NumElts = (SameTypeIt - It); 10136 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10137 /*LimitForRegisterSize=*/false)) 10138 Changed = true; 10139 It = SameTypeIt; 10140 } 10141 } 10142 Candidates.clear(); 10143 } 10144 10145 // Start over at the next instruction of a different type (or the end). 10146 IncIt = SameTypeIt; 10147 } 10148 return Changed; 10149 } 10150 10151 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10152 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10153 /// operands. If IsCompatibility is false, function implements strict weak 10154 /// ordering relation between two cmp instructions, returning true if the first 10155 /// instruction is "less" than the second, i.e. its predicate is less than the 10156 /// predicate of the second or the operands IDs are less than the operands IDs 10157 /// of the second cmp instruction. 10158 template <bool IsCompatibility> 10159 static bool compareCmp(Value *V, Value *V2, 10160 function_ref<bool(Instruction *)> IsDeleted) { 10161 auto *CI1 = cast<CmpInst>(V); 10162 auto *CI2 = cast<CmpInst>(V2); 10163 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10164 return false; 10165 if (CI1->getOperand(0)->getType()->getTypeID() < 10166 CI2->getOperand(0)->getType()->getTypeID()) 10167 return !IsCompatibility; 10168 if (CI1->getOperand(0)->getType()->getTypeID() > 10169 CI2->getOperand(0)->getType()->getTypeID()) 10170 return false; 10171 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10172 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10173 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10174 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10175 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10176 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10177 if (BasePred1 < BasePred2) 10178 return !IsCompatibility; 10179 if (BasePred1 > BasePred2) 10180 return false; 10181 // Compare operands. 10182 bool LEPreds = Pred1 <= Pred2; 10183 bool GEPreds = Pred1 >= Pred2; 10184 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10185 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10186 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10187 if (Op1->getValueID() < Op2->getValueID()) 10188 return !IsCompatibility; 10189 if (Op1->getValueID() > Op2->getValueID()) 10190 return false; 10191 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10192 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10193 if (I1->getParent() != I2->getParent()) 10194 return false; 10195 InstructionsState S = getSameOpcode({I1, I2}); 10196 if (S.getOpcode()) 10197 continue; 10198 return false; 10199 } 10200 } 10201 return IsCompatibility; 10202 } 10203 10204 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10205 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10206 bool AtTerminator) { 10207 bool OpsChanged = false; 10208 SmallVector<Instruction *, 4> PostponedCmps; 10209 for (auto *I : reverse(Instructions)) { 10210 if (R.isDeleted(I)) 10211 continue; 10212 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10213 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10214 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10215 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10216 else if (isa<CmpInst>(I)) 10217 PostponedCmps.push_back(I); 10218 } 10219 if (AtTerminator) { 10220 // Try to find reductions first. 10221 for (Instruction *I : PostponedCmps) { 10222 if (R.isDeleted(I)) 10223 continue; 10224 for (Value *Op : I->operands()) 10225 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10226 } 10227 // Try to vectorize operands as vector bundles. 10228 for (Instruction *I : PostponedCmps) { 10229 if (R.isDeleted(I)) 10230 continue; 10231 OpsChanged |= tryToVectorize(I, R); 10232 } 10233 // Try to vectorize list of compares. 10234 // Sort by type, compare predicate, etc. 10235 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10236 return compareCmp<false>(V, V2, 10237 [&R](Instruction *I) { return R.isDeleted(I); }); 10238 }; 10239 10240 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10241 if (V1 == V2) 10242 return true; 10243 return compareCmp<true>(V1, V2, 10244 [&R](Instruction *I) { return R.isDeleted(I); }); 10245 }; 10246 auto Limit = [&R](Value *V) { 10247 unsigned EltSize = R.getVectorElementSize(V); 10248 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10249 }; 10250 10251 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10252 OpsChanged |= tryToVectorizeSequence<Value>( 10253 Vals, Limit, CompareSorter, AreCompatibleCompares, 10254 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10255 // Exclude possible reductions from other blocks. 10256 bool ArePossiblyReducedInOtherBlock = 10257 any_of(Candidates, [](Value *V) { 10258 return any_of(V->users(), [V](User *U) { 10259 return isa<SelectInst>(U) && 10260 cast<SelectInst>(U)->getParent() != 10261 cast<Instruction>(V)->getParent(); 10262 }); 10263 }); 10264 if (ArePossiblyReducedInOtherBlock) 10265 return false; 10266 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10267 }, 10268 /*LimitForRegisterSize=*/true); 10269 Instructions.clear(); 10270 } else { 10271 // Insert in reverse order since the PostponedCmps vector was filled in 10272 // reverse order. 10273 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10274 } 10275 return OpsChanged; 10276 } 10277 10278 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10279 bool Changed = false; 10280 SmallVector<Value *, 4> Incoming; 10281 SmallPtrSet<Value *, 16> VisitedInstrs; 10282 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10283 // node. Allows better to identify the chains that can be vectorized in the 10284 // better way. 10285 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10286 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10287 assert(isValidElementType(V1->getType()) && 10288 isValidElementType(V2->getType()) && 10289 "Expected vectorizable types only."); 10290 // It is fine to compare type IDs here, since we expect only vectorizable 10291 // types, like ints, floats and pointers, we don't care about other type. 10292 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10293 return true; 10294 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10295 return false; 10296 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10297 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10298 if (Opcodes1.size() < Opcodes2.size()) 10299 return true; 10300 if (Opcodes1.size() > Opcodes2.size()) 10301 return false; 10302 Optional<bool> ConstOrder; 10303 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10304 // Undefs are compatible with any other value. 10305 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10306 if (!ConstOrder) 10307 ConstOrder = 10308 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10309 continue; 10310 } 10311 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10312 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10313 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10314 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10315 if (!NodeI1) 10316 return NodeI2 != nullptr; 10317 if (!NodeI2) 10318 return false; 10319 assert((NodeI1 == NodeI2) == 10320 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10321 "Different nodes should have different DFS numbers"); 10322 if (NodeI1 != NodeI2) 10323 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10324 InstructionsState S = getSameOpcode({I1, I2}); 10325 if (S.getOpcode()) 10326 continue; 10327 return I1->getOpcode() < I2->getOpcode(); 10328 } 10329 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10330 if (!ConstOrder) 10331 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10332 continue; 10333 } 10334 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10335 return true; 10336 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10337 return false; 10338 } 10339 return ConstOrder && *ConstOrder; 10340 }; 10341 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10342 if (V1 == V2) 10343 return true; 10344 if (V1->getType() != V2->getType()) 10345 return false; 10346 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10347 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10348 if (Opcodes1.size() != Opcodes2.size()) 10349 return false; 10350 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10351 // Undefs are compatible with any other value. 10352 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10353 continue; 10354 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10355 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10356 if (I1->getParent() != I2->getParent()) 10357 return false; 10358 InstructionsState S = getSameOpcode({I1, I2}); 10359 if (S.getOpcode()) 10360 continue; 10361 return false; 10362 } 10363 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10364 continue; 10365 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10366 return false; 10367 } 10368 return true; 10369 }; 10370 auto Limit = [&R](Value *V) { 10371 unsigned EltSize = R.getVectorElementSize(V); 10372 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10373 }; 10374 10375 bool HaveVectorizedPhiNodes = false; 10376 do { 10377 // Collect the incoming values from the PHIs. 10378 Incoming.clear(); 10379 for (Instruction &I : *BB) { 10380 PHINode *P = dyn_cast<PHINode>(&I); 10381 if (!P) 10382 break; 10383 10384 // No need to analyze deleted, vectorized and non-vectorizable 10385 // instructions. 10386 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10387 isValidElementType(P->getType())) 10388 Incoming.push_back(P); 10389 } 10390 10391 // Find the corresponding non-phi nodes for better matching when trying to 10392 // build the tree. 10393 for (Value *V : Incoming) { 10394 SmallVectorImpl<Value *> &Opcodes = 10395 PHIToOpcodes.try_emplace(V).first->getSecond(); 10396 if (!Opcodes.empty()) 10397 continue; 10398 SmallVector<Value *, 4> Nodes(1, V); 10399 SmallPtrSet<Value *, 4> Visited; 10400 while (!Nodes.empty()) { 10401 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10402 if (!Visited.insert(PHI).second) 10403 continue; 10404 for (Value *V : PHI->incoming_values()) { 10405 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10406 Nodes.push_back(PHI1); 10407 continue; 10408 } 10409 Opcodes.emplace_back(V); 10410 } 10411 } 10412 } 10413 10414 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10415 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10416 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10417 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10418 }, 10419 /*LimitForRegisterSize=*/true); 10420 Changed |= HaveVectorizedPhiNodes; 10421 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10422 } while (HaveVectorizedPhiNodes); 10423 10424 VisitedInstrs.clear(); 10425 10426 SmallVector<Instruction *, 8> PostProcessInstructions; 10427 SmallDenseSet<Instruction *, 4> KeyNodes; 10428 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10429 // Skip instructions with scalable type. The num of elements is unknown at 10430 // compile-time for scalable type. 10431 if (isa<ScalableVectorType>(it->getType())) 10432 continue; 10433 10434 // Skip instructions marked for the deletion. 10435 if (R.isDeleted(&*it)) 10436 continue; 10437 // We may go through BB multiple times so skip the one we have checked. 10438 if (!VisitedInstrs.insert(&*it).second) { 10439 if (it->use_empty() && KeyNodes.contains(&*it) && 10440 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10441 it->isTerminator())) { 10442 // We would like to start over since some instructions are deleted 10443 // and the iterator may become invalid value. 10444 Changed = true; 10445 it = BB->begin(); 10446 e = BB->end(); 10447 } 10448 continue; 10449 } 10450 10451 if (isa<DbgInfoIntrinsic>(it)) 10452 continue; 10453 10454 // Try to vectorize reductions that use PHINodes. 10455 if (PHINode *P = dyn_cast<PHINode>(it)) { 10456 // Check that the PHI is a reduction PHI. 10457 if (P->getNumIncomingValues() == 2) { 10458 // Try to match and vectorize a horizontal reduction. 10459 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10460 TTI)) { 10461 Changed = true; 10462 it = BB->begin(); 10463 e = BB->end(); 10464 continue; 10465 } 10466 } 10467 // Try to vectorize the incoming values of the PHI, to catch reductions 10468 // that feed into PHIs. 10469 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10470 // Skip if the incoming block is the current BB for now. Also, bypass 10471 // unreachable IR for efficiency and to avoid crashing. 10472 // TODO: Collect the skipped incoming values and try to vectorize them 10473 // after processing BB. 10474 if (BB == P->getIncomingBlock(I) || 10475 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10476 continue; 10477 10478 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10479 P->getIncomingBlock(I), R, TTI); 10480 } 10481 continue; 10482 } 10483 10484 // Ran into an instruction without users, like terminator, or function call 10485 // with ignored return value, store. Ignore unused instructions (basing on 10486 // instruction type, except for CallInst and InvokeInst). 10487 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10488 isa<InvokeInst>(it))) { 10489 KeyNodes.insert(&*it); 10490 bool OpsChanged = false; 10491 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10492 for (auto *V : it->operand_values()) { 10493 // Try to match and vectorize a horizontal reduction. 10494 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10495 } 10496 } 10497 // Start vectorization of post-process list of instructions from the 10498 // top-tree instructions to try to vectorize as many instructions as 10499 // possible. 10500 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10501 it->isTerminator()); 10502 if (OpsChanged) { 10503 // We would like to start over since some instructions are deleted 10504 // and the iterator may become invalid value. 10505 Changed = true; 10506 it = BB->begin(); 10507 e = BB->end(); 10508 continue; 10509 } 10510 } 10511 10512 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10513 isa<InsertValueInst>(it)) 10514 PostProcessInstructions.push_back(&*it); 10515 } 10516 10517 return Changed; 10518 } 10519 10520 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10521 auto Changed = false; 10522 for (auto &Entry : GEPs) { 10523 // If the getelementptr list has fewer than two elements, there's nothing 10524 // to do. 10525 if (Entry.second.size() < 2) 10526 continue; 10527 10528 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10529 << Entry.second.size() << ".\n"); 10530 10531 // Process the GEP list in chunks suitable for the target's supported 10532 // vector size. If a vector register can't hold 1 element, we are done. We 10533 // are trying to vectorize the index computations, so the maximum number of 10534 // elements is based on the size of the index expression, rather than the 10535 // size of the GEP itself (the target's pointer size). 10536 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10537 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10538 if (MaxVecRegSize < EltSize) 10539 continue; 10540 10541 unsigned MaxElts = MaxVecRegSize / EltSize; 10542 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10543 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10544 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10545 10546 // Initialize a set a candidate getelementptrs. Note that we use a 10547 // SetVector here to preserve program order. If the index computations 10548 // are vectorizable and begin with loads, we want to minimize the chance 10549 // of having to reorder them later. 10550 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10551 10552 // Some of the candidates may have already been vectorized after we 10553 // initially collected them. If so, they are marked as deleted, so remove 10554 // them from the set of candidates. 10555 Candidates.remove_if( 10556 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10557 10558 // Remove from the set of candidates all pairs of getelementptrs with 10559 // constant differences. Such getelementptrs are likely not good 10560 // candidates for vectorization in a bottom-up phase since one can be 10561 // computed from the other. We also ensure all candidate getelementptr 10562 // indices are unique. 10563 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10564 auto *GEPI = GEPList[I]; 10565 if (!Candidates.count(GEPI)) 10566 continue; 10567 auto *SCEVI = SE->getSCEV(GEPList[I]); 10568 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10569 auto *GEPJ = GEPList[J]; 10570 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10571 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10572 Candidates.remove(GEPI); 10573 Candidates.remove(GEPJ); 10574 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10575 Candidates.remove(GEPJ); 10576 } 10577 } 10578 } 10579 10580 // We break out of the above computation as soon as we know there are 10581 // fewer than two candidates remaining. 10582 if (Candidates.size() < 2) 10583 continue; 10584 10585 // Add the single, non-constant index of each candidate to the bundle. We 10586 // ensured the indices met these constraints when we originally collected 10587 // the getelementptrs. 10588 SmallVector<Value *, 16> Bundle(Candidates.size()); 10589 auto BundleIndex = 0u; 10590 for (auto *V : Candidates) { 10591 auto *GEP = cast<GetElementPtrInst>(V); 10592 auto *GEPIdx = GEP->idx_begin()->get(); 10593 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10594 Bundle[BundleIndex++] = GEPIdx; 10595 } 10596 10597 // Try and vectorize the indices. We are currently only interested in 10598 // gather-like cases of the form: 10599 // 10600 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10601 // 10602 // where the loads of "a", the loads of "b", and the subtractions can be 10603 // performed in parallel. It's likely that detecting this pattern in a 10604 // bottom-up phase will be simpler and less costly than building a 10605 // full-blown top-down phase beginning at the consecutive loads. 10606 Changed |= tryToVectorizeList(Bundle, R); 10607 } 10608 } 10609 return Changed; 10610 } 10611 10612 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10613 bool Changed = false; 10614 // Sort by type, base pointers and values operand. Value operands must be 10615 // compatible (have the same opcode, same parent), otherwise it is 10616 // definitely not profitable to try to vectorize them. 10617 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10618 if (V->getPointerOperandType()->getTypeID() < 10619 V2->getPointerOperandType()->getTypeID()) 10620 return true; 10621 if (V->getPointerOperandType()->getTypeID() > 10622 V2->getPointerOperandType()->getTypeID()) 10623 return false; 10624 // UndefValues are compatible with all other values. 10625 if (isa<UndefValue>(V->getValueOperand()) || 10626 isa<UndefValue>(V2->getValueOperand())) 10627 return false; 10628 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10629 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10630 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10631 DT->getNode(I1->getParent()); 10632 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10633 DT->getNode(I2->getParent()); 10634 assert(NodeI1 && "Should only process reachable instructions"); 10635 assert(NodeI1 && "Should only process reachable instructions"); 10636 assert((NodeI1 == NodeI2) == 10637 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10638 "Different nodes should have different DFS numbers"); 10639 if (NodeI1 != NodeI2) 10640 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10641 InstructionsState S = getSameOpcode({I1, I2}); 10642 if (S.getOpcode()) 10643 return false; 10644 return I1->getOpcode() < I2->getOpcode(); 10645 } 10646 if (isa<Constant>(V->getValueOperand()) && 10647 isa<Constant>(V2->getValueOperand())) 10648 return false; 10649 return V->getValueOperand()->getValueID() < 10650 V2->getValueOperand()->getValueID(); 10651 }; 10652 10653 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10654 if (V1 == V2) 10655 return true; 10656 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10657 return false; 10658 // Undefs are compatible with any other value. 10659 if (isa<UndefValue>(V1->getValueOperand()) || 10660 isa<UndefValue>(V2->getValueOperand())) 10661 return true; 10662 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10663 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10664 if (I1->getParent() != I2->getParent()) 10665 return false; 10666 InstructionsState S = getSameOpcode({I1, I2}); 10667 return S.getOpcode() > 0; 10668 } 10669 if (isa<Constant>(V1->getValueOperand()) && 10670 isa<Constant>(V2->getValueOperand())) 10671 return true; 10672 return V1->getValueOperand()->getValueID() == 10673 V2->getValueOperand()->getValueID(); 10674 }; 10675 auto Limit = [&R, this](StoreInst *SI) { 10676 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10677 return R.getMinVF(EltSize); 10678 }; 10679 10680 // Attempt to sort and vectorize each of the store-groups. 10681 for (auto &Pair : Stores) { 10682 if (Pair.second.size() < 2) 10683 continue; 10684 10685 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10686 << Pair.second.size() << ".\n"); 10687 10688 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10689 continue; 10690 10691 Changed |= tryToVectorizeSequence<StoreInst>( 10692 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10693 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10694 return vectorizeStores(Candidates, R); 10695 }, 10696 /*LimitForRegisterSize=*/false); 10697 } 10698 return Changed; 10699 } 10700 10701 char SLPVectorizer::ID = 0; 10702 10703 static const char lv_name[] = "SLP Vectorizer"; 10704 10705 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10706 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10707 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10708 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10709 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10710 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10711 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10712 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10713 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10714 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10715 10716 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10717