1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants. 198 static bool allConstant(ArrayRef<Value *> VL) { 199 for (Value *i : VL) 200 if (!isa<Constant>(i)) 201 return false; 202 return true; 203 } 204 205 /// \returns True if all of the values in \p VL are identical. 206 static bool isSplat(ArrayRef<Value *> VL) { 207 for (unsigned i = 1, e = VL.size(); i < e; ++i) 208 if (VL[i] != VL[0]) 209 return false; 210 return true; 211 } 212 213 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 214 static bool isCommutative(Instruction *I) { 215 if (auto *IC = dyn_cast<CmpInst>(I)) 216 return IC->isCommutative(); 217 return I->isCommutative(); 218 } 219 220 /// Checks if the vector of instructions can be represented as a shuffle, like: 221 /// %x0 = extractelement <4 x i8> %x, i32 0 222 /// %x3 = extractelement <4 x i8> %x, i32 3 223 /// %y1 = extractelement <4 x i8> %y, i32 1 224 /// %y2 = extractelement <4 x i8> %y, i32 2 225 /// %x0x0 = mul i8 %x0, %x0 226 /// %x3x3 = mul i8 %x3, %x3 227 /// %y1y1 = mul i8 %y1, %y1 228 /// %y2y2 = mul i8 %y2, %y2 229 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 230 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 231 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 232 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 233 /// ret <4 x i8> %ins4 234 /// can be transformed into: 235 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 236 /// i32 6> 237 /// %2 = mul <4 x i8> %1, %1 238 /// ret <4 x i8> %2 239 /// We convert this initially to something like: 240 /// %x0 = extractelement <4 x i8> %x, i32 0 241 /// %x3 = extractelement <4 x i8> %x, i32 3 242 /// %y1 = extractelement <4 x i8> %y, i32 1 243 /// %y2 = extractelement <4 x i8> %y, i32 2 244 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 245 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 246 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 247 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 248 /// %5 = mul <4 x i8> %4, %4 249 /// %6 = extractelement <4 x i8> %5, i32 0 250 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 251 /// %7 = extractelement <4 x i8> %5, i32 1 252 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 253 /// %8 = extractelement <4 x i8> %5, i32 2 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 255 /// %9 = extractelement <4 x i8> %5, i32 3 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 257 /// ret <4 x i8> %ins4 258 /// InstCombiner transforms this into a shuffle and vector mul 259 /// TODO: Can we split off and reuse the shuffle mask detection from 260 /// TargetTransformInfo::getInstructionThroughput? 261 static Optional<TargetTransformInfo::ShuffleKind> 262 isShuffle(ArrayRef<Value *> VL) { 263 auto *EI0 = cast<ExtractElementInst>(VL[0]); 264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 265 Value *Vec1 = nullptr; 266 Value *Vec2 = nullptr; 267 enum ShuffleMode { Unknown, Select, Permute }; 268 ShuffleMode CommonShuffleMode = Unknown; 269 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 270 auto *EI = cast<ExtractElementInst>(VL[I]); 271 auto *Vec = EI->getVectorOperand(); 272 // All vector operands must have the same number of vector elements. 273 if (Vec->getType()->getVectorNumElements() != Size) 274 return None; 275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 276 if (!Idx) 277 return None; 278 // Undefined behavior if Idx is negative or >= Size. 279 if (Idx->getValue().uge(Size)) 280 continue; 281 unsigned IntIdx = Idx->getValue().getZExtValue(); 282 // We can extractelement from undef vector. 283 if (isa<UndefValue>(Vec)) 284 continue; 285 // For correct shuffling we have to have at most 2 different vector operands 286 // in all extractelement instructions. 287 if (!Vec1 || Vec1 == Vec) 288 Vec1 = Vec; 289 else if (!Vec2 || Vec2 == Vec) 290 Vec2 = Vec; 291 else 292 return None; 293 if (CommonShuffleMode == Permute) 294 continue; 295 // If the extract index is not the same as the operation number, it is a 296 // permutation. 297 if (IntIdx != I) { 298 CommonShuffleMode = Permute; 299 continue; 300 } 301 CommonShuffleMode = Select; 302 } 303 // If we're not crossing lanes in different vectors, consider it as blending. 304 if (CommonShuffleMode == Select && Vec2) 305 return TargetTransformInfo::SK_Select; 306 // If Vec2 was never used, we have a permutation of a single vector, otherwise 307 // we have permutation of 2 vectors. 308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 309 : TargetTransformInfo::SK_PermuteSingleSrc; 310 } 311 312 namespace { 313 314 /// Main data required for vectorization of instructions. 315 struct InstructionsState { 316 /// The very first instruction in the list with the main opcode. 317 Value *OpValue = nullptr; 318 319 /// The main/alternate instruction. 320 Instruction *MainOp = nullptr; 321 Instruction *AltOp = nullptr; 322 323 /// The main/alternate opcodes for the list of instructions. 324 unsigned getOpcode() const { 325 return MainOp ? MainOp->getOpcode() : 0; 326 } 327 328 unsigned getAltOpcode() const { 329 return AltOp ? AltOp->getOpcode() : 0; 330 } 331 332 /// Some of the instructions in the list have alternate opcodes. 333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 334 335 bool isOpcodeOrAlt(Instruction *I) const { 336 unsigned CheckedOpcode = I->getOpcode(); 337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 338 } 339 340 InstructionsState() = delete; 341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 343 }; 344 345 } // end anonymous namespace 346 347 /// Chooses the correct key for scheduling data. If \p Op has the same (or 348 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 349 /// OpValue. 350 static Value *isOneOf(const InstructionsState &S, Value *Op) { 351 auto *I = dyn_cast<Instruction>(Op); 352 if (I && S.isOpcodeOrAlt(I)) 353 return Op; 354 return S.OpValue; 355 } 356 357 /// \returns analysis of the Instructions in \p VL described in 358 /// InstructionsState, the Opcode that we suppose the whole list 359 /// could be vectorized even if its structure is diverse. 360 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 361 unsigned BaseIndex = 0) { 362 // Make sure these are all Instructions. 363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 364 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 365 366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 369 unsigned AltOpcode = Opcode; 370 unsigned AltIndex = BaseIndex; 371 372 // Check for one alternate opcode from another BinaryOperator. 373 // TODO - generalize to support all operators (types, calls etc.). 374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 387 if (Ty0 == Ty1) { 388 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 389 continue; 390 if (Opcode == AltOpcode) { 391 AltOpcode = InstOpcode; 392 AltIndex = Cnt; 393 continue; 394 } 395 } 396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 397 continue; 398 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 399 } 400 401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 402 cast<Instruction>(VL[AltIndex])); 403 } 404 405 /// \returns true if all of the values in \p VL have the same type or false 406 /// otherwise. 407 static bool allSameType(ArrayRef<Value *> VL) { 408 Type *Ty = VL[0]->getType(); 409 for (int i = 1, e = VL.size(); i < e; i++) 410 if (VL[i]->getType() != Ty) 411 return false; 412 413 return true; 414 } 415 416 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 417 static Optional<unsigned> getExtractIndex(Instruction *E) { 418 unsigned Opcode = E->getOpcode(); 419 assert((Opcode == Instruction::ExtractElement || 420 Opcode == Instruction::ExtractValue) && 421 "Expected extractelement or extractvalue instruction."); 422 if (Opcode == Instruction::ExtractElement) { 423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 424 if (!CI) 425 return None; 426 return CI->getZExtValue(); 427 } 428 ExtractValueInst *EI = cast<ExtractValueInst>(E); 429 if (EI->getNumIndices() != 1) 430 return None; 431 return *EI->idx_begin(); 432 } 433 434 /// \returns True if in-tree use also needs extract. This refers to 435 /// possible scalar operand in vectorized instruction. 436 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 437 TargetLibraryInfo *TLI) { 438 unsigned Opcode = UserInst->getOpcode(); 439 switch (Opcode) { 440 case Instruction::Load: { 441 LoadInst *LI = cast<LoadInst>(UserInst); 442 return (LI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Store: { 445 StoreInst *SI = cast<StoreInst>(UserInst); 446 return (SI->getPointerOperand() == Scalar); 447 } 448 case Instruction::Call: { 449 CallInst *CI = cast<CallInst>(UserInst); 450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 452 if (hasVectorInstrinsicScalarOpd(ID, i)) 453 return (CI->getArgOperand(i) == Scalar); 454 } 455 LLVM_FALLTHROUGH; 456 } 457 default: 458 return false; 459 } 460 } 461 462 /// \returns the AA location that is being access by the instruction. 463 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return MemoryLocation::get(SI); 466 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 467 return MemoryLocation::get(LI); 468 return MemoryLocation(); 469 } 470 471 /// \returns True if the instruction is not a volatile or atomic load/store. 472 static bool isSimple(Instruction *I) { 473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 474 return LI->isSimple(); 475 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 476 return SI->isSimple(); 477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 478 return !MI->isVolatile(); 479 return true; 480 } 481 482 namespace llvm { 483 484 namespace slpvectorizer { 485 486 /// Bottom Up SLP Vectorizer. 487 class BoUpSLP { 488 struct TreeEntry; 489 490 public: 491 using ValueList = SmallVector<Value *, 8>; 492 using InstrList = SmallVector<Instruction *, 16>; 493 using ValueSet = SmallPtrSet<Value *, 16>; 494 using StoreList = SmallVector<StoreInst *, 8>; 495 using ExtraValueToDebugLocsMap = 496 MapVector<Value *, SmallVector<Instruction *, 2>>; 497 498 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 499 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 500 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 501 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 502 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 503 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 504 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 505 // Use the vector register size specified by the target unless overridden 506 // by a command-line option. 507 // TODO: It would be better to limit the vectorization factor based on 508 // data type rather than just register size. For example, x86 AVX has 509 // 256-bit registers, but it does not support integer operations 510 // at that width (that requires AVX2). 511 if (MaxVectorRegSizeOption.getNumOccurrences()) 512 MaxVecRegSize = MaxVectorRegSizeOption; 513 else 514 MaxVecRegSize = TTI->getRegisterBitWidth(true); 515 516 if (MinVectorRegSizeOption.getNumOccurrences()) 517 MinVecRegSize = MinVectorRegSizeOption; 518 else 519 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 520 } 521 522 /// Vectorize the tree that starts with the elements in \p VL. 523 /// Returns the vectorized root. 524 Value *vectorizeTree(); 525 526 /// Vectorize the tree but with the list of externally used values \p 527 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 528 /// generated extractvalue instructions. 529 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 530 531 /// \returns the cost incurred by unwanted spills and fills, caused by 532 /// holding live values over call sites. 533 int getSpillCost() const; 534 535 /// \returns the vectorization cost of the subtree that starts at \p VL. 536 /// A negative number means that this is profitable. 537 int getTreeCost(); 538 539 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 540 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 541 void buildTree(ArrayRef<Value *> Roots, 542 ArrayRef<Value *> UserIgnoreLst = None); 543 544 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 545 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 546 /// into account (anf updating it, if required) list of externally used 547 /// values stored in \p ExternallyUsedValues. 548 void buildTree(ArrayRef<Value *> Roots, 549 ExtraValueToDebugLocsMap &ExternallyUsedValues, 550 ArrayRef<Value *> UserIgnoreLst = None); 551 552 /// Clear the internal data structures that are created by 'buildTree'. 553 void deleteTree() { 554 VectorizableTree.clear(); 555 ScalarToTreeEntry.clear(); 556 MustGather.clear(); 557 ExternalUses.clear(); 558 NumOpsWantToKeepOrder.clear(); 559 NumOpsWantToKeepOriginalOrder = 0; 560 for (auto &Iter : BlocksSchedules) { 561 BlockScheduling *BS = Iter.second.get(); 562 BS->clear(); 563 } 564 MinBWs.clear(); 565 } 566 567 unsigned getTreeSize() const { return VectorizableTree.size(); } 568 569 /// Perform LICM and CSE on the newly generated gather sequences. 570 void optimizeGatherSequence(); 571 572 /// \returns The best order of instructions for vectorization. 573 Optional<ArrayRef<unsigned>> bestOrder() const { 574 auto I = std::max_element( 575 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 576 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 577 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 578 return D1.second < D2.second; 579 }); 580 if (I == NumOpsWantToKeepOrder.end() || 581 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 582 return None; 583 584 return makeArrayRef(I->getFirst()); 585 } 586 587 /// \return The vector element size in bits to use when vectorizing the 588 /// expression tree ending at \p V. If V is a store, the size is the width of 589 /// the stored value. Otherwise, the size is the width of the largest loaded 590 /// value reaching V. This method is used by the vectorizer to calculate 591 /// vectorization factors. 592 unsigned getVectorElementSize(Value *V) const; 593 594 /// Compute the minimum type sizes required to represent the entries in a 595 /// vectorizable tree. 596 void computeMinimumValueSizes(); 597 598 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 599 unsigned getMaxVecRegSize() const { 600 return MaxVecRegSize; 601 } 602 603 // \returns minimum vector register size as set by cl::opt. 604 unsigned getMinVecRegSize() const { 605 return MinVecRegSize; 606 } 607 608 /// Check if ArrayType or StructType is isomorphic to some VectorType. 609 /// 610 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 611 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 612 613 /// \returns True if the VectorizableTree is both tiny and not fully 614 /// vectorizable. We do not vectorize such trees. 615 bool isTreeTinyAndNotFullyVectorizable() const; 616 617 OptimizationRemarkEmitter *getORE() { return ORE; } 618 619 /// This structure holds any data we need about the edges being traversed 620 /// during buildTree_rec(). We keep track of: 621 /// (i) the user TreeEntry index, and 622 /// (ii) the index of the edge. 623 struct EdgeInfo { 624 EdgeInfo() = default; 625 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 626 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 627 /// The user TreeEntry. 628 TreeEntry *UserTE = nullptr; 629 /// The operand index of the use. 630 unsigned EdgeIdx = UINT_MAX; 631 #ifndef NDEBUG 632 friend inline raw_ostream &operator<<(raw_ostream &OS, 633 const BoUpSLP::EdgeInfo &EI) { 634 EI.dump(OS); 635 return OS; 636 } 637 /// Debug print. 638 void dump(raw_ostream &OS) const { 639 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 640 << " EdgeIdx:" << EdgeIdx << "}"; 641 } 642 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 643 #endif 644 }; 645 646 /// A helper data structure to hold the operands of a vector of instructions. 647 /// This supports a fixed vector length for all operand vectors. 648 class VLOperands { 649 /// For each operand we need (i) the value, and (ii) the opcode that it 650 /// would be attached to if the expression was in a left-linearized form. 651 /// This is required to avoid illegal operand reordering. 652 /// For example: 653 /// \verbatim 654 /// 0 Op1 655 /// |/ 656 /// Op1 Op2 Linearized + Op2 657 /// \ / ----------> |/ 658 /// - - 659 /// 660 /// Op1 - Op2 (0 + Op1) - Op2 661 /// \endverbatim 662 /// 663 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 664 /// 665 /// Another way to think of this is to track all the operations across the 666 /// path from the operand all the way to the root of the tree and to 667 /// calculate the operation that corresponds to this path. For example, the 668 /// path from Op2 to the root crosses the RHS of the '-', therefore the 669 /// corresponding operation is a '-' (which matches the one in the 670 /// linearized tree, as shown above). 671 /// 672 /// For lack of a better term, we refer to this operation as Accumulated 673 /// Path Operation (APO). 674 struct OperandData { 675 OperandData() = default; 676 OperandData(Value *V, bool APO, bool IsUsed) 677 : V(V), APO(APO), IsUsed(IsUsed) {} 678 /// The operand value. 679 Value *V = nullptr; 680 /// TreeEntries only allow a single opcode, or an alternate sequence of 681 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 682 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 683 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 684 /// (e.g., Add/Mul) 685 bool APO = false; 686 /// Helper data for the reordering function. 687 bool IsUsed = false; 688 }; 689 690 /// During operand reordering, we are trying to select the operand at lane 691 /// that matches best with the operand at the neighboring lane. Our 692 /// selection is based on the type of value we are looking for. For example, 693 /// if the neighboring lane has a load, we need to look for a load that is 694 /// accessing a consecutive address. These strategies are summarized in the 695 /// 'ReorderingMode' enumerator. 696 enum class ReorderingMode { 697 Load, ///< Matching loads to consecutive memory addresses 698 Opcode, ///< Matching instructions based on opcode (same or alternate) 699 Constant, ///< Matching constants 700 Splat, ///< Matching the same instruction multiple times (broadcast) 701 Failed, ///< We failed to create a vectorizable group 702 }; 703 704 using OperandDataVec = SmallVector<OperandData, 2>; 705 706 /// A vector of operand vectors. 707 SmallVector<OperandDataVec, 4> OpsVec; 708 709 const DataLayout &DL; 710 ScalarEvolution &SE; 711 712 /// \returns the operand data at \p OpIdx and \p Lane. 713 OperandData &getData(unsigned OpIdx, unsigned Lane) { 714 return OpsVec[OpIdx][Lane]; 715 } 716 717 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 718 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 719 return OpsVec[OpIdx][Lane]; 720 } 721 722 /// Clears the used flag for all entries. 723 void clearUsed() { 724 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 725 OpIdx != NumOperands; ++OpIdx) 726 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 727 ++Lane) 728 OpsVec[OpIdx][Lane].IsUsed = false; 729 } 730 731 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 732 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 733 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 734 } 735 736 // Search all operands in Ops[*][Lane] for the one that matches best 737 // Ops[OpIdx][LastLane] and return its opreand index. 738 // If no good match can be found, return None. 739 Optional<unsigned> 740 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 741 ArrayRef<ReorderingMode> ReorderingModes) { 742 unsigned NumOperands = getNumOperands(); 743 744 // The operand of the previous lane at OpIdx. 745 Value *OpLastLane = getData(OpIdx, LastLane).V; 746 747 // Our strategy mode for OpIdx. 748 ReorderingMode RMode = ReorderingModes[OpIdx]; 749 750 // The linearized opcode of the operand at OpIdx, Lane. 751 bool OpIdxAPO = getData(OpIdx, Lane).APO; 752 753 const unsigned BestScore = 2; 754 const unsigned GoodScore = 1; 755 756 // The best operand index and its score. 757 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 758 // are using the score to differentiate between the two. 759 struct BestOpData { 760 Optional<unsigned> Idx = None; 761 unsigned Score = 0; 762 } BestOp; 763 764 // Iterate through all unused operands and look for the best. 765 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 766 // Get the operand at Idx and Lane. 767 OperandData &OpData = getData(Idx, Lane); 768 Value *Op = OpData.V; 769 bool OpAPO = OpData.APO; 770 771 // Skip already selected operands. 772 if (OpData.IsUsed) 773 continue; 774 775 // Skip if we are trying to move the operand to a position with a 776 // different opcode in the linearized tree form. This would break the 777 // semantics. 778 if (OpAPO != OpIdxAPO) 779 continue; 780 781 // Look for an operand that matches the current mode. 782 switch (RMode) { 783 case ReorderingMode::Load: 784 if (isa<LoadInst>(Op)) { 785 // Figure out which is left and right, so that we can check for 786 // consecutive loads 787 bool LeftToRight = Lane > LastLane; 788 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 789 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 790 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 791 cast<LoadInst>(OpRight), DL, SE)) 792 BestOp.Idx = Idx; 793 } 794 break; 795 case ReorderingMode::Opcode: 796 // We accept both Instructions and Undefs, but with different scores. 797 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 798 cast<Instruction>(Op)->getOpcode() == 799 cast<Instruction>(OpLastLane)->getOpcode()) || 800 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 801 isa<UndefValue>(Op)) { 802 // An instruction has a higher score than an undef. 803 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 804 if (Score > BestOp.Score) { 805 BestOp.Idx = Idx; 806 BestOp.Score = Score; 807 } 808 } 809 break; 810 case ReorderingMode::Constant: 811 if (isa<Constant>(Op)) { 812 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 813 if (Score > BestOp.Score) { 814 BestOp.Idx = Idx; 815 BestOp.Score = Score; 816 } 817 } 818 break; 819 case ReorderingMode::Splat: 820 if (Op == OpLastLane) 821 BestOp.Idx = Idx; 822 break; 823 case ReorderingMode::Failed: 824 return None; 825 } 826 } 827 828 if (BestOp.Idx) { 829 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 830 return BestOp.Idx; 831 } 832 // If we could not find a good match return None. 833 return None; 834 } 835 836 /// Helper for reorderOperandVecs. \Returns the lane that we should start 837 /// reordering from. This is the one which has the least number of operands 838 /// that can freely move about. 839 unsigned getBestLaneToStartReordering() const { 840 unsigned BestLane = 0; 841 unsigned Min = UINT_MAX; 842 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 843 ++Lane) { 844 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 845 if (NumFreeOps < Min) { 846 Min = NumFreeOps; 847 BestLane = Lane; 848 } 849 } 850 return BestLane; 851 } 852 853 /// \Returns the maximum number of operands that are allowed to be reordered 854 /// for \p Lane. This is used as a heuristic for selecting the first lane to 855 /// start operand reordering. 856 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 857 unsigned CntTrue = 0; 858 unsigned NumOperands = getNumOperands(); 859 // Operands with the same APO can be reordered. We therefore need to count 860 // how many of them we have for each APO, like this: Cnt[APO] = x. 861 // Since we only have two APOs, namely true and false, we can avoid using 862 // a map. Instead we can simply count the number of operands that 863 // correspond to one of them (in this case the 'true' APO), and calculate 864 // the other by subtracting it from the total number of operands. 865 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 866 if (getData(OpIdx, Lane).APO) 867 ++CntTrue; 868 unsigned CntFalse = NumOperands - CntTrue; 869 return std::max(CntTrue, CntFalse); 870 } 871 872 /// Go through the instructions in VL and append their operands. 873 void appendOperandsOfVL(ArrayRef<Value *> VL) { 874 assert(!VL.empty() && "Bad VL"); 875 assert((empty() || VL.size() == getNumLanes()) && 876 "Expected same number of lanes"); 877 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 878 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 879 OpsVec.resize(NumOperands); 880 unsigned NumLanes = VL.size(); 881 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 882 OpsVec[OpIdx].resize(NumLanes); 883 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 884 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 885 // Our tree has just 3 nodes: the root and two operands. 886 // It is therefore trivial to get the APO. We only need to check the 887 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 888 // RHS operand. The LHS operand of both add and sub is never attached 889 // to an inversese operation in the linearized form, therefore its APO 890 // is false. The RHS is true only if VL[Lane] is an inverse operation. 891 892 // Since operand reordering is performed on groups of commutative 893 // operations or alternating sequences (e.g., +, -), we can safely 894 // tell the inverse operations by checking commutativity. 895 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 896 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 897 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 898 APO, false}; 899 } 900 } 901 } 902 903 /// \returns the number of operands. 904 unsigned getNumOperands() const { return OpsVec.size(); } 905 906 /// \returns the number of lanes. 907 unsigned getNumLanes() const { return OpsVec[0].size(); } 908 909 /// \returns the operand value at \p OpIdx and \p Lane. 910 Value *getValue(unsigned OpIdx, unsigned Lane) const { 911 return getData(OpIdx, Lane).V; 912 } 913 914 /// \returns true if the data structure is empty. 915 bool empty() const { return OpsVec.empty(); } 916 917 /// Clears the data. 918 void clear() { OpsVec.clear(); } 919 920 /// \Returns true if there are enough operands identical to \p Op to fill 921 /// the whole vector. 922 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 923 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 924 bool OpAPO = getData(OpIdx, Lane).APO; 925 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 926 if (Ln == Lane) 927 continue; 928 // This is set to true if we found a candidate for broadcast at Lane. 929 bool FoundCandidate = false; 930 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 931 OperandData &Data = getData(OpI, Ln); 932 if (Data.APO != OpAPO || Data.IsUsed) 933 continue; 934 if (Data.V == Op) { 935 FoundCandidate = true; 936 Data.IsUsed = true; 937 break; 938 } 939 } 940 if (!FoundCandidate) 941 return false; 942 } 943 return true; 944 } 945 946 public: 947 /// Initialize with all the operands of the instruction vector \p RootVL. 948 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 949 ScalarEvolution &SE) 950 : DL(DL), SE(SE) { 951 // Append all the operands of RootVL. 952 appendOperandsOfVL(RootVL); 953 } 954 955 /// \Returns a value vector with the operands across all lanes for the 956 /// opearnd at \p OpIdx. 957 ValueList getVL(unsigned OpIdx) const { 958 ValueList OpVL(OpsVec[OpIdx].size()); 959 assert(OpsVec[OpIdx].size() == getNumLanes() && 960 "Expected same num of lanes across all operands"); 961 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 962 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 963 return OpVL; 964 } 965 966 // Performs operand reordering for 2 or more operands. 967 // The original operands are in OrigOps[OpIdx][Lane]. 968 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 969 void reorder() { 970 unsigned NumOperands = getNumOperands(); 971 unsigned NumLanes = getNumLanes(); 972 // Each operand has its own mode. We are using this mode to help us select 973 // the instructions for each lane, so that they match best with the ones 974 // we have selected so far. 975 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 976 977 // This is a greedy single-pass algorithm. We are going over each lane 978 // once and deciding on the best order right away with no back-tracking. 979 // However, in order to increase its effectiveness, we start with the lane 980 // that has operands that can move the least. For example, given the 981 // following lanes: 982 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 983 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 984 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 985 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 986 // we will start at Lane 1, since the operands of the subtraction cannot 987 // be reordered. Then we will visit the rest of the lanes in a circular 988 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 989 990 // Find the first lane that we will start our search from. 991 unsigned FirstLane = getBestLaneToStartReordering(); 992 993 // Initialize the modes. 994 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 995 Value *OpLane0 = getValue(OpIdx, FirstLane); 996 // Keep track if we have instructions with all the same opcode on one 997 // side. 998 if (isa<LoadInst>(OpLane0)) 999 ReorderingModes[OpIdx] = ReorderingMode::Load; 1000 else if (isa<Instruction>(OpLane0)) { 1001 // Check if OpLane0 should be broadcast. 1002 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1003 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1004 else 1005 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1006 } 1007 else if (isa<Constant>(OpLane0)) 1008 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1009 else if (isa<Argument>(OpLane0)) 1010 // Our best hope is a Splat. It may save some cost in some cases. 1011 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1012 else 1013 // NOTE: This should be unreachable. 1014 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1015 } 1016 1017 // If the initial strategy fails for any of the operand indexes, then we 1018 // perform reordering again in a second pass. This helps avoid assigning 1019 // high priority to the failed strategy, and should improve reordering for 1020 // the non-failed operand indexes. 1021 for (int Pass = 0; Pass != 2; ++Pass) { 1022 // Skip the second pass if the first pass did not fail. 1023 bool StrategyFailed = false; 1024 // Mark all operand data as free to use. 1025 clearUsed(); 1026 // We keep the original operand order for the FirstLane, so reorder the 1027 // rest of the lanes. We are visiting the nodes in a circular fashion, 1028 // using FirstLane as the center point and increasing the radius 1029 // distance. 1030 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1031 // Visit the lane on the right and then the lane on the left. 1032 for (int Direction : {+1, -1}) { 1033 int Lane = FirstLane + Direction * Distance; 1034 if (Lane < 0 || Lane >= (int)NumLanes) 1035 continue; 1036 int LastLane = Lane - Direction; 1037 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1038 "Out of bounds"); 1039 // Look for a good match for each operand. 1040 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1041 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1042 Optional<unsigned> BestIdx = 1043 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1044 // By not selecting a value, we allow the operands that follow to 1045 // select a better matching value. We will get a non-null value in 1046 // the next run of getBestOperand(). 1047 if (BestIdx) { 1048 // Swap the current operand with the one returned by 1049 // getBestOperand(). 1050 swap(OpIdx, BestIdx.getValue(), Lane); 1051 } else { 1052 // We failed to find a best operand, set mode to 'Failed'. 1053 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1054 // Enable the second pass. 1055 StrategyFailed = true; 1056 } 1057 } 1058 } 1059 } 1060 // Skip second pass if the strategy did not fail. 1061 if (!StrategyFailed) 1062 break; 1063 } 1064 } 1065 1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1067 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1068 switch (RMode) { 1069 case ReorderingMode::Load: 1070 return "Load"; 1071 case ReorderingMode::Opcode: 1072 return "Opcode"; 1073 case ReorderingMode::Constant: 1074 return "Constant"; 1075 case ReorderingMode::Splat: 1076 return "Splat"; 1077 case ReorderingMode::Failed: 1078 return "Failed"; 1079 } 1080 llvm_unreachable("Unimplemented Reordering Type"); 1081 } 1082 1083 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1084 raw_ostream &OS) { 1085 return OS << getModeStr(RMode); 1086 } 1087 1088 /// Debug print. 1089 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1090 printMode(RMode, dbgs()); 1091 } 1092 1093 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1094 return printMode(RMode, OS); 1095 } 1096 1097 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1098 const unsigned Indent = 2; 1099 unsigned Cnt = 0; 1100 for (const OperandDataVec &OpDataVec : OpsVec) { 1101 OS << "Operand " << Cnt++ << "\n"; 1102 for (const OperandData &OpData : OpDataVec) { 1103 OS.indent(Indent) << "{"; 1104 if (Value *V = OpData.V) 1105 OS << *V; 1106 else 1107 OS << "null"; 1108 OS << ", APO:" << OpData.APO << "}\n"; 1109 } 1110 OS << "\n"; 1111 } 1112 return OS; 1113 } 1114 1115 /// Debug print. 1116 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1117 #endif 1118 }; 1119 1120 private: 1121 /// Checks if all users of \p I are the part of the vectorization tree. 1122 bool areAllUsersVectorized(Instruction *I) const; 1123 1124 /// \returns the cost of the vectorizable entry. 1125 int getEntryCost(TreeEntry *E); 1126 1127 /// This is the recursive part of buildTree. 1128 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1129 const EdgeInfo &EI); 1130 1131 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1132 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1133 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1134 /// returns false, setting \p CurrentOrder to either an empty vector or a 1135 /// non-identity permutation that allows to reuse extract instructions. 1136 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1137 SmallVectorImpl<unsigned> &CurrentOrder) const; 1138 1139 /// Vectorize a single entry in the tree. 1140 Value *vectorizeTree(TreeEntry *E); 1141 1142 /// Vectorize a single entry in the tree, starting in \p VL. 1143 Value *vectorizeTree(ArrayRef<Value *> VL); 1144 1145 /// \returns the scalarization cost for this type. Scalarization in this 1146 /// context means the creation of vectors from a group of scalars. 1147 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1148 1149 /// \returns the scalarization cost for this list of values. Assuming that 1150 /// this subtree gets vectorized, we may need to extract the values from the 1151 /// roots. This method calculates the cost of extracting the values. 1152 int getGatherCost(ArrayRef<Value *> VL) const; 1153 1154 /// Set the Builder insert point to one after the last instruction in 1155 /// the bundle 1156 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 1157 const InstructionsState &S); 1158 1159 /// \returns a vector from a collection of scalars in \p VL. 1160 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1161 1162 /// \returns whether the VectorizableTree is fully vectorizable and will 1163 /// be beneficial even the tree height is tiny. 1164 bool isFullyVectorizableTinyTree() const; 1165 1166 /// Reorder commutative or alt operands to get better probability of 1167 /// generating vectorized code. 1168 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1169 SmallVectorImpl<Value *> &Left, 1170 SmallVectorImpl<Value *> &Right, 1171 const DataLayout &DL, 1172 ScalarEvolution &SE); 1173 struct TreeEntry { 1174 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1175 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1176 1177 /// \returns true if the scalars in VL are equal to this entry. 1178 bool isSame(ArrayRef<Value *> VL) const { 1179 if (VL.size() == Scalars.size()) 1180 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1181 return VL.size() == ReuseShuffleIndices.size() && 1182 std::equal( 1183 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1184 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1185 } 1186 1187 /// A vector of scalars. 1188 ValueList Scalars; 1189 1190 /// The Scalars are vectorized into this value. It is initialized to Null. 1191 Value *VectorizedValue = nullptr; 1192 1193 /// Do we need to gather this sequence ? 1194 bool NeedToGather = false; 1195 1196 /// Does this sequence require some shuffling? 1197 SmallVector<unsigned, 4> ReuseShuffleIndices; 1198 1199 /// Does this entry require reordering? 1200 ArrayRef<unsigned> ReorderIndices; 1201 1202 /// Points back to the VectorizableTree. 1203 /// 1204 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1205 /// to be a pointer and needs to be able to initialize the child iterator. 1206 /// Thus we need a reference back to the container to translate the indices 1207 /// to entries. 1208 VecTreeTy &Container; 1209 1210 /// The TreeEntry index containing the user of this entry. We can actually 1211 /// have multiple users so the data structure is not truly a tree. 1212 SmallVector<EdgeInfo, 1> UserTreeIndices; 1213 1214 /// The index of this treeEntry in VectorizableTree. 1215 int Idx = -1; 1216 1217 private: 1218 /// The operands of each instruction in each lane Operands[op_index][lane]. 1219 /// Note: This helps avoid the replication of the code that performs the 1220 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1221 SmallVector<ValueList, 2> Operands; 1222 1223 public: 1224 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1225 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 1226 ArrayRef<unsigned> ReuseShuffleIndices) { 1227 if (Operands.size() < OpIdx + 1) 1228 Operands.resize(OpIdx + 1); 1229 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1230 Operands[OpIdx].resize(Scalars.size()); 1231 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1232 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 1233 ? OpVL[ReuseShuffleIndices[Lane]] 1234 : OpVL[Lane]; 1235 } 1236 1237 /// If there is a user TreeEntry, then set its operand. 1238 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 1239 ArrayRef<Value *> OpVL, 1240 ArrayRef<unsigned> ReuseShuffleIndices) { 1241 if (UserTreeIdx.UserTE) 1242 UserTreeIdx.UserTE->setOperand(UserTreeIdx.EdgeIdx, OpVL, 1243 ReuseShuffleIndices); 1244 } 1245 1246 /// \returns the \p OpIdx operand of this TreeEntry. 1247 ValueList &getOperand(unsigned OpIdx) { 1248 assert(OpIdx < Operands.size() && "Off bounds"); 1249 return Operands[OpIdx]; 1250 } 1251 1252 /// \return the single \p OpIdx operand. 1253 Value *getSingleOperand(unsigned OpIdx) const { 1254 assert(OpIdx < Operands.size() && "Off bounds"); 1255 assert(!Operands[OpIdx].empty() && "No operand availabe"); 1256 return Operands[OpIdx][0]; 1257 } 1258 1259 #ifndef NDEBUG 1260 /// Debug printer. 1261 LLVM_DUMP_METHOD void dump() const { 1262 dbgs() << Idx << ".\n"; 1263 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1264 dbgs() << "Operand " << OpI << ":\n"; 1265 for (const Value *V : Operands[OpI]) 1266 dbgs().indent(2) << *V << "\n"; 1267 } 1268 dbgs() << "Scalars: \n"; 1269 for (Value *V : Scalars) 1270 dbgs().indent(2) << *V << "\n"; 1271 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1272 dbgs() << "VectorizedValue: "; 1273 if (VectorizedValue) 1274 dbgs() << *VectorizedValue; 1275 else 1276 dbgs() << "NULL"; 1277 dbgs() << "\n"; 1278 dbgs() << "ReuseShuffleIndices: "; 1279 if (ReuseShuffleIndices.empty()) 1280 dbgs() << "Emtpy"; 1281 else 1282 for (unsigned Idx : ReuseShuffleIndices) 1283 dbgs() << Idx << ", "; 1284 dbgs() << "\n"; 1285 dbgs() << "ReorderIndices: "; 1286 for (unsigned Idx : ReorderIndices) 1287 dbgs() << Idx << ", "; 1288 dbgs() << "\n"; 1289 dbgs() << "UserTreeIndices: "; 1290 for (const auto &EInfo : UserTreeIndices) 1291 dbgs() << EInfo << ", "; 1292 dbgs() << "\n"; 1293 } 1294 #endif 1295 }; 1296 1297 /// Create a new VectorizableTree entry. 1298 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 1299 const EdgeInfo &UserTreeIdx, 1300 ArrayRef<unsigned> ReuseShuffleIndices = None, 1301 ArrayRef<unsigned> ReorderIndices = None) { 1302 VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree)); 1303 TreeEntry *Last = VectorizableTree.back().get(); 1304 Last->Idx = VectorizableTree.size() - 1; 1305 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1306 Last->NeedToGather = !Vectorized; 1307 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1308 ReuseShuffleIndices.end()); 1309 Last->ReorderIndices = ReorderIndices; 1310 if (Vectorized) { 1311 for (int i = 0, e = VL.size(); i != e; ++i) { 1312 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1313 ScalarToTreeEntry[VL[i]] = Last->Idx; 1314 } 1315 } else { 1316 MustGather.insert(VL.begin(), VL.end()); 1317 } 1318 1319 if (UserTreeIdx.UserTE) 1320 Last->UserTreeIndices.push_back(UserTreeIdx); 1321 1322 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 1323 return Last; 1324 } 1325 1326 /// -- Vectorization State -- 1327 /// Holds all of the tree entries. 1328 TreeEntry::VecTreeTy VectorizableTree; 1329 1330 #ifndef NDEBUG 1331 /// Debug printer. 1332 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1333 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1334 VectorizableTree[Id]->dump(); 1335 dbgs() << "\n"; 1336 } 1337 } 1338 #endif 1339 1340 TreeEntry *getTreeEntry(Value *V) { 1341 auto I = ScalarToTreeEntry.find(V); 1342 if (I != ScalarToTreeEntry.end()) 1343 return VectorizableTree[I->second].get(); 1344 return nullptr; 1345 } 1346 1347 const TreeEntry *getTreeEntry(Value *V) const { 1348 auto I = ScalarToTreeEntry.find(V); 1349 if (I != ScalarToTreeEntry.end()) 1350 return VectorizableTree[I->second].get(); 1351 return nullptr; 1352 } 1353 1354 /// Maps a specific scalar to its tree entry. 1355 SmallDenseMap<Value*, int> ScalarToTreeEntry; 1356 1357 /// A list of scalars that we found that we need to keep as scalars. 1358 ValueSet MustGather; 1359 1360 /// This POD struct describes one external user in the vectorized tree. 1361 struct ExternalUser { 1362 ExternalUser(Value *S, llvm::User *U, int L) 1363 : Scalar(S), User(U), Lane(L) {} 1364 1365 // Which scalar in our function. 1366 Value *Scalar; 1367 1368 // Which user that uses the scalar. 1369 llvm::User *User; 1370 1371 // Which lane does the scalar belong to. 1372 int Lane; 1373 }; 1374 using UserList = SmallVector<ExternalUser, 16>; 1375 1376 /// Checks if two instructions may access the same memory. 1377 /// 1378 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1379 /// is invariant in the calling loop. 1380 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1381 Instruction *Inst2) { 1382 // First check if the result is already in the cache. 1383 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1384 Optional<bool> &result = AliasCache[key]; 1385 if (result.hasValue()) { 1386 return result.getValue(); 1387 } 1388 MemoryLocation Loc2 = getLocation(Inst2, AA); 1389 bool aliased = true; 1390 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1391 // Do the alias check. 1392 aliased = AA->alias(Loc1, Loc2); 1393 } 1394 // Store the result in the cache. 1395 result = aliased; 1396 return aliased; 1397 } 1398 1399 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1400 1401 /// Cache for alias results. 1402 /// TODO: consider moving this to the AliasAnalysis itself. 1403 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1404 1405 /// Removes an instruction from its block and eventually deletes it. 1406 /// It's like Instruction::eraseFromParent() except that the actual deletion 1407 /// is delayed until BoUpSLP is destructed. 1408 /// This is required to ensure that there are no incorrect collisions in the 1409 /// AliasCache, which can happen if a new instruction is allocated at the 1410 /// same address as a previously deleted instruction. 1411 void eraseInstruction(Instruction *I) { 1412 I->removeFromParent(); 1413 I->dropAllReferences(); 1414 DeletedInstructions.emplace_back(I); 1415 } 1416 1417 /// Temporary store for deleted instructions. Instructions will be deleted 1418 /// eventually when the BoUpSLP is destructed. 1419 SmallVector<unique_value, 8> DeletedInstructions; 1420 1421 /// A list of values that need to extracted out of the tree. 1422 /// This list holds pairs of (Internal Scalar : External User). External User 1423 /// can be nullptr, it means that this Internal Scalar will be used later, 1424 /// after vectorization. 1425 UserList ExternalUses; 1426 1427 /// Values used only by @llvm.assume calls. 1428 SmallPtrSet<const Value *, 32> EphValues; 1429 1430 /// Holds all of the instructions that we gathered. 1431 SetVector<Instruction *> GatherSeq; 1432 1433 /// A list of blocks that we are going to CSE. 1434 SetVector<BasicBlock *> CSEBlocks; 1435 1436 /// Contains all scheduling relevant data for an instruction. 1437 /// A ScheduleData either represents a single instruction or a member of an 1438 /// instruction bundle (= a group of instructions which is combined into a 1439 /// vector instruction). 1440 struct ScheduleData { 1441 // The initial value for the dependency counters. It means that the 1442 // dependencies are not calculated yet. 1443 enum { InvalidDeps = -1 }; 1444 1445 ScheduleData() = default; 1446 1447 void init(int BlockSchedulingRegionID, Value *OpVal) { 1448 FirstInBundle = this; 1449 NextInBundle = nullptr; 1450 NextLoadStore = nullptr; 1451 IsScheduled = false; 1452 SchedulingRegionID = BlockSchedulingRegionID; 1453 UnscheduledDepsInBundle = UnscheduledDeps; 1454 clearDependencies(); 1455 OpValue = OpVal; 1456 } 1457 1458 /// Returns true if the dependency information has been calculated. 1459 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1460 1461 /// Returns true for single instructions and for bundle representatives 1462 /// (= the head of a bundle). 1463 bool isSchedulingEntity() const { return FirstInBundle == this; } 1464 1465 /// Returns true if it represents an instruction bundle and not only a 1466 /// single instruction. 1467 bool isPartOfBundle() const { 1468 return NextInBundle != nullptr || FirstInBundle != this; 1469 } 1470 1471 /// Returns true if it is ready for scheduling, i.e. it has no more 1472 /// unscheduled depending instructions/bundles. 1473 bool isReady() const { 1474 assert(isSchedulingEntity() && 1475 "can't consider non-scheduling entity for ready list"); 1476 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1477 } 1478 1479 /// Modifies the number of unscheduled dependencies, also updating it for 1480 /// the whole bundle. 1481 int incrementUnscheduledDeps(int Incr) { 1482 UnscheduledDeps += Incr; 1483 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1484 } 1485 1486 /// Sets the number of unscheduled dependencies to the number of 1487 /// dependencies. 1488 void resetUnscheduledDeps() { 1489 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1490 } 1491 1492 /// Clears all dependency information. 1493 void clearDependencies() { 1494 Dependencies = InvalidDeps; 1495 resetUnscheduledDeps(); 1496 MemoryDependencies.clear(); 1497 } 1498 1499 void dump(raw_ostream &os) const { 1500 if (!isSchedulingEntity()) { 1501 os << "/ " << *Inst; 1502 } else if (NextInBundle) { 1503 os << '[' << *Inst; 1504 ScheduleData *SD = NextInBundle; 1505 while (SD) { 1506 os << ';' << *SD->Inst; 1507 SD = SD->NextInBundle; 1508 } 1509 os << ']'; 1510 } else { 1511 os << *Inst; 1512 } 1513 } 1514 1515 Instruction *Inst = nullptr; 1516 1517 /// Points to the head in an instruction bundle (and always to this for 1518 /// single instructions). 1519 ScheduleData *FirstInBundle = nullptr; 1520 1521 /// Single linked list of all instructions in a bundle. Null if it is a 1522 /// single instruction. 1523 ScheduleData *NextInBundle = nullptr; 1524 1525 /// Single linked list of all memory instructions (e.g. load, store, call) 1526 /// in the block - until the end of the scheduling region. 1527 ScheduleData *NextLoadStore = nullptr; 1528 1529 /// The dependent memory instructions. 1530 /// This list is derived on demand in calculateDependencies(). 1531 SmallVector<ScheduleData *, 4> MemoryDependencies; 1532 1533 /// This ScheduleData is in the current scheduling region if this matches 1534 /// the current SchedulingRegionID of BlockScheduling. 1535 int SchedulingRegionID = 0; 1536 1537 /// Used for getting a "good" final ordering of instructions. 1538 int SchedulingPriority = 0; 1539 1540 /// The number of dependencies. Constitutes of the number of users of the 1541 /// instruction plus the number of dependent memory instructions (if any). 1542 /// This value is calculated on demand. 1543 /// If InvalidDeps, the number of dependencies is not calculated yet. 1544 int Dependencies = InvalidDeps; 1545 1546 /// The number of dependencies minus the number of dependencies of scheduled 1547 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1548 /// for scheduling. 1549 /// Note that this is negative as long as Dependencies is not calculated. 1550 int UnscheduledDeps = InvalidDeps; 1551 1552 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1553 /// single instructions. 1554 int UnscheduledDepsInBundle = InvalidDeps; 1555 1556 /// True if this instruction is scheduled (or considered as scheduled in the 1557 /// dry-run). 1558 bool IsScheduled = false; 1559 1560 /// Opcode of the current instruction in the schedule data. 1561 Value *OpValue = nullptr; 1562 }; 1563 1564 #ifndef NDEBUG 1565 friend inline raw_ostream &operator<<(raw_ostream &os, 1566 const BoUpSLP::ScheduleData &SD) { 1567 SD.dump(os); 1568 return os; 1569 } 1570 #endif 1571 1572 friend struct GraphTraits<BoUpSLP *>; 1573 friend struct DOTGraphTraits<BoUpSLP *>; 1574 1575 /// Contains all scheduling data for a basic block. 1576 struct BlockScheduling { 1577 BlockScheduling(BasicBlock *BB) 1578 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1579 1580 void clear() { 1581 ReadyInsts.clear(); 1582 ScheduleStart = nullptr; 1583 ScheduleEnd = nullptr; 1584 FirstLoadStoreInRegion = nullptr; 1585 LastLoadStoreInRegion = nullptr; 1586 1587 // Reduce the maximum schedule region size by the size of the 1588 // previous scheduling run. 1589 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1590 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1591 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1592 ScheduleRegionSize = 0; 1593 1594 // Make a new scheduling region, i.e. all existing ScheduleData is not 1595 // in the new region yet. 1596 ++SchedulingRegionID; 1597 } 1598 1599 ScheduleData *getScheduleData(Value *V) { 1600 ScheduleData *SD = ScheduleDataMap[V]; 1601 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1602 return SD; 1603 return nullptr; 1604 } 1605 1606 ScheduleData *getScheduleData(Value *V, Value *Key) { 1607 if (V == Key) 1608 return getScheduleData(V); 1609 auto I = ExtraScheduleDataMap.find(V); 1610 if (I != ExtraScheduleDataMap.end()) { 1611 ScheduleData *SD = I->second[Key]; 1612 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1613 return SD; 1614 } 1615 return nullptr; 1616 } 1617 1618 bool isInSchedulingRegion(ScheduleData *SD) { 1619 return SD->SchedulingRegionID == SchedulingRegionID; 1620 } 1621 1622 /// Marks an instruction as scheduled and puts all dependent ready 1623 /// instructions into the ready-list. 1624 template <typename ReadyListType> 1625 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1626 SD->IsScheduled = true; 1627 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1628 1629 ScheduleData *BundleMember = SD; 1630 while (BundleMember) { 1631 if (BundleMember->Inst != BundleMember->OpValue) { 1632 BundleMember = BundleMember->NextInBundle; 1633 continue; 1634 } 1635 // Handle the def-use chain dependencies. 1636 for (Use &U : BundleMember->Inst->operands()) { 1637 auto *I = dyn_cast<Instruction>(U.get()); 1638 if (!I) 1639 continue; 1640 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1641 if (OpDef && OpDef->hasValidDependencies() && 1642 OpDef->incrementUnscheduledDeps(-1) == 0) { 1643 // There are no more unscheduled dependencies after 1644 // decrementing, so we can put the dependent instruction 1645 // into the ready list. 1646 ScheduleData *DepBundle = OpDef->FirstInBundle; 1647 assert(!DepBundle->IsScheduled && 1648 "already scheduled bundle gets ready"); 1649 ReadyList.insert(DepBundle); 1650 LLVM_DEBUG(dbgs() 1651 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1652 } 1653 }); 1654 } 1655 // Handle the memory dependencies. 1656 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1657 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1658 // There are no more unscheduled dependencies after decrementing, 1659 // so we can put the dependent instruction into the ready list. 1660 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1661 assert(!DepBundle->IsScheduled && 1662 "already scheduled bundle gets ready"); 1663 ReadyList.insert(DepBundle); 1664 LLVM_DEBUG(dbgs() 1665 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1666 } 1667 } 1668 BundleMember = BundleMember->NextInBundle; 1669 } 1670 } 1671 1672 void doForAllOpcodes(Value *V, 1673 function_ref<void(ScheduleData *SD)> Action) { 1674 if (ScheduleData *SD = getScheduleData(V)) 1675 Action(SD); 1676 auto I = ExtraScheduleDataMap.find(V); 1677 if (I != ExtraScheduleDataMap.end()) 1678 for (auto &P : I->second) 1679 if (P.second->SchedulingRegionID == SchedulingRegionID) 1680 Action(P.second); 1681 } 1682 1683 /// Put all instructions into the ReadyList which are ready for scheduling. 1684 template <typename ReadyListType> 1685 void initialFillReadyList(ReadyListType &ReadyList) { 1686 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1687 doForAllOpcodes(I, [&](ScheduleData *SD) { 1688 if (SD->isSchedulingEntity() && SD->isReady()) { 1689 ReadyList.insert(SD); 1690 LLVM_DEBUG(dbgs() 1691 << "SLP: initially in ready list: " << *I << "\n"); 1692 } 1693 }); 1694 } 1695 } 1696 1697 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1698 /// cyclic dependencies. This is only a dry-run, no instructions are 1699 /// actually moved at this stage. 1700 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1701 const InstructionsState &S); 1702 1703 /// Un-bundles a group of instructions. 1704 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1705 1706 /// Allocates schedule data chunk. 1707 ScheduleData *allocateScheduleDataChunks(); 1708 1709 /// Extends the scheduling region so that V is inside the region. 1710 /// \returns true if the region size is within the limit. 1711 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1712 1713 /// Initialize the ScheduleData structures for new instructions in the 1714 /// scheduling region. 1715 void initScheduleData(Instruction *FromI, Instruction *ToI, 1716 ScheduleData *PrevLoadStore, 1717 ScheduleData *NextLoadStore); 1718 1719 /// Updates the dependency information of a bundle and of all instructions/ 1720 /// bundles which depend on the original bundle. 1721 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1722 BoUpSLP *SLP); 1723 1724 /// Sets all instruction in the scheduling region to un-scheduled. 1725 void resetSchedule(); 1726 1727 BasicBlock *BB; 1728 1729 /// Simple memory allocation for ScheduleData. 1730 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1731 1732 /// The size of a ScheduleData array in ScheduleDataChunks. 1733 int ChunkSize; 1734 1735 /// The allocator position in the current chunk, which is the last entry 1736 /// of ScheduleDataChunks. 1737 int ChunkPos; 1738 1739 /// Attaches ScheduleData to Instruction. 1740 /// Note that the mapping survives during all vectorization iterations, i.e. 1741 /// ScheduleData structures are recycled. 1742 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1743 1744 /// Attaches ScheduleData to Instruction with the leading key. 1745 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1746 ExtraScheduleDataMap; 1747 1748 struct ReadyList : SmallVector<ScheduleData *, 8> { 1749 void insert(ScheduleData *SD) { push_back(SD); } 1750 }; 1751 1752 /// The ready-list for scheduling (only used for the dry-run). 1753 ReadyList ReadyInsts; 1754 1755 /// The first instruction of the scheduling region. 1756 Instruction *ScheduleStart = nullptr; 1757 1758 /// The first instruction _after_ the scheduling region. 1759 Instruction *ScheduleEnd = nullptr; 1760 1761 /// The first memory accessing instruction in the scheduling region 1762 /// (can be null). 1763 ScheduleData *FirstLoadStoreInRegion = nullptr; 1764 1765 /// The last memory accessing instruction in the scheduling region 1766 /// (can be null). 1767 ScheduleData *LastLoadStoreInRegion = nullptr; 1768 1769 /// The current size of the scheduling region. 1770 int ScheduleRegionSize = 0; 1771 1772 /// The maximum size allowed for the scheduling region. 1773 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1774 1775 /// The ID of the scheduling region. For a new vectorization iteration this 1776 /// is incremented which "removes" all ScheduleData from the region. 1777 // Make sure that the initial SchedulingRegionID is greater than the 1778 // initial SchedulingRegionID in ScheduleData (which is 0). 1779 int SchedulingRegionID = 1; 1780 }; 1781 1782 /// Attaches the BlockScheduling structures to basic blocks. 1783 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1784 1785 /// Performs the "real" scheduling. Done before vectorization is actually 1786 /// performed in a basic block. 1787 void scheduleBlock(BlockScheduling *BS); 1788 1789 /// List of users to ignore during scheduling and that don't need extracting. 1790 ArrayRef<Value *> UserIgnoreList; 1791 1792 using OrdersType = SmallVector<unsigned, 4>; 1793 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1794 /// sorted SmallVectors of unsigned. 1795 struct OrdersTypeDenseMapInfo { 1796 static OrdersType getEmptyKey() { 1797 OrdersType V; 1798 V.push_back(~1U); 1799 return V; 1800 } 1801 1802 static OrdersType getTombstoneKey() { 1803 OrdersType V; 1804 V.push_back(~2U); 1805 return V; 1806 } 1807 1808 static unsigned getHashValue(const OrdersType &V) { 1809 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1810 } 1811 1812 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1813 return LHS == RHS; 1814 } 1815 }; 1816 1817 /// Contains orders of operations along with the number of bundles that have 1818 /// operations in this order. It stores only those orders that require 1819 /// reordering, if reordering is not required it is counted using \a 1820 /// NumOpsWantToKeepOriginalOrder. 1821 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1822 /// Number of bundles that do not require reordering. 1823 unsigned NumOpsWantToKeepOriginalOrder = 0; 1824 1825 // Analysis and block reference. 1826 Function *F; 1827 ScalarEvolution *SE; 1828 TargetTransformInfo *TTI; 1829 TargetLibraryInfo *TLI; 1830 AliasAnalysis *AA; 1831 LoopInfo *LI; 1832 DominatorTree *DT; 1833 AssumptionCache *AC; 1834 DemandedBits *DB; 1835 const DataLayout *DL; 1836 OptimizationRemarkEmitter *ORE; 1837 1838 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1839 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1840 1841 /// Instruction builder to construct the vectorized tree. 1842 IRBuilder<> Builder; 1843 1844 /// A map of scalar integer values to the smallest bit width with which they 1845 /// can legally be represented. The values map to (width, signed) pairs, 1846 /// where "width" indicates the minimum bit width and "signed" is True if the 1847 /// value must be signed-extended, rather than zero-extended, back to its 1848 /// original width. 1849 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1850 }; 1851 1852 } // end namespace slpvectorizer 1853 1854 template <> struct GraphTraits<BoUpSLP *> { 1855 using TreeEntry = BoUpSLP::TreeEntry; 1856 1857 /// NodeRef has to be a pointer per the GraphWriter. 1858 using NodeRef = TreeEntry *; 1859 1860 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1861 1862 /// Add the VectorizableTree to the index iterator to be able to return 1863 /// TreeEntry pointers. 1864 struct ChildIteratorType 1865 : public iterator_adaptor_base< 1866 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1867 ContainerTy &VectorizableTree; 1868 1869 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1870 ContainerTy &VT) 1871 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1872 1873 NodeRef operator*() { return I->UserTE; } 1874 }; 1875 1876 static NodeRef getEntryNode(BoUpSLP &R) { 1877 return R.VectorizableTree[0].get(); 1878 } 1879 1880 static ChildIteratorType child_begin(NodeRef N) { 1881 return {N->UserTreeIndices.begin(), N->Container}; 1882 } 1883 1884 static ChildIteratorType child_end(NodeRef N) { 1885 return {N->UserTreeIndices.end(), N->Container}; 1886 } 1887 1888 /// For the node iterator we just need to turn the TreeEntry iterator into a 1889 /// TreeEntry* iterator so that it dereferences to NodeRef. 1890 class nodes_iterator { 1891 using ItTy = ContainerTy::iterator; 1892 ItTy It; 1893 1894 public: 1895 nodes_iterator(const ItTy &It2) : It(It2) {} 1896 NodeRef operator*() { return It->get(); } 1897 nodes_iterator operator++() { 1898 ++It; 1899 return *this; 1900 } 1901 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 1902 }; 1903 1904 static nodes_iterator nodes_begin(BoUpSLP *R) { 1905 return nodes_iterator(R->VectorizableTree.begin()); 1906 } 1907 1908 static nodes_iterator nodes_end(BoUpSLP *R) { 1909 return nodes_iterator(R->VectorizableTree.end()); 1910 } 1911 1912 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1913 }; 1914 1915 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1916 using TreeEntry = BoUpSLP::TreeEntry; 1917 1918 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1919 1920 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1921 std::string Str; 1922 raw_string_ostream OS(Str); 1923 if (isSplat(Entry->Scalars)) { 1924 OS << "<splat> " << *Entry->Scalars[0]; 1925 return Str; 1926 } 1927 for (auto V : Entry->Scalars) { 1928 OS << *V; 1929 if (std::any_of( 1930 R->ExternalUses.begin(), R->ExternalUses.end(), 1931 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1932 OS << " <extract>"; 1933 OS << "\n"; 1934 } 1935 return Str; 1936 } 1937 1938 static std::string getNodeAttributes(const TreeEntry *Entry, 1939 const BoUpSLP *) { 1940 if (Entry->NeedToGather) 1941 return "color=red"; 1942 return ""; 1943 } 1944 }; 1945 1946 } // end namespace llvm 1947 1948 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1949 ArrayRef<Value *> UserIgnoreLst) { 1950 ExtraValueToDebugLocsMap ExternallyUsedValues; 1951 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1952 } 1953 1954 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1955 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1956 ArrayRef<Value *> UserIgnoreLst) { 1957 deleteTree(); 1958 UserIgnoreList = UserIgnoreLst; 1959 if (!allSameType(Roots)) 1960 return; 1961 buildTree_rec(Roots, 0, EdgeInfo()); 1962 1963 // Collect the values that we need to extract from the tree. 1964 for (auto &TEPtr : VectorizableTree) { 1965 TreeEntry *Entry = TEPtr.get(); 1966 1967 // No need to handle users of gathered values. 1968 if (Entry->NeedToGather) 1969 continue; 1970 1971 // For each lane: 1972 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1973 Value *Scalar = Entry->Scalars[Lane]; 1974 int FoundLane = Lane; 1975 if (!Entry->ReuseShuffleIndices.empty()) { 1976 FoundLane = 1977 std::distance(Entry->ReuseShuffleIndices.begin(), 1978 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1979 } 1980 1981 // Check if the scalar is externally used as an extra arg. 1982 auto ExtI = ExternallyUsedValues.find(Scalar); 1983 if (ExtI != ExternallyUsedValues.end()) { 1984 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1985 << Lane << " from " << *Scalar << ".\n"); 1986 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1987 } 1988 for (User *U : Scalar->users()) { 1989 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1990 1991 Instruction *UserInst = dyn_cast<Instruction>(U); 1992 if (!UserInst) 1993 continue; 1994 1995 // Skip in-tree scalars that become vectors 1996 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1997 Value *UseScalar = UseEntry->Scalars[0]; 1998 // Some in-tree scalars will remain as scalar in vectorized 1999 // instructions. If that is the case, the one in Lane 0 will 2000 // be used. 2001 if (UseScalar != U || 2002 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2003 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2004 << ".\n"); 2005 assert(!UseEntry->NeedToGather && "Bad state"); 2006 continue; 2007 } 2008 } 2009 2010 // Ignore users in the user ignore list. 2011 if (is_contained(UserIgnoreList, UserInst)) 2012 continue; 2013 2014 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2015 << Lane << " from " << *Scalar << ".\n"); 2016 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2017 } 2018 } 2019 } 2020 } 2021 2022 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2023 const EdgeInfo &UserTreeIdx) { 2024 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2025 2026 InstructionsState S = getSameOpcode(VL); 2027 if (Depth == RecursionMaxDepth) { 2028 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2029 newTreeEntry(VL, false, UserTreeIdx); 2030 return; 2031 } 2032 2033 // Don't handle vectors. 2034 if (S.OpValue->getType()->isVectorTy()) { 2035 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2036 newTreeEntry(VL, false, UserTreeIdx); 2037 return; 2038 } 2039 2040 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2041 if (SI->getValueOperand()->getType()->isVectorTy()) { 2042 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2043 newTreeEntry(VL, false, UserTreeIdx); 2044 return; 2045 } 2046 2047 // If all of the operands are identical or constant we have a simple solution. 2048 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2049 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2050 newTreeEntry(VL, false, UserTreeIdx); 2051 return; 2052 } 2053 2054 // We now know that this is a vector of instructions of the same type from 2055 // the same block. 2056 2057 // Don't vectorize ephemeral values. 2058 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2059 if (EphValues.count(VL[i])) { 2060 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2061 << ") is ephemeral.\n"); 2062 newTreeEntry(VL, false, UserTreeIdx); 2063 return; 2064 } 2065 } 2066 2067 // Check if this is a duplicate of another entry. 2068 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2069 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2070 if (!E->isSame(VL)) { 2071 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2072 newTreeEntry(VL, false, UserTreeIdx); 2073 return; 2074 } 2075 // Record the reuse of the tree node. FIXME, currently this is only used to 2076 // properly draw the graph rather than for the actual vectorization. 2077 E->UserTreeIndices.push_back(UserTreeIdx); 2078 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2079 << ".\n"); 2080 E->trySetUserTEOperand(UserTreeIdx, VL, None); 2081 return; 2082 } 2083 2084 // Check that none of the instructions in the bundle are already in the tree. 2085 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2086 auto *I = dyn_cast<Instruction>(VL[i]); 2087 if (!I) 2088 continue; 2089 if (getTreeEntry(I)) { 2090 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2091 << ") is already in tree.\n"); 2092 newTreeEntry(VL, false, UserTreeIdx); 2093 return; 2094 } 2095 } 2096 2097 // If any of the scalars is marked as a value that needs to stay scalar, then 2098 // we need to gather the scalars. 2099 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2100 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2101 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2102 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2103 newTreeEntry(VL, false, UserTreeIdx); 2104 return; 2105 } 2106 } 2107 2108 // Check that all of the users of the scalars that we want to vectorize are 2109 // schedulable. 2110 auto *VL0 = cast<Instruction>(S.OpValue); 2111 BasicBlock *BB = VL0->getParent(); 2112 2113 if (!DT->isReachableFromEntry(BB)) { 2114 // Don't go into unreachable blocks. They may contain instructions with 2115 // dependency cycles which confuse the final scheduling. 2116 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2117 newTreeEntry(VL, false, UserTreeIdx); 2118 return; 2119 } 2120 2121 // Check that every instruction appears once in this bundle. 2122 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2123 SmallVector<Value *, 4> UniqueValues; 2124 DenseMap<Value *, unsigned> UniquePositions; 2125 for (Value *V : VL) { 2126 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2127 ReuseShuffleIndicies.emplace_back(Res.first->second); 2128 if (Res.second) 2129 UniqueValues.emplace_back(V); 2130 } 2131 if (UniqueValues.size() == VL.size()) { 2132 ReuseShuffleIndicies.clear(); 2133 } else { 2134 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2135 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 2136 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2137 newTreeEntry(VL, false, UserTreeIdx); 2138 return; 2139 } 2140 VL = UniqueValues; 2141 } 2142 2143 auto &BSRef = BlocksSchedules[BB]; 2144 if (!BSRef) 2145 BSRef = llvm::make_unique<BlockScheduling>(BB); 2146 2147 BlockScheduling &BS = *BSRef.get(); 2148 2149 if (!BS.tryScheduleBundle(VL, this, S)) { 2150 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2151 assert((!BS.getScheduleData(VL0) || 2152 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2153 "tryScheduleBundle should cancelScheduling on failure"); 2154 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2155 return; 2156 } 2157 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2158 2159 unsigned ShuffleOrOp = S.isAltShuffle() ? 2160 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2161 switch (ShuffleOrOp) { 2162 case Instruction::PHI: { 2163 PHINode *PH = dyn_cast<PHINode>(VL0); 2164 2165 // Check for terminator values (e.g. invoke). 2166 for (unsigned j = 0; j < VL.size(); ++j) 2167 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2168 Instruction *Term = dyn_cast<Instruction>( 2169 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2170 PH->getIncomingBlock(i))); 2171 if (Term && Term->isTerminator()) { 2172 LLVM_DEBUG(dbgs() 2173 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2174 BS.cancelScheduling(VL, VL0); 2175 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2176 return; 2177 } 2178 } 2179 2180 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2181 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2182 2183 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2184 ValueList Operands; 2185 // Prepare the operand vector. 2186 for (Value *j : VL) 2187 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2188 PH->getIncomingBlock(i))); 2189 2190 buildTree_rec(Operands, Depth + 1, {TE, i}); 2191 } 2192 return; 2193 } 2194 case Instruction::ExtractValue: 2195 case Instruction::ExtractElement: { 2196 OrdersType CurrentOrder; 2197 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2198 if (Reuse) { 2199 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2200 ++NumOpsWantToKeepOriginalOrder; 2201 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2202 ReuseShuffleIndicies); 2203 // This is a special case, as it does not gather, but at the same time 2204 // we are not extending buildTree_rec() towards the operands. 2205 ValueList Op0; 2206 Op0.assign(VL.size(), VL0->getOperand(0)); 2207 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2208 return; 2209 } 2210 if (!CurrentOrder.empty()) { 2211 LLVM_DEBUG({ 2212 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2213 "with order"; 2214 for (unsigned Idx : CurrentOrder) 2215 dbgs() << " " << Idx; 2216 dbgs() << "\n"; 2217 }); 2218 // Insert new order with initial value 0, if it does not exist, 2219 // otherwise return the iterator to the existing one. 2220 auto StoredCurrentOrderAndNum = 2221 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2222 ++StoredCurrentOrderAndNum->getSecond(); 2223 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 2224 StoredCurrentOrderAndNum->getFirst()); 2225 // This is a special case, as it does not gather, but at the same time 2226 // we are not extending buildTree_rec() towards the operands. 2227 ValueList Op0; 2228 Op0.assign(VL.size(), VL0->getOperand(0)); 2229 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2230 return; 2231 } 2232 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2233 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 2234 BS.cancelScheduling(VL, VL0); 2235 return; 2236 } 2237 case Instruction::Load: { 2238 // Check that a vectorized load would load the same memory as a scalar 2239 // load. For example, we don't want to vectorize loads that are smaller 2240 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2241 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2242 // from such a struct, we read/write packed bits disagreeing with the 2243 // unvectorized version. 2244 Type *ScalarTy = VL0->getType(); 2245 2246 if (DL->getTypeSizeInBits(ScalarTy) != 2247 DL->getTypeAllocSizeInBits(ScalarTy)) { 2248 BS.cancelScheduling(VL, VL0); 2249 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2250 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2251 return; 2252 } 2253 2254 // Make sure all loads in the bundle are simple - we can't vectorize 2255 // atomic or volatile loads. 2256 SmallVector<Value *, 4> PointerOps(VL.size()); 2257 auto POIter = PointerOps.begin(); 2258 for (Value *V : VL) { 2259 auto *L = cast<LoadInst>(V); 2260 if (!L->isSimple()) { 2261 BS.cancelScheduling(VL, VL0); 2262 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2263 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2264 return; 2265 } 2266 *POIter = L->getPointerOperand(); 2267 ++POIter; 2268 } 2269 2270 OrdersType CurrentOrder; 2271 // Check the order of pointer operands. 2272 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2273 Value *Ptr0; 2274 Value *PtrN; 2275 if (CurrentOrder.empty()) { 2276 Ptr0 = PointerOps.front(); 2277 PtrN = PointerOps.back(); 2278 } else { 2279 Ptr0 = PointerOps[CurrentOrder.front()]; 2280 PtrN = PointerOps[CurrentOrder.back()]; 2281 } 2282 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2283 const SCEV *ScevN = SE->getSCEV(PtrN); 2284 const auto *Diff = 2285 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2286 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2287 // Check that the sorted loads are consecutive. 2288 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2289 if (CurrentOrder.empty()) { 2290 // Original loads are consecutive and does not require reordering. 2291 ++NumOpsWantToKeepOriginalOrder; 2292 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2293 ReuseShuffleIndicies); 2294 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2295 } else { 2296 // Need to reorder. 2297 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2298 ++I->getSecond(); 2299 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2300 ReuseShuffleIndicies, I->getFirst()); 2301 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2302 } 2303 return; 2304 } 2305 } 2306 2307 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2308 BS.cancelScheduling(VL, VL0); 2309 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2310 return; 2311 } 2312 case Instruction::ZExt: 2313 case Instruction::SExt: 2314 case Instruction::FPToUI: 2315 case Instruction::FPToSI: 2316 case Instruction::FPExt: 2317 case Instruction::PtrToInt: 2318 case Instruction::IntToPtr: 2319 case Instruction::SIToFP: 2320 case Instruction::UIToFP: 2321 case Instruction::Trunc: 2322 case Instruction::FPTrunc: 2323 case Instruction::BitCast: { 2324 Type *SrcTy = VL0->getOperand(0)->getType(); 2325 for (unsigned i = 0; i < VL.size(); ++i) { 2326 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2327 if (Ty != SrcTy || !isValidElementType(Ty)) { 2328 BS.cancelScheduling(VL, VL0); 2329 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2330 LLVM_DEBUG(dbgs() 2331 << "SLP: Gathering casts with different src types.\n"); 2332 return; 2333 } 2334 } 2335 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2336 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2337 2338 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2339 ValueList Operands; 2340 // Prepare the operand vector. 2341 for (Value *j : VL) 2342 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2343 2344 buildTree_rec(Operands, Depth + 1, {TE, i}); 2345 } 2346 return; 2347 } 2348 case Instruction::ICmp: 2349 case Instruction::FCmp: { 2350 // Check that all of the compares have the same predicate. 2351 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2352 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2353 Type *ComparedTy = VL0->getOperand(0)->getType(); 2354 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2355 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2356 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2357 Cmp->getOperand(0)->getType() != ComparedTy) { 2358 BS.cancelScheduling(VL, VL0); 2359 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2360 LLVM_DEBUG(dbgs() 2361 << "SLP: Gathering cmp with different predicate.\n"); 2362 return; 2363 } 2364 } 2365 2366 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2367 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2368 2369 ValueList Left, Right; 2370 if (cast<CmpInst>(VL0)->isCommutative()) { 2371 // Commutative predicate - collect + sort operands of the instructions 2372 // so that each side is more likely to have the same opcode. 2373 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2374 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2375 } else { 2376 // Collect operands - commute if it uses the swapped predicate. 2377 for (Value *V : VL) { 2378 auto *Cmp = cast<CmpInst>(V); 2379 Value *LHS = Cmp->getOperand(0); 2380 Value *RHS = Cmp->getOperand(1); 2381 if (Cmp->getPredicate() != P0) 2382 std::swap(LHS, RHS); 2383 Left.push_back(LHS); 2384 Right.push_back(RHS); 2385 } 2386 } 2387 2388 buildTree_rec(Left, Depth + 1, {TE, 0}); 2389 buildTree_rec(Right, Depth + 1, {TE, 1}); 2390 return; 2391 } 2392 case Instruction::Select: 2393 case Instruction::Add: 2394 case Instruction::FAdd: 2395 case Instruction::Sub: 2396 case Instruction::FSub: 2397 case Instruction::Mul: 2398 case Instruction::FMul: 2399 case Instruction::UDiv: 2400 case Instruction::SDiv: 2401 case Instruction::FDiv: 2402 case Instruction::URem: 2403 case Instruction::SRem: 2404 case Instruction::FRem: 2405 case Instruction::Shl: 2406 case Instruction::LShr: 2407 case Instruction::AShr: 2408 case Instruction::And: 2409 case Instruction::Or: 2410 case Instruction::Xor: { 2411 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2412 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 2413 2414 // Sort operands of the instructions so that each side is more likely to 2415 // have the same opcode. 2416 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2417 ValueList Left, Right; 2418 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2419 buildTree_rec(Left, Depth + 1, {TE, 0}); 2420 buildTree_rec(Right, Depth + 1, {TE, 1}); 2421 return; 2422 } 2423 2424 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2425 ValueList Operands; 2426 // Prepare the operand vector. 2427 for (Value *j : VL) 2428 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2429 2430 buildTree_rec(Operands, Depth + 1, {TE, i}); 2431 } 2432 return; 2433 } 2434 case Instruction::GetElementPtr: { 2435 // We don't combine GEPs with complicated (nested) indexing. 2436 for (unsigned j = 0; j < VL.size(); ++j) { 2437 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2438 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2439 BS.cancelScheduling(VL, VL0); 2440 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2441 return; 2442 } 2443 } 2444 2445 // We can't combine several GEPs into one vector if they operate on 2446 // different types. 2447 Type *Ty0 = VL0->getOperand(0)->getType(); 2448 for (unsigned j = 0; j < VL.size(); ++j) { 2449 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2450 if (Ty0 != CurTy) { 2451 LLVM_DEBUG(dbgs() 2452 << "SLP: not-vectorizable GEP (different types).\n"); 2453 BS.cancelScheduling(VL, VL0); 2454 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2455 return; 2456 } 2457 } 2458 2459 // We don't combine GEPs with non-constant indexes. 2460 for (unsigned j = 0; j < VL.size(); ++j) { 2461 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2462 if (!isa<ConstantInt>(Op)) { 2463 LLVM_DEBUG(dbgs() 2464 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2465 BS.cancelScheduling(VL, VL0); 2466 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2467 return; 2468 } 2469 } 2470 2471 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2472 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2473 for (unsigned i = 0, e = 2; i < e; ++i) { 2474 ValueList Operands; 2475 // Prepare the operand vector. 2476 for (Value *j : VL) 2477 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2478 2479 buildTree_rec(Operands, Depth + 1, {TE, i}); 2480 } 2481 return; 2482 } 2483 case Instruction::Store: { 2484 // Check if the stores are consecutive or of we need to swizzle them. 2485 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2486 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2487 BS.cancelScheduling(VL, VL0); 2488 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2489 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2490 return; 2491 } 2492 2493 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2494 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2495 2496 ValueList Operands; 2497 for (Value *j : VL) 2498 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2499 2500 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2501 return; 2502 } 2503 case Instruction::Call: { 2504 // Check if the calls are all to the same vectorizable intrinsic. 2505 CallInst *CI = cast<CallInst>(VL0); 2506 // Check if this is an Intrinsic call or something that can be 2507 // represented by an intrinsic call 2508 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2509 if (!isTriviallyVectorizable(ID)) { 2510 BS.cancelScheduling(VL, VL0); 2511 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2512 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2513 return; 2514 } 2515 Function *Int = CI->getCalledFunction(); 2516 unsigned NumArgs = CI->getNumArgOperands(); 2517 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2518 for (unsigned j = 0; j != NumArgs; ++j) 2519 if (hasVectorInstrinsicScalarOpd(ID, j)) 2520 ScalarArgs[j] = CI->getArgOperand(j); 2521 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2522 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2523 if (!CI2 || CI2->getCalledFunction() != Int || 2524 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2525 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2526 BS.cancelScheduling(VL, VL0); 2527 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2528 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2529 << "\n"); 2530 return; 2531 } 2532 // Some intrinsics have scalar arguments and should be same in order for 2533 // them to be vectorized. 2534 for (unsigned j = 0; j != NumArgs; ++j) { 2535 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2536 Value *A1J = CI2->getArgOperand(j); 2537 if (ScalarArgs[j] != A1J) { 2538 BS.cancelScheduling(VL, VL0); 2539 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2540 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2541 << " argument " << ScalarArgs[j] << "!=" << A1J 2542 << "\n"); 2543 return; 2544 } 2545 } 2546 } 2547 // Verify that the bundle operands are identical between the two calls. 2548 if (CI->hasOperandBundles() && 2549 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2550 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2551 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2552 BS.cancelScheduling(VL, VL0); 2553 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2554 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2555 << *CI << "!=" << *VL[i] << '\n'); 2556 return; 2557 } 2558 } 2559 2560 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2561 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2562 ValueList Operands; 2563 // Prepare the operand vector. 2564 for (Value *j : VL) { 2565 CallInst *CI2 = dyn_cast<CallInst>(j); 2566 Operands.push_back(CI2->getArgOperand(i)); 2567 } 2568 buildTree_rec(Operands, Depth + 1, {TE, i}); 2569 } 2570 return; 2571 } 2572 case Instruction::ShuffleVector: { 2573 // If this is not an alternate sequence of opcode like add-sub 2574 // then do not vectorize this instruction. 2575 if (!S.isAltShuffle()) { 2576 BS.cancelScheduling(VL, VL0); 2577 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2578 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2579 return; 2580 } 2581 auto *TE = newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2582 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2583 2584 // Reorder operands if reordering would enable vectorization. 2585 if (isa<BinaryOperator>(VL0)) { 2586 ValueList Left, Right; 2587 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2588 buildTree_rec(Left, Depth + 1, {TE, 0}); 2589 buildTree_rec(Right, Depth + 1, {TE, 1}); 2590 return; 2591 } 2592 2593 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2594 ValueList Operands; 2595 // Prepare the operand vector. 2596 for (Value *j : VL) 2597 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2598 2599 buildTree_rec(Operands, Depth + 1, {TE, i}); 2600 } 2601 return; 2602 } 2603 default: 2604 BS.cancelScheduling(VL, VL0); 2605 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2606 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2607 return; 2608 } 2609 } 2610 2611 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2612 unsigned N; 2613 Type *EltTy; 2614 auto *ST = dyn_cast<StructType>(T); 2615 if (ST) { 2616 N = ST->getNumElements(); 2617 EltTy = *ST->element_begin(); 2618 } else { 2619 N = cast<ArrayType>(T)->getNumElements(); 2620 EltTy = cast<ArrayType>(T)->getElementType(); 2621 } 2622 if (!isValidElementType(EltTy)) 2623 return 0; 2624 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2625 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2626 return 0; 2627 if (ST) { 2628 // Check that struct is homogeneous. 2629 for (const auto *Ty : ST->elements()) 2630 if (Ty != EltTy) 2631 return 0; 2632 } 2633 return N; 2634 } 2635 2636 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2637 SmallVectorImpl<unsigned> &CurrentOrder) const { 2638 Instruction *E0 = cast<Instruction>(OpValue); 2639 assert(E0->getOpcode() == Instruction::ExtractElement || 2640 E0->getOpcode() == Instruction::ExtractValue); 2641 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2642 // Check if all of the extracts come from the same vector and from the 2643 // correct offset. 2644 Value *Vec = E0->getOperand(0); 2645 2646 CurrentOrder.clear(); 2647 2648 // We have to extract from a vector/aggregate with the same number of elements. 2649 unsigned NElts; 2650 if (E0->getOpcode() == Instruction::ExtractValue) { 2651 const DataLayout &DL = E0->getModule()->getDataLayout(); 2652 NElts = canMapToVector(Vec->getType(), DL); 2653 if (!NElts) 2654 return false; 2655 // Check if load can be rewritten as load of vector. 2656 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2657 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2658 return false; 2659 } else { 2660 NElts = Vec->getType()->getVectorNumElements(); 2661 } 2662 2663 if (NElts != VL.size()) 2664 return false; 2665 2666 // Check that all of the indices extract from the correct offset. 2667 bool ShouldKeepOrder = true; 2668 unsigned E = VL.size(); 2669 // Assign to all items the initial value E + 1 so we can check if the extract 2670 // instruction index was used already. 2671 // Also, later we can check that all the indices are used and we have a 2672 // consecutive access in the extract instructions, by checking that no 2673 // element of CurrentOrder still has value E + 1. 2674 CurrentOrder.assign(E, E + 1); 2675 unsigned I = 0; 2676 for (; I < E; ++I) { 2677 auto *Inst = cast<Instruction>(VL[I]); 2678 if (Inst->getOperand(0) != Vec) 2679 break; 2680 Optional<unsigned> Idx = getExtractIndex(Inst); 2681 if (!Idx) 2682 break; 2683 const unsigned ExtIdx = *Idx; 2684 if (ExtIdx != I) { 2685 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2686 break; 2687 ShouldKeepOrder = false; 2688 CurrentOrder[ExtIdx] = I; 2689 } else { 2690 if (CurrentOrder[I] != E + 1) 2691 break; 2692 CurrentOrder[I] = I; 2693 } 2694 } 2695 if (I < E) { 2696 CurrentOrder.clear(); 2697 return false; 2698 } 2699 2700 return ShouldKeepOrder; 2701 } 2702 2703 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2704 return I->hasOneUse() || 2705 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2706 return ScalarToTreeEntry.count(U) > 0; 2707 }); 2708 } 2709 2710 int BoUpSLP::getEntryCost(TreeEntry *E) { 2711 ArrayRef<Value*> VL = E->Scalars; 2712 2713 Type *ScalarTy = VL[0]->getType(); 2714 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2715 ScalarTy = SI->getValueOperand()->getType(); 2716 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2717 ScalarTy = CI->getOperand(0)->getType(); 2718 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2719 2720 // If we have computed a smaller type for the expression, update VecTy so 2721 // that the costs will be accurate. 2722 if (MinBWs.count(VL[0])) 2723 VecTy = VectorType::get( 2724 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2725 2726 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2727 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2728 int ReuseShuffleCost = 0; 2729 if (NeedToShuffleReuses) { 2730 ReuseShuffleCost = 2731 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2732 } 2733 if (E->NeedToGather) { 2734 if (allConstant(VL)) 2735 return 0; 2736 if (isSplat(VL)) { 2737 return ReuseShuffleCost + 2738 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2739 } 2740 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2741 allSameType(VL) && allSameBlock(VL)) { 2742 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2743 if (ShuffleKind.hasValue()) { 2744 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2745 for (auto *V : VL) { 2746 // If all users of instruction are going to be vectorized and this 2747 // instruction itself is not going to be vectorized, consider this 2748 // instruction as dead and remove its cost from the final cost of the 2749 // vectorized tree. 2750 if (areAllUsersVectorized(cast<Instruction>(V)) && 2751 !ScalarToTreeEntry.count(V)) { 2752 auto *IO = cast<ConstantInt>( 2753 cast<ExtractElementInst>(V)->getIndexOperand()); 2754 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2755 IO->getZExtValue()); 2756 } 2757 } 2758 return ReuseShuffleCost + Cost; 2759 } 2760 } 2761 return ReuseShuffleCost + getGatherCost(VL); 2762 } 2763 InstructionsState S = getSameOpcode(VL); 2764 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2765 Instruction *VL0 = cast<Instruction>(S.OpValue); 2766 unsigned ShuffleOrOp = S.isAltShuffle() ? 2767 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2768 switch (ShuffleOrOp) { 2769 case Instruction::PHI: 2770 return 0; 2771 2772 case Instruction::ExtractValue: 2773 case Instruction::ExtractElement: 2774 if (NeedToShuffleReuses) { 2775 unsigned Idx = 0; 2776 for (unsigned I : E->ReuseShuffleIndices) { 2777 if (ShuffleOrOp == Instruction::ExtractElement) { 2778 auto *IO = cast<ConstantInt>( 2779 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2780 Idx = IO->getZExtValue(); 2781 ReuseShuffleCost -= TTI->getVectorInstrCost( 2782 Instruction::ExtractElement, VecTy, Idx); 2783 } else { 2784 ReuseShuffleCost -= TTI->getVectorInstrCost( 2785 Instruction::ExtractElement, VecTy, Idx); 2786 ++Idx; 2787 } 2788 } 2789 Idx = ReuseShuffleNumbers; 2790 for (Value *V : VL) { 2791 if (ShuffleOrOp == Instruction::ExtractElement) { 2792 auto *IO = cast<ConstantInt>( 2793 cast<ExtractElementInst>(V)->getIndexOperand()); 2794 Idx = IO->getZExtValue(); 2795 } else { 2796 --Idx; 2797 } 2798 ReuseShuffleCost += 2799 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2800 } 2801 } 2802 if (!E->NeedToGather) { 2803 int DeadCost = ReuseShuffleCost; 2804 if (!E->ReorderIndices.empty()) { 2805 // TODO: Merge this shuffle with the ReuseShuffleCost. 2806 DeadCost += TTI->getShuffleCost( 2807 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2808 } 2809 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2810 Instruction *E = cast<Instruction>(VL[i]); 2811 // If all users are going to be vectorized, instruction can be 2812 // considered as dead. 2813 // The same, if have only one user, it will be vectorized for sure. 2814 if (areAllUsersVectorized(E)) { 2815 // Take credit for instruction that will become dead. 2816 if (E->hasOneUse()) { 2817 Instruction *Ext = E->user_back(); 2818 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2819 all_of(Ext->users(), 2820 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2821 // Use getExtractWithExtendCost() to calculate the cost of 2822 // extractelement/ext pair. 2823 DeadCost -= TTI->getExtractWithExtendCost( 2824 Ext->getOpcode(), Ext->getType(), VecTy, i); 2825 // Add back the cost of s|zext which is subtracted separately. 2826 DeadCost += TTI->getCastInstrCost( 2827 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2828 continue; 2829 } 2830 } 2831 DeadCost -= 2832 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2833 } 2834 } 2835 return DeadCost; 2836 } 2837 return ReuseShuffleCost + getGatherCost(VL); 2838 2839 case Instruction::ZExt: 2840 case Instruction::SExt: 2841 case Instruction::FPToUI: 2842 case Instruction::FPToSI: 2843 case Instruction::FPExt: 2844 case Instruction::PtrToInt: 2845 case Instruction::IntToPtr: 2846 case Instruction::SIToFP: 2847 case Instruction::UIToFP: 2848 case Instruction::Trunc: 2849 case Instruction::FPTrunc: 2850 case Instruction::BitCast: { 2851 Type *SrcTy = VL0->getOperand(0)->getType(); 2852 int ScalarEltCost = 2853 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2854 if (NeedToShuffleReuses) { 2855 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2856 } 2857 2858 // Calculate the cost of this instruction. 2859 int ScalarCost = VL.size() * ScalarEltCost; 2860 2861 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2862 int VecCost = 0; 2863 // Check if the values are candidates to demote. 2864 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2865 VecCost = ReuseShuffleCost + 2866 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2867 } 2868 return VecCost - ScalarCost; 2869 } 2870 case Instruction::FCmp: 2871 case Instruction::ICmp: 2872 case Instruction::Select: { 2873 // Calculate the cost of this instruction. 2874 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2875 Builder.getInt1Ty(), VL0); 2876 if (NeedToShuffleReuses) { 2877 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2878 } 2879 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2880 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2881 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2882 return ReuseShuffleCost + VecCost - ScalarCost; 2883 } 2884 case Instruction::Add: 2885 case Instruction::FAdd: 2886 case Instruction::Sub: 2887 case Instruction::FSub: 2888 case Instruction::Mul: 2889 case Instruction::FMul: 2890 case Instruction::UDiv: 2891 case Instruction::SDiv: 2892 case Instruction::FDiv: 2893 case Instruction::URem: 2894 case Instruction::SRem: 2895 case Instruction::FRem: 2896 case Instruction::Shl: 2897 case Instruction::LShr: 2898 case Instruction::AShr: 2899 case Instruction::And: 2900 case Instruction::Or: 2901 case Instruction::Xor: { 2902 // Certain instructions can be cheaper to vectorize if they have a 2903 // constant second vector operand. 2904 TargetTransformInfo::OperandValueKind Op1VK = 2905 TargetTransformInfo::OK_AnyValue; 2906 TargetTransformInfo::OperandValueKind Op2VK = 2907 TargetTransformInfo::OK_UniformConstantValue; 2908 TargetTransformInfo::OperandValueProperties Op1VP = 2909 TargetTransformInfo::OP_None; 2910 TargetTransformInfo::OperandValueProperties Op2VP = 2911 TargetTransformInfo::OP_PowerOf2; 2912 2913 // If all operands are exactly the same ConstantInt then set the 2914 // operand kind to OK_UniformConstantValue. 2915 // If instead not all operands are constants, then set the operand kind 2916 // to OK_AnyValue. If all operands are constants but not the same, 2917 // then set the operand kind to OK_NonUniformConstantValue. 2918 ConstantInt *CInt0 = nullptr; 2919 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2920 const Instruction *I = cast<Instruction>(VL[i]); 2921 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2922 if (!CInt) { 2923 Op2VK = TargetTransformInfo::OK_AnyValue; 2924 Op2VP = TargetTransformInfo::OP_None; 2925 break; 2926 } 2927 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2928 !CInt->getValue().isPowerOf2()) 2929 Op2VP = TargetTransformInfo::OP_None; 2930 if (i == 0) { 2931 CInt0 = CInt; 2932 continue; 2933 } 2934 if (CInt0 != CInt) 2935 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2936 } 2937 2938 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2939 int ScalarEltCost = TTI->getArithmeticInstrCost( 2940 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2941 if (NeedToShuffleReuses) { 2942 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2943 } 2944 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2945 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2946 Op2VK, Op1VP, Op2VP, Operands); 2947 return ReuseShuffleCost + VecCost - ScalarCost; 2948 } 2949 case Instruction::GetElementPtr: { 2950 TargetTransformInfo::OperandValueKind Op1VK = 2951 TargetTransformInfo::OK_AnyValue; 2952 TargetTransformInfo::OperandValueKind Op2VK = 2953 TargetTransformInfo::OK_UniformConstantValue; 2954 2955 int ScalarEltCost = 2956 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2957 if (NeedToShuffleReuses) { 2958 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2959 } 2960 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2961 int VecCost = 2962 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2963 return ReuseShuffleCost + VecCost - ScalarCost; 2964 } 2965 case Instruction::Load: { 2966 // Cost of wide load - cost of scalar loads. 2967 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2968 int ScalarEltCost = 2969 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2970 if (NeedToShuffleReuses) { 2971 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2972 } 2973 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2974 int VecLdCost = 2975 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2976 if (!E->ReorderIndices.empty()) { 2977 // TODO: Merge this shuffle with the ReuseShuffleCost. 2978 VecLdCost += TTI->getShuffleCost( 2979 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2980 } 2981 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2982 } 2983 case Instruction::Store: { 2984 // We know that we can merge the stores. Calculate the cost. 2985 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2986 int ScalarEltCost = 2987 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2988 if (NeedToShuffleReuses) { 2989 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2990 } 2991 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2992 int VecStCost = 2993 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2994 return ReuseShuffleCost + VecStCost - ScalarStCost; 2995 } 2996 case Instruction::Call: { 2997 CallInst *CI = cast<CallInst>(VL0); 2998 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2999 3000 // Calculate the cost of the scalar and vector calls. 3001 SmallVector<Type *, 4> ScalarTys; 3002 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3003 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3004 3005 FastMathFlags FMF; 3006 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3007 FMF = FPMO->getFastMathFlags(); 3008 3009 int ScalarEltCost = 3010 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3011 if (NeedToShuffleReuses) { 3012 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3013 } 3014 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3015 3016 SmallVector<Value *, 4> Args(CI->arg_operands()); 3017 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3018 VecTy->getNumElements()); 3019 3020 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3021 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3022 << " for " << *CI << "\n"); 3023 3024 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3025 } 3026 case Instruction::ShuffleVector: { 3027 assert(S.isAltShuffle() && 3028 ((Instruction::isBinaryOp(S.getOpcode()) && 3029 Instruction::isBinaryOp(S.getAltOpcode())) || 3030 (Instruction::isCast(S.getOpcode()) && 3031 Instruction::isCast(S.getAltOpcode()))) && 3032 "Invalid Shuffle Vector Operand"); 3033 int ScalarCost = 0; 3034 if (NeedToShuffleReuses) { 3035 for (unsigned Idx : E->ReuseShuffleIndices) { 3036 Instruction *I = cast<Instruction>(VL[Idx]); 3037 ReuseShuffleCost -= TTI->getInstructionCost( 3038 I, TargetTransformInfo::TCK_RecipThroughput); 3039 } 3040 for (Value *V : VL) { 3041 Instruction *I = cast<Instruction>(V); 3042 ReuseShuffleCost += TTI->getInstructionCost( 3043 I, TargetTransformInfo::TCK_RecipThroughput); 3044 } 3045 } 3046 for (Value *i : VL) { 3047 Instruction *I = cast<Instruction>(i); 3048 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3049 ScalarCost += TTI->getInstructionCost( 3050 I, TargetTransformInfo::TCK_RecipThroughput); 3051 } 3052 // VecCost is equal to sum of the cost of creating 2 vectors 3053 // and the cost of creating shuffle. 3054 int VecCost = 0; 3055 if (Instruction::isBinaryOp(S.getOpcode())) { 3056 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 3057 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 3058 } else { 3059 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 3060 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 3061 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3062 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3063 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 3064 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 3065 } 3066 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3067 return ReuseShuffleCost + VecCost - ScalarCost; 3068 } 3069 default: 3070 llvm_unreachable("Unknown instruction"); 3071 } 3072 } 3073 3074 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3075 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3076 << VectorizableTree.size() << " is fully vectorizable .\n"); 3077 3078 // We only handle trees of heights 1 and 2. 3079 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3080 return true; 3081 3082 if (VectorizableTree.size() != 2) 3083 return false; 3084 3085 // Handle splat and all-constants stores. 3086 if (!VectorizableTree[0]->NeedToGather && 3087 (allConstant(VectorizableTree[1]->Scalars) || 3088 isSplat(VectorizableTree[1]->Scalars))) 3089 return true; 3090 3091 // Gathering cost would be too much for tiny trees. 3092 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3093 return false; 3094 3095 return true; 3096 } 3097 3098 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3099 // We can vectorize the tree if its size is greater than or equal to the 3100 // minimum size specified by the MinTreeSize command line option. 3101 if (VectorizableTree.size() >= MinTreeSize) 3102 return false; 3103 3104 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3105 // can vectorize it if we can prove it fully vectorizable. 3106 if (isFullyVectorizableTinyTree()) 3107 return false; 3108 3109 assert(VectorizableTree.empty() 3110 ? ExternalUses.empty() 3111 : true && "We shouldn't have any external users"); 3112 3113 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3114 // vectorizable. 3115 return true; 3116 } 3117 3118 int BoUpSLP::getSpillCost() const { 3119 // Walk from the bottom of the tree to the top, tracking which values are 3120 // live. When we see a call instruction that is not part of our tree, 3121 // query TTI to see if there is a cost to keeping values live over it 3122 // (for example, if spills and fills are required). 3123 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3124 int Cost = 0; 3125 3126 SmallPtrSet<Instruction*, 4> LiveValues; 3127 Instruction *PrevInst = nullptr; 3128 3129 for (const auto &TEPtr : VectorizableTree) { 3130 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3131 if (!Inst) 3132 continue; 3133 3134 if (!PrevInst) { 3135 PrevInst = Inst; 3136 continue; 3137 } 3138 3139 // Update LiveValues. 3140 LiveValues.erase(PrevInst); 3141 for (auto &J : PrevInst->operands()) { 3142 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3143 LiveValues.insert(cast<Instruction>(&*J)); 3144 } 3145 3146 LLVM_DEBUG({ 3147 dbgs() << "SLP: #LV: " << LiveValues.size(); 3148 for (auto *X : LiveValues) 3149 dbgs() << " " << X->getName(); 3150 dbgs() << ", Looking at "; 3151 Inst->dump(); 3152 }); 3153 3154 // Now find the sequence of instructions between PrevInst and Inst. 3155 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3156 PrevInstIt = 3157 PrevInst->getIterator().getReverse(); 3158 while (InstIt != PrevInstIt) { 3159 if (PrevInstIt == PrevInst->getParent()->rend()) { 3160 PrevInstIt = Inst->getParent()->rbegin(); 3161 continue; 3162 } 3163 3164 // Debug informations don't impact spill cost. 3165 if ((isa<CallInst>(&*PrevInstIt) && 3166 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3167 &*PrevInstIt != PrevInst) { 3168 SmallVector<Type*, 4> V; 3169 for (auto *II : LiveValues) 3170 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3171 Cost += TTI->getCostOfKeepingLiveOverCall(V); 3172 } 3173 3174 ++PrevInstIt; 3175 } 3176 3177 PrevInst = Inst; 3178 } 3179 3180 return Cost; 3181 } 3182 3183 int BoUpSLP::getTreeCost() { 3184 int Cost = 0; 3185 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3186 << VectorizableTree.size() << ".\n"); 3187 3188 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3189 3190 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3191 TreeEntry &TE = *VectorizableTree[I].get(); 3192 3193 // We create duplicate tree entries for gather sequences that have multiple 3194 // uses. However, we should not compute the cost of duplicate sequences. 3195 // For example, if we have a build vector (i.e., insertelement sequence) 3196 // that is used by more than one vector instruction, we only need to 3197 // compute the cost of the insertelement instructions once. The redundant 3198 // instructions will be eliminated by CSE. 3199 // 3200 // We should consider not creating duplicate tree entries for gather 3201 // sequences, and instead add additional edges to the tree representing 3202 // their uses. Since such an approach results in fewer total entries, 3203 // existing heuristics based on tree size may yield different results. 3204 // 3205 if (TE.NeedToGather && 3206 std::any_of( 3207 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3208 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3209 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3210 })) 3211 continue; 3212 3213 int C = getEntryCost(&TE); 3214 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3215 << " for bundle that starts with " << *TE.Scalars[0] 3216 << ".\n"); 3217 Cost += C; 3218 } 3219 3220 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3221 int ExtractCost = 0; 3222 for (ExternalUser &EU : ExternalUses) { 3223 // We only add extract cost once for the same scalar. 3224 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3225 continue; 3226 3227 // Uses by ephemeral values are free (because the ephemeral value will be 3228 // removed prior to code generation, and so the extraction will be 3229 // removed as well). 3230 if (EphValues.count(EU.User)) 3231 continue; 3232 3233 // If we plan to rewrite the tree in a smaller type, we will need to sign 3234 // extend the extracted value back to the original type. Here, we account 3235 // for the extract and the added cost of the sign extend if needed. 3236 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3237 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3238 if (MinBWs.count(ScalarRoot)) { 3239 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3240 auto Extend = 3241 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3242 VecTy = VectorType::get(MinTy, BundleWidth); 3243 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3244 VecTy, EU.Lane); 3245 } else { 3246 ExtractCost += 3247 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3248 } 3249 } 3250 3251 int SpillCost = getSpillCost(); 3252 Cost += SpillCost + ExtractCost; 3253 3254 std::string Str; 3255 { 3256 raw_string_ostream OS(Str); 3257 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3258 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3259 << "SLP: Total Cost = " << Cost << ".\n"; 3260 } 3261 LLVM_DEBUG(dbgs() << Str); 3262 3263 if (ViewSLPTree) 3264 ViewGraph(this, "SLP" + F->getName(), false, Str); 3265 3266 return Cost; 3267 } 3268 3269 int BoUpSLP::getGatherCost(Type *Ty, 3270 const DenseSet<unsigned> &ShuffledIndices) const { 3271 int Cost = 0; 3272 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3273 if (!ShuffledIndices.count(i)) 3274 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3275 if (!ShuffledIndices.empty()) 3276 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3277 return Cost; 3278 } 3279 3280 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3281 // Find the type of the operands in VL. 3282 Type *ScalarTy = VL[0]->getType(); 3283 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3284 ScalarTy = SI->getValueOperand()->getType(); 3285 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3286 // Find the cost of inserting/extracting values from the vector. 3287 // Check if the same elements are inserted several times and count them as 3288 // shuffle candidates. 3289 DenseSet<unsigned> ShuffledElements; 3290 DenseSet<Value *> UniqueElements; 3291 // Iterate in reverse order to consider insert elements with the high cost. 3292 for (unsigned I = VL.size(); I > 0; --I) { 3293 unsigned Idx = I - 1; 3294 if (!UniqueElements.insert(VL[Idx]).second) 3295 ShuffledElements.insert(Idx); 3296 } 3297 return getGatherCost(VecTy, ShuffledElements); 3298 } 3299 3300 // Perform operand reordering on the instructions in VL and return the reordered 3301 // operands in Left and Right. 3302 void BoUpSLP::reorderInputsAccordingToOpcode( 3303 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3304 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3305 ScalarEvolution &SE) { 3306 if (VL.empty()) 3307 return; 3308 VLOperands Ops(VL, DL, SE); 3309 // Reorder the operands in place. 3310 Ops.reorder(); 3311 Left = Ops.getVL(0); 3312 Right = Ops.getVL(1); 3313 } 3314 3315 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 3316 const InstructionsState &S) { 3317 // Get the basic block this bundle is in. All instructions in the bundle 3318 // should be in this block. 3319 auto *Front = cast<Instruction>(S.OpValue); 3320 auto *BB = Front->getParent(); 3321 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 3322 auto *I = cast<Instruction>(V); 3323 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 3324 })); 3325 3326 // The last instruction in the bundle in program order. 3327 Instruction *LastInst = nullptr; 3328 3329 // Find the last instruction. The common case should be that BB has been 3330 // scheduled, and the last instruction is VL.back(). So we start with 3331 // VL.back() and iterate over schedule data until we reach the end of the 3332 // bundle. The end of the bundle is marked by null ScheduleData. 3333 if (BlocksSchedules.count(BB)) { 3334 auto *Bundle = 3335 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 3336 if (Bundle && Bundle->isPartOfBundle()) 3337 for (; Bundle; Bundle = Bundle->NextInBundle) 3338 if (Bundle->OpValue == Bundle->Inst) 3339 LastInst = Bundle->Inst; 3340 } 3341 3342 // LastInst can still be null at this point if there's either not an entry 3343 // for BB in BlocksSchedules or there's no ScheduleData available for 3344 // VL.back(). This can be the case if buildTree_rec aborts for various 3345 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3346 // size is reached, etc.). ScheduleData is initialized in the scheduling 3347 // "dry-run". 3348 // 3349 // If this happens, we can still find the last instruction by brute force. We 3350 // iterate forwards from Front (inclusive) until we either see all 3351 // instructions in the bundle or reach the end of the block. If Front is the 3352 // last instruction in program order, LastInst will be set to Front, and we 3353 // will visit all the remaining instructions in the block. 3354 // 3355 // One of the reasons we exit early from buildTree_rec is to place an upper 3356 // bound on compile-time. Thus, taking an additional compile-time hit here is 3357 // not ideal. However, this should be exceedingly rare since it requires that 3358 // we both exit early from buildTree_rec and that the bundle be out-of-order 3359 // (causing us to iterate all the way to the end of the block). 3360 if (!LastInst) { 3361 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3362 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3363 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3364 LastInst = &I; 3365 if (Bundle.empty()) 3366 break; 3367 } 3368 } 3369 3370 // Set the insertion point after the last instruction in the bundle. Set the 3371 // debug location to Front. 3372 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3373 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3374 } 3375 3376 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3377 Value *Vec = UndefValue::get(Ty); 3378 // Generate the 'InsertElement' instruction. 3379 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3380 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3381 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3382 GatherSeq.insert(Insrt); 3383 CSEBlocks.insert(Insrt->getParent()); 3384 3385 // Add to our 'need-to-extract' list. 3386 if (TreeEntry *E = getTreeEntry(VL[i])) { 3387 // Find which lane we need to extract. 3388 int FoundLane = -1; 3389 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3390 // Is this the lane of the scalar that we are looking for ? 3391 if (E->Scalars[Lane] == VL[i]) { 3392 FoundLane = Lane; 3393 break; 3394 } 3395 } 3396 assert(FoundLane >= 0 && "Could not find the correct lane"); 3397 if (!E->ReuseShuffleIndices.empty()) { 3398 FoundLane = 3399 std::distance(E->ReuseShuffleIndices.begin(), 3400 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3401 } 3402 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3403 } 3404 } 3405 } 3406 3407 return Vec; 3408 } 3409 3410 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3411 InstructionsState S = getSameOpcode(VL); 3412 if (S.getOpcode()) { 3413 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3414 if (E->isSame(VL)) { 3415 Value *V = vectorizeTree(E); 3416 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3417 // We need to get the vectorized value but without shuffle. 3418 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3419 V = SV->getOperand(0); 3420 } else { 3421 // Reshuffle to get only unique values. 3422 SmallVector<unsigned, 4> UniqueIdxs; 3423 SmallSet<unsigned, 4> UsedIdxs; 3424 for(unsigned Idx : E->ReuseShuffleIndices) 3425 if (UsedIdxs.insert(Idx).second) 3426 UniqueIdxs.emplace_back(Idx); 3427 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3428 UniqueIdxs); 3429 } 3430 } 3431 return V; 3432 } 3433 } 3434 } 3435 3436 Type *ScalarTy = S.OpValue->getType(); 3437 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3438 ScalarTy = SI->getValueOperand()->getType(); 3439 3440 // Check that every instruction appears once in this bundle. 3441 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3442 SmallVector<Value *, 4> UniqueValues; 3443 if (VL.size() > 2) { 3444 DenseMap<Value *, unsigned> UniquePositions; 3445 for (Value *V : VL) { 3446 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3447 ReuseShuffleIndicies.emplace_back(Res.first->second); 3448 if (Res.second || isa<Constant>(V)) 3449 UniqueValues.emplace_back(V); 3450 } 3451 // Do not shuffle single element or if number of unique values is not power 3452 // of 2. 3453 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3454 !llvm::isPowerOf2_32(UniqueValues.size())) 3455 ReuseShuffleIndicies.clear(); 3456 else 3457 VL = UniqueValues; 3458 } 3459 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3460 3461 Value *V = Gather(VL, VecTy); 3462 if (!ReuseShuffleIndicies.empty()) { 3463 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3464 ReuseShuffleIndicies, "shuffle"); 3465 if (auto *I = dyn_cast<Instruction>(V)) { 3466 GatherSeq.insert(I); 3467 CSEBlocks.insert(I->getParent()); 3468 } 3469 } 3470 return V; 3471 } 3472 3473 static void inversePermutation(ArrayRef<unsigned> Indices, 3474 SmallVectorImpl<unsigned> &Mask) { 3475 Mask.clear(); 3476 const unsigned E = Indices.size(); 3477 Mask.resize(E); 3478 for (unsigned I = 0; I < E; ++I) 3479 Mask[Indices[I]] = I; 3480 } 3481 3482 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3483 IRBuilder<>::InsertPointGuard Guard(Builder); 3484 3485 if (E->VectorizedValue) { 3486 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3487 return E->VectorizedValue; 3488 } 3489 3490 InstructionsState S = getSameOpcode(E->Scalars); 3491 Instruction *VL0 = cast<Instruction>(S.OpValue); 3492 Type *ScalarTy = VL0->getType(); 3493 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3494 ScalarTy = SI->getValueOperand()->getType(); 3495 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3496 3497 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3498 3499 if (E->NeedToGather) { 3500 setInsertPointAfterBundle(E->Scalars, S); 3501 auto *V = Gather(E->Scalars, VecTy); 3502 if (NeedToShuffleReuses) { 3503 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3504 E->ReuseShuffleIndices, "shuffle"); 3505 if (auto *I = dyn_cast<Instruction>(V)) { 3506 GatherSeq.insert(I); 3507 CSEBlocks.insert(I->getParent()); 3508 } 3509 } 3510 E->VectorizedValue = V; 3511 return V; 3512 } 3513 3514 unsigned ShuffleOrOp = S.isAltShuffle() ? 3515 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3516 switch (ShuffleOrOp) { 3517 case Instruction::PHI: { 3518 PHINode *PH = dyn_cast<PHINode>(VL0); 3519 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3520 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3521 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3522 Value *V = NewPhi; 3523 if (NeedToShuffleReuses) { 3524 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3525 E->ReuseShuffleIndices, "shuffle"); 3526 } 3527 E->VectorizedValue = V; 3528 3529 // PHINodes may have multiple entries from the same block. We want to 3530 // visit every block once. 3531 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3532 3533 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3534 ValueList Operands; 3535 BasicBlock *IBB = PH->getIncomingBlock(i); 3536 3537 if (!VisitedBBs.insert(IBB).second) { 3538 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3539 continue; 3540 } 3541 3542 Builder.SetInsertPoint(IBB->getTerminator()); 3543 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3544 Value *Vec = vectorizeTree(E->getOperand(i)); 3545 NewPhi->addIncoming(Vec, IBB); 3546 } 3547 3548 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3549 "Invalid number of incoming values"); 3550 return V; 3551 } 3552 3553 case Instruction::ExtractElement: { 3554 if (!E->NeedToGather) { 3555 Value *V = E->getSingleOperand(0); 3556 if (!E->ReorderIndices.empty()) { 3557 OrdersType Mask; 3558 inversePermutation(E->ReorderIndices, Mask); 3559 Builder.SetInsertPoint(VL0); 3560 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3561 "reorder_shuffle"); 3562 } 3563 if (NeedToShuffleReuses) { 3564 // TODO: Merge this shuffle with the ReorderShuffleMask. 3565 if (E->ReorderIndices.empty()) 3566 Builder.SetInsertPoint(VL0); 3567 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3568 E->ReuseShuffleIndices, "shuffle"); 3569 } 3570 E->VectorizedValue = V; 3571 return V; 3572 } 3573 setInsertPointAfterBundle(E->Scalars, S); 3574 auto *V = Gather(E->Scalars, VecTy); 3575 if (NeedToShuffleReuses) { 3576 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3577 E->ReuseShuffleIndices, "shuffle"); 3578 if (auto *I = dyn_cast<Instruction>(V)) { 3579 GatherSeq.insert(I); 3580 CSEBlocks.insert(I->getParent()); 3581 } 3582 } 3583 E->VectorizedValue = V; 3584 return V; 3585 } 3586 case Instruction::ExtractValue: { 3587 if (!E->NeedToGather) { 3588 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3589 Builder.SetInsertPoint(LI); 3590 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3591 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3592 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3593 Value *NewV = propagateMetadata(V, E->Scalars); 3594 if (!E->ReorderIndices.empty()) { 3595 OrdersType Mask; 3596 inversePermutation(E->ReorderIndices, Mask); 3597 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3598 "reorder_shuffle"); 3599 } 3600 if (NeedToShuffleReuses) { 3601 // TODO: Merge this shuffle with the ReorderShuffleMask. 3602 NewV = Builder.CreateShuffleVector( 3603 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3604 } 3605 E->VectorizedValue = NewV; 3606 return NewV; 3607 } 3608 setInsertPointAfterBundle(E->Scalars, S); 3609 auto *V = Gather(E->Scalars, VecTy); 3610 if (NeedToShuffleReuses) { 3611 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3612 E->ReuseShuffleIndices, "shuffle"); 3613 if (auto *I = dyn_cast<Instruction>(V)) { 3614 GatherSeq.insert(I); 3615 CSEBlocks.insert(I->getParent()); 3616 } 3617 } 3618 E->VectorizedValue = V; 3619 return V; 3620 } 3621 case Instruction::ZExt: 3622 case Instruction::SExt: 3623 case Instruction::FPToUI: 3624 case Instruction::FPToSI: 3625 case Instruction::FPExt: 3626 case Instruction::PtrToInt: 3627 case Instruction::IntToPtr: 3628 case Instruction::SIToFP: 3629 case Instruction::UIToFP: 3630 case Instruction::Trunc: 3631 case Instruction::FPTrunc: 3632 case Instruction::BitCast: { 3633 setInsertPointAfterBundle(E->Scalars, S); 3634 3635 Value *InVec = vectorizeTree(E->getOperand(0)); 3636 3637 if (E->VectorizedValue) { 3638 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3639 return E->VectorizedValue; 3640 } 3641 3642 CastInst *CI = dyn_cast<CastInst>(VL0); 3643 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3644 if (NeedToShuffleReuses) { 3645 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3646 E->ReuseShuffleIndices, "shuffle"); 3647 } 3648 E->VectorizedValue = V; 3649 ++NumVectorInstructions; 3650 return V; 3651 } 3652 case Instruction::FCmp: 3653 case Instruction::ICmp: { 3654 setInsertPointAfterBundle(E->Scalars, S); 3655 3656 Value *L = vectorizeTree(E->getOperand(0)); 3657 Value *R = vectorizeTree(E->getOperand(1)); 3658 3659 if (E->VectorizedValue) { 3660 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3661 return E->VectorizedValue; 3662 } 3663 3664 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3665 Value *V; 3666 if (S.getOpcode() == Instruction::FCmp) 3667 V = Builder.CreateFCmp(P0, L, R); 3668 else 3669 V = Builder.CreateICmp(P0, L, R); 3670 3671 propagateIRFlags(V, E->Scalars, VL0); 3672 if (NeedToShuffleReuses) { 3673 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3674 E->ReuseShuffleIndices, "shuffle"); 3675 } 3676 E->VectorizedValue = V; 3677 ++NumVectorInstructions; 3678 return V; 3679 } 3680 case Instruction::Select: { 3681 setInsertPointAfterBundle(E->Scalars, S); 3682 3683 Value *Cond = vectorizeTree(E->getOperand(0)); 3684 Value *True = vectorizeTree(E->getOperand(1)); 3685 Value *False = vectorizeTree(E->getOperand(2)); 3686 3687 if (E->VectorizedValue) { 3688 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3689 return E->VectorizedValue; 3690 } 3691 3692 Value *V = Builder.CreateSelect(Cond, True, False); 3693 if (NeedToShuffleReuses) { 3694 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3695 E->ReuseShuffleIndices, "shuffle"); 3696 } 3697 E->VectorizedValue = V; 3698 ++NumVectorInstructions; 3699 return V; 3700 } 3701 case Instruction::Add: 3702 case Instruction::FAdd: 3703 case Instruction::Sub: 3704 case Instruction::FSub: 3705 case Instruction::Mul: 3706 case Instruction::FMul: 3707 case Instruction::UDiv: 3708 case Instruction::SDiv: 3709 case Instruction::FDiv: 3710 case Instruction::URem: 3711 case Instruction::SRem: 3712 case Instruction::FRem: 3713 case Instruction::Shl: 3714 case Instruction::LShr: 3715 case Instruction::AShr: 3716 case Instruction::And: 3717 case Instruction::Or: 3718 case Instruction::Xor: { 3719 setInsertPointAfterBundle(E->Scalars, S); 3720 3721 Value *LHS = vectorizeTree(E->getOperand(0)); 3722 Value *RHS = vectorizeTree(E->getOperand(1)); 3723 3724 if (E->VectorizedValue) { 3725 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3726 return E->VectorizedValue; 3727 } 3728 3729 Value *V = Builder.CreateBinOp( 3730 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3731 propagateIRFlags(V, E->Scalars, VL0); 3732 if (auto *I = dyn_cast<Instruction>(V)) 3733 V = propagateMetadata(I, E->Scalars); 3734 3735 if (NeedToShuffleReuses) { 3736 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3737 E->ReuseShuffleIndices, "shuffle"); 3738 } 3739 E->VectorizedValue = V; 3740 ++NumVectorInstructions; 3741 3742 return V; 3743 } 3744 case Instruction::Load: { 3745 // Loads are inserted at the head of the tree because we don't want to 3746 // sink them all the way down past store instructions. 3747 bool IsReorder = !E->ReorderIndices.empty(); 3748 if (IsReorder) { 3749 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3750 VL0 = cast<Instruction>(S.OpValue); 3751 } 3752 setInsertPointAfterBundle(E->Scalars, S); 3753 3754 LoadInst *LI = cast<LoadInst>(VL0); 3755 Type *ScalarLoadTy = LI->getType(); 3756 unsigned AS = LI->getPointerAddressSpace(); 3757 3758 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3759 VecTy->getPointerTo(AS)); 3760 3761 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3762 // ExternalUses list to make sure that an extract will be generated in the 3763 // future. 3764 Value *PO = LI->getPointerOperand(); 3765 if (getTreeEntry(PO)) 3766 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3767 3768 unsigned Alignment = LI->getAlignment(); 3769 LI = Builder.CreateLoad(VecTy, VecPtr); 3770 if (!Alignment) { 3771 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3772 } 3773 LI->setAlignment(Alignment); 3774 Value *V = propagateMetadata(LI, E->Scalars); 3775 if (IsReorder) { 3776 OrdersType Mask; 3777 inversePermutation(E->ReorderIndices, Mask); 3778 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3779 Mask, "reorder_shuffle"); 3780 } 3781 if (NeedToShuffleReuses) { 3782 // TODO: Merge this shuffle with the ReorderShuffleMask. 3783 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3784 E->ReuseShuffleIndices, "shuffle"); 3785 } 3786 E->VectorizedValue = V; 3787 ++NumVectorInstructions; 3788 return V; 3789 } 3790 case Instruction::Store: { 3791 StoreInst *SI = cast<StoreInst>(VL0); 3792 unsigned Alignment = SI->getAlignment(); 3793 unsigned AS = SI->getPointerAddressSpace(); 3794 3795 setInsertPointAfterBundle(E->Scalars, S); 3796 3797 Value *VecValue = vectorizeTree(E->getOperand(0)); 3798 Value *ScalarPtr = SI->getPointerOperand(); 3799 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3800 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3801 3802 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3803 // ExternalUses to make sure that an extract will be generated in the 3804 // future. 3805 if (getTreeEntry(ScalarPtr)) 3806 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3807 3808 if (!Alignment) 3809 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3810 3811 ST->setAlignment(Alignment); 3812 Value *V = propagateMetadata(ST, E->Scalars); 3813 if (NeedToShuffleReuses) { 3814 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3815 E->ReuseShuffleIndices, "shuffle"); 3816 } 3817 E->VectorizedValue = V; 3818 ++NumVectorInstructions; 3819 return V; 3820 } 3821 case Instruction::GetElementPtr: { 3822 setInsertPointAfterBundle(E->Scalars, S); 3823 3824 Value *Op0 = vectorizeTree(E->getOperand(0)); 3825 3826 std::vector<Value *> OpVecs; 3827 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3828 ++j) { 3829 Value *OpVec = vectorizeTree(E->getOperand(j)); 3830 OpVecs.push_back(OpVec); 3831 } 3832 3833 Value *V = Builder.CreateGEP( 3834 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3835 if (Instruction *I = dyn_cast<Instruction>(V)) 3836 V = propagateMetadata(I, E->Scalars); 3837 3838 if (NeedToShuffleReuses) { 3839 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3840 E->ReuseShuffleIndices, "shuffle"); 3841 } 3842 E->VectorizedValue = V; 3843 ++NumVectorInstructions; 3844 3845 return V; 3846 } 3847 case Instruction::Call: { 3848 CallInst *CI = cast<CallInst>(VL0); 3849 setInsertPointAfterBundle(E->Scalars, S); 3850 Function *FI; 3851 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3852 Value *ScalarArg = nullptr; 3853 if (CI && (FI = CI->getCalledFunction())) { 3854 IID = FI->getIntrinsicID(); 3855 } 3856 std::vector<Value *> OpVecs; 3857 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3858 ValueList OpVL; 3859 // Some intrinsics have scalar arguments. This argument should not be 3860 // vectorized. 3861 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3862 CallInst *CEI = cast<CallInst>(VL0); 3863 ScalarArg = CEI->getArgOperand(j); 3864 OpVecs.push_back(CEI->getArgOperand(j)); 3865 continue; 3866 } 3867 3868 Value *OpVec = vectorizeTree(E->getOperand(j)); 3869 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3870 OpVecs.push_back(OpVec); 3871 } 3872 3873 Module *M = F->getParent(); 3874 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3875 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3876 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3877 SmallVector<OperandBundleDef, 1> OpBundles; 3878 CI->getOperandBundlesAsDefs(OpBundles); 3879 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3880 3881 // The scalar argument uses an in-tree scalar so we add the new vectorized 3882 // call to ExternalUses list to make sure that an extract will be 3883 // generated in the future. 3884 if (ScalarArg && getTreeEntry(ScalarArg)) 3885 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3886 3887 propagateIRFlags(V, E->Scalars, VL0); 3888 if (NeedToShuffleReuses) { 3889 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3890 E->ReuseShuffleIndices, "shuffle"); 3891 } 3892 E->VectorizedValue = V; 3893 ++NumVectorInstructions; 3894 return V; 3895 } 3896 case Instruction::ShuffleVector: { 3897 assert(S.isAltShuffle() && 3898 ((Instruction::isBinaryOp(S.getOpcode()) && 3899 Instruction::isBinaryOp(S.getAltOpcode())) || 3900 (Instruction::isCast(S.getOpcode()) && 3901 Instruction::isCast(S.getAltOpcode()))) && 3902 "Invalid Shuffle Vector Operand"); 3903 3904 Value *LHS, *RHS; 3905 if (Instruction::isBinaryOp(S.getOpcode())) { 3906 setInsertPointAfterBundle(E->Scalars, S); 3907 LHS = vectorizeTree(E->getOperand(0)); 3908 RHS = vectorizeTree(E->getOperand(1)); 3909 } else { 3910 setInsertPointAfterBundle(E->Scalars, S); 3911 LHS = vectorizeTree(E->getOperand(0)); 3912 } 3913 3914 if (E->VectorizedValue) { 3915 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3916 return E->VectorizedValue; 3917 } 3918 3919 Value *V0, *V1; 3920 if (Instruction::isBinaryOp(S.getOpcode())) { 3921 V0 = Builder.CreateBinOp( 3922 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3923 V1 = Builder.CreateBinOp( 3924 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3925 } else { 3926 V0 = Builder.CreateCast( 3927 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3928 V1 = Builder.CreateCast( 3929 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3930 } 3931 3932 // Create shuffle to take alternate operations from the vector. 3933 // Also, gather up main and alt scalar ops to propagate IR flags to 3934 // each vector operation. 3935 ValueList OpScalars, AltScalars; 3936 unsigned e = E->Scalars.size(); 3937 SmallVector<Constant *, 8> Mask(e); 3938 for (unsigned i = 0; i < e; ++i) { 3939 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3940 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3941 if (OpInst->getOpcode() == S.getAltOpcode()) { 3942 Mask[i] = Builder.getInt32(e + i); 3943 AltScalars.push_back(E->Scalars[i]); 3944 } else { 3945 Mask[i] = Builder.getInt32(i); 3946 OpScalars.push_back(E->Scalars[i]); 3947 } 3948 } 3949 3950 Value *ShuffleMask = ConstantVector::get(Mask); 3951 propagateIRFlags(V0, OpScalars); 3952 propagateIRFlags(V1, AltScalars); 3953 3954 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3955 if (Instruction *I = dyn_cast<Instruction>(V)) 3956 V = propagateMetadata(I, E->Scalars); 3957 if (NeedToShuffleReuses) { 3958 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3959 E->ReuseShuffleIndices, "shuffle"); 3960 } 3961 E->VectorizedValue = V; 3962 ++NumVectorInstructions; 3963 3964 return V; 3965 } 3966 default: 3967 llvm_unreachable("unknown inst"); 3968 } 3969 return nullptr; 3970 } 3971 3972 Value *BoUpSLP::vectorizeTree() { 3973 ExtraValueToDebugLocsMap ExternallyUsedValues; 3974 return vectorizeTree(ExternallyUsedValues); 3975 } 3976 3977 Value * 3978 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3979 // All blocks must be scheduled before any instructions are inserted. 3980 for (auto &BSIter : BlocksSchedules) { 3981 scheduleBlock(BSIter.second.get()); 3982 } 3983 3984 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3985 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 3986 3987 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3988 // vectorized root. InstCombine will then rewrite the entire expression. We 3989 // sign extend the extracted values below. 3990 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3991 if (MinBWs.count(ScalarRoot)) { 3992 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3993 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3994 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 3995 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3996 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3997 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3998 VectorizableTree[0]->VectorizedValue = Trunc; 3999 } 4000 4001 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4002 << " values .\n"); 4003 4004 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4005 // specified by ScalarType. 4006 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4007 if (!MinBWs.count(ScalarRoot)) 4008 return Ex; 4009 if (MinBWs[ScalarRoot].second) 4010 return Builder.CreateSExt(Ex, ScalarType); 4011 return Builder.CreateZExt(Ex, ScalarType); 4012 }; 4013 4014 // Extract all of the elements with the external uses. 4015 for (const auto &ExternalUse : ExternalUses) { 4016 Value *Scalar = ExternalUse.Scalar; 4017 llvm::User *User = ExternalUse.User; 4018 4019 // Skip users that we already RAUW. This happens when one instruction 4020 // has multiple uses of the same value. 4021 if (User && !is_contained(Scalar->users(), User)) 4022 continue; 4023 TreeEntry *E = getTreeEntry(Scalar); 4024 assert(E && "Invalid scalar"); 4025 assert(!E->NeedToGather && "Extracting from a gather list"); 4026 4027 Value *Vec = E->VectorizedValue; 4028 assert(Vec && "Can't find vectorizable value"); 4029 4030 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4031 // If User == nullptr, the Scalar is used as extra arg. Generate 4032 // ExtractElement instruction and update the record for this scalar in 4033 // ExternallyUsedValues. 4034 if (!User) { 4035 assert(ExternallyUsedValues.count(Scalar) && 4036 "Scalar with nullptr as an external user must be registered in " 4037 "ExternallyUsedValues map"); 4038 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4039 Builder.SetInsertPoint(VecI->getParent(), 4040 std::next(VecI->getIterator())); 4041 } else { 4042 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4043 } 4044 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4045 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4046 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4047 auto &Locs = ExternallyUsedValues[Scalar]; 4048 ExternallyUsedValues.insert({Ex, Locs}); 4049 ExternallyUsedValues.erase(Scalar); 4050 // Required to update internally referenced instructions. 4051 Scalar->replaceAllUsesWith(Ex); 4052 continue; 4053 } 4054 4055 // Generate extracts for out-of-tree users. 4056 // Find the insertion point for the extractelement lane. 4057 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4058 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4059 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4060 if (PH->getIncomingValue(i) == Scalar) { 4061 Instruction *IncomingTerminator = 4062 PH->getIncomingBlock(i)->getTerminator(); 4063 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4064 Builder.SetInsertPoint(VecI->getParent(), 4065 std::next(VecI->getIterator())); 4066 } else { 4067 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4068 } 4069 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4070 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4071 CSEBlocks.insert(PH->getIncomingBlock(i)); 4072 PH->setOperand(i, Ex); 4073 } 4074 } 4075 } else { 4076 Builder.SetInsertPoint(cast<Instruction>(User)); 4077 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4078 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4079 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4080 User->replaceUsesOfWith(Scalar, Ex); 4081 } 4082 } else { 4083 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4084 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4085 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4086 CSEBlocks.insert(&F->getEntryBlock()); 4087 User->replaceUsesOfWith(Scalar, Ex); 4088 } 4089 4090 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4091 } 4092 4093 // For each vectorized value: 4094 for (auto &TEPtr : VectorizableTree) { 4095 TreeEntry *Entry = TEPtr.get(); 4096 4097 // No need to handle users of gathered values. 4098 if (Entry->NeedToGather) 4099 continue; 4100 4101 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4102 4103 // For each lane: 4104 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4105 Value *Scalar = Entry->Scalars[Lane]; 4106 4107 Type *Ty = Scalar->getType(); 4108 if (!Ty->isVoidTy()) { 4109 #ifndef NDEBUG 4110 for (User *U : Scalar->users()) { 4111 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4112 4113 // It is legal to replace users in the ignorelist by undef. 4114 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4115 "Replacing out-of-tree value with undef"); 4116 } 4117 #endif 4118 Value *Undef = UndefValue::get(Ty); 4119 Scalar->replaceAllUsesWith(Undef); 4120 } 4121 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4122 eraseInstruction(cast<Instruction>(Scalar)); 4123 } 4124 } 4125 4126 Builder.ClearInsertionPoint(); 4127 4128 return VectorizableTree[0]->VectorizedValue; 4129 } 4130 4131 void BoUpSLP::optimizeGatherSequence() { 4132 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4133 << " gather sequences instructions.\n"); 4134 // LICM InsertElementInst sequences. 4135 for (Instruction *I : GatherSeq) { 4136 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4137 continue; 4138 4139 // Check if this block is inside a loop. 4140 Loop *L = LI->getLoopFor(I->getParent()); 4141 if (!L) 4142 continue; 4143 4144 // Check if it has a preheader. 4145 BasicBlock *PreHeader = L->getLoopPreheader(); 4146 if (!PreHeader) 4147 continue; 4148 4149 // If the vector or the element that we insert into it are 4150 // instructions that are defined in this basic block then we can't 4151 // hoist this instruction. 4152 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4153 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4154 if (Op0 && L->contains(Op0)) 4155 continue; 4156 if (Op1 && L->contains(Op1)) 4157 continue; 4158 4159 // We can hoist this instruction. Move it to the pre-header. 4160 I->moveBefore(PreHeader->getTerminator()); 4161 } 4162 4163 // Make a list of all reachable blocks in our CSE queue. 4164 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4165 CSEWorkList.reserve(CSEBlocks.size()); 4166 for (BasicBlock *BB : CSEBlocks) 4167 if (DomTreeNode *N = DT->getNode(BB)) { 4168 assert(DT->isReachableFromEntry(N)); 4169 CSEWorkList.push_back(N); 4170 } 4171 4172 // Sort blocks by domination. This ensures we visit a block after all blocks 4173 // dominating it are visited. 4174 llvm::stable_sort(CSEWorkList, 4175 [this](const DomTreeNode *A, const DomTreeNode *B) { 4176 return DT->properlyDominates(A, B); 4177 }); 4178 4179 // Perform O(N^2) search over the gather sequences and merge identical 4180 // instructions. TODO: We can further optimize this scan if we split the 4181 // instructions into different buckets based on the insert lane. 4182 SmallVector<Instruction *, 16> Visited; 4183 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4184 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4185 "Worklist not sorted properly!"); 4186 BasicBlock *BB = (*I)->getBlock(); 4187 // For all instructions in blocks containing gather sequences: 4188 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4189 Instruction *In = &*it++; 4190 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4191 continue; 4192 4193 // Check if we can replace this instruction with any of the 4194 // visited instructions. 4195 for (Instruction *v : Visited) { 4196 if (In->isIdenticalTo(v) && 4197 DT->dominates(v->getParent(), In->getParent())) { 4198 In->replaceAllUsesWith(v); 4199 eraseInstruction(In); 4200 In = nullptr; 4201 break; 4202 } 4203 } 4204 if (In) { 4205 assert(!is_contained(Visited, In)); 4206 Visited.push_back(In); 4207 } 4208 } 4209 } 4210 CSEBlocks.clear(); 4211 GatherSeq.clear(); 4212 } 4213 4214 // Groups the instructions to a bundle (which is then a single scheduling entity) 4215 // and schedules instructions until the bundle gets ready. 4216 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 4217 BoUpSLP *SLP, 4218 const InstructionsState &S) { 4219 if (isa<PHINode>(S.OpValue)) 4220 return true; 4221 4222 // Initialize the instruction bundle. 4223 Instruction *OldScheduleEnd = ScheduleEnd; 4224 ScheduleData *PrevInBundle = nullptr; 4225 ScheduleData *Bundle = nullptr; 4226 bool ReSchedule = false; 4227 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4228 4229 // Make sure that the scheduling region contains all 4230 // instructions of the bundle. 4231 for (Value *V : VL) { 4232 if (!extendSchedulingRegion(V, S)) 4233 return false; 4234 } 4235 4236 for (Value *V : VL) { 4237 ScheduleData *BundleMember = getScheduleData(V); 4238 assert(BundleMember && 4239 "no ScheduleData for bundle member (maybe not in same basic block)"); 4240 if (BundleMember->IsScheduled) { 4241 // A bundle member was scheduled as single instruction before and now 4242 // needs to be scheduled as part of the bundle. We just get rid of the 4243 // existing schedule. 4244 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4245 << " was already scheduled\n"); 4246 ReSchedule = true; 4247 } 4248 assert(BundleMember->isSchedulingEntity() && 4249 "bundle member already part of other bundle"); 4250 if (PrevInBundle) { 4251 PrevInBundle->NextInBundle = BundleMember; 4252 } else { 4253 Bundle = BundleMember; 4254 } 4255 BundleMember->UnscheduledDepsInBundle = 0; 4256 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4257 4258 // Group the instructions to a bundle. 4259 BundleMember->FirstInBundle = Bundle; 4260 PrevInBundle = BundleMember; 4261 } 4262 if (ScheduleEnd != OldScheduleEnd) { 4263 // The scheduling region got new instructions at the lower end (or it is a 4264 // new region for the first bundle). This makes it necessary to 4265 // recalculate all dependencies. 4266 // It is seldom that this needs to be done a second time after adding the 4267 // initial bundle to the region. 4268 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4269 doForAllOpcodes(I, [](ScheduleData *SD) { 4270 SD->clearDependencies(); 4271 }); 4272 } 4273 ReSchedule = true; 4274 } 4275 if (ReSchedule) { 4276 resetSchedule(); 4277 initialFillReadyList(ReadyInsts); 4278 } 4279 4280 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4281 << BB->getName() << "\n"); 4282 4283 calculateDependencies(Bundle, true, SLP); 4284 4285 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4286 // means that there are no cyclic dependencies and we can schedule it. 4287 // Note that's important that we don't "schedule" the bundle yet (see 4288 // cancelScheduling). 4289 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4290 4291 ScheduleData *pickedSD = ReadyInsts.back(); 4292 ReadyInsts.pop_back(); 4293 4294 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4295 schedule(pickedSD, ReadyInsts); 4296 } 4297 } 4298 if (!Bundle->isReady()) { 4299 cancelScheduling(VL, S.OpValue); 4300 return false; 4301 } 4302 return true; 4303 } 4304 4305 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4306 Value *OpValue) { 4307 if (isa<PHINode>(OpValue)) 4308 return; 4309 4310 ScheduleData *Bundle = getScheduleData(OpValue); 4311 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4312 assert(!Bundle->IsScheduled && 4313 "Can't cancel bundle which is already scheduled"); 4314 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4315 "tried to unbundle something which is not a bundle"); 4316 4317 // Un-bundle: make single instructions out of the bundle. 4318 ScheduleData *BundleMember = Bundle; 4319 while (BundleMember) { 4320 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4321 BundleMember->FirstInBundle = BundleMember; 4322 ScheduleData *Next = BundleMember->NextInBundle; 4323 BundleMember->NextInBundle = nullptr; 4324 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4325 if (BundleMember->UnscheduledDepsInBundle == 0) { 4326 ReadyInsts.insert(BundleMember); 4327 } 4328 BundleMember = Next; 4329 } 4330 } 4331 4332 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4333 // Allocate a new ScheduleData for the instruction. 4334 if (ChunkPos >= ChunkSize) { 4335 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 4336 ChunkPos = 0; 4337 } 4338 return &(ScheduleDataChunks.back()[ChunkPos++]); 4339 } 4340 4341 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4342 const InstructionsState &S) { 4343 if (getScheduleData(V, isOneOf(S, V))) 4344 return true; 4345 Instruction *I = dyn_cast<Instruction>(V); 4346 assert(I && "bundle member must be an instruction"); 4347 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4348 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4349 ScheduleData *ISD = getScheduleData(I); 4350 if (!ISD) 4351 return false; 4352 assert(isInSchedulingRegion(ISD) && 4353 "ScheduleData not in scheduling region"); 4354 ScheduleData *SD = allocateScheduleDataChunks(); 4355 SD->Inst = I; 4356 SD->init(SchedulingRegionID, S.OpValue); 4357 ExtraScheduleDataMap[I][S.OpValue] = SD; 4358 return true; 4359 }; 4360 if (CheckSheduleForI(I)) 4361 return true; 4362 if (!ScheduleStart) { 4363 // It's the first instruction in the new region. 4364 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4365 ScheduleStart = I; 4366 ScheduleEnd = I->getNextNode(); 4367 if (isOneOf(S, I) != I) 4368 CheckSheduleForI(I); 4369 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4370 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4371 return true; 4372 } 4373 // Search up and down at the same time, because we don't know if the new 4374 // instruction is above or below the existing scheduling region. 4375 BasicBlock::reverse_iterator UpIter = 4376 ++ScheduleStart->getIterator().getReverse(); 4377 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4378 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4379 BasicBlock::iterator LowerEnd = BB->end(); 4380 while (true) { 4381 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4382 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4383 return false; 4384 } 4385 4386 if (UpIter != UpperEnd) { 4387 if (&*UpIter == I) { 4388 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4389 ScheduleStart = I; 4390 if (isOneOf(S, I) != I) 4391 CheckSheduleForI(I); 4392 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4393 << "\n"); 4394 return true; 4395 } 4396 ++UpIter; 4397 } 4398 if (DownIter != LowerEnd) { 4399 if (&*DownIter == I) { 4400 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4401 nullptr); 4402 ScheduleEnd = I->getNextNode(); 4403 if (isOneOf(S, I) != I) 4404 CheckSheduleForI(I); 4405 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4406 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4407 << "\n"); 4408 return true; 4409 } 4410 ++DownIter; 4411 } 4412 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4413 "instruction not found in block"); 4414 } 4415 return true; 4416 } 4417 4418 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4419 Instruction *ToI, 4420 ScheduleData *PrevLoadStore, 4421 ScheduleData *NextLoadStore) { 4422 ScheduleData *CurrentLoadStore = PrevLoadStore; 4423 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4424 ScheduleData *SD = ScheduleDataMap[I]; 4425 if (!SD) { 4426 SD = allocateScheduleDataChunks(); 4427 ScheduleDataMap[I] = SD; 4428 SD->Inst = I; 4429 } 4430 assert(!isInSchedulingRegion(SD) && 4431 "new ScheduleData already in scheduling region"); 4432 SD->init(SchedulingRegionID, I); 4433 4434 if (I->mayReadOrWriteMemory() && 4435 (!isa<IntrinsicInst>(I) || 4436 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4437 // Update the linked list of memory accessing instructions. 4438 if (CurrentLoadStore) { 4439 CurrentLoadStore->NextLoadStore = SD; 4440 } else { 4441 FirstLoadStoreInRegion = SD; 4442 } 4443 CurrentLoadStore = SD; 4444 } 4445 } 4446 if (NextLoadStore) { 4447 if (CurrentLoadStore) 4448 CurrentLoadStore->NextLoadStore = NextLoadStore; 4449 } else { 4450 LastLoadStoreInRegion = CurrentLoadStore; 4451 } 4452 } 4453 4454 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4455 bool InsertInReadyList, 4456 BoUpSLP *SLP) { 4457 assert(SD->isSchedulingEntity()); 4458 4459 SmallVector<ScheduleData *, 10> WorkList; 4460 WorkList.push_back(SD); 4461 4462 while (!WorkList.empty()) { 4463 ScheduleData *SD = WorkList.back(); 4464 WorkList.pop_back(); 4465 4466 ScheduleData *BundleMember = SD; 4467 while (BundleMember) { 4468 assert(isInSchedulingRegion(BundleMember)); 4469 if (!BundleMember->hasValidDependencies()) { 4470 4471 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4472 << "\n"); 4473 BundleMember->Dependencies = 0; 4474 BundleMember->resetUnscheduledDeps(); 4475 4476 // Handle def-use chain dependencies. 4477 if (BundleMember->OpValue != BundleMember->Inst) { 4478 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4479 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4480 BundleMember->Dependencies++; 4481 ScheduleData *DestBundle = UseSD->FirstInBundle; 4482 if (!DestBundle->IsScheduled) 4483 BundleMember->incrementUnscheduledDeps(1); 4484 if (!DestBundle->hasValidDependencies()) 4485 WorkList.push_back(DestBundle); 4486 } 4487 } else { 4488 for (User *U : BundleMember->Inst->users()) { 4489 if (isa<Instruction>(U)) { 4490 ScheduleData *UseSD = getScheduleData(U); 4491 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4492 BundleMember->Dependencies++; 4493 ScheduleData *DestBundle = UseSD->FirstInBundle; 4494 if (!DestBundle->IsScheduled) 4495 BundleMember->incrementUnscheduledDeps(1); 4496 if (!DestBundle->hasValidDependencies()) 4497 WorkList.push_back(DestBundle); 4498 } 4499 } else { 4500 // I'm not sure if this can ever happen. But we need to be safe. 4501 // This lets the instruction/bundle never be scheduled and 4502 // eventually disable vectorization. 4503 BundleMember->Dependencies++; 4504 BundleMember->incrementUnscheduledDeps(1); 4505 } 4506 } 4507 } 4508 4509 // Handle the memory dependencies. 4510 ScheduleData *DepDest = BundleMember->NextLoadStore; 4511 if (DepDest) { 4512 Instruction *SrcInst = BundleMember->Inst; 4513 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4514 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4515 unsigned numAliased = 0; 4516 unsigned DistToSrc = 1; 4517 4518 while (DepDest) { 4519 assert(isInSchedulingRegion(DepDest)); 4520 4521 // We have two limits to reduce the complexity: 4522 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4523 // SLP->isAliased (which is the expensive part in this loop). 4524 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4525 // the whole loop (even if the loop is fast, it's quadratic). 4526 // It's important for the loop break condition (see below) to 4527 // check this limit even between two read-only instructions. 4528 if (DistToSrc >= MaxMemDepDistance || 4529 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4530 (numAliased >= AliasedCheckLimit || 4531 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4532 4533 // We increment the counter only if the locations are aliased 4534 // (instead of counting all alias checks). This gives a better 4535 // balance between reduced runtime and accurate dependencies. 4536 numAliased++; 4537 4538 DepDest->MemoryDependencies.push_back(BundleMember); 4539 BundleMember->Dependencies++; 4540 ScheduleData *DestBundle = DepDest->FirstInBundle; 4541 if (!DestBundle->IsScheduled) { 4542 BundleMember->incrementUnscheduledDeps(1); 4543 } 4544 if (!DestBundle->hasValidDependencies()) { 4545 WorkList.push_back(DestBundle); 4546 } 4547 } 4548 DepDest = DepDest->NextLoadStore; 4549 4550 // Example, explaining the loop break condition: Let's assume our 4551 // starting instruction is i0 and MaxMemDepDistance = 3. 4552 // 4553 // +--------v--v--v 4554 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4555 // +--------^--^--^ 4556 // 4557 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4558 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4559 // Previously we already added dependencies from i3 to i6,i7,i8 4560 // (because of MaxMemDepDistance). As we added a dependency from 4561 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4562 // and we can abort this loop at i6. 4563 if (DistToSrc >= 2 * MaxMemDepDistance) 4564 break; 4565 DistToSrc++; 4566 } 4567 } 4568 } 4569 BundleMember = BundleMember->NextInBundle; 4570 } 4571 if (InsertInReadyList && SD->isReady()) { 4572 ReadyInsts.push_back(SD); 4573 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4574 << "\n"); 4575 } 4576 } 4577 } 4578 4579 void BoUpSLP::BlockScheduling::resetSchedule() { 4580 assert(ScheduleStart && 4581 "tried to reset schedule on block which has not been scheduled"); 4582 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4583 doForAllOpcodes(I, [&](ScheduleData *SD) { 4584 assert(isInSchedulingRegion(SD) && 4585 "ScheduleData not in scheduling region"); 4586 SD->IsScheduled = false; 4587 SD->resetUnscheduledDeps(); 4588 }); 4589 } 4590 ReadyInsts.clear(); 4591 } 4592 4593 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4594 if (!BS->ScheduleStart) 4595 return; 4596 4597 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4598 4599 BS->resetSchedule(); 4600 4601 // For the real scheduling we use a more sophisticated ready-list: it is 4602 // sorted by the original instruction location. This lets the final schedule 4603 // be as close as possible to the original instruction order. 4604 struct ScheduleDataCompare { 4605 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4606 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4607 } 4608 }; 4609 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4610 4611 // Ensure that all dependency data is updated and fill the ready-list with 4612 // initial instructions. 4613 int Idx = 0; 4614 int NumToSchedule = 0; 4615 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4616 I = I->getNextNode()) { 4617 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4618 assert(SD->isPartOfBundle() == 4619 (getTreeEntry(SD->Inst) != nullptr) && 4620 "scheduler and vectorizer bundle mismatch"); 4621 SD->FirstInBundle->SchedulingPriority = Idx++; 4622 if (SD->isSchedulingEntity()) { 4623 BS->calculateDependencies(SD, false, this); 4624 NumToSchedule++; 4625 } 4626 }); 4627 } 4628 BS->initialFillReadyList(ReadyInsts); 4629 4630 Instruction *LastScheduledInst = BS->ScheduleEnd; 4631 4632 // Do the "real" scheduling. 4633 while (!ReadyInsts.empty()) { 4634 ScheduleData *picked = *ReadyInsts.begin(); 4635 ReadyInsts.erase(ReadyInsts.begin()); 4636 4637 // Move the scheduled instruction(s) to their dedicated places, if not 4638 // there yet. 4639 ScheduleData *BundleMember = picked; 4640 while (BundleMember) { 4641 Instruction *pickedInst = BundleMember->Inst; 4642 if (LastScheduledInst->getNextNode() != pickedInst) { 4643 BS->BB->getInstList().remove(pickedInst); 4644 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4645 pickedInst); 4646 } 4647 LastScheduledInst = pickedInst; 4648 BundleMember = BundleMember->NextInBundle; 4649 } 4650 4651 BS->schedule(picked, ReadyInsts); 4652 NumToSchedule--; 4653 } 4654 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4655 4656 // Avoid duplicate scheduling of the block. 4657 BS->ScheduleStart = nullptr; 4658 } 4659 4660 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4661 // If V is a store, just return the width of the stored value without 4662 // traversing the expression tree. This is the common case. 4663 if (auto *Store = dyn_cast<StoreInst>(V)) 4664 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4665 4666 // If V is not a store, we can traverse the expression tree to find loads 4667 // that feed it. The type of the loaded value may indicate a more suitable 4668 // width than V's type. We want to base the vector element size on the width 4669 // of memory operations where possible. 4670 SmallVector<Instruction *, 16> Worklist; 4671 SmallPtrSet<Instruction *, 16> Visited; 4672 if (auto *I = dyn_cast<Instruction>(V)) 4673 Worklist.push_back(I); 4674 4675 // Traverse the expression tree in bottom-up order looking for loads. If we 4676 // encounter an instruction we don't yet handle, we give up. 4677 auto MaxWidth = 0u; 4678 auto FoundUnknownInst = false; 4679 while (!Worklist.empty() && !FoundUnknownInst) { 4680 auto *I = Worklist.pop_back_val(); 4681 Visited.insert(I); 4682 4683 // We should only be looking at scalar instructions here. If the current 4684 // instruction has a vector type, give up. 4685 auto *Ty = I->getType(); 4686 if (isa<VectorType>(Ty)) 4687 FoundUnknownInst = true; 4688 4689 // If the current instruction is a load, update MaxWidth to reflect the 4690 // width of the loaded value. 4691 else if (isa<LoadInst>(I)) 4692 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4693 4694 // Otherwise, we need to visit the operands of the instruction. We only 4695 // handle the interesting cases from buildTree here. If an operand is an 4696 // instruction we haven't yet visited, we add it to the worklist. 4697 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4698 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4699 for (Use &U : I->operands()) 4700 if (auto *J = dyn_cast<Instruction>(U.get())) 4701 if (!Visited.count(J)) 4702 Worklist.push_back(J); 4703 } 4704 4705 // If we don't yet handle the instruction, give up. 4706 else 4707 FoundUnknownInst = true; 4708 } 4709 4710 // If we didn't encounter a memory access in the expression tree, or if we 4711 // gave up for some reason, just return the width of V. 4712 if (!MaxWidth || FoundUnknownInst) 4713 return DL->getTypeSizeInBits(V->getType()); 4714 4715 // Otherwise, return the maximum width we found. 4716 return MaxWidth; 4717 } 4718 4719 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4720 // smaller type with a truncation. We collect the values that will be demoted 4721 // in ToDemote and additional roots that require investigating in Roots. 4722 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4723 SmallVectorImpl<Value *> &ToDemote, 4724 SmallVectorImpl<Value *> &Roots) { 4725 // We can always demote constants. 4726 if (isa<Constant>(V)) { 4727 ToDemote.push_back(V); 4728 return true; 4729 } 4730 4731 // If the value is not an instruction in the expression with only one use, it 4732 // cannot be demoted. 4733 auto *I = dyn_cast<Instruction>(V); 4734 if (!I || !I->hasOneUse() || !Expr.count(I)) 4735 return false; 4736 4737 switch (I->getOpcode()) { 4738 4739 // We can always demote truncations and extensions. Since truncations can 4740 // seed additional demotion, we save the truncated value. 4741 case Instruction::Trunc: 4742 Roots.push_back(I->getOperand(0)); 4743 break; 4744 case Instruction::ZExt: 4745 case Instruction::SExt: 4746 break; 4747 4748 // We can demote certain binary operations if we can demote both of their 4749 // operands. 4750 case Instruction::Add: 4751 case Instruction::Sub: 4752 case Instruction::Mul: 4753 case Instruction::And: 4754 case Instruction::Or: 4755 case Instruction::Xor: 4756 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4757 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4758 return false; 4759 break; 4760 4761 // We can demote selects if we can demote their true and false values. 4762 case Instruction::Select: { 4763 SelectInst *SI = cast<SelectInst>(I); 4764 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4765 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4766 return false; 4767 break; 4768 } 4769 4770 // We can demote phis if we can demote all their incoming operands. Note that 4771 // we don't need to worry about cycles since we ensure single use above. 4772 case Instruction::PHI: { 4773 PHINode *PN = cast<PHINode>(I); 4774 for (Value *IncValue : PN->incoming_values()) 4775 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4776 return false; 4777 break; 4778 } 4779 4780 // Otherwise, conservatively give up. 4781 default: 4782 return false; 4783 } 4784 4785 // Record the value that we can demote. 4786 ToDemote.push_back(V); 4787 return true; 4788 } 4789 4790 void BoUpSLP::computeMinimumValueSizes() { 4791 // If there are no external uses, the expression tree must be rooted by a 4792 // store. We can't demote in-memory values, so there is nothing to do here. 4793 if (ExternalUses.empty()) 4794 return; 4795 4796 // We only attempt to truncate integer expressions. 4797 auto &TreeRoot = VectorizableTree[0]->Scalars; 4798 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4799 if (!TreeRootIT) 4800 return; 4801 4802 // If the expression is not rooted by a store, these roots should have 4803 // external uses. We will rely on InstCombine to rewrite the expression in 4804 // the narrower type. However, InstCombine only rewrites single-use values. 4805 // This means that if a tree entry other than a root is used externally, it 4806 // must have multiple uses and InstCombine will not rewrite it. The code 4807 // below ensures that only the roots are used externally. 4808 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4809 for (auto &EU : ExternalUses) 4810 if (!Expr.erase(EU.Scalar)) 4811 return; 4812 if (!Expr.empty()) 4813 return; 4814 4815 // Collect the scalar values of the vectorizable expression. We will use this 4816 // context to determine which values can be demoted. If we see a truncation, 4817 // we mark it as seeding another demotion. 4818 for (auto &EntryPtr : VectorizableTree) 4819 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 4820 4821 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4822 // have a single external user that is not in the vectorizable tree. 4823 for (auto *Root : TreeRoot) 4824 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4825 return; 4826 4827 // Conservatively determine if we can actually truncate the roots of the 4828 // expression. Collect the values that can be demoted in ToDemote and 4829 // additional roots that require investigating in Roots. 4830 SmallVector<Value *, 32> ToDemote; 4831 SmallVector<Value *, 4> Roots; 4832 for (auto *Root : TreeRoot) 4833 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4834 return; 4835 4836 // The maximum bit width required to represent all the values that can be 4837 // demoted without loss of precision. It would be safe to truncate the roots 4838 // of the expression to this width. 4839 auto MaxBitWidth = 8u; 4840 4841 // We first check if all the bits of the roots are demanded. If they're not, 4842 // we can truncate the roots to this narrower type. 4843 for (auto *Root : TreeRoot) { 4844 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4845 MaxBitWidth = std::max<unsigned>( 4846 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4847 } 4848 4849 // True if the roots can be zero-extended back to their original type, rather 4850 // than sign-extended. We know that if the leading bits are not demanded, we 4851 // can safely zero-extend. So we initialize IsKnownPositive to True. 4852 bool IsKnownPositive = true; 4853 4854 // If all the bits of the roots are demanded, we can try a little harder to 4855 // compute a narrower type. This can happen, for example, if the roots are 4856 // getelementptr indices. InstCombine promotes these indices to the pointer 4857 // width. Thus, all their bits are technically demanded even though the 4858 // address computation might be vectorized in a smaller type. 4859 // 4860 // We start by looking at each entry that can be demoted. We compute the 4861 // maximum bit width required to store the scalar by using ValueTracking to 4862 // compute the number of high-order bits we can truncate. 4863 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4864 llvm::all_of(TreeRoot, [](Value *R) { 4865 assert(R->hasOneUse() && "Root should have only one use!"); 4866 return isa<GetElementPtrInst>(R->user_back()); 4867 })) { 4868 MaxBitWidth = 8u; 4869 4870 // Determine if the sign bit of all the roots is known to be zero. If not, 4871 // IsKnownPositive is set to False. 4872 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4873 KnownBits Known = computeKnownBits(R, *DL); 4874 return Known.isNonNegative(); 4875 }); 4876 4877 // Determine the maximum number of bits required to store the scalar 4878 // values. 4879 for (auto *Scalar : ToDemote) { 4880 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4881 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4882 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4883 } 4884 4885 // If we can't prove that the sign bit is zero, we must add one to the 4886 // maximum bit width to account for the unknown sign bit. This preserves 4887 // the existing sign bit so we can safely sign-extend the root back to the 4888 // original type. Otherwise, if we know the sign bit is zero, we will 4889 // zero-extend the root instead. 4890 // 4891 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4892 // one to the maximum bit width will yield a larger-than-necessary 4893 // type. In general, we need to add an extra bit only if we can't 4894 // prove that the upper bit of the original type is equal to the 4895 // upper bit of the proposed smaller type. If these two bits are the 4896 // same (either zero or one) we know that sign-extending from the 4897 // smaller type will result in the same value. Here, since we can't 4898 // yet prove this, we are just making the proposed smaller type 4899 // larger to ensure correctness. 4900 if (!IsKnownPositive) 4901 ++MaxBitWidth; 4902 } 4903 4904 // Round MaxBitWidth up to the next power-of-two. 4905 if (!isPowerOf2_64(MaxBitWidth)) 4906 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4907 4908 // If the maximum bit width we compute is less than the with of the roots' 4909 // type, we can proceed with the narrowing. Otherwise, do nothing. 4910 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4911 return; 4912 4913 // If we can truncate the root, we must collect additional values that might 4914 // be demoted as a result. That is, those seeded by truncations we will 4915 // modify. 4916 while (!Roots.empty()) 4917 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4918 4919 // Finally, map the values we can demote to the maximum bit with we computed. 4920 for (auto *Scalar : ToDemote) 4921 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4922 } 4923 4924 namespace { 4925 4926 /// The SLPVectorizer Pass. 4927 struct SLPVectorizer : public FunctionPass { 4928 SLPVectorizerPass Impl; 4929 4930 /// Pass identification, replacement for typeid 4931 static char ID; 4932 4933 explicit SLPVectorizer() : FunctionPass(ID) { 4934 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4935 } 4936 4937 bool doInitialization(Module &M) override { 4938 return false; 4939 } 4940 4941 bool runOnFunction(Function &F) override { 4942 if (skipFunction(F)) 4943 return false; 4944 4945 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4946 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4947 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4948 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4949 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4950 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4951 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4952 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4953 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4954 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4955 4956 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4957 } 4958 4959 void getAnalysisUsage(AnalysisUsage &AU) const override { 4960 FunctionPass::getAnalysisUsage(AU); 4961 AU.addRequired<AssumptionCacheTracker>(); 4962 AU.addRequired<ScalarEvolutionWrapperPass>(); 4963 AU.addRequired<AAResultsWrapperPass>(); 4964 AU.addRequired<TargetTransformInfoWrapperPass>(); 4965 AU.addRequired<LoopInfoWrapperPass>(); 4966 AU.addRequired<DominatorTreeWrapperPass>(); 4967 AU.addRequired<DemandedBitsWrapperPass>(); 4968 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4969 AU.addPreserved<LoopInfoWrapperPass>(); 4970 AU.addPreserved<DominatorTreeWrapperPass>(); 4971 AU.addPreserved<AAResultsWrapperPass>(); 4972 AU.addPreserved<GlobalsAAWrapperPass>(); 4973 AU.setPreservesCFG(); 4974 } 4975 }; 4976 4977 } // end anonymous namespace 4978 4979 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4980 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4981 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4982 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4983 auto *AA = &AM.getResult<AAManager>(F); 4984 auto *LI = &AM.getResult<LoopAnalysis>(F); 4985 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4986 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4987 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4988 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4989 4990 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4991 if (!Changed) 4992 return PreservedAnalyses::all(); 4993 4994 PreservedAnalyses PA; 4995 PA.preserveSet<CFGAnalyses>(); 4996 PA.preserve<AAManager>(); 4997 PA.preserve<GlobalsAA>(); 4998 return PA; 4999 } 5000 5001 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5002 TargetTransformInfo *TTI_, 5003 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5004 LoopInfo *LI_, DominatorTree *DT_, 5005 AssumptionCache *AC_, DemandedBits *DB_, 5006 OptimizationRemarkEmitter *ORE_) { 5007 SE = SE_; 5008 TTI = TTI_; 5009 TLI = TLI_; 5010 AA = AA_; 5011 LI = LI_; 5012 DT = DT_; 5013 AC = AC_; 5014 DB = DB_; 5015 DL = &F.getParent()->getDataLayout(); 5016 5017 Stores.clear(); 5018 GEPs.clear(); 5019 bool Changed = false; 5020 5021 // If the target claims to have no vector registers don't attempt 5022 // vectorization. 5023 if (!TTI->getNumberOfRegisters(true)) 5024 return false; 5025 5026 // Don't vectorize when the attribute NoImplicitFloat is used. 5027 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5028 return false; 5029 5030 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5031 5032 // Use the bottom up slp vectorizer to construct chains that start with 5033 // store instructions. 5034 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5035 5036 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5037 // delete instructions. 5038 5039 // Scan the blocks in the function in post order. 5040 for (auto BB : post_order(&F.getEntryBlock())) { 5041 collectSeedInstructions(BB); 5042 5043 // Vectorize trees that end at stores. 5044 if (!Stores.empty()) { 5045 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5046 << " underlying objects.\n"); 5047 Changed |= vectorizeStoreChains(R); 5048 } 5049 5050 // Vectorize trees that end at reductions. 5051 Changed |= vectorizeChainsInBlock(BB, R); 5052 5053 // Vectorize the index computations of getelementptr instructions. This 5054 // is primarily intended to catch gather-like idioms ending at 5055 // non-consecutive loads. 5056 if (!GEPs.empty()) { 5057 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5058 << " underlying objects.\n"); 5059 Changed |= vectorizeGEPIndices(BB, R); 5060 } 5061 } 5062 5063 if (Changed) { 5064 R.optimizeGatherSequence(); 5065 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5066 LLVM_DEBUG(verifyFunction(F)); 5067 } 5068 return Changed; 5069 } 5070 5071 /// Check that the Values in the slice in VL array are still existent in 5072 /// the WeakTrackingVH array. 5073 /// Vectorization of part of the VL array may cause later values in the VL array 5074 /// to become invalid. We track when this has happened in the WeakTrackingVH 5075 /// array. 5076 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5077 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5078 unsigned SliceSize) { 5079 VL = VL.slice(SliceBegin, SliceSize); 5080 VH = VH.slice(SliceBegin, SliceSize); 5081 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5082 } 5083 5084 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5085 unsigned VecRegSize) { 5086 const unsigned ChainLen = Chain.size(); 5087 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5088 << "\n"); 5089 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5090 const unsigned VF = VecRegSize / Sz; 5091 5092 if (!isPowerOf2_32(Sz) || VF < 2) 5093 return false; 5094 5095 // Keep track of values that were deleted by vectorizing in the loop below. 5096 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5097 5098 bool Changed = false; 5099 // Look for profitable vectorizable trees at all offsets, starting at zero. 5100 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5101 5102 // Check that a previous iteration of this loop did not delete the Value. 5103 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5104 continue; 5105 5106 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5107 << "\n"); 5108 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5109 5110 R.buildTree(Operands); 5111 if (R.isTreeTinyAndNotFullyVectorizable()) 5112 continue; 5113 5114 R.computeMinimumValueSizes(); 5115 5116 int Cost = R.getTreeCost(); 5117 5118 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5119 << "\n"); 5120 if (Cost < -SLPCostThreshold) { 5121 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5122 5123 using namespace ore; 5124 5125 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5126 cast<StoreInst>(Chain[i])) 5127 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5128 << " and with tree size " 5129 << NV("TreeSize", R.getTreeSize())); 5130 5131 R.vectorizeTree(); 5132 5133 // Move to the next bundle. 5134 i += VF - 1; 5135 Changed = true; 5136 } 5137 } 5138 5139 return Changed; 5140 } 5141 5142 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5143 BoUpSLP &R) { 5144 SetVector<StoreInst *> Heads; 5145 SmallDenseSet<StoreInst *> Tails; 5146 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5147 5148 // We may run into multiple chains that merge into a single chain. We mark the 5149 // stores that we vectorized so that we don't visit the same store twice. 5150 BoUpSLP::ValueSet VectorizedStores; 5151 bool Changed = false; 5152 5153 auto &&FindConsecutiveAccess = 5154 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5155 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5156 return false; 5157 5158 Tails.insert(Stores[Idx]); 5159 Heads.insert(Stores[K]); 5160 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5161 return true; 5162 }; 5163 5164 // Do a quadratic search on all of the given stores in reverse order and find 5165 // all of the pairs of stores that follow each other. 5166 int E = Stores.size(); 5167 for (int Idx = E - 1; Idx >= 0; --Idx) { 5168 // If a store has multiple consecutive store candidates, search according 5169 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5170 // This is because usually pairing with immediate succeeding or preceding 5171 // candidate create the best chance to find slp vectorization opportunity. 5172 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5173 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5174 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5175 break; 5176 } 5177 5178 // For stores that start but don't end a link in the chain: 5179 for (auto *SI : llvm::reverse(Heads)) { 5180 if (Tails.count(SI)) 5181 continue; 5182 5183 // We found a store instr that starts a chain. Now follow the chain and try 5184 // to vectorize it. 5185 BoUpSLP::ValueList Operands; 5186 StoreInst *I = SI; 5187 // Collect the chain into a list. 5188 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5189 Operands.push_back(I); 5190 // Move to the next value in the chain. 5191 I = ConsecutiveChain[I]; 5192 } 5193 5194 // FIXME: Is division-by-2 the correct step? Should we assert that the 5195 // register size is a power-of-2? 5196 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5197 Size /= 2) { 5198 if (vectorizeStoreChain(Operands, R, Size)) { 5199 // Mark the vectorized stores so that we don't vectorize them again. 5200 VectorizedStores.insert(Operands.begin(), Operands.end()); 5201 Changed = true; 5202 break; 5203 } 5204 } 5205 } 5206 5207 return Changed; 5208 } 5209 5210 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5211 // Initialize the collections. We will make a single pass over the block. 5212 Stores.clear(); 5213 GEPs.clear(); 5214 5215 // Visit the store and getelementptr instructions in BB and organize them in 5216 // Stores and GEPs according to the underlying objects of their pointer 5217 // operands. 5218 for (Instruction &I : *BB) { 5219 // Ignore store instructions that are volatile or have a pointer operand 5220 // that doesn't point to a scalar type. 5221 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5222 if (!SI->isSimple()) 5223 continue; 5224 if (!isValidElementType(SI->getValueOperand()->getType())) 5225 continue; 5226 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5227 } 5228 5229 // Ignore getelementptr instructions that have more than one index, a 5230 // constant index, or a pointer operand that doesn't point to a scalar 5231 // type. 5232 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5233 auto Idx = GEP->idx_begin()->get(); 5234 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5235 continue; 5236 if (!isValidElementType(Idx->getType())) 5237 continue; 5238 if (GEP->getType()->isVectorTy()) 5239 continue; 5240 GEPs[GEP->getPointerOperand()].push_back(GEP); 5241 } 5242 } 5243 } 5244 5245 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5246 if (!A || !B) 5247 return false; 5248 Value *VL[] = { A, B }; 5249 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5250 } 5251 5252 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5253 int UserCost, bool AllowReorder) { 5254 if (VL.size() < 2) 5255 return false; 5256 5257 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5258 << VL.size() << ".\n"); 5259 5260 // Check that all of the parts are scalar instructions of the same type, 5261 // we permit an alternate opcode via InstructionsState. 5262 InstructionsState S = getSameOpcode(VL); 5263 if (!S.getOpcode()) 5264 return false; 5265 5266 Instruction *I0 = cast<Instruction>(S.OpValue); 5267 unsigned Sz = R.getVectorElementSize(I0); 5268 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5269 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5270 if (MaxVF < 2) { 5271 R.getORE()->emit([&]() { 5272 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5273 << "Cannot SLP vectorize list: vectorization factor " 5274 << "less than 2 is not supported"; 5275 }); 5276 return false; 5277 } 5278 5279 for (Value *V : VL) { 5280 Type *Ty = V->getType(); 5281 if (!isValidElementType(Ty)) { 5282 // NOTE: the following will give user internal llvm type name, which may 5283 // not be useful. 5284 R.getORE()->emit([&]() { 5285 std::string type_str; 5286 llvm::raw_string_ostream rso(type_str); 5287 Ty->print(rso); 5288 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5289 << "Cannot SLP vectorize list: type " 5290 << rso.str() + " is unsupported by vectorizer"; 5291 }); 5292 return false; 5293 } 5294 } 5295 5296 bool Changed = false; 5297 bool CandidateFound = false; 5298 int MinCost = SLPCostThreshold; 5299 5300 // Keep track of values that were deleted by vectorizing in the loop below. 5301 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5302 5303 unsigned NextInst = 0, MaxInst = VL.size(); 5304 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5305 VF /= 2) { 5306 // No actual vectorization should happen, if number of parts is the same as 5307 // provided vectorization factor (i.e. the scalar type is used for vector 5308 // code during codegen). 5309 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5310 if (TTI->getNumberOfParts(VecTy) == VF) 5311 continue; 5312 for (unsigned I = NextInst; I < MaxInst; ++I) { 5313 unsigned OpsWidth = 0; 5314 5315 if (I + VF > MaxInst) 5316 OpsWidth = MaxInst - I; 5317 else 5318 OpsWidth = VF; 5319 5320 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5321 break; 5322 5323 // Check that a previous iteration of this loop did not delete the Value. 5324 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5325 continue; 5326 5327 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5328 << "\n"); 5329 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5330 5331 R.buildTree(Ops); 5332 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5333 // TODO: check if we can allow reordering for more cases. 5334 if (AllowReorder && Order) { 5335 // TODO: reorder tree nodes without tree rebuilding. 5336 // Conceptually, there is nothing actually preventing us from trying to 5337 // reorder a larger list. In fact, we do exactly this when vectorizing 5338 // reductions. However, at this point, we only expect to get here when 5339 // there are exactly two operations. 5340 assert(Ops.size() == 2); 5341 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5342 R.buildTree(ReorderedOps, None); 5343 } 5344 if (R.isTreeTinyAndNotFullyVectorizable()) 5345 continue; 5346 5347 R.computeMinimumValueSizes(); 5348 int Cost = R.getTreeCost() - UserCost; 5349 CandidateFound = true; 5350 MinCost = std::min(MinCost, Cost); 5351 5352 if (Cost < -SLPCostThreshold) { 5353 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5354 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5355 cast<Instruction>(Ops[0])) 5356 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5357 << " and with tree size " 5358 << ore::NV("TreeSize", R.getTreeSize())); 5359 5360 R.vectorizeTree(); 5361 // Move to the next bundle. 5362 I += VF - 1; 5363 NextInst = I + 1; 5364 Changed = true; 5365 } 5366 } 5367 } 5368 5369 if (!Changed && CandidateFound) { 5370 R.getORE()->emit([&]() { 5371 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5372 << "List vectorization was possible but not beneficial with cost " 5373 << ore::NV("Cost", MinCost) << " >= " 5374 << ore::NV("Treshold", -SLPCostThreshold); 5375 }); 5376 } else if (!Changed) { 5377 R.getORE()->emit([&]() { 5378 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5379 << "Cannot SLP vectorize list: vectorization was impossible" 5380 << " with available vectorization factors"; 5381 }); 5382 } 5383 return Changed; 5384 } 5385 5386 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5387 if (!I) 5388 return false; 5389 5390 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5391 return false; 5392 5393 Value *P = I->getParent(); 5394 5395 // Vectorize in current basic block only. 5396 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5397 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5398 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5399 return false; 5400 5401 // Try to vectorize V. 5402 if (tryToVectorizePair(Op0, Op1, R)) 5403 return true; 5404 5405 auto *A = dyn_cast<BinaryOperator>(Op0); 5406 auto *B = dyn_cast<BinaryOperator>(Op1); 5407 // Try to skip B. 5408 if (B && B->hasOneUse()) { 5409 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5410 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5411 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5412 return true; 5413 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5414 return true; 5415 } 5416 5417 // Try to skip A. 5418 if (A && A->hasOneUse()) { 5419 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5420 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5421 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5422 return true; 5423 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5424 return true; 5425 } 5426 return false; 5427 } 5428 5429 /// Generate a shuffle mask to be used in a reduction tree. 5430 /// 5431 /// \param VecLen The length of the vector to be reduced. 5432 /// \param NumEltsToRdx The number of elements that should be reduced in the 5433 /// vector. 5434 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5435 /// reduction. A pairwise reduction will generate a mask of 5436 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5437 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5438 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5439 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5440 bool IsPairwise, bool IsLeft, 5441 IRBuilder<> &Builder) { 5442 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5443 5444 SmallVector<Constant *, 32> ShuffleMask( 5445 VecLen, UndefValue::get(Builder.getInt32Ty())); 5446 5447 if (IsPairwise) 5448 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5449 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5450 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5451 else 5452 // Move the upper half of the vector to the lower half. 5453 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5454 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5455 5456 return ConstantVector::get(ShuffleMask); 5457 } 5458 5459 namespace { 5460 5461 /// Model horizontal reductions. 5462 /// 5463 /// A horizontal reduction is a tree of reduction operations (currently add and 5464 /// fadd) that has operations that can be put into a vector as its leaf. 5465 /// For example, this tree: 5466 /// 5467 /// mul mul mul mul 5468 /// \ / \ / 5469 /// + + 5470 /// \ / 5471 /// + 5472 /// This tree has "mul" as its reduced values and "+" as its reduction 5473 /// operations. A reduction might be feeding into a store or a binary operation 5474 /// feeding a phi. 5475 /// ... 5476 /// \ / 5477 /// + 5478 /// | 5479 /// phi += 5480 /// 5481 /// Or: 5482 /// ... 5483 /// \ / 5484 /// + 5485 /// | 5486 /// *p = 5487 /// 5488 class HorizontalReduction { 5489 using ReductionOpsType = SmallVector<Value *, 16>; 5490 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5491 ReductionOpsListType ReductionOps; 5492 SmallVector<Value *, 32> ReducedVals; 5493 // Use map vector to make stable output. 5494 MapVector<Instruction *, Value *> ExtraArgs; 5495 5496 /// Kind of the reduction data. 5497 enum ReductionKind { 5498 RK_None, /// Not a reduction. 5499 RK_Arithmetic, /// Binary reduction data. 5500 RK_Min, /// Minimum reduction data. 5501 RK_UMin, /// Unsigned minimum reduction data. 5502 RK_Max, /// Maximum reduction data. 5503 RK_UMax, /// Unsigned maximum reduction data. 5504 }; 5505 5506 /// Contains info about operation, like its opcode, left and right operands. 5507 class OperationData { 5508 /// Opcode of the instruction. 5509 unsigned Opcode = 0; 5510 5511 /// Left operand of the reduction operation. 5512 Value *LHS = nullptr; 5513 5514 /// Right operand of the reduction operation. 5515 Value *RHS = nullptr; 5516 5517 /// Kind of the reduction operation. 5518 ReductionKind Kind = RK_None; 5519 5520 /// True if float point min/max reduction has no NaNs. 5521 bool NoNaN = false; 5522 5523 /// Checks if the reduction operation can be vectorized. 5524 bool isVectorizable() const { 5525 return LHS && RHS && 5526 // We currently only support add/mul/logical && min/max reductions. 5527 ((Kind == RK_Arithmetic && 5528 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5529 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5530 Opcode == Instruction::And || Opcode == Instruction::Or || 5531 Opcode == Instruction::Xor)) || 5532 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5533 (Kind == RK_Min || Kind == RK_Max)) || 5534 (Opcode == Instruction::ICmp && 5535 (Kind == RK_UMin || Kind == RK_UMax))); 5536 } 5537 5538 /// Creates reduction operation with the current opcode. 5539 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5540 assert(isVectorizable() && 5541 "Expected add|fadd or min/max reduction operation."); 5542 Value *Cmp; 5543 switch (Kind) { 5544 case RK_Arithmetic: 5545 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5546 Name); 5547 case RK_Min: 5548 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5549 : Builder.CreateFCmpOLT(LHS, RHS); 5550 break; 5551 case RK_Max: 5552 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5553 : Builder.CreateFCmpOGT(LHS, RHS); 5554 break; 5555 case RK_UMin: 5556 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5557 Cmp = Builder.CreateICmpULT(LHS, RHS); 5558 break; 5559 case RK_UMax: 5560 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5561 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5562 break; 5563 case RK_None: 5564 llvm_unreachable("Unknown reduction operation."); 5565 } 5566 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5567 } 5568 5569 public: 5570 explicit OperationData() = default; 5571 5572 /// Construction for reduced values. They are identified by opcode only and 5573 /// don't have associated LHS/RHS values. 5574 explicit OperationData(Value *V) { 5575 if (auto *I = dyn_cast<Instruction>(V)) 5576 Opcode = I->getOpcode(); 5577 } 5578 5579 /// Constructor for reduction operations with opcode and its left and 5580 /// right operands. 5581 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5582 bool NoNaN = false) 5583 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5584 assert(Kind != RK_None && "One of the reduction operations is expected."); 5585 } 5586 5587 explicit operator bool() const { return Opcode; } 5588 5589 /// Get the index of the first operand. 5590 unsigned getFirstOperandIndex() const { 5591 assert(!!*this && "The opcode is not set."); 5592 switch (Kind) { 5593 case RK_Min: 5594 case RK_UMin: 5595 case RK_Max: 5596 case RK_UMax: 5597 return 1; 5598 case RK_Arithmetic: 5599 case RK_None: 5600 break; 5601 } 5602 return 0; 5603 } 5604 5605 /// Total number of operands in the reduction operation. 5606 unsigned getNumberOfOperands() const { 5607 assert(Kind != RK_None && !!*this && LHS && RHS && 5608 "Expected reduction operation."); 5609 switch (Kind) { 5610 case RK_Arithmetic: 5611 return 2; 5612 case RK_Min: 5613 case RK_UMin: 5614 case RK_Max: 5615 case RK_UMax: 5616 return 3; 5617 case RK_None: 5618 break; 5619 } 5620 llvm_unreachable("Reduction kind is not set"); 5621 } 5622 5623 /// Checks if the operation has the same parent as \p P. 5624 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5625 assert(Kind != RK_None && !!*this && LHS && RHS && 5626 "Expected reduction operation."); 5627 if (!IsRedOp) 5628 return I->getParent() == P; 5629 switch (Kind) { 5630 case RK_Arithmetic: 5631 // Arithmetic reduction operation must be used once only. 5632 return I->getParent() == P; 5633 case RK_Min: 5634 case RK_UMin: 5635 case RK_Max: 5636 case RK_UMax: { 5637 // SelectInst must be used twice while the condition op must have single 5638 // use only. 5639 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5640 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5641 } 5642 case RK_None: 5643 break; 5644 } 5645 llvm_unreachable("Reduction kind is not set"); 5646 } 5647 /// Expected number of uses for reduction operations/reduced values. 5648 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5649 assert(Kind != RK_None && !!*this && LHS && RHS && 5650 "Expected reduction operation."); 5651 switch (Kind) { 5652 case RK_Arithmetic: 5653 return I->hasOneUse(); 5654 case RK_Min: 5655 case RK_UMin: 5656 case RK_Max: 5657 case RK_UMax: 5658 return I->hasNUses(2) && 5659 (!IsReductionOp || 5660 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5661 case RK_None: 5662 break; 5663 } 5664 llvm_unreachable("Reduction kind is not set"); 5665 } 5666 5667 /// Initializes the list of reduction operations. 5668 void initReductionOps(ReductionOpsListType &ReductionOps) { 5669 assert(Kind != RK_None && !!*this && LHS && RHS && 5670 "Expected reduction operation."); 5671 switch (Kind) { 5672 case RK_Arithmetic: 5673 ReductionOps.assign(1, ReductionOpsType()); 5674 break; 5675 case RK_Min: 5676 case RK_UMin: 5677 case RK_Max: 5678 case RK_UMax: 5679 ReductionOps.assign(2, ReductionOpsType()); 5680 break; 5681 case RK_None: 5682 llvm_unreachable("Reduction kind is not set"); 5683 } 5684 } 5685 /// Add all reduction operations for the reduction instruction \p I. 5686 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5687 assert(Kind != RK_None && !!*this && LHS && RHS && 5688 "Expected reduction operation."); 5689 switch (Kind) { 5690 case RK_Arithmetic: 5691 ReductionOps[0].emplace_back(I); 5692 break; 5693 case RK_Min: 5694 case RK_UMin: 5695 case RK_Max: 5696 case RK_UMax: 5697 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5698 ReductionOps[1].emplace_back(I); 5699 break; 5700 case RK_None: 5701 llvm_unreachable("Reduction kind is not set"); 5702 } 5703 } 5704 5705 /// Checks if instruction is associative and can be vectorized. 5706 bool isAssociative(Instruction *I) const { 5707 assert(Kind != RK_None && *this && LHS && RHS && 5708 "Expected reduction operation."); 5709 switch (Kind) { 5710 case RK_Arithmetic: 5711 return I->isAssociative(); 5712 case RK_Min: 5713 case RK_Max: 5714 return Opcode == Instruction::ICmp || 5715 cast<Instruction>(I->getOperand(0))->isFast(); 5716 case RK_UMin: 5717 case RK_UMax: 5718 assert(Opcode == Instruction::ICmp && 5719 "Only integer compare operation is expected."); 5720 return true; 5721 case RK_None: 5722 break; 5723 } 5724 llvm_unreachable("Reduction kind is not set"); 5725 } 5726 5727 /// Checks if the reduction operation can be vectorized. 5728 bool isVectorizable(Instruction *I) const { 5729 return isVectorizable() && isAssociative(I); 5730 } 5731 5732 /// Checks if two operation data are both a reduction op or both a reduced 5733 /// value. 5734 bool operator==(const OperationData &OD) { 5735 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5736 "One of the comparing operations is incorrect."); 5737 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5738 } 5739 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5740 void clear() { 5741 Opcode = 0; 5742 LHS = nullptr; 5743 RHS = nullptr; 5744 Kind = RK_None; 5745 NoNaN = false; 5746 } 5747 5748 /// Get the opcode of the reduction operation. 5749 unsigned getOpcode() const { 5750 assert(isVectorizable() && "Expected vectorizable operation."); 5751 return Opcode; 5752 } 5753 5754 /// Get kind of reduction data. 5755 ReductionKind getKind() const { return Kind; } 5756 Value *getLHS() const { return LHS; } 5757 Value *getRHS() const { return RHS; } 5758 Type *getConditionType() const { 5759 switch (Kind) { 5760 case RK_Arithmetic: 5761 return nullptr; 5762 case RK_Min: 5763 case RK_Max: 5764 case RK_UMin: 5765 case RK_UMax: 5766 return CmpInst::makeCmpResultType(LHS->getType()); 5767 case RK_None: 5768 break; 5769 } 5770 llvm_unreachable("Reduction kind is not set"); 5771 } 5772 5773 /// Creates reduction operation with the current opcode with the IR flags 5774 /// from \p ReductionOps. 5775 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5776 const ReductionOpsListType &ReductionOps) const { 5777 assert(isVectorizable() && 5778 "Expected add|fadd or min/max reduction operation."); 5779 auto *Op = createOp(Builder, Name); 5780 switch (Kind) { 5781 case RK_Arithmetic: 5782 propagateIRFlags(Op, ReductionOps[0]); 5783 return Op; 5784 case RK_Min: 5785 case RK_Max: 5786 case RK_UMin: 5787 case RK_UMax: 5788 if (auto *SI = dyn_cast<SelectInst>(Op)) 5789 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5790 propagateIRFlags(Op, ReductionOps[1]); 5791 return Op; 5792 case RK_None: 5793 break; 5794 } 5795 llvm_unreachable("Unknown reduction operation."); 5796 } 5797 /// Creates reduction operation with the current opcode with the IR flags 5798 /// from \p I. 5799 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5800 Instruction *I) const { 5801 assert(isVectorizable() && 5802 "Expected add|fadd or min/max reduction operation."); 5803 auto *Op = createOp(Builder, Name); 5804 switch (Kind) { 5805 case RK_Arithmetic: 5806 propagateIRFlags(Op, I); 5807 return Op; 5808 case RK_Min: 5809 case RK_Max: 5810 case RK_UMin: 5811 case RK_UMax: 5812 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5813 propagateIRFlags(SI->getCondition(), 5814 cast<SelectInst>(I)->getCondition()); 5815 } 5816 propagateIRFlags(Op, I); 5817 return Op; 5818 case RK_None: 5819 break; 5820 } 5821 llvm_unreachable("Unknown reduction operation."); 5822 } 5823 5824 TargetTransformInfo::ReductionFlags getFlags() const { 5825 TargetTransformInfo::ReductionFlags Flags; 5826 Flags.NoNaN = NoNaN; 5827 switch (Kind) { 5828 case RK_Arithmetic: 5829 break; 5830 case RK_Min: 5831 Flags.IsSigned = Opcode == Instruction::ICmp; 5832 Flags.IsMaxOp = false; 5833 break; 5834 case RK_Max: 5835 Flags.IsSigned = Opcode == Instruction::ICmp; 5836 Flags.IsMaxOp = true; 5837 break; 5838 case RK_UMin: 5839 Flags.IsSigned = false; 5840 Flags.IsMaxOp = false; 5841 break; 5842 case RK_UMax: 5843 Flags.IsSigned = false; 5844 Flags.IsMaxOp = true; 5845 break; 5846 case RK_None: 5847 llvm_unreachable("Reduction kind is not set"); 5848 } 5849 return Flags; 5850 } 5851 }; 5852 5853 WeakTrackingVH ReductionRoot; 5854 5855 /// The operation data of the reduction operation. 5856 OperationData ReductionData; 5857 5858 /// The operation data of the values we perform a reduction on. 5859 OperationData ReducedValueData; 5860 5861 /// Should we model this reduction as a pairwise reduction tree or a tree that 5862 /// splits the vector in halves and adds those halves. 5863 bool IsPairwiseReduction = false; 5864 5865 /// Checks if the ParentStackElem.first should be marked as a reduction 5866 /// operation with an extra argument or as extra argument itself. 5867 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5868 Value *ExtraArg) { 5869 if (ExtraArgs.count(ParentStackElem.first)) { 5870 ExtraArgs[ParentStackElem.first] = nullptr; 5871 // We ran into something like: 5872 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5873 // The whole ParentStackElem.first should be considered as an extra value 5874 // in this case. 5875 // Do not perform analysis of remaining operands of ParentStackElem.first 5876 // instruction, this whole instruction is an extra argument. 5877 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5878 } else { 5879 // We ran into something like: 5880 // ParentStackElem.first += ... + ExtraArg + ... 5881 ExtraArgs[ParentStackElem.first] = ExtraArg; 5882 } 5883 } 5884 5885 static OperationData getOperationData(Value *V) { 5886 if (!V) 5887 return OperationData(); 5888 5889 Value *LHS; 5890 Value *RHS; 5891 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5892 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5893 RK_Arithmetic); 5894 } 5895 if (auto *Select = dyn_cast<SelectInst>(V)) { 5896 // Look for a min/max pattern. 5897 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5898 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5899 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5900 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5901 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5902 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5903 return OperationData( 5904 Instruction::FCmp, LHS, RHS, RK_Min, 5905 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5906 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5907 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5908 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5909 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5910 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5911 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5912 return OperationData( 5913 Instruction::FCmp, LHS, RHS, RK_Max, 5914 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5915 } else { 5916 // Try harder: look for min/max pattern based on instructions producing 5917 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5918 // During the intermediate stages of SLP, it's very common to have 5919 // pattern like this (since optimizeGatherSequence is run only once 5920 // at the end): 5921 // %1 = extractelement <2 x i32> %a, i32 0 5922 // %2 = extractelement <2 x i32> %a, i32 1 5923 // %cond = icmp sgt i32 %1, %2 5924 // %3 = extractelement <2 x i32> %a, i32 0 5925 // %4 = extractelement <2 x i32> %a, i32 1 5926 // %select = select i1 %cond, i32 %3, i32 %4 5927 CmpInst::Predicate Pred; 5928 Instruction *L1; 5929 Instruction *L2; 5930 5931 LHS = Select->getTrueValue(); 5932 RHS = Select->getFalseValue(); 5933 Value *Cond = Select->getCondition(); 5934 5935 // TODO: Support inverse predicates. 5936 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5937 if (!isa<ExtractElementInst>(RHS) || 5938 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5939 return OperationData(V); 5940 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5941 if (!isa<ExtractElementInst>(LHS) || 5942 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5943 return OperationData(V); 5944 } else { 5945 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5946 return OperationData(V); 5947 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5948 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5949 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5950 return OperationData(V); 5951 } 5952 switch (Pred) { 5953 default: 5954 return OperationData(V); 5955 5956 case CmpInst::ICMP_ULT: 5957 case CmpInst::ICMP_ULE: 5958 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5959 5960 case CmpInst::ICMP_SLT: 5961 case CmpInst::ICMP_SLE: 5962 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5963 5964 case CmpInst::FCMP_OLT: 5965 case CmpInst::FCMP_OLE: 5966 case CmpInst::FCMP_ULT: 5967 case CmpInst::FCMP_ULE: 5968 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5969 cast<Instruction>(Cond)->hasNoNaNs()); 5970 5971 case CmpInst::ICMP_UGT: 5972 case CmpInst::ICMP_UGE: 5973 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5974 5975 case CmpInst::ICMP_SGT: 5976 case CmpInst::ICMP_SGE: 5977 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5978 5979 case CmpInst::FCMP_OGT: 5980 case CmpInst::FCMP_OGE: 5981 case CmpInst::FCMP_UGT: 5982 case CmpInst::FCMP_UGE: 5983 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5984 cast<Instruction>(Cond)->hasNoNaNs()); 5985 } 5986 } 5987 } 5988 return OperationData(V); 5989 } 5990 5991 public: 5992 HorizontalReduction() = default; 5993 5994 /// Try to find a reduction tree. 5995 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5996 assert((!Phi || is_contained(Phi->operands(), B)) && 5997 "Thi phi needs to use the binary operator"); 5998 5999 ReductionData = getOperationData(B); 6000 6001 // We could have a initial reductions that is not an add. 6002 // r *= v1 + v2 + v3 + v4 6003 // In such a case start looking for a tree rooted in the first '+'. 6004 if (Phi) { 6005 if (ReductionData.getLHS() == Phi) { 6006 Phi = nullptr; 6007 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6008 ReductionData = getOperationData(B); 6009 } else if (ReductionData.getRHS() == Phi) { 6010 Phi = nullptr; 6011 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6012 ReductionData = getOperationData(B); 6013 } 6014 } 6015 6016 if (!ReductionData.isVectorizable(B)) 6017 return false; 6018 6019 Type *Ty = B->getType(); 6020 if (!isValidElementType(Ty)) 6021 return false; 6022 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6023 return false; 6024 6025 ReducedValueData.clear(); 6026 ReductionRoot = B; 6027 6028 // Post order traverse the reduction tree starting at B. We only handle true 6029 // trees containing only binary operators. 6030 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6031 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6032 ReductionData.initReductionOps(ReductionOps); 6033 while (!Stack.empty()) { 6034 Instruction *TreeN = Stack.back().first; 6035 unsigned EdgeToVist = Stack.back().second++; 6036 OperationData OpData = getOperationData(TreeN); 6037 bool IsReducedValue = OpData != ReductionData; 6038 6039 // Postorder vist. 6040 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6041 if (IsReducedValue) 6042 ReducedVals.push_back(TreeN); 6043 else { 6044 auto I = ExtraArgs.find(TreeN); 6045 if (I != ExtraArgs.end() && !I->second) { 6046 // Check if TreeN is an extra argument of its parent operation. 6047 if (Stack.size() <= 1) { 6048 // TreeN can't be an extra argument as it is a root reduction 6049 // operation. 6050 return false; 6051 } 6052 // Yes, TreeN is an extra argument, do not add it to a list of 6053 // reduction operations. 6054 // Stack[Stack.size() - 2] always points to the parent operation. 6055 markExtraArg(Stack[Stack.size() - 2], TreeN); 6056 ExtraArgs.erase(TreeN); 6057 } else 6058 ReductionData.addReductionOps(TreeN, ReductionOps); 6059 } 6060 // Retract. 6061 Stack.pop_back(); 6062 continue; 6063 } 6064 6065 // Visit left or right. 6066 Value *NextV = TreeN->getOperand(EdgeToVist); 6067 if (NextV != Phi) { 6068 auto *I = dyn_cast<Instruction>(NextV); 6069 OpData = getOperationData(I); 6070 // Continue analysis if the next operand is a reduction operation or 6071 // (possibly) a reduced value. If the reduced value opcode is not set, 6072 // the first met operation != reduction operation is considered as the 6073 // reduced value class. 6074 if (I && (!ReducedValueData || OpData == ReducedValueData || 6075 OpData == ReductionData)) { 6076 const bool IsReductionOperation = OpData == ReductionData; 6077 // Only handle trees in the current basic block. 6078 if (!ReductionData.hasSameParent(I, B->getParent(), 6079 IsReductionOperation)) { 6080 // I is an extra argument for TreeN (its parent operation). 6081 markExtraArg(Stack.back(), I); 6082 continue; 6083 } 6084 6085 // Each tree node needs to have minimal number of users except for the 6086 // ultimate reduction. 6087 if (!ReductionData.hasRequiredNumberOfUses(I, 6088 OpData == ReductionData) && 6089 I != B) { 6090 // I is an extra argument for TreeN (its parent operation). 6091 markExtraArg(Stack.back(), I); 6092 continue; 6093 } 6094 6095 if (IsReductionOperation) { 6096 // We need to be able to reassociate the reduction operations. 6097 if (!OpData.isAssociative(I)) { 6098 // I is an extra argument for TreeN (its parent operation). 6099 markExtraArg(Stack.back(), I); 6100 continue; 6101 } 6102 } else if (ReducedValueData && 6103 ReducedValueData != OpData) { 6104 // Make sure that the opcodes of the operations that we are going to 6105 // reduce match. 6106 // I is an extra argument for TreeN (its parent operation). 6107 markExtraArg(Stack.back(), I); 6108 continue; 6109 } else if (!ReducedValueData) 6110 ReducedValueData = OpData; 6111 6112 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6113 continue; 6114 } 6115 } 6116 // NextV is an extra argument for TreeN (its parent operation). 6117 markExtraArg(Stack.back(), NextV); 6118 } 6119 return true; 6120 } 6121 6122 /// Attempt to vectorize the tree found by 6123 /// matchAssociativeReduction. 6124 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6125 if (ReducedVals.empty()) 6126 return false; 6127 6128 // If there is a sufficient number of reduction values, reduce 6129 // to a nearby power-of-2. Can safely generate oversized 6130 // vectors and rely on the backend to split them to legal sizes. 6131 unsigned NumReducedVals = ReducedVals.size(); 6132 if (NumReducedVals < 4) 6133 return false; 6134 6135 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6136 6137 Value *VectorizedTree = nullptr; 6138 6139 // FIXME: Fast-math-flags should be set based on the instructions in the 6140 // reduction (not all of 'fast' are required). 6141 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6142 FastMathFlags Unsafe; 6143 Unsafe.setFast(); 6144 Builder.setFastMathFlags(Unsafe); 6145 unsigned i = 0; 6146 6147 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6148 // The same extra argument may be used several time, so log each attempt 6149 // to use it. 6150 for (auto &Pair : ExtraArgs) { 6151 assert(Pair.first && "DebugLoc must be set."); 6152 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6153 } 6154 // The reduction root is used as the insertion point for new instructions, 6155 // so set it as externally used to prevent it from being deleted. 6156 ExternallyUsedValues[ReductionRoot]; 6157 SmallVector<Value *, 16> IgnoreList; 6158 for (auto &V : ReductionOps) 6159 IgnoreList.append(V.begin(), V.end()); 6160 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6161 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6162 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6163 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6164 // TODO: Handle orders of size less than number of elements in the vector. 6165 if (Order && Order->size() == VL.size()) { 6166 // TODO: reorder tree nodes without tree rebuilding. 6167 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6168 llvm::transform(*Order, ReorderedOps.begin(), 6169 [VL](const unsigned Idx) { return VL[Idx]; }); 6170 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6171 } 6172 if (V.isTreeTinyAndNotFullyVectorizable()) 6173 break; 6174 6175 V.computeMinimumValueSizes(); 6176 6177 // Estimate cost. 6178 int TreeCost = V.getTreeCost(); 6179 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6180 int Cost = TreeCost + ReductionCost; 6181 if (Cost >= -SLPCostThreshold) { 6182 V.getORE()->emit([&]() { 6183 return OptimizationRemarkMissed( 6184 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6185 << "Vectorizing horizontal reduction is possible" 6186 << "but not beneficial with cost " 6187 << ore::NV("Cost", Cost) << " and threshold " 6188 << ore::NV("Threshold", -SLPCostThreshold); 6189 }); 6190 break; 6191 } 6192 6193 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6194 << Cost << ". (HorRdx)\n"); 6195 V.getORE()->emit([&]() { 6196 return OptimizationRemark( 6197 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6198 << "Vectorized horizontal reduction with cost " 6199 << ore::NV("Cost", Cost) << " and with tree size " 6200 << ore::NV("TreeSize", V.getTreeSize()); 6201 }); 6202 6203 // Vectorize a tree. 6204 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6205 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6206 6207 // Emit a reduction. 6208 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6209 Value *ReducedSubTree = 6210 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6211 if (VectorizedTree) { 6212 Builder.SetCurrentDebugLocation(Loc); 6213 OperationData VectReductionData(ReductionData.getOpcode(), 6214 VectorizedTree, ReducedSubTree, 6215 ReductionData.getKind()); 6216 VectorizedTree = 6217 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6218 } else 6219 VectorizedTree = ReducedSubTree; 6220 i += ReduxWidth; 6221 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6222 } 6223 6224 if (VectorizedTree) { 6225 // Finish the reduction. 6226 for (; i < NumReducedVals; ++i) { 6227 auto *I = cast<Instruction>(ReducedVals[i]); 6228 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6229 OperationData VectReductionData(ReductionData.getOpcode(), 6230 VectorizedTree, I, 6231 ReductionData.getKind()); 6232 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6233 } 6234 for (auto &Pair : ExternallyUsedValues) { 6235 // Add each externally used value to the final reduction. 6236 for (auto *I : Pair.second) { 6237 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6238 OperationData VectReductionData(ReductionData.getOpcode(), 6239 VectorizedTree, Pair.first, 6240 ReductionData.getKind()); 6241 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6242 } 6243 } 6244 // Update users. 6245 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6246 } 6247 return VectorizedTree != nullptr; 6248 } 6249 6250 unsigned numReductionValues() const { 6251 return ReducedVals.size(); 6252 } 6253 6254 private: 6255 /// Calculate the cost of a reduction. 6256 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6257 unsigned ReduxWidth) { 6258 Type *ScalarTy = FirstReducedVal->getType(); 6259 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6260 6261 int PairwiseRdxCost; 6262 int SplittingRdxCost; 6263 switch (ReductionData.getKind()) { 6264 case RK_Arithmetic: 6265 PairwiseRdxCost = 6266 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6267 /*IsPairwiseForm=*/true); 6268 SplittingRdxCost = 6269 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6270 /*IsPairwiseForm=*/false); 6271 break; 6272 case RK_Min: 6273 case RK_Max: 6274 case RK_UMin: 6275 case RK_UMax: { 6276 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6277 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6278 ReductionData.getKind() == RK_UMax; 6279 PairwiseRdxCost = 6280 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6281 /*IsPairwiseForm=*/true, IsUnsigned); 6282 SplittingRdxCost = 6283 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6284 /*IsPairwiseForm=*/false, IsUnsigned); 6285 break; 6286 } 6287 case RK_None: 6288 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6289 } 6290 6291 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6292 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6293 6294 int ScalarReduxCost; 6295 switch (ReductionData.getKind()) { 6296 case RK_Arithmetic: 6297 ScalarReduxCost = 6298 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6299 break; 6300 case RK_Min: 6301 case RK_Max: 6302 case RK_UMin: 6303 case RK_UMax: 6304 ScalarReduxCost = 6305 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6306 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6307 CmpInst::makeCmpResultType(ScalarTy)); 6308 break; 6309 case RK_None: 6310 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6311 } 6312 ScalarReduxCost *= (ReduxWidth - 1); 6313 6314 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6315 << " for reduction that starts with " << *FirstReducedVal 6316 << " (It is a " 6317 << (IsPairwiseReduction ? "pairwise" : "splitting") 6318 << " reduction)\n"); 6319 6320 return VecReduxCost - ScalarReduxCost; 6321 } 6322 6323 /// Emit a horizontal reduction of the vectorized value. 6324 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6325 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6326 assert(VectorizedValue && "Need to have a vectorized tree node"); 6327 assert(isPowerOf2_32(ReduxWidth) && 6328 "We only handle power-of-two reductions for now"); 6329 6330 if (!IsPairwiseReduction) { 6331 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6332 // to 'fast'. 6333 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6334 return createSimpleTargetReduction( 6335 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6336 ReductionData.getFlags(), ReductionOps.back()); 6337 } 6338 6339 Value *TmpVec = VectorizedValue; 6340 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6341 Value *LeftMask = 6342 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6343 Value *RightMask = 6344 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6345 6346 Value *LeftShuf = Builder.CreateShuffleVector( 6347 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6348 Value *RightShuf = Builder.CreateShuffleVector( 6349 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6350 "rdx.shuf.r"); 6351 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6352 RightShuf, ReductionData.getKind()); 6353 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6354 } 6355 6356 // The result is in the first element of the vector. 6357 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6358 } 6359 }; 6360 6361 } // end anonymous namespace 6362 6363 /// Recognize construction of vectors like 6364 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6365 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6366 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6367 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6368 /// starting from the last insertelement instruction. 6369 /// 6370 /// Returns true if it matches 6371 static bool findBuildVector(InsertElementInst *LastInsertElem, 6372 TargetTransformInfo *TTI, 6373 SmallVectorImpl<Value *> &BuildVectorOpds, 6374 int &UserCost) { 6375 UserCost = 0; 6376 Value *V = nullptr; 6377 do { 6378 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6379 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6380 LastInsertElem->getType(), 6381 CI->getZExtValue()); 6382 } 6383 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6384 V = LastInsertElem->getOperand(0); 6385 if (isa<UndefValue>(V)) 6386 break; 6387 LastInsertElem = dyn_cast<InsertElementInst>(V); 6388 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6389 return false; 6390 } while (true); 6391 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6392 return true; 6393 } 6394 6395 /// Like findBuildVector, but looks for construction of aggregate. 6396 /// 6397 /// \return true if it matches. 6398 static bool findBuildAggregate(InsertValueInst *IV, 6399 SmallVectorImpl<Value *> &BuildVectorOpds) { 6400 Value *V; 6401 do { 6402 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6403 V = IV->getAggregateOperand(); 6404 if (isa<UndefValue>(V)) 6405 break; 6406 IV = dyn_cast<InsertValueInst>(V); 6407 if (!IV || !IV->hasOneUse()) 6408 return false; 6409 } while (true); 6410 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6411 return true; 6412 } 6413 6414 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6415 return V->getType() < V2->getType(); 6416 } 6417 6418 /// Try and get a reduction value from a phi node. 6419 /// 6420 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6421 /// if they come from either \p ParentBB or a containing loop latch. 6422 /// 6423 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6424 /// if not possible. 6425 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6426 BasicBlock *ParentBB, LoopInfo *LI) { 6427 // There are situations where the reduction value is not dominated by the 6428 // reduction phi. Vectorizing such cases has been reported to cause 6429 // miscompiles. See PR25787. 6430 auto DominatedReduxValue = [&](Value *R) { 6431 return isa<Instruction>(R) && 6432 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6433 }; 6434 6435 Value *Rdx = nullptr; 6436 6437 // Return the incoming value if it comes from the same BB as the phi node. 6438 if (P->getIncomingBlock(0) == ParentBB) { 6439 Rdx = P->getIncomingValue(0); 6440 } else if (P->getIncomingBlock(1) == ParentBB) { 6441 Rdx = P->getIncomingValue(1); 6442 } 6443 6444 if (Rdx && DominatedReduxValue(Rdx)) 6445 return Rdx; 6446 6447 // Otherwise, check whether we have a loop latch to look at. 6448 Loop *BBL = LI->getLoopFor(ParentBB); 6449 if (!BBL) 6450 return nullptr; 6451 BasicBlock *BBLatch = BBL->getLoopLatch(); 6452 if (!BBLatch) 6453 return nullptr; 6454 6455 // There is a loop latch, return the incoming value if it comes from 6456 // that. This reduction pattern occasionally turns up. 6457 if (P->getIncomingBlock(0) == BBLatch) { 6458 Rdx = P->getIncomingValue(0); 6459 } else if (P->getIncomingBlock(1) == BBLatch) { 6460 Rdx = P->getIncomingValue(1); 6461 } 6462 6463 if (Rdx && DominatedReduxValue(Rdx)) 6464 return Rdx; 6465 6466 return nullptr; 6467 } 6468 6469 /// Attempt to reduce a horizontal reduction. 6470 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6471 /// with reduction operators \a Root (or one of its operands) in a basic block 6472 /// \a BB, then check if it can be done. If horizontal reduction is not found 6473 /// and root instruction is a binary operation, vectorization of the operands is 6474 /// attempted. 6475 /// \returns true if a horizontal reduction was matched and reduced or operands 6476 /// of one of the binary instruction were vectorized. 6477 /// \returns false if a horizontal reduction was not matched (or not possible) 6478 /// or no vectorization of any binary operation feeding \a Root instruction was 6479 /// performed. 6480 static bool tryToVectorizeHorReductionOrInstOperands( 6481 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6482 TargetTransformInfo *TTI, 6483 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6484 if (!ShouldVectorizeHor) 6485 return false; 6486 6487 if (!Root) 6488 return false; 6489 6490 if (Root->getParent() != BB || isa<PHINode>(Root)) 6491 return false; 6492 // Start analysis starting from Root instruction. If horizontal reduction is 6493 // found, try to vectorize it. If it is not a horizontal reduction or 6494 // vectorization is not possible or not effective, and currently analyzed 6495 // instruction is a binary operation, try to vectorize the operands, using 6496 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6497 // the same procedure considering each operand as a possible root of the 6498 // horizontal reduction. 6499 // Interrupt the process if the Root instruction itself was vectorized or all 6500 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6501 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6502 SmallPtrSet<Value *, 8> VisitedInstrs; 6503 bool Res = false; 6504 while (!Stack.empty()) { 6505 Value *V; 6506 unsigned Level; 6507 std::tie(V, Level) = Stack.pop_back_val(); 6508 if (!V) 6509 continue; 6510 auto *Inst = dyn_cast<Instruction>(V); 6511 if (!Inst) 6512 continue; 6513 auto *BI = dyn_cast<BinaryOperator>(Inst); 6514 auto *SI = dyn_cast<SelectInst>(Inst); 6515 if (BI || SI) { 6516 HorizontalReduction HorRdx; 6517 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6518 if (HorRdx.tryToReduce(R, TTI)) { 6519 Res = true; 6520 // Set P to nullptr to avoid re-analysis of phi node in 6521 // matchAssociativeReduction function unless this is the root node. 6522 P = nullptr; 6523 continue; 6524 } 6525 } 6526 if (P && BI) { 6527 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6528 if (Inst == P) 6529 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6530 if (!Inst) { 6531 // Set P to nullptr to avoid re-analysis of phi node in 6532 // matchAssociativeReduction function unless this is the root node. 6533 P = nullptr; 6534 continue; 6535 } 6536 } 6537 } 6538 // Set P to nullptr to avoid re-analysis of phi node in 6539 // matchAssociativeReduction function unless this is the root node. 6540 P = nullptr; 6541 if (Vectorize(Inst, R)) { 6542 Res = true; 6543 continue; 6544 } 6545 6546 // Try to vectorize operands. 6547 // Continue analysis for the instruction from the same basic block only to 6548 // save compile time. 6549 if (++Level < RecursionMaxDepth) 6550 for (auto *Op : Inst->operand_values()) 6551 if (VisitedInstrs.insert(Op).second) 6552 if (auto *I = dyn_cast<Instruction>(Op)) 6553 if (!isa<PHINode>(I) && I->getParent() == BB) 6554 Stack.emplace_back(Op, Level); 6555 } 6556 return Res; 6557 } 6558 6559 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6560 BasicBlock *BB, BoUpSLP &R, 6561 TargetTransformInfo *TTI) { 6562 if (!V) 6563 return false; 6564 auto *I = dyn_cast<Instruction>(V); 6565 if (!I) 6566 return false; 6567 6568 if (!isa<BinaryOperator>(I)) 6569 P = nullptr; 6570 // Try to match and vectorize a horizontal reduction. 6571 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6572 return tryToVectorize(I, R); 6573 }; 6574 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6575 ExtraVectorization); 6576 } 6577 6578 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6579 BasicBlock *BB, BoUpSLP &R) { 6580 const DataLayout &DL = BB->getModule()->getDataLayout(); 6581 if (!R.canMapToVector(IVI->getType(), DL)) 6582 return false; 6583 6584 SmallVector<Value *, 16> BuildVectorOpds; 6585 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6586 return false; 6587 6588 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6589 // Aggregate value is unlikely to be processed in vector register, we need to 6590 // extract scalars into scalar registers, so NeedExtraction is set true. 6591 return tryToVectorizeList(BuildVectorOpds, R); 6592 } 6593 6594 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6595 BasicBlock *BB, BoUpSLP &R) { 6596 int UserCost; 6597 SmallVector<Value *, 16> BuildVectorOpds; 6598 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6599 (llvm::all_of(BuildVectorOpds, 6600 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6601 isShuffle(BuildVectorOpds))) 6602 return false; 6603 6604 // Vectorize starting with the build vector operands ignoring the BuildVector 6605 // instructions for the purpose of scheduling and user extraction. 6606 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6607 } 6608 6609 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6610 BoUpSLP &R) { 6611 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6612 return true; 6613 6614 bool OpsChanged = false; 6615 for (int Idx = 0; Idx < 2; ++Idx) { 6616 OpsChanged |= 6617 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6618 } 6619 return OpsChanged; 6620 } 6621 6622 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6623 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6624 bool OpsChanged = false; 6625 for (auto &VH : reverse(Instructions)) { 6626 auto *I = dyn_cast_or_null<Instruction>(VH); 6627 if (!I) 6628 continue; 6629 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6630 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6631 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6632 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6633 else if (auto *CI = dyn_cast<CmpInst>(I)) 6634 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6635 } 6636 Instructions.clear(); 6637 return OpsChanged; 6638 } 6639 6640 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6641 bool Changed = false; 6642 SmallVector<Value *, 4> Incoming; 6643 SmallPtrSet<Value *, 16> VisitedInstrs; 6644 6645 bool HaveVectorizedPhiNodes = true; 6646 while (HaveVectorizedPhiNodes) { 6647 HaveVectorizedPhiNodes = false; 6648 6649 // Collect the incoming values from the PHIs. 6650 Incoming.clear(); 6651 for (Instruction &I : *BB) { 6652 PHINode *P = dyn_cast<PHINode>(&I); 6653 if (!P) 6654 break; 6655 6656 if (!VisitedInstrs.count(P)) 6657 Incoming.push_back(P); 6658 } 6659 6660 // Sort by type. 6661 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6662 6663 // Try to vectorize elements base on their type. 6664 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6665 E = Incoming.end(); 6666 IncIt != E;) { 6667 6668 // Look for the next elements with the same type. 6669 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6670 while (SameTypeIt != E && 6671 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6672 VisitedInstrs.insert(*SameTypeIt); 6673 ++SameTypeIt; 6674 } 6675 6676 // Try to vectorize them. 6677 unsigned NumElts = (SameTypeIt - IncIt); 6678 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6679 << NumElts << ")\n"); 6680 // The order in which the phi nodes appear in the program does not matter. 6681 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6682 // is done when there are exactly two elements since tryToVectorizeList 6683 // asserts that there are only two values when AllowReorder is true. 6684 bool AllowReorder = NumElts == 2; 6685 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6686 /*UserCost=*/0, AllowReorder)) { 6687 // Success start over because instructions might have been changed. 6688 HaveVectorizedPhiNodes = true; 6689 Changed = true; 6690 break; 6691 } 6692 6693 // Start over at the next instruction of a different type (or the end). 6694 IncIt = SameTypeIt; 6695 } 6696 } 6697 6698 VisitedInstrs.clear(); 6699 6700 SmallVector<WeakVH, 8> PostProcessInstructions; 6701 SmallDenseSet<Instruction *, 4> KeyNodes; 6702 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6703 // We may go through BB multiple times so skip the one we have checked. 6704 if (!VisitedInstrs.insert(&*it).second) { 6705 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6706 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6707 // We would like to start over since some instructions are deleted 6708 // and the iterator may become invalid value. 6709 Changed = true; 6710 it = BB->begin(); 6711 e = BB->end(); 6712 } 6713 continue; 6714 } 6715 6716 if (isa<DbgInfoIntrinsic>(it)) 6717 continue; 6718 6719 // Try to vectorize reductions that use PHINodes. 6720 if (PHINode *P = dyn_cast<PHINode>(it)) { 6721 // Check that the PHI is a reduction PHI. 6722 if (P->getNumIncomingValues() != 2) 6723 return Changed; 6724 6725 // Try to match and vectorize a horizontal reduction. 6726 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6727 TTI)) { 6728 Changed = true; 6729 it = BB->begin(); 6730 e = BB->end(); 6731 continue; 6732 } 6733 continue; 6734 } 6735 6736 // Ran into an instruction without users, like terminator, or function call 6737 // with ignored return value, store. Ignore unused instructions (basing on 6738 // instruction type, except for CallInst and InvokeInst). 6739 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6740 isa<InvokeInst>(it))) { 6741 KeyNodes.insert(&*it); 6742 bool OpsChanged = false; 6743 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6744 for (auto *V : it->operand_values()) { 6745 // Try to match and vectorize a horizontal reduction. 6746 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6747 } 6748 } 6749 // Start vectorization of post-process list of instructions from the 6750 // top-tree instructions to try to vectorize as many instructions as 6751 // possible. 6752 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6753 if (OpsChanged) { 6754 // We would like to start over since some instructions are deleted 6755 // and the iterator may become invalid value. 6756 Changed = true; 6757 it = BB->begin(); 6758 e = BB->end(); 6759 continue; 6760 } 6761 } 6762 6763 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6764 isa<InsertValueInst>(it)) 6765 PostProcessInstructions.push_back(&*it); 6766 } 6767 6768 return Changed; 6769 } 6770 6771 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6772 auto Changed = false; 6773 for (auto &Entry : GEPs) { 6774 // If the getelementptr list has fewer than two elements, there's nothing 6775 // to do. 6776 if (Entry.second.size() < 2) 6777 continue; 6778 6779 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6780 << Entry.second.size() << ".\n"); 6781 6782 // We process the getelementptr list in chunks of 16 (like we do for 6783 // stores) to minimize compile-time. 6784 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6785 auto Len = std::min<unsigned>(BE - BI, 16); 6786 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6787 6788 // Initialize a set a candidate getelementptrs. Note that we use a 6789 // SetVector here to preserve program order. If the index computations 6790 // are vectorizable and begin with loads, we want to minimize the chance 6791 // of having to reorder them later. 6792 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6793 6794 // Some of the candidates may have already been vectorized after we 6795 // initially collected them. If so, the WeakTrackingVHs will have 6796 // nullified the 6797 // values, so remove them from the set of candidates. 6798 Candidates.remove(nullptr); 6799 6800 // Remove from the set of candidates all pairs of getelementptrs with 6801 // constant differences. Such getelementptrs are likely not good 6802 // candidates for vectorization in a bottom-up phase since one can be 6803 // computed from the other. We also ensure all candidate getelementptr 6804 // indices are unique. 6805 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6806 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6807 if (!Candidates.count(GEPI)) 6808 continue; 6809 auto *SCEVI = SE->getSCEV(GEPList[I]); 6810 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6811 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6812 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6813 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6814 Candidates.remove(GEPList[I]); 6815 Candidates.remove(GEPList[J]); 6816 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6817 Candidates.remove(GEPList[J]); 6818 } 6819 } 6820 } 6821 6822 // We break out of the above computation as soon as we know there are 6823 // fewer than two candidates remaining. 6824 if (Candidates.size() < 2) 6825 continue; 6826 6827 // Add the single, non-constant index of each candidate to the bundle. We 6828 // ensured the indices met these constraints when we originally collected 6829 // the getelementptrs. 6830 SmallVector<Value *, 16> Bundle(Candidates.size()); 6831 auto BundleIndex = 0u; 6832 for (auto *V : Candidates) { 6833 auto *GEP = cast<GetElementPtrInst>(V); 6834 auto *GEPIdx = GEP->idx_begin()->get(); 6835 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6836 Bundle[BundleIndex++] = GEPIdx; 6837 } 6838 6839 // Try and vectorize the indices. We are currently only interested in 6840 // gather-like cases of the form: 6841 // 6842 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6843 // 6844 // where the loads of "a", the loads of "b", and the subtractions can be 6845 // performed in parallel. It's likely that detecting this pattern in a 6846 // bottom-up phase will be simpler and less costly than building a 6847 // full-blown top-down phase beginning at the consecutive loads. 6848 Changed |= tryToVectorizeList(Bundle, R); 6849 } 6850 } 6851 return Changed; 6852 } 6853 6854 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6855 bool Changed = false; 6856 // Attempt to sort and vectorize each of the store-groups. 6857 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6858 ++it) { 6859 if (it->second.size() < 2) 6860 continue; 6861 6862 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6863 << it->second.size() << ".\n"); 6864 6865 // Process the stores in chunks of 16. 6866 // TODO: The limit of 16 inhibits greater vectorization factors. 6867 // For example, AVX2 supports v32i8. Increasing this limit, however, 6868 // may cause a significant compile-time increase. 6869 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6870 unsigned Len = std::min<unsigned>(CE - CI, 16); 6871 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6872 } 6873 } 6874 return Changed; 6875 } 6876 6877 char SLPVectorizer::ID = 0; 6878 6879 static const char lv_name[] = "SLP Vectorizer"; 6880 6881 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6882 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6883 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6884 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6885 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6886 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6887 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6888 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6889 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6890 6891 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6892