1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 // FIXME: Set this via cl::opt to allow overriding. 86 static const unsigned RecursionMaxDepth = 12; 87 88 // Limit the number of alias checks. The limit is chosen so that 89 // it has no negative effect on the llvm benchmarks. 90 static const unsigned AliasedCheckLimit = 10; 91 92 // Another limit for the alias checks: The maximum distance between load/store 93 // instructions where alias checks are done. 94 // This limit is useful for very large basic blocks. 95 static const unsigned MaxMemDepDistance = 160; 96 97 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 98 /// regions to be handled. 99 static const int MinScheduleRegionSize = 16; 100 101 /// \brief Predicate for the element types that the SLP vectorizer supports. 102 /// 103 /// The most important thing to filter here are types which are invalid in LLVM 104 /// vectors. We also filter target specific types which have absolutely no 105 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 106 /// avoids spending time checking the cost model and realizing that they will 107 /// be inevitably scalarized. 108 static bool isValidElementType(Type *Ty) { 109 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 110 !Ty->isPPC_FP128Ty(); 111 } 112 113 /// \returns the parent basic block if all of the instructions in \p VL 114 /// are in the same block or null otherwise. 115 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 116 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 117 if (!I0) 118 return nullptr; 119 BasicBlock *BB = I0->getParent(); 120 for (int i = 1, e = VL.size(); i < e; i++) { 121 Instruction *I = dyn_cast<Instruction>(VL[i]); 122 if (!I) 123 return nullptr; 124 125 if (BB != I->getParent()) 126 return nullptr; 127 } 128 return BB; 129 } 130 131 /// \returns True if all of the values in \p VL are constants. 132 static bool allConstant(ArrayRef<Value *> VL) { 133 for (Value *i : VL) 134 if (!isa<Constant>(i)) 135 return false; 136 return true; 137 } 138 139 /// \returns True if all of the values in \p VL are identical. 140 static bool isSplat(ArrayRef<Value *> VL) { 141 for (unsigned i = 1, e = VL.size(); i < e; ++i) 142 if (VL[i] != VL[0]) 143 return false; 144 return true; 145 } 146 147 ///\returns Opcode that can be clubbed with \p Op to create an alternate 148 /// sequence which can later be merged as a ShuffleVector instruction. 149 static unsigned getAltOpcode(unsigned Op) { 150 switch (Op) { 151 case Instruction::FAdd: 152 return Instruction::FSub; 153 case Instruction::FSub: 154 return Instruction::FAdd; 155 case Instruction::Add: 156 return Instruction::Sub; 157 case Instruction::Sub: 158 return Instruction::Add; 159 default: 160 return 0; 161 } 162 } 163 164 ///\returns bool representing if Opcode \p Op can be part 165 /// of an alternate sequence which can later be merged as 166 /// a ShuffleVector instruction. 167 static bool canCombineAsAltInst(unsigned Op) { 168 return Op == Instruction::FAdd || Op == Instruction::FSub || 169 Op == Instruction::Sub || Op == Instruction::Add; 170 } 171 172 /// \returns ShuffleVector instruction if instructions in \p VL have 173 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 174 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 175 static unsigned isAltInst(ArrayRef<Value *> VL) { 176 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 177 unsigned Opcode = I0->getOpcode(); 178 unsigned AltOpcode = getAltOpcode(Opcode); 179 for (int i = 1, e = VL.size(); i < e; i++) { 180 Instruction *I = dyn_cast<Instruction>(VL[i]); 181 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 182 return 0; 183 } 184 return Instruction::ShuffleVector; 185 } 186 187 /// \returns The opcode if all of the Instructions in \p VL have the same 188 /// opcode, or zero. 189 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 190 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 191 if (!I0) 192 return 0; 193 unsigned Opcode = I0->getOpcode(); 194 for (int i = 1, e = VL.size(); i < e; i++) { 195 Instruction *I = dyn_cast<Instruction>(VL[i]); 196 if (!I || Opcode != I->getOpcode()) { 197 if (canCombineAsAltInst(Opcode) && i == 1) 198 return isAltInst(VL); 199 return 0; 200 } 201 } 202 return Opcode; 203 } 204 205 /// Get the intersection (logical and) of all of the potential IR flags 206 /// of each scalar operation (VL) that will be converted into a vector (I). 207 /// Flag set: NSW, NUW, exact, and all of fast-math. 208 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 209 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 210 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 211 // Intersection is initialized to the 0th scalar, 212 // so start counting from index '1'. 213 for (int i = 1, e = VL.size(); i < e; ++i) { 214 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 215 Intersection->andIRFlags(Scalar); 216 } 217 VecOp->copyIRFlags(Intersection); 218 } 219 } 220 } 221 222 /// \returns The type that all of the values in \p VL have or null if there 223 /// are different types. 224 static Type* getSameType(ArrayRef<Value *> VL) { 225 Type *Ty = VL[0]->getType(); 226 for (int i = 1, e = VL.size(); i < e; i++) 227 if (VL[i]->getType() != Ty) 228 return nullptr; 229 230 return Ty; 231 } 232 233 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 234 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 235 assert(Opcode == Instruction::ExtractElement || 236 Opcode == Instruction::ExtractValue); 237 if (Opcode == Instruction::ExtractElement) { 238 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 239 return CI && CI->getZExtValue() == Idx; 240 } else { 241 ExtractValueInst *EI = cast<ExtractValueInst>(E); 242 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 243 } 244 } 245 246 /// \returns True if in-tree use also needs extract. This refers to 247 /// possible scalar operand in vectorized instruction. 248 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 249 TargetLibraryInfo *TLI) { 250 251 unsigned Opcode = UserInst->getOpcode(); 252 switch (Opcode) { 253 case Instruction::Load: { 254 LoadInst *LI = cast<LoadInst>(UserInst); 255 return (LI->getPointerOperand() == Scalar); 256 } 257 case Instruction::Store: { 258 StoreInst *SI = cast<StoreInst>(UserInst); 259 return (SI->getPointerOperand() == Scalar); 260 } 261 case Instruction::Call: { 262 CallInst *CI = cast<CallInst>(UserInst); 263 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 264 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 265 return (CI->getArgOperand(1) == Scalar); 266 } 267 } 268 default: 269 return false; 270 } 271 } 272 273 /// \returns the AA location that is being access by the instruction. 274 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 275 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 276 return MemoryLocation::get(SI); 277 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 278 return MemoryLocation::get(LI); 279 return MemoryLocation(); 280 } 281 282 /// \returns True if the instruction is not a volatile or atomic load/store. 283 static bool isSimple(Instruction *I) { 284 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 285 return LI->isSimple(); 286 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 287 return SI->isSimple(); 288 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 289 return !MI->isVolatile(); 290 return true; 291 } 292 293 namespace llvm { 294 namespace slpvectorizer { 295 /// Bottom Up SLP Vectorizer. 296 class BoUpSLP { 297 public: 298 typedef SmallVector<Value *, 8> ValueList; 299 typedef SmallVector<Instruction *, 16> InstrList; 300 typedef SmallPtrSet<Value *, 16> ValueSet; 301 typedef SmallVector<StoreInst *, 8> StoreList; 302 303 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 304 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 305 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 306 const DataLayout *DL) 307 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 308 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 309 DL(DL), Builder(Se->getContext()) { 310 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 311 // Use the vector register size specified by the target unless overridden 312 // by a command-line option. 313 // TODO: It would be better to limit the vectorization factor based on 314 // data type rather than just register size. For example, x86 AVX has 315 // 256-bit registers, but it does not support integer operations 316 // at that width (that requires AVX2). 317 if (MaxVectorRegSizeOption.getNumOccurrences()) 318 MaxVecRegSize = MaxVectorRegSizeOption; 319 else 320 MaxVecRegSize = TTI->getRegisterBitWidth(true); 321 322 MinVecRegSize = MinVectorRegSizeOption; 323 } 324 325 /// \brief Vectorize the tree that starts with the elements in \p VL. 326 /// Returns the vectorized root. 327 Value *vectorizeTree(); 328 329 /// \returns the cost incurred by unwanted spills and fills, caused by 330 /// holding live values over call sites. 331 int getSpillCost(); 332 333 /// \returns the vectorization cost of the subtree that starts at \p VL. 334 /// A negative number means that this is profitable. 335 int getTreeCost(); 336 337 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 338 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 339 void buildTree(ArrayRef<Value *> Roots, 340 ArrayRef<Value *> UserIgnoreLst = None); 341 342 /// Clear the internal data structures that are created by 'buildTree'. 343 void deleteTree() { 344 VectorizableTree.clear(); 345 ScalarToTreeEntry.clear(); 346 MustGather.clear(); 347 ExternalUses.clear(); 348 NumLoadsWantToKeepOrder = 0; 349 NumLoadsWantToChangeOrder = 0; 350 for (auto &Iter : BlocksSchedules) { 351 BlockScheduling *BS = Iter.second.get(); 352 BS->clear(); 353 } 354 MinBWs.clear(); 355 } 356 357 /// \brief Perform LICM and CSE on the newly generated gather sequences. 358 void optimizeGatherSequence(); 359 360 /// \returns true if it is beneficial to reverse the vector order. 361 bool shouldReorder() const { 362 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 363 } 364 365 /// \return The vector element size in bits to use when vectorizing the 366 /// expression tree ending at \p V. If V is a store, the size is the width of 367 /// the stored value. Otherwise, the size is the width of the largest loaded 368 /// value reaching V. This method is used by the vectorizer to calculate 369 /// vectorization factors. 370 unsigned getVectorElementSize(Value *V); 371 372 /// Compute the minimum type sizes required to represent the entries in a 373 /// vectorizable tree. 374 void computeMinimumValueSizes(); 375 376 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 377 unsigned getMaxVecRegSize() const { 378 return MaxVecRegSize; 379 } 380 381 // \returns minimum vector register size as set by cl::opt. 382 unsigned getMinVecRegSize() const { 383 return MinVecRegSize; 384 } 385 386 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 387 /// 388 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 389 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 390 391 private: 392 struct TreeEntry; 393 394 /// \returns the cost of the vectorizable entry. 395 int getEntryCost(TreeEntry *E); 396 397 /// This is the recursive part of buildTree. 398 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 399 400 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 401 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 402 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 403 404 /// Vectorize a single entry in the tree. 405 Value *vectorizeTree(TreeEntry *E); 406 407 /// Vectorize a single entry in the tree, starting in \p VL. 408 Value *vectorizeTree(ArrayRef<Value *> VL); 409 410 /// \returns the pointer to the vectorized value if \p VL is already 411 /// vectorized, or NULL. They may happen in cycles. 412 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 413 414 /// \returns the scalarization cost for this type. Scalarization in this 415 /// context means the creation of vectors from a group of scalars. 416 int getGatherCost(Type *Ty); 417 418 /// \returns the scalarization cost for this list of values. Assuming that 419 /// this subtree gets vectorized, we may need to extract the values from the 420 /// roots. This method calculates the cost of extracting the values. 421 int getGatherCost(ArrayRef<Value *> VL); 422 423 /// \brief Set the Builder insert point to one after the last instruction in 424 /// the bundle 425 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 426 427 /// \returns a vector from a collection of scalars in \p VL. 428 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 429 430 /// \returns whether the VectorizableTree is fully vectorizable and will 431 /// be beneficial even the tree height is tiny. 432 bool isFullyVectorizableTinyTree(); 433 434 /// \reorder commutative operands in alt shuffle if they result in 435 /// vectorized code. 436 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 437 SmallVectorImpl<Value *> &Left, 438 SmallVectorImpl<Value *> &Right); 439 /// \reorder commutative operands to get better probability of 440 /// generating vectorized code. 441 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 442 SmallVectorImpl<Value *> &Left, 443 SmallVectorImpl<Value *> &Right); 444 struct TreeEntry { 445 TreeEntry() : Scalars(), VectorizedValue(nullptr), 446 NeedToGather(0) {} 447 448 /// \returns true if the scalars in VL are equal to this entry. 449 bool isSame(ArrayRef<Value *> VL) const { 450 assert(VL.size() == Scalars.size() && "Invalid size"); 451 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 452 } 453 454 /// A vector of scalars. 455 ValueList Scalars; 456 457 /// The Scalars are vectorized into this value. It is initialized to Null. 458 Value *VectorizedValue; 459 460 /// Do we need to gather this sequence ? 461 bool NeedToGather; 462 }; 463 464 /// Create a new VectorizableTree entry. 465 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 466 VectorizableTree.emplace_back(); 467 int idx = VectorizableTree.size() - 1; 468 TreeEntry *Last = &VectorizableTree[idx]; 469 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 470 Last->NeedToGather = !Vectorized; 471 if (Vectorized) { 472 for (int i = 0, e = VL.size(); i != e; ++i) { 473 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 474 ScalarToTreeEntry[VL[i]] = idx; 475 } 476 } else { 477 MustGather.insert(VL.begin(), VL.end()); 478 } 479 return Last; 480 } 481 482 /// -- Vectorization State -- 483 /// Holds all of the tree entries. 484 std::vector<TreeEntry> VectorizableTree; 485 486 /// Maps a specific scalar to its tree entry. 487 SmallDenseMap<Value*, int> ScalarToTreeEntry; 488 489 /// A list of scalars that we found that we need to keep as scalars. 490 ValueSet MustGather; 491 492 /// This POD struct describes one external user in the vectorized tree. 493 struct ExternalUser { 494 ExternalUser (Value *S, llvm::User *U, int L) : 495 Scalar(S), User(U), Lane(L){} 496 // Which scalar in our function. 497 Value *Scalar; 498 // Which user that uses the scalar. 499 llvm::User *User; 500 // Which lane does the scalar belong to. 501 int Lane; 502 }; 503 typedef SmallVector<ExternalUser, 16> UserList; 504 505 /// Checks if two instructions may access the same memory. 506 /// 507 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 508 /// is invariant in the calling loop. 509 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 510 Instruction *Inst2) { 511 512 // First check if the result is already in the cache. 513 AliasCacheKey key = std::make_pair(Inst1, Inst2); 514 Optional<bool> &result = AliasCache[key]; 515 if (result.hasValue()) { 516 return result.getValue(); 517 } 518 MemoryLocation Loc2 = getLocation(Inst2, AA); 519 bool aliased = true; 520 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 521 // Do the alias check. 522 aliased = AA->alias(Loc1, Loc2); 523 } 524 // Store the result in the cache. 525 result = aliased; 526 return aliased; 527 } 528 529 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 530 531 /// Cache for alias results. 532 /// TODO: consider moving this to the AliasAnalysis itself. 533 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 534 535 /// Removes an instruction from its block and eventually deletes it. 536 /// It's like Instruction::eraseFromParent() except that the actual deletion 537 /// is delayed until BoUpSLP is destructed. 538 /// This is required to ensure that there are no incorrect collisions in the 539 /// AliasCache, which can happen if a new instruction is allocated at the 540 /// same address as a previously deleted instruction. 541 void eraseInstruction(Instruction *I) { 542 I->removeFromParent(); 543 I->dropAllReferences(); 544 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 545 } 546 547 /// Temporary store for deleted instructions. Instructions will be deleted 548 /// eventually when the BoUpSLP is destructed. 549 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 550 551 /// A list of values that need to extracted out of the tree. 552 /// This list holds pairs of (Internal Scalar : External User). 553 UserList ExternalUses; 554 555 /// Values used only by @llvm.assume calls. 556 SmallPtrSet<const Value *, 32> EphValues; 557 558 /// Holds all of the instructions that we gathered. 559 SetVector<Instruction *> GatherSeq; 560 /// A list of blocks that we are going to CSE. 561 SetVector<BasicBlock *> CSEBlocks; 562 563 /// Contains all scheduling relevant data for an instruction. 564 /// A ScheduleData either represents a single instruction or a member of an 565 /// instruction bundle (= a group of instructions which is combined into a 566 /// vector instruction). 567 struct ScheduleData { 568 569 // The initial value for the dependency counters. It means that the 570 // dependencies are not calculated yet. 571 enum { InvalidDeps = -1 }; 572 573 ScheduleData() 574 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 575 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 576 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 577 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 578 579 void init(int BlockSchedulingRegionID) { 580 FirstInBundle = this; 581 NextInBundle = nullptr; 582 NextLoadStore = nullptr; 583 IsScheduled = false; 584 SchedulingRegionID = BlockSchedulingRegionID; 585 UnscheduledDepsInBundle = UnscheduledDeps; 586 clearDependencies(); 587 } 588 589 /// Returns true if the dependency information has been calculated. 590 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 591 592 /// Returns true for single instructions and for bundle representatives 593 /// (= the head of a bundle). 594 bool isSchedulingEntity() const { return FirstInBundle == this; } 595 596 /// Returns true if it represents an instruction bundle and not only a 597 /// single instruction. 598 bool isPartOfBundle() const { 599 return NextInBundle != nullptr || FirstInBundle != this; 600 } 601 602 /// Returns true if it is ready for scheduling, i.e. it has no more 603 /// unscheduled depending instructions/bundles. 604 bool isReady() const { 605 assert(isSchedulingEntity() && 606 "can't consider non-scheduling entity for ready list"); 607 return UnscheduledDepsInBundle == 0 && !IsScheduled; 608 } 609 610 /// Modifies the number of unscheduled dependencies, also updating it for 611 /// the whole bundle. 612 int incrementUnscheduledDeps(int Incr) { 613 UnscheduledDeps += Incr; 614 return FirstInBundle->UnscheduledDepsInBundle += Incr; 615 } 616 617 /// Sets the number of unscheduled dependencies to the number of 618 /// dependencies. 619 void resetUnscheduledDeps() { 620 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 621 } 622 623 /// Clears all dependency information. 624 void clearDependencies() { 625 Dependencies = InvalidDeps; 626 resetUnscheduledDeps(); 627 MemoryDependencies.clear(); 628 } 629 630 void dump(raw_ostream &os) const { 631 if (!isSchedulingEntity()) { 632 os << "/ " << *Inst; 633 } else if (NextInBundle) { 634 os << '[' << *Inst; 635 ScheduleData *SD = NextInBundle; 636 while (SD) { 637 os << ';' << *SD->Inst; 638 SD = SD->NextInBundle; 639 } 640 os << ']'; 641 } else { 642 os << *Inst; 643 } 644 } 645 646 Instruction *Inst; 647 648 /// Points to the head in an instruction bundle (and always to this for 649 /// single instructions). 650 ScheduleData *FirstInBundle; 651 652 /// Single linked list of all instructions in a bundle. Null if it is a 653 /// single instruction. 654 ScheduleData *NextInBundle; 655 656 /// Single linked list of all memory instructions (e.g. load, store, call) 657 /// in the block - until the end of the scheduling region. 658 ScheduleData *NextLoadStore; 659 660 /// The dependent memory instructions. 661 /// This list is derived on demand in calculateDependencies(). 662 SmallVector<ScheduleData *, 4> MemoryDependencies; 663 664 /// This ScheduleData is in the current scheduling region if this matches 665 /// the current SchedulingRegionID of BlockScheduling. 666 int SchedulingRegionID; 667 668 /// Used for getting a "good" final ordering of instructions. 669 int SchedulingPriority; 670 671 /// The number of dependencies. Constitutes of the number of users of the 672 /// instruction plus the number of dependent memory instructions (if any). 673 /// This value is calculated on demand. 674 /// If InvalidDeps, the number of dependencies is not calculated yet. 675 /// 676 int Dependencies; 677 678 /// The number of dependencies minus the number of dependencies of scheduled 679 /// instructions. As soon as this is zero, the instruction/bundle gets ready 680 /// for scheduling. 681 /// Note that this is negative as long as Dependencies is not calculated. 682 int UnscheduledDeps; 683 684 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 685 /// single instructions. 686 int UnscheduledDepsInBundle; 687 688 /// True if this instruction is scheduled (or considered as scheduled in the 689 /// dry-run). 690 bool IsScheduled; 691 }; 692 693 #ifndef NDEBUG 694 friend inline raw_ostream &operator<<(raw_ostream &os, 695 const BoUpSLP::ScheduleData &SD) { 696 SD.dump(os); 697 return os; 698 } 699 #endif 700 701 /// Contains all scheduling data for a basic block. 702 /// 703 struct BlockScheduling { 704 705 BlockScheduling(BasicBlock *BB) 706 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 707 ScheduleStart(nullptr), ScheduleEnd(nullptr), 708 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 709 ScheduleRegionSize(0), 710 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 711 // Make sure that the initial SchedulingRegionID is greater than the 712 // initial SchedulingRegionID in ScheduleData (which is 0). 713 SchedulingRegionID(1) {} 714 715 void clear() { 716 ReadyInsts.clear(); 717 ScheduleStart = nullptr; 718 ScheduleEnd = nullptr; 719 FirstLoadStoreInRegion = nullptr; 720 LastLoadStoreInRegion = nullptr; 721 722 // Reduce the maximum schedule region size by the size of the 723 // previous scheduling run. 724 ScheduleRegionSizeLimit -= ScheduleRegionSize; 725 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 726 ScheduleRegionSizeLimit = MinScheduleRegionSize; 727 ScheduleRegionSize = 0; 728 729 // Make a new scheduling region, i.e. all existing ScheduleData is not 730 // in the new region yet. 731 ++SchedulingRegionID; 732 } 733 734 ScheduleData *getScheduleData(Value *V) { 735 ScheduleData *SD = ScheduleDataMap[V]; 736 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 737 return SD; 738 return nullptr; 739 } 740 741 bool isInSchedulingRegion(ScheduleData *SD) { 742 return SD->SchedulingRegionID == SchedulingRegionID; 743 } 744 745 /// Marks an instruction as scheduled and puts all dependent ready 746 /// instructions into the ready-list. 747 template <typename ReadyListType> 748 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 749 SD->IsScheduled = true; 750 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 751 752 ScheduleData *BundleMember = SD; 753 while (BundleMember) { 754 // Handle the def-use chain dependencies. 755 for (Use &U : BundleMember->Inst->operands()) { 756 ScheduleData *OpDef = getScheduleData(U.get()); 757 if (OpDef && OpDef->hasValidDependencies() && 758 OpDef->incrementUnscheduledDeps(-1) == 0) { 759 // There are no more unscheduled dependencies after decrementing, 760 // so we can put the dependent instruction into the ready list. 761 ScheduleData *DepBundle = OpDef->FirstInBundle; 762 assert(!DepBundle->IsScheduled && 763 "already scheduled bundle gets ready"); 764 ReadyList.insert(DepBundle); 765 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 766 } 767 } 768 // Handle the memory dependencies. 769 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 770 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 771 // There are no more unscheduled dependencies after decrementing, 772 // so we can put the dependent instruction into the ready list. 773 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 774 assert(!DepBundle->IsScheduled && 775 "already scheduled bundle gets ready"); 776 ReadyList.insert(DepBundle); 777 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 778 } 779 } 780 BundleMember = BundleMember->NextInBundle; 781 } 782 } 783 784 /// Put all instructions into the ReadyList which are ready for scheduling. 785 template <typename ReadyListType> 786 void initialFillReadyList(ReadyListType &ReadyList) { 787 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 788 ScheduleData *SD = getScheduleData(I); 789 if (SD->isSchedulingEntity() && SD->isReady()) { 790 ReadyList.insert(SD); 791 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 792 } 793 } 794 } 795 796 /// Checks if a bundle of instructions can be scheduled, i.e. has no 797 /// cyclic dependencies. This is only a dry-run, no instructions are 798 /// actually moved at this stage. 799 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 800 801 /// Un-bundles a group of instructions. 802 void cancelScheduling(ArrayRef<Value *> VL); 803 804 /// Extends the scheduling region so that V is inside the region. 805 /// \returns true if the region size is within the limit. 806 bool extendSchedulingRegion(Value *V); 807 808 /// Initialize the ScheduleData structures for new instructions in the 809 /// scheduling region. 810 void initScheduleData(Instruction *FromI, Instruction *ToI, 811 ScheduleData *PrevLoadStore, 812 ScheduleData *NextLoadStore); 813 814 /// Updates the dependency information of a bundle and of all instructions/ 815 /// bundles which depend on the original bundle. 816 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 817 BoUpSLP *SLP); 818 819 /// Sets all instruction in the scheduling region to un-scheduled. 820 void resetSchedule(); 821 822 BasicBlock *BB; 823 824 /// Simple memory allocation for ScheduleData. 825 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 826 827 /// The size of a ScheduleData array in ScheduleDataChunks. 828 int ChunkSize; 829 830 /// The allocator position in the current chunk, which is the last entry 831 /// of ScheduleDataChunks. 832 int ChunkPos; 833 834 /// Attaches ScheduleData to Instruction. 835 /// Note that the mapping survives during all vectorization iterations, i.e. 836 /// ScheduleData structures are recycled. 837 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 838 839 struct ReadyList : SmallVector<ScheduleData *, 8> { 840 void insert(ScheduleData *SD) { push_back(SD); } 841 }; 842 843 /// The ready-list for scheduling (only used for the dry-run). 844 ReadyList ReadyInsts; 845 846 /// The first instruction of the scheduling region. 847 Instruction *ScheduleStart; 848 849 /// The first instruction _after_ the scheduling region. 850 Instruction *ScheduleEnd; 851 852 /// The first memory accessing instruction in the scheduling region 853 /// (can be null). 854 ScheduleData *FirstLoadStoreInRegion; 855 856 /// The last memory accessing instruction in the scheduling region 857 /// (can be null). 858 ScheduleData *LastLoadStoreInRegion; 859 860 /// The current size of the scheduling region. 861 int ScheduleRegionSize; 862 863 /// The maximum size allowed for the scheduling region. 864 int ScheduleRegionSizeLimit; 865 866 /// The ID of the scheduling region. For a new vectorization iteration this 867 /// is incremented which "removes" all ScheduleData from the region. 868 int SchedulingRegionID; 869 }; 870 871 /// Attaches the BlockScheduling structures to basic blocks. 872 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 873 874 /// Performs the "real" scheduling. Done before vectorization is actually 875 /// performed in a basic block. 876 void scheduleBlock(BlockScheduling *BS); 877 878 /// List of users to ignore during scheduling and that don't need extracting. 879 ArrayRef<Value *> UserIgnoreList; 880 881 // Number of load bundles that contain consecutive loads. 882 int NumLoadsWantToKeepOrder; 883 884 // Number of load bundles that contain consecutive loads in reversed order. 885 int NumLoadsWantToChangeOrder; 886 887 // Analysis and block reference. 888 Function *F; 889 ScalarEvolution *SE; 890 TargetTransformInfo *TTI; 891 TargetLibraryInfo *TLI; 892 AliasAnalysis *AA; 893 LoopInfo *LI; 894 DominatorTree *DT; 895 AssumptionCache *AC; 896 DemandedBits *DB; 897 const DataLayout *DL; 898 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 899 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 900 /// Instruction builder to construct the vectorized tree. 901 IRBuilder<> Builder; 902 903 /// A map of scalar integer values to the smallest bit width with which they 904 /// can legally be represented. 905 MapVector<Value *, uint64_t> MinBWs; 906 }; 907 908 } // end namespace llvm 909 } // end namespace slpvectorizer 910 911 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 912 ArrayRef<Value *> UserIgnoreLst) { 913 deleteTree(); 914 UserIgnoreList = UserIgnoreLst; 915 if (!getSameType(Roots)) 916 return; 917 buildTree_rec(Roots, 0); 918 919 // Collect the values that we need to extract from the tree. 920 for (TreeEntry &EIdx : VectorizableTree) { 921 TreeEntry *Entry = &EIdx; 922 923 // For each lane: 924 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 925 Value *Scalar = Entry->Scalars[Lane]; 926 927 // No need to handle users of gathered values. 928 if (Entry->NeedToGather) 929 continue; 930 931 for (User *U : Scalar->users()) { 932 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 933 934 Instruction *UserInst = dyn_cast<Instruction>(U); 935 if (!UserInst) 936 continue; 937 938 // Skip in-tree scalars that become vectors 939 if (ScalarToTreeEntry.count(U)) { 940 int Idx = ScalarToTreeEntry[U]; 941 TreeEntry *UseEntry = &VectorizableTree[Idx]; 942 Value *UseScalar = UseEntry->Scalars[0]; 943 // Some in-tree scalars will remain as scalar in vectorized 944 // instructions. If that is the case, the one in Lane 0 will 945 // be used. 946 if (UseScalar != U || 947 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 948 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 949 << ".\n"); 950 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 951 continue; 952 } 953 } 954 955 // Ignore users in the user ignore list. 956 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 957 UserIgnoreList.end()) 958 continue; 959 960 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 961 Lane << " from " << *Scalar << ".\n"); 962 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 963 } 964 } 965 } 966 } 967 968 969 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 970 bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy; 971 bool isAltShuffle = false; 972 assert(SameTy && "Invalid types!"); 973 974 if (Depth == RecursionMaxDepth) { 975 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 976 newTreeEntry(VL, false); 977 return; 978 } 979 980 // Don't handle vectors. 981 if (VL[0]->getType()->isVectorTy()) { 982 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 983 newTreeEntry(VL, false); 984 return; 985 } 986 987 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 988 if (SI->getValueOperand()->getType()->isVectorTy()) { 989 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 990 newTreeEntry(VL, false); 991 return; 992 } 993 unsigned Opcode = getSameOpcode(VL); 994 995 // Check that this shuffle vector refers to the alternate 996 // sequence of opcodes. 997 if (Opcode == Instruction::ShuffleVector) { 998 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 999 unsigned Op = I0->getOpcode(); 1000 if (Op != Instruction::ShuffleVector) 1001 isAltShuffle = true; 1002 } 1003 1004 // If all of the operands are identical or constant we have a simple solution. 1005 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1006 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1007 newTreeEntry(VL, false); 1008 return; 1009 } 1010 1011 // We now know that this is a vector of instructions of the same type from 1012 // the same block. 1013 1014 // Don't vectorize ephemeral values. 1015 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1016 if (EphValues.count(VL[i])) { 1017 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1018 ") is ephemeral.\n"); 1019 newTreeEntry(VL, false); 1020 return; 1021 } 1022 } 1023 1024 // Check if this is a duplicate of another entry. 1025 if (ScalarToTreeEntry.count(VL[0])) { 1026 int Idx = ScalarToTreeEntry[VL[0]]; 1027 TreeEntry *E = &VectorizableTree[Idx]; 1028 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1029 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1030 if (E->Scalars[i] != VL[i]) { 1031 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1032 newTreeEntry(VL, false); 1033 return; 1034 } 1035 } 1036 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1037 return; 1038 } 1039 1040 // Check that none of the instructions in the bundle are already in the tree. 1041 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1042 if (ScalarToTreeEntry.count(VL[i])) { 1043 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1044 ") is already in tree.\n"); 1045 newTreeEntry(VL, false); 1046 return; 1047 } 1048 } 1049 1050 // If any of the scalars is marked as a value that needs to stay scalar then 1051 // we need to gather the scalars. 1052 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1053 if (MustGather.count(VL[i])) { 1054 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1055 newTreeEntry(VL, false); 1056 return; 1057 } 1058 } 1059 1060 // Check that all of the users of the scalars that we want to vectorize are 1061 // schedulable. 1062 Instruction *VL0 = cast<Instruction>(VL[0]); 1063 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1064 1065 if (!DT->isReachableFromEntry(BB)) { 1066 // Don't go into unreachable blocks. They may contain instructions with 1067 // dependency cycles which confuse the final scheduling. 1068 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1069 newTreeEntry(VL, false); 1070 return; 1071 } 1072 1073 // Check that every instructions appears once in this bundle. 1074 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1075 for (unsigned j = i+1; j < e; ++j) 1076 if (VL[i] == VL[j]) { 1077 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1078 newTreeEntry(VL, false); 1079 return; 1080 } 1081 1082 auto &BSRef = BlocksSchedules[BB]; 1083 if (!BSRef) { 1084 BSRef = llvm::make_unique<BlockScheduling>(BB); 1085 } 1086 BlockScheduling &BS = *BSRef.get(); 1087 1088 if (!BS.tryScheduleBundle(VL, this)) { 1089 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1090 assert((!BS.getScheduleData(VL[0]) || 1091 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1092 "tryScheduleBundle should cancelScheduling on failure"); 1093 newTreeEntry(VL, false); 1094 return; 1095 } 1096 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1097 1098 switch (Opcode) { 1099 case Instruction::PHI: { 1100 PHINode *PH = dyn_cast<PHINode>(VL0); 1101 1102 // Check for terminator values (e.g. invoke). 1103 for (unsigned j = 0; j < VL.size(); ++j) 1104 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1105 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1106 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1107 if (Term) { 1108 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1109 BS.cancelScheduling(VL); 1110 newTreeEntry(VL, false); 1111 return; 1112 } 1113 } 1114 1115 newTreeEntry(VL, true); 1116 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1117 1118 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1119 ValueList Operands; 1120 // Prepare the operand vector. 1121 for (Value *j : VL) 1122 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1123 PH->getIncomingBlock(i))); 1124 1125 buildTree_rec(Operands, Depth + 1); 1126 } 1127 return; 1128 } 1129 case Instruction::ExtractValue: 1130 case Instruction::ExtractElement: { 1131 bool Reuse = canReuseExtract(VL, Opcode); 1132 if (Reuse) { 1133 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1134 } else { 1135 BS.cancelScheduling(VL); 1136 } 1137 newTreeEntry(VL, Reuse); 1138 return; 1139 } 1140 case Instruction::Load: { 1141 // Check that a vectorized load would load the same memory as a scalar 1142 // load. 1143 // For example we don't want vectorize loads that are smaller than 8 bit. 1144 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1145 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1146 // such a struct we read/write packed bits disagreeing with the 1147 // unvectorized version. 1148 Type *ScalarTy = VL[0]->getType(); 1149 1150 if (DL->getTypeSizeInBits(ScalarTy) != 1151 DL->getTypeAllocSizeInBits(ScalarTy)) { 1152 BS.cancelScheduling(VL); 1153 newTreeEntry(VL, false); 1154 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1155 return; 1156 } 1157 1158 // Make sure all loads in the bundle are simple - we can't vectorize 1159 // atomic or volatile loads. 1160 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1161 LoadInst *L = cast<LoadInst>(VL[i]); 1162 if (!L->isSimple()) { 1163 BS.cancelScheduling(VL); 1164 newTreeEntry(VL, false); 1165 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1166 return; 1167 } 1168 } 1169 1170 // Check if the loads are consecutive, reversed, or neither. 1171 // TODO: What we really want is to sort the loads, but for now, check 1172 // the two likely directions. 1173 bool Consecutive = true; 1174 bool ReverseConsecutive = true; 1175 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1176 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1177 Consecutive = false; 1178 break; 1179 } else { 1180 ReverseConsecutive = false; 1181 } 1182 } 1183 1184 if (Consecutive) { 1185 ++NumLoadsWantToKeepOrder; 1186 newTreeEntry(VL, true); 1187 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1188 return; 1189 } 1190 1191 // If none of the load pairs were consecutive when checked in order, 1192 // check the reverse order. 1193 if (ReverseConsecutive) 1194 for (unsigned i = VL.size() - 1; i > 0; --i) 1195 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1196 ReverseConsecutive = false; 1197 break; 1198 } 1199 1200 BS.cancelScheduling(VL); 1201 newTreeEntry(VL, false); 1202 1203 if (ReverseConsecutive) { 1204 ++NumLoadsWantToChangeOrder; 1205 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1206 } else { 1207 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1208 } 1209 return; 1210 } 1211 case Instruction::ZExt: 1212 case Instruction::SExt: 1213 case Instruction::FPToUI: 1214 case Instruction::FPToSI: 1215 case Instruction::FPExt: 1216 case Instruction::PtrToInt: 1217 case Instruction::IntToPtr: 1218 case Instruction::SIToFP: 1219 case Instruction::UIToFP: 1220 case Instruction::Trunc: 1221 case Instruction::FPTrunc: 1222 case Instruction::BitCast: { 1223 Type *SrcTy = VL0->getOperand(0)->getType(); 1224 for (unsigned i = 0; i < VL.size(); ++i) { 1225 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1226 if (Ty != SrcTy || !isValidElementType(Ty)) { 1227 BS.cancelScheduling(VL); 1228 newTreeEntry(VL, false); 1229 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1230 return; 1231 } 1232 } 1233 newTreeEntry(VL, true); 1234 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1235 1236 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1237 ValueList Operands; 1238 // Prepare the operand vector. 1239 for (Value *j : VL) 1240 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1241 1242 buildTree_rec(Operands, Depth+1); 1243 } 1244 return; 1245 } 1246 case Instruction::ICmp: 1247 case Instruction::FCmp: { 1248 // Check that all of the compares have the same predicate. 1249 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1250 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1251 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1252 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1253 if (Cmp->getPredicate() != P0 || 1254 Cmp->getOperand(0)->getType() != ComparedTy) { 1255 BS.cancelScheduling(VL); 1256 newTreeEntry(VL, false); 1257 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1258 return; 1259 } 1260 } 1261 1262 newTreeEntry(VL, true); 1263 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1264 1265 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1266 ValueList Operands; 1267 // Prepare the operand vector. 1268 for (Value *j : VL) 1269 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1270 1271 buildTree_rec(Operands, Depth+1); 1272 } 1273 return; 1274 } 1275 case Instruction::Select: 1276 case Instruction::Add: 1277 case Instruction::FAdd: 1278 case Instruction::Sub: 1279 case Instruction::FSub: 1280 case Instruction::Mul: 1281 case Instruction::FMul: 1282 case Instruction::UDiv: 1283 case Instruction::SDiv: 1284 case Instruction::FDiv: 1285 case Instruction::URem: 1286 case Instruction::SRem: 1287 case Instruction::FRem: 1288 case Instruction::Shl: 1289 case Instruction::LShr: 1290 case Instruction::AShr: 1291 case Instruction::And: 1292 case Instruction::Or: 1293 case Instruction::Xor: { 1294 newTreeEntry(VL, true); 1295 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1296 1297 // Sort operands of the instructions so that each side is more likely to 1298 // have the same opcode. 1299 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1300 ValueList Left, Right; 1301 reorderInputsAccordingToOpcode(VL, Left, Right); 1302 buildTree_rec(Left, Depth + 1); 1303 buildTree_rec(Right, Depth + 1); 1304 return; 1305 } 1306 1307 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1308 ValueList Operands; 1309 // Prepare the operand vector. 1310 for (Value *j : VL) 1311 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1312 1313 buildTree_rec(Operands, Depth+1); 1314 } 1315 return; 1316 } 1317 case Instruction::GetElementPtr: { 1318 // We don't combine GEPs with complicated (nested) indexing. 1319 for (unsigned j = 0; j < VL.size(); ++j) { 1320 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1321 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1322 BS.cancelScheduling(VL); 1323 newTreeEntry(VL, false); 1324 return; 1325 } 1326 } 1327 1328 // We can't combine several GEPs into one vector if they operate on 1329 // different types. 1330 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1331 for (unsigned j = 0; j < VL.size(); ++j) { 1332 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1333 if (Ty0 != CurTy) { 1334 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1335 BS.cancelScheduling(VL); 1336 newTreeEntry(VL, false); 1337 return; 1338 } 1339 } 1340 1341 // We don't combine GEPs with non-constant indexes. 1342 for (unsigned j = 0; j < VL.size(); ++j) { 1343 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1344 if (!isa<ConstantInt>(Op)) { 1345 DEBUG( 1346 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1347 BS.cancelScheduling(VL); 1348 newTreeEntry(VL, false); 1349 return; 1350 } 1351 } 1352 1353 newTreeEntry(VL, true); 1354 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1355 for (unsigned i = 0, e = 2; i < e; ++i) { 1356 ValueList Operands; 1357 // Prepare the operand vector. 1358 for (Value *j : VL) 1359 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1360 1361 buildTree_rec(Operands, Depth + 1); 1362 } 1363 return; 1364 } 1365 case Instruction::Store: { 1366 // Check if the stores are consecutive or of we need to swizzle them. 1367 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1368 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1369 BS.cancelScheduling(VL); 1370 newTreeEntry(VL, false); 1371 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1372 return; 1373 } 1374 1375 newTreeEntry(VL, true); 1376 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1377 1378 ValueList Operands; 1379 for (Value *j : VL) 1380 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1381 1382 buildTree_rec(Operands, Depth + 1); 1383 return; 1384 } 1385 case Instruction::Call: { 1386 // Check if the calls are all to the same vectorizable intrinsic. 1387 CallInst *CI = cast<CallInst>(VL[0]); 1388 // Check if this is an Intrinsic call or something that can be 1389 // represented by an intrinsic call 1390 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1391 if (!isTriviallyVectorizable(ID)) { 1392 BS.cancelScheduling(VL); 1393 newTreeEntry(VL, false); 1394 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1395 return; 1396 } 1397 Function *Int = CI->getCalledFunction(); 1398 Value *A1I = nullptr; 1399 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1400 A1I = CI->getArgOperand(1); 1401 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1402 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1403 if (!CI2 || CI2->getCalledFunction() != Int || 1404 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1405 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1406 BS.cancelScheduling(VL); 1407 newTreeEntry(VL, false); 1408 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1409 << "\n"); 1410 return; 1411 } 1412 // ctlz,cttz and powi are special intrinsics whose second argument 1413 // should be same in order for them to be vectorized. 1414 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1415 Value *A1J = CI2->getArgOperand(1); 1416 if (A1I != A1J) { 1417 BS.cancelScheduling(VL); 1418 newTreeEntry(VL, false); 1419 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1420 << " argument "<< A1I<<"!=" << A1J 1421 << "\n"); 1422 return; 1423 } 1424 } 1425 // Verify that the bundle operands are identical between the two calls. 1426 if (CI->hasOperandBundles() && 1427 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1428 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1429 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1430 BS.cancelScheduling(VL); 1431 newTreeEntry(VL, false); 1432 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1433 << *VL[i] << '\n'); 1434 return; 1435 } 1436 } 1437 1438 newTreeEntry(VL, true); 1439 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1440 ValueList Operands; 1441 // Prepare the operand vector. 1442 for (Value *j : VL) { 1443 CallInst *CI2 = dyn_cast<CallInst>(j); 1444 Operands.push_back(CI2->getArgOperand(i)); 1445 } 1446 buildTree_rec(Operands, Depth + 1); 1447 } 1448 return; 1449 } 1450 case Instruction::ShuffleVector: { 1451 // If this is not an alternate sequence of opcode like add-sub 1452 // then do not vectorize this instruction. 1453 if (!isAltShuffle) { 1454 BS.cancelScheduling(VL); 1455 newTreeEntry(VL, false); 1456 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1457 return; 1458 } 1459 newTreeEntry(VL, true); 1460 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1461 1462 // Reorder operands if reordering would enable vectorization. 1463 if (isa<BinaryOperator>(VL0)) { 1464 ValueList Left, Right; 1465 reorderAltShuffleOperands(VL, Left, Right); 1466 buildTree_rec(Left, Depth + 1); 1467 buildTree_rec(Right, Depth + 1); 1468 return; 1469 } 1470 1471 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1472 ValueList Operands; 1473 // Prepare the operand vector. 1474 for (Value *j : VL) 1475 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1476 1477 buildTree_rec(Operands, Depth + 1); 1478 } 1479 return; 1480 } 1481 default: 1482 BS.cancelScheduling(VL); 1483 newTreeEntry(VL, false); 1484 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1485 return; 1486 } 1487 } 1488 1489 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1490 unsigned N; 1491 Type *EltTy; 1492 auto *ST = dyn_cast<StructType>(T); 1493 if (ST) { 1494 N = ST->getNumElements(); 1495 EltTy = *ST->element_begin(); 1496 } else { 1497 N = cast<ArrayType>(T)->getNumElements(); 1498 EltTy = cast<ArrayType>(T)->getElementType(); 1499 } 1500 if (!isValidElementType(EltTy)) 1501 return 0; 1502 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1503 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1504 return 0; 1505 if (ST) { 1506 // Check that struct is homogeneous. 1507 for (const auto *Ty : ST->elements()) 1508 if (Ty != EltTy) 1509 return 0; 1510 } 1511 return N; 1512 } 1513 1514 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1515 assert(Opcode == Instruction::ExtractElement || 1516 Opcode == Instruction::ExtractValue); 1517 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1518 // Check if all of the extracts come from the same vector and from the 1519 // correct offset. 1520 Value *VL0 = VL[0]; 1521 Instruction *E0 = cast<Instruction>(VL0); 1522 Value *Vec = E0->getOperand(0); 1523 1524 // We have to extract from a vector/aggregate with the same number of elements. 1525 unsigned NElts; 1526 if (Opcode == Instruction::ExtractValue) { 1527 const DataLayout &DL = E0->getModule()->getDataLayout(); 1528 NElts = canMapToVector(Vec->getType(), DL); 1529 if (!NElts) 1530 return false; 1531 // Check if load can be rewritten as load of vector. 1532 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1533 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1534 return false; 1535 } else { 1536 NElts = Vec->getType()->getVectorNumElements(); 1537 } 1538 1539 if (NElts != VL.size()) 1540 return false; 1541 1542 // Check that all of the indices extract from the correct offset. 1543 if (!matchExtractIndex(E0, 0, Opcode)) 1544 return false; 1545 1546 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1547 Instruction *E = cast<Instruction>(VL[i]); 1548 if (!matchExtractIndex(E, i, Opcode)) 1549 return false; 1550 if (E->getOperand(0) != Vec) 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 int BoUpSLP::getEntryCost(TreeEntry *E) { 1558 ArrayRef<Value*> VL = E->Scalars; 1559 1560 Type *ScalarTy = VL[0]->getType(); 1561 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1562 ScalarTy = SI->getValueOperand()->getType(); 1563 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1564 1565 // If we have computed a smaller type for the expression, update VecTy so 1566 // that the costs will be accurate. 1567 if (MinBWs.count(VL[0])) 1568 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1569 VL.size()); 1570 1571 if (E->NeedToGather) { 1572 if (allConstant(VL)) 1573 return 0; 1574 if (isSplat(VL)) { 1575 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1576 } 1577 return getGatherCost(E->Scalars); 1578 } 1579 unsigned Opcode = getSameOpcode(VL); 1580 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1581 Instruction *VL0 = cast<Instruction>(VL[0]); 1582 switch (Opcode) { 1583 case Instruction::PHI: { 1584 return 0; 1585 } 1586 case Instruction::ExtractValue: 1587 case Instruction::ExtractElement: { 1588 if (canReuseExtract(VL, Opcode)) { 1589 int DeadCost = 0; 1590 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1591 Instruction *E = cast<Instruction>(VL[i]); 1592 if (E->hasOneUse()) 1593 // Take credit for instruction that will become dead. 1594 DeadCost += 1595 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1596 } 1597 return -DeadCost; 1598 } 1599 return getGatherCost(VecTy); 1600 } 1601 case Instruction::ZExt: 1602 case Instruction::SExt: 1603 case Instruction::FPToUI: 1604 case Instruction::FPToSI: 1605 case Instruction::FPExt: 1606 case Instruction::PtrToInt: 1607 case Instruction::IntToPtr: 1608 case Instruction::SIToFP: 1609 case Instruction::UIToFP: 1610 case Instruction::Trunc: 1611 case Instruction::FPTrunc: 1612 case Instruction::BitCast: { 1613 Type *SrcTy = VL0->getOperand(0)->getType(); 1614 1615 // Calculate the cost of this instruction. 1616 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1617 VL0->getType(), SrcTy); 1618 1619 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1620 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1621 return VecCost - ScalarCost; 1622 } 1623 case Instruction::FCmp: 1624 case Instruction::ICmp: 1625 case Instruction::Select: { 1626 // Calculate the cost of this instruction. 1627 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1628 int ScalarCost = VecTy->getNumElements() * 1629 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1630 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1631 return VecCost - ScalarCost; 1632 } 1633 case Instruction::Add: 1634 case Instruction::FAdd: 1635 case Instruction::Sub: 1636 case Instruction::FSub: 1637 case Instruction::Mul: 1638 case Instruction::FMul: 1639 case Instruction::UDiv: 1640 case Instruction::SDiv: 1641 case Instruction::FDiv: 1642 case Instruction::URem: 1643 case Instruction::SRem: 1644 case Instruction::FRem: 1645 case Instruction::Shl: 1646 case Instruction::LShr: 1647 case Instruction::AShr: 1648 case Instruction::And: 1649 case Instruction::Or: 1650 case Instruction::Xor: { 1651 // Certain instructions can be cheaper to vectorize if they have a 1652 // constant second vector operand. 1653 TargetTransformInfo::OperandValueKind Op1VK = 1654 TargetTransformInfo::OK_AnyValue; 1655 TargetTransformInfo::OperandValueKind Op2VK = 1656 TargetTransformInfo::OK_UniformConstantValue; 1657 TargetTransformInfo::OperandValueProperties Op1VP = 1658 TargetTransformInfo::OP_None; 1659 TargetTransformInfo::OperandValueProperties Op2VP = 1660 TargetTransformInfo::OP_None; 1661 1662 // If all operands are exactly the same ConstantInt then set the 1663 // operand kind to OK_UniformConstantValue. 1664 // If instead not all operands are constants, then set the operand kind 1665 // to OK_AnyValue. If all operands are constants but not the same, 1666 // then set the operand kind to OK_NonUniformConstantValue. 1667 ConstantInt *CInt = nullptr; 1668 for (unsigned i = 0; i < VL.size(); ++i) { 1669 const Instruction *I = cast<Instruction>(VL[i]); 1670 if (!isa<ConstantInt>(I->getOperand(1))) { 1671 Op2VK = TargetTransformInfo::OK_AnyValue; 1672 break; 1673 } 1674 if (i == 0) { 1675 CInt = cast<ConstantInt>(I->getOperand(1)); 1676 continue; 1677 } 1678 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1679 CInt != cast<ConstantInt>(I->getOperand(1))) 1680 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1681 } 1682 // FIXME: Currently cost of model modification for division by power of 1683 // 2 is handled for X86 and AArch64. Add support for other targets. 1684 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1685 CInt->getValue().isPowerOf2()) 1686 Op2VP = TargetTransformInfo::OP_PowerOf2; 1687 1688 int ScalarCost = VecTy->getNumElements() * 1689 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1690 Op2VK, Op1VP, Op2VP); 1691 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1692 Op1VP, Op2VP); 1693 return VecCost - ScalarCost; 1694 } 1695 case Instruction::GetElementPtr: { 1696 TargetTransformInfo::OperandValueKind Op1VK = 1697 TargetTransformInfo::OK_AnyValue; 1698 TargetTransformInfo::OperandValueKind Op2VK = 1699 TargetTransformInfo::OK_UniformConstantValue; 1700 1701 int ScalarCost = 1702 VecTy->getNumElements() * 1703 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1704 int VecCost = 1705 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1706 1707 return VecCost - ScalarCost; 1708 } 1709 case Instruction::Load: { 1710 // Cost of wide load - cost of scalar loads. 1711 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1712 int ScalarLdCost = VecTy->getNumElements() * 1713 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1714 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1715 VecTy, alignment, 0); 1716 return VecLdCost - ScalarLdCost; 1717 } 1718 case Instruction::Store: { 1719 // We know that we can merge the stores. Calculate the cost. 1720 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1721 int ScalarStCost = VecTy->getNumElements() * 1722 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1723 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1724 VecTy, alignment, 0); 1725 return VecStCost - ScalarStCost; 1726 } 1727 case Instruction::Call: { 1728 CallInst *CI = cast<CallInst>(VL0); 1729 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1730 1731 // Calculate the cost of the scalar and vector calls. 1732 SmallVector<Type*, 4> ScalarTys, VecTys; 1733 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1734 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1735 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1736 VecTy->getNumElements())); 1737 } 1738 1739 FastMathFlags FMF; 1740 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1741 FMF = FPMO->getFastMathFlags(); 1742 1743 int ScalarCallCost = VecTy->getNumElements() * 1744 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1745 1746 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1747 1748 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1749 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1750 << " for " << *CI << "\n"); 1751 1752 return VecCallCost - ScalarCallCost; 1753 } 1754 case Instruction::ShuffleVector: { 1755 TargetTransformInfo::OperandValueKind Op1VK = 1756 TargetTransformInfo::OK_AnyValue; 1757 TargetTransformInfo::OperandValueKind Op2VK = 1758 TargetTransformInfo::OK_AnyValue; 1759 int ScalarCost = 0; 1760 int VecCost = 0; 1761 for (Value *i : VL) { 1762 Instruction *I = cast<Instruction>(i); 1763 if (!I) 1764 break; 1765 ScalarCost += 1766 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1767 } 1768 // VecCost is equal to sum of the cost of creating 2 vectors 1769 // and the cost of creating shuffle. 1770 Instruction *I0 = cast<Instruction>(VL[0]); 1771 VecCost = 1772 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1773 Instruction *I1 = cast<Instruction>(VL[1]); 1774 VecCost += 1775 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1776 VecCost += 1777 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1778 return VecCost - ScalarCost; 1779 } 1780 default: 1781 llvm_unreachable("Unknown instruction"); 1782 } 1783 } 1784 1785 bool BoUpSLP::isFullyVectorizableTinyTree() { 1786 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1787 VectorizableTree.size() << " is fully vectorizable .\n"); 1788 1789 // We only handle trees of height 2. 1790 if (VectorizableTree.size() != 2) 1791 return false; 1792 1793 // Handle splat and all-constants stores. 1794 if (!VectorizableTree[0].NeedToGather && 1795 (allConstant(VectorizableTree[1].Scalars) || 1796 isSplat(VectorizableTree[1].Scalars))) 1797 return true; 1798 1799 // Gathering cost would be too much for tiny trees. 1800 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1801 return false; 1802 1803 return true; 1804 } 1805 1806 int BoUpSLP::getSpillCost() { 1807 // Walk from the bottom of the tree to the top, tracking which values are 1808 // live. When we see a call instruction that is not part of our tree, 1809 // query TTI to see if there is a cost to keeping values live over it 1810 // (for example, if spills and fills are required). 1811 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1812 int Cost = 0; 1813 1814 SmallPtrSet<Instruction*, 4> LiveValues; 1815 Instruction *PrevInst = nullptr; 1816 1817 for (const auto &N : VectorizableTree) { 1818 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1819 if (!Inst) 1820 continue; 1821 1822 if (!PrevInst) { 1823 PrevInst = Inst; 1824 continue; 1825 } 1826 1827 // Update LiveValues. 1828 LiveValues.erase(PrevInst); 1829 for (auto &J : PrevInst->operands()) { 1830 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1831 LiveValues.insert(cast<Instruction>(&*J)); 1832 } 1833 1834 DEBUG( 1835 dbgs() << "SLP: #LV: " << LiveValues.size(); 1836 for (auto *X : LiveValues) 1837 dbgs() << " " << X->getName(); 1838 dbgs() << ", Looking at "; 1839 Inst->dump(); 1840 ); 1841 1842 // Now find the sequence of instructions between PrevInst and Inst. 1843 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1844 PrevInstIt(PrevInst->getIterator()); 1845 --PrevInstIt; 1846 while (InstIt != PrevInstIt) { 1847 if (PrevInstIt == PrevInst->getParent()->rend()) { 1848 PrevInstIt = Inst->getParent()->rbegin(); 1849 continue; 1850 } 1851 1852 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1853 SmallVector<Type*, 4> V; 1854 for (auto *II : LiveValues) 1855 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1856 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1857 } 1858 1859 ++PrevInstIt; 1860 } 1861 1862 PrevInst = Inst; 1863 } 1864 1865 return Cost; 1866 } 1867 1868 int BoUpSLP::getTreeCost() { 1869 int Cost = 0; 1870 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1871 VectorizableTree.size() << ".\n"); 1872 1873 // We only vectorize tiny trees if it is fully vectorizable. 1874 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1875 if (VectorizableTree.empty()) { 1876 assert(!ExternalUses.size() && "We should not have any external users"); 1877 } 1878 return INT_MAX; 1879 } 1880 1881 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1882 1883 for (TreeEntry &TE : VectorizableTree) { 1884 int C = getEntryCost(&TE); 1885 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1886 << *TE.Scalars[0] << ".\n"); 1887 Cost += C; 1888 } 1889 1890 SmallSet<Value *, 16> ExtractCostCalculated; 1891 int ExtractCost = 0; 1892 for (ExternalUser &EU : ExternalUses) { 1893 // We only add extract cost once for the same scalar. 1894 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1895 continue; 1896 1897 // Uses by ephemeral values are free (because the ephemeral value will be 1898 // removed prior to code generation, and so the extraction will be 1899 // removed as well). 1900 if (EphValues.count(EU.User)) 1901 continue; 1902 1903 // If we plan to rewrite the tree in a smaller type, we will need to sign 1904 // extend the extracted value back to the original type. Here, we account 1905 // for the extract and the added cost of the sign extend if needed. 1906 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1907 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1908 if (MinBWs.count(ScalarRoot)) { 1909 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1910 VecTy = VectorType::get(MinTy, BundleWidth); 1911 ExtractCost += TTI->getExtractWithExtendCost( 1912 Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); 1913 } else { 1914 ExtractCost += 1915 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1916 } 1917 } 1918 1919 int SpillCost = getSpillCost(); 1920 Cost += SpillCost + ExtractCost; 1921 1922 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1923 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1924 << "SLP: Total Cost = " << Cost << ".\n"); 1925 return Cost; 1926 } 1927 1928 int BoUpSLP::getGatherCost(Type *Ty) { 1929 int Cost = 0; 1930 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1931 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1932 return Cost; 1933 } 1934 1935 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1936 // Find the type of the operands in VL. 1937 Type *ScalarTy = VL[0]->getType(); 1938 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1939 ScalarTy = SI->getValueOperand()->getType(); 1940 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1941 // Find the cost of inserting/extracting values from the vector. 1942 return getGatherCost(VecTy); 1943 } 1944 1945 // Reorder commutative operations in alternate shuffle if the resulting vectors 1946 // are consecutive loads. This would allow us to vectorize the tree. 1947 // If we have something like- 1948 // load a[0] - load b[0] 1949 // load b[1] + load a[1] 1950 // load a[2] - load b[2] 1951 // load a[3] + load b[3] 1952 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1953 // code. 1954 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1955 SmallVectorImpl<Value *> &Left, 1956 SmallVectorImpl<Value *> &Right) { 1957 // Push left and right operands of binary operation into Left and Right 1958 for (Value *i : VL) { 1959 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1960 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1961 } 1962 1963 // Reorder if we have a commutative operation and consecutive access 1964 // are on either side of the alternate instructions. 1965 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1966 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1967 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1968 Instruction *VL1 = cast<Instruction>(VL[j]); 1969 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1970 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1971 std::swap(Left[j], Right[j]); 1972 continue; 1973 } else if (VL2->isCommutative() && 1974 isConsecutiveAccess(L, L1, *DL, *SE)) { 1975 std::swap(Left[j + 1], Right[j + 1]); 1976 continue; 1977 } 1978 // else unchanged 1979 } 1980 } 1981 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1982 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1983 Instruction *VL1 = cast<Instruction>(VL[j]); 1984 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1985 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1986 std::swap(Left[j], Right[j]); 1987 continue; 1988 } else if (VL2->isCommutative() && 1989 isConsecutiveAccess(L, L1, *DL, *SE)) { 1990 std::swap(Left[j + 1], Right[j + 1]); 1991 continue; 1992 } 1993 // else unchanged 1994 } 1995 } 1996 } 1997 } 1998 1999 // Return true if I should be commuted before adding it's left and right 2000 // operands to the arrays Left and Right. 2001 // 2002 // The vectorizer is trying to either have all elements one side being 2003 // instruction with the same opcode to enable further vectorization, or having 2004 // a splat to lower the vectorizing cost. 2005 static bool shouldReorderOperands(int i, Instruction &I, 2006 SmallVectorImpl<Value *> &Left, 2007 SmallVectorImpl<Value *> &Right, 2008 bool AllSameOpcodeLeft, 2009 bool AllSameOpcodeRight, bool SplatLeft, 2010 bool SplatRight) { 2011 Value *VLeft = I.getOperand(0); 2012 Value *VRight = I.getOperand(1); 2013 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2014 if (SplatRight) { 2015 if (VRight == Right[i - 1]) 2016 // Preserve SplatRight 2017 return false; 2018 if (VLeft == Right[i - 1]) { 2019 // Commuting would preserve SplatRight, but we don't want to break 2020 // SplatLeft either, i.e. preserve the original order if possible. 2021 // (FIXME: why do we care?) 2022 if (SplatLeft && VLeft == Left[i - 1]) 2023 return false; 2024 return true; 2025 } 2026 } 2027 // Symmetrically handle Right side. 2028 if (SplatLeft) { 2029 if (VLeft == Left[i - 1]) 2030 // Preserve SplatLeft 2031 return false; 2032 if (VRight == Left[i - 1]) 2033 return true; 2034 } 2035 2036 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2037 Instruction *IRight = dyn_cast<Instruction>(VRight); 2038 2039 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2040 // it and not the right, in this case we want to commute. 2041 if (AllSameOpcodeRight) { 2042 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2043 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2044 // Do not commute, a match on the right preserves AllSameOpcodeRight 2045 return false; 2046 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2047 // We have a match and may want to commute, but first check if there is 2048 // not also a match on the existing operands on the Left to preserve 2049 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2050 // (FIXME: why do we care?) 2051 if (AllSameOpcodeLeft && ILeft && 2052 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2053 return false; 2054 return true; 2055 } 2056 } 2057 // Symmetrically handle Left side. 2058 if (AllSameOpcodeLeft) { 2059 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2060 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2061 return false; 2062 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2063 return true; 2064 } 2065 return false; 2066 } 2067 2068 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2069 SmallVectorImpl<Value *> &Left, 2070 SmallVectorImpl<Value *> &Right) { 2071 2072 if (VL.size()) { 2073 // Peel the first iteration out of the loop since there's nothing 2074 // interesting to do anyway and it simplifies the checks in the loop. 2075 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2076 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2077 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2078 // Favor having instruction to the right. FIXME: why? 2079 std::swap(VLeft, VRight); 2080 Left.push_back(VLeft); 2081 Right.push_back(VRight); 2082 } 2083 2084 // Keep track if we have instructions with all the same opcode on one side. 2085 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2086 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2087 // Keep track if we have one side with all the same value (broadcast). 2088 bool SplatLeft = true; 2089 bool SplatRight = true; 2090 2091 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2092 Instruction *I = cast<Instruction>(VL[i]); 2093 assert(I->isCommutative() && "Can only process commutative instruction"); 2094 // Commute to favor either a splat or maximizing having the same opcodes on 2095 // one side. 2096 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2097 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2098 Left.push_back(I->getOperand(1)); 2099 Right.push_back(I->getOperand(0)); 2100 } else { 2101 Left.push_back(I->getOperand(0)); 2102 Right.push_back(I->getOperand(1)); 2103 } 2104 // Update Splat* and AllSameOpcode* after the insertion. 2105 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2106 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2107 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2108 (cast<Instruction>(Left[i - 1])->getOpcode() == 2109 cast<Instruction>(Left[i])->getOpcode()); 2110 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2111 (cast<Instruction>(Right[i - 1])->getOpcode() == 2112 cast<Instruction>(Right[i])->getOpcode()); 2113 } 2114 2115 // If one operand end up being broadcast, return this operand order. 2116 if (SplatRight || SplatLeft) 2117 return; 2118 2119 // Finally check if we can get longer vectorizable chain by reordering 2120 // without breaking the good operand order detected above. 2121 // E.g. If we have something like- 2122 // load a[0] load b[0] 2123 // load b[1] load a[1] 2124 // load a[2] load b[2] 2125 // load a[3] load b[3] 2126 // Reordering the second load b[1] load a[1] would allow us to vectorize 2127 // this code and we still retain AllSameOpcode property. 2128 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2129 // such as- 2130 // add a[0],c[0] load b[0] 2131 // add a[1],c[2] load b[1] 2132 // b[2] load b[2] 2133 // add a[3],c[3] load b[3] 2134 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2135 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2136 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2137 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2138 std::swap(Left[j + 1], Right[j + 1]); 2139 continue; 2140 } 2141 } 2142 } 2143 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2144 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2145 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2146 std::swap(Left[j + 1], Right[j + 1]); 2147 continue; 2148 } 2149 } 2150 } 2151 // else unchanged 2152 } 2153 } 2154 2155 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2156 Instruction *VL0 = cast<Instruction>(VL[0]); 2157 BasicBlock::iterator NextInst(VL0); 2158 ++NextInst; 2159 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2160 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2161 } 2162 2163 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2164 Value *Vec = UndefValue::get(Ty); 2165 // Generate the 'InsertElement' instruction. 2166 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2167 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2168 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2169 GatherSeq.insert(Insrt); 2170 CSEBlocks.insert(Insrt->getParent()); 2171 2172 // Add to our 'need-to-extract' list. 2173 if (ScalarToTreeEntry.count(VL[i])) { 2174 int Idx = ScalarToTreeEntry[VL[i]]; 2175 TreeEntry *E = &VectorizableTree[Idx]; 2176 // Find which lane we need to extract. 2177 int FoundLane = -1; 2178 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2179 // Is this the lane of the scalar that we are looking for ? 2180 if (E->Scalars[Lane] == VL[i]) { 2181 FoundLane = Lane; 2182 break; 2183 } 2184 } 2185 assert(FoundLane >= 0 && "Could not find the correct lane"); 2186 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2187 } 2188 } 2189 } 2190 2191 return Vec; 2192 } 2193 2194 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2195 SmallDenseMap<Value*, int>::const_iterator Entry 2196 = ScalarToTreeEntry.find(VL[0]); 2197 if (Entry != ScalarToTreeEntry.end()) { 2198 int Idx = Entry->second; 2199 const TreeEntry *En = &VectorizableTree[Idx]; 2200 if (En->isSame(VL) && En->VectorizedValue) 2201 return En->VectorizedValue; 2202 } 2203 return nullptr; 2204 } 2205 2206 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2207 if (ScalarToTreeEntry.count(VL[0])) { 2208 int Idx = ScalarToTreeEntry[VL[0]]; 2209 TreeEntry *E = &VectorizableTree[Idx]; 2210 if (E->isSame(VL)) 2211 return vectorizeTree(E); 2212 } 2213 2214 Type *ScalarTy = VL[0]->getType(); 2215 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2216 ScalarTy = SI->getValueOperand()->getType(); 2217 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2218 2219 return Gather(VL, VecTy); 2220 } 2221 2222 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2223 IRBuilder<>::InsertPointGuard Guard(Builder); 2224 2225 if (E->VectorizedValue) { 2226 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2227 return E->VectorizedValue; 2228 } 2229 2230 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2231 Type *ScalarTy = VL0->getType(); 2232 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2233 ScalarTy = SI->getValueOperand()->getType(); 2234 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2235 2236 if (E->NeedToGather) { 2237 setInsertPointAfterBundle(E->Scalars); 2238 return Gather(E->Scalars, VecTy); 2239 } 2240 2241 unsigned Opcode = getSameOpcode(E->Scalars); 2242 2243 switch (Opcode) { 2244 case Instruction::PHI: { 2245 PHINode *PH = dyn_cast<PHINode>(VL0); 2246 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2247 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2248 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2249 E->VectorizedValue = NewPhi; 2250 2251 // PHINodes may have multiple entries from the same block. We want to 2252 // visit every block once. 2253 SmallSet<BasicBlock*, 4> VisitedBBs; 2254 2255 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2256 ValueList Operands; 2257 BasicBlock *IBB = PH->getIncomingBlock(i); 2258 2259 if (!VisitedBBs.insert(IBB).second) { 2260 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2261 continue; 2262 } 2263 2264 // Prepare the operand vector. 2265 for (Value *V : E->Scalars) 2266 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2267 2268 Builder.SetInsertPoint(IBB->getTerminator()); 2269 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2270 Value *Vec = vectorizeTree(Operands); 2271 NewPhi->addIncoming(Vec, IBB); 2272 } 2273 2274 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2275 "Invalid number of incoming values"); 2276 return NewPhi; 2277 } 2278 2279 case Instruction::ExtractElement: { 2280 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2281 Value *V = VL0->getOperand(0); 2282 E->VectorizedValue = V; 2283 return V; 2284 } 2285 return Gather(E->Scalars, VecTy); 2286 } 2287 case Instruction::ExtractValue: { 2288 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2289 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2290 Builder.SetInsertPoint(LI); 2291 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2292 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2293 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2294 E->VectorizedValue = V; 2295 return propagateMetadata(V, E->Scalars); 2296 } 2297 return Gather(E->Scalars, VecTy); 2298 } 2299 case Instruction::ZExt: 2300 case Instruction::SExt: 2301 case Instruction::FPToUI: 2302 case Instruction::FPToSI: 2303 case Instruction::FPExt: 2304 case Instruction::PtrToInt: 2305 case Instruction::IntToPtr: 2306 case Instruction::SIToFP: 2307 case Instruction::UIToFP: 2308 case Instruction::Trunc: 2309 case Instruction::FPTrunc: 2310 case Instruction::BitCast: { 2311 ValueList INVL; 2312 for (Value *V : E->Scalars) 2313 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2314 2315 setInsertPointAfterBundle(E->Scalars); 2316 2317 Value *InVec = vectorizeTree(INVL); 2318 2319 if (Value *V = alreadyVectorized(E->Scalars)) 2320 return V; 2321 2322 CastInst *CI = dyn_cast<CastInst>(VL0); 2323 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2324 E->VectorizedValue = V; 2325 ++NumVectorInstructions; 2326 return V; 2327 } 2328 case Instruction::FCmp: 2329 case Instruction::ICmp: { 2330 ValueList LHSV, RHSV; 2331 for (Value *V : E->Scalars) { 2332 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2333 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2334 } 2335 2336 setInsertPointAfterBundle(E->Scalars); 2337 2338 Value *L = vectorizeTree(LHSV); 2339 Value *R = vectorizeTree(RHSV); 2340 2341 if (Value *V = alreadyVectorized(E->Scalars)) 2342 return V; 2343 2344 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2345 Value *V; 2346 if (Opcode == Instruction::FCmp) 2347 V = Builder.CreateFCmp(P0, L, R); 2348 else 2349 V = Builder.CreateICmp(P0, L, R); 2350 2351 E->VectorizedValue = V; 2352 ++NumVectorInstructions; 2353 return V; 2354 } 2355 case Instruction::Select: { 2356 ValueList TrueVec, FalseVec, CondVec; 2357 for (Value *V : E->Scalars) { 2358 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2359 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2360 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2361 } 2362 2363 setInsertPointAfterBundle(E->Scalars); 2364 2365 Value *Cond = vectorizeTree(CondVec); 2366 Value *True = vectorizeTree(TrueVec); 2367 Value *False = vectorizeTree(FalseVec); 2368 2369 if (Value *V = alreadyVectorized(E->Scalars)) 2370 return V; 2371 2372 Value *V = Builder.CreateSelect(Cond, True, False); 2373 E->VectorizedValue = V; 2374 ++NumVectorInstructions; 2375 return V; 2376 } 2377 case Instruction::Add: 2378 case Instruction::FAdd: 2379 case Instruction::Sub: 2380 case Instruction::FSub: 2381 case Instruction::Mul: 2382 case Instruction::FMul: 2383 case Instruction::UDiv: 2384 case Instruction::SDiv: 2385 case Instruction::FDiv: 2386 case Instruction::URem: 2387 case Instruction::SRem: 2388 case Instruction::FRem: 2389 case Instruction::Shl: 2390 case Instruction::LShr: 2391 case Instruction::AShr: 2392 case Instruction::And: 2393 case Instruction::Or: 2394 case Instruction::Xor: { 2395 ValueList LHSVL, RHSVL; 2396 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2397 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2398 else 2399 for (Value *V : E->Scalars) { 2400 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2401 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2402 } 2403 2404 setInsertPointAfterBundle(E->Scalars); 2405 2406 Value *LHS = vectorizeTree(LHSVL); 2407 Value *RHS = vectorizeTree(RHSVL); 2408 2409 if (LHS == RHS && isa<Instruction>(LHS)) { 2410 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2411 } 2412 2413 if (Value *V = alreadyVectorized(E->Scalars)) 2414 return V; 2415 2416 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2417 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2418 E->VectorizedValue = V; 2419 propagateIRFlags(E->VectorizedValue, E->Scalars); 2420 ++NumVectorInstructions; 2421 2422 if (Instruction *I = dyn_cast<Instruction>(V)) 2423 return propagateMetadata(I, E->Scalars); 2424 2425 return V; 2426 } 2427 case Instruction::Load: { 2428 // Loads are inserted at the head of the tree because we don't want to 2429 // sink them all the way down past store instructions. 2430 setInsertPointAfterBundle(E->Scalars); 2431 2432 LoadInst *LI = cast<LoadInst>(VL0); 2433 Type *ScalarLoadTy = LI->getType(); 2434 unsigned AS = LI->getPointerAddressSpace(); 2435 2436 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2437 VecTy->getPointerTo(AS)); 2438 2439 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2440 // ExternalUses list to make sure that an extract will be generated in the 2441 // future. 2442 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2443 ExternalUses.push_back( 2444 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2445 2446 unsigned Alignment = LI->getAlignment(); 2447 LI = Builder.CreateLoad(VecPtr); 2448 if (!Alignment) { 2449 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2450 } 2451 LI->setAlignment(Alignment); 2452 E->VectorizedValue = LI; 2453 ++NumVectorInstructions; 2454 return propagateMetadata(LI, E->Scalars); 2455 } 2456 case Instruction::Store: { 2457 StoreInst *SI = cast<StoreInst>(VL0); 2458 unsigned Alignment = SI->getAlignment(); 2459 unsigned AS = SI->getPointerAddressSpace(); 2460 2461 ValueList ValueOp; 2462 for (Value *V : E->Scalars) 2463 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2464 2465 setInsertPointAfterBundle(E->Scalars); 2466 2467 Value *VecValue = vectorizeTree(ValueOp); 2468 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2469 VecTy->getPointerTo(AS)); 2470 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2471 2472 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2473 // ExternalUses list to make sure that an extract will be generated in the 2474 // future. 2475 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2476 ExternalUses.push_back( 2477 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2478 2479 if (!Alignment) { 2480 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2481 } 2482 S->setAlignment(Alignment); 2483 E->VectorizedValue = S; 2484 ++NumVectorInstructions; 2485 return propagateMetadata(S, E->Scalars); 2486 } 2487 case Instruction::GetElementPtr: { 2488 setInsertPointAfterBundle(E->Scalars); 2489 2490 ValueList Op0VL; 2491 for (Value *V : E->Scalars) 2492 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2493 2494 Value *Op0 = vectorizeTree(Op0VL); 2495 2496 std::vector<Value *> OpVecs; 2497 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2498 ++j) { 2499 ValueList OpVL; 2500 for (Value *V : E->Scalars) 2501 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2502 2503 Value *OpVec = vectorizeTree(OpVL); 2504 OpVecs.push_back(OpVec); 2505 } 2506 2507 Value *V = Builder.CreateGEP( 2508 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2509 E->VectorizedValue = V; 2510 ++NumVectorInstructions; 2511 2512 if (Instruction *I = dyn_cast<Instruction>(V)) 2513 return propagateMetadata(I, E->Scalars); 2514 2515 return V; 2516 } 2517 case Instruction::Call: { 2518 CallInst *CI = cast<CallInst>(VL0); 2519 setInsertPointAfterBundle(E->Scalars); 2520 Function *FI; 2521 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2522 Value *ScalarArg = nullptr; 2523 if (CI && (FI = CI->getCalledFunction())) { 2524 IID = FI->getIntrinsicID(); 2525 } 2526 std::vector<Value *> OpVecs; 2527 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2528 ValueList OpVL; 2529 // ctlz,cttz and powi are special intrinsics whose second argument is 2530 // a scalar. This argument should not be vectorized. 2531 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2532 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2533 ScalarArg = CEI->getArgOperand(j); 2534 OpVecs.push_back(CEI->getArgOperand(j)); 2535 continue; 2536 } 2537 for (Value *V : E->Scalars) { 2538 CallInst *CEI = cast<CallInst>(V); 2539 OpVL.push_back(CEI->getArgOperand(j)); 2540 } 2541 2542 Value *OpVec = vectorizeTree(OpVL); 2543 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2544 OpVecs.push_back(OpVec); 2545 } 2546 2547 Module *M = F->getParent(); 2548 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2549 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2550 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2551 SmallVector<OperandBundleDef, 1> OpBundles; 2552 CI->getOperandBundlesAsDefs(OpBundles); 2553 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2554 2555 // The scalar argument uses an in-tree scalar so we add the new vectorized 2556 // call to ExternalUses list to make sure that an extract will be 2557 // generated in the future. 2558 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2559 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2560 2561 E->VectorizedValue = V; 2562 ++NumVectorInstructions; 2563 return V; 2564 } 2565 case Instruction::ShuffleVector: { 2566 ValueList LHSVL, RHSVL; 2567 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2568 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2569 setInsertPointAfterBundle(E->Scalars); 2570 2571 Value *LHS = vectorizeTree(LHSVL); 2572 Value *RHS = vectorizeTree(RHSVL); 2573 2574 if (Value *V = alreadyVectorized(E->Scalars)) 2575 return V; 2576 2577 // Create a vector of LHS op1 RHS 2578 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2579 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2580 2581 // Create a vector of LHS op2 RHS 2582 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2583 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2584 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2585 2586 // Create shuffle to take alternate operations from the vector. 2587 // Also, gather up odd and even scalar ops to propagate IR flags to 2588 // each vector operation. 2589 ValueList OddScalars, EvenScalars; 2590 unsigned e = E->Scalars.size(); 2591 SmallVector<Constant *, 8> Mask(e); 2592 for (unsigned i = 0; i < e; ++i) { 2593 if (i & 1) { 2594 Mask[i] = Builder.getInt32(e + i); 2595 OddScalars.push_back(E->Scalars[i]); 2596 } else { 2597 Mask[i] = Builder.getInt32(i); 2598 EvenScalars.push_back(E->Scalars[i]); 2599 } 2600 } 2601 2602 Value *ShuffleMask = ConstantVector::get(Mask); 2603 propagateIRFlags(V0, EvenScalars); 2604 propagateIRFlags(V1, OddScalars); 2605 2606 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2607 E->VectorizedValue = V; 2608 ++NumVectorInstructions; 2609 if (Instruction *I = dyn_cast<Instruction>(V)) 2610 return propagateMetadata(I, E->Scalars); 2611 2612 return V; 2613 } 2614 default: 2615 llvm_unreachable("unknown inst"); 2616 } 2617 return nullptr; 2618 } 2619 2620 Value *BoUpSLP::vectorizeTree() { 2621 2622 // All blocks must be scheduled before any instructions are inserted. 2623 for (auto &BSIter : BlocksSchedules) { 2624 scheduleBlock(BSIter.second.get()); 2625 } 2626 2627 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2628 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2629 2630 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2631 // vectorized root. InstCombine will then rewrite the entire expression. We 2632 // sign extend the extracted values below. 2633 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2634 if (MinBWs.count(ScalarRoot)) { 2635 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2636 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2637 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2638 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2639 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2640 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2641 VectorizableTree[0].VectorizedValue = Trunc; 2642 } 2643 2644 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2645 2646 // Extract all of the elements with the external uses. 2647 for (const auto &ExternalUse : ExternalUses) { 2648 Value *Scalar = ExternalUse.Scalar; 2649 llvm::User *User = ExternalUse.User; 2650 2651 // Skip users that we already RAUW. This happens when one instruction 2652 // has multiple uses of the same value. 2653 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2654 Scalar->user_end()) 2655 continue; 2656 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2657 2658 int Idx = ScalarToTreeEntry[Scalar]; 2659 TreeEntry *E = &VectorizableTree[Idx]; 2660 assert(!E->NeedToGather && "Extracting from a gather list"); 2661 2662 Value *Vec = E->VectorizedValue; 2663 assert(Vec && "Can't find vectorizable value"); 2664 2665 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2666 // Generate extracts for out-of-tree users. 2667 // Find the insertion point for the extractelement lane. 2668 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2669 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2670 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2671 if (PH->getIncomingValue(i) == Scalar) { 2672 TerminatorInst *IncomingTerminator = 2673 PH->getIncomingBlock(i)->getTerminator(); 2674 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2675 Builder.SetInsertPoint(VecI->getParent(), 2676 std::next(VecI->getIterator())); 2677 } else { 2678 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2679 } 2680 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2681 if (MinBWs.count(ScalarRoot)) 2682 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2683 CSEBlocks.insert(PH->getIncomingBlock(i)); 2684 PH->setOperand(i, Ex); 2685 } 2686 } 2687 } else { 2688 Builder.SetInsertPoint(cast<Instruction>(User)); 2689 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2690 if (MinBWs.count(ScalarRoot)) 2691 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2692 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2693 User->replaceUsesOfWith(Scalar, Ex); 2694 } 2695 } else { 2696 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2697 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2698 if (MinBWs.count(ScalarRoot)) 2699 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2700 CSEBlocks.insert(&F->getEntryBlock()); 2701 User->replaceUsesOfWith(Scalar, Ex); 2702 } 2703 2704 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2705 } 2706 2707 // For each vectorized value: 2708 for (TreeEntry &EIdx : VectorizableTree) { 2709 TreeEntry *Entry = &EIdx; 2710 2711 // For each lane: 2712 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2713 Value *Scalar = Entry->Scalars[Lane]; 2714 // No need to handle users of gathered values. 2715 if (Entry->NeedToGather) 2716 continue; 2717 2718 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2719 2720 Type *Ty = Scalar->getType(); 2721 if (!Ty->isVoidTy()) { 2722 #ifndef NDEBUG 2723 for (User *U : Scalar->users()) { 2724 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2725 2726 assert((ScalarToTreeEntry.count(U) || 2727 // It is legal to replace users in the ignorelist by undef. 2728 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2729 UserIgnoreList.end())) && 2730 "Replacing out-of-tree value with undef"); 2731 } 2732 #endif 2733 Value *Undef = UndefValue::get(Ty); 2734 Scalar->replaceAllUsesWith(Undef); 2735 } 2736 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2737 eraseInstruction(cast<Instruction>(Scalar)); 2738 } 2739 } 2740 2741 Builder.ClearInsertionPoint(); 2742 2743 return VectorizableTree[0].VectorizedValue; 2744 } 2745 2746 void BoUpSLP::optimizeGatherSequence() { 2747 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2748 << " gather sequences instructions.\n"); 2749 // LICM InsertElementInst sequences. 2750 for (Instruction *it : GatherSeq) { 2751 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2752 2753 if (!Insert) 2754 continue; 2755 2756 // Check if this block is inside a loop. 2757 Loop *L = LI->getLoopFor(Insert->getParent()); 2758 if (!L) 2759 continue; 2760 2761 // Check if it has a preheader. 2762 BasicBlock *PreHeader = L->getLoopPreheader(); 2763 if (!PreHeader) 2764 continue; 2765 2766 // If the vector or the element that we insert into it are 2767 // instructions that are defined in this basic block then we can't 2768 // hoist this instruction. 2769 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2770 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2771 if (CurrVec && L->contains(CurrVec)) 2772 continue; 2773 if (NewElem && L->contains(NewElem)) 2774 continue; 2775 2776 // We can hoist this instruction. Move it to the pre-header. 2777 Insert->moveBefore(PreHeader->getTerminator()); 2778 } 2779 2780 // Make a list of all reachable blocks in our CSE queue. 2781 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2782 CSEWorkList.reserve(CSEBlocks.size()); 2783 for (BasicBlock *BB : CSEBlocks) 2784 if (DomTreeNode *N = DT->getNode(BB)) { 2785 assert(DT->isReachableFromEntry(N)); 2786 CSEWorkList.push_back(N); 2787 } 2788 2789 // Sort blocks by domination. This ensures we visit a block after all blocks 2790 // dominating it are visited. 2791 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2792 [this](const DomTreeNode *A, const DomTreeNode *B) { 2793 return DT->properlyDominates(A, B); 2794 }); 2795 2796 // Perform O(N^2) search over the gather sequences and merge identical 2797 // instructions. TODO: We can further optimize this scan if we split the 2798 // instructions into different buckets based on the insert lane. 2799 SmallVector<Instruction *, 16> Visited; 2800 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2801 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2802 "Worklist not sorted properly!"); 2803 BasicBlock *BB = (*I)->getBlock(); 2804 // For all instructions in blocks containing gather sequences: 2805 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2806 Instruction *In = &*it++; 2807 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2808 continue; 2809 2810 // Check if we can replace this instruction with any of the 2811 // visited instructions. 2812 for (Instruction *v : Visited) { 2813 if (In->isIdenticalTo(v) && 2814 DT->dominates(v->getParent(), In->getParent())) { 2815 In->replaceAllUsesWith(v); 2816 eraseInstruction(In); 2817 In = nullptr; 2818 break; 2819 } 2820 } 2821 if (In) { 2822 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2823 Visited.push_back(In); 2824 } 2825 } 2826 } 2827 CSEBlocks.clear(); 2828 GatherSeq.clear(); 2829 } 2830 2831 // Groups the instructions to a bundle (which is then a single scheduling entity) 2832 // and schedules instructions until the bundle gets ready. 2833 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2834 BoUpSLP *SLP) { 2835 if (isa<PHINode>(VL[0])) 2836 return true; 2837 2838 // Initialize the instruction bundle. 2839 Instruction *OldScheduleEnd = ScheduleEnd; 2840 ScheduleData *PrevInBundle = nullptr; 2841 ScheduleData *Bundle = nullptr; 2842 bool ReSchedule = false; 2843 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2844 2845 // Make sure that the scheduling region contains all 2846 // instructions of the bundle. 2847 for (Value *V : VL) { 2848 if (!extendSchedulingRegion(V)) 2849 return false; 2850 } 2851 2852 for (Value *V : VL) { 2853 ScheduleData *BundleMember = getScheduleData(V); 2854 assert(BundleMember && 2855 "no ScheduleData for bundle member (maybe not in same basic block)"); 2856 if (BundleMember->IsScheduled) { 2857 // A bundle member was scheduled as single instruction before and now 2858 // needs to be scheduled as part of the bundle. We just get rid of the 2859 // existing schedule. 2860 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2861 << " was already scheduled\n"); 2862 ReSchedule = true; 2863 } 2864 assert(BundleMember->isSchedulingEntity() && 2865 "bundle member already part of other bundle"); 2866 if (PrevInBundle) { 2867 PrevInBundle->NextInBundle = BundleMember; 2868 } else { 2869 Bundle = BundleMember; 2870 } 2871 BundleMember->UnscheduledDepsInBundle = 0; 2872 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2873 2874 // Group the instructions to a bundle. 2875 BundleMember->FirstInBundle = Bundle; 2876 PrevInBundle = BundleMember; 2877 } 2878 if (ScheduleEnd != OldScheduleEnd) { 2879 // The scheduling region got new instructions at the lower end (or it is a 2880 // new region for the first bundle). This makes it necessary to 2881 // recalculate all dependencies. 2882 // It is seldom that this needs to be done a second time after adding the 2883 // initial bundle to the region. 2884 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2885 ScheduleData *SD = getScheduleData(I); 2886 SD->clearDependencies(); 2887 } 2888 ReSchedule = true; 2889 } 2890 if (ReSchedule) { 2891 resetSchedule(); 2892 initialFillReadyList(ReadyInsts); 2893 } 2894 2895 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2896 << BB->getName() << "\n"); 2897 2898 calculateDependencies(Bundle, true, SLP); 2899 2900 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2901 // means that there are no cyclic dependencies and we can schedule it. 2902 // Note that's important that we don't "schedule" the bundle yet (see 2903 // cancelScheduling). 2904 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2905 2906 ScheduleData *pickedSD = ReadyInsts.back(); 2907 ReadyInsts.pop_back(); 2908 2909 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2910 schedule(pickedSD, ReadyInsts); 2911 } 2912 } 2913 if (!Bundle->isReady()) { 2914 cancelScheduling(VL); 2915 return false; 2916 } 2917 return true; 2918 } 2919 2920 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2921 if (isa<PHINode>(VL[0])) 2922 return; 2923 2924 ScheduleData *Bundle = getScheduleData(VL[0]); 2925 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2926 assert(!Bundle->IsScheduled && 2927 "Can't cancel bundle which is already scheduled"); 2928 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2929 "tried to unbundle something which is not a bundle"); 2930 2931 // Un-bundle: make single instructions out of the bundle. 2932 ScheduleData *BundleMember = Bundle; 2933 while (BundleMember) { 2934 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2935 BundleMember->FirstInBundle = BundleMember; 2936 ScheduleData *Next = BundleMember->NextInBundle; 2937 BundleMember->NextInBundle = nullptr; 2938 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2939 if (BundleMember->UnscheduledDepsInBundle == 0) { 2940 ReadyInsts.insert(BundleMember); 2941 } 2942 BundleMember = Next; 2943 } 2944 } 2945 2946 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2947 if (getScheduleData(V)) 2948 return true; 2949 Instruction *I = dyn_cast<Instruction>(V); 2950 assert(I && "bundle member must be an instruction"); 2951 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2952 if (!ScheduleStart) { 2953 // It's the first instruction in the new region. 2954 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2955 ScheduleStart = I; 2956 ScheduleEnd = I->getNextNode(); 2957 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2958 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2959 return true; 2960 } 2961 // Search up and down at the same time, because we don't know if the new 2962 // instruction is above or below the existing scheduling region. 2963 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2964 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2965 BasicBlock::iterator DownIter(ScheduleEnd); 2966 BasicBlock::iterator LowerEnd = BB->end(); 2967 for (;;) { 2968 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2969 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2970 return false; 2971 } 2972 2973 if (UpIter != UpperEnd) { 2974 if (&*UpIter == I) { 2975 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2976 ScheduleStart = I; 2977 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2978 return true; 2979 } 2980 UpIter++; 2981 } 2982 if (DownIter != LowerEnd) { 2983 if (&*DownIter == I) { 2984 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2985 nullptr); 2986 ScheduleEnd = I->getNextNode(); 2987 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2988 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2989 return true; 2990 } 2991 DownIter++; 2992 } 2993 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2994 "instruction not found in block"); 2995 } 2996 return true; 2997 } 2998 2999 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3000 Instruction *ToI, 3001 ScheduleData *PrevLoadStore, 3002 ScheduleData *NextLoadStore) { 3003 ScheduleData *CurrentLoadStore = PrevLoadStore; 3004 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3005 ScheduleData *SD = ScheduleDataMap[I]; 3006 if (!SD) { 3007 // Allocate a new ScheduleData for the instruction. 3008 if (ChunkPos >= ChunkSize) { 3009 ScheduleDataChunks.push_back( 3010 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3011 ChunkPos = 0; 3012 } 3013 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3014 ScheduleDataMap[I] = SD; 3015 SD->Inst = I; 3016 } 3017 assert(!isInSchedulingRegion(SD) && 3018 "new ScheduleData already in scheduling region"); 3019 SD->init(SchedulingRegionID); 3020 3021 if (I->mayReadOrWriteMemory()) { 3022 // Update the linked list of memory accessing instructions. 3023 if (CurrentLoadStore) { 3024 CurrentLoadStore->NextLoadStore = SD; 3025 } else { 3026 FirstLoadStoreInRegion = SD; 3027 } 3028 CurrentLoadStore = SD; 3029 } 3030 } 3031 if (NextLoadStore) { 3032 if (CurrentLoadStore) 3033 CurrentLoadStore->NextLoadStore = NextLoadStore; 3034 } else { 3035 LastLoadStoreInRegion = CurrentLoadStore; 3036 } 3037 } 3038 3039 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3040 bool InsertInReadyList, 3041 BoUpSLP *SLP) { 3042 assert(SD->isSchedulingEntity()); 3043 3044 SmallVector<ScheduleData *, 10> WorkList; 3045 WorkList.push_back(SD); 3046 3047 while (!WorkList.empty()) { 3048 ScheduleData *SD = WorkList.back(); 3049 WorkList.pop_back(); 3050 3051 ScheduleData *BundleMember = SD; 3052 while (BundleMember) { 3053 assert(isInSchedulingRegion(BundleMember)); 3054 if (!BundleMember->hasValidDependencies()) { 3055 3056 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3057 BundleMember->Dependencies = 0; 3058 BundleMember->resetUnscheduledDeps(); 3059 3060 // Handle def-use chain dependencies. 3061 for (User *U : BundleMember->Inst->users()) { 3062 if (isa<Instruction>(U)) { 3063 ScheduleData *UseSD = getScheduleData(U); 3064 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3065 BundleMember->Dependencies++; 3066 ScheduleData *DestBundle = UseSD->FirstInBundle; 3067 if (!DestBundle->IsScheduled) { 3068 BundleMember->incrementUnscheduledDeps(1); 3069 } 3070 if (!DestBundle->hasValidDependencies()) { 3071 WorkList.push_back(DestBundle); 3072 } 3073 } 3074 } else { 3075 // I'm not sure if this can ever happen. But we need to be safe. 3076 // This lets the instruction/bundle never be scheduled and 3077 // eventually disable vectorization. 3078 BundleMember->Dependencies++; 3079 BundleMember->incrementUnscheduledDeps(1); 3080 } 3081 } 3082 3083 // Handle the memory dependencies. 3084 ScheduleData *DepDest = BundleMember->NextLoadStore; 3085 if (DepDest) { 3086 Instruction *SrcInst = BundleMember->Inst; 3087 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3088 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3089 unsigned numAliased = 0; 3090 unsigned DistToSrc = 1; 3091 3092 while (DepDest) { 3093 assert(isInSchedulingRegion(DepDest)); 3094 3095 // We have two limits to reduce the complexity: 3096 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3097 // SLP->isAliased (which is the expensive part in this loop). 3098 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3099 // the whole loop (even if the loop is fast, it's quadratic). 3100 // It's important for the loop break condition (see below) to 3101 // check this limit even between two read-only instructions. 3102 if (DistToSrc >= MaxMemDepDistance || 3103 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3104 (numAliased >= AliasedCheckLimit || 3105 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3106 3107 // We increment the counter only if the locations are aliased 3108 // (instead of counting all alias checks). This gives a better 3109 // balance between reduced runtime and accurate dependencies. 3110 numAliased++; 3111 3112 DepDest->MemoryDependencies.push_back(BundleMember); 3113 BundleMember->Dependencies++; 3114 ScheduleData *DestBundle = DepDest->FirstInBundle; 3115 if (!DestBundle->IsScheduled) { 3116 BundleMember->incrementUnscheduledDeps(1); 3117 } 3118 if (!DestBundle->hasValidDependencies()) { 3119 WorkList.push_back(DestBundle); 3120 } 3121 } 3122 DepDest = DepDest->NextLoadStore; 3123 3124 // Example, explaining the loop break condition: Let's assume our 3125 // starting instruction is i0 and MaxMemDepDistance = 3. 3126 // 3127 // +--------v--v--v 3128 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3129 // +--------^--^--^ 3130 // 3131 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3132 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3133 // Previously we already added dependencies from i3 to i6,i7,i8 3134 // (because of MaxMemDepDistance). As we added a dependency from 3135 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3136 // and we can abort this loop at i6. 3137 if (DistToSrc >= 2 * MaxMemDepDistance) 3138 break; 3139 DistToSrc++; 3140 } 3141 } 3142 } 3143 BundleMember = BundleMember->NextInBundle; 3144 } 3145 if (InsertInReadyList && SD->isReady()) { 3146 ReadyInsts.push_back(SD); 3147 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3148 } 3149 } 3150 } 3151 3152 void BoUpSLP::BlockScheduling::resetSchedule() { 3153 assert(ScheduleStart && 3154 "tried to reset schedule on block which has not been scheduled"); 3155 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3156 ScheduleData *SD = getScheduleData(I); 3157 assert(isInSchedulingRegion(SD)); 3158 SD->IsScheduled = false; 3159 SD->resetUnscheduledDeps(); 3160 } 3161 ReadyInsts.clear(); 3162 } 3163 3164 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3165 3166 if (!BS->ScheduleStart) 3167 return; 3168 3169 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3170 3171 BS->resetSchedule(); 3172 3173 // For the real scheduling we use a more sophisticated ready-list: it is 3174 // sorted by the original instruction location. This lets the final schedule 3175 // be as close as possible to the original instruction order. 3176 struct ScheduleDataCompare { 3177 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3178 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3179 } 3180 }; 3181 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3182 3183 // Ensure that all dependency data is updated and fill the ready-list with 3184 // initial instructions. 3185 int Idx = 0; 3186 int NumToSchedule = 0; 3187 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3188 I = I->getNextNode()) { 3189 ScheduleData *SD = BS->getScheduleData(I); 3190 assert( 3191 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3192 "scheduler and vectorizer have different opinion on what is a bundle"); 3193 SD->FirstInBundle->SchedulingPriority = Idx++; 3194 if (SD->isSchedulingEntity()) { 3195 BS->calculateDependencies(SD, false, this); 3196 NumToSchedule++; 3197 } 3198 } 3199 BS->initialFillReadyList(ReadyInsts); 3200 3201 Instruction *LastScheduledInst = BS->ScheduleEnd; 3202 3203 // Do the "real" scheduling. 3204 while (!ReadyInsts.empty()) { 3205 ScheduleData *picked = *ReadyInsts.begin(); 3206 ReadyInsts.erase(ReadyInsts.begin()); 3207 3208 // Move the scheduled instruction(s) to their dedicated places, if not 3209 // there yet. 3210 ScheduleData *BundleMember = picked; 3211 while (BundleMember) { 3212 Instruction *pickedInst = BundleMember->Inst; 3213 if (LastScheduledInst->getNextNode() != pickedInst) { 3214 BS->BB->getInstList().remove(pickedInst); 3215 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3216 pickedInst); 3217 } 3218 LastScheduledInst = pickedInst; 3219 BundleMember = BundleMember->NextInBundle; 3220 } 3221 3222 BS->schedule(picked, ReadyInsts); 3223 NumToSchedule--; 3224 } 3225 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3226 3227 // Avoid duplicate scheduling of the block. 3228 BS->ScheduleStart = nullptr; 3229 } 3230 3231 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3232 // If V is a store, just return the width of the stored value without 3233 // traversing the expression tree. This is the common case. 3234 if (auto *Store = dyn_cast<StoreInst>(V)) 3235 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3236 3237 // If V is not a store, we can traverse the expression tree to find loads 3238 // that feed it. The type of the loaded value may indicate a more suitable 3239 // width than V's type. We want to base the vector element size on the width 3240 // of memory operations where possible. 3241 SmallVector<Instruction *, 16> Worklist; 3242 SmallPtrSet<Instruction *, 16> Visited; 3243 if (auto *I = dyn_cast<Instruction>(V)) 3244 Worklist.push_back(I); 3245 3246 // Traverse the expression tree in bottom-up order looking for loads. If we 3247 // encounter an instruciton we don't yet handle, we give up. 3248 auto MaxWidth = 0u; 3249 auto FoundUnknownInst = false; 3250 while (!Worklist.empty() && !FoundUnknownInst) { 3251 auto *I = Worklist.pop_back_val(); 3252 Visited.insert(I); 3253 3254 // We should only be looking at scalar instructions here. If the current 3255 // instruction has a vector type, give up. 3256 auto *Ty = I->getType(); 3257 if (isa<VectorType>(Ty)) 3258 FoundUnknownInst = true; 3259 3260 // If the current instruction is a load, update MaxWidth to reflect the 3261 // width of the loaded value. 3262 else if (isa<LoadInst>(I)) 3263 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3264 3265 // Otherwise, we need to visit the operands of the instruction. We only 3266 // handle the interesting cases from buildTree here. If an operand is an 3267 // instruction we haven't yet visited, we add it to the worklist. 3268 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3269 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3270 for (Use &U : I->operands()) 3271 if (auto *J = dyn_cast<Instruction>(U.get())) 3272 if (!Visited.count(J)) 3273 Worklist.push_back(J); 3274 } 3275 3276 // If we don't yet handle the instruction, give up. 3277 else 3278 FoundUnknownInst = true; 3279 } 3280 3281 // If we didn't encounter a memory access in the expression tree, or if we 3282 // gave up for some reason, just return the width of V. 3283 if (!MaxWidth || FoundUnknownInst) 3284 return DL->getTypeSizeInBits(V->getType()); 3285 3286 // Otherwise, return the maximum width we found. 3287 return MaxWidth; 3288 } 3289 3290 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3291 // smaller type with a truncation. We collect the values that will be demoted 3292 // in ToDemote and additional roots that require investigating in Roots. 3293 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3294 SmallVectorImpl<Value *> &ToDemote, 3295 SmallVectorImpl<Value *> &Roots) { 3296 3297 // We can always demote constants. 3298 if (isa<Constant>(V)) { 3299 ToDemote.push_back(V); 3300 return true; 3301 } 3302 3303 // If the value is not an instruction in the expression with only one use, it 3304 // cannot be demoted. 3305 auto *I = dyn_cast<Instruction>(V); 3306 if (!I || !I->hasOneUse() || !Expr.count(I)) 3307 return false; 3308 3309 switch (I->getOpcode()) { 3310 3311 // We can always demote truncations and extensions. Since truncations can 3312 // seed additional demotion, we save the truncated value. 3313 case Instruction::Trunc: 3314 Roots.push_back(I->getOperand(0)); 3315 case Instruction::ZExt: 3316 case Instruction::SExt: 3317 break; 3318 3319 // We can demote certain binary operations if we can demote both of their 3320 // operands. 3321 case Instruction::Add: 3322 case Instruction::Sub: 3323 case Instruction::Mul: 3324 case Instruction::And: 3325 case Instruction::Or: 3326 case Instruction::Xor: 3327 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3328 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3329 return false; 3330 break; 3331 3332 // We can demote selects if we can demote their true and false values. 3333 case Instruction::Select: { 3334 SelectInst *SI = cast<SelectInst>(I); 3335 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3336 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3337 return false; 3338 break; 3339 } 3340 3341 // We can demote phis if we can demote all their incoming operands. Note that 3342 // we don't need to worry about cycles since we ensure single use above. 3343 case Instruction::PHI: { 3344 PHINode *PN = cast<PHINode>(I); 3345 for (Value *IncValue : PN->incoming_values()) 3346 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3347 return false; 3348 break; 3349 } 3350 3351 // Otherwise, conservatively give up. 3352 default: 3353 return false; 3354 } 3355 3356 // Record the value that we can demote. 3357 ToDemote.push_back(V); 3358 return true; 3359 } 3360 3361 void BoUpSLP::computeMinimumValueSizes() { 3362 // If there are no external uses, the expression tree must be rooted by a 3363 // store. We can't demote in-memory values, so there is nothing to do here. 3364 if (ExternalUses.empty()) 3365 return; 3366 3367 // We only attempt to truncate integer expressions. 3368 auto &TreeRoot = VectorizableTree[0].Scalars; 3369 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3370 if (!TreeRootIT) 3371 return; 3372 3373 // If the expression is not rooted by a store, these roots should have 3374 // external uses. We will rely on InstCombine to rewrite the expression in 3375 // the narrower type. However, InstCombine only rewrites single-use values. 3376 // This means that if a tree entry other than a root is used externally, it 3377 // must have multiple uses and InstCombine will not rewrite it. The code 3378 // below ensures that only the roots are used externally. 3379 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3380 for (auto &EU : ExternalUses) 3381 if (!Expr.erase(EU.Scalar)) 3382 return; 3383 if (!Expr.empty()) 3384 return; 3385 3386 // Collect the scalar values of the vectorizable expression. We will use this 3387 // context to determine which values can be demoted. If we see a truncation, 3388 // we mark it as seeding another demotion. 3389 for (auto &Entry : VectorizableTree) 3390 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3391 3392 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3393 // have a single external user that is not in the vectorizable tree. 3394 for (auto *Root : TreeRoot) 3395 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3396 return; 3397 3398 // Conservatively determine if we can actually truncate the roots of the 3399 // expression. Collect the values that can be demoted in ToDemote and 3400 // additional roots that require investigating in Roots. 3401 SmallVector<Value *, 32> ToDemote; 3402 SmallVector<Value *, 4> Roots; 3403 for (auto *Root : TreeRoot) 3404 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3405 return; 3406 3407 // The maximum bit width required to represent all the values that can be 3408 // demoted without loss of precision. It would be safe to truncate the roots 3409 // of the expression to this width. 3410 auto MaxBitWidth = 8u; 3411 3412 // We first check if all the bits of the roots are demanded. If they're not, 3413 // we can truncate the roots to this narrower type. 3414 for (auto *Root : TreeRoot) { 3415 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3416 MaxBitWidth = std::max<unsigned>( 3417 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3418 } 3419 3420 // If all the bits of the roots are demanded, we can try a little harder to 3421 // compute a narrower type. This can happen, for example, if the roots are 3422 // getelementptr indices. InstCombine promotes these indices to the pointer 3423 // width. Thus, all their bits are technically demanded even though the 3424 // address computation might be vectorized in a smaller type. 3425 // 3426 // We start by looking at each entry that can be demoted. We compute the 3427 // maximum bit width required to store the scalar by using ValueTracking to 3428 // compute the number of high-order bits we can truncate. 3429 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3430 MaxBitWidth = 8u; 3431 for (auto *Scalar : ToDemote) { 3432 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3433 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3434 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3435 } 3436 } 3437 3438 // Round MaxBitWidth up to the next power-of-two. 3439 if (!isPowerOf2_64(MaxBitWidth)) 3440 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3441 3442 // If the maximum bit width we compute is less than the with of the roots' 3443 // type, we can proceed with the narrowing. Otherwise, do nothing. 3444 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3445 return; 3446 3447 // If we can truncate the root, we must collect additional values that might 3448 // be demoted as a result. That is, those seeded by truncations we will 3449 // modify. 3450 while (!Roots.empty()) 3451 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3452 3453 // Finally, map the values we can demote to the maximum bit with we computed. 3454 for (auto *Scalar : ToDemote) 3455 MinBWs[Scalar] = MaxBitWidth; 3456 } 3457 3458 namespace { 3459 /// The SLPVectorizer Pass. 3460 struct SLPVectorizer : public FunctionPass { 3461 SLPVectorizerPass Impl; 3462 3463 /// Pass identification, replacement for typeid 3464 static char ID; 3465 3466 explicit SLPVectorizer() : FunctionPass(ID) { 3467 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3468 } 3469 3470 3471 bool doInitialization(Module &M) override { 3472 return false; 3473 } 3474 3475 bool runOnFunction(Function &F) override { 3476 if (skipFunction(F)) 3477 return false; 3478 3479 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3480 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3481 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3482 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3483 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3484 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3485 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3486 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3487 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3488 3489 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3490 } 3491 3492 void getAnalysisUsage(AnalysisUsage &AU) const override { 3493 FunctionPass::getAnalysisUsage(AU); 3494 AU.addRequired<AssumptionCacheTracker>(); 3495 AU.addRequired<ScalarEvolutionWrapperPass>(); 3496 AU.addRequired<AAResultsWrapperPass>(); 3497 AU.addRequired<TargetTransformInfoWrapperPass>(); 3498 AU.addRequired<LoopInfoWrapperPass>(); 3499 AU.addRequired<DominatorTreeWrapperPass>(); 3500 AU.addRequired<DemandedBitsWrapperPass>(); 3501 AU.addPreserved<LoopInfoWrapperPass>(); 3502 AU.addPreserved<DominatorTreeWrapperPass>(); 3503 AU.addPreserved<AAResultsWrapperPass>(); 3504 AU.addPreserved<GlobalsAAWrapperPass>(); 3505 AU.setPreservesCFG(); 3506 } 3507 }; 3508 } // end anonymous namespace 3509 3510 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3511 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3512 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3513 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3514 auto *AA = &AM.getResult<AAManager>(F); 3515 auto *LI = &AM.getResult<LoopAnalysis>(F); 3516 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3517 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3518 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3519 3520 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3521 if (!Changed) 3522 return PreservedAnalyses::all(); 3523 PreservedAnalyses PA; 3524 PA.preserve<LoopAnalysis>(); 3525 PA.preserve<DominatorTreeAnalysis>(); 3526 PA.preserve<AAManager>(); 3527 PA.preserve<GlobalsAA>(); 3528 return PA; 3529 } 3530 3531 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3532 TargetTransformInfo *TTI_, 3533 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3534 LoopInfo *LI_, DominatorTree *DT_, 3535 AssumptionCache *AC_, DemandedBits *DB_) { 3536 SE = SE_; 3537 TTI = TTI_; 3538 TLI = TLI_; 3539 AA = AA_; 3540 LI = LI_; 3541 DT = DT_; 3542 AC = AC_; 3543 DB = DB_; 3544 DL = &F.getParent()->getDataLayout(); 3545 3546 Stores.clear(); 3547 GEPs.clear(); 3548 bool Changed = false; 3549 3550 // If the target claims to have no vector registers don't attempt 3551 // vectorization. 3552 if (!TTI->getNumberOfRegisters(true)) 3553 return false; 3554 3555 // Don't vectorize when the attribute NoImplicitFloat is used. 3556 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3557 return false; 3558 3559 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3560 3561 // Use the bottom up slp vectorizer to construct chains that start with 3562 // store instructions. 3563 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3564 3565 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3566 // delete instructions. 3567 3568 // Scan the blocks in the function in post order. 3569 for (auto BB : post_order(&F.getEntryBlock())) { 3570 collectSeedInstructions(BB); 3571 3572 // Vectorize trees that end at stores. 3573 if (!Stores.empty()) { 3574 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3575 << " underlying objects.\n"); 3576 Changed |= vectorizeStoreChains(R); 3577 } 3578 3579 // Vectorize trees that end at reductions. 3580 Changed |= vectorizeChainsInBlock(BB, R); 3581 3582 // Vectorize the index computations of getelementptr instructions. This 3583 // is primarily intended to catch gather-like idioms ending at 3584 // non-consecutive loads. 3585 if (!GEPs.empty()) { 3586 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3587 << " underlying objects.\n"); 3588 Changed |= vectorizeGEPIndices(BB, R); 3589 } 3590 } 3591 3592 if (Changed) { 3593 R.optimizeGatherSequence(); 3594 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3595 DEBUG(verifyFunction(F)); 3596 } 3597 return Changed; 3598 } 3599 3600 /// \brief Check that the Values in the slice in VL array are still existent in 3601 /// the WeakVH array. 3602 /// Vectorization of part of the VL array may cause later values in the VL array 3603 /// to become invalid. We track when this has happened in the WeakVH array. 3604 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3605 unsigned SliceBegin, unsigned SliceSize) { 3606 VL = VL.slice(SliceBegin, SliceSize); 3607 VH = VH.slice(SliceBegin, SliceSize); 3608 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3609 } 3610 3611 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, 3612 int CostThreshold, BoUpSLP &R, 3613 unsigned VecRegSize) { 3614 unsigned ChainLen = Chain.size(); 3615 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3616 << "\n"); 3617 unsigned Sz = R.getVectorElementSize(Chain[0]); 3618 unsigned VF = VecRegSize / Sz; 3619 3620 if (!isPowerOf2_32(Sz) || VF < 2) 3621 return false; 3622 3623 // Keep track of values that were deleted by vectorizing in the loop below. 3624 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3625 3626 bool Changed = false; 3627 // Look for profitable vectorizable trees at all offsets, starting at zero. 3628 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3629 if (i + VF > e) 3630 break; 3631 3632 // Check that a previous iteration of this loop did not delete the Value. 3633 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3634 continue; 3635 3636 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3637 << "\n"); 3638 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3639 3640 R.buildTree(Operands); 3641 R.computeMinimumValueSizes(); 3642 3643 int Cost = R.getTreeCost(); 3644 3645 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3646 if (Cost < CostThreshold) { 3647 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3648 R.vectorizeTree(); 3649 3650 // Move to the next bundle. 3651 i += VF - 1; 3652 Changed = true; 3653 } 3654 } 3655 3656 return Changed; 3657 } 3658 3659 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3660 int costThreshold, BoUpSLP &R) { 3661 SetVector<StoreInst *> Heads, Tails; 3662 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3663 3664 // We may run into multiple chains that merge into a single chain. We mark the 3665 // stores that we vectorized so that we don't visit the same store twice. 3666 BoUpSLP::ValueSet VectorizedStores; 3667 bool Changed = false; 3668 3669 // Do a quadratic search on all of the given stores and find 3670 // all of the pairs of stores that follow each other. 3671 SmallVector<unsigned, 16> IndexQueue; 3672 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3673 IndexQueue.clear(); 3674 // If a store has multiple consecutive store candidates, search Stores 3675 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3676 // This is because usually pairing with immediate succeeding or preceding 3677 // candidate create the best chance to find slp vectorization opportunity. 3678 unsigned j = 0; 3679 for (j = i + 1; j < e; ++j) 3680 IndexQueue.push_back(j); 3681 for (j = i; j > 0; --j) 3682 IndexQueue.push_back(j - 1); 3683 3684 for (auto &k : IndexQueue) { 3685 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3686 Tails.insert(Stores[k]); 3687 Heads.insert(Stores[i]); 3688 ConsecutiveChain[Stores[i]] = Stores[k]; 3689 break; 3690 } 3691 } 3692 } 3693 3694 // For stores that start but don't end a link in the chain: 3695 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3696 it != e; ++it) { 3697 if (Tails.count(*it)) 3698 continue; 3699 3700 // We found a store instr that starts a chain. Now follow the chain and try 3701 // to vectorize it. 3702 BoUpSLP::ValueList Operands; 3703 StoreInst *I = *it; 3704 // Collect the chain into a list. 3705 while (Tails.count(I) || Heads.count(I)) { 3706 if (VectorizedStores.count(I)) 3707 break; 3708 Operands.push_back(I); 3709 // Move to the next value in the chain. 3710 I = ConsecutiveChain[I]; 3711 } 3712 3713 // FIXME: Is division-by-2 the correct step? Should we assert that the 3714 // register size is a power-of-2? 3715 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { 3716 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3717 // Mark the vectorized stores so that we don't vectorize them again. 3718 VectorizedStores.insert(Operands.begin(), Operands.end()); 3719 Changed = true; 3720 break; 3721 } 3722 } 3723 } 3724 3725 return Changed; 3726 } 3727 3728 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3729 3730 // Initialize the collections. We will make a single pass over the block. 3731 Stores.clear(); 3732 GEPs.clear(); 3733 3734 // Visit the store and getelementptr instructions in BB and organize them in 3735 // Stores and GEPs according to the underlying objects of their pointer 3736 // operands. 3737 for (Instruction &I : *BB) { 3738 3739 // Ignore store instructions that are volatile or have a pointer operand 3740 // that doesn't point to a scalar type. 3741 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3742 if (!SI->isSimple()) 3743 continue; 3744 if (!isValidElementType(SI->getValueOperand()->getType())) 3745 continue; 3746 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3747 } 3748 3749 // Ignore getelementptr instructions that have more than one index, a 3750 // constant index, or a pointer operand that doesn't point to a scalar 3751 // type. 3752 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3753 auto Idx = GEP->idx_begin()->get(); 3754 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3755 continue; 3756 if (!isValidElementType(Idx->getType())) 3757 continue; 3758 if (GEP->getType()->isVectorTy()) 3759 continue; 3760 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3761 } 3762 } 3763 } 3764 3765 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3766 if (!A || !B) 3767 return false; 3768 Value *VL[] = { A, B }; 3769 return tryToVectorizeList(VL, R, None, true); 3770 } 3771 3772 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3773 ArrayRef<Value *> BuildVector, 3774 bool allowReorder) { 3775 if (VL.size() < 2) 3776 return false; 3777 3778 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3779 3780 // Check that all of the parts are scalar instructions of the same type. 3781 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3782 if (!I0) 3783 return false; 3784 3785 unsigned Opcode0 = I0->getOpcode(); 3786 3787 // FIXME: Register size should be a parameter to this function, so we can 3788 // try different vectorization factors. 3789 unsigned Sz = R.getVectorElementSize(I0); 3790 unsigned VF = R.getMinVecRegSize() / Sz; 3791 3792 for (Value *V : VL) { 3793 Type *Ty = V->getType(); 3794 if (!isValidElementType(Ty)) 3795 return false; 3796 Instruction *Inst = dyn_cast<Instruction>(V); 3797 if (!Inst || Inst->getOpcode() != Opcode0) 3798 return false; 3799 } 3800 3801 bool Changed = false; 3802 3803 // Keep track of values that were deleted by vectorizing in the loop below. 3804 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3805 3806 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3807 unsigned OpsWidth = 0; 3808 3809 if (i + VF > e) 3810 OpsWidth = e - i; 3811 else 3812 OpsWidth = VF; 3813 3814 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3815 break; 3816 3817 // Check that a previous iteration of this loop did not delete the Value. 3818 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3819 continue; 3820 3821 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3822 << "\n"); 3823 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3824 3825 ArrayRef<Value *> BuildVectorSlice; 3826 if (!BuildVector.empty()) 3827 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3828 3829 R.buildTree(Ops, BuildVectorSlice); 3830 // TODO: check if we can allow reordering for more cases. 3831 if (allowReorder && R.shouldReorder()) { 3832 // Conceptually, there is nothing actually preventing us from trying to 3833 // reorder a larger list. In fact, we do exactly this when vectorizing 3834 // reductions. However, at this point, we only expect to get here from 3835 // tryToVectorizePair(). 3836 assert(Ops.size() == 2); 3837 assert(BuildVectorSlice.empty()); 3838 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3839 R.buildTree(ReorderedOps, None); 3840 } 3841 R.computeMinimumValueSizes(); 3842 int Cost = R.getTreeCost(); 3843 3844 if (Cost < -SLPCostThreshold) { 3845 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3846 Value *VectorizedRoot = R.vectorizeTree(); 3847 3848 // Reconstruct the build vector by extracting the vectorized root. This 3849 // way we handle the case where some elements of the vector are undefined. 3850 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3851 if (!BuildVectorSlice.empty()) { 3852 // The insert point is the last build vector instruction. The vectorized 3853 // root will precede it. This guarantees that we get an instruction. The 3854 // vectorized tree could have been constant folded. 3855 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3856 unsigned VecIdx = 0; 3857 for (auto &V : BuildVectorSlice) { 3858 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3859 ++BasicBlock::iterator(InsertAfter)); 3860 Instruction *I = cast<Instruction>(V); 3861 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 3862 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3863 VectorizedRoot, Builder.getInt32(VecIdx++))); 3864 I->setOperand(1, Extract); 3865 I->removeFromParent(); 3866 I->insertAfter(Extract); 3867 InsertAfter = I; 3868 } 3869 } 3870 // Move to the next bundle. 3871 i += VF - 1; 3872 Changed = true; 3873 } 3874 } 3875 3876 return Changed; 3877 } 3878 3879 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3880 if (!V) 3881 return false; 3882 3883 // Try to vectorize V. 3884 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3885 return true; 3886 3887 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3888 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3889 // Try to skip B. 3890 if (B && B->hasOneUse()) { 3891 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3892 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3893 if (tryToVectorizePair(A, B0, R)) { 3894 return true; 3895 } 3896 if (tryToVectorizePair(A, B1, R)) { 3897 return true; 3898 } 3899 } 3900 3901 // Try to skip A. 3902 if (A && A->hasOneUse()) { 3903 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3904 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3905 if (tryToVectorizePair(A0, B, R)) { 3906 return true; 3907 } 3908 if (tryToVectorizePair(A1, B, R)) { 3909 return true; 3910 } 3911 } 3912 return 0; 3913 } 3914 3915 /// \brief Generate a shuffle mask to be used in a reduction tree. 3916 /// 3917 /// \param VecLen The length of the vector to be reduced. 3918 /// \param NumEltsToRdx The number of elements that should be reduced in the 3919 /// vector. 3920 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3921 /// reduction. A pairwise reduction will generate a mask of 3922 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3923 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3924 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3925 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3926 bool IsPairwise, bool IsLeft, 3927 IRBuilder<> &Builder) { 3928 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3929 3930 SmallVector<Constant *, 32> ShuffleMask( 3931 VecLen, UndefValue::get(Builder.getInt32Ty())); 3932 3933 if (IsPairwise) 3934 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3935 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3936 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3937 else 3938 // Move the upper half of the vector to the lower half. 3939 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3940 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3941 3942 return ConstantVector::get(ShuffleMask); 3943 } 3944 3945 3946 /// Model horizontal reductions. 3947 /// 3948 /// A horizontal reduction is a tree of reduction operations (currently add and 3949 /// fadd) that has operations that can be put into a vector as its leaf. 3950 /// For example, this tree: 3951 /// 3952 /// mul mul mul mul 3953 /// \ / \ / 3954 /// + + 3955 /// \ / 3956 /// + 3957 /// This tree has "mul" as its reduced values and "+" as its reduction 3958 /// operations. A reduction might be feeding into a store or a binary operation 3959 /// feeding a phi. 3960 /// ... 3961 /// \ / 3962 /// + 3963 /// | 3964 /// phi += 3965 /// 3966 /// Or: 3967 /// ... 3968 /// \ / 3969 /// + 3970 /// | 3971 /// *p = 3972 /// 3973 class HorizontalReduction { 3974 SmallVector<Value *, 16> ReductionOps; 3975 SmallVector<Value *, 32> ReducedVals; 3976 3977 BinaryOperator *ReductionRoot; 3978 PHINode *ReductionPHI; 3979 3980 /// The opcode of the reduction. 3981 unsigned ReductionOpcode; 3982 /// The opcode of the values we perform a reduction on. 3983 unsigned ReducedValueOpcode; 3984 /// Should we model this reduction as a pairwise reduction tree or a tree that 3985 /// splits the vector in halves and adds those halves. 3986 bool IsPairwiseReduction; 3987 3988 public: 3989 /// The width of one full horizontal reduction operation. 3990 unsigned ReduxWidth; 3991 3992 /// Minimal width of available vector registers. It's used to determine 3993 /// ReduxWidth. 3994 unsigned MinVecRegSize; 3995 3996 HorizontalReduction(unsigned MinVecRegSize) 3997 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3998 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 3999 MinVecRegSize(MinVecRegSize) {} 4000 4001 /// \brief Try to find a reduction tree. 4002 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4003 assert((!Phi || 4004 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 4005 "Thi phi needs to use the binary operator"); 4006 4007 // We could have a initial reductions that is not an add. 4008 // r *= v1 + v2 + v3 + v4 4009 // In such a case start looking for a tree rooted in the first '+'. 4010 if (Phi) { 4011 if (B->getOperand(0) == Phi) { 4012 Phi = nullptr; 4013 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4014 } else if (B->getOperand(1) == Phi) { 4015 Phi = nullptr; 4016 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4017 } 4018 } 4019 4020 if (!B) 4021 return false; 4022 4023 Type *Ty = B->getType(); 4024 if (!isValidElementType(Ty)) 4025 return false; 4026 4027 const DataLayout &DL = B->getModule()->getDataLayout(); 4028 ReductionOpcode = B->getOpcode(); 4029 ReducedValueOpcode = 0; 4030 // FIXME: Register size should be a parameter to this function, so we can 4031 // try different vectorization factors. 4032 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4033 ReductionRoot = B; 4034 ReductionPHI = Phi; 4035 4036 if (ReduxWidth < 4) 4037 return false; 4038 4039 // We currently only support adds. 4040 if (ReductionOpcode != Instruction::Add && 4041 ReductionOpcode != Instruction::FAdd) 4042 return false; 4043 4044 // Post order traverse the reduction tree starting at B. We only handle true 4045 // trees containing only binary operators or selects. 4046 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4047 Stack.push_back(std::make_pair(B, 0)); 4048 while (!Stack.empty()) { 4049 Instruction *TreeN = Stack.back().first; 4050 unsigned EdgeToVist = Stack.back().second++; 4051 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4052 4053 // Only handle trees in the current basic block. 4054 if (TreeN->getParent() != B->getParent()) 4055 return false; 4056 4057 // Each tree node needs to have one user except for the ultimate 4058 // reduction. 4059 if (!TreeN->hasOneUse() && TreeN != B) 4060 return false; 4061 4062 // Postorder vist. 4063 if (EdgeToVist == 2 || IsReducedValue) { 4064 if (IsReducedValue) { 4065 // Make sure that the opcodes of the operations that we are going to 4066 // reduce match. 4067 if (!ReducedValueOpcode) 4068 ReducedValueOpcode = TreeN->getOpcode(); 4069 else if (ReducedValueOpcode != TreeN->getOpcode()) 4070 return false; 4071 ReducedVals.push_back(TreeN); 4072 } else { 4073 // We need to be able to reassociate the adds. 4074 if (!TreeN->isAssociative()) 4075 return false; 4076 ReductionOps.push_back(TreeN); 4077 } 4078 // Retract. 4079 Stack.pop_back(); 4080 continue; 4081 } 4082 4083 // Visit left or right. 4084 Value *NextV = TreeN->getOperand(EdgeToVist); 4085 // We currently only allow BinaryOperator's and SelectInst's as reduction 4086 // values in our tree. 4087 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 4088 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 4089 else if (NextV != Phi) 4090 return false; 4091 } 4092 return true; 4093 } 4094 4095 /// \brief Attempt to vectorize the tree found by 4096 /// matchAssociativeReduction. 4097 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4098 if (ReducedVals.empty()) 4099 return false; 4100 4101 unsigned NumReducedVals = ReducedVals.size(); 4102 if (NumReducedVals < ReduxWidth) 4103 return false; 4104 4105 Value *VectorizedTree = nullptr; 4106 IRBuilder<> Builder(ReductionRoot); 4107 FastMathFlags Unsafe; 4108 Unsafe.setUnsafeAlgebra(); 4109 Builder.setFastMathFlags(Unsafe); 4110 unsigned i = 0; 4111 4112 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4113 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4114 V.buildTree(VL, ReductionOps); 4115 if (V.shouldReorder()) { 4116 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4117 V.buildTree(Reversed, ReductionOps); 4118 } 4119 V.computeMinimumValueSizes(); 4120 4121 // Estimate cost. 4122 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4123 if (Cost >= -SLPCostThreshold) 4124 break; 4125 4126 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4127 << ". (HorRdx)\n"); 4128 4129 // Vectorize a tree. 4130 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4131 Value *VectorizedRoot = V.vectorizeTree(); 4132 4133 // Emit a reduction. 4134 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4135 if (VectorizedTree) { 4136 Builder.SetCurrentDebugLocation(Loc); 4137 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4138 ReducedSubTree, "bin.rdx"); 4139 } else 4140 VectorizedTree = ReducedSubTree; 4141 } 4142 4143 if (VectorizedTree) { 4144 // Finish the reduction. 4145 for (; i < NumReducedVals; ++i) { 4146 Builder.SetCurrentDebugLocation( 4147 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4148 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4149 ReducedVals[i]); 4150 } 4151 // Update users. 4152 if (ReductionPHI) { 4153 assert(ReductionRoot && "Need a reduction operation"); 4154 ReductionRoot->setOperand(0, VectorizedTree); 4155 ReductionRoot->setOperand(1, ReductionPHI); 4156 } else 4157 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4158 } 4159 return VectorizedTree != nullptr; 4160 } 4161 4162 unsigned numReductionValues() const { 4163 return ReducedVals.size(); 4164 } 4165 4166 private: 4167 /// \brief Calculate the cost of a reduction. 4168 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4169 Type *ScalarTy = FirstReducedVal->getType(); 4170 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4171 4172 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4173 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4174 4175 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4176 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4177 4178 int ScalarReduxCost = 4179 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4180 4181 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4182 << " for reduction that starts with " << *FirstReducedVal 4183 << " (It is a " 4184 << (IsPairwiseReduction ? "pairwise" : "splitting") 4185 << " reduction)\n"); 4186 4187 return VecReduxCost - ScalarReduxCost; 4188 } 4189 4190 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4191 Value *R, const Twine &Name = "") { 4192 if (Opcode == Instruction::FAdd) 4193 return Builder.CreateFAdd(L, R, Name); 4194 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4195 } 4196 4197 /// \brief Emit a horizontal reduction of the vectorized value. 4198 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4199 assert(VectorizedValue && "Need to have a vectorized tree node"); 4200 assert(isPowerOf2_32(ReduxWidth) && 4201 "We only handle power-of-two reductions for now"); 4202 4203 Value *TmpVec = VectorizedValue; 4204 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4205 if (IsPairwiseReduction) { 4206 Value *LeftMask = 4207 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4208 Value *RightMask = 4209 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4210 4211 Value *LeftShuf = Builder.CreateShuffleVector( 4212 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4213 Value *RightShuf = Builder.CreateShuffleVector( 4214 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4215 "rdx.shuf.r"); 4216 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4217 "bin.rdx"); 4218 } else { 4219 Value *UpperHalf = 4220 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4221 Value *Shuf = Builder.CreateShuffleVector( 4222 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4223 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4224 } 4225 } 4226 4227 // The result is in the first element of the vector. 4228 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4229 } 4230 }; 4231 4232 /// \brief Recognize construction of vectors like 4233 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4234 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4235 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4236 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4237 /// 4238 /// Returns true if it matches 4239 /// 4240 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4241 SmallVectorImpl<Value *> &BuildVector, 4242 SmallVectorImpl<Value *> &BuildVectorOpds) { 4243 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4244 return false; 4245 4246 InsertElementInst *IE = FirstInsertElem; 4247 while (true) { 4248 BuildVector.push_back(IE); 4249 BuildVectorOpds.push_back(IE->getOperand(1)); 4250 4251 if (IE->use_empty()) 4252 return false; 4253 4254 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4255 if (!NextUse) 4256 return true; 4257 4258 // If this isn't the final use, make sure the next insertelement is the only 4259 // use. It's OK if the final constructed vector is used multiple times 4260 if (!IE->hasOneUse()) 4261 return false; 4262 4263 IE = NextUse; 4264 } 4265 4266 return false; 4267 } 4268 4269 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4270 /// 4271 /// \return true if it matches. 4272 static bool findBuildAggregate(InsertValueInst *IV, 4273 SmallVectorImpl<Value *> &BuildVector, 4274 SmallVectorImpl<Value *> &BuildVectorOpds) { 4275 if (!IV->hasOneUse()) 4276 return false; 4277 Value *V = IV->getAggregateOperand(); 4278 if (!isa<UndefValue>(V)) { 4279 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4280 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4281 return false; 4282 } 4283 BuildVector.push_back(IV); 4284 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4285 return true; 4286 } 4287 4288 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4289 return V->getType() < V2->getType(); 4290 } 4291 4292 /// \brief Try and get a reduction value from a phi node. 4293 /// 4294 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4295 /// if they come from either \p ParentBB or a containing loop latch. 4296 /// 4297 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4298 /// if not possible. 4299 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4300 BasicBlock *ParentBB, LoopInfo *LI) { 4301 // There are situations where the reduction value is not dominated by the 4302 // reduction phi. Vectorizing such cases has been reported to cause 4303 // miscompiles. See PR25787. 4304 auto DominatedReduxValue = [&](Value *R) { 4305 return ( 4306 dyn_cast<Instruction>(R) && 4307 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4308 }; 4309 4310 Value *Rdx = nullptr; 4311 4312 // Return the incoming value if it comes from the same BB as the phi node. 4313 if (P->getIncomingBlock(0) == ParentBB) { 4314 Rdx = P->getIncomingValue(0); 4315 } else if (P->getIncomingBlock(1) == ParentBB) { 4316 Rdx = P->getIncomingValue(1); 4317 } 4318 4319 if (Rdx && DominatedReduxValue(Rdx)) 4320 return Rdx; 4321 4322 // Otherwise, check whether we have a loop latch to look at. 4323 Loop *BBL = LI->getLoopFor(ParentBB); 4324 if (!BBL) 4325 return nullptr; 4326 BasicBlock *BBLatch = BBL->getLoopLatch(); 4327 if (!BBLatch) 4328 return nullptr; 4329 4330 // There is a loop latch, return the incoming value if it comes from 4331 // that. This reduction pattern occassionaly turns up. 4332 if (P->getIncomingBlock(0) == BBLatch) { 4333 Rdx = P->getIncomingValue(0); 4334 } else if (P->getIncomingBlock(1) == BBLatch) { 4335 Rdx = P->getIncomingValue(1); 4336 } 4337 4338 if (Rdx && DominatedReduxValue(Rdx)) 4339 return Rdx; 4340 4341 return nullptr; 4342 } 4343 4344 /// \brief Attempt to reduce a horizontal reduction. 4345 /// If it is legal to match a horizontal reduction feeding 4346 /// the phi node P with reduction operators BI, then check if it 4347 /// can be done. 4348 /// \returns true if a horizontal reduction was matched and reduced. 4349 /// \returns false if a horizontal reduction was not matched. 4350 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4351 BoUpSLP &R, TargetTransformInfo *TTI, 4352 unsigned MinRegSize) { 4353 if (!ShouldVectorizeHor) 4354 return false; 4355 4356 HorizontalReduction HorRdx(MinRegSize); 4357 if (!HorRdx.matchAssociativeReduction(P, BI)) 4358 return false; 4359 4360 // If there is a sufficient number of reduction values, reduce 4361 // to a nearby power-of-2. Can safely generate oversized 4362 // vectors and rely on the backend to split them to legal sizes. 4363 HorRdx.ReduxWidth = 4364 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4365 4366 return HorRdx.tryToReduce(R, TTI); 4367 } 4368 4369 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4370 bool Changed = false; 4371 SmallVector<Value *, 4> Incoming; 4372 SmallSet<Value *, 16> VisitedInstrs; 4373 4374 bool HaveVectorizedPhiNodes = true; 4375 while (HaveVectorizedPhiNodes) { 4376 HaveVectorizedPhiNodes = false; 4377 4378 // Collect the incoming values from the PHIs. 4379 Incoming.clear(); 4380 for (Instruction &I : *BB) { 4381 PHINode *P = dyn_cast<PHINode>(&I); 4382 if (!P) 4383 break; 4384 4385 if (!VisitedInstrs.count(P)) 4386 Incoming.push_back(P); 4387 } 4388 4389 // Sort by type. 4390 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4391 4392 // Try to vectorize elements base on their type. 4393 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4394 E = Incoming.end(); 4395 IncIt != E;) { 4396 4397 // Look for the next elements with the same type. 4398 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4399 while (SameTypeIt != E && 4400 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4401 VisitedInstrs.insert(*SameTypeIt); 4402 ++SameTypeIt; 4403 } 4404 4405 // Try to vectorize them. 4406 unsigned NumElts = (SameTypeIt - IncIt); 4407 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4408 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4409 // Success start over because instructions might have been changed. 4410 HaveVectorizedPhiNodes = true; 4411 Changed = true; 4412 break; 4413 } 4414 4415 // Start over at the next instruction of a different type (or the end). 4416 IncIt = SameTypeIt; 4417 } 4418 } 4419 4420 VisitedInstrs.clear(); 4421 4422 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4423 // We may go through BB multiple times so skip the one we have checked. 4424 if (!VisitedInstrs.insert(&*it).second) 4425 continue; 4426 4427 if (isa<DbgInfoIntrinsic>(it)) 4428 continue; 4429 4430 // Try to vectorize reductions that use PHINodes. 4431 if (PHINode *P = dyn_cast<PHINode>(it)) { 4432 // Check that the PHI is a reduction PHI. 4433 if (P->getNumIncomingValues() != 2) 4434 return Changed; 4435 4436 Value *Rdx = getReductionValue(DT, P, BB, LI); 4437 4438 // Check if this is a Binary Operator. 4439 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4440 if (!BI) 4441 continue; 4442 4443 // Try to match and vectorize a horizontal reduction. 4444 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4445 Changed = true; 4446 it = BB->begin(); 4447 e = BB->end(); 4448 continue; 4449 } 4450 4451 Value *Inst = BI->getOperand(0); 4452 if (Inst == P) 4453 Inst = BI->getOperand(1); 4454 4455 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4456 // We would like to start over since some instructions are deleted 4457 // and the iterator may become invalid value. 4458 Changed = true; 4459 it = BB->begin(); 4460 e = BB->end(); 4461 continue; 4462 } 4463 4464 continue; 4465 } 4466 4467 if (ShouldStartVectorizeHorAtStore) 4468 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4469 if (BinaryOperator *BinOp = 4470 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4471 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4472 R.getMinVecRegSize()) || 4473 tryToVectorize(BinOp, R)) { 4474 Changed = true; 4475 it = BB->begin(); 4476 e = BB->end(); 4477 continue; 4478 } 4479 } 4480 4481 // Try to vectorize horizontal reductions feeding into a return. 4482 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4483 if (RI->getNumOperands() != 0) 4484 if (BinaryOperator *BinOp = 4485 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4486 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4487 if (tryToVectorizePair(BinOp->getOperand(0), 4488 BinOp->getOperand(1), R)) { 4489 Changed = true; 4490 it = BB->begin(); 4491 e = BB->end(); 4492 continue; 4493 } 4494 } 4495 4496 // Try to vectorize trees that start at compare instructions. 4497 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4498 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4499 Changed = true; 4500 // We would like to start over since some instructions are deleted 4501 // and the iterator may become invalid value. 4502 it = BB->begin(); 4503 e = BB->end(); 4504 continue; 4505 } 4506 4507 for (int i = 0; i < 2; ++i) { 4508 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4509 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4510 Changed = true; 4511 // We would like to start over since some instructions are deleted 4512 // and the iterator may become invalid value. 4513 it = BB->begin(); 4514 e = BB->end(); 4515 break; 4516 } 4517 } 4518 } 4519 continue; 4520 } 4521 4522 // Try to vectorize trees that start at insertelement instructions. 4523 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4524 SmallVector<Value *, 16> BuildVector; 4525 SmallVector<Value *, 16> BuildVectorOpds; 4526 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4527 continue; 4528 4529 // Vectorize starting with the build vector operands ignoring the 4530 // BuildVector instructions for the purpose of scheduling and user 4531 // extraction. 4532 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4533 Changed = true; 4534 it = BB->begin(); 4535 e = BB->end(); 4536 } 4537 4538 continue; 4539 } 4540 4541 // Try to vectorize trees that start at insertvalue instructions feeding into 4542 // a store. 4543 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4544 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4545 const DataLayout &DL = BB->getModule()->getDataLayout(); 4546 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4547 SmallVector<Value *, 16> BuildVector; 4548 SmallVector<Value *, 16> BuildVectorOpds; 4549 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4550 continue; 4551 4552 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4553 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4554 Changed = true; 4555 it = BB->begin(); 4556 e = BB->end(); 4557 } 4558 continue; 4559 } 4560 } 4561 } 4562 } 4563 4564 return Changed; 4565 } 4566 4567 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4568 auto Changed = false; 4569 for (auto &Entry : GEPs) { 4570 4571 // If the getelementptr list has fewer than two elements, there's nothing 4572 // to do. 4573 if (Entry.second.size() < 2) 4574 continue; 4575 4576 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4577 << Entry.second.size() << ".\n"); 4578 4579 // We process the getelementptr list in chunks of 16 (like we do for 4580 // stores) to minimize compile-time. 4581 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4582 auto Len = std::min<unsigned>(BE - BI, 16); 4583 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4584 4585 // Initialize a set a candidate getelementptrs. Note that we use a 4586 // SetVector here to preserve program order. If the index computations 4587 // are vectorizable and begin with loads, we want to minimize the chance 4588 // of having to reorder them later. 4589 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4590 4591 // Some of the candidates may have already been vectorized after we 4592 // initially collected them. If so, the WeakVHs will have nullified the 4593 // values, so remove them from the set of candidates. 4594 Candidates.remove(nullptr); 4595 4596 // Remove from the set of candidates all pairs of getelementptrs with 4597 // constant differences. Such getelementptrs are likely not good 4598 // candidates for vectorization in a bottom-up phase since one can be 4599 // computed from the other. We also ensure all candidate getelementptr 4600 // indices are unique. 4601 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4602 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4603 if (!Candidates.count(GEPI)) 4604 continue; 4605 auto *SCEVI = SE->getSCEV(GEPList[I]); 4606 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4607 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4608 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4609 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4610 Candidates.remove(GEPList[I]); 4611 Candidates.remove(GEPList[J]); 4612 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4613 Candidates.remove(GEPList[J]); 4614 } 4615 } 4616 } 4617 4618 // We break out of the above computation as soon as we know there are 4619 // fewer than two candidates remaining. 4620 if (Candidates.size() < 2) 4621 continue; 4622 4623 // Add the single, non-constant index of each candidate to the bundle. We 4624 // ensured the indices met these constraints when we originally collected 4625 // the getelementptrs. 4626 SmallVector<Value *, 16> Bundle(Candidates.size()); 4627 auto BundleIndex = 0u; 4628 for (auto *V : Candidates) { 4629 auto *GEP = cast<GetElementPtrInst>(V); 4630 auto *GEPIdx = GEP->idx_begin()->get(); 4631 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4632 Bundle[BundleIndex++] = GEPIdx; 4633 } 4634 4635 // Try and vectorize the indices. We are currently only interested in 4636 // gather-like cases of the form: 4637 // 4638 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4639 // 4640 // where the loads of "a", the loads of "b", and the subtractions can be 4641 // performed in parallel. It's likely that detecting this pattern in a 4642 // bottom-up phase will be simpler and less costly than building a 4643 // full-blown top-down phase beginning at the consecutive loads. 4644 Changed |= tryToVectorizeList(Bundle, R); 4645 } 4646 } 4647 return Changed; 4648 } 4649 4650 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4651 bool Changed = false; 4652 // Attempt to sort and vectorize each of the store-groups. 4653 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4654 ++it) { 4655 if (it->second.size() < 2) 4656 continue; 4657 4658 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4659 << it->second.size() << ".\n"); 4660 4661 // Process the stores in chunks of 16. 4662 // TODO: The limit of 16 inhibits greater vectorization factors. 4663 // For example, AVX2 supports v32i8. Increasing this limit, however, 4664 // may cause a significant compile-time increase. 4665 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4666 unsigned Len = std::min<unsigned>(CE - CI, 16); 4667 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4668 -SLPCostThreshold, R); 4669 } 4670 } 4671 return Changed; 4672 } 4673 4674 char SLPVectorizer::ID = 0; 4675 static const char lv_name[] = "SLP Vectorizer"; 4676 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4677 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4678 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4679 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4680 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4681 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4682 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4683 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4684 4685 namespace llvm { 4686 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4687 } 4688