1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
11 // stores that can be put together into vector-stores. Next, it attempts to
12 // construct vectorizable tree using the use-def chains. If a profitable tree
13 // was found, the SLP vectorizer performs vectorization on the tree.
14 //
15 // The pass is inspired by the work described in the paper:
16 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/None.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/LoopUtils.h"
88 #include "llvm/Transforms/Vectorize.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <memory>
94 #include <set>
95 #include <string>
96 #include <tuple>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 using namespace slpvectorizer;
103 
104 #define SV_NAME "slp-vectorizer"
105 #define DEBUG_TYPE "SLP"
106 
107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
108 
109 static cl::opt<int>
110     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
111                      cl::desc("Only vectorize if you gain more than this "
112                               "number "));
113 
114 static cl::opt<bool>
115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
116                    cl::desc("Attempt to vectorize horizontal reductions"));
117 
118 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
119     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
120     cl::desc(
121         "Attempt to vectorize horizontal reductions feeding into a store"));
122 
123 static cl::opt<int>
124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
125     cl::desc("Attempt to vectorize for this register size in bits"));
126 
127 /// Limits the size of scheduling regions in a block.
128 /// It avoid long compile times for _very_ large blocks where vector
129 /// instructions are spread over a wide range.
130 /// This limit is way higher than needed by real-world functions.
131 static cl::opt<int>
132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
133     cl::desc("Limit the size of the SLP scheduling region per block"));
134 
135 static cl::opt<int> MinVectorRegSizeOption(
136     "slp-min-reg-size", cl::init(128), cl::Hidden,
137     cl::desc("Attempt to vectorize for this register size in bits"));
138 
139 static cl::opt<unsigned> RecursionMaxDepth(
140     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
141     cl::desc("Limit the recursion depth when building a vectorizable tree"));
142 
143 static cl::opt<unsigned> MinTreeSize(
144     "slp-min-tree-size", cl::init(3), cl::Hidden,
145     cl::desc("Only vectorize small trees if they are fully vectorizable"));
146 
147 static cl::opt<bool>
148     ViewSLPTree("view-slp-tree", cl::Hidden,
149                 cl::desc("Display the SLP trees with Graphviz"));
150 
151 // Limit the number of alias checks. The limit is chosen so that
152 // it has no negative effect on the llvm benchmarks.
153 static const unsigned AliasedCheckLimit = 10;
154 
155 // Another limit for the alias checks: The maximum distance between load/store
156 // instructions where alias checks are done.
157 // This limit is useful for very large basic blocks.
158 static const unsigned MaxMemDepDistance = 160;
159 
160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
161 /// regions to be handled.
162 static const int MinScheduleRegionSize = 16;
163 
164 /// \brief Predicate for the element types that the SLP vectorizer supports.
165 ///
166 /// The most important thing to filter here are types which are invalid in LLVM
167 /// vectors. We also filter target specific types which have absolutely no
168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
169 /// avoids spending time checking the cost model and realizing that they will
170 /// be inevitably scalarized.
171 static bool isValidElementType(Type *Ty) {
172   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
173          !Ty->isPPC_FP128Ty();
174 }
175 
176 /// \returns true if all of the instructions in \p VL are in the same block or
177 /// false otherwise.
178 static bool allSameBlock(ArrayRef<Value *> VL) {
179   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
180   if (!I0)
181     return false;
182   BasicBlock *BB = I0->getParent();
183   for (int i = 1, e = VL.size(); i < e; i++) {
184     Instruction *I = dyn_cast<Instruction>(VL[i]);
185     if (!I)
186       return false;
187 
188     if (BB != I->getParent())
189       return false;
190   }
191   return true;
192 }
193 
194 /// \returns True if all of the values in \p VL are constants.
195 static bool allConstant(ArrayRef<Value *> VL) {
196   for (Value *i : VL)
197     if (!isa<Constant>(i))
198       return false;
199   return true;
200 }
201 
202 /// \returns True if all of the values in \p VL are identical.
203 static bool isSplat(ArrayRef<Value *> VL) {
204   for (unsigned i = 1, e = VL.size(); i < e; ++i)
205     if (VL[i] != VL[0])
206       return false;
207   return true;
208 }
209 
210 /// Checks if the vector of instructions can be represented as a shuffle, like:
211 /// %x0 = extractelement <4 x i8> %x, i32 0
212 /// %x3 = extractelement <4 x i8> %x, i32 3
213 /// %y1 = extractelement <4 x i8> %y, i32 1
214 /// %y2 = extractelement <4 x i8> %y, i32 2
215 /// %x0x0 = mul i8 %x0, %x0
216 /// %x3x3 = mul i8 %x3, %x3
217 /// %y1y1 = mul i8 %y1, %y1
218 /// %y2y2 = mul i8 %y2, %y2
219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
223 /// ret <4 x i8> %ins4
224 /// can be transformed into:
225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
226 ///                                                         i32 6>
227 /// %2 = mul <4 x i8> %1, %1
228 /// ret <4 x i8> %2
229 /// We convert this initially to something like:
230 /// %x0 = extractelement <4 x i8> %x, i32 0
231 /// %x3 = extractelement <4 x i8> %x, i32 3
232 /// %y1 = extractelement <4 x i8> %y, i32 1
233 /// %y2 = extractelement <4 x i8> %y, i32 2
234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
238 /// %5 = mul <4 x i8> %4, %4
239 /// %6 = extractelement <4 x i8> %5, i32 0
240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
241 /// %7 = extractelement <4 x i8> %5, i32 1
242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
243 /// %8 = extractelement <4 x i8> %5, i32 2
244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
245 /// %9 = extractelement <4 x i8> %5, i32 3
246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
247 /// ret <4 x i8> %ins4
248 /// InstCombiner transforms this into a shuffle and vector mul
249 static Optional<TargetTransformInfo::ShuffleKind>
250 isShuffle(ArrayRef<Value *> VL) {
251   auto *EI0 = cast<ExtractElementInst>(VL[0]);
252   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
253   Value *Vec1 = nullptr;
254   Value *Vec2 = nullptr;
255   enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute};
256   ShuffleMode CommonShuffleMode = Unknown;
257   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
258     auto *EI = cast<ExtractElementInst>(VL[I]);
259     auto *Vec = EI->getVectorOperand();
260     // All vector operands must have the same number of vector elements.
261     if (Vec->getType()->getVectorNumElements() != Size)
262       return None;
263     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
264     if (!Idx)
265       return None;
266     // Undefined behavior if Idx is negative or >= Size.
267     if (Idx->getValue().uge(Size))
268       continue;
269     unsigned IntIdx = Idx->getValue().getZExtValue();
270     // We can extractelement from undef vector.
271     if (isa<UndefValue>(Vec))
272       continue;
273     // For correct shuffling we have to have at most 2 different vector operands
274     // in all extractelement instructions.
275     if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2)
276       return None;
277     if (CommonShuffleMode == Permute)
278       continue;
279     // If the extract index is not the same as the operation number, it is a
280     // permutation.
281     if (IntIdx != I) {
282       CommonShuffleMode = Permute;
283       continue;
284     }
285     // Check the shuffle mode for the current operation.
286     if (!Vec1)
287       Vec1 = Vec;
288     else if (Vec != Vec1)
289       Vec2 = Vec;
290     // Example: shufflevector A, B, <0,5,2,7>
291     // I is odd and IntIdx for A == I - FirstAlternate shuffle.
292     // I is even and IntIdx for B == I - FirstAlternate shuffle.
293     // Example: shufflevector A, B, <4,1,6,3>
294     // I is even and IntIdx for A == I - SecondAlternate shuffle.
295     // I is odd and IntIdx for B == I - SecondAlternate shuffle.
296     const bool IIsEven = I & 1;
297     const bool CurrVecIsA = Vec == Vec1;
298     const bool IIsOdd = !IIsEven;
299     const bool CurrVecIsB = !CurrVecIsA;
300     ShuffleMode CurrentShuffleMode =
301         ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate
302                                                             : SecondAlternate;
303     // Common mode is not set or the same as the shuffle mode of the current
304     // operation - alternate.
305     if (CommonShuffleMode == Unknown)
306       CommonShuffleMode = CurrentShuffleMode;
307     // Common shuffle mode is not the same as the shuffle mode of the current
308     // operation - permutation.
309     if (CommonShuffleMode != CurrentShuffleMode)
310       CommonShuffleMode = Permute;
311   }
312   // If we're not crossing lanes in different vectors, consider it as blending.
313   if ((CommonShuffleMode == FirstAlternate ||
314        CommonShuffleMode == SecondAlternate) &&
315       Vec2)
316     return TargetTransformInfo::SK_Alternate;
317   // If Vec2 was never used, we have a permutation of a single vector, otherwise
318   // we have permutation of 2 vectors.
319   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
320               : TargetTransformInfo::SK_PermuteSingleSrc;
321 }
322 
323 ///\returns Opcode that can be clubbed with \p Op to create an alternate
324 /// sequence which can later be merged as a ShuffleVector instruction.
325 static unsigned getAltOpcode(unsigned Op) {
326   switch (Op) {
327   case Instruction::FAdd:
328     return Instruction::FSub;
329   case Instruction::FSub:
330     return Instruction::FAdd;
331   case Instruction::Add:
332     return Instruction::Sub;
333   case Instruction::Sub:
334     return Instruction::Add;
335   default:
336     return 0;
337   }
338 }
339 
340 static bool isOdd(unsigned Value) {
341   return Value & 1;
342 }
343 
344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode,
345                             unsigned CheckedOpcode) {
346   return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode;
347 }
348 
349 /// Chooses the correct key for scheduling data. If \p Op has the same (or
350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
351 /// OpValue.
352 static Value *isOneOf(Value *OpValue, Value *Op) {
353   auto *I = dyn_cast<Instruction>(Op);
354   if (!I)
355     return OpValue;
356   auto *OpInst = cast<Instruction>(OpValue);
357   unsigned OpInstOpcode = OpInst->getOpcode();
358   unsigned IOpcode = I->getOpcode();
359   if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode))
360     return Op;
361   return OpValue;
362 }
363 
364 namespace {
365 
366 /// Contains data for the instructions going to be vectorized.
367 struct RawInstructionsData {
368   /// Main Opcode of the instructions going to be vectorized.
369   unsigned Opcode = 0;
370 
371   /// The list of instructions have some instructions with alternate opcodes.
372   bool HasAltOpcodes = false;
373 };
374 
375 } // end anonymous namespace
376 
377 /// Checks the list of the vectorized instructions \p VL and returns info about
378 /// this list.
379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) {
380   auto *I0 = dyn_cast<Instruction>(VL[0]);
381   if (!I0)
382     return {};
383   RawInstructionsData Res;
384   unsigned Opcode = I0->getOpcode();
385   // Walk through the list of the vectorized instructions
386   // in order to check its structure described by RawInstructionsData.
387   for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) {
388     auto *I = dyn_cast<Instruction>(VL[Cnt]);
389     if (!I)
390       return {};
391     if (Opcode != I->getOpcode())
392       Res.HasAltOpcodes = true;
393   }
394   Res.Opcode = Opcode;
395   return Res;
396 }
397 
398 namespace {
399 
400 /// Main data required for vectorization of instructions.
401 struct InstructionsState {
402   /// The very first instruction in the list with the main opcode.
403   Value *OpValue = nullptr;
404 
405   /// The main opcode for the list of instructions.
406   unsigned Opcode = 0;
407 
408   /// Some of the instructions in the list have alternate opcodes.
409   bool IsAltShuffle = false;
410 
411   InstructionsState() = default;
412   InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle)
413       : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {}
414 };
415 
416 } // end anonymous namespace
417 
418 /// \returns analysis of the Instructions in \p VL described in
419 /// InstructionsState, the Opcode that we suppose the whole list
420 /// could be vectorized even if its structure is diverse.
421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) {
422   auto Res = getMainOpcode(VL);
423   unsigned Opcode = Res.Opcode;
424   if (!Res.HasAltOpcodes)
425     return InstructionsState(VL[0], Opcode, false);
426   auto *OpInst = cast<Instruction>(VL[0]);
427   unsigned AltOpcode = getAltOpcode(Opcode);
428   // Examine each element in the list instructions VL to determine
429   // if some operations there could be considered as an alternative
430   // (for example as subtraction relates to addition operation).
431   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
432     auto *I = cast<Instruction>(VL[Cnt]);
433     unsigned InstOpcode = I->getOpcode();
434     if ((Res.HasAltOpcodes &&
435          InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) ||
436         (!Res.HasAltOpcodes && InstOpcode != Opcode)) {
437       return InstructionsState(OpInst, 0, false);
438     }
439   }
440   return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes);
441 }
442 
443 /// \returns true if all of the values in \p VL have the same type or false
444 /// otherwise.
445 static bool allSameType(ArrayRef<Value *> VL) {
446   Type *Ty = VL[0]->getType();
447   for (int i = 1, e = VL.size(); i < e; i++)
448     if (VL[i]->getType() != Ty)
449       return false;
450 
451   return true;
452 }
453 
454 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
456   assert(Opcode == Instruction::ExtractElement ||
457          Opcode == Instruction::ExtractValue);
458   if (Opcode == Instruction::ExtractElement) {
459     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
460     return CI && CI->getZExtValue() == Idx;
461   } else {
462     ExtractValueInst *EI = cast<ExtractValueInst>(E);
463     return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
464   }
465 }
466 
467 /// \returns True if in-tree use also needs extract. This refers to
468 /// possible scalar operand in vectorized instruction.
469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
470                                     TargetLibraryInfo *TLI) {
471   unsigned Opcode = UserInst->getOpcode();
472   switch (Opcode) {
473   case Instruction::Load: {
474     LoadInst *LI = cast<LoadInst>(UserInst);
475     return (LI->getPointerOperand() == Scalar);
476   }
477   case Instruction::Store: {
478     StoreInst *SI = cast<StoreInst>(UserInst);
479     return (SI->getPointerOperand() == Scalar);
480   }
481   case Instruction::Call: {
482     CallInst *CI = cast<CallInst>(UserInst);
483     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
484     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
485       return (CI->getArgOperand(1) == Scalar);
486     }
487     LLVM_FALLTHROUGH;
488   }
489   default:
490     return false;
491   }
492 }
493 
494 /// \returns the AA location that is being access by the instruction.
495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
496   if (StoreInst *SI = dyn_cast<StoreInst>(I))
497     return MemoryLocation::get(SI);
498   if (LoadInst *LI = dyn_cast<LoadInst>(I))
499     return MemoryLocation::get(LI);
500   return MemoryLocation();
501 }
502 
503 /// \returns True if the instruction is not a volatile or atomic load/store.
504 static bool isSimple(Instruction *I) {
505   if (LoadInst *LI = dyn_cast<LoadInst>(I))
506     return LI->isSimple();
507   if (StoreInst *SI = dyn_cast<StoreInst>(I))
508     return SI->isSimple();
509   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
510     return !MI->isVolatile();
511   return true;
512 }
513 
514 namespace llvm {
515 
516 namespace slpvectorizer {
517 
518 /// Bottom Up SLP Vectorizer.
519 class BoUpSLP {
520 public:
521   using ValueList = SmallVector<Value *, 8>;
522   using InstrList = SmallVector<Instruction *, 16>;
523   using ValueSet = SmallPtrSet<Value *, 16>;
524   using StoreList = SmallVector<StoreInst *, 8>;
525   using ExtraValueToDebugLocsMap =
526       MapVector<Value *, SmallVector<Instruction *, 2>>;
527 
528   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
529           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
530           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
531           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
532       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
533         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
534     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
535     // Use the vector register size specified by the target unless overridden
536     // by a command-line option.
537     // TODO: It would be better to limit the vectorization factor based on
538     //       data type rather than just register size. For example, x86 AVX has
539     //       256-bit registers, but it does not support integer operations
540     //       at that width (that requires AVX2).
541     if (MaxVectorRegSizeOption.getNumOccurrences())
542       MaxVecRegSize = MaxVectorRegSizeOption;
543     else
544       MaxVecRegSize = TTI->getRegisterBitWidth(true);
545 
546     if (MinVectorRegSizeOption.getNumOccurrences())
547       MinVecRegSize = MinVectorRegSizeOption;
548     else
549       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
550   }
551 
552   /// \brief Vectorize the tree that starts with the elements in \p VL.
553   /// Returns the vectorized root.
554   Value *vectorizeTree();
555 
556   /// Vectorize the tree but with the list of externally used values \p
557   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
558   /// generated extractvalue instructions.
559   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
560 
561   /// \returns the cost incurred by unwanted spills and fills, caused by
562   /// holding live values over call sites.
563   int getSpillCost();
564 
565   /// \returns the vectorization cost of the subtree that starts at \p VL.
566   /// A negative number means that this is profitable.
567   int getTreeCost();
568 
569   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
570   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
571   void buildTree(ArrayRef<Value *> Roots,
572                  ArrayRef<Value *> UserIgnoreLst = None);
573 
574   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
575   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
576   /// into account (anf updating it, if required) list of externally used
577   /// values stored in \p ExternallyUsedValues.
578   void buildTree(ArrayRef<Value *> Roots,
579                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
580                  ArrayRef<Value *> UserIgnoreLst = None);
581 
582   /// Clear the internal data structures that are created by 'buildTree'.
583   void deleteTree() {
584     VectorizableTree.clear();
585     ScalarToTreeEntry.clear();
586     MustGather.clear();
587     ExternalUses.clear();
588     NumOpsWantToKeepOrder.clear();
589     for (auto &Iter : BlocksSchedules) {
590       BlockScheduling *BS = Iter.second.get();
591       BS->clear();
592     }
593     MinBWs.clear();
594   }
595 
596   unsigned getTreeSize() const { return VectorizableTree.size(); }
597 
598   /// \brief Perform LICM and CSE on the newly generated gather sequences.
599   void optimizeGatherSequence();
600 
601   /// \returns true if it is beneficial to reverse the vector order.
602   bool shouldReorder() const {
603     return std::accumulate(
604                NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 0,
605                [](int Val1,
606                   const decltype(NumOpsWantToKeepOrder)::value_type &Val2) {
607                  return Val1 + (Val2.second < 0 ? 1 : -1);
608                }) > 0;
609   }
610 
611   /// \return The vector element size in bits to use when vectorizing the
612   /// expression tree ending at \p V. If V is a store, the size is the width of
613   /// the stored value. Otherwise, the size is the width of the largest loaded
614   /// value reaching V. This method is used by the vectorizer to calculate
615   /// vectorization factors.
616   unsigned getVectorElementSize(Value *V);
617 
618   /// Compute the minimum type sizes required to represent the entries in a
619   /// vectorizable tree.
620   void computeMinimumValueSizes();
621 
622   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
623   unsigned getMaxVecRegSize() const {
624     return MaxVecRegSize;
625   }
626 
627   // \returns minimum vector register size as set by cl::opt.
628   unsigned getMinVecRegSize() const {
629     return MinVecRegSize;
630   }
631 
632   /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
633   ///
634   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
635   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
636 
637   /// \returns True if the VectorizableTree is both tiny and not fully
638   /// vectorizable. We do not vectorize such trees.
639   bool isTreeTinyAndNotFullyVectorizable();
640 
641   OptimizationRemarkEmitter *getORE() { return ORE; }
642 
643 private:
644   struct TreeEntry;
645 
646   /// Checks if all users of \p I are the part of the vectorization tree.
647   bool areAllUsersVectorized(Instruction *I) const;
648 
649   /// \returns the cost of the vectorizable entry.
650   int getEntryCost(TreeEntry *E);
651 
652   /// This is the recursive part of buildTree.
653   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
654 
655   /// \returns True if the ExtractElement/ExtractValue instructions in VL can
656   /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
657   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const;
658 
659   /// Vectorize a single entry in the tree.
660   Value *vectorizeTree(TreeEntry *E);
661 
662   /// Vectorize a single entry in the tree, starting in \p VL.
663   Value *vectorizeTree(ArrayRef<Value *> VL);
664 
665   /// \returns the scalarization cost for this type. Scalarization in this
666   /// context means the creation of vectors from a group of scalars.
667   int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices);
668 
669   /// \returns the scalarization cost for this list of values. Assuming that
670   /// this subtree gets vectorized, we may need to extract the values from the
671   /// roots. This method calculates the cost of extracting the values.
672   int getGatherCost(ArrayRef<Value *> VL);
673 
674   /// \brief Set the Builder insert point to one after the last instruction in
675   /// the bundle
676   void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue);
677 
678   /// \returns a vector from a collection of scalars in \p VL.
679   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
680 
681   /// \returns whether the VectorizableTree is fully vectorizable and will
682   /// be beneficial even the tree height is tiny.
683   bool isFullyVectorizableTinyTree();
684 
685   /// \reorder commutative operands in alt shuffle if they result in
686   ///  vectorized code.
687   void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
688                                  SmallVectorImpl<Value *> &Left,
689                                  SmallVectorImpl<Value *> &Right);
690 
691   /// \reorder commutative operands to get better probability of
692   /// generating vectorized code.
693   void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL,
694                                       SmallVectorImpl<Value *> &Left,
695                                       SmallVectorImpl<Value *> &Right);
696   struct TreeEntry {
697     TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {}
698 
699     /// \returns true if the scalars in VL are equal to this entry.
700     bool isSame(ArrayRef<Value *> VL) const {
701       if (VL.size() == Scalars.size())
702         return std::equal(VL.begin(), VL.end(), Scalars.begin());
703       return VL.size() == ReuseShuffleIndices.size() &&
704              std::equal(
705                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
706                  [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
707     }
708 
709     /// A vector of scalars.
710     ValueList Scalars;
711 
712     /// The Scalars are vectorized into this value. It is initialized to Null.
713     Value *VectorizedValue = nullptr;
714 
715     /// Do we need to gather this sequence ?
716     bool NeedToGather = false;
717 
718     /// Does this sequence require some shuffling?
719     SmallVector<unsigned, 4> ReuseShuffleIndices;
720 
721     /// Points back to the VectorizableTree.
722     ///
723     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
724     /// to be a pointer and needs to be able to initialize the child iterator.
725     /// Thus we need a reference back to the container to translate the indices
726     /// to entries.
727     std::vector<TreeEntry> &Container;
728 
729     /// The TreeEntry index containing the user of this entry.  We can actually
730     /// have multiple users so the data structure is not truly a tree.
731     SmallVector<int, 1> UserTreeIndices;
732   };
733 
734   /// Create a new VectorizableTree entry.
735   void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx,
736                     ArrayRef<unsigned> ReuseShuffleIndices = None) {
737     VectorizableTree.emplace_back(VectorizableTree);
738     int idx = VectorizableTree.size() - 1;
739     TreeEntry *Last = &VectorizableTree[idx];
740     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
741     Last->NeedToGather = !Vectorized;
742     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
743                                      ReuseShuffleIndices.end());
744     if (Vectorized) {
745       for (int i = 0, e = VL.size(); i != e; ++i) {
746         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
747         ScalarToTreeEntry[VL[i]] = idx;
748       }
749     } else {
750       MustGather.insert(VL.begin(), VL.end());
751     }
752 
753     if (UserTreeIdx >= 0)
754       Last->UserTreeIndices.push_back(UserTreeIdx);
755     UserTreeIdx = idx;
756   }
757 
758   /// -- Vectorization State --
759   /// Holds all of the tree entries.
760   std::vector<TreeEntry> VectorizableTree;
761 
762   TreeEntry *getTreeEntry(Value *V) {
763     auto I = ScalarToTreeEntry.find(V);
764     if (I != ScalarToTreeEntry.end())
765       return &VectorizableTree[I->second];
766     return nullptr;
767   }
768 
769   /// Maps a specific scalar to its tree entry.
770   SmallDenseMap<Value*, int> ScalarToTreeEntry;
771 
772   /// A list of scalars that we found that we need to keep as scalars.
773   ValueSet MustGather;
774 
775   /// This POD struct describes one external user in the vectorized tree.
776   struct ExternalUser {
777     ExternalUser(Value *S, llvm::User *U, int L)
778         : Scalar(S), User(U), Lane(L) {}
779 
780     // Which scalar in our function.
781     Value *Scalar;
782 
783     // Which user that uses the scalar.
784     llvm::User *User;
785 
786     // Which lane does the scalar belong to.
787     int Lane;
788   };
789   using UserList = SmallVector<ExternalUser, 16>;
790 
791   /// Checks if two instructions may access the same memory.
792   ///
793   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
794   /// is invariant in the calling loop.
795   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
796                  Instruction *Inst2) {
797     // First check if the result is already in the cache.
798     AliasCacheKey key = std::make_pair(Inst1, Inst2);
799     Optional<bool> &result = AliasCache[key];
800     if (result.hasValue()) {
801       return result.getValue();
802     }
803     MemoryLocation Loc2 = getLocation(Inst2, AA);
804     bool aliased = true;
805     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
806       // Do the alias check.
807       aliased = AA->alias(Loc1, Loc2);
808     }
809     // Store the result in the cache.
810     result = aliased;
811     return aliased;
812   }
813 
814   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
815 
816   /// Cache for alias results.
817   /// TODO: consider moving this to the AliasAnalysis itself.
818   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
819 
820   /// Removes an instruction from its block and eventually deletes it.
821   /// It's like Instruction::eraseFromParent() except that the actual deletion
822   /// is delayed until BoUpSLP is destructed.
823   /// This is required to ensure that there are no incorrect collisions in the
824   /// AliasCache, which can happen if a new instruction is allocated at the
825   /// same address as a previously deleted instruction.
826   void eraseInstruction(Instruction *I) {
827     I->removeFromParent();
828     I->dropAllReferences();
829     DeletedInstructions.emplace_back(I);
830   }
831 
832   /// Temporary store for deleted instructions. Instructions will be deleted
833   /// eventually when the BoUpSLP is destructed.
834   SmallVector<unique_value, 8> DeletedInstructions;
835 
836   /// A list of values that need to extracted out of the tree.
837   /// This list holds pairs of (Internal Scalar : External User). External User
838   /// can be nullptr, it means that this Internal Scalar will be used later,
839   /// after vectorization.
840   UserList ExternalUses;
841 
842   /// Values used only by @llvm.assume calls.
843   SmallPtrSet<const Value *, 32> EphValues;
844 
845   /// Holds all of the instructions that we gathered.
846   SetVector<Instruction *> GatherSeq;
847 
848   /// A list of blocks that we are going to CSE.
849   SetVector<BasicBlock *> CSEBlocks;
850 
851   /// Contains all scheduling relevant data for an instruction.
852   /// A ScheduleData either represents a single instruction or a member of an
853   /// instruction bundle (= a group of instructions which is combined into a
854   /// vector instruction).
855   struct ScheduleData {
856     // The initial value for the dependency counters. It means that the
857     // dependencies are not calculated yet.
858     enum { InvalidDeps = -1 };
859 
860     ScheduleData() = default;
861 
862     void init(int BlockSchedulingRegionID, Value *OpVal) {
863       FirstInBundle = this;
864       NextInBundle = nullptr;
865       NextLoadStore = nullptr;
866       IsScheduled = false;
867       SchedulingRegionID = BlockSchedulingRegionID;
868       UnscheduledDepsInBundle = UnscheduledDeps;
869       clearDependencies();
870       OpValue = OpVal;
871     }
872 
873     /// Returns true if the dependency information has been calculated.
874     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
875 
876     /// Returns true for single instructions and for bundle representatives
877     /// (= the head of a bundle).
878     bool isSchedulingEntity() const { return FirstInBundle == this; }
879 
880     /// Returns true if it represents an instruction bundle and not only a
881     /// single instruction.
882     bool isPartOfBundle() const {
883       return NextInBundle != nullptr || FirstInBundle != this;
884     }
885 
886     /// Returns true if it is ready for scheduling, i.e. it has no more
887     /// unscheduled depending instructions/bundles.
888     bool isReady() const {
889       assert(isSchedulingEntity() &&
890              "can't consider non-scheduling entity for ready list");
891       return UnscheduledDepsInBundle == 0 && !IsScheduled;
892     }
893 
894     /// Modifies the number of unscheduled dependencies, also updating it for
895     /// the whole bundle.
896     int incrementUnscheduledDeps(int Incr) {
897       UnscheduledDeps += Incr;
898       return FirstInBundle->UnscheduledDepsInBundle += Incr;
899     }
900 
901     /// Sets the number of unscheduled dependencies to the number of
902     /// dependencies.
903     void resetUnscheduledDeps() {
904       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
905     }
906 
907     /// Clears all dependency information.
908     void clearDependencies() {
909       Dependencies = InvalidDeps;
910       resetUnscheduledDeps();
911       MemoryDependencies.clear();
912     }
913 
914     void dump(raw_ostream &os) const {
915       if (!isSchedulingEntity()) {
916         os << "/ " << *Inst;
917       } else if (NextInBundle) {
918         os << '[' << *Inst;
919         ScheduleData *SD = NextInBundle;
920         while (SD) {
921           os << ';' << *SD->Inst;
922           SD = SD->NextInBundle;
923         }
924         os << ']';
925       } else {
926         os << *Inst;
927       }
928     }
929 
930     Instruction *Inst = nullptr;
931 
932     /// Points to the head in an instruction bundle (and always to this for
933     /// single instructions).
934     ScheduleData *FirstInBundle = nullptr;
935 
936     /// Single linked list of all instructions in a bundle. Null if it is a
937     /// single instruction.
938     ScheduleData *NextInBundle = nullptr;
939 
940     /// Single linked list of all memory instructions (e.g. load, store, call)
941     /// in the block - until the end of the scheduling region.
942     ScheduleData *NextLoadStore = nullptr;
943 
944     /// The dependent memory instructions.
945     /// This list is derived on demand in calculateDependencies().
946     SmallVector<ScheduleData *, 4> MemoryDependencies;
947 
948     /// This ScheduleData is in the current scheduling region if this matches
949     /// the current SchedulingRegionID of BlockScheduling.
950     int SchedulingRegionID = 0;
951 
952     /// Used for getting a "good" final ordering of instructions.
953     int SchedulingPriority = 0;
954 
955     /// The number of dependencies. Constitutes of the number of users of the
956     /// instruction plus the number of dependent memory instructions (if any).
957     /// This value is calculated on demand.
958     /// If InvalidDeps, the number of dependencies is not calculated yet.
959     int Dependencies = InvalidDeps;
960 
961     /// The number of dependencies minus the number of dependencies of scheduled
962     /// instructions. As soon as this is zero, the instruction/bundle gets ready
963     /// for scheduling.
964     /// Note that this is negative as long as Dependencies is not calculated.
965     int UnscheduledDeps = InvalidDeps;
966 
967     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
968     /// single instructions.
969     int UnscheduledDepsInBundle = InvalidDeps;
970 
971     /// True if this instruction is scheduled (or considered as scheduled in the
972     /// dry-run).
973     bool IsScheduled = false;
974 
975     /// Opcode of the current instruction in the schedule data.
976     Value *OpValue = nullptr;
977   };
978 
979 #ifndef NDEBUG
980   friend inline raw_ostream &operator<<(raw_ostream &os,
981                                         const BoUpSLP::ScheduleData &SD) {
982     SD.dump(os);
983     return os;
984   }
985 #endif
986 
987   friend struct GraphTraits<BoUpSLP *>;
988   friend struct DOTGraphTraits<BoUpSLP *>;
989 
990   /// Contains all scheduling data for a basic block.
991   struct BlockScheduling {
992     BlockScheduling(BasicBlock *BB)
993         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
994 
995     void clear() {
996       ReadyInsts.clear();
997       ScheduleStart = nullptr;
998       ScheduleEnd = nullptr;
999       FirstLoadStoreInRegion = nullptr;
1000       LastLoadStoreInRegion = nullptr;
1001 
1002       // Reduce the maximum schedule region size by the size of the
1003       // previous scheduling run.
1004       ScheduleRegionSizeLimit -= ScheduleRegionSize;
1005       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1006         ScheduleRegionSizeLimit = MinScheduleRegionSize;
1007       ScheduleRegionSize = 0;
1008 
1009       // Make a new scheduling region, i.e. all existing ScheduleData is not
1010       // in the new region yet.
1011       ++SchedulingRegionID;
1012     }
1013 
1014     ScheduleData *getScheduleData(Value *V) {
1015       ScheduleData *SD = ScheduleDataMap[V];
1016       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1017         return SD;
1018       return nullptr;
1019     }
1020 
1021     ScheduleData *getScheduleData(Value *V, Value *Key) {
1022       if (V == Key)
1023         return getScheduleData(V);
1024       auto I = ExtraScheduleDataMap.find(V);
1025       if (I != ExtraScheduleDataMap.end()) {
1026         ScheduleData *SD = I->second[Key];
1027         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1028           return SD;
1029       }
1030       return nullptr;
1031     }
1032 
1033     bool isInSchedulingRegion(ScheduleData *SD) {
1034       return SD->SchedulingRegionID == SchedulingRegionID;
1035     }
1036 
1037     /// Marks an instruction as scheduled and puts all dependent ready
1038     /// instructions into the ready-list.
1039     template <typename ReadyListType>
1040     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1041       SD->IsScheduled = true;
1042       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1043 
1044       ScheduleData *BundleMember = SD;
1045       while (BundleMember) {
1046         if (BundleMember->Inst != BundleMember->OpValue) {
1047           BundleMember = BundleMember->NextInBundle;
1048           continue;
1049         }
1050         // Handle the def-use chain dependencies.
1051         for (Use &U : BundleMember->Inst->operands()) {
1052           auto *I = dyn_cast<Instruction>(U.get());
1053           if (!I)
1054             continue;
1055           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1056             if (OpDef && OpDef->hasValidDependencies() &&
1057                 OpDef->incrementUnscheduledDeps(-1) == 0) {
1058               // There are no more unscheduled dependencies after
1059               // decrementing, so we can put the dependent instruction
1060               // into the ready list.
1061               ScheduleData *DepBundle = OpDef->FirstInBundle;
1062               assert(!DepBundle->IsScheduled &&
1063                      "already scheduled bundle gets ready");
1064               ReadyList.insert(DepBundle);
1065               DEBUG(dbgs()
1066                     << "SLP:    gets ready (def): " << *DepBundle << "\n");
1067             }
1068           });
1069         }
1070         // Handle the memory dependencies.
1071         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1072           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1073             // There are no more unscheduled dependencies after decrementing,
1074             // so we can put the dependent instruction into the ready list.
1075             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1076             assert(!DepBundle->IsScheduled &&
1077                    "already scheduled bundle gets ready");
1078             ReadyList.insert(DepBundle);
1079             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle
1080                          << "\n");
1081           }
1082         }
1083         BundleMember = BundleMember->NextInBundle;
1084       }
1085     }
1086 
1087     void doForAllOpcodes(Value *V,
1088                          function_ref<void(ScheduleData *SD)> Action) {
1089       if (ScheduleData *SD = getScheduleData(V))
1090         Action(SD);
1091       auto I = ExtraScheduleDataMap.find(V);
1092       if (I != ExtraScheduleDataMap.end())
1093         for (auto &P : I->second)
1094           if (P.second->SchedulingRegionID == SchedulingRegionID)
1095             Action(P.second);
1096     }
1097 
1098     /// Put all instructions into the ReadyList which are ready for scheduling.
1099     template <typename ReadyListType>
1100     void initialFillReadyList(ReadyListType &ReadyList) {
1101       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1102         doForAllOpcodes(I, [&](ScheduleData *SD) {
1103           if (SD->isSchedulingEntity() && SD->isReady()) {
1104             ReadyList.insert(SD);
1105             DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
1106           }
1107         });
1108       }
1109     }
1110 
1111     /// Checks if a bundle of instructions can be scheduled, i.e. has no
1112     /// cyclic dependencies. This is only a dry-run, no instructions are
1113     /// actually moved at this stage.
1114     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue);
1115 
1116     /// Un-bundles a group of instructions.
1117     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1118 
1119     /// Allocates schedule data chunk.
1120     ScheduleData *allocateScheduleDataChunks();
1121 
1122     /// Extends the scheduling region so that V is inside the region.
1123     /// \returns true if the region size is within the limit.
1124     bool extendSchedulingRegion(Value *V, Value *OpValue);
1125 
1126     /// Initialize the ScheduleData structures for new instructions in the
1127     /// scheduling region.
1128     void initScheduleData(Instruction *FromI, Instruction *ToI,
1129                           ScheduleData *PrevLoadStore,
1130                           ScheduleData *NextLoadStore);
1131 
1132     /// Updates the dependency information of a bundle and of all instructions/
1133     /// bundles which depend on the original bundle.
1134     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1135                                BoUpSLP *SLP);
1136 
1137     /// Sets all instruction in the scheduling region to un-scheduled.
1138     void resetSchedule();
1139 
1140     BasicBlock *BB;
1141 
1142     /// Simple memory allocation for ScheduleData.
1143     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1144 
1145     /// The size of a ScheduleData array in ScheduleDataChunks.
1146     int ChunkSize;
1147 
1148     /// The allocator position in the current chunk, which is the last entry
1149     /// of ScheduleDataChunks.
1150     int ChunkPos;
1151 
1152     /// Attaches ScheduleData to Instruction.
1153     /// Note that the mapping survives during all vectorization iterations, i.e.
1154     /// ScheduleData structures are recycled.
1155     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1156 
1157     /// Attaches ScheduleData to Instruction with the leading key.
1158     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1159         ExtraScheduleDataMap;
1160 
1161     struct ReadyList : SmallVector<ScheduleData *, 8> {
1162       void insert(ScheduleData *SD) { push_back(SD); }
1163     };
1164 
1165     /// The ready-list for scheduling (only used for the dry-run).
1166     ReadyList ReadyInsts;
1167 
1168     /// The first instruction of the scheduling region.
1169     Instruction *ScheduleStart = nullptr;
1170 
1171     /// The first instruction _after_ the scheduling region.
1172     Instruction *ScheduleEnd = nullptr;
1173 
1174     /// The first memory accessing instruction in the scheduling region
1175     /// (can be null).
1176     ScheduleData *FirstLoadStoreInRegion = nullptr;
1177 
1178     /// The last memory accessing instruction in the scheduling region
1179     /// (can be null).
1180     ScheduleData *LastLoadStoreInRegion = nullptr;
1181 
1182     /// The current size of the scheduling region.
1183     int ScheduleRegionSize = 0;
1184 
1185     /// The maximum size allowed for the scheduling region.
1186     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1187 
1188     /// The ID of the scheduling region. For a new vectorization iteration this
1189     /// is incremented which "removes" all ScheduleData from the region.
1190     // Make sure that the initial SchedulingRegionID is greater than the
1191     // initial SchedulingRegionID in ScheduleData (which is 0).
1192     int SchedulingRegionID = 1;
1193   };
1194 
1195   /// Attaches the BlockScheduling structures to basic blocks.
1196   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1197 
1198   /// Performs the "real" scheduling. Done before vectorization is actually
1199   /// performed in a basic block.
1200   void scheduleBlock(BlockScheduling *BS);
1201 
1202   /// List of users to ignore during scheduling and that don't need extracting.
1203   ArrayRef<Value *> UserIgnoreList;
1204 
1205   /// Number of operation bundles that contain consecutive operations - number
1206   /// of operation bundles that contain consecutive operations in reversed
1207   /// order.
1208   DenseMap<unsigned, int> NumOpsWantToKeepOrder;
1209 
1210   // Analysis and block reference.
1211   Function *F;
1212   ScalarEvolution *SE;
1213   TargetTransformInfo *TTI;
1214   TargetLibraryInfo *TLI;
1215   AliasAnalysis *AA;
1216   LoopInfo *LI;
1217   DominatorTree *DT;
1218   AssumptionCache *AC;
1219   DemandedBits *DB;
1220   const DataLayout *DL;
1221   OptimizationRemarkEmitter *ORE;
1222 
1223   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1224   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1225 
1226   /// Instruction builder to construct the vectorized tree.
1227   IRBuilder<> Builder;
1228 
1229   /// A map of scalar integer values to the smallest bit width with which they
1230   /// can legally be represented. The values map to (width, signed) pairs,
1231   /// where "width" indicates the minimum bit width and "signed" is True if the
1232   /// value must be signed-extended, rather than zero-extended, back to its
1233   /// original width.
1234   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1235 };
1236 
1237 } // end namespace slpvectorizer
1238 
1239 template <> struct GraphTraits<BoUpSLP *> {
1240   using TreeEntry = BoUpSLP::TreeEntry;
1241 
1242   /// NodeRef has to be a pointer per the GraphWriter.
1243   using NodeRef = TreeEntry *;
1244 
1245   /// \brief Add the VectorizableTree to the index iterator to be able to return
1246   /// TreeEntry pointers.
1247   struct ChildIteratorType
1248       : public iterator_adaptor_base<ChildIteratorType,
1249                                      SmallVector<int, 1>::iterator> {
1250     std::vector<TreeEntry> &VectorizableTree;
1251 
1252     ChildIteratorType(SmallVector<int, 1>::iterator W,
1253                       std::vector<TreeEntry> &VT)
1254         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1255 
1256     NodeRef operator*() { return &VectorizableTree[*I]; }
1257   };
1258 
1259   static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
1260 
1261   static ChildIteratorType child_begin(NodeRef N) {
1262     return {N->UserTreeIndices.begin(), N->Container};
1263   }
1264 
1265   static ChildIteratorType child_end(NodeRef N) {
1266     return {N->UserTreeIndices.end(), N->Container};
1267   }
1268 
1269   /// For the node iterator we just need to turn the TreeEntry iterator into a
1270   /// TreeEntry* iterator so that it dereferences to NodeRef.
1271   using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>;
1272 
1273   static nodes_iterator nodes_begin(BoUpSLP *R) {
1274     return nodes_iterator(R->VectorizableTree.begin());
1275   }
1276 
1277   static nodes_iterator nodes_end(BoUpSLP *R) {
1278     return nodes_iterator(R->VectorizableTree.end());
1279   }
1280 
1281   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
1282 };
1283 
1284 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1285   using TreeEntry = BoUpSLP::TreeEntry;
1286 
1287   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1288 
1289   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1290     std::string Str;
1291     raw_string_ostream OS(Str);
1292     if (isSplat(Entry->Scalars)) {
1293       OS << "<splat> " << *Entry->Scalars[0];
1294       return Str;
1295     }
1296     for (auto V : Entry->Scalars) {
1297       OS << *V;
1298       if (std::any_of(
1299               R->ExternalUses.begin(), R->ExternalUses.end(),
1300               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1301         OS << " <extract>";
1302       OS << "\n";
1303     }
1304     return Str;
1305   }
1306 
1307   static std::string getNodeAttributes(const TreeEntry *Entry,
1308                                        const BoUpSLP *) {
1309     if (Entry->NeedToGather)
1310       return "color=red";
1311     return "";
1312   }
1313 };
1314 
1315 } // end namespace llvm
1316 
1317 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1318                         ArrayRef<Value *> UserIgnoreLst) {
1319   ExtraValueToDebugLocsMap ExternallyUsedValues;
1320   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1321 }
1322 
1323 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1324                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
1325                         ArrayRef<Value *> UserIgnoreLst) {
1326   deleteTree();
1327   UserIgnoreList = UserIgnoreLst;
1328   if (!allSameType(Roots))
1329     return;
1330   buildTree_rec(Roots, 0, -1);
1331 
1332   // Collect the values that we need to extract from the tree.
1333   for (TreeEntry &EIdx : VectorizableTree) {
1334     TreeEntry *Entry = &EIdx;
1335 
1336     // No need to handle users of gathered values.
1337     if (Entry->NeedToGather)
1338       continue;
1339 
1340     // For each lane:
1341     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1342       Value *Scalar = Entry->Scalars[Lane];
1343       int FoundLane = Lane;
1344       if (!Entry->ReuseShuffleIndices.empty()) {
1345         FoundLane =
1346             std::distance(Entry->ReuseShuffleIndices.begin(),
1347                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
1348       }
1349 
1350       // Check if the scalar is externally used as an extra arg.
1351       auto ExtI = ExternallyUsedValues.find(Scalar);
1352       if (ExtI != ExternallyUsedValues.end()) {
1353         DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " <<
1354               Lane << " from " << *Scalar << ".\n");
1355         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
1356       }
1357       for (User *U : Scalar->users()) {
1358         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
1359 
1360         Instruction *UserInst = dyn_cast<Instruction>(U);
1361         if (!UserInst)
1362           continue;
1363 
1364         // Skip in-tree scalars that become vectors
1365         if (TreeEntry *UseEntry = getTreeEntry(U)) {
1366           Value *UseScalar = UseEntry->Scalars[0];
1367           // Some in-tree scalars will remain as scalar in vectorized
1368           // instructions. If that is the case, the one in Lane 0 will
1369           // be used.
1370           if (UseScalar != U ||
1371               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
1372             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
1373                          << ".\n");
1374             assert(!UseEntry->NeedToGather && "Bad state");
1375             continue;
1376           }
1377         }
1378 
1379         // Ignore users in the user ignore list.
1380         if (is_contained(UserIgnoreList, UserInst))
1381           continue;
1382 
1383         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
1384               Lane << " from " << *Scalar << ".\n");
1385         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
1386       }
1387     }
1388   }
1389 }
1390 
1391 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
1392                             int UserTreeIdx) {
1393   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
1394 
1395   InstructionsState S = getSameOpcode(VL);
1396   if (Depth == RecursionMaxDepth) {
1397     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
1398     newTreeEntry(VL, false, UserTreeIdx);
1399     return;
1400   }
1401 
1402   // Don't handle vectors.
1403   if (S.OpValue->getType()->isVectorTy()) {
1404     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1405     newTreeEntry(VL, false, UserTreeIdx);
1406     return;
1407   }
1408 
1409   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
1410     if (SI->getValueOperand()->getType()->isVectorTy()) {
1411       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1412       newTreeEntry(VL, false, UserTreeIdx);
1413       return;
1414     }
1415 
1416   // If all of the operands are identical or constant we have a simple solution.
1417   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) {
1418     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1419     newTreeEntry(VL, false, UserTreeIdx);
1420     return;
1421   }
1422 
1423   // We now know that this is a vector of instructions of the same type from
1424   // the same block.
1425 
1426   // Don't vectorize ephemeral values.
1427   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1428     if (EphValues.count(VL[i])) {
1429       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1430             ") is ephemeral.\n");
1431       newTreeEntry(VL, false, UserTreeIdx);
1432       return;
1433     }
1434   }
1435 
1436   // Check if this is a duplicate of another entry.
1437   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
1438     DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
1439     if (!E->isSame(VL)) {
1440       DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1441       newTreeEntry(VL, false, UserTreeIdx);
1442       return;
1443     }
1444     // Record the reuse of the tree node.  FIXME, currently this is only used to
1445     // properly draw the graph rather than for the actual vectorization.
1446     E->UserTreeIndices.push_back(UserTreeIdx);
1447     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n");
1448     return;
1449   }
1450 
1451   // Check that none of the instructions in the bundle are already in the tree.
1452   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1453     auto *I = dyn_cast<Instruction>(VL[i]);
1454     if (!I)
1455       continue;
1456     if (getTreeEntry(I)) {
1457       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1458             ") is already in tree.\n");
1459       newTreeEntry(VL, false, UserTreeIdx);
1460       return;
1461     }
1462   }
1463 
1464   // If any of the scalars is marked as a value that needs to stay scalar, then
1465   // we need to gather the scalars.
1466   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1467     if (MustGather.count(VL[i])) {
1468       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1469       newTreeEntry(VL, false, UserTreeIdx);
1470       return;
1471     }
1472   }
1473 
1474   // Check that all of the users of the scalars that we want to vectorize are
1475   // schedulable.
1476   auto *VL0 = cast<Instruction>(S.OpValue);
1477   BasicBlock *BB = VL0->getParent();
1478 
1479   if (!DT->isReachableFromEntry(BB)) {
1480     // Don't go into unreachable blocks. They may contain instructions with
1481     // dependency cycles which confuse the final scheduling.
1482     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1483     newTreeEntry(VL, false, UserTreeIdx);
1484     return;
1485   }
1486 
1487   // Check that every instruction appears once in this bundle.
1488   SmallVector<unsigned, 4> ReuseShuffleIndicies;
1489   SmallVector<Value *, 4> UniqueValues;
1490   DenseMap<Value *, unsigned> UniquePositions;
1491   for (Value *V : VL) {
1492     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
1493     ReuseShuffleIndicies.emplace_back(Res.first->second);
1494     if (Res.second)
1495       UniqueValues.emplace_back(V);
1496   }
1497   if (UniqueValues.size() == VL.size()) {
1498     ReuseShuffleIndicies.clear();
1499   } else {
1500     DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
1501     if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
1502       DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1503       newTreeEntry(VL, false, UserTreeIdx);
1504       return;
1505     }
1506     VL = UniqueValues;
1507   }
1508 
1509   auto &BSRef = BlocksSchedules[BB];
1510   if (!BSRef)
1511     BSRef = llvm::make_unique<BlockScheduling>(BB);
1512 
1513   BlockScheduling &BS = *BSRef.get();
1514 
1515   if (!BS.tryScheduleBundle(VL, this, VL0)) {
1516     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1517     assert((!BS.getScheduleData(VL0) ||
1518             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
1519            "tryScheduleBundle should cancelScheduling on failure");
1520     newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1521     return;
1522   }
1523   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1524 
1525   unsigned ShuffleOrOp = S.IsAltShuffle ?
1526                 (unsigned) Instruction::ShuffleVector : S.Opcode;
1527   switch (ShuffleOrOp) {
1528     case Instruction::PHI: {
1529       PHINode *PH = dyn_cast<PHINode>(VL0);
1530 
1531       // Check for terminator values (e.g. invoke).
1532       for (unsigned j = 0; j < VL.size(); ++j)
1533         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1534           TerminatorInst *Term = dyn_cast<TerminatorInst>(
1535               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1536           if (Term) {
1537             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1538             BS.cancelScheduling(VL, VL0);
1539             newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1540             return;
1541           }
1542         }
1543 
1544       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1545       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1546 
1547       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1548         ValueList Operands;
1549         // Prepare the operand vector.
1550         for (Value *j : VL)
1551           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1552               PH->getIncomingBlock(i)));
1553 
1554         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1555       }
1556       return;
1557     }
1558     case Instruction::ExtractValue:
1559     case Instruction::ExtractElement: {
1560       bool Reuse = canReuseExtract(VL, VL0);
1561       if (Reuse) {
1562         DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
1563         ++NumOpsWantToKeepOrder[S.Opcode];
1564       } else {
1565         SmallVector<Value *, 4> ReverseVL(VL.rbegin(), VL.rend());
1566         if (canReuseExtract(ReverseVL, VL0))
1567           --NumOpsWantToKeepOrder[S.Opcode];
1568         BS.cancelScheduling(VL, VL0);
1569       }
1570       newTreeEntry(VL, Reuse, UserTreeIdx, ReuseShuffleIndicies);
1571       return;
1572     }
1573     case Instruction::Load: {
1574       // Check that a vectorized load would load the same memory as a scalar
1575       // load. For example, we don't want to vectorize loads that are smaller
1576       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
1577       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
1578       // from such a struct, we read/write packed bits disagreeing with the
1579       // unvectorized version.
1580       Type *ScalarTy = VL0->getType();
1581 
1582       if (DL->getTypeSizeInBits(ScalarTy) !=
1583           DL->getTypeAllocSizeInBits(ScalarTy)) {
1584         BS.cancelScheduling(VL, VL0);
1585         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1586         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1587         return;
1588       }
1589 
1590       // Make sure all loads in the bundle are simple - we can't vectorize
1591       // atomic or volatile loads.
1592       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1593         LoadInst *L = cast<LoadInst>(VL[i]);
1594         if (!L->isSimple()) {
1595           BS.cancelScheduling(VL, VL0);
1596           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1597           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1598           return;
1599         }
1600       }
1601 
1602       // Check if the loads are consecutive, reversed, or neither.
1603       // TODO: What we really want is to sort the loads, but for now, check
1604       // the two likely directions.
1605       bool Consecutive = true;
1606       bool ReverseConsecutive = true;
1607       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1608         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1609           Consecutive = false;
1610           break;
1611         } else {
1612           ReverseConsecutive = false;
1613         }
1614       }
1615 
1616       if (Consecutive) {
1617         ++NumOpsWantToKeepOrder[S.Opcode];
1618         newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1619         DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1620         return;
1621       }
1622 
1623       // If none of the load pairs were consecutive when checked in order,
1624       // check the reverse order.
1625       if (ReverseConsecutive)
1626         for (unsigned i = VL.size() - 1; i > 0; --i)
1627           if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) {
1628             ReverseConsecutive = false;
1629             break;
1630           }
1631 
1632       BS.cancelScheduling(VL, VL0);
1633       newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1634 
1635       if (ReverseConsecutive) {
1636         --NumOpsWantToKeepOrder[S.Opcode];
1637         DEBUG(dbgs() << "SLP: Gathering reversed loads.\n");
1638       } else {
1639         DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1640       }
1641       return;
1642     }
1643     case Instruction::ZExt:
1644     case Instruction::SExt:
1645     case Instruction::FPToUI:
1646     case Instruction::FPToSI:
1647     case Instruction::FPExt:
1648     case Instruction::PtrToInt:
1649     case Instruction::IntToPtr:
1650     case Instruction::SIToFP:
1651     case Instruction::UIToFP:
1652     case Instruction::Trunc:
1653     case Instruction::FPTrunc:
1654     case Instruction::BitCast: {
1655       Type *SrcTy = VL0->getOperand(0)->getType();
1656       for (unsigned i = 0; i < VL.size(); ++i) {
1657         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1658         if (Ty != SrcTy || !isValidElementType(Ty)) {
1659           BS.cancelScheduling(VL, VL0);
1660           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1661           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1662           return;
1663         }
1664       }
1665       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1666       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1667 
1668       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1669         ValueList Operands;
1670         // Prepare the operand vector.
1671         for (Value *j : VL)
1672           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1673 
1674         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1675       }
1676       return;
1677     }
1678     case Instruction::ICmp:
1679     case Instruction::FCmp: {
1680       // Check that all of the compares have the same predicate.
1681       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1682       Type *ComparedTy = VL0->getOperand(0)->getType();
1683       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1684         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1685         if (Cmp->getPredicate() != P0 ||
1686             Cmp->getOperand(0)->getType() != ComparedTy) {
1687           BS.cancelScheduling(VL, VL0);
1688           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1689           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1690           return;
1691         }
1692       }
1693 
1694       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1695       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1696 
1697       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1698         ValueList Operands;
1699         // Prepare the operand vector.
1700         for (Value *j : VL)
1701           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1702 
1703         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1704       }
1705       return;
1706     }
1707     case Instruction::Select:
1708     case Instruction::Add:
1709     case Instruction::FAdd:
1710     case Instruction::Sub:
1711     case Instruction::FSub:
1712     case Instruction::Mul:
1713     case Instruction::FMul:
1714     case Instruction::UDiv:
1715     case Instruction::SDiv:
1716     case Instruction::FDiv:
1717     case Instruction::URem:
1718     case Instruction::SRem:
1719     case Instruction::FRem:
1720     case Instruction::Shl:
1721     case Instruction::LShr:
1722     case Instruction::AShr:
1723     case Instruction::And:
1724     case Instruction::Or:
1725     case Instruction::Xor:
1726       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1727       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1728 
1729       // Sort operands of the instructions so that each side is more likely to
1730       // have the same opcode.
1731       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1732         ValueList Left, Right;
1733         reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right);
1734         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1735         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1736         return;
1737       }
1738 
1739       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1740         ValueList Operands;
1741         // Prepare the operand vector.
1742         for (Value *j : VL)
1743           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1744 
1745         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1746       }
1747       return;
1748 
1749     case Instruction::GetElementPtr: {
1750       // We don't combine GEPs with complicated (nested) indexing.
1751       for (unsigned j = 0; j < VL.size(); ++j) {
1752         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1753           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1754           BS.cancelScheduling(VL, VL0);
1755           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1756           return;
1757         }
1758       }
1759 
1760       // We can't combine several GEPs into one vector if they operate on
1761       // different types.
1762       Type *Ty0 = VL0->getOperand(0)->getType();
1763       for (unsigned j = 0; j < VL.size(); ++j) {
1764         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1765         if (Ty0 != CurTy) {
1766           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1767           BS.cancelScheduling(VL, VL0);
1768           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1769           return;
1770         }
1771       }
1772 
1773       // We don't combine GEPs with non-constant indexes.
1774       for (unsigned j = 0; j < VL.size(); ++j) {
1775         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1776         if (!isa<ConstantInt>(Op)) {
1777           DEBUG(
1778               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1779           BS.cancelScheduling(VL, VL0);
1780           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1781           return;
1782         }
1783       }
1784 
1785       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1786       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1787       for (unsigned i = 0, e = 2; i < e; ++i) {
1788         ValueList Operands;
1789         // Prepare the operand vector.
1790         for (Value *j : VL)
1791           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1792 
1793         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1794       }
1795       return;
1796     }
1797     case Instruction::Store: {
1798       // Check if the stores are consecutive or of we need to swizzle them.
1799       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1800         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1801           BS.cancelScheduling(VL, VL0);
1802           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1803           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1804           return;
1805         }
1806 
1807       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1808       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1809 
1810       ValueList Operands;
1811       for (Value *j : VL)
1812         Operands.push_back(cast<Instruction>(j)->getOperand(0));
1813 
1814       buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1815       return;
1816     }
1817     case Instruction::Call: {
1818       // Check if the calls are all to the same vectorizable intrinsic.
1819       CallInst *CI = cast<CallInst>(VL0);
1820       // Check if this is an Intrinsic call or something that can be
1821       // represented by an intrinsic call
1822       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1823       if (!isTriviallyVectorizable(ID)) {
1824         BS.cancelScheduling(VL, VL0);
1825         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1826         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1827         return;
1828       }
1829       Function *Int = CI->getCalledFunction();
1830       Value *A1I = nullptr;
1831       if (hasVectorInstrinsicScalarOpd(ID, 1))
1832         A1I = CI->getArgOperand(1);
1833       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1834         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1835         if (!CI2 || CI2->getCalledFunction() != Int ||
1836             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1837             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1838           BS.cancelScheduling(VL, VL0);
1839           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1840           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1841                        << "\n");
1842           return;
1843         }
1844         // ctlz,cttz and powi are special intrinsics whose second argument
1845         // should be same in order for them to be vectorized.
1846         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1847           Value *A1J = CI2->getArgOperand(1);
1848           if (A1I != A1J) {
1849             BS.cancelScheduling(VL, VL0);
1850             newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1851             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1852                          << " argument "<< A1I<<"!=" << A1J
1853                          << "\n");
1854             return;
1855           }
1856         }
1857         // Verify that the bundle operands are identical between the two calls.
1858         if (CI->hasOperandBundles() &&
1859             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1860                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
1861                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1862           BS.cancelScheduling(VL, VL0);
1863           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1864           DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
1865                        << *VL[i] << '\n');
1866           return;
1867         }
1868       }
1869 
1870       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1871       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1872         ValueList Operands;
1873         // Prepare the operand vector.
1874         for (Value *j : VL) {
1875           CallInst *CI2 = dyn_cast<CallInst>(j);
1876           Operands.push_back(CI2->getArgOperand(i));
1877         }
1878         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1879       }
1880       return;
1881     }
1882     case Instruction::ShuffleVector:
1883       // If this is not an alternate sequence of opcode like add-sub
1884       // then do not vectorize this instruction.
1885       if (!S.IsAltShuffle) {
1886         BS.cancelScheduling(VL, VL0);
1887         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1888         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1889         return;
1890       }
1891       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1892       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1893 
1894       // Reorder operands if reordering would enable vectorization.
1895       if (isa<BinaryOperator>(VL0)) {
1896         ValueList Left, Right;
1897         reorderAltShuffleOperands(S.Opcode, VL, Left, Right);
1898         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1899         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1900         return;
1901       }
1902 
1903       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1904         ValueList Operands;
1905         // Prepare the operand vector.
1906         for (Value *j : VL)
1907           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1908 
1909         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1910       }
1911       return;
1912 
1913     default:
1914       BS.cancelScheduling(VL, VL0);
1915       newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1916       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1917       return;
1918   }
1919 }
1920 
1921 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1922   unsigned N;
1923   Type *EltTy;
1924   auto *ST = dyn_cast<StructType>(T);
1925   if (ST) {
1926     N = ST->getNumElements();
1927     EltTy = *ST->element_begin();
1928   } else {
1929     N = cast<ArrayType>(T)->getNumElements();
1930     EltTy = cast<ArrayType>(T)->getElementType();
1931   }
1932   if (!isValidElementType(EltTy))
1933     return 0;
1934   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1935   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1936     return 0;
1937   if (ST) {
1938     // Check that struct is homogeneous.
1939     for (const auto *Ty : ST->elements())
1940       if (Ty != EltTy)
1941         return 0;
1942   }
1943   return N;
1944 }
1945 
1946 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const {
1947   Instruction *E0 = cast<Instruction>(OpValue);
1948   assert(E0->getOpcode() == Instruction::ExtractElement ||
1949          E0->getOpcode() == Instruction::ExtractValue);
1950   assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode");
1951   // Check if all of the extracts come from the same vector and from the
1952   // correct offset.
1953   Value *Vec = E0->getOperand(0);
1954 
1955   // We have to extract from a vector/aggregate with the same number of elements.
1956   unsigned NElts;
1957   if (E0->getOpcode() == Instruction::ExtractValue) {
1958     const DataLayout &DL = E0->getModule()->getDataLayout();
1959     NElts = canMapToVector(Vec->getType(), DL);
1960     if (!NElts)
1961       return false;
1962     // Check if load can be rewritten as load of vector.
1963     LoadInst *LI = dyn_cast<LoadInst>(Vec);
1964     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
1965       return false;
1966   } else {
1967     NElts = Vec->getType()->getVectorNumElements();
1968   }
1969 
1970   if (NElts != VL.size())
1971     return false;
1972 
1973   // Check that all of the indices extract from the correct offset.
1974   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
1975     Instruction *Inst = cast<Instruction>(VL[I]);
1976     if (!matchExtractIndex(Inst, I, Inst->getOpcode()))
1977       return false;
1978     if (Inst->getOperand(0) != Vec)
1979       return false;
1980   }
1981 
1982   return true;
1983 }
1984 
1985 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
1986   return I->hasOneUse() ||
1987          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
1988            return ScalarToTreeEntry.count(U) > 0;
1989          });
1990 }
1991 
1992 int BoUpSLP::getEntryCost(TreeEntry *E) {
1993   ArrayRef<Value*> VL = E->Scalars;
1994 
1995   Type *ScalarTy = VL[0]->getType();
1996   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1997     ScalarTy = SI->getValueOperand()->getType();
1998   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
1999     ScalarTy = CI->getOperand(0)->getType();
2000   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2001 
2002   // If we have computed a smaller type for the expression, update VecTy so
2003   // that the costs will be accurate.
2004   if (MinBWs.count(VL[0]))
2005     VecTy = VectorType::get(
2006         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2007 
2008   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2009   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2010   int ReuseShuffleCost = 0;
2011   if (NeedToShuffleReuses) {
2012     ReuseShuffleCost =
2013         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2014   }
2015   if (E->NeedToGather) {
2016     if (allConstant(VL))
2017       return 0;
2018     if (isSplat(VL)) {
2019       return ReuseShuffleCost +
2020              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2021     }
2022     if (getSameOpcode(VL).Opcode == Instruction::ExtractElement &&
2023         allSameType(VL) && allSameBlock(VL)) {
2024       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2025       if (ShuffleKind.hasValue()) {
2026         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2027         for (auto *V : VL) {
2028           // If all users of instruction are going to be vectorized and this
2029           // instruction itself is not going to be vectorized, consider this
2030           // instruction as dead and remove its cost from the final cost of the
2031           // vectorized tree.
2032           if (areAllUsersVectorized(cast<Instruction>(V)) &&
2033               !ScalarToTreeEntry.count(V)) {
2034             auto *IO = cast<ConstantInt>(
2035                 cast<ExtractElementInst>(V)->getIndexOperand());
2036             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2037                                             IO->getZExtValue());
2038           }
2039         }
2040         return ReuseShuffleCost + Cost;
2041       }
2042     }
2043     return ReuseShuffleCost + getGatherCost(VL);
2044   }
2045   InstructionsState S = getSameOpcode(VL);
2046   assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2047   Instruction *VL0 = cast<Instruction>(S.OpValue);
2048   unsigned ShuffleOrOp = S.IsAltShuffle ?
2049                (unsigned) Instruction::ShuffleVector : S.Opcode;
2050   switch (ShuffleOrOp) {
2051     case Instruction::PHI:
2052       return 0;
2053 
2054     case Instruction::ExtractValue:
2055     case Instruction::ExtractElement:
2056       if (NeedToShuffleReuses) {
2057         unsigned Idx = 0;
2058         for (unsigned I : E->ReuseShuffleIndices) {
2059           if (ShuffleOrOp == Instruction::ExtractElement) {
2060             auto *IO = cast<ConstantInt>(
2061                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2062             Idx = IO->getZExtValue();
2063             ReuseShuffleCost -= TTI->getVectorInstrCost(
2064                 Instruction::ExtractElement, VecTy, Idx);
2065           } else {
2066             ReuseShuffleCost -= TTI->getVectorInstrCost(
2067                 Instruction::ExtractElement, VecTy, Idx);
2068             ++Idx;
2069           }
2070         }
2071         Idx = ReuseShuffleNumbers;
2072         for (Value *V : VL) {
2073           if (ShuffleOrOp == Instruction::ExtractElement) {
2074             auto *IO = cast<ConstantInt>(
2075                 cast<ExtractElementInst>(V)->getIndexOperand());
2076             Idx = IO->getZExtValue();
2077           } else {
2078             --Idx;
2079           }
2080           ReuseShuffleCost +=
2081               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2082         }
2083       }
2084       if (canReuseExtract(VL, S.OpValue)) {
2085         int DeadCost = ReuseShuffleCost;
2086         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2087           Instruction *E = cast<Instruction>(VL[i]);
2088           // If all users are going to be vectorized, instruction can be
2089           // considered as dead.
2090           // The same, if have only one user, it will be vectorized for sure.
2091           if (areAllUsersVectorized(E))
2092             // Take credit for instruction that will become dead.
2093             DeadCost -=
2094                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
2095         }
2096         return DeadCost;
2097       }
2098       return ReuseShuffleCost + getGatherCost(VL);
2099 
2100     case Instruction::ZExt:
2101     case Instruction::SExt:
2102     case Instruction::FPToUI:
2103     case Instruction::FPToSI:
2104     case Instruction::FPExt:
2105     case Instruction::PtrToInt:
2106     case Instruction::IntToPtr:
2107     case Instruction::SIToFP:
2108     case Instruction::UIToFP:
2109     case Instruction::Trunc:
2110     case Instruction::FPTrunc:
2111     case Instruction::BitCast: {
2112       Type *SrcTy = VL0->getOperand(0)->getType();
2113       if (NeedToShuffleReuses) {
2114         ReuseShuffleCost -=
2115             (ReuseShuffleNumbers - VL.size()) *
2116             TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0);
2117       }
2118 
2119       // Calculate the cost of this instruction.
2120       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
2121                                                          VL0->getType(), SrcTy, VL0);
2122 
2123       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
2124       int VecCost = 0;
2125       // Check if the values are candidates to demote.
2126       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
2127         VecCost = ReuseShuffleCost +
2128                   TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0);
2129       }
2130       return VecCost - ScalarCost;
2131     }
2132     case Instruction::FCmp:
2133     case Instruction::ICmp:
2134     case Instruction::Select: {
2135       // Calculate the cost of this instruction.
2136       if (NeedToShuffleReuses) {
2137         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) *
2138                             TTI->getCmpSelInstrCost(S.Opcode, ScalarTy,
2139                                                     Builder.getInt1Ty(), VL0);
2140       }
2141       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
2142       int ScalarCost = VecTy->getNumElements() *
2143           TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0);
2144       int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0);
2145       return ReuseShuffleCost + VecCost - ScalarCost;
2146     }
2147     case Instruction::Add:
2148     case Instruction::FAdd:
2149     case Instruction::Sub:
2150     case Instruction::FSub:
2151     case Instruction::Mul:
2152     case Instruction::FMul:
2153     case Instruction::UDiv:
2154     case Instruction::SDiv:
2155     case Instruction::FDiv:
2156     case Instruction::URem:
2157     case Instruction::SRem:
2158     case Instruction::FRem:
2159     case Instruction::Shl:
2160     case Instruction::LShr:
2161     case Instruction::AShr:
2162     case Instruction::And:
2163     case Instruction::Or:
2164     case Instruction::Xor: {
2165       // Certain instructions can be cheaper to vectorize if they have a
2166       // constant second vector operand.
2167       TargetTransformInfo::OperandValueKind Op1VK =
2168           TargetTransformInfo::OK_AnyValue;
2169       TargetTransformInfo::OperandValueKind Op2VK =
2170           TargetTransformInfo::OK_UniformConstantValue;
2171       TargetTransformInfo::OperandValueProperties Op1VP =
2172           TargetTransformInfo::OP_None;
2173       TargetTransformInfo::OperandValueProperties Op2VP =
2174           TargetTransformInfo::OP_None;
2175 
2176       // If all operands are exactly the same ConstantInt then set the
2177       // operand kind to OK_UniformConstantValue.
2178       // If instead not all operands are constants, then set the operand kind
2179       // to OK_AnyValue. If all operands are constants but not the same,
2180       // then set the operand kind to OK_NonUniformConstantValue.
2181       ConstantInt *CInt = nullptr;
2182       for (unsigned i = 0; i < VL.size(); ++i) {
2183         const Instruction *I = cast<Instruction>(VL[i]);
2184         if (!isa<ConstantInt>(I->getOperand(1))) {
2185           Op2VK = TargetTransformInfo::OK_AnyValue;
2186           break;
2187         }
2188         if (i == 0) {
2189           CInt = cast<ConstantInt>(I->getOperand(1));
2190           continue;
2191         }
2192         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
2193             CInt != cast<ConstantInt>(I->getOperand(1)))
2194           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
2195       }
2196       // FIXME: Currently cost of model modification for division by power of
2197       // 2 is handled for X86 and AArch64. Add support for other targets.
2198       if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
2199           CInt->getValue().isPowerOf2())
2200         Op2VP = TargetTransformInfo::OP_PowerOf2;
2201 
2202       SmallVector<const Value *, 4> Operands(VL0->operand_values());
2203       if (NeedToShuffleReuses) {
2204         ReuseShuffleCost -=
2205             (ReuseShuffleNumbers - VL.size()) *
2206             TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
2207                                         Op2VP, Operands);
2208       }
2209       int ScalarCost =
2210           VecTy->getNumElements() *
2211           TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
2212                                       Op2VP, Operands);
2213       int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK,
2214                                                 Op1VP, Op2VP, Operands);
2215       return ReuseShuffleCost + VecCost - ScalarCost;
2216     }
2217     case Instruction::GetElementPtr: {
2218       TargetTransformInfo::OperandValueKind Op1VK =
2219           TargetTransformInfo::OK_AnyValue;
2220       TargetTransformInfo::OperandValueKind Op2VK =
2221           TargetTransformInfo::OK_UniformConstantValue;
2222 
2223       if (NeedToShuffleReuses) {
2224         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) *
2225                             TTI->getArithmeticInstrCost(Instruction::Add,
2226                                                         ScalarTy, Op1VK, Op2VK);
2227       }
2228       int ScalarCost =
2229           VecTy->getNumElements() *
2230           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
2231       int VecCost =
2232           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
2233 
2234       return ReuseShuffleCost + VecCost - ScalarCost;
2235     }
2236     case Instruction::Load: {
2237       // Cost of wide load - cost of scalar loads.
2238       unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
2239       if (NeedToShuffleReuses) {
2240         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) *
2241                             TTI->getMemoryOpCost(Instruction::Load, ScalarTy,
2242                                                  alignment, 0, VL0);
2243       }
2244       int ScalarLdCost = VecTy->getNumElements() *
2245           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
2246       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
2247                                            VecTy, alignment, 0, VL0);
2248       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
2249     }
2250     case Instruction::Store: {
2251       // We know that we can merge the stores. Calculate the cost.
2252       unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
2253       if (NeedToShuffleReuses) {
2254         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) *
2255                             TTI->getMemoryOpCost(Instruction::Store, ScalarTy,
2256                                                  alignment, 0, VL0);
2257       }
2258       int ScalarStCost = VecTy->getNumElements() *
2259           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
2260       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
2261                                            VecTy, alignment, 0, VL0);
2262       return ReuseShuffleCost + VecStCost - ScalarStCost;
2263     }
2264     case Instruction::Call: {
2265       CallInst *CI = cast<CallInst>(VL0);
2266       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2267 
2268       // Calculate the cost of the scalar and vector calls.
2269       SmallVector<Type*, 4> ScalarTys;
2270       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op)
2271         ScalarTys.push_back(CI->getArgOperand(op)->getType());
2272 
2273       FastMathFlags FMF;
2274       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2275         FMF = FPMO->getFastMathFlags();
2276 
2277       if (NeedToShuffleReuses) {
2278         ReuseShuffleCost -=
2279             (ReuseShuffleNumbers - VL.size()) *
2280             TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
2281       }
2282       int ScalarCallCost = VecTy->getNumElements() *
2283           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
2284 
2285       SmallVector<Value *, 4> Args(CI->arg_operands());
2286       int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
2287                                                    VecTy->getNumElements());
2288 
2289       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
2290             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
2291             << " for " << *CI << "\n");
2292 
2293       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
2294     }
2295     case Instruction::ShuffleVector: {
2296       TargetTransformInfo::OperandValueKind Op1VK =
2297           TargetTransformInfo::OK_AnyValue;
2298       TargetTransformInfo::OperandValueKind Op2VK =
2299           TargetTransformInfo::OK_AnyValue;
2300       int ScalarCost = 0;
2301       if (NeedToShuffleReuses) {
2302         for (unsigned Idx : E->ReuseShuffleIndices) {
2303           Instruction *I = cast<Instruction>(VL[Idx]);
2304           if (!I)
2305             continue;
2306           ReuseShuffleCost -= TTI->getArithmeticInstrCost(
2307               I->getOpcode(), ScalarTy, Op1VK, Op2VK);
2308         }
2309         for (Value *V : VL) {
2310           Instruction *I = cast<Instruction>(V);
2311           if (!I)
2312             continue;
2313           ReuseShuffleCost += TTI->getArithmeticInstrCost(
2314               I->getOpcode(), ScalarTy, Op1VK, Op2VK);
2315         }
2316       }
2317       int VecCost = 0;
2318       for (Value *i : VL) {
2319         Instruction *I = cast<Instruction>(i);
2320         if (!I)
2321           break;
2322         ScalarCost +=
2323             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
2324       }
2325       // VecCost is equal to sum of the cost of creating 2 vectors
2326       // and the cost of creating shuffle.
2327       Instruction *I0 = cast<Instruction>(VL[0]);
2328       VecCost =
2329           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
2330       Instruction *I1 = cast<Instruction>(VL[1]);
2331       VecCost +=
2332           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
2333       VecCost +=
2334           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
2335       return ReuseShuffleCost + VecCost - ScalarCost;
2336     }
2337     default:
2338       llvm_unreachable("Unknown instruction");
2339   }
2340 }
2341 
2342 bool BoUpSLP::isFullyVectorizableTinyTree() {
2343   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
2344         VectorizableTree.size() << " is fully vectorizable .\n");
2345 
2346   // We only handle trees of heights 1 and 2.
2347   if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
2348     return true;
2349 
2350   if (VectorizableTree.size() != 2)
2351     return false;
2352 
2353   // Handle splat and all-constants stores.
2354   if (!VectorizableTree[0].NeedToGather &&
2355       (allConstant(VectorizableTree[1].Scalars) ||
2356        isSplat(VectorizableTree[1].Scalars)))
2357     return true;
2358 
2359   // Gathering cost would be too much for tiny trees.
2360   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
2361     return false;
2362 
2363   return true;
2364 }
2365 
2366 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
2367   // We can vectorize the tree if its size is greater than or equal to the
2368   // minimum size specified by the MinTreeSize command line option.
2369   if (VectorizableTree.size() >= MinTreeSize)
2370     return false;
2371 
2372   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
2373   // can vectorize it if we can prove it fully vectorizable.
2374   if (isFullyVectorizableTinyTree())
2375     return false;
2376 
2377   assert(VectorizableTree.empty()
2378              ? ExternalUses.empty()
2379              : true && "We shouldn't have any external users");
2380 
2381   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
2382   // vectorizable.
2383   return true;
2384 }
2385 
2386 int BoUpSLP::getSpillCost() {
2387   // Walk from the bottom of the tree to the top, tracking which values are
2388   // live. When we see a call instruction that is not part of our tree,
2389   // query TTI to see if there is a cost to keeping values live over it
2390   // (for example, if spills and fills are required).
2391   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
2392   int Cost = 0;
2393 
2394   SmallPtrSet<Instruction*, 4> LiveValues;
2395   Instruction *PrevInst = nullptr;
2396 
2397   for (const auto &N : VectorizableTree) {
2398     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
2399     if (!Inst)
2400       continue;
2401 
2402     if (!PrevInst) {
2403       PrevInst = Inst;
2404       continue;
2405     }
2406 
2407     // Update LiveValues.
2408     LiveValues.erase(PrevInst);
2409     for (auto &J : PrevInst->operands()) {
2410       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
2411         LiveValues.insert(cast<Instruction>(&*J));
2412     }
2413 
2414     DEBUG(
2415       dbgs() << "SLP: #LV: " << LiveValues.size();
2416       for (auto *X : LiveValues)
2417         dbgs() << " " << X->getName();
2418       dbgs() << ", Looking at ";
2419       Inst->dump();
2420       );
2421 
2422     // Now find the sequence of instructions between PrevInst and Inst.
2423     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
2424                                  PrevInstIt =
2425                                      PrevInst->getIterator().getReverse();
2426     while (InstIt != PrevInstIt) {
2427       if (PrevInstIt == PrevInst->getParent()->rend()) {
2428         PrevInstIt = Inst->getParent()->rbegin();
2429         continue;
2430       }
2431 
2432       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
2433         SmallVector<Type*, 4> V;
2434         for (auto *II : LiveValues)
2435           V.push_back(VectorType::get(II->getType(), BundleWidth));
2436         Cost += TTI->getCostOfKeepingLiveOverCall(V);
2437       }
2438 
2439       ++PrevInstIt;
2440     }
2441 
2442     PrevInst = Inst;
2443   }
2444 
2445   return Cost;
2446 }
2447 
2448 int BoUpSLP::getTreeCost() {
2449   int Cost = 0;
2450   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
2451         VectorizableTree.size() << ".\n");
2452 
2453   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
2454 
2455   for (TreeEntry &TE : VectorizableTree) {
2456     int C = getEntryCost(&TE);
2457     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
2458                  << *TE.Scalars[0] << ".\n");
2459     Cost += C;
2460   }
2461 
2462   SmallSet<Value *, 16> ExtractCostCalculated;
2463   int ExtractCost = 0;
2464   for (ExternalUser &EU : ExternalUses) {
2465     // We only add extract cost once for the same scalar.
2466     if (!ExtractCostCalculated.insert(EU.Scalar).second)
2467       continue;
2468 
2469     // Uses by ephemeral values are free (because the ephemeral value will be
2470     // removed prior to code generation, and so the extraction will be
2471     // removed as well).
2472     if (EphValues.count(EU.User))
2473       continue;
2474 
2475     // If we plan to rewrite the tree in a smaller type, we will need to sign
2476     // extend the extracted value back to the original type. Here, we account
2477     // for the extract and the added cost of the sign extend if needed.
2478     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
2479     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2480     if (MinBWs.count(ScalarRoot)) {
2481       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
2482       auto Extend =
2483           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
2484       VecTy = VectorType::get(MinTy, BundleWidth);
2485       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
2486                                                    VecTy, EU.Lane);
2487     } else {
2488       ExtractCost +=
2489           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
2490     }
2491   }
2492 
2493   int SpillCost = getSpillCost();
2494   Cost += SpillCost + ExtractCost;
2495 
2496   std::string Str;
2497   {
2498     raw_string_ostream OS(Str);
2499     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
2500        << "SLP: Extract Cost = " << ExtractCost << ".\n"
2501        << "SLP: Total Cost = " << Cost << ".\n";
2502   }
2503   DEBUG(dbgs() << Str);
2504 
2505   if (ViewSLPTree)
2506     ViewGraph(this, "SLP" + F->getName(), false, Str);
2507 
2508   return Cost;
2509 }
2510 
2511 int BoUpSLP::getGatherCost(Type *Ty,
2512                            const DenseSet<unsigned> &ShuffledIndices) {
2513   int Cost = 0;
2514   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
2515     if (!ShuffledIndices.count(i))
2516       Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
2517   if (!ShuffledIndices.empty())
2518       Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
2519   return Cost;
2520 }
2521 
2522 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
2523   // Find the type of the operands in VL.
2524   Type *ScalarTy = VL[0]->getType();
2525   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2526     ScalarTy = SI->getValueOperand()->getType();
2527   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2528   // Find the cost of inserting/extracting values from the vector.
2529   // Check if the same elements are inserted several times and count them as
2530   // shuffle candidates.
2531   DenseSet<unsigned> ShuffledElements;
2532   DenseSet<Value *> UniqueElements;
2533   // Iterate in reverse order to consider insert elements with the high cost.
2534   for (unsigned I = VL.size(); I > 0; --I) {
2535     unsigned Idx = I - 1;
2536     if (!UniqueElements.insert(VL[Idx]).second)
2537       ShuffledElements.insert(Idx);
2538   }
2539   return getGatherCost(VecTy, ShuffledElements);
2540 }
2541 
2542 // Reorder commutative operations in alternate shuffle if the resulting vectors
2543 // are consecutive loads. This would allow us to vectorize the tree.
2544 // If we have something like-
2545 // load a[0] - load b[0]
2546 // load b[1] + load a[1]
2547 // load a[2] - load b[2]
2548 // load a[3] + load b[3]
2549 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
2550 // code.
2551 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
2552                                         SmallVectorImpl<Value *> &Left,
2553                                         SmallVectorImpl<Value *> &Right) {
2554   // Push left and right operands of binary operation into Left and Right
2555   unsigned AltOpcode = getAltOpcode(Opcode);
2556   (void)AltOpcode;
2557   for (Value *V : VL) {
2558     auto *I = cast<Instruction>(V);
2559     assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) &&
2560            "Incorrect instruction in vector");
2561     Left.push_back(I->getOperand(0));
2562     Right.push_back(I->getOperand(1));
2563   }
2564 
2565   // Reorder if we have a commutative operation and consecutive access
2566   // are on either side of the alternate instructions.
2567   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2568     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2569       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2570         Instruction *VL1 = cast<Instruction>(VL[j]);
2571         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2572         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2573           std::swap(Left[j], Right[j]);
2574           continue;
2575         } else if (VL2->isCommutative() &&
2576                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2577           std::swap(Left[j + 1], Right[j + 1]);
2578           continue;
2579         }
2580         // else unchanged
2581       }
2582     }
2583     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2584       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2585         Instruction *VL1 = cast<Instruction>(VL[j]);
2586         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2587         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2588           std::swap(Left[j], Right[j]);
2589           continue;
2590         } else if (VL2->isCommutative() &&
2591                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2592           std::swap(Left[j + 1], Right[j + 1]);
2593           continue;
2594         }
2595         // else unchanged
2596       }
2597     }
2598   }
2599 }
2600 
2601 // Return true if I should be commuted before adding it's left and right
2602 // operands to the arrays Left and Right.
2603 //
2604 // The vectorizer is trying to either have all elements one side being
2605 // instruction with the same opcode to enable further vectorization, or having
2606 // a splat to lower the vectorizing cost.
2607 static bool shouldReorderOperands(
2608     int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left,
2609     ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight,
2610     bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) {
2611   VLeft = I.getOperand(0);
2612   VRight = I.getOperand(1);
2613   // If we have "SplatRight", try to see if commuting is needed to preserve it.
2614   if (SplatRight) {
2615     if (VRight == Right[i - 1])
2616       // Preserve SplatRight
2617       return false;
2618     if (VLeft == Right[i - 1]) {
2619       // Commuting would preserve SplatRight, but we don't want to break
2620       // SplatLeft either, i.e. preserve the original order if possible.
2621       // (FIXME: why do we care?)
2622       if (SplatLeft && VLeft == Left[i - 1])
2623         return false;
2624       return true;
2625     }
2626   }
2627   // Symmetrically handle Right side.
2628   if (SplatLeft) {
2629     if (VLeft == Left[i - 1])
2630       // Preserve SplatLeft
2631       return false;
2632     if (VRight == Left[i - 1])
2633       return true;
2634   }
2635 
2636   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2637   Instruction *IRight = dyn_cast<Instruction>(VRight);
2638 
2639   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2640   // it and not the right, in this case we want to commute.
2641   if (AllSameOpcodeRight) {
2642     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2643     if (IRight && RightPrevOpcode == IRight->getOpcode())
2644       // Do not commute, a match on the right preserves AllSameOpcodeRight
2645       return false;
2646     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2647       // We have a match and may want to commute, but first check if there is
2648       // not also a match on the existing operands on the Left to preserve
2649       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2650       // (FIXME: why do we care?)
2651       if (AllSameOpcodeLeft && ILeft &&
2652           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2653         return false;
2654       return true;
2655     }
2656   }
2657   // Symmetrically handle Left side.
2658   if (AllSameOpcodeLeft) {
2659     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2660     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2661       return false;
2662     if (IRight && LeftPrevOpcode == IRight->getOpcode())
2663       return true;
2664   }
2665   return false;
2666 }
2667 
2668 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode,
2669                                              ArrayRef<Value *> VL,
2670                                              SmallVectorImpl<Value *> &Left,
2671                                              SmallVectorImpl<Value *> &Right) {
2672   if (!VL.empty()) {
2673     // Peel the first iteration out of the loop since there's nothing
2674     // interesting to do anyway and it simplifies the checks in the loop.
2675     auto *I = cast<Instruction>(VL[0]);
2676     Value *VLeft = I->getOperand(0);
2677     Value *VRight = I->getOperand(1);
2678     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2679       // Favor having instruction to the right. FIXME: why?
2680       std::swap(VLeft, VRight);
2681     Left.push_back(VLeft);
2682     Right.push_back(VRight);
2683   }
2684 
2685   // Keep track if we have instructions with all the same opcode on one side.
2686   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2687   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2688   // Keep track if we have one side with all the same value (broadcast).
2689   bool SplatLeft = true;
2690   bool SplatRight = true;
2691 
2692   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2693     Instruction *I = cast<Instruction>(VL[i]);
2694     assert(((I->getOpcode() == Opcode && I->isCommutative()) ||
2695             (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) &&
2696            "Can only process commutative instruction");
2697     // Commute to favor either a splat or maximizing having the same opcodes on
2698     // one side.
2699     Value *VLeft;
2700     Value *VRight;
2701     if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft,
2702                               AllSameOpcodeRight, SplatLeft, SplatRight, VLeft,
2703                               VRight)) {
2704       Left.push_back(VRight);
2705       Right.push_back(VLeft);
2706     } else {
2707       Left.push_back(VLeft);
2708       Right.push_back(VRight);
2709     }
2710     // Update Splat* and AllSameOpcode* after the insertion.
2711     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2712     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2713     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2714                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
2715                          cast<Instruction>(Left[i])->getOpcode());
2716     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2717                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
2718                           cast<Instruction>(Right[i])->getOpcode());
2719   }
2720 
2721   // If one operand end up being broadcast, return this operand order.
2722   if (SplatRight || SplatLeft)
2723     return;
2724 
2725   // Finally check if we can get longer vectorizable chain by reordering
2726   // without breaking the good operand order detected above.
2727   // E.g. If we have something like-
2728   // load a[0]  load b[0]
2729   // load b[1]  load a[1]
2730   // load a[2]  load b[2]
2731   // load a[3]  load b[3]
2732   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2733   // this code and we still retain AllSameOpcode property.
2734   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2735   // such as-
2736   // add a[0],c[0]  load b[0]
2737   // add a[1],c[2]  load b[1]
2738   // b[2]           load b[2]
2739   // add a[3],c[3]  load b[3]
2740   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2741     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2742       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2743         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2744           std::swap(Left[j + 1], Right[j + 1]);
2745           continue;
2746         }
2747       }
2748     }
2749     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2750       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2751         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2752           std::swap(Left[j + 1], Right[j + 1]);
2753           continue;
2754         }
2755       }
2756     }
2757     // else unchanged
2758   }
2759 }
2760 
2761 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) {
2762   // Get the basic block this bundle is in. All instructions in the bundle
2763   // should be in this block.
2764   auto *Front = cast<Instruction>(OpValue);
2765   auto *BB = Front->getParent();
2766   const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode();
2767   const unsigned AltOpcode = getAltOpcode(Opcode);
2768   assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
2769     return !sameOpcodeOrAlt(Opcode, AltOpcode,
2770                             cast<Instruction>(V)->getOpcode()) ||
2771            cast<Instruction>(V)->getParent() == BB;
2772   }));
2773 
2774   // The last instruction in the bundle in program order.
2775   Instruction *LastInst = nullptr;
2776 
2777   // Find the last instruction. The common case should be that BB has been
2778   // scheduled, and the last instruction is VL.back(). So we start with
2779   // VL.back() and iterate over schedule data until we reach the end of the
2780   // bundle. The end of the bundle is marked by null ScheduleData.
2781   if (BlocksSchedules.count(BB)) {
2782     auto *Bundle =
2783         BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back()));
2784     if (Bundle && Bundle->isPartOfBundle())
2785       for (; Bundle; Bundle = Bundle->NextInBundle)
2786         if (Bundle->OpValue == Bundle->Inst)
2787           LastInst = Bundle->Inst;
2788   }
2789 
2790   // LastInst can still be null at this point if there's either not an entry
2791   // for BB in BlocksSchedules or there's no ScheduleData available for
2792   // VL.back(). This can be the case if buildTree_rec aborts for various
2793   // reasons (e.g., the maximum recursion depth is reached, the maximum region
2794   // size is reached, etc.). ScheduleData is initialized in the scheduling
2795   // "dry-run".
2796   //
2797   // If this happens, we can still find the last instruction by brute force. We
2798   // iterate forwards from Front (inclusive) until we either see all
2799   // instructions in the bundle or reach the end of the block. If Front is the
2800   // last instruction in program order, LastInst will be set to Front, and we
2801   // will visit all the remaining instructions in the block.
2802   //
2803   // One of the reasons we exit early from buildTree_rec is to place an upper
2804   // bound on compile-time. Thus, taking an additional compile-time hit here is
2805   // not ideal. However, this should be exceedingly rare since it requires that
2806   // we both exit early from buildTree_rec and that the bundle be out-of-order
2807   // (causing us to iterate all the way to the end of the block).
2808   if (!LastInst) {
2809     SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
2810     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
2811       if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode()))
2812         LastInst = &I;
2813       if (Bundle.empty())
2814         break;
2815     }
2816   }
2817 
2818   // Set the insertion point after the last instruction in the bundle. Set the
2819   // debug location to Front.
2820   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
2821   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
2822 }
2823 
2824 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2825   Value *Vec = UndefValue::get(Ty);
2826   // Generate the 'InsertElement' instruction.
2827   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2828     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2829     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2830       GatherSeq.insert(Insrt);
2831       CSEBlocks.insert(Insrt->getParent());
2832 
2833       // Add to our 'need-to-extract' list.
2834       if (TreeEntry *E = getTreeEntry(VL[i])) {
2835         // Find which lane we need to extract.
2836         int FoundLane = -1;
2837         for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
2838           // Is this the lane of the scalar that we are looking for ?
2839           if (E->Scalars[Lane] == VL[i]) {
2840             FoundLane = Lane;
2841             break;
2842           }
2843         }
2844         assert(FoundLane >= 0 && "Could not find the correct lane");
2845         if (!E->ReuseShuffleIndices.empty()) {
2846           FoundLane =
2847               std::distance(E->ReuseShuffleIndices.begin(),
2848                             llvm::find(E->ReuseShuffleIndices, FoundLane));
2849         }
2850         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2851       }
2852     }
2853   }
2854 
2855   return Vec;
2856 }
2857 
2858 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2859   InstructionsState S = getSameOpcode(VL);
2860   if (S.Opcode) {
2861     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2862       if (E->isSame(VL)) {
2863         Value *V = vectorizeTree(E);
2864         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
2865           // We need to get the vectorized value but without shuffle.
2866           if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
2867             V = SV->getOperand(0);
2868           } else {
2869             // Reshuffle to get only unique values.
2870             SmallVector<unsigned, 4> UniqueIdxs;
2871             SmallSet<unsigned, 4> UsedIdxs;
2872             for(unsigned Idx : E->ReuseShuffleIndices)
2873               if (UsedIdxs.insert(Idx).second)
2874                 UniqueIdxs.emplace_back(Idx);
2875             V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2876                                             UniqueIdxs);
2877           }
2878         }
2879         return V;
2880       }
2881     }
2882   }
2883 
2884   Type *ScalarTy = S.OpValue->getType();
2885   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2886     ScalarTy = SI->getValueOperand()->getType();
2887 
2888   // Check that every instruction appears once in this bundle.
2889   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2890   SmallVector<Value *, 4> UniqueValues;
2891   if (VL.size() > 2) {
2892     DenseMap<Value *, unsigned> UniquePositions;
2893     for (Value *V : VL) {
2894       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2895       ReuseShuffleIndicies.emplace_back(Res.first->second);
2896       if (Res.second || isa<Constant>(V))
2897         UniqueValues.emplace_back(V);
2898     }
2899     // Do not shuffle single element or if number of unique values is not power
2900     // of 2.
2901     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
2902         !llvm::isPowerOf2_32(UniqueValues.size()))
2903       ReuseShuffleIndicies.clear();
2904     else
2905       VL = UniqueValues;
2906   }
2907   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2908 
2909   Value *V = Gather(VL, VecTy);
2910   if (!ReuseShuffleIndicies.empty()) {
2911     V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
2912                                     ReuseShuffleIndicies, "shuffle");
2913     if (auto *I = dyn_cast<Instruction>(V)) {
2914       GatherSeq.insert(I);
2915       CSEBlocks.insert(I->getParent());
2916     }
2917   }
2918   return V;
2919 }
2920 
2921 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2922   IRBuilder<>::InsertPointGuard Guard(Builder);
2923 
2924   if (E->VectorizedValue) {
2925     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2926     return E->VectorizedValue;
2927   }
2928 
2929   InstructionsState S = getSameOpcode(E->Scalars);
2930   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2931   Type *ScalarTy = VL0->getType();
2932   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2933     ScalarTy = SI->getValueOperand()->getType();
2934   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2935 
2936   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2937 
2938   if (E->NeedToGather) {
2939     setInsertPointAfterBundle(E->Scalars, VL0);
2940     auto *V = Gather(E->Scalars, VecTy);
2941     if (NeedToShuffleReuses) {
2942       V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
2943                                       E->ReuseShuffleIndices, "shuffle");
2944       if (auto *I = dyn_cast<Instruction>(V)) {
2945         GatherSeq.insert(I);
2946         CSEBlocks.insert(I->getParent());
2947       }
2948     }
2949     E->VectorizedValue = V;
2950     return V;
2951   }
2952 
2953   unsigned ShuffleOrOp = S.IsAltShuffle ?
2954            (unsigned) Instruction::ShuffleVector : S.Opcode;
2955   switch (ShuffleOrOp) {
2956     case Instruction::PHI: {
2957       PHINode *PH = dyn_cast<PHINode>(VL0);
2958       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2959       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2960       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2961       Value *V = NewPhi;
2962       if (NeedToShuffleReuses) {
2963         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
2964                                         E->ReuseShuffleIndices, "shuffle");
2965       }
2966       E->VectorizedValue = V;
2967 
2968       // PHINodes may have multiple entries from the same block. We want to
2969       // visit every block once.
2970       SmallSet<BasicBlock*, 4> VisitedBBs;
2971 
2972       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2973         ValueList Operands;
2974         BasicBlock *IBB = PH->getIncomingBlock(i);
2975 
2976         if (!VisitedBBs.insert(IBB).second) {
2977           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2978           continue;
2979         }
2980 
2981         // Prepare the operand vector.
2982         for (Value *V : E->Scalars)
2983           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2984 
2985         Builder.SetInsertPoint(IBB->getTerminator());
2986         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2987         Value *Vec = vectorizeTree(Operands);
2988         NewPhi->addIncoming(Vec, IBB);
2989       }
2990 
2991       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2992              "Invalid number of incoming values");
2993       return V;
2994     }
2995 
2996     case Instruction::ExtractElement: {
2997       if (canReuseExtract(E->Scalars, VL0)) {
2998         Value *V = VL0->getOperand(0);
2999         if (NeedToShuffleReuses) {
3000           Builder.SetInsertPoint(VL0);
3001           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3002                                           E->ReuseShuffleIndices, "shuffle");
3003         }
3004         E->VectorizedValue = V;
3005         return V;
3006       }
3007       setInsertPointAfterBundle(E->Scalars, VL0);
3008       auto *V = Gather(E->Scalars, VecTy);
3009       if (NeedToShuffleReuses) {
3010         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3011                                         E->ReuseShuffleIndices, "shuffle");
3012         if (auto *I = dyn_cast<Instruction>(V)) {
3013           GatherSeq.insert(I);
3014           CSEBlocks.insert(I->getParent());
3015         }
3016       }
3017       E->VectorizedValue = V;
3018       return V;
3019     }
3020     case Instruction::ExtractValue: {
3021       if (canReuseExtract(E->Scalars, VL0)) {
3022         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
3023         Builder.SetInsertPoint(LI);
3024         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3025         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3026         LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
3027         Value *NewV = propagateMetadata(V, E->Scalars);
3028         if (NeedToShuffleReuses) {
3029           NewV = Builder.CreateShuffleVector(
3030               NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3031         }
3032         E->VectorizedValue = NewV;
3033         return NewV;
3034       }
3035       setInsertPointAfterBundle(E->Scalars, VL0);
3036       auto *V = Gather(E->Scalars, VecTy);
3037       if (NeedToShuffleReuses) {
3038         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3039                                         E->ReuseShuffleIndices, "shuffle");
3040         if (auto *I = dyn_cast<Instruction>(V)) {
3041           GatherSeq.insert(I);
3042           CSEBlocks.insert(I->getParent());
3043         }
3044       }
3045       E->VectorizedValue = V;
3046       return V;
3047     }
3048     case Instruction::ZExt:
3049     case Instruction::SExt:
3050     case Instruction::FPToUI:
3051     case Instruction::FPToSI:
3052     case Instruction::FPExt:
3053     case Instruction::PtrToInt:
3054     case Instruction::IntToPtr:
3055     case Instruction::SIToFP:
3056     case Instruction::UIToFP:
3057     case Instruction::Trunc:
3058     case Instruction::FPTrunc:
3059     case Instruction::BitCast: {
3060       ValueList INVL;
3061       for (Value *V : E->Scalars)
3062         INVL.push_back(cast<Instruction>(V)->getOperand(0));
3063 
3064       setInsertPointAfterBundle(E->Scalars, VL0);
3065 
3066       Value *InVec = vectorizeTree(INVL);
3067 
3068       if (E->VectorizedValue) {
3069         DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3070         return E->VectorizedValue;
3071       }
3072 
3073       CastInst *CI = dyn_cast<CastInst>(VL0);
3074       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3075       if (NeedToShuffleReuses) {
3076         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3077                                         E->ReuseShuffleIndices, "shuffle");
3078       }
3079       E->VectorizedValue = V;
3080       ++NumVectorInstructions;
3081       return V;
3082     }
3083     case Instruction::FCmp:
3084     case Instruction::ICmp: {
3085       ValueList LHSV, RHSV;
3086       for (Value *V : E->Scalars) {
3087         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
3088         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
3089       }
3090 
3091       setInsertPointAfterBundle(E->Scalars, VL0);
3092 
3093       Value *L = vectorizeTree(LHSV);
3094       Value *R = vectorizeTree(RHSV);
3095 
3096       if (E->VectorizedValue) {
3097         DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3098         return E->VectorizedValue;
3099       }
3100 
3101       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3102       Value *V;
3103       if (S.Opcode == Instruction::FCmp)
3104         V = Builder.CreateFCmp(P0, L, R);
3105       else
3106         V = Builder.CreateICmp(P0, L, R);
3107 
3108       propagateIRFlags(V, E->Scalars, VL0);
3109       if (NeedToShuffleReuses) {
3110         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3111                                         E->ReuseShuffleIndices, "shuffle");
3112       }
3113       E->VectorizedValue = V;
3114       ++NumVectorInstructions;
3115       return V;
3116     }
3117     case Instruction::Select: {
3118       ValueList TrueVec, FalseVec, CondVec;
3119       for (Value *V : E->Scalars) {
3120         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
3121         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
3122         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
3123       }
3124 
3125       setInsertPointAfterBundle(E->Scalars, VL0);
3126 
3127       Value *Cond = vectorizeTree(CondVec);
3128       Value *True = vectorizeTree(TrueVec);
3129       Value *False = vectorizeTree(FalseVec);
3130 
3131       if (E->VectorizedValue) {
3132         DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3133         return E->VectorizedValue;
3134       }
3135 
3136       Value *V = Builder.CreateSelect(Cond, True, False);
3137       if (NeedToShuffleReuses) {
3138         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3139                                         E->ReuseShuffleIndices, "shuffle");
3140       }
3141       E->VectorizedValue = V;
3142       ++NumVectorInstructions;
3143       return V;
3144     }
3145     case Instruction::Add:
3146     case Instruction::FAdd:
3147     case Instruction::Sub:
3148     case Instruction::FSub:
3149     case Instruction::Mul:
3150     case Instruction::FMul:
3151     case Instruction::UDiv:
3152     case Instruction::SDiv:
3153     case Instruction::FDiv:
3154     case Instruction::URem:
3155     case Instruction::SRem:
3156     case Instruction::FRem:
3157     case Instruction::Shl:
3158     case Instruction::LShr:
3159     case Instruction::AShr:
3160     case Instruction::And:
3161     case Instruction::Or:
3162     case Instruction::Xor: {
3163       ValueList LHSVL, RHSVL;
3164       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
3165         reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL,
3166                                        RHSVL);
3167       else
3168         for (Value *V : E->Scalars) {
3169           auto *I = cast<Instruction>(V);
3170           LHSVL.push_back(I->getOperand(0));
3171           RHSVL.push_back(I->getOperand(1));
3172         }
3173 
3174       setInsertPointAfterBundle(E->Scalars, VL0);
3175 
3176       Value *LHS = vectorizeTree(LHSVL);
3177       Value *RHS = vectorizeTree(RHSVL);
3178 
3179       if (E->VectorizedValue) {
3180         DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3181         return E->VectorizedValue;
3182       }
3183 
3184       Value *V = Builder.CreateBinOp(
3185           static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS);
3186       propagateIRFlags(V, E->Scalars, VL0);
3187       if (auto *I = dyn_cast<Instruction>(V))
3188         V = propagateMetadata(I, E->Scalars);
3189 
3190       if (NeedToShuffleReuses) {
3191         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3192                                         E->ReuseShuffleIndices, "shuffle");
3193       }
3194       E->VectorizedValue = V;
3195       ++NumVectorInstructions;
3196 
3197       return V;
3198     }
3199     case Instruction::Load: {
3200       // Loads are inserted at the head of the tree because we don't want to
3201       // sink them all the way down past store instructions.
3202       setInsertPointAfterBundle(E->Scalars, VL0);
3203 
3204       LoadInst *LI = cast<LoadInst>(VL0);
3205       Type *ScalarLoadTy = LI->getType();
3206       unsigned AS = LI->getPointerAddressSpace();
3207 
3208       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
3209                                             VecTy->getPointerTo(AS));
3210 
3211       // The pointer operand uses an in-tree scalar so we add the new BitCast to
3212       // ExternalUses list to make sure that an extract will be generated in the
3213       // future.
3214       Value *PO = LI->getPointerOperand();
3215       if (getTreeEntry(PO))
3216         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
3217 
3218       unsigned Alignment = LI->getAlignment();
3219       LI = Builder.CreateLoad(VecPtr);
3220       if (!Alignment) {
3221         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
3222       }
3223       LI->setAlignment(Alignment);
3224       Value *V = propagateMetadata(LI, E->Scalars);
3225       if (NeedToShuffleReuses) {
3226         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3227                                         E->ReuseShuffleIndices, "shuffle");
3228       }
3229       E->VectorizedValue = V;
3230       ++NumVectorInstructions;
3231       return V;
3232     }
3233     case Instruction::Store: {
3234       StoreInst *SI = cast<StoreInst>(VL0);
3235       unsigned Alignment = SI->getAlignment();
3236       unsigned AS = SI->getPointerAddressSpace();
3237 
3238       ValueList ScalarStoreValues;
3239       for (Value *V : E->Scalars)
3240         ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand());
3241 
3242       setInsertPointAfterBundle(E->Scalars, VL0);
3243 
3244       Value *VecValue = vectorizeTree(ScalarStoreValues);
3245       Value *ScalarPtr = SI->getPointerOperand();
3246       Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
3247       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
3248 
3249       // The pointer operand uses an in-tree scalar, so add the new BitCast to
3250       // ExternalUses to make sure that an extract will be generated in the
3251       // future.
3252       if (getTreeEntry(ScalarPtr))
3253         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
3254 
3255       if (!Alignment)
3256         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
3257 
3258       S->setAlignment(Alignment);
3259       Value *V = propagateMetadata(S, E->Scalars);
3260       if (NeedToShuffleReuses) {
3261         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3262                                         E->ReuseShuffleIndices, "shuffle");
3263       }
3264       E->VectorizedValue = V;
3265       ++NumVectorInstructions;
3266       return V;
3267     }
3268     case Instruction::GetElementPtr: {
3269       setInsertPointAfterBundle(E->Scalars, VL0);
3270 
3271       ValueList Op0VL;
3272       for (Value *V : E->Scalars)
3273         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
3274 
3275       Value *Op0 = vectorizeTree(Op0VL);
3276 
3277       std::vector<Value *> OpVecs;
3278       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
3279            ++j) {
3280         ValueList OpVL;
3281         for (Value *V : E->Scalars)
3282           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
3283 
3284         Value *OpVec = vectorizeTree(OpVL);
3285         OpVecs.push_back(OpVec);
3286       }
3287 
3288       Value *V = Builder.CreateGEP(
3289           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
3290       if (Instruction *I = dyn_cast<Instruction>(V))
3291         V = propagateMetadata(I, E->Scalars);
3292 
3293       if (NeedToShuffleReuses) {
3294         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3295                                         E->ReuseShuffleIndices, "shuffle");
3296       }
3297       E->VectorizedValue = V;
3298       ++NumVectorInstructions;
3299 
3300       return V;
3301     }
3302     case Instruction::Call: {
3303       CallInst *CI = cast<CallInst>(VL0);
3304       setInsertPointAfterBundle(E->Scalars, VL0);
3305       Function *FI;
3306       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
3307       Value *ScalarArg = nullptr;
3308       if (CI && (FI = CI->getCalledFunction())) {
3309         IID = FI->getIntrinsicID();
3310       }
3311       std::vector<Value *> OpVecs;
3312       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
3313         ValueList OpVL;
3314         // ctlz,cttz and powi are special intrinsics whose second argument is
3315         // a scalar. This argument should not be vectorized.
3316         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
3317           CallInst *CEI = cast<CallInst>(VL0);
3318           ScalarArg = CEI->getArgOperand(j);
3319           OpVecs.push_back(CEI->getArgOperand(j));
3320           continue;
3321         }
3322         for (Value *V : E->Scalars) {
3323           CallInst *CEI = cast<CallInst>(V);
3324           OpVL.push_back(CEI->getArgOperand(j));
3325         }
3326 
3327         Value *OpVec = vectorizeTree(OpVL);
3328         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
3329         OpVecs.push_back(OpVec);
3330       }
3331 
3332       Module *M = F->getParent();
3333       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3334       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
3335       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
3336       SmallVector<OperandBundleDef, 1> OpBundles;
3337       CI->getOperandBundlesAsDefs(OpBundles);
3338       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
3339 
3340       // The scalar argument uses an in-tree scalar so we add the new vectorized
3341       // call to ExternalUses list to make sure that an extract will be
3342       // generated in the future.
3343       if (ScalarArg && getTreeEntry(ScalarArg))
3344         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
3345 
3346       propagateIRFlags(V, E->Scalars, VL0);
3347       if (NeedToShuffleReuses) {
3348         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3349                                         E->ReuseShuffleIndices, "shuffle");
3350       }
3351       E->VectorizedValue = V;
3352       ++NumVectorInstructions;
3353       return V;
3354     }
3355     case Instruction::ShuffleVector: {
3356       ValueList LHSVL, RHSVL;
3357       assert(Instruction::isBinaryOp(S.Opcode) &&
3358              "Invalid Shuffle Vector Operand");
3359       reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL);
3360       setInsertPointAfterBundle(E->Scalars, VL0);
3361 
3362       Value *LHS = vectorizeTree(LHSVL);
3363       Value *RHS = vectorizeTree(RHSVL);
3364 
3365       if (E->VectorizedValue) {
3366         DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3367         return E->VectorizedValue;
3368       }
3369 
3370       // Create a vector of LHS op1 RHS
3371       Value *V0 = Builder.CreateBinOp(
3372           static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS);
3373 
3374       unsigned AltOpcode = getAltOpcode(S.Opcode);
3375       // Create a vector of LHS op2 RHS
3376       Value *V1 = Builder.CreateBinOp(
3377           static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS);
3378 
3379       // Create shuffle to take alternate operations from the vector.
3380       // Also, gather up odd and even scalar ops to propagate IR flags to
3381       // each vector operation.
3382       ValueList OddScalars, EvenScalars;
3383       unsigned e = E->Scalars.size();
3384       SmallVector<Constant *, 8> Mask(e);
3385       for (unsigned i = 0; i < e; ++i) {
3386         if (isOdd(i)) {
3387           Mask[i] = Builder.getInt32(e + i);
3388           OddScalars.push_back(E->Scalars[i]);
3389         } else {
3390           Mask[i] = Builder.getInt32(i);
3391           EvenScalars.push_back(E->Scalars[i]);
3392         }
3393       }
3394 
3395       Value *ShuffleMask = ConstantVector::get(Mask);
3396       propagateIRFlags(V0, EvenScalars);
3397       propagateIRFlags(V1, OddScalars);
3398 
3399       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
3400       if (Instruction *I = dyn_cast<Instruction>(V))
3401         V = propagateMetadata(I, E->Scalars);
3402       if (NeedToShuffleReuses) {
3403         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3404                                         E->ReuseShuffleIndices, "shuffle");
3405       }
3406       E->VectorizedValue = V;
3407       ++NumVectorInstructions;
3408 
3409       return V;
3410     }
3411     default:
3412     llvm_unreachable("unknown inst");
3413   }
3414   return nullptr;
3415 }
3416 
3417 Value *BoUpSLP::vectorizeTree() {
3418   ExtraValueToDebugLocsMap ExternallyUsedValues;
3419   return vectorizeTree(ExternallyUsedValues);
3420 }
3421 
3422 Value *
3423 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3424   // All blocks must be scheduled before any instructions are inserted.
3425   for (auto &BSIter : BlocksSchedules) {
3426     scheduleBlock(BSIter.second.get());
3427   }
3428 
3429   Builder.SetInsertPoint(&F->getEntryBlock().front());
3430   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
3431 
3432   // If the vectorized tree can be rewritten in a smaller type, we truncate the
3433   // vectorized root. InstCombine will then rewrite the entire expression. We
3434   // sign extend the extracted values below.
3435   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
3436   if (MinBWs.count(ScalarRoot)) {
3437     if (auto *I = dyn_cast<Instruction>(VectorRoot))
3438       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
3439     auto BundleWidth = VectorizableTree[0].Scalars.size();
3440     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3441     auto *VecTy = VectorType::get(MinTy, BundleWidth);
3442     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
3443     VectorizableTree[0].VectorizedValue = Trunc;
3444   }
3445 
3446   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
3447 
3448   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
3449   // specified by ScalarType.
3450   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
3451     if (!MinBWs.count(ScalarRoot))
3452       return Ex;
3453     if (MinBWs[ScalarRoot].second)
3454       return Builder.CreateSExt(Ex, ScalarType);
3455     return Builder.CreateZExt(Ex, ScalarType);
3456   };
3457 
3458   // Extract all of the elements with the external uses.
3459   for (const auto &ExternalUse : ExternalUses) {
3460     Value *Scalar = ExternalUse.Scalar;
3461     llvm::User *User = ExternalUse.User;
3462 
3463     // Skip users that we already RAUW. This happens when one instruction
3464     // has multiple uses of the same value.
3465     if (User && !is_contained(Scalar->users(), User))
3466       continue;
3467     TreeEntry *E = getTreeEntry(Scalar);
3468     assert(E && "Invalid scalar");
3469     assert(!E->NeedToGather && "Extracting from a gather list");
3470 
3471     Value *Vec = E->VectorizedValue;
3472     assert(Vec && "Can't find vectorizable value");
3473 
3474     Value *Lane = Builder.getInt32(ExternalUse.Lane);
3475     // If User == nullptr, the Scalar is used as extra arg. Generate
3476     // ExtractElement instruction and update the record for this scalar in
3477     // ExternallyUsedValues.
3478     if (!User) {
3479       assert(ExternallyUsedValues.count(Scalar) &&
3480              "Scalar with nullptr as an external user must be registered in "
3481              "ExternallyUsedValues map");
3482       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3483         Builder.SetInsertPoint(VecI->getParent(),
3484                                std::next(VecI->getIterator()));
3485       } else {
3486         Builder.SetInsertPoint(&F->getEntryBlock().front());
3487       }
3488       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3489       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3490       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
3491       auto &Locs = ExternallyUsedValues[Scalar];
3492       ExternallyUsedValues.insert({Ex, Locs});
3493       ExternallyUsedValues.erase(Scalar);
3494       continue;
3495     }
3496 
3497     // Generate extracts for out-of-tree users.
3498     // Find the insertion point for the extractelement lane.
3499     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3500       if (PHINode *PH = dyn_cast<PHINode>(User)) {
3501         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
3502           if (PH->getIncomingValue(i) == Scalar) {
3503             TerminatorInst *IncomingTerminator =
3504                 PH->getIncomingBlock(i)->getTerminator();
3505             if (isa<CatchSwitchInst>(IncomingTerminator)) {
3506               Builder.SetInsertPoint(VecI->getParent(),
3507                                      std::next(VecI->getIterator()));
3508             } else {
3509               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
3510             }
3511             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3512             Ex = extend(ScalarRoot, Ex, Scalar->getType());
3513             CSEBlocks.insert(PH->getIncomingBlock(i));
3514             PH->setOperand(i, Ex);
3515           }
3516         }
3517       } else {
3518         Builder.SetInsertPoint(cast<Instruction>(User));
3519         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3520         Ex = extend(ScalarRoot, Ex, Scalar->getType());
3521         CSEBlocks.insert(cast<Instruction>(User)->getParent());
3522         User->replaceUsesOfWith(Scalar, Ex);
3523      }
3524     } else {
3525       Builder.SetInsertPoint(&F->getEntryBlock().front());
3526       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3527       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3528       CSEBlocks.insert(&F->getEntryBlock());
3529       User->replaceUsesOfWith(Scalar, Ex);
3530     }
3531 
3532     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
3533   }
3534 
3535   // For each vectorized value:
3536   for (TreeEntry &EIdx : VectorizableTree) {
3537     TreeEntry *Entry = &EIdx;
3538 
3539     // No need to handle users of gathered values.
3540     if (Entry->NeedToGather)
3541       continue;
3542 
3543     assert(Entry->VectorizedValue && "Can't find vectorizable value");
3544 
3545     // For each lane:
3546     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3547       Value *Scalar = Entry->Scalars[Lane];
3548 
3549       Type *Ty = Scalar->getType();
3550       if (!Ty->isVoidTy()) {
3551 #ifndef NDEBUG
3552         for (User *U : Scalar->users()) {
3553           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
3554 
3555           // It is legal to replace users in the ignorelist by undef.
3556           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
3557                  "Replacing out-of-tree value with undef");
3558         }
3559 #endif
3560         Value *Undef = UndefValue::get(Ty);
3561         Scalar->replaceAllUsesWith(Undef);
3562       }
3563       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
3564       eraseInstruction(cast<Instruction>(Scalar));
3565     }
3566   }
3567 
3568   Builder.ClearInsertionPoint();
3569 
3570   return VectorizableTree[0].VectorizedValue;
3571 }
3572 
3573 void BoUpSLP::optimizeGatherSequence() {
3574   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
3575         << " gather sequences instructions.\n");
3576   // LICM InsertElementInst sequences.
3577   for (Instruction *I : GatherSeq) {
3578     if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
3579       continue;
3580 
3581     // Check if this block is inside a loop.
3582     Loop *L = LI->getLoopFor(I->getParent());
3583     if (!L)
3584       continue;
3585 
3586     // Check if it has a preheader.
3587     BasicBlock *PreHeader = L->getLoopPreheader();
3588     if (!PreHeader)
3589       continue;
3590 
3591     // If the vector or the element that we insert into it are
3592     // instructions that are defined in this basic block then we can't
3593     // hoist this instruction.
3594     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
3595     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
3596     if (Op0 && L->contains(Op0))
3597       continue;
3598     if (Op1 && L->contains(Op1))
3599       continue;
3600 
3601     // We can hoist this instruction. Move it to the pre-header.
3602     I->moveBefore(PreHeader->getTerminator());
3603   }
3604 
3605   // Make a list of all reachable blocks in our CSE queue.
3606   SmallVector<const DomTreeNode *, 8> CSEWorkList;
3607   CSEWorkList.reserve(CSEBlocks.size());
3608   for (BasicBlock *BB : CSEBlocks)
3609     if (DomTreeNode *N = DT->getNode(BB)) {
3610       assert(DT->isReachableFromEntry(N));
3611       CSEWorkList.push_back(N);
3612     }
3613 
3614   // Sort blocks by domination. This ensures we visit a block after all blocks
3615   // dominating it are visited.
3616   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
3617                    [this](const DomTreeNode *A, const DomTreeNode *B) {
3618     return DT->properlyDominates(A, B);
3619   });
3620 
3621   // Perform O(N^2) search over the gather sequences and merge identical
3622   // instructions. TODO: We can further optimize this scan if we split the
3623   // instructions into different buckets based on the insert lane.
3624   SmallVector<Instruction *, 16> Visited;
3625   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
3626     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
3627            "Worklist not sorted properly!");
3628     BasicBlock *BB = (*I)->getBlock();
3629     // For all instructions in blocks containing gather sequences:
3630     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
3631       Instruction *In = &*it++;
3632       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
3633         continue;
3634 
3635       // Check if we can replace this instruction with any of the
3636       // visited instructions.
3637       for (Instruction *v : Visited) {
3638         if (In->isIdenticalTo(v) &&
3639             DT->dominates(v->getParent(), In->getParent())) {
3640           In->replaceAllUsesWith(v);
3641           eraseInstruction(In);
3642           In = nullptr;
3643           break;
3644         }
3645       }
3646       if (In) {
3647         assert(!is_contained(Visited, In));
3648         Visited.push_back(In);
3649       }
3650     }
3651   }
3652   CSEBlocks.clear();
3653   GatherSeq.clear();
3654 }
3655 
3656 // Groups the instructions to a bundle (which is then a single scheduling entity)
3657 // and schedules instructions until the bundle gets ready.
3658 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
3659                                                  BoUpSLP *SLP, Value *OpValue) {
3660   if (isa<PHINode>(OpValue))
3661     return true;
3662 
3663   // Initialize the instruction bundle.
3664   Instruction *OldScheduleEnd = ScheduleEnd;
3665   ScheduleData *PrevInBundle = nullptr;
3666   ScheduleData *Bundle = nullptr;
3667   bool ReSchedule = false;
3668   DEBUG(dbgs() << "SLP:  bundle: " << *OpValue << "\n");
3669 
3670   // Make sure that the scheduling region contains all
3671   // instructions of the bundle.
3672   for (Value *V : VL) {
3673     if (!extendSchedulingRegion(V, OpValue))
3674       return false;
3675   }
3676 
3677   for (Value *V : VL) {
3678     ScheduleData *BundleMember = getScheduleData(V);
3679     assert(BundleMember &&
3680            "no ScheduleData for bundle member (maybe not in same basic block)");
3681     if (BundleMember->IsScheduled) {
3682       // A bundle member was scheduled as single instruction before and now
3683       // needs to be scheduled as part of the bundle. We just get rid of the
3684       // existing schedule.
3685       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
3686                    << " was already scheduled\n");
3687       ReSchedule = true;
3688     }
3689     assert(BundleMember->isSchedulingEntity() &&
3690            "bundle member already part of other bundle");
3691     if (PrevInBundle) {
3692       PrevInBundle->NextInBundle = BundleMember;
3693     } else {
3694       Bundle = BundleMember;
3695     }
3696     BundleMember->UnscheduledDepsInBundle = 0;
3697     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
3698 
3699     // Group the instructions to a bundle.
3700     BundleMember->FirstInBundle = Bundle;
3701     PrevInBundle = BundleMember;
3702   }
3703   if (ScheduleEnd != OldScheduleEnd) {
3704     // The scheduling region got new instructions at the lower end (or it is a
3705     // new region for the first bundle). This makes it necessary to
3706     // recalculate all dependencies.
3707     // It is seldom that this needs to be done a second time after adding the
3708     // initial bundle to the region.
3709     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3710       doForAllOpcodes(I, [](ScheduleData *SD) {
3711         SD->clearDependencies();
3712       });
3713     }
3714     ReSchedule = true;
3715   }
3716   if (ReSchedule) {
3717     resetSchedule();
3718     initialFillReadyList(ReadyInsts);
3719   }
3720 
3721   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
3722                << BB->getName() << "\n");
3723 
3724   calculateDependencies(Bundle, true, SLP);
3725 
3726   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
3727   // means that there are no cyclic dependencies and we can schedule it.
3728   // Note that's important that we don't "schedule" the bundle yet (see
3729   // cancelScheduling).
3730   while (!Bundle->isReady() && !ReadyInsts.empty()) {
3731 
3732     ScheduleData *pickedSD = ReadyInsts.back();
3733     ReadyInsts.pop_back();
3734 
3735     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
3736       schedule(pickedSD, ReadyInsts);
3737     }
3738   }
3739   if (!Bundle->isReady()) {
3740     cancelScheduling(VL, OpValue);
3741     return false;
3742   }
3743   return true;
3744 }
3745 
3746 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
3747                                                 Value *OpValue) {
3748   if (isa<PHINode>(OpValue))
3749     return;
3750 
3751   ScheduleData *Bundle = getScheduleData(OpValue);
3752   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
3753   assert(!Bundle->IsScheduled &&
3754          "Can't cancel bundle which is already scheduled");
3755   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
3756          "tried to unbundle something which is not a bundle");
3757 
3758   // Un-bundle: make single instructions out of the bundle.
3759   ScheduleData *BundleMember = Bundle;
3760   while (BundleMember) {
3761     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
3762     BundleMember->FirstInBundle = BundleMember;
3763     ScheduleData *Next = BundleMember->NextInBundle;
3764     BundleMember->NextInBundle = nullptr;
3765     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
3766     if (BundleMember->UnscheduledDepsInBundle == 0) {
3767       ReadyInsts.insert(BundleMember);
3768     }
3769     BundleMember = Next;
3770   }
3771 }
3772 
3773 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
3774   // Allocate a new ScheduleData for the instruction.
3775   if (ChunkPos >= ChunkSize) {
3776     ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
3777     ChunkPos = 0;
3778   }
3779   return &(ScheduleDataChunks.back()[ChunkPos++]);
3780 }
3781 
3782 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
3783                                                       Value *OpValue) {
3784   if (getScheduleData(V, isOneOf(OpValue, V)))
3785     return true;
3786   Instruction *I = dyn_cast<Instruction>(V);
3787   assert(I && "bundle member must be an instruction");
3788   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
3789   auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool {
3790     ScheduleData *ISD = getScheduleData(I);
3791     if (!ISD)
3792       return false;
3793     assert(isInSchedulingRegion(ISD) &&
3794            "ScheduleData not in scheduling region");
3795     ScheduleData *SD = allocateScheduleDataChunks();
3796     SD->Inst = I;
3797     SD->init(SchedulingRegionID, OpValue);
3798     ExtraScheduleDataMap[I][OpValue] = SD;
3799     return true;
3800   };
3801   if (CheckSheduleForI(I))
3802     return true;
3803   if (!ScheduleStart) {
3804     // It's the first instruction in the new region.
3805     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
3806     ScheduleStart = I;
3807     ScheduleEnd = I->getNextNode();
3808     if (isOneOf(OpValue, I) != I)
3809       CheckSheduleForI(I);
3810     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
3811     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
3812     return true;
3813   }
3814   // Search up and down at the same time, because we don't know if the new
3815   // instruction is above or below the existing scheduling region.
3816   BasicBlock::reverse_iterator UpIter =
3817       ++ScheduleStart->getIterator().getReverse();
3818   BasicBlock::reverse_iterator UpperEnd = BB->rend();
3819   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
3820   BasicBlock::iterator LowerEnd = BB->end();
3821   while (true) {
3822     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
3823       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
3824       return false;
3825     }
3826 
3827     if (UpIter != UpperEnd) {
3828       if (&*UpIter == I) {
3829         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
3830         ScheduleStart = I;
3831         if (isOneOf(OpValue, I) != I)
3832           CheckSheduleForI(I);
3833         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
3834         return true;
3835       }
3836       UpIter++;
3837     }
3838     if (DownIter != LowerEnd) {
3839       if (&*DownIter == I) {
3840         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
3841                          nullptr);
3842         ScheduleEnd = I->getNextNode();
3843         if (isOneOf(OpValue, I) != I)
3844           CheckSheduleForI(I);
3845         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
3846         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
3847         return true;
3848       }
3849       DownIter++;
3850     }
3851     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
3852            "instruction not found in block");
3853   }
3854   return true;
3855 }
3856 
3857 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
3858                                                 Instruction *ToI,
3859                                                 ScheduleData *PrevLoadStore,
3860                                                 ScheduleData *NextLoadStore) {
3861   ScheduleData *CurrentLoadStore = PrevLoadStore;
3862   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
3863     ScheduleData *SD = ScheduleDataMap[I];
3864     if (!SD) {
3865       SD = allocateScheduleDataChunks();
3866       ScheduleDataMap[I] = SD;
3867       SD->Inst = I;
3868     }
3869     assert(!isInSchedulingRegion(SD) &&
3870            "new ScheduleData already in scheduling region");
3871     SD->init(SchedulingRegionID, I);
3872 
3873     if (I->mayReadOrWriteMemory() &&
3874         (!isa<IntrinsicInst>(I) ||
3875          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
3876       // Update the linked list of memory accessing instructions.
3877       if (CurrentLoadStore) {
3878         CurrentLoadStore->NextLoadStore = SD;
3879       } else {
3880         FirstLoadStoreInRegion = SD;
3881       }
3882       CurrentLoadStore = SD;
3883     }
3884   }
3885   if (NextLoadStore) {
3886     if (CurrentLoadStore)
3887       CurrentLoadStore->NextLoadStore = NextLoadStore;
3888   } else {
3889     LastLoadStoreInRegion = CurrentLoadStore;
3890   }
3891 }
3892 
3893 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
3894                                                      bool InsertInReadyList,
3895                                                      BoUpSLP *SLP) {
3896   assert(SD->isSchedulingEntity());
3897 
3898   SmallVector<ScheduleData *, 10> WorkList;
3899   WorkList.push_back(SD);
3900 
3901   while (!WorkList.empty()) {
3902     ScheduleData *SD = WorkList.back();
3903     WorkList.pop_back();
3904 
3905     ScheduleData *BundleMember = SD;
3906     while (BundleMember) {
3907       assert(isInSchedulingRegion(BundleMember));
3908       if (!BundleMember->hasValidDependencies()) {
3909 
3910         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
3911         BundleMember->Dependencies = 0;
3912         BundleMember->resetUnscheduledDeps();
3913 
3914         // Handle def-use chain dependencies.
3915         if (BundleMember->OpValue != BundleMember->Inst) {
3916           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
3917           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3918             BundleMember->Dependencies++;
3919             ScheduleData *DestBundle = UseSD->FirstInBundle;
3920             if (!DestBundle->IsScheduled)
3921               BundleMember->incrementUnscheduledDeps(1);
3922             if (!DestBundle->hasValidDependencies())
3923               WorkList.push_back(DestBundle);
3924           }
3925         } else {
3926           for (User *U : BundleMember->Inst->users()) {
3927             if (isa<Instruction>(U)) {
3928               ScheduleData *UseSD = getScheduleData(U);
3929               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3930                 BundleMember->Dependencies++;
3931                 ScheduleData *DestBundle = UseSD->FirstInBundle;
3932                 if (!DestBundle->IsScheduled)
3933                   BundleMember->incrementUnscheduledDeps(1);
3934                 if (!DestBundle->hasValidDependencies())
3935                   WorkList.push_back(DestBundle);
3936               }
3937             } else {
3938               // I'm not sure if this can ever happen. But we need to be safe.
3939               // This lets the instruction/bundle never be scheduled and
3940               // eventually disable vectorization.
3941               BundleMember->Dependencies++;
3942               BundleMember->incrementUnscheduledDeps(1);
3943             }
3944           }
3945         }
3946 
3947         // Handle the memory dependencies.
3948         ScheduleData *DepDest = BundleMember->NextLoadStore;
3949         if (DepDest) {
3950           Instruction *SrcInst = BundleMember->Inst;
3951           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3952           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3953           unsigned numAliased = 0;
3954           unsigned DistToSrc = 1;
3955 
3956           while (DepDest) {
3957             assert(isInSchedulingRegion(DepDest));
3958 
3959             // We have two limits to reduce the complexity:
3960             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3961             //    SLP->isAliased (which is the expensive part in this loop).
3962             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3963             //    the whole loop (even if the loop is fast, it's quadratic).
3964             //    It's important for the loop break condition (see below) to
3965             //    check this limit even between two read-only instructions.
3966             if (DistToSrc >= MaxMemDepDistance ||
3967                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3968                      (numAliased >= AliasedCheckLimit ||
3969                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3970 
3971               // We increment the counter only if the locations are aliased
3972               // (instead of counting all alias checks). This gives a better
3973               // balance between reduced runtime and accurate dependencies.
3974               numAliased++;
3975 
3976               DepDest->MemoryDependencies.push_back(BundleMember);
3977               BundleMember->Dependencies++;
3978               ScheduleData *DestBundle = DepDest->FirstInBundle;
3979               if (!DestBundle->IsScheduled) {
3980                 BundleMember->incrementUnscheduledDeps(1);
3981               }
3982               if (!DestBundle->hasValidDependencies()) {
3983                 WorkList.push_back(DestBundle);
3984               }
3985             }
3986             DepDest = DepDest->NextLoadStore;
3987 
3988             // Example, explaining the loop break condition: Let's assume our
3989             // starting instruction is i0 and MaxMemDepDistance = 3.
3990             //
3991             //                      +--------v--v--v
3992             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3993             //             +--------^--^--^
3994             //
3995             // MaxMemDepDistance let us stop alias-checking at i3 and we add
3996             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3997             // Previously we already added dependencies from i3 to i6,i7,i8
3998             // (because of MaxMemDepDistance). As we added a dependency from
3999             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4000             // and we can abort this loop at i6.
4001             if (DistToSrc >= 2 * MaxMemDepDistance)
4002                 break;
4003             DistToSrc++;
4004           }
4005         }
4006       }
4007       BundleMember = BundleMember->NextInBundle;
4008     }
4009     if (InsertInReadyList && SD->isReady()) {
4010       ReadyInsts.push_back(SD);
4011       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
4012     }
4013   }
4014 }
4015 
4016 void BoUpSLP::BlockScheduling::resetSchedule() {
4017   assert(ScheduleStart &&
4018          "tried to reset schedule on block which has not been scheduled");
4019   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4020     doForAllOpcodes(I, [&](ScheduleData *SD) {
4021       assert(isInSchedulingRegion(SD) &&
4022              "ScheduleData not in scheduling region");
4023       SD->IsScheduled = false;
4024       SD->resetUnscheduledDeps();
4025     });
4026   }
4027   ReadyInsts.clear();
4028 }
4029 
4030 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4031   if (!BS->ScheduleStart)
4032     return;
4033 
4034   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
4035 
4036   BS->resetSchedule();
4037 
4038   // For the real scheduling we use a more sophisticated ready-list: it is
4039   // sorted by the original instruction location. This lets the final schedule
4040   // be as  close as possible to the original instruction order.
4041   struct ScheduleDataCompare {
4042     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4043       return SD2->SchedulingPriority < SD1->SchedulingPriority;
4044     }
4045   };
4046   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4047 
4048   // Ensure that all dependency data is updated and fill the ready-list with
4049   // initial instructions.
4050   int Idx = 0;
4051   int NumToSchedule = 0;
4052   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4053        I = I->getNextNode()) {
4054     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4055       assert(SD->isPartOfBundle() ==
4056                  (getTreeEntry(SD->Inst) != nullptr) &&
4057              "scheduler and vectorizer bundle mismatch");
4058       SD->FirstInBundle->SchedulingPriority = Idx++;
4059       if (SD->isSchedulingEntity()) {
4060         BS->calculateDependencies(SD, false, this);
4061         NumToSchedule++;
4062       }
4063     });
4064   }
4065   BS->initialFillReadyList(ReadyInsts);
4066 
4067   Instruction *LastScheduledInst = BS->ScheduleEnd;
4068 
4069   // Do the "real" scheduling.
4070   while (!ReadyInsts.empty()) {
4071     ScheduleData *picked = *ReadyInsts.begin();
4072     ReadyInsts.erase(ReadyInsts.begin());
4073 
4074     // Move the scheduled instruction(s) to their dedicated places, if not
4075     // there yet.
4076     ScheduleData *BundleMember = picked;
4077     while (BundleMember) {
4078       Instruction *pickedInst = BundleMember->Inst;
4079       if (LastScheduledInst->getNextNode() != pickedInst) {
4080         BS->BB->getInstList().remove(pickedInst);
4081         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4082                                      pickedInst);
4083       }
4084       LastScheduledInst = pickedInst;
4085       BundleMember = BundleMember->NextInBundle;
4086     }
4087 
4088     BS->schedule(picked, ReadyInsts);
4089     NumToSchedule--;
4090   }
4091   assert(NumToSchedule == 0 && "could not schedule all instructions");
4092 
4093   // Avoid duplicate scheduling of the block.
4094   BS->ScheduleStart = nullptr;
4095 }
4096 
4097 unsigned BoUpSLP::getVectorElementSize(Value *V) {
4098   // If V is a store, just return the width of the stored value without
4099   // traversing the expression tree. This is the common case.
4100   if (auto *Store = dyn_cast<StoreInst>(V))
4101     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4102 
4103   // If V is not a store, we can traverse the expression tree to find loads
4104   // that feed it. The type of the loaded value may indicate a more suitable
4105   // width than V's type. We want to base the vector element size on the width
4106   // of memory operations where possible.
4107   SmallVector<Instruction *, 16> Worklist;
4108   SmallPtrSet<Instruction *, 16> Visited;
4109   if (auto *I = dyn_cast<Instruction>(V))
4110     Worklist.push_back(I);
4111 
4112   // Traverse the expression tree in bottom-up order looking for loads. If we
4113   // encounter an instruciton we don't yet handle, we give up.
4114   auto MaxWidth = 0u;
4115   auto FoundUnknownInst = false;
4116   while (!Worklist.empty() && !FoundUnknownInst) {
4117     auto *I = Worklist.pop_back_val();
4118     Visited.insert(I);
4119 
4120     // We should only be looking at scalar instructions here. If the current
4121     // instruction has a vector type, give up.
4122     auto *Ty = I->getType();
4123     if (isa<VectorType>(Ty))
4124       FoundUnknownInst = true;
4125 
4126     // If the current instruction is a load, update MaxWidth to reflect the
4127     // width of the loaded value.
4128     else if (isa<LoadInst>(I))
4129       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4130 
4131     // Otherwise, we need to visit the operands of the instruction. We only
4132     // handle the interesting cases from buildTree here. If an operand is an
4133     // instruction we haven't yet visited, we add it to the worklist.
4134     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4135              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4136       for (Use &U : I->operands())
4137         if (auto *J = dyn_cast<Instruction>(U.get()))
4138           if (!Visited.count(J))
4139             Worklist.push_back(J);
4140     }
4141 
4142     // If we don't yet handle the instruction, give up.
4143     else
4144       FoundUnknownInst = true;
4145   }
4146 
4147   // If we didn't encounter a memory access in the expression tree, or if we
4148   // gave up for some reason, just return the width of V.
4149   if (!MaxWidth || FoundUnknownInst)
4150     return DL->getTypeSizeInBits(V->getType());
4151 
4152   // Otherwise, return the maximum width we found.
4153   return MaxWidth;
4154 }
4155 
4156 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4157 // smaller type with a truncation. We collect the values that will be demoted
4158 // in ToDemote and additional roots that require investigating in Roots.
4159 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4160                                   SmallVectorImpl<Value *> &ToDemote,
4161                                   SmallVectorImpl<Value *> &Roots) {
4162   // We can always demote constants.
4163   if (isa<Constant>(V)) {
4164     ToDemote.push_back(V);
4165     return true;
4166   }
4167 
4168   // If the value is not an instruction in the expression with only one use, it
4169   // cannot be demoted.
4170   auto *I = dyn_cast<Instruction>(V);
4171   if (!I || !I->hasOneUse() || !Expr.count(I))
4172     return false;
4173 
4174   switch (I->getOpcode()) {
4175 
4176   // We can always demote truncations and extensions. Since truncations can
4177   // seed additional demotion, we save the truncated value.
4178   case Instruction::Trunc:
4179     Roots.push_back(I->getOperand(0));
4180     break;
4181   case Instruction::ZExt:
4182   case Instruction::SExt:
4183     break;
4184 
4185   // We can demote certain binary operations if we can demote both of their
4186   // operands.
4187   case Instruction::Add:
4188   case Instruction::Sub:
4189   case Instruction::Mul:
4190   case Instruction::And:
4191   case Instruction::Or:
4192   case Instruction::Xor:
4193     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
4194         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
4195       return false;
4196     break;
4197 
4198   // We can demote selects if we can demote their true and false values.
4199   case Instruction::Select: {
4200     SelectInst *SI = cast<SelectInst>(I);
4201     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
4202         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
4203       return false;
4204     break;
4205   }
4206 
4207   // We can demote phis if we can demote all their incoming operands. Note that
4208   // we don't need to worry about cycles since we ensure single use above.
4209   case Instruction::PHI: {
4210     PHINode *PN = cast<PHINode>(I);
4211     for (Value *IncValue : PN->incoming_values())
4212       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
4213         return false;
4214     break;
4215   }
4216 
4217   // Otherwise, conservatively give up.
4218   default:
4219     return false;
4220   }
4221 
4222   // Record the value that we can demote.
4223   ToDemote.push_back(V);
4224   return true;
4225 }
4226 
4227 void BoUpSLP::computeMinimumValueSizes() {
4228   // If there are no external uses, the expression tree must be rooted by a
4229   // store. We can't demote in-memory values, so there is nothing to do here.
4230   if (ExternalUses.empty())
4231     return;
4232 
4233   // We only attempt to truncate integer expressions.
4234   auto &TreeRoot = VectorizableTree[0].Scalars;
4235   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
4236   if (!TreeRootIT)
4237     return;
4238 
4239   // If the expression is not rooted by a store, these roots should have
4240   // external uses. We will rely on InstCombine to rewrite the expression in
4241   // the narrower type. However, InstCombine only rewrites single-use values.
4242   // This means that if a tree entry other than a root is used externally, it
4243   // must have multiple uses and InstCombine will not rewrite it. The code
4244   // below ensures that only the roots are used externally.
4245   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
4246   for (auto &EU : ExternalUses)
4247     if (!Expr.erase(EU.Scalar))
4248       return;
4249   if (!Expr.empty())
4250     return;
4251 
4252   // Collect the scalar values of the vectorizable expression. We will use this
4253   // context to determine which values can be demoted. If we see a truncation,
4254   // we mark it as seeding another demotion.
4255   for (auto &Entry : VectorizableTree)
4256     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
4257 
4258   // Ensure the roots of the vectorizable tree don't form a cycle. They must
4259   // have a single external user that is not in the vectorizable tree.
4260   for (auto *Root : TreeRoot)
4261     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
4262       return;
4263 
4264   // Conservatively determine if we can actually truncate the roots of the
4265   // expression. Collect the values that can be demoted in ToDemote and
4266   // additional roots that require investigating in Roots.
4267   SmallVector<Value *, 32> ToDemote;
4268   SmallVector<Value *, 4> Roots;
4269   for (auto *Root : TreeRoot) {
4270     // Do not include top zext/sext/trunc operations to those to be demoted, it
4271     // produces noise cast<vect>, trunc <vect>, exctract <vect>, cast <extract>
4272     // sequence.
4273     if (isa<Constant>(Root))
4274       continue;
4275     auto *I = dyn_cast<Instruction>(Root);
4276     if (!I || !I->hasOneUse() || !Expr.count(I))
4277       return;
4278     if (isa<ZExtInst>(I) || isa<SExtInst>(I))
4279       continue;
4280     if (auto *TI = dyn_cast<TruncInst>(I)) {
4281       Roots.push_back(TI->getOperand(0));
4282       continue;
4283     }
4284     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
4285       return;
4286   }
4287 
4288   // The maximum bit width required to represent all the values that can be
4289   // demoted without loss of precision. It would be safe to truncate the roots
4290   // of the expression to this width.
4291   auto MaxBitWidth = 8u;
4292 
4293   // We first check if all the bits of the roots are demanded. If they're not,
4294   // we can truncate the roots to this narrower type.
4295   for (auto *Root : TreeRoot) {
4296     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
4297     MaxBitWidth = std::max<unsigned>(
4298         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
4299   }
4300 
4301   // True if the roots can be zero-extended back to their original type, rather
4302   // than sign-extended. We know that if the leading bits are not demanded, we
4303   // can safely zero-extend. So we initialize IsKnownPositive to True.
4304   bool IsKnownPositive = true;
4305 
4306   // If all the bits of the roots are demanded, we can try a little harder to
4307   // compute a narrower type. This can happen, for example, if the roots are
4308   // getelementptr indices. InstCombine promotes these indices to the pointer
4309   // width. Thus, all their bits are technically demanded even though the
4310   // address computation might be vectorized in a smaller type.
4311   //
4312   // We start by looking at each entry that can be demoted. We compute the
4313   // maximum bit width required to store the scalar by using ValueTracking to
4314   // compute the number of high-order bits we can truncate.
4315   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
4316     MaxBitWidth = 8u;
4317 
4318     // Determine if the sign bit of all the roots is known to be zero. If not,
4319     // IsKnownPositive is set to False.
4320     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
4321       KnownBits Known = computeKnownBits(R, *DL);
4322       return Known.isNonNegative();
4323     });
4324 
4325     // Determine the maximum number of bits required to store the scalar
4326     // values.
4327     for (auto *Scalar : ToDemote) {
4328       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
4329       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
4330       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
4331     }
4332 
4333     // If we can't prove that the sign bit is zero, we must add one to the
4334     // maximum bit width to account for the unknown sign bit. This preserves
4335     // the existing sign bit so we can safely sign-extend the root back to the
4336     // original type. Otherwise, if we know the sign bit is zero, we will
4337     // zero-extend the root instead.
4338     //
4339     // FIXME: This is somewhat suboptimal, as there will be cases where adding
4340     //        one to the maximum bit width will yield a larger-than-necessary
4341     //        type. In general, we need to add an extra bit only if we can't
4342     //        prove that the upper bit of the original type is equal to the
4343     //        upper bit of the proposed smaller type. If these two bits are the
4344     //        same (either zero or one) we know that sign-extending from the
4345     //        smaller type will result in the same value. Here, since we can't
4346     //        yet prove this, we are just making the proposed smaller type
4347     //        larger to ensure correctness.
4348     if (!IsKnownPositive)
4349       ++MaxBitWidth;
4350   }
4351 
4352   // Round MaxBitWidth up to the next power-of-two.
4353   if (!isPowerOf2_64(MaxBitWidth))
4354     MaxBitWidth = NextPowerOf2(MaxBitWidth);
4355 
4356   // If the maximum bit width we compute is less than the with of the roots'
4357   // type, we can proceed with the narrowing. Otherwise, do nothing.
4358   if (MaxBitWidth >= TreeRootIT->getBitWidth())
4359     return;
4360 
4361   // If we can truncate the root, we must collect additional values that might
4362   // be demoted as a result. That is, those seeded by truncations we will
4363   // modify.
4364   while (!Roots.empty())
4365     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
4366 
4367   // Finally, map the values we can demote to the maximum bit with we computed.
4368   for (auto *Scalar : ToDemote)
4369     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
4370 }
4371 
4372 namespace {
4373 
4374 /// The SLPVectorizer Pass.
4375 struct SLPVectorizer : public FunctionPass {
4376   SLPVectorizerPass Impl;
4377 
4378   /// Pass identification, replacement for typeid
4379   static char ID;
4380 
4381   explicit SLPVectorizer() : FunctionPass(ID) {
4382     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4383   }
4384 
4385   bool doInitialization(Module &M) override {
4386     return false;
4387   }
4388 
4389   bool runOnFunction(Function &F) override {
4390     if (skipFunction(F))
4391       return false;
4392 
4393     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4394     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4395     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4396     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
4397     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4398     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4399     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4400     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4401     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
4402     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4403 
4404     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4405   }
4406 
4407   void getAnalysisUsage(AnalysisUsage &AU) const override {
4408     FunctionPass::getAnalysisUsage(AU);
4409     AU.addRequired<AssumptionCacheTracker>();
4410     AU.addRequired<ScalarEvolutionWrapperPass>();
4411     AU.addRequired<AAResultsWrapperPass>();
4412     AU.addRequired<TargetTransformInfoWrapperPass>();
4413     AU.addRequired<LoopInfoWrapperPass>();
4414     AU.addRequired<DominatorTreeWrapperPass>();
4415     AU.addRequired<DemandedBitsWrapperPass>();
4416     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4417     AU.addPreserved<LoopInfoWrapperPass>();
4418     AU.addPreserved<DominatorTreeWrapperPass>();
4419     AU.addPreserved<AAResultsWrapperPass>();
4420     AU.addPreserved<GlobalsAAWrapperPass>();
4421     AU.setPreservesCFG();
4422   }
4423 };
4424 
4425 } // end anonymous namespace
4426 
4427 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
4428   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
4429   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
4430   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
4431   auto *AA = &AM.getResult<AAManager>(F);
4432   auto *LI = &AM.getResult<LoopAnalysis>(F);
4433   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
4434   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
4435   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
4436   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4437 
4438   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4439   if (!Changed)
4440     return PreservedAnalyses::all();
4441 
4442   PreservedAnalyses PA;
4443   PA.preserveSet<CFGAnalyses>();
4444   PA.preserve<AAManager>();
4445   PA.preserve<GlobalsAA>();
4446   return PA;
4447 }
4448 
4449 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
4450                                 TargetTransformInfo *TTI_,
4451                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
4452                                 LoopInfo *LI_, DominatorTree *DT_,
4453                                 AssumptionCache *AC_, DemandedBits *DB_,
4454                                 OptimizationRemarkEmitter *ORE_) {
4455   SE = SE_;
4456   TTI = TTI_;
4457   TLI = TLI_;
4458   AA = AA_;
4459   LI = LI_;
4460   DT = DT_;
4461   AC = AC_;
4462   DB = DB_;
4463   DL = &F.getParent()->getDataLayout();
4464 
4465   Stores.clear();
4466   GEPs.clear();
4467   bool Changed = false;
4468 
4469   // If the target claims to have no vector registers don't attempt
4470   // vectorization.
4471   if (!TTI->getNumberOfRegisters(true))
4472     return false;
4473 
4474   // Don't vectorize when the attribute NoImplicitFloat is used.
4475   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
4476     return false;
4477 
4478   DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
4479 
4480   // Use the bottom up slp vectorizer to construct chains that start with
4481   // store instructions.
4482   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
4483 
4484   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
4485   // delete instructions.
4486 
4487   // Scan the blocks in the function in post order.
4488   for (auto BB : post_order(&F.getEntryBlock())) {
4489     collectSeedInstructions(BB);
4490 
4491     // Vectorize trees that end at stores.
4492     if (!Stores.empty()) {
4493       DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
4494                    << " underlying objects.\n");
4495       Changed |= vectorizeStoreChains(R);
4496     }
4497 
4498     // Vectorize trees that end at reductions.
4499     Changed |= vectorizeChainsInBlock(BB, R);
4500 
4501     // Vectorize the index computations of getelementptr instructions. This
4502     // is primarily intended to catch gather-like idioms ending at
4503     // non-consecutive loads.
4504     if (!GEPs.empty()) {
4505       DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
4506                    << " underlying objects.\n");
4507       Changed |= vectorizeGEPIndices(BB, R);
4508     }
4509   }
4510 
4511   if (Changed) {
4512     R.optimizeGatherSequence();
4513     DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
4514     DEBUG(verifyFunction(F));
4515   }
4516   return Changed;
4517 }
4518 
4519 /// \brief Check that the Values in the slice in VL array are still existent in
4520 /// the WeakTrackingVH array.
4521 /// Vectorization of part of the VL array may cause later values in the VL array
4522 /// to become invalid. We track when this has happened in the WeakTrackingVH
4523 /// array.
4524 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
4525                                ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
4526                                unsigned SliceSize) {
4527   VL = VL.slice(SliceBegin, SliceSize);
4528   VH = VH.slice(SliceBegin, SliceSize);
4529   return !std::equal(VL.begin(), VL.end(), VH.begin());
4530 }
4531 
4532 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
4533                                             unsigned VecRegSize) {
4534   const unsigned ChainLen = Chain.size();
4535   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
4536         << "\n");
4537   const unsigned Sz = R.getVectorElementSize(Chain[0]);
4538   const unsigned VF = VecRegSize / Sz;
4539 
4540   if (!isPowerOf2_32(Sz) || VF < 2)
4541     return false;
4542 
4543   // Keep track of values that were deleted by vectorizing in the loop below.
4544   const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
4545 
4546   bool Changed = false;
4547   // Look for profitable vectorizable trees at all offsets, starting at zero.
4548   for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
4549 
4550     // Check that a previous iteration of this loop did not delete the Value.
4551     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
4552       continue;
4553 
4554     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
4555           << "\n");
4556     ArrayRef<Value *> Operands = Chain.slice(i, VF);
4557 
4558     R.buildTree(Operands);
4559     if (R.isTreeTinyAndNotFullyVectorizable())
4560       continue;
4561 
4562     R.computeMinimumValueSizes();
4563 
4564     int Cost = R.getTreeCost();
4565 
4566     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
4567     if (Cost < -SLPCostThreshold) {
4568       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
4569 
4570       using namespace ore;
4571 
4572       R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
4573                                           cast<StoreInst>(Chain[i]))
4574                        << "Stores SLP vectorized with cost " << NV("Cost", Cost)
4575                        << " and with tree size "
4576                        << NV("TreeSize", R.getTreeSize()));
4577 
4578       R.vectorizeTree();
4579 
4580       // Move to the next bundle.
4581       i += VF - 1;
4582       Changed = true;
4583     }
4584   }
4585 
4586   return Changed;
4587 }
4588 
4589 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
4590                                         BoUpSLP &R) {
4591   SetVector<StoreInst *> Heads;
4592   SmallDenseSet<StoreInst *> Tails;
4593   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
4594 
4595   // We may run into multiple chains that merge into a single chain. We mark the
4596   // stores that we vectorized so that we don't visit the same store twice.
4597   BoUpSLP::ValueSet VectorizedStores;
4598   bool Changed = false;
4599 
4600   // Do a quadratic search on all of the given stores in reverse order and find
4601   // all of the pairs of stores that follow each other.
4602   SmallVector<unsigned, 16> IndexQueue;
4603   unsigned E = Stores.size();
4604   IndexQueue.resize(E - 1);
4605   for (unsigned I = E; I > 0; --I) {
4606     unsigned Idx = I - 1;
4607     // If a store has multiple consecutive store candidates, search Stores
4608     // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
4609     // This is because usually pairing with immediate succeeding or preceding
4610     // candidate create the best chance to find slp vectorization opportunity.
4611     unsigned Offset = 1;
4612     unsigned Cnt = 0;
4613     for (unsigned J = 0; J < E - 1; ++J, ++Offset) {
4614       if (Idx >= Offset) {
4615         IndexQueue[Cnt] = Idx - Offset;
4616         ++Cnt;
4617       }
4618       if (Idx + Offset < E) {
4619         IndexQueue[Cnt] = Idx + Offset;
4620         ++Cnt;
4621       }
4622     }
4623 
4624     for (auto K : IndexQueue) {
4625       if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) {
4626         Tails.insert(Stores[Idx]);
4627         Heads.insert(Stores[K]);
4628         ConsecutiveChain[Stores[K]] = Stores[Idx];
4629         break;
4630       }
4631     }
4632   }
4633 
4634   // For stores that start but don't end a link in the chain:
4635   for (auto *SI : llvm::reverse(Heads)) {
4636     if (Tails.count(SI))
4637       continue;
4638 
4639     // We found a store instr that starts a chain. Now follow the chain and try
4640     // to vectorize it.
4641     BoUpSLP::ValueList Operands;
4642     StoreInst *I = SI;
4643     // Collect the chain into a list.
4644     while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
4645       Operands.push_back(I);
4646       // Move to the next value in the chain.
4647       I = ConsecutiveChain[I];
4648     }
4649 
4650     // FIXME: Is division-by-2 the correct step? Should we assert that the
4651     // register size is a power-of-2?
4652     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
4653          Size /= 2) {
4654       if (vectorizeStoreChain(Operands, R, Size)) {
4655         // Mark the vectorized stores so that we don't vectorize them again.
4656         VectorizedStores.insert(Operands.begin(), Operands.end());
4657         Changed = true;
4658         break;
4659       }
4660     }
4661   }
4662 
4663   return Changed;
4664 }
4665 
4666 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
4667   // Initialize the collections. We will make a single pass over the block.
4668   Stores.clear();
4669   GEPs.clear();
4670 
4671   // Visit the store and getelementptr instructions in BB and organize them in
4672   // Stores and GEPs according to the underlying objects of their pointer
4673   // operands.
4674   for (Instruction &I : *BB) {
4675     // Ignore store instructions that are volatile or have a pointer operand
4676     // that doesn't point to a scalar type.
4677     if (auto *SI = dyn_cast<StoreInst>(&I)) {
4678       if (!SI->isSimple())
4679         continue;
4680       if (!isValidElementType(SI->getValueOperand()->getType()))
4681         continue;
4682       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
4683     }
4684 
4685     // Ignore getelementptr instructions that have more than one index, a
4686     // constant index, or a pointer operand that doesn't point to a scalar
4687     // type.
4688     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4689       auto Idx = GEP->idx_begin()->get();
4690       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
4691         continue;
4692       if (!isValidElementType(Idx->getType()))
4693         continue;
4694       if (GEP->getType()->isVectorTy())
4695         continue;
4696       GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
4697     }
4698   }
4699 }
4700 
4701 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
4702   if (!A || !B)
4703     return false;
4704   Value *VL[] = { A, B };
4705   return tryToVectorizeList(VL, R, true);
4706 }
4707 
4708 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
4709                                            bool AllowReorder) {
4710   if (VL.size() < 2)
4711     return false;
4712 
4713   DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size()
4714                << ".\n");
4715 
4716   // Check that all of the parts are scalar instructions of the same type.
4717   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
4718   if (!I0)
4719     return false;
4720 
4721   unsigned Opcode0 = I0->getOpcode();
4722 
4723   unsigned Sz = R.getVectorElementSize(I0);
4724   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
4725   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
4726   if (MaxVF < 2) {
4727      R.getORE()->emit([&]() {
4728          return OptimizationRemarkMissed(
4729                     SV_NAME, "SmallVF", I0)
4730                 << "Cannot SLP vectorize list: vectorization factor "
4731                 << "less than 2 is not supported";
4732      });
4733      return false;
4734   }
4735 
4736   for (Value *V : VL) {
4737     Type *Ty = V->getType();
4738     if (!isValidElementType(Ty)) {
4739       // NOTE: the following will give user internal llvm type name, which may not be useful
4740       R.getORE()->emit([&]() {
4741           std::string type_str;
4742           llvm::raw_string_ostream rso(type_str);
4743           Ty->print(rso);
4744           return OptimizationRemarkMissed(
4745                      SV_NAME, "UnsupportedType", I0)
4746                  << "Cannot SLP vectorize list: type "
4747                  << rso.str() + " is unsupported by vectorizer";
4748       });
4749       return false;
4750     }
4751     Instruction *Inst = dyn_cast<Instruction>(V);
4752 
4753     if (!Inst)
4754         return false;
4755     if (Inst->getOpcode() != Opcode0) {
4756       R.getORE()->emit([&]() {
4757           return OptimizationRemarkMissed(
4758                      SV_NAME, "InequableTypes", I0)
4759                  << "Cannot SLP vectorize list: not all of the "
4760                  << "parts of scalar instructions are of the same type: "
4761                  << ore::NV("Instruction1Opcode", I0) << " and "
4762                  << ore::NV("Instruction2Opcode", Inst);
4763       });
4764       return false;
4765     }
4766   }
4767 
4768   bool Changed = false;
4769   bool CandidateFound = false;
4770   int MinCost = SLPCostThreshold;
4771 
4772   // Keep track of values that were deleted by vectorizing in the loop below.
4773   SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
4774 
4775   unsigned NextInst = 0, MaxInst = VL.size();
4776   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
4777        VF /= 2) {
4778     // No actual vectorization should happen, if number of parts is the same as
4779     // provided vectorization factor (i.e. the scalar type is used for vector
4780     // code during codegen).
4781     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
4782     if (TTI->getNumberOfParts(VecTy) == VF)
4783       continue;
4784     for (unsigned I = NextInst; I < MaxInst; ++I) {
4785       unsigned OpsWidth = 0;
4786 
4787       if (I + VF > MaxInst)
4788         OpsWidth = MaxInst - I;
4789       else
4790         OpsWidth = VF;
4791 
4792       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
4793         break;
4794 
4795       // Check that a previous iteration of this loop did not delete the Value.
4796       if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
4797         continue;
4798 
4799       DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
4800                    << "\n");
4801       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
4802 
4803       R.buildTree(Ops);
4804       // TODO: check if we can allow reordering for more cases.
4805       if (AllowReorder && R.shouldReorder()) {
4806         // Conceptually, there is nothing actually preventing us from trying to
4807         // reorder a larger list. In fact, we do exactly this when vectorizing
4808         // reductions. However, at this point, we only expect to get here when
4809         // there are exactly two operations.
4810         assert(Ops.size() == 2);
4811         Value *ReorderedOps[] = {Ops[1], Ops[0]};
4812         R.buildTree(ReorderedOps, None);
4813       }
4814       if (R.isTreeTinyAndNotFullyVectorizable())
4815         continue;
4816 
4817       R.computeMinimumValueSizes();
4818       int Cost = R.getTreeCost();
4819       CandidateFound = true;
4820       MinCost = std::min(MinCost, Cost);
4821 
4822       if (Cost < -SLPCostThreshold) {
4823         DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
4824         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
4825                                                     cast<Instruction>(Ops[0]))
4826                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
4827                                  << " and with tree size "
4828                                  << ore::NV("TreeSize", R.getTreeSize()));
4829 
4830         R.vectorizeTree();
4831         // Move to the next bundle.
4832         I += VF - 1;
4833         NextInst = I + 1;
4834         Changed = true;
4835       }
4836     }
4837   }
4838 
4839   if (!Changed && CandidateFound) {
4840     R.getORE()->emit([&]() {
4841         return OptimizationRemarkMissed(
4842                    SV_NAME, "NotBeneficial",  I0)
4843                << "List vectorization was possible but not beneficial with cost "
4844                << ore::NV("Cost", MinCost) << " >= "
4845                << ore::NV("Treshold", -SLPCostThreshold);
4846     });
4847   } else if (!Changed) {
4848     R.getORE()->emit([&]() {
4849         return OptimizationRemarkMissed(
4850                    SV_NAME, "NotPossible", I0)
4851                << "Cannot SLP vectorize list: vectorization was impossible"
4852                << " with available vectorization factors";
4853     });
4854   }
4855   return Changed;
4856 }
4857 
4858 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
4859   if (!I)
4860     return false;
4861 
4862   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
4863     return false;
4864 
4865   Value *P = I->getParent();
4866 
4867   // Vectorize in current basic block only.
4868   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4869   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4870   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
4871     return false;
4872 
4873   // Try to vectorize V.
4874   if (tryToVectorizePair(Op0, Op1, R))
4875     return true;
4876 
4877   auto *A = dyn_cast<BinaryOperator>(Op0);
4878   auto *B = dyn_cast<BinaryOperator>(Op1);
4879   // Try to skip B.
4880   if (B && B->hasOneUse()) {
4881     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
4882     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
4883     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
4884       return true;
4885     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
4886       return true;
4887   }
4888 
4889   // Try to skip A.
4890   if (A && A->hasOneUse()) {
4891     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
4892     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
4893     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
4894       return true;
4895     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
4896       return true;
4897   }
4898   return false;
4899 }
4900 
4901 /// \brief Generate a shuffle mask to be used in a reduction tree.
4902 ///
4903 /// \param VecLen The length of the vector to be reduced.
4904 /// \param NumEltsToRdx The number of elements that should be reduced in the
4905 ///        vector.
4906 /// \param IsPairwise Whether the reduction is a pairwise or splitting
4907 ///        reduction. A pairwise reduction will generate a mask of
4908 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
4909 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
4910 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
4911 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
4912                                    bool IsPairwise, bool IsLeft,
4913                                    IRBuilder<> &Builder) {
4914   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
4915 
4916   SmallVector<Constant *, 32> ShuffleMask(
4917       VecLen, UndefValue::get(Builder.getInt32Ty()));
4918 
4919   if (IsPairwise)
4920     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
4921     for (unsigned i = 0; i != NumEltsToRdx; ++i)
4922       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
4923   else
4924     // Move the upper half of the vector to the lower half.
4925     for (unsigned i = 0; i != NumEltsToRdx; ++i)
4926       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
4927 
4928   return ConstantVector::get(ShuffleMask);
4929 }
4930 
4931 namespace {
4932 
4933 /// Model horizontal reductions.
4934 ///
4935 /// A horizontal reduction is a tree of reduction operations (currently add and
4936 /// fadd) that has operations that can be put into a vector as its leaf.
4937 /// For example, this tree:
4938 ///
4939 /// mul mul mul mul
4940 ///  \  /    \  /
4941 ///   +       +
4942 ///    \     /
4943 ///       +
4944 /// This tree has "mul" as its reduced values and "+" as its reduction
4945 /// operations. A reduction might be feeding into a store or a binary operation
4946 /// feeding a phi.
4947 ///    ...
4948 ///    \  /
4949 ///     +
4950 ///     |
4951 ///  phi +=
4952 ///
4953 ///  Or:
4954 ///    ...
4955 ///    \  /
4956 ///     +
4957 ///     |
4958 ///   *p =
4959 ///
4960 class HorizontalReduction {
4961   using ReductionOpsType = SmallVector<Value *, 16>;
4962   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
4963   ReductionOpsListType  ReductionOps;
4964   SmallVector<Value *, 32> ReducedVals;
4965   // Use map vector to make stable output.
4966   MapVector<Instruction *, Value *> ExtraArgs;
4967 
4968   /// Kind of the reduction data.
4969   enum ReductionKind {
4970     RK_None,       /// Not a reduction.
4971     RK_Arithmetic, /// Binary reduction data.
4972     RK_Min,        /// Minimum reduction data.
4973     RK_UMin,       /// Unsigned minimum reduction data.
4974     RK_Max,        /// Maximum reduction data.
4975     RK_UMax,       /// Unsigned maximum reduction data.
4976   };
4977 
4978   /// Contains info about operation, like its opcode, left and right operands.
4979   class OperationData {
4980     /// Opcode of the instruction.
4981     unsigned Opcode = 0;
4982 
4983     /// Left operand of the reduction operation.
4984     Value *LHS = nullptr;
4985 
4986     /// Right operand of the reduction operation.
4987     Value *RHS = nullptr;
4988 
4989     /// Kind of the reduction operation.
4990     ReductionKind Kind = RK_None;
4991 
4992     /// True if float point min/max reduction has no NaNs.
4993     bool NoNaN = false;
4994 
4995     /// Checks if the reduction operation can be vectorized.
4996     bool isVectorizable() const {
4997       return LHS && RHS &&
4998              // We currently only support adds && min/max reductions.
4999              ((Kind == RK_Arithmetic &&
5000                (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) ||
5001               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5002                (Kind == RK_Min || Kind == RK_Max)) ||
5003               (Opcode == Instruction::ICmp &&
5004                (Kind == RK_UMin || Kind == RK_UMax)));
5005     }
5006 
5007     /// Creates reduction operation with the current opcode.
5008     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5009       assert(isVectorizable() &&
5010              "Expected add|fadd or min/max reduction operation.");
5011       Value *Cmp;
5012       switch (Kind) {
5013       case RK_Arithmetic:
5014         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5015                                    Name);
5016       case RK_Min:
5017         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5018                                           : Builder.CreateFCmpOLT(LHS, RHS);
5019         break;
5020       case RK_Max:
5021         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5022                                           : Builder.CreateFCmpOGT(LHS, RHS);
5023         break;
5024       case RK_UMin:
5025         assert(Opcode == Instruction::ICmp && "Expected integer types.");
5026         Cmp = Builder.CreateICmpULT(LHS, RHS);
5027         break;
5028       case RK_UMax:
5029         assert(Opcode == Instruction::ICmp && "Expected integer types.");
5030         Cmp = Builder.CreateICmpUGT(LHS, RHS);
5031         break;
5032       case RK_None:
5033         llvm_unreachable("Unknown reduction operation.");
5034       }
5035       return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5036     }
5037 
5038   public:
5039     explicit OperationData() = default;
5040 
5041     /// Construction for reduced values. They are identified by opcode only and
5042     /// don't have associated LHS/RHS values.
5043     explicit OperationData(Value *V) {
5044       if (auto *I = dyn_cast<Instruction>(V))
5045         Opcode = I->getOpcode();
5046     }
5047 
5048     /// Constructor for reduction operations with opcode and its left and
5049     /// right operands.
5050     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5051                   bool NoNaN = false)
5052         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5053       assert(Kind != RK_None && "One of the reduction operations is expected.");
5054     }
5055 
5056     explicit operator bool() const { return Opcode; }
5057 
5058     /// Get the index of the first operand.
5059     unsigned getFirstOperandIndex() const {
5060       assert(!!*this && "The opcode is not set.");
5061       switch (Kind) {
5062       case RK_Min:
5063       case RK_UMin:
5064       case RK_Max:
5065       case RK_UMax:
5066         return 1;
5067       case RK_Arithmetic:
5068       case RK_None:
5069         break;
5070       }
5071       return 0;
5072     }
5073 
5074     /// Total number of operands in the reduction operation.
5075     unsigned getNumberOfOperands() const {
5076       assert(Kind != RK_None && !!*this && LHS && RHS &&
5077              "Expected reduction operation.");
5078       switch (Kind) {
5079       case RK_Arithmetic:
5080         return 2;
5081       case RK_Min:
5082       case RK_UMin:
5083       case RK_Max:
5084       case RK_UMax:
5085         return 3;
5086       case RK_None:
5087         break;
5088       }
5089       llvm_unreachable("Reduction kind is not set");
5090     }
5091 
5092     /// Checks if the operation has the same parent as \p P.
5093     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5094       assert(Kind != RK_None && !!*this && LHS && RHS &&
5095              "Expected reduction operation.");
5096       if (!IsRedOp)
5097         return I->getParent() == P;
5098       switch (Kind) {
5099       case RK_Arithmetic:
5100         // Arithmetic reduction operation must be used once only.
5101         return I->getParent() == P;
5102       case RK_Min:
5103       case RK_UMin:
5104       case RK_Max:
5105       case RK_UMax: {
5106         // SelectInst must be used twice while the condition op must have single
5107         // use only.
5108         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5109         return I->getParent() == P && Cmp && Cmp->getParent() == P;
5110       }
5111       case RK_None:
5112         break;
5113       }
5114       llvm_unreachable("Reduction kind is not set");
5115     }
5116     /// Expected number of uses for reduction operations/reduced values.
5117     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5118       assert(Kind != RK_None && !!*this && LHS && RHS &&
5119              "Expected reduction operation.");
5120       switch (Kind) {
5121       case RK_Arithmetic:
5122         return I->hasOneUse();
5123       case RK_Min:
5124       case RK_UMin:
5125       case RK_Max:
5126       case RK_UMax:
5127         return I->hasNUses(2) &&
5128                (!IsReductionOp ||
5129                 cast<SelectInst>(I)->getCondition()->hasOneUse());
5130       case RK_None:
5131         break;
5132       }
5133       llvm_unreachable("Reduction kind is not set");
5134     }
5135 
5136     /// Initializes the list of reduction operations.
5137     void initReductionOps(ReductionOpsListType &ReductionOps) {
5138       assert(Kind != RK_None && !!*this && LHS && RHS &&
5139              "Expected reduction operation.");
5140       switch (Kind) {
5141       case RK_Arithmetic:
5142         ReductionOps.assign(1, ReductionOpsType());
5143         break;
5144       case RK_Min:
5145       case RK_UMin:
5146       case RK_Max:
5147       case RK_UMax:
5148         ReductionOps.assign(2, ReductionOpsType());
5149         break;
5150       case RK_None:
5151         llvm_unreachable("Reduction kind is not set");
5152       }
5153     }
5154     /// Add all reduction operations for the reduction instruction \p I.
5155     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5156       assert(Kind != RK_None && !!*this && LHS && RHS &&
5157              "Expected reduction operation.");
5158       switch (Kind) {
5159       case RK_Arithmetic:
5160         ReductionOps[0].emplace_back(I);
5161         break;
5162       case RK_Min:
5163       case RK_UMin:
5164       case RK_Max:
5165       case RK_UMax:
5166         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5167         ReductionOps[1].emplace_back(I);
5168         break;
5169       case RK_None:
5170         llvm_unreachable("Reduction kind is not set");
5171       }
5172     }
5173 
5174     /// Checks if instruction is associative and can be vectorized.
5175     bool isAssociative(Instruction *I) const {
5176       assert(Kind != RK_None && *this && LHS && RHS &&
5177              "Expected reduction operation.");
5178       switch (Kind) {
5179       case RK_Arithmetic:
5180         return I->isAssociative();
5181       case RK_Min:
5182       case RK_Max:
5183         return Opcode == Instruction::ICmp ||
5184                cast<Instruction>(I->getOperand(0))->isFast();
5185       case RK_UMin:
5186       case RK_UMax:
5187         assert(Opcode == Instruction::ICmp &&
5188                "Only integer compare operation is expected.");
5189         return true;
5190       case RK_None:
5191         break;
5192       }
5193       llvm_unreachable("Reduction kind is not set");
5194     }
5195 
5196     /// Checks if the reduction operation can be vectorized.
5197     bool isVectorizable(Instruction *I) const {
5198       return isVectorizable() && isAssociative(I);
5199     }
5200 
5201     /// Checks if two operation data are both a reduction op or both a reduced
5202     /// value.
5203     bool operator==(const OperationData &OD) {
5204       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
5205              "One of the comparing operations is incorrect.");
5206       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5207     }
5208     bool operator!=(const OperationData &OD) { return !(*this == OD); }
5209     void clear() {
5210       Opcode = 0;
5211       LHS = nullptr;
5212       RHS = nullptr;
5213       Kind = RK_None;
5214       NoNaN = false;
5215     }
5216 
5217     /// Get the opcode of the reduction operation.
5218     unsigned getOpcode() const {
5219       assert(isVectorizable() && "Expected vectorizable operation.");
5220       return Opcode;
5221     }
5222 
5223     /// Get kind of reduction data.
5224     ReductionKind getKind() const { return Kind; }
5225     Value *getLHS() const { return LHS; }
5226     Value *getRHS() const { return RHS; }
5227     Type *getConditionType() const {
5228       switch (Kind) {
5229       case RK_Arithmetic:
5230         return nullptr;
5231       case RK_Min:
5232       case RK_Max:
5233       case RK_UMin:
5234       case RK_UMax:
5235         return CmpInst::makeCmpResultType(LHS->getType());
5236       case RK_None:
5237         break;
5238       }
5239       llvm_unreachable("Reduction kind is not set");
5240     }
5241 
5242     /// Creates reduction operation with the current opcode with the IR flags
5243     /// from \p ReductionOps.
5244     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5245                     const ReductionOpsListType &ReductionOps) const {
5246       assert(isVectorizable() &&
5247              "Expected add|fadd or min/max reduction operation.");
5248       auto *Op = createOp(Builder, Name);
5249       switch (Kind) {
5250       case RK_Arithmetic:
5251         propagateIRFlags(Op, ReductionOps[0]);
5252         return Op;
5253       case RK_Min:
5254       case RK_Max:
5255       case RK_UMin:
5256       case RK_UMax:
5257         if (auto *SI = dyn_cast<SelectInst>(Op))
5258           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5259         propagateIRFlags(Op, ReductionOps[1]);
5260         return Op;
5261       case RK_None:
5262         break;
5263       }
5264       llvm_unreachable("Unknown reduction operation.");
5265     }
5266     /// Creates reduction operation with the current opcode with the IR flags
5267     /// from \p I.
5268     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5269                     Instruction *I) const {
5270       assert(isVectorizable() &&
5271              "Expected add|fadd or min/max reduction operation.");
5272       auto *Op = createOp(Builder, Name);
5273       switch (Kind) {
5274       case RK_Arithmetic:
5275         propagateIRFlags(Op, I);
5276         return Op;
5277       case RK_Min:
5278       case RK_Max:
5279       case RK_UMin:
5280       case RK_UMax:
5281         if (auto *SI = dyn_cast<SelectInst>(Op)) {
5282           propagateIRFlags(SI->getCondition(),
5283                            cast<SelectInst>(I)->getCondition());
5284         }
5285         propagateIRFlags(Op, I);
5286         return Op;
5287       case RK_None:
5288         break;
5289       }
5290       llvm_unreachable("Unknown reduction operation.");
5291     }
5292 
5293     TargetTransformInfo::ReductionFlags getFlags() const {
5294       TargetTransformInfo::ReductionFlags Flags;
5295       Flags.NoNaN = NoNaN;
5296       switch (Kind) {
5297       case RK_Arithmetic:
5298         break;
5299       case RK_Min:
5300         Flags.IsSigned = Opcode == Instruction::ICmp;
5301         Flags.IsMaxOp = false;
5302         break;
5303       case RK_Max:
5304         Flags.IsSigned = Opcode == Instruction::ICmp;
5305         Flags.IsMaxOp = true;
5306         break;
5307       case RK_UMin:
5308         Flags.IsSigned = false;
5309         Flags.IsMaxOp = false;
5310         break;
5311       case RK_UMax:
5312         Flags.IsSigned = false;
5313         Flags.IsMaxOp = true;
5314         break;
5315       case RK_None:
5316         llvm_unreachable("Reduction kind is not set");
5317       }
5318       return Flags;
5319     }
5320   };
5321 
5322   Instruction *ReductionRoot = nullptr;
5323 
5324   /// The operation data of the reduction operation.
5325   OperationData ReductionData;
5326 
5327   /// The operation data of the values we perform a reduction on.
5328   OperationData ReducedValueData;
5329 
5330   /// Should we model this reduction as a pairwise reduction tree or a tree that
5331   /// splits the vector in halves and adds those halves.
5332   bool IsPairwiseReduction = false;
5333 
5334   /// Checks if the ParentStackElem.first should be marked as a reduction
5335   /// operation with an extra argument or as extra argument itself.
5336   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
5337                     Value *ExtraArg) {
5338     if (ExtraArgs.count(ParentStackElem.first)) {
5339       ExtraArgs[ParentStackElem.first] = nullptr;
5340       // We ran into something like:
5341       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
5342       // The whole ParentStackElem.first should be considered as an extra value
5343       // in this case.
5344       // Do not perform analysis of remaining operands of ParentStackElem.first
5345       // instruction, this whole instruction is an extra argument.
5346       ParentStackElem.second = ParentStackElem.first->getNumOperands();
5347     } else {
5348       // We ran into something like:
5349       // ParentStackElem.first += ... + ExtraArg + ...
5350       ExtraArgs[ParentStackElem.first] = ExtraArg;
5351     }
5352   }
5353 
5354   static OperationData getOperationData(Value *V) {
5355     if (!V)
5356       return OperationData();
5357 
5358     Value *LHS;
5359     Value *RHS;
5360     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
5361       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
5362                            RK_Arithmetic);
5363     }
5364     if (auto *Select = dyn_cast<SelectInst>(V)) {
5365       // Look for a min/max pattern.
5366       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5367         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5368       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5369         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5370       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
5371                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5372         return OperationData(
5373             Instruction::FCmp, LHS, RHS, RK_Min,
5374             cast<Instruction>(Select->getCondition())->hasNoNaNs());
5375       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5376         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5377       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5378         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5379       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
5380                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5381         return OperationData(
5382             Instruction::FCmp, LHS, RHS, RK_Max,
5383             cast<Instruction>(Select->getCondition())->hasNoNaNs());
5384       }
5385     }
5386     return OperationData(V);
5387   }
5388 
5389 public:
5390   HorizontalReduction() = default;
5391 
5392   /// \brief Try to find a reduction tree.
5393   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
5394     assert((!Phi || is_contained(Phi->operands(), B)) &&
5395            "Thi phi needs to use the binary operator");
5396 
5397     ReductionData = getOperationData(B);
5398 
5399     // We could have a initial reductions that is not an add.
5400     //  r *= v1 + v2 + v3 + v4
5401     // In such a case start looking for a tree rooted in the first '+'.
5402     if (Phi) {
5403       if (ReductionData.getLHS() == Phi) {
5404         Phi = nullptr;
5405         B = dyn_cast<Instruction>(ReductionData.getRHS());
5406         ReductionData = getOperationData(B);
5407       } else if (ReductionData.getRHS() == Phi) {
5408         Phi = nullptr;
5409         B = dyn_cast<Instruction>(ReductionData.getLHS());
5410         ReductionData = getOperationData(B);
5411       }
5412     }
5413 
5414     if (!ReductionData.isVectorizable(B))
5415       return false;
5416 
5417     Type *Ty = B->getType();
5418     if (!isValidElementType(Ty))
5419       return false;
5420 
5421     ReducedValueData.clear();
5422     ReductionRoot = B;
5423 
5424     // Post order traverse the reduction tree starting at B. We only handle true
5425     // trees containing only binary operators.
5426     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
5427     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
5428     ReductionData.initReductionOps(ReductionOps);
5429     while (!Stack.empty()) {
5430       Instruction *TreeN = Stack.back().first;
5431       unsigned EdgeToVist = Stack.back().second++;
5432       OperationData OpData = getOperationData(TreeN);
5433       bool IsReducedValue = OpData != ReductionData;
5434 
5435       // Postorder vist.
5436       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
5437         if (IsReducedValue)
5438           ReducedVals.push_back(TreeN);
5439         else {
5440           auto I = ExtraArgs.find(TreeN);
5441           if (I != ExtraArgs.end() && !I->second) {
5442             // Check if TreeN is an extra argument of its parent operation.
5443             if (Stack.size() <= 1) {
5444               // TreeN can't be an extra argument as it is a root reduction
5445               // operation.
5446               return false;
5447             }
5448             // Yes, TreeN is an extra argument, do not add it to a list of
5449             // reduction operations.
5450             // Stack[Stack.size() - 2] always points to the parent operation.
5451             markExtraArg(Stack[Stack.size() - 2], TreeN);
5452             ExtraArgs.erase(TreeN);
5453           } else
5454             ReductionData.addReductionOps(TreeN, ReductionOps);
5455         }
5456         // Retract.
5457         Stack.pop_back();
5458         continue;
5459       }
5460 
5461       // Visit left or right.
5462       Value *NextV = TreeN->getOperand(EdgeToVist);
5463       if (NextV != Phi) {
5464         auto *I = dyn_cast<Instruction>(NextV);
5465         OpData = getOperationData(I);
5466         // Continue analysis if the next operand is a reduction operation or
5467         // (possibly) a reduced value. If the reduced value opcode is not set,
5468         // the first met operation != reduction operation is considered as the
5469         // reduced value class.
5470         if (I && (!ReducedValueData || OpData == ReducedValueData ||
5471                   OpData == ReductionData)) {
5472           const bool IsReductionOperation = OpData == ReductionData;
5473           // Only handle trees in the current basic block.
5474           if (!ReductionData.hasSameParent(I, B->getParent(),
5475                                            IsReductionOperation)) {
5476             // I is an extra argument for TreeN (its parent operation).
5477             markExtraArg(Stack.back(), I);
5478             continue;
5479           }
5480 
5481           // Each tree node needs to have minimal number of users except for the
5482           // ultimate reduction.
5483           if (!ReductionData.hasRequiredNumberOfUses(I,
5484                                                      OpData == ReductionData) &&
5485               I != B) {
5486             // I is an extra argument for TreeN (its parent operation).
5487             markExtraArg(Stack.back(), I);
5488             continue;
5489           }
5490 
5491           if (IsReductionOperation) {
5492             // We need to be able to reassociate the reduction operations.
5493             if (!OpData.isAssociative(I)) {
5494               // I is an extra argument for TreeN (its parent operation).
5495               markExtraArg(Stack.back(), I);
5496               continue;
5497             }
5498           } else if (ReducedValueData &&
5499                      ReducedValueData != OpData) {
5500             // Make sure that the opcodes of the operations that we are going to
5501             // reduce match.
5502             // I is an extra argument for TreeN (its parent operation).
5503             markExtraArg(Stack.back(), I);
5504             continue;
5505           } else if (!ReducedValueData)
5506             ReducedValueData = OpData;
5507 
5508           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
5509           continue;
5510         }
5511       }
5512       // NextV is an extra argument for TreeN (its parent operation).
5513       markExtraArg(Stack.back(), NextV);
5514     }
5515     return true;
5516   }
5517 
5518   /// \brief Attempt to vectorize the tree found by
5519   /// matchAssociativeReduction.
5520   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
5521     if (ReducedVals.empty())
5522       return false;
5523 
5524     // If there is a sufficient number of reduction values, reduce
5525     // to a nearby power-of-2. Can safely generate oversized
5526     // vectors and rely on the backend to split them to legal sizes.
5527     unsigned NumReducedVals = ReducedVals.size();
5528     if (NumReducedVals < 4)
5529       return false;
5530 
5531     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
5532 
5533     Value *VectorizedTree = nullptr;
5534     IRBuilder<> Builder(ReductionRoot);
5535     FastMathFlags Unsafe;
5536     Unsafe.setFast();
5537     Builder.setFastMathFlags(Unsafe);
5538     unsigned i = 0;
5539 
5540     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
5541     // The same extra argument may be used several time, so log each attempt
5542     // to use it.
5543     for (auto &Pair : ExtraArgs)
5544       ExternallyUsedValues[Pair.second].push_back(Pair.first);
5545     SmallVector<Value *, 16> IgnoreList;
5546     for (auto &V : ReductionOps)
5547       IgnoreList.append(V.begin(), V.end());
5548     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
5549       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
5550       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
5551       if (V.shouldReorder()) {
5552         SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
5553         V.buildTree(Reversed, ExternallyUsedValues, IgnoreList);
5554       }
5555       if (V.isTreeTinyAndNotFullyVectorizable())
5556         break;
5557 
5558       V.computeMinimumValueSizes();
5559 
5560       // Estimate cost.
5561       int Cost =
5562           V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth);
5563       if (Cost >= -SLPCostThreshold) {
5564           V.getORE()->emit([&]() {
5565               return OptimizationRemarkMissed(
5566                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
5567                      << "Vectorizing horizontal reduction is possible"
5568                      << "but not beneficial with cost "
5569                      << ore::NV("Cost", Cost) << " and threshold "
5570                      << ore::NV("Threshold", -SLPCostThreshold);
5571           });
5572           break;
5573       }
5574 
5575       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
5576                    << ". (HorRdx)\n");
5577       V.getORE()->emit([&]() {
5578           return OptimizationRemark(
5579                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
5580           << "Vectorized horizontal reduction with cost "
5581           << ore::NV("Cost", Cost) << " and with tree size "
5582           << ore::NV("TreeSize", V.getTreeSize());
5583       });
5584 
5585       // Vectorize a tree.
5586       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
5587       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
5588 
5589       // Emit a reduction.
5590       Value *ReducedSubTree =
5591           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
5592       if (VectorizedTree) {
5593         Builder.SetCurrentDebugLocation(Loc);
5594         OperationData VectReductionData(ReductionData.getOpcode(),
5595                                         VectorizedTree, ReducedSubTree,
5596                                         ReductionData.getKind());
5597         VectorizedTree =
5598             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
5599       } else
5600         VectorizedTree = ReducedSubTree;
5601       i += ReduxWidth;
5602       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
5603     }
5604 
5605     if (VectorizedTree) {
5606       // Finish the reduction.
5607       for (; i < NumReducedVals; ++i) {
5608         auto *I = cast<Instruction>(ReducedVals[i]);
5609         Builder.SetCurrentDebugLocation(I->getDebugLoc());
5610         OperationData VectReductionData(ReductionData.getOpcode(),
5611                                         VectorizedTree, I,
5612                                         ReductionData.getKind());
5613         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
5614       }
5615       for (auto &Pair : ExternallyUsedValues) {
5616         assert(!Pair.second.empty() &&
5617                "At least one DebugLoc must be inserted");
5618         // Add each externally used value to the final reduction.
5619         for (auto *I : Pair.second) {
5620           Builder.SetCurrentDebugLocation(I->getDebugLoc());
5621           OperationData VectReductionData(ReductionData.getOpcode(),
5622                                           VectorizedTree, Pair.first,
5623                                           ReductionData.getKind());
5624           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
5625         }
5626       }
5627       // Update users.
5628       ReductionRoot->replaceAllUsesWith(VectorizedTree);
5629     }
5630     return VectorizedTree != nullptr;
5631   }
5632 
5633   unsigned numReductionValues() const {
5634     return ReducedVals.size();
5635   }
5636 
5637 private:
5638   /// \brief Calculate the cost of a reduction.
5639   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
5640                        unsigned ReduxWidth) {
5641     Type *ScalarTy = FirstReducedVal->getType();
5642     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
5643 
5644     int PairwiseRdxCost;
5645     int SplittingRdxCost;
5646     switch (ReductionData.getKind()) {
5647     case RK_Arithmetic:
5648       PairwiseRdxCost =
5649           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
5650                                           /*IsPairwiseForm=*/true);
5651       SplittingRdxCost =
5652           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
5653                                           /*IsPairwiseForm=*/false);
5654       break;
5655     case RK_Min:
5656     case RK_Max:
5657     case RK_UMin:
5658     case RK_UMax: {
5659       Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
5660       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
5661                         ReductionData.getKind() == RK_UMax;
5662       PairwiseRdxCost =
5663           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
5664                                       /*IsPairwiseForm=*/true, IsUnsigned);
5665       SplittingRdxCost =
5666           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
5667                                       /*IsPairwiseForm=*/false, IsUnsigned);
5668       break;
5669     }
5670     case RK_None:
5671       llvm_unreachable("Expected arithmetic or min/max reduction operation");
5672     }
5673 
5674     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
5675     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
5676 
5677     int ScalarReduxCost;
5678     switch (ReductionData.getKind()) {
5679     case RK_Arithmetic:
5680       ScalarReduxCost =
5681           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
5682       break;
5683     case RK_Min:
5684     case RK_Max:
5685     case RK_UMin:
5686     case RK_UMax:
5687       ScalarReduxCost =
5688           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
5689           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
5690                                   CmpInst::makeCmpResultType(ScalarTy));
5691       break;
5692     case RK_None:
5693       llvm_unreachable("Expected arithmetic or min/max reduction operation");
5694     }
5695     ScalarReduxCost *= (ReduxWidth - 1);
5696 
5697     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
5698                  << " for reduction that starts with " << *FirstReducedVal
5699                  << " (It is a "
5700                  << (IsPairwiseReduction ? "pairwise" : "splitting")
5701                  << " reduction)\n");
5702 
5703     return VecReduxCost - ScalarReduxCost;
5704   }
5705 
5706   /// \brief Emit a horizontal reduction of the vectorized value.
5707   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
5708                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
5709     assert(VectorizedValue && "Need to have a vectorized tree node");
5710     assert(isPowerOf2_32(ReduxWidth) &&
5711            "We only handle power-of-two reductions for now");
5712 
5713     if (!IsPairwiseReduction)
5714       return createSimpleTargetReduction(
5715           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
5716           ReductionData.getFlags(), ReductionOps.back());
5717 
5718     Value *TmpVec = VectorizedValue;
5719     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
5720       Value *LeftMask =
5721           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
5722       Value *RightMask =
5723           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
5724 
5725       Value *LeftShuf = Builder.CreateShuffleVector(
5726           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
5727       Value *RightShuf = Builder.CreateShuffleVector(
5728           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
5729           "rdx.shuf.r");
5730       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
5731                                       RightShuf, ReductionData.getKind());
5732       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
5733     }
5734 
5735     // The result is in the first element of the vector.
5736     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
5737   }
5738 };
5739 
5740 } // end anonymous namespace
5741 
5742 /// \brief Recognize construction of vectors like
5743 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
5744 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
5745 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
5746 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
5747 ///  starting from the last insertelement instruction.
5748 ///
5749 /// Returns true if it matches
5750 static bool findBuildVector(InsertElementInst *LastInsertElem,
5751                             SmallVectorImpl<Value *> &BuildVectorOpds) {
5752   Value *V = nullptr;
5753   do {
5754     BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
5755     V = LastInsertElem->getOperand(0);
5756     if (isa<UndefValue>(V))
5757       break;
5758     LastInsertElem = dyn_cast<InsertElementInst>(V);
5759     if (!LastInsertElem || !LastInsertElem->hasOneUse())
5760       return false;
5761   } while (true);
5762   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5763   return true;
5764 }
5765 
5766 /// \brief Like findBuildVector, but looks for construction of aggregate.
5767 ///
5768 /// \return true if it matches.
5769 static bool findBuildAggregate(InsertValueInst *IV,
5770                                SmallVectorImpl<Value *> &BuildVectorOpds) {
5771   Value *V;
5772   do {
5773     BuildVectorOpds.push_back(IV->getInsertedValueOperand());
5774     V = IV->getAggregateOperand();
5775     if (isa<UndefValue>(V))
5776       break;
5777     IV = dyn_cast<InsertValueInst>(V);
5778     if (!IV || !IV->hasOneUse())
5779       return false;
5780   } while (true);
5781   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5782   return true;
5783 }
5784 
5785 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
5786   return V->getType() < V2->getType();
5787 }
5788 
5789 /// \brief Try and get a reduction value from a phi node.
5790 ///
5791 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
5792 /// if they come from either \p ParentBB or a containing loop latch.
5793 ///
5794 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
5795 /// if not possible.
5796 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
5797                                 BasicBlock *ParentBB, LoopInfo *LI) {
5798   // There are situations where the reduction value is not dominated by the
5799   // reduction phi. Vectorizing such cases has been reported to cause
5800   // miscompiles. See PR25787.
5801   auto DominatedReduxValue = [&](Value *R) {
5802     return (
5803         dyn_cast<Instruction>(R) &&
5804         DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
5805   };
5806 
5807   Value *Rdx = nullptr;
5808 
5809   // Return the incoming value if it comes from the same BB as the phi node.
5810   if (P->getIncomingBlock(0) == ParentBB) {
5811     Rdx = P->getIncomingValue(0);
5812   } else if (P->getIncomingBlock(1) == ParentBB) {
5813     Rdx = P->getIncomingValue(1);
5814   }
5815 
5816   if (Rdx && DominatedReduxValue(Rdx))
5817     return Rdx;
5818 
5819   // Otherwise, check whether we have a loop latch to look at.
5820   Loop *BBL = LI->getLoopFor(ParentBB);
5821   if (!BBL)
5822     return nullptr;
5823   BasicBlock *BBLatch = BBL->getLoopLatch();
5824   if (!BBLatch)
5825     return nullptr;
5826 
5827   // There is a loop latch, return the incoming value if it comes from
5828   // that. This reduction pattern occasionally turns up.
5829   if (P->getIncomingBlock(0) == BBLatch) {
5830     Rdx = P->getIncomingValue(0);
5831   } else if (P->getIncomingBlock(1) == BBLatch) {
5832     Rdx = P->getIncomingValue(1);
5833   }
5834 
5835   if (Rdx && DominatedReduxValue(Rdx))
5836     return Rdx;
5837 
5838   return nullptr;
5839 }
5840 
5841 /// Attempt to reduce a horizontal reduction.
5842 /// If it is legal to match a horizontal reduction feeding the phi node \a P
5843 /// with reduction operators \a Root (or one of its operands) in a basic block
5844 /// \a BB, then check if it can be done. If horizontal reduction is not found
5845 /// and root instruction is a binary operation, vectorization of the operands is
5846 /// attempted.
5847 /// \returns true if a horizontal reduction was matched and reduced or operands
5848 /// of one of the binary instruction were vectorized.
5849 /// \returns false if a horizontal reduction was not matched (or not possible)
5850 /// or no vectorization of any binary operation feeding \a Root instruction was
5851 /// performed.
5852 static bool tryToVectorizeHorReductionOrInstOperands(
5853     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
5854     TargetTransformInfo *TTI,
5855     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
5856   if (!ShouldVectorizeHor)
5857     return false;
5858 
5859   if (!Root)
5860     return false;
5861 
5862   if (Root->getParent() != BB || isa<PHINode>(Root))
5863     return false;
5864   // Start analysis starting from Root instruction. If horizontal reduction is
5865   // found, try to vectorize it. If it is not a horizontal reduction or
5866   // vectorization is not possible or not effective, and currently analyzed
5867   // instruction is a binary operation, try to vectorize the operands, using
5868   // pre-order DFS traversal order. If the operands were not vectorized, repeat
5869   // the same procedure considering each operand as a possible root of the
5870   // horizontal reduction.
5871   // Interrupt the process if the Root instruction itself was vectorized or all
5872   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
5873   SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
5874   SmallSet<Value *, 8> VisitedInstrs;
5875   bool Res = false;
5876   while (!Stack.empty()) {
5877     Value *V;
5878     unsigned Level;
5879     std::tie(V, Level) = Stack.pop_back_val();
5880     if (!V)
5881       continue;
5882     auto *Inst = dyn_cast<Instruction>(V);
5883     if (!Inst)
5884       continue;
5885     auto *BI = dyn_cast<BinaryOperator>(Inst);
5886     auto *SI = dyn_cast<SelectInst>(Inst);
5887     if (BI || SI) {
5888       HorizontalReduction HorRdx;
5889       if (HorRdx.matchAssociativeReduction(P, Inst)) {
5890         if (HorRdx.tryToReduce(R, TTI)) {
5891           Res = true;
5892           // Set P to nullptr to avoid re-analysis of phi node in
5893           // matchAssociativeReduction function unless this is the root node.
5894           P = nullptr;
5895           continue;
5896         }
5897       }
5898       if (P && BI) {
5899         Inst = dyn_cast<Instruction>(BI->getOperand(0));
5900         if (Inst == P)
5901           Inst = dyn_cast<Instruction>(BI->getOperand(1));
5902         if (!Inst) {
5903           // Set P to nullptr to avoid re-analysis of phi node in
5904           // matchAssociativeReduction function unless this is the root node.
5905           P = nullptr;
5906           continue;
5907         }
5908       }
5909     }
5910     // Set P to nullptr to avoid re-analysis of phi node in
5911     // matchAssociativeReduction function unless this is the root node.
5912     P = nullptr;
5913     if (Vectorize(Inst, R)) {
5914       Res = true;
5915       continue;
5916     }
5917 
5918     // Try to vectorize operands.
5919     // Continue analysis for the instruction from the same basic block only to
5920     // save compile time.
5921     if (++Level < RecursionMaxDepth)
5922       for (auto *Op : Inst->operand_values())
5923         if (VisitedInstrs.insert(Op).second)
5924           if (auto *I = dyn_cast<Instruction>(Op))
5925             if (!isa<PHINode>(I) && I->getParent() == BB)
5926               Stack.emplace_back(Op, Level);
5927   }
5928   return Res;
5929 }
5930 
5931 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
5932                                                  BasicBlock *BB, BoUpSLP &R,
5933                                                  TargetTransformInfo *TTI) {
5934   if (!V)
5935     return false;
5936   auto *I = dyn_cast<Instruction>(V);
5937   if (!I)
5938     return false;
5939 
5940   if (!isa<BinaryOperator>(I))
5941     P = nullptr;
5942   // Try to match and vectorize a horizontal reduction.
5943   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
5944     return tryToVectorize(I, R);
5945   };
5946   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
5947                                                   ExtraVectorization);
5948 }
5949 
5950 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
5951                                                  BasicBlock *BB, BoUpSLP &R) {
5952   const DataLayout &DL = BB->getModule()->getDataLayout();
5953   if (!R.canMapToVector(IVI->getType(), DL))
5954     return false;
5955 
5956   SmallVector<Value *, 16> BuildVectorOpds;
5957   if (!findBuildAggregate(IVI, BuildVectorOpds))
5958     return false;
5959 
5960   DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
5961   // Aggregate value is unlikely to be processed in vector register, we need to
5962   // extract scalars into scalar registers, so NeedExtraction is set true.
5963   return tryToVectorizeList(BuildVectorOpds, R);
5964 }
5965 
5966 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
5967                                                    BasicBlock *BB, BoUpSLP &R) {
5968   SmallVector<Value *, 16> BuildVectorOpds;
5969   if (!findBuildVector(IEI, BuildVectorOpds))
5970     return false;
5971 
5972   // Vectorize starting with the build vector operands ignoring the BuildVector
5973   // instructions for the purpose of scheduling and user extraction.
5974   return tryToVectorizeList(BuildVectorOpds, R);
5975 }
5976 
5977 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
5978                                          BoUpSLP &R) {
5979   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
5980     return true;
5981 
5982   bool OpsChanged = false;
5983   for (int Idx = 0; Idx < 2; ++Idx) {
5984     OpsChanged |=
5985         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
5986   }
5987   return OpsChanged;
5988 }
5989 
5990 bool SLPVectorizerPass::vectorizeSimpleInstructions(
5991     SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
5992   bool OpsChanged = false;
5993   for (auto &VH : reverse(Instructions)) {
5994     auto *I = dyn_cast_or_null<Instruction>(VH);
5995     if (!I)
5996       continue;
5997     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
5998       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
5999     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6000       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6001     else if (auto *CI = dyn_cast<CmpInst>(I))
6002       OpsChanged |= vectorizeCmpInst(CI, BB, R);
6003   }
6004   Instructions.clear();
6005   return OpsChanged;
6006 }
6007 
6008 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6009   bool Changed = false;
6010   SmallVector<Value *, 4> Incoming;
6011   SmallSet<Value *, 16> VisitedInstrs;
6012 
6013   bool HaveVectorizedPhiNodes = true;
6014   while (HaveVectorizedPhiNodes) {
6015     HaveVectorizedPhiNodes = false;
6016 
6017     // Collect the incoming values from the PHIs.
6018     Incoming.clear();
6019     for (Instruction &I : *BB) {
6020       PHINode *P = dyn_cast<PHINode>(&I);
6021       if (!P)
6022         break;
6023 
6024       if (!VisitedInstrs.count(P))
6025         Incoming.push_back(P);
6026     }
6027 
6028     // Sort by type.
6029     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
6030 
6031     // Try to vectorize elements base on their type.
6032     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6033                                            E = Incoming.end();
6034          IncIt != E;) {
6035 
6036       // Look for the next elements with the same type.
6037       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6038       while (SameTypeIt != E &&
6039              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6040         VisitedInstrs.insert(*SameTypeIt);
6041         ++SameTypeIt;
6042       }
6043 
6044       // Try to vectorize them.
6045       unsigned NumElts = (SameTypeIt - IncIt);
6046       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
6047       // The order in which the phi nodes appear in the program does not matter.
6048       // So allow tryToVectorizeList to reorder them if it is beneficial. This
6049       // is done when there are exactly two elements since tryToVectorizeList
6050       // asserts that there are only two values when AllowReorder is true.
6051       bool AllowReorder = NumElts == 2;
6052       if (NumElts > 1 &&
6053           tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
6054         // Success start over because instructions might have been changed.
6055         HaveVectorizedPhiNodes = true;
6056         Changed = true;
6057         break;
6058       }
6059 
6060       // Start over at the next instruction of a different type (or the end).
6061       IncIt = SameTypeIt;
6062     }
6063   }
6064 
6065   VisitedInstrs.clear();
6066 
6067   SmallVector<WeakVH, 8> PostProcessInstructions;
6068   SmallDenseSet<Instruction *, 4> KeyNodes;
6069   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
6070     // We may go through BB multiple times so skip the one we have checked.
6071     if (!VisitedInstrs.insert(&*it).second) {
6072       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6073           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6074         // We would like to start over since some instructions are deleted
6075         // and the iterator may become invalid value.
6076         Changed = true;
6077         it = BB->begin();
6078         e = BB->end();
6079       }
6080       continue;
6081     }
6082 
6083     if (isa<DbgInfoIntrinsic>(it))
6084       continue;
6085 
6086     // Try to vectorize reductions that use PHINodes.
6087     if (PHINode *P = dyn_cast<PHINode>(it)) {
6088       // Check that the PHI is a reduction PHI.
6089       if (P->getNumIncomingValues() != 2)
6090         return Changed;
6091 
6092       // Try to match and vectorize a horizontal reduction.
6093       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6094                                    TTI)) {
6095         Changed = true;
6096         it = BB->begin();
6097         e = BB->end();
6098         continue;
6099       }
6100       continue;
6101     }
6102 
6103     // Ran into an instruction without users, like terminator, or function call
6104     // with ignored return value, store. Ignore unused instructions (basing on
6105     // instruction type, except for CallInst and InvokeInst).
6106     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6107                             isa<InvokeInst>(it))) {
6108       KeyNodes.insert(&*it);
6109       bool OpsChanged = false;
6110       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6111         for (auto *V : it->operand_values()) {
6112           // Try to match and vectorize a horizontal reduction.
6113           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6114         }
6115       }
6116       // Start vectorization of post-process list of instructions from the
6117       // top-tree instructions to try to vectorize as many instructions as
6118       // possible.
6119       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
6120       if (OpsChanged) {
6121         // We would like to start over since some instructions are deleted
6122         // and the iterator may become invalid value.
6123         Changed = true;
6124         it = BB->begin();
6125         e = BB->end();
6126         continue;
6127       }
6128     }
6129 
6130     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
6131         isa<InsertValueInst>(it))
6132       PostProcessInstructions.push_back(&*it);
6133 
6134   }
6135 
6136   return Changed;
6137 }
6138 
6139 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
6140   auto Changed = false;
6141   for (auto &Entry : GEPs) {
6142     // If the getelementptr list has fewer than two elements, there's nothing
6143     // to do.
6144     if (Entry.second.size() < 2)
6145       continue;
6146 
6147     DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
6148                  << Entry.second.size() << ".\n");
6149 
6150     // We process the getelementptr list in chunks of 16 (like we do for
6151     // stores) to minimize compile-time.
6152     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
6153       auto Len = std::min<unsigned>(BE - BI, 16);
6154       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
6155 
6156       // Initialize a set a candidate getelementptrs. Note that we use a
6157       // SetVector here to preserve program order. If the index computations
6158       // are vectorizable and begin with loads, we want to minimize the chance
6159       // of having to reorder them later.
6160       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
6161 
6162       // Some of the candidates may have already been vectorized after we
6163       // initially collected them. If so, the WeakTrackingVHs will have
6164       // nullified the
6165       // values, so remove them from the set of candidates.
6166       Candidates.remove(nullptr);
6167 
6168       // Remove from the set of candidates all pairs of getelementptrs with
6169       // constant differences. Such getelementptrs are likely not good
6170       // candidates for vectorization in a bottom-up phase since one can be
6171       // computed from the other. We also ensure all candidate getelementptr
6172       // indices are unique.
6173       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
6174         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
6175         if (!Candidates.count(GEPI))
6176           continue;
6177         auto *SCEVI = SE->getSCEV(GEPList[I]);
6178         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
6179           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
6180           auto *SCEVJ = SE->getSCEV(GEPList[J]);
6181           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
6182             Candidates.remove(GEPList[I]);
6183             Candidates.remove(GEPList[J]);
6184           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
6185             Candidates.remove(GEPList[J]);
6186           }
6187         }
6188       }
6189 
6190       // We break out of the above computation as soon as we know there are
6191       // fewer than two candidates remaining.
6192       if (Candidates.size() < 2)
6193         continue;
6194 
6195       // Add the single, non-constant index of each candidate to the bundle. We
6196       // ensured the indices met these constraints when we originally collected
6197       // the getelementptrs.
6198       SmallVector<Value *, 16> Bundle(Candidates.size());
6199       auto BundleIndex = 0u;
6200       for (auto *V : Candidates) {
6201         auto *GEP = cast<GetElementPtrInst>(V);
6202         auto *GEPIdx = GEP->idx_begin()->get();
6203         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
6204         Bundle[BundleIndex++] = GEPIdx;
6205       }
6206 
6207       // Try and vectorize the indices. We are currently only interested in
6208       // gather-like cases of the form:
6209       //
6210       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
6211       //
6212       // where the loads of "a", the loads of "b", and the subtractions can be
6213       // performed in parallel. It's likely that detecting this pattern in a
6214       // bottom-up phase will be simpler and less costly than building a
6215       // full-blown top-down phase beginning at the consecutive loads.
6216       Changed |= tryToVectorizeList(Bundle, R);
6217     }
6218   }
6219   return Changed;
6220 }
6221 
6222 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
6223   bool Changed = false;
6224   // Attempt to sort and vectorize each of the store-groups.
6225   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
6226        ++it) {
6227     if (it->second.size() < 2)
6228       continue;
6229 
6230     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
6231           << it->second.size() << ".\n");
6232 
6233     // Process the stores in chunks of 16.
6234     // TODO: The limit of 16 inhibits greater vectorization factors.
6235     //       For example, AVX2 supports v32i8. Increasing this limit, however,
6236     //       may cause a significant compile-time increase.
6237     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
6238       unsigned Len = std::min<unsigned>(CE - CI, 16);
6239       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
6240     }
6241   }
6242   return Changed;
6243 }
6244 
6245 char SLPVectorizer::ID = 0;
6246 
6247 static const char lv_name[] = "SLP Vectorizer";
6248 
6249 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
6250 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6252 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6253 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6254 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6255 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6256 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6257 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
6258 
6259 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
6260