1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 456 assert(Opcode == Instruction::ExtractElement || 457 Opcode == Instruction::ExtractValue); 458 if (Opcode == Instruction::ExtractElement) { 459 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 460 return CI && CI->getZExtValue() == Idx; 461 } else { 462 ExtractValueInst *EI = cast<ExtractValueInst>(E); 463 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 464 } 465 } 466 467 /// \returns True if in-tree use also needs extract. This refers to 468 /// possible scalar operand in vectorized instruction. 469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 470 TargetLibraryInfo *TLI) { 471 unsigned Opcode = UserInst->getOpcode(); 472 switch (Opcode) { 473 case Instruction::Load: { 474 LoadInst *LI = cast<LoadInst>(UserInst); 475 return (LI->getPointerOperand() == Scalar); 476 } 477 case Instruction::Store: { 478 StoreInst *SI = cast<StoreInst>(UserInst); 479 return (SI->getPointerOperand() == Scalar); 480 } 481 case Instruction::Call: { 482 CallInst *CI = cast<CallInst>(UserInst); 483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 484 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 485 return (CI->getArgOperand(1) == Scalar); 486 } 487 LLVM_FALLTHROUGH; 488 } 489 default: 490 return false; 491 } 492 } 493 494 /// \returns the AA location that is being access by the instruction. 495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 496 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 497 return MemoryLocation::get(SI); 498 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 499 return MemoryLocation::get(LI); 500 return MemoryLocation(); 501 } 502 503 /// \returns True if the instruction is not a volatile or atomic load/store. 504 static bool isSimple(Instruction *I) { 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return LI->isSimple(); 507 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 508 return SI->isSimple(); 509 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 510 return !MI->isVolatile(); 511 return true; 512 } 513 514 namespace llvm { 515 516 namespace slpvectorizer { 517 518 /// Bottom Up SLP Vectorizer. 519 class BoUpSLP { 520 public: 521 using ValueList = SmallVector<Value *, 8>; 522 using InstrList = SmallVector<Instruction *, 16>; 523 using ValueSet = SmallPtrSet<Value *, 16>; 524 using StoreList = SmallVector<StoreInst *, 8>; 525 using ExtraValueToDebugLocsMap = 526 MapVector<Value *, SmallVector<Instruction *, 2>>; 527 528 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 529 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 530 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 531 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 532 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 533 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 534 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 535 // Use the vector register size specified by the target unless overridden 536 // by a command-line option. 537 // TODO: It would be better to limit the vectorization factor based on 538 // data type rather than just register size. For example, x86 AVX has 539 // 256-bit registers, but it does not support integer operations 540 // at that width (that requires AVX2). 541 if (MaxVectorRegSizeOption.getNumOccurrences()) 542 MaxVecRegSize = MaxVectorRegSizeOption; 543 else 544 MaxVecRegSize = TTI->getRegisterBitWidth(true); 545 546 if (MinVectorRegSizeOption.getNumOccurrences()) 547 MinVecRegSize = MinVectorRegSizeOption; 548 else 549 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 550 } 551 552 /// \brief Vectorize the tree that starts with the elements in \p VL. 553 /// Returns the vectorized root. 554 Value *vectorizeTree(); 555 556 /// Vectorize the tree but with the list of externally used values \p 557 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 558 /// generated extractvalue instructions. 559 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 560 561 /// \returns the cost incurred by unwanted spills and fills, caused by 562 /// holding live values over call sites. 563 int getSpillCost(); 564 565 /// \returns the vectorization cost of the subtree that starts at \p VL. 566 /// A negative number means that this is profitable. 567 int getTreeCost(); 568 569 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 570 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 571 void buildTree(ArrayRef<Value *> Roots, 572 ArrayRef<Value *> UserIgnoreLst = None); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 576 /// into account (anf updating it, if required) list of externally used 577 /// values stored in \p ExternallyUsedValues. 578 void buildTree(ArrayRef<Value *> Roots, 579 ExtraValueToDebugLocsMap &ExternallyUsedValues, 580 ArrayRef<Value *> UserIgnoreLst = None); 581 582 /// Clear the internal data structures that are created by 'buildTree'. 583 void deleteTree() { 584 VectorizableTree.clear(); 585 ScalarToTreeEntry.clear(); 586 MustGather.clear(); 587 ExternalUses.clear(); 588 NumOpsWantToKeepOrder.clear(); 589 for (auto &Iter : BlocksSchedules) { 590 BlockScheduling *BS = Iter.second.get(); 591 BS->clear(); 592 } 593 MinBWs.clear(); 594 } 595 596 unsigned getTreeSize() const { return VectorizableTree.size(); } 597 598 /// \brief Perform LICM and CSE on the newly generated gather sequences. 599 void optimizeGatherSequence(); 600 601 /// \returns true if it is beneficial to reverse the vector order. 602 bool shouldReorder() const { 603 return std::accumulate( 604 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 0, 605 [](int Val1, 606 const decltype(NumOpsWantToKeepOrder)::value_type &Val2) { 607 return Val1 + (Val2.second < 0 ? 1 : -1); 608 }) > 0; 609 } 610 611 /// \return The vector element size in bits to use when vectorizing the 612 /// expression tree ending at \p V. If V is a store, the size is the width of 613 /// the stored value. Otherwise, the size is the width of the largest loaded 614 /// value reaching V. This method is used by the vectorizer to calculate 615 /// vectorization factors. 616 unsigned getVectorElementSize(Value *V); 617 618 /// Compute the minimum type sizes required to represent the entries in a 619 /// vectorizable tree. 620 void computeMinimumValueSizes(); 621 622 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 623 unsigned getMaxVecRegSize() const { 624 return MaxVecRegSize; 625 } 626 627 // \returns minimum vector register size as set by cl::opt. 628 unsigned getMinVecRegSize() const { 629 return MinVecRegSize; 630 } 631 632 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 633 /// 634 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 635 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 636 637 /// \returns True if the VectorizableTree is both tiny and not fully 638 /// vectorizable. We do not vectorize such trees. 639 bool isTreeTinyAndNotFullyVectorizable(); 640 641 OptimizationRemarkEmitter *getORE() { return ORE; } 642 643 private: 644 struct TreeEntry; 645 646 /// Checks if all users of \p I are the part of the vectorization tree. 647 bool areAllUsersVectorized(Instruction *I) const; 648 649 /// \returns the cost of the vectorizable entry. 650 int getEntryCost(TreeEntry *E); 651 652 /// This is the recursive part of buildTree. 653 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 654 655 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 656 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 657 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 658 659 /// Vectorize a single entry in the tree. 660 Value *vectorizeTree(TreeEntry *E); 661 662 /// Vectorize a single entry in the tree, starting in \p VL. 663 Value *vectorizeTree(ArrayRef<Value *> VL); 664 665 /// \returns the scalarization cost for this type. Scalarization in this 666 /// context means the creation of vectors from a group of scalars. 667 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 668 669 /// \returns the scalarization cost for this list of values. Assuming that 670 /// this subtree gets vectorized, we may need to extract the values from the 671 /// roots. This method calculates the cost of extracting the values. 672 int getGatherCost(ArrayRef<Value *> VL); 673 674 /// \brief Set the Builder insert point to one after the last instruction in 675 /// the bundle 676 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 677 678 /// \returns a vector from a collection of scalars in \p VL. 679 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 680 681 /// \returns whether the VectorizableTree is fully vectorizable and will 682 /// be beneficial even the tree height is tiny. 683 bool isFullyVectorizableTinyTree(); 684 685 /// \reorder commutative operands in alt shuffle if they result in 686 /// vectorized code. 687 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 688 SmallVectorImpl<Value *> &Left, 689 SmallVectorImpl<Value *> &Right); 690 691 /// \reorder commutative operands to get better probability of 692 /// generating vectorized code. 693 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 694 SmallVectorImpl<Value *> &Left, 695 SmallVectorImpl<Value *> &Right); 696 struct TreeEntry { 697 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 698 699 /// \returns true if the scalars in VL are equal to this entry. 700 bool isSame(ArrayRef<Value *> VL) const { 701 if (VL.size() == Scalars.size()) 702 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 703 return VL.size() == ReuseShuffleIndices.size() && 704 std::equal( 705 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 706 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 707 } 708 709 /// A vector of scalars. 710 ValueList Scalars; 711 712 /// The Scalars are vectorized into this value. It is initialized to Null. 713 Value *VectorizedValue = nullptr; 714 715 /// Do we need to gather this sequence ? 716 bool NeedToGather = false; 717 718 /// Does this sequence require some shuffling? 719 SmallVector<unsigned, 4> ReuseShuffleIndices; 720 721 /// Points back to the VectorizableTree. 722 /// 723 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 724 /// to be a pointer and needs to be able to initialize the child iterator. 725 /// Thus we need a reference back to the container to translate the indices 726 /// to entries. 727 std::vector<TreeEntry> &Container; 728 729 /// The TreeEntry index containing the user of this entry. We can actually 730 /// have multiple users so the data structure is not truly a tree. 731 SmallVector<int, 1> UserTreeIndices; 732 }; 733 734 /// Create a new VectorizableTree entry. 735 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 736 ArrayRef<unsigned> ReuseShuffleIndices = None) { 737 VectorizableTree.emplace_back(VectorizableTree); 738 int idx = VectorizableTree.size() - 1; 739 TreeEntry *Last = &VectorizableTree[idx]; 740 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 741 Last->NeedToGather = !Vectorized; 742 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 743 ReuseShuffleIndices.end()); 744 if (Vectorized) { 745 for (int i = 0, e = VL.size(); i != e; ++i) { 746 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 747 ScalarToTreeEntry[VL[i]] = idx; 748 } 749 } else { 750 MustGather.insert(VL.begin(), VL.end()); 751 } 752 753 if (UserTreeIdx >= 0) 754 Last->UserTreeIndices.push_back(UserTreeIdx); 755 UserTreeIdx = idx; 756 } 757 758 /// -- Vectorization State -- 759 /// Holds all of the tree entries. 760 std::vector<TreeEntry> VectorizableTree; 761 762 TreeEntry *getTreeEntry(Value *V) { 763 auto I = ScalarToTreeEntry.find(V); 764 if (I != ScalarToTreeEntry.end()) 765 return &VectorizableTree[I->second]; 766 return nullptr; 767 } 768 769 /// Maps a specific scalar to its tree entry. 770 SmallDenseMap<Value*, int> ScalarToTreeEntry; 771 772 /// A list of scalars that we found that we need to keep as scalars. 773 ValueSet MustGather; 774 775 /// This POD struct describes one external user in the vectorized tree. 776 struct ExternalUser { 777 ExternalUser(Value *S, llvm::User *U, int L) 778 : Scalar(S), User(U), Lane(L) {} 779 780 // Which scalar in our function. 781 Value *Scalar; 782 783 // Which user that uses the scalar. 784 llvm::User *User; 785 786 // Which lane does the scalar belong to. 787 int Lane; 788 }; 789 using UserList = SmallVector<ExternalUser, 16>; 790 791 /// Checks if two instructions may access the same memory. 792 /// 793 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 794 /// is invariant in the calling loop. 795 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 796 Instruction *Inst2) { 797 // First check if the result is already in the cache. 798 AliasCacheKey key = std::make_pair(Inst1, Inst2); 799 Optional<bool> &result = AliasCache[key]; 800 if (result.hasValue()) { 801 return result.getValue(); 802 } 803 MemoryLocation Loc2 = getLocation(Inst2, AA); 804 bool aliased = true; 805 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 806 // Do the alias check. 807 aliased = AA->alias(Loc1, Loc2); 808 } 809 // Store the result in the cache. 810 result = aliased; 811 return aliased; 812 } 813 814 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 815 816 /// Cache for alias results. 817 /// TODO: consider moving this to the AliasAnalysis itself. 818 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 819 820 /// Removes an instruction from its block and eventually deletes it. 821 /// It's like Instruction::eraseFromParent() except that the actual deletion 822 /// is delayed until BoUpSLP is destructed. 823 /// This is required to ensure that there are no incorrect collisions in the 824 /// AliasCache, which can happen if a new instruction is allocated at the 825 /// same address as a previously deleted instruction. 826 void eraseInstruction(Instruction *I) { 827 I->removeFromParent(); 828 I->dropAllReferences(); 829 DeletedInstructions.emplace_back(I); 830 } 831 832 /// Temporary store for deleted instructions. Instructions will be deleted 833 /// eventually when the BoUpSLP is destructed. 834 SmallVector<unique_value, 8> DeletedInstructions; 835 836 /// A list of values that need to extracted out of the tree. 837 /// This list holds pairs of (Internal Scalar : External User). External User 838 /// can be nullptr, it means that this Internal Scalar will be used later, 839 /// after vectorization. 840 UserList ExternalUses; 841 842 /// Values used only by @llvm.assume calls. 843 SmallPtrSet<const Value *, 32> EphValues; 844 845 /// Holds all of the instructions that we gathered. 846 SetVector<Instruction *> GatherSeq; 847 848 /// A list of blocks that we are going to CSE. 849 SetVector<BasicBlock *> CSEBlocks; 850 851 /// Contains all scheduling relevant data for an instruction. 852 /// A ScheduleData either represents a single instruction or a member of an 853 /// instruction bundle (= a group of instructions which is combined into a 854 /// vector instruction). 855 struct ScheduleData { 856 // The initial value for the dependency counters. It means that the 857 // dependencies are not calculated yet. 858 enum { InvalidDeps = -1 }; 859 860 ScheduleData() = default; 861 862 void init(int BlockSchedulingRegionID, Value *OpVal) { 863 FirstInBundle = this; 864 NextInBundle = nullptr; 865 NextLoadStore = nullptr; 866 IsScheduled = false; 867 SchedulingRegionID = BlockSchedulingRegionID; 868 UnscheduledDepsInBundle = UnscheduledDeps; 869 clearDependencies(); 870 OpValue = OpVal; 871 } 872 873 /// Returns true if the dependency information has been calculated. 874 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 875 876 /// Returns true for single instructions and for bundle representatives 877 /// (= the head of a bundle). 878 bool isSchedulingEntity() const { return FirstInBundle == this; } 879 880 /// Returns true if it represents an instruction bundle and not only a 881 /// single instruction. 882 bool isPartOfBundle() const { 883 return NextInBundle != nullptr || FirstInBundle != this; 884 } 885 886 /// Returns true if it is ready for scheduling, i.e. it has no more 887 /// unscheduled depending instructions/bundles. 888 bool isReady() const { 889 assert(isSchedulingEntity() && 890 "can't consider non-scheduling entity for ready list"); 891 return UnscheduledDepsInBundle == 0 && !IsScheduled; 892 } 893 894 /// Modifies the number of unscheduled dependencies, also updating it for 895 /// the whole bundle. 896 int incrementUnscheduledDeps(int Incr) { 897 UnscheduledDeps += Incr; 898 return FirstInBundle->UnscheduledDepsInBundle += Incr; 899 } 900 901 /// Sets the number of unscheduled dependencies to the number of 902 /// dependencies. 903 void resetUnscheduledDeps() { 904 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 905 } 906 907 /// Clears all dependency information. 908 void clearDependencies() { 909 Dependencies = InvalidDeps; 910 resetUnscheduledDeps(); 911 MemoryDependencies.clear(); 912 } 913 914 void dump(raw_ostream &os) const { 915 if (!isSchedulingEntity()) { 916 os << "/ " << *Inst; 917 } else if (NextInBundle) { 918 os << '[' << *Inst; 919 ScheduleData *SD = NextInBundle; 920 while (SD) { 921 os << ';' << *SD->Inst; 922 SD = SD->NextInBundle; 923 } 924 os << ']'; 925 } else { 926 os << *Inst; 927 } 928 } 929 930 Instruction *Inst = nullptr; 931 932 /// Points to the head in an instruction bundle (and always to this for 933 /// single instructions). 934 ScheduleData *FirstInBundle = nullptr; 935 936 /// Single linked list of all instructions in a bundle. Null if it is a 937 /// single instruction. 938 ScheduleData *NextInBundle = nullptr; 939 940 /// Single linked list of all memory instructions (e.g. load, store, call) 941 /// in the block - until the end of the scheduling region. 942 ScheduleData *NextLoadStore = nullptr; 943 944 /// The dependent memory instructions. 945 /// This list is derived on demand in calculateDependencies(). 946 SmallVector<ScheduleData *, 4> MemoryDependencies; 947 948 /// This ScheduleData is in the current scheduling region if this matches 949 /// the current SchedulingRegionID of BlockScheduling. 950 int SchedulingRegionID = 0; 951 952 /// Used for getting a "good" final ordering of instructions. 953 int SchedulingPriority = 0; 954 955 /// The number of dependencies. Constitutes of the number of users of the 956 /// instruction plus the number of dependent memory instructions (if any). 957 /// This value is calculated on demand. 958 /// If InvalidDeps, the number of dependencies is not calculated yet. 959 int Dependencies = InvalidDeps; 960 961 /// The number of dependencies minus the number of dependencies of scheduled 962 /// instructions. As soon as this is zero, the instruction/bundle gets ready 963 /// for scheduling. 964 /// Note that this is negative as long as Dependencies is not calculated. 965 int UnscheduledDeps = InvalidDeps; 966 967 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 968 /// single instructions. 969 int UnscheduledDepsInBundle = InvalidDeps; 970 971 /// True if this instruction is scheduled (or considered as scheduled in the 972 /// dry-run). 973 bool IsScheduled = false; 974 975 /// Opcode of the current instruction in the schedule data. 976 Value *OpValue = nullptr; 977 }; 978 979 #ifndef NDEBUG 980 friend inline raw_ostream &operator<<(raw_ostream &os, 981 const BoUpSLP::ScheduleData &SD) { 982 SD.dump(os); 983 return os; 984 } 985 #endif 986 987 friend struct GraphTraits<BoUpSLP *>; 988 friend struct DOTGraphTraits<BoUpSLP *>; 989 990 /// Contains all scheduling data for a basic block. 991 struct BlockScheduling { 992 BlockScheduling(BasicBlock *BB) 993 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 994 995 void clear() { 996 ReadyInsts.clear(); 997 ScheduleStart = nullptr; 998 ScheduleEnd = nullptr; 999 FirstLoadStoreInRegion = nullptr; 1000 LastLoadStoreInRegion = nullptr; 1001 1002 // Reduce the maximum schedule region size by the size of the 1003 // previous scheduling run. 1004 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1005 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1006 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1007 ScheduleRegionSize = 0; 1008 1009 // Make a new scheduling region, i.e. all existing ScheduleData is not 1010 // in the new region yet. 1011 ++SchedulingRegionID; 1012 } 1013 1014 ScheduleData *getScheduleData(Value *V) { 1015 ScheduleData *SD = ScheduleDataMap[V]; 1016 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1017 return SD; 1018 return nullptr; 1019 } 1020 1021 ScheduleData *getScheduleData(Value *V, Value *Key) { 1022 if (V == Key) 1023 return getScheduleData(V); 1024 auto I = ExtraScheduleDataMap.find(V); 1025 if (I != ExtraScheduleDataMap.end()) { 1026 ScheduleData *SD = I->second[Key]; 1027 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1028 return SD; 1029 } 1030 return nullptr; 1031 } 1032 1033 bool isInSchedulingRegion(ScheduleData *SD) { 1034 return SD->SchedulingRegionID == SchedulingRegionID; 1035 } 1036 1037 /// Marks an instruction as scheduled and puts all dependent ready 1038 /// instructions into the ready-list. 1039 template <typename ReadyListType> 1040 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1041 SD->IsScheduled = true; 1042 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1043 1044 ScheduleData *BundleMember = SD; 1045 while (BundleMember) { 1046 if (BundleMember->Inst != BundleMember->OpValue) { 1047 BundleMember = BundleMember->NextInBundle; 1048 continue; 1049 } 1050 // Handle the def-use chain dependencies. 1051 for (Use &U : BundleMember->Inst->operands()) { 1052 auto *I = dyn_cast<Instruction>(U.get()); 1053 if (!I) 1054 continue; 1055 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1056 if (OpDef && OpDef->hasValidDependencies() && 1057 OpDef->incrementUnscheduledDeps(-1) == 0) { 1058 // There are no more unscheduled dependencies after 1059 // decrementing, so we can put the dependent instruction 1060 // into the ready list. 1061 ScheduleData *DepBundle = OpDef->FirstInBundle; 1062 assert(!DepBundle->IsScheduled && 1063 "already scheduled bundle gets ready"); 1064 ReadyList.insert(DepBundle); 1065 DEBUG(dbgs() 1066 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1067 } 1068 }); 1069 } 1070 // Handle the memory dependencies. 1071 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1072 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1073 // There are no more unscheduled dependencies after decrementing, 1074 // so we can put the dependent instruction into the ready list. 1075 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1076 assert(!DepBundle->IsScheduled && 1077 "already scheduled bundle gets ready"); 1078 ReadyList.insert(DepBundle); 1079 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1080 << "\n"); 1081 } 1082 } 1083 BundleMember = BundleMember->NextInBundle; 1084 } 1085 } 1086 1087 void doForAllOpcodes(Value *V, 1088 function_ref<void(ScheduleData *SD)> Action) { 1089 if (ScheduleData *SD = getScheduleData(V)) 1090 Action(SD); 1091 auto I = ExtraScheduleDataMap.find(V); 1092 if (I != ExtraScheduleDataMap.end()) 1093 for (auto &P : I->second) 1094 if (P.second->SchedulingRegionID == SchedulingRegionID) 1095 Action(P.second); 1096 } 1097 1098 /// Put all instructions into the ReadyList which are ready for scheduling. 1099 template <typename ReadyListType> 1100 void initialFillReadyList(ReadyListType &ReadyList) { 1101 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1102 doForAllOpcodes(I, [&](ScheduleData *SD) { 1103 if (SD->isSchedulingEntity() && SD->isReady()) { 1104 ReadyList.insert(SD); 1105 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1106 } 1107 }); 1108 } 1109 } 1110 1111 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1112 /// cyclic dependencies. This is only a dry-run, no instructions are 1113 /// actually moved at this stage. 1114 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1115 1116 /// Un-bundles a group of instructions. 1117 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1118 1119 /// Allocates schedule data chunk. 1120 ScheduleData *allocateScheduleDataChunks(); 1121 1122 /// Extends the scheduling region so that V is inside the region. 1123 /// \returns true if the region size is within the limit. 1124 bool extendSchedulingRegion(Value *V, Value *OpValue); 1125 1126 /// Initialize the ScheduleData structures for new instructions in the 1127 /// scheduling region. 1128 void initScheduleData(Instruction *FromI, Instruction *ToI, 1129 ScheduleData *PrevLoadStore, 1130 ScheduleData *NextLoadStore); 1131 1132 /// Updates the dependency information of a bundle and of all instructions/ 1133 /// bundles which depend on the original bundle. 1134 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1135 BoUpSLP *SLP); 1136 1137 /// Sets all instruction in the scheduling region to un-scheduled. 1138 void resetSchedule(); 1139 1140 BasicBlock *BB; 1141 1142 /// Simple memory allocation for ScheduleData. 1143 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1144 1145 /// The size of a ScheduleData array in ScheduleDataChunks. 1146 int ChunkSize; 1147 1148 /// The allocator position in the current chunk, which is the last entry 1149 /// of ScheduleDataChunks. 1150 int ChunkPos; 1151 1152 /// Attaches ScheduleData to Instruction. 1153 /// Note that the mapping survives during all vectorization iterations, i.e. 1154 /// ScheduleData structures are recycled. 1155 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1156 1157 /// Attaches ScheduleData to Instruction with the leading key. 1158 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1159 ExtraScheduleDataMap; 1160 1161 struct ReadyList : SmallVector<ScheduleData *, 8> { 1162 void insert(ScheduleData *SD) { push_back(SD); } 1163 }; 1164 1165 /// The ready-list for scheduling (only used for the dry-run). 1166 ReadyList ReadyInsts; 1167 1168 /// The first instruction of the scheduling region. 1169 Instruction *ScheduleStart = nullptr; 1170 1171 /// The first instruction _after_ the scheduling region. 1172 Instruction *ScheduleEnd = nullptr; 1173 1174 /// The first memory accessing instruction in the scheduling region 1175 /// (can be null). 1176 ScheduleData *FirstLoadStoreInRegion = nullptr; 1177 1178 /// The last memory accessing instruction in the scheduling region 1179 /// (can be null). 1180 ScheduleData *LastLoadStoreInRegion = nullptr; 1181 1182 /// The current size of the scheduling region. 1183 int ScheduleRegionSize = 0; 1184 1185 /// The maximum size allowed for the scheduling region. 1186 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1187 1188 /// The ID of the scheduling region. For a new vectorization iteration this 1189 /// is incremented which "removes" all ScheduleData from the region. 1190 // Make sure that the initial SchedulingRegionID is greater than the 1191 // initial SchedulingRegionID in ScheduleData (which is 0). 1192 int SchedulingRegionID = 1; 1193 }; 1194 1195 /// Attaches the BlockScheduling structures to basic blocks. 1196 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1197 1198 /// Performs the "real" scheduling. Done before vectorization is actually 1199 /// performed in a basic block. 1200 void scheduleBlock(BlockScheduling *BS); 1201 1202 /// List of users to ignore during scheduling and that don't need extracting. 1203 ArrayRef<Value *> UserIgnoreList; 1204 1205 /// Number of operation bundles that contain consecutive operations - number 1206 /// of operation bundles that contain consecutive operations in reversed 1207 /// order. 1208 DenseMap<unsigned, int> NumOpsWantToKeepOrder; 1209 1210 // Analysis and block reference. 1211 Function *F; 1212 ScalarEvolution *SE; 1213 TargetTransformInfo *TTI; 1214 TargetLibraryInfo *TLI; 1215 AliasAnalysis *AA; 1216 LoopInfo *LI; 1217 DominatorTree *DT; 1218 AssumptionCache *AC; 1219 DemandedBits *DB; 1220 const DataLayout *DL; 1221 OptimizationRemarkEmitter *ORE; 1222 1223 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1224 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1225 1226 /// Instruction builder to construct the vectorized tree. 1227 IRBuilder<> Builder; 1228 1229 /// A map of scalar integer values to the smallest bit width with which they 1230 /// can legally be represented. The values map to (width, signed) pairs, 1231 /// where "width" indicates the minimum bit width and "signed" is True if the 1232 /// value must be signed-extended, rather than zero-extended, back to its 1233 /// original width. 1234 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1235 }; 1236 1237 } // end namespace slpvectorizer 1238 1239 template <> struct GraphTraits<BoUpSLP *> { 1240 using TreeEntry = BoUpSLP::TreeEntry; 1241 1242 /// NodeRef has to be a pointer per the GraphWriter. 1243 using NodeRef = TreeEntry *; 1244 1245 /// \brief Add the VectorizableTree to the index iterator to be able to return 1246 /// TreeEntry pointers. 1247 struct ChildIteratorType 1248 : public iterator_adaptor_base<ChildIteratorType, 1249 SmallVector<int, 1>::iterator> { 1250 std::vector<TreeEntry> &VectorizableTree; 1251 1252 ChildIteratorType(SmallVector<int, 1>::iterator W, 1253 std::vector<TreeEntry> &VT) 1254 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1255 1256 NodeRef operator*() { return &VectorizableTree[*I]; } 1257 }; 1258 1259 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1260 1261 static ChildIteratorType child_begin(NodeRef N) { 1262 return {N->UserTreeIndices.begin(), N->Container}; 1263 } 1264 1265 static ChildIteratorType child_end(NodeRef N) { 1266 return {N->UserTreeIndices.end(), N->Container}; 1267 } 1268 1269 /// For the node iterator we just need to turn the TreeEntry iterator into a 1270 /// TreeEntry* iterator so that it dereferences to NodeRef. 1271 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1272 1273 static nodes_iterator nodes_begin(BoUpSLP *R) { 1274 return nodes_iterator(R->VectorizableTree.begin()); 1275 } 1276 1277 static nodes_iterator nodes_end(BoUpSLP *R) { 1278 return nodes_iterator(R->VectorizableTree.end()); 1279 } 1280 1281 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1282 }; 1283 1284 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1285 using TreeEntry = BoUpSLP::TreeEntry; 1286 1287 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1288 1289 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1290 std::string Str; 1291 raw_string_ostream OS(Str); 1292 if (isSplat(Entry->Scalars)) { 1293 OS << "<splat> " << *Entry->Scalars[0]; 1294 return Str; 1295 } 1296 for (auto V : Entry->Scalars) { 1297 OS << *V; 1298 if (std::any_of( 1299 R->ExternalUses.begin(), R->ExternalUses.end(), 1300 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1301 OS << " <extract>"; 1302 OS << "\n"; 1303 } 1304 return Str; 1305 } 1306 1307 static std::string getNodeAttributes(const TreeEntry *Entry, 1308 const BoUpSLP *) { 1309 if (Entry->NeedToGather) 1310 return "color=red"; 1311 return ""; 1312 } 1313 }; 1314 1315 } // end namespace llvm 1316 1317 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1318 ArrayRef<Value *> UserIgnoreLst) { 1319 ExtraValueToDebugLocsMap ExternallyUsedValues; 1320 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1321 } 1322 1323 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1324 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1325 ArrayRef<Value *> UserIgnoreLst) { 1326 deleteTree(); 1327 UserIgnoreList = UserIgnoreLst; 1328 if (!allSameType(Roots)) 1329 return; 1330 buildTree_rec(Roots, 0, -1); 1331 1332 // Collect the values that we need to extract from the tree. 1333 for (TreeEntry &EIdx : VectorizableTree) { 1334 TreeEntry *Entry = &EIdx; 1335 1336 // No need to handle users of gathered values. 1337 if (Entry->NeedToGather) 1338 continue; 1339 1340 // For each lane: 1341 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1342 Value *Scalar = Entry->Scalars[Lane]; 1343 int FoundLane = Lane; 1344 if (!Entry->ReuseShuffleIndices.empty()) { 1345 FoundLane = 1346 std::distance(Entry->ReuseShuffleIndices.begin(), 1347 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1348 } 1349 1350 // Check if the scalar is externally used as an extra arg. 1351 auto ExtI = ExternallyUsedValues.find(Scalar); 1352 if (ExtI != ExternallyUsedValues.end()) { 1353 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1354 Lane << " from " << *Scalar << ".\n"); 1355 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1356 } 1357 for (User *U : Scalar->users()) { 1358 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1359 1360 Instruction *UserInst = dyn_cast<Instruction>(U); 1361 if (!UserInst) 1362 continue; 1363 1364 // Skip in-tree scalars that become vectors 1365 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1366 Value *UseScalar = UseEntry->Scalars[0]; 1367 // Some in-tree scalars will remain as scalar in vectorized 1368 // instructions. If that is the case, the one in Lane 0 will 1369 // be used. 1370 if (UseScalar != U || 1371 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1372 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1373 << ".\n"); 1374 assert(!UseEntry->NeedToGather && "Bad state"); 1375 continue; 1376 } 1377 } 1378 1379 // Ignore users in the user ignore list. 1380 if (is_contained(UserIgnoreList, UserInst)) 1381 continue; 1382 1383 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1384 Lane << " from " << *Scalar << ".\n"); 1385 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1386 } 1387 } 1388 } 1389 } 1390 1391 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1392 int UserTreeIdx) { 1393 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1394 1395 InstructionsState S = getSameOpcode(VL); 1396 if (Depth == RecursionMaxDepth) { 1397 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1398 newTreeEntry(VL, false, UserTreeIdx); 1399 return; 1400 } 1401 1402 // Don't handle vectors. 1403 if (S.OpValue->getType()->isVectorTy()) { 1404 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1405 newTreeEntry(VL, false, UserTreeIdx); 1406 return; 1407 } 1408 1409 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1410 if (SI->getValueOperand()->getType()->isVectorTy()) { 1411 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1412 newTreeEntry(VL, false, UserTreeIdx); 1413 return; 1414 } 1415 1416 // If all of the operands are identical or constant we have a simple solution. 1417 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1418 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1419 newTreeEntry(VL, false, UserTreeIdx); 1420 return; 1421 } 1422 1423 // We now know that this is a vector of instructions of the same type from 1424 // the same block. 1425 1426 // Don't vectorize ephemeral values. 1427 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1428 if (EphValues.count(VL[i])) { 1429 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1430 ") is ephemeral.\n"); 1431 newTreeEntry(VL, false, UserTreeIdx); 1432 return; 1433 } 1434 } 1435 1436 // Check if this is a duplicate of another entry. 1437 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1438 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1439 if (!E->isSame(VL)) { 1440 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1441 newTreeEntry(VL, false, UserTreeIdx); 1442 return; 1443 } 1444 // Record the reuse of the tree node. FIXME, currently this is only used to 1445 // properly draw the graph rather than for the actual vectorization. 1446 E->UserTreeIndices.push_back(UserTreeIdx); 1447 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1448 return; 1449 } 1450 1451 // Check that none of the instructions in the bundle are already in the tree. 1452 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1453 auto *I = dyn_cast<Instruction>(VL[i]); 1454 if (!I) 1455 continue; 1456 if (getTreeEntry(I)) { 1457 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1458 ") is already in tree.\n"); 1459 newTreeEntry(VL, false, UserTreeIdx); 1460 return; 1461 } 1462 } 1463 1464 // If any of the scalars is marked as a value that needs to stay scalar, then 1465 // we need to gather the scalars. 1466 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1467 if (MustGather.count(VL[i])) { 1468 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1469 newTreeEntry(VL, false, UserTreeIdx); 1470 return; 1471 } 1472 } 1473 1474 // Check that all of the users of the scalars that we want to vectorize are 1475 // schedulable. 1476 auto *VL0 = cast<Instruction>(S.OpValue); 1477 BasicBlock *BB = VL0->getParent(); 1478 1479 if (!DT->isReachableFromEntry(BB)) { 1480 // Don't go into unreachable blocks. They may contain instructions with 1481 // dependency cycles which confuse the final scheduling. 1482 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1483 newTreeEntry(VL, false, UserTreeIdx); 1484 return; 1485 } 1486 1487 // Check that every instruction appears once in this bundle. 1488 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1489 SmallVector<Value *, 4> UniqueValues; 1490 DenseMap<Value *, unsigned> UniquePositions; 1491 for (Value *V : VL) { 1492 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1493 ReuseShuffleIndicies.emplace_back(Res.first->second); 1494 if (Res.second) 1495 UniqueValues.emplace_back(V); 1496 } 1497 if (UniqueValues.size() == VL.size()) { 1498 ReuseShuffleIndicies.clear(); 1499 } else { 1500 DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1501 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1502 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1503 newTreeEntry(VL, false, UserTreeIdx); 1504 return; 1505 } 1506 VL = UniqueValues; 1507 } 1508 1509 auto &BSRef = BlocksSchedules[BB]; 1510 if (!BSRef) 1511 BSRef = llvm::make_unique<BlockScheduling>(BB); 1512 1513 BlockScheduling &BS = *BSRef.get(); 1514 1515 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1516 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1517 assert((!BS.getScheduleData(VL0) || 1518 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1519 "tryScheduleBundle should cancelScheduling on failure"); 1520 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1521 return; 1522 } 1523 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1524 1525 unsigned ShuffleOrOp = S.IsAltShuffle ? 1526 (unsigned) Instruction::ShuffleVector : S.Opcode; 1527 switch (ShuffleOrOp) { 1528 case Instruction::PHI: { 1529 PHINode *PH = dyn_cast<PHINode>(VL0); 1530 1531 // Check for terminator values (e.g. invoke). 1532 for (unsigned j = 0; j < VL.size(); ++j) 1533 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1534 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1535 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1536 if (Term) { 1537 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1538 BS.cancelScheduling(VL, VL0); 1539 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1540 return; 1541 } 1542 } 1543 1544 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1545 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1546 1547 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1548 ValueList Operands; 1549 // Prepare the operand vector. 1550 for (Value *j : VL) 1551 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1552 PH->getIncomingBlock(i))); 1553 1554 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1555 } 1556 return; 1557 } 1558 case Instruction::ExtractValue: 1559 case Instruction::ExtractElement: { 1560 bool Reuse = canReuseExtract(VL, VL0); 1561 if (Reuse) { 1562 DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1563 ++NumOpsWantToKeepOrder[S.Opcode]; 1564 } else { 1565 SmallVector<Value *, 4> ReverseVL(VL.rbegin(), VL.rend()); 1566 if (canReuseExtract(ReverseVL, VL0)) 1567 --NumOpsWantToKeepOrder[S.Opcode]; 1568 BS.cancelScheduling(VL, VL0); 1569 } 1570 newTreeEntry(VL, Reuse, UserTreeIdx, ReuseShuffleIndicies); 1571 return; 1572 } 1573 case Instruction::Load: { 1574 // Check that a vectorized load would load the same memory as a scalar 1575 // load. For example, we don't want to vectorize loads that are smaller 1576 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1577 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1578 // from such a struct, we read/write packed bits disagreeing with the 1579 // unvectorized version. 1580 Type *ScalarTy = VL0->getType(); 1581 1582 if (DL->getTypeSizeInBits(ScalarTy) != 1583 DL->getTypeAllocSizeInBits(ScalarTy)) { 1584 BS.cancelScheduling(VL, VL0); 1585 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1586 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1587 return; 1588 } 1589 1590 // Make sure all loads in the bundle are simple - we can't vectorize 1591 // atomic or volatile loads. 1592 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1593 LoadInst *L = cast<LoadInst>(VL[i]); 1594 if (!L->isSimple()) { 1595 BS.cancelScheduling(VL, VL0); 1596 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1597 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1598 return; 1599 } 1600 } 1601 1602 // Check if the loads are consecutive, reversed, or neither. 1603 // TODO: What we really want is to sort the loads, but for now, check 1604 // the two likely directions. 1605 bool Consecutive = true; 1606 bool ReverseConsecutive = true; 1607 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1608 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1609 Consecutive = false; 1610 break; 1611 } else { 1612 ReverseConsecutive = false; 1613 } 1614 } 1615 1616 if (Consecutive) { 1617 ++NumOpsWantToKeepOrder[S.Opcode]; 1618 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1619 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1620 return; 1621 } 1622 1623 // If none of the load pairs were consecutive when checked in order, 1624 // check the reverse order. 1625 if (ReverseConsecutive) 1626 for (unsigned i = VL.size() - 1; i > 0; --i) 1627 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1628 ReverseConsecutive = false; 1629 break; 1630 } 1631 1632 BS.cancelScheduling(VL, VL0); 1633 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1634 1635 if (ReverseConsecutive) { 1636 --NumOpsWantToKeepOrder[S.Opcode]; 1637 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1638 } else { 1639 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1640 } 1641 return; 1642 } 1643 case Instruction::ZExt: 1644 case Instruction::SExt: 1645 case Instruction::FPToUI: 1646 case Instruction::FPToSI: 1647 case Instruction::FPExt: 1648 case Instruction::PtrToInt: 1649 case Instruction::IntToPtr: 1650 case Instruction::SIToFP: 1651 case Instruction::UIToFP: 1652 case Instruction::Trunc: 1653 case Instruction::FPTrunc: 1654 case Instruction::BitCast: { 1655 Type *SrcTy = VL0->getOperand(0)->getType(); 1656 for (unsigned i = 0; i < VL.size(); ++i) { 1657 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1658 if (Ty != SrcTy || !isValidElementType(Ty)) { 1659 BS.cancelScheduling(VL, VL0); 1660 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1661 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1662 return; 1663 } 1664 } 1665 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1666 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1667 1668 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1669 ValueList Operands; 1670 // Prepare the operand vector. 1671 for (Value *j : VL) 1672 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1673 1674 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1675 } 1676 return; 1677 } 1678 case Instruction::ICmp: 1679 case Instruction::FCmp: { 1680 // Check that all of the compares have the same predicate. 1681 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1682 Type *ComparedTy = VL0->getOperand(0)->getType(); 1683 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1684 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1685 if (Cmp->getPredicate() != P0 || 1686 Cmp->getOperand(0)->getType() != ComparedTy) { 1687 BS.cancelScheduling(VL, VL0); 1688 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1689 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1690 return; 1691 } 1692 } 1693 1694 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1695 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1696 1697 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1698 ValueList Operands; 1699 // Prepare the operand vector. 1700 for (Value *j : VL) 1701 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1702 1703 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1704 } 1705 return; 1706 } 1707 case Instruction::Select: 1708 case Instruction::Add: 1709 case Instruction::FAdd: 1710 case Instruction::Sub: 1711 case Instruction::FSub: 1712 case Instruction::Mul: 1713 case Instruction::FMul: 1714 case Instruction::UDiv: 1715 case Instruction::SDiv: 1716 case Instruction::FDiv: 1717 case Instruction::URem: 1718 case Instruction::SRem: 1719 case Instruction::FRem: 1720 case Instruction::Shl: 1721 case Instruction::LShr: 1722 case Instruction::AShr: 1723 case Instruction::And: 1724 case Instruction::Or: 1725 case Instruction::Xor: 1726 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1727 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1728 1729 // Sort operands of the instructions so that each side is more likely to 1730 // have the same opcode. 1731 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1732 ValueList Left, Right; 1733 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1734 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1735 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1736 return; 1737 } 1738 1739 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1740 ValueList Operands; 1741 // Prepare the operand vector. 1742 for (Value *j : VL) 1743 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1744 1745 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1746 } 1747 return; 1748 1749 case Instruction::GetElementPtr: { 1750 // We don't combine GEPs with complicated (nested) indexing. 1751 for (unsigned j = 0; j < VL.size(); ++j) { 1752 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1753 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1754 BS.cancelScheduling(VL, VL0); 1755 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1756 return; 1757 } 1758 } 1759 1760 // We can't combine several GEPs into one vector if they operate on 1761 // different types. 1762 Type *Ty0 = VL0->getOperand(0)->getType(); 1763 for (unsigned j = 0; j < VL.size(); ++j) { 1764 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1765 if (Ty0 != CurTy) { 1766 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1767 BS.cancelScheduling(VL, VL0); 1768 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1769 return; 1770 } 1771 } 1772 1773 // We don't combine GEPs with non-constant indexes. 1774 for (unsigned j = 0; j < VL.size(); ++j) { 1775 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1776 if (!isa<ConstantInt>(Op)) { 1777 DEBUG( 1778 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1779 BS.cancelScheduling(VL, VL0); 1780 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1781 return; 1782 } 1783 } 1784 1785 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1786 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1787 for (unsigned i = 0, e = 2; i < e; ++i) { 1788 ValueList Operands; 1789 // Prepare the operand vector. 1790 for (Value *j : VL) 1791 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1792 1793 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1794 } 1795 return; 1796 } 1797 case Instruction::Store: { 1798 // Check if the stores are consecutive or of we need to swizzle them. 1799 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1800 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1801 BS.cancelScheduling(VL, VL0); 1802 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1803 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1804 return; 1805 } 1806 1807 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1808 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1809 1810 ValueList Operands; 1811 for (Value *j : VL) 1812 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1813 1814 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1815 return; 1816 } 1817 case Instruction::Call: { 1818 // Check if the calls are all to the same vectorizable intrinsic. 1819 CallInst *CI = cast<CallInst>(VL0); 1820 // Check if this is an Intrinsic call or something that can be 1821 // represented by an intrinsic call 1822 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1823 if (!isTriviallyVectorizable(ID)) { 1824 BS.cancelScheduling(VL, VL0); 1825 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1826 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1827 return; 1828 } 1829 Function *Int = CI->getCalledFunction(); 1830 Value *A1I = nullptr; 1831 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1832 A1I = CI->getArgOperand(1); 1833 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1834 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1835 if (!CI2 || CI2->getCalledFunction() != Int || 1836 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1837 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1838 BS.cancelScheduling(VL, VL0); 1839 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1840 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1841 << "\n"); 1842 return; 1843 } 1844 // ctlz,cttz and powi are special intrinsics whose second argument 1845 // should be same in order for them to be vectorized. 1846 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1847 Value *A1J = CI2->getArgOperand(1); 1848 if (A1I != A1J) { 1849 BS.cancelScheduling(VL, VL0); 1850 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1851 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1852 << " argument "<< A1I<<"!=" << A1J 1853 << "\n"); 1854 return; 1855 } 1856 } 1857 // Verify that the bundle operands are identical between the two calls. 1858 if (CI->hasOperandBundles() && 1859 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1860 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1861 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1862 BS.cancelScheduling(VL, VL0); 1863 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1864 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1865 << *VL[i] << '\n'); 1866 return; 1867 } 1868 } 1869 1870 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1871 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1872 ValueList Operands; 1873 // Prepare the operand vector. 1874 for (Value *j : VL) { 1875 CallInst *CI2 = dyn_cast<CallInst>(j); 1876 Operands.push_back(CI2->getArgOperand(i)); 1877 } 1878 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1879 } 1880 return; 1881 } 1882 case Instruction::ShuffleVector: 1883 // If this is not an alternate sequence of opcode like add-sub 1884 // then do not vectorize this instruction. 1885 if (!S.IsAltShuffle) { 1886 BS.cancelScheduling(VL, VL0); 1887 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1888 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1889 return; 1890 } 1891 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1892 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1893 1894 // Reorder operands if reordering would enable vectorization. 1895 if (isa<BinaryOperator>(VL0)) { 1896 ValueList Left, Right; 1897 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1898 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1899 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1900 return; 1901 } 1902 1903 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1904 ValueList Operands; 1905 // Prepare the operand vector. 1906 for (Value *j : VL) 1907 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1908 1909 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1910 } 1911 return; 1912 1913 default: 1914 BS.cancelScheduling(VL, VL0); 1915 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1916 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1917 return; 1918 } 1919 } 1920 1921 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1922 unsigned N; 1923 Type *EltTy; 1924 auto *ST = dyn_cast<StructType>(T); 1925 if (ST) { 1926 N = ST->getNumElements(); 1927 EltTy = *ST->element_begin(); 1928 } else { 1929 N = cast<ArrayType>(T)->getNumElements(); 1930 EltTy = cast<ArrayType>(T)->getElementType(); 1931 } 1932 if (!isValidElementType(EltTy)) 1933 return 0; 1934 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1935 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1936 return 0; 1937 if (ST) { 1938 // Check that struct is homogeneous. 1939 for (const auto *Ty : ST->elements()) 1940 if (Ty != EltTy) 1941 return 0; 1942 } 1943 return N; 1944 } 1945 1946 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1947 Instruction *E0 = cast<Instruction>(OpValue); 1948 assert(E0->getOpcode() == Instruction::ExtractElement || 1949 E0->getOpcode() == Instruction::ExtractValue); 1950 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1951 // Check if all of the extracts come from the same vector and from the 1952 // correct offset. 1953 Value *Vec = E0->getOperand(0); 1954 1955 // We have to extract from a vector/aggregate with the same number of elements. 1956 unsigned NElts; 1957 if (E0->getOpcode() == Instruction::ExtractValue) { 1958 const DataLayout &DL = E0->getModule()->getDataLayout(); 1959 NElts = canMapToVector(Vec->getType(), DL); 1960 if (!NElts) 1961 return false; 1962 // Check if load can be rewritten as load of vector. 1963 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1964 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1965 return false; 1966 } else { 1967 NElts = Vec->getType()->getVectorNumElements(); 1968 } 1969 1970 if (NElts != VL.size()) 1971 return false; 1972 1973 // Check that all of the indices extract from the correct offset. 1974 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1975 Instruction *Inst = cast<Instruction>(VL[I]); 1976 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1977 return false; 1978 if (Inst->getOperand(0) != Vec) 1979 return false; 1980 } 1981 1982 return true; 1983 } 1984 1985 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1986 return I->hasOneUse() || 1987 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1988 return ScalarToTreeEntry.count(U) > 0; 1989 }); 1990 } 1991 1992 int BoUpSLP::getEntryCost(TreeEntry *E) { 1993 ArrayRef<Value*> VL = E->Scalars; 1994 1995 Type *ScalarTy = VL[0]->getType(); 1996 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1997 ScalarTy = SI->getValueOperand()->getType(); 1998 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1999 ScalarTy = CI->getOperand(0)->getType(); 2000 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2001 2002 // If we have computed a smaller type for the expression, update VecTy so 2003 // that the costs will be accurate. 2004 if (MinBWs.count(VL[0])) 2005 VecTy = VectorType::get( 2006 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2007 2008 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2009 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2010 int ReuseShuffleCost = 0; 2011 if (NeedToShuffleReuses) { 2012 ReuseShuffleCost = 2013 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2014 } 2015 if (E->NeedToGather) { 2016 if (allConstant(VL)) 2017 return 0; 2018 if (isSplat(VL)) { 2019 return ReuseShuffleCost + 2020 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2021 } 2022 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2023 allSameType(VL) && allSameBlock(VL)) { 2024 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2025 if (ShuffleKind.hasValue()) { 2026 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2027 for (auto *V : VL) { 2028 // If all users of instruction are going to be vectorized and this 2029 // instruction itself is not going to be vectorized, consider this 2030 // instruction as dead and remove its cost from the final cost of the 2031 // vectorized tree. 2032 if (areAllUsersVectorized(cast<Instruction>(V)) && 2033 !ScalarToTreeEntry.count(V)) { 2034 auto *IO = cast<ConstantInt>( 2035 cast<ExtractElementInst>(V)->getIndexOperand()); 2036 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2037 IO->getZExtValue()); 2038 } 2039 } 2040 return ReuseShuffleCost + Cost; 2041 } 2042 } 2043 return ReuseShuffleCost + getGatherCost(VL); 2044 } 2045 InstructionsState S = getSameOpcode(VL); 2046 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2047 Instruction *VL0 = cast<Instruction>(S.OpValue); 2048 unsigned ShuffleOrOp = S.IsAltShuffle ? 2049 (unsigned) Instruction::ShuffleVector : S.Opcode; 2050 switch (ShuffleOrOp) { 2051 case Instruction::PHI: 2052 return 0; 2053 2054 case Instruction::ExtractValue: 2055 case Instruction::ExtractElement: 2056 if (NeedToShuffleReuses) { 2057 unsigned Idx = 0; 2058 for (unsigned I : E->ReuseShuffleIndices) { 2059 if (ShuffleOrOp == Instruction::ExtractElement) { 2060 auto *IO = cast<ConstantInt>( 2061 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2062 Idx = IO->getZExtValue(); 2063 ReuseShuffleCost -= TTI->getVectorInstrCost( 2064 Instruction::ExtractElement, VecTy, Idx); 2065 } else { 2066 ReuseShuffleCost -= TTI->getVectorInstrCost( 2067 Instruction::ExtractElement, VecTy, Idx); 2068 ++Idx; 2069 } 2070 } 2071 Idx = ReuseShuffleNumbers; 2072 for (Value *V : VL) { 2073 if (ShuffleOrOp == Instruction::ExtractElement) { 2074 auto *IO = cast<ConstantInt>( 2075 cast<ExtractElementInst>(V)->getIndexOperand()); 2076 Idx = IO->getZExtValue(); 2077 } else { 2078 --Idx; 2079 } 2080 ReuseShuffleCost += 2081 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2082 } 2083 } 2084 if (canReuseExtract(VL, S.OpValue)) { 2085 int DeadCost = ReuseShuffleCost; 2086 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2087 Instruction *E = cast<Instruction>(VL[i]); 2088 // If all users are going to be vectorized, instruction can be 2089 // considered as dead. 2090 // The same, if have only one user, it will be vectorized for sure. 2091 if (areAllUsersVectorized(E)) 2092 // Take credit for instruction that will become dead. 2093 DeadCost -= 2094 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2095 } 2096 return DeadCost; 2097 } 2098 return ReuseShuffleCost + getGatherCost(VL); 2099 2100 case Instruction::ZExt: 2101 case Instruction::SExt: 2102 case Instruction::FPToUI: 2103 case Instruction::FPToSI: 2104 case Instruction::FPExt: 2105 case Instruction::PtrToInt: 2106 case Instruction::IntToPtr: 2107 case Instruction::SIToFP: 2108 case Instruction::UIToFP: 2109 case Instruction::Trunc: 2110 case Instruction::FPTrunc: 2111 case Instruction::BitCast: { 2112 Type *SrcTy = VL0->getOperand(0)->getType(); 2113 if (NeedToShuffleReuses) { 2114 ReuseShuffleCost -= 2115 (ReuseShuffleNumbers - VL.size()) * 2116 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2117 } 2118 2119 // Calculate the cost of this instruction. 2120 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2121 VL0->getType(), SrcTy, VL0); 2122 2123 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2124 int VecCost = 0; 2125 // Check if the values are candidates to demote. 2126 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2127 VecCost = ReuseShuffleCost + 2128 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2129 } 2130 return VecCost - ScalarCost; 2131 } 2132 case Instruction::FCmp: 2133 case Instruction::ICmp: 2134 case Instruction::Select: { 2135 // Calculate the cost of this instruction. 2136 if (NeedToShuffleReuses) { 2137 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2138 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2139 Builder.getInt1Ty(), VL0); 2140 } 2141 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2142 int ScalarCost = VecTy->getNumElements() * 2143 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2144 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2145 return ReuseShuffleCost + VecCost - ScalarCost; 2146 } 2147 case Instruction::Add: 2148 case Instruction::FAdd: 2149 case Instruction::Sub: 2150 case Instruction::FSub: 2151 case Instruction::Mul: 2152 case Instruction::FMul: 2153 case Instruction::UDiv: 2154 case Instruction::SDiv: 2155 case Instruction::FDiv: 2156 case Instruction::URem: 2157 case Instruction::SRem: 2158 case Instruction::FRem: 2159 case Instruction::Shl: 2160 case Instruction::LShr: 2161 case Instruction::AShr: 2162 case Instruction::And: 2163 case Instruction::Or: 2164 case Instruction::Xor: { 2165 // Certain instructions can be cheaper to vectorize if they have a 2166 // constant second vector operand. 2167 TargetTransformInfo::OperandValueKind Op1VK = 2168 TargetTransformInfo::OK_AnyValue; 2169 TargetTransformInfo::OperandValueKind Op2VK = 2170 TargetTransformInfo::OK_UniformConstantValue; 2171 TargetTransformInfo::OperandValueProperties Op1VP = 2172 TargetTransformInfo::OP_None; 2173 TargetTransformInfo::OperandValueProperties Op2VP = 2174 TargetTransformInfo::OP_None; 2175 2176 // If all operands are exactly the same ConstantInt then set the 2177 // operand kind to OK_UniformConstantValue. 2178 // If instead not all operands are constants, then set the operand kind 2179 // to OK_AnyValue. If all operands are constants but not the same, 2180 // then set the operand kind to OK_NonUniformConstantValue. 2181 ConstantInt *CInt = nullptr; 2182 for (unsigned i = 0; i < VL.size(); ++i) { 2183 const Instruction *I = cast<Instruction>(VL[i]); 2184 if (!isa<ConstantInt>(I->getOperand(1))) { 2185 Op2VK = TargetTransformInfo::OK_AnyValue; 2186 break; 2187 } 2188 if (i == 0) { 2189 CInt = cast<ConstantInt>(I->getOperand(1)); 2190 continue; 2191 } 2192 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2193 CInt != cast<ConstantInt>(I->getOperand(1))) 2194 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2195 } 2196 // FIXME: Currently cost of model modification for division by power of 2197 // 2 is handled for X86 and AArch64. Add support for other targets. 2198 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2199 CInt->getValue().isPowerOf2()) 2200 Op2VP = TargetTransformInfo::OP_PowerOf2; 2201 2202 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2203 if (NeedToShuffleReuses) { 2204 ReuseShuffleCost -= 2205 (ReuseShuffleNumbers - VL.size()) * 2206 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2207 Op2VP, Operands); 2208 } 2209 int ScalarCost = 2210 VecTy->getNumElements() * 2211 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2212 Op2VP, Operands); 2213 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2214 Op1VP, Op2VP, Operands); 2215 return ReuseShuffleCost + VecCost - ScalarCost; 2216 } 2217 case Instruction::GetElementPtr: { 2218 TargetTransformInfo::OperandValueKind Op1VK = 2219 TargetTransformInfo::OK_AnyValue; 2220 TargetTransformInfo::OperandValueKind Op2VK = 2221 TargetTransformInfo::OK_UniformConstantValue; 2222 2223 if (NeedToShuffleReuses) { 2224 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2225 TTI->getArithmeticInstrCost(Instruction::Add, 2226 ScalarTy, Op1VK, Op2VK); 2227 } 2228 int ScalarCost = 2229 VecTy->getNumElements() * 2230 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2231 int VecCost = 2232 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2233 2234 return ReuseShuffleCost + VecCost - ScalarCost; 2235 } 2236 case Instruction::Load: { 2237 // Cost of wide load - cost of scalar loads. 2238 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2239 if (NeedToShuffleReuses) { 2240 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2241 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2242 alignment, 0, VL0); 2243 } 2244 int ScalarLdCost = VecTy->getNumElements() * 2245 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2246 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2247 VecTy, alignment, 0, VL0); 2248 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2249 } 2250 case Instruction::Store: { 2251 // We know that we can merge the stores. Calculate the cost. 2252 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2253 if (NeedToShuffleReuses) { 2254 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2255 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2256 alignment, 0, VL0); 2257 } 2258 int ScalarStCost = VecTy->getNumElements() * 2259 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2260 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2261 VecTy, alignment, 0, VL0); 2262 return ReuseShuffleCost + VecStCost - ScalarStCost; 2263 } 2264 case Instruction::Call: { 2265 CallInst *CI = cast<CallInst>(VL0); 2266 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2267 2268 // Calculate the cost of the scalar and vector calls. 2269 SmallVector<Type*, 4> ScalarTys; 2270 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2271 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2272 2273 FastMathFlags FMF; 2274 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2275 FMF = FPMO->getFastMathFlags(); 2276 2277 if (NeedToShuffleReuses) { 2278 ReuseShuffleCost -= 2279 (ReuseShuffleNumbers - VL.size()) * 2280 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2281 } 2282 int ScalarCallCost = VecTy->getNumElements() * 2283 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2284 2285 SmallVector<Value *, 4> Args(CI->arg_operands()); 2286 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2287 VecTy->getNumElements()); 2288 2289 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2290 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2291 << " for " << *CI << "\n"); 2292 2293 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2294 } 2295 case Instruction::ShuffleVector: { 2296 TargetTransformInfo::OperandValueKind Op1VK = 2297 TargetTransformInfo::OK_AnyValue; 2298 TargetTransformInfo::OperandValueKind Op2VK = 2299 TargetTransformInfo::OK_AnyValue; 2300 int ScalarCost = 0; 2301 if (NeedToShuffleReuses) { 2302 for (unsigned Idx : E->ReuseShuffleIndices) { 2303 Instruction *I = cast<Instruction>(VL[Idx]); 2304 if (!I) 2305 continue; 2306 ReuseShuffleCost -= TTI->getArithmeticInstrCost( 2307 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2308 } 2309 for (Value *V : VL) { 2310 Instruction *I = cast<Instruction>(V); 2311 if (!I) 2312 continue; 2313 ReuseShuffleCost += TTI->getArithmeticInstrCost( 2314 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2315 } 2316 } 2317 int VecCost = 0; 2318 for (Value *i : VL) { 2319 Instruction *I = cast<Instruction>(i); 2320 if (!I) 2321 break; 2322 ScalarCost += 2323 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2324 } 2325 // VecCost is equal to sum of the cost of creating 2 vectors 2326 // and the cost of creating shuffle. 2327 Instruction *I0 = cast<Instruction>(VL[0]); 2328 VecCost = 2329 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2330 Instruction *I1 = cast<Instruction>(VL[1]); 2331 VecCost += 2332 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2333 VecCost += 2334 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2335 return ReuseShuffleCost + VecCost - ScalarCost; 2336 } 2337 default: 2338 llvm_unreachable("Unknown instruction"); 2339 } 2340 } 2341 2342 bool BoUpSLP::isFullyVectorizableTinyTree() { 2343 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2344 VectorizableTree.size() << " is fully vectorizable .\n"); 2345 2346 // We only handle trees of heights 1 and 2. 2347 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2348 return true; 2349 2350 if (VectorizableTree.size() != 2) 2351 return false; 2352 2353 // Handle splat and all-constants stores. 2354 if (!VectorizableTree[0].NeedToGather && 2355 (allConstant(VectorizableTree[1].Scalars) || 2356 isSplat(VectorizableTree[1].Scalars))) 2357 return true; 2358 2359 // Gathering cost would be too much for tiny trees. 2360 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2361 return false; 2362 2363 return true; 2364 } 2365 2366 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2367 // We can vectorize the tree if its size is greater than or equal to the 2368 // minimum size specified by the MinTreeSize command line option. 2369 if (VectorizableTree.size() >= MinTreeSize) 2370 return false; 2371 2372 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2373 // can vectorize it if we can prove it fully vectorizable. 2374 if (isFullyVectorizableTinyTree()) 2375 return false; 2376 2377 assert(VectorizableTree.empty() 2378 ? ExternalUses.empty() 2379 : true && "We shouldn't have any external users"); 2380 2381 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2382 // vectorizable. 2383 return true; 2384 } 2385 2386 int BoUpSLP::getSpillCost() { 2387 // Walk from the bottom of the tree to the top, tracking which values are 2388 // live. When we see a call instruction that is not part of our tree, 2389 // query TTI to see if there is a cost to keeping values live over it 2390 // (for example, if spills and fills are required). 2391 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2392 int Cost = 0; 2393 2394 SmallPtrSet<Instruction*, 4> LiveValues; 2395 Instruction *PrevInst = nullptr; 2396 2397 for (const auto &N : VectorizableTree) { 2398 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2399 if (!Inst) 2400 continue; 2401 2402 if (!PrevInst) { 2403 PrevInst = Inst; 2404 continue; 2405 } 2406 2407 // Update LiveValues. 2408 LiveValues.erase(PrevInst); 2409 for (auto &J : PrevInst->operands()) { 2410 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2411 LiveValues.insert(cast<Instruction>(&*J)); 2412 } 2413 2414 DEBUG( 2415 dbgs() << "SLP: #LV: " << LiveValues.size(); 2416 for (auto *X : LiveValues) 2417 dbgs() << " " << X->getName(); 2418 dbgs() << ", Looking at "; 2419 Inst->dump(); 2420 ); 2421 2422 // Now find the sequence of instructions between PrevInst and Inst. 2423 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2424 PrevInstIt = 2425 PrevInst->getIterator().getReverse(); 2426 while (InstIt != PrevInstIt) { 2427 if (PrevInstIt == PrevInst->getParent()->rend()) { 2428 PrevInstIt = Inst->getParent()->rbegin(); 2429 continue; 2430 } 2431 2432 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2433 SmallVector<Type*, 4> V; 2434 for (auto *II : LiveValues) 2435 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2436 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2437 } 2438 2439 ++PrevInstIt; 2440 } 2441 2442 PrevInst = Inst; 2443 } 2444 2445 return Cost; 2446 } 2447 2448 int BoUpSLP::getTreeCost() { 2449 int Cost = 0; 2450 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2451 VectorizableTree.size() << ".\n"); 2452 2453 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2454 2455 for (TreeEntry &TE : VectorizableTree) { 2456 int C = getEntryCost(&TE); 2457 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2458 << *TE.Scalars[0] << ".\n"); 2459 Cost += C; 2460 } 2461 2462 SmallSet<Value *, 16> ExtractCostCalculated; 2463 int ExtractCost = 0; 2464 for (ExternalUser &EU : ExternalUses) { 2465 // We only add extract cost once for the same scalar. 2466 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2467 continue; 2468 2469 // Uses by ephemeral values are free (because the ephemeral value will be 2470 // removed prior to code generation, and so the extraction will be 2471 // removed as well). 2472 if (EphValues.count(EU.User)) 2473 continue; 2474 2475 // If we plan to rewrite the tree in a smaller type, we will need to sign 2476 // extend the extracted value back to the original type. Here, we account 2477 // for the extract and the added cost of the sign extend if needed. 2478 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2479 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2480 if (MinBWs.count(ScalarRoot)) { 2481 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2482 auto Extend = 2483 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2484 VecTy = VectorType::get(MinTy, BundleWidth); 2485 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2486 VecTy, EU.Lane); 2487 } else { 2488 ExtractCost += 2489 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2490 } 2491 } 2492 2493 int SpillCost = getSpillCost(); 2494 Cost += SpillCost + ExtractCost; 2495 2496 std::string Str; 2497 { 2498 raw_string_ostream OS(Str); 2499 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2500 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2501 << "SLP: Total Cost = " << Cost << ".\n"; 2502 } 2503 DEBUG(dbgs() << Str); 2504 2505 if (ViewSLPTree) 2506 ViewGraph(this, "SLP" + F->getName(), false, Str); 2507 2508 return Cost; 2509 } 2510 2511 int BoUpSLP::getGatherCost(Type *Ty, 2512 const DenseSet<unsigned> &ShuffledIndices) { 2513 int Cost = 0; 2514 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2515 if (!ShuffledIndices.count(i)) 2516 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2517 if (!ShuffledIndices.empty()) 2518 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2519 return Cost; 2520 } 2521 2522 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2523 // Find the type of the operands in VL. 2524 Type *ScalarTy = VL[0]->getType(); 2525 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2526 ScalarTy = SI->getValueOperand()->getType(); 2527 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2528 // Find the cost of inserting/extracting values from the vector. 2529 // Check if the same elements are inserted several times and count them as 2530 // shuffle candidates. 2531 DenseSet<unsigned> ShuffledElements; 2532 DenseSet<Value *> UniqueElements; 2533 // Iterate in reverse order to consider insert elements with the high cost. 2534 for (unsigned I = VL.size(); I > 0; --I) { 2535 unsigned Idx = I - 1; 2536 if (!UniqueElements.insert(VL[Idx]).second) 2537 ShuffledElements.insert(Idx); 2538 } 2539 return getGatherCost(VecTy, ShuffledElements); 2540 } 2541 2542 // Reorder commutative operations in alternate shuffle if the resulting vectors 2543 // are consecutive loads. This would allow us to vectorize the tree. 2544 // If we have something like- 2545 // load a[0] - load b[0] 2546 // load b[1] + load a[1] 2547 // load a[2] - load b[2] 2548 // load a[3] + load b[3] 2549 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2550 // code. 2551 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2552 SmallVectorImpl<Value *> &Left, 2553 SmallVectorImpl<Value *> &Right) { 2554 // Push left and right operands of binary operation into Left and Right 2555 unsigned AltOpcode = getAltOpcode(Opcode); 2556 (void)AltOpcode; 2557 for (Value *V : VL) { 2558 auto *I = cast<Instruction>(V); 2559 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2560 "Incorrect instruction in vector"); 2561 Left.push_back(I->getOperand(0)); 2562 Right.push_back(I->getOperand(1)); 2563 } 2564 2565 // Reorder if we have a commutative operation and consecutive access 2566 // are on either side of the alternate instructions. 2567 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2568 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2569 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2570 Instruction *VL1 = cast<Instruction>(VL[j]); 2571 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2572 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2573 std::swap(Left[j], Right[j]); 2574 continue; 2575 } else if (VL2->isCommutative() && 2576 isConsecutiveAccess(L, L1, *DL, *SE)) { 2577 std::swap(Left[j + 1], Right[j + 1]); 2578 continue; 2579 } 2580 // else unchanged 2581 } 2582 } 2583 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2584 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2585 Instruction *VL1 = cast<Instruction>(VL[j]); 2586 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2587 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2588 std::swap(Left[j], Right[j]); 2589 continue; 2590 } else if (VL2->isCommutative() && 2591 isConsecutiveAccess(L, L1, *DL, *SE)) { 2592 std::swap(Left[j + 1], Right[j + 1]); 2593 continue; 2594 } 2595 // else unchanged 2596 } 2597 } 2598 } 2599 } 2600 2601 // Return true if I should be commuted before adding it's left and right 2602 // operands to the arrays Left and Right. 2603 // 2604 // The vectorizer is trying to either have all elements one side being 2605 // instruction with the same opcode to enable further vectorization, or having 2606 // a splat to lower the vectorizing cost. 2607 static bool shouldReorderOperands( 2608 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2609 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2610 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2611 VLeft = I.getOperand(0); 2612 VRight = I.getOperand(1); 2613 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2614 if (SplatRight) { 2615 if (VRight == Right[i - 1]) 2616 // Preserve SplatRight 2617 return false; 2618 if (VLeft == Right[i - 1]) { 2619 // Commuting would preserve SplatRight, but we don't want to break 2620 // SplatLeft either, i.e. preserve the original order if possible. 2621 // (FIXME: why do we care?) 2622 if (SplatLeft && VLeft == Left[i - 1]) 2623 return false; 2624 return true; 2625 } 2626 } 2627 // Symmetrically handle Right side. 2628 if (SplatLeft) { 2629 if (VLeft == Left[i - 1]) 2630 // Preserve SplatLeft 2631 return false; 2632 if (VRight == Left[i - 1]) 2633 return true; 2634 } 2635 2636 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2637 Instruction *IRight = dyn_cast<Instruction>(VRight); 2638 2639 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2640 // it and not the right, in this case we want to commute. 2641 if (AllSameOpcodeRight) { 2642 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2643 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2644 // Do not commute, a match on the right preserves AllSameOpcodeRight 2645 return false; 2646 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2647 // We have a match and may want to commute, but first check if there is 2648 // not also a match on the existing operands on the Left to preserve 2649 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2650 // (FIXME: why do we care?) 2651 if (AllSameOpcodeLeft && ILeft && 2652 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2653 return false; 2654 return true; 2655 } 2656 } 2657 // Symmetrically handle Left side. 2658 if (AllSameOpcodeLeft) { 2659 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2660 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2661 return false; 2662 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2663 return true; 2664 } 2665 return false; 2666 } 2667 2668 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2669 ArrayRef<Value *> VL, 2670 SmallVectorImpl<Value *> &Left, 2671 SmallVectorImpl<Value *> &Right) { 2672 if (!VL.empty()) { 2673 // Peel the first iteration out of the loop since there's nothing 2674 // interesting to do anyway and it simplifies the checks in the loop. 2675 auto *I = cast<Instruction>(VL[0]); 2676 Value *VLeft = I->getOperand(0); 2677 Value *VRight = I->getOperand(1); 2678 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2679 // Favor having instruction to the right. FIXME: why? 2680 std::swap(VLeft, VRight); 2681 Left.push_back(VLeft); 2682 Right.push_back(VRight); 2683 } 2684 2685 // Keep track if we have instructions with all the same opcode on one side. 2686 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2687 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2688 // Keep track if we have one side with all the same value (broadcast). 2689 bool SplatLeft = true; 2690 bool SplatRight = true; 2691 2692 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2693 Instruction *I = cast<Instruction>(VL[i]); 2694 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2695 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2696 "Can only process commutative instruction"); 2697 // Commute to favor either a splat or maximizing having the same opcodes on 2698 // one side. 2699 Value *VLeft; 2700 Value *VRight; 2701 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2702 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2703 VRight)) { 2704 Left.push_back(VRight); 2705 Right.push_back(VLeft); 2706 } else { 2707 Left.push_back(VLeft); 2708 Right.push_back(VRight); 2709 } 2710 // Update Splat* and AllSameOpcode* after the insertion. 2711 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2712 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2713 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2714 (cast<Instruction>(Left[i - 1])->getOpcode() == 2715 cast<Instruction>(Left[i])->getOpcode()); 2716 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2717 (cast<Instruction>(Right[i - 1])->getOpcode() == 2718 cast<Instruction>(Right[i])->getOpcode()); 2719 } 2720 2721 // If one operand end up being broadcast, return this operand order. 2722 if (SplatRight || SplatLeft) 2723 return; 2724 2725 // Finally check if we can get longer vectorizable chain by reordering 2726 // without breaking the good operand order detected above. 2727 // E.g. If we have something like- 2728 // load a[0] load b[0] 2729 // load b[1] load a[1] 2730 // load a[2] load b[2] 2731 // load a[3] load b[3] 2732 // Reordering the second load b[1] load a[1] would allow us to vectorize 2733 // this code and we still retain AllSameOpcode property. 2734 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2735 // such as- 2736 // add a[0],c[0] load b[0] 2737 // add a[1],c[2] load b[1] 2738 // b[2] load b[2] 2739 // add a[3],c[3] load b[3] 2740 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2741 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2742 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2743 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2744 std::swap(Left[j + 1], Right[j + 1]); 2745 continue; 2746 } 2747 } 2748 } 2749 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2750 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2751 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2752 std::swap(Left[j + 1], Right[j + 1]); 2753 continue; 2754 } 2755 } 2756 } 2757 // else unchanged 2758 } 2759 } 2760 2761 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2762 // Get the basic block this bundle is in. All instructions in the bundle 2763 // should be in this block. 2764 auto *Front = cast<Instruction>(OpValue); 2765 auto *BB = Front->getParent(); 2766 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2767 const unsigned AltOpcode = getAltOpcode(Opcode); 2768 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2769 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2770 cast<Instruction>(V)->getOpcode()) || 2771 cast<Instruction>(V)->getParent() == BB; 2772 })); 2773 2774 // The last instruction in the bundle in program order. 2775 Instruction *LastInst = nullptr; 2776 2777 // Find the last instruction. The common case should be that BB has been 2778 // scheduled, and the last instruction is VL.back(). So we start with 2779 // VL.back() and iterate over schedule data until we reach the end of the 2780 // bundle. The end of the bundle is marked by null ScheduleData. 2781 if (BlocksSchedules.count(BB)) { 2782 auto *Bundle = 2783 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2784 if (Bundle && Bundle->isPartOfBundle()) 2785 for (; Bundle; Bundle = Bundle->NextInBundle) 2786 if (Bundle->OpValue == Bundle->Inst) 2787 LastInst = Bundle->Inst; 2788 } 2789 2790 // LastInst can still be null at this point if there's either not an entry 2791 // for BB in BlocksSchedules or there's no ScheduleData available for 2792 // VL.back(). This can be the case if buildTree_rec aborts for various 2793 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2794 // size is reached, etc.). ScheduleData is initialized in the scheduling 2795 // "dry-run". 2796 // 2797 // If this happens, we can still find the last instruction by brute force. We 2798 // iterate forwards from Front (inclusive) until we either see all 2799 // instructions in the bundle or reach the end of the block. If Front is the 2800 // last instruction in program order, LastInst will be set to Front, and we 2801 // will visit all the remaining instructions in the block. 2802 // 2803 // One of the reasons we exit early from buildTree_rec is to place an upper 2804 // bound on compile-time. Thus, taking an additional compile-time hit here is 2805 // not ideal. However, this should be exceedingly rare since it requires that 2806 // we both exit early from buildTree_rec and that the bundle be out-of-order 2807 // (causing us to iterate all the way to the end of the block). 2808 if (!LastInst) { 2809 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2810 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2811 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2812 LastInst = &I; 2813 if (Bundle.empty()) 2814 break; 2815 } 2816 } 2817 2818 // Set the insertion point after the last instruction in the bundle. Set the 2819 // debug location to Front. 2820 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2821 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2822 } 2823 2824 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2825 Value *Vec = UndefValue::get(Ty); 2826 // Generate the 'InsertElement' instruction. 2827 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2828 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2829 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2830 GatherSeq.insert(Insrt); 2831 CSEBlocks.insert(Insrt->getParent()); 2832 2833 // Add to our 'need-to-extract' list. 2834 if (TreeEntry *E = getTreeEntry(VL[i])) { 2835 // Find which lane we need to extract. 2836 int FoundLane = -1; 2837 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2838 // Is this the lane of the scalar that we are looking for ? 2839 if (E->Scalars[Lane] == VL[i]) { 2840 FoundLane = Lane; 2841 break; 2842 } 2843 } 2844 assert(FoundLane >= 0 && "Could not find the correct lane"); 2845 if (!E->ReuseShuffleIndices.empty()) { 2846 FoundLane = 2847 std::distance(E->ReuseShuffleIndices.begin(), 2848 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2849 } 2850 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2851 } 2852 } 2853 } 2854 2855 return Vec; 2856 } 2857 2858 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2859 InstructionsState S = getSameOpcode(VL); 2860 if (S.Opcode) { 2861 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2862 if (E->isSame(VL)) { 2863 Value *V = vectorizeTree(E); 2864 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2865 // We need to get the vectorized value but without shuffle. 2866 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2867 V = SV->getOperand(0); 2868 } else { 2869 // Reshuffle to get only unique values. 2870 SmallVector<unsigned, 4> UniqueIdxs; 2871 SmallSet<unsigned, 4> UsedIdxs; 2872 for(unsigned Idx : E->ReuseShuffleIndices) 2873 if (UsedIdxs.insert(Idx).second) 2874 UniqueIdxs.emplace_back(Idx); 2875 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2876 UniqueIdxs); 2877 } 2878 } 2879 return V; 2880 } 2881 } 2882 } 2883 2884 Type *ScalarTy = S.OpValue->getType(); 2885 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2886 ScalarTy = SI->getValueOperand()->getType(); 2887 2888 // Check that every instruction appears once in this bundle. 2889 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2890 SmallVector<Value *, 4> UniqueValues; 2891 if (VL.size() > 2) { 2892 DenseMap<Value *, unsigned> UniquePositions; 2893 for (Value *V : VL) { 2894 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2895 ReuseShuffleIndicies.emplace_back(Res.first->second); 2896 if (Res.second || isa<Constant>(V)) 2897 UniqueValues.emplace_back(V); 2898 } 2899 // Do not shuffle single element or if number of unique values is not power 2900 // of 2. 2901 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2902 !llvm::isPowerOf2_32(UniqueValues.size())) 2903 ReuseShuffleIndicies.clear(); 2904 else 2905 VL = UniqueValues; 2906 } 2907 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2908 2909 Value *V = Gather(VL, VecTy); 2910 if (!ReuseShuffleIndicies.empty()) { 2911 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2912 ReuseShuffleIndicies, "shuffle"); 2913 if (auto *I = dyn_cast<Instruction>(V)) { 2914 GatherSeq.insert(I); 2915 CSEBlocks.insert(I->getParent()); 2916 } 2917 } 2918 return V; 2919 } 2920 2921 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2922 IRBuilder<>::InsertPointGuard Guard(Builder); 2923 2924 if (E->VectorizedValue) { 2925 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2926 return E->VectorizedValue; 2927 } 2928 2929 InstructionsState S = getSameOpcode(E->Scalars); 2930 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2931 Type *ScalarTy = VL0->getType(); 2932 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2933 ScalarTy = SI->getValueOperand()->getType(); 2934 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2935 2936 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2937 2938 if (E->NeedToGather) { 2939 setInsertPointAfterBundle(E->Scalars, VL0); 2940 auto *V = Gather(E->Scalars, VecTy); 2941 if (NeedToShuffleReuses) { 2942 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2943 E->ReuseShuffleIndices, "shuffle"); 2944 if (auto *I = dyn_cast<Instruction>(V)) { 2945 GatherSeq.insert(I); 2946 CSEBlocks.insert(I->getParent()); 2947 } 2948 } 2949 E->VectorizedValue = V; 2950 return V; 2951 } 2952 2953 unsigned ShuffleOrOp = S.IsAltShuffle ? 2954 (unsigned) Instruction::ShuffleVector : S.Opcode; 2955 switch (ShuffleOrOp) { 2956 case Instruction::PHI: { 2957 PHINode *PH = dyn_cast<PHINode>(VL0); 2958 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2959 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2960 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2961 Value *V = NewPhi; 2962 if (NeedToShuffleReuses) { 2963 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2964 E->ReuseShuffleIndices, "shuffle"); 2965 } 2966 E->VectorizedValue = V; 2967 2968 // PHINodes may have multiple entries from the same block. We want to 2969 // visit every block once. 2970 SmallSet<BasicBlock*, 4> VisitedBBs; 2971 2972 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2973 ValueList Operands; 2974 BasicBlock *IBB = PH->getIncomingBlock(i); 2975 2976 if (!VisitedBBs.insert(IBB).second) { 2977 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2978 continue; 2979 } 2980 2981 // Prepare the operand vector. 2982 for (Value *V : E->Scalars) 2983 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2984 2985 Builder.SetInsertPoint(IBB->getTerminator()); 2986 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2987 Value *Vec = vectorizeTree(Operands); 2988 NewPhi->addIncoming(Vec, IBB); 2989 } 2990 2991 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2992 "Invalid number of incoming values"); 2993 return V; 2994 } 2995 2996 case Instruction::ExtractElement: { 2997 if (canReuseExtract(E->Scalars, VL0)) { 2998 Value *V = VL0->getOperand(0); 2999 if (NeedToShuffleReuses) { 3000 Builder.SetInsertPoint(VL0); 3001 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3002 E->ReuseShuffleIndices, "shuffle"); 3003 } 3004 E->VectorizedValue = V; 3005 return V; 3006 } 3007 setInsertPointAfterBundle(E->Scalars, VL0); 3008 auto *V = Gather(E->Scalars, VecTy); 3009 if (NeedToShuffleReuses) { 3010 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3011 E->ReuseShuffleIndices, "shuffle"); 3012 if (auto *I = dyn_cast<Instruction>(V)) { 3013 GatherSeq.insert(I); 3014 CSEBlocks.insert(I->getParent()); 3015 } 3016 } 3017 E->VectorizedValue = V; 3018 return V; 3019 } 3020 case Instruction::ExtractValue: { 3021 if (canReuseExtract(E->Scalars, VL0)) { 3022 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3023 Builder.SetInsertPoint(LI); 3024 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3025 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3026 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3027 Value *NewV = propagateMetadata(V, E->Scalars); 3028 if (NeedToShuffleReuses) { 3029 NewV = Builder.CreateShuffleVector( 3030 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3031 } 3032 E->VectorizedValue = NewV; 3033 return NewV; 3034 } 3035 setInsertPointAfterBundle(E->Scalars, VL0); 3036 auto *V = Gather(E->Scalars, VecTy); 3037 if (NeedToShuffleReuses) { 3038 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3039 E->ReuseShuffleIndices, "shuffle"); 3040 if (auto *I = dyn_cast<Instruction>(V)) { 3041 GatherSeq.insert(I); 3042 CSEBlocks.insert(I->getParent()); 3043 } 3044 } 3045 E->VectorizedValue = V; 3046 return V; 3047 } 3048 case Instruction::ZExt: 3049 case Instruction::SExt: 3050 case Instruction::FPToUI: 3051 case Instruction::FPToSI: 3052 case Instruction::FPExt: 3053 case Instruction::PtrToInt: 3054 case Instruction::IntToPtr: 3055 case Instruction::SIToFP: 3056 case Instruction::UIToFP: 3057 case Instruction::Trunc: 3058 case Instruction::FPTrunc: 3059 case Instruction::BitCast: { 3060 ValueList INVL; 3061 for (Value *V : E->Scalars) 3062 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3063 3064 setInsertPointAfterBundle(E->Scalars, VL0); 3065 3066 Value *InVec = vectorizeTree(INVL); 3067 3068 if (E->VectorizedValue) { 3069 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3070 return E->VectorizedValue; 3071 } 3072 3073 CastInst *CI = dyn_cast<CastInst>(VL0); 3074 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3075 if (NeedToShuffleReuses) { 3076 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3077 E->ReuseShuffleIndices, "shuffle"); 3078 } 3079 E->VectorizedValue = V; 3080 ++NumVectorInstructions; 3081 return V; 3082 } 3083 case Instruction::FCmp: 3084 case Instruction::ICmp: { 3085 ValueList LHSV, RHSV; 3086 for (Value *V : E->Scalars) { 3087 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3088 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3089 } 3090 3091 setInsertPointAfterBundle(E->Scalars, VL0); 3092 3093 Value *L = vectorizeTree(LHSV); 3094 Value *R = vectorizeTree(RHSV); 3095 3096 if (E->VectorizedValue) { 3097 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3098 return E->VectorizedValue; 3099 } 3100 3101 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3102 Value *V; 3103 if (S.Opcode == Instruction::FCmp) 3104 V = Builder.CreateFCmp(P0, L, R); 3105 else 3106 V = Builder.CreateICmp(P0, L, R); 3107 3108 propagateIRFlags(V, E->Scalars, VL0); 3109 if (NeedToShuffleReuses) { 3110 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3111 E->ReuseShuffleIndices, "shuffle"); 3112 } 3113 E->VectorizedValue = V; 3114 ++NumVectorInstructions; 3115 return V; 3116 } 3117 case Instruction::Select: { 3118 ValueList TrueVec, FalseVec, CondVec; 3119 for (Value *V : E->Scalars) { 3120 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3121 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3122 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3123 } 3124 3125 setInsertPointAfterBundle(E->Scalars, VL0); 3126 3127 Value *Cond = vectorizeTree(CondVec); 3128 Value *True = vectorizeTree(TrueVec); 3129 Value *False = vectorizeTree(FalseVec); 3130 3131 if (E->VectorizedValue) { 3132 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3133 return E->VectorizedValue; 3134 } 3135 3136 Value *V = Builder.CreateSelect(Cond, True, False); 3137 if (NeedToShuffleReuses) { 3138 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3139 E->ReuseShuffleIndices, "shuffle"); 3140 } 3141 E->VectorizedValue = V; 3142 ++NumVectorInstructions; 3143 return V; 3144 } 3145 case Instruction::Add: 3146 case Instruction::FAdd: 3147 case Instruction::Sub: 3148 case Instruction::FSub: 3149 case Instruction::Mul: 3150 case Instruction::FMul: 3151 case Instruction::UDiv: 3152 case Instruction::SDiv: 3153 case Instruction::FDiv: 3154 case Instruction::URem: 3155 case Instruction::SRem: 3156 case Instruction::FRem: 3157 case Instruction::Shl: 3158 case Instruction::LShr: 3159 case Instruction::AShr: 3160 case Instruction::And: 3161 case Instruction::Or: 3162 case Instruction::Xor: { 3163 ValueList LHSVL, RHSVL; 3164 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3165 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3166 RHSVL); 3167 else 3168 for (Value *V : E->Scalars) { 3169 auto *I = cast<Instruction>(V); 3170 LHSVL.push_back(I->getOperand(0)); 3171 RHSVL.push_back(I->getOperand(1)); 3172 } 3173 3174 setInsertPointAfterBundle(E->Scalars, VL0); 3175 3176 Value *LHS = vectorizeTree(LHSVL); 3177 Value *RHS = vectorizeTree(RHSVL); 3178 3179 if (E->VectorizedValue) { 3180 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3181 return E->VectorizedValue; 3182 } 3183 3184 Value *V = Builder.CreateBinOp( 3185 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3186 propagateIRFlags(V, E->Scalars, VL0); 3187 if (auto *I = dyn_cast<Instruction>(V)) 3188 V = propagateMetadata(I, E->Scalars); 3189 3190 if (NeedToShuffleReuses) { 3191 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3192 E->ReuseShuffleIndices, "shuffle"); 3193 } 3194 E->VectorizedValue = V; 3195 ++NumVectorInstructions; 3196 3197 return V; 3198 } 3199 case Instruction::Load: { 3200 // Loads are inserted at the head of the tree because we don't want to 3201 // sink them all the way down past store instructions. 3202 setInsertPointAfterBundle(E->Scalars, VL0); 3203 3204 LoadInst *LI = cast<LoadInst>(VL0); 3205 Type *ScalarLoadTy = LI->getType(); 3206 unsigned AS = LI->getPointerAddressSpace(); 3207 3208 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3209 VecTy->getPointerTo(AS)); 3210 3211 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3212 // ExternalUses list to make sure that an extract will be generated in the 3213 // future. 3214 Value *PO = LI->getPointerOperand(); 3215 if (getTreeEntry(PO)) 3216 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3217 3218 unsigned Alignment = LI->getAlignment(); 3219 LI = Builder.CreateLoad(VecPtr); 3220 if (!Alignment) { 3221 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3222 } 3223 LI->setAlignment(Alignment); 3224 Value *V = propagateMetadata(LI, E->Scalars); 3225 if (NeedToShuffleReuses) { 3226 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3227 E->ReuseShuffleIndices, "shuffle"); 3228 } 3229 E->VectorizedValue = V; 3230 ++NumVectorInstructions; 3231 return V; 3232 } 3233 case Instruction::Store: { 3234 StoreInst *SI = cast<StoreInst>(VL0); 3235 unsigned Alignment = SI->getAlignment(); 3236 unsigned AS = SI->getPointerAddressSpace(); 3237 3238 ValueList ScalarStoreValues; 3239 for (Value *V : E->Scalars) 3240 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3241 3242 setInsertPointAfterBundle(E->Scalars, VL0); 3243 3244 Value *VecValue = vectorizeTree(ScalarStoreValues); 3245 Value *ScalarPtr = SI->getPointerOperand(); 3246 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3247 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3248 3249 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3250 // ExternalUses to make sure that an extract will be generated in the 3251 // future. 3252 if (getTreeEntry(ScalarPtr)) 3253 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3254 3255 if (!Alignment) 3256 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3257 3258 S->setAlignment(Alignment); 3259 Value *V = propagateMetadata(S, E->Scalars); 3260 if (NeedToShuffleReuses) { 3261 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3262 E->ReuseShuffleIndices, "shuffle"); 3263 } 3264 E->VectorizedValue = V; 3265 ++NumVectorInstructions; 3266 return V; 3267 } 3268 case Instruction::GetElementPtr: { 3269 setInsertPointAfterBundle(E->Scalars, VL0); 3270 3271 ValueList Op0VL; 3272 for (Value *V : E->Scalars) 3273 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3274 3275 Value *Op0 = vectorizeTree(Op0VL); 3276 3277 std::vector<Value *> OpVecs; 3278 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3279 ++j) { 3280 ValueList OpVL; 3281 for (Value *V : E->Scalars) 3282 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3283 3284 Value *OpVec = vectorizeTree(OpVL); 3285 OpVecs.push_back(OpVec); 3286 } 3287 3288 Value *V = Builder.CreateGEP( 3289 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3290 if (Instruction *I = dyn_cast<Instruction>(V)) 3291 V = propagateMetadata(I, E->Scalars); 3292 3293 if (NeedToShuffleReuses) { 3294 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3295 E->ReuseShuffleIndices, "shuffle"); 3296 } 3297 E->VectorizedValue = V; 3298 ++NumVectorInstructions; 3299 3300 return V; 3301 } 3302 case Instruction::Call: { 3303 CallInst *CI = cast<CallInst>(VL0); 3304 setInsertPointAfterBundle(E->Scalars, VL0); 3305 Function *FI; 3306 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3307 Value *ScalarArg = nullptr; 3308 if (CI && (FI = CI->getCalledFunction())) { 3309 IID = FI->getIntrinsicID(); 3310 } 3311 std::vector<Value *> OpVecs; 3312 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3313 ValueList OpVL; 3314 // ctlz,cttz and powi are special intrinsics whose second argument is 3315 // a scalar. This argument should not be vectorized. 3316 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3317 CallInst *CEI = cast<CallInst>(VL0); 3318 ScalarArg = CEI->getArgOperand(j); 3319 OpVecs.push_back(CEI->getArgOperand(j)); 3320 continue; 3321 } 3322 for (Value *V : E->Scalars) { 3323 CallInst *CEI = cast<CallInst>(V); 3324 OpVL.push_back(CEI->getArgOperand(j)); 3325 } 3326 3327 Value *OpVec = vectorizeTree(OpVL); 3328 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3329 OpVecs.push_back(OpVec); 3330 } 3331 3332 Module *M = F->getParent(); 3333 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3334 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3335 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3336 SmallVector<OperandBundleDef, 1> OpBundles; 3337 CI->getOperandBundlesAsDefs(OpBundles); 3338 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3339 3340 // The scalar argument uses an in-tree scalar so we add the new vectorized 3341 // call to ExternalUses list to make sure that an extract will be 3342 // generated in the future. 3343 if (ScalarArg && getTreeEntry(ScalarArg)) 3344 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3345 3346 propagateIRFlags(V, E->Scalars, VL0); 3347 if (NeedToShuffleReuses) { 3348 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3349 E->ReuseShuffleIndices, "shuffle"); 3350 } 3351 E->VectorizedValue = V; 3352 ++NumVectorInstructions; 3353 return V; 3354 } 3355 case Instruction::ShuffleVector: { 3356 ValueList LHSVL, RHSVL; 3357 assert(Instruction::isBinaryOp(S.Opcode) && 3358 "Invalid Shuffle Vector Operand"); 3359 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3360 setInsertPointAfterBundle(E->Scalars, VL0); 3361 3362 Value *LHS = vectorizeTree(LHSVL); 3363 Value *RHS = vectorizeTree(RHSVL); 3364 3365 if (E->VectorizedValue) { 3366 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3367 return E->VectorizedValue; 3368 } 3369 3370 // Create a vector of LHS op1 RHS 3371 Value *V0 = Builder.CreateBinOp( 3372 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3373 3374 unsigned AltOpcode = getAltOpcode(S.Opcode); 3375 // Create a vector of LHS op2 RHS 3376 Value *V1 = Builder.CreateBinOp( 3377 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3378 3379 // Create shuffle to take alternate operations from the vector. 3380 // Also, gather up odd and even scalar ops to propagate IR flags to 3381 // each vector operation. 3382 ValueList OddScalars, EvenScalars; 3383 unsigned e = E->Scalars.size(); 3384 SmallVector<Constant *, 8> Mask(e); 3385 for (unsigned i = 0; i < e; ++i) { 3386 if (isOdd(i)) { 3387 Mask[i] = Builder.getInt32(e + i); 3388 OddScalars.push_back(E->Scalars[i]); 3389 } else { 3390 Mask[i] = Builder.getInt32(i); 3391 EvenScalars.push_back(E->Scalars[i]); 3392 } 3393 } 3394 3395 Value *ShuffleMask = ConstantVector::get(Mask); 3396 propagateIRFlags(V0, EvenScalars); 3397 propagateIRFlags(V1, OddScalars); 3398 3399 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3400 if (Instruction *I = dyn_cast<Instruction>(V)) 3401 V = propagateMetadata(I, E->Scalars); 3402 if (NeedToShuffleReuses) { 3403 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3404 E->ReuseShuffleIndices, "shuffle"); 3405 } 3406 E->VectorizedValue = V; 3407 ++NumVectorInstructions; 3408 3409 return V; 3410 } 3411 default: 3412 llvm_unreachable("unknown inst"); 3413 } 3414 return nullptr; 3415 } 3416 3417 Value *BoUpSLP::vectorizeTree() { 3418 ExtraValueToDebugLocsMap ExternallyUsedValues; 3419 return vectorizeTree(ExternallyUsedValues); 3420 } 3421 3422 Value * 3423 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3424 // All blocks must be scheduled before any instructions are inserted. 3425 for (auto &BSIter : BlocksSchedules) { 3426 scheduleBlock(BSIter.second.get()); 3427 } 3428 3429 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3430 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3431 3432 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3433 // vectorized root. InstCombine will then rewrite the entire expression. We 3434 // sign extend the extracted values below. 3435 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3436 if (MinBWs.count(ScalarRoot)) { 3437 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3438 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3439 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3440 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3441 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3442 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3443 VectorizableTree[0].VectorizedValue = Trunc; 3444 } 3445 3446 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3447 3448 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3449 // specified by ScalarType. 3450 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3451 if (!MinBWs.count(ScalarRoot)) 3452 return Ex; 3453 if (MinBWs[ScalarRoot].second) 3454 return Builder.CreateSExt(Ex, ScalarType); 3455 return Builder.CreateZExt(Ex, ScalarType); 3456 }; 3457 3458 // Extract all of the elements with the external uses. 3459 for (const auto &ExternalUse : ExternalUses) { 3460 Value *Scalar = ExternalUse.Scalar; 3461 llvm::User *User = ExternalUse.User; 3462 3463 // Skip users that we already RAUW. This happens when one instruction 3464 // has multiple uses of the same value. 3465 if (User && !is_contained(Scalar->users(), User)) 3466 continue; 3467 TreeEntry *E = getTreeEntry(Scalar); 3468 assert(E && "Invalid scalar"); 3469 assert(!E->NeedToGather && "Extracting from a gather list"); 3470 3471 Value *Vec = E->VectorizedValue; 3472 assert(Vec && "Can't find vectorizable value"); 3473 3474 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3475 // If User == nullptr, the Scalar is used as extra arg. Generate 3476 // ExtractElement instruction and update the record for this scalar in 3477 // ExternallyUsedValues. 3478 if (!User) { 3479 assert(ExternallyUsedValues.count(Scalar) && 3480 "Scalar with nullptr as an external user must be registered in " 3481 "ExternallyUsedValues map"); 3482 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3483 Builder.SetInsertPoint(VecI->getParent(), 3484 std::next(VecI->getIterator())); 3485 } else { 3486 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3487 } 3488 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3489 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3490 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3491 auto &Locs = ExternallyUsedValues[Scalar]; 3492 ExternallyUsedValues.insert({Ex, Locs}); 3493 ExternallyUsedValues.erase(Scalar); 3494 continue; 3495 } 3496 3497 // Generate extracts for out-of-tree users. 3498 // Find the insertion point for the extractelement lane. 3499 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3500 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3501 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3502 if (PH->getIncomingValue(i) == Scalar) { 3503 TerminatorInst *IncomingTerminator = 3504 PH->getIncomingBlock(i)->getTerminator(); 3505 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3506 Builder.SetInsertPoint(VecI->getParent(), 3507 std::next(VecI->getIterator())); 3508 } else { 3509 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3510 } 3511 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3512 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3513 CSEBlocks.insert(PH->getIncomingBlock(i)); 3514 PH->setOperand(i, Ex); 3515 } 3516 } 3517 } else { 3518 Builder.SetInsertPoint(cast<Instruction>(User)); 3519 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3520 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3521 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3522 User->replaceUsesOfWith(Scalar, Ex); 3523 } 3524 } else { 3525 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3526 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3527 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3528 CSEBlocks.insert(&F->getEntryBlock()); 3529 User->replaceUsesOfWith(Scalar, Ex); 3530 } 3531 3532 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3533 } 3534 3535 // For each vectorized value: 3536 for (TreeEntry &EIdx : VectorizableTree) { 3537 TreeEntry *Entry = &EIdx; 3538 3539 // No need to handle users of gathered values. 3540 if (Entry->NeedToGather) 3541 continue; 3542 3543 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3544 3545 // For each lane: 3546 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3547 Value *Scalar = Entry->Scalars[Lane]; 3548 3549 Type *Ty = Scalar->getType(); 3550 if (!Ty->isVoidTy()) { 3551 #ifndef NDEBUG 3552 for (User *U : Scalar->users()) { 3553 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3554 3555 // It is legal to replace users in the ignorelist by undef. 3556 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3557 "Replacing out-of-tree value with undef"); 3558 } 3559 #endif 3560 Value *Undef = UndefValue::get(Ty); 3561 Scalar->replaceAllUsesWith(Undef); 3562 } 3563 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3564 eraseInstruction(cast<Instruction>(Scalar)); 3565 } 3566 } 3567 3568 Builder.ClearInsertionPoint(); 3569 3570 return VectorizableTree[0].VectorizedValue; 3571 } 3572 3573 void BoUpSLP::optimizeGatherSequence() { 3574 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3575 << " gather sequences instructions.\n"); 3576 // LICM InsertElementInst sequences. 3577 for (Instruction *I : GatherSeq) { 3578 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3579 continue; 3580 3581 // Check if this block is inside a loop. 3582 Loop *L = LI->getLoopFor(I->getParent()); 3583 if (!L) 3584 continue; 3585 3586 // Check if it has a preheader. 3587 BasicBlock *PreHeader = L->getLoopPreheader(); 3588 if (!PreHeader) 3589 continue; 3590 3591 // If the vector or the element that we insert into it are 3592 // instructions that are defined in this basic block then we can't 3593 // hoist this instruction. 3594 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3595 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3596 if (Op0 && L->contains(Op0)) 3597 continue; 3598 if (Op1 && L->contains(Op1)) 3599 continue; 3600 3601 // We can hoist this instruction. Move it to the pre-header. 3602 I->moveBefore(PreHeader->getTerminator()); 3603 } 3604 3605 // Make a list of all reachable blocks in our CSE queue. 3606 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3607 CSEWorkList.reserve(CSEBlocks.size()); 3608 for (BasicBlock *BB : CSEBlocks) 3609 if (DomTreeNode *N = DT->getNode(BB)) { 3610 assert(DT->isReachableFromEntry(N)); 3611 CSEWorkList.push_back(N); 3612 } 3613 3614 // Sort blocks by domination. This ensures we visit a block after all blocks 3615 // dominating it are visited. 3616 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3617 [this](const DomTreeNode *A, const DomTreeNode *B) { 3618 return DT->properlyDominates(A, B); 3619 }); 3620 3621 // Perform O(N^2) search over the gather sequences and merge identical 3622 // instructions. TODO: We can further optimize this scan if we split the 3623 // instructions into different buckets based on the insert lane. 3624 SmallVector<Instruction *, 16> Visited; 3625 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3626 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3627 "Worklist not sorted properly!"); 3628 BasicBlock *BB = (*I)->getBlock(); 3629 // For all instructions in blocks containing gather sequences: 3630 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3631 Instruction *In = &*it++; 3632 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3633 continue; 3634 3635 // Check if we can replace this instruction with any of the 3636 // visited instructions. 3637 for (Instruction *v : Visited) { 3638 if (In->isIdenticalTo(v) && 3639 DT->dominates(v->getParent(), In->getParent())) { 3640 In->replaceAllUsesWith(v); 3641 eraseInstruction(In); 3642 In = nullptr; 3643 break; 3644 } 3645 } 3646 if (In) { 3647 assert(!is_contained(Visited, In)); 3648 Visited.push_back(In); 3649 } 3650 } 3651 } 3652 CSEBlocks.clear(); 3653 GatherSeq.clear(); 3654 } 3655 3656 // Groups the instructions to a bundle (which is then a single scheduling entity) 3657 // and schedules instructions until the bundle gets ready. 3658 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3659 BoUpSLP *SLP, Value *OpValue) { 3660 if (isa<PHINode>(OpValue)) 3661 return true; 3662 3663 // Initialize the instruction bundle. 3664 Instruction *OldScheduleEnd = ScheduleEnd; 3665 ScheduleData *PrevInBundle = nullptr; 3666 ScheduleData *Bundle = nullptr; 3667 bool ReSchedule = false; 3668 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3669 3670 // Make sure that the scheduling region contains all 3671 // instructions of the bundle. 3672 for (Value *V : VL) { 3673 if (!extendSchedulingRegion(V, OpValue)) 3674 return false; 3675 } 3676 3677 for (Value *V : VL) { 3678 ScheduleData *BundleMember = getScheduleData(V); 3679 assert(BundleMember && 3680 "no ScheduleData for bundle member (maybe not in same basic block)"); 3681 if (BundleMember->IsScheduled) { 3682 // A bundle member was scheduled as single instruction before and now 3683 // needs to be scheduled as part of the bundle. We just get rid of the 3684 // existing schedule. 3685 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3686 << " was already scheduled\n"); 3687 ReSchedule = true; 3688 } 3689 assert(BundleMember->isSchedulingEntity() && 3690 "bundle member already part of other bundle"); 3691 if (PrevInBundle) { 3692 PrevInBundle->NextInBundle = BundleMember; 3693 } else { 3694 Bundle = BundleMember; 3695 } 3696 BundleMember->UnscheduledDepsInBundle = 0; 3697 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3698 3699 // Group the instructions to a bundle. 3700 BundleMember->FirstInBundle = Bundle; 3701 PrevInBundle = BundleMember; 3702 } 3703 if (ScheduleEnd != OldScheduleEnd) { 3704 // The scheduling region got new instructions at the lower end (or it is a 3705 // new region for the first bundle). This makes it necessary to 3706 // recalculate all dependencies. 3707 // It is seldom that this needs to be done a second time after adding the 3708 // initial bundle to the region. 3709 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3710 doForAllOpcodes(I, [](ScheduleData *SD) { 3711 SD->clearDependencies(); 3712 }); 3713 } 3714 ReSchedule = true; 3715 } 3716 if (ReSchedule) { 3717 resetSchedule(); 3718 initialFillReadyList(ReadyInsts); 3719 } 3720 3721 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3722 << BB->getName() << "\n"); 3723 3724 calculateDependencies(Bundle, true, SLP); 3725 3726 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3727 // means that there are no cyclic dependencies and we can schedule it. 3728 // Note that's important that we don't "schedule" the bundle yet (see 3729 // cancelScheduling). 3730 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3731 3732 ScheduleData *pickedSD = ReadyInsts.back(); 3733 ReadyInsts.pop_back(); 3734 3735 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3736 schedule(pickedSD, ReadyInsts); 3737 } 3738 } 3739 if (!Bundle->isReady()) { 3740 cancelScheduling(VL, OpValue); 3741 return false; 3742 } 3743 return true; 3744 } 3745 3746 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3747 Value *OpValue) { 3748 if (isa<PHINode>(OpValue)) 3749 return; 3750 3751 ScheduleData *Bundle = getScheduleData(OpValue); 3752 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3753 assert(!Bundle->IsScheduled && 3754 "Can't cancel bundle which is already scheduled"); 3755 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3756 "tried to unbundle something which is not a bundle"); 3757 3758 // Un-bundle: make single instructions out of the bundle. 3759 ScheduleData *BundleMember = Bundle; 3760 while (BundleMember) { 3761 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3762 BundleMember->FirstInBundle = BundleMember; 3763 ScheduleData *Next = BundleMember->NextInBundle; 3764 BundleMember->NextInBundle = nullptr; 3765 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3766 if (BundleMember->UnscheduledDepsInBundle == 0) { 3767 ReadyInsts.insert(BundleMember); 3768 } 3769 BundleMember = Next; 3770 } 3771 } 3772 3773 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3774 // Allocate a new ScheduleData for the instruction. 3775 if (ChunkPos >= ChunkSize) { 3776 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3777 ChunkPos = 0; 3778 } 3779 return &(ScheduleDataChunks.back()[ChunkPos++]); 3780 } 3781 3782 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3783 Value *OpValue) { 3784 if (getScheduleData(V, isOneOf(OpValue, V))) 3785 return true; 3786 Instruction *I = dyn_cast<Instruction>(V); 3787 assert(I && "bundle member must be an instruction"); 3788 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3789 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3790 ScheduleData *ISD = getScheduleData(I); 3791 if (!ISD) 3792 return false; 3793 assert(isInSchedulingRegion(ISD) && 3794 "ScheduleData not in scheduling region"); 3795 ScheduleData *SD = allocateScheduleDataChunks(); 3796 SD->Inst = I; 3797 SD->init(SchedulingRegionID, OpValue); 3798 ExtraScheduleDataMap[I][OpValue] = SD; 3799 return true; 3800 }; 3801 if (CheckSheduleForI(I)) 3802 return true; 3803 if (!ScheduleStart) { 3804 // It's the first instruction in the new region. 3805 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3806 ScheduleStart = I; 3807 ScheduleEnd = I->getNextNode(); 3808 if (isOneOf(OpValue, I) != I) 3809 CheckSheduleForI(I); 3810 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3811 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3812 return true; 3813 } 3814 // Search up and down at the same time, because we don't know if the new 3815 // instruction is above or below the existing scheduling region. 3816 BasicBlock::reverse_iterator UpIter = 3817 ++ScheduleStart->getIterator().getReverse(); 3818 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3819 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3820 BasicBlock::iterator LowerEnd = BB->end(); 3821 while (true) { 3822 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3823 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3824 return false; 3825 } 3826 3827 if (UpIter != UpperEnd) { 3828 if (&*UpIter == I) { 3829 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3830 ScheduleStart = I; 3831 if (isOneOf(OpValue, I) != I) 3832 CheckSheduleForI(I); 3833 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3834 return true; 3835 } 3836 UpIter++; 3837 } 3838 if (DownIter != LowerEnd) { 3839 if (&*DownIter == I) { 3840 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3841 nullptr); 3842 ScheduleEnd = I->getNextNode(); 3843 if (isOneOf(OpValue, I) != I) 3844 CheckSheduleForI(I); 3845 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3846 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3847 return true; 3848 } 3849 DownIter++; 3850 } 3851 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3852 "instruction not found in block"); 3853 } 3854 return true; 3855 } 3856 3857 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3858 Instruction *ToI, 3859 ScheduleData *PrevLoadStore, 3860 ScheduleData *NextLoadStore) { 3861 ScheduleData *CurrentLoadStore = PrevLoadStore; 3862 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3863 ScheduleData *SD = ScheduleDataMap[I]; 3864 if (!SD) { 3865 SD = allocateScheduleDataChunks(); 3866 ScheduleDataMap[I] = SD; 3867 SD->Inst = I; 3868 } 3869 assert(!isInSchedulingRegion(SD) && 3870 "new ScheduleData already in scheduling region"); 3871 SD->init(SchedulingRegionID, I); 3872 3873 if (I->mayReadOrWriteMemory() && 3874 (!isa<IntrinsicInst>(I) || 3875 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3876 // Update the linked list of memory accessing instructions. 3877 if (CurrentLoadStore) { 3878 CurrentLoadStore->NextLoadStore = SD; 3879 } else { 3880 FirstLoadStoreInRegion = SD; 3881 } 3882 CurrentLoadStore = SD; 3883 } 3884 } 3885 if (NextLoadStore) { 3886 if (CurrentLoadStore) 3887 CurrentLoadStore->NextLoadStore = NextLoadStore; 3888 } else { 3889 LastLoadStoreInRegion = CurrentLoadStore; 3890 } 3891 } 3892 3893 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3894 bool InsertInReadyList, 3895 BoUpSLP *SLP) { 3896 assert(SD->isSchedulingEntity()); 3897 3898 SmallVector<ScheduleData *, 10> WorkList; 3899 WorkList.push_back(SD); 3900 3901 while (!WorkList.empty()) { 3902 ScheduleData *SD = WorkList.back(); 3903 WorkList.pop_back(); 3904 3905 ScheduleData *BundleMember = SD; 3906 while (BundleMember) { 3907 assert(isInSchedulingRegion(BundleMember)); 3908 if (!BundleMember->hasValidDependencies()) { 3909 3910 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3911 BundleMember->Dependencies = 0; 3912 BundleMember->resetUnscheduledDeps(); 3913 3914 // Handle def-use chain dependencies. 3915 if (BundleMember->OpValue != BundleMember->Inst) { 3916 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3917 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3918 BundleMember->Dependencies++; 3919 ScheduleData *DestBundle = UseSD->FirstInBundle; 3920 if (!DestBundle->IsScheduled) 3921 BundleMember->incrementUnscheduledDeps(1); 3922 if (!DestBundle->hasValidDependencies()) 3923 WorkList.push_back(DestBundle); 3924 } 3925 } else { 3926 for (User *U : BundleMember->Inst->users()) { 3927 if (isa<Instruction>(U)) { 3928 ScheduleData *UseSD = getScheduleData(U); 3929 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3930 BundleMember->Dependencies++; 3931 ScheduleData *DestBundle = UseSD->FirstInBundle; 3932 if (!DestBundle->IsScheduled) 3933 BundleMember->incrementUnscheduledDeps(1); 3934 if (!DestBundle->hasValidDependencies()) 3935 WorkList.push_back(DestBundle); 3936 } 3937 } else { 3938 // I'm not sure if this can ever happen. But we need to be safe. 3939 // This lets the instruction/bundle never be scheduled and 3940 // eventually disable vectorization. 3941 BundleMember->Dependencies++; 3942 BundleMember->incrementUnscheduledDeps(1); 3943 } 3944 } 3945 } 3946 3947 // Handle the memory dependencies. 3948 ScheduleData *DepDest = BundleMember->NextLoadStore; 3949 if (DepDest) { 3950 Instruction *SrcInst = BundleMember->Inst; 3951 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3952 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3953 unsigned numAliased = 0; 3954 unsigned DistToSrc = 1; 3955 3956 while (DepDest) { 3957 assert(isInSchedulingRegion(DepDest)); 3958 3959 // We have two limits to reduce the complexity: 3960 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3961 // SLP->isAliased (which is the expensive part in this loop). 3962 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3963 // the whole loop (even if the loop is fast, it's quadratic). 3964 // It's important for the loop break condition (see below) to 3965 // check this limit even between two read-only instructions. 3966 if (DistToSrc >= MaxMemDepDistance || 3967 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3968 (numAliased >= AliasedCheckLimit || 3969 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3970 3971 // We increment the counter only if the locations are aliased 3972 // (instead of counting all alias checks). This gives a better 3973 // balance between reduced runtime and accurate dependencies. 3974 numAliased++; 3975 3976 DepDest->MemoryDependencies.push_back(BundleMember); 3977 BundleMember->Dependencies++; 3978 ScheduleData *DestBundle = DepDest->FirstInBundle; 3979 if (!DestBundle->IsScheduled) { 3980 BundleMember->incrementUnscheduledDeps(1); 3981 } 3982 if (!DestBundle->hasValidDependencies()) { 3983 WorkList.push_back(DestBundle); 3984 } 3985 } 3986 DepDest = DepDest->NextLoadStore; 3987 3988 // Example, explaining the loop break condition: Let's assume our 3989 // starting instruction is i0 and MaxMemDepDistance = 3. 3990 // 3991 // +--------v--v--v 3992 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3993 // +--------^--^--^ 3994 // 3995 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3996 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3997 // Previously we already added dependencies from i3 to i6,i7,i8 3998 // (because of MaxMemDepDistance). As we added a dependency from 3999 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4000 // and we can abort this loop at i6. 4001 if (DistToSrc >= 2 * MaxMemDepDistance) 4002 break; 4003 DistToSrc++; 4004 } 4005 } 4006 } 4007 BundleMember = BundleMember->NextInBundle; 4008 } 4009 if (InsertInReadyList && SD->isReady()) { 4010 ReadyInsts.push_back(SD); 4011 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 4012 } 4013 } 4014 } 4015 4016 void BoUpSLP::BlockScheduling::resetSchedule() { 4017 assert(ScheduleStart && 4018 "tried to reset schedule on block which has not been scheduled"); 4019 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4020 doForAllOpcodes(I, [&](ScheduleData *SD) { 4021 assert(isInSchedulingRegion(SD) && 4022 "ScheduleData not in scheduling region"); 4023 SD->IsScheduled = false; 4024 SD->resetUnscheduledDeps(); 4025 }); 4026 } 4027 ReadyInsts.clear(); 4028 } 4029 4030 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4031 if (!BS->ScheduleStart) 4032 return; 4033 4034 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4035 4036 BS->resetSchedule(); 4037 4038 // For the real scheduling we use a more sophisticated ready-list: it is 4039 // sorted by the original instruction location. This lets the final schedule 4040 // be as close as possible to the original instruction order. 4041 struct ScheduleDataCompare { 4042 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4043 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4044 } 4045 }; 4046 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4047 4048 // Ensure that all dependency data is updated and fill the ready-list with 4049 // initial instructions. 4050 int Idx = 0; 4051 int NumToSchedule = 0; 4052 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4053 I = I->getNextNode()) { 4054 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4055 assert(SD->isPartOfBundle() == 4056 (getTreeEntry(SD->Inst) != nullptr) && 4057 "scheduler and vectorizer bundle mismatch"); 4058 SD->FirstInBundle->SchedulingPriority = Idx++; 4059 if (SD->isSchedulingEntity()) { 4060 BS->calculateDependencies(SD, false, this); 4061 NumToSchedule++; 4062 } 4063 }); 4064 } 4065 BS->initialFillReadyList(ReadyInsts); 4066 4067 Instruction *LastScheduledInst = BS->ScheduleEnd; 4068 4069 // Do the "real" scheduling. 4070 while (!ReadyInsts.empty()) { 4071 ScheduleData *picked = *ReadyInsts.begin(); 4072 ReadyInsts.erase(ReadyInsts.begin()); 4073 4074 // Move the scheduled instruction(s) to their dedicated places, if not 4075 // there yet. 4076 ScheduleData *BundleMember = picked; 4077 while (BundleMember) { 4078 Instruction *pickedInst = BundleMember->Inst; 4079 if (LastScheduledInst->getNextNode() != pickedInst) { 4080 BS->BB->getInstList().remove(pickedInst); 4081 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4082 pickedInst); 4083 } 4084 LastScheduledInst = pickedInst; 4085 BundleMember = BundleMember->NextInBundle; 4086 } 4087 4088 BS->schedule(picked, ReadyInsts); 4089 NumToSchedule--; 4090 } 4091 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4092 4093 // Avoid duplicate scheduling of the block. 4094 BS->ScheduleStart = nullptr; 4095 } 4096 4097 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4098 // If V is a store, just return the width of the stored value without 4099 // traversing the expression tree. This is the common case. 4100 if (auto *Store = dyn_cast<StoreInst>(V)) 4101 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4102 4103 // If V is not a store, we can traverse the expression tree to find loads 4104 // that feed it. The type of the loaded value may indicate a more suitable 4105 // width than V's type. We want to base the vector element size on the width 4106 // of memory operations where possible. 4107 SmallVector<Instruction *, 16> Worklist; 4108 SmallPtrSet<Instruction *, 16> Visited; 4109 if (auto *I = dyn_cast<Instruction>(V)) 4110 Worklist.push_back(I); 4111 4112 // Traverse the expression tree in bottom-up order looking for loads. If we 4113 // encounter an instruciton we don't yet handle, we give up. 4114 auto MaxWidth = 0u; 4115 auto FoundUnknownInst = false; 4116 while (!Worklist.empty() && !FoundUnknownInst) { 4117 auto *I = Worklist.pop_back_val(); 4118 Visited.insert(I); 4119 4120 // We should only be looking at scalar instructions here. If the current 4121 // instruction has a vector type, give up. 4122 auto *Ty = I->getType(); 4123 if (isa<VectorType>(Ty)) 4124 FoundUnknownInst = true; 4125 4126 // If the current instruction is a load, update MaxWidth to reflect the 4127 // width of the loaded value. 4128 else if (isa<LoadInst>(I)) 4129 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4130 4131 // Otherwise, we need to visit the operands of the instruction. We only 4132 // handle the interesting cases from buildTree here. If an operand is an 4133 // instruction we haven't yet visited, we add it to the worklist. 4134 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4135 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4136 for (Use &U : I->operands()) 4137 if (auto *J = dyn_cast<Instruction>(U.get())) 4138 if (!Visited.count(J)) 4139 Worklist.push_back(J); 4140 } 4141 4142 // If we don't yet handle the instruction, give up. 4143 else 4144 FoundUnknownInst = true; 4145 } 4146 4147 // If we didn't encounter a memory access in the expression tree, or if we 4148 // gave up for some reason, just return the width of V. 4149 if (!MaxWidth || FoundUnknownInst) 4150 return DL->getTypeSizeInBits(V->getType()); 4151 4152 // Otherwise, return the maximum width we found. 4153 return MaxWidth; 4154 } 4155 4156 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4157 // smaller type with a truncation. We collect the values that will be demoted 4158 // in ToDemote and additional roots that require investigating in Roots. 4159 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4160 SmallVectorImpl<Value *> &ToDemote, 4161 SmallVectorImpl<Value *> &Roots) { 4162 // We can always demote constants. 4163 if (isa<Constant>(V)) { 4164 ToDemote.push_back(V); 4165 return true; 4166 } 4167 4168 // If the value is not an instruction in the expression with only one use, it 4169 // cannot be demoted. 4170 auto *I = dyn_cast<Instruction>(V); 4171 if (!I || !I->hasOneUse() || !Expr.count(I)) 4172 return false; 4173 4174 switch (I->getOpcode()) { 4175 4176 // We can always demote truncations and extensions. Since truncations can 4177 // seed additional demotion, we save the truncated value. 4178 case Instruction::Trunc: 4179 Roots.push_back(I->getOperand(0)); 4180 break; 4181 case Instruction::ZExt: 4182 case Instruction::SExt: 4183 break; 4184 4185 // We can demote certain binary operations if we can demote both of their 4186 // operands. 4187 case Instruction::Add: 4188 case Instruction::Sub: 4189 case Instruction::Mul: 4190 case Instruction::And: 4191 case Instruction::Or: 4192 case Instruction::Xor: 4193 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4194 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4195 return false; 4196 break; 4197 4198 // We can demote selects if we can demote their true and false values. 4199 case Instruction::Select: { 4200 SelectInst *SI = cast<SelectInst>(I); 4201 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4202 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4203 return false; 4204 break; 4205 } 4206 4207 // We can demote phis if we can demote all their incoming operands. Note that 4208 // we don't need to worry about cycles since we ensure single use above. 4209 case Instruction::PHI: { 4210 PHINode *PN = cast<PHINode>(I); 4211 for (Value *IncValue : PN->incoming_values()) 4212 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4213 return false; 4214 break; 4215 } 4216 4217 // Otherwise, conservatively give up. 4218 default: 4219 return false; 4220 } 4221 4222 // Record the value that we can demote. 4223 ToDemote.push_back(V); 4224 return true; 4225 } 4226 4227 void BoUpSLP::computeMinimumValueSizes() { 4228 // If there are no external uses, the expression tree must be rooted by a 4229 // store. We can't demote in-memory values, so there is nothing to do here. 4230 if (ExternalUses.empty()) 4231 return; 4232 4233 // We only attempt to truncate integer expressions. 4234 auto &TreeRoot = VectorizableTree[0].Scalars; 4235 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4236 if (!TreeRootIT) 4237 return; 4238 4239 // If the expression is not rooted by a store, these roots should have 4240 // external uses. We will rely on InstCombine to rewrite the expression in 4241 // the narrower type. However, InstCombine only rewrites single-use values. 4242 // This means that if a tree entry other than a root is used externally, it 4243 // must have multiple uses and InstCombine will not rewrite it. The code 4244 // below ensures that only the roots are used externally. 4245 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4246 for (auto &EU : ExternalUses) 4247 if (!Expr.erase(EU.Scalar)) 4248 return; 4249 if (!Expr.empty()) 4250 return; 4251 4252 // Collect the scalar values of the vectorizable expression. We will use this 4253 // context to determine which values can be demoted. If we see a truncation, 4254 // we mark it as seeding another demotion. 4255 for (auto &Entry : VectorizableTree) 4256 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4257 4258 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4259 // have a single external user that is not in the vectorizable tree. 4260 for (auto *Root : TreeRoot) 4261 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4262 return; 4263 4264 // Conservatively determine if we can actually truncate the roots of the 4265 // expression. Collect the values that can be demoted in ToDemote and 4266 // additional roots that require investigating in Roots. 4267 SmallVector<Value *, 32> ToDemote; 4268 SmallVector<Value *, 4> Roots; 4269 for (auto *Root : TreeRoot) { 4270 // Do not include top zext/sext/trunc operations to those to be demoted, it 4271 // produces noise cast<vect>, trunc <vect>, exctract <vect>, cast <extract> 4272 // sequence. 4273 if (isa<Constant>(Root)) 4274 continue; 4275 auto *I = dyn_cast<Instruction>(Root); 4276 if (!I || !I->hasOneUse() || !Expr.count(I)) 4277 return; 4278 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) 4279 continue; 4280 if (auto *TI = dyn_cast<TruncInst>(I)) { 4281 Roots.push_back(TI->getOperand(0)); 4282 continue; 4283 } 4284 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4285 return; 4286 } 4287 4288 // The maximum bit width required to represent all the values that can be 4289 // demoted without loss of precision. It would be safe to truncate the roots 4290 // of the expression to this width. 4291 auto MaxBitWidth = 8u; 4292 4293 // We first check if all the bits of the roots are demanded. If they're not, 4294 // we can truncate the roots to this narrower type. 4295 for (auto *Root : TreeRoot) { 4296 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4297 MaxBitWidth = std::max<unsigned>( 4298 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4299 } 4300 4301 // True if the roots can be zero-extended back to their original type, rather 4302 // than sign-extended. We know that if the leading bits are not demanded, we 4303 // can safely zero-extend. So we initialize IsKnownPositive to True. 4304 bool IsKnownPositive = true; 4305 4306 // If all the bits of the roots are demanded, we can try a little harder to 4307 // compute a narrower type. This can happen, for example, if the roots are 4308 // getelementptr indices. InstCombine promotes these indices to the pointer 4309 // width. Thus, all their bits are technically demanded even though the 4310 // address computation might be vectorized in a smaller type. 4311 // 4312 // We start by looking at each entry that can be demoted. We compute the 4313 // maximum bit width required to store the scalar by using ValueTracking to 4314 // compute the number of high-order bits we can truncate. 4315 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4316 MaxBitWidth = 8u; 4317 4318 // Determine if the sign bit of all the roots is known to be zero. If not, 4319 // IsKnownPositive is set to False. 4320 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4321 KnownBits Known = computeKnownBits(R, *DL); 4322 return Known.isNonNegative(); 4323 }); 4324 4325 // Determine the maximum number of bits required to store the scalar 4326 // values. 4327 for (auto *Scalar : ToDemote) { 4328 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4329 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4330 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4331 } 4332 4333 // If we can't prove that the sign bit is zero, we must add one to the 4334 // maximum bit width to account for the unknown sign bit. This preserves 4335 // the existing sign bit so we can safely sign-extend the root back to the 4336 // original type. Otherwise, if we know the sign bit is zero, we will 4337 // zero-extend the root instead. 4338 // 4339 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4340 // one to the maximum bit width will yield a larger-than-necessary 4341 // type. In general, we need to add an extra bit only if we can't 4342 // prove that the upper bit of the original type is equal to the 4343 // upper bit of the proposed smaller type. If these two bits are the 4344 // same (either zero or one) we know that sign-extending from the 4345 // smaller type will result in the same value. Here, since we can't 4346 // yet prove this, we are just making the proposed smaller type 4347 // larger to ensure correctness. 4348 if (!IsKnownPositive) 4349 ++MaxBitWidth; 4350 } 4351 4352 // Round MaxBitWidth up to the next power-of-two. 4353 if (!isPowerOf2_64(MaxBitWidth)) 4354 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4355 4356 // If the maximum bit width we compute is less than the with of the roots' 4357 // type, we can proceed with the narrowing. Otherwise, do nothing. 4358 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4359 return; 4360 4361 // If we can truncate the root, we must collect additional values that might 4362 // be demoted as a result. That is, those seeded by truncations we will 4363 // modify. 4364 while (!Roots.empty()) 4365 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4366 4367 // Finally, map the values we can demote to the maximum bit with we computed. 4368 for (auto *Scalar : ToDemote) 4369 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4370 } 4371 4372 namespace { 4373 4374 /// The SLPVectorizer Pass. 4375 struct SLPVectorizer : public FunctionPass { 4376 SLPVectorizerPass Impl; 4377 4378 /// Pass identification, replacement for typeid 4379 static char ID; 4380 4381 explicit SLPVectorizer() : FunctionPass(ID) { 4382 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4383 } 4384 4385 bool doInitialization(Module &M) override { 4386 return false; 4387 } 4388 4389 bool runOnFunction(Function &F) override { 4390 if (skipFunction(F)) 4391 return false; 4392 4393 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4394 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4395 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4396 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4397 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4398 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4399 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4400 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4401 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4402 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4403 4404 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4405 } 4406 4407 void getAnalysisUsage(AnalysisUsage &AU) const override { 4408 FunctionPass::getAnalysisUsage(AU); 4409 AU.addRequired<AssumptionCacheTracker>(); 4410 AU.addRequired<ScalarEvolutionWrapperPass>(); 4411 AU.addRequired<AAResultsWrapperPass>(); 4412 AU.addRequired<TargetTransformInfoWrapperPass>(); 4413 AU.addRequired<LoopInfoWrapperPass>(); 4414 AU.addRequired<DominatorTreeWrapperPass>(); 4415 AU.addRequired<DemandedBitsWrapperPass>(); 4416 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4417 AU.addPreserved<LoopInfoWrapperPass>(); 4418 AU.addPreserved<DominatorTreeWrapperPass>(); 4419 AU.addPreserved<AAResultsWrapperPass>(); 4420 AU.addPreserved<GlobalsAAWrapperPass>(); 4421 AU.setPreservesCFG(); 4422 } 4423 }; 4424 4425 } // end anonymous namespace 4426 4427 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4428 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4429 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4430 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4431 auto *AA = &AM.getResult<AAManager>(F); 4432 auto *LI = &AM.getResult<LoopAnalysis>(F); 4433 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4434 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4435 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4436 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4437 4438 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4439 if (!Changed) 4440 return PreservedAnalyses::all(); 4441 4442 PreservedAnalyses PA; 4443 PA.preserveSet<CFGAnalyses>(); 4444 PA.preserve<AAManager>(); 4445 PA.preserve<GlobalsAA>(); 4446 return PA; 4447 } 4448 4449 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4450 TargetTransformInfo *TTI_, 4451 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4452 LoopInfo *LI_, DominatorTree *DT_, 4453 AssumptionCache *AC_, DemandedBits *DB_, 4454 OptimizationRemarkEmitter *ORE_) { 4455 SE = SE_; 4456 TTI = TTI_; 4457 TLI = TLI_; 4458 AA = AA_; 4459 LI = LI_; 4460 DT = DT_; 4461 AC = AC_; 4462 DB = DB_; 4463 DL = &F.getParent()->getDataLayout(); 4464 4465 Stores.clear(); 4466 GEPs.clear(); 4467 bool Changed = false; 4468 4469 // If the target claims to have no vector registers don't attempt 4470 // vectorization. 4471 if (!TTI->getNumberOfRegisters(true)) 4472 return false; 4473 4474 // Don't vectorize when the attribute NoImplicitFloat is used. 4475 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4476 return false; 4477 4478 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4479 4480 // Use the bottom up slp vectorizer to construct chains that start with 4481 // store instructions. 4482 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4483 4484 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4485 // delete instructions. 4486 4487 // Scan the blocks in the function in post order. 4488 for (auto BB : post_order(&F.getEntryBlock())) { 4489 collectSeedInstructions(BB); 4490 4491 // Vectorize trees that end at stores. 4492 if (!Stores.empty()) { 4493 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4494 << " underlying objects.\n"); 4495 Changed |= vectorizeStoreChains(R); 4496 } 4497 4498 // Vectorize trees that end at reductions. 4499 Changed |= vectorizeChainsInBlock(BB, R); 4500 4501 // Vectorize the index computations of getelementptr instructions. This 4502 // is primarily intended to catch gather-like idioms ending at 4503 // non-consecutive loads. 4504 if (!GEPs.empty()) { 4505 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4506 << " underlying objects.\n"); 4507 Changed |= vectorizeGEPIndices(BB, R); 4508 } 4509 } 4510 4511 if (Changed) { 4512 R.optimizeGatherSequence(); 4513 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4514 DEBUG(verifyFunction(F)); 4515 } 4516 return Changed; 4517 } 4518 4519 /// \brief Check that the Values in the slice in VL array are still existent in 4520 /// the WeakTrackingVH array. 4521 /// Vectorization of part of the VL array may cause later values in the VL array 4522 /// to become invalid. We track when this has happened in the WeakTrackingVH 4523 /// array. 4524 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4525 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4526 unsigned SliceSize) { 4527 VL = VL.slice(SliceBegin, SliceSize); 4528 VH = VH.slice(SliceBegin, SliceSize); 4529 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4530 } 4531 4532 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4533 unsigned VecRegSize) { 4534 const unsigned ChainLen = Chain.size(); 4535 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4536 << "\n"); 4537 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4538 const unsigned VF = VecRegSize / Sz; 4539 4540 if (!isPowerOf2_32(Sz) || VF < 2) 4541 return false; 4542 4543 // Keep track of values that were deleted by vectorizing in the loop below. 4544 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4545 4546 bool Changed = false; 4547 // Look for profitable vectorizable trees at all offsets, starting at zero. 4548 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4549 4550 // Check that a previous iteration of this loop did not delete the Value. 4551 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4552 continue; 4553 4554 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4555 << "\n"); 4556 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4557 4558 R.buildTree(Operands); 4559 if (R.isTreeTinyAndNotFullyVectorizable()) 4560 continue; 4561 4562 R.computeMinimumValueSizes(); 4563 4564 int Cost = R.getTreeCost(); 4565 4566 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4567 if (Cost < -SLPCostThreshold) { 4568 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4569 4570 using namespace ore; 4571 4572 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4573 cast<StoreInst>(Chain[i])) 4574 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4575 << " and with tree size " 4576 << NV("TreeSize", R.getTreeSize())); 4577 4578 R.vectorizeTree(); 4579 4580 // Move to the next bundle. 4581 i += VF - 1; 4582 Changed = true; 4583 } 4584 } 4585 4586 return Changed; 4587 } 4588 4589 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4590 BoUpSLP &R) { 4591 SetVector<StoreInst *> Heads; 4592 SmallDenseSet<StoreInst *> Tails; 4593 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4594 4595 // We may run into multiple chains that merge into a single chain. We mark the 4596 // stores that we vectorized so that we don't visit the same store twice. 4597 BoUpSLP::ValueSet VectorizedStores; 4598 bool Changed = false; 4599 4600 // Do a quadratic search on all of the given stores in reverse order and find 4601 // all of the pairs of stores that follow each other. 4602 SmallVector<unsigned, 16> IndexQueue; 4603 unsigned E = Stores.size(); 4604 IndexQueue.resize(E - 1); 4605 for (unsigned I = E; I > 0; --I) { 4606 unsigned Idx = I - 1; 4607 // If a store has multiple consecutive store candidates, search Stores 4608 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4609 // This is because usually pairing with immediate succeeding or preceding 4610 // candidate create the best chance to find slp vectorization opportunity. 4611 unsigned Offset = 1; 4612 unsigned Cnt = 0; 4613 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4614 if (Idx >= Offset) { 4615 IndexQueue[Cnt] = Idx - Offset; 4616 ++Cnt; 4617 } 4618 if (Idx + Offset < E) { 4619 IndexQueue[Cnt] = Idx + Offset; 4620 ++Cnt; 4621 } 4622 } 4623 4624 for (auto K : IndexQueue) { 4625 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4626 Tails.insert(Stores[Idx]); 4627 Heads.insert(Stores[K]); 4628 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4629 break; 4630 } 4631 } 4632 } 4633 4634 // For stores that start but don't end a link in the chain: 4635 for (auto *SI : llvm::reverse(Heads)) { 4636 if (Tails.count(SI)) 4637 continue; 4638 4639 // We found a store instr that starts a chain. Now follow the chain and try 4640 // to vectorize it. 4641 BoUpSLP::ValueList Operands; 4642 StoreInst *I = SI; 4643 // Collect the chain into a list. 4644 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4645 Operands.push_back(I); 4646 // Move to the next value in the chain. 4647 I = ConsecutiveChain[I]; 4648 } 4649 4650 // FIXME: Is division-by-2 the correct step? Should we assert that the 4651 // register size is a power-of-2? 4652 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4653 Size /= 2) { 4654 if (vectorizeStoreChain(Operands, R, Size)) { 4655 // Mark the vectorized stores so that we don't vectorize them again. 4656 VectorizedStores.insert(Operands.begin(), Operands.end()); 4657 Changed = true; 4658 break; 4659 } 4660 } 4661 } 4662 4663 return Changed; 4664 } 4665 4666 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4667 // Initialize the collections. We will make a single pass over the block. 4668 Stores.clear(); 4669 GEPs.clear(); 4670 4671 // Visit the store and getelementptr instructions in BB and organize them in 4672 // Stores and GEPs according to the underlying objects of their pointer 4673 // operands. 4674 for (Instruction &I : *BB) { 4675 // Ignore store instructions that are volatile or have a pointer operand 4676 // that doesn't point to a scalar type. 4677 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4678 if (!SI->isSimple()) 4679 continue; 4680 if (!isValidElementType(SI->getValueOperand()->getType())) 4681 continue; 4682 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4683 } 4684 4685 // Ignore getelementptr instructions that have more than one index, a 4686 // constant index, or a pointer operand that doesn't point to a scalar 4687 // type. 4688 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4689 auto Idx = GEP->idx_begin()->get(); 4690 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4691 continue; 4692 if (!isValidElementType(Idx->getType())) 4693 continue; 4694 if (GEP->getType()->isVectorTy()) 4695 continue; 4696 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4697 } 4698 } 4699 } 4700 4701 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4702 if (!A || !B) 4703 return false; 4704 Value *VL[] = { A, B }; 4705 return tryToVectorizeList(VL, R, true); 4706 } 4707 4708 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4709 bool AllowReorder) { 4710 if (VL.size() < 2) 4711 return false; 4712 4713 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4714 << ".\n"); 4715 4716 // Check that all of the parts are scalar instructions of the same type. 4717 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4718 if (!I0) 4719 return false; 4720 4721 unsigned Opcode0 = I0->getOpcode(); 4722 4723 unsigned Sz = R.getVectorElementSize(I0); 4724 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4725 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4726 if (MaxVF < 2) { 4727 R.getORE()->emit([&]() { 4728 return OptimizationRemarkMissed( 4729 SV_NAME, "SmallVF", I0) 4730 << "Cannot SLP vectorize list: vectorization factor " 4731 << "less than 2 is not supported"; 4732 }); 4733 return false; 4734 } 4735 4736 for (Value *V : VL) { 4737 Type *Ty = V->getType(); 4738 if (!isValidElementType(Ty)) { 4739 // NOTE: the following will give user internal llvm type name, which may not be useful 4740 R.getORE()->emit([&]() { 4741 std::string type_str; 4742 llvm::raw_string_ostream rso(type_str); 4743 Ty->print(rso); 4744 return OptimizationRemarkMissed( 4745 SV_NAME, "UnsupportedType", I0) 4746 << "Cannot SLP vectorize list: type " 4747 << rso.str() + " is unsupported by vectorizer"; 4748 }); 4749 return false; 4750 } 4751 Instruction *Inst = dyn_cast<Instruction>(V); 4752 4753 if (!Inst) 4754 return false; 4755 if (Inst->getOpcode() != Opcode0) { 4756 R.getORE()->emit([&]() { 4757 return OptimizationRemarkMissed( 4758 SV_NAME, "InequableTypes", I0) 4759 << "Cannot SLP vectorize list: not all of the " 4760 << "parts of scalar instructions are of the same type: " 4761 << ore::NV("Instruction1Opcode", I0) << " and " 4762 << ore::NV("Instruction2Opcode", Inst); 4763 }); 4764 return false; 4765 } 4766 } 4767 4768 bool Changed = false; 4769 bool CandidateFound = false; 4770 int MinCost = SLPCostThreshold; 4771 4772 // Keep track of values that were deleted by vectorizing in the loop below. 4773 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4774 4775 unsigned NextInst = 0, MaxInst = VL.size(); 4776 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4777 VF /= 2) { 4778 // No actual vectorization should happen, if number of parts is the same as 4779 // provided vectorization factor (i.e. the scalar type is used for vector 4780 // code during codegen). 4781 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4782 if (TTI->getNumberOfParts(VecTy) == VF) 4783 continue; 4784 for (unsigned I = NextInst; I < MaxInst; ++I) { 4785 unsigned OpsWidth = 0; 4786 4787 if (I + VF > MaxInst) 4788 OpsWidth = MaxInst - I; 4789 else 4790 OpsWidth = VF; 4791 4792 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4793 break; 4794 4795 // Check that a previous iteration of this loop did not delete the Value. 4796 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4797 continue; 4798 4799 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4800 << "\n"); 4801 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4802 4803 R.buildTree(Ops); 4804 // TODO: check if we can allow reordering for more cases. 4805 if (AllowReorder && R.shouldReorder()) { 4806 // Conceptually, there is nothing actually preventing us from trying to 4807 // reorder a larger list. In fact, we do exactly this when vectorizing 4808 // reductions. However, at this point, we only expect to get here when 4809 // there are exactly two operations. 4810 assert(Ops.size() == 2); 4811 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4812 R.buildTree(ReorderedOps, None); 4813 } 4814 if (R.isTreeTinyAndNotFullyVectorizable()) 4815 continue; 4816 4817 R.computeMinimumValueSizes(); 4818 int Cost = R.getTreeCost(); 4819 CandidateFound = true; 4820 MinCost = std::min(MinCost, Cost); 4821 4822 if (Cost < -SLPCostThreshold) { 4823 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4824 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4825 cast<Instruction>(Ops[0])) 4826 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4827 << " and with tree size " 4828 << ore::NV("TreeSize", R.getTreeSize())); 4829 4830 R.vectorizeTree(); 4831 // Move to the next bundle. 4832 I += VF - 1; 4833 NextInst = I + 1; 4834 Changed = true; 4835 } 4836 } 4837 } 4838 4839 if (!Changed && CandidateFound) { 4840 R.getORE()->emit([&]() { 4841 return OptimizationRemarkMissed( 4842 SV_NAME, "NotBeneficial", I0) 4843 << "List vectorization was possible but not beneficial with cost " 4844 << ore::NV("Cost", MinCost) << " >= " 4845 << ore::NV("Treshold", -SLPCostThreshold); 4846 }); 4847 } else if (!Changed) { 4848 R.getORE()->emit([&]() { 4849 return OptimizationRemarkMissed( 4850 SV_NAME, "NotPossible", I0) 4851 << "Cannot SLP vectorize list: vectorization was impossible" 4852 << " with available vectorization factors"; 4853 }); 4854 } 4855 return Changed; 4856 } 4857 4858 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4859 if (!I) 4860 return false; 4861 4862 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4863 return false; 4864 4865 Value *P = I->getParent(); 4866 4867 // Vectorize in current basic block only. 4868 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4869 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4870 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4871 return false; 4872 4873 // Try to vectorize V. 4874 if (tryToVectorizePair(Op0, Op1, R)) 4875 return true; 4876 4877 auto *A = dyn_cast<BinaryOperator>(Op0); 4878 auto *B = dyn_cast<BinaryOperator>(Op1); 4879 // Try to skip B. 4880 if (B && B->hasOneUse()) { 4881 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4882 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4883 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4884 return true; 4885 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4886 return true; 4887 } 4888 4889 // Try to skip A. 4890 if (A && A->hasOneUse()) { 4891 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4892 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4893 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4894 return true; 4895 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4896 return true; 4897 } 4898 return false; 4899 } 4900 4901 /// \brief Generate a shuffle mask to be used in a reduction tree. 4902 /// 4903 /// \param VecLen The length of the vector to be reduced. 4904 /// \param NumEltsToRdx The number of elements that should be reduced in the 4905 /// vector. 4906 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4907 /// reduction. A pairwise reduction will generate a mask of 4908 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4909 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4910 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4911 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4912 bool IsPairwise, bool IsLeft, 4913 IRBuilder<> &Builder) { 4914 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4915 4916 SmallVector<Constant *, 32> ShuffleMask( 4917 VecLen, UndefValue::get(Builder.getInt32Ty())); 4918 4919 if (IsPairwise) 4920 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4921 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4922 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4923 else 4924 // Move the upper half of the vector to the lower half. 4925 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4926 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4927 4928 return ConstantVector::get(ShuffleMask); 4929 } 4930 4931 namespace { 4932 4933 /// Model horizontal reductions. 4934 /// 4935 /// A horizontal reduction is a tree of reduction operations (currently add and 4936 /// fadd) that has operations that can be put into a vector as its leaf. 4937 /// For example, this tree: 4938 /// 4939 /// mul mul mul mul 4940 /// \ / \ / 4941 /// + + 4942 /// \ / 4943 /// + 4944 /// This tree has "mul" as its reduced values and "+" as its reduction 4945 /// operations. A reduction might be feeding into a store or a binary operation 4946 /// feeding a phi. 4947 /// ... 4948 /// \ / 4949 /// + 4950 /// | 4951 /// phi += 4952 /// 4953 /// Or: 4954 /// ... 4955 /// \ / 4956 /// + 4957 /// | 4958 /// *p = 4959 /// 4960 class HorizontalReduction { 4961 using ReductionOpsType = SmallVector<Value *, 16>; 4962 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 4963 ReductionOpsListType ReductionOps; 4964 SmallVector<Value *, 32> ReducedVals; 4965 // Use map vector to make stable output. 4966 MapVector<Instruction *, Value *> ExtraArgs; 4967 4968 /// Kind of the reduction data. 4969 enum ReductionKind { 4970 RK_None, /// Not a reduction. 4971 RK_Arithmetic, /// Binary reduction data. 4972 RK_Min, /// Minimum reduction data. 4973 RK_UMin, /// Unsigned minimum reduction data. 4974 RK_Max, /// Maximum reduction data. 4975 RK_UMax, /// Unsigned maximum reduction data. 4976 }; 4977 4978 /// Contains info about operation, like its opcode, left and right operands. 4979 class OperationData { 4980 /// Opcode of the instruction. 4981 unsigned Opcode = 0; 4982 4983 /// Left operand of the reduction operation. 4984 Value *LHS = nullptr; 4985 4986 /// Right operand of the reduction operation. 4987 Value *RHS = nullptr; 4988 4989 /// Kind of the reduction operation. 4990 ReductionKind Kind = RK_None; 4991 4992 /// True if float point min/max reduction has no NaNs. 4993 bool NoNaN = false; 4994 4995 /// Checks if the reduction operation can be vectorized. 4996 bool isVectorizable() const { 4997 return LHS && RHS && 4998 // We currently only support adds && min/max reductions. 4999 ((Kind == RK_Arithmetic && 5000 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5001 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5002 (Kind == RK_Min || Kind == RK_Max)) || 5003 (Opcode == Instruction::ICmp && 5004 (Kind == RK_UMin || Kind == RK_UMax))); 5005 } 5006 5007 /// Creates reduction operation with the current opcode. 5008 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5009 assert(isVectorizable() && 5010 "Expected add|fadd or min/max reduction operation."); 5011 Value *Cmp; 5012 switch (Kind) { 5013 case RK_Arithmetic: 5014 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5015 Name); 5016 case RK_Min: 5017 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5018 : Builder.CreateFCmpOLT(LHS, RHS); 5019 break; 5020 case RK_Max: 5021 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5022 : Builder.CreateFCmpOGT(LHS, RHS); 5023 break; 5024 case RK_UMin: 5025 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5026 Cmp = Builder.CreateICmpULT(LHS, RHS); 5027 break; 5028 case RK_UMax: 5029 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5030 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5031 break; 5032 case RK_None: 5033 llvm_unreachable("Unknown reduction operation."); 5034 } 5035 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5036 } 5037 5038 public: 5039 explicit OperationData() = default; 5040 5041 /// Construction for reduced values. They are identified by opcode only and 5042 /// don't have associated LHS/RHS values. 5043 explicit OperationData(Value *V) { 5044 if (auto *I = dyn_cast<Instruction>(V)) 5045 Opcode = I->getOpcode(); 5046 } 5047 5048 /// Constructor for reduction operations with opcode and its left and 5049 /// right operands. 5050 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5051 bool NoNaN = false) 5052 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5053 assert(Kind != RK_None && "One of the reduction operations is expected."); 5054 } 5055 5056 explicit operator bool() const { return Opcode; } 5057 5058 /// Get the index of the first operand. 5059 unsigned getFirstOperandIndex() const { 5060 assert(!!*this && "The opcode is not set."); 5061 switch (Kind) { 5062 case RK_Min: 5063 case RK_UMin: 5064 case RK_Max: 5065 case RK_UMax: 5066 return 1; 5067 case RK_Arithmetic: 5068 case RK_None: 5069 break; 5070 } 5071 return 0; 5072 } 5073 5074 /// Total number of operands in the reduction operation. 5075 unsigned getNumberOfOperands() const { 5076 assert(Kind != RK_None && !!*this && LHS && RHS && 5077 "Expected reduction operation."); 5078 switch (Kind) { 5079 case RK_Arithmetic: 5080 return 2; 5081 case RK_Min: 5082 case RK_UMin: 5083 case RK_Max: 5084 case RK_UMax: 5085 return 3; 5086 case RK_None: 5087 break; 5088 } 5089 llvm_unreachable("Reduction kind is not set"); 5090 } 5091 5092 /// Checks if the operation has the same parent as \p P. 5093 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5094 assert(Kind != RK_None && !!*this && LHS && RHS && 5095 "Expected reduction operation."); 5096 if (!IsRedOp) 5097 return I->getParent() == P; 5098 switch (Kind) { 5099 case RK_Arithmetic: 5100 // Arithmetic reduction operation must be used once only. 5101 return I->getParent() == P; 5102 case RK_Min: 5103 case RK_UMin: 5104 case RK_Max: 5105 case RK_UMax: { 5106 // SelectInst must be used twice while the condition op must have single 5107 // use only. 5108 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5109 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5110 } 5111 case RK_None: 5112 break; 5113 } 5114 llvm_unreachable("Reduction kind is not set"); 5115 } 5116 /// Expected number of uses for reduction operations/reduced values. 5117 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5118 assert(Kind != RK_None && !!*this && LHS && RHS && 5119 "Expected reduction operation."); 5120 switch (Kind) { 5121 case RK_Arithmetic: 5122 return I->hasOneUse(); 5123 case RK_Min: 5124 case RK_UMin: 5125 case RK_Max: 5126 case RK_UMax: 5127 return I->hasNUses(2) && 5128 (!IsReductionOp || 5129 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5130 case RK_None: 5131 break; 5132 } 5133 llvm_unreachable("Reduction kind is not set"); 5134 } 5135 5136 /// Initializes the list of reduction operations. 5137 void initReductionOps(ReductionOpsListType &ReductionOps) { 5138 assert(Kind != RK_None && !!*this && LHS && RHS && 5139 "Expected reduction operation."); 5140 switch (Kind) { 5141 case RK_Arithmetic: 5142 ReductionOps.assign(1, ReductionOpsType()); 5143 break; 5144 case RK_Min: 5145 case RK_UMin: 5146 case RK_Max: 5147 case RK_UMax: 5148 ReductionOps.assign(2, ReductionOpsType()); 5149 break; 5150 case RK_None: 5151 llvm_unreachable("Reduction kind is not set"); 5152 } 5153 } 5154 /// Add all reduction operations for the reduction instruction \p I. 5155 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5156 assert(Kind != RK_None && !!*this && LHS && RHS && 5157 "Expected reduction operation."); 5158 switch (Kind) { 5159 case RK_Arithmetic: 5160 ReductionOps[0].emplace_back(I); 5161 break; 5162 case RK_Min: 5163 case RK_UMin: 5164 case RK_Max: 5165 case RK_UMax: 5166 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5167 ReductionOps[1].emplace_back(I); 5168 break; 5169 case RK_None: 5170 llvm_unreachable("Reduction kind is not set"); 5171 } 5172 } 5173 5174 /// Checks if instruction is associative and can be vectorized. 5175 bool isAssociative(Instruction *I) const { 5176 assert(Kind != RK_None && *this && LHS && RHS && 5177 "Expected reduction operation."); 5178 switch (Kind) { 5179 case RK_Arithmetic: 5180 return I->isAssociative(); 5181 case RK_Min: 5182 case RK_Max: 5183 return Opcode == Instruction::ICmp || 5184 cast<Instruction>(I->getOperand(0))->isFast(); 5185 case RK_UMin: 5186 case RK_UMax: 5187 assert(Opcode == Instruction::ICmp && 5188 "Only integer compare operation is expected."); 5189 return true; 5190 case RK_None: 5191 break; 5192 } 5193 llvm_unreachable("Reduction kind is not set"); 5194 } 5195 5196 /// Checks if the reduction operation can be vectorized. 5197 bool isVectorizable(Instruction *I) const { 5198 return isVectorizable() && isAssociative(I); 5199 } 5200 5201 /// Checks if two operation data are both a reduction op or both a reduced 5202 /// value. 5203 bool operator==(const OperationData &OD) { 5204 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5205 "One of the comparing operations is incorrect."); 5206 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5207 } 5208 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5209 void clear() { 5210 Opcode = 0; 5211 LHS = nullptr; 5212 RHS = nullptr; 5213 Kind = RK_None; 5214 NoNaN = false; 5215 } 5216 5217 /// Get the opcode of the reduction operation. 5218 unsigned getOpcode() const { 5219 assert(isVectorizable() && "Expected vectorizable operation."); 5220 return Opcode; 5221 } 5222 5223 /// Get kind of reduction data. 5224 ReductionKind getKind() const { return Kind; } 5225 Value *getLHS() const { return LHS; } 5226 Value *getRHS() const { return RHS; } 5227 Type *getConditionType() const { 5228 switch (Kind) { 5229 case RK_Arithmetic: 5230 return nullptr; 5231 case RK_Min: 5232 case RK_Max: 5233 case RK_UMin: 5234 case RK_UMax: 5235 return CmpInst::makeCmpResultType(LHS->getType()); 5236 case RK_None: 5237 break; 5238 } 5239 llvm_unreachable("Reduction kind is not set"); 5240 } 5241 5242 /// Creates reduction operation with the current opcode with the IR flags 5243 /// from \p ReductionOps. 5244 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5245 const ReductionOpsListType &ReductionOps) const { 5246 assert(isVectorizable() && 5247 "Expected add|fadd or min/max reduction operation."); 5248 auto *Op = createOp(Builder, Name); 5249 switch (Kind) { 5250 case RK_Arithmetic: 5251 propagateIRFlags(Op, ReductionOps[0]); 5252 return Op; 5253 case RK_Min: 5254 case RK_Max: 5255 case RK_UMin: 5256 case RK_UMax: 5257 if (auto *SI = dyn_cast<SelectInst>(Op)) 5258 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5259 propagateIRFlags(Op, ReductionOps[1]); 5260 return Op; 5261 case RK_None: 5262 break; 5263 } 5264 llvm_unreachable("Unknown reduction operation."); 5265 } 5266 /// Creates reduction operation with the current opcode with the IR flags 5267 /// from \p I. 5268 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5269 Instruction *I) const { 5270 assert(isVectorizable() && 5271 "Expected add|fadd or min/max reduction operation."); 5272 auto *Op = createOp(Builder, Name); 5273 switch (Kind) { 5274 case RK_Arithmetic: 5275 propagateIRFlags(Op, I); 5276 return Op; 5277 case RK_Min: 5278 case RK_Max: 5279 case RK_UMin: 5280 case RK_UMax: 5281 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5282 propagateIRFlags(SI->getCondition(), 5283 cast<SelectInst>(I)->getCondition()); 5284 } 5285 propagateIRFlags(Op, I); 5286 return Op; 5287 case RK_None: 5288 break; 5289 } 5290 llvm_unreachable("Unknown reduction operation."); 5291 } 5292 5293 TargetTransformInfo::ReductionFlags getFlags() const { 5294 TargetTransformInfo::ReductionFlags Flags; 5295 Flags.NoNaN = NoNaN; 5296 switch (Kind) { 5297 case RK_Arithmetic: 5298 break; 5299 case RK_Min: 5300 Flags.IsSigned = Opcode == Instruction::ICmp; 5301 Flags.IsMaxOp = false; 5302 break; 5303 case RK_Max: 5304 Flags.IsSigned = Opcode == Instruction::ICmp; 5305 Flags.IsMaxOp = true; 5306 break; 5307 case RK_UMin: 5308 Flags.IsSigned = false; 5309 Flags.IsMaxOp = false; 5310 break; 5311 case RK_UMax: 5312 Flags.IsSigned = false; 5313 Flags.IsMaxOp = true; 5314 break; 5315 case RK_None: 5316 llvm_unreachable("Reduction kind is not set"); 5317 } 5318 return Flags; 5319 } 5320 }; 5321 5322 Instruction *ReductionRoot = nullptr; 5323 5324 /// The operation data of the reduction operation. 5325 OperationData ReductionData; 5326 5327 /// The operation data of the values we perform a reduction on. 5328 OperationData ReducedValueData; 5329 5330 /// Should we model this reduction as a pairwise reduction tree or a tree that 5331 /// splits the vector in halves and adds those halves. 5332 bool IsPairwiseReduction = false; 5333 5334 /// Checks if the ParentStackElem.first should be marked as a reduction 5335 /// operation with an extra argument or as extra argument itself. 5336 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5337 Value *ExtraArg) { 5338 if (ExtraArgs.count(ParentStackElem.first)) { 5339 ExtraArgs[ParentStackElem.first] = nullptr; 5340 // We ran into something like: 5341 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5342 // The whole ParentStackElem.first should be considered as an extra value 5343 // in this case. 5344 // Do not perform analysis of remaining operands of ParentStackElem.first 5345 // instruction, this whole instruction is an extra argument. 5346 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5347 } else { 5348 // We ran into something like: 5349 // ParentStackElem.first += ... + ExtraArg + ... 5350 ExtraArgs[ParentStackElem.first] = ExtraArg; 5351 } 5352 } 5353 5354 static OperationData getOperationData(Value *V) { 5355 if (!V) 5356 return OperationData(); 5357 5358 Value *LHS; 5359 Value *RHS; 5360 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5361 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5362 RK_Arithmetic); 5363 } 5364 if (auto *Select = dyn_cast<SelectInst>(V)) { 5365 // Look for a min/max pattern. 5366 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5367 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5368 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5369 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5370 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5371 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5372 return OperationData( 5373 Instruction::FCmp, LHS, RHS, RK_Min, 5374 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5375 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5376 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5377 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5378 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5379 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5380 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5381 return OperationData( 5382 Instruction::FCmp, LHS, RHS, RK_Max, 5383 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5384 } 5385 } 5386 return OperationData(V); 5387 } 5388 5389 public: 5390 HorizontalReduction() = default; 5391 5392 /// \brief Try to find a reduction tree. 5393 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5394 assert((!Phi || is_contained(Phi->operands(), B)) && 5395 "Thi phi needs to use the binary operator"); 5396 5397 ReductionData = getOperationData(B); 5398 5399 // We could have a initial reductions that is not an add. 5400 // r *= v1 + v2 + v3 + v4 5401 // In such a case start looking for a tree rooted in the first '+'. 5402 if (Phi) { 5403 if (ReductionData.getLHS() == Phi) { 5404 Phi = nullptr; 5405 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5406 ReductionData = getOperationData(B); 5407 } else if (ReductionData.getRHS() == Phi) { 5408 Phi = nullptr; 5409 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5410 ReductionData = getOperationData(B); 5411 } 5412 } 5413 5414 if (!ReductionData.isVectorizable(B)) 5415 return false; 5416 5417 Type *Ty = B->getType(); 5418 if (!isValidElementType(Ty)) 5419 return false; 5420 5421 ReducedValueData.clear(); 5422 ReductionRoot = B; 5423 5424 // Post order traverse the reduction tree starting at B. We only handle true 5425 // trees containing only binary operators. 5426 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5427 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5428 ReductionData.initReductionOps(ReductionOps); 5429 while (!Stack.empty()) { 5430 Instruction *TreeN = Stack.back().first; 5431 unsigned EdgeToVist = Stack.back().second++; 5432 OperationData OpData = getOperationData(TreeN); 5433 bool IsReducedValue = OpData != ReductionData; 5434 5435 // Postorder vist. 5436 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5437 if (IsReducedValue) 5438 ReducedVals.push_back(TreeN); 5439 else { 5440 auto I = ExtraArgs.find(TreeN); 5441 if (I != ExtraArgs.end() && !I->second) { 5442 // Check if TreeN is an extra argument of its parent operation. 5443 if (Stack.size() <= 1) { 5444 // TreeN can't be an extra argument as it is a root reduction 5445 // operation. 5446 return false; 5447 } 5448 // Yes, TreeN is an extra argument, do not add it to a list of 5449 // reduction operations. 5450 // Stack[Stack.size() - 2] always points to the parent operation. 5451 markExtraArg(Stack[Stack.size() - 2], TreeN); 5452 ExtraArgs.erase(TreeN); 5453 } else 5454 ReductionData.addReductionOps(TreeN, ReductionOps); 5455 } 5456 // Retract. 5457 Stack.pop_back(); 5458 continue; 5459 } 5460 5461 // Visit left or right. 5462 Value *NextV = TreeN->getOperand(EdgeToVist); 5463 if (NextV != Phi) { 5464 auto *I = dyn_cast<Instruction>(NextV); 5465 OpData = getOperationData(I); 5466 // Continue analysis if the next operand is a reduction operation or 5467 // (possibly) a reduced value. If the reduced value opcode is not set, 5468 // the first met operation != reduction operation is considered as the 5469 // reduced value class. 5470 if (I && (!ReducedValueData || OpData == ReducedValueData || 5471 OpData == ReductionData)) { 5472 const bool IsReductionOperation = OpData == ReductionData; 5473 // Only handle trees in the current basic block. 5474 if (!ReductionData.hasSameParent(I, B->getParent(), 5475 IsReductionOperation)) { 5476 // I is an extra argument for TreeN (its parent operation). 5477 markExtraArg(Stack.back(), I); 5478 continue; 5479 } 5480 5481 // Each tree node needs to have minimal number of users except for the 5482 // ultimate reduction. 5483 if (!ReductionData.hasRequiredNumberOfUses(I, 5484 OpData == ReductionData) && 5485 I != B) { 5486 // I is an extra argument for TreeN (its parent operation). 5487 markExtraArg(Stack.back(), I); 5488 continue; 5489 } 5490 5491 if (IsReductionOperation) { 5492 // We need to be able to reassociate the reduction operations. 5493 if (!OpData.isAssociative(I)) { 5494 // I is an extra argument for TreeN (its parent operation). 5495 markExtraArg(Stack.back(), I); 5496 continue; 5497 } 5498 } else if (ReducedValueData && 5499 ReducedValueData != OpData) { 5500 // Make sure that the opcodes of the operations that we are going to 5501 // reduce match. 5502 // I is an extra argument for TreeN (its parent operation). 5503 markExtraArg(Stack.back(), I); 5504 continue; 5505 } else if (!ReducedValueData) 5506 ReducedValueData = OpData; 5507 5508 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5509 continue; 5510 } 5511 } 5512 // NextV is an extra argument for TreeN (its parent operation). 5513 markExtraArg(Stack.back(), NextV); 5514 } 5515 return true; 5516 } 5517 5518 /// \brief Attempt to vectorize the tree found by 5519 /// matchAssociativeReduction. 5520 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5521 if (ReducedVals.empty()) 5522 return false; 5523 5524 // If there is a sufficient number of reduction values, reduce 5525 // to a nearby power-of-2. Can safely generate oversized 5526 // vectors and rely on the backend to split them to legal sizes. 5527 unsigned NumReducedVals = ReducedVals.size(); 5528 if (NumReducedVals < 4) 5529 return false; 5530 5531 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5532 5533 Value *VectorizedTree = nullptr; 5534 IRBuilder<> Builder(ReductionRoot); 5535 FastMathFlags Unsafe; 5536 Unsafe.setFast(); 5537 Builder.setFastMathFlags(Unsafe); 5538 unsigned i = 0; 5539 5540 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5541 // The same extra argument may be used several time, so log each attempt 5542 // to use it. 5543 for (auto &Pair : ExtraArgs) 5544 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5545 SmallVector<Value *, 16> IgnoreList; 5546 for (auto &V : ReductionOps) 5547 IgnoreList.append(V.begin(), V.end()); 5548 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5549 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5550 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5551 if (V.shouldReorder()) { 5552 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5553 V.buildTree(Reversed, ExternallyUsedValues, IgnoreList); 5554 } 5555 if (V.isTreeTinyAndNotFullyVectorizable()) 5556 break; 5557 5558 V.computeMinimumValueSizes(); 5559 5560 // Estimate cost. 5561 int Cost = 5562 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5563 if (Cost >= -SLPCostThreshold) { 5564 V.getORE()->emit([&]() { 5565 return OptimizationRemarkMissed( 5566 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5567 << "Vectorizing horizontal reduction is possible" 5568 << "but not beneficial with cost " 5569 << ore::NV("Cost", Cost) << " and threshold " 5570 << ore::NV("Threshold", -SLPCostThreshold); 5571 }); 5572 break; 5573 } 5574 5575 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5576 << ". (HorRdx)\n"); 5577 V.getORE()->emit([&]() { 5578 return OptimizationRemark( 5579 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5580 << "Vectorized horizontal reduction with cost " 5581 << ore::NV("Cost", Cost) << " and with tree size " 5582 << ore::NV("TreeSize", V.getTreeSize()); 5583 }); 5584 5585 // Vectorize a tree. 5586 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5587 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5588 5589 // Emit a reduction. 5590 Value *ReducedSubTree = 5591 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5592 if (VectorizedTree) { 5593 Builder.SetCurrentDebugLocation(Loc); 5594 OperationData VectReductionData(ReductionData.getOpcode(), 5595 VectorizedTree, ReducedSubTree, 5596 ReductionData.getKind()); 5597 VectorizedTree = 5598 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5599 } else 5600 VectorizedTree = ReducedSubTree; 5601 i += ReduxWidth; 5602 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5603 } 5604 5605 if (VectorizedTree) { 5606 // Finish the reduction. 5607 for (; i < NumReducedVals; ++i) { 5608 auto *I = cast<Instruction>(ReducedVals[i]); 5609 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5610 OperationData VectReductionData(ReductionData.getOpcode(), 5611 VectorizedTree, I, 5612 ReductionData.getKind()); 5613 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5614 } 5615 for (auto &Pair : ExternallyUsedValues) { 5616 assert(!Pair.second.empty() && 5617 "At least one DebugLoc must be inserted"); 5618 // Add each externally used value to the final reduction. 5619 for (auto *I : Pair.second) { 5620 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5621 OperationData VectReductionData(ReductionData.getOpcode(), 5622 VectorizedTree, Pair.first, 5623 ReductionData.getKind()); 5624 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5625 } 5626 } 5627 // Update users. 5628 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5629 } 5630 return VectorizedTree != nullptr; 5631 } 5632 5633 unsigned numReductionValues() const { 5634 return ReducedVals.size(); 5635 } 5636 5637 private: 5638 /// \brief Calculate the cost of a reduction. 5639 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5640 unsigned ReduxWidth) { 5641 Type *ScalarTy = FirstReducedVal->getType(); 5642 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5643 5644 int PairwiseRdxCost; 5645 int SplittingRdxCost; 5646 switch (ReductionData.getKind()) { 5647 case RK_Arithmetic: 5648 PairwiseRdxCost = 5649 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5650 /*IsPairwiseForm=*/true); 5651 SplittingRdxCost = 5652 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5653 /*IsPairwiseForm=*/false); 5654 break; 5655 case RK_Min: 5656 case RK_Max: 5657 case RK_UMin: 5658 case RK_UMax: { 5659 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5660 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5661 ReductionData.getKind() == RK_UMax; 5662 PairwiseRdxCost = 5663 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5664 /*IsPairwiseForm=*/true, IsUnsigned); 5665 SplittingRdxCost = 5666 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5667 /*IsPairwiseForm=*/false, IsUnsigned); 5668 break; 5669 } 5670 case RK_None: 5671 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5672 } 5673 5674 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5675 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5676 5677 int ScalarReduxCost; 5678 switch (ReductionData.getKind()) { 5679 case RK_Arithmetic: 5680 ScalarReduxCost = 5681 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5682 break; 5683 case RK_Min: 5684 case RK_Max: 5685 case RK_UMin: 5686 case RK_UMax: 5687 ScalarReduxCost = 5688 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5689 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5690 CmpInst::makeCmpResultType(ScalarTy)); 5691 break; 5692 case RK_None: 5693 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5694 } 5695 ScalarReduxCost *= (ReduxWidth - 1); 5696 5697 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5698 << " for reduction that starts with " << *FirstReducedVal 5699 << " (It is a " 5700 << (IsPairwiseReduction ? "pairwise" : "splitting") 5701 << " reduction)\n"); 5702 5703 return VecReduxCost - ScalarReduxCost; 5704 } 5705 5706 /// \brief Emit a horizontal reduction of the vectorized value. 5707 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5708 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5709 assert(VectorizedValue && "Need to have a vectorized tree node"); 5710 assert(isPowerOf2_32(ReduxWidth) && 5711 "We only handle power-of-two reductions for now"); 5712 5713 if (!IsPairwiseReduction) 5714 return createSimpleTargetReduction( 5715 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5716 ReductionData.getFlags(), ReductionOps.back()); 5717 5718 Value *TmpVec = VectorizedValue; 5719 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5720 Value *LeftMask = 5721 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5722 Value *RightMask = 5723 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5724 5725 Value *LeftShuf = Builder.CreateShuffleVector( 5726 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5727 Value *RightShuf = Builder.CreateShuffleVector( 5728 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5729 "rdx.shuf.r"); 5730 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5731 RightShuf, ReductionData.getKind()); 5732 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5733 } 5734 5735 // The result is in the first element of the vector. 5736 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5737 } 5738 }; 5739 5740 } // end anonymous namespace 5741 5742 /// \brief Recognize construction of vectors like 5743 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5744 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5745 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5746 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5747 /// starting from the last insertelement instruction. 5748 /// 5749 /// Returns true if it matches 5750 static bool findBuildVector(InsertElementInst *LastInsertElem, 5751 SmallVectorImpl<Value *> &BuildVectorOpds) { 5752 Value *V = nullptr; 5753 do { 5754 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5755 V = LastInsertElem->getOperand(0); 5756 if (isa<UndefValue>(V)) 5757 break; 5758 LastInsertElem = dyn_cast<InsertElementInst>(V); 5759 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5760 return false; 5761 } while (true); 5762 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5763 return true; 5764 } 5765 5766 /// \brief Like findBuildVector, but looks for construction of aggregate. 5767 /// 5768 /// \return true if it matches. 5769 static bool findBuildAggregate(InsertValueInst *IV, 5770 SmallVectorImpl<Value *> &BuildVectorOpds) { 5771 Value *V; 5772 do { 5773 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5774 V = IV->getAggregateOperand(); 5775 if (isa<UndefValue>(V)) 5776 break; 5777 IV = dyn_cast<InsertValueInst>(V); 5778 if (!IV || !IV->hasOneUse()) 5779 return false; 5780 } while (true); 5781 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5782 return true; 5783 } 5784 5785 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5786 return V->getType() < V2->getType(); 5787 } 5788 5789 /// \brief Try and get a reduction value from a phi node. 5790 /// 5791 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5792 /// if they come from either \p ParentBB or a containing loop latch. 5793 /// 5794 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5795 /// if not possible. 5796 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5797 BasicBlock *ParentBB, LoopInfo *LI) { 5798 // There are situations where the reduction value is not dominated by the 5799 // reduction phi. Vectorizing such cases has been reported to cause 5800 // miscompiles. See PR25787. 5801 auto DominatedReduxValue = [&](Value *R) { 5802 return ( 5803 dyn_cast<Instruction>(R) && 5804 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5805 }; 5806 5807 Value *Rdx = nullptr; 5808 5809 // Return the incoming value if it comes from the same BB as the phi node. 5810 if (P->getIncomingBlock(0) == ParentBB) { 5811 Rdx = P->getIncomingValue(0); 5812 } else if (P->getIncomingBlock(1) == ParentBB) { 5813 Rdx = P->getIncomingValue(1); 5814 } 5815 5816 if (Rdx && DominatedReduxValue(Rdx)) 5817 return Rdx; 5818 5819 // Otherwise, check whether we have a loop latch to look at. 5820 Loop *BBL = LI->getLoopFor(ParentBB); 5821 if (!BBL) 5822 return nullptr; 5823 BasicBlock *BBLatch = BBL->getLoopLatch(); 5824 if (!BBLatch) 5825 return nullptr; 5826 5827 // There is a loop latch, return the incoming value if it comes from 5828 // that. This reduction pattern occasionally turns up. 5829 if (P->getIncomingBlock(0) == BBLatch) { 5830 Rdx = P->getIncomingValue(0); 5831 } else if (P->getIncomingBlock(1) == BBLatch) { 5832 Rdx = P->getIncomingValue(1); 5833 } 5834 5835 if (Rdx && DominatedReduxValue(Rdx)) 5836 return Rdx; 5837 5838 return nullptr; 5839 } 5840 5841 /// Attempt to reduce a horizontal reduction. 5842 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5843 /// with reduction operators \a Root (or one of its operands) in a basic block 5844 /// \a BB, then check if it can be done. If horizontal reduction is not found 5845 /// and root instruction is a binary operation, vectorization of the operands is 5846 /// attempted. 5847 /// \returns true if a horizontal reduction was matched and reduced or operands 5848 /// of one of the binary instruction were vectorized. 5849 /// \returns false if a horizontal reduction was not matched (or not possible) 5850 /// or no vectorization of any binary operation feeding \a Root instruction was 5851 /// performed. 5852 static bool tryToVectorizeHorReductionOrInstOperands( 5853 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5854 TargetTransformInfo *TTI, 5855 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5856 if (!ShouldVectorizeHor) 5857 return false; 5858 5859 if (!Root) 5860 return false; 5861 5862 if (Root->getParent() != BB || isa<PHINode>(Root)) 5863 return false; 5864 // Start analysis starting from Root instruction. If horizontal reduction is 5865 // found, try to vectorize it. If it is not a horizontal reduction or 5866 // vectorization is not possible or not effective, and currently analyzed 5867 // instruction is a binary operation, try to vectorize the operands, using 5868 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5869 // the same procedure considering each operand as a possible root of the 5870 // horizontal reduction. 5871 // Interrupt the process if the Root instruction itself was vectorized or all 5872 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5873 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5874 SmallSet<Value *, 8> VisitedInstrs; 5875 bool Res = false; 5876 while (!Stack.empty()) { 5877 Value *V; 5878 unsigned Level; 5879 std::tie(V, Level) = Stack.pop_back_val(); 5880 if (!V) 5881 continue; 5882 auto *Inst = dyn_cast<Instruction>(V); 5883 if (!Inst) 5884 continue; 5885 auto *BI = dyn_cast<BinaryOperator>(Inst); 5886 auto *SI = dyn_cast<SelectInst>(Inst); 5887 if (BI || SI) { 5888 HorizontalReduction HorRdx; 5889 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5890 if (HorRdx.tryToReduce(R, TTI)) { 5891 Res = true; 5892 // Set P to nullptr to avoid re-analysis of phi node in 5893 // matchAssociativeReduction function unless this is the root node. 5894 P = nullptr; 5895 continue; 5896 } 5897 } 5898 if (P && BI) { 5899 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5900 if (Inst == P) 5901 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5902 if (!Inst) { 5903 // Set P to nullptr to avoid re-analysis of phi node in 5904 // matchAssociativeReduction function unless this is the root node. 5905 P = nullptr; 5906 continue; 5907 } 5908 } 5909 } 5910 // Set P to nullptr to avoid re-analysis of phi node in 5911 // matchAssociativeReduction function unless this is the root node. 5912 P = nullptr; 5913 if (Vectorize(Inst, R)) { 5914 Res = true; 5915 continue; 5916 } 5917 5918 // Try to vectorize operands. 5919 // Continue analysis for the instruction from the same basic block only to 5920 // save compile time. 5921 if (++Level < RecursionMaxDepth) 5922 for (auto *Op : Inst->operand_values()) 5923 if (VisitedInstrs.insert(Op).second) 5924 if (auto *I = dyn_cast<Instruction>(Op)) 5925 if (!isa<PHINode>(I) && I->getParent() == BB) 5926 Stack.emplace_back(Op, Level); 5927 } 5928 return Res; 5929 } 5930 5931 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5932 BasicBlock *BB, BoUpSLP &R, 5933 TargetTransformInfo *TTI) { 5934 if (!V) 5935 return false; 5936 auto *I = dyn_cast<Instruction>(V); 5937 if (!I) 5938 return false; 5939 5940 if (!isa<BinaryOperator>(I)) 5941 P = nullptr; 5942 // Try to match and vectorize a horizontal reduction. 5943 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5944 return tryToVectorize(I, R); 5945 }; 5946 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5947 ExtraVectorization); 5948 } 5949 5950 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5951 BasicBlock *BB, BoUpSLP &R) { 5952 const DataLayout &DL = BB->getModule()->getDataLayout(); 5953 if (!R.canMapToVector(IVI->getType(), DL)) 5954 return false; 5955 5956 SmallVector<Value *, 16> BuildVectorOpds; 5957 if (!findBuildAggregate(IVI, BuildVectorOpds)) 5958 return false; 5959 5960 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5961 // Aggregate value is unlikely to be processed in vector register, we need to 5962 // extract scalars into scalar registers, so NeedExtraction is set true. 5963 return tryToVectorizeList(BuildVectorOpds, R); 5964 } 5965 5966 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5967 BasicBlock *BB, BoUpSLP &R) { 5968 SmallVector<Value *, 16> BuildVectorOpds; 5969 if (!findBuildVector(IEI, BuildVectorOpds)) 5970 return false; 5971 5972 // Vectorize starting with the build vector operands ignoring the BuildVector 5973 // instructions for the purpose of scheduling and user extraction. 5974 return tryToVectorizeList(BuildVectorOpds, R); 5975 } 5976 5977 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5978 BoUpSLP &R) { 5979 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5980 return true; 5981 5982 bool OpsChanged = false; 5983 for (int Idx = 0; Idx < 2; ++Idx) { 5984 OpsChanged |= 5985 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5986 } 5987 return OpsChanged; 5988 } 5989 5990 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5991 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5992 bool OpsChanged = false; 5993 for (auto &VH : reverse(Instructions)) { 5994 auto *I = dyn_cast_or_null<Instruction>(VH); 5995 if (!I) 5996 continue; 5997 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5998 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5999 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6000 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6001 else if (auto *CI = dyn_cast<CmpInst>(I)) 6002 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6003 } 6004 Instructions.clear(); 6005 return OpsChanged; 6006 } 6007 6008 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6009 bool Changed = false; 6010 SmallVector<Value *, 4> Incoming; 6011 SmallSet<Value *, 16> VisitedInstrs; 6012 6013 bool HaveVectorizedPhiNodes = true; 6014 while (HaveVectorizedPhiNodes) { 6015 HaveVectorizedPhiNodes = false; 6016 6017 // Collect the incoming values from the PHIs. 6018 Incoming.clear(); 6019 for (Instruction &I : *BB) { 6020 PHINode *P = dyn_cast<PHINode>(&I); 6021 if (!P) 6022 break; 6023 6024 if (!VisitedInstrs.count(P)) 6025 Incoming.push_back(P); 6026 } 6027 6028 // Sort by type. 6029 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6030 6031 // Try to vectorize elements base on their type. 6032 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6033 E = Incoming.end(); 6034 IncIt != E;) { 6035 6036 // Look for the next elements with the same type. 6037 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6038 while (SameTypeIt != E && 6039 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6040 VisitedInstrs.insert(*SameTypeIt); 6041 ++SameTypeIt; 6042 } 6043 6044 // Try to vectorize them. 6045 unsigned NumElts = (SameTypeIt - IncIt); 6046 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 6047 // The order in which the phi nodes appear in the program does not matter. 6048 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6049 // is done when there are exactly two elements since tryToVectorizeList 6050 // asserts that there are only two values when AllowReorder is true. 6051 bool AllowReorder = NumElts == 2; 6052 if (NumElts > 1 && 6053 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 6054 // Success start over because instructions might have been changed. 6055 HaveVectorizedPhiNodes = true; 6056 Changed = true; 6057 break; 6058 } 6059 6060 // Start over at the next instruction of a different type (or the end). 6061 IncIt = SameTypeIt; 6062 } 6063 } 6064 6065 VisitedInstrs.clear(); 6066 6067 SmallVector<WeakVH, 8> PostProcessInstructions; 6068 SmallDenseSet<Instruction *, 4> KeyNodes; 6069 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6070 // We may go through BB multiple times so skip the one we have checked. 6071 if (!VisitedInstrs.insert(&*it).second) { 6072 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6073 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6074 // We would like to start over since some instructions are deleted 6075 // and the iterator may become invalid value. 6076 Changed = true; 6077 it = BB->begin(); 6078 e = BB->end(); 6079 } 6080 continue; 6081 } 6082 6083 if (isa<DbgInfoIntrinsic>(it)) 6084 continue; 6085 6086 // Try to vectorize reductions that use PHINodes. 6087 if (PHINode *P = dyn_cast<PHINode>(it)) { 6088 // Check that the PHI is a reduction PHI. 6089 if (P->getNumIncomingValues() != 2) 6090 return Changed; 6091 6092 // Try to match and vectorize a horizontal reduction. 6093 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6094 TTI)) { 6095 Changed = true; 6096 it = BB->begin(); 6097 e = BB->end(); 6098 continue; 6099 } 6100 continue; 6101 } 6102 6103 // Ran into an instruction without users, like terminator, or function call 6104 // with ignored return value, store. Ignore unused instructions (basing on 6105 // instruction type, except for CallInst and InvokeInst). 6106 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6107 isa<InvokeInst>(it))) { 6108 KeyNodes.insert(&*it); 6109 bool OpsChanged = false; 6110 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6111 for (auto *V : it->operand_values()) { 6112 // Try to match and vectorize a horizontal reduction. 6113 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6114 } 6115 } 6116 // Start vectorization of post-process list of instructions from the 6117 // top-tree instructions to try to vectorize as many instructions as 6118 // possible. 6119 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6120 if (OpsChanged) { 6121 // We would like to start over since some instructions are deleted 6122 // and the iterator may become invalid value. 6123 Changed = true; 6124 it = BB->begin(); 6125 e = BB->end(); 6126 continue; 6127 } 6128 } 6129 6130 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6131 isa<InsertValueInst>(it)) 6132 PostProcessInstructions.push_back(&*it); 6133 6134 } 6135 6136 return Changed; 6137 } 6138 6139 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6140 auto Changed = false; 6141 for (auto &Entry : GEPs) { 6142 // If the getelementptr list has fewer than two elements, there's nothing 6143 // to do. 6144 if (Entry.second.size() < 2) 6145 continue; 6146 6147 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6148 << Entry.second.size() << ".\n"); 6149 6150 // We process the getelementptr list in chunks of 16 (like we do for 6151 // stores) to minimize compile-time. 6152 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6153 auto Len = std::min<unsigned>(BE - BI, 16); 6154 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6155 6156 // Initialize a set a candidate getelementptrs. Note that we use a 6157 // SetVector here to preserve program order. If the index computations 6158 // are vectorizable and begin with loads, we want to minimize the chance 6159 // of having to reorder them later. 6160 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6161 6162 // Some of the candidates may have already been vectorized after we 6163 // initially collected them. If so, the WeakTrackingVHs will have 6164 // nullified the 6165 // values, so remove them from the set of candidates. 6166 Candidates.remove(nullptr); 6167 6168 // Remove from the set of candidates all pairs of getelementptrs with 6169 // constant differences. Such getelementptrs are likely not good 6170 // candidates for vectorization in a bottom-up phase since one can be 6171 // computed from the other. We also ensure all candidate getelementptr 6172 // indices are unique. 6173 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6174 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6175 if (!Candidates.count(GEPI)) 6176 continue; 6177 auto *SCEVI = SE->getSCEV(GEPList[I]); 6178 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6179 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6180 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6181 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6182 Candidates.remove(GEPList[I]); 6183 Candidates.remove(GEPList[J]); 6184 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6185 Candidates.remove(GEPList[J]); 6186 } 6187 } 6188 } 6189 6190 // We break out of the above computation as soon as we know there are 6191 // fewer than two candidates remaining. 6192 if (Candidates.size() < 2) 6193 continue; 6194 6195 // Add the single, non-constant index of each candidate to the bundle. We 6196 // ensured the indices met these constraints when we originally collected 6197 // the getelementptrs. 6198 SmallVector<Value *, 16> Bundle(Candidates.size()); 6199 auto BundleIndex = 0u; 6200 for (auto *V : Candidates) { 6201 auto *GEP = cast<GetElementPtrInst>(V); 6202 auto *GEPIdx = GEP->idx_begin()->get(); 6203 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6204 Bundle[BundleIndex++] = GEPIdx; 6205 } 6206 6207 // Try and vectorize the indices. We are currently only interested in 6208 // gather-like cases of the form: 6209 // 6210 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6211 // 6212 // where the loads of "a", the loads of "b", and the subtractions can be 6213 // performed in parallel. It's likely that detecting this pattern in a 6214 // bottom-up phase will be simpler and less costly than building a 6215 // full-blown top-down phase beginning at the consecutive loads. 6216 Changed |= tryToVectorizeList(Bundle, R); 6217 } 6218 } 6219 return Changed; 6220 } 6221 6222 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6223 bool Changed = false; 6224 // Attempt to sort and vectorize each of the store-groups. 6225 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6226 ++it) { 6227 if (it->second.size() < 2) 6228 continue; 6229 6230 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6231 << it->second.size() << ".\n"); 6232 6233 // Process the stores in chunks of 16. 6234 // TODO: The limit of 16 inhibits greater vectorization factors. 6235 // For example, AVX2 supports v32i8. Increasing this limit, however, 6236 // may cause a significant compile-time increase. 6237 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6238 unsigned Len = std::min<unsigned>(CE - CI, 16); 6239 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6240 } 6241 } 6242 return Changed; 6243 } 6244 6245 char SLPVectorizer::ID = 0; 6246 6247 static const char lv_name[] = "SLP Vectorizer"; 6248 6249 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6250 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6251 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6252 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6253 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6254 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6255 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6256 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6257 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6258 6259 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6260