1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical. 258 static bool isSplat(ArrayRef<Value *> VL) { 259 for (unsigned i = 1, e = VL.size(); i < e; ++i) 260 if (VL[i] != VL[0]) 261 return false; 262 return true; 263 } 264 265 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 266 static bool isCommutative(Instruction *I) { 267 if (auto *Cmp = dyn_cast<CmpInst>(I)) 268 return Cmp->isCommutative(); 269 if (auto *BO = dyn_cast<BinaryOperator>(I)) 270 return BO->isCommutative(); 271 // TODO: This should check for generic Instruction::isCommutative(), but 272 // we need to confirm that the caller code correctly handles Intrinsics 273 // for example (does not have 2 operands). 274 return false; 275 } 276 277 /// Checks if the vector of instructions can be represented as a shuffle, like: 278 /// %x0 = extractelement <4 x i8> %x, i32 0 279 /// %x3 = extractelement <4 x i8> %x, i32 3 280 /// %y1 = extractelement <4 x i8> %y, i32 1 281 /// %y2 = extractelement <4 x i8> %y, i32 2 282 /// %x0x0 = mul i8 %x0, %x0 283 /// %x3x3 = mul i8 %x3, %x3 284 /// %y1y1 = mul i8 %y1, %y1 285 /// %y2y2 = mul i8 %y2, %y2 286 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 288 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 289 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 290 /// ret <4 x i8> %ins4 291 /// can be transformed into: 292 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 293 /// i32 6> 294 /// %2 = mul <4 x i8> %1, %1 295 /// ret <4 x i8> %2 296 /// We convert this initially to something like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 302 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 303 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 304 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 305 /// %5 = mul <4 x i8> %4, %4 306 /// %6 = extractelement <4 x i8> %5, i32 0 307 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 308 /// %7 = extractelement <4 x i8> %5, i32 1 309 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 310 /// %8 = extractelement <4 x i8> %5, i32 2 311 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 312 /// %9 = extractelement <4 x i8> %5, i32 3 313 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 314 /// ret <4 x i8> %ins4 315 /// InstCombiner transforms this into a shuffle and vector mul 316 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 317 /// TODO: Can we split off and reuse the shuffle mask detection from 318 /// TargetTransformInfo::getInstructionThroughput? 319 static Optional<TargetTransformInfo::ShuffleKind> 320 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 321 auto *EI0 = cast<ExtractElementInst>(VL[0]); 322 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 323 return None; 324 unsigned Size = 325 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 326 Value *Vec1 = nullptr; 327 Value *Vec2 = nullptr; 328 enum ShuffleMode { Unknown, Select, Permute }; 329 ShuffleMode CommonShuffleMode = Unknown; 330 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 331 auto *EI = cast<ExtractElementInst>(VL[I]); 332 auto *Vec = EI->getVectorOperand(); 333 // All vector operands must have the same number of vector elements. 334 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 335 return None; 336 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 337 if (!Idx) 338 return None; 339 // Undefined behavior if Idx is negative or >= Size. 340 if (Idx->getValue().uge(Size)) { 341 Mask.push_back(UndefMaskElem); 342 continue; 343 } 344 unsigned IntIdx = Idx->getValue().getZExtValue(); 345 Mask.push_back(IntIdx); 346 // We can extractelement from undef or poison vector. 347 if (isa<UndefValue>(Vec)) 348 continue; 349 // For correct shuffling we have to have at most 2 different vector operands 350 // in all extractelement instructions. 351 if (!Vec1 || Vec1 == Vec) 352 Vec1 = Vec; 353 else if (!Vec2 || Vec2 == Vec) 354 Vec2 = Vec; 355 else 356 return None; 357 if (CommonShuffleMode == Permute) 358 continue; 359 // If the extract index is not the same as the operation number, it is a 360 // permutation. 361 if (IntIdx != I) { 362 CommonShuffleMode = Permute; 363 continue; 364 } 365 CommonShuffleMode = Select; 366 } 367 // If we're not crossing lanes in different vectors, consider it as blending. 368 if (CommonShuffleMode == Select && Vec2) 369 return TargetTransformInfo::SK_Select; 370 // If Vec2 was never used, we have a permutation of a single vector, otherwise 371 // we have permutation of 2 vectors. 372 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 373 : TargetTransformInfo::SK_PermuteSingleSrc; 374 } 375 376 namespace { 377 378 /// Main data required for vectorization of instructions. 379 struct InstructionsState { 380 /// The very first instruction in the list with the main opcode. 381 Value *OpValue = nullptr; 382 383 /// The main/alternate instruction. 384 Instruction *MainOp = nullptr; 385 Instruction *AltOp = nullptr; 386 387 /// The main/alternate opcodes for the list of instructions. 388 unsigned getOpcode() const { 389 return MainOp ? MainOp->getOpcode() : 0; 390 } 391 392 unsigned getAltOpcode() const { 393 return AltOp ? AltOp->getOpcode() : 0; 394 } 395 396 /// Some of the instructions in the list have alternate opcodes. 397 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 398 399 bool isOpcodeOrAlt(Instruction *I) const { 400 unsigned CheckedOpcode = I->getOpcode(); 401 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 402 } 403 404 InstructionsState() = delete; 405 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 406 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 407 }; 408 409 } // end anonymous namespace 410 411 /// Chooses the correct key for scheduling data. If \p Op has the same (or 412 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 413 /// OpValue. 414 static Value *isOneOf(const InstructionsState &S, Value *Op) { 415 auto *I = dyn_cast<Instruction>(Op); 416 if (I && S.isOpcodeOrAlt(I)) 417 return Op; 418 return S.OpValue; 419 } 420 421 /// \returns true if \p Opcode is allowed as part of of the main/alternate 422 /// instruction for SLP vectorization. 423 /// 424 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 425 /// "shuffled out" lane would result in division by zero. 426 static bool isValidForAlternation(unsigned Opcode) { 427 if (Instruction::isIntDivRem(Opcode)) 428 return false; 429 430 return true; 431 } 432 433 /// \returns analysis of the Instructions in \p VL described in 434 /// InstructionsState, the Opcode that we suppose the whole list 435 /// could be vectorized even if its structure is diverse. 436 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 437 unsigned BaseIndex = 0) { 438 // Make sure these are all Instructions. 439 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 442 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 443 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 444 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 445 unsigned AltOpcode = Opcode; 446 unsigned AltIndex = BaseIndex; 447 448 // Check for one alternate opcode from another BinaryOperator. 449 // TODO - generalize to support all operators (types, calls etc.). 450 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 451 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 452 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 453 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 454 continue; 455 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 456 isValidForAlternation(Opcode)) { 457 AltOpcode = InstOpcode; 458 AltIndex = Cnt; 459 continue; 460 } 461 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 462 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 463 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 464 if (Ty0 == Ty1) { 465 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 466 continue; 467 if (Opcode == AltOpcode) { 468 assert(isValidForAlternation(Opcode) && 469 isValidForAlternation(InstOpcode) && 470 "Cast isn't safe for alternation, logic needs to be updated!"); 471 AltOpcode = InstOpcode; 472 AltIndex = Cnt; 473 continue; 474 } 475 } 476 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 477 continue; 478 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 479 } 480 481 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 482 cast<Instruction>(VL[AltIndex])); 483 } 484 485 /// \returns true if all of the values in \p VL have the same type or false 486 /// otherwise. 487 static bool allSameType(ArrayRef<Value *> VL) { 488 Type *Ty = VL[0]->getType(); 489 for (int i = 1, e = VL.size(); i < e; i++) 490 if (VL[i]->getType() != Ty) 491 return false; 492 493 return true; 494 } 495 496 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 497 static Optional<unsigned> getExtractIndex(Instruction *E) { 498 unsigned Opcode = E->getOpcode(); 499 assert((Opcode == Instruction::ExtractElement || 500 Opcode == Instruction::ExtractValue) && 501 "Expected extractelement or extractvalue instruction."); 502 if (Opcode == Instruction::ExtractElement) { 503 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 504 if (!CI) 505 return None; 506 return CI->getZExtValue(); 507 } 508 ExtractValueInst *EI = cast<ExtractValueInst>(E); 509 if (EI->getNumIndices() != 1) 510 return None; 511 return *EI->idx_begin(); 512 } 513 514 /// \returns True if in-tree use also needs extract. This refers to 515 /// possible scalar operand in vectorized instruction. 516 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 517 TargetLibraryInfo *TLI) { 518 unsigned Opcode = UserInst->getOpcode(); 519 switch (Opcode) { 520 case Instruction::Load: { 521 LoadInst *LI = cast<LoadInst>(UserInst); 522 return (LI->getPointerOperand() == Scalar); 523 } 524 case Instruction::Store: { 525 StoreInst *SI = cast<StoreInst>(UserInst); 526 return (SI->getPointerOperand() == Scalar); 527 } 528 case Instruction::Call: { 529 CallInst *CI = cast<CallInst>(UserInst); 530 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 531 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 532 if (hasVectorInstrinsicScalarOpd(ID, i)) 533 return (CI->getArgOperand(i) == Scalar); 534 } 535 LLVM_FALLTHROUGH; 536 } 537 default: 538 return false; 539 } 540 } 541 542 /// \returns the AA location that is being access by the instruction. 543 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 544 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 545 return MemoryLocation::get(SI); 546 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 547 return MemoryLocation::get(LI); 548 return MemoryLocation(); 549 } 550 551 /// \returns True if the instruction is not a volatile or atomic load/store. 552 static bool isSimple(Instruction *I) { 553 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 554 return LI->isSimple(); 555 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 556 return SI->isSimple(); 557 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 558 return !MI->isVolatile(); 559 return true; 560 } 561 562 /// Shuffles \p Mask in accordance with the given \p SubMask. 563 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 564 if (SubMask.empty()) 565 return; 566 if (Mask.empty()) { 567 Mask.append(SubMask.begin(), SubMask.end()); 568 return; 569 } 570 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 571 int TermValue = std::min(Mask.size(), SubMask.size()); 572 for (int I = 0, E = SubMask.size(); I < E; ++I) { 573 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 574 Mask[SubMask[I]] >= TermValue) 575 continue; 576 NewMask[I] = Mask[SubMask[I]]; 577 } 578 Mask.swap(NewMask); 579 } 580 581 /// Order may have elements assigned special value (size) which is out of 582 /// bounds. Such indices only appear on places which correspond to undef values 583 /// (see canReuseExtract for details) and used in order to avoid undef values 584 /// have effect on operands ordering. 585 /// The first loop below simply finds all unused indices and then the next loop 586 /// nest assigns these indices for undef values positions. 587 /// As an example below Order has two undef positions and they have assigned 588 /// values 3 and 7 respectively: 589 /// before: 6 9 5 4 9 2 1 0 590 /// after: 6 3 5 4 7 2 1 0 591 /// \returns Fixed ordering. 592 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 593 const unsigned Sz = Order.size(); 594 SmallBitVector UsedIndices(Sz); 595 SmallVector<int> MaskedIndices; 596 for (unsigned I = 0; I < Sz; ++I) { 597 if (Order[I] < Sz) 598 UsedIndices.set(Order[I]); 599 else 600 MaskedIndices.push_back(I); 601 } 602 if (MaskedIndices.empty()) 603 return; 604 SmallVector<int> AvailableIndices(MaskedIndices.size()); 605 unsigned Cnt = 0; 606 int Idx = UsedIndices.find_first(); 607 do { 608 AvailableIndices[Cnt] = Idx; 609 Idx = UsedIndices.find_next(Idx); 610 ++Cnt; 611 } while (Idx > 0); 612 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 613 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 614 Order[MaskedIndices[I]] = AvailableIndices[I]; 615 } 616 617 namespace llvm { 618 619 static void inversePermutation(ArrayRef<unsigned> Indices, 620 SmallVectorImpl<int> &Mask) { 621 Mask.clear(); 622 const unsigned E = Indices.size(); 623 Mask.resize(E, UndefMaskElem); 624 for (unsigned I = 0; I < E; ++I) 625 Mask[Indices[I]] = I; 626 } 627 628 /// \returns inserting index of InsertElement or InsertValue instruction, 629 /// using Offset as base offset for index. 630 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 631 int Index = Offset; 632 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 633 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 634 auto *VT = cast<FixedVectorType>(IE->getType()); 635 if (CI->getValue().uge(VT->getNumElements())) 636 return UndefMaskElem; 637 Index *= VT->getNumElements(); 638 Index += CI->getZExtValue(); 639 return Index; 640 } 641 if (isa<UndefValue>(IE->getOperand(2))) 642 return UndefMaskElem; 643 return None; 644 } 645 646 auto *IV = cast<InsertValueInst>(InsertInst); 647 Type *CurrentType = IV->getType(); 648 for (unsigned I : IV->indices()) { 649 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 650 Index *= ST->getNumElements(); 651 CurrentType = ST->getElementType(I); 652 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 653 Index *= AT->getNumElements(); 654 CurrentType = AT->getElementType(); 655 } else { 656 return None; 657 } 658 Index += I; 659 } 660 return Index; 661 } 662 663 /// Reorders the list of scalars in accordance with the given \p Order and then 664 /// the \p Mask. \p Order - is the original order of the scalars, need to 665 /// reorder scalars into an unordered state at first according to the given 666 /// order. Then the ordered scalars are shuffled once again in accordance with 667 /// the provided mask. 668 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 669 ArrayRef<int> Mask) { 670 assert(!Mask.empty() && "Expected non-empty mask."); 671 SmallVector<Value *> Prev(Scalars.size(), 672 UndefValue::get(Scalars.front()->getType())); 673 Prev.swap(Scalars); 674 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 675 if (Mask[I] != UndefMaskElem) 676 Scalars[Mask[I]] = Prev[I]; 677 } 678 679 namespace slpvectorizer { 680 681 /// Bottom Up SLP Vectorizer. 682 class BoUpSLP { 683 struct TreeEntry; 684 struct ScheduleData; 685 686 public: 687 using ValueList = SmallVector<Value *, 8>; 688 using InstrList = SmallVector<Instruction *, 16>; 689 using ValueSet = SmallPtrSet<Value *, 16>; 690 using StoreList = SmallVector<StoreInst *, 8>; 691 using ExtraValueToDebugLocsMap = 692 MapVector<Value *, SmallVector<Instruction *, 2>>; 693 using OrdersType = SmallVector<unsigned, 4>; 694 695 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 696 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 697 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 698 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 699 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 700 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 701 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 702 // Use the vector register size specified by the target unless overridden 703 // by a command-line option. 704 // TODO: It would be better to limit the vectorization factor based on 705 // data type rather than just register size. For example, x86 AVX has 706 // 256-bit registers, but it does not support integer operations 707 // at that width (that requires AVX2). 708 if (MaxVectorRegSizeOption.getNumOccurrences()) 709 MaxVecRegSize = MaxVectorRegSizeOption; 710 else 711 MaxVecRegSize = 712 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 713 .getFixedSize(); 714 715 if (MinVectorRegSizeOption.getNumOccurrences()) 716 MinVecRegSize = MinVectorRegSizeOption; 717 else 718 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 719 } 720 721 /// Vectorize the tree that starts with the elements in \p VL. 722 /// Returns the vectorized root. 723 Value *vectorizeTree(); 724 725 /// Vectorize the tree but with the list of externally used values \p 726 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 727 /// generated extractvalue instructions. 728 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 729 730 /// \returns the cost incurred by unwanted spills and fills, caused by 731 /// holding live values over call sites. 732 InstructionCost getSpillCost() const; 733 734 /// \returns the vectorization cost of the subtree that starts at \p VL. 735 /// A negative number means that this is profitable. 736 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 737 738 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 739 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 740 void buildTree(ArrayRef<Value *> Roots, 741 ArrayRef<Value *> UserIgnoreLst = None); 742 743 /// Builds external uses of the vectorized scalars, i.e. the list of 744 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 745 /// ExternallyUsedValues contains additional list of external uses to handle 746 /// vectorization of reductions. 747 void 748 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 749 750 /// Clear the internal data structures that are created by 'buildTree'. 751 void deleteTree() { 752 VectorizableTree.clear(); 753 ScalarToTreeEntry.clear(); 754 MustGather.clear(); 755 ExternalUses.clear(); 756 for (auto &Iter : BlocksSchedules) { 757 BlockScheduling *BS = Iter.second.get(); 758 BS->clear(); 759 } 760 MinBWs.clear(); 761 InstrElementSize.clear(); 762 } 763 764 unsigned getTreeSize() const { return VectorizableTree.size(); } 765 766 /// Perform LICM and CSE on the newly generated gather sequences. 767 void optimizeGatherSequence(); 768 769 /// Reorders the current graph to the most profitable order starting from the 770 /// root node to the leaf nodes. The best order is chosen only from the nodes 771 /// of the same size (vectorization factor). Smaller nodes are considered 772 /// parts of subgraph with smaller VF and they are reordered independently. We 773 /// can make it because we still need to extend smaller nodes to the wider VF 774 /// and we can merge reordering shuffles with the widening shuffles. 775 void reorderTopToBottom(); 776 777 /// Reorders the current graph to the most profitable order starting from 778 /// leaves to the root. It allows to rotate small subgraphs and reduce the 779 /// number of reshuffles if the leaf nodes use the same order. In this case we 780 /// can merge the orders and just shuffle user node instead of shuffling its 781 /// operands. Plus, even the leaf nodes have different orders, it allows to 782 /// sink reordering in the graph closer to the root node and merge it later 783 /// during analysis. 784 void reorderBottomToTop(bool IgnoreReorder = false); 785 786 /// \return The vector element size in bits to use when vectorizing the 787 /// expression tree ending at \p V. If V is a store, the size is the width of 788 /// the stored value. Otherwise, the size is the width of the largest loaded 789 /// value reaching V. This method is used by the vectorizer to calculate 790 /// vectorization factors. 791 unsigned getVectorElementSize(Value *V); 792 793 /// Compute the minimum type sizes required to represent the entries in a 794 /// vectorizable tree. 795 void computeMinimumValueSizes(); 796 797 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 798 unsigned getMaxVecRegSize() const { 799 return MaxVecRegSize; 800 } 801 802 // \returns minimum vector register size as set by cl::opt. 803 unsigned getMinVecRegSize() const { 804 return MinVecRegSize; 805 } 806 807 unsigned getMinVF(unsigned Sz) const { 808 return std::max(2U, getMinVecRegSize() / Sz); 809 } 810 811 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 812 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 813 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 814 return MaxVF ? MaxVF : UINT_MAX; 815 } 816 817 /// Check if homogeneous aggregate is isomorphic to some VectorType. 818 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 819 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 820 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 821 /// 822 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 823 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 824 825 /// \returns True if the VectorizableTree is both tiny and not fully 826 /// vectorizable. We do not vectorize such trees. 827 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 828 829 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 830 /// can be load combined in the backend. Load combining may not be allowed in 831 /// the IR optimizer, so we do not want to alter the pattern. For example, 832 /// partially transforming a scalar bswap() pattern into vector code is 833 /// effectively impossible for the backend to undo. 834 /// TODO: If load combining is allowed in the IR optimizer, this analysis 835 /// may not be necessary. 836 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 837 838 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 839 /// can be load combined in the backend. Load combining may not be allowed in 840 /// the IR optimizer, so we do not want to alter the pattern. For example, 841 /// partially transforming a scalar bswap() pattern into vector code is 842 /// effectively impossible for the backend to undo. 843 /// TODO: If load combining is allowed in the IR optimizer, this analysis 844 /// may not be necessary. 845 bool isLoadCombineCandidate() const; 846 847 OptimizationRemarkEmitter *getORE() { return ORE; } 848 849 /// This structure holds any data we need about the edges being traversed 850 /// during buildTree_rec(). We keep track of: 851 /// (i) the user TreeEntry index, and 852 /// (ii) the index of the edge. 853 struct EdgeInfo { 854 EdgeInfo() = default; 855 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 856 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 857 /// The user TreeEntry. 858 TreeEntry *UserTE = nullptr; 859 /// The operand index of the use. 860 unsigned EdgeIdx = UINT_MAX; 861 #ifndef NDEBUG 862 friend inline raw_ostream &operator<<(raw_ostream &OS, 863 const BoUpSLP::EdgeInfo &EI) { 864 EI.dump(OS); 865 return OS; 866 } 867 /// Debug print. 868 void dump(raw_ostream &OS) const { 869 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 870 << " EdgeIdx:" << EdgeIdx << "}"; 871 } 872 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 873 #endif 874 }; 875 876 /// A helper data structure to hold the operands of a vector of instructions. 877 /// This supports a fixed vector length for all operand vectors. 878 class VLOperands { 879 /// For each operand we need (i) the value, and (ii) the opcode that it 880 /// would be attached to if the expression was in a left-linearized form. 881 /// This is required to avoid illegal operand reordering. 882 /// For example: 883 /// \verbatim 884 /// 0 Op1 885 /// |/ 886 /// Op1 Op2 Linearized + Op2 887 /// \ / ----------> |/ 888 /// - - 889 /// 890 /// Op1 - Op2 (0 + Op1) - Op2 891 /// \endverbatim 892 /// 893 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 894 /// 895 /// Another way to think of this is to track all the operations across the 896 /// path from the operand all the way to the root of the tree and to 897 /// calculate the operation that corresponds to this path. For example, the 898 /// path from Op2 to the root crosses the RHS of the '-', therefore the 899 /// corresponding operation is a '-' (which matches the one in the 900 /// linearized tree, as shown above). 901 /// 902 /// For lack of a better term, we refer to this operation as Accumulated 903 /// Path Operation (APO). 904 struct OperandData { 905 OperandData() = default; 906 OperandData(Value *V, bool APO, bool IsUsed) 907 : V(V), APO(APO), IsUsed(IsUsed) {} 908 /// The operand value. 909 Value *V = nullptr; 910 /// TreeEntries only allow a single opcode, or an alternate sequence of 911 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 912 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 913 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 914 /// (e.g., Add/Mul) 915 bool APO = false; 916 /// Helper data for the reordering function. 917 bool IsUsed = false; 918 }; 919 920 /// During operand reordering, we are trying to select the operand at lane 921 /// that matches best with the operand at the neighboring lane. Our 922 /// selection is based on the type of value we are looking for. For example, 923 /// if the neighboring lane has a load, we need to look for a load that is 924 /// accessing a consecutive address. These strategies are summarized in the 925 /// 'ReorderingMode' enumerator. 926 enum class ReorderingMode { 927 Load, ///< Matching loads to consecutive memory addresses 928 Opcode, ///< Matching instructions based on opcode (same or alternate) 929 Constant, ///< Matching constants 930 Splat, ///< Matching the same instruction multiple times (broadcast) 931 Failed, ///< We failed to create a vectorizable group 932 }; 933 934 using OperandDataVec = SmallVector<OperandData, 2>; 935 936 /// A vector of operand vectors. 937 SmallVector<OperandDataVec, 4> OpsVec; 938 939 const DataLayout &DL; 940 ScalarEvolution &SE; 941 const BoUpSLP &R; 942 943 /// \returns the operand data at \p OpIdx and \p Lane. 944 OperandData &getData(unsigned OpIdx, unsigned Lane) { 945 return OpsVec[OpIdx][Lane]; 946 } 947 948 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 949 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 950 return OpsVec[OpIdx][Lane]; 951 } 952 953 /// Clears the used flag for all entries. 954 void clearUsed() { 955 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 956 OpIdx != NumOperands; ++OpIdx) 957 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 958 ++Lane) 959 OpsVec[OpIdx][Lane].IsUsed = false; 960 } 961 962 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 963 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 964 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 965 } 966 967 // The hard-coded scores listed here are not very important. When computing 968 // the scores of matching one sub-tree with another, we are basically 969 // counting the number of values that are matching. So even if all scores 970 // are set to 1, we would still get a decent matching result. 971 // However, sometimes we have to break ties. For example we may have to 972 // choose between matching loads vs matching opcodes. This is what these 973 // scores are helping us with: they provide the order of preference. 974 975 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 976 static const int ScoreConsecutiveLoads = 3; 977 /// ExtractElementInst from same vector and consecutive indexes. 978 static const int ScoreConsecutiveExtracts = 3; 979 /// Constants. 980 static const int ScoreConstants = 2; 981 /// Instructions with the same opcode. 982 static const int ScoreSameOpcode = 2; 983 /// Instructions with alt opcodes (e.g, add + sub). 984 static const int ScoreAltOpcodes = 1; 985 /// Identical instructions (a.k.a. splat or broadcast). 986 static const int ScoreSplat = 1; 987 /// Matching with an undef is preferable to failing. 988 static const int ScoreUndef = 1; 989 /// Score for failing to find a decent match. 990 static const int ScoreFail = 0; 991 /// User exteranl to the vectorized code. 992 static const int ExternalUseCost = 1; 993 /// The user is internal but in a different lane. 994 static const int UserInDiffLaneCost = ExternalUseCost; 995 996 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 997 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 998 ScalarEvolution &SE) { 999 auto *LI1 = dyn_cast<LoadInst>(V1); 1000 auto *LI2 = dyn_cast<LoadInst>(V2); 1001 if (LI1 && LI2) { 1002 if (LI1->getParent() != LI2->getParent()) 1003 return VLOperands::ScoreFail; 1004 1005 Optional<int> Dist = getPointersDiff( 1006 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1007 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1008 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1009 : VLOperands::ScoreFail; 1010 } 1011 1012 auto *C1 = dyn_cast<Constant>(V1); 1013 auto *C2 = dyn_cast<Constant>(V2); 1014 if (C1 && C2) 1015 return VLOperands::ScoreConstants; 1016 1017 // Extracts from consecutive indexes of the same vector better score as 1018 // the extracts could be optimized away. 1019 Value *EV; 1020 ConstantInt *Ex1Idx, *Ex2Idx; 1021 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1022 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1023 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1024 return VLOperands::ScoreConsecutiveExtracts; 1025 1026 auto *I1 = dyn_cast<Instruction>(V1); 1027 auto *I2 = dyn_cast<Instruction>(V2); 1028 if (I1 && I2) { 1029 if (I1 == I2) 1030 return VLOperands::ScoreSplat; 1031 InstructionsState S = getSameOpcode({I1, I2}); 1032 // Note: Only consider instructions with <= 2 operands to avoid 1033 // complexity explosion. 1034 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1035 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1036 : VLOperands::ScoreSameOpcode; 1037 } 1038 1039 if (isa<UndefValue>(V2)) 1040 return VLOperands::ScoreUndef; 1041 1042 return VLOperands::ScoreFail; 1043 } 1044 1045 /// Holds the values and their lane that are taking part in the look-ahead 1046 /// score calculation. This is used in the external uses cost calculation. 1047 SmallDenseMap<Value *, int> InLookAheadValues; 1048 1049 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1050 /// either external to the vectorized code, or require shuffling. 1051 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1052 const std::pair<Value *, int> &RHS) { 1053 int Cost = 0; 1054 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1055 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1056 Value *V = Values[Idx].first; 1057 if (isa<Constant>(V)) { 1058 // Since this is a function pass, it doesn't make semantic sense to 1059 // walk the users of a subclass of Constant. The users could be in 1060 // another function, or even another module that happens to be in 1061 // the same LLVMContext. 1062 continue; 1063 } 1064 1065 // Calculate the absolute lane, using the minimum relative lane of LHS 1066 // and RHS as base and Idx as the offset. 1067 int Ln = std::min(LHS.second, RHS.second) + Idx; 1068 assert(Ln >= 0 && "Bad lane calculation"); 1069 unsigned UsersBudget = LookAheadUsersBudget; 1070 for (User *U : V->users()) { 1071 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1072 // The user is in the VectorizableTree. Check if we need to insert. 1073 auto It = llvm::find(UserTE->Scalars, U); 1074 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1075 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1076 assert(UserLn >= 0 && "Bad lane"); 1077 if (UserLn != Ln) 1078 Cost += UserInDiffLaneCost; 1079 } else { 1080 // Check if the user is in the look-ahead code. 1081 auto It2 = InLookAheadValues.find(U); 1082 if (It2 != InLookAheadValues.end()) { 1083 // The user is in the look-ahead code. Check the lane. 1084 if (It2->second != Ln) 1085 Cost += UserInDiffLaneCost; 1086 } else { 1087 // The user is neither in SLP tree nor in the look-ahead code. 1088 Cost += ExternalUseCost; 1089 } 1090 } 1091 // Limit the number of visited uses to cap compilation time. 1092 if (--UsersBudget == 0) 1093 break; 1094 } 1095 } 1096 return Cost; 1097 } 1098 1099 /// Go through the operands of \p LHS and \p RHS recursively until \p 1100 /// MaxLevel, and return the cummulative score. For example: 1101 /// \verbatim 1102 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1103 /// \ / \ / \ / \ / 1104 /// + + + + 1105 /// G1 G2 G3 G4 1106 /// \endverbatim 1107 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1108 /// each level recursively, accumulating the score. It starts from matching 1109 /// the additions at level 0, then moves on to the loads (level 1). The 1110 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1111 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1112 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1113 /// Please note that the order of the operands does not matter, as we 1114 /// evaluate the score of all profitable combinations of operands. In 1115 /// other words the score of G1 and G4 is the same as G1 and G2. This 1116 /// heuristic is based on ideas described in: 1117 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1118 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1119 /// Luís F. W. Góes 1120 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1121 const std::pair<Value *, int> &RHS, int CurrLevel, 1122 int MaxLevel) { 1123 1124 Value *V1 = LHS.first; 1125 Value *V2 = RHS.first; 1126 // Get the shallow score of V1 and V2. 1127 int ShallowScoreAtThisLevel = 1128 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1129 getExternalUsesCost(LHS, RHS)); 1130 int Lane1 = LHS.second; 1131 int Lane2 = RHS.second; 1132 1133 // If reached MaxLevel, 1134 // or if V1 and V2 are not instructions, 1135 // or if they are SPLAT, 1136 // or if they are not consecutive, early return the current cost. 1137 auto *I1 = dyn_cast<Instruction>(V1); 1138 auto *I2 = dyn_cast<Instruction>(V2); 1139 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1140 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1141 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1142 return ShallowScoreAtThisLevel; 1143 assert(I1 && I2 && "Should have early exited."); 1144 1145 // Keep track of in-tree values for determining the external-use cost. 1146 InLookAheadValues[V1] = Lane1; 1147 InLookAheadValues[V2] = Lane2; 1148 1149 // Contains the I2 operand indexes that got matched with I1 operands. 1150 SmallSet<unsigned, 4> Op2Used; 1151 1152 // Recursion towards the operands of I1 and I2. We are trying all possbile 1153 // operand pairs, and keeping track of the best score. 1154 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1155 OpIdx1 != NumOperands1; ++OpIdx1) { 1156 // Try to pair op1I with the best operand of I2. 1157 int MaxTmpScore = 0; 1158 unsigned MaxOpIdx2 = 0; 1159 bool FoundBest = false; 1160 // If I2 is commutative try all combinations. 1161 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1162 unsigned ToIdx = isCommutative(I2) 1163 ? I2->getNumOperands() 1164 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1165 assert(FromIdx <= ToIdx && "Bad index"); 1166 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1167 // Skip operands already paired with OpIdx1. 1168 if (Op2Used.count(OpIdx2)) 1169 continue; 1170 // Recursively calculate the cost at each level 1171 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1172 {I2->getOperand(OpIdx2), Lane2}, 1173 CurrLevel + 1, MaxLevel); 1174 // Look for the best score. 1175 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1176 MaxTmpScore = TmpScore; 1177 MaxOpIdx2 = OpIdx2; 1178 FoundBest = true; 1179 } 1180 } 1181 if (FoundBest) { 1182 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1183 Op2Used.insert(MaxOpIdx2); 1184 ShallowScoreAtThisLevel += MaxTmpScore; 1185 } 1186 } 1187 return ShallowScoreAtThisLevel; 1188 } 1189 1190 /// \Returns the look-ahead score, which tells us how much the sub-trees 1191 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1192 /// score. This helps break ties in an informed way when we cannot decide on 1193 /// the order of the operands by just considering the immediate 1194 /// predecessors. 1195 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1196 const std::pair<Value *, int> &RHS) { 1197 InLookAheadValues.clear(); 1198 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1199 } 1200 1201 // Search all operands in Ops[*][Lane] for the one that matches best 1202 // Ops[OpIdx][LastLane] and return its opreand index. 1203 // If no good match can be found, return None. 1204 Optional<unsigned> 1205 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1206 ArrayRef<ReorderingMode> ReorderingModes) { 1207 unsigned NumOperands = getNumOperands(); 1208 1209 // The operand of the previous lane at OpIdx. 1210 Value *OpLastLane = getData(OpIdx, LastLane).V; 1211 1212 // Our strategy mode for OpIdx. 1213 ReorderingMode RMode = ReorderingModes[OpIdx]; 1214 1215 // The linearized opcode of the operand at OpIdx, Lane. 1216 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1217 1218 // The best operand index and its score. 1219 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1220 // are using the score to differentiate between the two. 1221 struct BestOpData { 1222 Optional<unsigned> Idx = None; 1223 unsigned Score = 0; 1224 } BestOp; 1225 1226 // Iterate through all unused operands and look for the best. 1227 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1228 // Get the operand at Idx and Lane. 1229 OperandData &OpData = getData(Idx, Lane); 1230 Value *Op = OpData.V; 1231 bool OpAPO = OpData.APO; 1232 1233 // Skip already selected operands. 1234 if (OpData.IsUsed) 1235 continue; 1236 1237 // Skip if we are trying to move the operand to a position with a 1238 // different opcode in the linearized tree form. This would break the 1239 // semantics. 1240 if (OpAPO != OpIdxAPO) 1241 continue; 1242 1243 // Look for an operand that matches the current mode. 1244 switch (RMode) { 1245 case ReorderingMode::Load: 1246 case ReorderingMode::Constant: 1247 case ReorderingMode::Opcode: { 1248 bool LeftToRight = Lane > LastLane; 1249 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1250 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1251 unsigned Score = 1252 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1253 if (Score > BestOp.Score) { 1254 BestOp.Idx = Idx; 1255 BestOp.Score = Score; 1256 } 1257 break; 1258 } 1259 case ReorderingMode::Splat: 1260 if (Op == OpLastLane) 1261 BestOp.Idx = Idx; 1262 break; 1263 case ReorderingMode::Failed: 1264 return None; 1265 } 1266 } 1267 1268 if (BestOp.Idx) { 1269 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1270 return BestOp.Idx; 1271 } 1272 // If we could not find a good match return None. 1273 return None; 1274 } 1275 1276 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1277 /// reordering from. This is the one which has the least number of operands 1278 /// that can freely move about. 1279 unsigned getBestLaneToStartReordering() const { 1280 unsigned BestLane = 0; 1281 unsigned Min = UINT_MAX; 1282 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1283 ++Lane) { 1284 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1285 if (NumFreeOps < Min) { 1286 Min = NumFreeOps; 1287 BestLane = Lane; 1288 } 1289 } 1290 return BestLane; 1291 } 1292 1293 /// \Returns the maximum number of operands that are allowed to be reordered 1294 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1295 /// start operand reordering. 1296 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1297 unsigned CntTrue = 0; 1298 unsigned NumOperands = getNumOperands(); 1299 // Operands with the same APO can be reordered. We therefore need to count 1300 // how many of them we have for each APO, like this: Cnt[APO] = x. 1301 // Since we only have two APOs, namely true and false, we can avoid using 1302 // a map. Instead we can simply count the number of operands that 1303 // correspond to one of them (in this case the 'true' APO), and calculate 1304 // the other by subtracting it from the total number of operands. 1305 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1306 if (getData(OpIdx, Lane).APO) 1307 ++CntTrue; 1308 unsigned CntFalse = NumOperands - CntTrue; 1309 return std::max(CntTrue, CntFalse); 1310 } 1311 1312 /// Go through the instructions in VL and append their operands. 1313 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1314 assert(!VL.empty() && "Bad VL"); 1315 assert((empty() || VL.size() == getNumLanes()) && 1316 "Expected same number of lanes"); 1317 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1318 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1319 OpsVec.resize(NumOperands); 1320 unsigned NumLanes = VL.size(); 1321 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1322 OpsVec[OpIdx].resize(NumLanes); 1323 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1324 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1325 // Our tree has just 3 nodes: the root and two operands. 1326 // It is therefore trivial to get the APO. We only need to check the 1327 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1328 // RHS operand. The LHS operand of both add and sub is never attached 1329 // to an inversese operation in the linearized form, therefore its APO 1330 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1331 1332 // Since operand reordering is performed on groups of commutative 1333 // operations or alternating sequences (e.g., +, -), we can safely 1334 // tell the inverse operations by checking commutativity. 1335 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1336 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1337 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1338 APO, false}; 1339 } 1340 } 1341 } 1342 1343 /// \returns the number of operands. 1344 unsigned getNumOperands() const { return OpsVec.size(); } 1345 1346 /// \returns the number of lanes. 1347 unsigned getNumLanes() const { return OpsVec[0].size(); } 1348 1349 /// \returns the operand value at \p OpIdx and \p Lane. 1350 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1351 return getData(OpIdx, Lane).V; 1352 } 1353 1354 /// \returns true if the data structure is empty. 1355 bool empty() const { return OpsVec.empty(); } 1356 1357 /// Clears the data. 1358 void clear() { OpsVec.clear(); } 1359 1360 /// \Returns true if there are enough operands identical to \p Op to fill 1361 /// the whole vector. 1362 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1363 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1364 bool OpAPO = getData(OpIdx, Lane).APO; 1365 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1366 if (Ln == Lane) 1367 continue; 1368 // This is set to true if we found a candidate for broadcast at Lane. 1369 bool FoundCandidate = false; 1370 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1371 OperandData &Data = getData(OpI, Ln); 1372 if (Data.APO != OpAPO || Data.IsUsed) 1373 continue; 1374 if (Data.V == Op) { 1375 FoundCandidate = true; 1376 Data.IsUsed = true; 1377 break; 1378 } 1379 } 1380 if (!FoundCandidate) 1381 return false; 1382 } 1383 return true; 1384 } 1385 1386 public: 1387 /// Initialize with all the operands of the instruction vector \p RootVL. 1388 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1389 ScalarEvolution &SE, const BoUpSLP &R) 1390 : DL(DL), SE(SE), R(R) { 1391 // Append all the operands of RootVL. 1392 appendOperandsOfVL(RootVL); 1393 } 1394 1395 /// \Returns a value vector with the operands across all lanes for the 1396 /// opearnd at \p OpIdx. 1397 ValueList getVL(unsigned OpIdx) const { 1398 ValueList OpVL(OpsVec[OpIdx].size()); 1399 assert(OpsVec[OpIdx].size() == getNumLanes() && 1400 "Expected same num of lanes across all operands"); 1401 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1402 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1403 return OpVL; 1404 } 1405 1406 // Performs operand reordering for 2 or more operands. 1407 // The original operands are in OrigOps[OpIdx][Lane]. 1408 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1409 void reorder() { 1410 unsigned NumOperands = getNumOperands(); 1411 unsigned NumLanes = getNumLanes(); 1412 // Each operand has its own mode. We are using this mode to help us select 1413 // the instructions for each lane, so that they match best with the ones 1414 // we have selected so far. 1415 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1416 1417 // This is a greedy single-pass algorithm. We are going over each lane 1418 // once and deciding on the best order right away with no back-tracking. 1419 // However, in order to increase its effectiveness, we start with the lane 1420 // that has operands that can move the least. For example, given the 1421 // following lanes: 1422 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1423 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1424 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1425 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1426 // we will start at Lane 1, since the operands of the subtraction cannot 1427 // be reordered. Then we will visit the rest of the lanes in a circular 1428 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1429 1430 // Find the first lane that we will start our search from. 1431 unsigned FirstLane = getBestLaneToStartReordering(); 1432 1433 // Initialize the modes. 1434 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1435 Value *OpLane0 = getValue(OpIdx, FirstLane); 1436 // Keep track if we have instructions with all the same opcode on one 1437 // side. 1438 if (isa<LoadInst>(OpLane0)) 1439 ReorderingModes[OpIdx] = ReorderingMode::Load; 1440 else if (isa<Instruction>(OpLane0)) { 1441 // Check if OpLane0 should be broadcast. 1442 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1443 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1444 else 1445 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1446 } 1447 else if (isa<Constant>(OpLane0)) 1448 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1449 else if (isa<Argument>(OpLane0)) 1450 // Our best hope is a Splat. It may save some cost in some cases. 1451 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1452 else 1453 // NOTE: This should be unreachable. 1454 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1455 } 1456 1457 // If the initial strategy fails for any of the operand indexes, then we 1458 // perform reordering again in a second pass. This helps avoid assigning 1459 // high priority to the failed strategy, and should improve reordering for 1460 // the non-failed operand indexes. 1461 for (int Pass = 0; Pass != 2; ++Pass) { 1462 // Skip the second pass if the first pass did not fail. 1463 bool StrategyFailed = false; 1464 // Mark all operand data as free to use. 1465 clearUsed(); 1466 // We keep the original operand order for the FirstLane, so reorder the 1467 // rest of the lanes. We are visiting the nodes in a circular fashion, 1468 // using FirstLane as the center point and increasing the radius 1469 // distance. 1470 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1471 // Visit the lane on the right and then the lane on the left. 1472 for (int Direction : {+1, -1}) { 1473 int Lane = FirstLane + Direction * Distance; 1474 if (Lane < 0 || Lane >= (int)NumLanes) 1475 continue; 1476 int LastLane = Lane - Direction; 1477 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1478 "Out of bounds"); 1479 // Look for a good match for each operand. 1480 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1481 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1482 Optional<unsigned> BestIdx = 1483 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1484 // By not selecting a value, we allow the operands that follow to 1485 // select a better matching value. We will get a non-null value in 1486 // the next run of getBestOperand(). 1487 if (BestIdx) { 1488 // Swap the current operand with the one returned by 1489 // getBestOperand(). 1490 swap(OpIdx, BestIdx.getValue(), Lane); 1491 } else { 1492 // We failed to find a best operand, set mode to 'Failed'. 1493 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1494 // Enable the second pass. 1495 StrategyFailed = true; 1496 } 1497 } 1498 } 1499 } 1500 // Skip second pass if the strategy did not fail. 1501 if (!StrategyFailed) 1502 break; 1503 } 1504 } 1505 1506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1507 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1508 switch (RMode) { 1509 case ReorderingMode::Load: 1510 return "Load"; 1511 case ReorderingMode::Opcode: 1512 return "Opcode"; 1513 case ReorderingMode::Constant: 1514 return "Constant"; 1515 case ReorderingMode::Splat: 1516 return "Splat"; 1517 case ReorderingMode::Failed: 1518 return "Failed"; 1519 } 1520 llvm_unreachable("Unimplemented Reordering Type"); 1521 } 1522 1523 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1524 raw_ostream &OS) { 1525 return OS << getModeStr(RMode); 1526 } 1527 1528 /// Debug print. 1529 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1530 printMode(RMode, dbgs()); 1531 } 1532 1533 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1534 return printMode(RMode, OS); 1535 } 1536 1537 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1538 const unsigned Indent = 2; 1539 unsigned Cnt = 0; 1540 for (const OperandDataVec &OpDataVec : OpsVec) { 1541 OS << "Operand " << Cnt++ << "\n"; 1542 for (const OperandData &OpData : OpDataVec) { 1543 OS.indent(Indent) << "{"; 1544 if (Value *V = OpData.V) 1545 OS << *V; 1546 else 1547 OS << "null"; 1548 OS << ", APO:" << OpData.APO << "}\n"; 1549 } 1550 OS << "\n"; 1551 } 1552 return OS; 1553 } 1554 1555 /// Debug print. 1556 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1557 #endif 1558 }; 1559 1560 /// Checks if the instruction is marked for deletion. 1561 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1562 1563 /// Marks values operands for later deletion by replacing them with Undefs. 1564 void eraseInstructions(ArrayRef<Value *> AV); 1565 1566 ~BoUpSLP(); 1567 1568 private: 1569 /// Checks if all users of \p I are the part of the vectorization tree. 1570 bool areAllUsersVectorized(Instruction *I, 1571 ArrayRef<Value *> VectorizedVals) const; 1572 1573 /// \returns the cost of the vectorizable entry. 1574 InstructionCost getEntryCost(const TreeEntry *E, 1575 ArrayRef<Value *> VectorizedVals); 1576 1577 /// This is the recursive part of buildTree. 1578 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1579 const EdgeInfo &EI); 1580 1581 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1582 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1583 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1584 /// returns false, setting \p CurrentOrder to either an empty vector or a 1585 /// non-identity permutation that allows to reuse extract instructions. 1586 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1587 SmallVectorImpl<unsigned> &CurrentOrder) const; 1588 1589 /// Vectorize a single entry in the tree. 1590 Value *vectorizeTree(TreeEntry *E); 1591 1592 /// Vectorize a single entry in the tree, starting in \p VL. 1593 Value *vectorizeTree(ArrayRef<Value *> VL); 1594 1595 /// \returns the scalarization cost for this type. Scalarization in this 1596 /// context means the creation of vectors from a group of scalars. 1597 InstructionCost 1598 getGatherCost(FixedVectorType *Ty, 1599 const DenseSet<unsigned> &ShuffledIndices) const; 1600 1601 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1602 /// tree entries. 1603 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1604 /// previous tree entries. \p Mask is filled with the shuffle mask. 1605 Optional<TargetTransformInfo::ShuffleKind> 1606 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1607 SmallVectorImpl<const TreeEntry *> &Entries); 1608 1609 /// \returns the scalarization cost for this list of values. Assuming that 1610 /// this subtree gets vectorized, we may need to extract the values from the 1611 /// roots. This method calculates the cost of extracting the values. 1612 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1613 1614 /// Set the Builder insert point to one after the last instruction in 1615 /// the bundle 1616 void setInsertPointAfterBundle(const TreeEntry *E); 1617 1618 /// \returns a vector from a collection of scalars in \p VL. 1619 Value *gather(ArrayRef<Value *> VL); 1620 1621 /// \returns whether the VectorizableTree is fully vectorizable and will 1622 /// be beneficial even the tree height is tiny. 1623 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1624 1625 /// Reorder commutative or alt operands to get better probability of 1626 /// generating vectorized code. 1627 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1628 SmallVectorImpl<Value *> &Left, 1629 SmallVectorImpl<Value *> &Right, 1630 const DataLayout &DL, 1631 ScalarEvolution &SE, 1632 const BoUpSLP &R); 1633 struct TreeEntry { 1634 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1635 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1636 1637 /// \returns true if the scalars in VL are equal to this entry. 1638 bool isSame(ArrayRef<Value *> VL) const { 1639 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1640 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1641 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1642 return VL.size() == Mask.size() && 1643 std::equal(VL.begin(), VL.end(), Mask.begin(), 1644 [Scalars](Value *V, int Idx) { 1645 return (isa<UndefValue>(V) && 1646 Idx == UndefMaskElem) || 1647 (Idx != UndefMaskElem && V == Scalars[Idx]); 1648 }); 1649 }; 1650 if (!ReorderIndices.empty()) { 1651 // TODO: implement matching if the nodes are just reordered, still can 1652 // treat the vector as the same if the list of scalars matches VL 1653 // directly, without reordering. 1654 SmallVector<int> Mask; 1655 inversePermutation(ReorderIndices, Mask); 1656 if (VL.size() == Scalars.size()) 1657 return IsSame(Scalars, Mask); 1658 if (VL.size() == ReuseShuffleIndices.size()) { 1659 ::addMask(Mask, ReuseShuffleIndices); 1660 return IsSame(Scalars, Mask); 1661 } 1662 return false; 1663 } 1664 return IsSame(Scalars, ReuseShuffleIndices); 1665 } 1666 1667 /// A vector of scalars. 1668 ValueList Scalars; 1669 1670 /// The Scalars are vectorized into this value. It is initialized to Null. 1671 Value *VectorizedValue = nullptr; 1672 1673 /// Do we need to gather this sequence or vectorize it 1674 /// (either with vector instruction or with scatter/gather 1675 /// intrinsics for store/load)? 1676 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1677 EntryState State; 1678 1679 /// Does this sequence require some shuffling? 1680 SmallVector<int, 4> ReuseShuffleIndices; 1681 1682 /// Does this entry require reordering? 1683 SmallVector<unsigned, 4> ReorderIndices; 1684 1685 /// Points back to the VectorizableTree. 1686 /// 1687 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1688 /// to be a pointer and needs to be able to initialize the child iterator. 1689 /// Thus we need a reference back to the container to translate the indices 1690 /// to entries. 1691 VecTreeTy &Container; 1692 1693 /// The TreeEntry index containing the user of this entry. We can actually 1694 /// have multiple users so the data structure is not truly a tree. 1695 SmallVector<EdgeInfo, 1> UserTreeIndices; 1696 1697 /// The index of this treeEntry in VectorizableTree. 1698 int Idx = -1; 1699 1700 private: 1701 /// The operands of each instruction in each lane Operands[op_index][lane]. 1702 /// Note: This helps avoid the replication of the code that performs the 1703 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1704 SmallVector<ValueList, 2> Operands; 1705 1706 /// The main/alternate instruction. 1707 Instruction *MainOp = nullptr; 1708 Instruction *AltOp = nullptr; 1709 1710 public: 1711 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1712 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1713 if (Operands.size() < OpIdx + 1) 1714 Operands.resize(OpIdx + 1); 1715 assert(Operands[OpIdx].empty() && "Already resized?"); 1716 Operands[OpIdx].resize(Scalars.size()); 1717 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1718 Operands[OpIdx][Lane] = OpVL[Lane]; 1719 } 1720 1721 /// Set the operands of this bundle in their original order. 1722 void setOperandsInOrder() { 1723 assert(Operands.empty() && "Already initialized?"); 1724 auto *I0 = cast<Instruction>(Scalars[0]); 1725 Operands.resize(I0->getNumOperands()); 1726 unsigned NumLanes = Scalars.size(); 1727 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1728 OpIdx != NumOperands; ++OpIdx) { 1729 Operands[OpIdx].resize(NumLanes); 1730 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1731 auto *I = cast<Instruction>(Scalars[Lane]); 1732 assert(I->getNumOperands() == NumOperands && 1733 "Expected same number of operands"); 1734 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1735 } 1736 } 1737 } 1738 1739 /// Reorders operands of the node to the given mask \p Mask. 1740 void reorderOperands(ArrayRef<int> Mask) { 1741 for (ValueList &Operand : Operands) 1742 reorderScalars(Operand, Mask); 1743 } 1744 1745 /// \returns the \p OpIdx operand of this TreeEntry. 1746 ValueList &getOperand(unsigned OpIdx) { 1747 assert(OpIdx < Operands.size() && "Off bounds"); 1748 return Operands[OpIdx]; 1749 } 1750 1751 /// \returns the number of operands. 1752 unsigned getNumOperands() const { return Operands.size(); } 1753 1754 /// \return the single \p OpIdx operand. 1755 Value *getSingleOperand(unsigned OpIdx) const { 1756 assert(OpIdx < Operands.size() && "Off bounds"); 1757 assert(!Operands[OpIdx].empty() && "No operand available"); 1758 return Operands[OpIdx][0]; 1759 } 1760 1761 /// Some of the instructions in the list have alternate opcodes. 1762 bool isAltShuffle() const { 1763 return getOpcode() != getAltOpcode(); 1764 } 1765 1766 bool isOpcodeOrAlt(Instruction *I) const { 1767 unsigned CheckedOpcode = I->getOpcode(); 1768 return (getOpcode() == CheckedOpcode || 1769 getAltOpcode() == CheckedOpcode); 1770 } 1771 1772 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1773 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1774 /// \p OpValue. 1775 Value *isOneOf(Value *Op) const { 1776 auto *I = dyn_cast<Instruction>(Op); 1777 if (I && isOpcodeOrAlt(I)) 1778 return Op; 1779 return MainOp; 1780 } 1781 1782 void setOperations(const InstructionsState &S) { 1783 MainOp = S.MainOp; 1784 AltOp = S.AltOp; 1785 } 1786 1787 Instruction *getMainOp() const { 1788 return MainOp; 1789 } 1790 1791 Instruction *getAltOp() const { 1792 return AltOp; 1793 } 1794 1795 /// The main/alternate opcodes for the list of instructions. 1796 unsigned getOpcode() const { 1797 return MainOp ? MainOp->getOpcode() : 0; 1798 } 1799 1800 unsigned getAltOpcode() const { 1801 return AltOp ? AltOp->getOpcode() : 0; 1802 } 1803 1804 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1805 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1806 int findLaneForValue(Value *V) const { 1807 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1808 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1809 if (!ReorderIndices.empty()) 1810 FoundLane = ReorderIndices[FoundLane]; 1811 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1812 if (!ReuseShuffleIndices.empty()) { 1813 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1814 find(ReuseShuffleIndices, FoundLane)); 1815 } 1816 return FoundLane; 1817 } 1818 1819 #ifndef NDEBUG 1820 /// Debug printer. 1821 LLVM_DUMP_METHOD void dump() const { 1822 dbgs() << Idx << ".\n"; 1823 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1824 dbgs() << "Operand " << OpI << ":\n"; 1825 for (const Value *V : Operands[OpI]) 1826 dbgs().indent(2) << *V << "\n"; 1827 } 1828 dbgs() << "Scalars: \n"; 1829 for (Value *V : Scalars) 1830 dbgs().indent(2) << *V << "\n"; 1831 dbgs() << "State: "; 1832 switch (State) { 1833 case Vectorize: 1834 dbgs() << "Vectorize\n"; 1835 break; 1836 case ScatterVectorize: 1837 dbgs() << "ScatterVectorize\n"; 1838 break; 1839 case NeedToGather: 1840 dbgs() << "NeedToGather\n"; 1841 break; 1842 } 1843 dbgs() << "MainOp: "; 1844 if (MainOp) 1845 dbgs() << *MainOp << "\n"; 1846 else 1847 dbgs() << "NULL\n"; 1848 dbgs() << "AltOp: "; 1849 if (AltOp) 1850 dbgs() << *AltOp << "\n"; 1851 else 1852 dbgs() << "NULL\n"; 1853 dbgs() << "VectorizedValue: "; 1854 if (VectorizedValue) 1855 dbgs() << *VectorizedValue << "\n"; 1856 else 1857 dbgs() << "NULL\n"; 1858 dbgs() << "ReuseShuffleIndices: "; 1859 if (ReuseShuffleIndices.empty()) 1860 dbgs() << "Empty"; 1861 else 1862 for (unsigned ReuseIdx : ReuseShuffleIndices) 1863 dbgs() << ReuseIdx << ", "; 1864 dbgs() << "\n"; 1865 dbgs() << "ReorderIndices: "; 1866 for (unsigned ReorderIdx : ReorderIndices) 1867 dbgs() << ReorderIdx << ", "; 1868 dbgs() << "\n"; 1869 dbgs() << "UserTreeIndices: "; 1870 for (const auto &EInfo : UserTreeIndices) 1871 dbgs() << EInfo << ", "; 1872 dbgs() << "\n"; 1873 } 1874 #endif 1875 }; 1876 1877 #ifndef NDEBUG 1878 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1879 InstructionCost VecCost, 1880 InstructionCost ScalarCost) const { 1881 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1882 dbgs() << "SLP: Costs:\n"; 1883 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1884 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1885 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1886 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1887 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1888 } 1889 #endif 1890 1891 /// Create a new VectorizableTree entry. 1892 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1893 const InstructionsState &S, 1894 const EdgeInfo &UserTreeIdx, 1895 ArrayRef<int> ReuseShuffleIndices = None, 1896 ArrayRef<unsigned> ReorderIndices = None) { 1897 TreeEntry::EntryState EntryState = 1898 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1899 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1900 ReuseShuffleIndices, ReorderIndices); 1901 } 1902 1903 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1904 TreeEntry::EntryState EntryState, 1905 Optional<ScheduleData *> Bundle, 1906 const InstructionsState &S, 1907 const EdgeInfo &UserTreeIdx, 1908 ArrayRef<int> ReuseShuffleIndices = None, 1909 ArrayRef<unsigned> ReorderIndices = None) { 1910 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1911 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1912 "Need to vectorize gather entry?"); 1913 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1914 TreeEntry *Last = VectorizableTree.back().get(); 1915 Last->Idx = VectorizableTree.size() - 1; 1916 Last->State = EntryState; 1917 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1918 ReuseShuffleIndices.end()); 1919 if (ReorderIndices.empty()) { 1920 Last->Scalars.assign(VL.begin(), VL.end()); 1921 Last->setOperations(S); 1922 } else { 1923 // Reorder scalars and build final mask. 1924 Last->Scalars.assign(VL.size(), nullptr); 1925 transform(ReorderIndices, Last->Scalars.begin(), 1926 [VL](unsigned Idx) -> Value * { 1927 if (Idx >= VL.size()) 1928 return UndefValue::get(VL.front()->getType()); 1929 return VL[Idx]; 1930 }); 1931 InstructionsState S = getSameOpcode(Last->Scalars); 1932 Last->setOperations(S); 1933 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1934 } 1935 if (Last->State != TreeEntry::NeedToGather) { 1936 for (Value *V : VL) { 1937 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1938 ScalarToTreeEntry[V] = Last; 1939 } 1940 // Update the scheduler bundle to point to this TreeEntry. 1941 unsigned Lane = 0; 1942 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1943 BundleMember = BundleMember->NextInBundle) { 1944 BundleMember->TE = Last; 1945 BundleMember->Lane = Lane; 1946 ++Lane; 1947 } 1948 assert((!Bundle.getValue() || Lane == VL.size()) && 1949 "Bundle and VL out of sync"); 1950 } else { 1951 MustGather.insert(VL.begin(), VL.end()); 1952 } 1953 1954 if (UserTreeIdx.UserTE) 1955 Last->UserTreeIndices.push_back(UserTreeIdx); 1956 1957 return Last; 1958 } 1959 1960 /// -- Vectorization State -- 1961 /// Holds all of the tree entries. 1962 TreeEntry::VecTreeTy VectorizableTree; 1963 1964 #ifndef NDEBUG 1965 /// Debug printer. 1966 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1967 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1968 VectorizableTree[Id]->dump(); 1969 dbgs() << "\n"; 1970 } 1971 } 1972 #endif 1973 1974 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1975 1976 const TreeEntry *getTreeEntry(Value *V) const { 1977 return ScalarToTreeEntry.lookup(V); 1978 } 1979 1980 /// Maps a specific scalar to its tree entry. 1981 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1982 1983 /// Maps a value to the proposed vectorizable size. 1984 SmallDenseMap<Value *, unsigned> InstrElementSize; 1985 1986 /// A list of scalars that we found that we need to keep as scalars. 1987 ValueSet MustGather; 1988 1989 /// This POD struct describes one external user in the vectorized tree. 1990 struct ExternalUser { 1991 ExternalUser(Value *S, llvm::User *U, int L) 1992 : Scalar(S), User(U), Lane(L) {} 1993 1994 // Which scalar in our function. 1995 Value *Scalar; 1996 1997 // Which user that uses the scalar. 1998 llvm::User *User; 1999 2000 // Which lane does the scalar belong to. 2001 int Lane; 2002 }; 2003 using UserList = SmallVector<ExternalUser, 16>; 2004 2005 /// Checks if two instructions may access the same memory. 2006 /// 2007 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2008 /// is invariant in the calling loop. 2009 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2010 Instruction *Inst2) { 2011 // First check if the result is already in the cache. 2012 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2013 Optional<bool> &result = AliasCache[key]; 2014 if (result.hasValue()) { 2015 return result.getValue(); 2016 } 2017 bool aliased = true; 2018 if (Loc1.Ptr && isSimple(Inst1)) 2019 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2020 // Store the result in the cache. 2021 result = aliased; 2022 return aliased; 2023 } 2024 2025 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2026 2027 /// Cache for alias results. 2028 /// TODO: consider moving this to the AliasAnalysis itself. 2029 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2030 2031 /// Removes an instruction from its block and eventually deletes it. 2032 /// It's like Instruction::eraseFromParent() except that the actual deletion 2033 /// is delayed until BoUpSLP is destructed. 2034 /// This is required to ensure that there are no incorrect collisions in the 2035 /// AliasCache, which can happen if a new instruction is allocated at the 2036 /// same address as a previously deleted instruction. 2037 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2038 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2039 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2040 } 2041 2042 /// Temporary store for deleted instructions. Instructions will be deleted 2043 /// eventually when the BoUpSLP is destructed. 2044 DenseMap<Instruction *, bool> DeletedInstructions; 2045 2046 /// A list of values that need to extracted out of the tree. 2047 /// This list holds pairs of (Internal Scalar : External User). External User 2048 /// can be nullptr, it means that this Internal Scalar will be used later, 2049 /// after vectorization. 2050 UserList ExternalUses; 2051 2052 /// Values used only by @llvm.assume calls. 2053 SmallPtrSet<const Value *, 32> EphValues; 2054 2055 /// Holds all of the instructions that we gathered. 2056 SetVector<Instruction *> GatherSeq; 2057 2058 /// A list of blocks that we are going to CSE. 2059 SetVector<BasicBlock *> CSEBlocks; 2060 2061 /// Contains all scheduling relevant data for an instruction. 2062 /// A ScheduleData either represents a single instruction or a member of an 2063 /// instruction bundle (= a group of instructions which is combined into a 2064 /// vector instruction). 2065 struct ScheduleData { 2066 // The initial value for the dependency counters. It means that the 2067 // dependencies are not calculated yet. 2068 enum { InvalidDeps = -1 }; 2069 2070 ScheduleData() = default; 2071 2072 void init(int BlockSchedulingRegionID, Value *OpVal) { 2073 FirstInBundle = this; 2074 NextInBundle = nullptr; 2075 NextLoadStore = nullptr; 2076 IsScheduled = false; 2077 SchedulingRegionID = BlockSchedulingRegionID; 2078 UnscheduledDepsInBundle = UnscheduledDeps; 2079 clearDependencies(); 2080 OpValue = OpVal; 2081 TE = nullptr; 2082 Lane = -1; 2083 } 2084 2085 /// Returns true if the dependency information has been calculated. 2086 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2087 2088 /// Returns true for single instructions and for bundle representatives 2089 /// (= the head of a bundle). 2090 bool isSchedulingEntity() const { return FirstInBundle == this; } 2091 2092 /// Returns true if it represents an instruction bundle and not only a 2093 /// single instruction. 2094 bool isPartOfBundle() const { 2095 return NextInBundle != nullptr || FirstInBundle != this; 2096 } 2097 2098 /// Returns true if it is ready for scheduling, i.e. it has no more 2099 /// unscheduled depending instructions/bundles. 2100 bool isReady() const { 2101 assert(isSchedulingEntity() && 2102 "can't consider non-scheduling entity for ready list"); 2103 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2104 } 2105 2106 /// Modifies the number of unscheduled dependencies, also updating it for 2107 /// the whole bundle. 2108 int incrementUnscheduledDeps(int Incr) { 2109 UnscheduledDeps += Incr; 2110 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2111 } 2112 2113 /// Sets the number of unscheduled dependencies to the number of 2114 /// dependencies. 2115 void resetUnscheduledDeps() { 2116 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2117 } 2118 2119 /// Clears all dependency information. 2120 void clearDependencies() { 2121 Dependencies = InvalidDeps; 2122 resetUnscheduledDeps(); 2123 MemoryDependencies.clear(); 2124 } 2125 2126 void dump(raw_ostream &os) const { 2127 if (!isSchedulingEntity()) { 2128 os << "/ " << *Inst; 2129 } else if (NextInBundle) { 2130 os << '[' << *Inst; 2131 ScheduleData *SD = NextInBundle; 2132 while (SD) { 2133 os << ';' << *SD->Inst; 2134 SD = SD->NextInBundle; 2135 } 2136 os << ']'; 2137 } else { 2138 os << *Inst; 2139 } 2140 } 2141 2142 Instruction *Inst = nullptr; 2143 2144 /// Points to the head in an instruction bundle (and always to this for 2145 /// single instructions). 2146 ScheduleData *FirstInBundle = nullptr; 2147 2148 /// Single linked list of all instructions in a bundle. Null if it is a 2149 /// single instruction. 2150 ScheduleData *NextInBundle = nullptr; 2151 2152 /// Single linked list of all memory instructions (e.g. load, store, call) 2153 /// in the block - until the end of the scheduling region. 2154 ScheduleData *NextLoadStore = nullptr; 2155 2156 /// The dependent memory instructions. 2157 /// This list is derived on demand in calculateDependencies(). 2158 SmallVector<ScheduleData *, 4> MemoryDependencies; 2159 2160 /// This ScheduleData is in the current scheduling region if this matches 2161 /// the current SchedulingRegionID of BlockScheduling. 2162 int SchedulingRegionID = 0; 2163 2164 /// Used for getting a "good" final ordering of instructions. 2165 int SchedulingPriority = 0; 2166 2167 /// The number of dependencies. Constitutes of the number of users of the 2168 /// instruction plus the number of dependent memory instructions (if any). 2169 /// This value is calculated on demand. 2170 /// If InvalidDeps, the number of dependencies is not calculated yet. 2171 int Dependencies = InvalidDeps; 2172 2173 /// The number of dependencies minus the number of dependencies of scheduled 2174 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2175 /// for scheduling. 2176 /// Note that this is negative as long as Dependencies is not calculated. 2177 int UnscheduledDeps = InvalidDeps; 2178 2179 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2180 /// single instructions. 2181 int UnscheduledDepsInBundle = InvalidDeps; 2182 2183 /// True if this instruction is scheduled (or considered as scheduled in the 2184 /// dry-run). 2185 bool IsScheduled = false; 2186 2187 /// Opcode of the current instruction in the schedule data. 2188 Value *OpValue = nullptr; 2189 2190 /// The TreeEntry that this instruction corresponds to. 2191 TreeEntry *TE = nullptr; 2192 2193 /// The lane of this node in the TreeEntry. 2194 int Lane = -1; 2195 }; 2196 2197 #ifndef NDEBUG 2198 friend inline raw_ostream &operator<<(raw_ostream &os, 2199 const BoUpSLP::ScheduleData &SD) { 2200 SD.dump(os); 2201 return os; 2202 } 2203 #endif 2204 2205 friend struct GraphTraits<BoUpSLP *>; 2206 friend struct DOTGraphTraits<BoUpSLP *>; 2207 2208 /// Contains all scheduling data for a basic block. 2209 struct BlockScheduling { 2210 BlockScheduling(BasicBlock *BB) 2211 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2212 2213 void clear() { 2214 ReadyInsts.clear(); 2215 ScheduleStart = nullptr; 2216 ScheduleEnd = nullptr; 2217 FirstLoadStoreInRegion = nullptr; 2218 LastLoadStoreInRegion = nullptr; 2219 2220 // Reduce the maximum schedule region size by the size of the 2221 // previous scheduling run. 2222 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2223 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2224 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2225 ScheduleRegionSize = 0; 2226 2227 // Make a new scheduling region, i.e. all existing ScheduleData is not 2228 // in the new region yet. 2229 ++SchedulingRegionID; 2230 } 2231 2232 ScheduleData *getScheduleData(Value *V) { 2233 ScheduleData *SD = ScheduleDataMap[V]; 2234 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2235 return SD; 2236 return nullptr; 2237 } 2238 2239 ScheduleData *getScheduleData(Value *V, Value *Key) { 2240 if (V == Key) 2241 return getScheduleData(V); 2242 auto I = ExtraScheduleDataMap.find(V); 2243 if (I != ExtraScheduleDataMap.end()) { 2244 ScheduleData *SD = I->second[Key]; 2245 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2246 return SD; 2247 } 2248 return nullptr; 2249 } 2250 2251 bool isInSchedulingRegion(ScheduleData *SD) const { 2252 return SD->SchedulingRegionID == SchedulingRegionID; 2253 } 2254 2255 /// Marks an instruction as scheduled and puts all dependent ready 2256 /// instructions into the ready-list. 2257 template <typename ReadyListType> 2258 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2259 SD->IsScheduled = true; 2260 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2261 2262 ScheduleData *BundleMember = SD; 2263 while (BundleMember) { 2264 if (BundleMember->Inst != BundleMember->OpValue) { 2265 BundleMember = BundleMember->NextInBundle; 2266 continue; 2267 } 2268 // Handle the def-use chain dependencies. 2269 2270 // Decrement the unscheduled counter and insert to ready list if ready. 2271 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2272 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2273 if (OpDef && OpDef->hasValidDependencies() && 2274 OpDef->incrementUnscheduledDeps(-1) == 0) { 2275 // There are no more unscheduled dependencies after 2276 // decrementing, so we can put the dependent instruction 2277 // into the ready list. 2278 ScheduleData *DepBundle = OpDef->FirstInBundle; 2279 assert(!DepBundle->IsScheduled && 2280 "already scheduled bundle gets ready"); 2281 ReadyList.insert(DepBundle); 2282 LLVM_DEBUG(dbgs() 2283 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2284 } 2285 }); 2286 }; 2287 2288 // If BundleMember is a vector bundle, its operands may have been 2289 // reordered duiring buildTree(). We therefore need to get its operands 2290 // through the TreeEntry. 2291 if (TreeEntry *TE = BundleMember->TE) { 2292 int Lane = BundleMember->Lane; 2293 assert(Lane >= 0 && "Lane not set"); 2294 2295 // Since vectorization tree is being built recursively this assertion 2296 // ensures that the tree entry has all operands set before reaching 2297 // this code. Couple of exceptions known at the moment are extracts 2298 // where their second (immediate) operand is not added. Since 2299 // immediates do not affect scheduler behavior this is considered 2300 // okay. 2301 auto *In = TE->getMainOp(); 2302 assert(In && 2303 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2304 In->getNumOperands() == TE->getNumOperands()) && 2305 "Missed TreeEntry operands?"); 2306 (void)In; // fake use to avoid build failure when assertions disabled 2307 2308 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2309 OpIdx != NumOperands; ++OpIdx) 2310 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2311 DecrUnsched(I); 2312 } else { 2313 // If BundleMember is a stand-alone instruction, no operand reordering 2314 // has taken place, so we directly access its operands. 2315 for (Use &U : BundleMember->Inst->operands()) 2316 if (auto *I = dyn_cast<Instruction>(U.get())) 2317 DecrUnsched(I); 2318 } 2319 // Handle the memory dependencies. 2320 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2321 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2322 // There are no more unscheduled dependencies after decrementing, 2323 // so we can put the dependent instruction into the ready list. 2324 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2325 assert(!DepBundle->IsScheduled && 2326 "already scheduled bundle gets ready"); 2327 ReadyList.insert(DepBundle); 2328 LLVM_DEBUG(dbgs() 2329 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2330 } 2331 } 2332 BundleMember = BundleMember->NextInBundle; 2333 } 2334 } 2335 2336 void doForAllOpcodes(Value *V, 2337 function_ref<void(ScheduleData *SD)> Action) { 2338 if (ScheduleData *SD = getScheduleData(V)) 2339 Action(SD); 2340 auto I = ExtraScheduleDataMap.find(V); 2341 if (I != ExtraScheduleDataMap.end()) 2342 for (auto &P : I->second) 2343 if (P.second->SchedulingRegionID == SchedulingRegionID) 2344 Action(P.second); 2345 } 2346 2347 /// Put all instructions into the ReadyList which are ready for scheduling. 2348 template <typename ReadyListType> 2349 void initialFillReadyList(ReadyListType &ReadyList) { 2350 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2351 doForAllOpcodes(I, [&](ScheduleData *SD) { 2352 if (SD->isSchedulingEntity() && SD->isReady()) { 2353 ReadyList.insert(SD); 2354 LLVM_DEBUG(dbgs() 2355 << "SLP: initially in ready list: " << *I << "\n"); 2356 } 2357 }); 2358 } 2359 } 2360 2361 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2362 /// cyclic dependencies. This is only a dry-run, no instructions are 2363 /// actually moved at this stage. 2364 /// \returns the scheduling bundle. The returned Optional value is non-None 2365 /// if \p VL is allowed to be scheduled. 2366 Optional<ScheduleData *> 2367 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2368 const InstructionsState &S); 2369 2370 /// Un-bundles a group of instructions. 2371 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2372 2373 /// Allocates schedule data chunk. 2374 ScheduleData *allocateScheduleDataChunks(); 2375 2376 /// Extends the scheduling region so that V is inside the region. 2377 /// \returns true if the region size is within the limit. 2378 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2379 2380 /// Initialize the ScheduleData structures for new instructions in the 2381 /// scheduling region. 2382 void initScheduleData(Instruction *FromI, Instruction *ToI, 2383 ScheduleData *PrevLoadStore, 2384 ScheduleData *NextLoadStore); 2385 2386 /// Updates the dependency information of a bundle and of all instructions/ 2387 /// bundles which depend on the original bundle. 2388 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2389 BoUpSLP *SLP); 2390 2391 /// Sets all instruction in the scheduling region to un-scheduled. 2392 void resetSchedule(); 2393 2394 BasicBlock *BB; 2395 2396 /// Simple memory allocation for ScheduleData. 2397 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2398 2399 /// The size of a ScheduleData array in ScheduleDataChunks. 2400 int ChunkSize; 2401 2402 /// The allocator position in the current chunk, which is the last entry 2403 /// of ScheduleDataChunks. 2404 int ChunkPos; 2405 2406 /// Attaches ScheduleData to Instruction. 2407 /// Note that the mapping survives during all vectorization iterations, i.e. 2408 /// ScheduleData structures are recycled. 2409 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2410 2411 /// Attaches ScheduleData to Instruction with the leading key. 2412 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2413 ExtraScheduleDataMap; 2414 2415 struct ReadyList : SmallVector<ScheduleData *, 8> { 2416 void insert(ScheduleData *SD) { push_back(SD); } 2417 }; 2418 2419 /// The ready-list for scheduling (only used for the dry-run). 2420 ReadyList ReadyInsts; 2421 2422 /// The first instruction of the scheduling region. 2423 Instruction *ScheduleStart = nullptr; 2424 2425 /// The first instruction _after_ the scheduling region. 2426 Instruction *ScheduleEnd = nullptr; 2427 2428 /// The first memory accessing instruction in the scheduling region 2429 /// (can be null). 2430 ScheduleData *FirstLoadStoreInRegion = nullptr; 2431 2432 /// The last memory accessing instruction in the scheduling region 2433 /// (can be null). 2434 ScheduleData *LastLoadStoreInRegion = nullptr; 2435 2436 /// The current size of the scheduling region. 2437 int ScheduleRegionSize = 0; 2438 2439 /// The maximum size allowed for the scheduling region. 2440 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2441 2442 /// The ID of the scheduling region. For a new vectorization iteration this 2443 /// is incremented which "removes" all ScheduleData from the region. 2444 // Make sure that the initial SchedulingRegionID is greater than the 2445 // initial SchedulingRegionID in ScheduleData (which is 0). 2446 int SchedulingRegionID = 1; 2447 }; 2448 2449 /// Attaches the BlockScheduling structures to basic blocks. 2450 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2451 2452 /// Performs the "real" scheduling. Done before vectorization is actually 2453 /// performed in a basic block. 2454 void scheduleBlock(BlockScheduling *BS); 2455 2456 /// List of users to ignore during scheduling and that don't need extracting. 2457 ArrayRef<Value *> UserIgnoreList; 2458 2459 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2460 /// sorted SmallVectors of unsigned. 2461 struct OrdersTypeDenseMapInfo { 2462 static OrdersType getEmptyKey() { 2463 OrdersType V; 2464 V.push_back(~1U); 2465 return V; 2466 } 2467 2468 static OrdersType getTombstoneKey() { 2469 OrdersType V; 2470 V.push_back(~2U); 2471 return V; 2472 } 2473 2474 static unsigned getHashValue(const OrdersType &V) { 2475 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2476 } 2477 2478 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2479 return LHS == RHS; 2480 } 2481 }; 2482 2483 // Analysis and block reference. 2484 Function *F; 2485 ScalarEvolution *SE; 2486 TargetTransformInfo *TTI; 2487 TargetLibraryInfo *TLI; 2488 AAResults *AA; 2489 LoopInfo *LI; 2490 DominatorTree *DT; 2491 AssumptionCache *AC; 2492 DemandedBits *DB; 2493 const DataLayout *DL; 2494 OptimizationRemarkEmitter *ORE; 2495 2496 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2497 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2498 2499 /// Instruction builder to construct the vectorized tree. 2500 IRBuilder<> Builder; 2501 2502 /// A map of scalar integer values to the smallest bit width with which they 2503 /// can legally be represented. The values map to (width, signed) pairs, 2504 /// where "width" indicates the minimum bit width and "signed" is True if the 2505 /// value must be signed-extended, rather than zero-extended, back to its 2506 /// original width. 2507 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2508 }; 2509 2510 } // end namespace slpvectorizer 2511 2512 template <> struct GraphTraits<BoUpSLP *> { 2513 using TreeEntry = BoUpSLP::TreeEntry; 2514 2515 /// NodeRef has to be a pointer per the GraphWriter. 2516 using NodeRef = TreeEntry *; 2517 2518 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2519 2520 /// Add the VectorizableTree to the index iterator to be able to return 2521 /// TreeEntry pointers. 2522 struct ChildIteratorType 2523 : public iterator_adaptor_base< 2524 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2525 ContainerTy &VectorizableTree; 2526 2527 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2528 ContainerTy &VT) 2529 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2530 2531 NodeRef operator*() { return I->UserTE; } 2532 }; 2533 2534 static NodeRef getEntryNode(BoUpSLP &R) { 2535 return R.VectorizableTree[0].get(); 2536 } 2537 2538 static ChildIteratorType child_begin(NodeRef N) { 2539 return {N->UserTreeIndices.begin(), N->Container}; 2540 } 2541 2542 static ChildIteratorType child_end(NodeRef N) { 2543 return {N->UserTreeIndices.end(), N->Container}; 2544 } 2545 2546 /// For the node iterator we just need to turn the TreeEntry iterator into a 2547 /// TreeEntry* iterator so that it dereferences to NodeRef. 2548 class nodes_iterator { 2549 using ItTy = ContainerTy::iterator; 2550 ItTy It; 2551 2552 public: 2553 nodes_iterator(const ItTy &It2) : It(It2) {} 2554 NodeRef operator*() { return It->get(); } 2555 nodes_iterator operator++() { 2556 ++It; 2557 return *this; 2558 } 2559 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2560 }; 2561 2562 static nodes_iterator nodes_begin(BoUpSLP *R) { 2563 return nodes_iterator(R->VectorizableTree.begin()); 2564 } 2565 2566 static nodes_iterator nodes_end(BoUpSLP *R) { 2567 return nodes_iterator(R->VectorizableTree.end()); 2568 } 2569 2570 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2571 }; 2572 2573 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2574 using TreeEntry = BoUpSLP::TreeEntry; 2575 2576 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2577 2578 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2579 std::string Str; 2580 raw_string_ostream OS(Str); 2581 if (isSplat(Entry->Scalars)) { 2582 OS << "<splat> " << *Entry->Scalars[0]; 2583 return Str; 2584 } 2585 for (auto V : Entry->Scalars) { 2586 OS << *V; 2587 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2588 return EU.Scalar == V; 2589 })) 2590 OS << " <extract>"; 2591 OS << "\n"; 2592 } 2593 return Str; 2594 } 2595 2596 static std::string getNodeAttributes(const TreeEntry *Entry, 2597 const BoUpSLP *) { 2598 if (Entry->State == TreeEntry::NeedToGather) 2599 return "color=red"; 2600 return ""; 2601 } 2602 }; 2603 2604 } // end namespace llvm 2605 2606 BoUpSLP::~BoUpSLP() { 2607 for (const auto &Pair : DeletedInstructions) { 2608 // Replace operands of ignored instructions with Undefs in case if they were 2609 // marked for deletion. 2610 if (Pair.getSecond()) { 2611 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2612 Pair.getFirst()->replaceAllUsesWith(Undef); 2613 } 2614 Pair.getFirst()->dropAllReferences(); 2615 } 2616 for (const auto &Pair : DeletedInstructions) { 2617 assert(Pair.getFirst()->use_empty() && 2618 "trying to erase instruction with users."); 2619 Pair.getFirst()->eraseFromParent(); 2620 } 2621 #ifdef EXPENSIVE_CHECKS 2622 // If we could guarantee that this call is not extremely slow, we could 2623 // remove the ifdef limitation (see PR47712). 2624 assert(!verifyFunction(*F, &dbgs())); 2625 #endif 2626 } 2627 2628 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2629 for (auto *V : AV) { 2630 if (auto *I = dyn_cast<Instruction>(V)) 2631 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2632 }; 2633 } 2634 2635 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2636 /// contains original mask for the scalars reused in the node. Procedure 2637 /// transform this mask in accordance with the given \p Mask. 2638 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2639 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2640 "Expected non-empty mask."); 2641 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2642 Prev.swap(Reuses); 2643 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2644 if (Mask[I] != UndefMaskElem) 2645 Reuses[Mask[I]] = Prev[I]; 2646 } 2647 2648 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2649 /// the original order of the scalars. Procedure transforms the provided order 2650 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2651 /// identity order, \p Order is cleared. 2652 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2653 assert(!Mask.empty() && "Expected non-empty mask."); 2654 SmallVector<int> MaskOrder; 2655 if (Order.empty()) { 2656 MaskOrder.resize(Mask.size()); 2657 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2658 } else { 2659 inversePermutation(Order, MaskOrder); 2660 } 2661 reorderReuses(MaskOrder, Mask); 2662 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2663 Order.clear(); 2664 return; 2665 } 2666 Order.assign(Mask.size(), Mask.size()); 2667 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2668 if (MaskOrder[I] != UndefMaskElem) 2669 Order[MaskOrder[I]] = I; 2670 fixupOrderingIndices(Order); 2671 } 2672 2673 void BoUpSLP::reorderTopToBottom() { 2674 // Maps VF to the graph nodes. 2675 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2676 // ExtractElement gather nodes which can be vectorized and need to handle 2677 // their ordering. 2678 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2679 // Find all reorderable nodes with the given VF. 2680 // Currently the are vectorized loads,extracts + some gathering of extracts. 2681 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2682 const std::unique_ptr<TreeEntry> &TE) { 2683 // No need to reorder if need to shuffle reuses, still need to shuffle the 2684 // node. 2685 if (!TE->ReuseShuffleIndices.empty()) 2686 return; 2687 if (TE->State == TreeEntry::Vectorize && 2688 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2689 InsertElementInst>(TE->getMainOp()) && 2690 !TE->isAltShuffle()) { 2691 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2692 } else if (TE->State == TreeEntry::NeedToGather && 2693 TE->getOpcode() == Instruction::ExtractElement && 2694 !TE->isAltShuffle() && 2695 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2696 ->getVectorOperandType()) && 2697 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2698 // Check that gather of extractelements can be represented as 2699 // just a shuffle of a single vector. 2700 OrdersType CurrentOrder; 2701 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2702 if (Reuse || !CurrentOrder.empty()) { 2703 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2704 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2705 } 2706 } 2707 }); 2708 2709 // Reorder the graph nodes according to their vectorization factor. 2710 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2711 VF /= 2) { 2712 auto It = VFToOrderedEntries.find(VF); 2713 if (It == VFToOrderedEntries.end()) 2714 continue; 2715 // Try to find the most profitable order. We just are looking for the most 2716 // used order and reorder scalar elements in the nodes according to this 2717 // mostly used order. 2718 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2719 // All operands are reordered and used only in this node - propagate the 2720 // most used order to the user node. 2721 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2722 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2723 for (const TreeEntry *OpTE : OrderedEntries) { 2724 // No need to reorder this nodes, still need to extend and to use shuffle, 2725 // just need to merge reordering shuffle and the reuse shuffle. 2726 if (!OpTE->ReuseShuffleIndices.empty()) 2727 continue; 2728 // Count number of orders uses. 2729 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2730 if (OpTE->State == TreeEntry::NeedToGather) 2731 return GathersToOrders.find(OpTE)->second; 2732 return OpTE->ReorderIndices; 2733 }(); 2734 // Stores actually store the mask, not the order, need to invert. 2735 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2736 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2737 SmallVector<int> Mask; 2738 inversePermutation(Order, Mask); 2739 unsigned E = Order.size(); 2740 OrdersType CurrentOrder(E, E); 2741 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2742 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2743 }); 2744 fixupOrderingIndices(CurrentOrder); 2745 ++OrdersUses.try_emplace(CurrentOrder).first->getSecond(); 2746 } else { 2747 ++OrdersUses.try_emplace(Order).first->getSecond(); 2748 } 2749 } 2750 // Set order of the user node. 2751 if (OrdersUses.empty()) 2752 continue; 2753 // Choose the most used order. 2754 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2755 unsigned Cnt = OrdersUses.begin()->second; 2756 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2757 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2758 BestOrder = Pair.first; 2759 Cnt = Pair.second; 2760 } 2761 } 2762 // Set order of the user node. 2763 if (BestOrder.empty()) 2764 continue; 2765 SmallVector<int> Mask; 2766 inversePermutation(BestOrder, Mask); 2767 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2768 unsigned E = BestOrder.size(); 2769 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2770 return I < E ? static_cast<int>(I) : UndefMaskElem; 2771 }); 2772 // Do an actual reordering, if profitable. 2773 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2774 // Just do the reordering for the nodes with the given VF. 2775 if (TE->Scalars.size() != VF) { 2776 if (TE->ReuseShuffleIndices.size() == VF) { 2777 // Need to reorder the reuses masks of the operands with smaller VF to 2778 // be able to find the match between the graph nodes and scalar 2779 // operands of the given node during vectorization/cost estimation. 2780 assert(all_of(TE->UserTreeIndices, 2781 [VF, &TE](const EdgeInfo &EI) { 2782 return EI.UserTE->Scalars.size() == VF || 2783 EI.UserTE->Scalars.size() == 2784 TE->Scalars.size(); 2785 }) && 2786 "All users must be of VF size."); 2787 // Update ordering of the operands with the smaller VF than the given 2788 // one. 2789 reorderReuses(TE->ReuseShuffleIndices, Mask); 2790 } 2791 continue; 2792 } 2793 if (TE->State == TreeEntry::Vectorize && 2794 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2795 InsertElementInst>(TE->getMainOp()) && 2796 !TE->isAltShuffle()) { 2797 // Build correct orders for extract{element,value}, loads and 2798 // stores. 2799 reorderOrder(TE->ReorderIndices, Mask); 2800 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2801 TE->reorderOperands(Mask); 2802 } else { 2803 // Reorder the node and its operands. 2804 TE->reorderOperands(Mask); 2805 assert(TE->ReorderIndices.empty() && 2806 "Expected empty reorder sequence."); 2807 reorderScalars(TE->Scalars, Mask); 2808 } 2809 if (!TE->ReuseShuffleIndices.empty()) { 2810 // Apply reversed order to keep the original ordering of the reused 2811 // elements to avoid extra reorder indices shuffling. 2812 OrdersType CurrentOrder; 2813 reorderOrder(CurrentOrder, MaskOrder); 2814 SmallVector<int> NewReuses; 2815 inversePermutation(CurrentOrder, NewReuses); 2816 addMask(NewReuses, TE->ReuseShuffleIndices); 2817 TE->ReuseShuffleIndices.swap(NewReuses); 2818 } 2819 } 2820 } 2821 } 2822 2823 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2824 SetVector<TreeEntry *> OrderedEntries; 2825 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2826 // Find all reorderable leaf nodes with the given VF. 2827 // Currently the are vectorized loads,extracts without alternate operands + 2828 // some gathering of extracts. 2829 SmallVector<TreeEntry *> NonVectorized; 2830 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2831 &NonVectorized]( 2832 const std::unique_ptr<TreeEntry> &TE) { 2833 // No need to reorder if need to shuffle reuses, still need to shuffle the 2834 // node. 2835 if (!TE->ReuseShuffleIndices.empty()) 2836 return; 2837 if (TE->State == TreeEntry::Vectorize && 2838 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2839 !TE->isAltShuffle()) { 2840 OrderedEntries.insert(TE.get()); 2841 } else if (TE->State == TreeEntry::NeedToGather && 2842 TE->getOpcode() == Instruction::ExtractElement && 2843 !TE->isAltShuffle() && 2844 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2845 ->getVectorOperandType()) && 2846 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2847 // Check that gather of extractelements can be represented as 2848 // just a shuffle of a single vector with a single user only. 2849 OrdersType CurrentOrder; 2850 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2851 if ((Reuse || !CurrentOrder.empty()) && 2852 !any_of( 2853 VectorizableTree, [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2854 return Entry->State == TreeEntry::NeedToGather && 2855 Entry.get() != TE.get() && Entry->isSame(TE->Scalars); 2856 })) { 2857 OrderedEntries.insert(TE.get()); 2858 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2859 } 2860 } 2861 if (TE->State != TreeEntry::Vectorize) 2862 NonVectorized.push_back(TE.get()); 2863 }); 2864 2865 // Checks if the operands of the users are reordarable and have only single 2866 // use. 2867 auto &&CheckOperands = 2868 [this, &NonVectorized](const auto &Data, 2869 SmallVectorImpl<TreeEntry *> &GatherOps) { 2870 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2871 if (any_of(Data.second, 2872 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2873 return OpData.first == I && 2874 OpData.second->State == TreeEntry::Vectorize; 2875 })) 2876 continue; 2877 ArrayRef<Value *> VL = Data.first->getOperand(I); 2878 const TreeEntry *TE = nullptr; 2879 const auto *It = find_if(VL, [this, &TE](Value *V) { 2880 TE = getTreeEntry(V); 2881 return TE; 2882 }); 2883 if (It != VL.end() && TE->isSame(VL)) 2884 return false; 2885 TreeEntry *Gather = nullptr; 2886 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2887 assert(TE->State != TreeEntry::Vectorize && 2888 "Only non-vectorized nodes are expected."); 2889 if (TE->isSame(VL)) { 2890 Gather = TE; 2891 return true; 2892 } 2893 return false; 2894 }) > 1) 2895 return false; 2896 if (Gather) 2897 GatherOps.push_back(Gather); 2898 } 2899 return true; 2900 }; 2901 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2902 // I.e., if the node has operands, that are reordered, try to make at least 2903 // one operand order in the natural order and reorder others + reorder the 2904 // user node itself. 2905 SmallPtrSet<const TreeEntry *, 4> Visited; 2906 while (!OrderedEntries.empty()) { 2907 // 1. Filter out only reordered nodes. 2908 // 2. If the entry has multiple uses - skip it and jump to the next node. 2909 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 2910 SmallVector<TreeEntry *> Filtered; 2911 for (TreeEntry *TE : OrderedEntries) { 2912 if (!(TE->State == TreeEntry::Vectorize || 2913 (TE->State == TreeEntry::NeedToGather && 2914 TE->getOpcode() == Instruction::ExtractElement)) || 2915 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 2916 !all_of(drop_begin(TE->UserTreeIndices), 2917 [TE](const EdgeInfo &EI) { 2918 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 2919 }) || 2920 !Visited.insert(TE).second) { 2921 Filtered.push_back(TE); 2922 continue; 2923 } 2924 // Build a map between user nodes and their operands order to speedup 2925 // search. The graph currently does not provide this dependency directly. 2926 for (EdgeInfo &EI : TE->UserTreeIndices) { 2927 TreeEntry *UserTE = EI.UserTE; 2928 auto It = Users.find(UserTE); 2929 if (It == Users.end()) 2930 It = Users.insert({UserTE, {}}).first; 2931 It->second.emplace_back(EI.EdgeIdx, TE); 2932 } 2933 } 2934 // Erase filtered entries. 2935 for_each(Filtered, 2936 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 2937 for (const auto &Data : Users) { 2938 // Check that operands are used only in the User node. 2939 SmallVector<TreeEntry *> GatherOps; 2940 if (!CheckOperands(Data, GatherOps)) { 2941 for_each(Data.second, 2942 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2943 OrderedEntries.remove(Op.second); 2944 }); 2945 continue; 2946 } 2947 // All operands are reordered and used only in this node - propagate the 2948 // most used order to the user node. 2949 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2950 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2951 for (const auto &Op : Data.second) { 2952 TreeEntry *OpTE = Op.second; 2953 if (!OpTE->ReuseShuffleIndices.empty() || 2954 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 2955 continue; 2956 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2957 if (OpTE->State == TreeEntry::NeedToGather) 2958 return GathersToOrders.find(OpTE)->second; 2959 return OpTE->ReorderIndices; 2960 }(); 2961 // Stores actually store the mask, not the order, need to invert. 2962 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2963 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2964 SmallVector<int> Mask; 2965 inversePermutation(Order, Mask); 2966 unsigned E = Order.size(); 2967 OrdersType CurrentOrder(E, E); 2968 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2969 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2970 }); 2971 fixupOrderingIndices(CurrentOrder); 2972 ++OrdersUses.try_emplace(CurrentOrder).first->getSecond(); 2973 } else { 2974 ++OrdersUses.try_emplace(Order).first->getSecond(); 2975 } 2976 if (VisitedOps.insert(OpTE).second) 2977 OrdersUses.try_emplace({}, 0).first->getSecond() += 2978 OpTE->UserTreeIndices.size(); 2979 --OrdersUses[{}]; 2980 } 2981 // If no orders - skip current nodes and jump to the next one, if any. 2982 if (OrdersUses.empty()) { 2983 for_each(Data.second, 2984 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2985 OrderedEntries.remove(Op.second); 2986 }); 2987 continue; 2988 } 2989 // Choose the best order. 2990 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2991 unsigned Cnt = OrdersUses.begin()->second; 2992 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2993 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2994 BestOrder = Pair.first; 2995 Cnt = Pair.second; 2996 } 2997 } 2998 // Set order of the user node (reordering of operands and user nodes). 2999 if (BestOrder.empty()) { 3000 for_each(Data.second, 3001 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3002 OrderedEntries.remove(Op.second); 3003 }); 3004 continue; 3005 } 3006 // Erase operands from OrderedEntries list and adjust their orders. 3007 VisitedOps.clear(); 3008 SmallVector<int> Mask; 3009 inversePermutation(BestOrder, Mask); 3010 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3011 unsigned E = BestOrder.size(); 3012 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3013 return I < E ? static_cast<int>(I) : UndefMaskElem; 3014 }); 3015 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3016 TreeEntry *TE = Op.second; 3017 OrderedEntries.remove(TE); 3018 if (!VisitedOps.insert(TE).second) 3019 continue; 3020 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3021 // Just reorder reuses indices. 3022 reorderReuses(TE->ReuseShuffleIndices, Mask); 3023 continue; 3024 } 3025 // Gathers are processed separately. 3026 if (TE->State != TreeEntry::Vectorize) 3027 continue; 3028 assert((BestOrder.size() == TE->ReorderIndices.size() || 3029 TE->ReorderIndices.empty()) && 3030 "Non-matching sizes of user/operand entries."); 3031 reorderOrder(TE->ReorderIndices, Mask); 3032 } 3033 // For gathers just need to reorder its scalars. 3034 for (TreeEntry *Gather : GatherOps) { 3035 if (!Gather->ReuseShuffleIndices.empty()) 3036 continue; 3037 assert(Gather->ReorderIndices.empty() && 3038 "Unexpected reordering of gathers."); 3039 reorderScalars(Gather->Scalars, Mask); 3040 OrderedEntries.remove(Gather); 3041 } 3042 // Reorder operands of the user node and set the ordering for the user 3043 // node itself. 3044 if (Data.first->State != TreeEntry::Vectorize || 3045 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3046 Data.first->getMainOp()) || 3047 Data.first->isAltShuffle()) 3048 Data.first->reorderOperands(Mask); 3049 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3050 Data.first->isAltShuffle()) { 3051 reorderScalars(Data.first->Scalars, Mask); 3052 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3053 if (Data.first->ReuseShuffleIndices.empty() && 3054 !Data.first->ReorderIndices.empty() && 3055 !Data.first->isAltShuffle()) { 3056 // Insert user node to the list to try to sink reordering deeper in 3057 // the graph. 3058 OrderedEntries.insert(Data.first); 3059 } 3060 } else { 3061 reorderOrder(Data.first->ReorderIndices, Mask); 3062 } 3063 } 3064 } 3065 // If the reordering is unnecessary, just remove the reorder. 3066 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3067 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3068 VectorizableTree.front()->ReorderIndices.clear(); 3069 } 3070 3071 void BoUpSLP::buildExternalUses( 3072 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3073 // Collect the values that we need to extract from the tree. 3074 for (auto &TEPtr : VectorizableTree) { 3075 TreeEntry *Entry = TEPtr.get(); 3076 3077 // No need to handle users of gathered values. 3078 if (Entry->State == TreeEntry::NeedToGather) 3079 continue; 3080 3081 // For each lane: 3082 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3083 Value *Scalar = Entry->Scalars[Lane]; 3084 int FoundLane = Entry->findLaneForValue(Scalar); 3085 3086 // Check if the scalar is externally used as an extra arg. 3087 auto ExtI = ExternallyUsedValues.find(Scalar); 3088 if (ExtI != ExternallyUsedValues.end()) { 3089 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3090 << Lane << " from " << *Scalar << ".\n"); 3091 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3092 } 3093 for (User *U : Scalar->users()) { 3094 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3095 3096 Instruction *UserInst = dyn_cast<Instruction>(U); 3097 if (!UserInst) 3098 continue; 3099 3100 if (isDeleted(UserInst)) 3101 continue; 3102 3103 // Skip in-tree scalars that become vectors 3104 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3105 Value *UseScalar = UseEntry->Scalars[0]; 3106 // Some in-tree scalars will remain as scalar in vectorized 3107 // instructions. If that is the case, the one in Lane 0 will 3108 // be used. 3109 if (UseScalar != U || 3110 UseEntry->State == TreeEntry::ScatterVectorize || 3111 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3112 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3113 << ".\n"); 3114 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3115 continue; 3116 } 3117 } 3118 3119 // Ignore users in the user ignore list. 3120 if (is_contained(UserIgnoreList, UserInst)) 3121 continue; 3122 3123 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3124 << Lane << " from " << *Scalar << ".\n"); 3125 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3126 } 3127 } 3128 } 3129 } 3130 3131 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3132 ArrayRef<Value *> UserIgnoreLst) { 3133 deleteTree(); 3134 UserIgnoreList = UserIgnoreLst; 3135 if (!allSameType(Roots)) 3136 return; 3137 buildTree_rec(Roots, 0, EdgeInfo()); 3138 } 3139 3140 namespace { 3141 /// Tracks the state we can represent the loads in the given sequence. 3142 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3143 } // anonymous namespace 3144 3145 /// Checks if the given array of loads can be represented as a vectorized, 3146 /// scatter or just simple gather. 3147 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3148 const TargetTransformInfo &TTI, 3149 const DataLayout &DL, ScalarEvolution &SE, 3150 SmallVectorImpl<unsigned> &Order, 3151 SmallVectorImpl<Value *> &PointerOps) { 3152 // Check that a vectorized load would load the same memory as a scalar 3153 // load. For example, we don't want to vectorize loads that are smaller 3154 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3155 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3156 // from such a struct, we read/write packed bits disagreeing with the 3157 // unvectorized version. 3158 Type *ScalarTy = VL0->getType(); 3159 3160 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3161 return LoadsState::Gather; 3162 3163 // Make sure all loads in the bundle are simple - we can't vectorize 3164 // atomic or volatile loads. 3165 PointerOps.clear(); 3166 PointerOps.resize(VL.size()); 3167 auto *POIter = PointerOps.begin(); 3168 for (Value *V : VL) { 3169 auto *L = cast<LoadInst>(V); 3170 if (!L->isSimple()) 3171 return LoadsState::Gather; 3172 *POIter = L->getPointerOperand(); 3173 ++POIter; 3174 } 3175 3176 Order.clear(); 3177 // Check the order of pointer operands. 3178 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3179 Value *Ptr0; 3180 Value *PtrN; 3181 if (Order.empty()) { 3182 Ptr0 = PointerOps.front(); 3183 PtrN = PointerOps.back(); 3184 } else { 3185 Ptr0 = PointerOps[Order.front()]; 3186 PtrN = PointerOps[Order.back()]; 3187 } 3188 Optional<int> Diff = 3189 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3190 // Check that the sorted loads are consecutive. 3191 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3192 return LoadsState::Vectorize; 3193 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3194 for (Value *V : VL) 3195 CommonAlignment = 3196 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3197 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3198 CommonAlignment)) 3199 return LoadsState::ScatterVectorize; 3200 } 3201 3202 return LoadsState::Gather; 3203 } 3204 3205 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3206 const EdgeInfo &UserTreeIdx) { 3207 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3208 3209 SmallVector<int> ReuseShuffleIndicies; 3210 SmallVector<Value *> UniqueValues; 3211 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3212 &UserTreeIdx, 3213 this](const InstructionsState &S) { 3214 // Check that every instruction appears once in this bundle. 3215 DenseMap<Value *, unsigned> UniquePositions; 3216 for (Value *V : VL) { 3217 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3218 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3219 : Res.first->second); 3220 if (Res.second) 3221 UniqueValues.emplace_back(V); 3222 } 3223 size_t NumUniqueScalarValues = UniqueValues.size(); 3224 if (NumUniqueScalarValues == VL.size()) { 3225 ReuseShuffleIndicies.clear(); 3226 } else { 3227 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3228 if (NumUniqueScalarValues <= 1 || 3229 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3230 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3231 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3232 return false; 3233 } 3234 VL = UniqueValues; 3235 } 3236 return true; 3237 }; 3238 3239 InstructionsState S = getSameOpcode(VL); 3240 if (Depth == RecursionMaxDepth) { 3241 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3242 if (TryToFindDuplicates(S)) 3243 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3244 ReuseShuffleIndicies); 3245 return; 3246 } 3247 3248 // Don't handle scalable vectors 3249 if (S.getOpcode() == Instruction::ExtractElement && 3250 isa<ScalableVectorType>( 3251 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3252 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3253 if (TryToFindDuplicates(S)) 3254 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3255 ReuseShuffleIndicies); 3256 return; 3257 } 3258 3259 // Don't handle vectors. 3260 if (S.OpValue->getType()->isVectorTy() && 3261 !isa<InsertElementInst>(S.OpValue)) { 3262 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3263 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3264 return; 3265 } 3266 3267 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3268 if (SI->getValueOperand()->getType()->isVectorTy()) { 3269 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3270 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3271 return; 3272 } 3273 3274 // If all of the operands are identical or constant we have a simple solution. 3275 // If we deal with insert/extract instructions, they all must have constant 3276 // indices, otherwise we should gather them, not try to vectorize. 3277 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3278 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3279 !all_of(VL, isVectorLikeInstWithConstOps))) { 3280 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3281 if (TryToFindDuplicates(S)) 3282 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3283 ReuseShuffleIndicies); 3284 return; 3285 } 3286 3287 // We now know that this is a vector of instructions of the same type from 3288 // the same block. 3289 3290 // Don't vectorize ephemeral values. 3291 for (Value *V : VL) { 3292 if (EphValues.count(V)) { 3293 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3294 << ") is ephemeral.\n"); 3295 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3296 return; 3297 } 3298 } 3299 3300 // Check if this is a duplicate of another entry. 3301 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3302 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3303 if (!E->isSame(VL)) { 3304 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3305 if (TryToFindDuplicates(S)) 3306 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3307 ReuseShuffleIndicies); 3308 return; 3309 } 3310 // Record the reuse of the tree node. FIXME, currently this is only used to 3311 // properly draw the graph rather than for the actual vectorization. 3312 E->UserTreeIndices.push_back(UserTreeIdx); 3313 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3314 << ".\n"); 3315 return; 3316 } 3317 3318 // Check that none of the instructions in the bundle are already in the tree. 3319 for (Value *V : VL) { 3320 auto *I = dyn_cast<Instruction>(V); 3321 if (!I) 3322 continue; 3323 if (getTreeEntry(I)) { 3324 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3325 << ") is already in tree.\n"); 3326 if (TryToFindDuplicates(S)) 3327 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3328 ReuseShuffleIndicies); 3329 return; 3330 } 3331 } 3332 3333 // If any of the scalars is marked as a value that needs to stay scalar, then 3334 // we need to gather the scalars. 3335 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3336 for (Value *V : VL) { 3337 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3338 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3339 if (TryToFindDuplicates(S)) 3340 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3341 ReuseShuffleIndicies); 3342 return; 3343 } 3344 } 3345 3346 // Check that all of the users of the scalars that we want to vectorize are 3347 // schedulable. 3348 auto *VL0 = cast<Instruction>(S.OpValue); 3349 BasicBlock *BB = VL0->getParent(); 3350 3351 if (!DT->isReachableFromEntry(BB)) { 3352 // Don't go into unreachable blocks. They may contain instructions with 3353 // dependency cycles which confuse the final scheduling. 3354 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3355 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3356 return; 3357 } 3358 3359 // Check that every instruction appears once in this bundle. 3360 if (!TryToFindDuplicates(S)) 3361 return; 3362 3363 auto &BSRef = BlocksSchedules[BB]; 3364 if (!BSRef) 3365 BSRef = std::make_unique<BlockScheduling>(BB); 3366 3367 BlockScheduling &BS = *BSRef.get(); 3368 3369 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3370 if (!Bundle) { 3371 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3372 assert((!BS.getScheduleData(VL0) || 3373 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3374 "tryScheduleBundle should cancelScheduling on failure"); 3375 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3376 ReuseShuffleIndicies); 3377 return; 3378 } 3379 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3380 3381 unsigned ShuffleOrOp = S.isAltShuffle() ? 3382 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3383 switch (ShuffleOrOp) { 3384 case Instruction::PHI: { 3385 auto *PH = cast<PHINode>(VL0); 3386 3387 // Check for terminator values (e.g. invoke). 3388 for (Value *V : VL) 3389 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3390 Instruction *Term = dyn_cast<Instruction>( 3391 cast<PHINode>(V)->getIncomingValueForBlock( 3392 PH->getIncomingBlock(I))); 3393 if (Term && Term->isTerminator()) { 3394 LLVM_DEBUG(dbgs() 3395 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3396 BS.cancelScheduling(VL, VL0); 3397 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3398 ReuseShuffleIndicies); 3399 return; 3400 } 3401 } 3402 3403 TreeEntry *TE = 3404 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3405 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3406 3407 // Keeps the reordered operands to avoid code duplication. 3408 SmallVector<ValueList, 2> OperandsVec; 3409 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3410 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3411 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3412 TE->setOperand(I, Operands); 3413 OperandsVec.push_back(Operands); 3414 continue; 3415 } 3416 ValueList Operands; 3417 // Prepare the operand vector. 3418 for (Value *V : VL) 3419 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3420 PH->getIncomingBlock(I))); 3421 TE->setOperand(I, Operands); 3422 OperandsVec.push_back(Operands); 3423 } 3424 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3425 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3426 return; 3427 } 3428 case Instruction::ExtractValue: 3429 case Instruction::ExtractElement: { 3430 OrdersType CurrentOrder; 3431 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3432 if (Reuse) { 3433 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3434 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3435 ReuseShuffleIndicies); 3436 // This is a special case, as it does not gather, but at the same time 3437 // we are not extending buildTree_rec() towards the operands. 3438 ValueList Op0; 3439 Op0.assign(VL.size(), VL0->getOperand(0)); 3440 VectorizableTree.back()->setOperand(0, Op0); 3441 return; 3442 } 3443 if (!CurrentOrder.empty()) { 3444 LLVM_DEBUG({ 3445 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3446 "with order"; 3447 for (unsigned Idx : CurrentOrder) 3448 dbgs() << " " << Idx; 3449 dbgs() << "\n"; 3450 }); 3451 fixupOrderingIndices(CurrentOrder); 3452 // Insert new order with initial value 0, if it does not exist, 3453 // otherwise return the iterator to the existing one. 3454 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3455 ReuseShuffleIndicies, CurrentOrder); 3456 // This is a special case, as it does not gather, but at the same time 3457 // we are not extending buildTree_rec() towards the operands. 3458 ValueList Op0; 3459 Op0.assign(VL.size(), VL0->getOperand(0)); 3460 VectorizableTree.back()->setOperand(0, Op0); 3461 return; 3462 } 3463 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3464 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3465 ReuseShuffleIndicies); 3466 BS.cancelScheduling(VL, VL0); 3467 return; 3468 } 3469 case Instruction::InsertElement: { 3470 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3471 3472 // Check that we have a buildvector and not a shuffle of 2 or more 3473 // different vectors. 3474 ValueSet SourceVectors; 3475 int MinIdx = std::numeric_limits<int>::max(); 3476 for (Value *V : VL) { 3477 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3478 Optional<int> Idx = *getInsertIndex(V, 0); 3479 if (!Idx || *Idx == UndefMaskElem) 3480 continue; 3481 MinIdx = std::min(MinIdx, *Idx); 3482 } 3483 3484 if (count_if(VL, [&SourceVectors](Value *V) { 3485 return !SourceVectors.contains(V); 3486 }) >= 2) { 3487 // Found 2nd source vector - cancel. 3488 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3489 "different source vectors.\n"); 3490 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3491 BS.cancelScheduling(VL, VL0); 3492 return; 3493 } 3494 3495 auto OrdCompare = [](const std::pair<int, int> &P1, 3496 const std::pair<int, int> &P2) { 3497 return P1.first > P2.first; 3498 }; 3499 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3500 decltype(OrdCompare)> 3501 Indices(OrdCompare); 3502 for (int I = 0, E = VL.size(); I < E; ++I) { 3503 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3504 if (!Idx || *Idx == UndefMaskElem) 3505 continue; 3506 Indices.emplace(*Idx, I); 3507 } 3508 OrdersType CurrentOrder(VL.size(), VL.size()); 3509 bool IsIdentity = true; 3510 for (int I = 0, E = VL.size(); I < E; ++I) { 3511 CurrentOrder[Indices.top().second] = I; 3512 IsIdentity &= Indices.top().second == I; 3513 Indices.pop(); 3514 } 3515 if (IsIdentity) 3516 CurrentOrder.clear(); 3517 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3518 None, CurrentOrder); 3519 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3520 3521 constexpr int NumOps = 2; 3522 ValueList VectorOperands[NumOps]; 3523 for (int I = 0; I < NumOps; ++I) { 3524 for (Value *V : VL) 3525 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3526 3527 TE->setOperand(I, VectorOperands[I]); 3528 } 3529 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3530 return; 3531 } 3532 case Instruction::Load: { 3533 // Check that a vectorized load would load the same memory as a scalar 3534 // load. For example, we don't want to vectorize loads that are smaller 3535 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3536 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3537 // from such a struct, we read/write packed bits disagreeing with the 3538 // unvectorized version. 3539 SmallVector<Value *> PointerOps; 3540 OrdersType CurrentOrder; 3541 TreeEntry *TE = nullptr; 3542 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3543 PointerOps)) { 3544 case LoadsState::Vectorize: 3545 if (CurrentOrder.empty()) { 3546 // Original loads are consecutive and does not require reordering. 3547 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3548 ReuseShuffleIndicies); 3549 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3550 } else { 3551 fixupOrderingIndices(CurrentOrder); 3552 // Need to reorder. 3553 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3554 ReuseShuffleIndicies, CurrentOrder); 3555 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3556 } 3557 TE->setOperandsInOrder(); 3558 break; 3559 case LoadsState::ScatterVectorize: 3560 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3561 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3562 UserTreeIdx, ReuseShuffleIndicies); 3563 TE->setOperandsInOrder(); 3564 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3565 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3566 break; 3567 case LoadsState::Gather: 3568 BS.cancelScheduling(VL, VL0); 3569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3570 ReuseShuffleIndicies); 3571 #ifndef NDEBUG 3572 Type *ScalarTy = VL0->getType(); 3573 if (DL->getTypeSizeInBits(ScalarTy) != 3574 DL->getTypeAllocSizeInBits(ScalarTy)) 3575 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3576 else if (any_of(VL, [](Value *V) { 3577 return !cast<LoadInst>(V)->isSimple(); 3578 })) 3579 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3580 else 3581 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3582 #endif // NDEBUG 3583 break; 3584 } 3585 return; 3586 } 3587 case Instruction::ZExt: 3588 case Instruction::SExt: 3589 case Instruction::FPToUI: 3590 case Instruction::FPToSI: 3591 case Instruction::FPExt: 3592 case Instruction::PtrToInt: 3593 case Instruction::IntToPtr: 3594 case Instruction::SIToFP: 3595 case Instruction::UIToFP: 3596 case Instruction::Trunc: 3597 case Instruction::FPTrunc: 3598 case Instruction::BitCast: { 3599 Type *SrcTy = VL0->getOperand(0)->getType(); 3600 for (Value *V : VL) { 3601 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3602 if (Ty != SrcTy || !isValidElementType(Ty)) { 3603 BS.cancelScheduling(VL, VL0); 3604 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3605 ReuseShuffleIndicies); 3606 LLVM_DEBUG(dbgs() 3607 << "SLP: Gathering casts with different src types.\n"); 3608 return; 3609 } 3610 } 3611 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3612 ReuseShuffleIndicies); 3613 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3614 3615 TE->setOperandsInOrder(); 3616 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3617 ValueList Operands; 3618 // Prepare the operand vector. 3619 for (Value *V : VL) 3620 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3621 3622 buildTree_rec(Operands, Depth + 1, {TE, i}); 3623 } 3624 return; 3625 } 3626 case Instruction::ICmp: 3627 case Instruction::FCmp: { 3628 // Check that all of the compares have the same predicate. 3629 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3630 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3631 Type *ComparedTy = VL0->getOperand(0)->getType(); 3632 for (Value *V : VL) { 3633 CmpInst *Cmp = cast<CmpInst>(V); 3634 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3635 Cmp->getOperand(0)->getType() != ComparedTy) { 3636 BS.cancelScheduling(VL, VL0); 3637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3638 ReuseShuffleIndicies); 3639 LLVM_DEBUG(dbgs() 3640 << "SLP: Gathering cmp with different predicate.\n"); 3641 return; 3642 } 3643 } 3644 3645 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3646 ReuseShuffleIndicies); 3647 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3648 3649 ValueList Left, Right; 3650 if (cast<CmpInst>(VL0)->isCommutative()) { 3651 // Commutative predicate - collect + sort operands of the instructions 3652 // so that each side is more likely to have the same opcode. 3653 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3654 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3655 } else { 3656 // Collect operands - commute if it uses the swapped predicate. 3657 for (Value *V : VL) { 3658 auto *Cmp = cast<CmpInst>(V); 3659 Value *LHS = Cmp->getOperand(0); 3660 Value *RHS = Cmp->getOperand(1); 3661 if (Cmp->getPredicate() != P0) 3662 std::swap(LHS, RHS); 3663 Left.push_back(LHS); 3664 Right.push_back(RHS); 3665 } 3666 } 3667 TE->setOperand(0, Left); 3668 TE->setOperand(1, Right); 3669 buildTree_rec(Left, Depth + 1, {TE, 0}); 3670 buildTree_rec(Right, Depth + 1, {TE, 1}); 3671 return; 3672 } 3673 case Instruction::Select: 3674 case Instruction::FNeg: 3675 case Instruction::Add: 3676 case Instruction::FAdd: 3677 case Instruction::Sub: 3678 case Instruction::FSub: 3679 case Instruction::Mul: 3680 case Instruction::FMul: 3681 case Instruction::UDiv: 3682 case Instruction::SDiv: 3683 case Instruction::FDiv: 3684 case Instruction::URem: 3685 case Instruction::SRem: 3686 case Instruction::FRem: 3687 case Instruction::Shl: 3688 case Instruction::LShr: 3689 case Instruction::AShr: 3690 case Instruction::And: 3691 case Instruction::Or: 3692 case Instruction::Xor: { 3693 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3694 ReuseShuffleIndicies); 3695 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3696 3697 // Sort operands of the instructions so that each side is more likely to 3698 // have the same opcode. 3699 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3700 ValueList Left, Right; 3701 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3702 TE->setOperand(0, Left); 3703 TE->setOperand(1, Right); 3704 buildTree_rec(Left, Depth + 1, {TE, 0}); 3705 buildTree_rec(Right, Depth + 1, {TE, 1}); 3706 return; 3707 } 3708 3709 TE->setOperandsInOrder(); 3710 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3711 ValueList Operands; 3712 // Prepare the operand vector. 3713 for (Value *V : VL) 3714 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3715 3716 buildTree_rec(Operands, Depth + 1, {TE, i}); 3717 } 3718 return; 3719 } 3720 case Instruction::GetElementPtr: { 3721 // We don't combine GEPs with complicated (nested) indexing. 3722 for (Value *V : VL) { 3723 if (cast<Instruction>(V)->getNumOperands() != 2) { 3724 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3725 BS.cancelScheduling(VL, VL0); 3726 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3727 ReuseShuffleIndicies); 3728 return; 3729 } 3730 } 3731 3732 // We can't combine several GEPs into one vector if they operate on 3733 // different types. 3734 Type *Ty0 = VL0->getOperand(0)->getType(); 3735 for (Value *V : VL) { 3736 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3737 if (Ty0 != CurTy) { 3738 LLVM_DEBUG(dbgs() 3739 << "SLP: not-vectorizable GEP (different types).\n"); 3740 BS.cancelScheduling(VL, VL0); 3741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3742 ReuseShuffleIndicies); 3743 return; 3744 } 3745 } 3746 3747 // We don't combine GEPs with non-constant indexes. 3748 Type *Ty1 = VL0->getOperand(1)->getType(); 3749 for (Value *V : VL) { 3750 auto Op = cast<Instruction>(V)->getOperand(1); 3751 if (!isa<ConstantInt>(Op) || 3752 (Op->getType() != Ty1 && 3753 Op->getType()->getScalarSizeInBits() > 3754 DL->getIndexSizeInBits( 3755 V->getType()->getPointerAddressSpace()))) { 3756 LLVM_DEBUG(dbgs() 3757 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3758 BS.cancelScheduling(VL, VL0); 3759 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3760 ReuseShuffleIndicies); 3761 return; 3762 } 3763 } 3764 3765 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3766 ReuseShuffleIndicies); 3767 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3768 TE->setOperandsInOrder(); 3769 for (unsigned i = 0, e = 2; i < e; ++i) { 3770 ValueList Operands; 3771 // Prepare the operand vector. 3772 for (Value *V : VL) 3773 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3774 3775 buildTree_rec(Operands, Depth + 1, {TE, i}); 3776 } 3777 return; 3778 } 3779 case Instruction::Store: { 3780 // Check if the stores are consecutive or if we need to swizzle them. 3781 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3782 // Avoid types that are padded when being allocated as scalars, while 3783 // being packed together in a vector (such as i1). 3784 if (DL->getTypeSizeInBits(ScalarTy) != 3785 DL->getTypeAllocSizeInBits(ScalarTy)) { 3786 BS.cancelScheduling(VL, VL0); 3787 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3788 ReuseShuffleIndicies); 3789 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3790 return; 3791 } 3792 // Make sure all stores in the bundle are simple - we can't vectorize 3793 // atomic or volatile stores. 3794 SmallVector<Value *, 4> PointerOps(VL.size()); 3795 ValueList Operands(VL.size()); 3796 auto POIter = PointerOps.begin(); 3797 auto OIter = Operands.begin(); 3798 for (Value *V : VL) { 3799 auto *SI = cast<StoreInst>(V); 3800 if (!SI->isSimple()) { 3801 BS.cancelScheduling(VL, VL0); 3802 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3803 ReuseShuffleIndicies); 3804 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3805 return; 3806 } 3807 *POIter = SI->getPointerOperand(); 3808 *OIter = SI->getValueOperand(); 3809 ++POIter; 3810 ++OIter; 3811 } 3812 3813 OrdersType CurrentOrder; 3814 // Check the order of pointer operands. 3815 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3816 Value *Ptr0; 3817 Value *PtrN; 3818 if (CurrentOrder.empty()) { 3819 Ptr0 = PointerOps.front(); 3820 PtrN = PointerOps.back(); 3821 } else { 3822 Ptr0 = PointerOps[CurrentOrder.front()]; 3823 PtrN = PointerOps[CurrentOrder.back()]; 3824 } 3825 Optional<int> Dist = 3826 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3827 // Check that the sorted pointer operands are consecutive. 3828 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3829 if (CurrentOrder.empty()) { 3830 // Original stores are consecutive and does not require reordering. 3831 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3832 UserTreeIdx, ReuseShuffleIndicies); 3833 TE->setOperandsInOrder(); 3834 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3835 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3836 } else { 3837 fixupOrderingIndices(CurrentOrder); 3838 TreeEntry *TE = 3839 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3840 ReuseShuffleIndicies, CurrentOrder); 3841 TE->setOperandsInOrder(); 3842 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3843 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3844 } 3845 return; 3846 } 3847 } 3848 3849 BS.cancelScheduling(VL, VL0); 3850 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3851 ReuseShuffleIndicies); 3852 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3853 return; 3854 } 3855 case Instruction::Call: { 3856 // Check if the calls are all to the same vectorizable intrinsic or 3857 // library function. 3858 CallInst *CI = cast<CallInst>(VL0); 3859 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3860 3861 VFShape Shape = VFShape::get( 3862 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3863 false /*HasGlobalPred*/); 3864 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3865 3866 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3867 BS.cancelScheduling(VL, VL0); 3868 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3869 ReuseShuffleIndicies); 3870 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3871 return; 3872 } 3873 Function *F = CI->getCalledFunction(); 3874 unsigned NumArgs = CI->arg_size(); 3875 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3876 for (unsigned j = 0; j != NumArgs; ++j) 3877 if (hasVectorInstrinsicScalarOpd(ID, j)) 3878 ScalarArgs[j] = CI->getArgOperand(j); 3879 for (Value *V : VL) { 3880 CallInst *CI2 = dyn_cast<CallInst>(V); 3881 if (!CI2 || CI2->getCalledFunction() != F || 3882 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3883 (VecFunc && 3884 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3885 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3886 BS.cancelScheduling(VL, VL0); 3887 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3888 ReuseShuffleIndicies); 3889 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3890 << "\n"); 3891 return; 3892 } 3893 // Some intrinsics have scalar arguments and should be same in order for 3894 // them to be vectorized. 3895 for (unsigned j = 0; j != NumArgs; ++j) { 3896 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3897 Value *A1J = CI2->getArgOperand(j); 3898 if (ScalarArgs[j] != A1J) { 3899 BS.cancelScheduling(VL, VL0); 3900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3901 ReuseShuffleIndicies); 3902 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3903 << " argument " << ScalarArgs[j] << "!=" << A1J 3904 << "\n"); 3905 return; 3906 } 3907 } 3908 } 3909 // Verify that the bundle operands are identical between the two calls. 3910 if (CI->hasOperandBundles() && 3911 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3912 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3913 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3914 BS.cancelScheduling(VL, VL0); 3915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3916 ReuseShuffleIndicies); 3917 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3918 << *CI << "!=" << *V << '\n'); 3919 return; 3920 } 3921 } 3922 3923 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3924 ReuseShuffleIndicies); 3925 TE->setOperandsInOrder(); 3926 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 3927 ValueList Operands; 3928 // Prepare the operand vector. 3929 for (Value *V : VL) { 3930 auto *CI2 = cast<CallInst>(V); 3931 Operands.push_back(CI2->getArgOperand(i)); 3932 } 3933 buildTree_rec(Operands, Depth + 1, {TE, i}); 3934 } 3935 return; 3936 } 3937 case Instruction::ShuffleVector: { 3938 // If this is not an alternate sequence of opcode like add-sub 3939 // then do not vectorize this instruction. 3940 if (!S.isAltShuffle()) { 3941 BS.cancelScheduling(VL, VL0); 3942 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3943 ReuseShuffleIndicies); 3944 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3945 return; 3946 } 3947 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3948 ReuseShuffleIndicies); 3949 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3950 3951 // Reorder operands if reordering would enable vectorization. 3952 if (isa<BinaryOperator>(VL0)) { 3953 ValueList Left, Right; 3954 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3955 TE->setOperand(0, Left); 3956 TE->setOperand(1, Right); 3957 buildTree_rec(Left, Depth + 1, {TE, 0}); 3958 buildTree_rec(Right, Depth + 1, {TE, 1}); 3959 return; 3960 } 3961 3962 TE->setOperandsInOrder(); 3963 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3964 ValueList Operands; 3965 // Prepare the operand vector. 3966 for (Value *V : VL) 3967 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3968 3969 buildTree_rec(Operands, Depth + 1, {TE, i}); 3970 } 3971 return; 3972 } 3973 default: 3974 BS.cancelScheduling(VL, VL0); 3975 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3976 ReuseShuffleIndicies); 3977 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3978 return; 3979 } 3980 } 3981 3982 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3983 unsigned N = 1; 3984 Type *EltTy = T; 3985 3986 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3987 isa<VectorType>(EltTy)) { 3988 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3989 // Check that struct is homogeneous. 3990 for (const auto *Ty : ST->elements()) 3991 if (Ty != *ST->element_begin()) 3992 return 0; 3993 N *= ST->getNumElements(); 3994 EltTy = *ST->element_begin(); 3995 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3996 N *= AT->getNumElements(); 3997 EltTy = AT->getElementType(); 3998 } else { 3999 auto *VT = cast<FixedVectorType>(EltTy); 4000 N *= VT->getNumElements(); 4001 EltTy = VT->getElementType(); 4002 } 4003 } 4004 4005 if (!isValidElementType(EltTy)) 4006 return 0; 4007 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4008 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4009 return 0; 4010 return N; 4011 } 4012 4013 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4014 SmallVectorImpl<unsigned> &CurrentOrder) const { 4015 Instruction *E0 = cast<Instruction>(OpValue); 4016 assert(E0->getOpcode() == Instruction::ExtractElement || 4017 E0->getOpcode() == Instruction::ExtractValue); 4018 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4019 // Check if all of the extracts come from the same vector and from the 4020 // correct offset. 4021 Value *Vec = E0->getOperand(0); 4022 4023 CurrentOrder.clear(); 4024 4025 // We have to extract from a vector/aggregate with the same number of elements. 4026 unsigned NElts; 4027 if (E0->getOpcode() == Instruction::ExtractValue) { 4028 const DataLayout &DL = E0->getModule()->getDataLayout(); 4029 NElts = canMapToVector(Vec->getType(), DL); 4030 if (!NElts) 4031 return false; 4032 // Check if load can be rewritten as load of vector. 4033 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4034 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4035 return false; 4036 } else { 4037 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4038 } 4039 4040 if (NElts != VL.size()) 4041 return false; 4042 4043 // Check that all of the indices extract from the correct offset. 4044 bool ShouldKeepOrder = true; 4045 unsigned E = VL.size(); 4046 // Assign to all items the initial value E + 1 so we can check if the extract 4047 // instruction index was used already. 4048 // Also, later we can check that all the indices are used and we have a 4049 // consecutive access in the extract instructions, by checking that no 4050 // element of CurrentOrder still has value E + 1. 4051 CurrentOrder.assign(E, E + 1); 4052 unsigned I = 0; 4053 for (; I < E; ++I) { 4054 auto *Inst = cast<Instruction>(VL[I]); 4055 if (Inst->getOperand(0) != Vec) 4056 break; 4057 Optional<unsigned> Idx = getExtractIndex(Inst); 4058 if (!Idx) 4059 break; 4060 const unsigned ExtIdx = *Idx; 4061 if (ExtIdx != I) { 4062 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4063 break; 4064 ShouldKeepOrder = false; 4065 CurrentOrder[ExtIdx] = I; 4066 } else { 4067 if (CurrentOrder[I] != E + 1) 4068 break; 4069 CurrentOrder[I] = I; 4070 } 4071 } 4072 if (I < E) { 4073 CurrentOrder.clear(); 4074 return false; 4075 } 4076 4077 return ShouldKeepOrder; 4078 } 4079 4080 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4081 ArrayRef<Value *> VectorizedVals) const { 4082 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4083 llvm::all_of(I->users(), [this](User *U) { 4084 return ScalarToTreeEntry.count(U) > 0; 4085 }); 4086 } 4087 4088 static std::pair<InstructionCost, InstructionCost> 4089 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4090 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4091 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4092 4093 // Calculate the cost of the scalar and vector calls. 4094 SmallVector<Type *, 4> VecTys; 4095 for (Use &Arg : CI->args()) 4096 VecTys.push_back( 4097 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4098 FastMathFlags FMF; 4099 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4100 FMF = FPCI->getFastMathFlags(); 4101 SmallVector<const Value *> Arguments(CI->args()); 4102 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4103 dyn_cast<IntrinsicInst>(CI)); 4104 auto IntrinsicCost = 4105 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4106 4107 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4108 VecTy->getNumElements())), 4109 false /*HasGlobalPred*/); 4110 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4111 auto LibCost = IntrinsicCost; 4112 if (!CI->isNoBuiltin() && VecFunc) { 4113 // Calculate the cost of the vector library call. 4114 // If the corresponding vector call is cheaper, return its cost. 4115 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4116 TTI::TCK_RecipThroughput); 4117 } 4118 return {IntrinsicCost, LibCost}; 4119 } 4120 4121 /// Compute the cost of creating a vector of type \p VecTy containing the 4122 /// extracted values from \p VL. 4123 static InstructionCost 4124 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4125 TargetTransformInfo::ShuffleKind ShuffleKind, 4126 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4127 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4128 4129 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4130 VecTy->getNumElements() < NumOfParts) 4131 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4132 4133 bool AllConsecutive = true; 4134 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4135 unsigned Idx = -1; 4136 InstructionCost Cost = 0; 4137 4138 // Process extracts in blocks of EltsPerVector to check if the source vector 4139 // operand can be re-used directly. If not, add the cost of creating a shuffle 4140 // to extract the values into a vector register. 4141 for (auto *V : VL) { 4142 ++Idx; 4143 4144 // Reached the start of a new vector registers. 4145 if (Idx % EltsPerVector == 0) { 4146 AllConsecutive = true; 4147 continue; 4148 } 4149 4150 // Check all extracts for a vector register on the target directly 4151 // extract values in order. 4152 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4153 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4154 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4155 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4156 4157 if (AllConsecutive) 4158 continue; 4159 4160 // Skip all indices, except for the last index per vector block. 4161 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4162 continue; 4163 4164 // If we have a series of extracts which are not consecutive and hence 4165 // cannot re-use the source vector register directly, compute the shuffle 4166 // cost to extract the a vector with EltsPerVector elements. 4167 Cost += TTI.getShuffleCost( 4168 TargetTransformInfo::SK_PermuteSingleSrc, 4169 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4170 } 4171 return Cost; 4172 } 4173 4174 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4175 /// operations operands. 4176 static void 4177 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4178 ArrayRef<int> ReusesIndices, 4179 const function_ref<bool(Instruction *)> IsAltOp, 4180 SmallVectorImpl<int> &Mask, 4181 SmallVectorImpl<Value *> *OpScalars = nullptr, 4182 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4183 unsigned Sz = VL.size(); 4184 Mask.assign(Sz, UndefMaskElem); 4185 SmallVector<int> OrderMask; 4186 if (!ReorderIndices.empty()) 4187 inversePermutation(ReorderIndices, OrderMask); 4188 for (unsigned I = 0; I < Sz; ++I) { 4189 unsigned Idx = I; 4190 if (!ReorderIndices.empty()) 4191 Idx = OrderMask[I]; 4192 auto *OpInst = cast<Instruction>(VL[Idx]); 4193 if (IsAltOp(OpInst)) { 4194 Mask[I] = Sz + Idx; 4195 if (AltScalars) 4196 AltScalars->push_back(OpInst); 4197 } else { 4198 Mask[I] = Idx; 4199 if (OpScalars) 4200 OpScalars->push_back(OpInst); 4201 } 4202 } 4203 if (!ReusesIndices.empty()) { 4204 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4205 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4206 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4207 }); 4208 Mask.swap(NewMask); 4209 } 4210 } 4211 4212 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4213 ArrayRef<Value *> VectorizedVals) { 4214 ArrayRef<Value*> VL = E->Scalars; 4215 4216 Type *ScalarTy = VL[0]->getType(); 4217 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4218 ScalarTy = SI->getValueOperand()->getType(); 4219 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4220 ScalarTy = CI->getOperand(0)->getType(); 4221 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4222 ScalarTy = IE->getOperand(1)->getType(); 4223 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4224 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4225 4226 // If we have computed a smaller type for the expression, update VecTy so 4227 // that the costs will be accurate. 4228 if (MinBWs.count(VL[0])) 4229 VecTy = FixedVectorType::get( 4230 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4231 auto *FinalVecTy = VecTy; 4232 4233 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4234 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4235 if (NeedToShuffleReuses) 4236 FinalVecTy = 4237 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4238 // FIXME: it tries to fix a problem with MSVC buildbots. 4239 TargetTransformInfo &TTIRef = *TTI; 4240 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4241 VectorizedVals](InstructionCost &Cost, 4242 bool IsGather) { 4243 DenseMap<Value *, int> ExtractVectorsTys; 4244 for (auto *V : VL) { 4245 // If all users of instruction are going to be vectorized and this 4246 // instruction itself is not going to be vectorized, consider this 4247 // instruction as dead and remove its cost from the final cost of the 4248 // vectorized tree. 4249 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4250 (IsGather && ScalarToTreeEntry.count(V))) 4251 continue; 4252 auto *EE = cast<ExtractElementInst>(V); 4253 unsigned Idx = *getExtractIndex(EE); 4254 if (TTIRef.getNumberOfParts(VecTy) != 4255 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4256 auto It = 4257 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4258 It->getSecond() = std::min<int>(It->second, Idx); 4259 } 4260 // Take credit for instruction that will become dead. 4261 if (EE->hasOneUse()) { 4262 Instruction *Ext = EE->user_back(); 4263 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4264 all_of(Ext->users(), 4265 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4266 // Use getExtractWithExtendCost() to calculate the cost of 4267 // extractelement/ext pair. 4268 Cost -= 4269 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4270 EE->getVectorOperandType(), Idx); 4271 // Add back the cost of s|zext which is subtracted separately. 4272 Cost += TTIRef.getCastInstrCost( 4273 Ext->getOpcode(), Ext->getType(), EE->getType(), 4274 TTI::getCastContextHint(Ext), CostKind, Ext); 4275 continue; 4276 } 4277 } 4278 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4279 EE->getVectorOperandType(), Idx); 4280 } 4281 // Add a cost for subvector extracts/inserts if required. 4282 for (const auto &Data : ExtractVectorsTys) { 4283 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4284 unsigned NumElts = VecTy->getNumElements(); 4285 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4286 unsigned Idx = (Data.second / NumElts) * NumElts; 4287 unsigned EENumElts = EEVTy->getNumElements(); 4288 if (Idx + NumElts <= EENumElts) { 4289 Cost += 4290 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4291 EEVTy, None, Idx, VecTy); 4292 } else { 4293 // Need to round up the subvector type vectorization factor to avoid a 4294 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4295 // <= EENumElts. 4296 auto *SubVT = 4297 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4298 Cost += 4299 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4300 EEVTy, None, Idx, SubVT); 4301 } 4302 } else { 4303 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4304 VecTy, None, 0, EEVTy); 4305 } 4306 } 4307 }; 4308 if (E->State == TreeEntry::NeedToGather) { 4309 if (allConstant(VL)) 4310 return 0; 4311 if (isa<InsertElementInst>(VL[0])) 4312 return InstructionCost::getInvalid(); 4313 SmallVector<int> Mask; 4314 SmallVector<const TreeEntry *> Entries; 4315 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4316 isGatherShuffledEntry(E, Mask, Entries); 4317 if (Shuffle.hasValue()) { 4318 InstructionCost GatherCost = 0; 4319 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4320 // Perfect match in the graph, will reuse the previously vectorized 4321 // node. Cost is 0. 4322 LLVM_DEBUG( 4323 dbgs() 4324 << "SLP: perfect diamond match for gather bundle that starts with " 4325 << *VL.front() << ".\n"); 4326 if (NeedToShuffleReuses) 4327 GatherCost = 4328 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4329 FinalVecTy, E->ReuseShuffleIndices); 4330 } else { 4331 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4332 << " entries for bundle that starts with " 4333 << *VL.front() << ".\n"); 4334 // Detected that instead of gather we can emit a shuffle of single/two 4335 // previously vectorized nodes. Add the cost of the permutation rather 4336 // than gather. 4337 ::addMask(Mask, E->ReuseShuffleIndices); 4338 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4339 } 4340 return GatherCost; 4341 } 4342 if (isSplat(VL)) { 4343 // Found the broadcasting of the single scalar, calculate the cost as the 4344 // broadcast. 4345 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4346 } 4347 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4348 allSameBlock(VL) && 4349 !isa<ScalableVectorType>( 4350 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4351 // Check that gather of extractelements can be represented as just a 4352 // shuffle of a single/two vectors the scalars are extracted from. 4353 SmallVector<int> Mask; 4354 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4355 isFixedVectorShuffle(VL, Mask); 4356 if (ShuffleKind.hasValue()) { 4357 // Found the bunch of extractelement instructions that must be gathered 4358 // into a vector and can be represented as a permutation elements in a 4359 // single input vector or of 2 input vectors. 4360 InstructionCost Cost = 4361 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4362 AdjustExtractsCost(Cost, /*IsGather=*/true); 4363 if (NeedToShuffleReuses) 4364 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4365 FinalVecTy, E->ReuseShuffleIndices); 4366 return Cost; 4367 } 4368 } 4369 InstructionCost ReuseShuffleCost = 0; 4370 if (NeedToShuffleReuses) 4371 ReuseShuffleCost = TTI->getShuffleCost( 4372 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4373 // Improve gather cost for gather of loads, if we can group some of the 4374 // loads into vector loads. 4375 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4376 !E->isAltShuffle()) { 4377 BoUpSLP::ValueSet VectorizedLoads; 4378 unsigned StartIdx = 0; 4379 unsigned VF = VL.size() / 2; 4380 unsigned VectorizedCnt = 0; 4381 unsigned ScatterVectorizeCnt = 0; 4382 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4383 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4384 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4385 Cnt += VF) { 4386 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4387 if (!VectorizedLoads.count(Slice.front()) && 4388 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4389 SmallVector<Value *> PointerOps; 4390 OrdersType CurrentOrder; 4391 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4392 *SE, CurrentOrder, PointerOps); 4393 switch (LS) { 4394 case LoadsState::Vectorize: 4395 case LoadsState::ScatterVectorize: 4396 // Mark the vectorized loads so that we don't vectorize them 4397 // again. 4398 if (LS == LoadsState::Vectorize) 4399 ++VectorizedCnt; 4400 else 4401 ++ScatterVectorizeCnt; 4402 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4403 // If we vectorized initial block, no need to try to vectorize it 4404 // again. 4405 if (Cnt == StartIdx) 4406 StartIdx += VF; 4407 break; 4408 case LoadsState::Gather: 4409 break; 4410 } 4411 } 4412 } 4413 // Check if the whole array was vectorized already - exit. 4414 if (StartIdx >= VL.size()) 4415 break; 4416 // Found vectorizable parts - exit. 4417 if (!VectorizedLoads.empty()) 4418 break; 4419 } 4420 if (!VectorizedLoads.empty()) { 4421 InstructionCost GatherCost = 0; 4422 // Get the cost for gathered loads. 4423 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4424 if (VectorizedLoads.contains(VL[I])) 4425 continue; 4426 GatherCost += getGatherCost(VL.slice(I, VF)); 4427 } 4428 // The cost for vectorized loads. 4429 InstructionCost ScalarsCost = 0; 4430 for (Value *V : VectorizedLoads) { 4431 auto *LI = cast<LoadInst>(V); 4432 ScalarsCost += TTI->getMemoryOpCost( 4433 Instruction::Load, LI->getType(), LI->getAlign(), 4434 LI->getPointerAddressSpace(), CostKind, LI); 4435 } 4436 auto *LI = cast<LoadInst>(E->getMainOp()); 4437 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4438 Align Alignment = LI->getAlign(); 4439 GatherCost += 4440 VectorizedCnt * 4441 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4442 LI->getPointerAddressSpace(), CostKind, LI); 4443 GatherCost += ScatterVectorizeCnt * 4444 TTI->getGatherScatterOpCost( 4445 Instruction::Load, LoadTy, LI->getPointerOperand(), 4446 /*VariableMask=*/false, Alignment, CostKind, LI); 4447 // Add the cost for the subvectors shuffling. 4448 GatherCost += ((VL.size() - VF) / VF) * 4449 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4450 return ReuseShuffleCost + GatherCost - ScalarsCost; 4451 } 4452 } 4453 return ReuseShuffleCost + getGatherCost(VL); 4454 } 4455 InstructionCost CommonCost = 0; 4456 SmallVector<int> Mask; 4457 if (!E->ReorderIndices.empty()) { 4458 SmallVector<int> NewMask; 4459 if (E->getOpcode() == Instruction::Store) { 4460 // For stores the order is actually a mask. 4461 NewMask.resize(E->ReorderIndices.size()); 4462 copy(E->ReorderIndices, NewMask.begin()); 4463 } else { 4464 inversePermutation(E->ReorderIndices, NewMask); 4465 } 4466 ::addMask(Mask, NewMask); 4467 } 4468 if (NeedToShuffleReuses) 4469 ::addMask(Mask, E->ReuseShuffleIndices); 4470 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4471 CommonCost = 4472 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4473 assert((E->State == TreeEntry::Vectorize || 4474 E->State == TreeEntry::ScatterVectorize) && 4475 "Unhandled state"); 4476 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4477 Instruction *VL0 = E->getMainOp(); 4478 unsigned ShuffleOrOp = 4479 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4480 switch (ShuffleOrOp) { 4481 case Instruction::PHI: 4482 return 0; 4483 4484 case Instruction::ExtractValue: 4485 case Instruction::ExtractElement: { 4486 // The common cost of removal ExtractElement/ExtractValue instructions + 4487 // the cost of shuffles, if required to resuffle the original vector. 4488 if (NeedToShuffleReuses) { 4489 unsigned Idx = 0; 4490 for (unsigned I : E->ReuseShuffleIndices) { 4491 if (ShuffleOrOp == Instruction::ExtractElement) { 4492 auto *EE = cast<ExtractElementInst>(VL[I]); 4493 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4494 EE->getVectorOperandType(), 4495 *getExtractIndex(EE)); 4496 } else { 4497 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4498 VecTy, Idx); 4499 ++Idx; 4500 } 4501 } 4502 Idx = ReuseShuffleNumbers; 4503 for (Value *V : VL) { 4504 if (ShuffleOrOp == Instruction::ExtractElement) { 4505 auto *EE = cast<ExtractElementInst>(V); 4506 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4507 EE->getVectorOperandType(), 4508 *getExtractIndex(EE)); 4509 } else { 4510 --Idx; 4511 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4512 VecTy, Idx); 4513 } 4514 } 4515 } 4516 if (ShuffleOrOp == Instruction::ExtractValue) { 4517 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4518 auto *EI = cast<Instruction>(VL[I]); 4519 // Take credit for instruction that will become dead. 4520 if (EI->hasOneUse()) { 4521 Instruction *Ext = EI->user_back(); 4522 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4523 all_of(Ext->users(), 4524 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4525 // Use getExtractWithExtendCost() to calculate the cost of 4526 // extractelement/ext pair. 4527 CommonCost -= TTI->getExtractWithExtendCost( 4528 Ext->getOpcode(), Ext->getType(), VecTy, I); 4529 // Add back the cost of s|zext which is subtracted separately. 4530 CommonCost += TTI->getCastInstrCost( 4531 Ext->getOpcode(), Ext->getType(), EI->getType(), 4532 TTI::getCastContextHint(Ext), CostKind, Ext); 4533 continue; 4534 } 4535 } 4536 CommonCost -= 4537 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4538 } 4539 } else { 4540 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4541 } 4542 return CommonCost; 4543 } 4544 case Instruction::InsertElement: { 4545 assert(E->ReuseShuffleIndices.empty() && 4546 "Unique insertelements only are expected."); 4547 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4548 4549 unsigned const NumElts = SrcVecTy->getNumElements(); 4550 unsigned const NumScalars = VL.size(); 4551 APInt DemandedElts = APInt::getZero(NumElts); 4552 // TODO: Add support for Instruction::InsertValue. 4553 SmallVector<int> Mask; 4554 if (!E->ReorderIndices.empty()) { 4555 inversePermutation(E->ReorderIndices, Mask); 4556 Mask.append(NumElts - NumScalars, UndefMaskElem); 4557 } else { 4558 Mask.assign(NumElts, UndefMaskElem); 4559 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4560 } 4561 unsigned Offset = *getInsertIndex(VL0, 0); 4562 bool IsIdentity = true; 4563 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4564 Mask.swap(PrevMask); 4565 for (unsigned I = 0; I < NumScalars; ++I) { 4566 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4567 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4568 continue; 4569 DemandedElts.setBit(*InsertIdx); 4570 IsIdentity &= *InsertIdx - Offset == I; 4571 Mask[*InsertIdx - Offset] = I; 4572 } 4573 assert(Offset < NumElts && "Failed to find vector index offset"); 4574 4575 InstructionCost Cost = 0; 4576 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4577 /*Insert*/ true, /*Extract*/ false); 4578 4579 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4580 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4581 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4582 Cost += TTI->getShuffleCost( 4583 TargetTransformInfo::SK_PermuteSingleSrc, 4584 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4585 } else if (!IsIdentity) { 4586 auto *FirstInsert = 4587 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4588 return !is_contained(E->Scalars, 4589 cast<Instruction>(V)->getOperand(0)); 4590 })); 4591 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4592 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4593 } else { 4594 SmallVector<int> InsertMask(NumElts); 4595 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4596 for (unsigned I = 0; I < NumElts; I++) { 4597 if (Mask[I] != UndefMaskElem) 4598 InsertMask[Offset + I] = NumElts + I; 4599 } 4600 Cost += 4601 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4602 } 4603 } 4604 4605 return Cost; 4606 } 4607 case Instruction::ZExt: 4608 case Instruction::SExt: 4609 case Instruction::FPToUI: 4610 case Instruction::FPToSI: 4611 case Instruction::FPExt: 4612 case Instruction::PtrToInt: 4613 case Instruction::IntToPtr: 4614 case Instruction::SIToFP: 4615 case Instruction::UIToFP: 4616 case Instruction::Trunc: 4617 case Instruction::FPTrunc: 4618 case Instruction::BitCast: { 4619 Type *SrcTy = VL0->getOperand(0)->getType(); 4620 InstructionCost ScalarEltCost = 4621 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4622 TTI::getCastContextHint(VL0), CostKind, VL0); 4623 if (NeedToShuffleReuses) { 4624 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4625 } 4626 4627 // Calculate the cost of this instruction. 4628 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4629 4630 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4631 InstructionCost VecCost = 0; 4632 // Check if the values are candidates to demote. 4633 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4634 VecCost = CommonCost + TTI->getCastInstrCost( 4635 E->getOpcode(), VecTy, SrcVecTy, 4636 TTI::getCastContextHint(VL0), CostKind, VL0); 4637 } 4638 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4639 return VecCost - ScalarCost; 4640 } 4641 case Instruction::FCmp: 4642 case Instruction::ICmp: 4643 case Instruction::Select: { 4644 // Calculate the cost of this instruction. 4645 InstructionCost ScalarEltCost = 4646 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4647 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4648 if (NeedToShuffleReuses) { 4649 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4650 } 4651 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4652 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4653 4654 // Check if all entries in VL are either compares or selects with compares 4655 // as condition that have the same predicates. 4656 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4657 bool First = true; 4658 for (auto *V : VL) { 4659 CmpInst::Predicate CurrentPred; 4660 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4661 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4662 !match(V, MatchCmp)) || 4663 (!First && VecPred != CurrentPred)) { 4664 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4665 break; 4666 } 4667 First = false; 4668 VecPred = CurrentPred; 4669 } 4670 4671 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4672 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4673 // Check if it is possible and profitable to use min/max for selects in 4674 // VL. 4675 // 4676 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4677 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4678 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4679 {VecTy, VecTy}); 4680 InstructionCost IntrinsicCost = 4681 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4682 // If the selects are the only uses of the compares, they will be dead 4683 // and we can adjust the cost by removing their cost. 4684 if (IntrinsicAndUse.second) 4685 IntrinsicCost -= 4686 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4687 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4688 VecCost = std::min(VecCost, IntrinsicCost); 4689 } 4690 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4691 return CommonCost + VecCost - ScalarCost; 4692 } 4693 case Instruction::FNeg: 4694 case Instruction::Add: 4695 case Instruction::FAdd: 4696 case Instruction::Sub: 4697 case Instruction::FSub: 4698 case Instruction::Mul: 4699 case Instruction::FMul: 4700 case Instruction::UDiv: 4701 case Instruction::SDiv: 4702 case Instruction::FDiv: 4703 case Instruction::URem: 4704 case Instruction::SRem: 4705 case Instruction::FRem: 4706 case Instruction::Shl: 4707 case Instruction::LShr: 4708 case Instruction::AShr: 4709 case Instruction::And: 4710 case Instruction::Or: 4711 case Instruction::Xor: { 4712 // Certain instructions can be cheaper to vectorize if they have a 4713 // constant second vector operand. 4714 TargetTransformInfo::OperandValueKind Op1VK = 4715 TargetTransformInfo::OK_AnyValue; 4716 TargetTransformInfo::OperandValueKind Op2VK = 4717 TargetTransformInfo::OK_UniformConstantValue; 4718 TargetTransformInfo::OperandValueProperties Op1VP = 4719 TargetTransformInfo::OP_None; 4720 TargetTransformInfo::OperandValueProperties Op2VP = 4721 TargetTransformInfo::OP_PowerOf2; 4722 4723 // If all operands are exactly the same ConstantInt then set the 4724 // operand kind to OK_UniformConstantValue. 4725 // If instead not all operands are constants, then set the operand kind 4726 // to OK_AnyValue. If all operands are constants but not the same, 4727 // then set the operand kind to OK_NonUniformConstantValue. 4728 ConstantInt *CInt0 = nullptr; 4729 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4730 const Instruction *I = cast<Instruction>(VL[i]); 4731 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4732 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4733 if (!CInt) { 4734 Op2VK = TargetTransformInfo::OK_AnyValue; 4735 Op2VP = TargetTransformInfo::OP_None; 4736 break; 4737 } 4738 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4739 !CInt->getValue().isPowerOf2()) 4740 Op2VP = TargetTransformInfo::OP_None; 4741 if (i == 0) { 4742 CInt0 = CInt; 4743 continue; 4744 } 4745 if (CInt0 != CInt) 4746 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4747 } 4748 4749 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4750 InstructionCost ScalarEltCost = 4751 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4752 Op2VK, Op1VP, Op2VP, Operands, VL0); 4753 if (NeedToShuffleReuses) { 4754 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4755 } 4756 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4757 InstructionCost VecCost = 4758 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4759 Op2VK, Op1VP, Op2VP, Operands, VL0); 4760 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4761 return CommonCost + VecCost - ScalarCost; 4762 } 4763 case Instruction::GetElementPtr: { 4764 TargetTransformInfo::OperandValueKind Op1VK = 4765 TargetTransformInfo::OK_AnyValue; 4766 TargetTransformInfo::OperandValueKind Op2VK = 4767 TargetTransformInfo::OK_UniformConstantValue; 4768 4769 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4770 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4771 if (NeedToShuffleReuses) { 4772 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4773 } 4774 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4775 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4776 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4777 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4778 return CommonCost + VecCost - ScalarCost; 4779 } 4780 case Instruction::Load: { 4781 // Cost of wide load - cost of scalar loads. 4782 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4783 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4784 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4785 if (NeedToShuffleReuses) { 4786 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4787 } 4788 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4789 InstructionCost VecLdCost; 4790 if (E->State == TreeEntry::Vectorize) { 4791 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4792 CostKind, VL0); 4793 } else { 4794 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4795 Align CommonAlignment = Alignment; 4796 for (Value *V : VL) 4797 CommonAlignment = 4798 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4799 VecLdCost = TTI->getGatherScatterOpCost( 4800 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4801 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4802 } 4803 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4804 return CommonCost + VecLdCost - ScalarLdCost; 4805 } 4806 case Instruction::Store: { 4807 // We know that we can merge the stores. Calculate the cost. 4808 bool IsReorder = !E->ReorderIndices.empty(); 4809 auto *SI = 4810 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4811 Align Alignment = SI->getAlign(); 4812 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4813 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4814 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4815 InstructionCost VecStCost = TTI->getMemoryOpCost( 4816 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4817 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4818 return CommonCost + VecStCost - ScalarStCost; 4819 } 4820 case Instruction::Call: { 4821 CallInst *CI = cast<CallInst>(VL0); 4822 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4823 4824 // Calculate the cost of the scalar and vector calls. 4825 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4826 InstructionCost ScalarEltCost = 4827 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4828 if (NeedToShuffleReuses) { 4829 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4830 } 4831 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4832 4833 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4834 InstructionCost VecCallCost = 4835 std::min(VecCallCosts.first, VecCallCosts.second); 4836 4837 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4838 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4839 << " for " << *CI << "\n"); 4840 4841 return CommonCost + VecCallCost - ScalarCallCost; 4842 } 4843 case Instruction::ShuffleVector: { 4844 assert(E->isAltShuffle() && 4845 ((Instruction::isBinaryOp(E->getOpcode()) && 4846 Instruction::isBinaryOp(E->getAltOpcode())) || 4847 (Instruction::isCast(E->getOpcode()) && 4848 Instruction::isCast(E->getAltOpcode()))) && 4849 "Invalid Shuffle Vector Operand"); 4850 InstructionCost ScalarCost = 0; 4851 if (NeedToShuffleReuses) { 4852 for (unsigned Idx : E->ReuseShuffleIndices) { 4853 Instruction *I = cast<Instruction>(VL[Idx]); 4854 CommonCost -= TTI->getInstructionCost(I, CostKind); 4855 } 4856 for (Value *V : VL) { 4857 Instruction *I = cast<Instruction>(V); 4858 CommonCost += TTI->getInstructionCost(I, CostKind); 4859 } 4860 } 4861 for (Value *V : VL) { 4862 Instruction *I = cast<Instruction>(V); 4863 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4864 ScalarCost += TTI->getInstructionCost(I, CostKind); 4865 } 4866 // VecCost is equal to sum of the cost of creating 2 vectors 4867 // and the cost of creating shuffle. 4868 InstructionCost VecCost = 0; 4869 if (Instruction::isBinaryOp(E->getOpcode())) { 4870 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4871 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4872 CostKind); 4873 } else { 4874 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4875 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4876 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4877 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4878 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4879 TTI::CastContextHint::None, CostKind); 4880 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4881 TTI::CastContextHint::None, CostKind); 4882 } 4883 4884 SmallVector<int> Mask; 4885 buildSuffleEntryMask( 4886 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 4887 [E](Instruction *I) { 4888 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4889 return I->getOpcode() == E->getAltOpcode(); 4890 }, 4891 Mask); 4892 CommonCost = 4893 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4894 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4895 return CommonCost + VecCost - ScalarCost; 4896 } 4897 default: 4898 llvm_unreachable("Unknown instruction"); 4899 } 4900 } 4901 4902 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 4903 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4904 << VectorizableTree.size() << " is fully vectorizable .\n"); 4905 4906 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 4907 SmallVector<int> Mask; 4908 return TE->State == TreeEntry::NeedToGather && 4909 !any_of(TE->Scalars, 4910 [this](Value *V) { return EphValues.contains(V); }) && 4911 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 4912 TE->Scalars.size() < Limit || 4913 (TE->getOpcode() == Instruction::ExtractElement && 4914 isFixedVectorShuffle(TE->Scalars, Mask))); 4915 }; 4916 4917 // We only handle trees of heights 1 and 2. 4918 if (VectorizableTree.size() == 1 && 4919 (VectorizableTree[0]->State == TreeEntry::Vectorize || 4920 (ForReduction && 4921 AreVectorizableGathers(VectorizableTree[0].get(), 4922 VectorizableTree[0]->Scalars.size()) && 4923 (VectorizableTree[0]->Scalars.size() > 2 || 4924 VectorizableTree[0]->ReuseShuffleIndices.size() > 2)))) 4925 return true; 4926 4927 if (VectorizableTree.size() != 2) 4928 return false; 4929 4930 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4931 // with the second gather nodes if they have less scalar operands rather than 4932 // the initial tree element (may be profitable to shuffle the second gather) 4933 // or they are extractelements, which form shuffle. 4934 SmallVector<int> Mask; 4935 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4936 AreVectorizableGathers(VectorizableTree[1].get(), 4937 VectorizableTree[0]->Scalars.size())) 4938 return true; 4939 4940 // Gathering cost would be too much for tiny trees. 4941 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4942 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4943 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 4944 return false; 4945 4946 return true; 4947 } 4948 4949 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4950 TargetTransformInfo *TTI, 4951 bool MustMatchOrInst) { 4952 // Look past the root to find a source value. Arbitrarily follow the 4953 // path through operand 0 of any 'or'. Also, peek through optional 4954 // shift-left-by-multiple-of-8-bits. 4955 Value *ZextLoad = Root; 4956 const APInt *ShAmtC; 4957 bool FoundOr = false; 4958 while (!isa<ConstantExpr>(ZextLoad) && 4959 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4960 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4961 ShAmtC->urem(8) == 0))) { 4962 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4963 ZextLoad = BinOp->getOperand(0); 4964 if (BinOp->getOpcode() == Instruction::Or) 4965 FoundOr = true; 4966 } 4967 // Check if the input is an extended load of the required or/shift expression. 4968 Value *LoadPtr; 4969 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4970 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4971 return false; 4972 4973 // Require that the total load bit width is a legal integer type. 4974 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4975 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4976 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4977 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4978 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4979 return false; 4980 4981 // Everything matched - assume that we can fold the whole sequence using 4982 // load combining. 4983 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4984 << *(cast<Instruction>(Root)) << "\n"); 4985 4986 return true; 4987 } 4988 4989 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4990 if (RdxKind != RecurKind::Or) 4991 return false; 4992 4993 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4994 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4995 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4996 /* MatchOr */ false); 4997 } 4998 4999 bool BoUpSLP::isLoadCombineCandidate() const { 5000 // Peek through a final sequence of stores and check if all operations are 5001 // likely to be load-combined. 5002 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5003 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5004 Value *X; 5005 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5006 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5007 return false; 5008 } 5009 return true; 5010 } 5011 5012 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5013 // No need to vectorize inserts of gathered values. 5014 if (VectorizableTree.size() == 2 && 5015 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5016 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5017 return true; 5018 5019 // We can vectorize the tree if its size is greater than or equal to the 5020 // minimum size specified by the MinTreeSize command line option. 5021 if (VectorizableTree.size() >= MinTreeSize) 5022 return false; 5023 5024 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5025 // can vectorize it if we can prove it fully vectorizable. 5026 if (isFullyVectorizableTinyTree(ForReduction)) 5027 return false; 5028 5029 assert(VectorizableTree.empty() 5030 ? ExternalUses.empty() 5031 : true && "We shouldn't have any external users"); 5032 5033 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5034 // vectorizable. 5035 return true; 5036 } 5037 5038 InstructionCost BoUpSLP::getSpillCost() const { 5039 // Walk from the bottom of the tree to the top, tracking which values are 5040 // live. When we see a call instruction that is not part of our tree, 5041 // query TTI to see if there is a cost to keeping values live over it 5042 // (for example, if spills and fills are required). 5043 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5044 InstructionCost Cost = 0; 5045 5046 SmallPtrSet<Instruction*, 4> LiveValues; 5047 Instruction *PrevInst = nullptr; 5048 5049 // The entries in VectorizableTree are not necessarily ordered by their 5050 // position in basic blocks. Collect them and order them by dominance so later 5051 // instructions are guaranteed to be visited first. For instructions in 5052 // different basic blocks, we only scan to the beginning of the block, so 5053 // their order does not matter, as long as all instructions in a basic block 5054 // are grouped together. Using dominance ensures a deterministic order. 5055 SmallVector<Instruction *, 16> OrderedScalars; 5056 for (const auto &TEPtr : VectorizableTree) { 5057 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5058 if (!Inst) 5059 continue; 5060 OrderedScalars.push_back(Inst); 5061 } 5062 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5063 auto *NodeA = DT->getNode(A->getParent()); 5064 auto *NodeB = DT->getNode(B->getParent()); 5065 assert(NodeA && "Should only process reachable instructions"); 5066 assert(NodeB && "Should only process reachable instructions"); 5067 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5068 "Different nodes should have different DFS numbers"); 5069 if (NodeA != NodeB) 5070 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5071 return B->comesBefore(A); 5072 }); 5073 5074 for (Instruction *Inst : OrderedScalars) { 5075 if (!PrevInst) { 5076 PrevInst = Inst; 5077 continue; 5078 } 5079 5080 // Update LiveValues. 5081 LiveValues.erase(PrevInst); 5082 for (auto &J : PrevInst->operands()) { 5083 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5084 LiveValues.insert(cast<Instruction>(&*J)); 5085 } 5086 5087 LLVM_DEBUG({ 5088 dbgs() << "SLP: #LV: " << LiveValues.size(); 5089 for (auto *X : LiveValues) 5090 dbgs() << " " << X->getName(); 5091 dbgs() << ", Looking at "; 5092 Inst->dump(); 5093 }); 5094 5095 // Now find the sequence of instructions between PrevInst and Inst. 5096 unsigned NumCalls = 0; 5097 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5098 PrevInstIt = 5099 PrevInst->getIterator().getReverse(); 5100 while (InstIt != PrevInstIt) { 5101 if (PrevInstIt == PrevInst->getParent()->rend()) { 5102 PrevInstIt = Inst->getParent()->rbegin(); 5103 continue; 5104 } 5105 5106 // Debug information does not impact spill cost. 5107 if ((isa<CallInst>(&*PrevInstIt) && 5108 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5109 &*PrevInstIt != PrevInst) 5110 NumCalls++; 5111 5112 ++PrevInstIt; 5113 } 5114 5115 if (NumCalls) { 5116 SmallVector<Type*, 4> V; 5117 for (auto *II : LiveValues) { 5118 auto *ScalarTy = II->getType(); 5119 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5120 ScalarTy = VectorTy->getElementType(); 5121 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5122 } 5123 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5124 } 5125 5126 PrevInst = Inst; 5127 } 5128 5129 return Cost; 5130 } 5131 5132 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5133 InstructionCost Cost = 0; 5134 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5135 << VectorizableTree.size() << ".\n"); 5136 5137 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5138 5139 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5140 TreeEntry &TE = *VectorizableTree[I].get(); 5141 5142 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5143 Cost += C; 5144 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5145 << " for bundle that starts with " << *TE.Scalars[0] 5146 << ".\n" 5147 << "SLP: Current total cost = " << Cost << "\n"); 5148 } 5149 5150 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5151 InstructionCost ExtractCost = 0; 5152 SmallVector<unsigned> VF; 5153 SmallVector<SmallVector<int>> ShuffleMask; 5154 SmallVector<Value *> FirstUsers; 5155 SmallVector<APInt> DemandedElts; 5156 for (ExternalUser &EU : ExternalUses) { 5157 // We only add extract cost once for the same scalar. 5158 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5159 continue; 5160 5161 // Uses by ephemeral values are free (because the ephemeral value will be 5162 // removed prior to code generation, and so the extraction will be 5163 // removed as well). 5164 if (EphValues.count(EU.User)) 5165 continue; 5166 5167 // No extract cost for vector "scalar" 5168 if (isa<FixedVectorType>(EU.Scalar->getType())) 5169 continue; 5170 5171 // Already counted the cost for external uses when tried to adjust the cost 5172 // for extractelements, no need to add it again. 5173 if (isa<ExtractElementInst>(EU.Scalar)) 5174 continue; 5175 5176 // If found user is an insertelement, do not calculate extract cost but try 5177 // to detect it as a final shuffled/identity match. 5178 if (EU.User && isa<InsertElementInst>(EU.User)) { 5179 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5180 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5181 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5182 continue; 5183 Value *VU = EU.User; 5184 auto *It = find_if(FirstUsers, [VU](Value *V) { 5185 // Checks if 2 insertelements are from the same buildvector. 5186 if (VU->getType() != V->getType()) 5187 return false; 5188 auto *IE1 = cast<InsertElementInst>(VU); 5189 auto *IE2 = cast<InsertElementInst>(V); 5190 // Go though of insertelement instructions trying to find either VU as 5191 // the original vector for IE2 or V as the original vector for IE1. 5192 do { 5193 if (IE1 == VU || IE2 == V) 5194 return true; 5195 if (IE1) 5196 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5197 if (IE2) 5198 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5199 } while (IE1 || IE2); 5200 return false; 5201 }); 5202 int VecId = -1; 5203 if (It == FirstUsers.end()) { 5204 VF.push_back(FTy->getNumElements()); 5205 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5206 FirstUsers.push_back(EU.User); 5207 DemandedElts.push_back(APInt::getZero(VF.back())); 5208 VecId = FirstUsers.size() - 1; 5209 } else { 5210 VecId = std::distance(FirstUsers.begin(), It); 5211 } 5212 int Idx = *InsertIdx; 5213 ShuffleMask[VecId][Idx] = EU.Lane; 5214 DemandedElts[VecId].setBit(Idx); 5215 } 5216 } 5217 5218 // If we plan to rewrite the tree in a smaller type, we will need to sign 5219 // extend the extracted value back to the original type. Here, we account 5220 // for the extract and the added cost of the sign extend if needed. 5221 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5222 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5223 if (MinBWs.count(ScalarRoot)) { 5224 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5225 auto Extend = 5226 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5227 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5228 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5229 VecTy, EU.Lane); 5230 } else { 5231 ExtractCost += 5232 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5233 } 5234 } 5235 5236 InstructionCost SpillCost = getSpillCost(); 5237 Cost += SpillCost + ExtractCost; 5238 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5239 // For the very first element - simple shuffle of the source vector. 5240 int Limit = ShuffleMask[I].size() * 2; 5241 if (I == 0 && 5242 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5243 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5244 InstructionCost C = TTI->getShuffleCost( 5245 TTI::SK_PermuteSingleSrc, 5246 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5247 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5248 << " for final shuffle of insertelement external users " 5249 << *VectorizableTree.front()->Scalars.front() << ".\n" 5250 << "SLP: Current total cost = " << Cost << "\n"); 5251 Cost += C; 5252 continue; 5253 } 5254 // Other elements - permutation of 2 vectors (the initial one and the next 5255 // Ith incoming vector). 5256 unsigned VF = ShuffleMask[I].size(); 5257 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5258 int &Mask = ShuffleMask[I][Idx]; 5259 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5260 } 5261 InstructionCost C = TTI->getShuffleCost( 5262 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5263 ShuffleMask[I]); 5264 LLVM_DEBUG( 5265 dbgs() 5266 << "SLP: Adding cost " << C 5267 << " for final shuffle of vector node and external insertelement users " 5268 << *VectorizableTree.front()->Scalars.front() << ".\n" 5269 << "SLP: Current total cost = " << Cost << "\n"); 5270 Cost += C; 5271 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5272 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5273 /*Insert*/ true, 5274 /*Extract*/ false); 5275 Cost -= InsertCost; 5276 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5277 << " for insertelements gather.\n" 5278 << "SLP: Current total cost = " << Cost << "\n"); 5279 } 5280 5281 #ifndef NDEBUG 5282 SmallString<256> Str; 5283 { 5284 raw_svector_ostream OS(Str); 5285 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5286 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5287 << "SLP: Total Cost = " << Cost << ".\n"; 5288 } 5289 LLVM_DEBUG(dbgs() << Str); 5290 if (ViewSLPTree) 5291 ViewGraph(this, "SLP" + F->getName(), false, Str); 5292 #endif 5293 5294 return Cost; 5295 } 5296 5297 Optional<TargetTransformInfo::ShuffleKind> 5298 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5299 SmallVectorImpl<const TreeEntry *> &Entries) { 5300 // TODO: currently checking only for Scalars in the tree entry, need to count 5301 // reused elements too for better cost estimation. 5302 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5303 Entries.clear(); 5304 // Build a lists of values to tree entries. 5305 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5306 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5307 if (EntryPtr.get() == TE) 5308 break; 5309 if (EntryPtr->State != TreeEntry::NeedToGather) 5310 continue; 5311 for (Value *V : EntryPtr->Scalars) 5312 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5313 } 5314 // Find all tree entries used by the gathered values. If no common entries 5315 // found - not a shuffle. 5316 // Here we build a set of tree nodes for each gathered value and trying to 5317 // find the intersection between these sets. If we have at least one common 5318 // tree node for each gathered value - we have just a permutation of the 5319 // single vector. If we have 2 different sets, we're in situation where we 5320 // have a permutation of 2 input vectors. 5321 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5322 DenseMap<Value *, int> UsedValuesEntry; 5323 for (Value *V : TE->Scalars) { 5324 if (isa<UndefValue>(V)) 5325 continue; 5326 // Build a list of tree entries where V is used. 5327 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5328 auto It = ValueToTEs.find(V); 5329 if (It != ValueToTEs.end()) 5330 VToTEs = It->second; 5331 if (const TreeEntry *VTE = getTreeEntry(V)) 5332 VToTEs.insert(VTE); 5333 if (VToTEs.empty()) 5334 return None; 5335 if (UsedTEs.empty()) { 5336 // The first iteration, just insert the list of nodes to vector. 5337 UsedTEs.push_back(VToTEs); 5338 } else { 5339 // Need to check if there are any previously used tree nodes which use V. 5340 // If there are no such nodes, consider that we have another one input 5341 // vector. 5342 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5343 unsigned Idx = 0; 5344 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5345 // Do we have a non-empty intersection of previously listed tree entries 5346 // and tree entries using current V? 5347 set_intersect(VToTEs, Set); 5348 if (!VToTEs.empty()) { 5349 // Yes, write the new subset and continue analysis for the next 5350 // scalar. 5351 Set.swap(VToTEs); 5352 break; 5353 } 5354 VToTEs = SavedVToTEs; 5355 ++Idx; 5356 } 5357 // No non-empty intersection found - need to add a second set of possible 5358 // source vectors. 5359 if (Idx == UsedTEs.size()) { 5360 // If the number of input vectors is greater than 2 - not a permutation, 5361 // fallback to the regular gather. 5362 if (UsedTEs.size() == 2) 5363 return None; 5364 UsedTEs.push_back(SavedVToTEs); 5365 Idx = UsedTEs.size() - 1; 5366 } 5367 UsedValuesEntry.try_emplace(V, Idx); 5368 } 5369 } 5370 5371 unsigned VF = 0; 5372 if (UsedTEs.size() == 1) { 5373 // Try to find the perfect match in another gather node at first. 5374 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5375 return EntryPtr->isSame(TE->Scalars); 5376 }); 5377 if (It != UsedTEs.front().end()) { 5378 Entries.push_back(*It); 5379 std::iota(Mask.begin(), Mask.end(), 0); 5380 return TargetTransformInfo::SK_PermuteSingleSrc; 5381 } 5382 // No perfect match, just shuffle, so choose the first tree node. 5383 Entries.push_back(*UsedTEs.front().begin()); 5384 } else { 5385 // Try to find nodes with the same vector factor. 5386 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5387 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5388 // landed. 5389 auto &&GetVF = [](const TreeEntry *TE) { 5390 if (!TE->ReuseShuffleIndices.empty()) 5391 return TE->ReuseShuffleIndices.size(); 5392 return TE->Scalars.size(); 5393 }; 5394 DenseMap<int, const TreeEntry *> VFToTE; 5395 for (const TreeEntry *TE : UsedTEs.front()) 5396 VFToTE.try_emplace(GetVF(TE), TE); 5397 for (const TreeEntry *TE : UsedTEs.back()) { 5398 auto It = VFToTE.find(GetVF(TE)); 5399 if (It != VFToTE.end()) { 5400 VF = It->first; 5401 Entries.push_back(It->second); 5402 Entries.push_back(TE); 5403 break; 5404 } 5405 } 5406 // No 2 source vectors with the same vector factor - give up and do regular 5407 // gather. 5408 if (Entries.empty()) 5409 return None; 5410 } 5411 5412 // Build a shuffle mask for better cost estimation and vector emission. 5413 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5414 Value *V = TE->Scalars[I]; 5415 if (isa<UndefValue>(V)) 5416 continue; 5417 unsigned Idx = UsedValuesEntry.lookup(V); 5418 const TreeEntry *VTE = Entries[Idx]; 5419 int FoundLane = VTE->findLaneForValue(V); 5420 Mask[I] = Idx * VF + FoundLane; 5421 // Extra check required by isSingleSourceMaskImpl function (called by 5422 // ShuffleVectorInst::isSingleSourceMask). 5423 if (Mask[I] >= 2 * E) 5424 return None; 5425 } 5426 switch (Entries.size()) { 5427 case 1: 5428 return TargetTransformInfo::SK_PermuteSingleSrc; 5429 case 2: 5430 return TargetTransformInfo::SK_PermuteTwoSrc; 5431 default: 5432 break; 5433 } 5434 return None; 5435 } 5436 5437 InstructionCost 5438 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5439 const DenseSet<unsigned> &ShuffledIndices) const { 5440 unsigned NumElts = Ty->getNumElements(); 5441 APInt DemandedElts = APInt::getZero(NumElts); 5442 for (unsigned I = 0; I < NumElts; ++I) 5443 if (!ShuffledIndices.count(I)) 5444 DemandedElts.setBit(I); 5445 InstructionCost Cost = 5446 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5447 /*Extract*/ false); 5448 if (!ShuffledIndices.empty()) 5449 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5450 return Cost; 5451 } 5452 5453 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5454 // Find the type of the operands in VL. 5455 Type *ScalarTy = VL[0]->getType(); 5456 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5457 ScalarTy = SI->getValueOperand()->getType(); 5458 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5459 // Find the cost of inserting/extracting values from the vector. 5460 // Check if the same elements are inserted several times and count them as 5461 // shuffle candidates. 5462 DenseSet<unsigned> ShuffledElements; 5463 DenseSet<Value *> UniqueElements; 5464 // Iterate in reverse order to consider insert elements with the high cost. 5465 for (unsigned I = VL.size(); I > 0; --I) { 5466 unsigned Idx = I - 1; 5467 if (isConstant(VL[Idx])) 5468 continue; 5469 if (!UniqueElements.insert(VL[Idx]).second) 5470 ShuffledElements.insert(Idx); 5471 } 5472 return getGatherCost(VecTy, ShuffledElements); 5473 } 5474 5475 // Perform operand reordering on the instructions in VL and return the reordered 5476 // operands in Left and Right. 5477 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5478 SmallVectorImpl<Value *> &Left, 5479 SmallVectorImpl<Value *> &Right, 5480 const DataLayout &DL, 5481 ScalarEvolution &SE, 5482 const BoUpSLP &R) { 5483 if (VL.empty()) 5484 return; 5485 VLOperands Ops(VL, DL, SE, R); 5486 // Reorder the operands in place. 5487 Ops.reorder(); 5488 Left = Ops.getVL(0); 5489 Right = Ops.getVL(1); 5490 } 5491 5492 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5493 // Get the basic block this bundle is in. All instructions in the bundle 5494 // should be in this block. 5495 auto *Front = E->getMainOp(); 5496 auto *BB = Front->getParent(); 5497 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5498 auto *I = cast<Instruction>(V); 5499 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5500 })); 5501 5502 // The last instruction in the bundle in program order. 5503 Instruction *LastInst = nullptr; 5504 5505 // Find the last instruction. The common case should be that BB has been 5506 // scheduled, and the last instruction is VL.back(). So we start with 5507 // VL.back() and iterate over schedule data until we reach the end of the 5508 // bundle. The end of the bundle is marked by null ScheduleData. 5509 if (BlocksSchedules.count(BB)) { 5510 auto *Bundle = 5511 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5512 if (Bundle && Bundle->isPartOfBundle()) 5513 for (; Bundle; Bundle = Bundle->NextInBundle) 5514 if (Bundle->OpValue == Bundle->Inst) 5515 LastInst = Bundle->Inst; 5516 } 5517 5518 // LastInst can still be null at this point if there's either not an entry 5519 // for BB in BlocksSchedules or there's no ScheduleData available for 5520 // VL.back(). This can be the case if buildTree_rec aborts for various 5521 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5522 // size is reached, etc.). ScheduleData is initialized in the scheduling 5523 // "dry-run". 5524 // 5525 // If this happens, we can still find the last instruction by brute force. We 5526 // iterate forwards from Front (inclusive) until we either see all 5527 // instructions in the bundle or reach the end of the block. If Front is the 5528 // last instruction in program order, LastInst will be set to Front, and we 5529 // will visit all the remaining instructions in the block. 5530 // 5531 // One of the reasons we exit early from buildTree_rec is to place an upper 5532 // bound on compile-time. Thus, taking an additional compile-time hit here is 5533 // not ideal. However, this should be exceedingly rare since it requires that 5534 // we both exit early from buildTree_rec and that the bundle be out-of-order 5535 // (causing us to iterate all the way to the end of the block). 5536 if (!LastInst) { 5537 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5538 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5539 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5540 LastInst = &I; 5541 if (Bundle.empty()) 5542 break; 5543 } 5544 } 5545 assert(LastInst && "Failed to find last instruction in bundle"); 5546 5547 // Set the insertion point after the last instruction in the bundle. Set the 5548 // debug location to Front. 5549 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5550 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5551 } 5552 5553 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5554 // List of instructions/lanes from current block and/or the blocks which are 5555 // part of the current loop. These instructions will be inserted at the end to 5556 // make it possible to optimize loops and hoist invariant instructions out of 5557 // the loops body with better chances for success. 5558 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5559 SmallSet<int, 4> PostponedIndices; 5560 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5561 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5562 SmallPtrSet<BasicBlock *, 4> Visited; 5563 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5564 InsertBB = InsertBB->getSinglePredecessor(); 5565 return InsertBB && InsertBB == InstBB; 5566 }; 5567 for (int I = 0, E = VL.size(); I < E; ++I) { 5568 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5569 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5570 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5571 PostponedIndices.insert(I).second) 5572 PostponedInsts.emplace_back(Inst, I); 5573 } 5574 5575 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5576 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5577 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5578 if (!InsElt) 5579 return Vec; 5580 GatherSeq.insert(InsElt); 5581 CSEBlocks.insert(InsElt->getParent()); 5582 // Add to our 'need-to-extract' list. 5583 if (TreeEntry *Entry = getTreeEntry(V)) { 5584 // Find which lane we need to extract. 5585 unsigned FoundLane = Entry->findLaneForValue(V); 5586 ExternalUses.emplace_back(V, InsElt, FoundLane); 5587 } 5588 return Vec; 5589 }; 5590 Value *Val0 = 5591 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5592 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5593 Value *Vec = PoisonValue::get(VecTy); 5594 SmallVector<int> NonConsts; 5595 // Insert constant values at first. 5596 for (int I = 0, E = VL.size(); I < E; ++I) { 5597 if (PostponedIndices.contains(I)) 5598 continue; 5599 if (!isConstant(VL[I])) { 5600 NonConsts.push_back(I); 5601 continue; 5602 } 5603 Vec = CreateInsertElement(Vec, VL[I], I); 5604 } 5605 // Insert non-constant values. 5606 for (int I : NonConsts) 5607 Vec = CreateInsertElement(Vec, VL[I], I); 5608 // Append instructions, which are/may be part of the loop, in the end to make 5609 // it possible to hoist non-loop-based instructions. 5610 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5611 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5612 5613 return Vec; 5614 } 5615 5616 namespace { 5617 /// Merges shuffle masks and emits final shuffle instruction, if required. 5618 class ShuffleInstructionBuilder { 5619 IRBuilderBase &Builder; 5620 const unsigned VF = 0; 5621 bool IsFinalized = false; 5622 SmallVector<int, 4> Mask; 5623 5624 public: 5625 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5626 : Builder(Builder), VF(VF) {} 5627 5628 /// Adds a mask, inverting it before applying. 5629 void addInversedMask(ArrayRef<unsigned> SubMask) { 5630 if (SubMask.empty()) 5631 return; 5632 SmallVector<int, 4> NewMask; 5633 inversePermutation(SubMask, NewMask); 5634 addMask(NewMask); 5635 } 5636 5637 /// Functions adds masks, merging them into single one. 5638 void addMask(ArrayRef<unsigned> SubMask) { 5639 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5640 addMask(NewMask); 5641 } 5642 5643 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5644 5645 Value *finalize(Value *V) { 5646 IsFinalized = true; 5647 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5648 if (VF == ValueVF && Mask.empty()) 5649 return V; 5650 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5651 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5652 addMask(NormalizedMask); 5653 5654 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5655 return V; 5656 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5657 } 5658 5659 ~ShuffleInstructionBuilder() { 5660 assert((IsFinalized || Mask.empty()) && 5661 "Shuffle construction must be finalized."); 5662 } 5663 }; 5664 } // namespace 5665 5666 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5667 unsigned VF = VL.size(); 5668 InstructionsState S = getSameOpcode(VL); 5669 if (S.getOpcode()) { 5670 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5671 if (E->isSame(VL)) { 5672 Value *V = vectorizeTree(E); 5673 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5674 if (!E->ReuseShuffleIndices.empty()) { 5675 // Reshuffle to get only unique values. 5676 // If some of the scalars are duplicated in the vectorization tree 5677 // entry, we do not vectorize them but instead generate a mask for 5678 // the reuses. But if there are several users of the same entry, 5679 // they may have different vectorization factors. This is especially 5680 // important for PHI nodes. In this case, we need to adapt the 5681 // resulting instruction for the user vectorization factor and have 5682 // to reshuffle it again to take only unique elements of the vector. 5683 // Without this code the function incorrectly returns reduced vector 5684 // instruction with the same elements, not with the unique ones. 5685 5686 // block: 5687 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5688 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5689 // ... (use %2) 5690 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5691 // br %block 5692 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5693 SmallSet<int, 4> UsedIdxs; 5694 int Pos = 0; 5695 int Sz = VL.size(); 5696 for (int Idx : E->ReuseShuffleIndices) { 5697 if (Idx != Sz && Idx != UndefMaskElem && 5698 UsedIdxs.insert(Idx).second) 5699 UniqueIdxs[Idx] = Pos; 5700 ++Pos; 5701 } 5702 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5703 "less than original vector size."); 5704 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5705 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5706 } else { 5707 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5708 "Expected vectorization factor less " 5709 "than original vector size."); 5710 SmallVector<int> UniformMask(VF, 0); 5711 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5712 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5713 } 5714 } 5715 return V; 5716 } 5717 } 5718 5719 // Check that every instruction appears once in this bundle. 5720 SmallVector<int> ReuseShuffleIndicies; 5721 SmallVector<Value *> UniqueValues; 5722 if (VL.size() > 2) { 5723 DenseMap<Value *, unsigned> UniquePositions; 5724 unsigned NumValues = 5725 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5726 return !isa<UndefValue>(V); 5727 }).base()); 5728 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5729 int UniqueVals = 0; 5730 for (Value *V : VL.drop_back(VL.size() - VF)) { 5731 if (isa<UndefValue>(V)) { 5732 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5733 continue; 5734 } 5735 if (isConstant(V)) { 5736 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5737 UniqueValues.emplace_back(V); 5738 continue; 5739 } 5740 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5741 ReuseShuffleIndicies.emplace_back(Res.first->second); 5742 if (Res.second) { 5743 UniqueValues.emplace_back(V); 5744 ++UniqueVals; 5745 } 5746 } 5747 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5748 // Emit pure splat vector. 5749 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5750 UndefMaskElem); 5751 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5752 ReuseShuffleIndicies.clear(); 5753 UniqueValues.clear(); 5754 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5755 } 5756 UniqueValues.append(VF - UniqueValues.size(), 5757 PoisonValue::get(VL[0]->getType())); 5758 VL = UniqueValues; 5759 } 5760 5761 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5762 Value *Vec = gather(VL); 5763 if (!ReuseShuffleIndicies.empty()) { 5764 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5765 Vec = ShuffleBuilder.finalize(Vec); 5766 if (auto *I = dyn_cast<Instruction>(Vec)) { 5767 GatherSeq.insert(I); 5768 CSEBlocks.insert(I->getParent()); 5769 } 5770 } 5771 return Vec; 5772 } 5773 5774 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5775 IRBuilder<>::InsertPointGuard Guard(Builder); 5776 5777 if (E->VectorizedValue) { 5778 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5779 return E->VectorizedValue; 5780 } 5781 5782 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5783 unsigned VF = E->Scalars.size(); 5784 if (NeedToShuffleReuses) 5785 VF = E->ReuseShuffleIndices.size(); 5786 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5787 if (E->State == TreeEntry::NeedToGather) { 5788 if (E->getMainOp()) 5789 setInsertPointAfterBundle(E); 5790 Value *Vec; 5791 SmallVector<int> Mask; 5792 SmallVector<const TreeEntry *> Entries; 5793 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5794 isGatherShuffledEntry(E, Mask, Entries); 5795 if (Shuffle.hasValue()) { 5796 assert((Entries.size() == 1 || Entries.size() == 2) && 5797 "Expected shuffle of 1 or 2 entries."); 5798 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5799 Entries.back()->VectorizedValue, Mask); 5800 } else { 5801 Vec = gather(E->Scalars); 5802 } 5803 if (NeedToShuffleReuses) { 5804 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5805 Vec = ShuffleBuilder.finalize(Vec); 5806 if (auto *I = dyn_cast<Instruction>(Vec)) { 5807 GatherSeq.insert(I); 5808 CSEBlocks.insert(I->getParent()); 5809 } 5810 } 5811 E->VectorizedValue = Vec; 5812 return Vec; 5813 } 5814 5815 assert((E->State == TreeEntry::Vectorize || 5816 E->State == TreeEntry::ScatterVectorize) && 5817 "Unhandled state"); 5818 unsigned ShuffleOrOp = 5819 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5820 Instruction *VL0 = E->getMainOp(); 5821 Type *ScalarTy = VL0->getType(); 5822 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5823 ScalarTy = Store->getValueOperand()->getType(); 5824 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5825 ScalarTy = IE->getOperand(1)->getType(); 5826 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5827 switch (ShuffleOrOp) { 5828 case Instruction::PHI: { 5829 assert( 5830 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5831 "PHI reordering is free."); 5832 auto *PH = cast<PHINode>(VL0); 5833 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5834 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5835 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5836 Value *V = NewPhi; 5837 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5838 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5839 V = ShuffleBuilder.finalize(V); 5840 5841 E->VectorizedValue = V; 5842 5843 // PHINodes may have multiple entries from the same block. We want to 5844 // visit every block once. 5845 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5846 5847 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5848 ValueList Operands; 5849 BasicBlock *IBB = PH->getIncomingBlock(i); 5850 5851 if (!VisitedBBs.insert(IBB).second) { 5852 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5853 continue; 5854 } 5855 5856 Builder.SetInsertPoint(IBB->getTerminator()); 5857 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5858 Value *Vec = vectorizeTree(E->getOperand(i)); 5859 NewPhi->addIncoming(Vec, IBB); 5860 } 5861 5862 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5863 "Invalid number of incoming values"); 5864 return V; 5865 } 5866 5867 case Instruction::ExtractElement: { 5868 Value *V = E->getSingleOperand(0); 5869 Builder.SetInsertPoint(VL0); 5870 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5871 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5872 V = ShuffleBuilder.finalize(V); 5873 E->VectorizedValue = V; 5874 return V; 5875 } 5876 case Instruction::ExtractValue: { 5877 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5878 Builder.SetInsertPoint(LI); 5879 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5880 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5881 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5882 Value *NewV = propagateMetadata(V, E->Scalars); 5883 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5884 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5885 NewV = ShuffleBuilder.finalize(NewV); 5886 E->VectorizedValue = NewV; 5887 return NewV; 5888 } 5889 case Instruction::InsertElement: { 5890 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 5891 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 5892 Value *V = vectorizeTree(E->getOperand(1)); 5893 5894 // Create InsertVector shuffle if necessary 5895 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5896 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 5897 })); 5898 const unsigned NumElts = 5899 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 5900 const unsigned NumScalars = E->Scalars.size(); 5901 5902 unsigned Offset = *getInsertIndex(VL0, 0); 5903 assert(Offset < NumElts && "Failed to find vector index offset"); 5904 5905 // Create shuffle to resize vector 5906 SmallVector<int> Mask; 5907 if (!E->ReorderIndices.empty()) { 5908 inversePermutation(E->ReorderIndices, Mask); 5909 Mask.append(NumElts - NumScalars, UndefMaskElem); 5910 } else { 5911 Mask.assign(NumElts, UndefMaskElem); 5912 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5913 } 5914 // Create InsertVector shuffle if necessary 5915 bool IsIdentity = true; 5916 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5917 Mask.swap(PrevMask); 5918 for (unsigned I = 0; I < NumScalars; ++I) { 5919 Value *Scalar = E->Scalars[PrevMask[I]]; 5920 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5921 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5922 continue; 5923 IsIdentity &= *InsertIdx - Offset == I; 5924 Mask[*InsertIdx - Offset] = I; 5925 } 5926 if (!IsIdentity || NumElts != NumScalars) 5927 V = Builder.CreateShuffleVector(V, Mask); 5928 5929 if ((!IsIdentity || Offset != 0 || 5930 !isa<UndefValue>(FirstInsert->getOperand(0))) && 5931 NumElts != NumScalars) { 5932 SmallVector<int> InsertMask(NumElts); 5933 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5934 for (unsigned I = 0; I < NumElts; I++) { 5935 if (Mask[I] != UndefMaskElem) 5936 InsertMask[Offset + I] = NumElts + I; 5937 } 5938 5939 V = Builder.CreateShuffleVector( 5940 FirstInsert->getOperand(0), V, InsertMask, 5941 cast<Instruction>(E->Scalars.back())->getName()); 5942 } 5943 5944 ++NumVectorInstructions; 5945 E->VectorizedValue = V; 5946 return V; 5947 } 5948 case Instruction::ZExt: 5949 case Instruction::SExt: 5950 case Instruction::FPToUI: 5951 case Instruction::FPToSI: 5952 case Instruction::FPExt: 5953 case Instruction::PtrToInt: 5954 case Instruction::IntToPtr: 5955 case Instruction::SIToFP: 5956 case Instruction::UIToFP: 5957 case Instruction::Trunc: 5958 case Instruction::FPTrunc: 5959 case Instruction::BitCast: { 5960 setInsertPointAfterBundle(E); 5961 5962 Value *InVec = vectorizeTree(E->getOperand(0)); 5963 5964 if (E->VectorizedValue) { 5965 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5966 return E->VectorizedValue; 5967 } 5968 5969 auto *CI = cast<CastInst>(VL0); 5970 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5971 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5972 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5973 V = ShuffleBuilder.finalize(V); 5974 5975 E->VectorizedValue = V; 5976 ++NumVectorInstructions; 5977 return V; 5978 } 5979 case Instruction::FCmp: 5980 case Instruction::ICmp: { 5981 setInsertPointAfterBundle(E); 5982 5983 Value *L = vectorizeTree(E->getOperand(0)); 5984 Value *R = vectorizeTree(E->getOperand(1)); 5985 5986 if (E->VectorizedValue) { 5987 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5988 return E->VectorizedValue; 5989 } 5990 5991 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5992 Value *V = Builder.CreateCmp(P0, L, R); 5993 propagateIRFlags(V, E->Scalars, VL0); 5994 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5995 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5996 V = ShuffleBuilder.finalize(V); 5997 5998 E->VectorizedValue = V; 5999 ++NumVectorInstructions; 6000 return V; 6001 } 6002 case Instruction::Select: { 6003 setInsertPointAfterBundle(E); 6004 6005 Value *Cond = vectorizeTree(E->getOperand(0)); 6006 Value *True = vectorizeTree(E->getOperand(1)); 6007 Value *False = vectorizeTree(E->getOperand(2)); 6008 6009 if (E->VectorizedValue) { 6010 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6011 return E->VectorizedValue; 6012 } 6013 6014 Value *V = Builder.CreateSelect(Cond, True, False); 6015 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6016 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6017 V = ShuffleBuilder.finalize(V); 6018 6019 E->VectorizedValue = V; 6020 ++NumVectorInstructions; 6021 return V; 6022 } 6023 case Instruction::FNeg: { 6024 setInsertPointAfterBundle(E); 6025 6026 Value *Op = vectorizeTree(E->getOperand(0)); 6027 6028 if (E->VectorizedValue) { 6029 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6030 return E->VectorizedValue; 6031 } 6032 6033 Value *V = Builder.CreateUnOp( 6034 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6035 propagateIRFlags(V, E->Scalars, VL0); 6036 if (auto *I = dyn_cast<Instruction>(V)) 6037 V = propagateMetadata(I, E->Scalars); 6038 6039 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6040 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6041 V = ShuffleBuilder.finalize(V); 6042 6043 E->VectorizedValue = V; 6044 ++NumVectorInstructions; 6045 6046 return V; 6047 } 6048 case Instruction::Add: 6049 case Instruction::FAdd: 6050 case Instruction::Sub: 6051 case Instruction::FSub: 6052 case Instruction::Mul: 6053 case Instruction::FMul: 6054 case Instruction::UDiv: 6055 case Instruction::SDiv: 6056 case Instruction::FDiv: 6057 case Instruction::URem: 6058 case Instruction::SRem: 6059 case Instruction::FRem: 6060 case Instruction::Shl: 6061 case Instruction::LShr: 6062 case Instruction::AShr: 6063 case Instruction::And: 6064 case Instruction::Or: 6065 case Instruction::Xor: { 6066 setInsertPointAfterBundle(E); 6067 6068 Value *LHS = vectorizeTree(E->getOperand(0)); 6069 Value *RHS = vectorizeTree(E->getOperand(1)); 6070 6071 if (E->VectorizedValue) { 6072 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6073 return E->VectorizedValue; 6074 } 6075 6076 Value *V = Builder.CreateBinOp( 6077 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6078 RHS); 6079 propagateIRFlags(V, E->Scalars, VL0); 6080 if (auto *I = dyn_cast<Instruction>(V)) 6081 V = propagateMetadata(I, E->Scalars); 6082 6083 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6084 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6085 V = ShuffleBuilder.finalize(V); 6086 6087 E->VectorizedValue = V; 6088 ++NumVectorInstructions; 6089 6090 return V; 6091 } 6092 case Instruction::Load: { 6093 // Loads are inserted at the head of the tree because we don't want to 6094 // sink them all the way down past store instructions. 6095 setInsertPointAfterBundle(E); 6096 6097 LoadInst *LI = cast<LoadInst>(VL0); 6098 Instruction *NewLI; 6099 unsigned AS = LI->getPointerAddressSpace(); 6100 Value *PO = LI->getPointerOperand(); 6101 if (E->State == TreeEntry::Vectorize) { 6102 6103 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6104 6105 // The pointer operand uses an in-tree scalar so we add the new BitCast 6106 // to ExternalUses list to make sure that an extract will be generated 6107 // in the future. 6108 if (TreeEntry *Entry = getTreeEntry(PO)) { 6109 // Find which lane we need to extract. 6110 unsigned FoundLane = Entry->findLaneForValue(PO); 6111 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6112 } 6113 6114 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6115 } else { 6116 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6117 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6118 // Use the minimum alignment of the gathered loads. 6119 Align CommonAlignment = LI->getAlign(); 6120 for (Value *V : E->Scalars) 6121 CommonAlignment = 6122 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6123 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6124 } 6125 Value *V = propagateMetadata(NewLI, E->Scalars); 6126 6127 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6128 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6129 V = ShuffleBuilder.finalize(V); 6130 E->VectorizedValue = V; 6131 ++NumVectorInstructions; 6132 return V; 6133 } 6134 case Instruction::Store: { 6135 auto *SI = cast<StoreInst>(VL0); 6136 unsigned AS = SI->getPointerAddressSpace(); 6137 6138 setInsertPointAfterBundle(E); 6139 6140 Value *VecValue = vectorizeTree(E->getOperand(0)); 6141 ShuffleBuilder.addMask(E->ReorderIndices); 6142 VecValue = ShuffleBuilder.finalize(VecValue); 6143 6144 Value *ScalarPtr = SI->getPointerOperand(); 6145 Value *VecPtr = Builder.CreateBitCast( 6146 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6147 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6148 SI->getAlign()); 6149 6150 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6151 // ExternalUses to make sure that an extract will be generated in the 6152 // future. 6153 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6154 // Find which lane we need to extract. 6155 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6156 ExternalUses.push_back( 6157 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6158 } 6159 6160 Value *V = propagateMetadata(ST, E->Scalars); 6161 6162 E->VectorizedValue = V; 6163 ++NumVectorInstructions; 6164 return V; 6165 } 6166 case Instruction::GetElementPtr: { 6167 setInsertPointAfterBundle(E); 6168 6169 Value *Op0 = vectorizeTree(E->getOperand(0)); 6170 6171 std::vector<Value *> OpVecs; 6172 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 6173 ++j) { 6174 ValueList &VL = E->getOperand(j); 6175 // Need to cast all elements to the same type before vectorization to 6176 // avoid crash. 6177 Type *VL0Ty = VL0->getOperand(j)->getType(); 6178 Type *Ty = llvm::all_of( 6179 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 6180 ? VL0Ty 6181 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 6182 ->getPointerOperandType() 6183 ->getScalarType()); 6184 for (Value *&V : VL) { 6185 auto *CI = cast<ConstantInt>(V); 6186 V = ConstantExpr::getIntegerCast(CI, Ty, 6187 CI->getValue().isSignBitSet()); 6188 } 6189 Value *OpVec = vectorizeTree(VL); 6190 OpVecs.push_back(OpVec); 6191 } 6192 6193 Value *V = Builder.CreateGEP( 6194 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 6195 if (Instruction *I = dyn_cast<Instruction>(V)) 6196 V = propagateMetadata(I, E->Scalars); 6197 6198 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6199 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6200 V = ShuffleBuilder.finalize(V); 6201 6202 E->VectorizedValue = V; 6203 ++NumVectorInstructions; 6204 6205 return V; 6206 } 6207 case Instruction::Call: { 6208 CallInst *CI = cast<CallInst>(VL0); 6209 setInsertPointAfterBundle(E); 6210 6211 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6212 if (Function *FI = CI->getCalledFunction()) 6213 IID = FI->getIntrinsicID(); 6214 6215 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6216 6217 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6218 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6219 VecCallCosts.first <= VecCallCosts.second; 6220 6221 Value *ScalarArg = nullptr; 6222 std::vector<Value *> OpVecs; 6223 SmallVector<Type *, 2> TysForDecl = 6224 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6225 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6226 ValueList OpVL; 6227 // Some intrinsics have scalar arguments. This argument should not be 6228 // vectorized. 6229 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6230 CallInst *CEI = cast<CallInst>(VL0); 6231 ScalarArg = CEI->getArgOperand(j); 6232 OpVecs.push_back(CEI->getArgOperand(j)); 6233 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6234 TysForDecl.push_back(ScalarArg->getType()); 6235 continue; 6236 } 6237 6238 Value *OpVec = vectorizeTree(E->getOperand(j)); 6239 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6240 OpVecs.push_back(OpVec); 6241 } 6242 6243 Function *CF; 6244 if (!UseIntrinsic) { 6245 VFShape Shape = 6246 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6247 VecTy->getNumElements())), 6248 false /*HasGlobalPred*/); 6249 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6250 } else { 6251 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6252 } 6253 6254 SmallVector<OperandBundleDef, 1> OpBundles; 6255 CI->getOperandBundlesAsDefs(OpBundles); 6256 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6257 6258 // The scalar argument uses an in-tree scalar so we add the new vectorized 6259 // call to ExternalUses list to make sure that an extract will be 6260 // generated in the future. 6261 if (ScalarArg) { 6262 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6263 // Find which lane we need to extract. 6264 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6265 ExternalUses.push_back( 6266 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6267 } 6268 } 6269 6270 propagateIRFlags(V, E->Scalars, VL0); 6271 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6272 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6273 V = ShuffleBuilder.finalize(V); 6274 6275 E->VectorizedValue = V; 6276 ++NumVectorInstructions; 6277 return V; 6278 } 6279 case Instruction::ShuffleVector: { 6280 assert(E->isAltShuffle() && 6281 ((Instruction::isBinaryOp(E->getOpcode()) && 6282 Instruction::isBinaryOp(E->getAltOpcode())) || 6283 (Instruction::isCast(E->getOpcode()) && 6284 Instruction::isCast(E->getAltOpcode()))) && 6285 "Invalid Shuffle Vector Operand"); 6286 6287 Value *LHS = nullptr, *RHS = nullptr; 6288 if (Instruction::isBinaryOp(E->getOpcode())) { 6289 setInsertPointAfterBundle(E); 6290 LHS = vectorizeTree(E->getOperand(0)); 6291 RHS = vectorizeTree(E->getOperand(1)); 6292 } else { 6293 setInsertPointAfterBundle(E); 6294 LHS = vectorizeTree(E->getOperand(0)); 6295 } 6296 6297 if (E->VectorizedValue) { 6298 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6299 return E->VectorizedValue; 6300 } 6301 6302 Value *V0, *V1; 6303 if (Instruction::isBinaryOp(E->getOpcode())) { 6304 V0 = Builder.CreateBinOp( 6305 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6306 V1 = Builder.CreateBinOp( 6307 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6308 } else { 6309 V0 = Builder.CreateCast( 6310 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6311 V1 = Builder.CreateCast( 6312 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6313 } 6314 6315 // Create shuffle to take alternate operations from the vector. 6316 // Also, gather up main and alt scalar ops to propagate IR flags to 6317 // each vector operation. 6318 ValueList OpScalars, AltScalars; 6319 SmallVector<int> Mask; 6320 buildSuffleEntryMask( 6321 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6322 [E](Instruction *I) { 6323 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6324 return I->getOpcode() == E->getAltOpcode(); 6325 }, 6326 Mask, &OpScalars, &AltScalars); 6327 6328 propagateIRFlags(V0, OpScalars); 6329 propagateIRFlags(V1, AltScalars); 6330 6331 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6332 if (Instruction *I = dyn_cast<Instruction>(V)) 6333 V = propagateMetadata(I, E->Scalars); 6334 V = ShuffleBuilder.finalize(V); 6335 6336 E->VectorizedValue = V; 6337 ++NumVectorInstructions; 6338 6339 return V; 6340 } 6341 default: 6342 llvm_unreachable("unknown inst"); 6343 } 6344 return nullptr; 6345 } 6346 6347 Value *BoUpSLP::vectorizeTree() { 6348 ExtraValueToDebugLocsMap ExternallyUsedValues; 6349 return vectorizeTree(ExternallyUsedValues); 6350 } 6351 6352 Value * 6353 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6354 // All blocks must be scheduled before any instructions are inserted. 6355 for (auto &BSIter : BlocksSchedules) { 6356 scheduleBlock(BSIter.second.get()); 6357 } 6358 6359 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6360 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6361 6362 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6363 // vectorized root. InstCombine will then rewrite the entire expression. We 6364 // sign extend the extracted values below. 6365 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6366 if (MinBWs.count(ScalarRoot)) { 6367 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6368 // If current instr is a phi and not the last phi, insert it after the 6369 // last phi node. 6370 if (isa<PHINode>(I)) 6371 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6372 else 6373 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6374 } 6375 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6376 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6377 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6378 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6379 VectorizableTree[0]->VectorizedValue = Trunc; 6380 } 6381 6382 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6383 << " values .\n"); 6384 6385 // Extract all of the elements with the external uses. 6386 for (const auto &ExternalUse : ExternalUses) { 6387 Value *Scalar = ExternalUse.Scalar; 6388 llvm::User *User = ExternalUse.User; 6389 6390 // Skip users that we already RAUW. This happens when one instruction 6391 // has multiple uses of the same value. 6392 if (User && !is_contained(Scalar->users(), User)) 6393 continue; 6394 TreeEntry *E = getTreeEntry(Scalar); 6395 assert(E && "Invalid scalar"); 6396 assert(E->State != TreeEntry::NeedToGather && 6397 "Extracting from a gather list"); 6398 6399 Value *Vec = E->VectorizedValue; 6400 assert(Vec && "Can't find vectorizable value"); 6401 6402 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6403 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6404 if (Scalar->getType() != Vec->getType()) { 6405 Value *Ex; 6406 // "Reuse" the existing extract to improve final codegen. 6407 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6408 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6409 ES->getOperand(1)); 6410 } else { 6411 Ex = Builder.CreateExtractElement(Vec, Lane); 6412 } 6413 // If necessary, sign-extend or zero-extend ScalarRoot 6414 // to the larger type. 6415 if (!MinBWs.count(ScalarRoot)) 6416 return Ex; 6417 if (MinBWs[ScalarRoot].second) 6418 return Builder.CreateSExt(Ex, Scalar->getType()); 6419 return Builder.CreateZExt(Ex, Scalar->getType()); 6420 } 6421 assert(isa<FixedVectorType>(Scalar->getType()) && 6422 isa<InsertElementInst>(Scalar) && 6423 "In-tree scalar of vector type is not insertelement?"); 6424 return Vec; 6425 }; 6426 // If User == nullptr, the Scalar is used as extra arg. Generate 6427 // ExtractElement instruction and update the record for this scalar in 6428 // ExternallyUsedValues. 6429 if (!User) { 6430 assert(ExternallyUsedValues.count(Scalar) && 6431 "Scalar with nullptr as an external user must be registered in " 6432 "ExternallyUsedValues map"); 6433 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6434 Builder.SetInsertPoint(VecI->getParent(), 6435 std::next(VecI->getIterator())); 6436 } else { 6437 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6438 } 6439 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6440 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6441 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6442 auto It = ExternallyUsedValues.find(Scalar); 6443 assert(It != ExternallyUsedValues.end() && 6444 "Externally used scalar is not found in ExternallyUsedValues"); 6445 NewInstLocs.append(It->second); 6446 ExternallyUsedValues.erase(Scalar); 6447 // Required to update internally referenced instructions. 6448 Scalar->replaceAllUsesWith(NewInst); 6449 continue; 6450 } 6451 6452 // Generate extracts for out-of-tree users. 6453 // Find the insertion point for the extractelement lane. 6454 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6455 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6456 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6457 if (PH->getIncomingValue(i) == Scalar) { 6458 Instruction *IncomingTerminator = 6459 PH->getIncomingBlock(i)->getTerminator(); 6460 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6461 Builder.SetInsertPoint(VecI->getParent(), 6462 std::next(VecI->getIterator())); 6463 } else { 6464 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6465 } 6466 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6467 CSEBlocks.insert(PH->getIncomingBlock(i)); 6468 PH->setOperand(i, NewInst); 6469 } 6470 } 6471 } else { 6472 Builder.SetInsertPoint(cast<Instruction>(User)); 6473 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6474 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6475 User->replaceUsesOfWith(Scalar, NewInst); 6476 } 6477 } else { 6478 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6479 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6480 CSEBlocks.insert(&F->getEntryBlock()); 6481 User->replaceUsesOfWith(Scalar, NewInst); 6482 } 6483 6484 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6485 } 6486 6487 // For each vectorized value: 6488 for (auto &TEPtr : VectorizableTree) { 6489 TreeEntry *Entry = TEPtr.get(); 6490 6491 // No need to handle users of gathered values. 6492 if (Entry->State == TreeEntry::NeedToGather) 6493 continue; 6494 6495 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6496 6497 // For each lane: 6498 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6499 Value *Scalar = Entry->Scalars[Lane]; 6500 6501 #ifndef NDEBUG 6502 Type *Ty = Scalar->getType(); 6503 if (!Ty->isVoidTy()) { 6504 for (User *U : Scalar->users()) { 6505 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6506 6507 // It is legal to delete users in the ignorelist. 6508 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6509 (isa_and_nonnull<Instruction>(U) && 6510 isDeleted(cast<Instruction>(U)))) && 6511 "Deleting out-of-tree value"); 6512 } 6513 } 6514 #endif 6515 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6516 eraseInstruction(cast<Instruction>(Scalar)); 6517 } 6518 } 6519 6520 Builder.ClearInsertionPoint(); 6521 InstrElementSize.clear(); 6522 6523 return VectorizableTree[0]->VectorizedValue; 6524 } 6525 6526 void BoUpSLP::optimizeGatherSequence() { 6527 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6528 << " gather sequences instructions.\n"); 6529 // LICM InsertElementInst sequences. 6530 for (Instruction *I : GatherSeq) { 6531 if (isDeleted(I)) 6532 continue; 6533 6534 // Check if this block is inside a loop. 6535 Loop *L = LI->getLoopFor(I->getParent()); 6536 if (!L) 6537 continue; 6538 6539 // Check if it has a preheader. 6540 BasicBlock *PreHeader = L->getLoopPreheader(); 6541 if (!PreHeader) 6542 continue; 6543 6544 // If the vector or the element that we insert into it are 6545 // instructions that are defined in this basic block then we can't 6546 // hoist this instruction. 6547 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6548 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6549 if (Op0 && L->contains(Op0)) 6550 continue; 6551 if (Op1 && L->contains(Op1)) 6552 continue; 6553 6554 // We can hoist this instruction. Move it to the pre-header. 6555 I->moveBefore(PreHeader->getTerminator()); 6556 } 6557 6558 // Make a list of all reachable blocks in our CSE queue. 6559 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6560 CSEWorkList.reserve(CSEBlocks.size()); 6561 for (BasicBlock *BB : CSEBlocks) 6562 if (DomTreeNode *N = DT->getNode(BB)) { 6563 assert(DT->isReachableFromEntry(N)); 6564 CSEWorkList.push_back(N); 6565 } 6566 6567 // Sort blocks by domination. This ensures we visit a block after all blocks 6568 // dominating it are visited. 6569 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6570 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6571 "Different nodes should have different DFS numbers"); 6572 return A->getDFSNumIn() < B->getDFSNumIn(); 6573 }); 6574 6575 // Perform O(N^2) search over the gather sequences and merge identical 6576 // instructions. TODO: We can further optimize this scan if we split the 6577 // instructions into different buckets based on the insert lane. 6578 SmallVector<Instruction *, 16> Visited; 6579 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6580 assert(*I && 6581 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6582 "Worklist not sorted properly!"); 6583 BasicBlock *BB = (*I)->getBlock(); 6584 // For all instructions in blocks containing gather sequences: 6585 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 6586 Instruction *In = &*it++; 6587 if (isDeleted(In)) 6588 continue; 6589 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) && 6590 !isa<ShuffleVectorInst>(In)) 6591 continue; 6592 6593 // Check if we can replace this instruction with any of the 6594 // visited instructions. 6595 for (Instruction *v : Visited) { 6596 if (In->isIdenticalTo(v) && 6597 DT->dominates(v->getParent(), In->getParent())) { 6598 In->replaceAllUsesWith(v); 6599 eraseInstruction(In); 6600 In = nullptr; 6601 break; 6602 } 6603 } 6604 if (In) { 6605 assert(!is_contained(Visited, In)); 6606 Visited.push_back(In); 6607 } 6608 } 6609 } 6610 CSEBlocks.clear(); 6611 GatherSeq.clear(); 6612 } 6613 6614 // Groups the instructions to a bundle (which is then a single scheduling entity) 6615 // and schedules instructions until the bundle gets ready. 6616 Optional<BoUpSLP::ScheduleData *> 6617 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6618 const InstructionsState &S) { 6619 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6620 // instructions. 6621 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6622 return nullptr; 6623 6624 // Initialize the instruction bundle. 6625 Instruction *OldScheduleEnd = ScheduleEnd; 6626 ScheduleData *PrevInBundle = nullptr; 6627 ScheduleData *Bundle = nullptr; 6628 bool ReSchedule = false; 6629 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6630 6631 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6632 ScheduleData *Bundle) { 6633 // The scheduling region got new instructions at the lower end (or it is a 6634 // new region for the first bundle). This makes it necessary to 6635 // recalculate all dependencies. 6636 // It is seldom that this needs to be done a second time after adding the 6637 // initial bundle to the region. 6638 if (ScheduleEnd != OldScheduleEnd) { 6639 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6640 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6641 ReSchedule = true; 6642 } 6643 if (ReSchedule) { 6644 resetSchedule(); 6645 initialFillReadyList(ReadyInsts); 6646 } 6647 if (Bundle) { 6648 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6649 << " in block " << BB->getName() << "\n"); 6650 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6651 } 6652 6653 // Now try to schedule the new bundle or (if no bundle) just calculate 6654 // dependencies. As soon as the bundle is "ready" it means that there are no 6655 // cyclic dependencies and we can schedule it. Note that's important that we 6656 // don't "schedule" the bundle yet (see cancelScheduling). 6657 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6658 !ReadyInsts.empty()) { 6659 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6660 if (Picked->isSchedulingEntity() && Picked->isReady()) 6661 schedule(Picked, ReadyInsts); 6662 } 6663 }; 6664 6665 // Make sure that the scheduling region contains all 6666 // instructions of the bundle. 6667 for (Value *V : VL) { 6668 if (!extendSchedulingRegion(V, S)) { 6669 // If the scheduling region got new instructions at the lower end (or it 6670 // is a new region for the first bundle). This makes it necessary to 6671 // recalculate all dependencies. 6672 // Otherwise the compiler may crash trying to incorrectly calculate 6673 // dependencies and emit instruction in the wrong order at the actual 6674 // scheduling. 6675 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6676 return None; 6677 } 6678 } 6679 6680 for (Value *V : VL) { 6681 ScheduleData *BundleMember = getScheduleData(V); 6682 assert(BundleMember && 6683 "no ScheduleData for bundle member (maybe not in same basic block)"); 6684 if (BundleMember->IsScheduled) { 6685 // A bundle member was scheduled as single instruction before and now 6686 // needs to be scheduled as part of the bundle. We just get rid of the 6687 // existing schedule. 6688 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6689 << " was already scheduled\n"); 6690 ReSchedule = true; 6691 } 6692 assert(BundleMember->isSchedulingEntity() && 6693 "bundle member already part of other bundle"); 6694 if (PrevInBundle) { 6695 PrevInBundle->NextInBundle = BundleMember; 6696 } else { 6697 Bundle = BundleMember; 6698 } 6699 BundleMember->UnscheduledDepsInBundle = 0; 6700 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6701 6702 // Group the instructions to a bundle. 6703 BundleMember->FirstInBundle = Bundle; 6704 PrevInBundle = BundleMember; 6705 } 6706 assert(Bundle && "Failed to find schedule bundle"); 6707 TryScheduleBundle(ReSchedule, Bundle); 6708 if (!Bundle->isReady()) { 6709 cancelScheduling(VL, S.OpValue); 6710 return None; 6711 } 6712 return Bundle; 6713 } 6714 6715 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6716 Value *OpValue) { 6717 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6718 return; 6719 6720 ScheduleData *Bundle = getScheduleData(OpValue); 6721 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6722 assert(!Bundle->IsScheduled && 6723 "Can't cancel bundle which is already scheduled"); 6724 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6725 "tried to unbundle something which is not a bundle"); 6726 6727 // Un-bundle: make single instructions out of the bundle. 6728 ScheduleData *BundleMember = Bundle; 6729 while (BundleMember) { 6730 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6731 BundleMember->FirstInBundle = BundleMember; 6732 ScheduleData *Next = BundleMember->NextInBundle; 6733 BundleMember->NextInBundle = nullptr; 6734 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6735 if (BundleMember->UnscheduledDepsInBundle == 0) { 6736 ReadyInsts.insert(BundleMember); 6737 } 6738 BundleMember = Next; 6739 } 6740 } 6741 6742 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6743 // Allocate a new ScheduleData for the instruction. 6744 if (ChunkPos >= ChunkSize) { 6745 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6746 ChunkPos = 0; 6747 } 6748 return &(ScheduleDataChunks.back()[ChunkPos++]); 6749 } 6750 6751 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6752 const InstructionsState &S) { 6753 if (getScheduleData(V, isOneOf(S, V))) 6754 return true; 6755 Instruction *I = dyn_cast<Instruction>(V); 6756 assert(I && "bundle member must be an instruction"); 6757 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6758 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6759 "be scheduled"); 6760 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6761 ScheduleData *ISD = getScheduleData(I); 6762 if (!ISD) 6763 return false; 6764 assert(isInSchedulingRegion(ISD) && 6765 "ScheduleData not in scheduling region"); 6766 ScheduleData *SD = allocateScheduleDataChunks(); 6767 SD->Inst = I; 6768 SD->init(SchedulingRegionID, S.OpValue); 6769 ExtraScheduleDataMap[I][S.OpValue] = SD; 6770 return true; 6771 }; 6772 if (CheckSheduleForI(I)) 6773 return true; 6774 if (!ScheduleStart) { 6775 // It's the first instruction in the new region. 6776 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6777 ScheduleStart = I; 6778 ScheduleEnd = I->getNextNode(); 6779 if (isOneOf(S, I) != I) 6780 CheckSheduleForI(I); 6781 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6782 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6783 return true; 6784 } 6785 // Search up and down at the same time, because we don't know if the new 6786 // instruction is above or below the existing scheduling region. 6787 BasicBlock::reverse_iterator UpIter = 6788 ++ScheduleStart->getIterator().getReverse(); 6789 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6790 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6791 BasicBlock::iterator LowerEnd = BB->end(); 6792 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6793 &*DownIter != I) { 6794 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6795 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6796 return false; 6797 } 6798 6799 ++UpIter; 6800 ++DownIter; 6801 } 6802 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6803 assert(I->getParent() == ScheduleStart->getParent() && 6804 "Instruction is in wrong basic block."); 6805 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6806 ScheduleStart = I; 6807 if (isOneOf(S, I) != I) 6808 CheckSheduleForI(I); 6809 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6810 << "\n"); 6811 return true; 6812 } 6813 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6814 "Expected to reach top of the basic block or instruction down the " 6815 "lower end."); 6816 assert(I->getParent() == ScheduleEnd->getParent() && 6817 "Instruction is in wrong basic block."); 6818 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6819 nullptr); 6820 ScheduleEnd = I->getNextNode(); 6821 if (isOneOf(S, I) != I) 6822 CheckSheduleForI(I); 6823 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6824 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6825 return true; 6826 } 6827 6828 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6829 Instruction *ToI, 6830 ScheduleData *PrevLoadStore, 6831 ScheduleData *NextLoadStore) { 6832 ScheduleData *CurrentLoadStore = PrevLoadStore; 6833 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6834 ScheduleData *SD = ScheduleDataMap[I]; 6835 if (!SD) { 6836 SD = allocateScheduleDataChunks(); 6837 ScheduleDataMap[I] = SD; 6838 SD->Inst = I; 6839 } 6840 assert(!isInSchedulingRegion(SD) && 6841 "new ScheduleData already in scheduling region"); 6842 SD->init(SchedulingRegionID, I); 6843 6844 if (I->mayReadOrWriteMemory() && 6845 (!isa<IntrinsicInst>(I) || 6846 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6847 cast<IntrinsicInst>(I)->getIntrinsicID() != 6848 Intrinsic::pseudoprobe))) { 6849 // Update the linked list of memory accessing instructions. 6850 if (CurrentLoadStore) { 6851 CurrentLoadStore->NextLoadStore = SD; 6852 } else { 6853 FirstLoadStoreInRegion = SD; 6854 } 6855 CurrentLoadStore = SD; 6856 } 6857 } 6858 if (NextLoadStore) { 6859 if (CurrentLoadStore) 6860 CurrentLoadStore->NextLoadStore = NextLoadStore; 6861 } else { 6862 LastLoadStoreInRegion = CurrentLoadStore; 6863 } 6864 } 6865 6866 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6867 bool InsertInReadyList, 6868 BoUpSLP *SLP) { 6869 assert(SD->isSchedulingEntity()); 6870 6871 SmallVector<ScheduleData *, 10> WorkList; 6872 WorkList.push_back(SD); 6873 6874 while (!WorkList.empty()) { 6875 ScheduleData *SD = WorkList.pop_back_val(); 6876 6877 ScheduleData *BundleMember = SD; 6878 while (BundleMember) { 6879 assert(isInSchedulingRegion(BundleMember)); 6880 if (!BundleMember->hasValidDependencies()) { 6881 6882 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6883 << "\n"); 6884 BundleMember->Dependencies = 0; 6885 BundleMember->resetUnscheduledDeps(); 6886 6887 // Handle def-use chain dependencies. 6888 if (BundleMember->OpValue != BundleMember->Inst) { 6889 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6890 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6891 BundleMember->Dependencies++; 6892 ScheduleData *DestBundle = UseSD->FirstInBundle; 6893 if (!DestBundle->IsScheduled) 6894 BundleMember->incrementUnscheduledDeps(1); 6895 if (!DestBundle->hasValidDependencies()) 6896 WorkList.push_back(DestBundle); 6897 } 6898 } else { 6899 for (User *U : BundleMember->Inst->users()) { 6900 if (isa<Instruction>(U)) { 6901 ScheduleData *UseSD = getScheduleData(U); 6902 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6903 BundleMember->Dependencies++; 6904 ScheduleData *DestBundle = UseSD->FirstInBundle; 6905 if (!DestBundle->IsScheduled) 6906 BundleMember->incrementUnscheduledDeps(1); 6907 if (!DestBundle->hasValidDependencies()) 6908 WorkList.push_back(DestBundle); 6909 } 6910 } else { 6911 // I'm not sure if this can ever happen. But we need to be safe. 6912 // This lets the instruction/bundle never be scheduled and 6913 // eventually disable vectorization. 6914 BundleMember->Dependencies++; 6915 BundleMember->incrementUnscheduledDeps(1); 6916 } 6917 } 6918 } 6919 6920 // Handle the memory dependencies. 6921 ScheduleData *DepDest = BundleMember->NextLoadStore; 6922 if (DepDest) { 6923 Instruction *SrcInst = BundleMember->Inst; 6924 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6925 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6926 unsigned numAliased = 0; 6927 unsigned DistToSrc = 1; 6928 6929 while (DepDest) { 6930 assert(isInSchedulingRegion(DepDest)); 6931 6932 // We have two limits to reduce the complexity: 6933 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6934 // SLP->isAliased (which is the expensive part in this loop). 6935 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6936 // the whole loop (even if the loop is fast, it's quadratic). 6937 // It's important for the loop break condition (see below) to 6938 // check this limit even between two read-only instructions. 6939 if (DistToSrc >= MaxMemDepDistance || 6940 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6941 (numAliased >= AliasedCheckLimit || 6942 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6943 6944 // We increment the counter only if the locations are aliased 6945 // (instead of counting all alias checks). This gives a better 6946 // balance between reduced runtime and accurate dependencies. 6947 numAliased++; 6948 6949 DepDest->MemoryDependencies.push_back(BundleMember); 6950 BundleMember->Dependencies++; 6951 ScheduleData *DestBundle = DepDest->FirstInBundle; 6952 if (!DestBundle->IsScheduled) { 6953 BundleMember->incrementUnscheduledDeps(1); 6954 } 6955 if (!DestBundle->hasValidDependencies()) { 6956 WorkList.push_back(DestBundle); 6957 } 6958 } 6959 DepDest = DepDest->NextLoadStore; 6960 6961 // Example, explaining the loop break condition: Let's assume our 6962 // starting instruction is i0 and MaxMemDepDistance = 3. 6963 // 6964 // +--------v--v--v 6965 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6966 // +--------^--^--^ 6967 // 6968 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6969 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6970 // Previously we already added dependencies from i3 to i6,i7,i8 6971 // (because of MaxMemDepDistance). As we added a dependency from 6972 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6973 // and we can abort this loop at i6. 6974 if (DistToSrc >= 2 * MaxMemDepDistance) 6975 break; 6976 DistToSrc++; 6977 } 6978 } 6979 } 6980 BundleMember = BundleMember->NextInBundle; 6981 } 6982 if (InsertInReadyList && SD->isReady()) { 6983 ReadyInsts.push_back(SD); 6984 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6985 << "\n"); 6986 } 6987 } 6988 } 6989 6990 void BoUpSLP::BlockScheduling::resetSchedule() { 6991 assert(ScheduleStart && 6992 "tried to reset schedule on block which has not been scheduled"); 6993 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6994 doForAllOpcodes(I, [&](ScheduleData *SD) { 6995 assert(isInSchedulingRegion(SD) && 6996 "ScheduleData not in scheduling region"); 6997 SD->IsScheduled = false; 6998 SD->resetUnscheduledDeps(); 6999 }); 7000 } 7001 ReadyInsts.clear(); 7002 } 7003 7004 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7005 if (!BS->ScheduleStart) 7006 return; 7007 7008 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7009 7010 BS->resetSchedule(); 7011 7012 // For the real scheduling we use a more sophisticated ready-list: it is 7013 // sorted by the original instruction location. This lets the final schedule 7014 // be as close as possible to the original instruction order. 7015 struct ScheduleDataCompare { 7016 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7017 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7018 } 7019 }; 7020 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7021 7022 // Ensure that all dependency data is updated and fill the ready-list with 7023 // initial instructions. 7024 int Idx = 0; 7025 int NumToSchedule = 0; 7026 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7027 I = I->getNextNode()) { 7028 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7029 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7030 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7031 "scheduler and vectorizer bundle mismatch"); 7032 SD->FirstInBundle->SchedulingPriority = Idx++; 7033 if (SD->isSchedulingEntity()) { 7034 BS->calculateDependencies(SD, false, this); 7035 NumToSchedule++; 7036 } 7037 }); 7038 } 7039 BS->initialFillReadyList(ReadyInsts); 7040 7041 Instruction *LastScheduledInst = BS->ScheduleEnd; 7042 7043 // Do the "real" scheduling. 7044 while (!ReadyInsts.empty()) { 7045 ScheduleData *picked = *ReadyInsts.begin(); 7046 ReadyInsts.erase(ReadyInsts.begin()); 7047 7048 // Move the scheduled instruction(s) to their dedicated places, if not 7049 // there yet. 7050 ScheduleData *BundleMember = picked; 7051 while (BundleMember) { 7052 Instruction *pickedInst = BundleMember->Inst; 7053 if (pickedInst->getNextNode() != LastScheduledInst) { 7054 BS->BB->getInstList().remove(pickedInst); 7055 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7056 pickedInst); 7057 } 7058 LastScheduledInst = pickedInst; 7059 BundleMember = BundleMember->NextInBundle; 7060 } 7061 7062 BS->schedule(picked, ReadyInsts); 7063 NumToSchedule--; 7064 } 7065 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7066 7067 // Avoid duplicate scheduling of the block. 7068 BS->ScheduleStart = nullptr; 7069 } 7070 7071 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7072 // If V is a store, just return the width of the stored value (or value 7073 // truncated just before storing) without traversing the expression tree. 7074 // This is the common case. 7075 if (auto *Store = dyn_cast<StoreInst>(V)) { 7076 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7077 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7078 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7079 } 7080 7081 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7082 return getVectorElementSize(IEI->getOperand(1)); 7083 7084 auto E = InstrElementSize.find(V); 7085 if (E != InstrElementSize.end()) 7086 return E->second; 7087 7088 // If V is not a store, we can traverse the expression tree to find loads 7089 // that feed it. The type of the loaded value may indicate a more suitable 7090 // width than V's type. We want to base the vector element size on the width 7091 // of memory operations where possible. 7092 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7093 SmallPtrSet<Instruction *, 16> Visited; 7094 if (auto *I = dyn_cast<Instruction>(V)) { 7095 Worklist.emplace_back(I, I->getParent()); 7096 Visited.insert(I); 7097 } 7098 7099 // Traverse the expression tree in bottom-up order looking for loads. If we 7100 // encounter an instruction we don't yet handle, we give up. 7101 auto Width = 0u; 7102 while (!Worklist.empty()) { 7103 Instruction *I; 7104 BasicBlock *Parent; 7105 std::tie(I, Parent) = Worklist.pop_back_val(); 7106 7107 // We should only be looking at scalar instructions here. If the current 7108 // instruction has a vector type, skip. 7109 auto *Ty = I->getType(); 7110 if (isa<VectorType>(Ty)) 7111 continue; 7112 7113 // If the current instruction is a load, update MaxWidth to reflect the 7114 // width of the loaded value. 7115 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7116 isa<ExtractValueInst>(I)) 7117 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7118 7119 // Otherwise, we need to visit the operands of the instruction. We only 7120 // handle the interesting cases from buildTree here. If an operand is an 7121 // instruction we haven't yet visited and from the same basic block as the 7122 // user or the use is a PHI node, we add it to the worklist. 7123 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7124 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7125 isa<UnaryOperator>(I)) { 7126 for (Use &U : I->operands()) 7127 if (auto *J = dyn_cast<Instruction>(U.get())) 7128 if (Visited.insert(J).second && 7129 (isa<PHINode>(I) || J->getParent() == Parent)) 7130 Worklist.emplace_back(J, J->getParent()); 7131 } else { 7132 break; 7133 } 7134 } 7135 7136 // If we didn't encounter a memory access in the expression tree, or if we 7137 // gave up for some reason, just return the width of V. Otherwise, return the 7138 // maximum width we found. 7139 if (!Width) { 7140 if (auto *CI = dyn_cast<CmpInst>(V)) 7141 V = CI->getOperand(0); 7142 Width = DL->getTypeSizeInBits(V->getType()); 7143 } 7144 7145 for (Instruction *I : Visited) 7146 InstrElementSize[I] = Width; 7147 7148 return Width; 7149 } 7150 7151 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7152 // smaller type with a truncation. We collect the values that will be demoted 7153 // in ToDemote and additional roots that require investigating in Roots. 7154 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7155 SmallVectorImpl<Value *> &ToDemote, 7156 SmallVectorImpl<Value *> &Roots) { 7157 // We can always demote constants. 7158 if (isa<Constant>(V)) { 7159 ToDemote.push_back(V); 7160 return true; 7161 } 7162 7163 // If the value is not an instruction in the expression with only one use, it 7164 // cannot be demoted. 7165 auto *I = dyn_cast<Instruction>(V); 7166 if (!I || !I->hasOneUse() || !Expr.count(I)) 7167 return false; 7168 7169 switch (I->getOpcode()) { 7170 7171 // We can always demote truncations and extensions. Since truncations can 7172 // seed additional demotion, we save the truncated value. 7173 case Instruction::Trunc: 7174 Roots.push_back(I->getOperand(0)); 7175 break; 7176 case Instruction::ZExt: 7177 case Instruction::SExt: 7178 if (isa<ExtractElementInst>(I->getOperand(0)) || 7179 isa<InsertElementInst>(I->getOperand(0))) 7180 return false; 7181 break; 7182 7183 // We can demote certain binary operations if we can demote both of their 7184 // operands. 7185 case Instruction::Add: 7186 case Instruction::Sub: 7187 case Instruction::Mul: 7188 case Instruction::And: 7189 case Instruction::Or: 7190 case Instruction::Xor: 7191 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7192 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7193 return false; 7194 break; 7195 7196 // We can demote selects if we can demote their true and false values. 7197 case Instruction::Select: { 7198 SelectInst *SI = cast<SelectInst>(I); 7199 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7200 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7201 return false; 7202 break; 7203 } 7204 7205 // We can demote phis if we can demote all their incoming operands. Note that 7206 // we don't need to worry about cycles since we ensure single use above. 7207 case Instruction::PHI: { 7208 PHINode *PN = cast<PHINode>(I); 7209 for (Value *IncValue : PN->incoming_values()) 7210 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7211 return false; 7212 break; 7213 } 7214 7215 // Otherwise, conservatively give up. 7216 default: 7217 return false; 7218 } 7219 7220 // Record the value that we can demote. 7221 ToDemote.push_back(V); 7222 return true; 7223 } 7224 7225 void BoUpSLP::computeMinimumValueSizes() { 7226 // If there are no external uses, the expression tree must be rooted by a 7227 // store. We can't demote in-memory values, so there is nothing to do here. 7228 if (ExternalUses.empty()) 7229 return; 7230 7231 // We only attempt to truncate integer expressions. 7232 auto &TreeRoot = VectorizableTree[0]->Scalars; 7233 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7234 if (!TreeRootIT) 7235 return; 7236 7237 // If the expression is not rooted by a store, these roots should have 7238 // external uses. We will rely on InstCombine to rewrite the expression in 7239 // the narrower type. However, InstCombine only rewrites single-use values. 7240 // This means that if a tree entry other than a root is used externally, it 7241 // must have multiple uses and InstCombine will not rewrite it. The code 7242 // below ensures that only the roots are used externally. 7243 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7244 for (auto &EU : ExternalUses) 7245 if (!Expr.erase(EU.Scalar)) 7246 return; 7247 if (!Expr.empty()) 7248 return; 7249 7250 // Collect the scalar values of the vectorizable expression. We will use this 7251 // context to determine which values can be demoted. If we see a truncation, 7252 // we mark it as seeding another demotion. 7253 for (auto &EntryPtr : VectorizableTree) 7254 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7255 7256 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7257 // have a single external user that is not in the vectorizable tree. 7258 for (auto *Root : TreeRoot) 7259 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7260 return; 7261 7262 // Conservatively determine if we can actually truncate the roots of the 7263 // expression. Collect the values that can be demoted in ToDemote and 7264 // additional roots that require investigating in Roots. 7265 SmallVector<Value *, 32> ToDemote; 7266 SmallVector<Value *, 4> Roots; 7267 for (auto *Root : TreeRoot) 7268 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7269 return; 7270 7271 // The maximum bit width required to represent all the values that can be 7272 // demoted without loss of precision. It would be safe to truncate the roots 7273 // of the expression to this width. 7274 auto MaxBitWidth = 8u; 7275 7276 // We first check if all the bits of the roots are demanded. If they're not, 7277 // we can truncate the roots to this narrower type. 7278 for (auto *Root : TreeRoot) { 7279 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7280 MaxBitWidth = std::max<unsigned>( 7281 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7282 } 7283 7284 // True if the roots can be zero-extended back to their original type, rather 7285 // than sign-extended. We know that if the leading bits are not demanded, we 7286 // can safely zero-extend. So we initialize IsKnownPositive to True. 7287 bool IsKnownPositive = true; 7288 7289 // If all the bits of the roots are demanded, we can try a little harder to 7290 // compute a narrower type. This can happen, for example, if the roots are 7291 // getelementptr indices. InstCombine promotes these indices to the pointer 7292 // width. Thus, all their bits are technically demanded even though the 7293 // address computation might be vectorized in a smaller type. 7294 // 7295 // We start by looking at each entry that can be demoted. We compute the 7296 // maximum bit width required to store the scalar by using ValueTracking to 7297 // compute the number of high-order bits we can truncate. 7298 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7299 llvm::all_of(TreeRoot, [](Value *R) { 7300 assert(R->hasOneUse() && "Root should have only one use!"); 7301 return isa<GetElementPtrInst>(R->user_back()); 7302 })) { 7303 MaxBitWidth = 8u; 7304 7305 // Determine if the sign bit of all the roots is known to be zero. If not, 7306 // IsKnownPositive is set to False. 7307 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7308 KnownBits Known = computeKnownBits(R, *DL); 7309 return Known.isNonNegative(); 7310 }); 7311 7312 // Determine the maximum number of bits required to store the scalar 7313 // values. 7314 for (auto *Scalar : ToDemote) { 7315 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7316 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7317 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7318 } 7319 7320 // If we can't prove that the sign bit is zero, we must add one to the 7321 // maximum bit width to account for the unknown sign bit. This preserves 7322 // the existing sign bit so we can safely sign-extend the root back to the 7323 // original type. Otherwise, if we know the sign bit is zero, we will 7324 // zero-extend the root instead. 7325 // 7326 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7327 // one to the maximum bit width will yield a larger-than-necessary 7328 // type. In general, we need to add an extra bit only if we can't 7329 // prove that the upper bit of the original type is equal to the 7330 // upper bit of the proposed smaller type. If these two bits are the 7331 // same (either zero or one) we know that sign-extending from the 7332 // smaller type will result in the same value. Here, since we can't 7333 // yet prove this, we are just making the proposed smaller type 7334 // larger to ensure correctness. 7335 if (!IsKnownPositive) 7336 ++MaxBitWidth; 7337 } 7338 7339 // Round MaxBitWidth up to the next power-of-two. 7340 if (!isPowerOf2_64(MaxBitWidth)) 7341 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7342 7343 // If the maximum bit width we compute is less than the with of the roots' 7344 // type, we can proceed with the narrowing. Otherwise, do nothing. 7345 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7346 return; 7347 7348 // If we can truncate the root, we must collect additional values that might 7349 // be demoted as a result. That is, those seeded by truncations we will 7350 // modify. 7351 while (!Roots.empty()) 7352 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7353 7354 // Finally, map the values we can demote to the maximum bit with we computed. 7355 for (auto *Scalar : ToDemote) 7356 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7357 } 7358 7359 namespace { 7360 7361 /// The SLPVectorizer Pass. 7362 struct SLPVectorizer : public FunctionPass { 7363 SLPVectorizerPass Impl; 7364 7365 /// Pass identification, replacement for typeid 7366 static char ID; 7367 7368 explicit SLPVectorizer() : FunctionPass(ID) { 7369 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7370 } 7371 7372 bool doInitialization(Module &M) override { 7373 return false; 7374 } 7375 7376 bool runOnFunction(Function &F) override { 7377 if (skipFunction(F)) 7378 return false; 7379 7380 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7381 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7382 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7383 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7384 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7385 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7386 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7387 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7388 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7389 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7390 7391 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7392 } 7393 7394 void getAnalysisUsage(AnalysisUsage &AU) const override { 7395 FunctionPass::getAnalysisUsage(AU); 7396 AU.addRequired<AssumptionCacheTracker>(); 7397 AU.addRequired<ScalarEvolutionWrapperPass>(); 7398 AU.addRequired<AAResultsWrapperPass>(); 7399 AU.addRequired<TargetTransformInfoWrapperPass>(); 7400 AU.addRequired<LoopInfoWrapperPass>(); 7401 AU.addRequired<DominatorTreeWrapperPass>(); 7402 AU.addRequired<DemandedBitsWrapperPass>(); 7403 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7404 AU.addRequired<InjectTLIMappingsLegacy>(); 7405 AU.addPreserved<LoopInfoWrapperPass>(); 7406 AU.addPreserved<DominatorTreeWrapperPass>(); 7407 AU.addPreserved<AAResultsWrapperPass>(); 7408 AU.addPreserved<GlobalsAAWrapperPass>(); 7409 AU.setPreservesCFG(); 7410 } 7411 }; 7412 7413 } // end anonymous namespace 7414 7415 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7416 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7417 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7418 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7419 auto *AA = &AM.getResult<AAManager>(F); 7420 auto *LI = &AM.getResult<LoopAnalysis>(F); 7421 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7422 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7423 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7424 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7425 7426 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7427 if (!Changed) 7428 return PreservedAnalyses::all(); 7429 7430 PreservedAnalyses PA; 7431 PA.preserveSet<CFGAnalyses>(); 7432 return PA; 7433 } 7434 7435 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7436 TargetTransformInfo *TTI_, 7437 TargetLibraryInfo *TLI_, AAResults *AA_, 7438 LoopInfo *LI_, DominatorTree *DT_, 7439 AssumptionCache *AC_, DemandedBits *DB_, 7440 OptimizationRemarkEmitter *ORE_) { 7441 if (!RunSLPVectorization) 7442 return false; 7443 SE = SE_; 7444 TTI = TTI_; 7445 TLI = TLI_; 7446 AA = AA_; 7447 LI = LI_; 7448 DT = DT_; 7449 AC = AC_; 7450 DB = DB_; 7451 DL = &F.getParent()->getDataLayout(); 7452 7453 Stores.clear(); 7454 GEPs.clear(); 7455 bool Changed = false; 7456 7457 // If the target claims to have no vector registers don't attempt 7458 // vectorization. 7459 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7460 return false; 7461 7462 // Don't vectorize when the attribute NoImplicitFloat is used. 7463 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7464 return false; 7465 7466 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7467 7468 // Use the bottom up slp vectorizer to construct chains that start with 7469 // store instructions. 7470 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7471 7472 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7473 // delete instructions. 7474 7475 // Update DFS numbers now so that we can use them for ordering. 7476 DT->updateDFSNumbers(); 7477 7478 // Scan the blocks in the function in post order. 7479 for (auto BB : post_order(&F.getEntryBlock())) { 7480 collectSeedInstructions(BB); 7481 7482 // Vectorize trees that end at stores. 7483 if (!Stores.empty()) { 7484 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7485 << " underlying objects.\n"); 7486 Changed |= vectorizeStoreChains(R); 7487 } 7488 7489 // Vectorize trees that end at reductions. 7490 Changed |= vectorizeChainsInBlock(BB, R); 7491 7492 // Vectorize the index computations of getelementptr instructions. This 7493 // is primarily intended to catch gather-like idioms ending at 7494 // non-consecutive loads. 7495 if (!GEPs.empty()) { 7496 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7497 << " underlying objects.\n"); 7498 Changed |= vectorizeGEPIndices(BB, R); 7499 } 7500 } 7501 7502 if (Changed) { 7503 R.optimizeGatherSequence(); 7504 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7505 } 7506 return Changed; 7507 } 7508 7509 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7510 unsigned Idx) { 7511 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7512 << "\n"); 7513 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7514 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7515 unsigned VF = Chain.size(); 7516 7517 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7518 return false; 7519 7520 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7521 << "\n"); 7522 7523 R.buildTree(Chain); 7524 if (R.isTreeTinyAndNotFullyVectorizable()) 7525 return false; 7526 if (R.isLoadCombineCandidate()) 7527 return false; 7528 R.reorderTopToBottom(); 7529 R.reorderBottomToTop(); 7530 R.buildExternalUses(); 7531 7532 R.computeMinimumValueSizes(); 7533 7534 InstructionCost Cost = R.getTreeCost(); 7535 7536 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7537 if (Cost < -SLPCostThreshold) { 7538 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7539 7540 using namespace ore; 7541 7542 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7543 cast<StoreInst>(Chain[0])) 7544 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7545 << " and with tree size " 7546 << NV("TreeSize", R.getTreeSize())); 7547 7548 R.vectorizeTree(); 7549 return true; 7550 } 7551 7552 return false; 7553 } 7554 7555 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7556 BoUpSLP &R) { 7557 // We may run into multiple chains that merge into a single chain. We mark the 7558 // stores that we vectorized so that we don't visit the same store twice. 7559 BoUpSLP::ValueSet VectorizedStores; 7560 bool Changed = false; 7561 7562 int E = Stores.size(); 7563 SmallBitVector Tails(E, false); 7564 int MaxIter = MaxStoreLookup.getValue(); 7565 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7566 E, std::make_pair(E, INT_MAX)); 7567 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7568 int IterCnt; 7569 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7570 &CheckedPairs, 7571 &ConsecutiveChain](int K, int Idx) { 7572 if (IterCnt >= MaxIter) 7573 return true; 7574 if (CheckedPairs[Idx].test(K)) 7575 return ConsecutiveChain[K].second == 1 && 7576 ConsecutiveChain[K].first == Idx; 7577 ++IterCnt; 7578 CheckedPairs[Idx].set(K); 7579 CheckedPairs[K].set(Idx); 7580 Optional<int> Diff = getPointersDiff( 7581 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7582 Stores[Idx]->getValueOperand()->getType(), 7583 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7584 if (!Diff || *Diff == 0) 7585 return false; 7586 int Val = *Diff; 7587 if (Val < 0) { 7588 if (ConsecutiveChain[Idx].second > -Val) { 7589 Tails.set(K); 7590 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7591 } 7592 return false; 7593 } 7594 if (ConsecutiveChain[K].second <= Val) 7595 return false; 7596 7597 Tails.set(Idx); 7598 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7599 return Val == 1; 7600 }; 7601 // Do a quadratic search on all of the given stores in reverse order and find 7602 // all of the pairs of stores that follow each other. 7603 for (int Idx = E - 1; Idx >= 0; --Idx) { 7604 // If a store has multiple consecutive store candidates, search according 7605 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7606 // This is because usually pairing with immediate succeeding or preceding 7607 // candidate create the best chance to find slp vectorization opportunity. 7608 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7609 IterCnt = 0; 7610 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7611 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7612 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7613 break; 7614 } 7615 7616 // Tracks if we tried to vectorize stores starting from the given tail 7617 // already. 7618 SmallBitVector TriedTails(E, false); 7619 // For stores that start but don't end a link in the chain: 7620 for (int Cnt = E; Cnt > 0; --Cnt) { 7621 int I = Cnt - 1; 7622 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7623 continue; 7624 // We found a store instr that starts a chain. Now follow the chain and try 7625 // to vectorize it. 7626 BoUpSLP::ValueList Operands; 7627 // Collect the chain into a list. 7628 while (I != E && !VectorizedStores.count(Stores[I])) { 7629 Operands.push_back(Stores[I]); 7630 Tails.set(I); 7631 if (ConsecutiveChain[I].second != 1) { 7632 // Mark the new end in the chain and go back, if required. It might be 7633 // required if the original stores come in reversed order, for example. 7634 if (ConsecutiveChain[I].first != E && 7635 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7636 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7637 TriedTails.set(I); 7638 Tails.reset(ConsecutiveChain[I].first); 7639 if (Cnt < ConsecutiveChain[I].first + 2) 7640 Cnt = ConsecutiveChain[I].first + 2; 7641 } 7642 break; 7643 } 7644 // Move to the next value in the chain. 7645 I = ConsecutiveChain[I].first; 7646 } 7647 assert(!Operands.empty() && "Expected non-empty list of stores."); 7648 7649 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7650 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7651 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7652 7653 unsigned MinVF = R.getMinVF(EltSize); 7654 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7655 MaxElts); 7656 7657 // FIXME: Is division-by-2 the correct step? Should we assert that the 7658 // register size is a power-of-2? 7659 unsigned StartIdx = 0; 7660 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7661 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7662 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7663 if (!VectorizedStores.count(Slice.front()) && 7664 !VectorizedStores.count(Slice.back()) && 7665 vectorizeStoreChain(Slice, R, Cnt)) { 7666 // Mark the vectorized stores so that we don't vectorize them again. 7667 VectorizedStores.insert(Slice.begin(), Slice.end()); 7668 Changed = true; 7669 // If we vectorized initial block, no need to try to vectorize it 7670 // again. 7671 if (Cnt == StartIdx) 7672 StartIdx += Size; 7673 Cnt += Size; 7674 continue; 7675 } 7676 ++Cnt; 7677 } 7678 // Check if the whole array was vectorized already - exit. 7679 if (StartIdx >= Operands.size()) 7680 break; 7681 } 7682 } 7683 7684 return Changed; 7685 } 7686 7687 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7688 // Initialize the collections. We will make a single pass over the block. 7689 Stores.clear(); 7690 GEPs.clear(); 7691 7692 // Visit the store and getelementptr instructions in BB and organize them in 7693 // Stores and GEPs according to the underlying objects of their pointer 7694 // operands. 7695 for (Instruction &I : *BB) { 7696 // Ignore store instructions that are volatile or have a pointer operand 7697 // that doesn't point to a scalar type. 7698 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7699 if (!SI->isSimple()) 7700 continue; 7701 if (!isValidElementType(SI->getValueOperand()->getType())) 7702 continue; 7703 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7704 } 7705 7706 // Ignore getelementptr instructions that have more than one index, a 7707 // constant index, or a pointer operand that doesn't point to a scalar 7708 // type. 7709 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7710 auto Idx = GEP->idx_begin()->get(); 7711 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7712 continue; 7713 if (!isValidElementType(Idx->getType())) 7714 continue; 7715 if (GEP->getType()->isVectorTy()) 7716 continue; 7717 GEPs[GEP->getPointerOperand()].push_back(GEP); 7718 } 7719 } 7720 } 7721 7722 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7723 if (!A || !B) 7724 return false; 7725 Value *VL[] = {A, B}; 7726 return tryToVectorizeList(VL, R); 7727 } 7728 7729 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7730 bool LimitForRegisterSize) { 7731 if (VL.size() < 2) 7732 return false; 7733 7734 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7735 << VL.size() << ".\n"); 7736 7737 // Check that all of the parts are instructions of the same type, 7738 // we permit an alternate opcode via InstructionsState. 7739 InstructionsState S = getSameOpcode(VL); 7740 if (!S.getOpcode()) 7741 return false; 7742 7743 Instruction *I0 = cast<Instruction>(S.OpValue); 7744 // Make sure invalid types (including vector type) are rejected before 7745 // determining vectorization factor for scalar instructions. 7746 for (Value *V : VL) { 7747 Type *Ty = V->getType(); 7748 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7749 // NOTE: the following will give user internal llvm type name, which may 7750 // not be useful. 7751 R.getORE()->emit([&]() { 7752 std::string type_str; 7753 llvm::raw_string_ostream rso(type_str); 7754 Ty->print(rso); 7755 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7756 << "Cannot SLP vectorize list: type " 7757 << rso.str() + " is unsupported by vectorizer"; 7758 }); 7759 return false; 7760 } 7761 } 7762 7763 unsigned Sz = R.getVectorElementSize(I0); 7764 unsigned MinVF = R.getMinVF(Sz); 7765 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7766 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7767 if (MaxVF < 2) { 7768 R.getORE()->emit([&]() { 7769 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7770 << "Cannot SLP vectorize list: vectorization factor " 7771 << "less than 2 is not supported"; 7772 }); 7773 return false; 7774 } 7775 7776 bool Changed = false; 7777 bool CandidateFound = false; 7778 InstructionCost MinCost = SLPCostThreshold.getValue(); 7779 Type *ScalarTy = VL[0]->getType(); 7780 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7781 ScalarTy = IE->getOperand(1)->getType(); 7782 7783 unsigned NextInst = 0, MaxInst = VL.size(); 7784 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7785 // No actual vectorization should happen, if number of parts is the same as 7786 // provided vectorization factor (i.e. the scalar type is used for vector 7787 // code during codegen). 7788 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7789 if (TTI->getNumberOfParts(VecTy) == VF) 7790 continue; 7791 for (unsigned I = NextInst; I < MaxInst; ++I) { 7792 unsigned OpsWidth = 0; 7793 7794 if (I + VF > MaxInst) 7795 OpsWidth = MaxInst - I; 7796 else 7797 OpsWidth = VF; 7798 7799 if (!isPowerOf2_32(OpsWidth)) 7800 continue; 7801 7802 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 7803 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7804 break; 7805 7806 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7807 // Check that a previous iteration of this loop did not delete the Value. 7808 if (llvm::any_of(Ops, [&R](Value *V) { 7809 auto *I = dyn_cast<Instruction>(V); 7810 return I && R.isDeleted(I); 7811 })) 7812 continue; 7813 7814 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7815 << "\n"); 7816 7817 R.buildTree(Ops); 7818 if (R.isTreeTinyAndNotFullyVectorizable()) 7819 continue; 7820 R.reorderTopToBottom(); 7821 R.reorderBottomToTop(); 7822 R.buildExternalUses(); 7823 7824 R.computeMinimumValueSizes(); 7825 InstructionCost Cost = R.getTreeCost(); 7826 CandidateFound = true; 7827 MinCost = std::min(MinCost, Cost); 7828 7829 if (Cost < -SLPCostThreshold) { 7830 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7831 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7832 cast<Instruction>(Ops[0])) 7833 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7834 << " and with tree size " 7835 << ore::NV("TreeSize", R.getTreeSize())); 7836 7837 R.vectorizeTree(); 7838 // Move to the next bundle. 7839 I += VF - 1; 7840 NextInst = I + 1; 7841 Changed = true; 7842 } 7843 } 7844 } 7845 7846 if (!Changed && CandidateFound) { 7847 R.getORE()->emit([&]() { 7848 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7849 << "List vectorization was possible but not beneficial with cost " 7850 << ore::NV("Cost", MinCost) << " >= " 7851 << ore::NV("Treshold", -SLPCostThreshold); 7852 }); 7853 } else if (!Changed) { 7854 R.getORE()->emit([&]() { 7855 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7856 << "Cannot SLP vectorize list: vectorization was impossible" 7857 << " with available vectorization factors"; 7858 }); 7859 } 7860 return Changed; 7861 } 7862 7863 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7864 if (!I) 7865 return false; 7866 7867 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7868 return false; 7869 7870 Value *P = I->getParent(); 7871 7872 // Vectorize in current basic block only. 7873 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7874 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7875 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7876 return false; 7877 7878 // Try to vectorize V. 7879 if (tryToVectorizePair(Op0, Op1, R)) 7880 return true; 7881 7882 auto *A = dyn_cast<BinaryOperator>(Op0); 7883 auto *B = dyn_cast<BinaryOperator>(Op1); 7884 // Try to skip B. 7885 if (B && B->hasOneUse()) { 7886 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7887 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7888 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7889 return true; 7890 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7891 return true; 7892 } 7893 7894 // Try to skip A. 7895 if (A && A->hasOneUse()) { 7896 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7897 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7898 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7899 return true; 7900 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7901 return true; 7902 } 7903 return false; 7904 } 7905 7906 namespace { 7907 7908 /// Model horizontal reductions. 7909 /// 7910 /// A horizontal reduction is a tree of reduction instructions that has values 7911 /// that can be put into a vector as its leaves. For example: 7912 /// 7913 /// mul mul mul mul 7914 /// \ / \ / 7915 /// + + 7916 /// \ / 7917 /// + 7918 /// This tree has "mul" as its leaf values and "+" as its reduction 7919 /// instructions. A reduction can feed into a store or a binary operation 7920 /// feeding a phi. 7921 /// ... 7922 /// \ / 7923 /// + 7924 /// | 7925 /// phi += 7926 /// 7927 /// Or: 7928 /// ... 7929 /// \ / 7930 /// + 7931 /// | 7932 /// *p = 7933 /// 7934 class HorizontalReduction { 7935 using ReductionOpsType = SmallVector<Value *, 16>; 7936 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7937 ReductionOpsListType ReductionOps; 7938 SmallVector<Value *, 32> ReducedVals; 7939 // Use map vector to make stable output. 7940 MapVector<Instruction *, Value *> ExtraArgs; 7941 WeakTrackingVH ReductionRoot; 7942 /// The type of reduction operation. 7943 RecurKind RdxKind; 7944 7945 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 7946 7947 static bool isCmpSelMinMax(Instruction *I) { 7948 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 7949 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 7950 } 7951 7952 // And/or are potentially poison-safe logical patterns like: 7953 // select x, y, false 7954 // select x, true, y 7955 static bool isBoolLogicOp(Instruction *I) { 7956 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 7957 match(I, m_LogicalOr(m_Value(), m_Value())); 7958 } 7959 7960 /// Checks if instruction is associative and can be vectorized. 7961 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7962 if (Kind == RecurKind::None) 7963 return false; 7964 7965 // Integer ops that map to select instructions or intrinsics are fine. 7966 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 7967 isBoolLogicOp(I)) 7968 return true; 7969 7970 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7971 // FP min/max are associative except for NaN and -0.0. We do not 7972 // have to rule out -0.0 here because the intrinsic semantics do not 7973 // specify a fixed result for it. 7974 return I->getFastMathFlags().noNaNs(); 7975 } 7976 7977 return I->isAssociative(); 7978 } 7979 7980 static Value *getRdxOperand(Instruction *I, unsigned Index) { 7981 // Poison-safe 'or' takes the form: select X, true, Y 7982 // To make that work with the normal operand processing, we skip the 7983 // true value operand. 7984 // TODO: Change the code and data structures to handle this without a hack. 7985 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 7986 return I->getOperand(2); 7987 return I->getOperand(Index); 7988 } 7989 7990 /// Checks if the ParentStackElem.first should be marked as a reduction 7991 /// operation with an extra argument or as extra argument itself. 7992 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7993 Value *ExtraArg) { 7994 if (ExtraArgs.count(ParentStackElem.first)) { 7995 ExtraArgs[ParentStackElem.first] = nullptr; 7996 // We ran into something like: 7997 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7998 // The whole ParentStackElem.first should be considered as an extra value 7999 // in this case. 8000 // Do not perform analysis of remaining operands of ParentStackElem.first 8001 // instruction, this whole instruction is an extra argument. 8002 ParentStackElem.second = INVALID_OPERAND_INDEX; 8003 } else { 8004 // We ran into something like: 8005 // ParentStackElem.first += ... + ExtraArg + ... 8006 ExtraArgs[ParentStackElem.first] = ExtraArg; 8007 } 8008 } 8009 8010 /// Creates reduction operation with the current opcode. 8011 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8012 Value *RHS, const Twine &Name, bool UseSelect) { 8013 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8014 switch (Kind) { 8015 case RecurKind::Add: 8016 case RecurKind::Mul: 8017 case RecurKind::Or: 8018 case RecurKind::And: 8019 case RecurKind::Xor: 8020 case RecurKind::FAdd: 8021 case RecurKind::FMul: 8022 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8023 Name); 8024 case RecurKind::FMax: 8025 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8026 case RecurKind::FMin: 8027 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8028 case RecurKind::SMax: 8029 if (UseSelect) { 8030 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8031 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8032 } 8033 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8034 case RecurKind::SMin: 8035 if (UseSelect) { 8036 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8037 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8038 } 8039 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8040 case RecurKind::UMax: 8041 if (UseSelect) { 8042 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8043 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8044 } 8045 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8046 case RecurKind::UMin: 8047 if (UseSelect) { 8048 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8049 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8050 } 8051 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8052 default: 8053 llvm_unreachable("Unknown reduction operation."); 8054 } 8055 } 8056 8057 /// Creates reduction operation with the current opcode with the IR flags 8058 /// from \p ReductionOps. 8059 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8060 Value *RHS, const Twine &Name, 8061 const ReductionOpsListType &ReductionOps) { 8062 bool UseSelect = ReductionOps.size() == 2; 8063 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 8064 "Expected cmp + select pairs for reduction"); 8065 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8066 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8067 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8068 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8069 propagateIRFlags(Op, ReductionOps[1]); 8070 return Op; 8071 } 8072 } 8073 propagateIRFlags(Op, ReductionOps[0]); 8074 return Op; 8075 } 8076 8077 /// Creates reduction operation with the current opcode with the IR flags 8078 /// from \p I. 8079 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8080 Value *RHS, const Twine &Name, Instruction *I) { 8081 auto *SelI = dyn_cast<SelectInst>(I); 8082 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8083 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8084 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8085 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8086 } 8087 propagateIRFlags(Op, I); 8088 return Op; 8089 } 8090 8091 static RecurKind getRdxKind(Instruction *I) { 8092 assert(I && "Expected instruction for reduction matching"); 8093 TargetTransformInfo::ReductionFlags RdxFlags; 8094 if (match(I, m_Add(m_Value(), m_Value()))) 8095 return RecurKind::Add; 8096 if (match(I, m_Mul(m_Value(), m_Value()))) 8097 return RecurKind::Mul; 8098 if (match(I, m_And(m_Value(), m_Value())) || 8099 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8100 return RecurKind::And; 8101 if (match(I, m_Or(m_Value(), m_Value())) || 8102 match(I, m_LogicalOr(m_Value(), m_Value()))) 8103 return RecurKind::Or; 8104 if (match(I, m_Xor(m_Value(), m_Value()))) 8105 return RecurKind::Xor; 8106 if (match(I, m_FAdd(m_Value(), m_Value()))) 8107 return RecurKind::FAdd; 8108 if (match(I, m_FMul(m_Value(), m_Value()))) 8109 return RecurKind::FMul; 8110 8111 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8112 return RecurKind::FMax; 8113 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8114 return RecurKind::FMin; 8115 8116 // This matches either cmp+select or intrinsics. SLP is expected to handle 8117 // either form. 8118 // TODO: If we are canonicalizing to intrinsics, we can remove several 8119 // special-case paths that deal with selects. 8120 if (match(I, m_SMax(m_Value(), m_Value()))) 8121 return RecurKind::SMax; 8122 if (match(I, m_SMin(m_Value(), m_Value()))) 8123 return RecurKind::SMin; 8124 if (match(I, m_UMax(m_Value(), m_Value()))) 8125 return RecurKind::UMax; 8126 if (match(I, m_UMin(m_Value(), m_Value()))) 8127 return RecurKind::UMin; 8128 8129 if (auto *Select = dyn_cast<SelectInst>(I)) { 8130 // Try harder: look for min/max pattern based on instructions producing 8131 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8132 // During the intermediate stages of SLP, it's very common to have 8133 // pattern like this (since optimizeGatherSequence is run only once 8134 // at the end): 8135 // %1 = extractelement <2 x i32> %a, i32 0 8136 // %2 = extractelement <2 x i32> %a, i32 1 8137 // %cond = icmp sgt i32 %1, %2 8138 // %3 = extractelement <2 x i32> %a, i32 0 8139 // %4 = extractelement <2 x i32> %a, i32 1 8140 // %select = select i1 %cond, i32 %3, i32 %4 8141 CmpInst::Predicate Pred; 8142 Instruction *L1; 8143 Instruction *L2; 8144 8145 Value *LHS = Select->getTrueValue(); 8146 Value *RHS = Select->getFalseValue(); 8147 Value *Cond = Select->getCondition(); 8148 8149 // TODO: Support inverse predicates. 8150 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8151 if (!isa<ExtractElementInst>(RHS) || 8152 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8153 return RecurKind::None; 8154 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8155 if (!isa<ExtractElementInst>(LHS) || 8156 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8157 return RecurKind::None; 8158 } else { 8159 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8160 return RecurKind::None; 8161 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8162 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8163 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8164 return RecurKind::None; 8165 } 8166 8167 TargetTransformInfo::ReductionFlags RdxFlags; 8168 switch (Pred) { 8169 default: 8170 return RecurKind::None; 8171 case CmpInst::ICMP_SGT: 8172 case CmpInst::ICMP_SGE: 8173 return RecurKind::SMax; 8174 case CmpInst::ICMP_SLT: 8175 case CmpInst::ICMP_SLE: 8176 return RecurKind::SMin; 8177 case CmpInst::ICMP_UGT: 8178 case CmpInst::ICMP_UGE: 8179 return RecurKind::UMax; 8180 case CmpInst::ICMP_ULT: 8181 case CmpInst::ICMP_ULE: 8182 return RecurKind::UMin; 8183 } 8184 } 8185 return RecurKind::None; 8186 } 8187 8188 /// Get the index of the first operand. 8189 static unsigned getFirstOperandIndex(Instruction *I) { 8190 return isCmpSelMinMax(I) ? 1 : 0; 8191 } 8192 8193 /// Total number of operands in the reduction operation. 8194 static unsigned getNumberOfOperands(Instruction *I) { 8195 return isCmpSelMinMax(I) ? 3 : 2; 8196 } 8197 8198 /// Checks if the instruction is in basic block \p BB. 8199 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8200 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8201 if (isCmpSelMinMax(I)) { 8202 auto *Sel = cast<SelectInst>(I); 8203 auto *Cmp = cast<Instruction>(Sel->getCondition()); 8204 return Sel->getParent() == BB && Cmp->getParent() == BB; 8205 } 8206 return I->getParent() == BB; 8207 } 8208 8209 /// Expected number of uses for reduction operations/reduced values. 8210 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8211 if (IsCmpSelMinMax) { 8212 // SelectInst must be used twice while the condition op must have single 8213 // use only. 8214 if (auto *Sel = dyn_cast<SelectInst>(I)) 8215 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8216 return I->hasNUses(2); 8217 } 8218 8219 // Arithmetic reduction operation must be used once only. 8220 return I->hasOneUse(); 8221 } 8222 8223 /// Initializes the list of reduction operations. 8224 void initReductionOps(Instruction *I) { 8225 if (isCmpSelMinMax(I)) 8226 ReductionOps.assign(2, ReductionOpsType()); 8227 else 8228 ReductionOps.assign(1, ReductionOpsType()); 8229 } 8230 8231 /// Add all reduction operations for the reduction instruction \p I. 8232 void addReductionOps(Instruction *I) { 8233 if (isCmpSelMinMax(I)) { 8234 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8235 ReductionOps[1].emplace_back(I); 8236 } else { 8237 ReductionOps[0].emplace_back(I); 8238 } 8239 } 8240 8241 static Value *getLHS(RecurKind Kind, Instruction *I) { 8242 if (Kind == RecurKind::None) 8243 return nullptr; 8244 return I->getOperand(getFirstOperandIndex(I)); 8245 } 8246 static Value *getRHS(RecurKind Kind, Instruction *I) { 8247 if (Kind == RecurKind::None) 8248 return nullptr; 8249 return I->getOperand(getFirstOperandIndex(I) + 1); 8250 } 8251 8252 public: 8253 HorizontalReduction() = default; 8254 8255 /// Try to find a reduction tree. 8256 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8257 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8258 "Phi needs to use the binary operator"); 8259 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8260 isa<IntrinsicInst>(Inst)) && 8261 "Expected binop, select, or intrinsic for reduction matching"); 8262 RdxKind = getRdxKind(Inst); 8263 8264 // We could have a initial reductions that is not an add. 8265 // r *= v1 + v2 + v3 + v4 8266 // In such a case start looking for a tree rooted in the first '+'. 8267 if (Phi) { 8268 if (getLHS(RdxKind, Inst) == Phi) { 8269 Phi = nullptr; 8270 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8271 if (!Inst) 8272 return false; 8273 RdxKind = getRdxKind(Inst); 8274 } else if (getRHS(RdxKind, Inst) == Phi) { 8275 Phi = nullptr; 8276 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8277 if (!Inst) 8278 return false; 8279 RdxKind = getRdxKind(Inst); 8280 } 8281 } 8282 8283 if (!isVectorizable(RdxKind, Inst)) 8284 return false; 8285 8286 // Analyze "regular" integer/FP types for reductions - no target-specific 8287 // types or pointers. 8288 Type *Ty = Inst->getType(); 8289 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8290 return false; 8291 8292 // Though the ultimate reduction may have multiple uses, its condition must 8293 // have only single use. 8294 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8295 if (!Sel->getCondition()->hasOneUse()) 8296 return false; 8297 8298 ReductionRoot = Inst; 8299 8300 // The opcode for leaf values that we perform a reduction on. 8301 // For example: load(x) + load(y) + load(z) + fptoui(w) 8302 // The leaf opcode for 'w' does not match, so we don't include it as a 8303 // potential candidate for the reduction. 8304 unsigned LeafOpcode = 0; 8305 8306 // Post-order traverse the reduction tree starting at Inst. We only handle 8307 // true trees containing binary operators or selects. 8308 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8309 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8310 initReductionOps(Inst); 8311 while (!Stack.empty()) { 8312 Instruction *TreeN = Stack.back().first; 8313 unsigned EdgeToVisit = Stack.back().second++; 8314 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8315 bool IsReducedValue = TreeRdxKind != RdxKind; 8316 8317 // Postorder visit. 8318 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8319 if (IsReducedValue) 8320 ReducedVals.push_back(TreeN); 8321 else { 8322 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8323 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8324 // Check if TreeN is an extra argument of its parent operation. 8325 if (Stack.size() <= 1) { 8326 // TreeN can't be an extra argument as it is a root reduction 8327 // operation. 8328 return false; 8329 } 8330 // Yes, TreeN is an extra argument, do not add it to a list of 8331 // reduction operations. 8332 // Stack[Stack.size() - 2] always points to the parent operation. 8333 markExtraArg(Stack[Stack.size() - 2], TreeN); 8334 ExtraArgs.erase(TreeN); 8335 } else 8336 addReductionOps(TreeN); 8337 } 8338 // Retract. 8339 Stack.pop_back(); 8340 continue; 8341 } 8342 8343 // Visit operands. 8344 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8345 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8346 if (!EdgeInst) { 8347 // Edge value is not a reduction instruction or a leaf instruction. 8348 // (It may be a constant, function argument, or something else.) 8349 markExtraArg(Stack.back(), EdgeVal); 8350 continue; 8351 } 8352 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8353 // Continue analysis if the next operand is a reduction operation or 8354 // (possibly) a leaf value. If the leaf value opcode is not set, 8355 // the first met operation != reduction operation is considered as the 8356 // leaf opcode. 8357 // Only handle trees in the current basic block. 8358 // Each tree node needs to have minimal number of users except for the 8359 // ultimate reduction. 8360 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8361 if (EdgeInst != Phi && EdgeInst != Inst && 8362 hasSameParent(EdgeInst, Inst->getParent()) && 8363 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8364 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8365 if (IsRdxInst) { 8366 // We need to be able to reassociate the reduction operations. 8367 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8368 // I is an extra argument for TreeN (its parent operation). 8369 markExtraArg(Stack.back(), EdgeInst); 8370 continue; 8371 } 8372 } else if (!LeafOpcode) { 8373 LeafOpcode = EdgeInst->getOpcode(); 8374 } 8375 Stack.push_back( 8376 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8377 continue; 8378 } 8379 // I is an extra argument for TreeN (its parent operation). 8380 markExtraArg(Stack.back(), EdgeInst); 8381 } 8382 return true; 8383 } 8384 8385 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8386 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8387 // If there are a sufficient number of reduction values, reduce 8388 // to a nearby power-of-2. We can safely generate oversized 8389 // vectors and rely on the backend to split them to legal sizes. 8390 unsigned NumReducedVals = ReducedVals.size(); 8391 if (NumReducedVals < 4) 8392 return nullptr; 8393 8394 // Intersect the fast-math-flags from all reduction operations. 8395 FastMathFlags RdxFMF; 8396 RdxFMF.set(); 8397 for (ReductionOpsType &RdxOp : ReductionOps) { 8398 for (Value *RdxVal : RdxOp) { 8399 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8400 RdxFMF &= FPMO->getFastMathFlags(); 8401 } 8402 } 8403 8404 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8405 Builder.setFastMathFlags(RdxFMF); 8406 8407 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8408 // The same extra argument may be used several times, so log each attempt 8409 // to use it. 8410 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8411 assert(Pair.first && "DebugLoc must be set."); 8412 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8413 } 8414 8415 // The compare instruction of a min/max is the insertion point for new 8416 // instructions and may be replaced with a new compare instruction. 8417 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8418 assert(isa<SelectInst>(RdxRootInst) && 8419 "Expected min/max reduction to have select root instruction"); 8420 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8421 assert(isa<Instruction>(ScalarCond) && 8422 "Expected min/max reduction to have compare condition"); 8423 return cast<Instruction>(ScalarCond); 8424 }; 8425 8426 // The reduction root is used as the insertion point for new instructions, 8427 // so set it as externally used to prevent it from being deleted. 8428 ExternallyUsedValues[ReductionRoot]; 8429 SmallVector<Value *, 16> IgnoreList; 8430 for (ReductionOpsType &RdxOp : ReductionOps) 8431 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8432 8433 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8434 if (NumReducedVals > ReduxWidth) { 8435 // In the loop below, we are building a tree based on a window of 8436 // 'ReduxWidth' values. 8437 // If the operands of those values have common traits (compare predicate, 8438 // constant operand, etc), then we want to group those together to 8439 // minimize the cost of the reduction. 8440 8441 // TODO: This should be extended to count common operands for 8442 // compares and binops. 8443 8444 // Step 1: Count the number of times each compare predicate occurs. 8445 SmallDenseMap<unsigned, unsigned> PredCountMap; 8446 for (Value *RdxVal : ReducedVals) { 8447 CmpInst::Predicate Pred; 8448 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8449 ++PredCountMap[Pred]; 8450 } 8451 // Step 2: Sort the values so the most common predicates come first. 8452 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8453 CmpInst::Predicate PredA, PredB; 8454 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8455 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8456 return PredCountMap[PredA] > PredCountMap[PredB]; 8457 } 8458 return false; 8459 }); 8460 } 8461 8462 Value *VectorizedTree = nullptr; 8463 unsigned i = 0; 8464 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8465 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8466 V.buildTree(VL, IgnoreList); 8467 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8468 break; 8469 if (V.isLoadCombineReductionCandidate(RdxKind)) 8470 break; 8471 V.reorderTopToBottom(); 8472 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8473 V.buildExternalUses(ExternallyUsedValues); 8474 8475 // For a poison-safe boolean logic reduction, do not replace select 8476 // instructions with logic ops. All reduced values will be frozen (see 8477 // below) to prevent leaking poison. 8478 if (isa<SelectInst>(ReductionRoot) && 8479 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8480 NumReducedVals != ReduxWidth) 8481 break; 8482 8483 V.computeMinimumValueSizes(); 8484 8485 // Estimate cost. 8486 InstructionCost TreeCost = 8487 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8488 InstructionCost ReductionCost = 8489 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8490 InstructionCost Cost = TreeCost + ReductionCost; 8491 if (!Cost.isValid()) { 8492 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8493 return nullptr; 8494 } 8495 if (Cost >= -SLPCostThreshold) { 8496 V.getORE()->emit([&]() { 8497 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8498 cast<Instruction>(VL[0])) 8499 << "Vectorizing horizontal reduction is possible" 8500 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8501 << " and threshold " 8502 << ore::NV("Threshold", -SLPCostThreshold); 8503 }); 8504 break; 8505 } 8506 8507 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8508 << Cost << ". (HorRdx)\n"); 8509 V.getORE()->emit([&]() { 8510 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8511 cast<Instruction>(VL[0])) 8512 << "Vectorized horizontal reduction with cost " 8513 << ore::NV("Cost", Cost) << " and with tree size " 8514 << ore::NV("TreeSize", V.getTreeSize()); 8515 }); 8516 8517 // Vectorize a tree. 8518 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8519 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8520 8521 // Emit a reduction. If the root is a select (min/max idiom), the insert 8522 // point is the compare condition of that select. 8523 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8524 if (isCmpSelMinMax(RdxRootInst)) 8525 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8526 else 8527 Builder.SetInsertPoint(RdxRootInst); 8528 8529 // To prevent poison from leaking across what used to be sequential, safe, 8530 // scalar boolean logic operations, the reduction operand must be frozen. 8531 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8532 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8533 8534 Value *ReducedSubTree = 8535 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8536 8537 if (!VectorizedTree) { 8538 // Initialize the final value in the reduction. 8539 VectorizedTree = ReducedSubTree; 8540 } else { 8541 // Update the final value in the reduction. 8542 Builder.SetCurrentDebugLocation(Loc); 8543 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8544 ReducedSubTree, "op.rdx", ReductionOps); 8545 } 8546 i += ReduxWidth; 8547 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8548 } 8549 8550 if (VectorizedTree) { 8551 // Finish the reduction. 8552 for (; i < NumReducedVals; ++i) { 8553 auto *I = cast<Instruction>(ReducedVals[i]); 8554 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8555 VectorizedTree = 8556 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8557 } 8558 for (auto &Pair : ExternallyUsedValues) { 8559 // Add each externally used value to the final reduction. 8560 for (auto *I : Pair.second) { 8561 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8562 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8563 Pair.first, "op.extra", I); 8564 } 8565 } 8566 8567 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8568 8569 // Mark all scalar reduction ops for deletion, they are replaced by the 8570 // vector reductions. 8571 V.eraseInstructions(IgnoreList); 8572 } 8573 return VectorizedTree; 8574 } 8575 8576 unsigned numReductionValues() const { return ReducedVals.size(); } 8577 8578 private: 8579 /// Calculate the cost of a reduction. 8580 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8581 Value *FirstReducedVal, unsigned ReduxWidth, 8582 FastMathFlags FMF) { 8583 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8584 Type *ScalarTy = FirstReducedVal->getType(); 8585 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8586 InstructionCost VectorCost, ScalarCost; 8587 switch (RdxKind) { 8588 case RecurKind::Add: 8589 case RecurKind::Mul: 8590 case RecurKind::Or: 8591 case RecurKind::And: 8592 case RecurKind::Xor: 8593 case RecurKind::FAdd: 8594 case RecurKind::FMul: { 8595 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8596 VectorCost = 8597 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8598 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8599 break; 8600 } 8601 case RecurKind::FMax: 8602 case RecurKind::FMin: { 8603 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8604 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8605 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8606 /*unsigned=*/false, CostKind); 8607 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8608 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8609 SclCondTy, RdxPred, CostKind) + 8610 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8611 SclCondTy, RdxPred, CostKind); 8612 break; 8613 } 8614 case RecurKind::SMax: 8615 case RecurKind::SMin: 8616 case RecurKind::UMax: 8617 case RecurKind::UMin: { 8618 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8619 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8620 bool IsUnsigned = 8621 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8622 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8623 CostKind); 8624 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8625 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8626 SclCondTy, RdxPred, CostKind) + 8627 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8628 SclCondTy, RdxPred, CostKind); 8629 break; 8630 } 8631 default: 8632 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8633 } 8634 8635 // Scalar cost is repeated for N-1 elements. 8636 ScalarCost *= (ReduxWidth - 1); 8637 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8638 << " for reduction that starts with " << *FirstReducedVal 8639 << " (It is a splitting reduction)\n"); 8640 return VectorCost - ScalarCost; 8641 } 8642 8643 /// Emit a horizontal reduction of the vectorized value. 8644 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8645 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8646 assert(VectorizedValue && "Need to have a vectorized tree node"); 8647 assert(isPowerOf2_32(ReduxWidth) && 8648 "We only handle power-of-two reductions for now"); 8649 8650 ++NumVectorInstructions; 8651 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8652 ReductionOps.back()); 8653 } 8654 }; 8655 8656 } // end anonymous namespace 8657 8658 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8659 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8660 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8661 8662 unsigned AggregateSize = 1; 8663 auto *IV = cast<InsertValueInst>(InsertInst); 8664 Type *CurrentType = IV->getType(); 8665 do { 8666 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8667 for (auto *Elt : ST->elements()) 8668 if (Elt != ST->getElementType(0)) // check homogeneity 8669 return None; 8670 AggregateSize *= ST->getNumElements(); 8671 CurrentType = ST->getElementType(0); 8672 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8673 AggregateSize *= AT->getNumElements(); 8674 CurrentType = AT->getElementType(); 8675 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8676 AggregateSize *= VT->getNumElements(); 8677 return AggregateSize; 8678 } else if (CurrentType->isSingleValueType()) { 8679 return AggregateSize; 8680 } else { 8681 return None; 8682 } 8683 } while (true); 8684 } 8685 8686 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8687 TargetTransformInfo *TTI, 8688 SmallVectorImpl<Value *> &BuildVectorOpds, 8689 SmallVectorImpl<Value *> &InsertElts, 8690 unsigned OperandOffset) { 8691 do { 8692 Value *InsertedOperand = LastInsertInst->getOperand(1); 8693 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8694 if (!OperandIndex) 8695 return false; 8696 if (isa<InsertElementInst>(InsertedOperand) || 8697 isa<InsertValueInst>(InsertedOperand)) { 8698 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8699 BuildVectorOpds, InsertElts, *OperandIndex)) 8700 return false; 8701 } else { 8702 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8703 InsertElts[*OperandIndex] = LastInsertInst; 8704 } 8705 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8706 } while (LastInsertInst != nullptr && 8707 (isa<InsertValueInst>(LastInsertInst) || 8708 isa<InsertElementInst>(LastInsertInst)) && 8709 LastInsertInst->hasOneUse()); 8710 return true; 8711 } 8712 8713 /// Recognize construction of vectors like 8714 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8715 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8716 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8717 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8718 /// starting from the last insertelement or insertvalue instruction. 8719 /// 8720 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8721 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8722 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8723 /// 8724 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8725 /// 8726 /// \return true if it matches. 8727 static bool findBuildAggregate(Instruction *LastInsertInst, 8728 TargetTransformInfo *TTI, 8729 SmallVectorImpl<Value *> &BuildVectorOpds, 8730 SmallVectorImpl<Value *> &InsertElts) { 8731 8732 assert((isa<InsertElementInst>(LastInsertInst) || 8733 isa<InsertValueInst>(LastInsertInst)) && 8734 "Expected insertelement or insertvalue instruction!"); 8735 8736 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8737 "Expected empty result vectors!"); 8738 8739 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8740 if (!AggregateSize) 8741 return false; 8742 BuildVectorOpds.resize(*AggregateSize); 8743 InsertElts.resize(*AggregateSize); 8744 8745 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8746 0)) { 8747 llvm::erase_value(BuildVectorOpds, nullptr); 8748 llvm::erase_value(InsertElts, nullptr); 8749 if (BuildVectorOpds.size() >= 2) 8750 return true; 8751 } 8752 8753 return false; 8754 } 8755 8756 /// Try and get a reduction value from a phi node. 8757 /// 8758 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8759 /// if they come from either \p ParentBB or a containing loop latch. 8760 /// 8761 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8762 /// if not possible. 8763 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8764 BasicBlock *ParentBB, LoopInfo *LI) { 8765 // There are situations where the reduction value is not dominated by the 8766 // reduction phi. Vectorizing such cases has been reported to cause 8767 // miscompiles. See PR25787. 8768 auto DominatedReduxValue = [&](Value *R) { 8769 return isa<Instruction>(R) && 8770 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8771 }; 8772 8773 Value *Rdx = nullptr; 8774 8775 // Return the incoming value if it comes from the same BB as the phi node. 8776 if (P->getIncomingBlock(0) == ParentBB) { 8777 Rdx = P->getIncomingValue(0); 8778 } else if (P->getIncomingBlock(1) == ParentBB) { 8779 Rdx = P->getIncomingValue(1); 8780 } 8781 8782 if (Rdx && DominatedReduxValue(Rdx)) 8783 return Rdx; 8784 8785 // Otherwise, check whether we have a loop latch to look at. 8786 Loop *BBL = LI->getLoopFor(ParentBB); 8787 if (!BBL) 8788 return nullptr; 8789 BasicBlock *BBLatch = BBL->getLoopLatch(); 8790 if (!BBLatch) 8791 return nullptr; 8792 8793 // There is a loop latch, return the incoming value if it comes from 8794 // that. This reduction pattern occasionally turns up. 8795 if (P->getIncomingBlock(0) == BBLatch) { 8796 Rdx = P->getIncomingValue(0); 8797 } else if (P->getIncomingBlock(1) == BBLatch) { 8798 Rdx = P->getIncomingValue(1); 8799 } 8800 8801 if (Rdx && DominatedReduxValue(Rdx)) 8802 return Rdx; 8803 8804 return nullptr; 8805 } 8806 8807 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8808 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8809 return true; 8810 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8811 return true; 8812 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8813 return true; 8814 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8815 return true; 8816 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8817 return true; 8818 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8819 return true; 8820 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8821 return true; 8822 return false; 8823 } 8824 8825 /// Attempt to reduce a horizontal reduction. 8826 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8827 /// with reduction operators \a Root (or one of its operands) in a basic block 8828 /// \a BB, then check if it can be done. If horizontal reduction is not found 8829 /// and root instruction is a binary operation, vectorization of the operands is 8830 /// attempted. 8831 /// \returns true if a horizontal reduction was matched and reduced or operands 8832 /// of one of the binary instruction were vectorized. 8833 /// \returns false if a horizontal reduction was not matched (or not possible) 8834 /// or no vectorization of any binary operation feeding \a Root instruction was 8835 /// performed. 8836 static bool tryToVectorizeHorReductionOrInstOperands( 8837 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8838 TargetTransformInfo *TTI, 8839 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8840 if (!ShouldVectorizeHor) 8841 return false; 8842 8843 if (!Root) 8844 return false; 8845 8846 if (Root->getParent() != BB || isa<PHINode>(Root)) 8847 return false; 8848 // Start analysis starting from Root instruction. If horizontal reduction is 8849 // found, try to vectorize it. If it is not a horizontal reduction or 8850 // vectorization is not possible or not effective, and currently analyzed 8851 // instruction is a binary operation, try to vectorize the operands, using 8852 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8853 // the same procedure considering each operand as a possible root of the 8854 // horizontal reduction. 8855 // Interrupt the process if the Root instruction itself was vectorized or all 8856 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8857 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8858 // CmpInsts so we can skip extra attempts in 8859 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8860 std::queue<std::pair<Instruction *, unsigned>> Stack; 8861 Stack.emplace(Root, 0); 8862 SmallPtrSet<Value *, 8> VisitedInstrs; 8863 SmallVector<WeakTrackingVH> PostponedInsts; 8864 bool Res = false; 8865 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 8866 Value *&B1) -> Value * { 8867 bool IsBinop = matchRdxBop(Inst, B0, B1); 8868 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8869 if (IsBinop || IsSelect) { 8870 HorizontalReduction HorRdx; 8871 if (HorRdx.matchAssociativeReduction(P, Inst)) 8872 return HorRdx.tryToReduce(R, TTI); 8873 } 8874 return nullptr; 8875 }; 8876 while (!Stack.empty()) { 8877 Instruction *Inst; 8878 unsigned Level; 8879 std::tie(Inst, Level) = Stack.front(); 8880 Stack.pop(); 8881 // Do not try to analyze instruction that has already been vectorized. 8882 // This may happen when we vectorize instruction operands on a previous 8883 // iteration while stack was populated before that happened. 8884 if (R.isDeleted(Inst)) 8885 continue; 8886 Value *B0 = nullptr, *B1 = nullptr; 8887 if (Value *V = TryToReduce(Inst, B0, B1)) { 8888 Res = true; 8889 // Set P to nullptr to avoid re-analysis of phi node in 8890 // matchAssociativeReduction function unless this is the root node. 8891 P = nullptr; 8892 if (auto *I = dyn_cast<Instruction>(V)) { 8893 // Try to find another reduction. 8894 Stack.emplace(I, Level); 8895 continue; 8896 } 8897 } else { 8898 bool IsBinop = B0 && B1; 8899 if (P && IsBinop) { 8900 Inst = dyn_cast<Instruction>(B0); 8901 if (Inst == P) 8902 Inst = dyn_cast<Instruction>(B1); 8903 if (!Inst) { 8904 // Set P to nullptr to avoid re-analysis of phi node in 8905 // matchAssociativeReduction function unless this is the root node. 8906 P = nullptr; 8907 continue; 8908 } 8909 } 8910 // Set P to nullptr to avoid re-analysis of phi node in 8911 // matchAssociativeReduction function unless this is the root node. 8912 P = nullptr; 8913 // Do not try to vectorize CmpInst operands, this is done separately. 8914 // Final attempt for binop args vectorization should happen after the loop 8915 // to try to find reductions. 8916 if (!isa<CmpInst>(Inst)) 8917 PostponedInsts.push_back(Inst); 8918 } 8919 8920 // Try to vectorize operands. 8921 // Continue analysis for the instruction from the same basic block only to 8922 // save compile time. 8923 if (++Level < RecursionMaxDepth) 8924 for (auto *Op : Inst->operand_values()) 8925 if (VisitedInstrs.insert(Op).second) 8926 if (auto *I = dyn_cast<Instruction>(Op)) 8927 // Do not try to vectorize CmpInst operands, this is done 8928 // separately. 8929 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8930 I->getParent() == BB) 8931 Stack.emplace(I, Level); 8932 } 8933 // Try to vectorized binops where reductions were not found. 8934 for (Value *V : PostponedInsts) 8935 if (auto *Inst = dyn_cast<Instruction>(V)) 8936 if (!R.isDeleted(Inst)) 8937 Res |= Vectorize(Inst, R); 8938 return Res; 8939 } 8940 8941 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8942 BasicBlock *BB, BoUpSLP &R, 8943 TargetTransformInfo *TTI) { 8944 auto *I = dyn_cast_or_null<Instruction>(V); 8945 if (!I) 8946 return false; 8947 8948 if (!isa<BinaryOperator>(I)) 8949 P = nullptr; 8950 // Try to match and vectorize a horizontal reduction. 8951 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8952 return tryToVectorize(I, R); 8953 }; 8954 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8955 ExtraVectorization); 8956 } 8957 8958 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8959 BasicBlock *BB, BoUpSLP &R) { 8960 const DataLayout &DL = BB->getModule()->getDataLayout(); 8961 if (!R.canMapToVector(IVI->getType(), DL)) 8962 return false; 8963 8964 SmallVector<Value *, 16> BuildVectorOpds; 8965 SmallVector<Value *, 16> BuildVectorInsts; 8966 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8967 return false; 8968 8969 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8970 // Aggregate value is unlikely to be processed in vector register, we need to 8971 // extract scalars into scalar registers, so NeedExtraction is set true. 8972 return tryToVectorizeList(BuildVectorOpds, R); 8973 } 8974 8975 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8976 BasicBlock *BB, BoUpSLP &R) { 8977 SmallVector<Value *, 16> BuildVectorInsts; 8978 SmallVector<Value *, 16> BuildVectorOpds; 8979 SmallVector<int> Mask; 8980 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8981 (llvm::all_of(BuildVectorOpds, 8982 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8983 isFixedVectorShuffle(BuildVectorOpds, Mask))) 8984 return false; 8985 8986 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8987 return tryToVectorizeList(BuildVectorInsts, R); 8988 } 8989 8990 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8991 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8992 bool AtTerminator) { 8993 bool OpsChanged = false; 8994 SmallVector<Instruction *, 4> PostponedCmps; 8995 for (auto *I : reverse(Instructions)) { 8996 if (R.isDeleted(I)) 8997 continue; 8998 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8999 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9000 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9001 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9002 else if (isa<CmpInst>(I)) 9003 PostponedCmps.push_back(I); 9004 } 9005 if (AtTerminator) { 9006 // Try to find reductions first. 9007 for (Instruction *I : PostponedCmps) { 9008 if (R.isDeleted(I)) 9009 continue; 9010 for (Value *Op : I->operands()) 9011 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9012 } 9013 // Try to vectorize operands as vector bundles. 9014 for (Instruction *I : PostponedCmps) { 9015 if (R.isDeleted(I)) 9016 continue; 9017 OpsChanged |= tryToVectorize(I, R); 9018 } 9019 Instructions.clear(); 9020 } else { 9021 // Insert in reverse order since the PostponedCmps vector was filled in 9022 // reverse order. 9023 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9024 } 9025 return OpsChanged; 9026 } 9027 9028 template <typename T> 9029 static bool 9030 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9031 function_ref<unsigned(T *)> Limit, 9032 function_ref<bool(T *, T *)> Comparator, 9033 function_ref<bool(T *, T *)> AreCompatible, 9034 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9035 bool LimitForRegisterSize) { 9036 bool Changed = false; 9037 // Sort by type, parent, operands. 9038 stable_sort(Incoming, Comparator); 9039 9040 // Try to vectorize elements base on their type. 9041 SmallVector<T *> Candidates; 9042 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9043 // Look for the next elements with the same type, parent and operand 9044 // kinds. 9045 auto *SameTypeIt = IncIt; 9046 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9047 ++SameTypeIt; 9048 9049 // Try to vectorize them. 9050 unsigned NumElts = (SameTypeIt - IncIt); 9051 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9052 << NumElts << ")\n"); 9053 // The vectorization is a 3-state attempt: 9054 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9055 // size of maximal register at first. 9056 // 2. Try to vectorize remaining instructions with the same type, if 9057 // possible. This may result in the better vectorization results rather than 9058 // if we try just to vectorize instructions with the same/alternate opcodes. 9059 // 3. Final attempt to try to vectorize all instructions with the 9060 // same/alternate ops only, this may result in some extra final 9061 // vectorization. 9062 if (NumElts > 1 && 9063 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9064 // Success start over because instructions might have been changed. 9065 Changed = true; 9066 } else if (NumElts < Limit(*IncIt) && 9067 (Candidates.empty() || 9068 Candidates.front()->getType() == (*IncIt)->getType())) { 9069 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9070 } 9071 // Final attempt to vectorize instructions with the same types. 9072 if (Candidates.size() > 1 && 9073 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9074 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9075 // Success start over because instructions might have been changed. 9076 Changed = true; 9077 } else if (LimitForRegisterSize) { 9078 // Try to vectorize using small vectors. 9079 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9080 It != End;) { 9081 auto *SameTypeIt = It; 9082 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9083 ++SameTypeIt; 9084 unsigned NumElts = (SameTypeIt - It); 9085 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9086 /*LimitForRegisterSize=*/false)) 9087 Changed = true; 9088 It = SameTypeIt; 9089 } 9090 } 9091 Candidates.clear(); 9092 } 9093 9094 // Start over at the next instruction of a different type (or the end). 9095 IncIt = SameTypeIt; 9096 } 9097 return Changed; 9098 } 9099 9100 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9101 bool Changed = false; 9102 SmallVector<Value *, 4> Incoming; 9103 SmallPtrSet<Value *, 16> VisitedInstrs; 9104 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9105 // node. Allows better to identify the chains that can be vectorized in the 9106 // better way. 9107 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9108 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9109 assert(isValidElementType(V1->getType()) && 9110 isValidElementType(V2->getType()) && 9111 "Expected vectorizable types only."); 9112 // It is fine to compare type IDs here, since we expect only vectorizable 9113 // types, like ints, floats and pointers, we don't care about other type. 9114 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9115 return true; 9116 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9117 return false; 9118 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9119 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9120 if (Opcodes1.size() < Opcodes2.size()) 9121 return true; 9122 if (Opcodes1.size() > Opcodes2.size()) 9123 return false; 9124 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9125 // Undefs are compatible with any other value. 9126 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9127 continue; 9128 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9129 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9130 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9131 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9132 if (!NodeI1) 9133 return NodeI2 != nullptr; 9134 if (!NodeI2) 9135 return false; 9136 assert((NodeI1 == NodeI2) == 9137 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9138 "Different nodes should have different DFS numbers"); 9139 if (NodeI1 != NodeI2) 9140 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9141 InstructionsState S = getSameOpcode({I1, I2}); 9142 if (S.getOpcode()) 9143 continue; 9144 return I1->getOpcode() < I2->getOpcode(); 9145 } 9146 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9147 continue; 9148 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9149 return true; 9150 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9151 return false; 9152 } 9153 return false; 9154 }; 9155 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9156 if (V1 == V2) 9157 return true; 9158 if (V1->getType() != V2->getType()) 9159 return false; 9160 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9161 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9162 if (Opcodes1.size() != Opcodes2.size()) 9163 return false; 9164 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9165 // Undefs are compatible with any other value. 9166 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9167 continue; 9168 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9169 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9170 if (I1->getParent() != I2->getParent()) 9171 return false; 9172 InstructionsState S = getSameOpcode({I1, I2}); 9173 if (S.getOpcode()) 9174 continue; 9175 return false; 9176 } 9177 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9178 continue; 9179 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9180 return false; 9181 } 9182 return true; 9183 }; 9184 auto Limit = [&R](Value *V) { 9185 unsigned EltSize = R.getVectorElementSize(V); 9186 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9187 }; 9188 9189 bool HaveVectorizedPhiNodes = false; 9190 do { 9191 // Collect the incoming values from the PHIs. 9192 Incoming.clear(); 9193 for (Instruction &I : *BB) { 9194 PHINode *P = dyn_cast<PHINode>(&I); 9195 if (!P) 9196 break; 9197 9198 // No need to analyze deleted, vectorized and non-vectorizable 9199 // instructions. 9200 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9201 isValidElementType(P->getType())) 9202 Incoming.push_back(P); 9203 } 9204 9205 // Find the corresponding non-phi nodes for better matching when trying to 9206 // build the tree. 9207 for (Value *V : Incoming) { 9208 SmallVectorImpl<Value *> &Opcodes = 9209 PHIToOpcodes.try_emplace(V).first->getSecond(); 9210 if (!Opcodes.empty()) 9211 continue; 9212 SmallVector<Value *, 4> Nodes(1, V); 9213 SmallPtrSet<Value *, 4> Visited; 9214 while (!Nodes.empty()) { 9215 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9216 if (!Visited.insert(PHI).second) 9217 continue; 9218 for (Value *V : PHI->incoming_values()) { 9219 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9220 Nodes.push_back(PHI1); 9221 continue; 9222 } 9223 Opcodes.emplace_back(V); 9224 } 9225 } 9226 } 9227 9228 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9229 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9230 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9231 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9232 }, 9233 /*LimitForRegisterSize=*/true); 9234 Changed |= HaveVectorizedPhiNodes; 9235 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9236 } while (HaveVectorizedPhiNodes); 9237 9238 VisitedInstrs.clear(); 9239 9240 SmallVector<Instruction *, 8> PostProcessInstructions; 9241 SmallDenseSet<Instruction *, 4> KeyNodes; 9242 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9243 // Skip instructions with scalable type. The num of elements is unknown at 9244 // compile-time for scalable type. 9245 if (isa<ScalableVectorType>(it->getType())) 9246 continue; 9247 9248 // Skip instructions marked for the deletion. 9249 if (R.isDeleted(&*it)) 9250 continue; 9251 // We may go through BB multiple times so skip the one we have checked. 9252 if (!VisitedInstrs.insert(&*it).second) { 9253 if (it->use_empty() && KeyNodes.contains(&*it) && 9254 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9255 it->isTerminator())) { 9256 // We would like to start over since some instructions are deleted 9257 // and the iterator may become invalid value. 9258 Changed = true; 9259 it = BB->begin(); 9260 e = BB->end(); 9261 } 9262 continue; 9263 } 9264 9265 if (isa<DbgInfoIntrinsic>(it)) 9266 continue; 9267 9268 // Try to vectorize reductions that use PHINodes. 9269 if (PHINode *P = dyn_cast<PHINode>(it)) { 9270 // Check that the PHI is a reduction PHI. 9271 if (P->getNumIncomingValues() == 2) { 9272 // Try to match and vectorize a horizontal reduction. 9273 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9274 TTI)) { 9275 Changed = true; 9276 it = BB->begin(); 9277 e = BB->end(); 9278 continue; 9279 } 9280 } 9281 // Try to vectorize the incoming values of the PHI, to catch reductions 9282 // that feed into PHIs. 9283 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9284 // Skip if the incoming block is the current BB for now. Also, bypass 9285 // unreachable IR for efficiency and to avoid crashing. 9286 // TODO: Collect the skipped incoming values and try to vectorize them 9287 // after processing BB. 9288 if (BB == P->getIncomingBlock(I) || 9289 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9290 continue; 9291 9292 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9293 P->getIncomingBlock(I), R, TTI); 9294 } 9295 continue; 9296 } 9297 9298 // Ran into an instruction without users, like terminator, or function call 9299 // with ignored return value, store. Ignore unused instructions (basing on 9300 // instruction type, except for CallInst and InvokeInst). 9301 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9302 isa<InvokeInst>(it))) { 9303 KeyNodes.insert(&*it); 9304 bool OpsChanged = false; 9305 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9306 for (auto *V : it->operand_values()) { 9307 // Try to match and vectorize a horizontal reduction. 9308 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9309 } 9310 } 9311 // Start vectorization of post-process list of instructions from the 9312 // top-tree instructions to try to vectorize as many instructions as 9313 // possible. 9314 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9315 it->isTerminator()); 9316 if (OpsChanged) { 9317 // We would like to start over since some instructions are deleted 9318 // and the iterator may become invalid value. 9319 Changed = true; 9320 it = BB->begin(); 9321 e = BB->end(); 9322 continue; 9323 } 9324 } 9325 9326 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9327 isa<InsertValueInst>(it)) 9328 PostProcessInstructions.push_back(&*it); 9329 } 9330 9331 return Changed; 9332 } 9333 9334 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9335 auto Changed = false; 9336 for (auto &Entry : GEPs) { 9337 // If the getelementptr list has fewer than two elements, there's nothing 9338 // to do. 9339 if (Entry.second.size() < 2) 9340 continue; 9341 9342 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9343 << Entry.second.size() << ".\n"); 9344 9345 // Process the GEP list in chunks suitable for the target's supported 9346 // vector size. If a vector register can't hold 1 element, we are done. We 9347 // are trying to vectorize the index computations, so the maximum number of 9348 // elements is based on the size of the index expression, rather than the 9349 // size of the GEP itself (the target's pointer size). 9350 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9351 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9352 if (MaxVecRegSize < EltSize) 9353 continue; 9354 9355 unsigned MaxElts = MaxVecRegSize / EltSize; 9356 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9357 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9358 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9359 9360 // Initialize a set a candidate getelementptrs. Note that we use a 9361 // SetVector here to preserve program order. If the index computations 9362 // are vectorizable and begin with loads, we want to minimize the chance 9363 // of having to reorder them later. 9364 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9365 9366 // Some of the candidates may have already been vectorized after we 9367 // initially collected them. If so, they are marked as deleted, so remove 9368 // them from the set of candidates. 9369 Candidates.remove_if( 9370 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9371 9372 // Remove from the set of candidates all pairs of getelementptrs with 9373 // constant differences. Such getelementptrs are likely not good 9374 // candidates for vectorization in a bottom-up phase since one can be 9375 // computed from the other. We also ensure all candidate getelementptr 9376 // indices are unique. 9377 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9378 auto *GEPI = GEPList[I]; 9379 if (!Candidates.count(GEPI)) 9380 continue; 9381 auto *SCEVI = SE->getSCEV(GEPList[I]); 9382 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9383 auto *GEPJ = GEPList[J]; 9384 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9385 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9386 Candidates.remove(GEPI); 9387 Candidates.remove(GEPJ); 9388 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9389 Candidates.remove(GEPJ); 9390 } 9391 } 9392 } 9393 9394 // We break out of the above computation as soon as we know there are 9395 // fewer than two candidates remaining. 9396 if (Candidates.size() < 2) 9397 continue; 9398 9399 // Add the single, non-constant index of each candidate to the bundle. We 9400 // ensured the indices met these constraints when we originally collected 9401 // the getelementptrs. 9402 SmallVector<Value *, 16> Bundle(Candidates.size()); 9403 auto BundleIndex = 0u; 9404 for (auto *V : Candidates) { 9405 auto *GEP = cast<GetElementPtrInst>(V); 9406 auto *GEPIdx = GEP->idx_begin()->get(); 9407 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9408 Bundle[BundleIndex++] = GEPIdx; 9409 } 9410 9411 // Try and vectorize the indices. We are currently only interested in 9412 // gather-like cases of the form: 9413 // 9414 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9415 // 9416 // where the loads of "a", the loads of "b", and the subtractions can be 9417 // performed in parallel. It's likely that detecting this pattern in a 9418 // bottom-up phase will be simpler and less costly than building a 9419 // full-blown top-down phase beginning at the consecutive loads. 9420 Changed |= tryToVectorizeList(Bundle, R); 9421 } 9422 } 9423 return Changed; 9424 } 9425 9426 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9427 bool Changed = false; 9428 // Sort by type, base pointers and values operand. Value operands must be 9429 // compatible (have the same opcode, same parent), otherwise it is 9430 // definitely not profitable to try to vectorize them. 9431 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9432 if (V->getPointerOperandType()->getTypeID() < 9433 V2->getPointerOperandType()->getTypeID()) 9434 return true; 9435 if (V->getPointerOperandType()->getTypeID() > 9436 V2->getPointerOperandType()->getTypeID()) 9437 return false; 9438 // UndefValues are compatible with all other values. 9439 if (isa<UndefValue>(V->getValueOperand()) || 9440 isa<UndefValue>(V2->getValueOperand())) 9441 return false; 9442 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9443 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9444 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9445 DT->getNode(I1->getParent()); 9446 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9447 DT->getNode(I2->getParent()); 9448 assert(NodeI1 && "Should only process reachable instructions"); 9449 assert(NodeI1 && "Should only process reachable instructions"); 9450 assert((NodeI1 == NodeI2) == 9451 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9452 "Different nodes should have different DFS numbers"); 9453 if (NodeI1 != NodeI2) 9454 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9455 InstructionsState S = getSameOpcode({I1, I2}); 9456 if (S.getOpcode()) 9457 return false; 9458 return I1->getOpcode() < I2->getOpcode(); 9459 } 9460 if (isa<Constant>(V->getValueOperand()) && 9461 isa<Constant>(V2->getValueOperand())) 9462 return false; 9463 return V->getValueOperand()->getValueID() < 9464 V2->getValueOperand()->getValueID(); 9465 }; 9466 9467 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9468 if (V1 == V2) 9469 return true; 9470 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9471 return false; 9472 // Undefs are compatible with any other value. 9473 if (isa<UndefValue>(V1->getValueOperand()) || 9474 isa<UndefValue>(V2->getValueOperand())) 9475 return true; 9476 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9477 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9478 if (I1->getParent() != I2->getParent()) 9479 return false; 9480 InstructionsState S = getSameOpcode({I1, I2}); 9481 return S.getOpcode() > 0; 9482 } 9483 if (isa<Constant>(V1->getValueOperand()) && 9484 isa<Constant>(V2->getValueOperand())) 9485 return true; 9486 return V1->getValueOperand()->getValueID() == 9487 V2->getValueOperand()->getValueID(); 9488 }; 9489 auto Limit = [&R, this](StoreInst *SI) { 9490 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9491 return R.getMinVF(EltSize); 9492 }; 9493 9494 // Attempt to sort and vectorize each of the store-groups. 9495 for (auto &Pair : Stores) { 9496 if (Pair.second.size() < 2) 9497 continue; 9498 9499 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9500 << Pair.second.size() << ".\n"); 9501 9502 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9503 continue; 9504 9505 Changed |= tryToVectorizeSequence<StoreInst>( 9506 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9507 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9508 return vectorizeStores(Candidates, R); 9509 }, 9510 /*LimitForRegisterSize=*/false); 9511 } 9512 return Changed; 9513 } 9514 9515 char SLPVectorizer::ID = 0; 9516 9517 static const char lv_name[] = "SLP Vectorizer"; 9518 9519 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9520 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9521 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9522 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9523 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9524 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9525 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9526 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9527 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9528 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9529 9530 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9531