1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<Instruction>(I)) { 215 if (auto *Intersection = dyn_cast<Instruction>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 347 /// Clear the internal data structures that are created by 'buildTree'. 348 void deleteTree() { 349 VectorizableTree.clear(); 350 ScalarToTreeEntry.clear(); 351 MustGather.clear(); 352 ExternalUses.clear(); 353 NumLoadsWantToKeepOrder = 0; 354 NumLoadsWantToChangeOrder = 0; 355 for (auto &Iter : BlocksSchedules) { 356 BlockScheduling *BS = Iter.second.get(); 357 BS->clear(); 358 } 359 MinBWs.clear(); 360 } 361 362 /// \brief Perform LICM and CSE on the newly generated gather sequences. 363 void optimizeGatherSequence(); 364 365 /// \returns true if it is beneficial to reverse the vector order. 366 bool shouldReorder() const { 367 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 368 } 369 370 /// \return The vector element size in bits to use when vectorizing the 371 /// expression tree ending at \p V. If V is a store, the size is the width of 372 /// the stored value. Otherwise, the size is the width of the largest loaded 373 /// value reaching V. This method is used by the vectorizer to calculate 374 /// vectorization factors. 375 unsigned getVectorElementSize(Value *V); 376 377 /// Compute the minimum type sizes required to represent the entries in a 378 /// vectorizable tree. 379 void computeMinimumValueSizes(); 380 381 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 382 unsigned getMaxVecRegSize() const { 383 return MaxVecRegSize; 384 } 385 386 // \returns minimum vector register size as set by cl::opt. 387 unsigned getMinVecRegSize() const { 388 return MinVecRegSize; 389 } 390 391 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 392 /// 393 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 394 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 395 396 /// \returns True if the VectorizableTree is both tiny and not fully 397 /// vectorizable. We do not vectorize such trees. 398 bool isTreeTinyAndNotFullyVectorizable(); 399 400 private: 401 struct TreeEntry; 402 403 /// \returns the cost of the vectorizable entry. 404 int getEntryCost(TreeEntry *E); 405 406 /// This is the recursive part of buildTree. 407 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 408 409 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 410 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 411 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 412 413 /// Vectorize a single entry in the tree. 414 Value *vectorizeTree(TreeEntry *E); 415 416 /// Vectorize a single entry in the tree, starting in \p VL. 417 Value *vectorizeTree(ArrayRef<Value *> VL); 418 419 /// \returns the pointer to the vectorized value if \p VL is already 420 /// vectorized, or NULL. They may happen in cycles. 421 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 422 423 /// \returns the scalarization cost for this type. Scalarization in this 424 /// context means the creation of vectors from a group of scalars. 425 int getGatherCost(Type *Ty); 426 427 /// \returns the scalarization cost for this list of values. Assuming that 428 /// this subtree gets vectorized, we may need to extract the values from the 429 /// roots. This method calculates the cost of extracting the values. 430 int getGatherCost(ArrayRef<Value *> VL); 431 432 /// \brief Set the Builder insert point to one after the last instruction in 433 /// the bundle 434 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 435 436 /// \returns a vector from a collection of scalars in \p VL. 437 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 438 439 /// \returns whether the VectorizableTree is fully vectorizable and will 440 /// be beneficial even the tree height is tiny. 441 bool isFullyVectorizableTinyTree(); 442 443 /// \reorder commutative operands in alt shuffle if they result in 444 /// vectorized code. 445 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 446 SmallVectorImpl<Value *> &Left, 447 SmallVectorImpl<Value *> &Right); 448 /// \reorder commutative operands to get better probability of 449 /// generating vectorized code. 450 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 451 SmallVectorImpl<Value *> &Left, 452 SmallVectorImpl<Value *> &Right); 453 struct TreeEntry { 454 TreeEntry() : Scalars(), VectorizedValue(nullptr), 455 NeedToGather(0) {} 456 457 /// \returns true if the scalars in VL are equal to this entry. 458 bool isSame(ArrayRef<Value *> VL) const { 459 assert(VL.size() == Scalars.size() && "Invalid size"); 460 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 461 } 462 463 /// A vector of scalars. 464 ValueList Scalars; 465 466 /// The Scalars are vectorized into this value. It is initialized to Null. 467 Value *VectorizedValue; 468 469 /// Do we need to gather this sequence ? 470 bool NeedToGather; 471 }; 472 473 /// Create a new VectorizableTree entry. 474 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 475 VectorizableTree.emplace_back(); 476 int idx = VectorizableTree.size() - 1; 477 TreeEntry *Last = &VectorizableTree[idx]; 478 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 479 Last->NeedToGather = !Vectorized; 480 if (Vectorized) { 481 for (int i = 0, e = VL.size(); i != e; ++i) { 482 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 483 ScalarToTreeEntry[VL[i]] = idx; 484 } 485 } else { 486 MustGather.insert(VL.begin(), VL.end()); 487 } 488 return Last; 489 } 490 491 /// -- Vectorization State -- 492 /// Holds all of the tree entries. 493 std::vector<TreeEntry> VectorizableTree; 494 495 /// Maps a specific scalar to its tree entry. 496 SmallDenseMap<Value*, int> ScalarToTreeEntry; 497 498 /// A list of scalars that we found that we need to keep as scalars. 499 ValueSet MustGather; 500 501 /// This POD struct describes one external user in the vectorized tree. 502 struct ExternalUser { 503 ExternalUser (Value *S, llvm::User *U, int L) : 504 Scalar(S), User(U), Lane(L){} 505 // Which scalar in our function. 506 Value *Scalar; 507 // Which user that uses the scalar. 508 llvm::User *User; 509 // Which lane does the scalar belong to. 510 int Lane; 511 }; 512 typedef SmallVector<ExternalUser, 16> UserList; 513 514 /// Checks if two instructions may access the same memory. 515 /// 516 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 517 /// is invariant in the calling loop. 518 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 519 Instruction *Inst2) { 520 521 // First check if the result is already in the cache. 522 AliasCacheKey key = std::make_pair(Inst1, Inst2); 523 Optional<bool> &result = AliasCache[key]; 524 if (result.hasValue()) { 525 return result.getValue(); 526 } 527 MemoryLocation Loc2 = getLocation(Inst2, AA); 528 bool aliased = true; 529 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 530 // Do the alias check. 531 aliased = AA->alias(Loc1, Loc2); 532 } 533 // Store the result in the cache. 534 result = aliased; 535 return aliased; 536 } 537 538 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 539 540 /// Cache for alias results. 541 /// TODO: consider moving this to the AliasAnalysis itself. 542 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 543 544 /// Removes an instruction from its block and eventually deletes it. 545 /// It's like Instruction::eraseFromParent() except that the actual deletion 546 /// is delayed until BoUpSLP is destructed. 547 /// This is required to ensure that there are no incorrect collisions in the 548 /// AliasCache, which can happen if a new instruction is allocated at the 549 /// same address as a previously deleted instruction. 550 void eraseInstruction(Instruction *I) { 551 I->removeFromParent(); 552 I->dropAllReferences(); 553 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 554 } 555 556 /// Temporary store for deleted instructions. Instructions will be deleted 557 /// eventually when the BoUpSLP is destructed. 558 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 559 560 /// A list of values that need to extracted out of the tree. 561 /// This list holds pairs of (Internal Scalar : External User). 562 UserList ExternalUses; 563 564 /// Values used only by @llvm.assume calls. 565 SmallPtrSet<const Value *, 32> EphValues; 566 567 /// Holds all of the instructions that we gathered. 568 SetVector<Instruction *> GatherSeq; 569 /// A list of blocks that we are going to CSE. 570 SetVector<BasicBlock *> CSEBlocks; 571 572 /// Contains all scheduling relevant data for an instruction. 573 /// A ScheduleData either represents a single instruction or a member of an 574 /// instruction bundle (= a group of instructions which is combined into a 575 /// vector instruction). 576 struct ScheduleData { 577 578 // The initial value for the dependency counters. It means that the 579 // dependencies are not calculated yet. 580 enum { InvalidDeps = -1 }; 581 582 ScheduleData() 583 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 584 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 585 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 586 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 587 588 void init(int BlockSchedulingRegionID) { 589 FirstInBundle = this; 590 NextInBundle = nullptr; 591 NextLoadStore = nullptr; 592 IsScheduled = false; 593 SchedulingRegionID = BlockSchedulingRegionID; 594 UnscheduledDepsInBundle = UnscheduledDeps; 595 clearDependencies(); 596 } 597 598 /// Returns true if the dependency information has been calculated. 599 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 600 601 /// Returns true for single instructions and for bundle representatives 602 /// (= the head of a bundle). 603 bool isSchedulingEntity() const { return FirstInBundle == this; } 604 605 /// Returns true if it represents an instruction bundle and not only a 606 /// single instruction. 607 bool isPartOfBundle() const { 608 return NextInBundle != nullptr || FirstInBundle != this; 609 } 610 611 /// Returns true if it is ready for scheduling, i.e. it has no more 612 /// unscheduled depending instructions/bundles. 613 bool isReady() const { 614 assert(isSchedulingEntity() && 615 "can't consider non-scheduling entity for ready list"); 616 return UnscheduledDepsInBundle == 0 && !IsScheduled; 617 } 618 619 /// Modifies the number of unscheduled dependencies, also updating it for 620 /// the whole bundle. 621 int incrementUnscheduledDeps(int Incr) { 622 UnscheduledDeps += Incr; 623 return FirstInBundle->UnscheduledDepsInBundle += Incr; 624 } 625 626 /// Sets the number of unscheduled dependencies to the number of 627 /// dependencies. 628 void resetUnscheduledDeps() { 629 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 630 } 631 632 /// Clears all dependency information. 633 void clearDependencies() { 634 Dependencies = InvalidDeps; 635 resetUnscheduledDeps(); 636 MemoryDependencies.clear(); 637 } 638 639 void dump(raw_ostream &os) const { 640 if (!isSchedulingEntity()) { 641 os << "/ " << *Inst; 642 } else if (NextInBundle) { 643 os << '[' << *Inst; 644 ScheduleData *SD = NextInBundle; 645 while (SD) { 646 os << ';' << *SD->Inst; 647 SD = SD->NextInBundle; 648 } 649 os << ']'; 650 } else { 651 os << *Inst; 652 } 653 } 654 655 Instruction *Inst; 656 657 /// Points to the head in an instruction bundle (and always to this for 658 /// single instructions). 659 ScheduleData *FirstInBundle; 660 661 /// Single linked list of all instructions in a bundle. Null if it is a 662 /// single instruction. 663 ScheduleData *NextInBundle; 664 665 /// Single linked list of all memory instructions (e.g. load, store, call) 666 /// in the block - until the end of the scheduling region. 667 ScheduleData *NextLoadStore; 668 669 /// The dependent memory instructions. 670 /// This list is derived on demand in calculateDependencies(). 671 SmallVector<ScheduleData *, 4> MemoryDependencies; 672 673 /// This ScheduleData is in the current scheduling region if this matches 674 /// the current SchedulingRegionID of BlockScheduling. 675 int SchedulingRegionID; 676 677 /// Used for getting a "good" final ordering of instructions. 678 int SchedulingPriority; 679 680 /// The number of dependencies. Constitutes of the number of users of the 681 /// instruction plus the number of dependent memory instructions (if any). 682 /// This value is calculated on demand. 683 /// If InvalidDeps, the number of dependencies is not calculated yet. 684 /// 685 int Dependencies; 686 687 /// The number of dependencies minus the number of dependencies of scheduled 688 /// instructions. As soon as this is zero, the instruction/bundle gets ready 689 /// for scheduling. 690 /// Note that this is negative as long as Dependencies is not calculated. 691 int UnscheduledDeps; 692 693 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 694 /// single instructions. 695 int UnscheduledDepsInBundle; 696 697 /// True if this instruction is scheduled (or considered as scheduled in the 698 /// dry-run). 699 bool IsScheduled; 700 }; 701 702 #ifndef NDEBUG 703 friend inline raw_ostream &operator<<(raw_ostream &os, 704 const BoUpSLP::ScheduleData &SD) { 705 SD.dump(os); 706 return os; 707 } 708 #endif 709 710 /// Contains all scheduling data for a basic block. 711 /// 712 struct BlockScheduling { 713 714 BlockScheduling(BasicBlock *BB) 715 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 716 ScheduleStart(nullptr), ScheduleEnd(nullptr), 717 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 718 ScheduleRegionSize(0), 719 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 720 // Make sure that the initial SchedulingRegionID is greater than the 721 // initial SchedulingRegionID in ScheduleData (which is 0). 722 SchedulingRegionID(1) {} 723 724 void clear() { 725 ReadyInsts.clear(); 726 ScheduleStart = nullptr; 727 ScheduleEnd = nullptr; 728 FirstLoadStoreInRegion = nullptr; 729 LastLoadStoreInRegion = nullptr; 730 731 // Reduce the maximum schedule region size by the size of the 732 // previous scheduling run. 733 ScheduleRegionSizeLimit -= ScheduleRegionSize; 734 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 735 ScheduleRegionSizeLimit = MinScheduleRegionSize; 736 ScheduleRegionSize = 0; 737 738 // Make a new scheduling region, i.e. all existing ScheduleData is not 739 // in the new region yet. 740 ++SchedulingRegionID; 741 } 742 743 ScheduleData *getScheduleData(Value *V) { 744 ScheduleData *SD = ScheduleDataMap[V]; 745 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 746 return SD; 747 return nullptr; 748 } 749 750 bool isInSchedulingRegion(ScheduleData *SD) { 751 return SD->SchedulingRegionID == SchedulingRegionID; 752 } 753 754 /// Marks an instruction as scheduled and puts all dependent ready 755 /// instructions into the ready-list. 756 template <typename ReadyListType> 757 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 758 SD->IsScheduled = true; 759 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 760 761 ScheduleData *BundleMember = SD; 762 while (BundleMember) { 763 // Handle the def-use chain dependencies. 764 for (Use &U : BundleMember->Inst->operands()) { 765 ScheduleData *OpDef = getScheduleData(U.get()); 766 if (OpDef && OpDef->hasValidDependencies() && 767 OpDef->incrementUnscheduledDeps(-1) == 0) { 768 // There are no more unscheduled dependencies after decrementing, 769 // so we can put the dependent instruction into the ready list. 770 ScheduleData *DepBundle = OpDef->FirstInBundle; 771 assert(!DepBundle->IsScheduled && 772 "already scheduled bundle gets ready"); 773 ReadyList.insert(DepBundle); 774 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 775 } 776 } 777 // Handle the memory dependencies. 778 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 779 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 780 // There are no more unscheduled dependencies after decrementing, 781 // so we can put the dependent instruction into the ready list. 782 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 783 assert(!DepBundle->IsScheduled && 784 "already scheduled bundle gets ready"); 785 ReadyList.insert(DepBundle); 786 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 787 } 788 } 789 BundleMember = BundleMember->NextInBundle; 790 } 791 } 792 793 /// Put all instructions into the ReadyList which are ready for scheduling. 794 template <typename ReadyListType> 795 void initialFillReadyList(ReadyListType &ReadyList) { 796 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 797 ScheduleData *SD = getScheduleData(I); 798 if (SD->isSchedulingEntity() && SD->isReady()) { 799 ReadyList.insert(SD); 800 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 801 } 802 } 803 } 804 805 /// Checks if a bundle of instructions can be scheduled, i.e. has no 806 /// cyclic dependencies. This is only a dry-run, no instructions are 807 /// actually moved at this stage. 808 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 809 810 /// Un-bundles a group of instructions. 811 void cancelScheduling(ArrayRef<Value *> VL); 812 813 /// Extends the scheduling region so that V is inside the region. 814 /// \returns true if the region size is within the limit. 815 bool extendSchedulingRegion(Value *V); 816 817 /// Initialize the ScheduleData structures for new instructions in the 818 /// scheduling region. 819 void initScheduleData(Instruction *FromI, Instruction *ToI, 820 ScheduleData *PrevLoadStore, 821 ScheduleData *NextLoadStore); 822 823 /// Updates the dependency information of a bundle and of all instructions/ 824 /// bundles which depend on the original bundle. 825 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 826 BoUpSLP *SLP); 827 828 /// Sets all instruction in the scheduling region to un-scheduled. 829 void resetSchedule(); 830 831 BasicBlock *BB; 832 833 /// Simple memory allocation for ScheduleData. 834 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 835 836 /// The size of a ScheduleData array in ScheduleDataChunks. 837 int ChunkSize; 838 839 /// The allocator position in the current chunk, which is the last entry 840 /// of ScheduleDataChunks. 841 int ChunkPos; 842 843 /// Attaches ScheduleData to Instruction. 844 /// Note that the mapping survives during all vectorization iterations, i.e. 845 /// ScheduleData structures are recycled. 846 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 847 848 struct ReadyList : SmallVector<ScheduleData *, 8> { 849 void insert(ScheduleData *SD) { push_back(SD); } 850 }; 851 852 /// The ready-list for scheduling (only used for the dry-run). 853 ReadyList ReadyInsts; 854 855 /// The first instruction of the scheduling region. 856 Instruction *ScheduleStart; 857 858 /// The first instruction _after_ the scheduling region. 859 Instruction *ScheduleEnd; 860 861 /// The first memory accessing instruction in the scheduling region 862 /// (can be null). 863 ScheduleData *FirstLoadStoreInRegion; 864 865 /// The last memory accessing instruction in the scheduling region 866 /// (can be null). 867 ScheduleData *LastLoadStoreInRegion; 868 869 /// The current size of the scheduling region. 870 int ScheduleRegionSize; 871 872 /// The maximum size allowed for the scheduling region. 873 int ScheduleRegionSizeLimit; 874 875 /// The ID of the scheduling region. For a new vectorization iteration this 876 /// is incremented which "removes" all ScheduleData from the region. 877 int SchedulingRegionID; 878 }; 879 880 /// Attaches the BlockScheduling structures to basic blocks. 881 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 882 883 /// Performs the "real" scheduling. Done before vectorization is actually 884 /// performed in a basic block. 885 void scheduleBlock(BlockScheduling *BS); 886 887 /// List of users to ignore during scheduling and that don't need extracting. 888 ArrayRef<Value *> UserIgnoreList; 889 890 // Number of load bundles that contain consecutive loads. 891 int NumLoadsWantToKeepOrder; 892 893 // Number of load bundles that contain consecutive loads in reversed order. 894 int NumLoadsWantToChangeOrder; 895 896 // Analysis and block reference. 897 Function *F; 898 ScalarEvolution *SE; 899 TargetTransformInfo *TTI; 900 TargetLibraryInfo *TLI; 901 AliasAnalysis *AA; 902 LoopInfo *LI; 903 DominatorTree *DT; 904 AssumptionCache *AC; 905 DemandedBits *DB; 906 const DataLayout *DL; 907 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 908 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 909 /// Instruction builder to construct the vectorized tree. 910 IRBuilder<> Builder; 911 912 /// A map of scalar integer values to the smallest bit width with which they 913 /// can legally be represented. The values map to (width, signed) pairs, 914 /// where "width" indicates the minimum bit width and "signed" is True if the 915 /// value must be signed-extended, rather than zero-extended, back to its 916 /// original width. 917 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 918 }; 919 920 } // end namespace llvm 921 } // end namespace slpvectorizer 922 923 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 924 ArrayRef<Value *> UserIgnoreLst) { 925 deleteTree(); 926 UserIgnoreList = UserIgnoreLst; 927 if (!allSameType(Roots)) 928 return; 929 buildTree_rec(Roots, 0); 930 931 // Collect the values that we need to extract from the tree. 932 for (TreeEntry &EIdx : VectorizableTree) { 933 TreeEntry *Entry = &EIdx; 934 935 // For each lane: 936 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 937 Value *Scalar = Entry->Scalars[Lane]; 938 939 // No need to handle users of gathered values. 940 if (Entry->NeedToGather) 941 continue; 942 943 for (User *U : Scalar->users()) { 944 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 945 946 Instruction *UserInst = dyn_cast<Instruction>(U); 947 if (!UserInst) 948 continue; 949 950 // Skip in-tree scalars that become vectors 951 if (ScalarToTreeEntry.count(U)) { 952 int Idx = ScalarToTreeEntry[U]; 953 TreeEntry *UseEntry = &VectorizableTree[Idx]; 954 Value *UseScalar = UseEntry->Scalars[0]; 955 // Some in-tree scalars will remain as scalar in vectorized 956 // instructions. If that is the case, the one in Lane 0 will 957 // be used. 958 if (UseScalar != U || 959 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 960 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 961 << ".\n"); 962 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 963 continue; 964 } 965 } 966 967 // Ignore users in the user ignore list. 968 if (is_contained(UserIgnoreList, UserInst)) 969 continue; 970 971 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 972 Lane << " from " << *Scalar << ".\n"); 973 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 974 } 975 } 976 } 977 } 978 979 980 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 981 bool isAltShuffle = false; 982 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 983 984 if (Depth == RecursionMaxDepth) { 985 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 986 newTreeEntry(VL, false); 987 return; 988 } 989 990 // Don't handle vectors. 991 if (VL[0]->getType()->isVectorTy()) { 992 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 993 newTreeEntry(VL, false); 994 return; 995 } 996 997 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 998 if (SI->getValueOperand()->getType()->isVectorTy()) { 999 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1000 newTreeEntry(VL, false); 1001 return; 1002 } 1003 unsigned Opcode = getSameOpcode(VL); 1004 1005 // Check that this shuffle vector refers to the alternate 1006 // sequence of opcodes. 1007 if (Opcode == Instruction::ShuffleVector) { 1008 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1009 unsigned Op = I0->getOpcode(); 1010 if (Op != Instruction::ShuffleVector) 1011 isAltShuffle = true; 1012 } 1013 1014 // If all of the operands are identical or constant we have a simple solution. 1015 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1016 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1017 newTreeEntry(VL, false); 1018 return; 1019 } 1020 1021 // We now know that this is a vector of instructions of the same type from 1022 // the same block. 1023 1024 // Don't vectorize ephemeral values. 1025 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1026 if (EphValues.count(VL[i])) { 1027 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1028 ") is ephemeral.\n"); 1029 newTreeEntry(VL, false); 1030 return; 1031 } 1032 } 1033 1034 // Check if this is a duplicate of another entry. 1035 if (ScalarToTreeEntry.count(VL[0])) { 1036 int Idx = ScalarToTreeEntry[VL[0]]; 1037 TreeEntry *E = &VectorizableTree[Idx]; 1038 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1039 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1040 if (E->Scalars[i] != VL[i]) { 1041 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1042 newTreeEntry(VL, false); 1043 return; 1044 } 1045 } 1046 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1047 return; 1048 } 1049 1050 // Check that none of the instructions in the bundle are already in the tree. 1051 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1052 if (ScalarToTreeEntry.count(VL[i])) { 1053 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1054 ") is already in tree.\n"); 1055 newTreeEntry(VL, false); 1056 return; 1057 } 1058 } 1059 1060 // If any of the scalars is marked as a value that needs to stay scalar then 1061 // we need to gather the scalars. 1062 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1063 if (MustGather.count(VL[i])) { 1064 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1065 newTreeEntry(VL, false); 1066 return; 1067 } 1068 } 1069 1070 // Check that all of the users of the scalars that we want to vectorize are 1071 // schedulable. 1072 Instruction *VL0 = cast<Instruction>(VL[0]); 1073 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1074 1075 if (!DT->isReachableFromEntry(BB)) { 1076 // Don't go into unreachable blocks. They may contain instructions with 1077 // dependency cycles which confuse the final scheduling. 1078 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1079 newTreeEntry(VL, false); 1080 return; 1081 } 1082 1083 // Check that every instructions appears once in this bundle. 1084 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1085 for (unsigned j = i+1; j < e; ++j) 1086 if (VL[i] == VL[j]) { 1087 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1088 newTreeEntry(VL, false); 1089 return; 1090 } 1091 1092 auto &BSRef = BlocksSchedules[BB]; 1093 if (!BSRef) { 1094 BSRef = llvm::make_unique<BlockScheduling>(BB); 1095 } 1096 BlockScheduling &BS = *BSRef.get(); 1097 1098 if (!BS.tryScheduleBundle(VL, this)) { 1099 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1100 assert((!BS.getScheduleData(VL[0]) || 1101 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1102 "tryScheduleBundle should cancelScheduling on failure"); 1103 newTreeEntry(VL, false); 1104 return; 1105 } 1106 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1107 1108 switch (Opcode) { 1109 case Instruction::PHI: { 1110 PHINode *PH = dyn_cast<PHINode>(VL0); 1111 1112 // Check for terminator values (e.g. invoke). 1113 for (unsigned j = 0; j < VL.size(); ++j) 1114 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1115 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1116 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1117 if (Term) { 1118 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1119 BS.cancelScheduling(VL); 1120 newTreeEntry(VL, false); 1121 return; 1122 } 1123 } 1124 1125 newTreeEntry(VL, true); 1126 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1127 1128 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1129 ValueList Operands; 1130 // Prepare the operand vector. 1131 for (Value *j : VL) 1132 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1133 PH->getIncomingBlock(i))); 1134 1135 buildTree_rec(Operands, Depth + 1); 1136 } 1137 return; 1138 } 1139 case Instruction::ExtractValue: 1140 case Instruction::ExtractElement: { 1141 bool Reuse = canReuseExtract(VL, Opcode); 1142 if (Reuse) { 1143 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1144 } else { 1145 BS.cancelScheduling(VL); 1146 } 1147 newTreeEntry(VL, Reuse); 1148 return; 1149 } 1150 case Instruction::Load: { 1151 // Check that a vectorized load would load the same memory as a scalar 1152 // load. 1153 // For example we don't want vectorize loads that are smaller than 8 bit. 1154 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1155 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1156 // such a struct we read/write packed bits disagreeing with the 1157 // unvectorized version. 1158 Type *ScalarTy = VL[0]->getType(); 1159 1160 if (DL->getTypeSizeInBits(ScalarTy) != 1161 DL->getTypeAllocSizeInBits(ScalarTy)) { 1162 BS.cancelScheduling(VL); 1163 newTreeEntry(VL, false); 1164 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1165 return; 1166 } 1167 1168 // Make sure all loads in the bundle are simple - we can't vectorize 1169 // atomic or volatile loads. 1170 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1171 LoadInst *L = cast<LoadInst>(VL[i]); 1172 if (!L->isSimple()) { 1173 BS.cancelScheduling(VL); 1174 newTreeEntry(VL, false); 1175 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1176 return; 1177 } 1178 } 1179 1180 // Check if the loads are consecutive, reversed, or neither. 1181 // TODO: What we really want is to sort the loads, but for now, check 1182 // the two likely directions. 1183 bool Consecutive = true; 1184 bool ReverseConsecutive = true; 1185 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1186 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1187 Consecutive = false; 1188 break; 1189 } else { 1190 ReverseConsecutive = false; 1191 } 1192 } 1193 1194 if (Consecutive) { 1195 ++NumLoadsWantToKeepOrder; 1196 newTreeEntry(VL, true); 1197 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1198 return; 1199 } 1200 1201 // If none of the load pairs were consecutive when checked in order, 1202 // check the reverse order. 1203 if (ReverseConsecutive) 1204 for (unsigned i = VL.size() - 1; i > 0; --i) 1205 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1206 ReverseConsecutive = false; 1207 break; 1208 } 1209 1210 BS.cancelScheduling(VL); 1211 newTreeEntry(VL, false); 1212 1213 if (ReverseConsecutive) { 1214 ++NumLoadsWantToChangeOrder; 1215 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1216 } else { 1217 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1218 } 1219 return; 1220 } 1221 case Instruction::ZExt: 1222 case Instruction::SExt: 1223 case Instruction::FPToUI: 1224 case Instruction::FPToSI: 1225 case Instruction::FPExt: 1226 case Instruction::PtrToInt: 1227 case Instruction::IntToPtr: 1228 case Instruction::SIToFP: 1229 case Instruction::UIToFP: 1230 case Instruction::Trunc: 1231 case Instruction::FPTrunc: 1232 case Instruction::BitCast: { 1233 Type *SrcTy = VL0->getOperand(0)->getType(); 1234 for (unsigned i = 0; i < VL.size(); ++i) { 1235 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1236 if (Ty != SrcTy || !isValidElementType(Ty)) { 1237 BS.cancelScheduling(VL); 1238 newTreeEntry(VL, false); 1239 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1240 return; 1241 } 1242 } 1243 newTreeEntry(VL, true); 1244 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1245 1246 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1247 ValueList Operands; 1248 // Prepare the operand vector. 1249 for (Value *j : VL) 1250 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1251 1252 buildTree_rec(Operands, Depth+1); 1253 } 1254 return; 1255 } 1256 case Instruction::ICmp: 1257 case Instruction::FCmp: { 1258 // Check that all of the compares have the same predicate. 1259 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1260 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1261 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1262 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1263 if (Cmp->getPredicate() != P0 || 1264 Cmp->getOperand(0)->getType() != ComparedTy) { 1265 BS.cancelScheduling(VL); 1266 newTreeEntry(VL, false); 1267 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1268 return; 1269 } 1270 } 1271 1272 newTreeEntry(VL, true); 1273 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1274 1275 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1276 ValueList Operands; 1277 // Prepare the operand vector. 1278 for (Value *j : VL) 1279 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1280 1281 buildTree_rec(Operands, Depth+1); 1282 } 1283 return; 1284 } 1285 case Instruction::Select: 1286 case Instruction::Add: 1287 case Instruction::FAdd: 1288 case Instruction::Sub: 1289 case Instruction::FSub: 1290 case Instruction::Mul: 1291 case Instruction::FMul: 1292 case Instruction::UDiv: 1293 case Instruction::SDiv: 1294 case Instruction::FDiv: 1295 case Instruction::URem: 1296 case Instruction::SRem: 1297 case Instruction::FRem: 1298 case Instruction::Shl: 1299 case Instruction::LShr: 1300 case Instruction::AShr: 1301 case Instruction::And: 1302 case Instruction::Or: 1303 case Instruction::Xor: { 1304 newTreeEntry(VL, true); 1305 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1306 1307 // Sort operands of the instructions so that each side is more likely to 1308 // have the same opcode. 1309 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1310 ValueList Left, Right; 1311 reorderInputsAccordingToOpcode(VL, Left, Right); 1312 buildTree_rec(Left, Depth + 1); 1313 buildTree_rec(Right, Depth + 1); 1314 return; 1315 } 1316 1317 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1318 ValueList Operands; 1319 // Prepare the operand vector. 1320 for (Value *j : VL) 1321 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1322 1323 buildTree_rec(Operands, Depth+1); 1324 } 1325 return; 1326 } 1327 case Instruction::GetElementPtr: { 1328 // We don't combine GEPs with complicated (nested) indexing. 1329 for (unsigned j = 0; j < VL.size(); ++j) { 1330 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1331 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1332 BS.cancelScheduling(VL); 1333 newTreeEntry(VL, false); 1334 return; 1335 } 1336 } 1337 1338 // We can't combine several GEPs into one vector if they operate on 1339 // different types. 1340 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1341 for (unsigned j = 0; j < VL.size(); ++j) { 1342 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1343 if (Ty0 != CurTy) { 1344 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1345 BS.cancelScheduling(VL); 1346 newTreeEntry(VL, false); 1347 return; 1348 } 1349 } 1350 1351 // We don't combine GEPs with non-constant indexes. 1352 for (unsigned j = 0; j < VL.size(); ++j) { 1353 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1354 if (!isa<ConstantInt>(Op)) { 1355 DEBUG( 1356 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1357 BS.cancelScheduling(VL); 1358 newTreeEntry(VL, false); 1359 return; 1360 } 1361 } 1362 1363 newTreeEntry(VL, true); 1364 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1365 for (unsigned i = 0, e = 2; i < e; ++i) { 1366 ValueList Operands; 1367 // Prepare the operand vector. 1368 for (Value *j : VL) 1369 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1370 1371 buildTree_rec(Operands, Depth + 1); 1372 } 1373 return; 1374 } 1375 case Instruction::Store: { 1376 // Check if the stores are consecutive or of we need to swizzle them. 1377 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1378 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1379 BS.cancelScheduling(VL); 1380 newTreeEntry(VL, false); 1381 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1382 return; 1383 } 1384 1385 newTreeEntry(VL, true); 1386 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1387 1388 ValueList Operands; 1389 for (Value *j : VL) 1390 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1391 1392 buildTree_rec(Operands, Depth + 1); 1393 return; 1394 } 1395 case Instruction::Call: { 1396 // Check if the calls are all to the same vectorizable intrinsic. 1397 CallInst *CI = cast<CallInst>(VL[0]); 1398 // Check if this is an Intrinsic call or something that can be 1399 // represented by an intrinsic call 1400 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1401 if (!isTriviallyVectorizable(ID)) { 1402 BS.cancelScheduling(VL); 1403 newTreeEntry(VL, false); 1404 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1405 return; 1406 } 1407 Function *Int = CI->getCalledFunction(); 1408 Value *A1I = nullptr; 1409 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1410 A1I = CI->getArgOperand(1); 1411 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1412 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1413 if (!CI2 || CI2->getCalledFunction() != Int || 1414 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1415 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1416 BS.cancelScheduling(VL); 1417 newTreeEntry(VL, false); 1418 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1419 << "\n"); 1420 return; 1421 } 1422 // ctlz,cttz and powi are special intrinsics whose second argument 1423 // should be same in order for them to be vectorized. 1424 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1425 Value *A1J = CI2->getArgOperand(1); 1426 if (A1I != A1J) { 1427 BS.cancelScheduling(VL); 1428 newTreeEntry(VL, false); 1429 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1430 << " argument "<< A1I<<"!=" << A1J 1431 << "\n"); 1432 return; 1433 } 1434 } 1435 // Verify that the bundle operands are identical between the two calls. 1436 if (CI->hasOperandBundles() && 1437 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1438 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1439 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1440 BS.cancelScheduling(VL); 1441 newTreeEntry(VL, false); 1442 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1443 << *VL[i] << '\n'); 1444 return; 1445 } 1446 } 1447 1448 newTreeEntry(VL, true); 1449 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1450 ValueList Operands; 1451 // Prepare the operand vector. 1452 for (Value *j : VL) { 1453 CallInst *CI2 = dyn_cast<CallInst>(j); 1454 Operands.push_back(CI2->getArgOperand(i)); 1455 } 1456 buildTree_rec(Operands, Depth + 1); 1457 } 1458 return; 1459 } 1460 case Instruction::ShuffleVector: { 1461 // If this is not an alternate sequence of opcode like add-sub 1462 // then do not vectorize this instruction. 1463 if (!isAltShuffle) { 1464 BS.cancelScheduling(VL); 1465 newTreeEntry(VL, false); 1466 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1467 return; 1468 } 1469 newTreeEntry(VL, true); 1470 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1471 1472 // Reorder operands if reordering would enable vectorization. 1473 if (isa<BinaryOperator>(VL0)) { 1474 ValueList Left, Right; 1475 reorderAltShuffleOperands(VL, Left, Right); 1476 buildTree_rec(Left, Depth + 1); 1477 buildTree_rec(Right, Depth + 1); 1478 return; 1479 } 1480 1481 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1482 ValueList Operands; 1483 // Prepare the operand vector. 1484 for (Value *j : VL) 1485 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1486 1487 buildTree_rec(Operands, Depth + 1); 1488 } 1489 return; 1490 } 1491 default: 1492 BS.cancelScheduling(VL); 1493 newTreeEntry(VL, false); 1494 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1495 return; 1496 } 1497 } 1498 1499 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1500 unsigned N; 1501 Type *EltTy; 1502 auto *ST = dyn_cast<StructType>(T); 1503 if (ST) { 1504 N = ST->getNumElements(); 1505 EltTy = *ST->element_begin(); 1506 } else { 1507 N = cast<ArrayType>(T)->getNumElements(); 1508 EltTy = cast<ArrayType>(T)->getElementType(); 1509 } 1510 if (!isValidElementType(EltTy)) 1511 return 0; 1512 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1513 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1514 return 0; 1515 if (ST) { 1516 // Check that struct is homogeneous. 1517 for (const auto *Ty : ST->elements()) 1518 if (Ty != EltTy) 1519 return 0; 1520 } 1521 return N; 1522 } 1523 1524 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1525 assert(Opcode == Instruction::ExtractElement || 1526 Opcode == Instruction::ExtractValue); 1527 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1528 // Check if all of the extracts come from the same vector and from the 1529 // correct offset. 1530 Value *VL0 = VL[0]; 1531 Instruction *E0 = cast<Instruction>(VL0); 1532 Value *Vec = E0->getOperand(0); 1533 1534 // We have to extract from a vector/aggregate with the same number of elements. 1535 unsigned NElts; 1536 if (Opcode == Instruction::ExtractValue) { 1537 const DataLayout &DL = E0->getModule()->getDataLayout(); 1538 NElts = canMapToVector(Vec->getType(), DL); 1539 if (!NElts) 1540 return false; 1541 // Check if load can be rewritten as load of vector. 1542 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1543 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1544 return false; 1545 } else { 1546 NElts = Vec->getType()->getVectorNumElements(); 1547 } 1548 1549 if (NElts != VL.size()) 1550 return false; 1551 1552 // Check that all of the indices extract from the correct offset. 1553 if (!matchExtractIndex(E0, 0, Opcode)) 1554 return false; 1555 1556 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1557 Instruction *E = cast<Instruction>(VL[i]); 1558 if (!matchExtractIndex(E, i, Opcode)) 1559 return false; 1560 if (E->getOperand(0) != Vec) 1561 return false; 1562 } 1563 1564 return true; 1565 } 1566 1567 int BoUpSLP::getEntryCost(TreeEntry *E) { 1568 ArrayRef<Value*> VL = E->Scalars; 1569 1570 Type *ScalarTy = VL[0]->getType(); 1571 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1572 ScalarTy = SI->getValueOperand()->getType(); 1573 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1574 1575 // If we have computed a smaller type for the expression, update VecTy so 1576 // that the costs will be accurate. 1577 if (MinBWs.count(VL[0])) 1578 VecTy = VectorType::get( 1579 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1580 1581 if (E->NeedToGather) { 1582 if (allConstant(VL)) 1583 return 0; 1584 if (isSplat(VL)) { 1585 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1586 } 1587 return getGatherCost(E->Scalars); 1588 } 1589 unsigned Opcode = getSameOpcode(VL); 1590 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1591 Instruction *VL0 = cast<Instruction>(VL[0]); 1592 switch (Opcode) { 1593 case Instruction::PHI: { 1594 return 0; 1595 } 1596 case Instruction::ExtractValue: 1597 case Instruction::ExtractElement: { 1598 if (canReuseExtract(VL, Opcode)) { 1599 int DeadCost = 0; 1600 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1601 Instruction *E = cast<Instruction>(VL[i]); 1602 if (E->hasOneUse()) 1603 // Take credit for instruction that will become dead. 1604 DeadCost += 1605 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1606 } 1607 return -DeadCost; 1608 } 1609 return getGatherCost(VecTy); 1610 } 1611 case Instruction::ZExt: 1612 case Instruction::SExt: 1613 case Instruction::FPToUI: 1614 case Instruction::FPToSI: 1615 case Instruction::FPExt: 1616 case Instruction::PtrToInt: 1617 case Instruction::IntToPtr: 1618 case Instruction::SIToFP: 1619 case Instruction::UIToFP: 1620 case Instruction::Trunc: 1621 case Instruction::FPTrunc: 1622 case Instruction::BitCast: { 1623 Type *SrcTy = VL0->getOperand(0)->getType(); 1624 1625 // Calculate the cost of this instruction. 1626 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1627 VL0->getType(), SrcTy); 1628 1629 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1630 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1631 return VecCost - ScalarCost; 1632 } 1633 case Instruction::FCmp: 1634 case Instruction::ICmp: 1635 case Instruction::Select: { 1636 // Calculate the cost of this instruction. 1637 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1638 int ScalarCost = VecTy->getNumElements() * 1639 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1640 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1641 return VecCost - ScalarCost; 1642 } 1643 case Instruction::Add: 1644 case Instruction::FAdd: 1645 case Instruction::Sub: 1646 case Instruction::FSub: 1647 case Instruction::Mul: 1648 case Instruction::FMul: 1649 case Instruction::UDiv: 1650 case Instruction::SDiv: 1651 case Instruction::FDiv: 1652 case Instruction::URem: 1653 case Instruction::SRem: 1654 case Instruction::FRem: 1655 case Instruction::Shl: 1656 case Instruction::LShr: 1657 case Instruction::AShr: 1658 case Instruction::And: 1659 case Instruction::Or: 1660 case Instruction::Xor: { 1661 // Certain instructions can be cheaper to vectorize if they have a 1662 // constant second vector operand. 1663 TargetTransformInfo::OperandValueKind Op1VK = 1664 TargetTransformInfo::OK_AnyValue; 1665 TargetTransformInfo::OperandValueKind Op2VK = 1666 TargetTransformInfo::OK_UniformConstantValue; 1667 TargetTransformInfo::OperandValueProperties Op1VP = 1668 TargetTransformInfo::OP_None; 1669 TargetTransformInfo::OperandValueProperties Op2VP = 1670 TargetTransformInfo::OP_None; 1671 1672 // If all operands are exactly the same ConstantInt then set the 1673 // operand kind to OK_UniformConstantValue. 1674 // If instead not all operands are constants, then set the operand kind 1675 // to OK_AnyValue. If all operands are constants but not the same, 1676 // then set the operand kind to OK_NonUniformConstantValue. 1677 ConstantInt *CInt = nullptr; 1678 for (unsigned i = 0; i < VL.size(); ++i) { 1679 const Instruction *I = cast<Instruction>(VL[i]); 1680 if (!isa<ConstantInt>(I->getOperand(1))) { 1681 Op2VK = TargetTransformInfo::OK_AnyValue; 1682 break; 1683 } 1684 if (i == 0) { 1685 CInt = cast<ConstantInt>(I->getOperand(1)); 1686 continue; 1687 } 1688 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1689 CInt != cast<ConstantInt>(I->getOperand(1))) 1690 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1691 } 1692 // FIXME: Currently cost of model modification for division by power of 1693 // 2 is handled for X86 and AArch64. Add support for other targets. 1694 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1695 CInt->getValue().isPowerOf2()) 1696 Op2VP = TargetTransformInfo::OP_PowerOf2; 1697 1698 int ScalarCost = VecTy->getNumElements() * 1699 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1700 Op2VK, Op1VP, Op2VP); 1701 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1702 Op1VP, Op2VP); 1703 return VecCost - ScalarCost; 1704 } 1705 case Instruction::GetElementPtr: { 1706 TargetTransformInfo::OperandValueKind Op1VK = 1707 TargetTransformInfo::OK_AnyValue; 1708 TargetTransformInfo::OperandValueKind Op2VK = 1709 TargetTransformInfo::OK_UniformConstantValue; 1710 1711 int ScalarCost = 1712 VecTy->getNumElements() * 1713 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1714 int VecCost = 1715 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1716 1717 return VecCost - ScalarCost; 1718 } 1719 case Instruction::Load: { 1720 // Cost of wide load - cost of scalar loads. 1721 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1722 int ScalarLdCost = VecTy->getNumElements() * 1723 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1724 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1725 VecTy, alignment, 0); 1726 return VecLdCost - ScalarLdCost; 1727 } 1728 case Instruction::Store: { 1729 // We know that we can merge the stores. Calculate the cost. 1730 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1731 int ScalarStCost = VecTy->getNumElements() * 1732 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1733 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1734 VecTy, alignment, 0); 1735 return VecStCost - ScalarStCost; 1736 } 1737 case Instruction::Call: { 1738 CallInst *CI = cast<CallInst>(VL0); 1739 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1740 1741 // Calculate the cost of the scalar and vector calls. 1742 SmallVector<Type*, 4> ScalarTys, VecTys; 1743 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1744 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1745 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1746 VecTy->getNumElements())); 1747 } 1748 1749 FastMathFlags FMF; 1750 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1751 FMF = FPMO->getFastMathFlags(); 1752 1753 int ScalarCallCost = VecTy->getNumElements() * 1754 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1755 1756 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1757 1758 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1759 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1760 << " for " << *CI << "\n"); 1761 1762 return VecCallCost - ScalarCallCost; 1763 } 1764 case Instruction::ShuffleVector: { 1765 TargetTransformInfo::OperandValueKind Op1VK = 1766 TargetTransformInfo::OK_AnyValue; 1767 TargetTransformInfo::OperandValueKind Op2VK = 1768 TargetTransformInfo::OK_AnyValue; 1769 int ScalarCost = 0; 1770 int VecCost = 0; 1771 for (Value *i : VL) { 1772 Instruction *I = cast<Instruction>(i); 1773 if (!I) 1774 break; 1775 ScalarCost += 1776 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1777 } 1778 // VecCost is equal to sum of the cost of creating 2 vectors 1779 // and the cost of creating shuffle. 1780 Instruction *I0 = cast<Instruction>(VL[0]); 1781 VecCost = 1782 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1783 Instruction *I1 = cast<Instruction>(VL[1]); 1784 VecCost += 1785 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1786 VecCost += 1787 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1788 return VecCost - ScalarCost; 1789 } 1790 default: 1791 llvm_unreachable("Unknown instruction"); 1792 } 1793 } 1794 1795 bool BoUpSLP::isFullyVectorizableTinyTree() { 1796 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1797 VectorizableTree.size() << " is fully vectorizable .\n"); 1798 1799 // We only handle trees of heights 1 and 2. 1800 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1801 return true; 1802 1803 if (VectorizableTree.size() != 2) 1804 return false; 1805 1806 // Handle splat and all-constants stores. 1807 if (!VectorizableTree[0].NeedToGather && 1808 (allConstant(VectorizableTree[1].Scalars) || 1809 isSplat(VectorizableTree[1].Scalars))) 1810 return true; 1811 1812 // Gathering cost would be too much for tiny trees. 1813 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1814 return false; 1815 1816 return true; 1817 } 1818 1819 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1820 1821 // We can vectorize the tree if its size is greater than or equal to the 1822 // minimum size specified by the MinTreeSize command line option. 1823 if (VectorizableTree.size() >= MinTreeSize) 1824 return false; 1825 1826 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1827 // can vectorize it if we can prove it fully vectorizable. 1828 if (isFullyVectorizableTinyTree()) 1829 return false; 1830 1831 assert(VectorizableTree.empty() 1832 ? ExternalUses.empty() 1833 : true && "We shouldn't have any external users"); 1834 1835 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1836 // vectorizable. 1837 return true; 1838 } 1839 1840 int BoUpSLP::getSpillCost() { 1841 // Walk from the bottom of the tree to the top, tracking which values are 1842 // live. When we see a call instruction that is not part of our tree, 1843 // query TTI to see if there is a cost to keeping values live over it 1844 // (for example, if spills and fills are required). 1845 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1846 int Cost = 0; 1847 1848 SmallPtrSet<Instruction*, 4> LiveValues; 1849 Instruction *PrevInst = nullptr; 1850 1851 for (const auto &N : VectorizableTree) { 1852 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1853 if (!Inst) 1854 continue; 1855 1856 if (!PrevInst) { 1857 PrevInst = Inst; 1858 continue; 1859 } 1860 1861 // Update LiveValues. 1862 LiveValues.erase(PrevInst); 1863 for (auto &J : PrevInst->operands()) { 1864 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1865 LiveValues.insert(cast<Instruction>(&*J)); 1866 } 1867 1868 DEBUG( 1869 dbgs() << "SLP: #LV: " << LiveValues.size(); 1870 for (auto *X : LiveValues) 1871 dbgs() << " " << X->getName(); 1872 dbgs() << ", Looking at "; 1873 Inst->dump(); 1874 ); 1875 1876 // Now find the sequence of instructions between PrevInst and Inst. 1877 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1878 PrevInstIt = 1879 PrevInst->getIterator().getReverse(); 1880 while (InstIt != PrevInstIt) { 1881 if (PrevInstIt == PrevInst->getParent()->rend()) { 1882 PrevInstIt = Inst->getParent()->rbegin(); 1883 continue; 1884 } 1885 1886 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1887 SmallVector<Type*, 4> V; 1888 for (auto *II : LiveValues) 1889 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1890 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1891 } 1892 1893 ++PrevInstIt; 1894 } 1895 1896 PrevInst = Inst; 1897 } 1898 1899 return Cost; 1900 } 1901 1902 int BoUpSLP::getTreeCost() { 1903 int Cost = 0; 1904 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1905 VectorizableTree.size() << ".\n"); 1906 1907 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1908 1909 for (TreeEntry &TE : VectorizableTree) { 1910 int C = getEntryCost(&TE); 1911 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1912 << *TE.Scalars[0] << ".\n"); 1913 Cost += C; 1914 } 1915 1916 SmallSet<Value *, 16> ExtractCostCalculated; 1917 int ExtractCost = 0; 1918 for (ExternalUser &EU : ExternalUses) { 1919 // We only add extract cost once for the same scalar. 1920 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1921 continue; 1922 1923 // Uses by ephemeral values are free (because the ephemeral value will be 1924 // removed prior to code generation, and so the extraction will be 1925 // removed as well). 1926 if (EphValues.count(EU.User)) 1927 continue; 1928 1929 // If we plan to rewrite the tree in a smaller type, we will need to sign 1930 // extend the extracted value back to the original type. Here, we account 1931 // for the extract and the added cost of the sign extend if needed. 1932 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1933 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1934 if (MinBWs.count(ScalarRoot)) { 1935 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 1936 auto Extend = 1937 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 1938 VecTy = VectorType::get(MinTy, BundleWidth); 1939 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 1940 VecTy, EU.Lane); 1941 } else { 1942 ExtractCost += 1943 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1944 } 1945 } 1946 1947 int SpillCost = getSpillCost(); 1948 Cost += SpillCost + ExtractCost; 1949 1950 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1951 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1952 << "SLP: Total Cost = " << Cost << ".\n"); 1953 return Cost; 1954 } 1955 1956 int BoUpSLP::getGatherCost(Type *Ty) { 1957 int Cost = 0; 1958 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1959 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1960 return Cost; 1961 } 1962 1963 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1964 // Find the type of the operands in VL. 1965 Type *ScalarTy = VL[0]->getType(); 1966 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1967 ScalarTy = SI->getValueOperand()->getType(); 1968 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1969 // Find the cost of inserting/extracting values from the vector. 1970 return getGatherCost(VecTy); 1971 } 1972 1973 // Reorder commutative operations in alternate shuffle if the resulting vectors 1974 // are consecutive loads. This would allow us to vectorize the tree. 1975 // If we have something like- 1976 // load a[0] - load b[0] 1977 // load b[1] + load a[1] 1978 // load a[2] - load b[2] 1979 // load a[3] + load b[3] 1980 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1981 // code. 1982 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1983 SmallVectorImpl<Value *> &Left, 1984 SmallVectorImpl<Value *> &Right) { 1985 // Push left and right operands of binary operation into Left and Right 1986 for (Value *i : VL) { 1987 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1988 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1989 } 1990 1991 // Reorder if we have a commutative operation and consecutive access 1992 // are on either side of the alternate instructions. 1993 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1994 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1995 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1996 Instruction *VL1 = cast<Instruction>(VL[j]); 1997 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1998 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1999 std::swap(Left[j], Right[j]); 2000 continue; 2001 } else if (VL2->isCommutative() && 2002 isConsecutiveAccess(L, L1, *DL, *SE)) { 2003 std::swap(Left[j + 1], Right[j + 1]); 2004 continue; 2005 } 2006 // else unchanged 2007 } 2008 } 2009 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2010 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2011 Instruction *VL1 = cast<Instruction>(VL[j]); 2012 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2013 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2014 std::swap(Left[j], Right[j]); 2015 continue; 2016 } else if (VL2->isCommutative() && 2017 isConsecutiveAccess(L, L1, *DL, *SE)) { 2018 std::swap(Left[j + 1], Right[j + 1]); 2019 continue; 2020 } 2021 // else unchanged 2022 } 2023 } 2024 } 2025 } 2026 2027 // Return true if I should be commuted before adding it's left and right 2028 // operands to the arrays Left and Right. 2029 // 2030 // The vectorizer is trying to either have all elements one side being 2031 // instruction with the same opcode to enable further vectorization, or having 2032 // a splat to lower the vectorizing cost. 2033 static bool shouldReorderOperands(int i, Instruction &I, 2034 SmallVectorImpl<Value *> &Left, 2035 SmallVectorImpl<Value *> &Right, 2036 bool AllSameOpcodeLeft, 2037 bool AllSameOpcodeRight, bool SplatLeft, 2038 bool SplatRight) { 2039 Value *VLeft = I.getOperand(0); 2040 Value *VRight = I.getOperand(1); 2041 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2042 if (SplatRight) { 2043 if (VRight == Right[i - 1]) 2044 // Preserve SplatRight 2045 return false; 2046 if (VLeft == Right[i - 1]) { 2047 // Commuting would preserve SplatRight, but we don't want to break 2048 // SplatLeft either, i.e. preserve the original order if possible. 2049 // (FIXME: why do we care?) 2050 if (SplatLeft && VLeft == Left[i - 1]) 2051 return false; 2052 return true; 2053 } 2054 } 2055 // Symmetrically handle Right side. 2056 if (SplatLeft) { 2057 if (VLeft == Left[i - 1]) 2058 // Preserve SplatLeft 2059 return false; 2060 if (VRight == Left[i - 1]) 2061 return true; 2062 } 2063 2064 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2065 Instruction *IRight = dyn_cast<Instruction>(VRight); 2066 2067 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2068 // it and not the right, in this case we want to commute. 2069 if (AllSameOpcodeRight) { 2070 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2071 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2072 // Do not commute, a match on the right preserves AllSameOpcodeRight 2073 return false; 2074 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2075 // We have a match and may want to commute, but first check if there is 2076 // not also a match on the existing operands on the Left to preserve 2077 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2078 // (FIXME: why do we care?) 2079 if (AllSameOpcodeLeft && ILeft && 2080 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2081 return false; 2082 return true; 2083 } 2084 } 2085 // Symmetrically handle Left side. 2086 if (AllSameOpcodeLeft) { 2087 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2088 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2089 return false; 2090 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2091 return true; 2092 } 2093 return false; 2094 } 2095 2096 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2097 SmallVectorImpl<Value *> &Left, 2098 SmallVectorImpl<Value *> &Right) { 2099 2100 if (VL.size()) { 2101 // Peel the first iteration out of the loop since there's nothing 2102 // interesting to do anyway and it simplifies the checks in the loop. 2103 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2104 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2105 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2106 // Favor having instruction to the right. FIXME: why? 2107 std::swap(VLeft, VRight); 2108 Left.push_back(VLeft); 2109 Right.push_back(VRight); 2110 } 2111 2112 // Keep track if we have instructions with all the same opcode on one side. 2113 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2114 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2115 // Keep track if we have one side with all the same value (broadcast). 2116 bool SplatLeft = true; 2117 bool SplatRight = true; 2118 2119 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2120 Instruction *I = cast<Instruction>(VL[i]); 2121 assert(I->isCommutative() && "Can only process commutative instruction"); 2122 // Commute to favor either a splat or maximizing having the same opcodes on 2123 // one side. 2124 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2125 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2126 Left.push_back(I->getOperand(1)); 2127 Right.push_back(I->getOperand(0)); 2128 } else { 2129 Left.push_back(I->getOperand(0)); 2130 Right.push_back(I->getOperand(1)); 2131 } 2132 // Update Splat* and AllSameOpcode* after the insertion. 2133 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2134 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2135 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2136 (cast<Instruction>(Left[i - 1])->getOpcode() == 2137 cast<Instruction>(Left[i])->getOpcode()); 2138 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2139 (cast<Instruction>(Right[i - 1])->getOpcode() == 2140 cast<Instruction>(Right[i])->getOpcode()); 2141 } 2142 2143 // If one operand end up being broadcast, return this operand order. 2144 if (SplatRight || SplatLeft) 2145 return; 2146 2147 // Finally check if we can get longer vectorizable chain by reordering 2148 // without breaking the good operand order detected above. 2149 // E.g. If we have something like- 2150 // load a[0] load b[0] 2151 // load b[1] load a[1] 2152 // load a[2] load b[2] 2153 // load a[3] load b[3] 2154 // Reordering the second load b[1] load a[1] would allow us to vectorize 2155 // this code and we still retain AllSameOpcode property. 2156 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2157 // such as- 2158 // add a[0],c[0] load b[0] 2159 // add a[1],c[2] load b[1] 2160 // b[2] load b[2] 2161 // add a[3],c[3] load b[3] 2162 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2163 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2164 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2165 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2166 std::swap(Left[j + 1], Right[j + 1]); 2167 continue; 2168 } 2169 } 2170 } 2171 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2172 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2173 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2174 std::swap(Left[j + 1], Right[j + 1]); 2175 continue; 2176 } 2177 } 2178 } 2179 // else unchanged 2180 } 2181 } 2182 2183 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2184 2185 // Get the basic block this bundle is in. All instructions in the bundle 2186 // should be in this block. 2187 auto *Front = cast<Instruction>(VL.front()); 2188 auto *BB = Front->getParent(); 2189 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2190 return cast<Instruction>(V)->getParent() == BB; 2191 })); 2192 2193 // The last instruction in the bundle in program order. 2194 Instruction *LastInst = nullptr; 2195 2196 // Find the last instruction. The common case should be that BB has been 2197 // scheduled, and the last instruction is VL.back(). So we start with 2198 // VL.back() and iterate over schedule data until we reach the end of the 2199 // bundle. The end of the bundle is marked by null ScheduleData. 2200 if (BlocksSchedules.count(BB)) { 2201 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2202 if (Bundle && Bundle->isPartOfBundle()) 2203 for (; Bundle; Bundle = Bundle->NextInBundle) 2204 LastInst = Bundle->Inst; 2205 } 2206 2207 // LastInst can still be null at this point if there's either not an entry 2208 // for BB in BlocksSchedules or there's no ScheduleData available for 2209 // VL.back(). This can be the case if buildTree_rec aborts for various 2210 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2211 // size is reached, etc.). ScheduleData is initialized in the scheduling 2212 // "dry-run". 2213 // 2214 // If this happens, we can still find the last instruction by brute force. We 2215 // iterate forwards from Front (inclusive) until we either see all 2216 // instructions in the bundle or reach the end of the block. If Front is the 2217 // last instruction in program order, LastInst will be set to Front, and we 2218 // will visit all the remaining instructions in the block. 2219 // 2220 // One of the reasons we exit early from buildTree_rec is to place an upper 2221 // bound on compile-time. Thus, taking an additional compile-time hit here is 2222 // not ideal. However, this should be exceedingly rare since it requires that 2223 // we both exit early from buildTree_rec and that the bundle be out-of-order 2224 // (causing us to iterate all the way to the end of the block). 2225 if (!LastInst) { 2226 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2227 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2228 if (Bundle.erase(&I)) 2229 LastInst = &I; 2230 if (Bundle.empty()) 2231 break; 2232 } 2233 } 2234 2235 // Set the insertion point after the last instruction in the bundle. Set the 2236 // debug location to Front. 2237 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2238 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2239 } 2240 2241 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2242 Value *Vec = UndefValue::get(Ty); 2243 // Generate the 'InsertElement' instruction. 2244 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2245 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2246 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2247 GatherSeq.insert(Insrt); 2248 CSEBlocks.insert(Insrt->getParent()); 2249 2250 // Add to our 'need-to-extract' list. 2251 if (ScalarToTreeEntry.count(VL[i])) { 2252 int Idx = ScalarToTreeEntry[VL[i]]; 2253 TreeEntry *E = &VectorizableTree[Idx]; 2254 // Find which lane we need to extract. 2255 int FoundLane = -1; 2256 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2257 // Is this the lane of the scalar that we are looking for ? 2258 if (E->Scalars[Lane] == VL[i]) { 2259 FoundLane = Lane; 2260 break; 2261 } 2262 } 2263 assert(FoundLane >= 0 && "Could not find the correct lane"); 2264 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2265 } 2266 } 2267 } 2268 2269 return Vec; 2270 } 2271 2272 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2273 SmallDenseMap<Value*, int>::const_iterator Entry 2274 = ScalarToTreeEntry.find(VL[0]); 2275 if (Entry != ScalarToTreeEntry.end()) { 2276 int Idx = Entry->second; 2277 const TreeEntry *En = &VectorizableTree[Idx]; 2278 if (En->isSame(VL) && En->VectorizedValue) 2279 return En->VectorizedValue; 2280 } 2281 return nullptr; 2282 } 2283 2284 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2285 if (ScalarToTreeEntry.count(VL[0])) { 2286 int Idx = ScalarToTreeEntry[VL[0]]; 2287 TreeEntry *E = &VectorizableTree[Idx]; 2288 if (E->isSame(VL)) 2289 return vectorizeTree(E); 2290 } 2291 2292 Type *ScalarTy = VL[0]->getType(); 2293 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2294 ScalarTy = SI->getValueOperand()->getType(); 2295 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2296 2297 return Gather(VL, VecTy); 2298 } 2299 2300 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2301 IRBuilder<>::InsertPointGuard Guard(Builder); 2302 2303 if (E->VectorizedValue) { 2304 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2305 return E->VectorizedValue; 2306 } 2307 2308 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2309 Type *ScalarTy = VL0->getType(); 2310 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2311 ScalarTy = SI->getValueOperand()->getType(); 2312 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2313 2314 if (E->NeedToGather) { 2315 setInsertPointAfterBundle(E->Scalars); 2316 auto *V = Gather(E->Scalars, VecTy); 2317 E->VectorizedValue = V; 2318 return V; 2319 } 2320 2321 unsigned Opcode = getSameOpcode(E->Scalars); 2322 2323 switch (Opcode) { 2324 case Instruction::PHI: { 2325 PHINode *PH = dyn_cast<PHINode>(VL0); 2326 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2327 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2328 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2329 E->VectorizedValue = NewPhi; 2330 2331 // PHINodes may have multiple entries from the same block. We want to 2332 // visit every block once. 2333 SmallSet<BasicBlock*, 4> VisitedBBs; 2334 2335 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2336 ValueList Operands; 2337 BasicBlock *IBB = PH->getIncomingBlock(i); 2338 2339 if (!VisitedBBs.insert(IBB).second) { 2340 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2341 continue; 2342 } 2343 2344 // Prepare the operand vector. 2345 for (Value *V : E->Scalars) 2346 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2347 2348 Builder.SetInsertPoint(IBB->getTerminator()); 2349 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2350 Value *Vec = vectorizeTree(Operands); 2351 NewPhi->addIncoming(Vec, IBB); 2352 } 2353 2354 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2355 "Invalid number of incoming values"); 2356 return NewPhi; 2357 } 2358 2359 case Instruction::ExtractElement: { 2360 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2361 Value *V = VL0->getOperand(0); 2362 E->VectorizedValue = V; 2363 return V; 2364 } 2365 setInsertPointAfterBundle(E->Scalars); 2366 auto *V = Gather(E->Scalars, VecTy); 2367 E->VectorizedValue = V; 2368 return V; 2369 } 2370 case Instruction::ExtractValue: { 2371 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2372 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2373 Builder.SetInsertPoint(LI); 2374 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2375 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2376 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2377 E->VectorizedValue = V; 2378 return propagateMetadata(V, E->Scalars); 2379 } 2380 setInsertPointAfterBundle(E->Scalars); 2381 auto *V = Gather(E->Scalars, VecTy); 2382 E->VectorizedValue = V; 2383 return V; 2384 } 2385 case Instruction::ZExt: 2386 case Instruction::SExt: 2387 case Instruction::FPToUI: 2388 case Instruction::FPToSI: 2389 case Instruction::FPExt: 2390 case Instruction::PtrToInt: 2391 case Instruction::IntToPtr: 2392 case Instruction::SIToFP: 2393 case Instruction::UIToFP: 2394 case Instruction::Trunc: 2395 case Instruction::FPTrunc: 2396 case Instruction::BitCast: { 2397 ValueList INVL; 2398 for (Value *V : E->Scalars) 2399 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2400 2401 setInsertPointAfterBundle(E->Scalars); 2402 2403 Value *InVec = vectorizeTree(INVL); 2404 2405 if (Value *V = alreadyVectorized(E->Scalars)) 2406 return V; 2407 2408 CastInst *CI = dyn_cast<CastInst>(VL0); 2409 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2410 E->VectorizedValue = V; 2411 ++NumVectorInstructions; 2412 return V; 2413 } 2414 case Instruction::FCmp: 2415 case Instruction::ICmp: { 2416 ValueList LHSV, RHSV; 2417 for (Value *V : E->Scalars) { 2418 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2419 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2420 } 2421 2422 setInsertPointAfterBundle(E->Scalars); 2423 2424 Value *L = vectorizeTree(LHSV); 2425 Value *R = vectorizeTree(RHSV); 2426 2427 if (Value *V = alreadyVectorized(E->Scalars)) 2428 return V; 2429 2430 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2431 Value *V; 2432 if (Opcode == Instruction::FCmp) 2433 V = Builder.CreateFCmp(P0, L, R); 2434 else 2435 V = Builder.CreateICmp(P0, L, R); 2436 2437 E->VectorizedValue = V; 2438 propagateIRFlags(E->VectorizedValue, E->Scalars); 2439 ++NumVectorInstructions; 2440 return V; 2441 } 2442 case Instruction::Select: { 2443 ValueList TrueVec, FalseVec, CondVec; 2444 for (Value *V : E->Scalars) { 2445 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2446 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2447 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2448 } 2449 2450 setInsertPointAfterBundle(E->Scalars); 2451 2452 Value *Cond = vectorizeTree(CondVec); 2453 Value *True = vectorizeTree(TrueVec); 2454 Value *False = vectorizeTree(FalseVec); 2455 2456 if (Value *V = alreadyVectorized(E->Scalars)) 2457 return V; 2458 2459 Value *V = Builder.CreateSelect(Cond, True, False); 2460 E->VectorizedValue = V; 2461 ++NumVectorInstructions; 2462 return V; 2463 } 2464 case Instruction::Add: 2465 case Instruction::FAdd: 2466 case Instruction::Sub: 2467 case Instruction::FSub: 2468 case Instruction::Mul: 2469 case Instruction::FMul: 2470 case Instruction::UDiv: 2471 case Instruction::SDiv: 2472 case Instruction::FDiv: 2473 case Instruction::URem: 2474 case Instruction::SRem: 2475 case Instruction::FRem: 2476 case Instruction::Shl: 2477 case Instruction::LShr: 2478 case Instruction::AShr: 2479 case Instruction::And: 2480 case Instruction::Or: 2481 case Instruction::Xor: { 2482 ValueList LHSVL, RHSVL; 2483 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2484 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2485 else 2486 for (Value *V : E->Scalars) { 2487 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2488 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2489 } 2490 2491 setInsertPointAfterBundle(E->Scalars); 2492 2493 Value *LHS = vectorizeTree(LHSVL); 2494 Value *RHS = vectorizeTree(RHSVL); 2495 2496 if (LHS == RHS && isa<Instruction>(LHS)) { 2497 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2498 } 2499 2500 if (Value *V = alreadyVectorized(E->Scalars)) 2501 return V; 2502 2503 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2504 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2505 E->VectorizedValue = V; 2506 propagateIRFlags(E->VectorizedValue, E->Scalars); 2507 ++NumVectorInstructions; 2508 2509 if (Instruction *I = dyn_cast<Instruction>(V)) 2510 return propagateMetadata(I, E->Scalars); 2511 2512 return V; 2513 } 2514 case Instruction::Load: { 2515 // Loads are inserted at the head of the tree because we don't want to 2516 // sink them all the way down past store instructions. 2517 setInsertPointAfterBundle(E->Scalars); 2518 2519 LoadInst *LI = cast<LoadInst>(VL0); 2520 Type *ScalarLoadTy = LI->getType(); 2521 unsigned AS = LI->getPointerAddressSpace(); 2522 2523 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2524 VecTy->getPointerTo(AS)); 2525 2526 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2527 // ExternalUses list to make sure that an extract will be generated in the 2528 // future. 2529 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2530 ExternalUses.push_back( 2531 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2532 2533 unsigned Alignment = LI->getAlignment(); 2534 LI = Builder.CreateLoad(VecPtr); 2535 if (!Alignment) { 2536 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2537 } 2538 LI->setAlignment(Alignment); 2539 E->VectorizedValue = LI; 2540 ++NumVectorInstructions; 2541 return propagateMetadata(LI, E->Scalars); 2542 } 2543 case Instruction::Store: { 2544 StoreInst *SI = cast<StoreInst>(VL0); 2545 unsigned Alignment = SI->getAlignment(); 2546 unsigned AS = SI->getPointerAddressSpace(); 2547 2548 ValueList ValueOp; 2549 for (Value *V : E->Scalars) 2550 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2551 2552 setInsertPointAfterBundle(E->Scalars); 2553 2554 Value *VecValue = vectorizeTree(ValueOp); 2555 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2556 VecTy->getPointerTo(AS)); 2557 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2558 2559 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2560 // ExternalUses list to make sure that an extract will be generated in the 2561 // future. 2562 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2563 ExternalUses.push_back( 2564 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2565 2566 if (!Alignment) { 2567 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2568 } 2569 S->setAlignment(Alignment); 2570 E->VectorizedValue = S; 2571 ++NumVectorInstructions; 2572 return propagateMetadata(S, E->Scalars); 2573 } 2574 case Instruction::GetElementPtr: { 2575 setInsertPointAfterBundle(E->Scalars); 2576 2577 ValueList Op0VL; 2578 for (Value *V : E->Scalars) 2579 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2580 2581 Value *Op0 = vectorizeTree(Op0VL); 2582 2583 std::vector<Value *> OpVecs; 2584 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2585 ++j) { 2586 ValueList OpVL; 2587 for (Value *V : E->Scalars) 2588 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2589 2590 Value *OpVec = vectorizeTree(OpVL); 2591 OpVecs.push_back(OpVec); 2592 } 2593 2594 Value *V = Builder.CreateGEP( 2595 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2596 E->VectorizedValue = V; 2597 ++NumVectorInstructions; 2598 2599 if (Instruction *I = dyn_cast<Instruction>(V)) 2600 return propagateMetadata(I, E->Scalars); 2601 2602 return V; 2603 } 2604 case Instruction::Call: { 2605 CallInst *CI = cast<CallInst>(VL0); 2606 setInsertPointAfterBundle(E->Scalars); 2607 Function *FI; 2608 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2609 Value *ScalarArg = nullptr; 2610 if (CI && (FI = CI->getCalledFunction())) { 2611 IID = FI->getIntrinsicID(); 2612 } 2613 std::vector<Value *> OpVecs; 2614 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2615 ValueList OpVL; 2616 // ctlz,cttz and powi are special intrinsics whose second argument is 2617 // a scalar. This argument should not be vectorized. 2618 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2619 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2620 ScalarArg = CEI->getArgOperand(j); 2621 OpVecs.push_back(CEI->getArgOperand(j)); 2622 continue; 2623 } 2624 for (Value *V : E->Scalars) { 2625 CallInst *CEI = cast<CallInst>(V); 2626 OpVL.push_back(CEI->getArgOperand(j)); 2627 } 2628 2629 Value *OpVec = vectorizeTree(OpVL); 2630 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2631 OpVecs.push_back(OpVec); 2632 } 2633 2634 Module *M = F->getParent(); 2635 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2636 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2637 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2638 SmallVector<OperandBundleDef, 1> OpBundles; 2639 CI->getOperandBundlesAsDefs(OpBundles); 2640 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2641 2642 // The scalar argument uses an in-tree scalar so we add the new vectorized 2643 // call to ExternalUses list to make sure that an extract will be 2644 // generated in the future. 2645 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2646 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2647 2648 E->VectorizedValue = V; 2649 propagateIRFlags(E->VectorizedValue, E->Scalars); 2650 ++NumVectorInstructions; 2651 return V; 2652 } 2653 case Instruction::ShuffleVector: { 2654 ValueList LHSVL, RHSVL; 2655 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2656 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2657 setInsertPointAfterBundle(E->Scalars); 2658 2659 Value *LHS = vectorizeTree(LHSVL); 2660 Value *RHS = vectorizeTree(RHSVL); 2661 2662 if (Value *V = alreadyVectorized(E->Scalars)) 2663 return V; 2664 2665 // Create a vector of LHS op1 RHS 2666 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2667 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2668 2669 // Create a vector of LHS op2 RHS 2670 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2671 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2672 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2673 2674 // Create shuffle to take alternate operations from the vector. 2675 // Also, gather up odd and even scalar ops to propagate IR flags to 2676 // each vector operation. 2677 ValueList OddScalars, EvenScalars; 2678 unsigned e = E->Scalars.size(); 2679 SmallVector<Constant *, 8> Mask(e); 2680 for (unsigned i = 0; i < e; ++i) { 2681 if (i & 1) { 2682 Mask[i] = Builder.getInt32(e + i); 2683 OddScalars.push_back(E->Scalars[i]); 2684 } else { 2685 Mask[i] = Builder.getInt32(i); 2686 EvenScalars.push_back(E->Scalars[i]); 2687 } 2688 } 2689 2690 Value *ShuffleMask = ConstantVector::get(Mask); 2691 propagateIRFlags(V0, EvenScalars); 2692 propagateIRFlags(V1, OddScalars); 2693 2694 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2695 E->VectorizedValue = V; 2696 ++NumVectorInstructions; 2697 if (Instruction *I = dyn_cast<Instruction>(V)) 2698 return propagateMetadata(I, E->Scalars); 2699 2700 return V; 2701 } 2702 default: 2703 llvm_unreachable("unknown inst"); 2704 } 2705 return nullptr; 2706 } 2707 2708 Value *BoUpSLP::vectorizeTree() { 2709 2710 // All blocks must be scheduled before any instructions are inserted. 2711 for (auto &BSIter : BlocksSchedules) { 2712 scheduleBlock(BSIter.second.get()); 2713 } 2714 2715 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2716 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2717 2718 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2719 // vectorized root. InstCombine will then rewrite the entire expression. We 2720 // sign extend the extracted values below. 2721 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2722 if (MinBWs.count(ScalarRoot)) { 2723 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2724 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2725 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2726 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2727 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2728 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2729 VectorizableTree[0].VectorizedValue = Trunc; 2730 } 2731 2732 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2733 2734 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2735 // specified by ScalarType. 2736 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2737 if (!MinBWs.count(ScalarRoot)) 2738 return Ex; 2739 if (MinBWs[ScalarRoot].second) 2740 return Builder.CreateSExt(Ex, ScalarType); 2741 return Builder.CreateZExt(Ex, ScalarType); 2742 }; 2743 2744 // Extract all of the elements with the external uses. 2745 for (const auto &ExternalUse : ExternalUses) { 2746 Value *Scalar = ExternalUse.Scalar; 2747 llvm::User *User = ExternalUse.User; 2748 2749 // Skip users that we already RAUW. This happens when one instruction 2750 // has multiple uses of the same value. 2751 if (!is_contained(Scalar->users(), User)) 2752 continue; 2753 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2754 2755 int Idx = ScalarToTreeEntry[Scalar]; 2756 TreeEntry *E = &VectorizableTree[Idx]; 2757 assert(!E->NeedToGather && "Extracting from a gather list"); 2758 2759 Value *Vec = E->VectorizedValue; 2760 assert(Vec && "Can't find vectorizable value"); 2761 2762 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2763 // Generate extracts for out-of-tree users. 2764 // Find the insertion point for the extractelement lane. 2765 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2766 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2767 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2768 if (PH->getIncomingValue(i) == Scalar) { 2769 TerminatorInst *IncomingTerminator = 2770 PH->getIncomingBlock(i)->getTerminator(); 2771 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2772 Builder.SetInsertPoint(VecI->getParent(), 2773 std::next(VecI->getIterator())); 2774 } else { 2775 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2776 } 2777 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2778 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2779 CSEBlocks.insert(PH->getIncomingBlock(i)); 2780 PH->setOperand(i, Ex); 2781 } 2782 } 2783 } else { 2784 Builder.SetInsertPoint(cast<Instruction>(User)); 2785 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2786 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2787 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2788 User->replaceUsesOfWith(Scalar, Ex); 2789 } 2790 } else { 2791 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2792 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2793 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2794 CSEBlocks.insert(&F->getEntryBlock()); 2795 User->replaceUsesOfWith(Scalar, Ex); 2796 } 2797 2798 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2799 } 2800 2801 // For each vectorized value: 2802 for (TreeEntry &EIdx : VectorizableTree) { 2803 TreeEntry *Entry = &EIdx; 2804 2805 // For each lane: 2806 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2807 Value *Scalar = Entry->Scalars[Lane]; 2808 // No need to handle users of gathered values. 2809 if (Entry->NeedToGather) 2810 continue; 2811 2812 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2813 2814 Type *Ty = Scalar->getType(); 2815 if (!Ty->isVoidTy()) { 2816 #ifndef NDEBUG 2817 for (User *U : Scalar->users()) { 2818 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2819 2820 assert((ScalarToTreeEntry.count(U) || 2821 // It is legal to replace users in the ignorelist by undef. 2822 is_contained(UserIgnoreList, U)) && 2823 "Replacing out-of-tree value with undef"); 2824 } 2825 #endif 2826 Value *Undef = UndefValue::get(Ty); 2827 Scalar->replaceAllUsesWith(Undef); 2828 } 2829 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2830 eraseInstruction(cast<Instruction>(Scalar)); 2831 } 2832 } 2833 2834 Builder.ClearInsertionPoint(); 2835 2836 return VectorizableTree[0].VectorizedValue; 2837 } 2838 2839 void BoUpSLP::optimizeGatherSequence() { 2840 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2841 << " gather sequences instructions.\n"); 2842 // LICM InsertElementInst sequences. 2843 for (Instruction *it : GatherSeq) { 2844 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2845 2846 if (!Insert) 2847 continue; 2848 2849 // Check if this block is inside a loop. 2850 Loop *L = LI->getLoopFor(Insert->getParent()); 2851 if (!L) 2852 continue; 2853 2854 // Check if it has a preheader. 2855 BasicBlock *PreHeader = L->getLoopPreheader(); 2856 if (!PreHeader) 2857 continue; 2858 2859 // If the vector or the element that we insert into it are 2860 // instructions that are defined in this basic block then we can't 2861 // hoist this instruction. 2862 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2863 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2864 if (CurrVec && L->contains(CurrVec)) 2865 continue; 2866 if (NewElem && L->contains(NewElem)) 2867 continue; 2868 2869 // We can hoist this instruction. Move it to the pre-header. 2870 Insert->moveBefore(PreHeader->getTerminator()); 2871 } 2872 2873 // Make a list of all reachable blocks in our CSE queue. 2874 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2875 CSEWorkList.reserve(CSEBlocks.size()); 2876 for (BasicBlock *BB : CSEBlocks) 2877 if (DomTreeNode *N = DT->getNode(BB)) { 2878 assert(DT->isReachableFromEntry(N)); 2879 CSEWorkList.push_back(N); 2880 } 2881 2882 // Sort blocks by domination. This ensures we visit a block after all blocks 2883 // dominating it are visited. 2884 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2885 [this](const DomTreeNode *A, const DomTreeNode *B) { 2886 return DT->properlyDominates(A, B); 2887 }); 2888 2889 // Perform O(N^2) search over the gather sequences and merge identical 2890 // instructions. TODO: We can further optimize this scan if we split the 2891 // instructions into different buckets based on the insert lane. 2892 SmallVector<Instruction *, 16> Visited; 2893 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2894 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2895 "Worklist not sorted properly!"); 2896 BasicBlock *BB = (*I)->getBlock(); 2897 // For all instructions in blocks containing gather sequences: 2898 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2899 Instruction *In = &*it++; 2900 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2901 continue; 2902 2903 // Check if we can replace this instruction with any of the 2904 // visited instructions. 2905 for (Instruction *v : Visited) { 2906 if (In->isIdenticalTo(v) && 2907 DT->dominates(v->getParent(), In->getParent())) { 2908 In->replaceAllUsesWith(v); 2909 eraseInstruction(In); 2910 In = nullptr; 2911 break; 2912 } 2913 } 2914 if (In) { 2915 assert(!is_contained(Visited, In)); 2916 Visited.push_back(In); 2917 } 2918 } 2919 } 2920 CSEBlocks.clear(); 2921 GatherSeq.clear(); 2922 } 2923 2924 // Groups the instructions to a bundle (which is then a single scheduling entity) 2925 // and schedules instructions until the bundle gets ready. 2926 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2927 BoUpSLP *SLP) { 2928 if (isa<PHINode>(VL[0])) 2929 return true; 2930 2931 // Initialize the instruction bundle. 2932 Instruction *OldScheduleEnd = ScheduleEnd; 2933 ScheduleData *PrevInBundle = nullptr; 2934 ScheduleData *Bundle = nullptr; 2935 bool ReSchedule = false; 2936 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2937 2938 // Make sure that the scheduling region contains all 2939 // instructions of the bundle. 2940 for (Value *V : VL) { 2941 if (!extendSchedulingRegion(V)) 2942 return false; 2943 } 2944 2945 for (Value *V : VL) { 2946 ScheduleData *BundleMember = getScheduleData(V); 2947 assert(BundleMember && 2948 "no ScheduleData for bundle member (maybe not in same basic block)"); 2949 if (BundleMember->IsScheduled) { 2950 // A bundle member was scheduled as single instruction before and now 2951 // needs to be scheduled as part of the bundle. We just get rid of the 2952 // existing schedule. 2953 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2954 << " was already scheduled\n"); 2955 ReSchedule = true; 2956 } 2957 assert(BundleMember->isSchedulingEntity() && 2958 "bundle member already part of other bundle"); 2959 if (PrevInBundle) { 2960 PrevInBundle->NextInBundle = BundleMember; 2961 } else { 2962 Bundle = BundleMember; 2963 } 2964 BundleMember->UnscheduledDepsInBundle = 0; 2965 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2966 2967 // Group the instructions to a bundle. 2968 BundleMember->FirstInBundle = Bundle; 2969 PrevInBundle = BundleMember; 2970 } 2971 if (ScheduleEnd != OldScheduleEnd) { 2972 // The scheduling region got new instructions at the lower end (or it is a 2973 // new region for the first bundle). This makes it necessary to 2974 // recalculate all dependencies. 2975 // It is seldom that this needs to be done a second time after adding the 2976 // initial bundle to the region. 2977 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2978 ScheduleData *SD = getScheduleData(I); 2979 SD->clearDependencies(); 2980 } 2981 ReSchedule = true; 2982 } 2983 if (ReSchedule) { 2984 resetSchedule(); 2985 initialFillReadyList(ReadyInsts); 2986 } 2987 2988 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2989 << BB->getName() << "\n"); 2990 2991 calculateDependencies(Bundle, true, SLP); 2992 2993 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2994 // means that there are no cyclic dependencies and we can schedule it. 2995 // Note that's important that we don't "schedule" the bundle yet (see 2996 // cancelScheduling). 2997 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2998 2999 ScheduleData *pickedSD = ReadyInsts.back(); 3000 ReadyInsts.pop_back(); 3001 3002 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3003 schedule(pickedSD, ReadyInsts); 3004 } 3005 } 3006 if (!Bundle->isReady()) { 3007 cancelScheduling(VL); 3008 return false; 3009 } 3010 return true; 3011 } 3012 3013 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3014 if (isa<PHINode>(VL[0])) 3015 return; 3016 3017 ScheduleData *Bundle = getScheduleData(VL[0]); 3018 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3019 assert(!Bundle->IsScheduled && 3020 "Can't cancel bundle which is already scheduled"); 3021 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3022 "tried to unbundle something which is not a bundle"); 3023 3024 // Un-bundle: make single instructions out of the bundle. 3025 ScheduleData *BundleMember = Bundle; 3026 while (BundleMember) { 3027 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3028 BundleMember->FirstInBundle = BundleMember; 3029 ScheduleData *Next = BundleMember->NextInBundle; 3030 BundleMember->NextInBundle = nullptr; 3031 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3032 if (BundleMember->UnscheduledDepsInBundle == 0) { 3033 ReadyInsts.insert(BundleMember); 3034 } 3035 BundleMember = Next; 3036 } 3037 } 3038 3039 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3040 if (getScheduleData(V)) 3041 return true; 3042 Instruction *I = dyn_cast<Instruction>(V); 3043 assert(I && "bundle member must be an instruction"); 3044 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3045 if (!ScheduleStart) { 3046 // It's the first instruction in the new region. 3047 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3048 ScheduleStart = I; 3049 ScheduleEnd = I->getNextNode(); 3050 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3051 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3052 return true; 3053 } 3054 // Search up and down at the same time, because we don't know if the new 3055 // instruction is above or below the existing scheduling region. 3056 BasicBlock::reverse_iterator UpIter = 3057 ++ScheduleStart->getIterator().getReverse(); 3058 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3059 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3060 BasicBlock::iterator LowerEnd = BB->end(); 3061 for (;;) { 3062 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3063 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3064 return false; 3065 } 3066 3067 if (UpIter != UpperEnd) { 3068 if (&*UpIter == I) { 3069 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3070 ScheduleStart = I; 3071 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3072 return true; 3073 } 3074 UpIter++; 3075 } 3076 if (DownIter != LowerEnd) { 3077 if (&*DownIter == I) { 3078 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3079 nullptr); 3080 ScheduleEnd = I->getNextNode(); 3081 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3082 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3083 return true; 3084 } 3085 DownIter++; 3086 } 3087 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3088 "instruction not found in block"); 3089 } 3090 return true; 3091 } 3092 3093 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3094 Instruction *ToI, 3095 ScheduleData *PrevLoadStore, 3096 ScheduleData *NextLoadStore) { 3097 ScheduleData *CurrentLoadStore = PrevLoadStore; 3098 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3099 ScheduleData *SD = ScheduleDataMap[I]; 3100 if (!SD) { 3101 // Allocate a new ScheduleData for the instruction. 3102 if (ChunkPos >= ChunkSize) { 3103 ScheduleDataChunks.push_back( 3104 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3105 ChunkPos = 0; 3106 } 3107 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3108 ScheduleDataMap[I] = SD; 3109 SD->Inst = I; 3110 } 3111 assert(!isInSchedulingRegion(SD) && 3112 "new ScheduleData already in scheduling region"); 3113 SD->init(SchedulingRegionID); 3114 3115 if (I->mayReadOrWriteMemory()) { 3116 // Update the linked list of memory accessing instructions. 3117 if (CurrentLoadStore) { 3118 CurrentLoadStore->NextLoadStore = SD; 3119 } else { 3120 FirstLoadStoreInRegion = SD; 3121 } 3122 CurrentLoadStore = SD; 3123 } 3124 } 3125 if (NextLoadStore) { 3126 if (CurrentLoadStore) 3127 CurrentLoadStore->NextLoadStore = NextLoadStore; 3128 } else { 3129 LastLoadStoreInRegion = CurrentLoadStore; 3130 } 3131 } 3132 3133 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3134 bool InsertInReadyList, 3135 BoUpSLP *SLP) { 3136 assert(SD->isSchedulingEntity()); 3137 3138 SmallVector<ScheduleData *, 10> WorkList; 3139 WorkList.push_back(SD); 3140 3141 while (!WorkList.empty()) { 3142 ScheduleData *SD = WorkList.back(); 3143 WorkList.pop_back(); 3144 3145 ScheduleData *BundleMember = SD; 3146 while (BundleMember) { 3147 assert(isInSchedulingRegion(BundleMember)); 3148 if (!BundleMember->hasValidDependencies()) { 3149 3150 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3151 BundleMember->Dependencies = 0; 3152 BundleMember->resetUnscheduledDeps(); 3153 3154 // Handle def-use chain dependencies. 3155 for (User *U : BundleMember->Inst->users()) { 3156 if (isa<Instruction>(U)) { 3157 ScheduleData *UseSD = getScheduleData(U); 3158 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3159 BundleMember->Dependencies++; 3160 ScheduleData *DestBundle = UseSD->FirstInBundle; 3161 if (!DestBundle->IsScheduled) { 3162 BundleMember->incrementUnscheduledDeps(1); 3163 } 3164 if (!DestBundle->hasValidDependencies()) { 3165 WorkList.push_back(DestBundle); 3166 } 3167 } 3168 } else { 3169 // I'm not sure if this can ever happen. But we need to be safe. 3170 // This lets the instruction/bundle never be scheduled and 3171 // eventually disable vectorization. 3172 BundleMember->Dependencies++; 3173 BundleMember->incrementUnscheduledDeps(1); 3174 } 3175 } 3176 3177 // Handle the memory dependencies. 3178 ScheduleData *DepDest = BundleMember->NextLoadStore; 3179 if (DepDest) { 3180 Instruction *SrcInst = BundleMember->Inst; 3181 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3182 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3183 unsigned numAliased = 0; 3184 unsigned DistToSrc = 1; 3185 3186 while (DepDest) { 3187 assert(isInSchedulingRegion(DepDest)); 3188 3189 // We have two limits to reduce the complexity: 3190 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3191 // SLP->isAliased (which is the expensive part in this loop). 3192 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3193 // the whole loop (even if the loop is fast, it's quadratic). 3194 // It's important for the loop break condition (see below) to 3195 // check this limit even between two read-only instructions. 3196 if (DistToSrc >= MaxMemDepDistance || 3197 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3198 (numAliased >= AliasedCheckLimit || 3199 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3200 3201 // We increment the counter only if the locations are aliased 3202 // (instead of counting all alias checks). This gives a better 3203 // balance between reduced runtime and accurate dependencies. 3204 numAliased++; 3205 3206 DepDest->MemoryDependencies.push_back(BundleMember); 3207 BundleMember->Dependencies++; 3208 ScheduleData *DestBundle = DepDest->FirstInBundle; 3209 if (!DestBundle->IsScheduled) { 3210 BundleMember->incrementUnscheduledDeps(1); 3211 } 3212 if (!DestBundle->hasValidDependencies()) { 3213 WorkList.push_back(DestBundle); 3214 } 3215 } 3216 DepDest = DepDest->NextLoadStore; 3217 3218 // Example, explaining the loop break condition: Let's assume our 3219 // starting instruction is i0 and MaxMemDepDistance = 3. 3220 // 3221 // +--------v--v--v 3222 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3223 // +--------^--^--^ 3224 // 3225 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3226 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3227 // Previously we already added dependencies from i3 to i6,i7,i8 3228 // (because of MaxMemDepDistance). As we added a dependency from 3229 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3230 // and we can abort this loop at i6. 3231 if (DistToSrc >= 2 * MaxMemDepDistance) 3232 break; 3233 DistToSrc++; 3234 } 3235 } 3236 } 3237 BundleMember = BundleMember->NextInBundle; 3238 } 3239 if (InsertInReadyList && SD->isReady()) { 3240 ReadyInsts.push_back(SD); 3241 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3242 } 3243 } 3244 } 3245 3246 void BoUpSLP::BlockScheduling::resetSchedule() { 3247 assert(ScheduleStart && 3248 "tried to reset schedule on block which has not been scheduled"); 3249 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3250 ScheduleData *SD = getScheduleData(I); 3251 assert(isInSchedulingRegion(SD)); 3252 SD->IsScheduled = false; 3253 SD->resetUnscheduledDeps(); 3254 } 3255 ReadyInsts.clear(); 3256 } 3257 3258 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3259 3260 if (!BS->ScheduleStart) 3261 return; 3262 3263 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3264 3265 BS->resetSchedule(); 3266 3267 // For the real scheduling we use a more sophisticated ready-list: it is 3268 // sorted by the original instruction location. This lets the final schedule 3269 // be as close as possible to the original instruction order. 3270 struct ScheduleDataCompare { 3271 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3272 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3273 } 3274 }; 3275 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3276 3277 // Ensure that all dependency data is updated and fill the ready-list with 3278 // initial instructions. 3279 int Idx = 0; 3280 int NumToSchedule = 0; 3281 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3282 I = I->getNextNode()) { 3283 ScheduleData *SD = BS->getScheduleData(I); 3284 assert( 3285 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3286 "scheduler and vectorizer have different opinion on what is a bundle"); 3287 SD->FirstInBundle->SchedulingPriority = Idx++; 3288 if (SD->isSchedulingEntity()) { 3289 BS->calculateDependencies(SD, false, this); 3290 NumToSchedule++; 3291 } 3292 } 3293 BS->initialFillReadyList(ReadyInsts); 3294 3295 Instruction *LastScheduledInst = BS->ScheduleEnd; 3296 3297 // Do the "real" scheduling. 3298 while (!ReadyInsts.empty()) { 3299 ScheduleData *picked = *ReadyInsts.begin(); 3300 ReadyInsts.erase(ReadyInsts.begin()); 3301 3302 // Move the scheduled instruction(s) to their dedicated places, if not 3303 // there yet. 3304 ScheduleData *BundleMember = picked; 3305 while (BundleMember) { 3306 Instruction *pickedInst = BundleMember->Inst; 3307 if (LastScheduledInst->getNextNode() != pickedInst) { 3308 BS->BB->getInstList().remove(pickedInst); 3309 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3310 pickedInst); 3311 } 3312 LastScheduledInst = pickedInst; 3313 BundleMember = BundleMember->NextInBundle; 3314 } 3315 3316 BS->schedule(picked, ReadyInsts); 3317 NumToSchedule--; 3318 } 3319 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3320 3321 // Avoid duplicate scheduling of the block. 3322 BS->ScheduleStart = nullptr; 3323 } 3324 3325 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3326 // If V is a store, just return the width of the stored value without 3327 // traversing the expression tree. This is the common case. 3328 if (auto *Store = dyn_cast<StoreInst>(V)) 3329 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3330 3331 // If V is not a store, we can traverse the expression tree to find loads 3332 // that feed it. The type of the loaded value may indicate a more suitable 3333 // width than V's type. We want to base the vector element size on the width 3334 // of memory operations where possible. 3335 SmallVector<Instruction *, 16> Worklist; 3336 SmallPtrSet<Instruction *, 16> Visited; 3337 if (auto *I = dyn_cast<Instruction>(V)) 3338 Worklist.push_back(I); 3339 3340 // Traverse the expression tree in bottom-up order looking for loads. If we 3341 // encounter an instruciton we don't yet handle, we give up. 3342 auto MaxWidth = 0u; 3343 auto FoundUnknownInst = false; 3344 while (!Worklist.empty() && !FoundUnknownInst) { 3345 auto *I = Worklist.pop_back_val(); 3346 Visited.insert(I); 3347 3348 // We should only be looking at scalar instructions here. If the current 3349 // instruction has a vector type, give up. 3350 auto *Ty = I->getType(); 3351 if (isa<VectorType>(Ty)) 3352 FoundUnknownInst = true; 3353 3354 // If the current instruction is a load, update MaxWidth to reflect the 3355 // width of the loaded value. 3356 else if (isa<LoadInst>(I)) 3357 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3358 3359 // Otherwise, we need to visit the operands of the instruction. We only 3360 // handle the interesting cases from buildTree here. If an operand is an 3361 // instruction we haven't yet visited, we add it to the worklist. 3362 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3363 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3364 for (Use &U : I->operands()) 3365 if (auto *J = dyn_cast<Instruction>(U.get())) 3366 if (!Visited.count(J)) 3367 Worklist.push_back(J); 3368 } 3369 3370 // If we don't yet handle the instruction, give up. 3371 else 3372 FoundUnknownInst = true; 3373 } 3374 3375 // If we didn't encounter a memory access in the expression tree, or if we 3376 // gave up for some reason, just return the width of V. 3377 if (!MaxWidth || FoundUnknownInst) 3378 return DL->getTypeSizeInBits(V->getType()); 3379 3380 // Otherwise, return the maximum width we found. 3381 return MaxWidth; 3382 } 3383 3384 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3385 // smaller type with a truncation. We collect the values that will be demoted 3386 // in ToDemote and additional roots that require investigating in Roots. 3387 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3388 SmallVectorImpl<Value *> &ToDemote, 3389 SmallVectorImpl<Value *> &Roots) { 3390 3391 // We can always demote constants. 3392 if (isa<Constant>(V)) { 3393 ToDemote.push_back(V); 3394 return true; 3395 } 3396 3397 // If the value is not an instruction in the expression with only one use, it 3398 // cannot be demoted. 3399 auto *I = dyn_cast<Instruction>(V); 3400 if (!I || !I->hasOneUse() || !Expr.count(I)) 3401 return false; 3402 3403 switch (I->getOpcode()) { 3404 3405 // We can always demote truncations and extensions. Since truncations can 3406 // seed additional demotion, we save the truncated value. 3407 case Instruction::Trunc: 3408 Roots.push_back(I->getOperand(0)); 3409 case Instruction::ZExt: 3410 case Instruction::SExt: 3411 break; 3412 3413 // We can demote certain binary operations if we can demote both of their 3414 // operands. 3415 case Instruction::Add: 3416 case Instruction::Sub: 3417 case Instruction::Mul: 3418 case Instruction::And: 3419 case Instruction::Or: 3420 case Instruction::Xor: 3421 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3422 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3423 return false; 3424 break; 3425 3426 // We can demote selects if we can demote their true and false values. 3427 case Instruction::Select: { 3428 SelectInst *SI = cast<SelectInst>(I); 3429 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3430 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3431 return false; 3432 break; 3433 } 3434 3435 // We can demote phis if we can demote all their incoming operands. Note that 3436 // we don't need to worry about cycles since we ensure single use above. 3437 case Instruction::PHI: { 3438 PHINode *PN = cast<PHINode>(I); 3439 for (Value *IncValue : PN->incoming_values()) 3440 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3441 return false; 3442 break; 3443 } 3444 3445 // Otherwise, conservatively give up. 3446 default: 3447 return false; 3448 } 3449 3450 // Record the value that we can demote. 3451 ToDemote.push_back(V); 3452 return true; 3453 } 3454 3455 void BoUpSLP::computeMinimumValueSizes() { 3456 // If there are no external uses, the expression tree must be rooted by a 3457 // store. We can't demote in-memory values, so there is nothing to do here. 3458 if (ExternalUses.empty()) 3459 return; 3460 3461 // We only attempt to truncate integer expressions. 3462 auto &TreeRoot = VectorizableTree[0].Scalars; 3463 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3464 if (!TreeRootIT) 3465 return; 3466 3467 // If the expression is not rooted by a store, these roots should have 3468 // external uses. We will rely on InstCombine to rewrite the expression in 3469 // the narrower type. However, InstCombine only rewrites single-use values. 3470 // This means that if a tree entry other than a root is used externally, it 3471 // must have multiple uses and InstCombine will not rewrite it. The code 3472 // below ensures that only the roots are used externally. 3473 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3474 for (auto &EU : ExternalUses) 3475 if (!Expr.erase(EU.Scalar)) 3476 return; 3477 if (!Expr.empty()) 3478 return; 3479 3480 // Collect the scalar values of the vectorizable expression. We will use this 3481 // context to determine which values can be demoted. If we see a truncation, 3482 // we mark it as seeding another demotion. 3483 for (auto &Entry : VectorizableTree) 3484 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3485 3486 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3487 // have a single external user that is not in the vectorizable tree. 3488 for (auto *Root : TreeRoot) 3489 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3490 return; 3491 3492 // Conservatively determine if we can actually truncate the roots of the 3493 // expression. Collect the values that can be demoted in ToDemote and 3494 // additional roots that require investigating in Roots. 3495 SmallVector<Value *, 32> ToDemote; 3496 SmallVector<Value *, 4> Roots; 3497 for (auto *Root : TreeRoot) 3498 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3499 return; 3500 3501 // The maximum bit width required to represent all the values that can be 3502 // demoted without loss of precision. It would be safe to truncate the roots 3503 // of the expression to this width. 3504 auto MaxBitWidth = 8u; 3505 3506 // We first check if all the bits of the roots are demanded. If they're not, 3507 // we can truncate the roots to this narrower type. 3508 for (auto *Root : TreeRoot) { 3509 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3510 MaxBitWidth = std::max<unsigned>( 3511 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3512 } 3513 3514 // True if the roots can be zero-extended back to their original type, rather 3515 // than sign-extended. We know that if the leading bits are not demanded, we 3516 // can safely zero-extend. So we initialize IsKnownPositive to True. 3517 bool IsKnownPositive = true; 3518 3519 // If all the bits of the roots are demanded, we can try a little harder to 3520 // compute a narrower type. This can happen, for example, if the roots are 3521 // getelementptr indices. InstCombine promotes these indices to the pointer 3522 // width. Thus, all their bits are technically demanded even though the 3523 // address computation might be vectorized in a smaller type. 3524 // 3525 // We start by looking at each entry that can be demoted. We compute the 3526 // maximum bit width required to store the scalar by using ValueTracking to 3527 // compute the number of high-order bits we can truncate. 3528 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3529 MaxBitWidth = 8u; 3530 3531 // Determine if the sign bit of all the roots is known to be zero. If not, 3532 // IsKnownPositive is set to False. 3533 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3534 bool KnownZero = false; 3535 bool KnownOne = false; 3536 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3537 return KnownZero; 3538 }); 3539 3540 // Determine the maximum number of bits required to store the scalar 3541 // values. 3542 for (auto *Scalar : ToDemote) { 3543 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3544 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3545 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3546 } 3547 3548 // If we can't prove that the sign bit is zero, we must add one to the 3549 // maximum bit width to account for the unknown sign bit. This preserves 3550 // the existing sign bit so we can safely sign-extend the root back to the 3551 // original type. Otherwise, if we know the sign bit is zero, we will 3552 // zero-extend the root instead. 3553 // 3554 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3555 // one to the maximum bit width will yield a larger-than-necessary 3556 // type. In general, we need to add an extra bit only if we can't 3557 // prove that the upper bit of the original type is equal to the 3558 // upper bit of the proposed smaller type. If these two bits are the 3559 // same (either zero or one) we know that sign-extending from the 3560 // smaller type will result in the same value. Here, since we can't 3561 // yet prove this, we are just making the proposed smaller type 3562 // larger to ensure correctness. 3563 if (!IsKnownPositive) 3564 ++MaxBitWidth; 3565 } 3566 3567 // Round MaxBitWidth up to the next power-of-two. 3568 if (!isPowerOf2_64(MaxBitWidth)) 3569 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3570 3571 // If the maximum bit width we compute is less than the with of the roots' 3572 // type, we can proceed with the narrowing. Otherwise, do nothing. 3573 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3574 return; 3575 3576 // If we can truncate the root, we must collect additional values that might 3577 // be demoted as a result. That is, those seeded by truncations we will 3578 // modify. 3579 while (!Roots.empty()) 3580 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3581 3582 // Finally, map the values we can demote to the maximum bit with we computed. 3583 for (auto *Scalar : ToDemote) 3584 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3585 } 3586 3587 namespace { 3588 /// The SLPVectorizer Pass. 3589 struct SLPVectorizer : public FunctionPass { 3590 SLPVectorizerPass Impl; 3591 3592 /// Pass identification, replacement for typeid 3593 static char ID; 3594 3595 explicit SLPVectorizer() : FunctionPass(ID) { 3596 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3597 } 3598 3599 3600 bool doInitialization(Module &M) override { 3601 return false; 3602 } 3603 3604 bool runOnFunction(Function &F) override { 3605 if (skipFunction(F)) 3606 return false; 3607 3608 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3609 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3610 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3611 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3612 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3613 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3614 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3615 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3616 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3617 3618 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3619 } 3620 3621 void getAnalysisUsage(AnalysisUsage &AU) const override { 3622 FunctionPass::getAnalysisUsage(AU); 3623 AU.addRequired<AssumptionCacheTracker>(); 3624 AU.addRequired<ScalarEvolutionWrapperPass>(); 3625 AU.addRequired<AAResultsWrapperPass>(); 3626 AU.addRequired<TargetTransformInfoWrapperPass>(); 3627 AU.addRequired<LoopInfoWrapperPass>(); 3628 AU.addRequired<DominatorTreeWrapperPass>(); 3629 AU.addRequired<DemandedBitsWrapperPass>(); 3630 AU.addPreserved<LoopInfoWrapperPass>(); 3631 AU.addPreserved<DominatorTreeWrapperPass>(); 3632 AU.addPreserved<AAResultsWrapperPass>(); 3633 AU.addPreserved<GlobalsAAWrapperPass>(); 3634 AU.setPreservesCFG(); 3635 } 3636 }; 3637 } // end anonymous namespace 3638 3639 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3640 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3641 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3642 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3643 auto *AA = &AM.getResult<AAManager>(F); 3644 auto *LI = &AM.getResult<LoopAnalysis>(F); 3645 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3646 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3647 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3648 3649 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3650 if (!Changed) 3651 return PreservedAnalyses::all(); 3652 PreservedAnalyses PA; 3653 PA.preserve<LoopAnalysis>(); 3654 PA.preserve<DominatorTreeAnalysis>(); 3655 PA.preserve<AAManager>(); 3656 PA.preserve<GlobalsAA>(); 3657 return PA; 3658 } 3659 3660 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3661 TargetTransformInfo *TTI_, 3662 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3663 LoopInfo *LI_, DominatorTree *DT_, 3664 AssumptionCache *AC_, DemandedBits *DB_) { 3665 SE = SE_; 3666 TTI = TTI_; 3667 TLI = TLI_; 3668 AA = AA_; 3669 LI = LI_; 3670 DT = DT_; 3671 AC = AC_; 3672 DB = DB_; 3673 DL = &F.getParent()->getDataLayout(); 3674 3675 Stores.clear(); 3676 GEPs.clear(); 3677 bool Changed = false; 3678 3679 // If the target claims to have no vector registers don't attempt 3680 // vectorization. 3681 if (!TTI->getNumberOfRegisters(true)) 3682 return false; 3683 3684 // Don't vectorize when the attribute NoImplicitFloat is used. 3685 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3686 return false; 3687 3688 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3689 3690 // Use the bottom up slp vectorizer to construct chains that start with 3691 // store instructions. 3692 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3693 3694 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3695 // delete instructions. 3696 3697 // Scan the blocks in the function in post order. 3698 for (auto BB : post_order(&F.getEntryBlock())) { 3699 collectSeedInstructions(BB); 3700 3701 // Vectorize trees that end at stores. 3702 if (!Stores.empty()) { 3703 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3704 << " underlying objects.\n"); 3705 Changed |= vectorizeStoreChains(R); 3706 } 3707 3708 // Vectorize trees that end at reductions. 3709 Changed |= vectorizeChainsInBlock(BB, R); 3710 3711 // Vectorize the index computations of getelementptr instructions. This 3712 // is primarily intended to catch gather-like idioms ending at 3713 // non-consecutive loads. 3714 if (!GEPs.empty()) { 3715 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3716 << " underlying objects.\n"); 3717 Changed |= vectorizeGEPIndices(BB, R); 3718 } 3719 } 3720 3721 if (Changed) { 3722 R.optimizeGatherSequence(); 3723 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3724 DEBUG(verifyFunction(F)); 3725 } 3726 return Changed; 3727 } 3728 3729 /// \brief Check that the Values in the slice in VL array are still existent in 3730 /// the WeakVH array. 3731 /// Vectorization of part of the VL array may cause later values in the VL array 3732 /// to become invalid. We track when this has happened in the WeakVH array. 3733 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3734 unsigned SliceBegin, unsigned SliceSize) { 3735 VL = VL.slice(SliceBegin, SliceSize); 3736 VH = VH.slice(SliceBegin, SliceSize); 3737 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3738 } 3739 3740 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3741 unsigned VecRegSize) { 3742 unsigned ChainLen = Chain.size(); 3743 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3744 << "\n"); 3745 unsigned Sz = R.getVectorElementSize(Chain[0]); 3746 unsigned VF = VecRegSize / Sz; 3747 3748 if (!isPowerOf2_32(Sz) || VF < 2) 3749 return false; 3750 3751 // Keep track of values that were deleted by vectorizing in the loop below. 3752 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3753 3754 bool Changed = false; 3755 // Look for profitable vectorizable trees at all offsets, starting at zero. 3756 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3757 if (i + VF > e) 3758 break; 3759 3760 // Check that a previous iteration of this loop did not delete the Value. 3761 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3762 continue; 3763 3764 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3765 << "\n"); 3766 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3767 3768 R.buildTree(Operands); 3769 if (R.isTreeTinyAndNotFullyVectorizable()) 3770 continue; 3771 3772 R.computeMinimumValueSizes(); 3773 3774 int Cost = R.getTreeCost(); 3775 3776 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3777 if (Cost < -SLPCostThreshold) { 3778 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3779 R.vectorizeTree(); 3780 3781 // Move to the next bundle. 3782 i += VF - 1; 3783 Changed = true; 3784 } 3785 } 3786 3787 return Changed; 3788 } 3789 3790 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3791 BoUpSLP &R) { 3792 SetVector<StoreInst *> Heads, Tails; 3793 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3794 3795 // We may run into multiple chains that merge into a single chain. We mark the 3796 // stores that we vectorized so that we don't visit the same store twice. 3797 BoUpSLP::ValueSet VectorizedStores; 3798 bool Changed = false; 3799 3800 // Do a quadratic search on all of the given stores and find 3801 // all of the pairs of stores that follow each other. 3802 SmallVector<unsigned, 16> IndexQueue; 3803 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3804 IndexQueue.clear(); 3805 // If a store has multiple consecutive store candidates, search Stores 3806 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3807 // This is because usually pairing with immediate succeeding or preceding 3808 // candidate create the best chance to find slp vectorization opportunity. 3809 unsigned j = 0; 3810 for (j = i + 1; j < e; ++j) 3811 IndexQueue.push_back(j); 3812 for (j = i; j > 0; --j) 3813 IndexQueue.push_back(j - 1); 3814 3815 for (auto &k : IndexQueue) { 3816 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3817 Tails.insert(Stores[k]); 3818 Heads.insert(Stores[i]); 3819 ConsecutiveChain[Stores[i]] = Stores[k]; 3820 break; 3821 } 3822 } 3823 } 3824 3825 // For stores that start but don't end a link in the chain: 3826 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3827 it != e; ++it) { 3828 if (Tails.count(*it)) 3829 continue; 3830 3831 // We found a store instr that starts a chain. Now follow the chain and try 3832 // to vectorize it. 3833 BoUpSLP::ValueList Operands; 3834 StoreInst *I = *it; 3835 // Collect the chain into a list. 3836 while (Tails.count(I) || Heads.count(I)) { 3837 if (VectorizedStores.count(I)) 3838 break; 3839 Operands.push_back(I); 3840 // Move to the next value in the chain. 3841 I = ConsecutiveChain[I]; 3842 } 3843 3844 // FIXME: Is division-by-2 the correct step? Should we assert that the 3845 // register size is a power-of-2? 3846 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3847 Size /= 2) { 3848 if (vectorizeStoreChain(Operands, R, Size)) { 3849 // Mark the vectorized stores so that we don't vectorize them again. 3850 VectorizedStores.insert(Operands.begin(), Operands.end()); 3851 Changed = true; 3852 break; 3853 } 3854 } 3855 } 3856 3857 return Changed; 3858 } 3859 3860 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3861 3862 // Initialize the collections. We will make a single pass over the block. 3863 Stores.clear(); 3864 GEPs.clear(); 3865 3866 // Visit the store and getelementptr instructions in BB and organize them in 3867 // Stores and GEPs according to the underlying objects of their pointer 3868 // operands. 3869 for (Instruction &I : *BB) { 3870 3871 // Ignore store instructions that are volatile or have a pointer operand 3872 // that doesn't point to a scalar type. 3873 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3874 if (!SI->isSimple()) 3875 continue; 3876 if (!isValidElementType(SI->getValueOperand()->getType())) 3877 continue; 3878 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3879 } 3880 3881 // Ignore getelementptr instructions that have more than one index, a 3882 // constant index, or a pointer operand that doesn't point to a scalar 3883 // type. 3884 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3885 auto Idx = GEP->idx_begin()->get(); 3886 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3887 continue; 3888 if (!isValidElementType(Idx->getType())) 3889 continue; 3890 if (GEP->getType()->isVectorTy()) 3891 continue; 3892 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3893 } 3894 } 3895 } 3896 3897 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3898 if (!A || !B) 3899 return false; 3900 Value *VL[] = { A, B }; 3901 return tryToVectorizeList(VL, R, None, true); 3902 } 3903 3904 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3905 ArrayRef<Value *> BuildVector, 3906 bool AllowReorder) { 3907 if (VL.size() < 2) 3908 return false; 3909 3910 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 3911 << ".\n"); 3912 3913 // Check that all of the parts are scalar instructions of the same type. 3914 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3915 if (!I0) 3916 return false; 3917 3918 unsigned Opcode0 = I0->getOpcode(); 3919 3920 unsigned Sz = R.getVectorElementSize(I0); 3921 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 3922 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 3923 if (MaxVF < 2) 3924 return false; 3925 3926 for (Value *V : VL) { 3927 Type *Ty = V->getType(); 3928 if (!isValidElementType(Ty)) 3929 return false; 3930 Instruction *Inst = dyn_cast<Instruction>(V); 3931 if (!Inst || Inst->getOpcode() != Opcode0) 3932 return false; 3933 } 3934 3935 bool Changed = false; 3936 3937 // Keep track of values that were deleted by vectorizing in the loop below. 3938 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3939 3940 unsigned NextInst = 0, MaxInst = VL.size(); 3941 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 3942 VF /= 2) { 3943 // No actual vectorization should happen, if number of parts is the same as 3944 // provided vectorization factor (i.e. the scalar type is used for vector 3945 // code during codegen). 3946 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 3947 if (TTI->getNumberOfParts(VecTy) == VF) 3948 continue; 3949 for (unsigned I = NextInst; I < MaxInst; ++I) { 3950 unsigned OpsWidth = 0; 3951 3952 if (I + VF > MaxInst) 3953 OpsWidth = MaxInst - I; 3954 else 3955 OpsWidth = VF; 3956 3957 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3958 break; 3959 3960 // Check that a previous iteration of this loop did not delete the Value. 3961 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 3962 continue; 3963 3964 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3965 << "\n"); 3966 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 3967 3968 ArrayRef<Value *> BuildVectorSlice; 3969 if (!BuildVector.empty()) 3970 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 3971 3972 R.buildTree(Ops, BuildVectorSlice); 3973 // TODO: check if we can allow reordering for more cases. 3974 if (AllowReorder && R.shouldReorder()) { 3975 // Conceptually, there is nothing actually preventing us from trying to 3976 // reorder a larger list. In fact, we do exactly this when vectorizing 3977 // reductions. However, at this point, we only expect to get here from 3978 // tryToVectorizePair(). 3979 assert(Ops.size() == 2); 3980 assert(BuildVectorSlice.empty()); 3981 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 3982 R.buildTree(ReorderedOps, None); 3983 } 3984 if (R.isTreeTinyAndNotFullyVectorizable()) 3985 continue; 3986 3987 R.computeMinimumValueSizes(); 3988 int Cost = R.getTreeCost(); 3989 3990 if (Cost < -SLPCostThreshold) { 3991 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3992 Value *VectorizedRoot = R.vectorizeTree(); 3993 3994 // Reconstruct the build vector by extracting the vectorized root. This 3995 // way we handle the case where some elements of the vector are 3996 // undefined. 3997 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3998 if (!BuildVectorSlice.empty()) { 3999 // The insert point is the last build vector instruction. The 4000 // vectorized root will precede it. This guarantees that we get an 4001 // instruction. The vectorized tree could have been constant folded. 4002 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4003 unsigned VecIdx = 0; 4004 for (auto &V : BuildVectorSlice) { 4005 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4006 ++BasicBlock::iterator(InsertAfter)); 4007 Instruction *I = cast<Instruction>(V); 4008 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4009 Instruction *Extract = 4010 cast<Instruction>(Builder.CreateExtractElement( 4011 VectorizedRoot, Builder.getInt32(VecIdx++))); 4012 I->setOperand(1, Extract); 4013 I->removeFromParent(); 4014 I->insertAfter(Extract); 4015 InsertAfter = I; 4016 } 4017 } 4018 // Move to the next bundle. 4019 I += VF - 1; 4020 NextInst = I + 1; 4021 Changed = true; 4022 } 4023 } 4024 } 4025 4026 return Changed; 4027 } 4028 4029 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4030 if (!V) 4031 return false; 4032 4033 Value *P = V->getParent(); 4034 4035 // Vectorize in current basic block only. 4036 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4037 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4038 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4039 return false; 4040 4041 // Try to vectorize V. 4042 if (tryToVectorizePair(Op0, Op1, R)) 4043 return true; 4044 4045 auto *A = dyn_cast<BinaryOperator>(Op0); 4046 auto *B = dyn_cast<BinaryOperator>(Op1); 4047 // Try to skip B. 4048 if (B && B->hasOneUse()) { 4049 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4050 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4051 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4052 return true; 4053 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4054 return true; 4055 } 4056 4057 // Try to skip A. 4058 if (A && A->hasOneUse()) { 4059 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4060 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4061 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4062 return true; 4063 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4064 return true; 4065 } 4066 return false; 4067 } 4068 4069 /// \brief Generate a shuffle mask to be used in a reduction tree. 4070 /// 4071 /// \param VecLen The length of the vector to be reduced. 4072 /// \param NumEltsToRdx The number of elements that should be reduced in the 4073 /// vector. 4074 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4075 /// reduction. A pairwise reduction will generate a mask of 4076 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4077 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4078 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4079 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4080 bool IsPairwise, bool IsLeft, 4081 IRBuilder<> &Builder) { 4082 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4083 4084 SmallVector<Constant *, 32> ShuffleMask( 4085 VecLen, UndefValue::get(Builder.getInt32Ty())); 4086 4087 if (IsPairwise) 4088 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4089 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4090 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4091 else 4092 // Move the upper half of the vector to the lower half. 4093 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4094 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4095 4096 return ConstantVector::get(ShuffleMask); 4097 } 4098 4099 namespace { 4100 /// Model horizontal reductions. 4101 /// 4102 /// A horizontal reduction is a tree of reduction operations (currently add and 4103 /// fadd) that has operations that can be put into a vector as its leaf. 4104 /// For example, this tree: 4105 /// 4106 /// mul mul mul mul 4107 /// \ / \ / 4108 /// + + 4109 /// \ / 4110 /// + 4111 /// This tree has "mul" as its reduced values and "+" as its reduction 4112 /// operations. A reduction might be feeding into a store or a binary operation 4113 /// feeding a phi. 4114 /// ... 4115 /// \ / 4116 /// + 4117 /// | 4118 /// phi += 4119 /// 4120 /// Or: 4121 /// ... 4122 /// \ / 4123 /// + 4124 /// | 4125 /// *p = 4126 /// 4127 class HorizontalReduction { 4128 SmallVector<Value *, 16> ReductionOps; 4129 SmallVector<Value *, 32> ReducedVals; 4130 4131 BinaryOperator *ReductionRoot; 4132 // After successfull horizontal reduction vectorization attempt for PHI node 4133 // vectorizer tries to update root binary op by combining vectorized tree and 4134 // the ReductionPHI node. But during vectorization this ReductionPHI can be 4135 // vectorized itself and replaced by the undef value, while the instruction 4136 // itself is marked for deletion. This 'marked for deletion' PHI node then can 4137 // be used in new binary operation, causing "Use still stuck around after Def 4138 // is destroyed" crash upon PHI node deletion. 4139 WeakVH ReductionPHI; 4140 4141 /// The opcode of the reduction. 4142 unsigned ReductionOpcode; 4143 /// The opcode of the values we perform a reduction on. 4144 unsigned ReducedValueOpcode; 4145 /// Should we model this reduction as a pairwise reduction tree or a tree that 4146 /// splits the vector in halves and adds those halves. 4147 bool IsPairwiseReduction; 4148 4149 public: 4150 /// The width of one full horizontal reduction operation. 4151 unsigned ReduxWidth; 4152 4153 /// Minimal width of available vector registers. It's used to determine 4154 /// ReduxWidth. 4155 unsigned MinVecRegSize; 4156 4157 HorizontalReduction(unsigned MinVecRegSize) 4158 : ReductionRoot(nullptr), ReductionOpcode(0), ReducedValueOpcode(0), 4159 IsPairwiseReduction(false), ReduxWidth(0), 4160 MinVecRegSize(MinVecRegSize) {} 4161 4162 /// \brief Try to find a reduction tree. 4163 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4164 assert((!Phi || is_contained(Phi->operands(), B)) && 4165 "Thi phi needs to use the binary operator"); 4166 4167 // We could have a initial reductions that is not an add. 4168 // r *= v1 + v2 + v3 + v4 4169 // In such a case start looking for a tree rooted in the first '+'. 4170 if (Phi) { 4171 if (B->getOperand(0) == Phi) { 4172 Phi = nullptr; 4173 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4174 } else if (B->getOperand(1) == Phi) { 4175 Phi = nullptr; 4176 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4177 } 4178 } 4179 4180 if (!B) 4181 return false; 4182 4183 Type *Ty = B->getType(); 4184 if (!isValidElementType(Ty)) 4185 return false; 4186 4187 const DataLayout &DL = B->getModule()->getDataLayout(); 4188 ReductionOpcode = B->getOpcode(); 4189 ReducedValueOpcode = 0; 4190 // FIXME: Register size should be a parameter to this function, so we can 4191 // try different vectorization factors. 4192 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4193 ReductionRoot = B; 4194 ReductionPHI = Phi; 4195 4196 if (ReduxWidth < 4) 4197 return false; 4198 4199 // We currently only support adds. 4200 if (ReductionOpcode != Instruction::Add && 4201 ReductionOpcode != Instruction::FAdd) 4202 return false; 4203 4204 // Post order traverse the reduction tree starting at B. We only handle true 4205 // trees containing only binary operators or selects. 4206 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4207 Stack.push_back(std::make_pair(B, 0)); 4208 while (!Stack.empty()) { 4209 Instruction *TreeN = Stack.back().first; 4210 unsigned EdgeToVist = Stack.back().second++; 4211 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4212 4213 // Only handle trees in the current basic block. 4214 if (TreeN->getParent() != B->getParent()) 4215 return false; 4216 4217 // Each tree node needs to have one user except for the ultimate 4218 // reduction. 4219 if (!TreeN->hasOneUse() && TreeN != B) 4220 return false; 4221 4222 // Postorder vist. 4223 if (EdgeToVist == 2 || IsReducedValue) { 4224 if (IsReducedValue) { 4225 // Make sure that the opcodes of the operations that we are going to 4226 // reduce match. 4227 if (!ReducedValueOpcode) 4228 ReducedValueOpcode = TreeN->getOpcode(); 4229 else if (ReducedValueOpcode != TreeN->getOpcode()) 4230 return false; 4231 ReducedVals.push_back(TreeN); 4232 } else { 4233 // We need to be able to reassociate the adds. 4234 if (!TreeN->isAssociative()) 4235 return false; 4236 ReductionOps.push_back(TreeN); 4237 } 4238 // Retract. 4239 Stack.pop_back(); 4240 continue; 4241 } 4242 4243 // Visit left or right. 4244 Value *NextV = TreeN->getOperand(EdgeToVist); 4245 if (NextV != Phi) { 4246 auto *I = dyn_cast<Instruction>(NextV); 4247 // Continue analysis if the next operand is a reduction operation or 4248 // (possibly) a reduced value. If the reduced value opcode is not set, 4249 // the first met operation != reduction operation is considered as the 4250 // reduced value class. 4251 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4252 I->getOpcode() == ReductionOpcode)) { 4253 if (!ReducedValueOpcode && I->getOpcode() != ReductionOpcode) 4254 ReducedValueOpcode = I->getOpcode(); 4255 Stack.push_back(std::make_pair(I, 0)); 4256 continue; 4257 } 4258 return false; 4259 } 4260 } 4261 return true; 4262 } 4263 4264 /// \brief Attempt to vectorize the tree found by 4265 /// matchAssociativeReduction. 4266 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4267 if (ReducedVals.empty()) 4268 return false; 4269 4270 unsigned NumReducedVals = ReducedVals.size(); 4271 if (NumReducedVals < ReduxWidth) 4272 return false; 4273 4274 Value *VectorizedTree = nullptr; 4275 IRBuilder<> Builder(ReductionRoot); 4276 FastMathFlags Unsafe; 4277 Unsafe.setUnsafeAlgebra(); 4278 Builder.setFastMathFlags(Unsafe); 4279 unsigned i = 0; 4280 4281 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4282 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4283 V.buildTree(VL, ReductionOps); 4284 if (V.shouldReorder()) { 4285 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4286 V.buildTree(Reversed, ReductionOps); 4287 } 4288 if (V.isTreeTinyAndNotFullyVectorizable()) 4289 continue; 4290 4291 V.computeMinimumValueSizes(); 4292 4293 // Estimate cost. 4294 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4295 if (Cost >= -SLPCostThreshold) 4296 break; 4297 4298 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4299 << ". (HorRdx)\n"); 4300 4301 // Vectorize a tree. 4302 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4303 Value *VectorizedRoot = V.vectorizeTree(); 4304 4305 // Emit a reduction. 4306 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4307 if (VectorizedTree) { 4308 Builder.SetCurrentDebugLocation(Loc); 4309 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4310 ReducedSubTree, "bin.rdx"); 4311 } else 4312 VectorizedTree = ReducedSubTree; 4313 } 4314 4315 if (VectorizedTree) { 4316 // Finish the reduction. 4317 for (; i < NumReducedVals; ++i) { 4318 Builder.SetCurrentDebugLocation( 4319 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4320 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4321 ReducedVals[i]); 4322 } 4323 // Update users. 4324 if (ReductionPHI && !isa<UndefValue>(ReductionPHI)) { 4325 assert(ReductionRoot && "Need a reduction operation"); 4326 ReductionRoot->setOperand(0, VectorizedTree); 4327 ReductionRoot->setOperand(1, ReductionPHI); 4328 } else 4329 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4330 } 4331 return VectorizedTree != nullptr; 4332 } 4333 4334 unsigned numReductionValues() const { 4335 return ReducedVals.size(); 4336 } 4337 4338 private: 4339 /// \brief Calculate the cost of a reduction. 4340 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4341 Type *ScalarTy = FirstReducedVal->getType(); 4342 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4343 4344 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4345 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4346 4347 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4348 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4349 4350 int ScalarReduxCost = 4351 (ReduxWidth - 1) * 4352 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4353 4354 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4355 << " for reduction that starts with " << *FirstReducedVal 4356 << " (It is a " 4357 << (IsPairwiseReduction ? "pairwise" : "splitting") 4358 << " reduction)\n"); 4359 4360 return VecReduxCost - ScalarReduxCost; 4361 } 4362 4363 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4364 Value *R, const Twine &Name = "") { 4365 if (Opcode == Instruction::FAdd) 4366 return Builder.CreateFAdd(L, R, Name); 4367 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4368 } 4369 4370 /// \brief Emit a horizontal reduction of the vectorized value. 4371 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4372 assert(VectorizedValue && "Need to have a vectorized tree node"); 4373 assert(isPowerOf2_32(ReduxWidth) && 4374 "We only handle power-of-two reductions for now"); 4375 4376 Value *TmpVec = VectorizedValue; 4377 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4378 if (IsPairwiseReduction) { 4379 Value *LeftMask = 4380 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4381 Value *RightMask = 4382 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4383 4384 Value *LeftShuf = Builder.CreateShuffleVector( 4385 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4386 Value *RightShuf = Builder.CreateShuffleVector( 4387 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4388 "rdx.shuf.r"); 4389 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4390 "bin.rdx"); 4391 } else { 4392 Value *UpperHalf = 4393 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4394 Value *Shuf = Builder.CreateShuffleVector( 4395 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4396 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4397 } 4398 } 4399 4400 // The result is in the first element of the vector. 4401 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4402 } 4403 }; 4404 } // end anonymous namespace 4405 4406 /// \brief Recognize construction of vectors like 4407 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4408 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4409 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4410 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4411 /// 4412 /// Returns true if it matches 4413 /// 4414 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4415 SmallVectorImpl<Value *> &BuildVector, 4416 SmallVectorImpl<Value *> &BuildVectorOpds) { 4417 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4418 return false; 4419 4420 InsertElementInst *IE = FirstInsertElem; 4421 while (true) { 4422 BuildVector.push_back(IE); 4423 BuildVectorOpds.push_back(IE->getOperand(1)); 4424 4425 if (IE->use_empty()) 4426 return false; 4427 4428 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4429 if (!NextUse) 4430 return true; 4431 4432 // If this isn't the final use, make sure the next insertelement is the only 4433 // use. It's OK if the final constructed vector is used multiple times 4434 if (!IE->hasOneUse()) 4435 return false; 4436 4437 IE = NextUse; 4438 } 4439 4440 return false; 4441 } 4442 4443 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4444 /// 4445 /// \return true if it matches. 4446 static bool findBuildAggregate(InsertValueInst *IV, 4447 SmallVectorImpl<Value *> &BuildVector, 4448 SmallVectorImpl<Value *> &BuildVectorOpds) { 4449 if (!IV->hasOneUse()) 4450 return false; 4451 Value *V = IV->getAggregateOperand(); 4452 if (!isa<UndefValue>(V)) { 4453 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4454 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4455 return false; 4456 } 4457 BuildVector.push_back(IV); 4458 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4459 return true; 4460 } 4461 4462 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4463 return V->getType() < V2->getType(); 4464 } 4465 4466 /// \brief Try and get a reduction value from a phi node. 4467 /// 4468 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4469 /// if they come from either \p ParentBB or a containing loop latch. 4470 /// 4471 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4472 /// if not possible. 4473 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4474 BasicBlock *ParentBB, LoopInfo *LI) { 4475 // There are situations where the reduction value is not dominated by the 4476 // reduction phi. Vectorizing such cases has been reported to cause 4477 // miscompiles. See PR25787. 4478 auto DominatedReduxValue = [&](Value *R) { 4479 return ( 4480 dyn_cast<Instruction>(R) && 4481 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4482 }; 4483 4484 Value *Rdx = nullptr; 4485 4486 // Return the incoming value if it comes from the same BB as the phi node. 4487 if (P->getIncomingBlock(0) == ParentBB) { 4488 Rdx = P->getIncomingValue(0); 4489 } else if (P->getIncomingBlock(1) == ParentBB) { 4490 Rdx = P->getIncomingValue(1); 4491 } 4492 4493 if (Rdx && DominatedReduxValue(Rdx)) 4494 return Rdx; 4495 4496 // Otherwise, check whether we have a loop latch to look at. 4497 Loop *BBL = LI->getLoopFor(ParentBB); 4498 if (!BBL) 4499 return nullptr; 4500 BasicBlock *BBLatch = BBL->getLoopLatch(); 4501 if (!BBLatch) 4502 return nullptr; 4503 4504 // There is a loop latch, return the incoming value if it comes from 4505 // that. This reduction pattern occasionally turns up. 4506 if (P->getIncomingBlock(0) == BBLatch) { 4507 Rdx = P->getIncomingValue(0); 4508 } else if (P->getIncomingBlock(1) == BBLatch) { 4509 Rdx = P->getIncomingValue(1); 4510 } 4511 4512 if (Rdx && DominatedReduxValue(Rdx)) 4513 return Rdx; 4514 4515 return nullptr; 4516 } 4517 4518 namespace { 4519 /// Tracks instructons and its children. 4520 class WeakVHWithLevel final : public CallbackVH { 4521 /// Operand index of the instruction currently beeing analized. 4522 unsigned Level = 0; 4523 /// Is this the instruction that should be vectorized, or are we now 4524 /// processing children (i.e. operands of this instruction) for potential 4525 /// vectorization? 4526 bool IsInitial = true; 4527 4528 public: 4529 explicit WeakVHWithLevel() = default; 4530 WeakVHWithLevel(Value *V) : CallbackVH(V){}; 4531 /// Restart children analysis each time it is repaced by the new instruction. 4532 void allUsesReplacedWith(Value *New) override { 4533 setValPtr(New); 4534 Level = 0; 4535 IsInitial = true; 4536 } 4537 /// Check if the instruction was not deleted during vectorization. 4538 bool isValid() const { return !getValPtr(); } 4539 /// Is the istruction itself must be vectorized? 4540 bool isInitial() const { return IsInitial; } 4541 /// Try to vectorize children. 4542 void clearInitial() { IsInitial = false; } 4543 /// Are all children processed already? 4544 bool isFinal() const { 4545 assert(getValPtr() && 4546 (isa<Instruction>(getValPtr()) && 4547 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4548 return getValPtr() && 4549 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4550 } 4551 /// Get next child operation. 4552 Value *nextOperand() { 4553 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4554 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4555 return cast<Instruction>(getValPtr())->getOperand(Level++); 4556 } 4557 virtual ~WeakVHWithLevel() = default; 4558 }; 4559 } // namespace 4560 4561 /// \brief Attempt to reduce a horizontal reduction. 4562 /// If it is legal to match a horizontal reduction feeding 4563 /// the phi node P with reduction operators Root in a basic block BB, then check 4564 /// if it can be done. 4565 /// \returns true if a horizontal reduction was matched and reduced. 4566 /// \returns false if a horizontal reduction was not matched. 4567 static bool canBeVectorized( 4568 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4569 TargetTransformInfo *TTI, 4570 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4571 if (!ShouldVectorizeHor) 4572 return false; 4573 4574 if (!Root) 4575 return false; 4576 4577 if (Root->getParent() != BB) 4578 return false; 4579 SmallVector<WeakVHWithLevel, 8> Stack(1, Root); 4580 SmallSet<Value *, 8> VisitedInstrs; 4581 bool Res = false; 4582 while (!Stack.empty()) { 4583 Value *V = Stack.back(); 4584 if (!V) { 4585 Stack.pop_back(); 4586 continue; 4587 } 4588 auto *Inst = dyn_cast<Instruction>(V); 4589 if (!Inst || isa<PHINode>(Inst)) { 4590 Stack.pop_back(); 4591 continue; 4592 } 4593 if (Stack.back().isInitial()) { 4594 Stack.back().clearInitial(); 4595 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4596 HorizontalReduction HorRdx(R.getMinVecRegSize()); 4597 if (HorRdx.matchAssociativeReduction(P, BI)) { 4598 // If there is a sufficient number of reduction values, reduce 4599 // to a nearby power-of-2. Can safely generate oversized 4600 // vectors and rely on the backend to split them to legal sizes. 4601 HorRdx.ReduxWidth = 4602 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4603 4604 if (HorRdx.tryToReduce(R, TTI)) { 4605 Res = true; 4606 P = nullptr; 4607 continue; 4608 } 4609 } 4610 if (P) { 4611 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4612 if (Inst == P) 4613 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4614 if (!Inst) { 4615 P = nullptr; 4616 continue; 4617 } 4618 } 4619 } 4620 P = nullptr; 4621 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4622 Res = true; 4623 continue; 4624 } 4625 } 4626 if (Stack.back().isFinal()) { 4627 Stack.pop_back(); 4628 continue; 4629 } 4630 4631 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4632 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4633 Stack.size() < RecursionMaxDepth) 4634 Stack.push_back(NextV); 4635 } 4636 return Res; 4637 } 4638 4639 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4640 BasicBlock *BB, BoUpSLP &R, 4641 TargetTransformInfo *TTI) { 4642 if (!V) 4643 return false; 4644 auto *I = dyn_cast<Instruction>(V); 4645 if (!I) 4646 return false; 4647 4648 if (!isa<BinaryOperator>(I)) 4649 P = nullptr; 4650 // Try to match and vectorize a horizontal reduction. 4651 return canBeVectorized(P, I, BB, R, TTI, 4652 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4653 return tryToVectorize(BI, R); 4654 }); 4655 } 4656 4657 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4658 bool Changed = false; 4659 SmallVector<Value *, 4> Incoming; 4660 SmallSet<Value *, 16> VisitedInstrs; 4661 4662 bool HaveVectorizedPhiNodes = true; 4663 while (HaveVectorizedPhiNodes) { 4664 HaveVectorizedPhiNodes = false; 4665 4666 // Collect the incoming values from the PHIs. 4667 Incoming.clear(); 4668 for (Instruction &I : *BB) { 4669 PHINode *P = dyn_cast<PHINode>(&I); 4670 if (!P) 4671 break; 4672 4673 if (!VisitedInstrs.count(P)) 4674 Incoming.push_back(P); 4675 } 4676 4677 // Sort by type. 4678 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4679 4680 // Try to vectorize elements base on their type. 4681 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4682 E = Incoming.end(); 4683 IncIt != E;) { 4684 4685 // Look for the next elements with the same type. 4686 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4687 while (SameTypeIt != E && 4688 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4689 VisitedInstrs.insert(*SameTypeIt); 4690 ++SameTypeIt; 4691 } 4692 4693 // Try to vectorize them. 4694 unsigned NumElts = (SameTypeIt - IncIt); 4695 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4696 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4697 // Success start over because instructions might have been changed. 4698 HaveVectorizedPhiNodes = true; 4699 Changed = true; 4700 break; 4701 } 4702 4703 // Start over at the next instruction of a different type (or the end). 4704 IncIt = SameTypeIt; 4705 } 4706 } 4707 4708 VisitedInstrs.clear(); 4709 4710 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4711 // We may go through BB multiple times so skip the one we have checked. 4712 if (!VisitedInstrs.insert(&*it).second) 4713 continue; 4714 4715 if (isa<DbgInfoIntrinsic>(it)) 4716 continue; 4717 4718 // Try to vectorize reductions that use PHINodes. 4719 if (PHINode *P = dyn_cast<PHINode>(it)) { 4720 // Check that the PHI is a reduction PHI. 4721 if (P->getNumIncomingValues() != 2) 4722 return Changed; 4723 4724 // Try to match and vectorize a horizontal reduction. 4725 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4726 TTI)) { 4727 Changed = true; 4728 it = BB->begin(); 4729 e = BB->end(); 4730 continue; 4731 } 4732 continue; 4733 } 4734 4735 if (ShouldStartVectorizeHorAtStore) { 4736 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4737 // Try to match and vectorize a horizontal reduction. 4738 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4739 TTI)) { 4740 Changed = true; 4741 it = BB->begin(); 4742 e = BB->end(); 4743 continue; 4744 } 4745 } 4746 } 4747 4748 // Try to vectorize horizontal reductions feeding into a return. 4749 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4750 if (RI->getNumOperands() != 0) { 4751 // Try to match and vectorize a horizontal reduction. 4752 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4753 Changed = true; 4754 it = BB->begin(); 4755 e = BB->end(); 4756 continue; 4757 } 4758 } 4759 } 4760 4761 // Try to vectorize trees that start at compare instructions. 4762 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4763 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4764 Changed = true; 4765 // We would like to start over since some instructions are deleted 4766 // and the iterator may become invalid value. 4767 it = BB->begin(); 4768 e = BB->end(); 4769 continue; 4770 } 4771 4772 for (int I = 0; I < 2; ++I) { 4773 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 4774 Changed = true; 4775 // We would like to start over since some instructions are deleted 4776 // and the iterator may become invalid value. 4777 it = BB->begin(); 4778 e = BB->end(); 4779 break; 4780 } 4781 } 4782 continue; 4783 } 4784 4785 // Try to vectorize trees that start at insertelement instructions. 4786 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4787 SmallVector<Value *, 16> BuildVector; 4788 SmallVector<Value *, 16> BuildVectorOpds; 4789 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4790 continue; 4791 4792 // Vectorize starting with the build vector operands ignoring the 4793 // BuildVector instructions for the purpose of scheduling and user 4794 // extraction. 4795 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4796 Changed = true; 4797 it = BB->begin(); 4798 e = BB->end(); 4799 } 4800 4801 continue; 4802 } 4803 4804 // Try to vectorize trees that start at insertvalue instructions feeding into 4805 // a store. 4806 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4807 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4808 const DataLayout &DL = BB->getModule()->getDataLayout(); 4809 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4810 SmallVector<Value *, 16> BuildVector; 4811 SmallVector<Value *, 16> BuildVectorOpds; 4812 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4813 continue; 4814 4815 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4816 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4817 Changed = true; 4818 it = BB->begin(); 4819 e = BB->end(); 4820 } 4821 continue; 4822 } 4823 } 4824 } 4825 } 4826 4827 return Changed; 4828 } 4829 4830 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4831 auto Changed = false; 4832 for (auto &Entry : GEPs) { 4833 4834 // If the getelementptr list has fewer than two elements, there's nothing 4835 // to do. 4836 if (Entry.second.size() < 2) 4837 continue; 4838 4839 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4840 << Entry.second.size() << ".\n"); 4841 4842 // We process the getelementptr list in chunks of 16 (like we do for 4843 // stores) to minimize compile-time. 4844 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4845 auto Len = std::min<unsigned>(BE - BI, 16); 4846 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4847 4848 // Initialize a set a candidate getelementptrs. Note that we use a 4849 // SetVector here to preserve program order. If the index computations 4850 // are vectorizable and begin with loads, we want to minimize the chance 4851 // of having to reorder them later. 4852 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4853 4854 // Some of the candidates may have already been vectorized after we 4855 // initially collected them. If so, the WeakVHs will have nullified the 4856 // values, so remove them from the set of candidates. 4857 Candidates.remove(nullptr); 4858 4859 // Remove from the set of candidates all pairs of getelementptrs with 4860 // constant differences. Such getelementptrs are likely not good 4861 // candidates for vectorization in a bottom-up phase since one can be 4862 // computed from the other. We also ensure all candidate getelementptr 4863 // indices are unique. 4864 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4865 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4866 if (!Candidates.count(GEPI)) 4867 continue; 4868 auto *SCEVI = SE->getSCEV(GEPList[I]); 4869 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4870 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4871 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4872 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4873 Candidates.remove(GEPList[I]); 4874 Candidates.remove(GEPList[J]); 4875 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4876 Candidates.remove(GEPList[J]); 4877 } 4878 } 4879 } 4880 4881 // We break out of the above computation as soon as we know there are 4882 // fewer than two candidates remaining. 4883 if (Candidates.size() < 2) 4884 continue; 4885 4886 // Add the single, non-constant index of each candidate to the bundle. We 4887 // ensured the indices met these constraints when we originally collected 4888 // the getelementptrs. 4889 SmallVector<Value *, 16> Bundle(Candidates.size()); 4890 auto BundleIndex = 0u; 4891 for (auto *V : Candidates) { 4892 auto *GEP = cast<GetElementPtrInst>(V); 4893 auto *GEPIdx = GEP->idx_begin()->get(); 4894 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4895 Bundle[BundleIndex++] = GEPIdx; 4896 } 4897 4898 // Try and vectorize the indices. We are currently only interested in 4899 // gather-like cases of the form: 4900 // 4901 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4902 // 4903 // where the loads of "a", the loads of "b", and the subtractions can be 4904 // performed in parallel. It's likely that detecting this pattern in a 4905 // bottom-up phase will be simpler and less costly than building a 4906 // full-blown top-down phase beginning at the consecutive loads. 4907 Changed |= tryToVectorizeList(Bundle, R); 4908 } 4909 } 4910 return Changed; 4911 } 4912 4913 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4914 bool Changed = false; 4915 // Attempt to sort and vectorize each of the store-groups. 4916 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4917 ++it) { 4918 if (it->second.size() < 2) 4919 continue; 4920 4921 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4922 << it->second.size() << ".\n"); 4923 4924 // Process the stores in chunks of 16. 4925 // TODO: The limit of 16 inhibits greater vectorization factors. 4926 // For example, AVX2 supports v32i8. Increasing this limit, however, 4927 // may cause a significant compile-time increase. 4928 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4929 unsigned Len = std::min<unsigned>(CE - CI, 16); 4930 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 4931 } 4932 } 4933 return Changed; 4934 } 4935 4936 char SLPVectorizer::ID = 0; 4937 static const char lv_name[] = "SLP Vectorizer"; 4938 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4939 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4940 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4941 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4942 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4943 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4944 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4945 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4946 4947 namespace llvm { 4948 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4949 } 4950