1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants (but not 198 /// globals/constant expressions). 199 static bool allConstant(ArrayRef<Value *> VL) { 200 // Constant expressions and globals can't be vectorized like normal integer/FP 201 // constants. 202 for (Value *i : VL) 203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 204 return false; 205 return true; 206 } 207 208 /// \returns True if all of the values in \p VL are identical. 209 static bool isSplat(ArrayRef<Value *> VL) { 210 for (unsigned i = 1, e = VL.size(); i < e; ++i) 211 if (VL[i] != VL[0]) 212 return false; 213 return true; 214 } 215 216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 217 static bool isCommutative(Instruction *I) { 218 if (auto *IC = dyn_cast<CmpInst>(I)) 219 return IC->isCommutative(); 220 return I->isCommutative(); 221 } 222 223 /// Checks if the vector of instructions can be represented as a shuffle, like: 224 /// %x0 = extractelement <4 x i8> %x, i32 0 225 /// %x3 = extractelement <4 x i8> %x, i32 3 226 /// %y1 = extractelement <4 x i8> %y, i32 1 227 /// %y2 = extractelement <4 x i8> %y, i32 2 228 /// %x0x0 = mul i8 %x0, %x0 229 /// %x3x3 = mul i8 %x3, %x3 230 /// %y1y1 = mul i8 %y1, %y1 231 /// %y2y2 = mul i8 %y2, %y2 232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 236 /// ret <4 x i8> %ins4 237 /// can be transformed into: 238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 239 /// i32 6> 240 /// %2 = mul <4 x i8> %1, %1 241 /// ret <4 x i8> %2 242 /// We convert this initially to something like: 243 /// %x0 = extractelement <4 x i8> %x, i32 0 244 /// %x3 = extractelement <4 x i8> %x, i32 3 245 /// %y1 = extractelement <4 x i8> %y, i32 1 246 /// %y2 = extractelement <4 x i8> %y, i32 2 247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 251 /// %5 = mul <4 x i8> %4, %4 252 /// %6 = extractelement <4 x i8> %5, i32 0 253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 254 /// %7 = extractelement <4 x i8> %5, i32 1 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 256 /// %8 = extractelement <4 x i8> %5, i32 2 257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 258 /// %9 = extractelement <4 x i8> %5, i32 3 259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 260 /// ret <4 x i8> %ins4 261 /// InstCombiner transforms this into a shuffle and vector mul 262 /// TODO: Can we split off and reuse the shuffle mask detection from 263 /// TargetTransformInfo::getInstructionThroughput? 264 static Optional<TargetTransformInfo::ShuffleKind> 265 isShuffle(ArrayRef<Value *> VL) { 266 auto *EI0 = cast<ExtractElementInst>(VL[0]); 267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 268 Value *Vec1 = nullptr; 269 Value *Vec2 = nullptr; 270 enum ShuffleMode { Unknown, Select, Permute }; 271 ShuffleMode CommonShuffleMode = Unknown; 272 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 273 auto *EI = cast<ExtractElementInst>(VL[I]); 274 auto *Vec = EI->getVectorOperand(); 275 // All vector operands must have the same number of vector elements. 276 if (Vec->getType()->getVectorNumElements() != Size) 277 return None; 278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 279 if (!Idx) 280 return None; 281 // Undefined behavior if Idx is negative or >= Size. 282 if (Idx->getValue().uge(Size)) 283 continue; 284 unsigned IntIdx = Idx->getValue().getZExtValue(); 285 // We can extractelement from undef vector. 286 if (isa<UndefValue>(Vec)) 287 continue; 288 // For correct shuffling we have to have at most 2 different vector operands 289 // in all extractelement instructions. 290 if (!Vec1 || Vec1 == Vec) 291 Vec1 = Vec; 292 else if (!Vec2 || Vec2 == Vec) 293 Vec2 = Vec; 294 else 295 return None; 296 if (CommonShuffleMode == Permute) 297 continue; 298 // If the extract index is not the same as the operation number, it is a 299 // permutation. 300 if (IntIdx != I) { 301 CommonShuffleMode = Permute; 302 continue; 303 } 304 CommonShuffleMode = Select; 305 } 306 // If we're not crossing lanes in different vectors, consider it as blending. 307 if (CommonShuffleMode == Select && Vec2) 308 return TargetTransformInfo::SK_Select; 309 // If Vec2 was never used, we have a permutation of a single vector, otherwise 310 // we have permutation of 2 vectors. 311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 312 : TargetTransformInfo::SK_PermuteSingleSrc; 313 } 314 315 namespace { 316 317 /// Main data required for vectorization of instructions. 318 struct InstructionsState { 319 /// The very first instruction in the list with the main opcode. 320 Value *OpValue = nullptr; 321 322 /// The main/alternate instruction. 323 Instruction *MainOp = nullptr; 324 Instruction *AltOp = nullptr; 325 326 /// The main/alternate opcodes for the list of instructions. 327 unsigned getOpcode() const { 328 return MainOp ? MainOp->getOpcode() : 0; 329 } 330 331 unsigned getAltOpcode() const { 332 return AltOp ? AltOp->getOpcode() : 0; 333 } 334 335 /// Some of the instructions in the list have alternate opcodes. 336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 337 338 bool isOpcodeOrAlt(Instruction *I) const { 339 unsigned CheckedOpcode = I->getOpcode(); 340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 341 } 342 343 InstructionsState() = delete; 344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 346 }; 347 348 } // end anonymous namespace 349 350 /// Chooses the correct key for scheduling data. If \p Op has the same (or 351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 352 /// OpValue. 353 static Value *isOneOf(const InstructionsState &S, Value *Op) { 354 auto *I = dyn_cast<Instruction>(Op); 355 if (I && S.isOpcodeOrAlt(I)) 356 return Op; 357 return S.OpValue; 358 } 359 360 /// \returns analysis of the Instructions in \p VL described in 361 /// InstructionsState, the Opcode that we suppose the whole list 362 /// could be vectorized even if its structure is diverse. 363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 364 unsigned BaseIndex = 0) { 365 // Make sure these are all Instructions. 366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 367 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 368 369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 372 unsigned AltOpcode = Opcode; 373 unsigned AltIndex = BaseIndex; 374 375 // Check for one alternate opcode from another BinaryOperator. 376 // TODO - generalize to support all operators (types, calls etc.). 377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 380 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 381 continue; 382 if (Opcode == AltOpcode) { 383 AltOpcode = InstOpcode; 384 AltIndex = Cnt; 385 continue; 386 } 387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 390 if (Ty0 == Ty1) { 391 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 392 continue; 393 if (Opcode == AltOpcode) { 394 AltOpcode = InstOpcode; 395 AltIndex = Cnt; 396 continue; 397 } 398 } 399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 400 continue; 401 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 402 } 403 404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 405 cast<Instruction>(VL[AltIndex])); 406 } 407 408 /// \returns true if all of the values in \p VL have the same type or false 409 /// otherwise. 410 static bool allSameType(ArrayRef<Value *> VL) { 411 Type *Ty = VL[0]->getType(); 412 for (int i = 1, e = VL.size(); i < e; i++) 413 if (VL[i]->getType() != Ty) 414 return false; 415 416 return true; 417 } 418 419 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 420 static Optional<unsigned> getExtractIndex(Instruction *E) { 421 unsigned Opcode = E->getOpcode(); 422 assert((Opcode == Instruction::ExtractElement || 423 Opcode == Instruction::ExtractValue) && 424 "Expected extractelement or extractvalue instruction."); 425 if (Opcode == Instruction::ExtractElement) { 426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 427 if (!CI) 428 return None; 429 return CI->getZExtValue(); 430 } 431 ExtractValueInst *EI = cast<ExtractValueInst>(E); 432 if (EI->getNumIndices() != 1) 433 return None; 434 return *EI->idx_begin(); 435 } 436 437 /// \returns True if in-tree use also needs extract. This refers to 438 /// possible scalar operand in vectorized instruction. 439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 440 TargetLibraryInfo *TLI) { 441 unsigned Opcode = UserInst->getOpcode(); 442 switch (Opcode) { 443 case Instruction::Load: { 444 LoadInst *LI = cast<LoadInst>(UserInst); 445 return (LI->getPointerOperand() == Scalar); 446 } 447 case Instruction::Store: { 448 StoreInst *SI = cast<StoreInst>(UserInst); 449 return (SI->getPointerOperand() == Scalar); 450 } 451 case Instruction::Call: { 452 CallInst *CI = cast<CallInst>(UserInst); 453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 455 if (hasVectorInstrinsicScalarOpd(ID, i)) 456 return (CI->getArgOperand(i) == Scalar); 457 } 458 LLVM_FALLTHROUGH; 459 } 460 default: 461 return false; 462 } 463 } 464 465 /// \returns the AA location that is being access by the instruction. 466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 467 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 468 return MemoryLocation::get(SI); 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return MemoryLocation::get(LI); 471 return MemoryLocation(); 472 } 473 474 /// \returns True if the instruction is not a volatile or atomic load/store. 475 static bool isSimple(Instruction *I) { 476 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 477 return LI->isSimple(); 478 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 479 return SI->isSimple(); 480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 481 return !MI->isVolatile(); 482 return true; 483 } 484 485 namespace llvm { 486 487 namespace slpvectorizer { 488 489 /// Bottom Up SLP Vectorizer. 490 class BoUpSLP { 491 struct TreeEntry; 492 struct ScheduleData; 493 494 public: 495 using ValueList = SmallVector<Value *, 8>; 496 using InstrList = SmallVector<Instruction *, 16>; 497 using ValueSet = SmallPtrSet<Value *, 16>; 498 using StoreList = SmallVector<StoreInst *, 8>; 499 using ExtraValueToDebugLocsMap = 500 MapVector<Value *, SmallVector<Instruction *, 2>>; 501 502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 505 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 508 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 509 // Use the vector register size specified by the target unless overridden 510 // by a command-line option. 511 // TODO: It would be better to limit the vectorization factor based on 512 // data type rather than just register size. For example, x86 AVX has 513 // 256-bit registers, but it does not support integer operations 514 // at that width (that requires AVX2). 515 if (MaxVectorRegSizeOption.getNumOccurrences()) 516 MaxVecRegSize = MaxVectorRegSizeOption; 517 else 518 MaxVecRegSize = TTI->getRegisterBitWidth(true); 519 520 if (MinVectorRegSizeOption.getNumOccurrences()) 521 MinVecRegSize = MinVectorRegSizeOption; 522 else 523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 524 } 525 526 /// Vectorize the tree that starts with the elements in \p VL. 527 /// Returns the vectorized root. 528 Value *vectorizeTree(); 529 530 /// Vectorize the tree but with the list of externally used values \p 531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 532 /// generated extractvalue instructions. 533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 534 535 /// \returns the cost incurred by unwanted spills and fills, caused by 536 /// holding live values over call sites. 537 int getSpillCost() const; 538 539 /// \returns the vectorization cost of the subtree that starts at \p VL. 540 /// A negative number means that this is profitable. 541 int getTreeCost(); 542 543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 545 void buildTree(ArrayRef<Value *> Roots, 546 ArrayRef<Value *> UserIgnoreLst = None); 547 548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 550 /// into account (anf updating it, if required) list of externally used 551 /// values stored in \p ExternallyUsedValues. 552 void buildTree(ArrayRef<Value *> Roots, 553 ExtraValueToDebugLocsMap &ExternallyUsedValues, 554 ArrayRef<Value *> UserIgnoreLst = None); 555 556 /// Clear the internal data structures that are created by 'buildTree'. 557 void deleteTree() { 558 VectorizableTree.clear(); 559 ScalarToTreeEntry.clear(); 560 MustGather.clear(); 561 ExternalUses.clear(); 562 NumOpsWantToKeepOrder.clear(); 563 NumOpsWantToKeepOriginalOrder = 0; 564 for (auto &Iter : BlocksSchedules) { 565 BlockScheduling *BS = Iter.second.get(); 566 BS->clear(); 567 } 568 MinBWs.clear(); 569 } 570 571 unsigned getTreeSize() const { return VectorizableTree.size(); } 572 573 /// Perform LICM and CSE on the newly generated gather sequences. 574 void optimizeGatherSequence(); 575 576 /// \returns The best order of instructions for vectorization. 577 Optional<ArrayRef<unsigned>> bestOrder() const { 578 auto I = std::max_element( 579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 582 return D1.second < D2.second; 583 }); 584 if (I == NumOpsWantToKeepOrder.end() || 585 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 586 return None; 587 588 return makeArrayRef(I->getFirst()); 589 } 590 591 /// \return The vector element size in bits to use when vectorizing the 592 /// expression tree ending at \p V. If V is a store, the size is the width of 593 /// the stored value. Otherwise, the size is the width of the largest loaded 594 /// value reaching V. This method is used by the vectorizer to calculate 595 /// vectorization factors. 596 unsigned getVectorElementSize(Value *V) const; 597 598 /// Compute the minimum type sizes required to represent the entries in a 599 /// vectorizable tree. 600 void computeMinimumValueSizes(); 601 602 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 603 unsigned getMaxVecRegSize() const { 604 return MaxVecRegSize; 605 } 606 607 // \returns minimum vector register size as set by cl::opt. 608 unsigned getMinVecRegSize() const { 609 return MinVecRegSize; 610 } 611 612 /// Check if ArrayType or StructType is isomorphic to some VectorType. 613 /// 614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 615 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 616 617 /// \returns True if the VectorizableTree is both tiny and not fully 618 /// vectorizable. We do not vectorize such trees. 619 bool isTreeTinyAndNotFullyVectorizable() const; 620 621 OptimizationRemarkEmitter *getORE() { return ORE; } 622 623 /// This structure holds any data we need about the edges being traversed 624 /// during buildTree_rec(). We keep track of: 625 /// (i) the user TreeEntry index, and 626 /// (ii) the index of the edge. 627 struct EdgeInfo { 628 EdgeInfo() = default; 629 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 630 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 631 /// The user TreeEntry. 632 TreeEntry *UserTE = nullptr; 633 /// The operand index of the use. 634 unsigned EdgeIdx = UINT_MAX; 635 #ifndef NDEBUG 636 friend inline raw_ostream &operator<<(raw_ostream &OS, 637 const BoUpSLP::EdgeInfo &EI) { 638 EI.dump(OS); 639 return OS; 640 } 641 /// Debug print. 642 void dump(raw_ostream &OS) const { 643 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 644 << " EdgeIdx:" << EdgeIdx << "}"; 645 } 646 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 647 #endif 648 }; 649 650 /// A helper data structure to hold the operands of a vector of instructions. 651 /// This supports a fixed vector length for all operand vectors. 652 class VLOperands { 653 /// For each operand we need (i) the value, and (ii) the opcode that it 654 /// would be attached to if the expression was in a left-linearized form. 655 /// This is required to avoid illegal operand reordering. 656 /// For example: 657 /// \verbatim 658 /// 0 Op1 659 /// |/ 660 /// Op1 Op2 Linearized + Op2 661 /// \ / ----------> |/ 662 /// - - 663 /// 664 /// Op1 - Op2 (0 + Op1) - Op2 665 /// \endverbatim 666 /// 667 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 668 /// 669 /// Another way to think of this is to track all the operations across the 670 /// path from the operand all the way to the root of the tree and to 671 /// calculate the operation that corresponds to this path. For example, the 672 /// path from Op2 to the root crosses the RHS of the '-', therefore the 673 /// corresponding operation is a '-' (which matches the one in the 674 /// linearized tree, as shown above). 675 /// 676 /// For lack of a better term, we refer to this operation as Accumulated 677 /// Path Operation (APO). 678 struct OperandData { 679 OperandData() = default; 680 OperandData(Value *V, bool APO, bool IsUsed) 681 : V(V), APO(APO), IsUsed(IsUsed) {} 682 /// The operand value. 683 Value *V = nullptr; 684 /// TreeEntries only allow a single opcode, or an alternate sequence of 685 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 686 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 687 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 688 /// (e.g., Add/Mul) 689 bool APO = false; 690 /// Helper data for the reordering function. 691 bool IsUsed = false; 692 }; 693 694 /// During operand reordering, we are trying to select the operand at lane 695 /// that matches best with the operand at the neighboring lane. Our 696 /// selection is based on the type of value we are looking for. For example, 697 /// if the neighboring lane has a load, we need to look for a load that is 698 /// accessing a consecutive address. These strategies are summarized in the 699 /// 'ReorderingMode' enumerator. 700 enum class ReorderingMode { 701 Load, ///< Matching loads to consecutive memory addresses 702 Opcode, ///< Matching instructions based on opcode (same or alternate) 703 Constant, ///< Matching constants 704 Splat, ///< Matching the same instruction multiple times (broadcast) 705 Failed, ///< We failed to create a vectorizable group 706 }; 707 708 using OperandDataVec = SmallVector<OperandData, 2>; 709 710 /// A vector of operand vectors. 711 SmallVector<OperandDataVec, 4> OpsVec; 712 713 const DataLayout &DL; 714 ScalarEvolution &SE; 715 716 /// \returns the operand data at \p OpIdx and \p Lane. 717 OperandData &getData(unsigned OpIdx, unsigned Lane) { 718 return OpsVec[OpIdx][Lane]; 719 } 720 721 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 722 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 723 return OpsVec[OpIdx][Lane]; 724 } 725 726 /// Clears the used flag for all entries. 727 void clearUsed() { 728 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 729 OpIdx != NumOperands; ++OpIdx) 730 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 731 ++Lane) 732 OpsVec[OpIdx][Lane].IsUsed = false; 733 } 734 735 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 736 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 737 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 738 } 739 740 // Search all operands in Ops[*][Lane] for the one that matches best 741 // Ops[OpIdx][LastLane] and return its opreand index. 742 // If no good match can be found, return None. 743 Optional<unsigned> 744 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 745 ArrayRef<ReorderingMode> ReorderingModes) { 746 unsigned NumOperands = getNumOperands(); 747 748 // The operand of the previous lane at OpIdx. 749 Value *OpLastLane = getData(OpIdx, LastLane).V; 750 751 // Our strategy mode for OpIdx. 752 ReorderingMode RMode = ReorderingModes[OpIdx]; 753 754 // The linearized opcode of the operand at OpIdx, Lane. 755 bool OpIdxAPO = getData(OpIdx, Lane).APO; 756 757 const unsigned BestScore = 2; 758 const unsigned GoodScore = 1; 759 760 // The best operand index and its score. 761 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 762 // are using the score to differentiate between the two. 763 struct BestOpData { 764 Optional<unsigned> Idx = None; 765 unsigned Score = 0; 766 } BestOp; 767 768 // Iterate through all unused operands and look for the best. 769 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 770 // Get the operand at Idx and Lane. 771 OperandData &OpData = getData(Idx, Lane); 772 Value *Op = OpData.V; 773 bool OpAPO = OpData.APO; 774 775 // Skip already selected operands. 776 if (OpData.IsUsed) 777 continue; 778 779 // Skip if we are trying to move the operand to a position with a 780 // different opcode in the linearized tree form. This would break the 781 // semantics. 782 if (OpAPO != OpIdxAPO) 783 continue; 784 785 // Look for an operand that matches the current mode. 786 switch (RMode) { 787 case ReorderingMode::Load: 788 if (isa<LoadInst>(Op)) { 789 // Figure out which is left and right, so that we can check for 790 // consecutive loads 791 bool LeftToRight = Lane > LastLane; 792 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 793 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 794 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 795 cast<LoadInst>(OpRight), DL, SE)) 796 BestOp.Idx = Idx; 797 } 798 break; 799 case ReorderingMode::Opcode: 800 // We accept both Instructions and Undefs, but with different scores. 801 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 802 cast<Instruction>(Op)->getOpcode() == 803 cast<Instruction>(OpLastLane)->getOpcode()) || 804 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 805 isa<UndefValue>(Op)) { 806 // An instruction has a higher score than an undef. 807 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 808 if (Score > BestOp.Score) { 809 BestOp.Idx = Idx; 810 BestOp.Score = Score; 811 } 812 } 813 break; 814 case ReorderingMode::Constant: 815 if (isa<Constant>(Op)) { 816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 817 if (Score > BestOp.Score) { 818 BestOp.Idx = Idx; 819 BestOp.Score = Score; 820 } 821 } 822 break; 823 case ReorderingMode::Splat: 824 if (Op == OpLastLane) 825 BestOp.Idx = Idx; 826 break; 827 case ReorderingMode::Failed: 828 return None; 829 } 830 } 831 832 if (BestOp.Idx) { 833 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 834 return BestOp.Idx; 835 } 836 // If we could not find a good match return None. 837 return None; 838 } 839 840 /// Helper for reorderOperandVecs. \Returns the lane that we should start 841 /// reordering from. This is the one which has the least number of operands 842 /// that can freely move about. 843 unsigned getBestLaneToStartReordering() const { 844 unsigned BestLane = 0; 845 unsigned Min = UINT_MAX; 846 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 847 ++Lane) { 848 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 849 if (NumFreeOps < Min) { 850 Min = NumFreeOps; 851 BestLane = Lane; 852 } 853 } 854 return BestLane; 855 } 856 857 /// \Returns the maximum number of operands that are allowed to be reordered 858 /// for \p Lane. This is used as a heuristic for selecting the first lane to 859 /// start operand reordering. 860 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 861 unsigned CntTrue = 0; 862 unsigned NumOperands = getNumOperands(); 863 // Operands with the same APO can be reordered. We therefore need to count 864 // how many of them we have for each APO, like this: Cnt[APO] = x. 865 // Since we only have two APOs, namely true and false, we can avoid using 866 // a map. Instead we can simply count the number of operands that 867 // correspond to one of them (in this case the 'true' APO), and calculate 868 // the other by subtracting it from the total number of operands. 869 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 870 if (getData(OpIdx, Lane).APO) 871 ++CntTrue; 872 unsigned CntFalse = NumOperands - CntTrue; 873 return std::max(CntTrue, CntFalse); 874 } 875 876 /// Go through the instructions in VL and append their operands. 877 void appendOperandsOfVL(ArrayRef<Value *> VL) { 878 assert(!VL.empty() && "Bad VL"); 879 assert((empty() || VL.size() == getNumLanes()) && 880 "Expected same number of lanes"); 881 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 882 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 883 OpsVec.resize(NumOperands); 884 unsigned NumLanes = VL.size(); 885 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 886 OpsVec[OpIdx].resize(NumLanes); 887 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 888 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 889 // Our tree has just 3 nodes: the root and two operands. 890 // It is therefore trivial to get the APO. We only need to check the 891 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 892 // RHS operand. The LHS operand of both add and sub is never attached 893 // to an inversese operation in the linearized form, therefore its APO 894 // is false. The RHS is true only if VL[Lane] is an inverse operation. 895 896 // Since operand reordering is performed on groups of commutative 897 // operations or alternating sequences (e.g., +, -), we can safely 898 // tell the inverse operations by checking commutativity. 899 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 900 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 901 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 902 APO, false}; 903 } 904 } 905 } 906 907 /// \returns the number of operands. 908 unsigned getNumOperands() const { return OpsVec.size(); } 909 910 /// \returns the number of lanes. 911 unsigned getNumLanes() const { return OpsVec[0].size(); } 912 913 /// \returns the operand value at \p OpIdx and \p Lane. 914 Value *getValue(unsigned OpIdx, unsigned Lane) const { 915 return getData(OpIdx, Lane).V; 916 } 917 918 /// \returns true if the data structure is empty. 919 bool empty() const { return OpsVec.empty(); } 920 921 /// Clears the data. 922 void clear() { OpsVec.clear(); } 923 924 /// \Returns true if there are enough operands identical to \p Op to fill 925 /// the whole vector. 926 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 927 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 928 bool OpAPO = getData(OpIdx, Lane).APO; 929 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 930 if (Ln == Lane) 931 continue; 932 // This is set to true if we found a candidate for broadcast at Lane. 933 bool FoundCandidate = false; 934 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 935 OperandData &Data = getData(OpI, Ln); 936 if (Data.APO != OpAPO || Data.IsUsed) 937 continue; 938 if (Data.V == Op) { 939 FoundCandidate = true; 940 Data.IsUsed = true; 941 break; 942 } 943 } 944 if (!FoundCandidate) 945 return false; 946 } 947 return true; 948 } 949 950 public: 951 /// Initialize with all the operands of the instruction vector \p RootVL. 952 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 953 ScalarEvolution &SE) 954 : DL(DL), SE(SE) { 955 // Append all the operands of RootVL. 956 appendOperandsOfVL(RootVL); 957 } 958 959 /// \Returns a value vector with the operands across all lanes for the 960 /// opearnd at \p OpIdx. 961 ValueList getVL(unsigned OpIdx) const { 962 ValueList OpVL(OpsVec[OpIdx].size()); 963 assert(OpsVec[OpIdx].size() == getNumLanes() && 964 "Expected same num of lanes across all operands"); 965 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 966 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 967 return OpVL; 968 } 969 970 // Performs operand reordering for 2 or more operands. 971 // The original operands are in OrigOps[OpIdx][Lane]. 972 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 973 void reorder() { 974 unsigned NumOperands = getNumOperands(); 975 unsigned NumLanes = getNumLanes(); 976 // Each operand has its own mode. We are using this mode to help us select 977 // the instructions for each lane, so that they match best with the ones 978 // we have selected so far. 979 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 980 981 // This is a greedy single-pass algorithm. We are going over each lane 982 // once and deciding on the best order right away with no back-tracking. 983 // However, in order to increase its effectiveness, we start with the lane 984 // that has operands that can move the least. For example, given the 985 // following lanes: 986 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 987 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 988 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 989 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 990 // we will start at Lane 1, since the operands of the subtraction cannot 991 // be reordered. Then we will visit the rest of the lanes in a circular 992 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 993 994 // Find the first lane that we will start our search from. 995 unsigned FirstLane = getBestLaneToStartReordering(); 996 997 // Initialize the modes. 998 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 999 Value *OpLane0 = getValue(OpIdx, FirstLane); 1000 // Keep track if we have instructions with all the same opcode on one 1001 // side. 1002 if (isa<LoadInst>(OpLane0)) 1003 ReorderingModes[OpIdx] = ReorderingMode::Load; 1004 else if (isa<Instruction>(OpLane0)) { 1005 // Check if OpLane0 should be broadcast. 1006 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1007 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1008 else 1009 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1010 } 1011 else if (isa<Constant>(OpLane0)) 1012 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1013 else if (isa<Argument>(OpLane0)) 1014 // Our best hope is a Splat. It may save some cost in some cases. 1015 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1016 else 1017 // NOTE: This should be unreachable. 1018 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1019 } 1020 1021 // If the initial strategy fails for any of the operand indexes, then we 1022 // perform reordering again in a second pass. This helps avoid assigning 1023 // high priority to the failed strategy, and should improve reordering for 1024 // the non-failed operand indexes. 1025 for (int Pass = 0; Pass != 2; ++Pass) { 1026 // Skip the second pass if the first pass did not fail. 1027 bool StrategyFailed = false; 1028 // Mark all operand data as free to use. 1029 clearUsed(); 1030 // We keep the original operand order for the FirstLane, so reorder the 1031 // rest of the lanes. We are visiting the nodes in a circular fashion, 1032 // using FirstLane as the center point and increasing the radius 1033 // distance. 1034 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1035 // Visit the lane on the right and then the lane on the left. 1036 for (int Direction : {+1, -1}) { 1037 int Lane = FirstLane + Direction * Distance; 1038 if (Lane < 0 || Lane >= (int)NumLanes) 1039 continue; 1040 int LastLane = Lane - Direction; 1041 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1042 "Out of bounds"); 1043 // Look for a good match for each operand. 1044 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1045 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1046 Optional<unsigned> BestIdx = 1047 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1048 // By not selecting a value, we allow the operands that follow to 1049 // select a better matching value. We will get a non-null value in 1050 // the next run of getBestOperand(). 1051 if (BestIdx) { 1052 // Swap the current operand with the one returned by 1053 // getBestOperand(). 1054 swap(OpIdx, BestIdx.getValue(), Lane); 1055 } else { 1056 // We failed to find a best operand, set mode to 'Failed'. 1057 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1058 // Enable the second pass. 1059 StrategyFailed = true; 1060 } 1061 } 1062 } 1063 } 1064 // Skip second pass if the strategy did not fail. 1065 if (!StrategyFailed) 1066 break; 1067 } 1068 } 1069 1070 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1071 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1072 switch (RMode) { 1073 case ReorderingMode::Load: 1074 return "Load"; 1075 case ReorderingMode::Opcode: 1076 return "Opcode"; 1077 case ReorderingMode::Constant: 1078 return "Constant"; 1079 case ReorderingMode::Splat: 1080 return "Splat"; 1081 case ReorderingMode::Failed: 1082 return "Failed"; 1083 } 1084 llvm_unreachable("Unimplemented Reordering Type"); 1085 } 1086 1087 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1088 raw_ostream &OS) { 1089 return OS << getModeStr(RMode); 1090 } 1091 1092 /// Debug print. 1093 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1094 printMode(RMode, dbgs()); 1095 } 1096 1097 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1098 return printMode(RMode, OS); 1099 } 1100 1101 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1102 const unsigned Indent = 2; 1103 unsigned Cnt = 0; 1104 for (const OperandDataVec &OpDataVec : OpsVec) { 1105 OS << "Operand " << Cnt++ << "\n"; 1106 for (const OperandData &OpData : OpDataVec) { 1107 OS.indent(Indent) << "{"; 1108 if (Value *V = OpData.V) 1109 OS << *V; 1110 else 1111 OS << "null"; 1112 OS << ", APO:" << OpData.APO << "}\n"; 1113 } 1114 OS << "\n"; 1115 } 1116 return OS; 1117 } 1118 1119 /// Debug print. 1120 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1121 #endif 1122 }; 1123 1124 private: 1125 /// Checks if all users of \p I are the part of the vectorization tree. 1126 bool areAllUsersVectorized(Instruction *I) const; 1127 1128 /// \returns the cost of the vectorizable entry. 1129 int getEntryCost(TreeEntry *E); 1130 1131 /// This is the recursive part of buildTree. 1132 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1133 const EdgeInfo &EI); 1134 1135 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1136 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1137 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1138 /// returns false, setting \p CurrentOrder to either an empty vector or a 1139 /// non-identity permutation that allows to reuse extract instructions. 1140 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1141 SmallVectorImpl<unsigned> &CurrentOrder) const; 1142 1143 /// Vectorize a single entry in the tree. 1144 Value *vectorizeTree(TreeEntry *E); 1145 1146 /// Vectorize a single entry in the tree, starting in \p VL. 1147 Value *vectorizeTree(ArrayRef<Value *> VL); 1148 1149 /// \returns the scalarization cost for this type. Scalarization in this 1150 /// context means the creation of vectors from a group of scalars. 1151 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1152 1153 /// \returns the scalarization cost for this list of values. Assuming that 1154 /// this subtree gets vectorized, we may need to extract the values from the 1155 /// roots. This method calculates the cost of extracting the values. 1156 int getGatherCost(ArrayRef<Value *> VL) const; 1157 1158 /// Set the Builder insert point to one after the last instruction in 1159 /// the bundle 1160 void setInsertPointAfterBundle(TreeEntry *E); 1161 1162 /// \returns a vector from a collection of scalars in \p VL. 1163 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1164 1165 /// \returns whether the VectorizableTree is fully vectorizable and will 1166 /// be beneficial even the tree height is tiny. 1167 bool isFullyVectorizableTinyTree() const; 1168 1169 /// Reorder commutative or alt operands to get better probability of 1170 /// generating vectorized code. 1171 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1172 SmallVectorImpl<Value *> &Left, 1173 SmallVectorImpl<Value *> &Right, 1174 const DataLayout &DL, 1175 ScalarEvolution &SE); 1176 struct TreeEntry { 1177 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1178 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1179 1180 /// \returns true if the scalars in VL are equal to this entry. 1181 bool isSame(ArrayRef<Value *> VL) const { 1182 if (VL.size() == Scalars.size()) 1183 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1184 return VL.size() == ReuseShuffleIndices.size() && 1185 std::equal( 1186 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1187 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1188 } 1189 1190 /// A vector of scalars. 1191 ValueList Scalars; 1192 1193 /// The Scalars are vectorized into this value. It is initialized to Null. 1194 Value *VectorizedValue = nullptr; 1195 1196 /// Do we need to gather this sequence ? 1197 bool NeedToGather = false; 1198 1199 /// Does this sequence require some shuffling? 1200 SmallVector<unsigned, 4> ReuseShuffleIndices; 1201 1202 /// Does this entry require reordering? 1203 ArrayRef<unsigned> ReorderIndices; 1204 1205 /// Points back to the VectorizableTree. 1206 /// 1207 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1208 /// to be a pointer and needs to be able to initialize the child iterator. 1209 /// Thus we need a reference back to the container to translate the indices 1210 /// to entries. 1211 VecTreeTy &Container; 1212 1213 /// The TreeEntry index containing the user of this entry. We can actually 1214 /// have multiple users so the data structure is not truly a tree. 1215 SmallVector<EdgeInfo, 1> UserTreeIndices; 1216 1217 /// The index of this treeEntry in VectorizableTree. 1218 int Idx = -1; 1219 1220 private: 1221 /// The operands of each instruction in each lane Operands[op_index][lane]. 1222 /// Note: This helps avoid the replication of the code that performs the 1223 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1224 SmallVector<ValueList, 2> Operands; 1225 1226 /// The main/alternate instruction. 1227 Instruction *MainOp = nullptr; 1228 Instruction *AltOp = nullptr; 1229 1230 public: 1231 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1232 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1233 if (Operands.size() < OpIdx + 1) 1234 Operands.resize(OpIdx + 1); 1235 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1236 Operands[OpIdx].resize(Scalars.size()); 1237 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1238 Operands[OpIdx][Lane] = OpVL[Lane]; 1239 } 1240 1241 /// Set the operands of this bundle in their original order. 1242 void setOperandsInOrder() { 1243 assert(Operands.empty() && "Already initialized?"); 1244 auto *I0 = cast<Instruction>(Scalars[0]); 1245 Operands.resize(I0->getNumOperands()); 1246 unsigned NumLanes = Scalars.size(); 1247 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1248 OpIdx != NumOperands; ++OpIdx) { 1249 Operands[OpIdx].resize(NumLanes); 1250 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1251 auto *I = cast<Instruction>(Scalars[Lane]); 1252 assert(I->getNumOperands() == NumOperands && 1253 "Expected same number of operands"); 1254 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1255 } 1256 } 1257 } 1258 1259 /// \returns the \p OpIdx operand of this TreeEntry. 1260 ValueList &getOperand(unsigned OpIdx) { 1261 assert(OpIdx < Operands.size() && "Off bounds"); 1262 return Operands[OpIdx]; 1263 } 1264 1265 /// \returns the number of operands. 1266 unsigned getNumOperands() const { return Operands.size(); } 1267 1268 /// \return the single \p OpIdx operand. 1269 Value *getSingleOperand(unsigned OpIdx) const { 1270 assert(OpIdx < Operands.size() && "Off bounds"); 1271 assert(!Operands[OpIdx].empty() && "No operand available"); 1272 return Operands[OpIdx][0]; 1273 } 1274 1275 /// Some of the instructions in the list have alternate opcodes. 1276 bool isAltShuffle() const { 1277 return getOpcode() != getAltOpcode(); 1278 } 1279 1280 bool isOpcodeOrAlt(Instruction *I) const { 1281 unsigned CheckedOpcode = I->getOpcode(); 1282 return (getOpcode() == CheckedOpcode || 1283 getAltOpcode() == CheckedOpcode); 1284 } 1285 1286 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1287 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1288 /// \p OpValue. 1289 Value *isOneOf(Value *Op) const { 1290 auto *I = dyn_cast<Instruction>(Op); 1291 if (I && isOpcodeOrAlt(I)) 1292 return Op; 1293 return MainOp; 1294 } 1295 1296 void setOperations(const InstructionsState &S) { 1297 MainOp = S.MainOp; 1298 AltOp = S.AltOp; 1299 } 1300 1301 Instruction *getMainOp() const { 1302 return MainOp; 1303 } 1304 1305 Instruction *getAltOp() const { 1306 return AltOp; 1307 } 1308 1309 /// The main/alternate opcodes for the list of instructions. 1310 unsigned getOpcode() const { 1311 return MainOp ? MainOp->getOpcode() : 0; 1312 } 1313 1314 unsigned getAltOpcode() const { 1315 return AltOp ? AltOp->getOpcode() : 0; 1316 } 1317 1318 /// Update operations state of this entry if reorder occurred. 1319 bool updateStateIfReorder() { 1320 if (ReorderIndices.empty()) 1321 return false; 1322 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1323 setOperations(S); 1324 return true; 1325 } 1326 1327 #ifndef NDEBUG 1328 /// Debug printer. 1329 LLVM_DUMP_METHOD void dump() const { 1330 dbgs() << Idx << ".\n"; 1331 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1332 dbgs() << "Operand " << OpI << ":\n"; 1333 for (const Value *V : Operands[OpI]) 1334 dbgs().indent(2) << *V << "\n"; 1335 } 1336 dbgs() << "Scalars: \n"; 1337 for (Value *V : Scalars) 1338 dbgs().indent(2) << *V << "\n"; 1339 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1340 dbgs() << "MainOp: " << *MainOp << "\n"; 1341 dbgs() << "AltOp: " << *AltOp << "\n"; 1342 dbgs() << "VectorizedValue: "; 1343 if (VectorizedValue) 1344 dbgs() << *VectorizedValue; 1345 else 1346 dbgs() << "NULL"; 1347 dbgs() << "\n"; 1348 dbgs() << "ReuseShuffleIndices: "; 1349 if (ReuseShuffleIndices.empty()) 1350 dbgs() << "Emtpy"; 1351 else 1352 for (unsigned ReuseIdx : ReuseShuffleIndices) 1353 dbgs() << ReuseIdx << ", "; 1354 dbgs() << "\n"; 1355 dbgs() << "ReorderIndices: "; 1356 for (unsigned ReorderIdx : ReorderIndices) 1357 dbgs() << ReorderIdx << ", "; 1358 dbgs() << "\n"; 1359 dbgs() << "UserTreeIndices: "; 1360 for (const auto &EInfo : UserTreeIndices) 1361 dbgs() << EInfo << ", "; 1362 dbgs() << "\n"; 1363 } 1364 #endif 1365 }; 1366 1367 /// Create a new VectorizableTree entry. 1368 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1369 const InstructionsState &S, 1370 const EdgeInfo &UserTreeIdx, 1371 ArrayRef<unsigned> ReuseShuffleIndices = None, 1372 ArrayRef<unsigned> ReorderIndices = None) { 1373 bool Vectorized = (bool)Bundle; 1374 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1375 TreeEntry *Last = VectorizableTree.back().get(); 1376 Last->Idx = VectorizableTree.size() - 1; 1377 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1378 Last->NeedToGather = !Vectorized; 1379 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1380 ReuseShuffleIndices.end()); 1381 Last->ReorderIndices = ReorderIndices; 1382 Last->setOperations(S); 1383 if (Vectorized) { 1384 for (int i = 0, e = VL.size(); i != e; ++i) { 1385 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1386 ScalarToTreeEntry[VL[i]] = Last; 1387 } 1388 // Update the scheduler bundle to point to this TreeEntry. 1389 unsigned Lane = 0; 1390 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1391 BundleMember = BundleMember->NextInBundle) { 1392 BundleMember->TE = Last; 1393 BundleMember->Lane = Lane; 1394 ++Lane; 1395 } 1396 assert((!Bundle.getValue() || Lane == VL.size()) && 1397 "Bundle and VL out of sync"); 1398 } else { 1399 MustGather.insert(VL.begin(), VL.end()); 1400 } 1401 1402 if (UserTreeIdx.UserTE) 1403 Last->UserTreeIndices.push_back(UserTreeIdx); 1404 1405 return Last; 1406 } 1407 1408 /// -- Vectorization State -- 1409 /// Holds all of the tree entries. 1410 TreeEntry::VecTreeTy VectorizableTree; 1411 1412 #ifndef NDEBUG 1413 /// Debug printer. 1414 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1415 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1416 VectorizableTree[Id]->dump(); 1417 dbgs() << "\n"; 1418 } 1419 } 1420 #endif 1421 1422 TreeEntry *getTreeEntry(Value *V) { 1423 auto I = ScalarToTreeEntry.find(V); 1424 if (I != ScalarToTreeEntry.end()) 1425 return I->second; 1426 return nullptr; 1427 } 1428 1429 const TreeEntry *getTreeEntry(Value *V) const { 1430 auto I = ScalarToTreeEntry.find(V); 1431 if (I != ScalarToTreeEntry.end()) 1432 return I->second; 1433 return nullptr; 1434 } 1435 1436 /// Maps a specific scalar to its tree entry. 1437 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1438 1439 /// A list of scalars that we found that we need to keep as scalars. 1440 ValueSet MustGather; 1441 1442 /// This POD struct describes one external user in the vectorized tree. 1443 struct ExternalUser { 1444 ExternalUser(Value *S, llvm::User *U, int L) 1445 : Scalar(S), User(U), Lane(L) {} 1446 1447 // Which scalar in our function. 1448 Value *Scalar; 1449 1450 // Which user that uses the scalar. 1451 llvm::User *User; 1452 1453 // Which lane does the scalar belong to. 1454 int Lane; 1455 }; 1456 using UserList = SmallVector<ExternalUser, 16>; 1457 1458 /// Checks if two instructions may access the same memory. 1459 /// 1460 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1461 /// is invariant in the calling loop. 1462 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1463 Instruction *Inst2) { 1464 // First check if the result is already in the cache. 1465 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1466 Optional<bool> &result = AliasCache[key]; 1467 if (result.hasValue()) { 1468 return result.getValue(); 1469 } 1470 MemoryLocation Loc2 = getLocation(Inst2, AA); 1471 bool aliased = true; 1472 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1473 // Do the alias check. 1474 aliased = AA->alias(Loc1, Loc2); 1475 } 1476 // Store the result in the cache. 1477 result = aliased; 1478 return aliased; 1479 } 1480 1481 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1482 1483 /// Cache for alias results. 1484 /// TODO: consider moving this to the AliasAnalysis itself. 1485 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1486 1487 /// Removes an instruction from its block and eventually deletes it. 1488 /// It's like Instruction::eraseFromParent() except that the actual deletion 1489 /// is delayed until BoUpSLP is destructed. 1490 /// This is required to ensure that there are no incorrect collisions in the 1491 /// AliasCache, which can happen if a new instruction is allocated at the 1492 /// same address as a previously deleted instruction. 1493 void eraseInstruction(Instruction *I) { 1494 I->removeFromParent(); 1495 I->dropAllReferences(); 1496 DeletedInstructions.emplace_back(I); 1497 } 1498 1499 /// Temporary store for deleted instructions. Instructions will be deleted 1500 /// eventually when the BoUpSLP is destructed. 1501 SmallVector<unique_value, 8> DeletedInstructions; 1502 1503 /// A list of values that need to extracted out of the tree. 1504 /// This list holds pairs of (Internal Scalar : External User). External User 1505 /// can be nullptr, it means that this Internal Scalar will be used later, 1506 /// after vectorization. 1507 UserList ExternalUses; 1508 1509 /// Values used only by @llvm.assume calls. 1510 SmallPtrSet<const Value *, 32> EphValues; 1511 1512 /// Holds all of the instructions that we gathered. 1513 SetVector<Instruction *> GatherSeq; 1514 1515 /// A list of blocks that we are going to CSE. 1516 SetVector<BasicBlock *> CSEBlocks; 1517 1518 /// Contains all scheduling relevant data for an instruction. 1519 /// A ScheduleData either represents a single instruction or a member of an 1520 /// instruction bundle (= a group of instructions which is combined into a 1521 /// vector instruction). 1522 struct ScheduleData { 1523 // The initial value for the dependency counters. It means that the 1524 // dependencies are not calculated yet. 1525 enum { InvalidDeps = -1 }; 1526 1527 ScheduleData() = default; 1528 1529 void init(int BlockSchedulingRegionID, Value *OpVal) { 1530 FirstInBundle = this; 1531 NextInBundle = nullptr; 1532 NextLoadStore = nullptr; 1533 IsScheduled = false; 1534 SchedulingRegionID = BlockSchedulingRegionID; 1535 UnscheduledDepsInBundle = UnscheduledDeps; 1536 clearDependencies(); 1537 OpValue = OpVal; 1538 TE = nullptr; 1539 Lane = -1; 1540 } 1541 1542 /// Returns true if the dependency information has been calculated. 1543 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1544 1545 /// Returns true for single instructions and for bundle representatives 1546 /// (= the head of a bundle). 1547 bool isSchedulingEntity() const { return FirstInBundle == this; } 1548 1549 /// Returns true if it represents an instruction bundle and not only a 1550 /// single instruction. 1551 bool isPartOfBundle() const { 1552 return NextInBundle != nullptr || FirstInBundle != this; 1553 } 1554 1555 /// Returns true if it is ready for scheduling, i.e. it has no more 1556 /// unscheduled depending instructions/bundles. 1557 bool isReady() const { 1558 assert(isSchedulingEntity() && 1559 "can't consider non-scheduling entity for ready list"); 1560 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1561 } 1562 1563 /// Modifies the number of unscheduled dependencies, also updating it for 1564 /// the whole bundle. 1565 int incrementUnscheduledDeps(int Incr) { 1566 UnscheduledDeps += Incr; 1567 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1568 } 1569 1570 /// Sets the number of unscheduled dependencies to the number of 1571 /// dependencies. 1572 void resetUnscheduledDeps() { 1573 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1574 } 1575 1576 /// Clears all dependency information. 1577 void clearDependencies() { 1578 Dependencies = InvalidDeps; 1579 resetUnscheduledDeps(); 1580 MemoryDependencies.clear(); 1581 } 1582 1583 void dump(raw_ostream &os) const { 1584 if (!isSchedulingEntity()) { 1585 os << "/ " << *Inst; 1586 } else if (NextInBundle) { 1587 os << '[' << *Inst; 1588 ScheduleData *SD = NextInBundle; 1589 while (SD) { 1590 os << ';' << *SD->Inst; 1591 SD = SD->NextInBundle; 1592 } 1593 os << ']'; 1594 } else { 1595 os << *Inst; 1596 } 1597 } 1598 1599 Instruction *Inst = nullptr; 1600 1601 /// Points to the head in an instruction bundle (and always to this for 1602 /// single instructions). 1603 ScheduleData *FirstInBundle = nullptr; 1604 1605 /// Single linked list of all instructions in a bundle. Null if it is a 1606 /// single instruction. 1607 ScheduleData *NextInBundle = nullptr; 1608 1609 /// Single linked list of all memory instructions (e.g. load, store, call) 1610 /// in the block - until the end of the scheduling region. 1611 ScheduleData *NextLoadStore = nullptr; 1612 1613 /// The dependent memory instructions. 1614 /// This list is derived on demand in calculateDependencies(). 1615 SmallVector<ScheduleData *, 4> MemoryDependencies; 1616 1617 /// This ScheduleData is in the current scheduling region if this matches 1618 /// the current SchedulingRegionID of BlockScheduling. 1619 int SchedulingRegionID = 0; 1620 1621 /// Used for getting a "good" final ordering of instructions. 1622 int SchedulingPriority = 0; 1623 1624 /// The number of dependencies. Constitutes of the number of users of the 1625 /// instruction plus the number of dependent memory instructions (if any). 1626 /// This value is calculated on demand. 1627 /// If InvalidDeps, the number of dependencies is not calculated yet. 1628 int Dependencies = InvalidDeps; 1629 1630 /// The number of dependencies minus the number of dependencies of scheduled 1631 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1632 /// for scheduling. 1633 /// Note that this is negative as long as Dependencies is not calculated. 1634 int UnscheduledDeps = InvalidDeps; 1635 1636 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1637 /// single instructions. 1638 int UnscheduledDepsInBundle = InvalidDeps; 1639 1640 /// True if this instruction is scheduled (or considered as scheduled in the 1641 /// dry-run). 1642 bool IsScheduled = false; 1643 1644 /// Opcode of the current instruction in the schedule data. 1645 Value *OpValue = nullptr; 1646 1647 /// The TreeEntry that this instruction corresponds to. 1648 TreeEntry *TE = nullptr; 1649 1650 /// The lane of this node in the TreeEntry. 1651 int Lane = -1; 1652 }; 1653 1654 #ifndef NDEBUG 1655 friend inline raw_ostream &operator<<(raw_ostream &os, 1656 const BoUpSLP::ScheduleData &SD) { 1657 SD.dump(os); 1658 return os; 1659 } 1660 #endif 1661 1662 friend struct GraphTraits<BoUpSLP *>; 1663 friend struct DOTGraphTraits<BoUpSLP *>; 1664 1665 /// Contains all scheduling data for a basic block. 1666 struct BlockScheduling { 1667 BlockScheduling(BasicBlock *BB) 1668 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1669 1670 void clear() { 1671 ReadyInsts.clear(); 1672 ScheduleStart = nullptr; 1673 ScheduleEnd = nullptr; 1674 FirstLoadStoreInRegion = nullptr; 1675 LastLoadStoreInRegion = nullptr; 1676 1677 // Reduce the maximum schedule region size by the size of the 1678 // previous scheduling run. 1679 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1680 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1681 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1682 ScheduleRegionSize = 0; 1683 1684 // Make a new scheduling region, i.e. all existing ScheduleData is not 1685 // in the new region yet. 1686 ++SchedulingRegionID; 1687 } 1688 1689 ScheduleData *getScheduleData(Value *V) { 1690 ScheduleData *SD = ScheduleDataMap[V]; 1691 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1692 return SD; 1693 return nullptr; 1694 } 1695 1696 ScheduleData *getScheduleData(Value *V, Value *Key) { 1697 if (V == Key) 1698 return getScheduleData(V); 1699 auto I = ExtraScheduleDataMap.find(V); 1700 if (I != ExtraScheduleDataMap.end()) { 1701 ScheduleData *SD = I->second[Key]; 1702 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1703 return SD; 1704 } 1705 return nullptr; 1706 } 1707 1708 bool isInSchedulingRegion(ScheduleData *SD) { 1709 return SD->SchedulingRegionID == SchedulingRegionID; 1710 } 1711 1712 /// Marks an instruction as scheduled and puts all dependent ready 1713 /// instructions into the ready-list. 1714 template <typename ReadyListType> 1715 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1716 SD->IsScheduled = true; 1717 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1718 1719 ScheduleData *BundleMember = SD; 1720 while (BundleMember) { 1721 if (BundleMember->Inst != BundleMember->OpValue) { 1722 BundleMember = BundleMember->NextInBundle; 1723 continue; 1724 } 1725 // Handle the def-use chain dependencies. 1726 1727 // Decrement the unscheduled counter and insert to ready list if ready. 1728 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1729 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1730 if (OpDef && OpDef->hasValidDependencies() && 1731 OpDef->incrementUnscheduledDeps(-1) == 0) { 1732 // There are no more unscheduled dependencies after 1733 // decrementing, so we can put the dependent instruction 1734 // into the ready list. 1735 ScheduleData *DepBundle = OpDef->FirstInBundle; 1736 assert(!DepBundle->IsScheduled && 1737 "already scheduled bundle gets ready"); 1738 ReadyList.insert(DepBundle); 1739 LLVM_DEBUG(dbgs() 1740 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1741 } 1742 }); 1743 }; 1744 1745 // If BundleMember is a vector bundle, its operands may have been 1746 // reordered duiring buildTree(). We therefore need to get its operands 1747 // through the TreeEntry. 1748 if (TreeEntry *TE = BundleMember->TE) { 1749 int Lane = BundleMember->Lane; 1750 assert(Lane >= 0 && "Lane not set"); 1751 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1752 OpIdx != NumOperands; ++OpIdx) 1753 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1754 DecrUnsched(I); 1755 } else { 1756 // If BundleMember is a stand-alone instruction, no operand reordering 1757 // has taken place, so we directly access its operands. 1758 for (Use &U : BundleMember->Inst->operands()) 1759 if (auto *I = dyn_cast<Instruction>(U.get())) 1760 DecrUnsched(I); 1761 } 1762 // Handle the memory dependencies. 1763 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1764 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1765 // There are no more unscheduled dependencies after decrementing, 1766 // so we can put the dependent instruction into the ready list. 1767 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1768 assert(!DepBundle->IsScheduled && 1769 "already scheduled bundle gets ready"); 1770 ReadyList.insert(DepBundle); 1771 LLVM_DEBUG(dbgs() 1772 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1773 } 1774 } 1775 BundleMember = BundleMember->NextInBundle; 1776 } 1777 } 1778 1779 void doForAllOpcodes(Value *V, 1780 function_ref<void(ScheduleData *SD)> Action) { 1781 if (ScheduleData *SD = getScheduleData(V)) 1782 Action(SD); 1783 auto I = ExtraScheduleDataMap.find(V); 1784 if (I != ExtraScheduleDataMap.end()) 1785 for (auto &P : I->second) 1786 if (P.second->SchedulingRegionID == SchedulingRegionID) 1787 Action(P.second); 1788 } 1789 1790 /// Put all instructions into the ReadyList which are ready for scheduling. 1791 template <typename ReadyListType> 1792 void initialFillReadyList(ReadyListType &ReadyList) { 1793 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1794 doForAllOpcodes(I, [&](ScheduleData *SD) { 1795 if (SD->isSchedulingEntity() && SD->isReady()) { 1796 ReadyList.insert(SD); 1797 LLVM_DEBUG(dbgs() 1798 << "SLP: initially in ready list: " << *I << "\n"); 1799 } 1800 }); 1801 } 1802 } 1803 1804 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1805 /// cyclic dependencies. This is only a dry-run, no instructions are 1806 /// actually moved at this stage. 1807 /// \returns the scheduling bundle. The returned Optional value is non-None 1808 /// if \p VL is allowed to be scheduled. 1809 Optional<ScheduleData *> 1810 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1811 const InstructionsState &S); 1812 1813 /// Un-bundles a group of instructions. 1814 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1815 1816 /// Allocates schedule data chunk. 1817 ScheduleData *allocateScheduleDataChunks(); 1818 1819 /// Extends the scheduling region so that V is inside the region. 1820 /// \returns true if the region size is within the limit. 1821 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1822 1823 /// Initialize the ScheduleData structures for new instructions in the 1824 /// scheduling region. 1825 void initScheduleData(Instruction *FromI, Instruction *ToI, 1826 ScheduleData *PrevLoadStore, 1827 ScheduleData *NextLoadStore); 1828 1829 /// Updates the dependency information of a bundle and of all instructions/ 1830 /// bundles which depend on the original bundle. 1831 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1832 BoUpSLP *SLP); 1833 1834 /// Sets all instruction in the scheduling region to un-scheduled. 1835 void resetSchedule(); 1836 1837 BasicBlock *BB; 1838 1839 /// Simple memory allocation for ScheduleData. 1840 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1841 1842 /// The size of a ScheduleData array in ScheduleDataChunks. 1843 int ChunkSize; 1844 1845 /// The allocator position in the current chunk, which is the last entry 1846 /// of ScheduleDataChunks. 1847 int ChunkPos; 1848 1849 /// Attaches ScheduleData to Instruction. 1850 /// Note that the mapping survives during all vectorization iterations, i.e. 1851 /// ScheduleData structures are recycled. 1852 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1853 1854 /// Attaches ScheduleData to Instruction with the leading key. 1855 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1856 ExtraScheduleDataMap; 1857 1858 struct ReadyList : SmallVector<ScheduleData *, 8> { 1859 void insert(ScheduleData *SD) { push_back(SD); } 1860 }; 1861 1862 /// The ready-list for scheduling (only used for the dry-run). 1863 ReadyList ReadyInsts; 1864 1865 /// The first instruction of the scheduling region. 1866 Instruction *ScheduleStart = nullptr; 1867 1868 /// The first instruction _after_ the scheduling region. 1869 Instruction *ScheduleEnd = nullptr; 1870 1871 /// The first memory accessing instruction in the scheduling region 1872 /// (can be null). 1873 ScheduleData *FirstLoadStoreInRegion = nullptr; 1874 1875 /// The last memory accessing instruction in the scheduling region 1876 /// (can be null). 1877 ScheduleData *LastLoadStoreInRegion = nullptr; 1878 1879 /// The current size of the scheduling region. 1880 int ScheduleRegionSize = 0; 1881 1882 /// The maximum size allowed for the scheduling region. 1883 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1884 1885 /// The ID of the scheduling region. For a new vectorization iteration this 1886 /// is incremented which "removes" all ScheduleData from the region. 1887 // Make sure that the initial SchedulingRegionID is greater than the 1888 // initial SchedulingRegionID in ScheduleData (which is 0). 1889 int SchedulingRegionID = 1; 1890 }; 1891 1892 /// Attaches the BlockScheduling structures to basic blocks. 1893 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1894 1895 /// Performs the "real" scheduling. Done before vectorization is actually 1896 /// performed in a basic block. 1897 void scheduleBlock(BlockScheduling *BS); 1898 1899 /// List of users to ignore during scheduling and that don't need extracting. 1900 ArrayRef<Value *> UserIgnoreList; 1901 1902 using OrdersType = SmallVector<unsigned, 4>; 1903 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1904 /// sorted SmallVectors of unsigned. 1905 struct OrdersTypeDenseMapInfo { 1906 static OrdersType getEmptyKey() { 1907 OrdersType V; 1908 V.push_back(~1U); 1909 return V; 1910 } 1911 1912 static OrdersType getTombstoneKey() { 1913 OrdersType V; 1914 V.push_back(~2U); 1915 return V; 1916 } 1917 1918 static unsigned getHashValue(const OrdersType &V) { 1919 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1920 } 1921 1922 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1923 return LHS == RHS; 1924 } 1925 }; 1926 1927 /// Contains orders of operations along with the number of bundles that have 1928 /// operations in this order. It stores only those orders that require 1929 /// reordering, if reordering is not required it is counted using \a 1930 /// NumOpsWantToKeepOriginalOrder. 1931 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1932 /// Number of bundles that do not require reordering. 1933 unsigned NumOpsWantToKeepOriginalOrder = 0; 1934 1935 // Analysis and block reference. 1936 Function *F; 1937 ScalarEvolution *SE; 1938 TargetTransformInfo *TTI; 1939 TargetLibraryInfo *TLI; 1940 AliasAnalysis *AA; 1941 LoopInfo *LI; 1942 DominatorTree *DT; 1943 AssumptionCache *AC; 1944 DemandedBits *DB; 1945 const DataLayout *DL; 1946 OptimizationRemarkEmitter *ORE; 1947 1948 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1949 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1950 1951 /// Instruction builder to construct the vectorized tree. 1952 IRBuilder<> Builder; 1953 1954 /// A map of scalar integer values to the smallest bit width with which they 1955 /// can legally be represented. The values map to (width, signed) pairs, 1956 /// where "width" indicates the minimum bit width and "signed" is True if the 1957 /// value must be signed-extended, rather than zero-extended, back to its 1958 /// original width. 1959 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1960 }; 1961 1962 } // end namespace slpvectorizer 1963 1964 template <> struct GraphTraits<BoUpSLP *> { 1965 using TreeEntry = BoUpSLP::TreeEntry; 1966 1967 /// NodeRef has to be a pointer per the GraphWriter. 1968 using NodeRef = TreeEntry *; 1969 1970 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1971 1972 /// Add the VectorizableTree to the index iterator to be able to return 1973 /// TreeEntry pointers. 1974 struct ChildIteratorType 1975 : public iterator_adaptor_base< 1976 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1977 ContainerTy &VectorizableTree; 1978 1979 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1980 ContainerTy &VT) 1981 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1982 1983 NodeRef operator*() { return I->UserTE; } 1984 }; 1985 1986 static NodeRef getEntryNode(BoUpSLP &R) { 1987 return R.VectorizableTree[0].get(); 1988 } 1989 1990 static ChildIteratorType child_begin(NodeRef N) { 1991 return {N->UserTreeIndices.begin(), N->Container}; 1992 } 1993 1994 static ChildIteratorType child_end(NodeRef N) { 1995 return {N->UserTreeIndices.end(), N->Container}; 1996 } 1997 1998 /// For the node iterator we just need to turn the TreeEntry iterator into a 1999 /// TreeEntry* iterator so that it dereferences to NodeRef. 2000 class nodes_iterator { 2001 using ItTy = ContainerTy::iterator; 2002 ItTy It; 2003 2004 public: 2005 nodes_iterator(const ItTy &It2) : It(It2) {} 2006 NodeRef operator*() { return It->get(); } 2007 nodes_iterator operator++() { 2008 ++It; 2009 return *this; 2010 } 2011 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2012 }; 2013 2014 static nodes_iterator nodes_begin(BoUpSLP *R) { 2015 return nodes_iterator(R->VectorizableTree.begin()); 2016 } 2017 2018 static nodes_iterator nodes_end(BoUpSLP *R) { 2019 return nodes_iterator(R->VectorizableTree.end()); 2020 } 2021 2022 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2023 }; 2024 2025 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2026 using TreeEntry = BoUpSLP::TreeEntry; 2027 2028 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2029 2030 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2031 std::string Str; 2032 raw_string_ostream OS(Str); 2033 if (isSplat(Entry->Scalars)) { 2034 OS << "<splat> " << *Entry->Scalars[0]; 2035 return Str; 2036 } 2037 for (auto V : Entry->Scalars) { 2038 OS << *V; 2039 if (std::any_of( 2040 R->ExternalUses.begin(), R->ExternalUses.end(), 2041 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2042 OS << " <extract>"; 2043 OS << "\n"; 2044 } 2045 return Str; 2046 } 2047 2048 static std::string getNodeAttributes(const TreeEntry *Entry, 2049 const BoUpSLP *) { 2050 if (Entry->NeedToGather) 2051 return "color=red"; 2052 return ""; 2053 } 2054 }; 2055 2056 } // end namespace llvm 2057 2058 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2059 ArrayRef<Value *> UserIgnoreLst) { 2060 ExtraValueToDebugLocsMap ExternallyUsedValues; 2061 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2062 } 2063 2064 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2065 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2066 ArrayRef<Value *> UserIgnoreLst) { 2067 deleteTree(); 2068 UserIgnoreList = UserIgnoreLst; 2069 if (!allSameType(Roots)) 2070 return; 2071 buildTree_rec(Roots, 0, EdgeInfo()); 2072 2073 // Collect the values that we need to extract from the tree. 2074 for (auto &TEPtr : VectorizableTree) { 2075 TreeEntry *Entry = TEPtr.get(); 2076 2077 // No need to handle users of gathered values. 2078 if (Entry->NeedToGather) 2079 continue; 2080 2081 // For each lane: 2082 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2083 Value *Scalar = Entry->Scalars[Lane]; 2084 int FoundLane = Lane; 2085 if (!Entry->ReuseShuffleIndices.empty()) { 2086 FoundLane = 2087 std::distance(Entry->ReuseShuffleIndices.begin(), 2088 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2089 } 2090 2091 // Check if the scalar is externally used as an extra arg. 2092 auto ExtI = ExternallyUsedValues.find(Scalar); 2093 if (ExtI != ExternallyUsedValues.end()) { 2094 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2095 << Lane << " from " << *Scalar << ".\n"); 2096 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2097 } 2098 for (User *U : Scalar->users()) { 2099 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2100 2101 Instruction *UserInst = dyn_cast<Instruction>(U); 2102 if (!UserInst) 2103 continue; 2104 2105 // Skip in-tree scalars that become vectors 2106 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2107 Value *UseScalar = UseEntry->Scalars[0]; 2108 // Some in-tree scalars will remain as scalar in vectorized 2109 // instructions. If that is the case, the one in Lane 0 will 2110 // be used. 2111 if (UseScalar != U || 2112 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2113 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2114 << ".\n"); 2115 assert(!UseEntry->NeedToGather && "Bad state"); 2116 continue; 2117 } 2118 } 2119 2120 // Ignore users in the user ignore list. 2121 if (is_contained(UserIgnoreList, UserInst)) 2122 continue; 2123 2124 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2125 << Lane << " from " << *Scalar << ".\n"); 2126 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2127 } 2128 } 2129 } 2130 } 2131 2132 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2133 const EdgeInfo &UserTreeIdx) { 2134 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2135 2136 InstructionsState S = getSameOpcode(VL); 2137 if (Depth == RecursionMaxDepth) { 2138 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2139 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2140 return; 2141 } 2142 2143 // Don't handle vectors. 2144 if (S.OpValue->getType()->isVectorTy()) { 2145 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2146 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2147 return; 2148 } 2149 2150 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2151 if (SI->getValueOperand()->getType()->isVectorTy()) { 2152 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2154 return; 2155 } 2156 2157 // If all of the operands are identical or constant we have a simple solution. 2158 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2159 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2160 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2161 return; 2162 } 2163 2164 // We now know that this is a vector of instructions of the same type from 2165 // the same block. 2166 2167 // Don't vectorize ephemeral values. 2168 for (Value *V : VL) { 2169 if (EphValues.count(V)) { 2170 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2171 << ") is ephemeral.\n"); 2172 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2173 return; 2174 } 2175 } 2176 2177 // Check if this is a duplicate of another entry. 2178 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2179 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2180 if (!E->isSame(VL)) { 2181 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2183 return; 2184 } 2185 // Record the reuse of the tree node. FIXME, currently this is only used to 2186 // properly draw the graph rather than for the actual vectorization. 2187 E->UserTreeIndices.push_back(UserTreeIdx); 2188 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2189 << ".\n"); 2190 return; 2191 } 2192 2193 // Check that none of the instructions in the bundle are already in the tree. 2194 for (Value *V : VL) { 2195 auto *I = dyn_cast<Instruction>(V); 2196 if (!I) 2197 continue; 2198 if (getTreeEntry(I)) { 2199 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2200 << ") is already in tree.\n"); 2201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2202 return; 2203 } 2204 } 2205 2206 // If any of the scalars is marked as a value that needs to stay scalar, then 2207 // we need to gather the scalars. 2208 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2209 for (Value *V : VL) { 2210 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2211 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2213 return; 2214 } 2215 } 2216 2217 // Check that all of the users of the scalars that we want to vectorize are 2218 // schedulable. 2219 auto *VL0 = cast<Instruction>(S.OpValue); 2220 BasicBlock *BB = VL0->getParent(); 2221 2222 if (!DT->isReachableFromEntry(BB)) { 2223 // Don't go into unreachable blocks. They may contain instructions with 2224 // dependency cycles which confuse the final scheduling. 2225 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2227 return; 2228 } 2229 2230 // Check that every instruction appears once in this bundle. 2231 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2232 SmallVector<Value *, 4> UniqueValues; 2233 DenseMap<Value *, unsigned> UniquePositions; 2234 for (Value *V : VL) { 2235 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2236 ReuseShuffleIndicies.emplace_back(Res.first->second); 2237 if (Res.second) 2238 UniqueValues.emplace_back(V); 2239 } 2240 size_t NumUniqueScalarValues = UniqueValues.size(); 2241 if (NumUniqueScalarValues == VL.size()) { 2242 ReuseShuffleIndicies.clear(); 2243 } else { 2244 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2245 if (NumUniqueScalarValues <= 1 || 2246 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2247 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2249 return; 2250 } 2251 VL = UniqueValues; 2252 } 2253 2254 auto &BSRef = BlocksSchedules[BB]; 2255 if (!BSRef) 2256 BSRef = std::make_unique<BlockScheduling>(BB); 2257 2258 BlockScheduling &BS = *BSRef.get(); 2259 2260 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2261 if (!Bundle) { 2262 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2263 assert((!BS.getScheduleData(VL0) || 2264 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2265 "tryScheduleBundle should cancelScheduling on failure"); 2266 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2267 ReuseShuffleIndicies); 2268 return; 2269 } 2270 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2271 2272 unsigned ShuffleOrOp = S.isAltShuffle() ? 2273 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2274 switch (ShuffleOrOp) { 2275 case Instruction::PHI: { 2276 auto *PH = cast<PHINode>(VL0); 2277 2278 // Check for terminator values (e.g. invoke). 2279 for (unsigned j = 0; j < VL.size(); ++j) 2280 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2281 Instruction *Term = dyn_cast<Instruction>( 2282 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2283 PH->getIncomingBlock(i))); 2284 if (Term && Term->isTerminator()) { 2285 LLVM_DEBUG(dbgs() 2286 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2287 BS.cancelScheduling(VL, VL0); 2288 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2289 ReuseShuffleIndicies); 2290 return; 2291 } 2292 } 2293 2294 TreeEntry *TE = 2295 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2296 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2297 2298 // Keeps the reordered operands to avoid code duplication. 2299 SmallVector<ValueList, 2> OperandsVec; 2300 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2301 ValueList Operands; 2302 // Prepare the operand vector. 2303 for (Value *j : VL) 2304 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2305 PH->getIncomingBlock(i))); 2306 TE->setOperand(i, Operands); 2307 OperandsVec.push_back(Operands); 2308 } 2309 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2310 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2311 return; 2312 } 2313 case Instruction::ExtractValue: 2314 case Instruction::ExtractElement: { 2315 OrdersType CurrentOrder; 2316 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2317 if (Reuse) { 2318 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2319 ++NumOpsWantToKeepOriginalOrder; 2320 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2321 ReuseShuffleIndicies); 2322 // This is a special case, as it does not gather, but at the same time 2323 // we are not extending buildTree_rec() towards the operands. 2324 ValueList Op0; 2325 Op0.assign(VL.size(), VL0->getOperand(0)); 2326 VectorizableTree.back()->setOperand(0, Op0); 2327 return; 2328 } 2329 if (!CurrentOrder.empty()) { 2330 LLVM_DEBUG({ 2331 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2332 "with order"; 2333 for (unsigned Idx : CurrentOrder) 2334 dbgs() << " " << Idx; 2335 dbgs() << "\n"; 2336 }); 2337 // Insert new order with initial value 0, if it does not exist, 2338 // otherwise return the iterator to the existing one. 2339 auto StoredCurrentOrderAndNum = 2340 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2341 ++StoredCurrentOrderAndNum->getSecond(); 2342 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2343 ReuseShuffleIndicies, 2344 StoredCurrentOrderAndNum->getFirst()); 2345 // This is a special case, as it does not gather, but at the same time 2346 // we are not extending buildTree_rec() towards the operands. 2347 ValueList Op0; 2348 Op0.assign(VL.size(), VL0->getOperand(0)); 2349 VectorizableTree.back()->setOperand(0, Op0); 2350 return; 2351 } 2352 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2353 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2354 ReuseShuffleIndicies); 2355 BS.cancelScheduling(VL, VL0); 2356 return; 2357 } 2358 case Instruction::Load: { 2359 // Check that a vectorized load would load the same memory as a scalar 2360 // load. For example, we don't want to vectorize loads that are smaller 2361 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2362 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2363 // from such a struct, we read/write packed bits disagreeing with the 2364 // unvectorized version. 2365 Type *ScalarTy = VL0->getType(); 2366 2367 if (DL->getTypeSizeInBits(ScalarTy) != 2368 DL->getTypeAllocSizeInBits(ScalarTy)) { 2369 BS.cancelScheduling(VL, VL0); 2370 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2371 ReuseShuffleIndicies); 2372 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2373 return; 2374 } 2375 2376 // Make sure all loads in the bundle are simple - we can't vectorize 2377 // atomic or volatile loads. 2378 SmallVector<Value *, 4> PointerOps(VL.size()); 2379 auto POIter = PointerOps.begin(); 2380 for (Value *V : VL) { 2381 auto *L = cast<LoadInst>(V); 2382 if (!L->isSimple()) { 2383 BS.cancelScheduling(VL, VL0); 2384 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2385 ReuseShuffleIndicies); 2386 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2387 return; 2388 } 2389 *POIter = L->getPointerOperand(); 2390 ++POIter; 2391 } 2392 2393 OrdersType CurrentOrder; 2394 // Check the order of pointer operands. 2395 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2396 Value *Ptr0; 2397 Value *PtrN; 2398 if (CurrentOrder.empty()) { 2399 Ptr0 = PointerOps.front(); 2400 PtrN = PointerOps.back(); 2401 } else { 2402 Ptr0 = PointerOps[CurrentOrder.front()]; 2403 PtrN = PointerOps[CurrentOrder.back()]; 2404 } 2405 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2406 const SCEV *ScevN = SE->getSCEV(PtrN); 2407 const auto *Diff = 2408 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2409 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2410 // Check that the sorted loads are consecutive. 2411 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2412 if (CurrentOrder.empty()) { 2413 // Original loads are consecutive and does not require reordering. 2414 ++NumOpsWantToKeepOriginalOrder; 2415 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2416 UserTreeIdx, ReuseShuffleIndicies); 2417 TE->setOperandsInOrder(); 2418 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2419 } else { 2420 // Need to reorder. 2421 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2422 ++I->getSecond(); 2423 TreeEntry *TE = 2424 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2425 ReuseShuffleIndicies, I->getFirst()); 2426 TE->setOperandsInOrder(); 2427 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2428 } 2429 return; 2430 } 2431 } 2432 2433 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2434 BS.cancelScheduling(VL, VL0); 2435 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2436 ReuseShuffleIndicies); 2437 return; 2438 } 2439 case Instruction::ZExt: 2440 case Instruction::SExt: 2441 case Instruction::FPToUI: 2442 case Instruction::FPToSI: 2443 case Instruction::FPExt: 2444 case Instruction::PtrToInt: 2445 case Instruction::IntToPtr: 2446 case Instruction::SIToFP: 2447 case Instruction::UIToFP: 2448 case Instruction::Trunc: 2449 case Instruction::FPTrunc: 2450 case Instruction::BitCast: { 2451 Type *SrcTy = VL0->getOperand(0)->getType(); 2452 for (Value *V : VL) { 2453 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2454 if (Ty != SrcTy || !isValidElementType(Ty)) { 2455 BS.cancelScheduling(VL, VL0); 2456 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2457 ReuseShuffleIndicies); 2458 LLVM_DEBUG(dbgs() 2459 << "SLP: Gathering casts with different src types.\n"); 2460 return; 2461 } 2462 } 2463 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2464 ReuseShuffleIndicies); 2465 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2466 2467 TE->setOperandsInOrder(); 2468 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2469 ValueList Operands; 2470 // Prepare the operand vector. 2471 for (Value *V : VL) 2472 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2473 2474 buildTree_rec(Operands, Depth + 1, {TE, i}); 2475 } 2476 return; 2477 } 2478 case Instruction::ICmp: 2479 case Instruction::FCmp: { 2480 // Check that all of the compares have the same predicate. 2481 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2482 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2483 Type *ComparedTy = VL0->getOperand(0)->getType(); 2484 for (Value *V : VL) { 2485 CmpInst *Cmp = cast<CmpInst>(V); 2486 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2487 Cmp->getOperand(0)->getType() != ComparedTy) { 2488 BS.cancelScheduling(VL, VL0); 2489 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2490 ReuseShuffleIndicies); 2491 LLVM_DEBUG(dbgs() 2492 << "SLP: Gathering cmp with different predicate.\n"); 2493 return; 2494 } 2495 } 2496 2497 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2498 ReuseShuffleIndicies); 2499 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2500 2501 ValueList Left, Right; 2502 if (cast<CmpInst>(VL0)->isCommutative()) { 2503 // Commutative predicate - collect + sort operands of the instructions 2504 // so that each side is more likely to have the same opcode. 2505 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2506 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2507 } else { 2508 // Collect operands - commute if it uses the swapped predicate. 2509 for (Value *V : VL) { 2510 auto *Cmp = cast<CmpInst>(V); 2511 Value *LHS = Cmp->getOperand(0); 2512 Value *RHS = Cmp->getOperand(1); 2513 if (Cmp->getPredicate() != P0) 2514 std::swap(LHS, RHS); 2515 Left.push_back(LHS); 2516 Right.push_back(RHS); 2517 } 2518 } 2519 TE->setOperand(0, Left); 2520 TE->setOperand(1, Right); 2521 buildTree_rec(Left, Depth + 1, {TE, 0}); 2522 buildTree_rec(Right, Depth + 1, {TE, 1}); 2523 return; 2524 } 2525 case Instruction::Select: 2526 case Instruction::FNeg: 2527 case Instruction::Add: 2528 case Instruction::FAdd: 2529 case Instruction::Sub: 2530 case Instruction::FSub: 2531 case Instruction::Mul: 2532 case Instruction::FMul: 2533 case Instruction::UDiv: 2534 case Instruction::SDiv: 2535 case Instruction::FDiv: 2536 case Instruction::URem: 2537 case Instruction::SRem: 2538 case Instruction::FRem: 2539 case Instruction::Shl: 2540 case Instruction::LShr: 2541 case Instruction::AShr: 2542 case Instruction::And: 2543 case Instruction::Or: 2544 case Instruction::Xor: { 2545 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2546 ReuseShuffleIndicies); 2547 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2548 2549 // Sort operands of the instructions so that each side is more likely to 2550 // have the same opcode. 2551 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2552 ValueList Left, Right; 2553 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2554 TE->setOperand(0, Left); 2555 TE->setOperand(1, Right); 2556 buildTree_rec(Left, Depth + 1, {TE, 0}); 2557 buildTree_rec(Right, Depth + 1, {TE, 1}); 2558 return; 2559 } 2560 2561 TE->setOperandsInOrder(); 2562 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2563 ValueList Operands; 2564 // Prepare the operand vector. 2565 for (Value *j : VL) 2566 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2567 2568 buildTree_rec(Operands, Depth + 1, {TE, i}); 2569 } 2570 return; 2571 } 2572 case Instruction::GetElementPtr: { 2573 // We don't combine GEPs with complicated (nested) indexing. 2574 for (Value *V : VL) { 2575 if (cast<Instruction>(V)->getNumOperands() != 2) { 2576 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2577 BS.cancelScheduling(VL, VL0); 2578 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2579 ReuseShuffleIndicies); 2580 return; 2581 } 2582 } 2583 2584 // We can't combine several GEPs into one vector if they operate on 2585 // different types. 2586 Type *Ty0 = VL0->getOperand(0)->getType(); 2587 for (Value *V : VL) { 2588 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2589 if (Ty0 != CurTy) { 2590 LLVM_DEBUG(dbgs() 2591 << "SLP: not-vectorizable GEP (different types).\n"); 2592 BS.cancelScheduling(VL, VL0); 2593 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2594 ReuseShuffleIndicies); 2595 return; 2596 } 2597 } 2598 2599 // We don't combine GEPs with non-constant indexes. 2600 for (Value *V : VL) { 2601 auto Op = cast<Instruction>(V)->getOperand(1); 2602 if (!isa<ConstantInt>(Op)) { 2603 LLVM_DEBUG(dbgs() 2604 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2605 BS.cancelScheduling(VL, VL0); 2606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2607 ReuseShuffleIndicies); 2608 return; 2609 } 2610 } 2611 2612 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2613 ReuseShuffleIndicies); 2614 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2615 TE->setOperandsInOrder(); 2616 for (unsigned i = 0, e = 2; i < e; ++i) { 2617 ValueList Operands; 2618 // Prepare the operand vector. 2619 for (Value *V : VL) 2620 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2621 2622 buildTree_rec(Operands, Depth + 1, {TE, i}); 2623 } 2624 return; 2625 } 2626 case Instruction::Store: { 2627 // Check if the stores are consecutive or if we need to swizzle them. 2628 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2629 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2630 BS.cancelScheduling(VL, VL0); 2631 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2632 ReuseShuffleIndicies); 2633 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2634 return; 2635 } 2636 2637 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2638 ReuseShuffleIndicies); 2639 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2640 2641 ValueList Operands; 2642 for (Value *V : VL) 2643 Operands.push_back(cast<Instruction>(V)->getOperand(0)); 2644 TE->setOperandsInOrder(); 2645 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2646 return; 2647 } 2648 case Instruction::Call: { 2649 // Check if the calls are all to the same vectorizable intrinsic. 2650 CallInst *CI = cast<CallInst>(VL0); 2651 // Check if this is an Intrinsic call or something that can be 2652 // represented by an intrinsic call 2653 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2654 if (!isTriviallyVectorizable(ID)) { 2655 BS.cancelScheduling(VL, VL0); 2656 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2657 ReuseShuffleIndicies); 2658 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2659 return; 2660 } 2661 Function *Int = CI->getCalledFunction(); 2662 unsigned NumArgs = CI->getNumArgOperands(); 2663 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2664 for (unsigned j = 0; j != NumArgs; ++j) 2665 if (hasVectorInstrinsicScalarOpd(ID, j)) 2666 ScalarArgs[j] = CI->getArgOperand(j); 2667 for (Value *V : VL) { 2668 CallInst *CI2 = dyn_cast<CallInst>(V); 2669 if (!CI2 || CI2->getCalledFunction() != Int || 2670 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2671 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2672 BS.cancelScheduling(VL, VL0); 2673 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2674 ReuseShuffleIndicies); 2675 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2676 << "\n"); 2677 return; 2678 } 2679 // Some intrinsics have scalar arguments and should be same in order for 2680 // them to be vectorized. 2681 for (unsigned j = 0; j != NumArgs; ++j) { 2682 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2683 Value *A1J = CI2->getArgOperand(j); 2684 if (ScalarArgs[j] != A1J) { 2685 BS.cancelScheduling(VL, VL0); 2686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2687 ReuseShuffleIndicies); 2688 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2689 << " argument " << ScalarArgs[j] << "!=" << A1J 2690 << "\n"); 2691 return; 2692 } 2693 } 2694 } 2695 // Verify that the bundle operands are identical between the two calls. 2696 if (CI->hasOperandBundles() && 2697 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2698 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2699 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2700 BS.cancelScheduling(VL, VL0); 2701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2702 ReuseShuffleIndicies); 2703 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2704 << *CI << "!=" << *V << '\n'); 2705 return; 2706 } 2707 } 2708 2709 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2710 ReuseShuffleIndicies); 2711 TE->setOperandsInOrder(); 2712 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2713 ValueList Operands; 2714 // Prepare the operand vector. 2715 for (Value *V : VL) { 2716 auto *CI2 = cast<CallInst>(V); 2717 Operands.push_back(CI2->getArgOperand(i)); 2718 } 2719 buildTree_rec(Operands, Depth + 1, {TE, i}); 2720 } 2721 return; 2722 } 2723 case Instruction::ShuffleVector: { 2724 // If this is not an alternate sequence of opcode like add-sub 2725 // then do not vectorize this instruction. 2726 if (!S.isAltShuffle()) { 2727 BS.cancelScheduling(VL, VL0); 2728 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2729 ReuseShuffleIndicies); 2730 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2731 return; 2732 } 2733 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2734 ReuseShuffleIndicies); 2735 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2736 2737 // Reorder operands if reordering would enable vectorization. 2738 if (isa<BinaryOperator>(VL0)) { 2739 ValueList Left, Right; 2740 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2741 TE->setOperand(0, Left); 2742 TE->setOperand(1, Right); 2743 buildTree_rec(Left, Depth + 1, {TE, 0}); 2744 buildTree_rec(Right, Depth + 1, {TE, 1}); 2745 return; 2746 } 2747 2748 TE->setOperandsInOrder(); 2749 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2750 ValueList Operands; 2751 // Prepare the operand vector. 2752 for (Value *V : VL) 2753 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2754 2755 buildTree_rec(Operands, Depth + 1, {TE, i}); 2756 } 2757 return; 2758 } 2759 default: 2760 BS.cancelScheduling(VL, VL0); 2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2762 ReuseShuffleIndicies); 2763 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2764 return; 2765 } 2766 } 2767 2768 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2769 unsigned N; 2770 Type *EltTy; 2771 auto *ST = dyn_cast<StructType>(T); 2772 if (ST) { 2773 N = ST->getNumElements(); 2774 EltTy = *ST->element_begin(); 2775 } else { 2776 N = cast<ArrayType>(T)->getNumElements(); 2777 EltTy = cast<ArrayType>(T)->getElementType(); 2778 } 2779 if (!isValidElementType(EltTy)) 2780 return 0; 2781 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2782 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2783 return 0; 2784 if (ST) { 2785 // Check that struct is homogeneous. 2786 for (const auto *Ty : ST->elements()) 2787 if (Ty != EltTy) 2788 return 0; 2789 } 2790 return N; 2791 } 2792 2793 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2794 SmallVectorImpl<unsigned> &CurrentOrder) const { 2795 Instruction *E0 = cast<Instruction>(OpValue); 2796 assert(E0->getOpcode() == Instruction::ExtractElement || 2797 E0->getOpcode() == Instruction::ExtractValue); 2798 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2799 // Check if all of the extracts come from the same vector and from the 2800 // correct offset. 2801 Value *Vec = E0->getOperand(0); 2802 2803 CurrentOrder.clear(); 2804 2805 // We have to extract from a vector/aggregate with the same number of elements. 2806 unsigned NElts; 2807 if (E0->getOpcode() == Instruction::ExtractValue) { 2808 const DataLayout &DL = E0->getModule()->getDataLayout(); 2809 NElts = canMapToVector(Vec->getType(), DL); 2810 if (!NElts) 2811 return false; 2812 // Check if load can be rewritten as load of vector. 2813 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2814 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2815 return false; 2816 } else { 2817 NElts = Vec->getType()->getVectorNumElements(); 2818 } 2819 2820 if (NElts != VL.size()) 2821 return false; 2822 2823 // Check that all of the indices extract from the correct offset. 2824 bool ShouldKeepOrder = true; 2825 unsigned E = VL.size(); 2826 // Assign to all items the initial value E + 1 so we can check if the extract 2827 // instruction index was used already. 2828 // Also, later we can check that all the indices are used and we have a 2829 // consecutive access in the extract instructions, by checking that no 2830 // element of CurrentOrder still has value E + 1. 2831 CurrentOrder.assign(E, E + 1); 2832 unsigned I = 0; 2833 for (; I < E; ++I) { 2834 auto *Inst = cast<Instruction>(VL[I]); 2835 if (Inst->getOperand(0) != Vec) 2836 break; 2837 Optional<unsigned> Idx = getExtractIndex(Inst); 2838 if (!Idx) 2839 break; 2840 const unsigned ExtIdx = *Idx; 2841 if (ExtIdx != I) { 2842 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2843 break; 2844 ShouldKeepOrder = false; 2845 CurrentOrder[ExtIdx] = I; 2846 } else { 2847 if (CurrentOrder[I] != E + 1) 2848 break; 2849 CurrentOrder[I] = I; 2850 } 2851 } 2852 if (I < E) { 2853 CurrentOrder.clear(); 2854 return false; 2855 } 2856 2857 return ShouldKeepOrder; 2858 } 2859 2860 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2861 return I->hasOneUse() || 2862 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2863 return ScalarToTreeEntry.count(U) > 0; 2864 }); 2865 } 2866 2867 int BoUpSLP::getEntryCost(TreeEntry *E) { 2868 ArrayRef<Value*> VL = E->Scalars; 2869 2870 Type *ScalarTy = VL[0]->getType(); 2871 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2872 ScalarTy = SI->getValueOperand()->getType(); 2873 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2874 ScalarTy = CI->getOperand(0)->getType(); 2875 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2876 2877 // If we have computed a smaller type for the expression, update VecTy so 2878 // that the costs will be accurate. 2879 if (MinBWs.count(VL[0])) 2880 VecTy = VectorType::get( 2881 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2882 2883 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2884 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2885 int ReuseShuffleCost = 0; 2886 if (NeedToShuffleReuses) { 2887 ReuseShuffleCost = 2888 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2889 } 2890 if (E->NeedToGather) { 2891 if (allConstant(VL)) 2892 return 0; 2893 if (isSplat(VL)) { 2894 return ReuseShuffleCost + 2895 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2896 } 2897 if (E->getOpcode() == Instruction::ExtractElement && 2898 allSameType(VL) && allSameBlock(VL)) { 2899 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2900 if (ShuffleKind.hasValue()) { 2901 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2902 for (auto *V : VL) { 2903 // If all users of instruction are going to be vectorized and this 2904 // instruction itself is not going to be vectorized, consider this 2905 // instruction as dead and remove its cost from the final cost of the 2906 // vectorized tree. 2907 if (areAllUsersVectorized(cast<Instruction>(V)) && 2908 !ScalarToTreeEntry.count(V)) { 2909 auto *IO = cast<ConstantInt>( 2910 cast<ExtractElementInst>(V)->getIndexOperand()); 2911 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2912 IO->getZExtValue()); 2913 } 2914 } 2915 return ReuseShuffleCost + Cost; 2916 } 2917 } 2918 return ReuseShuffleCost + getGatherCost(VL); 2919 } 2920 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2921 Instruction *VL0 = E->getMainOp(); 2922 unsigned ShuffleOrOp = 2923 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 2924 switch (ShuffleOrOp) { 2925 case Instruction::PHI: 2926 return 0; 2927 2928 case Instruction::ExtractValue: 2929 case Instruction::ExtractElement: 2930 if (NeedToShuffleReuses) { 2931 unsigned Idx = 0; 2932 for (unsigned I : E->ReuseShuffleIndices) { 2933 if (ShuffleOrOp == Instruction::ExtractElement) { 2934 auto *IO = cast<ConstantInt>( 2935 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2936 Idx = IO->getZExtValue(); 2937 ReuseShuffleCost -= TTI->getVectorInstrCost( 2938 Instruction::ExtractElement, VecTy, Idx); 2939 } else { 2940 ReuseShuffleCost -= TTI->getVectorInstrCost( 2941 Instruction::ExtractElement, VecTy, Idx); 2942 ++Idx; 2943 } 2944 } 2945 Idx = ReuseShuffleNumbers; 2946 for (Value *V : VL) { 2947 if (ShuffleOrOp == Instruction::ExtractElement) { 2948 auto *IO = cast<ConstantInt>( 2949 cast<ExtractElementInst>(V)->getIndexOperand()); 2950 Idx = IO->getZExtValue(); 2951 } else { 2952 --Idx; 2953 } 2954 ReuseShuffleCost += 2955 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2956 } 2957 } 2958 if (!E->NeedToGather) { 2959 int DeadCost = ReuseShuffleCost; 2960 if (!E->ReorderIndices.empty()) { 2961 // TODO: Merge this shuffle with the ReuseShuffleCost. 2962 DeadCost += TTI->getShuffleCost( 2963 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2964 } 2965 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2966 Instruction *E = cast<Instruction>(VL[i]); 2967 // If all users are going to be vectorized, instruction can be 2968 // considered as dead. 2969 // The same, if have only one user, it will be vectorized for sure. 2970 if (areAllUsersVectorized(E)) { 2971 // Take credit for instruction that will become dead. 2972 if (E->hasOneUse()) { 2973 Instruction *Ext = E->user_back(); 2974 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2975 all_of(Ext->users(), 2976 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2977 // Use getExtractWithExtendCost() to calculate the cost of 2978 // extractelement/ext pair. 2979 DeadCost -= TTI->getExtractWithExtendCost( 2980 Ext->getOpcode(), Ext->getType(), VecTy, i); 2981 // Add back the cost of s|zext which is subtracted separately. 2982 DeadCost += TTI->getCastInstrCost( 2983 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2984 continue; 2985 } 2986 } 2987 DeadCost -= 2988 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2989 } 2990 } 2991 return DeadCost; 2992 } 2993 return ReuseShuffleCost + getGatherCost(VL); 2994 2995 case Instruction::ZExt: 2996 case Instruction::SExt: 2997 case Instruction::FPToUI: 2998 case Instruction::FPToSI: 2999 case Instruction::FPExt: 3000 case Instruction::PtrToInt: 3001 case Instruction::IntToPtr: 3002 case Instruction::SIToFP: 3003 case Instruction::UIToFP: 3004 case Instruction::Trunc: 3005 case Instruction::FPTrunc: 3006 case Instruction::BitCast: { 3007 Type *SrcTy = VL0->getOperand(0)->getType(); 3008 int ScalarEltCost = 3009 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3010 if (NeedToShuffleReuses) { 3011 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3012 } 3013 3014 // Calculate the cost of this instruction. 3015 int ScalarCost = VL.size() * ScalarEltCost; 3016 3017 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3018 int VecCost = 0; 3019 // Check if the values are candidates to demote. 3020 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3021 VecCost = ReuseShuffleCost + 3022 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3023 } 3024 return VecCost - ScalarCost; 3025 } 3026 case Instruction::FCmp: 3027 case Instruction::ICmp: 3028 case Instruction::Select: { 3029 // Calculate the cost of this instruction. 3030 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3031 Builder.getInt1Ty(), VL0); 3032 if (NeedToShuffleReuses) { 3033 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3034 } 3035 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3036 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3037 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3038 return ReuseShuffleCost + VecCost - ScalarCost; 3039 } 3040 case Instruction::FNeg: 3041 case Instruction::Add: 3042 case Instruction::FAdd: 3043 case Instruction::Sub: 3044 case Instruction::FSub: 3045 case Instruction::Mul: 3046 case Instruction::FMul: 3047 case Instruction::UDiv: 3048 case Instruction::SDiv: 3049 case Instruction::FDiv: 3050 case Instruction::URem: 3051 case Instruction::SRem: 3052 case Instruction::FRem: 3053 case Instruction::Shl: 3054 case Instruction::LShr: 3055 case Instruction::AShr: 3056 case Instruction::And: 3057 case Instruction::Or: 3058 case Instruction::Xor: { 3059 // Certain instructions can be cheaper to vectorize if they have a 3060 // constant second vector operand. 3061 TargetTransformInfo::OperandValueKind Op1VK = 3062 TargetTransformInfo::OK_AnyValue; 3063 TargetTransformInfo::OperandValueKind Op2VK = 3064 TargetTransformInfo::OK_UniformConstantValue; 3065 TargetTransformInfo::OperandValueProperties Op1VP = 3066 TargetTransformInfo::OP_None; 3067 TargetTransformInfo::OperandValueProperties Op2VP = 3068 TargetTransformInfo::OP_PowerOf2; 3069 3070 // If all operands are exactly the same ConstantInt then set the 3071 // operand kind to OK_UniformConstantValue. 3072 // If instead not all operands are constants, then set the operand kind 3073 // to OK_AnyValue. If all operands are constants but not the same, 3074 // then set the operand kind to OK_NonUniformConstantValue. 3075 ConstantInt *CInt0 = nullptr; 3076 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3077 const Instruction *I = cast<Instruction>(VL[i]); 3078 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3079 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3080 if (!CInt) { 3081 Op2VK = TargetTransformInfo::OK_AnyValue; 3082 Op2VP = TargetTransformInfo::OP_None; 3083 break; 3084 } 3085 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3086 !CInt->getValue().isPowerOf2()) 3087 Op2VP = TargetTransformInfo::OP_None; 3088 if (i == 0) { 3089 CInt0 = CInt; 3090 continue; 3091 } 3092 if (CInt0 != CInt) 3093 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3094 } 3095 3096 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3097 int ScalarEltCost = TTI->getArithmeticInstrCost( 3098 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3099 if (NeedToShuffleReuses) { 3100 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3101 } 3102 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3103 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3104 Op2VK, Op1VP, Op2VP, Operands); 3105 return ReuseShuffleCost + VecCost - ScalarCost; 3106 } 3107 case Instruction::GetElementPtr: { 3108 TargetTransformInfo::OperandValueKind Op1VK = 3109 TargetTransformInfo::OK_AnyValue; 3110 TargetTransformInfo::OperandValueKind Op2VK = 3111 TargetTransformInfo::OK_UniformConstantValue; 3112 3113 int ScalarEltCost = 3114 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3115 if (NeedToShuffleReuses) { 3116 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3117 } 3118 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3119 int VecCost = 3120 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3121 return ReuseShuffleCost + VecCost - ScalarCost; 3122 } 3123 case Instruction::Load: { 3124 // Cost of wide load - cost of scalar loads. 3125 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 3126 int ScalarEltCost = 3127 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3128 if (NeedToShuffleReuses) { 3129 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3130 } 3131 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3132 int VecLdCost = 3133 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3134 if (!E->ReorderIndices.empty()) { 3135 // TODO: Merge this shuffle with the ReuseShuffleCost. 3136 VecLdCost += TTI->getShuffleCost( 3137 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3138 } 3139 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3140 } 3141 case Instruction::Store: { 3142 // We know that we can merge the stores. Calculate the cost. 3143 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 3144 int ScalarEltCost = 3145 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 3146 if (NeedToShuffleReuses) { 3147 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3148 } 3149 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3150 int VecStCost = 3151 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 3152 return ReuseShuffleCost + VecStCost - ScalarStCost; 3153 } 3154 case Instruction::Call: { 3155 CallInst *CI = cast<CallInst>(VL0); 3156 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3157 3158 // Calculate the cost of the scalar and vector calls. 3159 SmallVector<Type *, 4> ScalarTys; 3160 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3161 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3162 3163 FastMathFlags FMF; 3164 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3165 FMF = FPMO->getFastMathFlags(); 3166 3167 int ScalarEltCost = 3168 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3169 if (NeedToShuffleReuses) { 3170 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3171 } 3172 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3173 3174 SmallVector<Value *, 4> Args(CI->arg_operands()); 3175 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3176 VecTy->getNumElements()); 3177 3178 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3179 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3180 << " for " << *CI << "\n"); 3181 3182 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3183 } 3184 case Instruction::ShuffleVector: { 3185 assert(E->isAltShuffle() && 3186 ((Instruction::isBinaryOp(E->getOpcode()) && 3187 Instruction::isBinaryOp(E->getAltOpcode())) || 3188 (Instruction::isCast(E->getOpcode()) && 3189 Instruction::isCast(E->getAltOpcode()))) && 3190 "Invalid Shuffle Vector Operand"); 3191 int ScalarCost = 0; 3192 if (NeedToShuffleReuses) { 3193 for (unsigned Idx : E->ReuseShuffleIndices) { 3194 Instruction *I = cast<Instruction>(VL[Idx]); 3195 ReuseShuffleCost -= TTI->getInstructionCost( 3196 I, TargetTransformInfo::TCK_RecipThroughput); 3197 } 3198 for (Value *V : VL) { 3199 Instruction *I = cast<Instruction>(V); 3200 ReuseShuffleCost += TTI->getInstructionCost( 3201 I, TargetTransformInfo::TCK_RecipThroughput); 3202 } 3203 } 3204 for (Value *V : VL) { 3205 Instruction *I = cast<Instruction>(V); 3206 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3207 ScalarCost += TTI->getInstructionCost( 3208 I, TargetTransformInfo::TCK_RecipThroughput); 3209 } 3210 // VecCost is equal to sum of the cost of creating 2 vectors 3211 // and the cost of creating shuffle. 3212 int VecCost = 0; 3213 if (Instruction::isBinaryOp(E->getOpcode())) { 3214 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3215 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3216 } else { 3217 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3218 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3219 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3220 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3221 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3222 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3223 } 3224 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3225 return ReuseShuffleCost + VecCost - ScalarCost; 3226 } 3227 default: 3228 llvm_unreachable("Unknown instruction"); 3229 } 3230 } 3231 3232 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3233 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3234 << VectorizableTree.size() << " is fully vectorizable .\n"); 3235 3236 // We only handle trees of heights 1 and 2. 3237 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3238 return true; 3239 3240 if (VectorizableTree.size() != 2) 3241 return false; 3242 3243 // Handle splat and all-constants stores. 3244 if (!VectorizableTree[0]->NeedToGather && 3245 (allConstant(VectorizableTree[1]->Scalars) || 3246 isSplat(VectorizableTree[1]->Scalars))) 3247 return true; 3248 3249 // Gathering cost would be too much for tiny trees. 3250 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3251 return false; 3252 3253 return true; 3254 } 3255 3256 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3257 // We can vectorize the tree if its size is greater than or equal to the 3258 // minimum size specified by the MinTreeSize command line option. 3259 if (VectorizableTree.size() >= MinTreeSize) 3260 return false; 3261 3262 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3263 // can vectorize it if we can prove it fully vectorizable. 3264 if (isFullyVectorizableTinyTree()) 3265 return false; 3266 3267 assert(VectorizableTree.empty() 3268 ? ExternalUses.empty() 3269 : true && "We shouldn't have any external users"); 3270 3271 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3272 // vectorizable. 3273 return true; 3274 } 3275 3276 int BoUpSLP::getSpillCost() const { 3277 // Walk from the bottom of the tree to the top, tracking which values are 3278 // live. When we see a call instruction that is not part of our tree, 3279 // query TTI to see if there is a cost to keeping values live over it 3280 // (for example, if spills and fills are required). 3281 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3282 int Cost = 0; 3283 3284 SmallPtrSet<Instruction*, 4> LiveValues; 3285 Instruction *PrevInst = nullptr; 3286 3287 for (const auto &TEPtr : VectorizableTree) { 3288 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3289 if (!Inst) 3290 continue; 3291 3292 if (!PrevInst) { 3293 PrevInst = Inst; 3294 continue; 3295 } 3296 3297 // Update LiveValues. 3298 LiveValues.erase(PrevInst); 3299 for (auto &J : PrevInst->operands()) { 3300 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3301 LiveValues.insert(cast<Instruction>(&*J)); 3302 } 3303 3304 LLVM_DEBUG({ 3305 dbgs() << "SLP: #LV: " << LiveValues.size(); 3306 for (auto *X : LiveValues) 3307 dbgs() << " " << X->getName(); 3308 dbgs() << ", Looking at "; 3309 Inst->dump(); 3310 }); 3311 3312 // Now find the sequence of instructions between PrevInst and Inst. 3313 unsigned NumCalls = 0; 3314 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3315 PrevInstIt = 3316 PrevInst->getIterator().getReverse(); 3317 while (InstIt != PrevInstIt) { 3318 if (PrevInstIt == PrevInst->getParent()->rend()) { 3319 PrevInstIt = Inst->getParent()->rbegin(); 3320 continue; 3321 } 3322 3323 // Debug informations don't impact spill cost. 3324 if ((isa<CallInst>(&*PrevInstIt) && 3325 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3326 &*PrevInstIt != PrevInst) 3327 NumCalls++; 3328 3329 ++PrevInstIt; 3330 } 3331 3332 if (NumCalls) { 3333 SmallVector<Type*, 4> V; 3334 for (auto *II : LiveValues) 3335 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3336 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3337 } 3338 3339 PrevInst = Inst; 3340 } 3341 3342 return Cost; 3343 } 3344 3345 int BoUpSLP::getTreeCost() { 3346 int Cost = 0; 3347 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3348 << VectorizableTree.size() << ".\n"); 3349 3350 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3351 3352 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3353 TreeEntry &TE = *VectorizableTree[I].get(); 3354 3355 // We create duplicate tree entries for gather sequences that have multiple 3356 // uses. However, we should not compute the cost of duplicate sequences. 3357 // For example, if we have a build vector (i.e., insertelement sequence) 3358 // that is used by more than one vector instruction, we only need to 3359 // compute the cost of the insertelement instructions once. The redundant 3360 // instructions will be eliminated by CSE. 3361 // 3362 // We should consider not creating duplicate tree entries for gather 3363 // sequences, and instead add additional edges to the tree representing 3364 // their uses. Since such an approach results in fewer total entries, 3365 // existing heuristics based on tree size may yield different results. 3366 // 3367 if (TE.NeedToGather && 3368 std::any_of( 3369 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3370 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3371 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3372 })) 3373 continue; 3374 3375 int C = getEntryCost(&TE); 3376 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3377 << " for bundle that starts with " << *TE.Scalars[0] 3378 << ".\n"); 3379 Cost += C; 3380 } 3381 3382 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3383 int ExtractCost = 0; 3384 for (ExternalUser &EU : ExternalUses) { 3385 // We only add extract cost once for the same scalar. 3386 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3387 continue; 3388 3389 // Uses by ephemeral values are free (because the ephemeral value will be 3390 // removed prior to code generation, and so the extraction will be 3391 // removed as well). 3392 if (EphValues.count(EU.User)) 3393 continue; 3394 3395 // If we plan to rewrite the tree in a smaller type, we will need to sign 3396 // extend the extracted value back to the original type. Here, we account 3397 // for the extract and the added cost of the sign extend if needed. 3398 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3399 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3400 if (MinBWs.count(ScalarRoot)) { 3401 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3402 auto Extend = 3403 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3404 VecTy = VectorType::get(MinTy, BundleWidth); 3405 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3406 VecTy, EU.Lane); 3407 } else { 3408 ExtractCost += 3409 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3410 } 3411 } 3412 3413 int SpillCost = getSpillCost(); 3414 Cost += SpillCost + ExtractCost; 3415 3416 std::string Str; 3417 { 3418 raw_string_ostream OS(Str); 3419 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3420 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3421 << "SLP: Total Cost = " << Cost << ".\n"; 3422 } 3423 LLVM_DEBUG(dbgs() << Str); 3424 3425 if (ViewSLPTree) 3426 ViewGraph(this, "SLP" + F->getName(), false, Str); 3427 3428 return Cost; 3429 } 3430 3431 int BoUpSLP::getGatherCost(Type *Ty, 3432 const DenseSet<unsigned> &ShuffledIndices) const { 3433 int Cost = 0; 3434 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3435 if (!ShuffledIndices.count(i)) 3436 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3437 if (!ShuffledIndices.empty()) 3438 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3439 return Cost; 3440 } 3441 3442 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3443 // Find the type of the operands in VL. 3444 Type *ScalarTy = VL[0]->getType(); 3445 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3446 ScalarTy = SI->getValueOperand()->getType(); 3447 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3448 // Find the cost of inserting/extracting values from the vector. 3449 // Check if the same elements are inserted several times and count them as 3450 // shuffle candidates. 3451 DenseSet<unsigned> ShuffledElements; 3452 DenseSet<Value *> UniqueElements; 3453 // Iterate in reverse order to consider insert elements with the high cost. 3454 for (unsigned I = VL.size(); I > 0; --I) { 3455 unsigned Idx = I - 1; 3456 if (!UniqueElements.insert(VL[Idx]).second) 3457 ShuffledElements.insert(Idx); 3458 } 3459 return getGatherCost(VecTy, ShuffledElements); 3460 } 3461 3462 // Perform operand reordering on the instructions in VL and return the reordered 3463 // operands in Left and Right. 3464 void BoUpSLP::reorderInputsAccordingToOpcode( 3465 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3466 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3467 ScalarEvolution &SE) { 3468 if (VL.empty()) 3469 return; 3470 VLOperands Ops(VL, DL, SE); 3471 // Reorder the operands in place. 3472 Ops.reorder(); 3473 Left = Ops.getVL(0); 3474 Right = Ops.getVL(1); 3475 } 3476 3477 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3478 // Get the basic block this bundle is in. All instructions in the bundle 3479 // should be in this block. 3480 auto *Front = E->getMainOp(); 3481 auto *BB = Front->getParent(); 3482 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3483 [=](Value *V) -> bool { 3484 auto *I = cast<Instruction>(V); 3485 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3486 })); 3487 3488 // The last instruction in the bundle in program order. 3489 Instruction *LastInst = nullptr; 3490 3491 // Find the last instruction. The common case should be that BB has been 3492 // scheduled, and the last instruction is VL.back(). So we start with 3493 // VL.back() and iterate over schedule data until we reach the end of the 3494 // bundle. The end of the bundle is marked by null ScheduleData. 3495 if (BlocksSchedules.count(BB)) { 3496 auto *Bundle = 3497 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3498 if (Bundle && Bundle->isPartOfBundle()) 3499 for (; Bundle; Bundle = Bundle->NextInBundle) 3500 if (Bundle->OpValue == Bundle->Inst) 3501 LastInst = Bundle->Inst; 3502 } 3503 3504 // LastInst can still be null at this point if there's either not an entry 3505 // for BB in BlocksSchedules or there's no ScheduleData available for 3506 // VL.back(). This can be the case if buildTree_rec aborts for various 3507 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3508 // size is reached, etc.). ScheduleData is initialized in the scheduling 3509 // "dry-run". 3510 // 3511 // If this happens, we can still find the last instruction by brute force. We 3512 // iterate forwards from Front (inclusive) until we either see all 3513 // instructions in the bundle or reach the end of the block. If Front is the 3514 // last instruction in program order, LastInst will be set to Front, and we 3515 // will visit all the remaining instructions in the block. 3516 // 3517 // One of the reasons we exit early from buildTree_rec is to place an upper 3518 // bound on compile-time. Thus, taking an additional compile-time hit here is 3519 // not ideal. However, this should be exceedingly rare since it requires that 3520 // we both exit early from buildTree_rec and that the bundle be out-of-order 3521 // (causing us to iterate all the way to the end of the block). 3522 if (!LastInst) { 3523 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3524 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3525 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3526 LastInst = &I; 3527 if (Bundle.empty()) 3528 break; 3529 } 3530 } 3531 assert(LastInst && "Failed to find last instruction in bundle"); 3532 3533 // Set the insertion point after the last instruction in the bundle. Set the 3534 // debug location to Front. 3535 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3536 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3537 } 3538 3539 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3540 Value *Vec = UndefValue::get(Ty); 3541 // Generate the 'InsertElement' instruction. 3542 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3543 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3544 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3545 GatherSeq.insert(Insrt); 3546 CSEBlocks.insert(Insrt->getParent()); 3547 3548 // Add to our 'need-to-extract' list. 3549 if (TreeEntry *E = getTreeEntry(VL[i])) { 3550 // Find which lane we need to extract. 3551 int FoundLane = -1; 3552 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3553 // Is this the lane of the scalar that we are looking for ? 3554 if (E->Scalars[Lane] == VL[i]) { 3555 FoundLane = Lane; 3556 break; 3557 } 3558 } 3559 assert(FoundLane >= 0 && "Could not find the correct lane"); 3560 if (!E->ReuseShuffleIndices.empty()) { 3561 FoundLane = 3562 std::distance(E->ReuseShuffleIndices.begin(), 3563 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3564 } 3565 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3566 } 3567 } 3568 } 3569 3570 return Vec; 3571 } 3572 3573 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3574 InstructionsState S = getSameOpcode(VL); 3575 if (S.getOpcode()) { 3576 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3577 if (E->isSame(VL)) { 3578 Value *V = vectorizeTree(E); 3579 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3580 // We need to get the vectorized value but without shuffle. 3581 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3582 V = SV->getOperand(0); 3583 } else { 3584 // Reshuffle to get only unique values. 3585 SmallVector<unsigned, 4> UniqueIdxs; 3586 SmallSet<unsigned, 4> UsedIdxs; 3587 for(unsigned Idx : E->ReuseShuffleIndices) 3588 if (UsedIdxs.insert(Idx).second) 3589 UniqueIdxs.emplace_back(Idx); 3590 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3591 UniqueIdxs); 3592 } 3593 } 3594 return V; 3595 } 3596 } 3597 } 3598 3599 Type *ScalarTy = S.OpValue->getType(); 3600 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3601 ScalarTy = SI->getValueOperand()->getType(); 3602 3603 // Check that every instruction appears once in this bundle. 3604 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3605 SmallVector<Value *, 4> UniqueValues; 3606 if (VL.size() > 2) { 3607 DenseMap<Value *, unsigned> UniquePositions; 3608 for (Value *V : VL) { 3609 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3610 ReuseShuffleIndicies.emplace_back(Res.first->second); 3611 if (Res.second || isa<Constant>(V)) 3612 UniqueValues.emplace_back(V); 3613 } 3614 // Do not shuffle single element or if number of unique values is not power 3615 // of 2. 3616 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3617 !llvm::isPowerOf2_32(UniqueValues.size())) 3618 ReuseShuffleIndicies.clear(); 3619 else 3620 VL = UniqueValues; 3621 } 3622 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3623 3624 Value *V = Gather(VL, VecTy); 3625 if (!ReuseShuffleIndicies.empty()) { 3626 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3627 ReuseShuffleIndicies, "shuffle"); 3628 if (auto *I = dyn_cast<Instruction>(V)) { 3629 GatherSeq.insert(I); 3630 CSEBlocks.insert(I->getParent()); 3631 } 3632 } 3633 return V; 3634 } 3635 3636 static void inversePermutation(ArrayRef<unsigned> Indices, 3637 SmallVectorImpl<unsigned> &Mask) { 3638 Mask.clear(); 3639 const unsigned E = Indices.size(); 3640 Mask.resize(E); 3641 for (unsigned I = 0; I < E; ++I) 3642 Mask[Indices[I]] = I; 3643 } 3644 3645 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3646 IRBuilder<>::InsertPointGuard Guard(Builder); 3647 3648 if (E->VectorizedValue) { 3649 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3650 return E->VectorizedValue; 3651 } 3652 3653 Instruction *VL0 = E->getMainOp(); 3654 Type *ScalarTy = VL0->getType(); 3655 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3656 ScalarTy = SI->getValueOperand()->getType(); 3657 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3658 3659 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3660 3661 if (E->NeedToGather) { 3662 setInsertPointAfterBundle(E); 3663 auto *V = Gather(E->Scalars, VecTy); 3664 if (NeedToShuffleReuses) { 3665 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3666 E->ReuseShuffleIndices, "shuffle"); 3667 if (auto *I = dyn_cast<Instruction>(V)) { 3668 GatherSeq.insert(I); 3669 CSEBlocks.insert(I->getParent()); 3670 } 3671 } 3672 E->VectorizedValue = V; 3673 return V; 3674 } 3675 3676 unsigned ShuffleOrOp = 3677 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3678 switch (ShuffleOrOp) { 3679 case Instruction::PHI: { 3680 auto *PH = cast<PHINode>(VL0); 3681 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3682 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3683 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3684 Value *V = NewPhi; 3685 if (NeedToShuffleReuses) { 3686 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3687 E->ReuseShuffleIndices, "shuffle"); 3688 } 3689 E->VectorizedValue = V; 3690 3691 // PHINodes may have multiple entries from the same block. We want to 3692 // visit every block once. 3693 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3694 3695 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3696 ValueList Operands; 3697 BasicBlock *IBB = PH->getIncomingBlock(i); 3698 3699 if (!VisitedBBs.insert(IBB).second) { 3700 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3701 continue; 3702 } 3703 3704 Builder.SetInsertPoint(IBB->getTerminator()); 3705 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3706 Value *Vec = vectorizeTree(E->getOperand(i)); 3707 NewPhi->addIncoming(Vec, IBB); 3708 } 3709 3710 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3711 "Invalid number of incoming values"); 3712 return V; 3713 } 3714 3715 case Instruction::ExtractElement: { 3716 if (!E->NeedToGather) { 3717 Value *V = E->getSingleOperand(0); 3718 if (!E->ReorderIndices.empty()) { 3719 OrdersType Mask; 3720 inversePermutation(E->ReorderIndices, Mask); 3721 Builder.SetInsertPoint(VL0); 3722 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3723 "reorder_shuffle"); 3724 } 3725 if (NeedToShuffleReuses) { 3726 // TODO: Merge this shuffle with the ReorderShuffleMask. 3727 if (E->ReorderIndices.empty()) 3728 Builder.SetInsertPoint(VL0); 3729 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3730 E->ReuseShuffleIndices, "shuffle"); 3731 } 3732 E->VectorizedValue = V; 3733 return V; 3734 } 3735 setInsertPointAfterBundle(E); 3736 auto *V = Gather(E->Scalars, VecTy); 3737 if (NeedToShuffleReuses) { 3738 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3739 E->ReuseShuffleIndices, "shuffle"); 3740 if (auto *I = dyn_cast<Instruction>(V)) { 3741 GatherSeq.insert(I); 3742 CSEBlocks.insert(I->getParent()); 3743 } 3744 } 3745 E->VectorizedValue = V; 3746 return V; 3747 } 3748 case Instruction::ExtractValue: { 3749 if (!E->NeedToGather) { 3750 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3751 Builder.SetInsertPoint(LI); 3752 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3753 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3754 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3755 Value *NewV = propagateMetadata(V, E->Scalars); 3756 if (!E->ReorderIndices.empty()) { 3757 OrdersType Mask; 3758 inversePermutation(E->ReorderIndices, Mask); 3759 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3760 "reorder_shuffle"); 3761 } 3762 if (NeedToShuffleReuses) { 3763 // TODO: Merge this shuffle with the ReorderShuffleMask. 3764 NewV = Builder.CreateShuffleVector( 3765 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3766 } 3767 E->VectorizedValue = NewV; 3768 return NewV; 3769 } 3770 setInsertPointAfterBundle(E); 3771 auto *V = Gather(E->Scalars, VecTy); 3772 if (NeedToShuffleReuses) { 3773 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3774 E->ReuseShuffleIndices, "shuffle"); 3775 if (auto *I = dyn_cast<Instruction>(V)) { 3776 GatherSeq.insert(I); 3777 CSEBlocks.insert(I->getParent()); 3778 } 3779 } 3780 E->VectorizedValue = V; 3781 return V; 3782 } 3783 case Instruction::ZExt: 3784 case Instruction::SExt: 3785 case Instruction::FPToUI: 3786 case Instruction::FPToSI: 3787 case Instruction::FPExt: 3788 case Instruction::PtrToInt: 3789 case Instruction::IntToPtr: 3790 case Instruction::SIToFP: 3791 case Instruction::UIToFP: 3792 case Instruction::Trunc: 3793 case Instruction::FPTrunc: 3794 case Instruction::BitCast: { 3795 setInsertPointAfterBundle(E); 3796 3797 Value *InVec = vectorizeTree(E->getOperand(0)); 3798 3799 if (E->VectorizedValue) { 3800 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3801 return E->VectorizedValue; 3802 } 3803 3804 auto *CI = cast<CastInst>(VL0); 3805 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3806 if (NeedToShuffleReuses) { 3807 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3808 E->ReuseShuffleIndices, "shuffle"); 3809 } 3810 E->VectorizedValue = V; 3811 ++NumVectorInstructions; 3812 return V; 3813 } 3814 case Instruction::FCmp: 3815 case Instruction::ICmp: { 3816 setInsertPointAfterBundle(E); 3817 3818 Value *L = vectorizeTree(E->getOperand(0)); 3819 Value *R = vectorizeTree(E->getOperand(1)); 3820 3821 if (E->VectorizedValue) { 3822 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3823 return E->VectorizedValue; 3824 } 3825 3826 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3827 Value *V; 3828 if (E->getOpcode() == Instruction::FCmp) 3829 V = Builder.CreateFCmp(P0, L, R); 3830 else 3831 V = Builder.CreateICmp(P0, L, R); 3832 3833 propagateIRFlags(V, E->Scalars, VL0); 3834 if (NeedToShuffleReuses) { 3835 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3836 E->ReuseShuffleIndices, "shuffle"); 3837 } 3838 E->VectorizedValue = V; 3839 ++NumVectorInstructions; 3840 return V; 3841 } 3842 case Instruction::Select: { 3843 setInsertPointAfterBundle(E); 3844 3845 Value *Cond = vectorizeTree(E->getOperand(0)); 3846 Value *True = vectorizeTree(E->getOperand(1)); 3847 Value *False = vectorizeTree(E->getOperand(2)); 3848 3849 if (E->VectorizedValue) { 3850 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3851 return E->VectorizedValue; 3852 } 3853 3854 Value *V = Builder.CreateSelect(Cond, True, False); 3855 if (NeedToShuffleReuses) { 3856 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3857 E->ReuseShuffleIndices, "shuffle"); 3858 } 3859 E->VectorizedValue = V; 3860 ++NumVectorInstructions; 3861 return V; 3862 } 3863 case Instruction::FNeg: { 3864 setInsertPointAfterBundle(E); 3865 3866 Value *Op = vectorizeTree(E->getOperand(0)); 3867 3868 if (E->VectorizedValue) { 3869 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3870 return E->VectorizedValue; 3871 } 3872 3873 Value *V = Builder.CreateUnOp( 3874 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 3875 propagateIRFlags(V, E->Scalars, VL0); 3876 if (auto *I = dyn_cast<Instruction>(V)) 3877 V = propagateMetadata(I, E->Scalars); 3878 3879 if (NeedToShuffleReuses) { 3880 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3881 E->ReuseShuffleIndices, "shuffle"); 3882 } 3883 E->VectorizedValue = V; 3884 ++NumVectorInstructions; 3885 3886 return V; 3887 } 3888 case Instruction::Add: 3889 case Instruction::FAdd: 3890 case Instruction::Sub: 3891 case Instruction::FSub: 3892 case Instruction::Mul: 3893 case Instruction::FMul: 3894 case Instruction::UDiv: 3895 case Instruction::SDiv: 3896 case Instruction::FDiv: 3897 case Instruction::URem: 3898 case Instruction::SRem: 3899 case Instruction::FRem: 3900 case Instruction::Shl: 3901 case Instruction::LShr: 3902 case Instruction::AShr: 3903 case Instruction::And: 3904 case Instruction::Or: 3905 case Instruction::Xor: { 3906 setInsertPointAfterBundle(E); 3907 3908 Value *LHS = vectorizeTree(E->getOperand(0)); 3909 Value *RHS = vectorizeTree(E->getOperand(1)); 3910 3911 if (E->VectorizedValue) { 3912 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3913 return E->VectorizedValue; 3914 } 3915 3916 Value *V = Builder.CreateBinOp( 3917 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 3918 RHS); 3919 propagateIRFlags(V, E->Scalars, VL0); 3920 if (auto *I = dyn_cast<Instruction>(V)) 3921 V = propagateMetadata(I, E->Scalars); 3922 3923 if (NeedToShuffleReuses) { 3924 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3925 E->ReuseShuffleIndices, "shuffle"); 3926 } 3927 E->VectorizedValue = V; 3928 ++NumVectorInstructions; 3929 3930 return V; 3931 } 3932 case Instruction::Load: { 3933 // Loads are inserted at the head of the tree because we don't want to 3934 // sink them all the way down past store instructions. 3935 bool IsReorder = E->updateStateIfReorder(); 3936 if (IsReorder) 3937 VL0 = E->getMainOp(); 3938 setInsertPointAfterBundle(E); 3939 3940 LoadInst *LI = cast<LoadInst>(VL0); 3941 Type *ScalarLoadTy = LI->getType(); 3942 unsigned AS = LI->getPointerAddressSpace(); 3943 3944 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3945 VecTy->getPointerTo(AS)); 3946 3947 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3948 // ExternalUses list to make sure that an extract will be generated in the 3949 // future. 3950 Value *PO = LI->getPointerOperand(); 3951 if (getTreeEntry(PO)) 3952 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3953 3954 unsigned Alignment = LI->getAlignment(); 3955 LI = Builder.CreateLoad(VecTy, VecPtr); 3956 if (!Alignment) { 3957 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3958 } 3959 LI->setAlignment(Alignment); 3960 Value *V = propagateMetadata(LI, E->Scalars); 3961 if (IsReorder) { 3962 OrdersType Mask; 3963 inversePermutation(E->ReorderIndices, Mask); 3964 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3965 Mask, "reorder_shuffle"); 3966 } 3967 if (NeedToShuffleReuses) { 3968 // TODO: Merge this shuffle with the ReorderShuffleMask. 3969 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3970 E->ReuseShuffleIndices, "shuffle"); 3971 } 3972 E->VectorizedValue = V; 3973 ++NumVectorInstructions; 3974 return V; 3975 } 3976 case Instruction::Store: { 3977 StoreInst *SI = cast<StoreInst>(VL0); 3978 unsigned Alignment = SI->getAlignment(); 3979 unsigned AS = SI->getPointerAddressSpace(); 3980 3981 setInsertPointAfterBundle(E); 3982 3983 Value *VecValue = vectorizeTree(E->getOperand(0)); 3984 Value *ScalarPtr = SI->getPointerOperand(); 3985 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3986 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3987 3988 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3989 // ExternalUses to make sure that an extract will be generated in the 3990 // future. 3991 if (getTreeEntry(ScalarPtr)) 3992 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3993 3994 if (!Alignment) 3995 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3996 3997 ST->setAlignment(Alignment); 3998 Value *V = propagateMetadata(ST, E->Scalars); 3999 if (NeedToShuffleReuses) { 4000 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4001 E->ReuseShuffleIndices, "shuffle"); 4002 } 4003 E->VectorizedValue = V; 4004 ++NumVectorInstructions; 4005 return V; 4006 } 4007 case Instruction::GetElementPtr: { 4008 setInsertPointAfterBundle(E); 4009 4010 Value *Op0 = vectorizeTree(E->getOperand(0)); 4011 4012 std::vector<Value *> OpVecs; 4013 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4014 ++j) { 4015 Value *OpVec = vectorizeTree(E->getOperand(j)); 4016 OpVecs.push_back(OpVec); 4017 } 4018 4019 Value *V = Builder.CreateGEP( 4020 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4021 if (Instruction *I = dyn_cast<Instruction>(V)) 4022 V = propagateMetadata(I, E->Scalars); 4023 4024 if (NeedToShuffleReuses) { 4025 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4026 E->ReuseShuffleIndices, "shuffle"); 4027 } 4028 E->VectorizedValue = V; 4029 ++NumVectorInstructions; 4030 4031 return V; 4032 } 4033 case Instruction::Call: { 4034 CallInst *CI = cast<CallInst>(VL0); 4035 setInsertPointAfterBundle(E); 4036 4037 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4038 if (Function *FI = CI->getCalledFunction()) 4039 IID = FI->getIntrinsicID(); 4040 4041 Value *ScalarArg = nullptr; 4042 std::vector<Value *> OpVecs; 4043 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4044 ValueList OpVL; 4045 // Some intrinsics have scalar arguments. This argument should not be 4046 // vectorized. 4047 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4048 CallInst *CEI = cast<CallInst>(VL0); 4049 ScalarArg = CEI->getArgOperand(j); 4050 OpVecs.push_back(CEI->getArgOperand(j)); 4051 continue; 4052 } 4053 4054 Value *OpVec = vectorizeTree(E->getOperand(j)); 4055 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4056 OpVecs.push_back(OpVec); 4057 } 4058 4059 Module *M = F->getParent(); 4060 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4061 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4062 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4063 SmallVector<OperandBundleDef, 1> OpBundles; 4064 CI->getOperandBundlesAsDefs(OpBundles); 4065 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4066 4067 // The scalar argument uses an in-tree scalar so we add the new vectorized 4068 // call to ExternalUses list to make sure that an extract will be 4069 // generated in the future. 4070 if (ScalarArg && getTreeEntry(ScalarArg)) 4071 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4072 4073 propagateIRFlags(V, E->Scalars, VL0); 4074 if (NeedToShuffleReuses) { 4075 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4076 E->ReuseShuffleIndices, "shuffle"); 4077 } 4078 E->VectorizedValue = V; 4079 ++NumVectorInstructions; 4080 return V; 4081 } 4082 case Instruction::ShuffleVector: { 4083 assert(E->isAltShuffle() && 4084 ((Instruction::isBinaryOp(E->getOpcode()) && 4085 Instruction::isBinaryOp(E->getAltOpcode())) || 4086 (Instruction::isCast(E->getOpcode()) && 4087 Instruction::isCast(E->getAltOpcode()))) && 4088 "Invalid Shuffle Vector Operand"); 4089 4090 Value *LHS = nullptr, *RHS = nullptr; 4091 if (Instruction::isBinaryOp(E->getOpcode())) { 4092 setInsertPointAfterBundle(E); 4093 LHS = vectorizeTree(E->getOperand(0)); 4094 RHS = vectorizeTree(E->getOperand(1)); 4095 } else { 4096 setInsertPointAfterBundle(E); 4097 LHS = vectorizeTree(E->getOperand(0)); 4098 } 4099 4100 if (E->VectorizedValue) { 4101 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4102 return E->VectorizedValue; 4103 } 4104 4105 Value *V0, *V1; 4106 if (Instruction::isBinaryOp(E->getOpcode())) { 4107 V0 = Builder.CreateBinOp( 4108 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4109 V1 = Builder.CreateBinOp( 4110 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4111 } else { 4112 V0 = Builder.CreateCast( 4113 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4114 V1 = Builder.CreateCast( 4115 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4116 } 4117 4118 // Create shuffle to take alternate operations from the vector. 4119 // Also, gather up main and alt scalar ops to propagate IR flags to 4120 // each vector operation. 4121 ValueList OpScalars, AltScalars; 4122 unsigned e = E->Scalars.size(); 4123 SmallVector<Constant *, 8> Mask(e); 4124 for (unsigned i = 0; i < e; ++i) { 4125 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4126 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4127 if (OpInst->getOpcode() == E->getAltOpcode()) { 4128 Mask[i] = Builder.getInt32(e + i); 4129 AltScalars.push_back(E->Scalars[i]); 4130 } else { 4131 Mask[i] = Builder.getInt32(i); 4132 OpScalars.push_back(E->Scalars[i]); 4133 } 4134 } 4135 4136 Value *ShuffleMask = ConstantVector::get(Mask); 4137 propagateIRFlags(V0, OpScalars); 4138 propagateIRFlags(V1, AltScalars); 4139 4140 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4141 if (Instruction *I = dyn_cast<Instruction>(V)) 4142 V = propagateMetadata(I, E->Scalars); 4143 if (NeedToShuffleReuses) { 4144 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4145 E->ReuseShuffleIndices, "shuffle"); 4146 } 4147 E->VectorizedValue = V; 4148 ++NumVectorInstructions; 4149 4150 return V; 4151 } 4152 default: 4153 llvm_unreachable("unknown inst"); 4154 } 4155 return nullptr; 4156 } 4157 4158 Value *BoUpSLP::vectorizeTree() { 4159 ExtraValueToDebugLocsMap ExternallyUsedValues; 4160 return vectorizeTree(ExternallyUsedValues); 4161 } 4162 4163 Value * 4164 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4165 // All blocks must be scheduled before any instructions are inserted. 4166 for (auto &BSIter : BlocksSchedules) { 4167 scheduleBlock(BSIter.second.get()); 4168 } 4169 4170 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4171 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4172 4173 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4174 // vectorized root. InstCombine will then rewrite the entire expression. We 4175 // sign extend the extracted values below. 4176 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4177 if (MinBWs.count(ScalarRoot)) { 4178 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4179 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4180 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4181 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4182 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4183 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4184 VectorizableTree[0]->VectorizedValue = Trunc; 4185 } 4186 4187 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4188 << " values .\n"); 4189 4190 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4191 // specified by ScalarType. 4192 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4193 if (!MinBWs.count(ScalarRoot)) 4194 return Ex; 4195 if (MinBWs[ScalarRoot].second) 4196 return Builder.CreateSExt(Ex, ScalarType); 4197 return Builder.CreateZExt(Ex, ScalarType); 4198 }; 4199 4200 // Extract all of the elements with the external uses. 4201 for (const auto &ExternalUse : ExternalUses) { 4202 Value *Scalar = ExternalUse.Scalar; 4203 llvm::User *User = ExternalUse.User; 4204 4205 // Skip users that we already RAUW. This happens when one instruction 4206 // has multiple uses of the same value. 4207 if (User && !is_contained(Scalar->users(), User)) 4208 continue; 4209 TreeEntry *E = getTreeEntry(Scalar); 4210 assert(E && "Invalid scalar"); 4211 assert(!E->NeedToGather && "Extracting from a gather list"); 4212 4213 Value *Vec = E->VectorizedValue; 4214 assert(Vec && "Can't find vectorizable value"); 4215 4216 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4217 // If User == nullptr, the Scalar is used as extra arg. Generate 4218 // ExtractElement instruction and update the record for this scalar in 4219 // ExternallyUsedValues. 4220 if (!User) { 4221 assert(ExternallyUsedValues.count(Scalar) && 4222 "Scalar with nullptr as an external user must be registered in " 4223 "ExternallyUsedValues map"); 4224 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4225 Builder.SetInsertPoint(VecI->getParent(), 4226 std::next(VecI->getIterator())); 4227 } else { 4228 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4229 } 4230 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4231 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4232 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4233 auto &Locs = ExternallyUsedValues[Scalar]; 4234 ExternallyUsedValues.insert({Ex, Locs}); 4235 ExternallyUsedValues.erase(Scalar); 4236 // Required to update internally referenced instructions. 4237 Scalar->replaceAllUsesWith(Ex); 4238 continue; 4239 } 4240 4241 // Generate extracts for out-of-tree users. 4242 // Find the insertion point for the extractelement lane. 4243 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4244 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4245 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4246 if (PH->getIncomingValue(i) == Scalar) { 4247 Instruction *IncomingTerminator = 4248 PH->getIncomingBlock(i)->getTerminator(); 4249 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4250 Builder.SetInsertPoint(VecI->getParent(), 4251 std::next(VecI->getIterator())); 4252 } else { 4253 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4254 } 4255 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4256 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4257 CSEBlocks.insert(PH->getIncomingBlock(i)); 4258 PH->setOperand(i, Ex); 4259 } 4260 } 4261 } else { 4262 Builder.SetInsertPoint(cast<Instruction>(User)); 4263 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4264 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4265 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4266 User->replaceUsesOfWith(Scalar, Ex); 4267 } 4268 } else { 4269 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4270 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4271 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4272 CSEBlocks.insert(&F->getEntryBlock()); 4273 User->replaceUsesOfWith(Scalar, Ex); 4274 } 4275 4276 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4277 } 4278 4279 // For each vectorized value: 4280 for (auto &TEPtr : VectorizableTree) { 4281 TreeEntry *Entry = TEPtr.get(); 4282 4283 // No need to handle users of gathered values. 4284 if (Entry->NeedToGather) 4285 continue; 4286 4287 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4288 4289 // For each lane: 4290 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4291 Value *Scalar = Entry->Scalars[Lane]; 4292 4293 Type *Ty = Scalar->getType(); 4294 if (!Ty->isVoidTy()) { 4295 #ifndef NDEBUG 4296 for (User *U : Scalar->users()) { 4297 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4298 4299 // It is legal to replace users in the ignorelist by undef. 4300 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4301 "Replacing out-of-tree value with undef"); 4302 } 4303 #endif 4304 Value *Undef = UndefValue::get(Ty); 4305 Scalar->replaceAllUsesWith(Undef); 4306 } 4307 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4308 eraseInstruction(cast<Instruction>(Scalar)); 4309 } 4310 } 4311 4312 Builder.ClearInsertionPoint(); 4313 4314 return VectorizableTree[0]->VectorizedValue; 4315 } 4316 4317 void BoUpSLP::optimizeGatherSequence() { 4318 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4319 << " gather sequences instructions.\n"); 4320 // LICM InsertElementInst sequences. 4321 for (Instruction *I : GatherSeq) { 4322 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4323 continue; 4324 4325 // Check if this block is inside a loop. 4326 Loop *L = LI->getLoopFor(I->getParent()); 4327 if (!L) 4328 continue; 4329 4330 // Check if it has a preheader. 4331 BasicBlock *PreHeader = L->getLoopPreheader(); 4332 if (!PreHeader) 4333 continue; 4334 4335 // If the vector or the element that we insert into it are 4336 // instructions that are defined in this basic block then we can't 4337 // hoist this instruction. 4338 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4339 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4340 if (Op0 && L->contains(Op0)) 4341 continue; 4342 if (Op1 && L->contains(Op1)) 4343 continue; 4344 4345 // We can hoist this instruction. Move it to the pre-header. 4346 I->moveBefore(PreHeader->getTerminator()); 4347 } 4348 4349 // Make a list of all reachable blocks in our CSE queue. 4350 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4351 CSEWorkList.reserve(CSEBlocks.size()); 4352 for (BasicBlock *BB : CSEBlocks) 4353 if (DomTreeNode *N = DT->getNode(BB)) { 4354 assert(DT->isReachableFromEntry(N)); 4355 CSEWorkList.push_back(N); 4356 } 4357 4358 // Sort blocks by domination. This ensures we visit a block after all blocks 4359 // dominating it are visited. 4360 llvm::stable_sort(CSEWorkList, 4361 [this](const DomTreeNode *A, const DomTreeNode *B) { 4362 return DT->properlyDominates(A, B); 4363 }); 4364 4365 // Perform O(N^2) search over the gather sequences and merge identical 4366 // instructions. TODO: We can further optimize this scan if we split the 4367 // instructions into different buckets based on the insert lane. 4368 SmallVector<Instruction *, 16> Visited; 4369 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4370 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4371 "Worklist not sorted properly!"); 4372 BasicBlock *BB = (*I)->getBlock(); 4373 // For all instructions in blocks containing gather sequences: 4374 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4375 Instruction *In = &*it++; 4376 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4377 continue; 4378 4379 // Check if we can replace this instruction with any of the 4380 // visited instructions. 4381 for (Instruction *v : Visited) { 4382 if (In->isIdenticalTo(v) && 4383 DT->dominates(v->getParent(), In->getParent())) { 4384 In->replaceAllUsesWith(v); 4385 eraseInstruction(In); 4386 In = nullptr; 4387 break; 4388 } 4389 } 4390 if (In) { 4391 assert(!is_contained(Visited, In)); 4392 Visited.push_back(In); 4393 } 4394 } 4395 } 4396 CSEBlocks.clear(); 4397 GatherSeq.clear(); 4398 } 4399 4400 // Groups the instructions to a bundle (which is then a single scheduling entity) 4401 // and schedules instructions until the bundle gets ready. 4402 Optional<BoUpSLP::ScheduleData *> 4403 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4404 const InstructionsState &S) { 4405 if (isa<PHINode>(S.OpValue)) 4406 return nullptr; 4407 4408 // Initialize the instruction bundle. 4409 Instruction *OldScheduleEnd = ScheduleEnd; 4410 ScheduleData *PrevInBundle = nullptr; 4411 ScheduleData *Bundle = nullptr; 4412 bool ReSchedule = false; 4413 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4414 4415 // Make sure that the scheduling region contains all 4416 // instructions of the bundle. 4417 for (Value *V : VL) { 4418 if (!extendSchedulingRegion(V, S)) 4419 return None; 4420 } 4421 4422 for (Value *V : VL) { 4423 ScheduleData *BundleMember = getScheduleData(V); 4424 assert(BundleMember && 4425 "no ScheduleData for bundle member (maybe not in same basic block)"); 4426 if (BundleMember->IsScheduled) { 4427 // A bundle member was scheduled as single instruction before and now 4428 // needs to be scheduled as part of the bundle. We just get rid of the 4429 // existing schedule. 4430 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4431 << " was already scheduled\n"); 4432 ReSchedule = true; 4433 } 4434 assert(BundleMember->isSchedulingEntity() && 4435 "bundle member already part of other bundle"); 4436 if (PrevInBundle) { 4437 PrevInBundle->NextInBundle = BundleMember; 4438 } else { 4439 Bundle = BundleMember; 4440 } 4441 BundleMember->UnscheduledDepsInBundle = 0; 4442 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4443 4444 // Group the instructions to a bundle. 4445 BundleMember->FirstInBundle = Bundle; 4446 PrevInBundle = BundleMember; 4447 } 4448 if (ScheduleEnd != OldScheduleEnd) { 4449 // The scheduling region got new instructions at the lower end (or it is a 4450 // new region for the first bundle). This makes it necessary to 4451 // recalculate all dependencies. 4452 // It is seldom that this needs to be done a second time after adding the 4453 // initial bundle to the region. 4454 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4455 doForAllOpcodes(I, [](ScheduleData *SD) { 4456 SD->clearDependencies(); 4457 }); 4458 } 4459 ReSchedule = true; 4460 } 4461 if (ReSchedule) { 4462 resetSchedule(); 4463 initialFillReadyList(ReadyInsts); 4464 } 4465 assert(Bundle && "Failed to find schedule bundle"); 4466 4467 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4468 << BB->getName() << "\n"); 4469 4470 calculateDependencies(Bundle, true, SLP); 4471 4472 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4473 // means that there are no cyclic dependencies and we can schedule it. 4474 // Note that's important that we don't "schedule" the bundle yet (see 4475 // cancelScheduling). 4476 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4477 4478 ScheduleData *pickedSD = ReadyInsts.back(); 4479 ReadyInsts.pop_back(); 4480 4481 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4482 schedule(pickedSD, ReadyInsts); 4483 } 4484 } 4485 if (!Bundle->isReady()) { 4486 cancelScheduling(VL, S.OpValue); 4487 return None; 4488 } 4489 return Bundle; 4490 } 4491 4492 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4493 Value *OpValue) { 4494 if (isa<PHINode>(OpValue)) 4495 return; 4496 4497 ScheduleData *Bundle = getScheduleData(OpValue); 4498 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4499 assert(!Bundle->IsScheduled && 4500 "Can't cancel bundle which is already scheduled"); 4501 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4502 "tried to unbundle something which is not a bundle"); 4503 4504 // Un-bundle: make single instructions out of the bundle. 4505 ScheduleData *BundleMember = Bundle; 4506 while (BundleMember) { 4507 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4508 BundleMember->FirstInBundle = BundleMember; 4509 ScheduleData *Next = BundleMember->NextInBundle; 4510 BundleMember->NextInBundle = nullptr; 4511 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4512 if (BundleMember->UnscheduledDepsInBundle == 0) { 4513 ReadyInsts.insert(BundleMember); 4514 } 4515 BundleMember = Next; 4516 } 4517 } 4518 4519 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4520 // Allocate a new ScheduleData for the instruction. 4521 if (ChunkPos >= ChunkSize) { 4522 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4523 ChunkPos = 0; 4524 } 4525 return &(ScheduleDataChunks.back()[ChunkPos++]); 4526 } 4527 4528 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4529 const InstructionsState &S) { 4530 if (getScheduleData(V, isOneOf(S, V))) 4531 return true; 4532 Instruction *I = dyn_cast<Instruction>(V); 4533 assert(I && "bundle member must be an instruction"); 4534 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4535 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4536 ScheduleData *ISD = getScheduleData(I); 4537 if (!ISD) 4538 return false; 4539 assert(isInSchedulingRegion(ISD) && 4540 "ScheduleData not in scheduling region"); 4541 ScheduleData *SD = allocateScheduleDataChunks(); 4542 SD->Inst = I; 4543 SD->init(SchedulingRegionID, S.OpValue); 4544 ExtraScheduleDataMap[I][S.OpValue] = SD; 4545 return true; 4546 }; 4547 if (CheckSheduleForI(I)) 4548 return true; 4549 if (!ScheduleStart) { 4550 // It's the first instruction in the new region. 4551 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4552 ScheduleStart = I; 4553 ScheduleEnd = I->getNextNode(); 4554 if (isOneOf(S, I) != I) 4555 CheckSheduleForI(I); 4556 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4557 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4558 return true; 4559 } 4560 // Search up and down at the same time, because we don't know if the new 4561 // instruction is above or below the existing scheduling region. 4562 BasicBlock::reverse_iterator UpIter = 4563 ++ScheduleStart->getIterator().getReverse(); 4564 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4565 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4566 BasicBlock::iterator LowerEnd = BB->end(); 4567 while (true) { 4568 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4569 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4570 return false; 4571 } 4572 4573 if (UpIter != UpperEnd) { 4574 if (&*UpIter == I) { 4575 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4576 ScheduleStart = I; 4577 if (isOneOf(S, I) != I) 4578 CheckSheduleForI(I); 4579 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4580 << "\n"); 4581 return true; 4582 } 4583 ++UpIter; 4584 } 4585 if (DownIter != LowerEnd) { 4586 if (&*DownIter == I) { 4587 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4588 nullptr); 4589 ScheduleEnd = I->getNextNode(); 4590 if (isOneOf(S, I) != I) 4591 CheckSheduleForI(I); 4592 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4593 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4594 << "\n"); 4595 return true; 4596 } 4597 ++DownIter; 4598 } 4599 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4600 "instruction not found in block"); 4601 } 4602 return true; 4603 } 4604 4605 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4606 Instruction *ToI, 4607 ScheduleData *PrevLoadStore, 4608 ScheduleData *NextLoadStore) { 4609 ScheduleData *CurrentLoadStore = PrevLoadStore; 4610 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4611 ScheduleData *SD = ScheduleDataMap[I]; 4612 if (!SD) { 4613 SD = allocateScheduleDataChunks(); 4614 ScheduleDataMap[I] = SD; 4615 SD->Inst = I; 4616 } 4617 assert(!isInSchedulingRegion(SD) && 4618 "new ScheduleData already in scheduling region"); 4619 SD->init(SchedulingRegionID, I); 4620 4621 if (I->mayReadOrWriteMemory() && 4622 (!isa<IntrinsicInst>(I) || 4623 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4624 // Update the linked list of memory accessing instructions. 4625 if (CurrentLoadStore) { 4626 CurrentLoadStore->NextLoadStore = SD; 4627 } else { 4628 FirstLoadStoreInRegion = SD; 4629 } 4630 CurrentLoadStore = SD; 4631 } 4632 } 4633 if (NextLoadStore) { 4634 if (CurrentLoadStore) 4635 CurrentLoadStore->NextLoadStore = NextLoadStore; 4636 } else { 4637 LastLoadStoreInRegion = CurrentLoadStore; 4638 } 4639 } 4640 4641 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4642 bool InsertInReadyList, 4643 BoUpSLP *SLP) { 4644 assert(SD->isSchedulingEntity()); 4645 4646 SmallVector<ScheduleData *, 10> WorkList; 4647 WorkList.push_back(SD); 4648 4649 while (!WorkList.empty()) { 4650 ScheduleData *SD = WorkList.back(); 4651 WorkList.pop_back(); 4652 4653 ScheduleData *BundleMember = SD; 4654 while (BundleMember) { 4655 assert(isInSchedulingRegion(BundleMember)); 4656 if (!BundleMember->hasValidDependencies()) { 4657 4658 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4659 << "\n"); 4660 BundleMember->Dependencies = 0; 4661 BundleMember->resetUnscheduledDeps(); 4662 4663 // Handle def-use chain dependencies. 4664 if (BundleMember->OpValue != BundleMember->Inst) { 4665 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4666 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4667 BundleMember->Dependencies++; 4668 ScheduleData *DestBundle = UseSD->FirstInBundle; 4669 if (!DestBundle->IsScheduled) 4670 BundleMember->incrementUnscheduledDeps(1); 4671 if (!DestBundle->hasValidDependencies()) 4672 WorkList.push_back(DestBundle); 4673 } 4674 } else { 4675 for (User *U : BundleMember->Inst->users()) { 4676 if (isa<Instruction>(U)) { 4677 ScheduleData *UseSD = getScheduleData(U); 4678 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4679 BundleMember->Dependencies++; 4680 ScheduleData *DestBundle = UseSD->FirstInBundle; 4681 if (!DestBundle->IsScheduled) 4682 BundleMember->incrementUnscheduledDeps(1); 4683 if (!DestBundle->hasValidDependencies()) 4684 WorkList.push_back(DestBundle); 4685 } 4686 } else { 4687 // I'm not sure if this can ever happen. But we need to be safe. 4688 // This lets the instruction/bundle never be scheduled and 4689 // eventually disable vectorization. 4690 BundleMember->Dependencies++; 4691 BundleMember->incrementUnscheduledDeps(1); 4692 } 4693 } 4694 } 4695 4696 // Handle the memory dependencies. 4697 ScheduleData *DepDest = BundleMember->NextLoadStore; 4698 if (DepDest) { 4699 Instruction *SrcInst = BundleMember->Inst; 4700 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4701 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4702 unsigned numAliased = 0; 4703 unsigned DistToSrc = 1; 4704 4705 while (DepDest) { 4706 assert(isInSchedulingRegion(DepDest)); 4707 4708 // We have two limits to reduce the complexity: 4709 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4710 // SLP->isAliased (which is the expensive part in this loop). 4711 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4712 // the whole loop (even if the loop is fast, it's quadratic). 4713 // It's important for the loop break condition (see below) to 4714 // check this limit even between two read-only instructions. 4715 if (DistToSrc >= MaxMemDepDistance || 4716 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4717 (numAliased >= AliasedCheckLimit || 4718 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4719 4720 // We increment the counter only if the locations are aliased 4721 // (instead of counting all alias checks). This gives a better 4722 // balance between reduced runtime and accurate dependencies. 4723 numAliased++; 4724 4725 DepDest->MemoryDependencies.push_back(BundleMember); 4726 BundleMember->Dependencies++; 4727 ScheduleData *DestBundle = DepDest->FirstInBundle; 4728 if (!DestBundle->IsScheduled) { 4729 BundleMember->incrementUnscheduledDeps(1); 4730 } 4731 if (!DestBundle->hasValidDependencies()) { 4732 WorkList.push_back(DestBundle); 4733 } 4734 } 4735 DepDest = DepDest->NextLoadStore; 4736 4737 // Example, explaining the loop break condition: Let's assume our 4738 // starting instruction is i0 and MaxMemDepDistance = 3. 4739 // 4740 // +--------v--v--v 4741 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4742 // +--------^--^--^ 4743 // 4744 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4745 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4746 // Previously we already added dependencies from i3 to i6,i7,i8 4747 // (because of MaxMemDepDistance). As we added a dependency from 4748 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4749 // and we can abort this loop at i6. 4750 if (DistToSrc >= 2 * MaxMemDepDistance) 4751 break; 4752 DistToSrc++; 4753 } 4754 } 4755 } 4756 BundleMember = BundleMember->NextInBundle; 4757 } 4758 if (InsertInReadyList && SD->isReady()) { 4759 ReadyInsts.push_back(SD); 4760 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4761 << "\n"); 4762 } 4763 } 4764 } 4765 4766 void BoUpSLP::BlockScheduling::resetSchedule() { 4767 assert(ScheduleStart && 4768 "tried to reset schedule on block which has not been scheduled"); 4769 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4770 doForAllOpcodes(I, [&](ScheduleData *SD) { 4771 assert(isInSchedulingRegion(SD) && 4772 "ScheduleData not in scheduling region"); 4773 SD->IsScheduled = false; 4774 SD->resetUnscheduledDeps(); 4775 }); 4776 } 4777 ReadyInsts.clear(); 4778 } 4779 4780 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4781 if (!BS->ScheduleStart) 4782 return; 4783 4784 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4785 4786 BS->resetSchedule(); 4787 4788 // For the real scheduling we use a more sophisticated ready-list: it is 4789 // sorted by the original instruction location. This lets the final schedule 4790 // be as close as possible to the original instruction order. 4791 struct ScheduleDataCompare { 4792 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4793 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4794 } 4795 }; 4796 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4797 4798 // Ensure that all dependency data is updated and fill the ready-list with 4799 // initial instructions. 4800 int Idx = 0; 4801 int NumToSchedule = 0; 4802 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4803 I = I->getNextNode()) { 4804 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4805 assert(SD->isPartOfBundle() == 4806 (getTreeEntry(SD->Inst) != nullptr) && 4807 "scheduler and vectorizer bundle mismatch"); 4808 SD->FirstInBundle->SchedulingPriority = Idx++; 4809 if (SD->isSchedulingEntity()) { 4810 BS->calculateDependencies(SD, false, this); 4811 NumToSchedule++; 4812 } 4813 }); 4814 } 4815 BS->initialFillReadyList(ReadyInsts); 4816 4817 Instruction *LastScheduledInst = BS->ScheduleEnd; 4818 4819 // Do the "real" scheduling. 4820 while (!ReadyInsts.empty()) { 4821 ScheduleData *picked = *ReadyInsts.begin(); 4822 ReadyInsts.erase(ReadyInsts.begin()); 4823 4824 // Move the scheduled instruction(s) to their dedicated places, if not 4825 // there yet. 4826 ScheduleData *BundleMember = picked; 4827 while (BundleMember) { 4828 Instruction *pickedInst = BundleMember->Inst; 4829 if (LastScheduledInst->getNextNode() != pickedInst) { 4830 BS->BB->getInstList().remove(pickedInst); 4831 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4832 pickedInst); 4833 } 4834 LastScheduledInst = pickedInst; 4835 BundleMember = BundleMember->NextInBundle; 4836 } 4837 4838 BS->schedule(picked, ReadyInsts); 4839 NumToSchedule--; 4840 } 4841 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4842 4843 // Avoid duplicate scheduling of the block. 4844 BS->ScheduleStart = nullptr; 4845 } 4846 4847 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4848 // If V is a store, just return the width of the stored value without 4849 // traversing the expression tree. This is the common case. 4850 if (auto *Store = dyn_cast<StoreInst>(V)) 4851 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4852 4853 // If V is not a store, we can traverse the expression tree to find loads 4854 // that feed it. The type of the loaded value may indicate a more suitable 4855 // width than V's type. We want to base the vector element size on the width 4856 // of memory operations where possible. 4857 SmallVector<Instruction *, 16> Worklist; 4858 SmallPtrSet<Instruction *, 16> Visited; 4859 if (auto *I = dyn_cast<Instruction>(V)) 4860 Worklist.push_back(I); 4861 4862 // Traverse the expression tree in bottom-up order looking for loads. If we 4863 // encounter an instruction we don't yet handle, we give up. 4864 auto MaxWidth = 0u; 4865 auto FoundUnknownInst = false; 4866 while (!Worklist.empty() && !FoundUnknownInst) { 4867 auto *I = Worklist.pop_back_val(); 4868 Visited.insert(I); 4869 4870 // We should only be looking at scalar instructions here. If the current 4871 // instruction has a vector type, give up. 4872 auto *Ty = I->getType(); 4873 if (isa<VectorType>(Ty)) 4874 FoundUnknownInst = true; 4875 4876 // If the current instruction is a load, update MaxWidth to reflect the 4877 // width of the loaded value. 4878 else if (isa<LoadInst>(I)) 4879 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4880 4881 // Otherwise, we need to visit the operands of the instruction. We only 4882 // handle the interesting cases from buildTree here. If an operand is an 4883 // instruction we haven't yet visited, we add it to the worklist. 4884 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4885 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4886 for (Use &U : I->operands()) 4887 if (auto *J = dyn_cast<Instruction>(U.get())) 4888 if (!Visited.count(J)) 4889 Worklist.push_back(J); 4890 } 4891 4892 // If we don't yet handle the instruction, give up. 4893 else 4894 FoundUnknownInst = true; 4895 } 4896 4897 // If we didn't encounter a memory access in the expression tree, or if we 4898 // gave up for some reason, just return the width of V. 4899 if (!MaxWidth || FoundUnknownInst) 4900 return DL->getTypeSizeInBits(V->getType()); 4901 4902 // Otherwise, return the maximum width we found. 4903 return MaxWidth; 4904 } 4905 4906 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4907 // smaller type with a truncation. We collect the values that will be demoted 4908 // in ToDemote and additional roots that require investigating in Roots. 4909 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4910 SmallVectorImpl<Value *> &ToDemote, 4911 SmallVectorImpl<Value *> &Roots) { 4912 // We can always demote constants. 4913 if (isa<Constant>(V)) { 4914 ToDemote.push_back(V); 4915 return true; 4916 } 4917 4918 // If the value is not an instruction in the expression with only one use, it 4919 // cannot be demoted. 4920 auto *I = dyn_cast<Instruction>(V); 4921 if (!I || !I->hasOneUse() || !Expr.count(I)) 4922 return false; 4923 4924 switch (I->getOpcode()) { 4925 4926 // We can always demote truncations and extensions. Since truncations can 4927 // seed additional demotion, we save the truncated value. 4928 case Instruction::Trunc: 4929 Roots.push_back(I->getOperand(0)); 4930 break; 4931 case Instruction::ZExt: 4932 case Instruction::SExt: 4933 break; 4934 4935 // We can demote certain binary operations if we can demote both of their 4936 // operands. 4937 case Instruction::Add: 4938 case Instruction::Sub: 4939 case Instruction::Mul: 4940 case Instruction::And: 4941 case Instruction::Or: 4942 case Instruction::Xor: 4943 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4944 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4945 return false; 4946 break; 4947 4948 // We can demote selects if we can demote their true and false values. 4949 case Instruction::Select: { 4950 SelectInst *SI = cast<SelectInst>(I); 4951 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4952 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4953 return false; 4954 break; 4955 } 4956 4957 // We can demote phis if we can demote all their incoming operands. Note that 4958 // we don't need to worry about cycles since we ensure single use above. 4959 case Instruction::PHI: { 4960 PHINode *PN = cast<PHINode>(I); 4961 for (Value *IncValue : PN->incoming_values()) 4962 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4963 return false; 4964 break; 4965 } 4966 4967 // Otherwise, conservatively give up. 4968 default: 4969 return false; 4970 } 4971 4972 // Record the value that we can demote. 4973 ToDemote.push_back(V); 4974 return true; 4975 } 4976 4977 void BoUpSLP::computeMinimumValueSizes() { 4978 // If there are no external uses, the expression tree must be rooted by a 4979 // store. We can't demote in-memory values, so there is nothing to do here. 4980 if (ExternalUses.empty()) 4981 return; 4982 4983 // We only attempt to truncate integer expressions. 4984 auto &TreeRoot = VectorizableTree[0]->Scalars; 4985 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4986 if (!TreeRootIT) 4987 return; 4988 4989 // If the expression is not rooted by a store, these roots should have 4990 // external uses. We will rely on InstCombine to rewrite the expression in 4991 // the narrower type. However, InstCombine only rewrites single-use values. 4992 // This means that if a tree entry other than a root is used externally, it 4993 // must have multiple uses and InstCombine will not rewrite it. The code 4994 // below ensures that only the roots are used externally. 4995 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4996 for (auto &EU : ExternalUses) 4997 if (!Expr.erase(EU.Scalar)) 4998 return; 4999 if (!Expr.empty()) 5000 return; 5001 5002 // Collect the scalar values of the vectorizable expression. We will use this 5003 // context to determine which values can be demoted. If we see a truncation, 5004 // we mark it as seeding another demotion. 5005 for (auto &EntryPtr : VectorizableTree) 5006 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5007 5008 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5009 // have a single external user that is not in the vectorizable tree. 5010 for (auto *Root : TreeRoot) 5011 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5012 return; 5013 5014 // Conservatively determine if we can actually truncate the roots of the 5015 // expression. Collect the values that can be demoted in ToDemote and 5016 // additional roots that require investigating in Roots. 5017 SmallVector<Value *, 32> ToDemote; 5018 SmallVector<Value *, 4> Roots; 5019 for (auto *Root : TreeRoot) 5020 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5021 return; 5022 5023 // The maximum bit width required to represent all the values that can be 5024 // demoted without loss of precision. It would be safe to truncate the roots 5025 // of the expression to this width. 5026 auto MaxBitWidth = 8u; 5027 5028 // We first check if all the bits of the roots are demanded. If they're not, 5029 // we can truncate the roots to this narrower type. 5030 for (auto *Root : TreeRoot) { 5031 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5032 MaxBitWidth = std::max<unsigned>( 5033 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5034 } 5035 5036 // True if the roots can be zero-extended back to their original type, rather 5037 // than sign-extended. We know that if the leading bits are not demanded, we 5038 // can safely zero-extend. So we initialize IsKnownPositive to True. 5039 bool IsKnownPositive = true; 5040 5041 // If all the bits of the roots are demanded, we can try a little harder to 5042 // compute a narrower type. This can happen, for example, if the roots are 5043 // getelementptr indices. InstCombine promotes these indices to the pointer 5044 // width. Thus, all their bits are technically demanded even though the 5045 // address computation might be vectorized in a smaller type. 5046 // 5047 // We start by looking at each entry that can be demoted. We compute the 5048 // maximum bit width required to store the scalar by using ValueTracking to 5049 // compute the number of high-order bits we can truncate. 5050 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5051 llvm::all_of(TreeRoot, [](Value *R) { 5052 assert(R->hasOneUse() && "Root should have only one use!"); 5053 return isa<GetElementPtrInst>(R->user_back()); 5054 })) { 5055 MaxBitWidth = 8u; 5056 5057 // Determine if the sign bit of all the roots is known to be zero. If not, 5058 // IsKnownPositive is set to False. 5059 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5060 KnownBits Known = computeKnownBits(R, *DL); 5061 return Known.isNonNegative(); 5062 }); 5063 5064 // Determine the maximum number of bits required to store the scalar 5065 // values. 5066 for (auto *Scalar : ToDemote) { 5067 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5068 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5069 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5070 } 5071 5072 // If we can't prove that the sign bit is zero, we must add one to the 5073 // maximum bit width to account for the unknown sign bit. This preserves 5074 // the existing sign bit so we can safely sign-extend the root back to the 5075 // original type. Otherwise, if we know the sign bit is zero, we will 5076 // zero-extend the root instead. 5077 // 5078 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5079 // one to the maximum bit width will yield a larger-than-necessary 5080 // type. In general, we need to add an extra bit only if we can't 5081 // prove that the upper bit of the original type is equal to the 5082 // upper bit of the proposed smaller type. If these two bits are the 5083 // same (either zero or one) we know that sign-extending from the 5084 // smaller type will result in the same value. Here, since we can't 5085 // yet prove this, we are just making the proposed smaller type 5086 // larger to ensure correctness. 5087 if (!IsKnownPositive) 5088 ++MaxBitWidth; 5089 } 5090 5091 // Round MaxBitWidth up to the next power-of-two. 5092 if (!isPowerOf2_64(MaxBitWidth)) 5093 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5094 5095 // If the maximum bit width we compute is less than the with of the roots' 5096 // type, we can proceed with the narrowing. Otherwise, do nothing. 5097 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5098 return; 5099 5100 // If we can truncate the root, we must collect additional values that might 5101 // be demoted as a result. That is, those seeded by truncations we will 5102 // modify. 5103 while (!Roots.empty()) 5104 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5105 5106 // Finally, map the values we can demote to the maximum bit with we computed. 5107 for (auto *Scalar : ToDemote) 5108 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5109 } 5110 5111 namespace { 5112 5113 /// The SLPVectorizer Pass. 5114 struct SLPVectorizer : public FunctionPass { 5115 SLPVectorizerPass Impl; 5116 5117 /// Pass identification, replacement for typeid 5118 static char ID; 5119 5120 explicit SLPVectorizer() : FunctionPass(ID) { 5121 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5122 } 5123 5124 bool doInitialization(Module &M) override { 5125 return false; 5126 } 5127 5128 bool runOnFunction(Function &F) override { 5129 if (skipFunction(F)) 5130 return false; 5131 5132 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5133 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5134 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5135 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5136 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5137 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5138 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5139 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5140 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5141 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5142 5143 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5144 } 5145 5146 void getAnalysisUsage(AnalysisUsage &AU) const override { 5147 FunctionPass::getAnalysisUsage(AU); 5148 AU.addRequired<AssumptionCacheTracker>(); 5149 AU.addRequired<ScalarEvolutionWrapperPass>(); 5150 AU.addRequired<AAResultsWrapperPass>(); 5151 AU.addRequired<TargetTransformInfoWrapperPass>(); 5152 AU.addRequired<LoopInfoWrapperPass>(); 5153 AU.addRequired<DominatorTreeWrapperPass>(); 5154 AU.addRequired<DemandedBitsWrapperPass>(); 5155 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5156 AU.addPreserved<LoopInfoWrapperPass>(); 5157 AU.addPreserved<DominatorTreeWrapperPass>(); 5158 AU.addPreserved<AAResultsWrapperPass>(); 5159 AU.addPreserved<GlobalsAAWrapperPass>(); 5160 AU.setPreservesCFG(); 5161 } 5162 }; 5163 5164 } // end anonymous namespace 5165 5166 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5167 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5168 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5169 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5170 auto *AA = &AM.getResult<AAManager>(F); 5171 auto *LI = &AM.getResult<LoopAnalysis>(F); 5172 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5173 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5174 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5175 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5176 5177 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5178 if (!Changed) 5179 return PreservedAnalyses::all(); 5180 5181 PreservedAnalyses PA; 5182 PA.preserveSet<CFGAnalyses>(); 5183 PA.preserve<AAManager>(); 5184 PA.preserve<GlobalsAA>(); 5185 return PA; 5186 } 5187 5188 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5189 TargetTransformInfo *TTI_, 5190 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5191 LoopInfo *LI_, DominatorTree *DT_, 5192 AssumptionCache *AC_, DemandedBits *DB_, 5193 OptimizationRemarkEmitter *ORE_) { 5194 SE = SE_; 5195 TTI = TTI_; 5196 TLI = TLI_; 5197 AA = AA_; 5198 LI = LI_; 5199 DT = DT_; 5200 AC = AC_; 5201 DB = DB_; 5202 DL = &F.getParent()->getDataLayout(); 5203 5204 Stores.clear(); 5205 GEPs.clear(); 5206 bool Changed = false; 5207 5208 // If the target claims to have no vector registers don't attempt 5209 // vectorization. 5210 if (!TTI->getNumberOfRegisters(true)) 5211 return false; 5212 5213 // Don't vectorize when the attribute NoImplicitFloat is used. 5214 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5215 return false; 5216 5217 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5218 5219 // Use the bottom up slp vectorizer to construct chains that start with 5220 // store instructions. 5221 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5222 5223 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5224 // delete instructions. 5225 5226 // Scan the blocks in the function in post order. 5227 for (auto BB : post_order(&F.getEntryBlock())) { 5228 collectSeedInstructions(BB); 5229 5230 // Vectorize trees that end at stores. 5231 if (!Stores.empty()) { 5232 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5233 << " underlying objects.\n"); 5234 Changed |= vectorizeStoreChains(R); 5235 } 5236 5237 // Vectorize trees that end at reductions. 5238 Changed |= vectorizeChainsInBlock(BB, R); 5239 5240 // Vectorize the index computations of getelementptr instructions. This 5241 // is primarily intended to catch gather-like idioms ending at 5242 // non-consecutive loads. 5243 if (!GEPs.empty()) { 5244 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5245 << " underlying objects.\n"); 5246 Changed |= vectorizeGEPIndices(BB, R); 5247 } 5248 } 5249 5250 if (Changed) { 5251 R.optimizeGatherSequence(); 5252 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5253 LLVM_DEBUG(verifyFunction(F)); 5254 } 5255 return Changed; 5256 } 5257 5258 /// Check that the Values in the slice in VL array are still existent in 5259 /// the WeakTrackingVH array. 5260 /// Vectorization of part of the VL array may cause later values in the VL array 5261 /// to become invalid. We track when this has happened in the WeakTrackingVH 5262 /// array. 5263 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5264 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5265 unsigned SliceSize) { 5266 VL = VL.slice(SliceBegin, SliceSize); 5267 VH = VH.slice(SliceBegin, SliceSize); 5268 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5269 } 5270 5271 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5272 unsigned VecRegSize) { 5273 const unsigned ChainLen = Chain.size(); 5274 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5275 << "\n"); 5276 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5277 const unsigned VF = VecRegSize / Sz; 5278 5279 if (!isPowerOf2_32(Sz) || VF < 2) 5280 return false; 5281 5282 // Keep track of values that were deleted by vectorizing in the loop below. 5283 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5284 5285 bool Changed = false; 5286 // Look for profitable vectorizable trees at all offsets, starting at zero. 5287 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5288 5289 // Check that a previous iteration of this loop did not delete the Value. 5290 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5291 continue; 5292 5293 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5294 << "\n"); 5295 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5296 5297 R.buildTree(Operands); 5298 if (R.isTreeTinyAndNotFullyVectorizable()) 5299 continue; 5300 5301 R.computeMinimumValueSizes(); 5302 5303 int Cost = R.getTreeCost(); 5304 5305 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5306 << "\n"); 5307 if (Cost < -SLPCostThreshold) { 5308 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5309 5310 using namespace ore; 5311 5312 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5313 cast<StoreInst>(Chain[i])) 5314 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5315 << " and with tree size " 5316 << NV("TreeSize", R.getTreeSize())); 5317 5318 R.vectorizeTree(); 5319 5320 // Move to the next bundle. 5321 i += VF - 1; 5322 Changed = true; 5323 } 5324 } 5325 5326 return Changed; 5327 } 5328 5329 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5330 BoUpSLP &R) { 5331 SetVector<StoreInst *> Heads; 5332 SmallDenseSet<StoreInst *> Tails; 5333 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5334 5335 // We may run into multiple chains that merge into a single chain. We mark the 5336 // stores that we vectorized so that we don't visit the same store twice. 5337 BoUpSLP::ValueSet VectorizedStores; 5338 bool Changed = false; 5339 5340 auto &&FindConsecutiveAccess = 5341 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5342 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5343 return false; 5344 5345 Tails.insert(Stores[Idx]); 5346 Heads.insert(Stores[K]); 5347 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5348 return true; 5349 }; 5350 5351 // Do a quadratic search on all of the given stores in reverse order and find 5352 // all of the pairs of stores that follow each other. 5353 int E = Stores.size(); 5354 for (int Idx = E - 1; Idx >= 0; --Idx) { 5355 // If a store has multiple consecutive store candidates, search according 5356 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5357 // This is because usually pairing with immediate succeeding or preceding 5358 // candidate create the best chance to find slp vectorization opportunity. 5359 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5360 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5361 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5362 break; 5363 } 5364 5365 // For stores that start but don't end a link in the chain: 5366 for (auto *SI : llvm::reverse(Heads)) { 5367 if (Tails.count(SI)) 5368 continue; 5369 5370 // We found a store instr that starts a chain. Now follow the chain and try 5371 // to vectorize it. 5372 BoUpSLP::ValueList Operands; 5373 StoreInst *I = SI; 5374 // Collect the chain into a list. 5375 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5376 Operands.push_back(I); 5377 // Move to the next value in the chain. 5378 I = ConsecutiveChain[I]; 5379 } 5380 5381 // FIXME: Is division-by-2 the correct step? Should we assert that the 5382 // register size is a power-of-2? 5383 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5384 Size /= 2) { 5385 if (vectorizeStoreChain(Operands, R, Size)) { 5386 // Mark the vectorized stores so that we don't vectorize them again. 5387 VectorizedStores.insert(Operands.begin(), Operands.end()); 5388 Changed = true; 5389 break; 5390 } 5391 } 5392 } 5393 5394 return Changed; 5395 } 5396 5397 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5398 // Initialize the collections. We will make a single pass over the block. 5399 Stores.clear(); 5400 GEPs.clear(); 5401 5402 // Visit the store and getelementptr instructions in BB and organize them in 5403 // Stores and GEPs according to the underlying objects of their pointer 5404 // operands. 5405 for (Instruction &I : *BB) { 5406 // Ignore store instructions that are volatile or have a pointer operand 5407 // that doesn't point to a scalar type. 5408 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5409 if (!SI->isSimple()) 5410 continue; 5411 if (!isValidElementType(SI->getValueOperand()->getType())) 5412 continue; 5413 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5414 } 5415 5416 // Ignore getelementptr instructions that have more than one index, a 5417 // constant index, or a pointer operand that doesn't point to a scalar 5418 // type. 5419 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5420 auto Idx = GEP->idx_begin()->get(); 5421 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5422 continue; 5423 if (!isValidElementType(Idx->getType())) 5424 continue; 5425 if (GEP->getType()->isVectorTy()) 5426 continue; 5427 GEPs[GEP->getPointerOperand()].push_back(GEP); 5428 } 5429 } 5430 } 5431 5432 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5433 if (!A || !B) 5434 return false; 5435 Value *VL[] = { A, B }; 5436 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5437 } 5438 5439 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5440 int UserCost, bool AllowReorder) { 5441 if (VL.size() < 2) 5442 return false; 5443 5444 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5445 << VL.size() << ".\n"); 5446 5447 // Check that all of the parts are scalar instructions of the same type, 5448 // we permit an alternate opcode via InstructionsState. 5449 InstructionsState S = getSameOpcode(VL); 5450 if (!S.getOpcode()) 5451 return false; 5452 5453 Instruction *I0 = cast<Instruction>(S.OpValue); 5454 unsigned Sz = R.getVectorElementSize(I0); 5455 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5456 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5457 if (MaxVF < 2) { 5458 R.getORE()->emit([&]() { 5459 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5460 << "Cannot SLP vectorize list: vectorization factor " 5461 << "less than 2 is not supported"; 5462 }); 5463 return false; 5464 } 5465 5466 for (Value *V : VL) { 5467 Type *Ty = V->getType(); 5468 if (!isValidElementType(Ty)) { 5469 // NOTE: the following will give user internal llvm type name, which may 5470 // not be useful. 5471 R.getORE()->emit([&]() { 5472 std::string type_str; 5473 llvm::raw_string_ostream rso(type_str); 5474 Ty->print(rso); 5475 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5476 << "Cannot SLP vectorize list: type " 5477 << rso.str() + " is unsupported by vectorizer"; 5478 }); 5479 return false; 5480 } 5481 } 5482 5483 bool Changed = false; 5484 bool CandidateFound = false; 5485 int MinCost = SLPCostThreshold; 5486 5487 // Keep track of values that were deleted by vectorizing in the loop below. 5488 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5489 5490 unsigned NextInst = 0, MaxInst = VL.size(); 5491 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5492 // No actual vectorization should happen, if number of parts is the same as 5493 // provided vectorization factor (i.e. the scalar type is used for vector 5494 // code during codegen). 5495 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5496 if (TTI->getNumberOfParts(VecTy) == VF) 5497 continue; 5498 for (unsigned I = NextInst; I < MaxInst; ++I) { 5499 unsigned OpsWidth = 0; 5500 5501 if (I + VF > MaxInst) 5502 OpsWidth = MaxInst - I; 5503 else 5504 OpsWidth = VF; 5505 5506 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5507 break; 5508 5509 // Check that a previous iteration of this loop did not delete the Value. 5510 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5511 continue; 5512 5513 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5514 << "\n"); 5515 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5516 5517 R.buildTree(Ops); 5518 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5519 // TODO: check if we can allow reordering for more cases. 5520 if (AllowReorder && Order) { 5521 // TODO: reorder tree nodes without tree rebuilding. 5522 // Conceptually, there is nothing actually preventing us from trying to 5523 // reorder a larger list. In fact, we do exactly this when vectorizing 5524 // reductions. However, at this point, we only expect to get here when 5525 // there are exactly two operations. 5526 assert(Ops.size() == 2); 5527 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5528 R.buildTree(ReorderedOps, None); 5529 } 5530 if (R.isTreeTinyAndNotFullyVectorizable()) 5531 continue; 5532 5533 R.computeMinimumValueSizes(); 5534 int Cost = R.getTreeCost() - UserCost; 5535 CandidateFound = true; 5536 MinCost = std::min(MinCost, Cost); 5537 5538 if (Cost < -SLPCostThreshold) { 5539 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5540 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5541 cast<Instruction>(Ops[0])) 5542 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5543 << " and with tree size " 5544 << ore::NV("TreeSize", R.getTreeSize())); 5545 5546 R.vectorizeTree(); 5547 // Move to the next bundle. 5548 I += VF - 1; 5549 NextInst = I + 1; 5550 Changed = true; 5551 } 5552 } 5553 } 5554 5555 if (!Changed && CandidateFound) { 5556 R.getORE()->emit([&]() { 5557 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5558 << "List vectorization was possible but not beneficial with cost " 5559 << ore::NV("Cost", MinCost) << " >= " 5560 << ore::NV("Treshold", -SLPCostThreshold); 5561 }); 5562 } else if (!Changed) { 5563 R.getORE()->emit([&]() { 5564 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5565 << "Cannot SLP vectorize list: vectorization was impossible" 5566 << " with available vectorization factors"; 5567 }); 5568 } 5569 return Changed; 5570 } 5571 5572 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5573 if (!I) 5574 return false; 5575 5576 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5577 return false; 5578 5579 Value *P = I->getParent(); 5580 5581 // Vectorize in current basic block only. 5582 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5583 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5584 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5585 return false; 5586 5587 // Try to vectorize V. 5588 if (tryToVectorizePair(Op0, Op1, R)) 5589 return true; 5590 5591 auto *A = dyn_cast<BinaryOperator>(Op0); 5592 auto *B = dyn_cast<BinaryOperator>(Op1); 5593 // Try to skip B. 5594 if (B && B->hasOneUse()) { 5595 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5596 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5597 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5598 return true; 5599 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5600 return true; 5601 } 5602 5603 // Try to skip A. 5604 if (A && A->hasOneUse()) { 5605 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5606 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5607 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5608 return true; 5609 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5610 return true; 5611 } 5612 return false; 5613 } 5614 5615 /// Generate a shuffle mask to be used in a reduction tree. 5616 /// 5617 /// \param VecLen The length of the vector to be reduced. 5618 /// \param NumEltsToRdx The number of elements that should be reduced in the 5619 /// vector. 5620 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5621 /// reduction. A pairwise reduction will generate a mask of 5622 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5623 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5624 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5625 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5626 bool IsPairwise, bool IsLeft, 5627 IRBuilder<> &Builder) { 5628 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5629 5630 SmallVector<Constant *, 32> ShuffleMask( 5631 VecLen, UndefValue::get(Builder.getInt32Ty())); 5632 5633 if (IsPairwise) 5634 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5635 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5636 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5637 else 5638 // Move the upper half of the vector to the lower half. 5639 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5640 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5641 5642 return ConstantVector::get(ShuffleMask); 5643 } 5644 5645 namespace { 5646 5647 /// Model horizontal reductions. 5648 /// 5649 /// A horizontal reduction is a tree of reduction operations (currently add and 5650 /// fadd) that has operations that can be put into a vector as its leaf. 5651 /// For example, this tree: 5652 /// 5653 /// mul mul mul mul 5654 /// \ / \ / 5655 /// + + 5656 /// \ / 5657 /// + 5658 /// This tree has "mul" as its reduced values and "+" as its reduction 5659 /// operations. A reduction might be feeding into a store or a binary operation 5660 /// feeding a phi. 5661 /// ... 5662 /// \ / 5663 /// + 5664 /// | 5665 /// phi += 5666 /// 5667 /// Or: 5668 /// ... 5669 /// \ / 5670 /// + 5671 /// | 5672 /// *p = 5673 /// 5674 class HorizontalReduction { 5675 using ReductionOpsType = SmallVector<Value *, 16>; 5676 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5677 ReductionOpsListType ReductionOps; 5678 SmallVector<Value *, 32> ReducedVals; 5679 // Use map vector to make stable output. 5680 MapVector<Instruction *, Value *> ExtraArgs; 5681 5682 /// Kind of the reduction data. 5683 enum ReductionKind { 5684 RK_None, /// Not a reduction. 5685 RK_Arithmetic, /// Binary reduction data. 5686 RK_Min, /// Minimum reduction data. 5687 RK_UMin, /// Unsigned minimum reduction data. 5688 RK_Max, /// Maximum reduction data. 5689 RK_UMax, /// Unsigned maximum reduction data. 5690 }; 5691 5692 /// Contains info about operation, like its opcode, left and right operands. 5693 class OperationData { 5694 /// Opcode of the instruction. 5695 unsigned Opcode = 0; 5696 5697 /// Left operand of the reduction operation. 5698 Value *LHS = nullptr; 5699 5700 /// Right operand of the reduction operation. 5701 Value *RHS = nullptr; 5702 5703 /// Kind of the reduction operation. 5704 ReductionKind Kind = RK_None; 5705 5706 /// True if float point min/max reduction has no NaNs. 5707 bool NoNaN = false; 5708 5709 /// Checks if the reduction operation can be vectorized. 5710 bool isVectorizable() const { 5711 return LHS && RHS && 5712 // We currently only support add/mul/logical && min/max reductions. 5713 ((Kind == RK_Arithmetic && 5714 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5715 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5716 Opcode == Instruction::And || Opcode == Instruction::Or || 5717 Opcode == Instruction::Xor)) || 5718 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5719 (Kind == RK_Min || Kind == RK_Max)) || 5720 (Opcode == Instruction::ICmp && 5721 (Kind == RK_UMin || Kind == RK_UMax))); 5722 } 5723 5724 /// Creates reduction operation with the current opcode. 5725 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5726 assert(isVectorizable() && 5727 "Expected add|fadd or min/max reduction operation."); 5728 Value *Cmp = nullptr; 5729 switch (Kind) { 5730 case RK_Arithmetic: 5731 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5732 Name); 5733 case RK_Min: 5734 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5735 : Builder.CreateFCmpOLT(LHS, RHS); 5736 break; 5737 case RK_Max: 5738 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5739 : Builder.CreateFCmpOGT(LHS, RHS); 5740 break; 5741 case RK_UMin: 5742 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5743 Cmp = Builder.CreateICmpULT(LHS, RHS); 5744 break; 5745 case RK_UMax: 5746 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5747 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5748 break; 5749 case RK_None: 5750 llvm_unreachable("Unknown reduction operation."); 5751 } 5752 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5753 } 5754 5755 public: 5756 explicit OperationData() = default; 5757 5758 /// Construction for reduced values. They are identified by opcode only and 5759 /// don't have associated LHS/RHS values. 5760 explicit OperationData(Value *V) { 5761 if (auto *I = dyn_cast<Instruction>(V)) 5762 Opcode = I->getOpcode(); 5763 } 5764 5765 /// Constructor for reduction operations with opcode and its left and 5766 /// right operands. 5767 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5768 bool NoNaN = false) 5769 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5770 assert(Kind != RK_None && "One of the reduction operations is expected."); 5771 } 5772 5773 explicit operator bool() const { return Opcode; } 5774 5775 /// Get the index of the first operand. 5776 unsigned getFirstOperandIndex() const { 5777 assert(!!*this && "The opcode is not set."); 5778 switch (Kind) { 5779 case RK_Min: 5780 case RK_UMin: 5781 case RK_Max: 5782 case RK_UMax: 5783 return 1; 5784 case RK_Arithmetic: 5785 case RK_None: 5786 break; 5787 } 5788 return 0; 5789 } 5790 5791 /// Total number of operands in the reduction operation. 5792 unsigned getNumberOfOperands() const { 5793 assert(Kind != RK_None && !!*this && LHS && RHS && 5794 "Expected reduction operation."); 5795 switch (Kind) { 5796 case RK_Arithmetic: 5797 return 2; 5798 case RK_Min: 5799 case RK_UMin: 5800 case RK_Max: 5801 case RK_UMax: 5802 return 3; 5803 case RK_None: 5804 break; 5805 } 5806 llvm_unreachable("Reduction kind is not set"); 5807 } 5808 5809 /// Checks if the operation has the same parent as \p P. 5810 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5811 assert(Kind != RK_None && !!*this && LHS && RHS && 5812 "Expected reduction operation."); 5813 if (!IsRedOp) 5814 return I->getParent() == P; 5815 switch (Kind) { 5816 case RK_Arithmetic: 5817 // Arithmetic reduction operation must be used once only. 5818 return I->getParent() == P; 5819 case RK_Min: 5820 case RK_UMin: 5821 case RK_Max: 5822 case RK_UMax: { 5823 // SelectInst must be used twice while the condition op must have single 5824 // use only. 5825 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5826 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5827 } 5828 case RK_None: 5829 break; 5830 } 5831 llvm_unreachable("Reduction kind is not set"); 5832 } 5833 /// Expected number of uses for reduction operations/reduced values. 5834 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5835 assert(Kind != RK_None && !!*this && LHS && RHS && 5836 "Expected reduction operation."); 5837 switch (Kind) { 5838 case RK_Arithmetic: 5839 return I->hasOneUse(); 5840 case RK_Min: 5841 case RK_UMin: 5842 case RK_Max: 5843 case RK_UMax: 5844 return I->hasNUses(2) && 5845 (!IsReductionOp || 5846 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5847 case RK_None: 5848 break; 5849 } 5850 llvm_unreachable("Reduction kind is not set"); 5851 } 5852 5853 /// Initializes the list of reduction operations. 5854 void initReductionOps(ReductionOpsListType &ReductionOps) { 5855 assert(Kind != RK_None && !!*this && LHS && RHS && 5856 "Expected reduction operation."); 5857 switch (Kind) { 5858 case RK_Arithmetic: 5859 ReductionOps.assign(1, ReductionOpsType()); 5860 break; 5861 case RK_Min: 5862 case RK_UMin: 5863 case RK_Max: 5864 case RK_UMax: 5865 ReductionOps.assign(2, ReductionOpsType()); 5866 break; 5867 case RK_None: 5868 llvm_unreachable("Reduction kind is not set"); 5869 } 5870 } 5871 /// Add all reduction operations for the reduction instruction \p I. 5872 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5873 assert(Kind != RK_None && !!*this && LHS && RHS && 5874 "Expected reduction operation."); 5875 switch (Kind) { 5876 case RK_Arithmetic: 5877 ReductionOps[0].emplace_back(I); 5878 break; 5879 case RK_Min: 5880 case RK_UMin: 5881 case RK_Max: 5882 case RK_UMax: 5883 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5884 ReductionOps[1].emplace_back(I); 5885 break; 5886 case RK_None: 5887 llvm_unreachable("Reduction kind is not set"); 5888 } 5889 } 5890 5891 /// Checks if instruction is associative and can be vectorized. 5892 bool isAssociative(Instruction *I) const { 5893 assert(Kind != RK_None && *this && LHS && RHS && 5894 "Expected reduction operation."); 5895 switch (Kind) { 5896 case RK_Arithmetic: 5897 return I->isAssociative(); 5898 case RK_Min: 5899 case RK_Max: 5900 return Opcode == Instruction::ICmp || 5901 cast<Instruction>(I->getOperand(0))->isFast(); 5902 case RK_UMin: 5903 case RK_UMax: 5904 assert(Opcode == Instruction::ICmp && 5905 "Only integer compare operation is expected."); 5906 return true; 5907 case RK_None: 5908 break; 5909 } 5910 llvm_unreachable("Reduction kind is not set"); 5911 } 5912 5913 /// Checks if the reduction operation can be vectorized. 5914 bool isVectorizable(Instruction *I) const { 5915 return isVectorizable() && isAssociative(I); 5916 } 5917 5918 /// Checks if two operation data are both a reduction op or both a reduced 5919 /// value. 5920 bool operator==(const OperationData &OD) { 5921 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5922 "One of the comparing operations is incorrect."); 5923 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5924 } 5925 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5926 void clear() { 5927 Opcode = 0; 5928 LHS = nullptr; 5929 RHS = nullptr; 5930 Kind = RK_None; 5931 NoNaN = false; 5932 } 5933 5934 /// Get the opcode of the reduction operation. 5935 unsigned getOpcode() const { 5936 assert(isVectorizable() && "Expected vectorizable operation."); 5937 return Opcode; 5938 } 5939 5940 /// Get kind of reduction data. 5941 ReductionKind getKind() const { return Kind; } 5942 Value *getLHS() const { return LHS; } 5943 Value *getRHS() const { return RHS; } 5944 Type *getConditionType() const { 5945 switch (Kind) { 5946 case RK_Arithmetic: 5947 return nullptr; 5948 case RK_Min: 5949 case RK_Max: 5950 case RK_UMin: 5951 case RK_UMax: 5952 return CmpInst::makeCmpResultType(LHS->getType()); 5953 case RK_None: 5954 break; 5955 } 5956 llvm_unreachable("Reduction kind is not set"); 5957 } 5958 5959 /// Creates reduction operation with the current opcode with the IR flags 5960 /// from \p ReductionOps. 5961 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5962 const ReductionOpsListType &ReductionOps) const { 5963 assert(isVectorizable() && 5964 "Expected add|fadd or min/max reduction operation."); 5965 auto *Op = createOp(Builder, Name); 5966 switch (Kind) { 5967 case RK_Arithmetic: 5968 propagateIRFlags(Op, ReductionOps[0]); 5969 return Op; 5970 case RK_Min: 5971 case RK_Max: 5972 case RK_UMin: 5973 case RK_UMax: 5974 if (auto *SI = dyn_cast<SelectInst>(Op)) 5975 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5976 propagateIRFlags(Op, ReductionOps[1]); 5977 return Op; 5978 case RK_None: 5979 break; 5980 } 5981 llvm_unreachable("Unknown reduction operation."); 5982 } 5983 /// Creates reduction operation with the current opcode with the IR flags 5984 /// from \p I. 5985 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5986 Instruction *I) const { 5987 assert(isVectorizable() && 5988 "Expected add|fadd or min/max reduction operation."); 5989 auto *Op = createOp(Builder, Name); 5990 switch (Kind) { 5991 case RK_Arithmetic: 5992 propagateIRFlags(Op, I); 5993 return Op; 5994 case RK_Min: 5995 case RK_Max: 5996 case RK_UMin: 5997 case RK_UMax: 5998 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5999 propagateIRFlags(SI->getCondition(), 6000 cast<SelectInst>(I)->getCondition()); 6001 } 6002 propagateIRFlags(Op, I); 6003 return Op; 6004 case RK_None: 6005 break; 6006 } 6007 llvm_unreachable("Unknown reduction operation."); 6008 } 6009 6010 TargetTransformInfo::ReductionFlags getFlags() const { 6011 TargetTransformInfo::ReductionFlags Flags; 6012 Flags.NoNaN = NoNaN; 6013 switch (Kind) { 6014 case RK_Arithmetic: 6015 break; 6016 case RK_Min: 6017 Flags.IsSigned = Opcode == Instruction::ICmp; 6018 Flags.IsMaxOp = false; 6019 break; 6020 case RK_Max: 6021 Flags.IsSigned = Opcode == Instruction::ICmp; 6022 Flags.IsMaxOp = true; 6023 break; 6024 case RK_UMin: 6025 Flags.IsSigned = false; 6026 Flags.IsMaxOp = false; 6027 break; 6028 case RK_UMax: 6029 Flags.IsSigned = false; 6030 Flags.IsMaxOp = true; 6031 break; 6032 case RK_None: 6033 llvm_unreachable("Reduction kind is not set"); 6034 } 6035 return Flags; 6036 } 6037 }; 6038 6039 WeakTrackingVH ReductionRoot; 6040 6041 /// The operation data of the reduction operation. 6042 OperationData ReductionData; 6043 6044 /// The operation data of the values we perform a reduction on. 6045 OperationData ReducedValueData; 6046 6047 /// Should we model this reduction as a pairwise reduction tree or a tree that 6048 /// splits the vector in halves and adds those halves. 6049 bool IsPairwiseReduction = false; 6050 6051 /// Checks if the ParentStackElem.first should be marked as a reduction 6052 /// operation with an extra argument or as extra argument itself. 6053 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6054 Value *ExtraArg) { 6055 if (ExtraArgs.count(ParentStackElem.first)) { 6056 ExtraArgs[ParentStackElem.first] = nullptr; 6057 // We ran into something like: 6058 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6059 // The whole ParentStackElem.first should be considered as an extra value 6060 // in this case. 6061 // Do not perform analysis of remaining operands of ParentStackElem.first 6062 // instruction, this whole instruction is an extra argument. 6063 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6064 } else { 6065 // We ran into something like: 6066 // ParentStackElem.first += ... + ExtraArg + ... 6067 ExtraArgs[ParentStackElem.first] = ExtraArg; 6068 } 6069 } 6070 6071 static OperationData getOperationData(Value *V) { 6072 if (!V) 6073 return OperationData(); 6074 6075 Value *LHS; 6076 Value *RHS; 6077 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6078 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6079 RK_Arithmetic); 6080 } 6081 if (auto *Select = dyn_cast<SelectInst>(V)) { 6082 // Look for a min/max pattern. 6083 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6084 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6085 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6086 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6087 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6088 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6089 return OperationData( 6090 Instruction::FCmp, LHS, RHS, RK_Min, 6091 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6092 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6093 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6094 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6095 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6096 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6097 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6098 return OperationData( 6099 Instruction::FCmp, LHS, RHS, RK_Max, 6100 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6101 } else { 6102 // Try harder: look for min/max pattern based on instructions producing 6103 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6104 // During the intermediate stages of SLP, it's very common to have 6105 // pattern like this (since optimizeGatherSequence is run only once 6106 // at the end): 6107 // %1 = extractelement <2 x i32> %a, i32 0 6108 // %2 = extractelement <2 x i32> %a, i32 1 6109 // %cond = icmp sgt i32 %1, %2 6110 // %3 = extractelement <2 x i32> %a, i32 0 6111 // %4 = extractelement <2 x i32> %a, i32 1 6112 // %select = select i1 %cond, i32 %3, i32 %4 6113 CmpInst::Predicate Pred; 6114 Instruction *L1; 6115 Instruction *L2; 6116 6117 LHS = Select->getTrueValue(); 6118 RHS = Select->getFalseValue(); 6119 Value *Cond = Select->getCondition(); 6120 6121 // TODO: Support inverse predicates. 6122 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6123 if (!isa<ExtractElementInst>(RHS) || 6124 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6125 return OperationData(V); 6126 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6127 if (!isa<ExtractElementInst>(LHS) || 6128 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6129 return OperationData(V); 6130 } else { 6131 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6132 return OperationData(V); 6133 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6134 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6135 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6136 return OperationData(V); 6137 } 6138 switch (Pred) { 6139 default: 6140 return OperationData(V); 6141 6142 case CmpInst::ICMP_ULT: 6143 case CmpInst::ICMP_ULE: 6144 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6145 6146 case CmpInst::ICMP_SLT: 6147 case CmpInst::ICMP_SLE: 6148 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6149 6150 case CmpInst::FCMP_OLT: 6151 case CmpInst::FCMP_OLE: 6152 case CmpInst::FCMP_ULT: 6153 case CmpInst::FCMP_ULE: 6154 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6155 cast<Instruction>(Cond)->hasNoNaNs()); 6156 6157 case CmpInst::ICMP_UGT: 6158 case CmpInst::ICMP_UGE: 6159 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6160 6161 case CmpInst::ICMP_SGT: 6162 case CmpInst::ICMP_SGE: 6163 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6164 6165 case CmpInst::FCMP_OGT: 6166 case CmpInst::FCMP_OGE: 6167 case CmpInst::FCMP_UGT: 6168 case CmpInst::FCMP_UGE: 6169 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6170 cast<Instruction>(Cond)->hasNoNaNs()); 6171 } 6172 } 6173 } 6174 return OperationData(V); 6175 } 6176 6177 public: 6178 HorizontalReduction() = default; 6179 6180 /// Try to find a reduction tree. 6181 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6182 assert((!Phi || is_contained(Phi->operands(), B)) && 6183 "Thi phi needs to use the binary operator"); 6184 6185 ReductionData = getOperationData(B); 6186 6187 // We could have a initial reductions that is not an add. 6188 // r *= v1 + v2 + v3 + v4 6189 // In such a case start looking for a tree rooted in the first '+'. 6190 if (Phi) { 6191 if (ReductionData.getLHS() == Phi) { 6192 Phi = nullptr; 6193 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6194 ReductionData = getOperationData(B); 6195 } else if (ReductionData.getRHS() == Phi) { 6196 Phi = nullptr; 6197 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6198 ReductionData = getOperationData(B); 6199 } 6200 } 6201 6202 if (!ReductionData.isVectorizable(B)) 6203 return false; 6204 6205 Type *Ty = B->getType(); 6206 if (!isValidElementType(Ty)) 6207 return false; 6208 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6209 return false; 6210 6211 ReducedValueData.clear(); 6212 ReductionRoot = B; 6213 6214 // Post order traverse the reduction tree starting at B. We only handle true 6215 // trees containing only binary operators. 6216 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6217 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6218 ReductionData.initReductionOps(ReductionOps); 6219 while (!Stack.empty()) { 6220 Instruction *TreeN = Stack.back().first; 6221 unsigned EdgeToVist = Stack.back().second++; 6222 OperationData OpData = getOperationData(TreeN); 6223 bool IsReducedValue = OpData != ReductionData; 6224 6225 // Postorder vist. 6226 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6227 if (IsReducedValue) 6228 ReducedVals.push_back(TreeN); 6229 else { 6230 auto I = ExtraArgs.find(TreeN); 6231 if (I != ExtraArgs.end() && !I->second) { 6232 // Check if TreeN is an extra argument of its parent operation. 6233 if (Stack.size() <= 1) { 6234 // TreeN can't be an extra argument as it is a root reduction 6235 // operation. 6236 return false; 6237 } 6238 // Yes, TreeN is an extra argument, do not add it to a list of 6239 // reduction operations. 6240 // Stack[Stack.size() - 2] always points to the parent operation. 6241 markExtraArg(Stack[Stack.size() - 2], TreeN); 6242 ExtraArgs.erase(TreeN); 6243 } else 6244 ReductionData.addReductionOps(TreeN, ReductionOps); 6245 } 6246 // Retract. 6247 Stack.pop_back(); 6248 continue; 6249 } 6250 6251 // Visit left or right. 6252 Value *NextV = TreeN->getOperand(EdgeToVist); 6253 if (NextV != Phi) { 6254 auto *I = dyn_cast<Instruction>(NextV); 6255 OpData = getOperationData(I); 6256 // Continue analysis if the next operand is a reduction operation or 6257 // (possibly) a reduced value. If the reduced value opcode is not set, 6258 // the first met operation != reduction operation is considered as the 6259 // reduced value class. 6260 if (I && (!ReducedValueData || OpData == ReducedValueData || 6261 OpData == ReductionData)) { 6262 const bool IsReductionOperation = OpData == ReductionData; 6263 // Only handle trees in the current basic block. 6264 if (!ReductionData.hasSameParent(I, B->getParent(), 6265 IsReductionOperation)) { 6266 // I is an extra argument for TreeN (its parent operation). 6267 markExtraArg(Stack.back(), I); 6268 continue; 6269 } 6270 6271 // Each tree node needs to have minimal number of users except for the 6272 // ultimate reduction. 6273 if (!ReductionData.hasRequiredNumberOfUses(I, 6274 OpData == ReductionData) && 6275 I != B) { 6276 // I is an extra argument for TreeN (its parent operation). 6277 markExtraArg(Stack.back(), I); 6278 continue; 6279 } 6280 6281 if (IsReductionOperation) { 6282 // We need to be able to reassociate the reduction operations. 6283 if (!OpData.isAssociative(I)) { 6284 // I is an extra argument for TreeN (its parent operation). 6285 markExtraArg(Stack.back(), I); 6286 continue; 6287 } 6288 } else if (ReducedValueData && 6289 ReducedValueData != OpData) { 6290 // Make sure that the opcodes of the operations that we are going to 6291 // reduce match. 6292 // I is an extra argument for TreeN (its parent operation). 6293 markExtraArg(Stack.back(), I); 6294 continue; 6295 } else if (!ReducedValueData) 6296 ReducedValueData = OpData; 6297 6298 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6299 continue; 6300 } 6301 } 6302 // NextV is an extra argument for TreeN (its parent operation). 6303 markExtraArg(Stack.back(), NextV); 6304 } 6305 return true; 6306 } 6307 6308 /// Attempt to vectorize the tree found by 6309 /// matchAssociativeReduction. 6310 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6311 if (ReducedVals.empty()) 6312 return false; 6313 6314 // If there is a sufficient number of reduction values, reduce 6315 // to a nearby power-of-2. Can safely generate oversized 6316 // vectors and rely on the backend to split them to legal sizes. 6317 unsigned NumReducedVals = ReducedVals.size(); 6318 if (NumReducedVals < 4) 6319 return false; 6320 6321 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6322 6323 Value *VectorizedTree = nullptr; 6324 6325 // FIXME: Fast-math-flags should be set based on the instructions in the 6326 // reduction (not all of 'fast' are required). 6327 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6328 FastMathFlags Unsafe; 6329 Unsafe.setFast(); 6330 Builder.setFastMathFlags(Unsafe); 6331 unsigned i = 0; 6332 6333 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6334 // The same extra argument may be used several time, so log each attempt 6335 // to use it. 6336 for (auto &Pair : ExtraArgs) { 6337 assert(Pair.first && "DebugLoc must be set."); 6338 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6339 } 6340 // The reduction root is used as the insertion point for new instructions, 6341 // so set it as externally used to prevent it from being deleted. 6342 ExternallyUsedValues[ReductionRoot]; 6343 SmallVector<Value *, 16> IgnoreList; 6344 for (auto &V : ReductionOps) 6345 IgnoreList.append(V.begin(), V.end()); 6346 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6347 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6348 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6349 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6350 // TODO: Handle orders of size less than number of elements in the vector. 6351 if (Order && Order->size() == VL.size()) { 6352 // TODO: reorder tree nodes without tree rebuilding. 6353 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6354 llvm::transform(*Order, ReorderedOps.begin(), 6355 [VL](const unsigned Idx) { return VL[Idx]; }); 6356 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6357 } 6358 if (V.isTreeTinyAndNotFullyVectorizable()) 6359 break; 6360 6361 V.computeMinimumValueSizes(); 6362 6363 // Estimate cost. 6364 int TreeCost = V.getTreeCost(); 6365 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6366 int Cost = TreeCost + ReductionCost; 6367 if (Cost >= -SLPCostThreshold) { 6368 V.getORE()->emit([&]() { 6369 return OptimizationRemarkMissed( 6370 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6371 << "Vectorizing horizontal reduction is possible" 6372 << "but not beneficial with cost " 6373 << ore::NV("Cost", Cost) << " and threshold " 6374 << ore::NV("Threshold", -SLPCostThreshold); 6375 }); 6376 break; 6377 } 6378 6379 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6380 << Cost << ". (HorRdx)\n"); 6381 V.getORE()->emit([&]() { 6382 return OptimizationRemark( 6383 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6384 << "Vectorized horizontal reduction with cost " 6385 << ore::NV("Cost", Cost) << " and with tree size " 6386 << ore::NV("TreeSize", V.getTreeSize()); 6387 }); 6388 6389 // Vectorize a tree. 6390 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6391 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6392 6393 // Emit a reduction. 6394 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6395 Value *ReducedSubTree = 6396 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6397 if (VectorizedTree) { 6398 Builder.SetCurrentDebugLocation(Loc); 6399 OperationData VectReductionData(ReductionData.getOpcode(), 6400 VectorizedTree, ReducedSubTree, 6401 ReductionData.getKind()); 6402 VectorizedTree = 6403 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6404 } else 6405 VectorizedTree = ReducedSubTree; 6406 i += ReduxWidth; 6407 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6408 } 6409 6410 if (VectorizedTree) { 6411 // Finish the reduction. 6412 for (; i < NumReducedVals; ++i) { 6413 auto *I = cast<Instruction>(ReducedVals[i]); 6414 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6415 OperationData VectReductionData(ReductionData.getOpcode(), 6416 VectorizedTree, I, 6417 ReductionData.getKind()); 6418 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6419 } 6420 for (auto &Pair : ExternallyUsedValues) { 6421 // Add each externally used value to the final reduction. 6422 for (auto *I : Pair.second) { 6423 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6424 OperationData VectReductionData(ReductionData.getOpcode(), 6425 VectorizedTree, Pair.first, 6426 ReductionData.getKind()); 6427 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6428 } 6429 } 6430 // Update users. 6431 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6432 } 6433 return VectorizedTree != nullptr; 6434 } 6435 6436 unsigned numReductionValues() const { 6437 return ReducedVals.size(); 6438 } 6439 6440 private: 6441 /// Calculate the cost of a reduction. 6442 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6443 unsigned ReduxWidth) { 6444 Type *ScalarTy = FirstReducedVal->getType(); 6445 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6446 6447 int PairwiseRdxCost; 6448 int SplittingRdxCost; 6449 switch (ReductionData.getKind()) { 6450 case RK_Arithmetic: 6451 PairwiseRdxCost = 6452 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6453 /*IsPairwiseForm=*/true); 6454 SplittingRdxCost = 6455 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6456 /*IsPairwiseForm=*/false); 6457 break; 6458 case RK_Min: 6459 case RK_Max: 6460 case RK_UMin: 6461 case RK_UMax: { 6462 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6463 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6464 ReductionData.getKind() == RK_UMax; 6465 PairwiseRdxCost = 6466 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6467 /*IsPairwiseForm=*/true, IsUnsigned); 6468 SplittingRdxCost = 6469 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6470 /*IsPairwiseForm=*/false, IsUnsigned); 6471 break; 6472 } 6473 case RK_None: 6474 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6475 } 6476 6477 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6478 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6479 6480 int ScalarReduxCost = 0; 6481 switch (ReductionData.getKind()) { 6482 case RK_Arithmetic: 6483 ScalarReduxCost = 6484 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6485 break; 6486 case RK_Min: 6487 case RK_Max: 6488 case RK_UMin: 6489 case RK_UMax: 6490 ScalarReduxCost = 6491 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6492 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6493 CmpInst::makeCmpResultType(ScalarTy)); 6494 break; 6495 case RK_None: 6496 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6497 } 6498 ScalarReduxCost *= (ReduxWidth - 1); 6499 6500 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6501 << " for reduction that starts with " << *FirstReducedVal 6502 << " (It is a " 6503 << (IsPairwiseReduction ? "pairwise" : "splitting") 6504 << " reduction)\n"); 6505 6506 return VecReduxCost - ScalarReduxCost; 6507 } 6508 6509 /// Emit a horizontal reduction of the vectorized value. 6510 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6511 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6512 assert(VectorizedValue && "Need to have a vectorized tree node"); 6513 assert(isPowerOf2_32(ReduxWidth) && 6514 "We only handle power-of-two reductions for now"); 6515 6516 if (!IsPairwiseReduction) { 6517 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6518 // to 'fast'. 6519 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6520 return createSimpleTargetReduction( 6521 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6522 ReductionData.getFlags(), ReductionOps.back()); 6523 } 6524 6525 Value *TmpVec = VectorizedValue; 6526 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6527 Value *LeftMask = 6528 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6529 Value *RightMask = 6530 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6531 6532 Value *LeftShuf = Builder.CreateShuffleVector( 6533 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6534 Value *RightShuf = Builder.CreateShuffleVector( 6535 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6536 "rdx.shuf.r"); 6537 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6538 RightShuf, ReductionData.getKind()); 6539 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6540 } 6541 6542 // The result is in the first element of the vector. 6543 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6544 } 6545 }; 6546 6547 } // end anonymous namespace 6548 6549 /// Recognize construction of vectors like 6550 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6551 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6552 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6553 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6554 /// starting from the last insertelement instruction. 6555 /// 6556 /// Returns true if it matches 6557 static bool findBuildVector(InsertElementInst *LastInsertElem, 6558 TargetTransformInfo *TTI, 6559 SmallVectorImpl<Value *> &BuildVectorOpds, 6560 int &UserCost) { 6561 UserCost = 0; 6562 Value *V = nullptr; 6563 do { 6564 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6565 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6566 LastInsertElem->getType(), 6567 CI->getZExtValue()); 6568 } 6569 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6570 V = LastInsertElem->getOperand(0); 6571 if (isa<UndefValue>(V)) 6572 break; 6573 LastInsertElem = dyn_cast<InsertElementInst>(V); 6574 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6575 return false; 6576 } while (true); 6577 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6578 return true; 6579 } 6580 6581 /// Like findBuildVector, but looks for construction of aggregate. 6582 /// 6583 /// \return true if it matches. 6584 static bool findBuildAggregate(InsertValueInst *IV, 6585 SmallVectorImpl<Value *> &BuildVectorOpds) { 6586 do { 6587 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6588 Value *V = IV->getAggregateOperand(); 6589 if (isa<UndefValue>(V)) 6590 break; 6591 IV = dyn_cast<InsertValueInst>(V); 6592 if (!IV || !IV->hasOneUse()) 6593 return false; 6594 } while (true); 6595 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6596 return true; 6597 } 6598 6599 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6600 return V->getType() < V2->getType(); 6601 } 6602 6603 /// Try and get a reduction value from a phi node. 6604 /// 6605 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6606 /// if they come from either \p ParentBB or a containing loop latch. 6607 /// 6608 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6609 /// if not possible. 6610 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6611 BasicBlock *ParentBB, LoopInfo *LI) { 6612 // There are situations where the reduction value is not dominated by the 6613 // reduction phi. Vectorizing such cases has been reported to cause 6614 // miscompiles. See PR25787. 6615 auto DominatedReduxValue = [&](Value *R) { 6616 return isa<Instruction>(R) && 6617 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6618 }; 6619 6620 Value *Rdx = nullptr; 6621 6622 // Return the incoming value if it comes from the same BB as the phi node. 6623 if (P->getIncomingBlock(0) == ParentBB) { 6624 Rdx = P->getIncomingValue(0); 6625 } else if (P->getIncomingBlock(1) == ParentBB) { 6626 Rdx = P->getIncomingValue(1); 6627 } 6628 6629 if (Rdx && DominatedReduxValue(Rdx)) 6630 return Rdx; 6631 6632 // Otherwise, check whether we have a loop latch to look at. 6633 Loop *BBL = LI->getLoopFor(ParentBB); 6634 if (!BBL) 6635 return nullptr; 6636 BasicBlock *BBLatch = BBL->getLoopLatch(); 6637 if (!BBLatch) 6638 return nullptr; 6639 6640 // There is a loop latch, return the incoming value if it comes from 6641 // that. This reduction pattern occasionally turns up. 6642 if (P->getIncomingBlock(0) == BBLatch) { 6643 Rdx = P->getIncomingValue(0); 6644 } else if (P->getIncomingBlock(1) == BBLatch) { 6645 Rdx = P->getIncomingValue(1); 6646 } 6647 6648 if (Rdx && DominatedReduxValue(Rdx)) 6649 return Rdx; 6650 6651 return nullptr; 6652 } 6653 6654 /// Attempt to reduce a horizontal reduction. 6655 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6656 /// with reduction operators \a Root (or one of its operands) in a basic block 6657 /// \a BB, then check if it can be done. If horizontal reduction is not found 6658 /// and root instruction is a binary operation, vectorization of the operands is 6659 /// attempted. 6660 /// \returns true if a horizontal reduction was matched and reduced or operands 6661 /// of one of the binary instruction were vectorized. 6662 /// \returns false if a horizontal reduction was not matched (or not possible) 6663 /// or no vectorization of any binary operation feeding \a Root instruction was 6664 /// performed. 6665 static bool tryToVectorizeHorReductionOrInstOperands( 6666 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6667 TargetTransformInfo *TTI, 6668 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6669 if (!ShouldVectorizeHor) 6670 return false; 6671 6672 if (!Root) 6673 return false; 6674 6675 if (Root->getParent() != BB || isa<PHINode>(Root)) 6676 return false; 6677 // Start analysis starting from Root instruction. If horizontal reduction is 6678 // found, try to vectorize it. If it is not a horizontal reduction or 6679 // vectorization is not possible or not effective, and currently analyzed 6680 // instruction is a binary operation, try to vectorize the operands, using 6681 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6682 // the same procedure considering each operand as a possible root of the 6683 // horizontal reduction. 6684 // Interrupt the process if the Root instruction itself was vectorized or all 6685 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6686 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6687 SmallPtrSet<Value *, 8> VisitedInstrs; 6688 bool Res = false; 6689 while (!Stack.empty()) { 6690 Value *V; 6691 unsigned Level; 6692 std::tie(V, Level) = Stack.pop_back_val(); 6693 if (!V) 6694 continue; 6695 auto *Inst = dyn_cast<Instruction>(V); 6696 if (!Inst) 6697 continue; 6698 auto *BI = dyn_cast<BinaryOperator>(Inst); 6699 auto *SI = dyn_cast<SelectInst>(Inst); 6700 if (BI || SI) { 6701 HorizontalReduction HorRdx; 6702 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6703 if (HorRdx.tryToReduce(R, TTI)) { 6704 Res = true; 6705 // Set P to nullptr to avoid re-analysis of phi node in 6706 // matchAssociativeReduction function unless this is the root node. 6707 P = nullptr; 6708 continue; 6709 } 6710 } 6711 if (P && BI) { 6712 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6713 if (Inst == P) 6714 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6715 if (!Inst) { 6716 // Set P to nullptr to avoid re-analysis of phi node in 6717 // matchAssociativeReduction function unless this is the root node. 6718 P = nullptr; 6719 continue; 6720 } 6721 } 6722 } 6723 // Set P to nullptr to avoid re-analysis of phi node in 6724 // matchAssociativeReduction function unless this is the root node. 6725 P = nullptr; 6726 if (Vectorize(Inst, R)) { 6727 Res = true; 6728 continue; 6729 } 6730 6731 // Try to vectorize operands. 6732 // Continue analysis for the instruction from the same basic block only to 6733 // save compile time. 6734 if (++Level < RecursionMaxDepth) 6735 for (auto *Op : Inst->operand_values()) 6736 if (VisitedInstrs.insert(Op).second) 6737 if (auto *I = dyn_cast<Instruction>(Op)) 6738 if (!isa<PHINode>(I) && I->getParent() == BB) 6739 Stack.emplace_back(Op, Level); 6740 } 6741 return Res; 6742 } 6743 6744 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6745 BasicBlock *BB, BoUpSLP &R, 6746 TargetTransformInfo *TTI) { 6747 if (!V) 6748 return false; 6749 auto *I = dyn_cast<Instruction>(V); 6750 if (!I) 6751 return false; 6752 6753 if (!isa<BinaryOperator>(I)) 6754 P = nullptr; 6755 // Try to match and vectorize a horizontal reduction. 6756 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6757 return tryToVectorize(I, R); 6758 }; 6759 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6760 ExtraVectorization); 6761 } 6762 6763 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6764 BasicBlock *BB, BoUpSLP &R) { 6765 const DataLayout &DL = BB->getModule()->getDataLayout(); 6766 if (!R.canMapToVector(IVI->getType(), DL)) 6767 return false; 6768 6769 SmallVector<Value *, 16> BuildVectorOpds; 6770 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6771 return false; 6772 6773 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6774 // Aggregate value is unlikely to be processed in vector register, we need to 6775 // extract scalars into scalar registers, so NeedExtraction is set true. 6776 return tryToVectorizeList(BuildVectorOpds, R); 6777 } 6778 6779 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6780 BasicBlock *BB, BoUpSLP &R) { 6781 int UserCost; 6782 SmallVector<Value *, 16> BuildVectorOpds; 6783 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6784 (llvm::all_of(BuildVectorOpds, 6785 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6786 isShuffle(BuildVectorOpds))) 6787 return false; 6788 6789 // Vectorize starting with the build vector operands ignoring the BuildVector 6790 // instructions for the purpose of scheduling and user extraction. 6791 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6792 } 6793 6794 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6795 BoUpSLP &R) { 6796 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6797 return true; 6798 6799 bool OpsChanged = false; 6800 for (int Idx = 0; Idx < 2; ++Idx) { 6801 OpsChanged |= 6802 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6803 } 6804 return OpsChanged; 6805 } 6806 6807 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6808 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6809 bool OpsChanged = false; 6810 for (auto &VH : reverse(Instructions)) { 6811 auto *I = dyn_cast_or_null<Instruction>(VH); 6812 if (!I) 6813 continue; 6814 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6815 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6816 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6817 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6818 else if (auto *CI = dyn_cast<CmpInst>(I)) 6819 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6820 } 6821 Instructions.clear(); 6822 return OpsChanged; 6823 } 6824 6825 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6826 bool Changed = false; 6827 SmallVector<Value *, 4> Incoming; 6828 SmallPtrSet<Value *, 16> VisitedInstrs; 6829 6830 bool HaveVectorizedPhiNodes = true; 6831 while (HaveVectorizedPhiNodes) { 6832 HaveVectorizedPhiNodes = false; 6833 6834 // Collect the incoming values from the PHIs. 6835 Incoming.clear(); 6836 for (Instruction &I : *BB) { 6837 PHINode *P = dyn_cast<PHINode>(&I); 6838 if (!P) 6839 break; 6840 6841 if (!VisitedInstrs.count(P)) 6842 Incoming.push_back(P); 6843 } 6844 6845 // Sort by type. 6846 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6847 6848 // Try to vectorize elements base on their type. 6849 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6850 E = Incoming.end(); 6851 IncIt != E;) { 6852 6853 // Look for the next elements with the same type. 6854 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6855 while (SameTypeIt != E && 6856 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6857 VisitedInstrs.insert(*SameTypeIt); 6858 ++SameTypeIt; 6859 } 6860 6861 // Try to vectorize them. 6862 unsigned NumElts = (SameTypeIt - IncIt); 6863 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6864 << NumElts << ")\n"); 6865 // The order in which the phi nodes appear in the program does not matter. 6866 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6867 // is done when there are exactly two elements since tryToVectorizeList 6868 // asserts that there are only two values when AllowReorder is true. 6869 bool AllowReorder = NumElts == 2; 6870 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6871 /*UserCost=*/0, AllowReorder)) { 6872 // Success start over because instructions might have been changed. 6873 HaveVectorizedPhiNodes = true; 6874 Changed = true; 6875 break; 6876 } 6877 6878 // Start over at the next instruction of a different type (or the end). 6879 IncIt = SameTypeIt; 6880 } 6881 } 6882 6883 VisitedInstrs.clear(); 6884 6885 SmallVector<WeakVH, 8> PostProcessInstructions; 6886 SmallDenseSet<Instruction *, 4> KeyNodes; 6887 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6888 // We may go through BB multiple times so skip the one we have checked. 6889 if (!VisitedInstrs.insert(&*it).second) { 6890 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6891 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6892 // We would like to start over since some instructions are deleted 6893 // and the iterator may become invalid value. 6894 Changed = true; 6895 it = BB->begin(); 6896 e = BB->end(); 6897 } 6898 continue; 6899 } 6900 6901 if (isa<DbgInfoIntrinsic>(it)) 6902 continue; 6903 6904 // Try to vectorize reductions that use PHINodes. 6905 if (PHINode *P = dyn_cast<PHINode>(it)) { 6906 // Check that the PHI is a reduction PHI. 6907 if (P->getNumIncomingValues() != 2) 6908 return Changed; 6909 6910 // Try to match and vectorize a horizontal reduction. 6911 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6912 TTI)) { 6913 Changed = true; 6914 it = BB->begin(); 6915 e = BB->end(); 6916 continue; 6917 } 6918 continue; 6919 } 6920 6921 // Ran into an instruction without users, like terminator, or function call 6922 // with ignored return value, store. Ignore unused instructions (basing on 6923 // instruction type, except for CallInst and InvokeInst). 6924 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6925 isa<InvokeInst>(it))) { 6926 KeyNodes.insert(&*it); 6927 bool OpsChanged = false; 6928 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6929 for (auto *V : it->operand_values()) { 6930 // Try to match and vectorize a horizontal reduction. 6931 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6932 } 6933 } 6934 // Start vectorization of post-process list of instructions from the 6935 // top-tree instructions to try to vectorize as many instructions as 6936 // possible. 6937 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6938 if (OpsChanged) { 6939 // We would like to start over since some instructions are deleted 6940 // and the iterator may become invalid value. 6941 Changed = true; 6942 it = BB->begin(); 6943 e = BB->end(); 6944 continue; 6945 } 6946 } 6947 6948 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6949 isa<InsertValueInst>(it)) 6950 PostProcessInstructions.push_back(&*it); 6951 } 6952 6953 return Changed; 6954 } 6955 6956 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6957 auto Changed = false; 6958 for (auto &Entry : GEPs) { 6959 // If the getelementptr list has fewer than two elements, there's nothing 6960 // to do. 6961 if (Entry.second.size() < 2) 6962 continue; 6963 6964 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6965 << Entry.second.size() << ".\n"); 6966 6967 // We process the getelementptr list in chunks of 16 (like we do for 6968 // stores) to minimize compile-time. 6969 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6970 auto Len = std::min<unsigned>(BE - BI, 16); 6971 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6972 6973 // Initialize a set a candidate getelementptrs. Note that we use a 6974 // SetVector here to preserve program order. If the index computations 6975 // are vectorizable and begin with loads, we want to minimize the chance 6976 // of having to reorder them later. 6977 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6978 6979 // Some of the candidates may have already been vectorized after we 6980 // initially collected them. If so, the WeakTrackingVHs will have 6981 // nullified the 6982 // values, so remove them from the set of candidates. 6983 Candidates.remove(nullptr); 6984 6985 // Remove from the set of candidates all pairs of getelementptrs with 6986 // constant differences. Such getelementptrs are likely not good 6987 // candidates for vectorization in a bottom-up phase since one can be 6988 // computed from the other. We also ensure all candidate getelementptr 6989 // indices are unique. 6990 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6991 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6992 if (!Candidates.count(GEPI)) 6993 continue; 6994 auto *SCEVI = SE->getSCEV(GEPList[I]); 6995 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6996 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6997 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6998 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6999 Candidates.remove(GEPList[I]); 7000 Candidates.remove(GEPList[J]); 7001 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7002 Candidates.remove(GEPList[J]); 7003 } 7004 } 7005 } 7006 7007 // We break out of the above computation as soon as we know there are 7008 // fewer than two candidates remaining. 7009 if (Candidates.size() < 2) 7010 continue; 7011 7012 // Add the single, non-constant index of each candidate to the bundle. We 7013 // ensured the indices met these constraints when we originally collected 7014 // the getelementptrs. 7015 SmallVector<Value *, 16> Bundle(Candidates.size()); 7016 auto BundleIndex = 0u; 7017 for (auto *V : Candidates) { 7018 auto *GEP = cast<GetElementPtrInst>(V); 7019 auto *GEPIdx = GEP->idx_begin()->get(); 7020 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7021 Bundle[BundleIndex++] = GEPIdx; 7022 } 7023 7024 // Try and vectorize the indices. We are currently only interested in 7025 // gather-like cases of the form: 7026 // 7027 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7028 // 7029 // where the loads of "a", the loads of "b", and the subtractions can be 7030 // performed in parallel. It's likely that detecting this pattern in a 7031 // bottom-up phase will be simpler and less costly than building a 7032 // full-blown top-down phase beginning at the consecutive loads. 7033 Changed |= tryToVectorizeList(Bundle, R); 7034 } 7035 } 7036 return Changed; 7037 } 7038 7039 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7040 bool Changed = false; 7041 // Attempt to sort and vectorize each of the store-groups. 7042 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7043 ++it) { 7044 if (it->second.size() < 2) 7045 continue; 7046 7047 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7048 << it->second.size() << ".\n"); 7049 7050 // Process the stores in chunks of 16. 7051 // TODO: The limit of 16 inhibits greater vectorization factors. 7052 // For example, AVX2 supports v32i8. Increasing this limit, however, 7053 // may cause a significant compile-time increase. 7054 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 7055 unsigned Len = std::min<unsigned>(CE - CI, 16); 7056 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 7057 } 7058 } 7059 return Changed; 7060 } 7061 7062 char SLPVectorizer::ID = 0; 7063 7064 static const char lv_name[] = "SLP Vectorizer"; 7065 7066 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7067 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7068 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7069 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7070 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7071 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7072 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7073 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7074 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7075 7076 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7077