1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1169 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1170 /// MainAltOps. 1171 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1172 const DataLayout &DL, ScalarEvolution &SE, int NumLanes, 1173 ArrayRef<Value *> MainAltOps) { 1174 if (V1 == V2) { 1175 if (isa<LoadInst>(V1)) { 1176 // Retruns true if the users of V1 and V2 won't need to be extracted. 1177 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1178 // Bail out if we have too many uses to save compilation time. 1179 static constexpr unsigned Limit = 8; 1180 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1181 return false; 1182 1183 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1184 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1185 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1186 }); 1187 }; 1188 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1189 }; 1190 // A broadcast of a load can be cheaper on some targets. 1191 if (R.TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1192 ((int)V1->getNumUses() == NumLanes || 1193 AllUsersAreInternal(V1, V2))) 1194 return VLOperands::ScoreSplatLoads; 1195 } 1196 return VLOperands::ScoreSplat; 1197 } 1198 1199 auto *LI1 = dyn_cast<LoadInst>(V1); 1200 auto *LI2 = dyn_cast<LoadInst>(V2); 1201 if (LI1 && LI2) { 1202 if (LI1->getParent() != LI2->getParent()) 1203 return VLOperands::ScoreFail; 1204 1205 Optional<int> Dist = getPointersDiff( 1206 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1207 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1208 if (!Dist || *Dist == 0) 1209 return VLOperands::ScoreFail; 1210 // The distance is too large - still may be profitable to use masked 1211 // loads/gathers. 1212 if (std::abs(*Dist) > NumLanes / 2) 1213 return VLOperands::ScoreAltOpcodes; 1214 // This still will detect consecutive loads, but we might have "holes" 1215 // in some cases. It is ok for non-power-2 vectorization and may produce 1216 // better results. It should not affect current vectorization. 1217 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1218 : VLOperands::ScoreReversedLoads; 1219 } 1220 1221 auto *C1 = dyn_cast<Constant>(V1); 1222 auto *C2 = dyn_cast<Constant>(V2); 1223 if (C1 && C2) 1224 return VLOperands::ScoreConstants; 1225 1226 // Extracts from consecutive indexes of the same vector better score as 1227 // the extracts could be optimized away. 1228 Value *EV1; 1229 ConstantInt *Ex1Idx; 1230 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1231 // Undefs are always profitable for extractelements. 1232 if (isa<UndefValue>(V2)) 1233 return VLOperands::ScoreConsecutiveExtracts; 1234 Value *EV2 = nullptr; 1235 ConstantInt *Ex2Idx = nullptr; 1236 if (match(V2, 1237 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1238 m_Undef())))) { 1239 // Undefs are always profitable for extractelements. 1240 if (!Ex2Idx) 1241 return VLOperands::ScoreConsecutiveExtracts; 1242 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1243 return VLOperands::ScoreConsecutiveExtracts; 1244 if (EV2 == EV1) { 1245 int Idx1 = Ex1Idx->getZExtValue(); 1246 int Idx2 = Ex2Idx->getZExtValue(); 1247 int Dist = Idx2 - Idx1; 1248 // The distance is too large - still may be profitable to use 1249 // shuffles. 1250 if (std::abs(Dist) == 0) 1251 return VLOperands::ScoreSplat; 1252 if (std::abs(Dist) > NumLanes / 2) 1253 return VLOperands::ScoreSameOpcode; 1254 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1255 : VLOperands::ScoreReversedExtracts; 1256 } 1257 return VLOperands::ScoreAltOpcodes; 1258 } 1259 return VLOperands::ScoreFail; 1260 } 1261 1262 auto *I1 = dyn_cast<Instruction>(V1); 1263 auto *I2 = dyn_cast<Instruction>(V2); 1264 if (I1 && I2) { 1265 if (I1->getParent() != I2->getParent()) 1266 return VLOperands::ScoreFail; 1267 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1268 Ops.push_back(I1); 1269 Ops.push_back(I2); 1270 InstructionsState S = getSameOpcode(Ops); 1271 // Note: Only consider instructions with <= 2 operands to avoid 1272 // complexity explosion. 1273 if (S.getOpcode() && 1274 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1275 !S.isAltShuffle()) && 1276 all_of(Ops, [&S](Value *V) { 1277 return cast<Instruction>(V)->getNumOperands() == 1278 S.MainOp->getNumOperands(); 1279 })) 1280 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1281 : VLOperands::ScoreSameOpcode; 1282 } 1283 1284 if (isa<UndefValue>(V2)) 1285 return VLOperands::ScoreUndef; 1286 1287 return VLOperands::ScoreFail; 1288 } 1289 1290 /// \param Lane lane of the operands under analysis. 1291 /// \param OpIdx operand index in \p Lane lane we're looking the best 1292 /// candidate for. 1293 /// \param Idx operand index of the current candidate value. 1294 /// \returns The additional score due to possible broadcasting of the 1295 /// elements in the lane. It is more profitable to have power-of-2 unique 1296 /// elements in the lane, it will be vectorized with higher probability 1297 /// after removing duplicates. Currently the SLP vectorizer supports only 1298 /// vectorization of the power-of-2 number of unique scalars. 1299 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1300 Value *IdxLaneV = getData(Idx, Lane).V; 1301 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1302 return 0; 1303 SmallPtrSet<Value *, 4> Uniques; 1304 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1305 if (Ln == Lane) 1306 continue; 1307 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1308 if (!isa<Instruction>(OpIdxLnV)) 1309 return 0; 1310 Uniques.insert(OpIdxLnV); 1311 } 1312 int UniquesCount = Uniques.size(); 1313 int UniquesCntWithIdxLaneV = 1314 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1315 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1316 int UniquesCntWithOpIdxLaneV = 1317 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1318 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1319 return 0; 1320 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1321 UniquesCntWithOpIdxLaneV) - 1322 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1323 } 1324 1325 /// \param Lane lane of the operands under analysis. 1326 /// \param OpIdx operand index in \p Lane lane we're looking the best 1327 /// candidate for. 1328 /// \param Idx operand index of the current candidate value. 1329 /// \returns The additional score for the scalar which users are all 1330 /// vectorized. 1331 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1332 Value *IdxLaneV = getData(Idx, Lane).V; 1333 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1334 // Do not care about number of uses for vector-like instructions 1335 // (extractelement/extractvalue with constant indices), they are extracts 1336 // themselves and already externally used. Vectorization of such 1337 // instructions does not add extra extractelement instruction, just may 1338 // remove it. 1339 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1340 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1341 return VLOperands::ScoreAllUserVectorized; 1342 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1343 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1344 return 0; 1345 return R.areAllUsersVectorized(IdxLaneI, None) 1346 ? VLOperands::ScoreAllUserVectorized 1347 : 0; 1348 } 1349 1350 /// Go through the operands of \p LHS and \p RHS recursively until \p 1351 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1352 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1353 /// of \p U1 and \p U2), except at the beginning of the recursion where 1354 /// these are set to nullptr. 1355 /// 1356 /// For example: 1357 /// \verbatim 1358 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1359 /// \ / \ / \ / \ / 1360 /// + + + + 1361 /// G1 G2 G3 G4 1362 /// \endverbatim 1363 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1364 /// each level recursively, accumulating the score. It starts from matching 1365 /// the additions at level 0, then moves on to the loads (level 1). The 1366 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1367 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1368 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1369 /// Please note that the order of the operands does not matter, as we 1370 /// evaluate the score of all profitable combinations of operands. In 1371 /// other words the score of G1 and G4 is the same as G1 and G2. This 1372 /// heuristic is based on ideas described in: 1373 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1374 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1375 /// Luís F. W. Góes 1376 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1377 Instruction *U2, int CurrLevel, int MaxLevel, 1378 ArrayRef<Value *> MainAltOps) { 1379 1380 // Get the shallow score of V1 and V2. 1381 int ShallowScoreAtThisLevel = 1382 getShallowScore(LHS, RHS, U1, U2, DL, SE, getNumLanes(), MainAltOps); 1383 1384 // If reached MaxLevel, 1385 // or if V1 and V2 are not instructions, 1386 // or if they are SPLAT, 1387 // or if they are not consecutive, 1388 // or if profitable to vectorize loads or extractelements, early return 1389 // the current cost. 1390 auto *I1 = dyn_cast<Instruction>(LHS); 1391 auto *I2 = dyn_cast<Instruction>(RHS); 1392 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1393 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1394 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1395 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1396 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1397 ShallowScoreAtThisLevel)) 1398 return ShallowScoreAtThisLevel; 1399 assert(I1 && I2 && "Should have early exited."); 1400 1401 // Contains the I2 operand indexes that got matched with I1 operands. 1402 SmallSet<unsigned, 4> Op2Used; 1403 1404 // Recursion towards the operands of I1 and I2. We are trying all possible 1405 // operand pairs, and keeping track of the best score. 1406 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1407 OpIdx1 != NumOperands1; ++OpIdx1) { 1408 // Try to pair op1I with the best operand of I2. 1409 int MaxTmpScore = 0; 1410 unsigned MaxOpIdx2 = 0; 1411 bool FoundBest = false; 1412 // If I2 is commutative try all combinations. 1413 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1414 unsigned ToIdx = isCommutative(I2) 1415 ? I2->getNumOperands() 1416 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1417 assert(FromIdx <= ToIdx && "Bad index"); 1418 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1419 // Skip operands already paired with OpIdx1. 1420 if (Op2Used.count(OpIdx2)) 1421 continue; 1422 // Recursively calculate the cost at each level 1423 int TmpScore = 1424 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1425 I1, I2, CurrLevel + 1, MaxLevel, None); 1426 // Look for the best score. 1427 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1428 MaxTmpScore = TmpScore; 1429 MaxOpIdx2 = OpIdx2; 1430 FoundBest = true; 1431 } 1432 } 1433 if (FoundBest) { 1434 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1435 Op2Used.insert(MaxOpIdx2); 1436 ShallowScoreAtThisLevel += MaxTmpScore; 1437 } 1438 } 1439 return ShallowScoreAtThisLevel; 1440 } 1441 1442 /// Score scaling factor for fully compatible instructions but with 1443 /// different number of external uses. Allows better selection of the 1444 /// instructions with less external uses. 1445 static const int ScoreScaleFactor = 10; 1446 1447 /// \Returns the look-ahead score, which tells us how much the sub-trees 1448 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1449 /// score. This helps break ties in an informed way when we cannot decide on 1450 /// the order of the operands by just considering the immediate 1451 /// predecessors. 1452 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1453 int Lane, unsigned OpIdx, unsigned Idx, 1454 bool &IsUsed) { 1455 // Keep track of the instruction stack as we recurse into the operands 1456 // during the look-ahead score exploration. 1457 int Score = getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1458 1, LookAheadMaxDepth, MainAltOps); 1459 if (Score) { 1460 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1461 if (Score <= -SplatScore) { 1462 // Set the minimum score for splat-like sequence to avoid setting 1463 // failed state. 1464 Score = 1; 1465 } else { 1466 Score += SplatScore; 1467 // Scale score to see the difference between different operands 1468 // and similar operands but all vectorized/not all vectorized 1469 // uses. It does not affect actual selection of the best 1470 // compatible operand in general, just allows to select the 1471 // operand with all vectorized uses. 1472 Score *= ScoreScaleFactor; 1473 Score += getExternalUseScore(Lane, OpIdx, Idx); 1474 IsUsed = true; 1475 } 1476 } 1477 return Score; 1478 } 1479 1480 /// Best defined scores per lanes between the passes. Used to choose the 1481 /// best operand (with the highest score) between the passes. 1482 /// The key - {Operand Index, Lane}. 1483 /// The value - the best score between the passes for the lane and the 1484 /// operand. 1485 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1486 BestScoresPerLanes; 1487 1488 // Search all operands in Ops[*][Lane] for the one that matches best 1489 // Ops[OpIdx][LastLane] and return its opreand index. 1490 // If no good match can be found, return None. 1491 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1492 ArrayRef<ReorderingMode> ReorderingModes, 1493 ArrayRef<Value *> MainAltOps) { 1494 unsigned NumOperands = getNumOperands(); 1495 1496 // The operand of the previous lane at OpIdx. 1497 Value *OpLastLane = getData(OpIdx, LastLane).V; 1498 1499 // Our strategy mode for OpIdx. 1500 ReorderingMode RMode = ReorderingModes[OpIdx]; 1501 if (RMode == ReorderingMode::Failed) 1502 return None; 1503 1504 // The linearized opcode of the operand at OpIdx, Lane. 1505 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1506 1507 // The best operand index and its score. 1508 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1509 // are using the score to differentiate between the two. 1510 struct BestOpData { 1511 Optional<unsigned> Idx = None; 1512 unsigned Score = 0; 1513 } BestOp; 1514 BestOp.Score = 1515 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1516 .first->second; 1517 1518 // Track if the operand must be marked as used. If the operand is set to 1519 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1520 // want to reestimate the operands again on the following iterations). 1521 bool IsUsed = 1522 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1523 // Iterate through all unused operands and look for the best. 1524 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1525 // Get the operand at Idx and Lane. 1526 OperandData &OpData = getData(Idx, Lane); 1527 Value *Op = OpData.V; 1528 bool OpAPO = OpData.APO; 1529 1530 // Skip already selected operands. 1531 if (OpData.IsUsed) 1532 continue; 1533 1534 // Skip if we are trying to move the operand to a position with a 1535 // different opcode in the linearized tree form. This would break the 1536 // semantics. 1537 if (OpAPO != OpIdxAPO) 1538 continue; 1539 1540 // Look for an operand that matches the current mode. 1541 switch (RMode) { 1542 case ReorderingMode::Load: 1543 case ReorderingMode::Constant: 1544 case ReorderingMode::Opcode: { 1545 bool LeftToRight = Lane > LastLane; 1546 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1547 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1548 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1549 OpIdx, Idx, IsUsed); 1550 if (Score > static_cast<int>(BestOp.Score)) { 1551 BestOp.Idx = Idx; 1552 BestOp.Score = Score; 1553 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1554 } 1555 break; 1556 } 1557 case ReorderingMode::Splat: 1558 if (Op == OpLastLane) 1559 BestOp.Idx = Idx; 1560 break; 1561 case ReorderingMode::Failed: 1562 llvm_unreachable("Not expected Failed reordering mode."); 1563 } 1564 } 1565 1566 if (BestOp.Idx) { 1567 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1568 return BestOp.Idx; 1569 } 1570 // If we could not find a good match return None. 1571 return None; 1572 } 1573 1574 /// Helper for reorderOperandVecs. 1575 /// \returns the lane that we should start reordering from. This is the one 1576 /// which has the least number of operands that can freely move about or 1577 /// less profitable because it already has the most optimal set of operands. 1578 unsigned getBestLaneToStartReordering() const { 1579 unsigned Min = UINT_MAX; 1580 unsigned SameOpNumber = 0; 1581 // std::pair<unsigned, unsigned> is used to implement a simple voting 1582 // algorithm and choose the lane with the least number of operands that 1583 // can freely move about or less profitable because it already has the 1584 // most optimal set of operands. The first unsigned is a counter for 1585 // voting, the second unsigned is the counter of lanes with instructions 1586 // with same/alternate opcodes and same parent basic block. 1587 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1588 // Try to be closer to the original results, if we have multiple lanes 1589 // with same cost. If 2 lanes have the same cost, use the one with the 1590 // lowest index. 1591 for (int I = getNumLanes(); I > 0; --I) { 1592 unsigned Lane = I - 1; 1593 OperandsOrderData NumFreeOpsHash = 1594 getMaxNumOperandsThatCanBeReordered(Lane); 1595 // Compare the number of operands that can move and choose the one with 1596 // the least number. 1597 if (NumFreeOpsHash.NumOfAPOs < Min) { 1598 Min = NumFreeOpsHash.NumOfAPOs; 1599 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1600 HashMap.clear(); 1601 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1602 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1603 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1604 // Select the most optimal lane in terms of number of operands that 1605 // should be moved around. 1606 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1607 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1608 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1609 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1610 auto It = HashMap.find(NumFreeOpsHash.Hash); 1611 if (It == HashMap.end()) 1612 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1613 else 1614 ++It->second.first; 1615 } 1616 } 1617 // Select the lane with the minimum counter. 1618 unsigned BestLane = 0; 1619 unsigned CntMin = UINT_MAX; 1620 for (const auto &Data : reverse(HashMap)) { 1621 if (Data.second.first < CntMin) { 1622 CntMin = Data.second.first; 1623 BestLane = Data.second.second; 1624 } 1625 } 1626 return BestLane; 1627 } 1628 1629 /// Data structure that helps to reorder operands. 1630 struct OperandsOrderData { 1631 /// The best number of operands with the same APOs, which can be 1632 /// reordered. 1633 unsigned NumOfAPOs = UINT_MAX; 1634 /// Number of operands with the same/alternate instruction opcode and 1635 /// parent. 1636 unsigned NumOpsWithSameOpcodeParent = 0; 1637 /// Hash for the actual operands ordering. 1638 /// Used to count operands, actually their position id and opcode 1639 /// value. It is used in the voting mechanism to find the lane with the 1640 /// least number of operands that can freely move about or less profitable 1641 /// because it already has the most optimal set of operands. Can be 1642 /// replaced with SmallVector<unsigned> instead but hash code is faster 1643 /// and requires less memory. 1644 unsigned Hash = 0; 1645 }; 1646 /// \returns the maximum number of operands that are allowed to be reordered 1647 /// for \p Lane and the number of compatible instructions(with the same 1648 /// parent/opcode). This is used as a heuristic for selecting the first lane 1649 /// to start operand reordering. 1650 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1651 unsigned CntTrue = 0; 1652 unsigned NumOperands = getNumOperands(); 1653 // Operands with the same APO can be reordered. We therefore need to count 1654 // how many of them we have for each APO, like this: Cnt[APO] = x. 1655 // Since we only have two APOs, namely true and false, we can avoid using 1656 // a map. Instead we can simply count the number of operands that 1657 // correspond to one of them (in this case the 'true' APO), and calculate 1658 // the other by subtracting it from the total number of operands. 1659 // Operands with the same instruction opcode and parent are more 1660 // profitable since we don't need to move them in many cases, with a high 1661 // probability such lane already can be vectorized effectively. 1662 bool AllUndefs = true; 1663 unsigned NumOpsWithSameOpcodeParent = 0; 1664 Instruction *OpcodeI = nullptr; 1665 BasicBlock *Parent = nullptr; 1666 unsigned Hash = 0; 1667 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1668 const OperandData &OpData = getData(OpIdx, Lane); 1669 if (OpData.APO) 1670 ++CntTrue; 1671 // Use Boyer-Moore majority voting for finding the majority opcode and 1672 // the number of times it occurs. 1673 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1674 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1675 I->getParent() != Parent) { 1676 if (NumOpsWithSameOpcodeParent == 0) { 1677 NumOpsWithSameOpcodeParent = 1; 1678 OpcodeI = I; 1679 Parent = I->getParent(); 1680 } else { 1681 --NumOpsWithSameOpcodeParent; 1682 } 1683 } else { 1684 ++NumOpsWithSameOpcodeParent; 1685 } 1686 } 1687 Hash = hash_combine( 1688 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1689 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1690 } 1691 if (AllUndefs) 1692 return {}; 1693 OperandsOrderData Data; 1694 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1695 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1696 Data.Hash = Hash; 1697 return Data; 1698 } 1699 1700 /// Go through the instructions in VL and append their operands. 1701 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1702 assert(!VL.empty() && "Bad VL"); 1703 assert((empty() || VL.size() == getNumLanes()) && 1704 "Expected same number of lanes"); 1705 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1706 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1707 OpsVec.resize(NumOperands); 1708 unsigned NumLanes = VL.size(); 1709 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1710 OpsVec[OpIdx].resize(NumLanes); 1711 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1712 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1713 // Our tree has just 3 nodes: the root and two operands. 1714 // It is therefore trivial to get the APO. We only need to check the 1715 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1716 // RHS operand. The LHS operand of both add and sub is never attached 1717 // to an inversese operation in the linearized form, therefore its APO 1718 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1719 1720 // Since operand reordering is performed on groups of commutative 1721 // operations or alternating sequences (e.g., +, -), we can safely 1722 // tell the inverse operations by checking commutativity. 1723 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1724 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1725 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1726 APO, false}; 1727 } 1728 } 1729 } 1730 1731 /// \returns the number of operands. 1732 unsigned getNumOperands() const { return OpsVec.size(); } 1733 1734 /// \returns the number of lanes. 1735 unsigned getNumLanes() const { return OpsVec[0].size(); } 1736 1737 /// \returns the operand value at \p OpIdx and \p Lane. 1738 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1739 return getData(OpIdx, Lane).V; 1740 } 1741 1742 /// \returns true if the data structure is empty. 1743 bool empty() const { return OpsVec.empty(); } 1744 1745 /// Clears the data. 1746 void clear() { OpsVec.clear(); } 1747 1748 /// \Returns true if there are enough operands identical to \p Op to fill 1749 /// the whole vector. 1750 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1751 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1752 bool OpAPO = getData(OpIdx, Lane).APO; 1753 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1754 if (Ln == Lane) 1755 continue; 1756 // This is set to true if we found a candidate for broadcast at Lane. 1757 bool FoundCandidate = false; 1758 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1759 OperandData &Data = getData(OpI, Ln); 1760 if (Data.APO != OpAPO || Data.IsUsed) 1761 continue; 1762 if (Data.V == Op) { 1763 FoundCandidate = true; 1764 Data.IsUsed = true; 1765 break; 1766 } 1767 } 1768 if (!FoundCandidate) 1769 return false; 1770 } 1771 return true; 1772 } 1773 1774 public: 1775 /// Initialize with all the operands of the instruction vector \p RootVL. 1776 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1777 ScalarEvolution &SE, const BoUpSLP &R) 1778 : DL(DL), SE(SE), R(R) { 1779 // Append all the operands of RootVL. 1780 appendOperandsOfVL(RootVL); 1781 } 1782 1783 /// \Returns a value vector with the operands across all lanes for the 1784 /// opearnd at \p OpIdx. 1785 ValueList getVL(unsigned OpIdx) const { 1786 ValueList OpVL(OpsVec[OpIdx].size()); 1787 assert(OpsVec[OpIdx].size() == getNumLanes() && 1788 "Expected same num of lanes across all operands"); 1789 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1790 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1791 return OpVL; 1792 } 1793 1794 // Performs operand reordering for 2 or more operands. 1795 // The original operands are in OrigOps[OpIdx][Lane]. 1796 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1797 void reorder() { 1798 unsigned NumOperands = getNumOperands(); 1799 unsigned NumLanes = getNumLanes(); 1800 // Each operand has its own mode. We are using this mode to help us select 1801 // the instructions for each lane, so that they match best with the ones 1802 // we have selected so far. 1803 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1804 1805 // This is a greedy single-pass algorithm. We are going over each lane 1806 // once and deciding on the best order right away with no back-tracking. 1807 // However, in order to increase its effectiveness, we start with the lane 1808 // that has operands that can move the least. For example, given the 1809 // following lanes: 1810 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1811 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1812 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1813 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1814 // we will start at Lane 1, since the operands of the subtraction cannot 1815 // be reordered. Then we will visit the rest of the lanes in a circular 1816 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1817 1818 // Find the first lane that we will start our search from. 1819 unsigned FirstLane = getBestLaneToStartReordering(); 1820 1821 // Initialize the modes. 1822 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1823 Value *OpLane0 = getValue(OpIdx, FirstLane); 1824 // Keep track if we have instructions with all the same opcode on one 1825 // side. 1826 if (isa<LoadInst>(OpLane0)) 1827 ReorderingModes[OpIdx] = ReorderingMode::Load; 1828 else if (isa<Instruction>(OpLane0)) { 1829 // Check if OpLane0 should be broadcast. 1830 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1831 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1832 else 1833 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1834 } 1835 else if (isa<Constant>(OpLane0)) 1836 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1837 else if (isa<Argument>(OpLane0)) 1838 // Our best hope is a Splat. It may save some cost in some cases. 1839 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1840 else 1841 // NOTE: This should be unreachable. 1842 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1843 } 1844 1845 // Check that we don't have same operands. No need to reorder if operands 1846 // are just perfect diamond or shuffled diamond match. Do not do it only 1847 // for possible broadcasts or non-power of 2 number of scalars (just for 1848 // now). 1849 auto &&SkipReordering = [this]() { 1850 SmallPtrSet<Value *, 4> UniqueValues; 1851 ArrayRef<OperandData> Op0 = OpsVec.front(); 1852 for (const OperandData &Data : Op0) 1853 UniqueValues.insert(Data.V); 1854 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1855 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1856 return !UniqueValues.contains(Data.V); 1857 })) 1858 return false; 1859 } 1860 // TODO: Check if we can remove a check for non-power-2 number of 1861 // scalars after full support of non-power-2 vectorization. 1862 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1863 }; 1864 1865 // If the initial strategy fails for any of the operand indexes, then we 1866 // perform reordering again in a second pass. This helps avoid assigning 1867 // high priority to the failed strategy, and should improve reordering for 1868 // the non-failed operand indexes. 1869 for (int Pass = 0; Pass != 2; ++Pass) { 1870 // Check if no need to reorder operands since they're are perfect or 1871 // shuffled diamond match. 1872 // Need to to do it to avoid extra external use cost counting for 1873 // shuffled matches, which may cause regressions. 1874 if (SkipReordering()) 1875 break; 1876 // Skip the second pass if the first pass did not fail. 1877 bool StrategyFailed = false; 1878 // Mark all operand data as free to use. 1879 clearUsed(); 1880 // We keep the original operand order for the FirstLane, so reorder the 1881 // rest of the lanes. We are visiting the nodes in a circular fashion, 1882 // using FirstLane as the center point and increasing the radius 1883 // distance. 1884 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1885 for (unsigned I = 0; I < NumOperands; ++I) 1886 MainAltOps[I].push_back(getData(I, FirstLane).V); 1887 1888 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1889 // Visit the lane on the right and then the lane on the left. 1890 for (int Direction : {+1, -1}) { 1891 int Lane = FirstLane + Direction * Distance; 1892 if (Lane < 0 || Lane >= (int)NumLanes) 1893 continue; 1894 int LastLane = Lane - Direction; 1895 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1896 "Out of bounds"); 1897 // Look for a good match for each operand. 1898 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1899 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1900 Optional<unsigned> BestIdx = getBestOperand( 1901 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1902 // By not selecting a value, we allow the operands that follow to 1903 // select a better matching value. We will get a non-null value in 1904 // the next run of getBestOperand(). 1905 if (BestIdx) { 1906 // Swap the current operand with the one returned by 1907 // getBestOperand(). 1908 swap(OpIdx, BestIdx.getValue(), Lane); 1909 } else { 1910 // We failed to find a best operand, set mode to 'Failed'. 1911 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1912 // Enable the second pass. 1913 StrategyFailed = true; 1914 } 1915 // Try to get the alternate opcode and follow it during analysis. 1916 if (MainAltOps[OpIdx].size() != 2) { 1917 OperandData &AltOp = getData(OpIdx, Lane); 1918 InstructionsState OpS = 1919 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1920 if (OpS.getOpcode() && OpS.isAltShuffle()) 1921 MainAltOps[OpIdx].push_back(AltOp.V); 1922 } 1923 } 1924 } 1925 } 1926 // Skip second pass if the strategy did not fail. 1927 if (!StrategyFailed) 1928 break; 1929 } 1930 } 1931 1932 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1933 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1934 switch (RMode) { 1935 case ReorderingMode::Load: 1936 return "Load"; 1937 case ReorderingMode::Opcode: 1938 return "Opcode"; 1939 case ReorderingMode::Constant: 1940 return "Constant"; 1941 case ReorderingMode::Splat: 1942 return "Splat"; 1943 case ReorderingMode::Failed: 1944 return "Failed"; 1945 } 1946 llvm_unreachable("Unimplemented Reordering Type"); 1947 } 1948 1949 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1950 raw_ostream &OS) { 1951 return OS << getModeStr(RMode); 1952 } 1953 1954 /// Debug print. 1955 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1956 printMode(RMode, dbgs()); 1957 } 1958 1959 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1960 return printMode(RMode, OS); 1961 } 1962 1963 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1964 const unsigned Indent = 2; 1965 unsigned Cnt = 0; 1966 for (const OperandDataVec &OpDataVec : OpsVec) { 1967 OS << "Operand " << Cnt++ << "\n"; 1968 for (const OperandData &OpData : OpDataVec) { 1969 OS.indent(Indent) << "{"; 1970 if (Value *V = OpData.V) 1971 OS << *V; 1972 else 1973 OS << "null"; 1974 OS << ", APO:" << OpData.APO << "}\n"; 1975 } 1976 OS << "\n"; 1977 } 1978 return OS; 1979 } 1980 1981 /// Debug print. 1982 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1983 #endif 1984 }; 1985 1986 /// Checks if the instruction is marked for deletion. 1987 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1988 1989 /// Removes an instruction from its block and eventually deletes it. 1990 /// It's like Instruction::eraseFromParent() except that the actual deletion 1991 /// is delayed until BoUpSLP is destructed. 1992 void eraseInstruction(Instruction *I) { 1993 DeletedInstructions.insert(I); 1994 } 1995 1996 ~BoUpSLP(); 1997 1998 private: 1999 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2000 /// reordering (i.e. the operands can be reordered because they have only one 2001 /// user and reordarable). 2002 /// \param ReorderableGathers List of all gather nodes that require reordering 2003 /// (e.g., gather of extractlements or partially vectorizable loads). 2004 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2005 /// reordering, subset of \p NonVectorized. 2006 bool 2007 canReorderOperands(TreeEntry *UserTE, 2008 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2009 ArrayRef<TreeEntry *> ReorderableGathers, 2010 SmallVectorImpl<TreeEntry *> &GatherOps); 2011 2012 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2013 /// if any. If it is not vectorized (gather node), returns nullptr. 2014 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2015 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2016 TreeEntry *TE = nullptr; 2017 const auto *It = find_if(VL, [this, &TE](Value *V) { 2018 TE = getTreeEntry(V); 2019 return TE; 2020 }); 2021 if (It != VL.end() && TE->isSame(VL)) 2022 return TE; 2023 return nullptr; 2024 } 2025 2026 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2027 /// if any. If it is not vectorized (gather node), returns nullptr. 2028 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2029 unsigned OpIdx) const { 2030 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2031 const_cast<TreeEntry *>(UserTE), OpIdx); 2032 } 2033 2034 /// Checks if all users of \p I are the part of the vectorization tree. 2035 bool areAllUsersVectorized(Instruction *I, 2036 ArrayRef<Value *> VectorizedVals) const; 2037 2038 /// \returns the cost of the vectorizable entry. 2039 InstructionCost getEntryCost(const TreeEntry *E, 2040 ArrayRef<Value *> VectorizedVals); 2041 2042 /// This is the recursive part of buildTree. 2043 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2044 const EdgeInfo &EI); 2045 2046 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2047 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2048 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2049 /// returns false, setting \p CurrentOrder to either an empty vector or a 2050 /// non-identity permutation that allows to reuse extract instructions. 2051 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2052 SmallVectorImpl<unsigned> &CurrentOrder) const; 2053 2054 /// Vectorize a single entry in the tree. 2055 Value *vectorizeTree(TreeEntry *E); 2056 2057 /// Vectorize a single entry in the tree, starting in \p VL. 2058 Value *vectorizeTree(ArrayRef<Value *> VL); 2059 2060 /// Create a new vector from a list of scalar values. Produces a sequence 2061 /// which exploits values reused across lanes, and arranges the inserts 2062 /// for ease of later optimization. 2063 Value *createBuildVector(ArrayRef<Value *> VL); 2064 2065 /// \returns the scalarization cost for this type. Scalarization in this 2066 /// context means the creation of vectors from a group of scalars. If \p 2067 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2068 /// vector elements. 2069 InstructionCost getGatherCost(FixedVectorType *Ty, 2070 const APInt &ShuffledIndices, 2071 bool NeedToShuffle) const; 2072 2073 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2074 /// tree entries. 2075 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2076 /// previous tree entries. \p Mask is filled with the shuffle mask. 2077 Optional<TargetTransformInfo::ShuffleKind> 2078 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2079 SmallVectorImpl<const TreeEntry *> &Entries); 2080 2081 /// \returns the scalarization cost for this list of values. Assuming that 2082 /// this subtree gets vectorized, we may need to extract the values from the 2083 /// roots. This method calculates the cost of extracting the values. 2084 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2085 2086 /// Set the Builder insert point to one after the last instruction in 2087 /// the bundle 2088 void setInsertPointAfterBundle(const TreeEntry *E); 2089 2090 /// \returns a vector from a collection of scalars in \p VL. 2091 Value *gather(ArrayRef<Value *> VL); 2092 2093 /// \returns whether the VectorizableTree is fully vectorizable and will 2094 /// be beneficial even the tree height is tiny. 2095 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2096 2097 /// Reorder commutative or alt operands to get better probability of 2098 /// generating vectorized code. 2099 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2100 SmallVectorImpl<Value *> &Left, 2101 SmallVectorImpl<Value *> &Right, 2102 const DataLayout &DL, 2103 ScalarEvolution &SE, 2104 const BoUpSLP &R); 2105 struct TreeEntry { 2106 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2107 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2108 2109 /// \returns true if the scalars in VL are equal to this entry. 2110 bool isSame(ArrayRef<Value *> VL) const { 2111 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2112 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2113 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2114 return VL.size() == Mask.size() && 2115 std::equal(VL.begin(), VL.end(), Mask.begin(), 2116 [Scalars](Value *V, int Idx) { 2117 return (isa<UndefValue>(V) && 2118 Idx == UndefMaskElem) || 2119 (Idx != UndefMaskElem && V == Scalars[Idx]); 2120 }); 2121 }; 2122 if (!ReorderIndices.empty()) { 2123 // TODO: implement matching if the nodes are just reordered, still can 2124 // treat the vector as the same if the list of scalars matches VL 2125 // directly, without reordering. 2126 SmallVector<int> Mask; 2127 inversePermutation(ReorderIndices, Mask); 2128 if (VL.size() == Scalars.size()) 2129 return IsSame(Scalars, Mask); 2130 if (VL.size() == ReuseShuffleIndices.size()) { 2131 ::addMask(Mask, ReuseShuffleIndices); 2132 return IsSame(Scalars, Mask); 2133 } 2134 return false; 2135 } 2136 return IsSame(Scalars, ReuseShuffleIndices); 2137 } 2138 2139 /// \returns true if current entry has same operands as \p TE. 2140 bool hasEqualOperands(const TreeEntry &TE) const { 2141 if (TE.getNumOperands() != getNumOperands()) 2142 return false; 2143 SmallBitVector Used(getNumOperands()); 2144 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2145 unsigned PrevCount = Used.count(); 2146 for (unsigned K = 0; K < E; ++K) { 2147 if (Used.test(K)) 2148 continue; 2149 if (getOperand(K) == TE.getOperand(I)) { 2150 Used.set(K); 2151 break; 2152 } 2153 } 2154 // Check if we actually found the matching operand. 2155 if (PrevCount == Used.count()) 2156 return false; 2157 } 2158 return true; 2159 } 2160 2161 /// \return Final vectorization factor for the node. Defined by the total 2162 /// number of vectorized scalars, including those, used several times in the 2163 /// entry and counted in the \a ReuseShuffleIndices, if any. 2164 unsigned getVectorFactor() const { 2165 if (!ReuseShuffleIndices.empty()) 2166 return ReuseShuffleIndices.size(); 2167 return Scalars.size(); 2168 }; 2169 2170 /// A vector of scalars. 2171 ValueList Scalars; 2172 2173 /// The Scalars are vectorized into this value. It is initialized to Null. 2174 Value *VectorizedValue = nullptr; 2175 2176 /// Do we need to gather this sequence or vectorize it 2177 /// (either with vector instruction or with scatter/gather 2178 /// intrinsics for store/load)? 2179 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2180 EntryState State; 2181 2182 /// Does this sequence require some shuffling? 2183 SmallVector<int, 4> ReuseShuffleIndices; 2184 2185 /// Does this entry require reordering? 2186 SmallVector<unsigned, 4> ReorderIndices; 2187 2188 /// Points back to the VectorizableTree. 2189 /// 2190 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2191 /// to be a pointer and needs to be able to initialize the child iterator. 2192 /// Thus we need a reference back to the container to translate the indices 2193 /// to entries. 2194 VecTreeTy &Container; 2195 2196 /// The TreeEntry index containing the user of this entry. We can actually 2197 /// have multiple users so the data structure is not truly a tree. 2198 SmallVector<EdgeInfo, 1> UserTreeIndices; 2199 2200 /// The index of this treeEntry in VectorizableTree. 2201 int Idx = -1; 2202 2203 private: 2204 /// The operands of each instruction in each lane Operands[op_index][lane]. 2205 /// Note: This helps avoid the replication of the code that performs the 2206 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2207 SmallVector<ValueList, 2> Operands; 2208 2209 /// The main/alternate instruction. 2210 Instruction *MainOp = nullptr; 2211 Instruction *AltOp = nullptr; 2212 2213 public: 2214 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2215 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2216 if (Operands.size() < OpIdx + 1) 2217 Operands.resize(OpIdx + 1); 2218 assert(Operands[OpIdx].empty() && "Already resized?"); 2219 assert(OpVL.size() <= Scalars.size() && 2220 "Number of operands is greater than the number of scalars."); 2221 Operands[OpIdx].resize(OpVL.size()); 2222 copy(OpVL, Operands[OpIdx].begin()); 2223 } 2224 2225 /// Set the operands of this bundle in their original order. 2226 void setOperandsInOrder() { 2227 assert(Operands.empty() && "Already initialized?"); 2228 auto *I0 = cast<Instruction>(Scalars[0]); 2229 Operands.resize(I0->getNumOperands()); 2230 unsigned NumLanes = Scalars.size(); 2231 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2232 OpIdx != NumOperands; ++OpIdx) { 2233 Operands[OpIdx].resize(NumLanes); 2234 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2235 auto *I = cast<Instruction>(Scalars[Lane]); 2236 assert(I->getNumOperands() == NumOperands && 2237 "Expected same number of operands"); 2238 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2239 } 2240 } 2241 } 2242 2243 /// Reorders operands of the node to the given mask \p Mask. 2244 void reorderOperands(ArrayRef<int> Mask) { 2245 for (ValueList &Operand : Operands) 2246 reorderScalars(Operand, Mask); 2247 } 2248 2249 /// \returns the \p OpIdx operand of this TreeEntry. 2250 ValueList &getOperand(unsigned OpIdx) { 2251 assert(OpIdx < Operands.size() && "Off bounds"); 2252 return Operands[OpIdx]; 2253 } 2254 2255 /// \returns the \p OpIdx operand of this TreeEntry. 2256 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2257 assert(OpIdx < Operands.size() && "Off bounds"); 2258 return Operands[OpIdx]; 2259 } 2260 2261 /// \returns the number of operands. 2262 unsigned getNumOperands() const { return Operands.size(); } 2263 2264 /// \return the single \p OpIdx operand. 2265 Value *getSingleOperand(unsigned OpIdx) const { 2266 assert(OpIdx < Operands.size() && "Off bounds"); 2267 assert(!Operands[OpIdx].empty() && "No operand available"); 2268 return Operands[OpIdx][0]; 2269 } 2270 2271 /// Some of the instructions in the list have alternate opcodes. 2272 bool isAltShuffle() const { return MainOp != AltOp; } 2273 2274 bool isOpcodeOrAlt(Instruction *I) const { 2275 unsigned CheckedOpcode = I->getOpcode(); 2276 return (getOpcode() == CheckedOpcode || 2277 getAltOpcode() == CheckedOpcode); 2278 } 2279 2280 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2281 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2282 /// \p OpValue. 2283 Value *isOneOf(Value *Op) const { 2284 auto *I = dyn_cast<Instruction>(Op); 2285 if (I && isOpcodeOrAlt(I)) 2286 return Op; 2287 return MainOp; 2288 } 2289 2290 void setOperations(const InstructionsState &S) { 2291 MainOp = S.MainOp; 2292 AltOp = S.AltOp; 2293 } 2294 2295 Instruction *getMainOp() const { 2296 return MainOp; 2297 } 2298 2299 Instruction *getAltOp() const { 2300 return AltOp; 2301 } 2302 2303 /// The main/alternate opcodes for the list of instructions. 2304 unsigned getOpcode() const { 2305 return MainOp ? MainOp->getOpcode() : 0; 2306 } 2307 2308 unsigned getAltOpcode() const { 2309 return AltOp ? AltOp->getOpcode() : 0; 2310 } 2311 2312 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2313 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2314 int findLaneForValue(Value *V) const { 2315 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2316 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2317 if (!ReorderIndices.empty()) 2318 FoundLane = ReorderIndices[FoundLane]; 2319 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2320 if (!ReuseShuffleIndices.empty()) { 2321 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2322 find(ReuseShuffleIndices, FoundLane)); 2323 } 2324 return FoundLane; 2325 } 2326 2327 #ifndef NDEBUG 2328 /// Debug printer. 2329 LLVM_DUMP_METHOD void dump() const { 2330 dbgs() << Idx << ".\n"; 2331 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2332 dbgs() << "Operand " << OpI << ":\n"; 2333 for (const Value *V : Operands[OpI]) 2334 dbgs().indent(2) << *V << "\n"; 2335 } 2336 dbgs() << "Scalars: \n"; 2337 for (Value *V : Scalars) 2338 dbgs().indent(2) << *V << "\n"; 2339 dbgs() << "State: "; 2340 switch (State) { 2341 case Vectorize: 2342 dbgs() << "Vectorize\n"; 2343 break; 2344 case ScatterVectorize: 2345 dbgs() << "ScatterVectorize\n"; 2346 break; 2347 case NeedToGather: 2348 dbgs() << "NeedToGather\n"; 2349 break; 2350 } 2351 dbgs() << "MainOp: "; 2352 if (MainOp) 2353 dbgs() << *MainOp << "\n"; 2354 else 2355 dbgs() << "NULL\n"; 2356 dbgs() << "AltOp: "; 2357 if (AltOp) 2358 dbgs() << *AltOp << "\n"; 2359 else 2360 dbgs() << "NULL\n"; 2361 dbgs() << "VectorizedValue: "; 2362 if (VectorizedValue) 2363 dbgs() << *VectorizedValue << "\n"; 2364 else 2365 dbgs() << "NULL\n"; 2366 dbgs() << "ReuseShuffleIndices: "; 2367 if (ReuseShuffleIndices.empty()) 2368 dbgs() << "Empty"; 2369 else 2370 for (int ReuseIdx : ReuseShuffleIndices) 2371 dbgs() << ReuseIdx << ", "; 2372 dbgs() << "\n"; 2373 dbgs() << "ReorderIndices: "; 2374 for (unsigned ReorderIdx : ReorderIndices) 2375 dbgs() << ReorderIdx << ", "; 2376 dbgs() << "\n"; 2377 dbgs() << "UserTreeIndices: "; 2378 for (const auto &EInfo : UserTreeIndices) 2379 dbgs() << EInfo << ", "; 2380 dbgs() << "\n"; 2381 } 2382 #endif 2383 }; 2384 2385 #ifndef NDEBUG 2386 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2387 InstructionCost VecCost, 2388 InstructionCost ScalarCost) const { 2389 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2390 dbgs() << "SLP: Costs:\n"; 2391 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2392 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2393 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2394 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2395 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2396 } 2397 #endif 2398 2399 /// Create a new VectorizableTree entry. 2400 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2401 const InstructionsState &S, 2402 const EdgeInfo &UserTreeIdx, 2403 ArrayRef<int> ReuseShuffleIndices = None, 2404 ArrayRef<unsigned> ReorderIndices = None) { 2405 TreeEntry::EntryState EntryState = 2406 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2407 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2408 ReuseShuffleIndices, ReorderIndices); 2409 } 2410 2411 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2412 TreeEntry::EntryState EntryState, 2413 Optional<ScheduleData *> Bundle, 2414 const InstructionsState &S, 2415 const EdgeInfo &UserTreeIdx, 2416 ArrayRef<int> ReuseShuffleIndices = None, 2417 ArrayRef<unsigned> ReorderIndices = None) { 2418 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2419 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2420 "Need to vectorize gather entry?"); 2421 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2422 TreeEntry *Last = VectorizableTree.back().get(); 2423 Last->Idx = VectorizableTree.size() - 1; 2424 Last->State = EntryState; 2425 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2426 ReuseShuffleIndices.end()); 2427 if (ReorderIndices.empty()) { 2428 Last->Scalars.assign(VL.begin(), VL.end()); 2429 Last->setOperations(S); 2430 } else { 2431 // Reorder scalars and build final mask. 2432 Last->Scalars.assign(VL.size(), nullptr); 2433 transform(ReorderIndices, Last->Scalars.begin(), 2434 [VL](unsigned Idx) -> Value * { 2435 if (Idx >= VL.size()) 2436 return UndefValue::get(VL.front()->getType()); 2437 return VL[Idx]; 2438 }); 2439 InstructionsState S = getSameOpcode(Last->Scalars); 2440 Last->setOperations(S); 2441 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2442 } 2443 if (Last->State != TreeEntry::NeedToGather) { 2444 for (Value *V : VL) { 2445 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2446 ScalarToTreeEntry[V] = Last; 2447 } 2448 // Update the scheduler bundle to point to this TreeEntry. 2449 ScheduleData *BundleMember = Bundle.getValue(); 2450 assert((BundleMember || isa<PHINode>(S.MainOp) || 2451 isVectorLikeInstWithConstOps(S.MainOp) || 2452 doesNotNeedToSchedule(VL)) && 2453 "Bundle and VL out of sync"); 2454 if (BundleMember) { 2455 for (Value *V : VL) { 2456 if (doesNotNeedToBeScheduled(V)) 2457 continue; 2458 assert(BundleMember && "Unexpected end of bundle."); 2459 BundleMember->TE = Last; 2460 BundleMember = BundleMember->NextInBundle; 2461 } 2462 } 2463 assert(!BundleMember && "Bundle and VL out of sync"); 2464 } else { 2465 MustGather.insert(VL.begin(), VL.end()); 2466 } 2467 2468 if (UserTreeIdx.UserTE) 2469 Last->UserTreeIndices.push_back(UserTreeIdx); 2470 2471 return Last; 2472 } 2473 2474 /// -- Vectorization State -- 2475 /// Holds all of the tree entries. 2476 TreeEntry::VecTreeTy VectorizableTree; 2477 2478 #ifndef NDEBUG 2479 /// Debug printer. 2480 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2481 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2482 VectorizableTree[Id]->dump(); 2483 dbgs() << "\n"; 2484 } 2485 } 2486 #endif 2487 2488 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2489 2490 const TreeEntry *getTreeEntry(Value *V) const { 2491 return ScalarToTreeEntry.lookup(V); 2492 } 2493 2494 /// Maps a specific scalar to its tree entry. 2495 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2496 2497 /// Maps a value to the proposed vectorizable size. 2498 SmallDenseMap<Value *, unsigned> InstrElementSize; 2499 2500 /// A list of scalars that we found that we need to keep as scalars. 2501 ValueSet MustGather; 2502 2503 /// This POD struct describes one external user in the vectorized tree. 2504 struct ExternalUser { 2505 ExternalUser(Value *S, llvm::User *U, int L) 2506 : Scalar(S), User(U), Lane(L) {} 2507 2508 // Which scalar in our function. 2509 Value *Scalar; 2510 2511 // Which user that uses the scalar. 2512 llvm::User *User; 2513 2514 // Which lane does the scalar belong to. 2515 int Lane; 2516 }; 2517 using UserList = SmallVector<ExternalUser, 16>; 2518 2519 /// Checks if two instructions may access the same memory. 2520 /// 2521 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2522 /// is invariant in the calling loop. 2523 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2524 Instruction *Inst2) { 2525 // First check if the result is already in the cache. 2526 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2527 Optional<bool> &result = AliasCache[key]; 2528 if (result.hasValue()) { 2529 return result.getValue(); 2530 } 2531 bool aliased = true; 2532 if (Loc1.Ptr && isSimple(Inst1)) 2533 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2534 // Store the result in the cache. 2535 result = aliased; 2536 return aliased; 2537 } 2538 2539 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2540 2541 /// Cache for alias results. 2542 /// TODO: consider moving this to the AliasAnalysis itself. 2543 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2544 2545 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2546 // globally through SLP because we don't perform any action which 2547 // invalidates capture results. 2548 BatchAAResults BatchAA; 2549 2550 /// Temporary store for deleted instructions. Instructions will be deleted 2551 /// eventually when the BoUpSLP is destructed. The deferral is required to 2552 /// ensure that there are no incorrect collisions in the AliasCache, which 2553 /// can happen if a new instruction is allocated at the same address as a 2554 /// previously deleted instruction. 2555 DenseSet<Instruction *> DeletedInstructions; 2556 2557 /// A list of values that need to extracted out of the tree. 2558 /// This list holds pairs of (Internal Scalar : External User). External User 2559 /// can be nullptr, it means that this Internal Scalar will be used later, 2560 /// after vectorization. 2561 UserList ExternalUses; 2562 2563 /// Values used only by @llvm.assume calls. 2564 SmallPtrSet<const Value *, 32> EphValues; 2565 2566 /// Holds all of the instructions that we gathered. 2567 SetVector<Instruction *> GatherShuffleSeq; 2568 2569 /// A list of blocks that we are going to CSE. 2570 SetVector<BasicBlock *> CSEBlocks; 2571 2572 /// Contains all scheduling relevant data for an instruction. 2573 /// A ScheduleData either represents a single instruction or a member of an 2574 /// instruction bundle (= a group of instructions which is combined into a 2575 /// vector instruction). 2576 struct ScheduleData { 2577 // The initial value for the dependency counters. It means that the 2578 // dependencies are not calculated yet. 2579 enum { InvalidDeps = -1 }; 2580 2581 ScheduleData() = default; 2582 2583 void init(int BlockSchedulingRegionID, Value *OpVal) { 2584 FirstInBundle = this; 2585 NextInBundle = nullptr; 2586 NextLoadStore = nullptr; 2587 IsScheduled = false; 2588 SchedulingRegionID = BlockSchedulingRegionID; 2589 clearDependencies(); 2590 OpValue = OpVal; 2591 TE = nullptr; 2592 } 2593 2594 /// Verify basic self consistency properties 2595 void verify() { 2596 if (hasValidDependencies()) { 2597 assert(UnscheduledDeps <= Dependencies && "invariant"); 2598 } else { 2599 assert(UnscheduledDeps == Dependencies && "invariant"); 2600 } 2601 2602 if (IsScheduled) { 2603 assert(isSchedulingEntity() && 2604 "unexpected scheduled state"); 2605 for (const ScheduleData *BundleMember = this; BundleMember; 2606 BundleMember = BundleMember->NextInBundle) { 2607 assert(BundleMember->hasValidDependencies() && 2608 BundleMember->UnscheduledDeps == 0 && 2609 "unexpected scheduled state"); 2610 assert((BundleMember == this || !BundleMember->IsScheduled) && 2611 "only bundle is marked scheduled"); 2612 } 2613 } 2614 2615 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2616 "all bundle members must be in same basic block"); 2617 } 2618 2619 /// Returns true if the dependency information has been calculated. 2620 /// Note that depenendency validity can vary between instructions within 2621 /// a single bundle. 2622 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2623 2624 /// Returns true for single instructions and for bundle representatives 2625 /// (= the head of a bundle). 2626 bool isSchedulingEntity() const { return FirstInBundle == this; } 2627 2628 /// Returns true if it represents an instruction bundle and not only a 2629 /// single instruction. 2630 bool isPartOfBundle() const { 2631 return NextInBundle != nullptr || FirstInBundle != this || TE; 2632 } 2633 2634 /// Returns true if it is ready for scheduling, i.e. it has no more 2635 /// unscheduled depending instructions/bundles. 2636 bool isReady() const { 2637 assert(isSchedulingEntity() && 2638 "can't consider non-scheduling entity for ready list"); 2639 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2640 } 2641 2642 /// Modifies the number of unscheduled dependencies for this instruction, 2643 /// and returns the number of remaining dependencies for the containing 2644 /// bundle. 2645 int incrementUnscheduledDeps(int Incr) { 2646 assert(hasValidDependencies() && 2647 "increment of unscheduled deps would be meaningless"); 2648 UnscheduledDeps += Incr; 2649 return FirstInBundle->unscheduledDepsInBundle(); 2650 } 2651 2652 /// Sets the number of unscheduled dependencies to the number of 2653 /// dependencies. 2654 void resetUnscheduledDeps() { 2655 UnscheduledDeps = Dependencies; 2656 } 2657 2658 /// Clears all dependency information. 2659 void clearDependencies() { 2660 Dependencies = InvalidDeps; 2661 resetUnscheduledDeps(); 2662 MemoryDependencies.clear(); 2663 ControlDependencies.clear(); 2664 } 2665 2666 int unscheduledDepsInBundle() const { 2667 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2668 int Sum = 0; 2669 for (const ScheduleData *BundleMember = this; BundleMember; 2670 BundleMember = BundleMember->NextInBundle) { 2671 if (BundleMember->UnscheduledDeps == InvalidDeps) 2672 return InvalidDeps; 2673 Sum += BundleMember->UnscheduledDeps; 2674 } 2675 return Sum; 2676 } 2677 2678 void dump(raw_ostream &os) const { 2679 if (!isSchedulingEntity()) { 2680 os << "/ " << *Inst; 2681 } else if (NextInBundle) { 2682 os << '[' << *Inst; 2683 ScheduleData *SD = NextInBundle; 2684 while (SD) { 2685 os << ';' << *SD->Inst; 2686 SD = SD->NextInBundle; 2687 } 2688 os << ']'; 2689 } else { 2690 os << *Inst; 2691 } 2692 } 2693 2694 Instruction *Inst = nullptr; 2695 2696 /// Opcode of the current instruction in the schedule data. 2697 Value *OpValue = nullptr; 2698 2699 /// The TreeEntry that this instruction corresponds to. 2700 TreeEntry *TE = nullptr; 2701 2702 /// Points to the head in an instruction bundle (and always to this for 2703 /// single instructions). 2704 ScheduleData *FirstInBundle = nullptr; 2705 2706 /// Single linked list of all instructions in a bundle. Null if it is a 2707 /// single instruction. 2708 ScheduleData *NextInBundle = nullptr; 2709 2710 /// Single linked list of all memory instructions (e.g. load, store, call) 2711 /// in the block - until the end of the scheduling region. 2712 ScheduleData *NextLoadStore = nullptr; 2713 2714 /// The dependent memory instructions. 2715 /// This list is derived on demand in calculateDependencies(). 2716 SmallVector<ScheduleData *, 4> MemoryDependencies; 2717 2718 /// List of instructions which this instruction could be control dependent 2719 /// on. Allowing such nodes to be scheduled below this one could introduce 2720 /// a runtime fault which didn't exist in the original program. 2721 /// ex: this is a load or udiv following a readonly call which inf loops 2722 SmallVector<ScheduleData *, 4> ControlDependencies; 2723 2724 /// This ScheduleData is in the current scheduling region if this matches 2725 /// the current SchedulingRegionID of BlockScheduling. 2726 int SchedulingRegionID = 0; 2727 2728 /// Used for getting a "good" final ordering of instructions. 2729 int SchedulingPriority = 0; 2730 2731 /// The number of dependencies. Constitutes of the number of users of the 2732 /// instruction plus the number of dependent memory instructions (if any). 2733 /// This value is calculated on demand. 2734 /// If InvalidDeps, the number of dependencies is not calculated yet. 2735 int Dependencies = InvalidDeps; 2736 2737 /// The number of dependencies minus the number of dependencies of scheduled 2738 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2739 /// for scheduling. 2740 /// Note that this is negative as long as Dependencies is not calculated. 2741 int UnscheduledDeps = InvalidDeps; 2742 2743 /// True if this instruction is scheduled (or considered as scheduled in the 2744 /// dry-run). 2745 bool IsScheduled = false; 2746 }; 2747 2748 #ifndef NDEBUG 2749 friend inline raw_ostream &operator<<(raw_ostream &os, 2750 const BoUpSLP::ScheduleData &SD) { 2751 SD.dump(os); 2752 return os; 2753 } 2754 #endif 2755 2756 friend struct GraphTraits<BoUpSLP *>; 2757 friend struct DOTGraphTraits<BoUpSLP *>; 2758 2759 /// Contains all scheduling data for a basic block. 2760 /// It does not schedules instructions, which are not memory read/write 2761 /// instructions and their operands are either constants, or arguments, or 2762 /// phis, or instructions from others blocks, or their users are phis or from 2763 /// the other blocks. The resulting vector instructions can be placed at the 2764 /// beginning of the basic block without scheduling (if operands does not need 2765 /// to be scheduled) or at the end of the block (if users are outside of the 2766 /// block). It allows to save some compile time and memory used by the 2767 /// compiler. 2768 /// ScheduleData is assigned for each instruction in between the boundaries of 2769 /// the tree entry, even for those, which are not part of the graph. It is 2770 /// required to correctly follow the dependencies between the instructions and 2771 /// their correct scheduling. The ScheduleData is not allocated for the 2772 /// instructions, which do not require scheduling, like phis, nodes with 2773 /// extractelements/insertelements only or nodes with instructions, with 2774 /// uses/operands outside of the block. 2775 struct BlockScheduling { 2776 BlockScheduling(BasicBlock *BB) 2777 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2778 2779 void clear() { 2780 ReadyInsts.clear(); 2781 ScheduleStart = nullptr; 2782 ScheduleEnd = nullptr; 2783 FirstLoadStoreInRegion = nullptr; 2784 LastLoadStoreInRegion = nullptr; 2785 RegionHasStackSave = false; 2786 2787 // Reduce the maximum schedule region size by the size of the 2788 // previous scheduling run. 2789 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2790 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2791 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2792 ScheduleRegionSize = 0; 2793 2794 // Make a new scheduling region, i.e. all existing ScheduleData is not 2795 // in the new region yet. 2796 ++SchedulingRegionID; 2797 } 2798 2799 ScheduleData *getScheduleData(Instruction *I) { 2800 if (BB != I->getParent()) 2801 // Avoid lookup if can't possibly be in map. 2802 return nullptr; 2803 ScheduleData *SD = ScheduleDataMap.lookup(I); 2804 if (SD && isInSchedulingRegion(SD)) 2805 return SD; 2806 return nullptr; 2807 } 2808 2809 ScheduleData *getScheduleData(Value *V) { 2810 if (auto *I = dyn_cast<Instruction>(V)) 2811 return getScheduleData(I); 2812 return nullptr; 2813 } 2814 2815 ScheduleData *getScheduleData(Value *V, Value *Key) { 2816 if (V == Key) 2817 return getScheduleData(V); 2818 auto I = ExtraScheduleDataMap.find(V); 2819 if (I != ExtraScheduleDataMap.end()) { 2820 ScheduleData *SD = I->second.lookup(Key); 2821 if (SD && isInSchedulingRegion(SD)) 2822 return SD; 2823 } 2824 return nullptr; 2825 } 2826 2827 bool isInSchedulingRegion(ScheduleData *SD) const { 2828 return SD->SchedulingRegionID == SchedulingRegionID; 2829 } 2830 2831 /// Marks an instruction as scheduled and puts all dependent ready 2832 /// instructions into the ready-list. 2833 template <typename ReadyListType> 2834 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2835 SD->IsScheduled = true; 2836 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2837 2838 for (ScheduleData *BundleMember = SD; BundleMember; 2839 BundleMember = BundleMember->NextInBundle) { 2840 if (BundleMember->Inst != BundleMember->OpValue) 2841 continue; 2842 2843 // Handle the def-use chain dependencies. 2844 2845 // Decrement the unscheduled counter and insert to ready list if ready. 2846 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2847 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2848 if (OpDef && OpDef->hasValidDependencies() && 2849 OpDef->incrementUnscheduledDeps(-1) == 0) { 2850 // There are no more unscheduled dependencies after 2851 // decrementing, so we can put the dependent instruction 2852 // into the ready list. 2853 ScheduleData *DepBundle = OpDef->FirstInBundle; 2854 assert(!DepBundle->IsScheduled && 2855 "already scheduled bundle gets ready"); 2856 ReadyList.insert(DepBundle); 2857 LLVM_DEBUG(dbgs() 2858 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2859 } 2860 }); 2861 }; 2862 2863 // If BundleMember is a vector bundle, its operands may have been 2864 // reordered during buildTree(). We therefore need to get its operands 2865 // through the TreeEntry. 2866 if (TreeEntry *TE = BundleMember->TE) { 2867 // Need to search for the lane since the tree entry can be reordered. 2868 int Lane = std::distance(TE->Scalars.begin(), 2869 find(TE->Scalars, BundleMember->Inst)); 2870 assert(Lane >= 0 && "Lane not set"); 2871 2872 // Since vectorization tree is being built recursively this assertion 2873 // ensures that the tree entry has all operands set before reaching 2874 // this code. Couple of exceptions known at the moment are extracts 2875 // where their second (immediate) operand is not added. Since 2876 // immediates do not affect scheduler behavior this is considered 2877 // okay. 2878 auto *In = BundleMember->Inst; 2879 assert(In && 2880 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2881 In->getNumOperands() == TE->getNumOperands()) && 2882 "Missed TreeEntry operands?"); 2883 (void)In; // fake use to avoid build failure when assertions disabled 2884 2885 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2886 OpIdx != NumOperands; ++OpIdx) 2887 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2888 DecrUnsched(I); 2889 } else { 2890 // If BundleMember is a stand-alone instruction, no operand reordering 2891 // has taken place, so we directly access its operands. 2892 for (Use &U : BundleMember->Inst->operands()) 2893 if (auto *I = dyn_cast<Instruction>(U.get())) 2894 DecrUnsched(I); 2895 } 2896 // Handle the memory dependencies. 2897 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2898 if (MemoryDepSD->hasValidDependencies() && 2899 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2900 // There are no more unscheduled dependencies after decrementing, 2901 // so we can put the dependent instruction into the ready list. 2902 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2903 assert(!DepBundle->IsScheduled && 2904 "already scheduled bundle gets ready"); 2905 ReadyList.insert(DepBundle); 2906 LLVM_DEBUG(dbgs() 2907 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2908 } 2909 } 2910 // Handle the control dependencies. 2911 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2912 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2913 // There are no more unscheduled dependencies after decrementing, 2914 // so we can put the dependent instruction into the ready list. 2915 ScheduleData *DepBundle = DepSD->FirstInBundle; 2916 assert(!DepBundle->IsScheduled && 2917 "already scheduled bundle gets ready"); 2918 ReadyList.insert(DepBundle); 2919 LLVM_DEBUG(dbgs() 2920 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2921 } 2922 } 2923 2924 } 2925 } 2926 2927 /// Verify basic self consistency properties of the data structure. 2928 void verify() { 2929 if (!ScheduleStart) 2930 return; 2931 2932 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2933 ScheduleStart->comesBefore(ScheduleEnd) && 2934 "Not a valid scheduling region?"); 2935 2936 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2937 auto *SD = getScheduleData(I); 2938 if (!SD) 2939 continue; 2940 assert(isInSchedulingRegion(SD) && 2941 "primary schedule data not in window?"); 2942 assert(isInSchedulingRegion(SD->FirstInBundle) && 2943 "entire bundle in window!"); 2944 (void)SD; 2945 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2946 } 2947 2948 for (auto *SD : ReadyInsts) { 2949 assert(SD->isSchedulingEntity() && SD->isReady() && 2950 "item in ready list not ready?"); 2951 (void)SD; 2952 } 2953 } 2954 2955 void doForAllOpcodes(Value *V, 2956 function_ref<void(ScheduleData *SD)> Action) { 2957 if (ScheduleData *SD = getScheduleData(V)) 2958 Action(SD); 2959 auto I = ExtraScheduleDataMap.find(V); 2960 if (I != ExtraScheduleDataMap.end()) 2961 for (auto &P : I->second) 2962 if (isInSchedulingRegion(P.second)) 2963 Action(P.second); 2964 } 2965 2966 /// Put all instructions into the ReadyList which are ready for scheduling. 2967 template <typename ReadyListType> 2968 void initialFillReadyList(ReadyListType &ReadyList) { 2969 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2970 doForAllOpcodes(I, [&](ScheduleData *SD) { 2971 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2972 SD->isReady()) { 2973 ReadyList.insert(SD); 2974 LLVM_DEBUG(dbgs() 2975 << "SLP: initially in ready list: " << *SD << "\n"); 2976 } 2977 }); 2978 } 2979 } 2980 2981 /// Build a bundle from the ScheduleData nodes corresponding to the 2982 /// scalar instruction for each lane. 2983 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2984 2985 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2986 /// cyclic dependencies. This is only a dry-run, no instructions are 2987 /// actually moved at this stage. 2988 /// \returns the scheduling bundle. The returned Optional value is non-None 2989 /// if \p VL is allowed to be scheduled. 2990 Optional<ScheduleData *> 2991 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2992 const InstructionsState &S); 2993 2994 /// Un-bundles a group of instructions. 2995 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2996 2997 /// Allocates schedule data chunk. 2998 ScheduleData *allocateScheduleDataChunks(); 2999 3000 /// Extends the scheduling region so that V is inside the region. 3001 /// \returns true if the region size is within the limit. 3002 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3003 3004 /// Initialize the ScheduleData structures for new instructions in the 3005 /// scheduling region. 3006 void initScheduleData(Instruction *FromI, Instruction *ToI, 3007 ScheduleData *PrevLoadStore, 3008 ScheduleData *NextLoadStore); 3009 3010 /// Updates the dependency information of a bundle and of all instructions/ 3011 /// bundles which depend on the original bundle. 3012 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3013 BoUpSLP *SLP); 3014 3015 /// Sets all instruction in the scheduling region to un-scheduled. 3016 void resetSchedule(); 3017 3018 BasicBlock *BB; 3019 3020 /// Simple memory allocation for ScheduleData. 3021 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3022 3023 /// The size of a ScheduleData array in ScheduleDataChunks. 3024 int ChunkSize; 3025 3026 /// The allocator position in the current chunk, which is the last entry 3027 /// of ScheduleDataChunks. 3028 int ChunkPos; 3029 3030 /// Attaches ScheduleData to Instruction. 3031 /// Note that the mapping survives during all vectorization iterations, i.e. 3032 /// ScheduleData structures are recycled. 3033 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3034 3035 /// Attaches ScheduleData to Instruction with the leading key. 3036 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3037 ExtraScheduleDataMap; 3038 3039 /// The ready-list for scheduling (only used for the dry-run). 3040 SetVector<ScheduleData *> ReadyInsts; 3041 3042 /// The first instruction of the scheduling region. 3043 Instruction *ScheduleStart = nullptr; 3044 3045 /// The first instruction _after_ the scheduling region. 3046 Instruction *ScheduleEnd = nullptr; 3047 3048 /// The first memory accessing instruction in the scheduling region 3049 /// (can be null). 3050 ScheduleData *FirstLoadStoreInRegion = nullptr; 3051 3052 /// The last memory accessing instruction in the scheduling region 3053 /// (can be null). 3054 ScheduleData *LastLoadStoreInRegion = nullptr; 3055 3056 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3057 /// region? Used to optimize the dependence calculation for the 3058 /// common case where there isn't. 3059 bool RegionHasStackSave = false; 3060 3061 /// The current size of the scheduling region. 3062 int ScheduleRegionSize = 0; 3063 3064 /// The maximum size allowed for the scheduling region. 3065 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3066 3067 /// The ID of the scheduling region. For a new vectorization iteration this 3068 /// is incremented which "removes" all ScheduleData from the region. 3069 /// Make sure that the initial SchedulingRegionID is greater than the 3070 /// initial SchedulingRegionID in ScheduleData (which is 0). 3071 int SchedulingRegionID = 1; 3072 }; 3073 3074 /// Attaches the BlockScheduling structures to basic blocks. 3075 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3076 3077 /// Performs the "real" scheduling. Done before vectorization is actually 3078 /// performed in a basic block. 3079 void scheduleBlock(BlockScheduling *BS); 3080 3081 /// List of users to ignore during scheduling and that don't need extracting. 3082 ArrayRef<Value *> UserIgnoreList; 3083 3084 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3085 /// sorted SmallVectors of unsigned. 3086 struct OrdersTypeDenseMapInfo { 3087 static OrdersType getEmptyKey() { 3088 OrdersType V; 3089 V.push_back(~1U); 3090 return V; 3091 } 3092 3093 static OrdersType getTombstoneKey() { 3094 OrdersType V; 3095 V.push_back(~2U); 3096 return V; 3097 } 3098 3099 static unsigned getHashValue(const OrdersType &V) { 3100 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3101 } 3102 3103 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3104 return LHS == RHS; 3105 } 3106 }; 3107 3108 // Analysis and block reference. 3109 Function *F; 3110 ScalarEvolution *SE; 3111 TargetTransformInfo *TTI; 3112 TargetLibraryInfo *TLI; 3113 LoopInfo *LI; 3114 DominatorTree *DT; 3115 AssumptionCache *AC; 3116 DemandedBits *DB; 3117 const DataLayout *DL; 3118 OptimizationRemarkEmitter *ORE; 3119 3120 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3121 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3122 3123 /// Instruction builder to construct the vectorized tree. 3124 IRBuilder<> Builder; 3125 3126 /// A map of scalar integer values to the smallest bit width with which they 3127 /// can legally be represented. The values map to (width, signed) pairs, 3128 /// where "width" indicates the minimum bit width and "signed" is True if the 3129 /// value must be signed-extended, rather than zero-extended, back to its 3130 /// original width. 3131 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3132 }; 3133 3134 } // end namespace slpvectorizer 3135 3136 template <> struct GraphTraits<BoUpSLP *> { 3137 using TreeEntry = BoUpSLP::TreeEntry; 3138 3139 /// NodeRef has to be a pointer per the GraphWriter. 3140 using NodeRef = TreeEntry *; 3141 3142 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3143 3144 /// Add the VectorizableTree to the index iterator to be able to return 3145 /// TreeEntry pointers. 3146 struct ChildIteratorType 3147 : public iterator_adaptor_base< 3148 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3149 ContainerTy &VectorizableTree; 3150 3151 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3152 ContainerTy &VT) 3153 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3154 3155 NodeRef operator*() { return I->UserTE; } 3156 }; 3157 3158 static NodeRef getEntryNode(BoUpSLP &R) { 3159 return R.VectorizableTree[0].get(); 3160 } 3161 3162 static ChildIteratorType child_begin(NodeRef N) { 3163 return {N->UserTreeIndices.begin(), N->Container}; 3164 } 3165 3166 static ChildIteratorType child_end(NodeRef N) { 3167 return {N->UserTreeIndices.end(), N->Container}; 3168 } 3169 3170 /// For the node iterator we just need to turn the TreeEntry iterator into a 3171 /// TreeEntry* iterator so that it dereferences to NodeRef. 3172 class nodes_iterator { 3173 using ItTy = ContainerTy::iterator; 3174 ItTy It; 3175 3176 public: 3177 nodes_iterator(const ItTy &It2) : It(It2) {} 3178 NodeRef operator*() { return It->get(); } 3179 nodes_iterator operator++() { 3180 ++It; 3181 return *this; 3182 } 3183 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3184 }; 3185 3186 static nodes_iterator nodes_begin(BoUpSLP *R) { 3187 return nodes_iterator(R->VectorizableTree.begin()); 3188 } 3189 3190 static nodes_iterator nodes_end(BoUpSLP *R) { 3191 return nodes_iterator(R->VectorizableTree.end()); 3192 } 3193 3194 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3195 }; 3196 3197 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3198 using TreeEntry = BoUpSLP::TreeEntry; 3199 3200 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3201 3202 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3203 std::string Str; 3204 raw_string_ostream OS(Str); 3205 if (isSplat(Entry->Scalars)) 3206 OS << "<splat> "; 3207 for (auto V : Entry->Scalars) { 3208 OS << *V; 3209 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3210 return EU.Scalar == V; 3211 })) 3212 OS << " <extract>"; 3213 OS << "\n"; 3214 } 3215 return Str; 3216 } 3217 3218 static std::string getNodeAttributes(const TreeEntry *Entry, 3219 const BoUpSLP *) { 3220 if (Entry->State == TreeEntry::NeedToGather) 3221 return "color=red"; 3222 return ""; 3223 } 3224 }; 3225 3226 } // end namespace llvm 3227 3228 BoUpSLP::~BoUpSLP() { 3229 SmallVector<WeakTrackingVH> DeadInsts; 3230 for (auto *I : DeletedInstructions) { 3231 for (Use &U : I->operands()) { 3232 auto *Op = dyn_cast<Instruction>(U.get()); 3233 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3234 wouldInstructionBeTriviallyDead(Op, TLI)) 3235 DeadInsts.emplace_back(Op); 3236 } 3237 I->dropAllReferences(); 3238 } 3239 for (auto *I : DeletedInstructions) { 3240 assert(I->use_empty() && 3241 "trying to erase instruction with users."); 3242 I->eraseFromParent(); 3243 } 3244 3245 // Cleanup any dead scalar code feeding the vectorized instructions 3246 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3247 3248 #ifdef EXPENSIVE_CHECKS 3249 // If we could guarantee that this call is not extremely slow, we could 3250 // remove the ifdef limitation (see PR47712). 3251 assert(!verifyFunction(*F, &dbgs())); 3252 #endif 3253 } 3254 3255 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3256 /// contains original mask for the scalars reused in the node. Procedure 3257 /// transform this mask in accordance with the given \p Mask. 3258 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3259 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3260 "Expected non-empty mask."); 3261 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3262 Prev.swap(Reuses); 3263 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3264 if (Mask[I] != UndefMaskElem) 3265 Reuses[Mask[I]] = Prev[I]; 3266 } 3267 3268 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3269 /// the original order of the scalars. Procedure transforms the provided order 3270 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3271 /// identity order, \p Order is cleared. 3272 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3273 assert(!Mask.empty() && "Expected non-empty mask."); 3274 SmallVector<int> MaskOrder; 3275 if (Order.empty()) { 3276 MaskOrder.resize(Mask.size()); 3277 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3278 } else { 3279 inversePermutation(Order, MaskOrder); 3280 } 3281 reorderReuses(MaskOrder, Mask); 3282 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3283 Order.clear(); 3284 return; 3285 } 3286 Order.assign(Mask.size(), Mask.size()); 3287 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3288 if (MaskOrder[I] != UndefMaskElem) 3289 Order[MaskOrder[I]] = I; 3290 fixupOrderingIndices(Order); 3291 } 3292 3293 Optional<BoUpSLP::OrdersType> 3294 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3295 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3296 unsigned NumScalars = TE.Scalars.size(); 3297 OrdersType CurrentOrder(NumScalars, NumScalars); 3298 SmallVector<int> Positions; 3299 SmallBitVector UsedPositions(NumScalars); 3300 const TreeEntry *STE = nullptr; 3301 // Try to find all gathered scalars that are gets vectorized in other 3302 // vectorize node. Here we can have only one single tree vector node to 3303 // correctly identify order of the gathered scalars. 3304 for (unsigned I = 0; I < NumScalars; ++I) { 3305 Value *V = TE.Scalars[I]; 3306 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3307 continue; 3308 if (const auto *LocalSTE = getTreeEntry(V)) { 3309 if (!STE) 3310 STE = LocalSTE; 3311 else if (STE != LocalSTE) 3312 // Take the order only from the single vector node. 3313 return None; 3314 unsigned Lane = 3315 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3316 if (Lane >= NumScalars) 3317 return None; 3318 if (CurrentOrder[Lane] != NumScalars) { 3319 if (Lane != I) 3320 continue; 3321 UsedPositions.reset(CurrentOrder[Lane]); 3322 } 3323 // The partial identity (where only some elements of the gather node are 3324 // in the identity order) is good. 3325 CurrentOrder[Lane] = I; 3326 UsedPositions.set(I); 3327 } 3328 } 3329 // Need to keep the order if we have a vector entry and at least 2 scalars or 3330 // the vectorized entry has just 2 scalars. 3331 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3332 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3333 for (unsigned I = 0; I < NumScalars; ++I) 3334 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3335 return false; 3336 return true; 3337 }; 3338 if (IsIdentityOrder(CurrentOrder)) { 3339 CurrentOrder.clear(); 3340 return CurrentOrder; 3341 } 3342 auto *It = CurrentOrder.begin(); 3343 for (unsigned I = 0; I < NumScalars;) { 3344 if (UsedPositions.test(I)) { 3345 ++I; 3346 continue; 3347 } 3348 if (*It == NumScalars) { 3349 *It = I; 3350 ++I; 3351 } 3352 ++It; 3353 } 3354 return CurrentOrder; 3355 } 3356 return None; 3357 } 3358 3359 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3360 bool TopToBottom) { 3361 // No need to reorder if need to shuffle reuses, still need to shuffle the 3362 // node. 3363 if (!TE.ReuseShuffleIndices.empty()) 3364 return None; 3365 if (TE.State == TreeEntry::Vectorize && 3366 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3367 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3368 !TE.isAltShuffle()) 3369 return TE.ReorderIndices; 3370 if (TE.State == TreeEntry::NeedToGather) { 3371 // TODO: add analysis of other gather nodes with extractelement 3372 // instructions and other values/instructions, not only undefs. 3373 if (((TE.getOpcode() == Instruction::ExtractElement && 3374 !TE.isAltShuffle()) || 3375 (all_of(TE.Scalars, 3376 [](Value *V) { 3377 return isa<UndefValue, ExtractElementInst>(V); 3378 }) && 3379 any_of(TE.Scalars, 3380 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3381 all_of(TE.Scalars, 3382 [](Value *V) { 3383 auto *EE = dyn_cast<ExtractElementInst>(V); 3384 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3385 }) && 3386 allSameType(TE.Scalars)) { 3387 // Check that gather of extractelements can be represented as 3388 // just a shuffle of a single vector. 3389 OrdersType CurrentOrder; 3390 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3391 if (Reuse || !CurrentOrder.empty()) { 3392 if (!CurrentOrder.empty()) 3393 fixupOrderingIndices(CurrentOrder); 3394 return CurrentOrder; 3395 } 3396 } 3397 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3398 return CurrentOrder; 3399 } 3400 return None; 3401 } 3402 3403 void BoUpSLP::reorderTopToBottom() { 3404 // Maps VF to the graph nodes. 3405 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3406 // ExtractElement gather nodes which can be vectorized and need to handle 3407 // their ordering. 3408 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3409 // Find all reorderable nodes with the given VF. 3410 // Currently the are vectorized stores,loads,extracts + some gathering of 3411 // extracts. 3412 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3413 const std::unique_ptr<TreeEntry> &TE) { 3414 if (Optional<OrdersType> CurrentOrder = 3415 getReorderingData(*TE, /*TopToBottom=*/true)) { 3416 // Do not include ordering for nodes used in the alt opcode vectorization, 3417 // better to reorder them during bottom-to-top stage. If follow the order 3418 // here, it causes reordering of the whole graph though actually it is 3419 // profitable just to reorder the subgraph that starts from the alternate 3420 // opcode vectorization node. Such nodes already end-up with the shuffle 3421 // instruction and it is just enough to change this shuffle rather than 3422 // rotate the scalars for the whole graph. 3423 unsigned Cnt = 0; 3424 const TreeEntry *UserTE = TE.get(); 3425 while (UserTE && Cnt < RecursionMaxDepth) { 3426 if (UserTE->UserTreeIndices.size() != 1) 3427 break; 3428 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3429 return EI.UserTE->State == TreeEntry::Vectorize && 3430 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3431 })) 3432 return; 3433 if (UserTE->UserTreeIndices.empty()) 3434 UserTE = nullptr; 3435 else 3436 UserTE = UserTE->UserTreeIndices.back().UserTE; 3437 ++Cnt; 3438 } 3439 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3440 if (TE->State != TreeEntry::Vectorize) 3441 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3442 } 3443 }); 3444 3445 // Reorder the graph nodes according to their vectorization factor. 3446 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3447 VF /= 2) { 3448 auto It = VFToOrderedEntries.find(VF); 3449 if (It == VFToOrderedEntries.end()) 3450 continue; 3451 // Try to find the most profitable order. We just are looking for the most 3452 // used order and reorder scalar elements in the nodes according to this 3453 // mostly used order. 3454 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3455 // All operands are reordered and used only in this node - propagate the 3456 // most used order to the user node. 3457 MapVector<OrdersType, unsigned, 3458 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3459 OrdersUses; 3460 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3461 for (const TreeEntry *OpTE : OrderedEntries) { 3462 // No need to reorder this nodes, still need to extend and to use shuffle, 3463 // just need to merge reordering shuffle and the reuse shuffle. 3464 if (!OpTE->ReuseShuffleIndices.empty()) 3465 continue; 3466 // Count number of orders uses. 3467 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3468 if (OpTE->State == TreeEntry::NeedToGather) 3469 return GathersToOrders.find(OpTE)->second; 3470 return OpTE->ReorderIndices; 3471 }(); 3472 // Stores actually store the mask, not the order, need to invert. 3473 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3474 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3475 SmallVector<int> Mask; 3476 inversePermutation(Order, Mask); 3477 unsigned E = Order.size(); 3478 OrdersType CurrentOrder(E, E); 3479 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3480 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3481 }); 3482 fixupOrderingIndices(CurrentOrder); 3483 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3484 } else { 3485 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3486 } 3487 } 3488 // Set order of the user node. 3489 if (OrdersUses.empty()) 3490 continue; 3491 // Choose the most used order. 3492 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3493 unsigned Cnt = OrdersUses.front().second; 3494 for (const auto &Pair : drop_begin(OrdersUses)) { 3495 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3496 BestOrder = Pair.first; 3497 Cnt = Pair.second; 3498 } 3499 } 3500 // Set order of the user node. 3501 if (BestOrder.empty()) 3502 continue; 3503 SmallVector<int> Mask; 3504 inversePermutation(BestOrder, Mask); 3505 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3506 unsigned E = BestOrder.size(); 3507 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3508 return I < E ? static_cast<int>(I) : UndefMaskElem; 3509 }); 3510 // Do an actual reordering, if profitable. 3511 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3512 // Just do the reordering for the nodes with the given VF. 3513 if (TE->Scalars.size() != VF) { 3514 if (TE->ReuseShuffleIndices.size() == VF) { 3515 // Need to reorder the reuses masks of the operands with smaller VF to 3516 // be able to find the match between the graph nodes and scalar 3517 // operands of the given node during vectorization/cost estimation. 3518 assert(all_of(TE->UserTreeIndices, 3519 [VF, &TE](const EdgeInfo &EI) { 3520 return EI.UserTE->Scalars.size() == VF || 3521 EI.UserTE->Scalars.size() == 3522 TE->Scalars.size(); 3523 }) && 3524 "All users must be of VF size."); 3525 // Update ordering of the operands with the smaller VF than the given 3526 // one. 3527 reorderReuses(TE->ReuseShuffleIndices, Mask); 3528 } 3529 continue; 3530 } 3531 if (TE->State == TreeEntry::Vectorize && 3532 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3533 InsertElementInst>(TE->getMainOp()) && 3534 !TE->isAltShuffle()) { 3535 // Build correct orders for extract{element,value}, loads and 3536 // stores. 3537 reorderOrder(TE->ReorderIndices, Mask); 3538 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3539 TE->reorderOperands(Mask); 3540 } else { 3541 // Reorder the node and its operands. 3542 TE->reorderOperands(Mask); 3543 assert(TE->ReorderIndices.empty() && 3544 "Expected empty reorder sequence."); 3545 reorderScalars(TE->Scalars, Mask); 3546 } 3547 if (!TE->ReuseShuffleIndices.empty()) { 3548 // Apply reversed order to keep the original ordering of the reused 3549 // elements to avoid extra reorder indices shuffling. 3550 OrdersType CurrentOrder; 3551 reorderOrder(CurrentOrder, MaskOrder); 3552 SmallVector<int> NewReuses; 3553 inversePermutation(CurrentOrder, NewReuses); 3554 addMask(NewReuses, TE->ReuseShuffleIndices); 3555 TE->ReuseShuffleIndices.swap(NewReuses); 3556 } 3557 } 3558 } 3559 } 3560 3561 bool BoUpSLP::canReorderOperands( 3562 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3563 ArrayRef<TreeEntry *> ReorderableGathers, 3564 SmallVectorImpl<TreeEntry *> &GatherOps) { 3565 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3566 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3567 return OpData.first == I && 3568 OpData.second->State == TreeEntry::Vectorize; 3569 })) 3570 continue; 3571 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3572 // Do not reorder if operand node is used by many user nodes. 3573 if (any_of(TE->UserTreeIndices, 3574 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3575 return false; 3576 // Add the node to the list of the ordered nodes with the identity 3577 // order. 3578 Edges.emplace_back(I, TE); 3579 continue; 3580 } 3581 ArrayRef<Value *> VL = UserTE->getOperand(I); 3582 TreeEntry *Gather = nullptr; 3583 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3584 assert(TE->State != TreeEntry::Vectorize && 3585 "Only non-vectorized nodes are expected."); 3586 if (TE->isSame(VL)) { 3587 Gather = TE; 3588 return true; 3589 } 3590 return false; 3591 }) > 1) 3592 return false; 3593 if (Gather) 3594 GatherOps.push_back(Gather); 3595 } 3596 return true; 3597 } 3598 3599 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3600 SetVector<TreeEntry *> OrderedEntries; 3601 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3602 // Find all reorderable leaf nodes with the given VF. 3603 // Currently the are vectorized loads,extracts without alternate operands + 3604 // some gathering of extracts. 3605 SmallVector<TreeEntry *> NonVectorized; 3606 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3607 &NonVectorized]( 3608 const std::unique_ptr<TreeEntry> &TE) { 3609 if (TE->State != TreeEntry::Vectorize) 3610 NonVectorized.push_back(TE.get()); 3611 if (Optional<OrdersType> CurrentOrder = 3612 getReorderingData(*TE, /*TopToBottom=*/false)) { 3613 OrderedEntries.insert(TE.get()); 3614 if (TE->State != TreeEntry::Vectorize) 3615 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3616 } 3617 }); 3618 3619 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3620 // I.e., if the node has operands, that are reordered, try to make at least 3621 // one operand order in the natural order and reorder others + reorder the 3622 // user node itself. 3623 SmallPtrSet<const TreeEntry *, 4> Visited; 3624 while (!OrderedEntries.empty()) { 3625 // 1. Filter out only reordered nodes. 3626 // 2. If the entry has multiple uses - skip it and jump to the next node. 3627 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3628 SmallVector<TreeEntry *> Filtered; 3629 for (TreeEntry *TE : OrderedEntries) { 3630 if (!(TE->State == TreeEntry::Vectorize || 3631 (TE->State == TreeEntry::NeedToGather && 3632 GathersToOrders.count(TE))) || 3633 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3634 !all_of(drop_begin(TE->UserTreeIndices), 3635 [TE](const EdgeInfo &EI) { 3636 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3637 }) || 3638 !Visited.insert(TE).second) { 3639 Filtered.push_back(TE); 3640 continue; 3641 } 3642 // Build a map between user nodes and their operands order to speedup 3643 // search. The graph currently does not provide this dependency directly. 3644 for (EdgeInfo &EI : TE->UserTreeIndices) { 3645 TreeEntry *UserTE = EI.UserTE; 3646 auto It = Users.find(UserTE); 3647 if (It == Users.end()) 3648 It = Users.insert({UserTE, {}}).first; 3649 It->second.emplace_back(EI.EdgeIdx, TE); 3650 } 3651 } 3652 // Erase filtered entries. 3653 for_each(Filtered, 3654 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3655 for (auto &Data : Users) { 3656 // Check that operands are used only in the User node. 3657 SmallVector<TreeEntry *> GatherOps; 3658 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3659 GatherOps)) { 3660 for_each(Data.second, 3661 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3662 OrderedEntries.remove(Op.second); 3663 }); 3664 continue; 3665 } 3666 // All operands are reordered and used only in this node - propagate the 3667 // most used order to the user node. 3668 MapVector<OrdersType, unsigned, 3669 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3670 OrdersUses; 3671 // Do the analysis for each tree entry only once, otherwise the order of 3672 // the same node my be considered several times, though might be not 3673 // profitable. 3674 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3675 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3676 for (const auto &Op : Data.second) { 3677 TreeEntry *OpTE = Op.second; 3678 if (!VisitedOps.insert(OpTE).second) 3679 continue; 3680 if (!OpTE->ReuseShuffleIndices.empty() || 3681 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3682 continue; 3683 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3684 if (OpTE->State == TreeEntry::NeedToGather) 3685 return GathersToOrders.find(OpTE)->second; 3686 return OpTE->ReorderIndices; 3687 }(); 3688 unsigned NumOps = count_if( 3689 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3690 return P.second == OpTE; 3691 }); 3692 // Stores actually store the mask, not the order, need to invert. 3693 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3694 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3695 SmallVector<int> Mask; 3696 inversePermutation(Order, Mask); 3697 unsigned E = Order.size(); 3698 OrdersType CurrentOrder(E, E); 3699 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3700 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3701 }); 3702 fixupOrderingIndices(CurrentOrder); 3703 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3704 NumOps; 3705 } else { 3706 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3707 } 3708 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3709 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3710 const TreeEntry *TE) { 3711 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3712 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3713 (IgnoreReorder && TE->Idx == 0)) 3714 return true; 3715 if (TE->State == TreeEntry::NeedToGather) { 3716 auto It = GathersToOrders.find(TE); 3717 if (It != GathersToOrders.end()) 3718 return !It->second.empty(); 3719 return true; 3720 } 3721 return false; 3722 }; 3723 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3724 TreeEntry *UserTE = EI.UserTE; 3725 if (!VisitedUsers.insert(UserTE).second) 3726 continue; 3727 // May reorder user node if it requires reordering, has reused 3728 // scalars, is an alternate op vectorize node or its op nodes require 3729 // reordering. 3730 if (AllowsReordering(UserTE)) 3731 continue; 3732 // Check if users allow reordering. 3733 // Currently look up just 1 level of operands to avoid increase of 3734 // the compile time. 3735 // Profitable to reorder if definitely more operands allow 3736 // reordering rather than those with natural order. 3737 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3738 if (static_cast<unsigned>(count_if( 3739 Ops, [UserTE, &AllowsReordering]( 3740 const std::pair<unsigned, TreeEntry *> &Op) { 3741 return AllowsReordering(Op.second) && 3742 all_of(Op.second->UserTreeIndices, 3743 [UserTE](const EdgeInfo &EI) { 3744 return EI.UserTE == UserTE; 3745 }); 3746 })) <= Ops.size() / 2) 3747 ++Res.first->second; 3748 } 3749 } 3750 // If no orders - skip current nodes and jump to the next one, if any. 3751 if (OrdersUses.empty()) { 3752 for_each(Data.second, 3753 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3754 OrderedEntries.remove(Op.second); 3755 }); 3756 continue; 3757 } 3758 // Choose the best order. 3759 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3760 unsigned Cnt = OrdersUses.front().second; 3761 for (const auto &Pair : drop_begin(OrdersUses)) { 3762 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3763 BestOrder = Pair.first; 3764 Cnt = Pair.second; 3765 } 3766 } 3767 // Set order of the user node (reordering of operands and user nodes). 3768 if (BestOrder.empty()) { 3769 for_each(Data.second, 3770 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3771 OrderedEntries.remove(Op.second); 3772 }); 3773 continue; 3774 } 3775 // Erase operands from OrderedEntries list and adjust their orders. 3776 VisitedOps.clear(); 3777 SmallVector<int> Mask; 3778 inversePermutation(BestOrder, Mask); 3779 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3780 unsigned E = BestOrder.size(); 3781 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3782 return I < E ? static_cast<int>(I) : UndefMaskElem; 3783 }); 3784 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3785 TreeEntry *TE = Op.second; 3786 OrderedEntries.remove(TE); 3787 if (!VisitedOps.insert(TE).second) 3788 continue; 3789 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3790 // Just reorder reuses indices. 3791 reorderReuses(TE->ReuseShuffleIndices, Mask); 3792 continue; 3793 } 3794 // Gathers are processed separately. 3795 if (TE->State != TreeEntry::Vectorize) 3796 continue; 3797 assert((BestOrder.size() == TE->ReorderIndices.size() || 3798 TE->ReorderIndices.empty()) && 3799 "Non-matching sizes of user/operand entries."); 3800 reorderOrder(TE->ReorderIndices, Mask); 3801 } 3802 // For gathers just need to reorder its scalars. 3803 for (TreeEntry *Gather : GatherOps) { 3804 assert(Gather->ReorderIndices.empty() && 3805 "Unexpected reordering of gathers."); 3806 if (!Gather->ReuseShuffleIndices.empty()) { 3807 // Just reorder reuses indices. 3808 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3809 continue; 3810 } 3811 reorderScalars(Gather->Scalars, Mask); 3812 OrderedEntries.remove(Gather); 3813 } 3814 // Reorder operands of the user node and set the ordering for the user 3815 // node itself. 3816 if (Data.first->State != TreeEntry::Vectorize || 3817 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3818 Data.first->getMainOp()) || 3819 Data.first->isAltShuffle()) 3820 Data.first->reorderOperands(Mask); 3821 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3822 Data.first->isAltShuffle()) { 3823 reorderScalars(Data.first->Scalars, Mask); 3824 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3825 if (Data.first->ReuseShuffleIndices.empty() && 3826 !Data.first->ReorderIndices.empty() && 3827 !Data.first->isAltShuffle()) { 3828 // Insert user node to the list to try to sink reordering deeper in 3829 // the graph. 3830 OrderedEntries.insert(Data.first); 3831 } 3832 } else { 3833 reorderOrder(Data.first->ReorderIndices, Mask); 3834 } 3835 } 3836 } 3837 // If the reordering is unnecessary, just remove the reorder. 3838 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3839 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3840 VectorizableTree.front()->ReorderIndices.clear(); 3841 } 3842 3843 void BoUpSLP::buildExternalUses( 3844 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3845 // Collect the values that we need to extract from the tree. 3846 for (auto &TEPtr : VectorizableTree) { 3847 TreeEntry *Entry = TEPtr.get(); 3848 3849 // No need to handle users of gathered values. 3850 if (Entry->State == TreeEntry::NeedToGather) 3851 continue; 3852 3853 // For each lane: 3854 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3855 Value *Scalar = Entry->Scalars[Lane]; 3856 int FoundLane = Entry->findLaneForValue(Scalar); 3857 3858 // Check if the scalar is externally used as an extra arg. 3859 auto ExtI = ExternallyUsedValues.find(Scalar); 3860 if (ExtI != ExternallyUsedValues.end()) { 3861 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3862 << Lane << " from " << *Scalar << ".\n"); 3863 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3864 } 3865 for (User *U : Scalar->users()) { 3866 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3867 3868 Instruction *UserInst = dyn_cast<Instruction>(U); 3869 if (!UserInst) 3870 continue; 3871 3872 if (isDeleted(UserInst)) 3873 continue; 3874 3875 // Skip in-tree scalars that become vectors 3876 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3877 Value *UseScalar = UseEntry->Scalars[0]; 3878 // Some in-tree scalars will remain as scalar in vectorized 3879 // instructions. If that is the case, the one in Lane 0 will 3880 // be used. 3881 if (UseScalar != U || 3882 UseEntry->State == TreeEntry::ScatterVectorize || 3883 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3884 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3885 << ".\n"); 3886 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3887 continue; 3888 } 3889 } 3890 3891 // Ignore users in the user ignore list. 3892 if (is_contained(UserIgnoreList, UserInst)) 3893 continue; 3894 3895 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3896 << Lane << " from " << *Scalar << ".\n"); 3897 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3898 } 3899 } 3900 } 3901 } 3902 3903 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3904 ArrayRef<Value *> UserIgnoreLst) { 3905 deleteTree(); 3906 UserIgnoreList = UserIgnoreLst; 3907 if (!allSameType(Roots)) 3908 return; 3909 buildTree_rec(Roots, 0, EdgeInfo()); 3910 } 3911 3912 namespace { 3913 /// Tracks the state we can represent the loads in the given sequence. 3914 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3915 } // anonymous namespace 3916 3917 /// Checks if the given array of loads can be represented as a vectorized, 3918 /// scatter or just simple gather. 3919 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3920 const TargetTransformInfo &TTI, 3921 const DataLayout &DL, ScalarEvolution &SE, 3922 SmallVectorImpl<unsigned> &Order, 3923 SmallVectorImpl<Value *> &PointerOps) { 3924 // Check that a vectorized load would load the same memory as a scalar 3925 // load. For example, we don't want to vectorize loads that are smaller 3926 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3927 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3928 // from such a struct, we read/write packed bits disagreeing with the 3929 // unvectorized version. 3930 Type *ScalarTy = VL0->getType(); 3931 3932 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3933 return LoadsState::Gather; 3934 3935 // Make sure all loads in the bundle are simple - we can't vectorize 3936 // atomic or volatile loads. 3937 PointerOps.clear(); 3938 PointerOps.resize(VL.size()); 3939 auto *POIter = PointerOps.begin(); 3940 for (Value *V : VL) { 3941 auto *L = cast<LoadInst>(V); 3942 if (!L->isSimple()) 3943 return LoadsState::Gather; 3944 *POIter = L->getPointerOperand(); 3945 ++POIter; 3946 } 3947 3948 Order.clear(); 3949 // Check the order of pointer operands. 3950 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3951 Value *Ptr0; 3952 Value *PtrN; 3953 if (Order.empty()) { 3954 Ptr0 = PointerOps.front(); 3955 PtrN = PointerOps.back(); 3956 } else { 3957 Ptr0 = PointerOps[Order.front()]; 3958 PtrN = PointerOps[Order.back()]; 3959 } 3960 Optional<int> Diff = 3961 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3962 // Check that the sorted loads are consecutive. 3963 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3964 return LoadsState::Vectorize; 3965 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3966 for (Value *V : VL) 3967 CommonAlignment = 3968 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3969 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3970 CommonAlignment)) 3971 return LoadsState::ScatterVectorize; 3972 } 3973 3974 return LoadsState::Gather; 3975 } 3976 3977 /// \return true if the specified list of values has only one instruction that 3978 /// requires scheduling, false otherwise. 3979 #ifndef NDEBUG 3980 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3981 Value *NeedsScheduling = nullptr; 3982 for (Value *V : VL) { 3983 if (doesNotNeedToBeScheduled(V)) 3984 continue; 3985 if (!NeedsScheduling) { 3986 NeedsScheduling = V; 3987 continue; 3988 } 3989 return false; 3990 } 3991 return NeedsScheduling; 3992 } 3993 #endif 3994 3995 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3996 const EdgeInfo &UserTreeIdx) { 3997 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3998 3999 SmallVector<int> ReuseShuffleIndicies; 4000 SmallVector<Value *> UniqueValues; 4001 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4002 &UserTreeIdx, 4003 this](const InstructionsState &S) { 4004 // Check that every instruction appears once in this bundle. 4005 DenseMap<Value *, unsigned> UniquePositions; 4006 for (Value *V : VL) { 4007 if (isConstant(V)) { 4008 ReuseShuffleIndicies.emplace_back( 4009 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4010 UniqueValues.emplace_back(V); 4011 continue; 4012 } 4013 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4014 ReuseShuffleIndicies.emplace_back(Res.first->second); 4015 if (Res.second) 4016 UniqueValues.emplace_back(V); 4017 } 4018 size_t NumUniqueScalarValues = UniqueValues.size(); 4019 if (NumUniqueScalarValues == VL.size()) { 4020 ReuseShuffleIndicies.clear(); 4021 } else { 4022 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4023 if (NumUniqueScalarValues <= 1 || 4024 (UniquePositions.size() == 1 && all_of(UniqueValues, 4025 [](Value *V) { 4026 return isa<UndefValue>(V) || 4027 !isConstant(V); 4028 })) || 4029 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4030 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4032 return false; 4033 } 4034 VL = UniqueValues; 4035 } 4036 return true; 4037 }; 4038 4039 InstructionsState S = getSameOpcode(VL); 4040 if (Depth == RecursionMaxDepth) { 4041 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4042 if (TryToFindDuplicates(S)) 4043 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4044 ReuseShuffleIndicies); 4045 return; 4046 } 4047 4048 // Don't handle scalable vectors 4049 if (S.getOpcode() == Instruction::ExtractElement && 4050 isa<ScalableVectorType>( 4051 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4052 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4053 if (TryToFindDuplicates(S)) 4054 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4055 ReuseShuffleIndicies); 4056 return; 4057 } 4058 4059 // Don't handle vectors. 4060 if (S.OpValue->getType()->isVectorTy() && 4061 !isa<InsertElementInst>(S.OpValue)) { 4062 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4063 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4064 return; 4065 } 4066 4067 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4068 if (SI->getValueOperand()->getType()->isVectorTy()) { 4069 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4070 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4071 return; 4072 } 4073 4074 // If all of the operands are identical or constant we have a simple solution. 4075 // If we deal with insert/extract instructions, they all must have constant 4076 // indices, otherwise we should gather them, not try to vectorize. 4077 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4078 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4079 !all_of(VL, isVectorLikeInstWithConstOps))) { 4080 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4081 if (TryToFindDuplicates(S)) 4082 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4083 ReuseShuffleIndicies); 4084 return; 4085 } 4086 4087 // We now know that this is a vector of instructions of the same type from 4088 // the same block. 4089 4090 // Don't vectorize ephemeral values. 4091 for (Value *V : VL) { 4092 if (EphValues.count(V)) { 4093 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4094 << ") is ephemeral.\n"); 4095 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4096 return; 4097 } 4098 } 4099 4100 // Check if this is a duplicate of another entry. 4101 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4102 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4103 if (!E->isSame(VL)) { 4104 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4105 if (TryToFindDuplicates(S)) 4106 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4107 ReuseShuffleIndicies); 4108 return; 4109 } 4110 // Record the reuse of the tree node. FIXME, currently this is only used to 4111 // properly draw the graph rather than for the actual vectorization. 4112 E->UserTreeIndices.push_back(UserTreeIdx); 4113 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4114 << ".\n"); 4115 return; 4116 } 4117 4118 // Check that none of the instructions in the bundle are already in the tree. 4119 for (Value *V : VL) { 4120 auto *I = dyn_cast<Instruction>(V); 4121 if (!I) 4122 continue; 4123 if (getTreeEntry(I)) { 4124 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4125 << ") is already in tree.\n"); 4126 if (TryToFindDuplicates(S)) 4127 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4128 ReuseShuffleIndicies); 4129 return; 4130 } 4131 } 4132 4133 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4134 for (Value *V : VL) { 4135 if (is_contained(UserIgnoreList, V)) { 4136 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4137 if (TryToFindDuplicates(S)) 4138 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4139 ReuseShuffleIndicies); 4140 return; 4141 } 4142 } 4143 4144 // Check that all of the users of the scalars that we want to vectorize are 4145 // schedulable. 4146 auto *VL0 = cast<Instruction>(S.OpValue); 4147 BasicBlock *BB = VL0->getParent(); 4148 4149 if (!DT->isReachableFromEntry(BB)) { 4150 // Don't go into unreachable blocks. They may contain instructions with 4151 // dependency cycles which confuse the final scheduling. 4152 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4154 return; 4155 } 4156 4157 // Check that every instruction appears once in this bundle. 4158 if (!TryToFindDuplicates(S)) 4159 return; 4160 4161 auto &BSRef = BlocksSchedules[BB]; 4162 if (!BSRef) 4163 BSRef = std::make_unique<BlockScheduling>(BB); 4164 4165 BlockScheduling &BS = *BSRef; 4166 4167 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4168 #ifdef EXPENSIVE_CHECKS 4169 // Make sure we didn't break any internal invariants 4170 BS.verify(); 4171 #endif 4172 if (!Bundle) { 4173 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4174 assert((!BS.getScheduleData(VL0) || 4175 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4176 "tryScheduleBundle should cancelScheduling on failure"); 4177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4178 ReuseShuffleIndicies); 4179 return; 4180 } 4181 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4182 4183 unsigned ShuffleOrOp = S.isAltShuffle() ? 4184 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4185 switch (ShuffleOrOp) { 4186 case Instruction::PHI: { 4187 auto *PH = cast<PHINode>(VL0); 4188 4189 // Check for terminator values (e.g. invoke). 4190 for (Value *V : VL) 4191 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4192 Instruction *Term = dyn_cast<Instruction>(Incoming); 4193 if (Term && Term->isTerminator()) { 4194 LLVM_DEBUG(dbgs() 4195 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4196 BS.cancelScheduling(VL, VL0); 4197 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4198 ReuseShuffleIndicies); 4199 return; 4200 } 4201 } 4202 4203 TreeEntry *TE = 4204 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4205 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4206 4207 // Keeps the reordered operands to avoid code duplication. 4208 SmallVector<ValueList, 2> OperandsVec; 4209 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4210 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4211 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4212 TE->setOperand(I, Operands); 4213 OperandsVec.push_back(Operands); 4214 continue; 4215 } 4216 ValueList Operands; 4217 // Prepare the operand vector. 4218 for (Value *V : VL) 4219 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4220 PH->getIncomingBlock(I))); 4221 TE->setOperand(I, Operands); 4222 OperandsVec.push_back(Operands); 4223 } 4224 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4225 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4226 return; 4227 } 4228 case Instruction::ExtractValue: 4229 case Instruction::ExtractElement: { 4230 OrdersType CurrentOrder; 4231 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4232 if (Reuse) { 4233 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4234 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4235 ReuseShuffleIndicies); 4236 // This is a special case, as it does not gather, but at the same time 4237 // we are not extending buildTree_rec() towards the operands. 4238 ValueList Op0; 4239 Op0.assign(VL.size(), VL0->getOperand(0)); 4240 VectorizableTree.back()->setOperand(0, Op0); 4241 return; 4242 } 4243 if (!CurrentOrder.empty()) { 4244 LLVM_DEBUG({ 4245 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4246 "with order"; 4247 for (unsigned Idx : CurrentOrder) 4248 dbgs() << " " << Idx; 4249 dbgs() << "\n"; 4250 }); 4251 fixupOrderingIndices(CurrentOrder); 4252 // Insert new order with initial value 0, if it does not exist, 4253 // otherwise return the iterator to the existing one. 4254 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4255 ReuseShuffleIndicies, CurrentOrder); 4256 // This is a special case, as it does not gather, but at the same time 4257 // we are not extending buildTree_rec() towards the operands. 4258 ValueList Op0; 4259 Op0.assign(VL.size(), VL0->getOperand(0)); 4260 VectorizableTree.back()->setOperand(0, Op0); 4261 return; 4262 } 4263 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4265 ReuseShuffleIndicies); 4266 BS.cancelScheduling(VL, VL0); 4267 return; 4268 } 4269 case Instruction::InsertElement: { 4270 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4271 4272 // Check that we have a buildvector and not a shuffle of 2 or more 4273 // different vectors. 4274 ValueSet SourceVectors; 4275 for (Value *V : VL) { 4276 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4277 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4278 } 4279 4280 if (count_if(VL, [&SourceVectors](Value *V) { 4281 return !SourceVectors.contains(V); 4282 }) >= 2) { 4283 // Found 2nd source vector - cancel. 4284 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4285 "different source vectors.\n"); 4286 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4287 BS.cancelScheduling(VL, VL0); 4288 return; 4289 } 4290 4291 auto OrdCompare = [](const std::pair<int, int> &P1, 4292 const std::pair<int, int> &P2) { 4293 return P1.first > P2.first; 4294 }; 4295 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4296 decltype(OrdCompare)> 4297 Indices(OrdCompare); 4298 for (int I = 0, E = VL.size(); I < E; ++I) { 4299 unsigned Idx = *getInsertIndex(VL[I]); 4300 Indices.emplace(Idx, I); 4301 } 4302 OrdersType CurrentOrder(VL.size(), VL.size()); 4303 bool IsIdentity = true; 4304 for (int I = 0, E = VL.size(); I < E; ++I) { 4305 CurrentOrder[Indices.top().second] = I; 4306 IsIdentity &= Indices.top().second == I; 4307 Indices.pop(); 4308 } 4309 if (IsIdentity) 4310 CurrentOrder.clear(); 4311 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4312 None, CurrentOrder); 4313 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4314 4315 constexpr int NumOps = 2; 4316 ValueList VectorOperands[NumOps]; 4317 for (int I = 0; I < NumOps; ++I) { 4318 for (Value *V : VL) 4319 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4320 4321 TE->setOperand(I, VectorOperands[I]); 4322 } 4323 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4324 return; 4325 } 4326 case Instruction::Load: { 4327 // Check that a vectorized load would load the same memory as a scalar 4328 // load. For example, we don't want to vectorize loads that are smaller 4329 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4330 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4331 // from such a struct, we read/write packed bits disagreeing with the 4332 // unvectorized version. 4333 SmallVector<Value *> PointerOps; 4334 OrdersType CurrentOrder; 4335 TreeEntry *TE = nullptr; 4336 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4337 PointerOps)) { 4338 case LoadsState::Vectorize: 4339 if (CurrentOrder.empty()) { 4340 // Original loads are consecutive and does not require reordering. 4341 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4342 ReuseShuffleIndicies); 4343 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4344 } else { 4345 fixupOrderingIndices(CurrentOrder); 4346 // Need to reorder. 4347 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4348 ReuseShuffleIndicies, CurrentOrder); 4349 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4350 } 4351 TE->setOperandsInOrder(); 4352 break; 4353 case LoadsState::ScatterVectorize: 4354 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4355 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4356 UserTreeIdx, ReuseShuffleIndicies); 4357 TE->setOperandsInOrder(); 4358 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4359 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4360 break; 4361 case LoadsState::Gather: 4362 BS.cancelScheduling(VL, VL0); 4363 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4364 ReuseShuffleIndicies); 4365 #ifndef NDEBUG 4366 Type *ScalarTy = VL0->getType(); 4367 if (DL->getTypeSizeInBits(ScalarTy) != 4368 DL->getTypeAllocSizeInBits(ScalarTy)) 4369 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4370 else if (any_of(VL, [](Value *V) { 4371 return !cast<LoadInst>(V)->isSimple(); 4372 })) 4373 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4374 else 4375 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4376 #endif // NDEBUG 4377 break; 4378 } 4379 return; 4380 } 4381 case Instruction::ZExt: 4382 case Instruction::SExt: 4383 case Instruction::FPToUI: 4384 case Instruction::FPToSI: 4385 case Instruction::FPExt: 4386 case Instruction::PtrToInt: 4387 case Instruction::IntToPtr: 4388 case Instruction::SIToFP: 4389 case Instruction::UIToFP: 4390 case Instruction::Trunc: 4391 case Instruction::FPTrunc: 4392 case Instruction::BitCast: { 4393 Type *SrcTy = VL0->getOperand(0)->getType(); 4394 for (Value *V : VL) { 4395 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4396 if (Ty != SrcTy || !isValidElementType(Ty)) { 4397 BS.cancelScheduling(VL, VL0); 4398 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4399 ReuseShuffleIndicies); 4400 LLVM_DEBUG(dbgs() 4401 << "SLP: Gathering casts with different src types.\n"); 4402 return; 4403 } 4404 } 4405 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4406 ReuseShuffleIndicies); 4407 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4408 4409 TE->setOperandsInOrder(); 4410 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4411 ValueList Operands; 4412 // Prepare the operand vector. 4413 for (Value *V : VL) 4414 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4415 4416 buildTree_rec(Operands, Depth + 1, {TE, i}); 4417 } 4418 return; 4419 } 4420 case Instruction::ICmp: 4421 case Instruction::FCmp: { 4422 // Check that all of the compares have the same predicate. 4423 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4424 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4425 Type *ComparedTy = VL0->getOperand(0)->getType(); 4426 for (Value *V : VL) { 4427 CmpInst *Cmp = cast<CmpInst>(V); 4428 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4429 Cmp->getOperand(0)->getType() != ComparedTy) { 4430 BS.cancelScheduling(VL, VL0); 4431 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4432 ReuseShuffleIndicies); 4433 LLVM_DEBUG(dbgs() 4434 << "SLP: Gathering cmp with different predicate.\n"); 4435 return; 4436 } 4437 } 4438 4439 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4440 ReuseShuffleIndicies); 4441 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4442 4443 ValueList Left, Right; 4444 if (cast<CmpInst>(VL0)->isCommutative()) { 4445 // Commutative predicate - collect + sort operands of the instructions 4446 // so that each side is more likely to have the same opcode. 4447 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4448 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4449 } else { 4450 // Collect operands - commute if it uses the swapped predicate. 4451 for (Value *V : VL) { 4452 auto *Cmp = cast<CmpInst>(V); 4453 Value *LHS = Cmp->getOperand(0); 4454 Value *RHS = Cmp->getOperand(1); 4455 if (Cmp->getPredicate() != P0) 4456 std::swap(LHS, RHS); 4457 Left.push_back(LHS); 4458 Right.push_back(RHS); 4459 } 4460 } 4461 TE->setOperand(0, Left); 4462 TE->setOperand(1, Right); 4463 buildTree_rec(Left, Depth + 1, {TE, 0}); 4464 buildTree_rec(Right, Depth + 1, {TE, 1}); 4465 return; 4466 } 4467 case Instruction::Select: 4468 case Instruction::FNeg: 4469 case Instruction::Add: 4470 case Instruction::FAdd: 4471 case Instruction::Sub: 4472 case Instruction::FSub: 4473 case Instruction::Mul: 4474 case Instruction::FMul: 4475 case Instruction::UDiv: 4476 case Instruction::SDiv: 4477 case Instruction::FDiv: 4478 case Instruction::URem: 4479 case Instruction::SRem: 4480 case Instruction::FRem: 4481 case Instruction::Shl: 4482 case Instruction::LShr: 4483 case Instruction::AShr: 4484 case Instruction::And: 4485 case Instruction::Or: 4486 case Instruction::Xor: { 4487 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4488 ReuseShuffleIndicies); 4489 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4490 4491 // Sort operands of the instructions so that each side is more likely to 4492 // have the same opcode. 4493 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4494 ValueList Left, Right; 4495 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4496 TE->setOperand(0, Left); 4497 TE->setOperand(1, Right); 4498 buildTree_rec(Left, Depth + 1, {TE, 0}); 4499 buildTree_rec(Right, Depth + 1, {TE, 1}); 4500 return; 4501 } 4502 4503 TE->setOperandsInOrder(); 4504 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4505 ValueList Operands; 4506 // Prepare the operand vector. 4507 for (Value *V : VL) 4508 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4509 4510 buildTree_rec(Operands, Depth + 1, {TE, i}); 4511 } 4512 return; 4513 } 4514 case Instruction::GetElementPtr: { 4515 // We don't combine GEPs with complicated (nested) indexing. 4516 for (Value *V : VL) { 4517 if (cast<Instruction>(V)->getNumOperands() != 2) { 4518 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4519 BS.cancelScheduling(VL, VL0); 4520 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4521 ReuseShuffleIndicies); 4522 return; 4523 } 4524 } 4525 4526 // We can't combine several GEPs into one vector if they operate on 4527 // different types. 4528 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4529 for (Value *V : VL) { 4530 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4531 if (Ty0 != CurTy) { 4532 LLVM_DEBUG(dbgs() 4533 << "SLP: not-vectorizable GEP (different types).\n"); 4534 BS.cancelScheduling(VL, VL0); 4535 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4536 ReuseShuffleIndicies); 4537 return; 4538 } 4539 } 4540 4541 // We don't combine GEPs with non-constant indexes. 4542 Type *Ty1 = VL0->getOperand(1)->getType(); 4543 for (Value *V : VL) { 4544 auto Op = cast<Instruction>(V)->getOperand(1); 4545 if (!isa<ConstantInt>(Op) || 4546 (Op->getType() != Ty1 && 4547 Op->getType()->getScalarSizeInBits() > 4548 DL->getIndexSizeInBits( 4549 V->getType()->getPointerAddressSpace()))) { 4550 LLVM_DEBUG(dbgs() 4551 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4552 BS.cancelScheduling(VL, VL0); 4553 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4554 ReuseShuffleIndicies); 4555 return; 4556 } 4557 } 4558 4559 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4560 ReuseShuffleIndicies); 4561 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4562 SmallVector<ValueList, 2> Operands(2); 4563 // Prepare the operand vector for pointer operands. 4564 for (Value *V : VL) 4565 Operands.front().push_back( 4566 cast<GetElementPtrInst>(V)->getPointerOperand()); 4567 TE->setOperand(0, Operands.front()); 4568 // Need to cast all indices to the same type before vectorization to 4569 // avoid crash. 4570 // Required to be able to find correct matches between different gather 4571 // nodes and reuse the vectorized values rather than trying to gather them 4572 // again. 4573 int IndexIdx = 1; 4574 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4575 Type *Ty = all_of(VL, 4576 [VL0Ty, IndexIdx](Value *V) { 4577 return VL0Ty == cast<GetElementPtrInst>(V) 4578 ->getOperand(IndexIdx) 4579 ->getType(); 4580 }) 4581 ? VL0Ty 4582 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4583 ->getPointerOperandType() 4584 ->getScalarType()); 4585 // Prepare the operand vector. 4586 for (Value *V : VL) { 4587 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4588 auto *CI = cast<ConstantInt>(Op); 4589 Operands.back().push_back(ConstantExpr::getIntegerCast( 4590 CI, Ty, CI->getValue().isSignBitSet())); 4591 } 4592 TE->setOperand(IndexIdx, Operands.back()); 4593 4594 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4595 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4596 return; 4597 } 4598 case Instruction::Store: { 4599 // Check if the stores are consecutive or if we need to swizzle them. 4600 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4601 // Avoid types that are padded when being allocated as scalars, while 4602 // being packed together in a vector (such as i1). 4603 if (DL->getTypeSizeInBits(ScalarTy) != 4604 DL->getTypeAllocSizeInBits(ScalarTy)) { 4605 BS.cancelScheduling(VL, VL0); 4606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4607 ReuseShuffleIndicies); 4608 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4609 return; 4610 } 4611 // Make sure all stores in the bundle are simple - we can't vectorize 4612 // atomic or volatile stores. 4613 SmallVector<Value *, 4> PointerOps(VL.size()); 4614 ValueList Operands(VL.size()); 4615 auto POIter = PointerOps.begin(); 4616 auto OIter = Operands.begin(); 4617 for (Value *V : VL) { 4618 auto *SI = cast<StoreInst>(V); 4619 if (!SI->isSimple()) { 4620 BS.cancelScheduling(VL, VL0); 4621 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4622 ReuseShuffleIndicies); 4623 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4624 return; 4625 } 4626 *POIter = SI->getPointerOperand(); 4627 *OIter = SI->getValueOperand(); 4628 ++POIter; 4629 ++OIter; 4630 } 4631 4632 OrdersType CurrentOrder; 4633 // Check the order of pointer operands. 4634 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4635 Value *Ptr0; 4636 Value *PtrN; 4637 if (CurrentOrder.empty()) { 4638 Ptr0 = PointerOps.front(); 4639 PtrN = PointerOps.back(); 4640 } else { 4641 Ptr0 = PointerOps[CurrentOrder.front()]; 4642 PtrN = PointerOps[CurrentOrder.back()]; 4643 } 4644 Optional<int> Dist = 4645 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4646 // Check that the sorted pointer operands are consecutive. 4647 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4648 if (CurrentOrder.empty()) { 4649 // Original stores are consecutive and does not require reordering. 4650 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4651 UserTreeIdx, ReuseShuffleIndicies); 4652 TE->setOperandsInOrder(); 4653 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4654 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4655 } else { 4656 fixupOrderingIndices(CurrentOrder); 4657 TreeEntry *TE = 4658 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4659 ReuseShuffleIndicies, CurrentOrder); 4660 TE->setOperandsInOrder(); 4661 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4662 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4663 } 4664 return; 4665 } 4666 } 4667 4668 BS.cancelScheduling(VL, VL0); 4669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4670 ReuseShuffleIndicies); 4671 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4672 return; 4673 } 4674 case Instruction::Call: { 4675 // Check if the calls are all to the same vectorizable intrinsic or 4676 // library function. 4677 CallInst *CI = cast<CallInst>(VL0); 4678 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4679 4680 VFShape Shape = VFShape::get( 4681 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4682 false /*HasGlobalPred*/); 4683 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4684 4685 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4686 BS.cancelScheduling(VL, VL0); 4687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4688 ReuseShuffleIndicies); 4689 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4690 return; 4691 } 4692 Function *F = CI->getCalledFunction(); 4693 unsigned NumArgs = CI->arg_size(); 4694 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4695 for (unsigned j = 0; j != NumArgs; ++j) 4696 if (hasVectorInstrinsicScalarOpd(ID, j)) 4697 ScalarArgs[j] = CI->getArgOperand(j); 4698 for (Value *V : VL) { 4699 CallInst *CI2 = dyn_cast<CallInst>(V); 4700 if (!CI2 || CI2->getCalledFunction() != F || 4701 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4702 (VecFunc && 4703 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4704 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4705 BS.cancelScheduling(VL, VL0); 4706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4707 ReuseShuffleIndicies); 4708 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4709 << "\n"); 4710 return; 4711 } 4712 // Some intrinsics have scalar arguments and should be same in order for 4713 // them to be vectorized. 4714 for (unsigned j = 0; j != NumArgs; ++j) { 4715 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4716 Value *A1J = CI2->getArgOperand(j); 4717 if (ScalarArgs[j] != A1J) { 4718 BS.cancelScheduling(VL, VL0); 4719 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4720 ReuseShuffleIndicies); 4721 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4722 << " argument " << ScalarArgs[j] << "!=" << A1J 4723 << "\n"); 4724 return; 4725 } 4726 } 4727 } 4728 // Verify that the bundle operands are identical between the two calls. 4729 if (CI->hasOperandBundles() && 4730 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4731 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4732 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4733 BS.cancelScheduling(VL, VL0); 4734 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4735 ReuseShuffleIndicies); 4736 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4737 << *CI << "!=" << *V << '\n'); 4738 return; 4739 } 4740 } 4741 4742 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4743 ReuseShuffleIndicies); 4744 TE->setOperandsInOrder(); 4745 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4746 // For scalar operands no need to to create an entry since no need to 4747 // vectorize it. 4748 if (hasVectorInstrinsicScalarOpd(ID, i)) 4749 continue; 4750 ValueList Operands; 4751 // Prepare the operand vector. 4752 for (Value *V : VL) { 4753 auto *CI2 = cast<CallInst>(V); 4754 Operands.push_back(CI2->getArgOperand(i)); 4755 } 4756 buildTree_rec(Operands, Depth + 1, {TE, i}); 4757 } 4758 return; 4759 } 4760 case Instruction::ShuffleVector: { 4761 // If this is not an alternate sequence of opcode like add-sub 4762 // then do not vectorize this instruction. 4763 if (!S.isAltShuffle()) { 4764 BS.cancelScheduling(VL, VL0); 4765 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4766 ReuseShuffleIndicies); 4767 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4768 return; 4769 } 4770 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4771 ReuseShuffleIndicies); 4772 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4773 4774 // Reorder operands if reordering would enable vectorization. 4775 auto *CI = dyn_cast<CmpInst>(VL0); 4776 if (isa<BinaryOperator>(VL0) || CI) { 4777 ValueList Left, Right; 4778 if (!CI || all_of(VL, [](Value *V) { 4779 return cast<CmpInst>(V)->isCommutative(); 4780 })) { 4781 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4782 } else { 4783 CmpInst::Predicate P0 = CI->getPredicate(); 4784 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4785 assert(P0 != AltP0 && 4786 "Expected different main/alternate predicates."); 4787 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4788 Value *BaseOp0 = VL0->getOperand(0); 4789 Value *BaseOp1 = VL0->getOperand(1); 4790 // Collect operands - commute if it uses the swapped predicate or 4791 // alternate operation. 4792 for (Value *V : VL) { 4793 auto *Cmp = cast<CmpInst>(V); 4794 Value *LHS = Cmp->getOperand(0); 4795 Value *RHS = Cmp->getOperand(1); 4796 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4797 if (P0 == AltP0Swapped) { 4798 if (CI != Cmp && S.AltOp != Cmp && 4799 ((P0 == CurrentPred && 4800 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4801 (AltP0 == CurrentPred && 4802 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4803 std::swap(LHS, RHS); 4804 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4805 std::swap(LHS, RHS); 4806 } 4807 Left.push_back(LHS); 4808 Right.push_back(RHS); 4809 } 4810 } 4811 TE->setOperand(0, Left); 4812 TE->setOperand(1, Right); 4813 buildTree_rec(Left, Depth + 1, {TE, 0}); 4814 buildTree_rec(Right, Depth + 1, {TE, 1}); 4815 return; 4816 } 4817 4818 TE->setOperandsInOrder(); 4819 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4820 ValueList Operands; 4821 // Prepare the operand vector. 4822 for (Value *V : VL) 4823 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4824 4825 buildTree_rec(Operands, Depth + 1, {TE, i}); 4826 } 4827 return; 4828 } 4829 default: 4830 BS.cancelScheduling(VL, VL0); 4831 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4832 ReuseShuffleIndicies); 4833 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4834 return; 4835 } 4836 } 4837 4838 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4839 unsigned N = 1; 4840 Type *EltTy = T; 4841 4842 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4843 isa<VectorType>(EltTy)) { 4844 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4845 // Check that struct is homogeneous. 4846 for (const auto *Ty : ST->elements()) 4847 if (Ty != *ST->element_begin()) 4848 return 0; 4849 N *= ST->getNumElements(); 4850 EltTy = *ST->element_begin(); 4851 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4852 N *= AT->getNumElements(); 4853 EltTy = AT->getElementType(); 4854 } else { 4855 auto *VT = cast<FixedVectorType>(EltTy); 4856 N *= VT->getNumElements(); 4857 EltTy = VT->getElementType(); 4858 } 4859 } 4860 4861 if (!isValidElementType(EltTy)) 4862 return 0; 4863 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4864 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4865 return 0; 4866 return N; 4867 } 4868 4869 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4870 SmallVectorImpl<unsigned> &CurrentOrder) const { 4871 const auto *It = find_if(VL, [](Value *V) { 4872 return isa<ExtractElementInst, ExtractValueInst>(V); 4873 }); 4874 assert(It != VL.end() && "Expected at least one extract instruction."); 4875 auto *E0 = cast<Instruction>(*It); 4876 assert(all_of(VL, 4877 [](Value *V) { 4878 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4879 V); 4880 }) && 4881 "Invalid opcode"); 4882 // Check if all of the extracts come from the same vector and from the 4883 // correct offset. 4884 Value *Vec = E0->getOperand(0); 4885 4886 CurrentOrder.clear(); 4887 4888 // We have to extract from a vector/aggregate with the same number of elements. 4889 unsigned NElts; 4890 if (E0->getOpcode() == Instruction::ExtractValue) { 4891 const DataLayout &DL = E0->getModule()->getDataLayout(); 4892 NElts = canMapToVector(Vec->getType(), DL); 4893 if (!NElts) 4894 return false; 4895 // Check if load can be rewritten as load of vector. 4896 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4897 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4898 return false; 4899 } else { 4900 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4901 } 4902 4903 if (NElts != VL.size()) 4904 return false; 4905 4906 // Check that all of the indices extract from the correct offset. 4907 bool ShouldKeepOrder = true; 4908 unsigned E = VL.size(); 4909 // Assign to all items the initial value E + 1 so we can check if the extract 4910 // instruction index was used already. 4911 // Also, later we can check that all the indices are used and we have a 4912 // consecutive access in the extract instructions, by checking that no 4913 // element of CurrentOrder still has value E + 1. 4914 CurrentOrder.assign(E, E); 4915 unsigned I = 0; 4916 for (; I < E; ++I) { 4917 auto *Inst = dyn_cast<Instruction>(VL[I]); 4918 if (!Inst) 4919 continue; 4920 if (Inst->getOperand(0) != Vec) 4921 break; 4922 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4923 if (isa<UndefValue>(EE->getIndexOperand())) 4924 continue; 4925 Optional<unsigned> Idx = getExtractIndex(Inst); 4926 if (!Idx) 4927 break; 4928 const unsigned ExtIdx = *Idx; 4929 if (ExtIdx != I) { 4930 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4931 break; 4932 ShouldKeepOrder = false; 4933 CurrentOrder[ExtIdx] = I; 4934 } else { 4935 if (CurrentOrder[I] != E) 4936 break; 4937 CurrentOrder[I] = I; 4938 } 4939 } 4940 if (I < E) { 4941 CurrentOrder.clear(); 4942 return false; 4943 } 4944 if (ShouldKeepOrder) 4945 CurrentOrder.clear(); 4946 4947 return ShouldKeepOrder; 4948 } 4949 4950 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4951 ArrayRef<Value *> VectorizedVals) const { 4952 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4953 all_of(I->users(), [this](User *U) { 4954 return ScalarToTreeEntry.count(U) > 0 || 4955 isVectorLikeInstWithConstOps(U) || 4956 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4957 }); 4958 } 4959 4960 static std::pair<InstructionCost, InstructionCost> 4961 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4962 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4963 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4964 4965 // Calculate the cost of the scalar and vector calls. 4966 SmallVector<Type *, 4> VecTys; 4967 for (Use &Arg : CI->args()) 4968 VecTys.push_back( 4969 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4970 FastMathFlags FMF; 4971 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4972 FMF = FPCI->getFastMathFlags(); 4973 SmallVector<const Value *> Arguments(CI->args()); 4974 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4975 dyn_cast<IntrinsicInst>(CI)); 4976 auto IntrinsicCost = 4977 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4978 4979 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4980 VecTy->getNumElements())), 4981 false /*HasGlobalPred*/); 4982 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4983 auto LibCost = IntrinsicCost; 4984 if (!CI->isNoBuiltin() && VecFunc) { 4985 // Calculate the cost of the vector library call. 4986 // If the corresponding vector call is cheaper, return its cost. 4987 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4988 TTI::TCK_RecipThroughput); 4989 } 4990 return {IntrinsicCost, LibCost}; 4991 } 4992 4993 /// Compute the cost of creating a vector of type \p VecTy containing the 4994 /// extracted values from \p VL. 4995 static InstructionCost 4996 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4997 TargetTransformInfo::ShuffleKind ShuffleKind, 4998 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4999 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5000 5001 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5002 VecTy->getNumElements() < NumOfParts) 5003 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5004 5005 bool AllConsecutive = true; 5006 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5007 unsigned Idx = -1; 5008 InstructionCost Cost = 0; 5009 5010 // Process extracts in blocks of EltsPerVector to check if the source vector 5011 // operand can be re-used directly. If not, add the cost of creating a shuffle 5012 // to extract the values into a vector register. 5013 for (auto *V : VL) { 5014 ++Idx; 5015 5016 // Need to exclude undefs from analysis. 5017 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5018 continue; 5019 5020 // Reached the start of a new vector registers. 5021 if (Idx % EltsPerVector == 0) { 5022 AllConsecutive = true; 5023 continue; 5024 } 5025 5026 // Check all extracts for a vector register on the target directly 5027 // extract values in order. 5028 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5029 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5030 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5031 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5032 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5033 } 5034 5035 if (AllConsecutive) 5036 continue; 5037 5038 // Skip all indices, except for the last index per vector block. 5039 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5040 continue; 5041 5042 // If we have a series of extracts which are not consecutive and hence 5043 // cannot re-use the source vector register directly, compute the shuffle 5044 // cost to extract the a vector with EltsPerVector elements. 5045 Cost += TTI.getShuffleCost( 5046 TargetTransformInfo::SK_PermuteSingleSrc, 5047 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5048 } 5049 return Cost; 5050 } 5051 5052 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5053 /// operations operands. 5054 static void 5055 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5056 ArrayRef<int> ReusesIndices, 5057 const function_ref<bool(Instruction *)> IsAltOp, 5058 SmallVectorImpl<int> &Mask, 5059 SmallVectorImpl<Value *> *OpScalars = nullptr, 5060 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5061 unsigned Sz = VL.size(); 5062 Mask.assign(Sz, UndefMaskElem); 5063 SmallVector<int> OrderMask; 5064 if (!ReorderIndices.empty()) 5065 inversePermutation(ReorderIndices, OrderMask); 5066 for (unsigned I = 0; I < Sz; ++I) { 5067 unsigned Idx = I; 5068 if (!ReorderIndices.empty()) 5069 Idx = OrderMask[I]; 5070 auto *OpInst = cast<Instruction>(VL[Idx]); 5071 if (IsAltOp(OpInst)) { 5072 Mask[I] = Sz + Idx; 5073 if (AltScalars) 5074 AltScalars->push_back(OpInst); 5075 } else { 5076 Mask[I] = Idx; 5077 if (OpScalars) 5078 OpScalars->push_back(OpInst); 5079 } 5080 } 5081 if (!ReusesIndices.empty()) { 5082 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5083 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5084 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5085 }); 5086 Mask.swap(NewMask); 5087 } 5088 } 5089 5090 /// Checks if the specified instruction \p I is an alternate operation for the 5091 /// given \p MainOp and \p AltOp instructions. 5092 static bool isAlternateInstruction(const Instruction *I, 5093 const Instruction *MainOp, 5094 const Instruction *AltOp) { 5095 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5096 auto *AltCI0 = cast<CmpInst>(AltOp); 5097 auto *CI = cast<CmpInst>(I); 5098 CmpInst::Predicate P0 = CI0->getPredicate(); 5099 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5100 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5101 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5102 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5103 if (P0 == AltP0Swapped) 5104 return I == AltCI0 || 5105 (I != MainOp && 5106 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5107 CI->getOperand(0), CI->getOperand(1))); 5108 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5109 } 5110 return I->getOpcode() == AltOp->getOpcode(); 5111 } 5112 5113 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5114 ArrayRef<Value *> VectorizedVals) { 5115 ArrayRef<Value*> VL = E->Scalars; 5116 5117 Type *ScalarTy = VL[0]->getType(); 5118 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5119 ScalarTy = SI->getValueOperand()->getType(); 5120 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5121 ScalarTy = CI->getOperand(0)->getType(); 5122 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5123 ScalarTy = IE->getOperand(1)->getType(); 5124 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5125 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5126 5127 // If we have computed a smaller type for the expression, update VecTy so 5128 // that the costs will be accurate. 5129 if (MinBWs.count(VL[0])) 5130 VecTy = FixedVectorType::get( 5131 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5132 unsigned EntryVF = E->getVectorFactor(); 5133 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5134 5135 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5136 // FIXME: it tries to fix a problem with MSVC buildbots. 5137 TargetTransformInfo &TTIRef = *TTI; 5138 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5139 VectorizedVals, E](InstructionCost &Cost) { 5140 DenseMap<Value *, int> ExtractVectorsTys; 5141 SmallPtrSet<Value *, 4> CheckedExtracts; 5142 for (auto *V : VL) { 5143 if (isa<UndefValue>(V)) 5144 continue; 5145 // If all users of instruction are going to be vectorized and this 5146 // instruction itself is not going to be vectorized, consider this 5147 // instruction as dead and remove its cost from the final cost of the 5148 // vectorized tree. 5149 // Also, avoid adjusting the cost for extractelements with multiple uses 5150 // in different graph entries. 5151 const TreeEntry *VE = getTreeEntry(V); 5152 if (!CheckedExtracts.insert(V).second || 5153 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5154 (VE && VE != E)) 5155 continue; 5156 auto *EE = cast<ExtractElementInst>(V); 5157 Optional<unsigned> EEIdx = getExtractIndex(EE); 5158 if (!EEIdx) 5159 continue; 5160 unsigned Idx = *EEIdx; 5161 if (TTIRef.getNumberOfParts(VecTy) != 5162 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5163 auto It = 5164 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5165 It->getSecond() = std::min<int>(It->second, Idx); 5166 } 5167 // Take credit for instruction that will become dead. 5168 if (EE->hasOneUse()) { 5169 Instruction *Ext = EE->user_back(); 5170 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5171 all_of(Ext->users(), 5172 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5173 // Use getExtractWithExtendCost() to calculate the cost of 5174 // extractelement/ext pair. 5175 Cost -= 5176 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5177 EE->getVectorOperandType(), Idx); 5178 // Add back the cost of s|zext which is subtracted separately. 5179 Cost += TTIRef.getCastInstrCost( 5180 Ext->getOpcode(), Ext->getType(), EE->getType(), 5181 TTI::getCastContextHint(Ext), CostKind, Ext); 5182 continue; 5183 } 5184 } 5185 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5186 EE->getVectorOperandType(), Idx); 5187 } 5188 // Add a cost for subvector extracts/inserts if required. 5189 for (const auto &Data : ExtractVectorsTys) { 5190 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5191 unsigned NumElts = VecTy->getNumElements(); 5192 if (Data.second % NumElts == 0) 5193 continue; 5194 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5195 unsigned Idx = (Data.second / NumElts) * NumElts; 5196 unsigned EENumElts = EEVTy->getNumElements(); 5197 if (Idx + NumElts <= EENumElts) { 5198 Cost += 5199 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5200 EEVTy, None, Idx, VecTy); 5201 } else { 5202 // Need to round up the subvector type vectorization factor to avoid a 5203 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5204 // <= EENumElts. 5205 auto *SubVT = 5206 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5207 Cost += 5208 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5209 EEVTy, None, Idx, SubVT); 5210 } 5211 } else { 5212 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5213 VecTy, None, 0, EEVTy); 5214 } 5215 } 5216 }; 5217 if (E->State == TreeEntry::NeedToGather) { 5218 if (allConstant(VL)) 5219 return 0; 5220 if (isa<InsertElementInst>(VL[0])) 5221 return InstructionCost::getInvalid(); 5222 SmallVector<int> Mask; 5223 SmallVector<const TreeEntry *> Entries; 5224 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5225 isGatherShuffledEntry(E, Mask, Entries); 5226 if (Shuffle.hasValue()) { 5227 InstructionCost GatherCost = 0; 5228 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5229 // Perfect match in the graph, will reuse the previously vectorized 5230 // node. Cost is 0. 5231 LLVM_DEBUG( 5232 dbgs() 5233 << "SLP: perfect diamond match for gather bundle that starts with " 5234 << *VL.front() << ".\n"); 5235 if (NeedToShuffleReuses) 5236 GatherCost = 5237 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5238 FinalVecTy, E->ReuseShuffleIndices); 5239 } else { 5240 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5241 << " entries for bundle that starts with " 5242 << *VL.front() << ".\n"); 5243 // Detected that instead of gather we can emit a shuffle of single/two 5244 // previously vectorized nodes. Add the cost of the permutation rather 5245 // than gather. 5246 ::addMask(Mask, E->ReuseShuffleIndices); 5247 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5248 } 5249 return GatherCost; 5250 } 5251 if ((E->getOpcode() == Instruction::ExtractElement || 5252 all_of(E->Scalars, 5253 [](Value *V) { 5254 return isa<ExtractElementInst, UndefValue>(V); 5255 })) && 5256 allSameType(VL)) { 5257 // Check that gather of extractelements can be represented as just a 5258 // shuffle of a single/two vectors the scalars are extracted from. 5259 SmallVector<int> Mask; 5260 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5261 isFixedVectorShuffle(VL, Mask); 5262 if (ShuffleKind.hasValue()) { 5263 // Found the bunch of extractelement instructions that must be gathered 5264 // into a vector and can be represented as a permutation elements in a 5265 // single input vector or of 2 input vectors. 5266 InstructionCost Cost = 5267 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5268 AdjustExtractsCost(Cost); 5269 if (NeedToShuffleReuses) 5270 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5271 FinalVecTy, E->ReuseShuffleIndices); 5272 return Cost; 5273 } 5274 } 5275 if (isSplat(VL)) { 5276 // Found the broadcasting of the single scalar, calculate the cost as the 5277 // broadcast. 5278 assert(VecTy == FinalVecTy && 5279 "No reused scalars expected for broadcast."); 5280 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5281 /*Mask=*/None, /*Index=*/0, 5282 /*SubTp=*/nullptr, /*Args=*/VL); 5283 } 5284 InstructionCost ReuseShuffleCost = 0; 5285 if (NeedToShuffleReuses) 5286 ReuseShuffleCost = TTI->getShuffleCost( 5287 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5288 // Improve gather cost for gather of loads, if we can group some of the 5289 // loads into vector loads. 5290 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5291 !E->isAltShuffle()) { 5292 BoUpSLP::ValueSet VectorizedLoads; 5293 unsigned StartIdx = 0; 5294 unsigned VF = VL.size() / 2; 5295 unsigned VectorizedCnt = 0; 5296 unsigned ScatterVectorizeCnt = 0; 5297 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5298 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5299 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5300 Cnt += VF) { 5301 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5302 if (!VectorizedLoads.count(Slice.front()) && 5303 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5304 SmallVector<Value *> PointerOps; 5305 OrdersType CurrentOrder; 5306 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5307 *SE, CurrentOrder, PointerOps); 5308 switch (LS) { 5309 case LoadsState::Vectorize: 5310 case LoadsState::ScatterVectorize: 5311 // Mark the vectorized loads so that we don't vectorize them 5312 // again. 5313 if (LS == LoadsState::Vectorize) 5314 ++VectorizedCnt; 5315 else 5316 ++ScatterVectorizeCnt; 5317 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5318 // If we vectorized initial block, no need to try to vectorize it 5319 // again. 5320 if (Cnt == StartIdx) 5321 StartIdx += VF; 5322 break; 5323 case LoadsState::Gather: 5324 break; 5325 } 5326 } 5327 } 5328 // Check if the whole array was vectorized already - exit. 5329 if (StartIdx >= VL.size()) 5330 break; 5331 // Found vectorizable parts - exit. 5332 if (!VectorizedLoads.empty()) 5333 break; 5334 } 5335 if (!VectorizedLoads.empty()) { 5336 InstructionCost GatherCost = 0; 5337 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5338 bool NeedInsertSubvectorAnalysis = 5339 !NumParts || (VL.size() / VF) > NumParts; 5340 // Get the cost for gathered loads. 5341 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5342 if (VectorizedLoads.contains(VL[I])) 5343 continue; 5344 GatherCost += getGatherCost(VL.slice(I, VF)); 5345 } 5346 // The cost for vectorized loads. 5347 InstructionCost ScalarsCost = 0; 5348 for (Value *V : VectorizedLoads) { 5349 auto *LI = cast<LoadInst>(V); 5350 ScalarsCost += TTI->getMemoryOpCost( 5351 Instruction::Load, LI->getType(), LI->getAlign(), 5352 LI->getPointerAddressSpace(), CostKind, LI); 5353 } 5354 auto *LI = cast<LoadInst>(E->getMainOp()); 5355 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5356 Align Alignment = LI->getAlign(); 5357 GatherCost += 5358 VectorizedCnt * 5359 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5360 LI->getPointerAddressSpace(), CostKind, LI); 5361 GatherCost += ScatterVectorizeCnt * 5362 TTI->getGatherScatterOpCost( 5363 Instruction::Load, LoadTy, LI->getPointerOperand(), 5364 /*VariableMask=*/false, Alignment, CostKind, LI); 5365 if (NeedInsertSubvectorAnalysis) { 5366 // Add the cost for the subvectors insert. 5367 for (int I = VF, E = VL.size(); I < E; I += VF) 5368 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5369 None, I, LoadTy); 5370 } 5371 return ReuseShuffleCost + GatherCost - ScalarsCost; 5372 } 5373 } 5374 return ReuseShuffleCost + getGatherCost(VL); 5375 } 5376 InstructionCost CommonCost = 0; 5377 SmallVector<int> Mask; 5378 if (!E->ReorderIndices.empty()) { 5379 SmallVector<int> NewMask; 5380 if (E->getOpcode() == Instruction::Store) { 5381 // For stores the order is actually a mask. 5382 NewMask.resize(E->ReorderIndices.size()); 5383 copy(E->ReorderIndices, NewMask.begin()); 5384 } else { 5385 inversePermutation(E->ReorderIndices, NewMask); 5386 } 5387 ::addMask(Mask, NewMask); 5388 } 5389 if (NeedToShuffleReuses) 5390 ::addMask(Mask, E->ReuseShuffleIndices); 5391 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5392 CommonCost = 5393 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5394 assert((E->State == TreeEntry::Vectorize || 5395 E->State == TreeEntry::ScatterVectorize) && 5396 "Unhandled state"); 5397 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5398 Instruction *VL0 = E->getMainOp(); 5399 unsigned ShuffleOrOp = 5400 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5401 switch (ShuffleOrOp) { 5402 case Instruction::PHI: 5403 return 0; 5404 5405 case Instruction::ExtractValue: 5406 case Instruction::ExtractElement: { 5407 // The common cost of removal ExtractElement/ExtractValue instructions + 5408 // the cost of shuffles, if required to resuffle the original vector. 5409 if (NeedToShuffleReuses) { 5410 unsigned Idx = 0; 5411 for (unsigned I : E->ReuseShuffleIndices) { 5412 if (ShuffleOrOp == Instruction::ExtractElement) { 5413 auto *EE = cast<ExtractElementInst>(VL[I]); 5414 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5415 EE->getVectorOperandType(), 5416 *getExtractIndex(EE)); 5417 } else { 5418 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5419 VecTy, Idx); 5420 ++Idx; 5421 } 5422 } 5423 Idx = EntryVF; 5424 for (Value *V : VL) { 5425 if (ShuffleOrOp == Instruction::ExtractElement) { 5426 auto *EE = cast<ExtractElementInst>(V); 5427 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5428 EE->getVectorOperandType(), 5429 *getExtractIndex(EE)); 5430 } else { 5431 --Idx; 5432 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5433 VecTy, Idx); 5434 } 5435 } 5436 } 5437 if (ShuffleOrOp == Instruction::ExtractValue) { 5438 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5439 auto *EI = cast<Instruction>(VL[I]); 5440 // Take credit for instruction that will become dead. 5441 if (EI->hasOneUse()) { 5442 Instruction *Ext = EI->user_back(); 5443 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5444 all_of(Ext->users(), 5445 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5446 // Use getExtractWithExtendCost() to calculate the cost of 5447 // extractelement/ext pair. 5448 CommonCost -= TTI->getExtractWithExtendCost( 5449 Ext->getOpcode(), Ext->getType(), VecTy, I); 5450 // Add back the cost of s|zext which is subtracted separately. 5451 CommonCost += TTI->getCastInstrCost( 5452 Ext->getOpcode(), Ext->getType(), EI->getType(), 5453 TTI::getCastContextHint(Ext), CostKind, Ext); 5454 continue; 5455 } 5456 } 5457 CommonCost -= 5458 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5459 } 5460 } else { 5461 AdjustExtractsCost(CommonCost); 5462 } 5463 return CommonCost; 5464 } 5465 case Instruction::InsertElement: { 5466 assert(E->ReuseShuffleIndices.empty() && 5467 "Unique insertelements only are expected."); 5468 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5469 5470 unsigned const NumElts = SrcVecTy->getNumElements(); 5471 unsigned const NumScalars = VL.size(); 5472 APInt DemandedElts = APInt::getZero(NumElts); 5473 // TODO: Add support for Instruction::InsertValue. 5474 SmallVector<int> Mask; 5475 if (!E->ReorderIndices.empty()) { 5476 inversePermutation(E->ReorderIndices, Mask); 5477 Mask.append(NumElts - NumScalars, UndefMaskElem); 5478 } else { 5479 Mask.assign(NumElts, UndefMaskElem); 5480 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5481 } 5482 unsigned Offset = *getInsertIndex(VL0); 5483 bool IsIdentity = true; 5484 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5485 Mask.swap(PrevMask); 5486 for (unsigned I = 0; I < NumScalars; ++I) { 5487 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5488 DemandedElts.setBit(InsertIdx); 5489 IsIdentity &= InsertIdx - Offset == I; 5490 Mask[InsertIdx - Offset] = I; 5491 } 5492 assert(Offset < NumElts && "Failed to find vector index offset"); 5493 5494 InstructionCost Cost = 0; 5495 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5496 /*Insert*/ true, /*Extract*/ false); 5497 5498 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5499 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5500 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5501 Cost += TTI->getShuffleCost( 5502 TargetTransformInfo::SK_PermuteSingleSrc, 5503 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5504 } else if (!IsIdentity) { 5505 auto *FirstInsert = 5506 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5507 return !is_contained(E->Scalars, 5508 cast<Instruction>(V)->getOperand(0)); 5509 })); 5510 if (isUndefVector(FirstInsert->getOperand(0))) { 5511 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5512 } else { 5513 SmallVector<int> InsertMask(NumElts); 5514 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5515 for (unsigned I = 0; I < NumElts; I++) { 5516 if (Mask[I] != UndefMaskElem) 5517 InsertMask[Offset + I] = NumElts + I; 5518 } 5519 Cost += 5520 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5521 } 5522 } 5523 5524 return Cost; 5525 } 5526 case Instruction::ZExt: 5527 case Instruction::SExt: 5528 case Instruction::FPToUI: 5529 case Instruction::FPToSI: 5530 case Instruction::FPExt: 5531 case Instruction::PtrToInt: 5532 case Instruction::IntToPtr: 5533 case Instruction::SIToFP: 5534 case Instruction::UIToFP: 5535 case Instruction::Trunc: 5536 case Instruction::FPTrunc: 5537 case Instruction::BitCast: { 5538 Type *SrcTy = VL0->getOperand(0)->getType(); 5539 InstructionCost ScalarEltCost = 5540 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5541 TTI::getCastContextHint(VL0), CostKind, VL0); 5542 if (NeedToShuffleReuses) { 5543 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5544 } 5545 5546 // Calculate the cost of this instruction. 5547 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5548 5549 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5550 InstructionCost VecCost = 0; 5551 // Check if the values are candidates to demote. 5552 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5553 VecCost = CommonCost + TTI->getCastInstrCost( 5554 E->getOpcode(), VecTy, SrcVecTy, 5555 TTI::getCastContextHint(VL0), CostKind, VL0); 5556 } 5557 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5558 return VecCost - ScalarCost; 5559 } 5560 case Instruction::FCmp: 5561 case Instruction::ICmp: 5562 case Instruction::Select: { 5563 // Calculate the cost of this instruction. 5564 InstructionCost ScalarEltCost = 5565 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5566 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5567 if (NeedToShuffleReuses) { 5568 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5569 } 5570 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5571 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5572 5573 // Check if all entries in VL are either compares or selects with compares 5574 // as condition that have the same predicates. 5575 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5576 bool First = true; 5577 for (auto *V : VL) { 5578 CmpInst::Predicate CurrentPred; 5579 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5580 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5581 !match(V, MatchCmp)) || 5582 (!First && VecPred != CurrentPred)) { 5583 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5584 break; 5585 } 5586 First = false; 5587 VecPred = CurrentPred; 5588 } 5589 5590 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5591 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5592 // Check if it is possible and profitable to use min/max for selects in 5593 // VL. 5594 // 5595 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5596 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5597 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5598 {VecTy, VecTy}); 5599 InstructionCost IntrinsicCost = 5600 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5601 // If the selects are the only uses of the compares, they will be dead 5602 // and we can adjust the cost by removing their cost. 5603 if (IntrinsicAndUse.second) 5604 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5605 MaskTy, VecPred, CostKind); 5606 VecCost = std::min(VecCost, IntrinsicCost); 5607 } 5608 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5609 return CommonCost + VecCost - ScalarCost; 5610 } 5611 case Instruction::FNeg: 5612 case Instruction::Add: 5613 case Instruction::FAdd: 5614 case Instruction::Sub: 5615 case Instruction::FSub: 5616 case Instruction::Mul: 5617 case Instruction::FMul: 5618 case Instruction::UDiv: 5619 case Instruction::SDiv: 5620 case Instruction::FDiv: 5621 case Instruction::URem: 5622 case Instruction::SRem: 5623 case Instruction::FRem: 5624 case Instruction::Shl: 5625 case Instruction::LShr: 5626 case Instruction::AShr: 5627 case Instruction::And: 5628 case Instruction::Or: 5629 case Instruction::Xor: { 5630 // Certain instructions can be cheaper to vectorize if they have a 5631 // constant second vector operand. 5632 TargetTransformInfo::OperandValueKind Op1VK = 5633 TargetTransformInfo::OK_AnyValue; 5634 TargetTransformInfo::OperandValueKind Op2VK = 5635 TargetTransformInfo::OK_UniformConstantValue; 5636 TargetTransformInfo::OperandValueProperties Op1VP = 5637 TargetTransformInfo::OP_None; 5638 TargetTransformInfo::OperandValueProperties Op2VP = 5639 TargetTransformInfo::OP_PowerOf2; 5640 5641 // If all operands are exactly the same ConstantInt then set the 5642 // operand kind to OK_UniformConstantValue. 5643 // If instead not all operands are constants, then set the operand kind 5644 // to OK_AnyValue. If all operands are constants but not the same, 5645 // then set the operand kind to OK_NonUniformConstantValue. 5646 ConstantInt *CInt0 = nullptr; 5647 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5648 const Instruction *I = cast<Instruction>(VL[i]); 5649 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5650 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5651 if (!CInt) { 5652 Op2VK = TargetTransformInfo::OK_AnyValue; 5653 Op2VP = TargetTransformInfo::OP_None; 5654 break; 5655 } 5656 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5657 !CInt->getValue().isPowerOf2()) 5658 Op2VP = TargetTransformInfo::OP_None; 5659 if (i == 0) { 5660 CInt0 = CInt; 5661 continue; 5662 } 5663 if (CInt0 != CInt) 5664 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5665 } 5666 5667 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5668 InstructionCost ScalarEltCost = 5669 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5670 Op2VK, Op1VP, Op2VP, Operands, VL0); 5671 if (NeedToShuffleReuses) { 5672 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5673 } 5674 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5675 InstructionCost VecCost = 5676 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5677 Op2VK, Op1VP, Op2VP, Operands, VL0); 5678 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5679 return CommonCost + VecCost - ScalarCost; 5680 } 5681 case Instruction::GetElementPtr: { 5682 TargetTransformInfo::OperandValueKind Op1VK = 5683 TargetTransformInfo::OK_AnyValue; 5684 TargetTransformInfo::OperandValueKind Op2VK = 5685 TargetTransformInfo::OK_UniformConstantValue; 5686 5687 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5688 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5689 if (NeedToShuffleReuses) { 5690 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5691 } 5692 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5693 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5694 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5695 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5696 return CommonCost + VecCost - ScalarCost; 5697 } 5698 case Instruction::Load: { 5699 // Cost of wide load - cost of scalar loads. 5700 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5701 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5702 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5703 if (NeedToShuffleReuses) { 5704 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5705 } 5706 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5707 InstructionCost VecLdCost; 5708 if (E->State == TreeEntry::Vectorize) { 5709 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5710 CostKind, VL0); 5711 } else { 5712 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5713 Align CommonAlignment = Alignment; 5714 for (Value *V : VL) 5715 CommonAlignment = 5716 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5717 VecLdCost = TTI->getGatherScatterOpCost( 5718 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5719 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5720 } 5721 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5722 return CommonCost + VecLdCost - ScalarLdCost; 5723 } 5724 case Instruction::Store: { 5725 // We know that we can merge the stores. Calculate the cost. 5726 bool IsReorder = !E->ReorderIndices.empty(); 5727 auto *SI = 5728 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5729 Align Alignment = SI->getAlign(); 5730 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5731 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5732 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5733 InstructionCost VecStCost = TTI->getMemoryOpCost( 5734 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5735 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5736 return CommonCost + VecStCost - ScalarStCost; 5737 } 5738 case Instruction::Call: { 5739 CallInst *CI = cast<CallInst>(VL0); 5740 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5741 5742 // Calculate the cost of the scalar and vector calls. 5743 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5744 InstructionCost ScalarEltCost = 5745 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5746 if (NeedToShuffleReuses) { 5747 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5748 } 5749 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5750 5751 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5752 InstructionCost VecCallCost = 5753 std::min(VecCallCosts.first, VecCallCosts.second); 5754 5755 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5756 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5757 << " for " << *CI << "\n"); 5758 5759 return CommonCost + VecCallCost - ScalarCallCost; 5760 } 5761 case Instruction::ShuffleVector: { 5762 assert(E->isAltShuffle() && 5763 ((Instruction::isBinaryOp(E->getOpcode()) && 5764 Instruction::isBinaryOp(E->getAltOpcode())) || 5765 (Instruction::isCast(E->getOpcode()) && 5766 Instruction::isCast(E->getAltOpcode())) || 5767 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5768 "Invalid Shuffle Vector Operand"); 5769 InstructionCost ScalarCost = 0; 5770 if (NeedToShuffleReuses) { 5771 for (unsigned Idx : E->ReuseShuffleIndices) { 5772 Instruction *I = cast<Instruction>(VL[Idx]); 5773 CommonCost -= TTI->getInstructionCost(I, CostKind); 5774 } 5775 for (Value *V : VL) { 5776 Instruction *I = cast<Instruction>(V); 5777 CommonCost += TTI->getInstructionCost(I, CostKind); 5778 } 5779 } 5780 for (Value *V : VL) { 5781 Instruction *I = cast<Instruction>(V); 5782 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5783 ScalarCost += TTI->getInstructionCost(I, CostKind); 5784 } 5785 // VecCost is equal to sum of the cost of creating 2 vectors 5786 // and the cost of creating shuffle. 5787 InstructionCost VecCost = 0; 5788 // Try to find the previous shuffle node with the same operands and same 5789 // main/alternate ops. 5790 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5791 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5792 if (TE.get() == E) 5793 break; 5794 if (TE->isAltShuffle() && 5795 ((TE->getOpcode() == E->getOpcode() && 5796 TE->getAltOpcode() == E->getAltOpcode()) || 5797 (TE->getOpcode() == E->getAltOpcode() && 5798 TE->getAltOpcode() == E->getOpcode())) && 5799 TE->hasEqualOperands(*E)) 5800 return true; 5801 } 5802 return false; 5803 }; 5804 if (TryFindNodeWithEqualOperands()) { 5805 LLVM_DEBUG({ 5806 dbgs() << "SLP: diamond match for alternate node found.\n"; 5807 E->dump(); 5808 }); 5809 // No need to add new vector costs here since we're going to reuse 5810 // same main/alternate vector ops, just do different shuffling. 5811 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5812 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5813 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5814 CostKind); 5815 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5816 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5817 Builder.getInt1Ty(), 5818 CI0->getPredicate(), CostKind, VL0); 5819 VecCost += TTI->getCmpSelInstrCost( 5820 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5821 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5822 E->getAltOp()); 5823 } else { 5824 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5825 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5826 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5827 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5828 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5829 TTI::CastContextHint::None, CostKind); 5830 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5831 TTI::CastContextHint::None, CostKind); 5832 } 5833 5834 SmallVector<int> Mask; 5835 buildShuffleEntryMask( 5836 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5837 [E](Instruction *I) { 5838 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5839 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5840 }, 5841 Mask); 5842 CommonCost = 5843 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5844 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5845 return CommonCost + VecCost - ScalarCost; 5846 } 5847 default: 5848 llvm_unreachable("Unknown instruction"); 5849 } 5850 } 5851 5852 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5853 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5854 << VectorizableTree.size() << " is fully vectorizable .\n"); 5855 5856 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5857 SmallVector<int> Mask; 5858 return TE->State == TreeEntry::NeedToGather && 5859 !any_of(TE->Scalars, 5860 [this](Value *V) { return EphValues.contains(V); }) && 5861 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5862 TE->Scalars.size() < Limit || 5863 ((TE->getOpcode() == Instruction::ExtractElement || 5864 all_of(TE->Scalars, 5865 [](Value *V) { 5866 return isa<ExtractElementInst, UndefValue>(V); 5867 })) && 5868 isFixedVectorShuffle(TE->Scalars, Mask)) || 5869 (TE->State == TreeEntry::NeedToGather && 5870 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5871 }; 5872 5873 // We only handle trees of heights 1 and 2. 5874 if (VectorizableTree.size() == 1 && 5875 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5876 (ForReduction && 5877 AreVectorizableGathers(VectorizableTree[0].get(), 5878 VectorizableTree[0]->Scalars.size()) && 5879 VectorizableTree[0]->getVectorFactor() > 2))) 5880 return true; 5881 5882 if (VectorizableTree.size() != 2) 5883 return false; 5884 5885 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5886 // with the second gather nodes if they have less scalar operands rather than 5887 // the initial tree element (may be profitable to shuffle the second gather) 5888 // or they are extractelements, which form shuffle. 5889 SmallVector<int> Mask; 5890 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5891 AreVectorizableGathers(VectorizableTree[1].get(), 5892 VectorizableTree[0]->Scalars.size())) 5893 return true; 5894 5895 // Gathering cost would be too much for tiny trees. 5896 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5897 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5898 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5899 return false; 5900 5901 return true; 5902 } 5903 5904 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5905 TargetTransformInfo *TTI, 5906 bool MustMatchOrInst) { 5907 // Look past the root to find a source value. Arbitrarily follow the 5908 // path through operand 0 of any 'or'. Also, peek through optional 5909 // shift-left-by-multiple-of-8-bits. 5910 Value *ZextLoad = Root; 5911 const APInt *ShAmtC; 5912 bool FoundOr = false; 5913 while (!isa<ConstantExpr>(ZextLoad) && 5914 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5915 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5916 ShAmtC->urem(8) == 0))) { 5917 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5918 ZextLoad = BinOp->getOperand(0); 5919 if (BinOp->getOpcode() == Instruction::Or) 5920 FoundOr = true; 5921 } 5922 // Check if the input is an extended load of the required or/shift expression. 5923 Value *Load; 5924 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5925 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5926 return false; 5927 5928 // Require that the total load bit width is a legal integer type. 5929 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5930 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5931 Type *SrcTy = Load->getType(); 5932 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5933 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5934 return false; 5935 5936 // Everything matched - assume that we can fold the whole sequence using 5937 // load combining. 5938 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5939 << *(cast<Instruction>(Root)) << "\n"); 5940 5941 return true; 5942 } 5943 5944 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5945 if (RdxKind != RecurKind::Or) 5946 return false; 5947 5948 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5949 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5950 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5951 /* MatchOr */ false); 5952 } 5953 5954 bool BoUpSLP::isLoadCombineCandidate() const { 5955 // Peek through a final sequence of stores and check if all operations are 5956 // likely to be load-combined. 5957 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5958 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5959 Value *X; 5960 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5961 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5962 return false; 5963 } 5964 return true; 5965 } 5966 5967 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5968 // No need to vectorize inserts of gathered values. 5969 if (VectorizableTree.size() == 2 && 5970 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5971 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5972 return true; 5973 5974 // We can vectorize the tree if its size is greater than or equal to the 5975 // minimum size specified by the MinTreeSize command line option. 5976 if (VectorizableTree.size() >= MinTreeSize) 5977 return false; 5978 5979 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5980 // can vectorize it if we can prove it fully vectorizable. 5981 if (isFullyVectorizableTinyTree(ForReduction)) 5982 return false; 5983 5984 assert(VectorizableTree.empty() 5985 ? ExternalUses.empty() 5986 : true && "We shouldn't have any external users"); 5987 5988 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5989 // vectorizable. 5990 return true; 5991 } 5992 5993 InstructionCost BoUpSLP::getSpillCost() const { 5994 // Walk from the bottom of the tree to the top, tracking which values are 5995 // live. When we see a call instruction that is not part of our tree, 5996 // query TTI to see if there is a cost to keeping values live over it 5997 // (for example, if spills and fills are required). 5998 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5999 InstructionCost Cost = 0; 6000 6001 SmallPtrSet<Instruction*, 4> LiveValues; 6002 Instruction *PrevInst = nullptr; 6003 6004 // The entries in VectorizableTree are not necessarily ordered by their 6005 // position in basic blocks. Collect them and order them by dominance so later 6006 // instructions are guaranteed to be visited first. For instructions in 6007 // different basic blocks, we only scan to the beginning of the block, so 6008 // their order does not matter, as long as all instructions in a basic block 6009 // are grouped together. Using dominance ensures a deterministic order. 6010 SmallVector<Instruction *, 16> OrderedScalars; 6011 for (const auto &TEPtr : VectorizableTree) { 6012 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6013 if (!Inst) 6014 continue; 6015 OrderedScalars.push_back(Inst); 6016 } 6017 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6018 auto *NodeA = DT->getNode(A->getParent()); 6019 auto *NodeB = DT->getNode(B->getParent()); 6020 assert(NodeA && "Should only process reachable instructions"); 6021 assert(NodeB && "Should only process reachable instructions"); 6022 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6023 "Different nodes should have different DFS numbers"); 6024 if (NodeA != NodeB) 6025 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6026 return B->comesBefore(A); 6027 }); 6028 6029 for (Instruction *Inst : OrderedScalars) { 6030 if (!PrevInst) { 6031 PrevInst = Inst; 6032 continue; 6033 } 6034 6035 // Update LiveValues. 6036 LiveValues.erase(PrevInst); 6037 for (auto &J : PrevInst->operands()) { 6038 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6039 LiveValues.insert(cast<Instruction>(&*J)); 6040 } 6041 6042 LLVM_DEBUG({ 6043 dbgs() << "SLP: #LV: " << LiveValues.size(); 6044 for (auto *X : LiveValues) 6045 dbgs() << " " << X->getName(); 6046 dbgs() << ", Looking at "; 6047 Inst->dump(); 6048 }); 6049 6050 // Now find the sequence of instructions between PrevInst and Inst. 6051 unsigned NumCalls = 0; 6052 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6053 PrevInstIt = 6054 PrevInst->getIterator().getReverse(); 6055 while (InstIt != PrevInstIt) { 6056 if (PrevInstIt == PrevInst->getParent()->rend()) { 6057 PrevInstIt = Inst->getParent()->rbegin(); 6058 continue; 6059 } 6060 6061 // Debug information does not impact spill cost. 6062 if ((isa<CallInst>(&*PrevInstIt) && 6063 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6064 &*PrevInstIt != PrevInst) 6065 NumCalls++; 6066 6067 ++PrevInstIt; 6068 } 6069 6070 if (NumCalls) { 6071 SmallVector<Type*, 4> V; 6072 for (auto *II : LiveValues) { 6073 auto *ScalarTy = II->getType(); 6074 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6075 ScalarTy = VectorTy->getElementType(); 6076 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6077 } 6078 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6079 } 6080 6081 PrevInst = Inst; 6082 } 6083 6084 return Cost; 6085 } 6086 6087 /// Check if two insertelement instructions are from the same buildvector. 6088 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6089 InsertElementInst *V) { 6090 // Instructions must be from the same basic blocks. 6091 if (VU->getParent() != V->getParent()) 6092 return false; 6093 // Checks if 2 insertelements are from the same buildvector. 6094 if (VU->getType() != V->getType()) 6095 return false; 6096 // Multiple used inserts are separate nodes. 6097 if (!VU->hasOneUse() && !V->hasOneUse()) 6098 return false; 6099 auto *IE1 = VU; 6100 auto *IE2 = V; 6101 // Go through the vector operand of insertelement instructions trying to find 6102 // either VU as the original vector for IE2 or V as the original vector for 6103 // IE1. 6104 do { 6105 if (IE2 == VU || IE1 == V) 6106 return true; 6107 if (IE1) { 6108 if (IE1 != VU && !IE1->hasOneUse()) 6109 IE1 = nullptr; 6110 else 6111 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6112 } 6113 if (IE2) { 6114 if (IE2 != V && !IE2->hasOneUse()) 6115 IE2 = nullptr; 6116 else 6117 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6118 } 6119 } while (IE1 || IE2); 6120 return false; 6121 } 6122 6123 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6124 InstructionCost Cost = 0; 6125 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6126 << VectorizableTree.size() << ".\n"); 6127 6128 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6129 6130 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6131 TreeEntry &TE = *VectorizableTree[I]; 6132 6133 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6134 Cost += C; 6135 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6136 << " for bundle that starts with " << *TE.Scalars[0] 6137 << ".\n" 6138 << "SLP: Current total cost = " << Cost << "\n"); 6139 } 6140 6141 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6142 InstructionCost ExtractCost = 0; 6143 SmallVector<unsigned> VF; 6144 SmallVector<SmallVector<int>> ShuffleMask; 6145 SmallVector<Value *> FirstUsers; 6146 SmallVector<APInt> DemandedElts; 6147 for (ExternalUser &EU : ExternalUses) { 6148 // We only add extract cost once for the same scalar. 6149 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6150 !ExtractCostCalculated.insert(EU.Scalar).second) 6151 continue; 6152 6153 // Uses by ephemeral values are free (because the ephemeral value will be 6154 // removed prior to code generation, and so the extraction will be 6155 // removed as well). 6156 if (EphValues.count(EU.User)) 6157 continue; 6158 6159 // No extract cost for vector "scalar" 6160 if (isa<FixedVectorType>(EU.Scalar->getType())) 6161 continue; 6162 6163 // Already counted the cost for external uses when tried to adjust the cost 6164 // for extractelements, no need to add it again. 6165 if (isa<ExtractElementInst>(EU.Scalar)) 6166 continue; 6167 6168 // If found user is an insertelement, do not calculate extract cost but try 6169 // to detect it as a final shuffled/identity match. 6170 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6171 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6172 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6173 if (InsertIdx) { 6174 auto *It = find_if(FirstUsers, [VU](Value *V) { 6175 return areTwoInsertFromSameBuildVector(VU, 6176 cast<InsertElementInst>(V)); 6177 }); 6178 int VecId = -1; 6179 if (It == FirstUsers.end()) { 6180 VF.push_back(FTy->getNumElements()); 6181 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6182 // Find the insertvector, vectorized in tree, if any. 6183 Value *Base = VU; 6184 while (isa<InsertElementInst>(Base)) { 6185 // Build the mask for the vectorized insertelement instructions. 6186 if (const TreeEntry *E = getTreeEntry(Base)) { 6187 VU = cast<InsertElementInst>(Base); 6188 do { 6189 int Idx = E->findLaneForValue(Base); 6190 ShuffleMask.back()[Idx] = Idx; 6191 Base = cast<InsertElementInst>(Base)->getOperand(0); 6192 } while (E == getTreeEntry(Base)); 6193 break; 6194 } 6195 Base = cast<InsertElementInst>(Base)->getOperand(0); 6196 } 6197 FirstUsers.push_back(VU); 6198 DemandedElts.push_back(APInt::getZero(VF.back())); 6199 VecId = FirstUsers.size() - 1; 6200 } else { 6201 VecId = std::distance(FirstUsers.begin(), It); 6202 } 6203 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6204 DemandedElts[VecId].setBit(*InsertIdx); 6205 continue; 6206 } 6207 } 6208 } 6209 6210 // If we plan to rewrite the tree in a smaller type, we will need to sign 6211 // extend the extracted value back to the original type. Here, we account 6212 // for the extract and the added cost of the sign extend if needed. 6213 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6214 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6215 if (MinBWs.count(ScalarRoot)) { 6216 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6217 auto Extend = 6218 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6219 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6220 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6221 VecTy, EU.Lane); 6222 } else { 6223 ExtractCost += 6224 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6225 } 6226 } 6227 6228 InstructionCost SpillCost = getSpillCost(); 6229 Cost += SpillCost + ExtractCost; 6230 if (FirstUsers.size() == 1) { 6231 int Limit = ShuffleMask.front().size() * 2; 6232 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6233 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6234 InstructionCost C = TTI->getShuffleCost( 6235 TTI::SK_PermuteSingleSrc, 6236 cast<FixedVectorType>(FirstUsers.front()->getType()), 6237 ShuffleMask.front()); 6238 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6239 << " for final shuffle of insertelement external users " 6240 << *VectorizableTree.front()->Scalars.front() << ".\n" 6241 << "SLP: Current total cost = " << Cost << "\n"); 6242 Cost += C; 6243 } 6244 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6245 cast<FixedVectorType>(FirstUsers.front()->getType()), 6246 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6247 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6248 << " for insertelements gather.\n" 6249 << "SLP: Current total cost = " << Cost << "\n"); 6250 Cost -= InsertCost; 6251 } else if (FirstUsers.size() >= 2) { 6252 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6253 // Combined masks of the first 2 vectors. 6254 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6255 copy(ShuffleMask.front(), CombinedMask.begin()); 6256 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6257 auto *VecTy = FixedVectorType::get( 6258 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6259 MaxVF); 6260 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6261 if (ShuffleMask[1][I] != UndefMaskElem) { 6262 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6263 CombinedDemandedElts.setBit(I); 6264 } 6265 } 6266 InstructionCost C = 6267 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6268 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6269 << " for final shuffle of vector node and external " 6270 "insertelement users " 6271 << *VectorizableTree.front()->Scalars.front() << ".\n" 6272 << "SLP: Current total cost = " << Cost << "\n"); 6273 Cost += C; 6274 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6275 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6276 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6277 << " for insertelements gather.\n" 6278 << "SLP: Current total cost = " << Cost << "\n"); 6279 Cost -= InsertCost; 6280 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6281 // Other elements - permutation of 2 vectors (the initial one and the 6282 // next Ith incoming vector). 6283 unsigned VF = ShuffleMask[I].size(); 6284 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6285 int Mask = ShuffleMask[I][Idx]; 6286 if (Mask != UndefMaskElem) 6287 CombinedMask[Idx] = MaxVF + Mask; 6288 else if (CombinedMask[Idx] != UndefMaskElem) 6289 CombinedMask[Idx] = Idx; 6290 } 6291 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6292 if (CombinedMask[Idx] != UndefMaskElem) 6293 CombinedMask[Idx] = Idx; 6294 InstructionCost C = 6295 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6296 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6297 << " for final shuffle of vector node and external " 6298 "insertelement users " 6299 << *VectorizableTree.front()->Scalars.front() << ".\n" 6300 << "SLP: Current total cost = " << Cost << "\n"); 6301 Cost += C; 6302 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6303 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6304 /*Insert*/ true, /*Extract*/ false); 6305 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6306 << " for insertelements gather.\n" 6307 << "SLP: Current total cost = " << Cost << "\n"); 6308 Cost -= InsertCost; 6309 } 6310 } 6311 6312 #ifndef NDEBUG 6313 SmallString<256> Str; 6314 { 6315 raw_svector_ostream OS(Str); 6316 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6317 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6318 << "SLP: Total Cost = " << Cost << ".\n"; 6319 } 6320 LLVM_DEBUG(dbgs() << Str); 6321 if (ViewSLPTree) 6322 ViewGraph(this, "SLP" + F->getName(), false, Str); 6323 #endif 6324 6325 return Cost; 6326 } 6327 6328 Optional<TargetTransformInfo::ShuffleKind> 6329 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6330 SmallVectorImpl<const TreeEntry *> &Entries) { 6331 // TODO: currently checking only for Scalars in the tree entry, need to count 6332 // reused elements too for better cost estimation. 6333 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6334 Entries.clear(); 6335 // Build a lists of values to tree entries. 6336 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6337 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6338 if (EntryPtr.get() == TE) 6339 break; 6340 if (EntryPtr->State != TreeEntry::NeedToGather) 6341 continue; 6342 for (Value *V : EntryPtr->Scalars) 6343 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6344 } 6345 // Find all tree entries used by the gathered values. If no common entries 6346 // found - not a shuffle. 6347 // Here we build a set of tree nodes for each gathered value and trying to 6348 // find the intersection between these sets. If we have at least one common 6349 // tree node for each gathered value - we have just a permutation of the 6350 // single vector. If we have 2 different sets, we're in situation where we 6351 // have a permutation of 2 input vectors. 6352 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6353 DenseMap<Value *, int> UsedValuesEntry; 6354 for (Value *V : TE->Scalars) { 6355 if (isa<UndefValue>(V)) 6356 continue; 6357 // Build a list of tree entries where V is used. 6358 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6359 auto It = ValueToTEs.find(V); 6360 if (It != ValueToTEs.end()) 6361 VToTEs = It->second; 6362 if (const TreeEntry *VTE = getTreeEntry(V)) 6363 VToTEs.insert(VTE); 6364 if (VToTEs.empty()) 6365 return None; 6366 if (UsedTEs.empty()) { 6367 // The first iteration, just insert the list of nodes to vector. 6368 UsedTEs.push_back(VToTEs); 6369 } else { 6370 // Need to check if there are any previously used tree nodes which use V. 6371 // If there are no such nodes, consider that we have another one input 6372 // vector. 6373 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6374 unsigned Idx = 0; 6375 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6376 // Do we have a non-empty intersection of previously listed tree entries 6377 // and tree entries using current V? 6378 set_intersect(VToTEs, Set); 6379 if (!VToTEs.empty()) { 6380 // Yes, write the new subset and continue analysis for the next 6381 // scalar. 6382 Set.swap(VToTEs); 6383 break; 6384 } 6385 VToTEs = SavedVToTEs; 6386 ++Idx; 6387 } 6388 // No non-empty intersection found - need to add a second set of possible 6389 // source vectors. 6390 if (Idx == UsedTEs.size()) { 6391 // If the number of input vectors is greater than 2 - not a permutation, 6392 // fallback to the regular gather. 6393 if (UsedTEs.size() == 2) 6394 return None; 6395 UsedTEs.push_back(SavedVToTEs); 6396 Idx = UsedTEs.size() - 1; 6397 } 6398 UsedValuesEntry.try_emplace(V, Idx); 6399 } 6400 } 6401 6402 unsigned VF = 0; 6403 if (UsedTEs.size() == 1) { 6404 // Try to find the perfect match in another gather node at first. 6405 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6406 return EntryPtr->isSame(TE->Scalars); 6407 }); 6408 if (It != UsedTEs.front().end()) { 6409 Entries.push_back(*It); 6410 std::iota(Mask.begin(), Mask.end(), 0); 6411 return TargetTransformInfo::SK_PermuteSingleSrc; 6412 } 6413 // No perfect match, just shuffle, so choose the first tree node. 6414 Entries.push_back(*UsedTEs.front().begin()); 6415 } else { 6416 // Try to find nodes with the same vector factor. 6417 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6418 DenseMap<int, const TreeEntry *> VFToTE; 6419 for (const TreeEntry *TE : UsedTEs.front()) 6420 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6421 for (const TreeEntry *TE : UsedTEs.back()) { 6422 auto It = VFToTE.find(TE->getVectorFactor()); 6423 if (It != VFToTE.end()) { 6424 VF = It->first; 6425 Entries.push_back(It->second); 6426 Entries.push_back(TE); 6427 break; 6428 } 6429 } 6430 // No 2 source vectors with the same vector factor - give up and do regular 6431 // gather. 6432 if (Entries.empty()) 6433 return None; 6434 } 6435 6436 // Build a shuffle mask for better cost estimation and vector emission. 6437 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6438 Value *V = TE->Scalars[I]; 6439 if (isa<UndefValue>(V)) 6440 continue; 6441 unsigned Idx = UsedValuesEntry.lookup(V); 6442 const TreeEntry *VTE = Entries[Idx]; 6443 int FoundLane = VTE->findLaneForValue(V); 6444 Mask[I] = Idx * VF + FoundLane; 6445 // Extra check required by isSingleSourceMaskImpl function (called by 6446 // ShuffleVectorInst::isSingleSourceMask). 6447 if (Mask[I] >= 2 * E) 6448 return None; 6449 } 6450 switch (Entries.size()) { 6451 case 1: 6452 return TargetTransformInfo::SK_PermuteSingleSrc; 6453 case 2: 6454 return TargetTransformInfo::SK_PermuteTwoSrc; 6455 default: 6456 break; 6457 } 6458 return None; 6459 } 6460 6461 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6462 const APInt &ShuffledIndices, 6463 bool NeedToShuffle) const { 6464 InstructionCost Cost = 6465 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6466 /*Extract*/ false); 6467 if (NeedToShuffle) 6468 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6469 return Cost; 6470 } 6471 6472 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6473 // Find the type of the operands in VL. 6474 Type *ScalarTy = VL[0]->getType(); 6475 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6476 ScalarTy = SI->getValueOperand()->getType(); 6477 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6478 bool DuplicateNonConst = false; 6479 // Find the cost of inserting/extracting values from the vector. 6480 // Check if the same elements are inserted several times and count them as 6481 // shuffle candidates. 6482 APInt ShuffledElements = APInt::getZero(VL.size()); 6483 DenseSet<Value *> UniqueElements; 6484 // Iterate in reverse order to consider insert elements with the high cost. 6485 for (unsigned I = VL.size(); I > 0; --I) { 6486 unsigned Idx = I - 1; 6487 // No need to shuffle duplicates for constants. 6488 if (isConstant(VL[Idx])) { 6489 ShuffledElements.setBit(Idx); 6490 continue; 6491 } 6492 if (!UniqueElements.insert(VL[Idx]).second) { 6493 DuplicateNonConst = true; 6494 ShuffledElements.setBit(Idx); 6495 } 6496 } 6497 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6498 } 6499 6500 // Perform operand reordering on the instructions in VL and return the reordered 6501 // operands in Left and Right. 6502 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6503 SmallVectorImpl<Value *> &Left, 6504 SmallVectorImpl<Value *> &Right, 6505 const DataLayout &DL, 6506 ScalarEvolution &SE, 6507 const BoUpSLP &R) { 6508 if (VL.empty()) 6509 return; 6510 VLOperands Ops(VL, DL, SE, R); 6511 // Reorder the operands in place. 6512 Ops.reorder(); 6513 Left = Ops.getVL(0); 6514 Right = Ops.getVL(1); 6515 } 6516 6517 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6518 // Get the basic block this bundle is in. All instructions in the bundle 6519 // should be in this block. 6520 auto *Front = E->getMainOp(); 6521 auto *BB = Front->getParent(); 6522 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6523 auto *I = cast<Instruction>(V); 6524 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6525 })); 6526 6527 auto &&FindLastInst = [E, Front]() { 6528 Instruction *LastInst = Front; 6529 for (Value *V : E->Scalars) { 6530 auto *I = dyn_cast<Instruction>(V); 6531 if (!I) 6532 continue; 6533 if (LastInst->comesBefore(I)) 6534 LastInst = I; 6535 } 6536 return LastInst; 6537 }; 6538 6539 auto &&FindFirstInst = [E, Front]() { 6540 Instruction *FirstInst = Front; 6541 for (Value *V : E->Scalars) { 6542 auto *I = dyn_cast<Instruction>(V); 6543 if (!I) 6544 continue; 6545 if (I->comesBefore(FirstInst)) 6546 FirstInst = I; 6547 } 6548 return FirstInst; 6549 }; 6550 6551 // Set the insert point to the beginning of the basic block if the entry 6552 // should not be scheduled. 6553 if (E->State != TreeEntry::NeedToGather && 6554 doesNotNeedToSchedule(E->Scalars)) { 6555 BasicBlock::iterator InsertPt; 6556 if (all_of(E->Scalars, isUsedOutsideBlock)) 6557 InsertPt = FindLastInst()->getIterator(); 6558 else 6559 InsertPt = FindFirstInst()->getIterator(); 6560 Builder.SetInsertPoint(BB, InsertPt); 6561 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6562 return; 6563 } 6564 6565 // The last instruction in the bundle in program order. 6566 Instruction *LastInst = nullptr; 6567 6568 // Find the last instruction. The common case should be that BB has been 6569 // scheduled, and the last instruction is VL.back(). So we start with 6570 // VL.back() and iterate over schedule data until we reach the end of the 6571 // bundle. The end of the bundle is marked by null ScheduleData. 6572 if (BlocksSchedules.count(BB)) { 6573 Value *V = E->isOneOf(E->Scalars.back()); 6574 if (doesNotNeedToBeScheduled(V)) 6575 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6576 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6577 if (Bundle && Bundle->isPartOfBundle()) 6578 for (; Bundle; Bundle = Bundle->NextInBundle) 6579 if (Bundle->OpValue == Bundle->Inst) 6580 LastInst = Bundle->Inst; 6581 } 6582 6583 // LastInst can still be null at this point if there's either not an entry 6584 // for BB in BlocksSchedules or there's no ScheduleData available for 6585 // VL.back(). This can be the case if buildTree_rec aborts for various 6586 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6587 // size is reached, etc.). ScheduleData is initialized in the scheduling 6588 // "dry-run". 6589 // 6590 // If this happens, we can still find the last instruction by brute force. We 6591 // iterate forwards from Front (inclusive) until we either see all 6592 // instructions in the bundle or reach the end of the block. If Front is the 6593 // last instruction in program order, LastInst will be set to Front, and we 6594 // will visit all the remaining instructions in the block. 6595 // 6596 // One of the reasons we exit early from buildTree_rec is to place an upper 6597 // bound on compile-time. Thus, taking an additional compile-time hit here is 6598 // not ideal. However, this should be exceedingly rare since it requires that 6599 // we both exit early from buildTree_rec and that the bundle be out-of-order 6600 // (causing us to iterate all the way to the end of the block). 6601 if (!LastInst) 6602 LastInst = FindLastInst(); 6603 assert(LastInst && "Failed to find last instruction in bundle"); 6604 6605 // Set the insertion point after the last instruction in the bundle. Set the 6606 // debug location to Front. 6607 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6608 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6609 } 6610 6611 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6612 // List of instructions/lanes from current block and/or the blocks which are 6613 // part of the current loop. These instructions will be inserted at the end to 6614 // make it possible to optimize loops and hoist invariant instructions out of 6615 // the loops body with better chances for success. 6616 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6617 SmallSet<int, 4> PostponedIndices; 6618 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6619 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6620 SmallPtrSet<BasicBlock *, 4> Visited; 6621 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6622 InsertBB = InsertBB->getSinglePredecessor(); 6623 return InsertBB && InsertBB == InstBB; 6624 }; 6625 for (int I = 0, E = VL.size(); I < E; ++I) { 6626 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6627 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6628 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6629 PostponedIndices.insert(I).second) 6630 PostponedInsts.emplace_back(Inst, I); 6631 } 6632 6633 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6634 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6635 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6636 if (!InsElt) 6637 return Vec; 6638 GatherShuffleSeq.insert(InsElt); 6639 CSEBlocks.insert(InsElt->getParent()); 6640 // Add to our 'need-to-extract' list. 6641 if (TreeEntry *Entry = getTreeEntry(V)) { 6642 // Find which lane we need to extract. 6643 unsigned FoundLane = Entry->findLaneForValue(V); 6644 ExternalUses.emplace_back(V, InsElt, FoundLane); 6645 } 6646 return Vec; 6647 }; 6648 Value *Val0 = 6649 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6650 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6651 Value *Vec = PoisonValue::get(VecTy); 6652 SmallVector<int> NonConsts; 6653 // Insert constant values at first. 6654 for (int I = 0, E = VL.size(); I < E; ++I) { 6655 if (PostponedIndices.contains(I)) 6656 continue; 6657 if (!isConstant(VL[I])) { 6658 NonConsts.push_back(I); 6659 continue; 6660 } 6661 Vec = CreateInsertElement(Vec, VL[I], I); 6662 } 6663 // Insert non-constant values. 6664 for (int I : NonConsts) 6665 Vec = CreateInsertElement(Vec, VL[I], I); 6666 // Append instructions, which are/may be part of the loop, in the end to make 6667 // it possible to hoist non-loop-based instructions. 6668 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6669 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6670 6671 return Vec; 6672 } 6673 6674 namespace { 6675 /// Merges shuffle masks and emits final shuffle instruction, if required. 6676 class ShuffleInstructionBuilder { 6677 IRBuilderBase &Builder; 6678 const unsigned VF = 0; 6679 bool IsFinalized = false; 6680 SmallVector<int, 4> Mask; 6681 /// Holds all of the instructions that we gathered. 6682 SetVector<Instruction *> &GatherShuffleSeq; 6683 /// A list of blocks that we are going to CSE. 6684 SetVector<BasicBlock *> &CSEBlocks; 6685 6686 public: 6687 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6688 SetVector<Instruction *> &GatherShuffleSeq, 6689 SetVector<BasicBlock *> &CSEBlocks) 6690 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6691 CSEBlocks(CSEBlocks) {} 6692 6693 /// Adds a mask, inverting it before applying. 6694 void addInversedMask(ArrayRef<unsigned> SubMask) { 6695 if (SubMask.empty()) 6696 return; 6697 SmallVector<int, 4> NewMask; 6698 inversePermutation(SubMask, NewMask); 6699 addMask(NewMask); 6700 } 6701 6702 /// Functions adds masks, merging them into single one. 6703 void addMask(ArrayRef<unsigned> SubMask) { 6704 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6705 addMask(NewMask); 6706 } 6707 6708 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6709 6710 Value *finalize(Value *V) { 6711 IsFinalized = true; 6712 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6713 if (VF == ValueVF && Mask.empty()) 6714 return V; 6715 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6716 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6717 addMask(NormalizedMask); 6718 6719 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6720 return V; 6721 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6722 if (auto *I = dyn_cast<Instruction>(Vec)) { 6723 GatherShuffleSeq.insert(I); 6724 CSEBlocks.insert(I->getParent()); 6725 } 6726 return Vec; 6727 } 6728 6729 ~ShuffleInstructionBuilder() { 6730 assert((IsFinalized || Mask.empty()) && 6731 "Shuffle construction must be finalized."); 6732 } 6733 }; 6734 } // namespace 6735 6736 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6737 const unsigned VF = VL.size(); 6738 InstructionsState S = getSameOpcode(VL); 6739 if (S.getOpcode()) { 6740 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6741 if (E->isSame(VL)) { 6742 Value *V = vectorizeTree(E); 6743 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6744 if (!E->ReuseShuffleIndices.empty()) { 6745 // Reshuffle to get only unique values. 6746 // If some of the scalars are duplicated in the vectorization tree 6747 // entry, we do not vectorize them but instead generate a mask for 6748 // the reuses. But if there are several users of the same entry, 6749 // they may have different vectorization factors. This is especially 6750 // important for PHI nodes. In this case, we need to adapt the 6751 // resulting instruction for the user vectorization factor and have 6752 // to reshuffle it again to take only unique elements of the vector. 6753 // Without this code the function incorrectly returns reduced vector 6754 // instruction with the same elements, not with the unique ones. 6755 6756 // block: 6757 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6758 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6759 // ... (use %2) 6760 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6761 // br %block 6762 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6763 SmallSet<int, 4> UsedIdxs; 6764 int Pos = 0; 6765 int Sz = VL.size(); 6766 for (int Idx : E->ReuseShuffleIndices) { 6767 if (Idx != Sz && Idx != UndefMaskElem && 6768 UsedIdxs.insert(Idx).second) 6769 UniqueIdxs[Idx] = Pos; 6770 ++Pos; 6771 } 6772 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6773 "less than original vector size."); 6774 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6775 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6776 } else { 6777 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6778 "Expected vectorization factor less " 6779 "than original vector size."); 6780 SmallVector<int> UniformMask(VF, 0); 6781 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6782 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6783 } 6784 if (auto *I = dyn_cast<Instruction>(V)) { 6785 GatherShuffleSeq.insert(I); 6786 CSEBlocks.insert(I->getParent()); 6787 } 6788 } 6789 return V; 6790 } 6791 } 6792 6793 // Can't vectorize this, so simply build a new vector with each lane 6794 // corresponding to the requested value. 6795 return createBuildVector(VL); 6796 } 6797 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6798 unsigned VF = VL.size(); 6799 // Exploit possible reuse of values across lanes. 6800 SmallVector<int> ReuseShuffleIndicies; 6801 SmallVector<Value *> UniqueValues; 6802 if (VL.size() > 2) { 6803 DenseMap<Value *, unsigned> UniquePositions; 6804 unsigned NumValues = 6805 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6806 return !isa<UndefValue>(V); 6807 }).base()); 6808 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6809 int UniqueVals = 0; 6810 for (Value *V : VL.drop_back(VL.size() - VF)) { 6811 if (isa<UndefValue>(V)) { 6812 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6813 continue; 6814 } 6815 if (isConstant(V)) { 6816 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6817 UniqueValues.emplace_back(V); 6818 continue; 6819 } 6820 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6821 ReuseShuffleIndicies.emplace_back(Res.first->second); 6822 if (Res.second) { 6823 UniqueValues.emplace_back(V); 6824 ++UniqueVals; 6825 } 6826 } 6827 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6828 // Emit pure splat vector. 6829 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6830 UndefMaskElem); 6831 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6832 ReuseShuffleIndicies.clear(); 6833 UniqueValues.clear(); 6834 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6835 } 6836 UniqueValues.append(VF - UniqueValues.size(), 6837 PoisonValue::get(VL[0]->getType())); 6838 VL = UniqueValues; 6839 } 6840 6841 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6842 CSEBlocks); 6843 Value *Vec = gather(VL); 6844 if (!ReuseShuffleIndicies.empty()) { 6845 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6846 Vec = ShuffleBuilder.finalize(Vec); 6847 } 6848 return Vec; 6849 } 6850 6851 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6852 IRBuilder<>::InsertPointGuard Guard(Builder); 6853 6854 if (E->VectorizedValue) { 6855 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6856 return E->VectorizedValue; 6857 } 6858 6859 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6860 unsigned VF = E->getVectorFactor(); 6861 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6862 CSEBlocks); 6863 if (E->State == TreeEntry::NeedToGather) { 6864 if (E->getMainOp()) 6865 setInsertPointAfterBundle(E); 6866 Value *Vec; 6867 SmallVector<int> Mask; 6868 SmallVector<const TreeEntry *> Entries; 6869 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6870 isGatherShuffledEntry(E, Mask, Entries); 6871 if (Shuffle.hasValue()) { 6872 assert((Entries.size() == 1 || Entries.size() == 2) && 6873 "Expected shuffle of 1 or 2 entries."); 6874 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6875 Entries.back()->VectorizedValue, Mask); 6876 if (auto *I = dyn_cast<Instruction>(Vec)) { 6877 GatherShuffleSeq.insert(I); 6878 CSEBlocks.insert(I->getParent()); 6879 } 6880 } else { 6881 Vec = gather(E->Scalars); 6882 } 6883 if (NeedToShuffleReuses) { 6884 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6885 Vec = ShuffleBuilder.finalize(Vec); 6886 } 6887 E->VectorizedValue = Vec; 6888 return Vec; 6889 } 6890 6891 assert((E->State == TreeEntry::Vectorize || 6892 E->State == TreeEntry::ScatterVectorize) && 6893 "Unhandled state"); 6894 unsigned ShuffleOrOp = 6895 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6896 Instruction *VL0 = E->getMainOp(); 6897 Type *ScalarTy = VL0->getType(); 6898 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6899 ScalarTy = Store->getValueOperand()->getType(); 6900 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6901 ScalarTy = IE->getOperand(1)->getType(); 6902 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6903 switch (ShuffleOrOp) { 6904 case Instruction::PHI: { 6905 assert( 6906 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6907 "PHI reordering is free."); 6908 auto *PH = cast<PHINode>(VL0); 6909 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6910 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6911 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6912 Value *V = NewPhi; 6913 6914 // Adjust insertion point once all PHI's have been generated. 6915 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6916 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6917 6918 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6919 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6920 V = ShuffleBuilder.finalize(V); 6921 6922 E->VectorizedValue = V; 6923 6924 // PHINodes may have multiple entries from the same block. We want to 6925 // visit every block once. 6926 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6927 6928 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6929 ValueList Operands; 6930 BasicBlock *IBB = PH->getIncomingBlock(i); 6931 6932 if (!VisitedBBs.insert(IBB).second) { 6933 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6934 continue; 6935 } 6936 6937 Builder.SetInsertPoint(IBB->getTerminator()); 6938 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6939 Value *Vec = vectorizeTree(E->getOperand(i)); 6940 NewPhi->addIncoming(Vec, IBB); 6941 } 6942 6943 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6944 "Invalid number of incoming values"); 6945 return V; 6946 } 6947 6948 case Instruction::ExtractElement: { 6949 Value *V = E->getSingleOperand(0); 6950 Builder.SetInsertPoint(VL0); 6951 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6952 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6953 V = ShuffleBuilder.finalize(V); 6954 E->VectorizedValue = V; 6955 return V; 6956 } 6957 case Instruction::ExtractValue: { 6958 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6959 Builder.SetInsertPoint(LI); 6960 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6961 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6962 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6963 Value *NewV = propagateMetadata(V, E->Scalars); 6964 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6965 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6966 NewV = ShuffleBuilder.finalize(NewV); 6967 E->VectorizedValue = NewV; 6968 return NewV; 6969 } 6970 case Instruction::InsertElement: { 6971 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6972 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6973 Value *V = vectorizeTree(E->getOperand(1)); 6974 6975 // Create InsertVector shuffle if necessary 6976 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6977 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6978 })); 6979 const unsigned NumElts = 6980 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6981 const unsigned NumScalars = E->Scalars.size(); 6982 6983 unsigned Offset = *getInsertIndex(VL0); 6984 assert(Offset < NumElts && "Failed to find vector index offset"); 6985 6986 // Create shuffle to resize vector 6987 SmallVector<int> Mask; 6988 if (!E->ReorderIndices.empty()) { 6989 inversePermutation(E->ReorderIndices, Mask); 6990 Mask.append(NumElts - NumScalars, UndefMaskElem); 6991 } else { 6992 Mask.assign(NumElts, UndefMaskElem); 6993 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6994 } 6995 // Create InsertVector shuffle if necessary 6996 bool IsIdentity = true; 6997 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6998 Mask.swap(PrevMask); 6999 for (unsigned I = 0; I < NumScalars; ++I) { 7000 Value *Scalar = E->Scalars[PrevMask[I]]; 7001 unsigned InsertIdx = *getInsertIndex(Scalar); 7002 IsIdentity &= InsertIdx - Offset == I; 7003 Mask[InsertIdx - Offset] = I; 7004 } 7005 if (!IsIdentity || NumElts != NumScalars) { 7006 V = Builder.CreateShuffleVector(V, Mask); 7007 if (auto *I = dyn_cast<Instruction>(V)) { 7008 GatherShuffleSeq.insert(I); 7009 CSEBlocks.insert(I->getParent()); 7010 } 7011 } 7012 7013 if ((!IsIdentity || Offset != 0 || 7014 !isUndefVector(FirstInsert->getOperand(0))) && 7015 NumElts != NumScalars) { 7016 SmallVector<int> InsertMask(NumElts); 7017 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7018 for (unsigned I = 0; I < NumElts; I++) { 7019 if (Mask[I] != UndefMaskElem) 7020 InsertMask[Offset + I] = NumElts + I; 7021 } 7022 7023 V = Builder.CreateShuffleVector( 7024 FirstInsert->getOperand(0), V, InsertMask, 7025 cast<Instruction>(E->Scalars.back())->getName()); 7026 if (auto *I = dyn_cast<Instruction>(V)) { 7027 GatherShuffleSeq.insert(I); 7028 CSEBlocks.insert(I->getParent()); 7029 } 7030 } 7031 7032 ++NumVectorInstructions; 7033 E->VectorizedValue = V; 7034 return V; 7035 } 7036 case Instruction::ZExt: 7037 case Instruction::SExt: 7038 case Instruction::FPToUI: 7039 case Instruction::FPToSI: 7040 case Instruction::FPExt: 7041 case Instruction::PtrToInt: 7042 case Instruction::IntToPtr: 7043 case Instruction::SIToFP: 7044 case Instruction::UIToFP: 7045 case Instruction::Trunc: 7046 case Instruction::FPTrunc: 7047 case Instruction::BitCast: { 7048 setInsertPointAfterBundle(E); 7049 7050 Value *InVec = vectorizeTree(E->getOperand(0)); 7051 7052 if (E->VectorizedValue) { 7053 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7054 return E->VectorizedValue; 7055 } 7056 7057 auto *CI = cast<CastInst>(VL0); 7058 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7059 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7060 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7061 V = ShuffleBuilder.finalize(V); 7062 7063 E->VectorizedValue = V; 7064 ++NumVectorInstructions; 7065 return V; 7066 } 7067 case Instruction::FCmp: 7068 case Instruction::ICmp: { 7069 setInsertPointAfterBundle(E); 7070 7071 Value *L = vectorizeTree(E->getOperand(0)); 7072 Value *R = vectorizeTree(E->getOperand(1)); 7073 7074 if (E->VectorizedValue) { 7075 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7076 return E->VectorizedValue; 7077 } 7078 7079 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7080 Value *V = Builder.CreateCmp(P0, L, R); 7081 propagateIRFlags(V, E->Scalars, VL0); 7082 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7083 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7084 V = ShuffleBuilder.finalize(V); 7085 7086 E->VectorizedValue = V; 7087 ++NumVectorInstructions; 7088 return V; 7089 } 7090 case Instruction::Select: { 7091 setInsertPointAfterBundle(E); 7092 7093 Value *Cond = vectorizeTree(E->getOperand(0)); 7094 Value *True = vectorizeTree(E->getOperand(1)); 7095 Value *False = vectorizeTree(E->getOperand(2)); 7096 7097 if (E->VectorizedValue) { 7098 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7099 return E->VectorizedValue; 7100 } 7101 7102 Value *V = Builder.CreateSelect(Cond, True, False); 7103 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7104 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7105 V = ShuffleBuilder.finalize(V); 7106 7107 E->VectorizedValue = V; 7108 ++NumVectorInstructions; 7109 return V; 7110 } 7111 case Instruction::FNeg: { 7112 setInsertPointAfterBundle(E); 7113 7114 Value *Op = vectorizeTree(E->getOperand(0)); 7115 7116 if (E->VectorizedValue) { 7117 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7118 return E->VectorizedValue; 7119 } 7120 7121 Value *V = Builder.CreateUnOp( 7122 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7123 propagateIRFlags(V, E->Scalars, VL0); 7124 if (auto *I = dyn_cast<Instruction>(V)) 7125 V = propagateMetadata(I, E->Scalars); 7126 7127 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7128 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7129 V = ShuffleBuilder.finalize(V); 7130 7131 E->VectorizedValue = V; 7132 ++NumVectorInstructions; 7133 7134 return V; 7135 } 7136 case Instruction::Add: 7137 case Instruction::FAdd: 7138 case Instruction::Sub: 7139 case Instruction::FSub: 7140 case Instruction::Mul: 7141 case Instruction::FMul: 7142 case Instruction::UDiv: 7143 case Instruction::SDiv: 7144 case Instruction::FDiv: 7145 case Instruction::URem: 7146 case Instruction::SRem: 7147 case Instruction::FRem: 7148 case Instruction::Shl: 7149 case Instruction::LShr: 7150 case Instruction::AShr: 7151 case Instruction::And: 7152 case Instruction::Or: 7153 case Instruction::Xor: { 7154 setInsertPointAfterBundle(E); 7155 7156 Value *LHS = vectorizeTree(E->getOperand(0)); 7157 Value *RHS = vectorizeTree(E->getOperand(1)); 7158 7159 if (E->VectorizedValue) { 7160 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7161 return E->VectorizedValue; 7162 } 7163 7164 Value *V = Builder.CreateBinOp( 7165 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7166 RHS); 7167 propagateIRFlags(V, E->Scalars, VL0); 7168 if (auto *I = dyn_cast<Instruction>(V)) 7169 V = propagateMetadata(I, E->Scalars); 7170 7171 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7172 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7173 V = ShuffleBuilder.finalize(V); 7174 7175 E->VectorizedValue = V; 7176 ++NumVectorInstructions; 7177 7178 return V; 7179 } 7180 case Instruction::Load: { 7181 // Loads are inserted at the head of the tree because we don't want to 7182 // sink them all the way down past store instructions. 7183 setInsertPointAfterBundle(E); 7184 7185 LoadInst *LI = cast<LoadInst>(VL0); 7186 Instruction *NewLI; 7187 unsigned AS = LI->getPointerAddressSpace(); 7188 Value *PO = LI->getPointerOperand(); 7189 if (E->State == TreeEntry::Vectorize) { 7190 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7191 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7192 7193 // The pointer operand uses an in-tree scalar so we add the new BitCast 7194 // or LoadInst to ExternalUses list to make sure that an extract will 7195 // be generated in the future. 7196 if (TreeEntry *Entry = getTreeEntry(PO)) { 7197 // Find which lane we need to extract. 7198 unsigned FoundLane = Entry->findLaneForValue(PO); 7199 ExternalUses.emplace_back( 7200 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7201 } 7202 } else { 7203 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7204 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7205 // Use the minimum alignment of the gathered loads. 7206 Align CommonAlignment = LI->getAlign(); 7207 for (Value *V : E->Scalars) 7208 CommonAlignment = 7209 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7210 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7211 } 7212 Value *V = propagateMetadata(NewLI, E->Scalars); 7213 7214 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7215 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7216 V = ShuffleBuilder.finalize(V); 7217 E->VectorizedValue = V; 7218 ++NumVectorInstructions; 7219 return V; 7220 } 7221 case Instruction::Store: { 7222 auto *SI = cast<StoreInst>(VL0); 7223 unsigned AS = SI->getPointerAddressSpace(); 7224 7225 setInsertPointAfterBundle(E); 7226 7227 Value *VecValue = vectorizeTree(E->getOperand(0)); 7228 ShuffleBuilder.addMask(E->ReorderIndices); 7229 VecValue = ShuffleBuilder.finalize(VecValue); 7230 7231 Value *ScalarPtr = SI->getPointerOperand(); 7232 Value *VecPtr = Builder.CreateBitCast( 7233 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7234 StoreInst *ST = 7235 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7236 7237 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7238 // StoreInst to ExternalUses to make sure that an extract will be 7239 // generated in the future. 7240 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7241 // Find which lane we need to extract. 7242 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7243 ExternalUses.push_back(ExternalUser( 7244 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7245 FoundLane)); 7246 } 7247 7248 Value *V = propagateMetadata(ST, E->Scalars); 7249 7250 E->VectorizedValue = V; 7251 ++NumVectorInstructions; 7252 return V; 7253 } 7254 case Instruction::GetElementPtr: { 7255 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7256 setInsertPointAfterBundle(E); 7257 7258 Value *Op0 = vectorizeTree(E->getOperand(0)); 7259 7260 SmallVector<Value *> OpVecs; 7261 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7262 Value *OpVec = vectorizeTree(E->getOperand(J)); 7263 OpVecs.push_back(OpVec); 7264 } 7265 7266 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7267 if (Instruction *I = dyn_cast<Instruction>(V)) 7268 V = propagateMetadata(I, E->Scalars); 7269 7270 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7271 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7272 V = ShuffleBuilder.finalize(V); 7273 7274 E->VectorizedValue = V; 7275 ++NumVectorInstructions; 7276 7277 return V; 7278 } 7279 case Instruction::Call: { 7280 CallInst *CI = cast<CallInst>(VL0); 7281 setInsertPointAfterBundle(E); 7282 7283 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7284 if (Function *FI = CI->getCalledFunction()) 7285 IID = FI->getIntrinsicID(); 7286 7287 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7288 7289 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7290 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7291 VecCallCosts.first <= VecCallCosts.second; 7292 7293 Value *ScalarArg = nullptr; 7294 std::vector<Value *> OpVecs; 7295 SmallVector<Type *, 2> TysForDecl = 7296 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7297 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7298 ValueList OpVL; 7299 // Some intrinsics have scalar arguments. This argument should not be 7300 // vectorized. 7301 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7302 CallInst *CEI = cast<CallInst>(VL0); 7303 ScalarArg = CEI->getArgOperand(j); 7304 OpVecs.push_back(CEI->getArgOperand(j)); 7305 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7306 TysForDecl.push_back(ScalarArg->getType()); 7307 continue; 7308 } 7309 7310 Value *OpVec = vectorizeTree(E->getOperand(j)); 7311 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7312 OpVecs.push_back(OpVec); 7313 } 7314 7315 Function *CF; 7316 if (!UseIntrinsic) { 7317 VFShape Shape = 7318 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7319 VecTy->getNumElements())), 7320 false /*HasGlobalPred*/); 7321 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7322 } else { 7323 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7324 } 7325 7326 SmallVector<OperandBundleDef, 1> OpBundles; 7327 CI->getOperandBundlesAsDefs(OpBundles); 7328 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7329 7330 // The scalar argument uses an in-tree scalar so we add the new vectorized 7331 // call to ExternalUses list to make sure that an extract will be 7332 // generated in the future. 7333 if (ScalarArg) { 7334 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7335 // Find which lane we need to extract. 7336 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7337 ExternalUses.push_back( 7338 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7339 } 7340 } 7341 7342 propagateIRFlags(V, E->Scalars, VL0); 7343 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7344 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7345 V = ShuffleBuilder.finalize(V); 7346 7347 E->VectorizedValue = V; 7348 ++NumVectorInstructions; 7349 return V; 7350 } 7351 case Instruction::ShuffleVector: { 7352 assert(E->isAltShuffle() && 7353 ((Instruction::isBinaryOp(E->getOpcode()) && 7354 Instruction::isBinaryOp(E->getAltOpcode())) || 7355 (Instruction::isCast(E->getOpcode()) && 7356 Instruction::isCast(E->getAltOpcode())) || 7357 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7358 "Invalid Shuffle Vector Operand"); 7359 7360 Value *LHS = nullptr, *RHS = nullptr; 7361 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7362 setInsertPointAfterBundle(E); 7363 LHS = vectorizeTree(E->getOperand(0)); 7364 RHS = vectorizeTree(E->getOperand(1)); 7365 } else { 7366 setInsertPointAfterBundle(E); 7367 LHS = vectorizeTree(E->getOperand(0)); 7368 } 7369 7370 if (E->VectorizedValue) { 7371 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7372 return E->VectorizedValue; 7373 } 7374 7375 Value *V0, *V1; 7376 if (Instruction::isBinaryOp(E->getOpcode())) { 7377 V0 = Builder.CreateBinOp( 7378 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7379 V1 = Builder.CreateBinOp( 7380 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7381 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7382 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7383 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7384 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7385 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7386 } else { 7387 V0 = Builder.CreateCast( 7388 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7389 V1 = Builder.CreateCast( 7390 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7391 } 7392 // Add V0 and V1 to later analysis to try to find and remove matching 7393 // instruction, if any. 7394 for (Value *V : {V0, V1}) { 7395 if (auto *I = dyn_cast<Instruction>(V)) { 7396 GatherShuffleSeq.insert(I); 7397 CSEBlocks.insert(I->getParent()); 7398 } 7399 } 7400 7401 // Create shuffle to take alternate operations from the vector. 7402 // Also, gather up main and alt scalar ops to propagate IR flags to 7403 // each vector operation. 7404 ValueList OpScalars, AltScalars; 7405 SmallVector<int> Mask; 7406 buildShuffleEntryMask( 7407 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7408 [E](Instruction *I) { 7409 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7410 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7411 }, 7412 Mask, &OpScalars, &AltScalars); 7413 7414 propagateIRFlags(V0, OpScalars); 7415 propagateIRFlags(V1, AltScalars); 7416 7417 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7418 if (auto *I = dyn_cast<Instruction>(V)) { 7419 V = propagateMetadata(I, E->Scalars); 7420 GatherShuffleSeq.insert(I); 7421 CSEBlocks.insert(I->getParent()); 7422 } 7423 V = ShuffleBuilder.finalize(V); 7424 7425 E->VectorizedValue = V; 7426 ++NumVectorInstructions; 7427 7428 return V; 7429 } 7430 default: 7431 llvm_unreachable("unknown inst"); 7432 } 7433 return nullptr; 7434 } 7435 7436 Value *BoUpSLP::vectorizeTree() { 7437 ExtraValueToDebugLocsMap ExternallyUsedValues; 7438 return vectorizeTree(ExternallyUsedValues); 7439 } 7440 7441 Value * 7442 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7443 // All blocks must be scheduled before any instructions are inserted. 7444 for (auto &BSIter : BlocksSchedules) { 7445 scheduleBlock(BSIter.second.get()); 7446 } 7447 7448 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7449 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7450 7451 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7452 // vectorized root. InstCombine will then rewrite the entire expression. We 7453 // sign extend the extracted values below. 7454 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7455 if (MinBWs.count(ScalarRoot)) { 7456 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7457 // If current instr is a phi and not the last phi, insert it after the 7458 // last phi node. 7459 if (isa<PHINode>(I)) 7460 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7461 else 7462 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7463 } 7464 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7465 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7466 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7467 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7468 VectorizableTree[0]->VectorizedValue = Trunc; 7469 } 7470 7471 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7472 << " values .\n"); 7473 7474 // Extract all of the elements with the external uses. 7475 for (const auto &ExternalUse : ExternalUses) { 7476 Value *Scalar = ExternalUse.Scalar; 7477 llvm::User *User = ExternalUse.User; 7478 7479 // Skip users that we already RAUW. This happens when one instruction 7480 // has multiple uses of the same value. 7481 if (User && !is_contained(Scalar->users(), User)) 7482 continue; 7483 TreeEntry *E = getTreeEntry(Scalar); 7484 assert(E && "Invalid scalar"); 7485 assert(E->State != TreeEntry::NeedToGather && 7486 "Extracting from a gather list"); 7487 7488 Value *Vec = E->VectorizedValue; 7489 assert(Vec && "Can't find vectorizable value"); 7490 7491 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7492 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7493 if (Scalar->getType() != Vec->getType()) { 7494 Value *Ex; 7495 // "Reuse" the existing extract to improve final codegen. 7496 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7497 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7498 ES->getOperand(1)); 7499 } else { 7500 Ex = Builder.CreateExtractElement(Vec, Lane); 7501 } 7502 // If necessary, sign-extend or zero-extend ScalarRoot 7503 // to the larger type. 7504 if (!MinBWs.count(ScalarRoot)) 7505 return Ex; 7506 if (MinBWs[ScalarRoot].second) 7507 return Builder.CreateSExt(Ex, Scalar->getType()); 7508 return Builder.CreateZExt(Ex, Scalar->getType()); 7509 } 7510 assert(isa<FixedVectorType>(Scalar->getType()) && 7511 isa<InsertElementInst>(Scalar) && 7512 "In-tree scalar of vector type is not insertelement?"); 7513 return Vec; 7514 }; 7515 // If User == nullptr, the Scalar is used as extra arg. Generate 7516 // ExtractElement instruction and update the record for this scalar in 7517 // ExternallyUsedValues. 7518 if (!User) { 7519 assert(ExternallyUsedValues.count(Scalar) && 7520 "Scalar with nullptr as an external user must be registered in " 7521 "ExternallyUsedValues map"); 7522 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7523 Builder.SetInsertPoint(VecI->getParent(), 7524 std::next(VecI->getIterator())); 7525 } else { 7526 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7527 } 7528 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7529 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7530 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7531 auto It = ExternallyUsedValues.find(Scalar); 7532 assert(It != ExternallyUsedValues.end() && 7533 "Externally used scalar is not found in ExternallyUsedValues"); 7534 NewInstLocs.append(It->second); 7535 ExternallyUsedValues.erase(Scalar); 7536 // Required to update internally referenced instructions. 7537 Scalar->replaceAllUsesWith(NewInst); 7538 continue; 7539 } 7540 7541 // Generate extracts for out-of-tree users. 7542 // Find the insertion point for the extractelement lane. 7543 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7544 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7545 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7546 if (PH->getIncomingValue(i) == Scalar) { 7547 Instruction *IncomingTerminator = 7548 PH->getIncomingBlock(i)->getTerminator(); 7549 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7550 Builder.SetInsertPoint(VecI->getParent(), 7551 std::next(VecI->getIterator())); 7552 } else { 7553 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7554 } 7555 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7556 CSEBlocks.insert(PH->getIncomingBlock(i)); 7557 PH->setOperand(i, NewInst); 7558 } 7559 } 7560 } else { 7561 Builder.SetInsertPoint(cast<Instruction>(User)); 7562 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7563 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7564 User->replaceUsesOfWith(Scalar, NewInst); 7565 } 7566 } else { 7567 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7568 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7569 CSEBlocks.insert(&F->getEntryBlock()); 7570 User->replaceUsesOfWith(Scalar, NewInst); 7571 } 7572 7573 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7574 } 7575 7576 // For each vectorized value: 7577 for (auto &TEPtr : VectorizableTree) { 7578 TreeEntry *Entry = TEPtr.get(); 7579 7580 // No need to handle users of gathered values. 7581 if (Entry->State == TreeEntry::NeedToGather) 7582 continue; 7583 7584 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7585 7586 // For each lane: 7587 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7588 Value *Scalar = Entry->Scalars[Lane]; 7589 7590 #ifndef NDEBUG 7591 Type *Ty = Scalar->getType(); 7592 if (!Ty->isVoidTy()) { 7593 for (User *U : Scalar->users()) { 7594 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7595 7596 // It is legal to delete users in the ignorelist. 7597 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7598 (isa_and_nonnull<Instruction>(U) && 7599 isDeleted(cast<Instruction>(U)))) && 7600 "Deleting out-of-tree value"); 7601 } 7602 } 7603 #endif 7604 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7605 eraseInstruction(cast<Instruction>(Scalar)); 7606 } 7607 } 7608 7609 Builder.ClearInsertionPoint(); 7610 InstrElementSize.clear(); 7611 7612 return VectorizableTree[0]->VectorizedValue; 7613 } 7614 7615 void BoUpSLP::optimizeGatherSequence() { 7616 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7617 << " gather sequences instructions.\n"); 7618 // LICM InsertElementInst sequences. 7619 for (Instruction *I : GatherShuffleSeq) { 7620 if (isDeleted(I)) 7621 continue; 7622 7623 // Check if this block is inside a loop. 7624 Loop *L = LI->getLoopFor(I->getParent()); 7625 if (!L) 7626 continue; 7627 7628 // Check if it has a preheader. 7629 BasicBlock *PreHeader = L->getLoopPreheader(); 7630 if (!PreHeader) 7631 continue; 7632 7633 // If the vector or the element that we insert into it are 7634 // instructions that are defined in this basic block then we can't 7635 // hoist this instruction. 7636 if (any_of(I->operands(), [L](Value *V) { 7637 auto *OpI = dyn_cast<Instruction>(V); 7638 return OpI && L->contains(OpI); 7639 })) 7640 continue; 7641 7642 // We can hoist this instruction. Move it to the pre-header. 7643 I->moveBefore(PreHeader->getTerminator()); 7644 } 7645 7646 // Make a list of all reachable blocks in our CSE queue. 7647 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7648 CSEWorkList.reserve(CSEBlocks.size()); 7649 for (BasicBlock *BB : CSEBlocks) 7650 if (DomTreeNode *N = DT->getNode(BB)) { 7651 assert(DT->isReachableFromEntry(N)); 7652 CSEWorkList.push_back(N); 7653 } 7654 7655 // Sort blocks by domination. This ensures we visit a block after all blocks 7656 // dominating it are visited. 7657 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7658 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7659 "Different nodes should have different DFS numbers"); 7660 return A->getDFSNumIn() < B->getDFSNumIn(); 7661 }); 7662 7663 // Less defined shuffles can be replaced by the more defined copies. 7664 // Between two shuffles one is less defined if it has the same vector operands 7665 // and its mask indeces are the same as in the first one or undefs. E.g. 7666 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7667 // poison, <0, 0, 0, 0>. 7668 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7669 SmallVectorImpl<int> &NewMask) { 7670 if (I1->getType() != I2->getType()) 7671 return false; 7672 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7673 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7674 if (!SI1 || !SI2) 7675 return I1->isIdenticalTo(I2); 7676 if (SI1->isIdenticalTo(SI2)) 7677 return true; 7678 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7679 if (SI1->getOperand(I) != SI2->getOperand(I)) 7680 return false; 7681 // Check if the second instruction is more defined than the first one. 7682 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7683 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7684 // Count trailing undefs in the mask to check the final number of used 7685 // registers. 7686 unsigned LastUndefsCnt = 0; 7687 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7688 if (SM1[I] == UndefMaskElem) 7689 ++LastUndefsCnt; 7690 else 7691 LastUndefsCnt = 0; 7692 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7693 NewMask[I] != SM1[I]) 7694 return false; 7695 if (NewMask[I] == UndefMaskElem) 7696 NewMask[I] = SM1[I]; 7697 } 7698 // Check if the last undefs actually change the final number of used vector 7699 // registers. 7700 return SM1.size() - LastUndefsCnt > 1 && 7701 TTI->getNumberOfParts(SI1->getType()) == 7702 TTI->getNumberOfParts( 7703 FixedVectorType::get(SI1->getType()->getElementType(), 7704 SM1.size() - LastUndefsCnt)); 7705 }; 7706 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7707 // instructions. TODO: We can further optimize this scan if we split the 7708 // instructions into different buckets based on the insert lane. 7709 SmallVector<Instruction *, 16> Visited; 7710 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7711 assert(*I && 7712 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7713 "Worklist not sorted properly!"); 7714 BasicBlock *BB = (*I)->getBlock(); 7715 // For all instructions in blocks containing gather sequences: 7716 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7717 if (isDeleted(&In)) 7718 continue; 7719 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7720 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7721 continue; 7722 7723 // Check if we can replace this instruction with any of the 7724 // visited instructions. 7725 bool Replaced = false; 7726 for (Instruction *&V : Visited) { 7727 SmallVector<int> NewMask; 7728 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7729 DT->dominates(V->getParent(), In.getParent())) { 7730 In.replaceAllUsesWith(V); 7731 eraseInstruction(&In); 7732 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7733 if (!NewMask.empty()) 7734 SI->setShuffleMask(NewMask); 7735 Replaced = true; 7736 break; 7737 } 7738 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7739 GatherShuffleSeq.contains(V) && 7740 IsIdenticalOrLessDefined(V, &In, NewMask) && 7741 DT->dominates(In.getParent(), V->getParent())) { 7742 In.moveAfter(V); 7743 V->replaceAllUsesWith(&In); 7744 eraseInstruction(V); 7745 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7746 if (!NewMask.empty()) 7747 SI->setShuffleMask(NewMask); 7748 V = &In; 7749 Replaced = true; 7750 break; 7751 } 7752 } 7753 if (!Replaced) { 7754 assert(!is_contained(Visited, &In)); 7755 Visited.push_back(&In); 7756 } 7757 } 7758 } 7759 CSEBlocks.clear(); 7760 GatherShuffleSeq.clear(); 7761 } 7762 7763 BoUpSLP::ScheduleData * 7764 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7765 ScheduleData *Bundle = nullptr; 7766 ScheduleData *PrevInBundle = nullptr; 7767 for (Value *V : VL) { 7768 if (doesNotNeedToBeScheduled(V)) 7769 continue; 7770 ScheduleData *BundleMember = getScheduleData(V); 7771 assert(BundleMember && 7772 "no ScheduleData for bundle member " 7773 "(maybe not in same basic block)"); 7774 assert(BundleMember->isSchedulingEntity() && 7775 "bundle member already part of other bundle"); 7776 if (PrevInBundle) { 7777 PrevInBundle->NextInBundle = BundleMember; 7778 } else { 7779 Bundle = BundleMember; 7780 } 7781 7782 // Group the instructions to a bundle. 7783 BundleMember->FirstInBundle = Bundle; 7784 PrevInBundle = BundleMember; 7785 } 7786 assert(Bundle && "Failed to find schedule bundle"); 7787 return Bundle; 7788 } 7789 7790 // Groups the instructions to a bundle (which is then a single scheduling entity) 7791 // and schedules instructions until the bundle gets ready. 7792 Optional<BoUpSLP::ScheduleData *> 7793 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7794 const InstructionsState &S) { 7795 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7796 // instructions. 7797 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7798 doesNotNeedToSchedule(VL)) 7799 return nullptr; 7800 7801 // Initialize the instruction bundle. 7802 Instruction *OldScheduleEnd = ScheduleEnd; 7803 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7804 7805 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7806 ScheduleData *Bundle) { 7807 // The scheduling region got new instructions at the lower end (or it is a 7808 // new region for the first bundle). This makes it necessary to 7809 // recalculate all dependencies. 7810 // It is seldom that this needs to be done a second time after adding the 7811 // initial bundle to the region. 7812 if (ScheduleEnd != OldScheduleEnd) { 7813 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7814 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7815 ReSchedule = true; 7816 } 7817 if (Bundle) { 7818 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7819 << " in block " << BB->getName() << "\n"); 7820 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7821 } 7822 7823 if (ReSchedule) { 7824 resetSchedule(); 7825 initialFillReadyList(ReadyInsts); 7826 } 7827 7828 // Now try to schedule the new bundle or (if no bundle) just calculate 7829 // dependencies. As soon as the bundle is "ready" it means that there are no 7830 // cyclic dependencies and we can schedule it. Note that's important that we 7831 // don't "schedule" the bundle yet (see cancelScheduling). 7832 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7833 !ReadyInsts.empty()) { 7834 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7835 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7836 "must be ready to schedule"); 7837 schedule(Picked, ReadyInsts); 7838 } 7839 }; 7840 7841 // Make sure that the scheduling region contains all 7842 // instructions of the bundle. 7843 for (Value *V : VL) { 7844 if (doesNotNeedToBeScheduled(V)) 7845 continue; 7846 if (!extendSchedulingRegion(V, S)) { 7847 // If the scheduling region got new instructions at the lower end (or it 7848 // is a new region for the first bundle). This makes it necessary to 7849 // recalculate all dependencies. 7850 // Otherwise the compiler may crash trying to incorrectly calculate 7851 // dependencies and emit instruction in the wrong order at the actual 7852 // scheduling. 7853 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7854 return None; 7855 } 7856 } 7857 7858 bool ReSchedule = false; 7859 for (Value *V : VL) { 7860 if (doesNotNeedToBeScheduled(V)) 7861 continue; 7862 ScheduleData *BundleMember = getScheduleData(V); 7863 assert(BundleMember && 7864 "no ScheduleData for bundle member (maybe not in same basic block)"); 7865 7866 // Make sure we don't leave the pieces of the bundle in the ready list when 7867 // whole bundle might not be ready. 7868 ReadyInsts.remove(BundleMember); 7869 7870 if (!BundleMember->IsScheduled) 7871 continue; 7872 // A bundle member was scheduled as single instruction before and now 7873 // needs to be scheduled as part of the bundle. We just get rid of the 7874 // existing schedule. 7875 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7876 << " was already scheduled\n"); 7877 ReSchedule = true; 7878 } 7879 7880 auto *Bundle = buildBundle(VL); 7881 TryScheduleBundleImpl(ReSchedule, Bundle); 7882 if (!Bundle->isReady()) { 7883 cancelScheduling(VL, S.OpValue); 7884 return None; 7885 } 7886 return Bundle; 7887 } 7888 7889 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7890 Value *OpValue) { 7891 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7892 doesNotNeedToSchedule(VL)) 7893 return; 7894 7895 if (doesNotNeedToBeScheduled(OpValue)) 7896 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7897 ScheduleData *Bundle = getScheduleData(OpValue); 7898 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7899 assert(!Bundle->IsScheduled && 7900 "Can't cancel bundle which is already scheduled"); 7901 assert(Bundle->isSchedulingEntity() && 7902 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7903 "tried to unbundle something which is not a bundle"); 7904 7905 // Remove the bundle from the ready list. 7906 if (Bundle->isReady()) 7907 ReadyInsts.remove(Bundle); 7908 7909 // Un-bundle: make single instructions out of the bundle. 7910 ScheduleData *BundleMember = Bundle; 7911 while (BundleMember) { 7912 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7913 BundleMember->FirstInBundle = BundleMember; 7914 ScheduleData *Next = BundleMember->NextInBundle; 7915 BundleMember->NextInBundle = nullptr; 7916 BundleMember->TE = nullptr; 7917 if (BundleMember->unscheduledDepsInBundle() == 0) { 7918 ReadyInsts.insert(BundleMember); 7919 } 7920 BundleMember = Next; 7921 } 7922 } 7923 7924 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7925 // Allocate a new ScheduleData for the instruction. 7926 if (ChunkPos >= ChunkSize) { 7927 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7928 ChunkPos = 0; 7929 } 7930 return &(ScheduleDataChunks.back()[ChunkPos++]); 7931 } 7932 7933 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7934 const InstructionsState &S) { 7935 if (getScheduleData(V, isOneOf(S, V))) 7936 return true; 7937 Instruction *I = dyn_cast<Instruction>(V); 7938 assert(I && "bundle member must be an instruction"); 7939 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7940 !doesNotNeedToBeScheduled(I) && 7941 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7942 "be scheduled"); 7943 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7944 ScheduleData *ISD = getScheduleData(I); 7945 if (!ISD) 7946 return false; 7947 assert(isInSchedulingRegion(ISD) && 7948 "ScheduleData not in scheduling region"); 7949 ScheduleData *SD = allocateScheduleDataChunks(); 7950 SD->Inst = I; 7951 SD->init(SchedulingRegionID, S.OpValue); 7952 ExtraScheduleDataMap[I][S.OpValue] = SD; 7953 return true; 7954 }; 7955 if (CheckScheduleForI(I)) 7956 return true; 7957 if (!ScheduleStart) { 7958 // It's the first instruction in the new region. 7959 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7960 ScheduleStart = I; 7961 ScheduleEnd = I->getNextNode(); 7962 if (isOneOf(S, I) != I) 7963 CheckScheduleForI(I); 7964 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7965 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7966 return true; 7967 } 7968 // Search up and down at the same time, because we don't know if the new 7969 // instruction is above or below the existing scheduling region. 7970 BasicBlock::reverse_iterator UpIter = 7971 ++ScheduleStart->getIterator().getReverse(); 7972 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7973 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7974 BasicBlock::iterator LowerEnd = BB->end(); 7975 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7976 &*DownIter != I) { 7977 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7978 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7979 return false; 7980 } 7981 7982 ++UpIter; 7983 ++DownIter; 7984 } 7985 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7986 assert(I->getParent() == ScheduleStart->getParent() && 7987 "Instruction is in wrong basic block."); 7988 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7989 ScheduleStart = I; 7990 if (isOneOf(S, I) != I) 7991 CheckScheduleForI(I); 7992 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7993 << "\n"); 7994 return true; 7995 } 7996 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7997 "Expected to reach top of the basic block or instruction down the " 7998 "lower end."); 7999 assert(I->getParent() == ScheduleEnd->getParent() && 8000 "Instruction is in wrong basic block."); 8001 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8002 nullptr); 8003 ScheduleEnd = I->getNextNode(); 8004 if (isOneOf(S, I) != I) 8005 CheckScheduleForI(I); 8006 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8007 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8008 return true; 8009 } 8010 8011 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8012 Instruction *ToI, 8013 ScheduleData *PrevLoadStore, 8014 ScheduleData *NextLoadStore) { 8015 ScheduleData *CurrentLoadStore = PrevLoadStore; 8016 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8017 // No need to allocate data for non-schedulable instructions. 8018 if (doesNotNeedToBeScheduled(I)) 8019 continue; 8020 ScheduleData *SD = ScheduleDataMap.lookup(I); 8021 if (!SD) { 8022 SD = allocateScheduleDataChunks(); 8023 ScheduleDataMap[I] = SD; 8024 SD->Inst = I; 8025 } 8026 assert(!isInSchedulingRegion(SD) && 8027 "new ScheduleData already in scheduling region"); 8028 SD->init(SchedulingRegionID, I); 8029 8030 if (I->mayReadOrWriteMemory() && 8031 (!isa<IntrinsicInst>(I) || 8032 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8033 cast<IntrinsicInst>(I)->getIntrinsicID() != 8034 Intrinsic::pseudoprobe))) { 8035 // Update the linked list of memory accessing instructions. 8036 if (CurrentLoadStore) { 8037 CurrentLoadStore->NextLoadStore = SD; 8038 } else { 8039 FirstLoadStoreInRegion = SD; 8040 } 8041 CurrentLoadStore = SD; 8042 } 8043 8044 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8045 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8046 RegionHasStackSave = true; 8047 } 8048 if (NextLoadStore) { 8049 if (CurrentLoadStore) 8050 CurrentLoadStore->NextLoadStore = NextLoadStore; 8051 } else { 8052 LastLoadStoreInRegion = CurrentLoadStore; 8053 } 8054 } 8055 8056 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8057 bool InsertInReadyList, 8058 BoUpSLP *SLP) { 8059 assert(SD->isSchedulingEntity()); 8060 8061 SmallVector<ScheduleData *, 10> WorkList; 8062 WorkList.push_back(SD); 8063 8064 while (!WorkList.empty()) { 8065 ScheduleData *SD = WorkList.pop_back_val(); 8066 for (ScheduleData *BundleMember = SD; BundleMember; 8067 BundleMember = BundleMember->NextInBundle) { 8068 assert(isInSchedulingRegion(BundleMember)); 8069 if (BundleMember->hasValidDependencies()) 8070 continue; 8071 8072 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8073 << "\n"); 8074 BundleMember->Dependencies = 0; 8075 BundleMember->resetUnscheduledDeps(); 8076 8077 // Handle def-use chain dependencies. 8078 if (BundleMember->OpValue != BundleMember->Inst) { 8079 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8080 BundleMember->Dependencies++; 8081 ScheduleData *DestBundle = UseSD->FirstInBundle; 8082 if (!DestBundle->IsScheduled) 8083 BundleMember->incrementUnscheduledDeps(1); 8084 if (!DestBundle->hasValidDependencies()) 8085 WorkList.push_back(DestBundle); 8086 } 8087 } else { 8088 for (User *U : BundleMember->Inst->users()) { 8089 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8090 BundleMember->Dependencies++; 8091 ScheduleData *DestBundle = UseSD->FirstInBundle; 8092 if (!DestBundle->IsScheduled) 8093 BundleMember->incrementUnscheduledDeps(1); 8094 if (!DestBundle->hasValidDependencies()) 8095 WorkList.push_back(DestBundle); 8096 } 8097 } 8098 } 8099 8100 auto makeControlDependent = [&](Instruction *I) { 8101 auto *DepDest = getScheduleData(I); 8102 assert(DepDest && "must be in schedule window"); 8103 DepDest->ControlDependencies.push_back(BundleMember); 8104 BundleMember->Dependencies++; 8105 ScheduleData *DestBundle = DepDest->FirstInBundle; 8106 if (!DestBundle->IsScheduled) 8107 BundleMember->incrementUnscheduledDeps(1); 8108 if (!DestBundle->hasValidDependencies()) 8109 WorkList.push_back(DestBundle); 8110 }; 8111 8112 // Any instruction which isn't safe to speculate at the begining of the 8113 // block is control dependend on any early exit or non-willreturn call 8114 // which proceeds it. 8115 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8116 for (Instruction *I = BundleMember->Inst->getNextNode(); 8117 I != ScheduleEnd; I = I->getNextNode()) { 8118 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8119 continue; 8120 8121 // Add the dependency 8122 makeControlDependent(I); 8123 8124 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8125 // Everything past here must be control dependent on I. 8126 break; 8127 } 8128 } 8129 8130 if (RegionHasStackSave) { 8131 // If we have an inalloc alloca instruction, it needs to be scheduled 8132 // after any preceeding stacksave. We also need to prevent any alloca 8133 // from reordering above a preceeding stackrestore. 8134 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8135 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8136 for (Instruction *I = BundleMember->Inst->getNextNode(); 8137 I != ScheduleEnd; I = I->getNextNode()) { 8138 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8139 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8140 // Any allocas past here must be control dependent on I, and I 8141 // must be memory dependend on BundleMember->Inst. 8142 break; 8143 8144 if (!isa<AllocaInst>(I)) 8145 continue; 8146 8147 // Add the dependency 8148 makeControlDependent(I); 8149 } 8150 } 8151 8152 // In addition to the cases handle just above, we need to prevent 8153 // allocas from moving below a stacksave. The stackrestore case 8154 // is currently thought to be conservatism. 8155 if (isa<AllocaInst>(BundleMember->Inst)) { 8156 for (Instruction *I = BundleMember->Inst->getNextNode(); 8157 I != ScheduleEnd; I = I->getNextNode()) { 8158 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8159 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8160 continue; 8161 8162 // Add the dependency 8163 makeControlDependent(I); 8164 break; 8165 } 8166 } 8167 } 8168 8169 // Handle the memory dependencies (if any). 8170 ScheduleData *DepDest = BundleMember->NextLoadStore; 8171 if (!DepDest) 8172 continue; 8173 Instruction *SrcInst = BundleMember->Inst; 8174 assert(SrcInst->mayReadOrWriteMemory() && 8175 "NextLoadStore list for non memory effecting bundle?"); 8176 MemoryLocation SrcLoc = getLocation(SrcInst); 8177 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8178 unsigned numAliased = 0; 8179 unsigned DistToSrc = 1; 8180 8181 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8182 assert(isInSchedulingRegion(DepDest)); 8183 8184 // We have two limits to reduce the complexity: 8185 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8186 // SLP->isAliased (which is the expensive part in this loop). 8187 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8188 // the whole loop (even if the loop is fast, it's quadratic). 8189 // It's important for the loop break condition (see below) to 8190 // check this limit even between two read-only instructions. 8191 if (DistToSrc >= MaxMemDepDistance || 8192 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8193 (numAliased >= AliasedCheckLimit || 8194 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8195 8196 // We increment the counter only if the locations are aliased 8197 // (instead of counting all alias checks). This gives a better 8198 // balance between reduced runtime and accurate dependencies. 8199 numAliased++; 8200 8201 DepDest->MemoryDependencies.push_back(BundleMember); 8202 BundleMember->Dependencies++; 8203 ScheduleData *DestBundle = DepDest->FirstInBundle; 8204 if (!DestBundle->IsScheduled) { 8205 BundleMember->incrementUnscheduledDeps(1); 8206 } 8207 if (!DestBundle->hasValidDependencies()) { 8208 WorkList.push_back(DestBundle); 8209 } 8210 } 8211 8212 // Example, explaining the loop break condition: Let's assume our 8213 // starting instruction is i0 and MaxMemDepDistance = 3. 8214 // 8215 // +--------v--v--v 8216 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8217 // +--------^--^--^ 8218 // 8219 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8220 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8221 // Previously we already added dependencies from i3 to i6,i7,i8 8222 // (because of MaxMemDepDistance). As we added a dependency from 8223 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8224 // and we can abort this loop at i6. 8225 if (DistToSrc >= 2 * MaxMemDepDistance) 8226 break; 8227 DistToSrc++; 8228 } 8229 } 8230 if (InsertInReadyList && SD->isReady()) { 8231 ReadyInsts.insert(SD); 8232 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8233 << "\n"); 8234 } 8235 } 8236 } 8237 8238 void BoUpSLP::BlockScheduling::resetSchedule() { 8239 assert(ScheduleStart && 8240 "tried to reset schedule on block which has not been scheduled"); 8241 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8242 doForAllOpcodes(I, [&](ScheduleData *SD) { 8243 assert(isInSchedulingRegion(SD) && 8244 "ScheduleData not in scheduling region"); 8245 SD->IsScheduled = false; 8246 SD->resetUnscheduledDeps(); 8247 }); 8248 } 8249 ReadyInsts.clear(); 8250 } 8251 8252 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8253 if (!BS->ScheduleStart) 8254 return; 8255 8256 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8257 8258 // A key point - if we got here, pre-scheduling was able to find a valid 8259 // scheduling of the sub-graph of the scheduling window which consists 8260 // of all vector bundles and their transitive users. As such, we do not 8261 // need to reschedule anything *outside of* that subgraph. 8262 8263 BS->resetSchedule(); 8264 8265 // For the real scheduling we use a more sophisticated ready-list: it is 8266 // sorted by the original instruction location. This lets the final schedule 8267 // be as close as possible to the original instruction order. 8268 // WARNING: If changing this order causes a correctness issue, that means 8269 // there is some missing dependence edge in the schedule data graph. 8270 struct ScheduleDataCompare { 8271 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8272 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8273 } 8274 }; 8275 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8276 8277 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8278 // and fill the ready-list with initial instructions. 8279 int Idx = 0; 8280 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8281 I = I->getNextNode()) { 8282 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8283 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8284 (void)SDTE; 8285 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8286 SD->isPartOfBundle() == 8287 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8288 "scheduler and vectorizer bundle mismatch"); 8289 SD->FirstInBundle->SchedulingPriority = Idx++; 8290 8291 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8292 BS->calculateDependencies(SD, false, this); 8293 }); 8294 } 8295 BS->initialFillReadyList(ReadyInsts); 8296 8297 Instruction *LastScheduledInst = BS->ScheduleEnd; 8298 8299 // Do the "real" scheduling. 8300 while (!ReadyInsts.empty()) { 8301 ScheduleData *picked = *ReadyInsts.begin(); 8302 ReadyInsts.erase(ReadyInsts.begin()); 8303 8304 // Move the scheduled instruction(s) to their dedicated places, if not 8305 // there yet. 8306 for (ScheduleData *BundleMember = picked; BundleMember; 8307 BundleMember = BundleMember->NextInBundle) { 8308 Instruction *pickedInst = BundleMember->Inst; 8309 if (pickedInst->getNextNode() != LastScheduledInst) 8310 pickedInst->moveBefore(LastScheduledInst); 8311 LastScheduledInst = pickedInst; 8312 } 8313 8314 BS->schedule(picked, ReadyInsts); 8315 } 8316 8317 // Check that we didn't break any of our invariants. 8318 #ifdef EXPENSIVE_CHECKS 8319 BS->verify(); 8320 #endif 8321 8322 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8323 // Check that all schedulable entities got scheduled 8324 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8325 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8326 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8327 assert(SD->IsScheduled && "must be scheduled at this point"); 8328 } 8329 }); 8330 } 8331 #endif 8332 8333 // Avoid duplicate scheduling of the block. 8334 BS->ScheduleStart = nullptr; 8335 } 8336 8337 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8338 // If V is a store, just return the width of the stored value (or value 8339 // truncated just before storing) without traversing the expression tree. 8340 // This is the common case. 8341 if (auto *Store = dyn_cast<StoreInst>(V)) { 8342 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8343 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8344 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8345 } 8346 8347 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8348 return getVectorElementSize(IEI->getOperand(1)); 8349 8350 auto E = InstrElementSize.find(V); 8351 if (E != InstrElementSize.end()) 8352 return E->second; 8353 8354 // If V is not a store, we can traverse the expression tree to find loads 8355 // that feed it. The type of the loaded value may indicate a more suitable 8356 // width than V's type. We want to base the vector element size on the width 8357 // of memory operations where possible. 8358 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8359 SmallPtrSet<Instruction *, 16> Visited; 8360 if (auto *I = dyn_cast<Instruction>(V)) { 8361 Worklist.emplace_back(I, I->getParent()); 8362 Visited.insert(I); 8363 } 8364 8365 // Traverse the expression tree in bottom-up order looking for loads. If we 8366 // encounter an instruction we don't yet handle, we give up. 8367 auto Width = 0u; 8368 while (!Worklist.empty()) { 8369 Instruction *I; 8370 BasicBlock *Parent; 8371 std::tie(I, Parent) = Worklist.pop_back_val(); 8372 8373 // We should only be looking at scalar instructions here. If the current 8374 // instruction has a vector type, skip. 8375 auto *Ty = I->getType(); 8376 if (isa<VectorType>(Ty)) 8377 continue; 8378 8379 // If the current instruction is a load, update MaxWidth to reflect the 8380 // width of the loaded value. 8381 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8382 isa<ExtractValueInst>(I)) 8383 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8384 8385 // Otherwise, we need to visit the operands of the instruction. We only 8386 // handle the interesting cases from buildTree here. If an operand is an 8387 // instruction we haven't yet visited and from the same basic block as the 8388 // user or the use is a PHI node, we add it to the worklist. 8389 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8390 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8391 isa<UnaryOperator>(I)) { 8392 for (Use &U : I->operands()) 8393 if (auto *J = dyn_cast<Instruction>(U.get())) 8394 if (Visited.insert(J).second && 8395 (isa<PHINode>(I) || J->getParent() == Parent)) 8396 Worklist.emplace_back(J, J->getParent()); 8397 } else { 8398 break; 8399 } 8400 } 8401 8402 // If we didn't encounter a memory access in the expression tree, or if we 8403 // gave up for some reason, just return the width of V. Otherwise, return the 8404 // maximum width we found. 8405 if (!Width) { 8406 if (auto *CI = dyn_cast<CmpInst>(V)) 8407 V = CI->getOperand(0); 8408 Width = DL->getTypeSizeInBits(V->getType()); 8409 } 8410 8411 for (Instruction *I : Visited) 8412 InstrElementSize[I] = Width; 8413 8414 return Width; 8415 } 8416 8417 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8418 // smaller type with a truncation. We collect the values that will be demoted 8419 // in ToDemote and additional roots that require investigating in Roots. 8420 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8421 SmallVectorImpl<Value *> &ToDemote, 8422 SmallVectorImpl<Value *> &Roots) { 8423 // We can always demote constants. 8424 if (isa<Constant>(V)) { 8425 ToDemote.push_back(V); 8426 return true; 8427 } 8428 8429 // If the value is not an instruction in the expression with only one use, it 8430 // cannot be demoted. 8431 auto *I = dyn_cast<Instruction>(V); 8432 if (!I || !I->hasOneUse() || !Expr.count(I)) 8433 return false; 8434 8435 switch (I->getOpcode()) { 8436 8437 // We can always demote truncations and extensions. Since truncations can 8438 // seed additional demotion, we save the truncated value. 8439 case Instruction::Trunc: 8440 Roots.push_back(I->getOperand(0)); 8441 break; 8442 case Instruction::ZExt: 8443 case Instruction::SExt: 8444 if (isa<ExtractElementInst>(I->getOperand(0)) || 8445 isa<InsertElementInst>(I->getOperand(0))) 8446 return false; 8447 break; 8448 8449 // We can demote certain binary operations if we can demote both of their 8450 // operands. 8451 case Instruction::Add: 8452 case Instruction::Sub: 8453 case Instruction::Mul: 8454 case Instruction::And: 8455 case Instruction::Or: 8456 case Instruction::Xor: 8457 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8458 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8459 return false; 8460 break; 8461 8462 // We can demote selects if we can demote their true and false values. 8463 case Instruction::Select: { 8464 SelectInst *SI = cast<SelectInst>(I); 8465 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8466 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8467 return false; 8468 break; 8469 } 8470 8471 // We can demote phis if we can demote all their incoming operands. Note that 8472 // we don't need to worry about cycles since we ensure single use above. 8473 case Instruction::PHI: { 8474 PHINode *PN = cast<PHINode>(I); 8475 for (Value *IncValue : PN->incoming_values()) 8476 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8477 return false; 8478 break; 8479 } 8480 8481 // Otherwise, conservatively give up. 8482 default: 8483 return false; 8484 } 8485 8486 // Record the value that we can demote. 8487 ToDemote.push_back(V); 8488 return true; 8489 } 8490 8491 void BoUpSLP::computeMinimumValueSizes() { 8492 // If there are no external uses, the expression tree must be rooted by a 8493 // store. We can't demote in-memory values, so there is nothing to do here. 8494 if (ExternalUses.empty()) 8495 return; 8496 8497 // We only attempt to truncate integer expressions. 8498 auto &TreeRoot = VectorizableTree[0]->Scalars; 8499 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8500 if (!TreeRootIT) 8501 return; 8502 8503 // If the expression is not rooted by a store, these roots should have 8504 // external uses. We will rely on InstCombine to rewrite the expression in 8505 // the narrower type. However, InstCombine only rewrites single-use values. 8506 // This means that if a tree entry other than a root is used externally, it 8507 // must have multiple uses and InstCombine will not rewrite it. The code 8508 // below ensures that only the roots are used externally. 8509 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8510 for (auto &EU : ExternalUses) 8511 if (!Expr.erase(EU.Scalar)) 8512 return; 8513 if (!Expr.empty()) 8514 return; 8515 8516 // Collect the scalar values of the vectorizable expression. We will use this 8517 // context to determine which values can be demoted. If we see a truncation, 8518 // we mark it as seeding another demotion. 8519 for (auto &EntryPtr : VectorizableTree) 8520 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8521 8522 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8523 // have a single external user that is not in the vectorizable tree. 8524 for (auto *Root : TreeRoot) 8525 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8526 return; 8527 8528 // Conservatively determine if we can actually truncate the roots of the 8529 // expression. Collect the values that can be demoted in ToDemote and 8530 // additional roots that require investigating in Roots. 8531 SmallVector<Value *, 32> ToDemote; 8532 SmallVector<Value *, 4> Roots; 8533 for (auto *Root : TreeRoot) 8534 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8535 return; 8536 8537 // The maximum bit width required to represent all the values that can be 8538 // demoted without loss of precision. It would be safe to truncate the roots 8539 // of the expression to this width. 8540 auto MaxBitWidth = 8u; 8541 8542 // We first check if all the bits of the roots are demanded. If they're not, 8543 // we can truncate the roots to this narrower type. 8544 for (auto *Root : TreeRoot) { 8545 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8546 MaxBitWidth = std::max<unsigned>( 8547 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8548 } 8549 8550 // True if the roots can be zero-extended back to their original type, rather 8551 // than sign-extended. We know that if the leading bits are not demanded, we 8552 // can safely zero-extend. So we initialize IsKnownPositive to True. 8553 bool IsKnownPositive = true; 8554 8555 // If all the bits of the roots are demanded, we can try a little harder to 8556 // compute a narrower type. This can happen, for example, if the roots are 8557 // getelementptr indices. InstCombine promotes these indices to the pointer 8558 // width. Thus, all their bits are technically demanded even though the 8559 // address computation might be vectorized in a smaller type. 8560 // 8561 // We start by looking at each entry that can be demoted. We compute the 8562 // maximum bit width required to store the scalar by using ValueTracking to 8563 // compute the number of high-order bits we can truncate. 8564 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8565 llvm::all_of(TreeRoot, [](Value *R) { 8566 assert(R->hasOneUse() && "Root should have only one use!"); 8567 return isa<GetElementPtrInst>(R->user_back()); 8568 })) { 8569 MaxBitWidth = 8u; 8570 8571 // Determine if the sign bit of all the roots is known to be zero. If not, 8572 // IsKnownPositive is set to False. 8573 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8574 KnownBits Known = computeKnownBits(R, *DL); 8575 return Known.isNonNegative(); 8576 }); 8577 8578 // Determine the maximum number of bits required to store the scalar 8579 // values. 8580 for (auto *Scalar : ToDemote) { 8581 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8582 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8583 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8584 } 8585 8586 // If we can't prove that the sign bit is zero, we must add one to the 8587 // maximum bit width to account for the unknown sign bit. This preserves 8588 // the existing sign bit so we can safely sign-extend the root back to the 8589 // original type. Otherwise, if we know the sign bit is zero, we will 8590 // zero-extend the root instead. 8591 // 8592 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8593 // one to the maximum bit width will yield a larger-than-necessary 8594 // type. In general, we need to add an extra bit only if we can't 8595 // prove that the upper bit of the original type is equal to the 8596 // upper bit of the proposed smaller type. If these two bits are the 8597 // same (either zero or one) we know that sign-extending from the 8598 // smaller type will result in the same value. Here, since we can't 8599 // yet prove this, we are just making the proposed smaller type 8600 // larger to ensure correctness. 8601 if (!IsKnownPositive) 8602 ++MaxBitWidth; 8603 } 8604 8605 // Round MaxBitWidth up to the next power-of-two. 8606 if (!isPowerOf2_64(MaxBitWidth)) 8607 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8608 8609 // If the maximum bit width we compute is less than the with of the roots' 8610 // type, we can proceed with the narrowing. Otherwise, do nothing. 8611 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8612 return; 8613 8614 // If we can truncate the root, we must collect additional values that might 8615 // be demoted as a result. That is, those seeded by truncations we will 8616 // modify. 8617 while (!Roots.empty()) 8618 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8619 8620 // Finally, map the values we can demote to the maximum bit with we computed. 8621 for (auto *Scalar : ToDemote) 8622 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8623 } 8624 8625 namespace { 8626 8627 /// The SLPVectorizer Pass. 8628 struct SLPVectorizer : public FunctionPass { 8629 SLPVectorizerPass Impl; 8630 8631 /// Pass identification, replacement for typeid 8632 static char ID; 8633 8634 explicit SLPVectorizer() : FunctionPass(ID) { 8635 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8636 } 8637 8638 bool doInitialization(Module &M) override { return false; } 8639 8640 bool runOnFunction(Function &F) override { 8641 if (skipFunction(F)) 8642 return false; 8643 8644 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8645 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8646 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8647 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8648 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8649 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8650 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8651 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8652 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8653 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8654 8655 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8656 } 8657 8658 void getAnalysisUsage(AnalysisUsage &AU) const override { 8659 FunctionPass::getAnalysisUsage(AU); 8660 AU.addRequired<AssumptionCacheTracker>(); 8661 AU.addRequired<ScalarEvolutionWrapperPass>(); 8662 AU.addRequired<AAResultsWrapperPass>(); 8663 AU.addRequired<TargetTransformInfoWrapperPass>(); 8664 AU.addRequired<LoopInfoWrapperPass>(); 8665 AU.addRequired<DominatorTreeWrapperPass>(); 8666 AU.addRequired<DemandedBitsWrapperPass>(); 8667 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8668 AU.addRequired<InjectTLIMappingsLegacy>(); 8669 AU.addPreserved<LoopInfoWrapperPass>(); 8670 AU.addPreserved<DominatorTreeWrapperPass>(); 8671 AU.addPreserved<AAResultsWrapperPass>(); 8672 AU.addPreserved<GlobalsAAWrapperPass>(); 8673 AU.setPreservesCFG(); 8674 } 8675 }; 8676 8677 } // end anonymous namespace 8678 8679 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8680 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8681 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8682 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8683 auto *AA = &AM.getResult<AAManager>(F); 8684 auto *LI = &AM.getResult<LoopAnalysis>(F); 8685 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8686 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8687 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8688 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8689 8690 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8691 if (!Changed) 8692 return PreservedAnalyses::all(); 8693 8694 PreservedAnalyses PA; 8695 PA.preserveSet<CFGAnalyses>(); 8696 return PA; 8697 } 8698 8699 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8700 TargetTransformInfo *TTI_, 8701 TargetLibraryInfo *TLI_, AAResults *AA_, 8702 LoopInfo *LI_, DominatorTree *DT_, 8703 AssumptionCache *AC_, DemandedBits *DB_, 8704 OptimizationRemarkEmitter *ORE_) { 8705 if (!RunSLPVectorization) 8706 return false; 8707 SE = SE_; 8708 TTI = TTI_; 8709 TLI = TLI_; 8710 AA = AA_; 8711 LI = LI_; 8712 DT = DT_; 8713 AC = AC_; 8714 DB = DB_; 8715 DL = &F.getParent()->getDataLayout(); 8716 8717 Stores.clear(); 8718 GEPs.clear(); 8719 bool Changed = false; 8720 8721 // If the target claims to have no vector registers don't attempt 8722 // vectorization. 8723 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8724 LLVM_DEBUG( 8725 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8726 return false; 8727 } 8728 8729 // Don't vectorize when the attribute NoImplicitFloat is used. 8730 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8731 return false; 8732 8733 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8734 8735 // Use the bottom up slp vectorizer to construct chains that start with 8736 // store instructions. 8737 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8738 8739 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8740 // delete instructions. 8741 8742 // Update DFS numbers now so that we can use them for ordering. 8743 DT->updateDFSNumbers(); 8744 8745 // Scan the blocks in the function in post order. 8746 for (auto BB : post_order(&F.getEntryBlock())) { 8747 collectSeedInstructions(BB); 8748 8749 // Vectorize trees that end at stores. 8750 if (!Stores.empty()) { 8751 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8752 << " underlying objects.\n"); 8753 Changed |= vectorizeStoreChains(R); 8754 } 8755 8756 // Vectorize trees that end at reductions. 8757 Changed |= vectorizeChainsInBlock(BB, R); 8758 8759 // Vectorize the index computations of getelementptr instructions. This 8760 // is primarily intended to catch gather-like idioms ending at 8761 // non-consecutive loads. 8762 if (!GEPs.empty()) { 8763 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8764 << " underlying objects.\n"); 8765 Changed |= vectorizeGEPIndices(BB, R); 8766 } 8767 } 8768 8769 if (Changed) { 8770 R.optimizeGatherSequence(); 8771 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8772 } 8773 return Changed; 8774 } 8775 8776 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8777 unsigned Idx) { 8778 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8779 << "\n"); 8780 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8781 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8782 unsigned VF = Chain.size(); 8783 8784 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8785 return false; 8786 8787 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8788 << "\n"); 8789 8790 R.buildTree(Chain); 8791 if (R.isTreeTinyAndNotFullyVectorizable()) 8792 return false; 8793 if (R.isLoadCombineCandidate()) 8794 return false; 8795 R.reorderTopToBottom(); 8796 R.reorderBottomToTop(); 8797 R.buildExternalUses(); 8798 8799 R.computeMinimumValueSizes(); 8800 8801 InstructionCost Cost = R.getTreeCost(); 8802 8803 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8804 if (Cost < -SLPCostThreshold) { 8805 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8806 8807 using namespace ore; 8808 8809 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8810 cast<StoreInst>(Chain[0])) 8811 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8812 << " and with tree size " 8813 << NV("TreeSize", R.getTreeSize())); 8814 8815 R.vectorizeTree(); 8816 return true; 8817 } 8818 8819 return false; 8820 } 8821 8822 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8823 BoUpSLP &R) { 8824 // We may run into multiple chains that merge into a single chain. We mark the 8825 // stores that we vectorized so that we don't visit the same store twice. 8826 BoUpSLP::ValueSet VectorizedStores; 8827 bool Changed = false; 8828 8829 int E = Stores.size(); 8830 SmallBitVector Tails(E, false); 8831 int MaxIter = MaxStoreLookup.getValue(); 8832 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8833 E, std::make_pair(E, INT_MAX)); 8834 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8835 int IterCnt; 8836 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8837 &CheckedPairs, 8838 &ConsecutiveChain](int K, int Idx) { 8839 if (IterCnt >= MaxIter) 8840 return true; 8841 if (CheckedPairs[Idx].test(K)) 8842 return ConsecutiveChain[K].second == 1 && 8843 ConsecutiveChain[K].first == Idx; 8844 ++IterCnt; 8845 CheckedPairs[Idx].set(K); 8846 CheckedPairs[K].set(Idx); 8847 Optional<int> Diff = getPointersDiff( 8848 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8849 Stores[Idx]->getValueOperand()->getType(), 8850 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8851 if (!Diff || *Diff == 0) 8852 return false; 8853 int Val = *Diff; 8854 if (Val < 0) { 8855 if (ConsecutiveChain[Idx].second > -Val) { 8856 Tails.set(K); 8857 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8858 } 8859 return false; 8860 } 8861 if (ConsecutiveChain[K].second <= Val) 8862 return false; 8863 8864 Tails.set(Idx); 8865 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8866 return Val == 1; 8867 }; 8868 // Do a quadratic search on all of the given stores in reverse order and find 8869 // all of the pairs of stores that follow each other. 8870 for (int Idx = E - 1; Idx >= 0; --Idx) { 8871 // If a store has multiple consecutive store candidates, search according 8872 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8873 // This is because usually pairing with immediate succeeding or preceding 8874 // candidate create the best chance to find slp vectorization opportunity. 8875 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8876 IterCnt = 0; 8877 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8878 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8879 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8880 break; 8881 } 8882 8883 // Tracks if we tried to vectorize stores starting from the given tail 8884 // already. 8885 SmallBitVector TriedTails(E, false); 8886 // For stores that start but don't end a link in the chain: 8887 for (int Cnt = E; Cnt > 0; --Cnt) { 8888 int I = Cnt - 1; 8889 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8890 continue; 8891 // We found a store instr that starts a chain. Now follow the chain and try 8892 // to vectorize it. 8893 BoUpSLP::ValueList Operands; 8894 // Collect the chain into a list. 8895 while (I != E && !VectorizedStores.count(Stores[I])) { 8896 Operands.push_back(Stores[I]); 8897 Tails.set(I); 8898 if (ConsecutiveChain[I].second != 1) { 8899 // Mark the new end in the chain and go back, if required. It might be 8900 // required if the original stores come in reversed order, for example. 8901 if (ConsecutiveChain[I].first != E && 8902 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8903 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8904 TriedTails.set(I); 8905 Tails.reset(ConsecutiveChain[I].first); 8906 if (Cnt < ConsecutiveChain[I].first + 2) 8907 Cnt = ConsecutiveChain[I].first + 2; 8908 } 8909 break; 8910 } 8911 // Move to the next value in the chain. 8912 I = ConsecutiveChain[I].first; 8913 } 8914 assert(!Operands.empty() && "Expected non-empty list of stores."); 8915 8916 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8917 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8918 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8919 8920 unsigned MinVF = R.getMinVF(EltSize); 8921 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8922 MaxElts); 8923 8924 // FIXME: Is division-by-2 the correct step? Should we assert that the 8925 // register size is a power-of-2? 8926 unsigned StartIdx = 0; 8927 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8928 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8929 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8930 if (!VectorizedStores.count(Slice.front()) && 8931 !VectorizedStores.count(Slice.back()) && 8932 vectorizeStoreChain(Slice, R, Cnt)) { 8933 // Mark the vectorized stores so that we don't vectorize them again. 8934 VectorizedStores.insert(Slice.begin(), Slice.end()); 8935 Changed = true; 8936 // If we vectorized initial block, no need to try to vectorize it 8937 // again. 8938 if (Cnt == StartIdx) 8939 StartIdx += Size; 8940 Cnt += Size; 8941 continue; 8942 } 8943 ++Cnt; 8944 } 8945 // Check if the whole array was vectorized already - exit. 8946 if (StartIdx >= Operands.size()) 8947 break; 8948 } 8949 } 8950 8951 return Changed; 8952 } 8953 8954 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8955 // Initialize the collections. We will make a single pass over the block. 8956 Stores.clear(); 8957 GEPs.clear(); 8958 8959 // Visit the store and getelementptr instructions in BB and organize them in 8960 // Stores and GEPs according to the underlying objects of their pointer 8961 // operands. 8962 for (Instruction &I : *BB) { 8963 // Ignore store instructions that are volatile or have a pointer operand 8964 // that doesn't point to a scalar type. 8965 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8966 if (!SI->isSimple()) 8967 continue; 8968 if (!isValidElementType(SI->getValueOperand()->getType())) 8969 continue; 8970 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8971 } 8972 8973 // Ignore getelementptr instructions that have more than one index, a 8974 // constant index, or a pointer operand that doesn't point to a scalar 8975 // type. 8976 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8977 auto Idx = GEP->idx_begin()->get(); 8978 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8979 continue; 8980 if (!isValidElementType(Idx->getType())) 8981 continue; 8982 if (GEP->getType()->isVectorTy()) 8983 continue; 8984 GEPs[GEP->getPointerOperand()].push_back(GEP); 8985 } 8986 } 8987 } 8988 8989 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8990 if (!A || !B) 8991 return false; 8992 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8993 return false; 8994 Value *VL[] = {A, B}; 8995 return tryToVectorizeList(VL, R); 8996 } 8997 8998 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8999 bool LimitForRegisterSize) { 9000 if (VL.size() < 2) 9001 return false; 9002 9003 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9004 << VL.size() << ".\n"); 9005 9006 // Check that all of the parts are instructions of the same type, 9007 // we permit an alternate opcode via InstructionsState. 9008 InstructionsState S = getSameOpcode(VL); 9009 if (!S.getOpcode()) 9010 return false; 9011 9012 Instruction *I0 = cast<Instruction>(S.OpValue); 9013 // Make sure invalid types (including vector type) are rejected before 9014 // determining vectorization factor for scalar instructions. 9015 for (Value *V : VL) { 9016 Type *Ty = V->getType(); 9017 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9018 // NOTE: the following will give user internal llvm type name, which may 9019 // not be useful. 9020 R.getORE()->emit([&]() { 9021 std::string type_str; 9022 llvm::raw_string_ostream rso(type_str); 9023 Ty->print(rso); 9024 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9025 << "Cannot SLP vectorize list: type " 9026 << rso.str() + " is unsupported by vectorizer"; 9027 }); 9028 return false; 9029 } 9030 } 9031 9032 unsigned Sz = R.getVectorElementSize(I0); 9033 unsigned MinVF = R.getMinVF(Sz); 9034 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9035 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9036 if (MaxVF < 2) { 9037 R.getORE()->emit([&]() { 9038 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9039 << "Cannot SLP vectorize list: vectorization factor " 9040 << "less than 2 is not supported"; 9041 }); 9042 return false; 9043 } 9044 9045 bool Changed = false; 9046 bool CandidateFound = false; 9047 InstructionCost MinCost = SLPCostThreshold.getValue(); 9048 Type *ScalarTy = VL[0]->getType(); 9049 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9050 ScalarTy = IE->getOperand(1)->getType(); 9051 9052 unsigned NextInst = 0, MaxInst = VL.size(); 9053 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9054 // No actual vectorization should happen, if number of parts is the same as 9055 // provided vectorization factor (i.e. the scalar type is used for vector 9056 // code during codegen). 9057 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9058 if (TTI->getNumberOfParts(VecTy) == VF) 9059 continue; 9060 for (unsigned I = NextInst; I < MaxInst; ++I) { 9061 unsigned OpsWidth = 0; 9062 9063 if (I + VF > MaxInst) 9064 OpsWidth = MaxInst - I; 9065 else 9066 OpsWidth = VF; 9067 9068 if (!isPowerOf2_32(OpsWidth)) 9069 continue; 9070 9071 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9072 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9073 break; 9074 9075 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9076 // Check that a previous iteration of this loop did not delete the Value. 9077 if (llvm::any_of(Ops, [&R](Value *V) { 9078 auto *I = dyn_cast<Instruction>(V); 9079 return I && R.isDeleted(I); 9080 })) 9081 continue; 9082 9083 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9084 << "\n"); 9085 9086 R.buildTree(Ops); 9087 if (R.isTreeTinyAndNotFullyVectorizable()) 9088 continue; 9089 R.reorderTopToBottom(); 9090 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9091 R.buildExternalUses(); 9092 9093 R.computeMinimumValueSizes(); 9094 InstructionCost Cost = R.getTreeCost(); 9095 CandidateFound = true; 9096 MinCost = std::min(MinCost, Cost); 9097 9098 if (Cost < -SLPCostThreshold) { 9099 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9100 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9101 cast<Instruction>(Ops[0])) 9102 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9103 << " and with tree size " 9104 << ore::NV("TreeSize", R.getTreeSize())); 9105 9106 R.vectorizeTree(); 9107 // Move to the next bundle. 9108 I += VF - 1; 9109 NextInst = I + 1; 9110 Changed = true; 9111 } 9112 } 9113 } 9114 9115 if (!Changed && CandidateFound) { 9116 R.getORE()->emit([&]() { 9117 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9118 << "List vectorization was possible but not beneficial with cost " 9119 << ore::NV("Cost", MinCost) << " >= " 9120 << ore::NV("Treshold", -SLPCostThreshold); 9121 }); 9122 } else if (!Changed) { 9123 R.getORE()->emit([&]() { 9124 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9125 << "Cannot SLP vectorize list: vectorization was impossible" 9126 << " with available vectorization factors"; 9127 }); 9128 } 9129 return Changed; 9130 } 9131 9132 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9133 if (!I) 9134 return false; 9135 9136 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9137 return false; 9138 9139 Value *P = I->getParent(); 9140 9141 // Vectorize in current basic block only. 9142 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9143 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9144 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9145 return false; 9146 9147 // Try to vectorize V. 9148 if (tryToVectorizePair(Op0, Op1, R)) 9149 return true; 9150 9151 auto *A = dyn_cast<BinaryOperator>(Op0); 9152 auto *B = dyn_cast<BinaryOperator>(Op1); 9153 // Try to skip B. 9154 if (B && B->hasOneUse()) { 9155 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9156 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9157 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9158 return true; 9159 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9160 return true; 9161 } 9162 9163 // Try to skip A. 9164 if (A && A->hasOneUse()) { 9165 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9166 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9167 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9168 return true; 9169 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9170 return true; 9171 } 9172 return false; 9173 } 9174 9175 namespace { 9176 9177 /// Model horizontal reductions. 9178 /// 9179 /// A horizontal reduction is a tree of reduction instructions that has values 9180 /// that can be put into a vector as its leaves. For example: 9181 /// 9182 /// mul mul mul mul 9183 /// \ / \ / 9184 /// + + 9185 /// \ / 9186 /// + 9187 /// This tree has "mul" as its leaf values and "+" as its reduction 9188 /// instructions. A reduction can feed into a store or a binary operation 9189 /// feeding a phi. 9190 /// ... 9191 /// \ / 9192 /// + 9193 /// | 9194 /// phi += 9195 /// 9196 /// Or: 9197 /// ... 9198 /// \ / 9199 /// + 9200 /// | 9201 /// *p = 9202 /// 9203 class HorizontalReduction { 9204 using ReductionOpsType = SmallVector<Value *, 16>; 9205 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9206 ReductionOpsListType ReductionOps; 9207 SmallVector<Value *, 32> ReducedVals; 9208 // Use map vector to make stable output. 9209 MapVector<Instruction *, Value *> ExtraArgs; 9210 WeakTrackingVH ReductionRoot; 9211 /// The type of reduction operation. 9212 RecurKind RdxKind; 9213 9214 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9215 9216 static bool isCmpSelMinMax(Instruction *I) { 9217 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9218 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9219 } 9220 9221 // And/or are potentially poison-safe logical patterns like: 9222 // select x, y, false 9223 // select x, true, y 9224 static bool isBoolLogicOp(Instruction *I) { 9225 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9226 match(I, m_LogicalOr(m_Value(), m_Value())); 9227 } 9228 9229 /// Checks if instruction is associative and can be vectorized. 9230 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9231 if (Kind == RecurKind::None) 9232 return false; 9233 9234 // Integer ops that map to select instructions or intrinsics are fine. 9235 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9236 isBoolLogicOp(I)) 9237 return true; 9238 9239 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9240 // FP min/max are associative except for NaN and -0.0. We do not 9241 // have to rule out -0.0 here because the intrinsic semantics do not 9242 // specify a fixed result for it. 9243 return I->getFastMathFlags().noNaNs(); 9244 } 9245 9246 return I->isAssociative(); 9247 } 9248 9249 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9250 // Poison-safe 'or' takes the form: select X, true, Y 9251 // To make that work with the normal operand processing, we skip the 9252 // true value operand. 9253 // TODO: Change the code and data structures to handle this without a hack. 9254 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9255 return I->getOperand(2); 9256 return I->getOperand(Index); 9257 } 9258 9259 /// Checks if the ParentStackElem.first should be marked as a reduction 9260 /// operation with an extra argument or as extra argument itself. 9261 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9262 Value *ExtraArg) { 9263 if (ExtraArgs.count(ParentStackElem.first)) { 9264 ExtraArgs[ParentStackElem.first] = nullptr; 9265 // We ran into something like: 9266 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9267 // The whole ParentStackElem.first should be considered as an extra value 9268 // in this case. 9269 // Do not perform analysis of remaining operands of ParentStackElem.first 9270 // instruction, this whole instruction is an extra argument. 9271 ParentStackElem.second = INVALID_OPERAND_INDEX; 9272 } else { 9273 // We ran into something like: 9274 // ParentStackElem.first += ... + ExtraArg + ... 9275 ExtraArgs[ParentStackElem.first] = ExtraArg; 9276 } 9277 } 9278 9279 /// Creates reduction operation with the current opcode. 9280 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9281 Value *RHS, const Twine &Name, bool UseSelect) { 9282 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9283 switch (Kind) { 9284 case RecurKind::Or: 9285 if (UseSelect && 9286 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9287 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9288 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9289 Name); 9290 case RecurKind::And: 9291 if (UseSelect && 9292 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9293 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9294 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9295 Name); 9296 case RecurKind::Add: 9297 case RecurKind::Mul: 9298 case RecurKind::Xor: 9299 case RecurKind::FAdd: 9300 case RecurKind::FMul: 9301 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9302 Name); 9303 case RecurKind::FMax: 9304 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9305 case RecurKind::FMin: 9306 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9307 case RecurKind::SMax: 9308 if (UseSelect) { 9309 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9310 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9311 } 9312 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9313 case RecurKind::SMin: 9314 if (UseSelect) { 9315 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9316 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9317 } 9318 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9319 case RecurKind::UMax: 9320 if (UseSelect) { 9321 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9322 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9323 } 9324 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9325 case RecurKind::UMin: 9326 if (UseSelect) { 9327 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9328 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9329 } 9330 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9331 default: 9332 llvm_unreachable("Unknown reduction operation."); 9333 } 9334 } 9335 9336 /// Creates reduction operation with the current opcode with the IR flags 9337 /// from \p ReductionOps. 9338 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9339 Value *RHS, const Twine &Name, 9340 const ReductionOpsListType &ReductionOps) { 9341 bool UseSelect = ReductionOps.size() == 2 || 9342 // Logical or/and. 9343 (ReductionOps.size() == 1 && 9344 isa<SelectInst>(ReductionOps.front().front())); 9345 assert((!UseSelect || ReductionOps.size() != 2 || 9346 isa<SelectInst>(ReductionOps[1][0])) && 9347 "Expected cmp + select pairs for reduction"); 9348 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9349 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9350 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9351 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9352 propagateIRFlags(Op, ReductionOps[1]); 9353 return Op; 9354 } 9355 } 9356 propagateIRFlags(Op, ReductionOps[0]); 9357 return Op; 9358 } 9359 9360 /// Creates reduction operation with the current opcode with the IR flags 9361 /// from \p I. 9362 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9363 Value *RHS, const Twine &Name, Instruction *I) { 9364 auto *SelI = dyn_cast<SelectInst>(I); 9365 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9366 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9367 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9368 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9369 } 9370 propagateIRFlags(Op, I); 9371 return Op; 9372 } 9373 9374 static RecurKind getRdxKind(Instruction *I) { 9375 assert(I && "Expected instruction for reduction matching"); 9376 if (match(I, m_Add(m_Value(), m_Value()))) 9377 return RecurKind::Add; 9378 if (match(I, m_Mul(m_Value(), m_Value()))) 9379 return RecurKind::Mul; 9380 if (match(I, m_And(m_Value(), m_Value())) || 9381 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9382 return RecurKind::And; 9383 if (match(I, m_Or(m_Value(), m_Value())) || 9384 match(I, m_LogicalOr(m_Value(), m_Value()))) 9385 return RecurKind::Or; 9386 if (match(I, m_Xor(m_Value(), m_Value()))) 9387 return RecurKind::Xor; 9388 if (match(I, m_FAdd(m_Value(), m_Value()))) 9389 return RecurKind::FAdd; 9390 if (match(I, m_FMul(m_Value(), m_Value()))) 9391 return RecurKind::FMul; 9392 9393 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9394 return RecurKind::FMax; 9395 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9396 return RecurKind::FMin; 9397 9398 // This matches either cmp+select or intrinsics. SLP is expected to handle 9399 // either form. 9400 // TODO: If we are canonicalizing to intrinsics, we can remove several 9401 // special-case paths that deal with selects. 9402 if (match(I, m_SMax(m_Value(), m_Value()))) 9403 return RecurKind::SMax; 9404 if (match(I, m_SMin(m_Value(), m_Value()))) 9405 return RecurKind::SMin; 9406 if (match(I, m_UMax(m_Value(), m_Value()))) 9407 return RecurKind::UMax; 9408 if (match(I, m_UMin(m_Value(), m_Value()))) 9409 return RecurKind::UMin; 9410 9411 if (auto *Select = dyn_cast<SelectInst>(I)) { 9412 // Try harder: look for min/max pattern based on instructions producing 9413 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9414 // During the intermediate stages of SLP, it's very common to have 9415 // pattern like this (since optimizeGatherSequence is run only once 9416 // at the end): 9417 // %1 = extractelement <2 x i32> %a, i32 0 9418 // %2 = extractelement <2 x i32> %a, i32 1 9419 // %cond = icmp sgt i32 %1, %2 9420 // %3 = extractelement <2 x i32> %a, i32 0 9421 // %4 = extractelement <2 x i32> %a, i32 1 9422 // %select = select i1 %cond, i32 %3, i32 %4 9423 CmpInst::Predicate Pred; 9424 Instruction *L1; 9425 Instruction *L2; 9426 9427 Value *LHS = Select->getTrueValue(); 9428 Value *RHS = Select->getFalseValue(); 9429 Value *Cond = Select->getCondition(); 9430 9431 // TODO: Support inverse predicates. 9432 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9433 if (!isa<ExtractElementInst>(RHS) || 9434 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9435 return RecurKind::None; 9436 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9437 if (!isa<ExtractElementInst>(LHS) || 9438 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9439 return RecurKind::None; 9440 } else { 9441 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9442 return RecurKind::None; 9443 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9444 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9445 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9446 return RecurKind::None; 9447 } 9448 9449 switch (Pred) { 9450 default: 9451 return RecurKind::None; 9452 case CmpInst::ICMP_SGT: 9453 case CmpInst::ICMP_SGE: 9454 return RecurKind::SMax; 9455 case CmpInst::ICMP_SLT: 9456 case CmpInst::ICMP_SLE: 9457 return RecurKind::SMin; 9458 case CmpInst::ICMP_UGT: 9459 case CmpInst::ICMP_UGE: 9460 return RecurKind::UMax; 9461 case CmpInst::ICMP_ULT: 9462 case CmpInst::ICMP_ULE: 9463 return RecurKind::UMin; 9464 } 9465 } 9466 return RecurKind::None; 9467 } 9468 9469 /// Get the index of the first operand. 9470 static unsigned getFirstOperandIndex(Instruction *I) { 9471 return isCmpSelMinMax(I) ? 1 : 0; 9472 } 9473 9474 /// Total number of operands in the reduction operation. 9475 static unsigned getNumberOfOperands(Instruction *I) { 9476 return isCmpSelMinMax(I) ? 3 : 2; 9477 } 9478 9479 /// Checks if the instruction is in basic block \p BB. 9480 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9481 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9482 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9483 auto *Sel = cast<SelectInst>(I); 9484 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9485 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9486 } 9487 return I->getParent() == BB; 9488 } 9489 9490 /// Expected number of uses for reduction operations/reduced values. 9491 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9492 if (IsCmpSelMinMax) { 9493 // SelectInst must be used twice while the condition op must have single 9494 // use only. 9495 if (auto *Sel = dyn_cast<SelectInst>(I)) 9496 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9497 return I->hasNUses(2); 9498 } 9499 9500 // Arithmetic reduction operation must be used once only. 9501 return I->hasOneUse(); 9502 } 9503 9504 /// Initializes the list of reduction operations. 9505 void initReductionOps(Instruction *I) { 9506 if (isCmpSelMinMax(I)) 9507 ReductionOps.assign(2, ReductionOpsType()); 9508 else 9509 ReductionOps.assign(1, ReductionOpsType()); 9510 } 9511 9512 /// Add all reduction operations for the reduction instruction \p I. 9513 void addReductionOps(Instruction *I) { 9514 if (isCmpSelMinMax(I)) { 9515 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9516 ReductionOps[1].emplace_back(I); 9517 } else { 9518 ReductionOps[0].emplace_back(I); 9519 } 9520 } 9521 9522 static Value *getLHS(RecurKind Kind, Instruction *I) { 9523 if (Kind == RecurKind::None) 9524 return nullptr; 9525 return I->getOperand(getFirstOperandIndex(I)); 9526 } 9527 static Value *getRHS(RecurKind Kind, Instruction *I) { 9528 if (Kind == RecurKind::None) 9529 return nullptr; 9530 return I->getOperand(getFirstOperandIndex(I) + 1); 9531 } 9532 9533 public: 9534 HorizontalReduction() = default; 9535 9536 /// Try to find a reduction tree. 9537 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9538 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9539 "Phi needs to use the binary operator"); 9540 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9541 isa<IntrinsicInst>(Inst)) && 9542 "Expected binop, select, or intrinsic for reduction matching"); 9543 RdxKind = getRdxKind(Inst); 9544 9545 // We could have a initial reductions that is not an add. 9546 // r *= v1 + v2 + v3 + v4 9547 // In such a case start looking for a tree rooted in the first '+'. 9548 if (Phi) { 9549 if (getLHS(RdxKind, Inst) == Phi) { 9550 Phi = nullptr; 9551 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9552 if (!Inst) 9553 return false; 9554 RdxKind = getRdxKind(Inst); 9555 } else if (getRHS(RdxKind, Inst) == Phi) { 9556 Phi = nullptr; 9557 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9558 if (!Inst) 9559 return false; 9560 RdxKind = getRdxKind(Inst); 9561 } 9562 } 9563 9564 if (!isVectorizable(RdxKind, Inst)) 9565 return false; 9566 9567 // Analyze "regular" integer/FP types for reductions - no target-specific 9568 // types or pointers. 9569 Type *Ty = Inst->getType(); 9570 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9571 return false; 9572 9573 // Though the ultimate reduction may have multiple uses, its condition must 9574 // have only single use. 9575 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9576 if (!Sel->getCondition()->hasOneUse()) 9577 return false; 9578 9579 ReductionRoot = Inst; 9580 9581 // The opcode for leaf values that we perform a reduction on. 9582 // For example: load(x) + load(y) + load(z) + fptoui(w) 9583 // The leaf opcode for 'w' does not match, so we don't include it as a 9584 // potential candidate for the reduction. 9585 unsigned LeafOpcode = 0; 9586 9587 // Post-order traverse the reduction tree starting at Inst. We only handle 9588 // true trees containing binary operators or selects. 9589 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9590 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9591 initReductionOps(Inst); 9592 while (!Stack.empty()) { 9593 Instruction *TreeN = Stack.back().first; 9594 unsigned EdgeToVisit = Stack.back().second++; 9595 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9596 bool IsReducedValue = TreeRdxKind != RdxKind; 9597 9598 // Postorder visit. 9599 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9600 if (IsReducedValue) 9601 ReducedVals.push_back(TreeN); 9602 else { 9603 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9604 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9605 // Check if TreeN is an extra argument of its parent operation. 9606 if (Stack.size() <= 1) { 9607 // TreeN can't be an extra argument as it is a root reduction 9608 // operation. 9609 return false; 9610 } 9611 // Yes, TreeN is an extra argument, do not add it to a list of 9612 // reduction operations. 9613 // Stack[Stack.size() - 2] always points to the parent operation. 9614 markExtraArg(Stack[Stack.size() - 2], TreeN); 9615 ExtraArgs.erase(TreeN); 9616 } else 9617 addReductionOps(TreeN); 9618 } 9619 // Retract. 9620 Stack.pop_back(); 9621 continue; 9622 } 9623 9624 // Visit operands. 9625 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9626 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9627 if (!EdgeInst) { 9628 // Edge value is not a reduction instruction or a leaf instruction. 9629 // (It may be a constant, function argument, or something else.) 9630 markExtraArg(Stack.back(), EdgeVal); 9631 continue; 9632 } 9633 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9634 // Continue analysis if the next operand is a reduction operation or 9635 // (possibly) a leaf value. If the leaf value opcode is not set, 9636 // the first met operation != reduction operation is considered as the 9637 // leaf opcode. 9638 // Only handle trees in the current basic block. 9639 // Each tree node needs to have minimal number of users except for the 9640 // ultimate reduction. 9641 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9642 if (EdgeInst != Phi && EdgeInst != Inst && 9643 hasSameParent(EdgeInst, Inst->getParent()) && 9644 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9645 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9646 if (IsRdxInst) { 9647 // We need to be able to reassociate the reduction operations. 9648 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9649 // I is an extra argument for TreeN (its parent operation). 9650 markExtraArg(Stack.back(), EdgeInst); 9651 continue; 9652 } 9653 } else if (!LeafOpcode) { 9654 LeafOpcode = EdgeInst->getOpcode(); 9655 } 9656 Stack.push_back( 9657 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9658 continue; 9659 } 9660 // I is an extra argument for TreeN (its parent operation). 9661 markExtraArg(Stack.back(), EdgeInst); 9662 } 9663 return true; 9664 } 9665 9666 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9667 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9668 // If there are a sufficient number of reduction values, reduce 9669 // to a nearby power-of-2. We can safely generate oversized 9670 // vectors and rely on the backend to split them to legal sizes. 9671 unsigned NumReducedVals = ReducedVals.size(); 9672 if (NumReducedVals < 4) 9673 return nullptr; 9674 9675 // Intersect the fast-math-flags from all reduction operations. 9676 FastMathFlags RdxFMF; 9677 RdxFMF.set(); 9678 for (ReductionOpsType &RdxOp : ReductionOps) { 9679 for (Value *RdxVal : RdxOp) { 9680 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9681 RdxFMF &= FPMO->getFastMathFlags(); 9682 } 9683 } 9684 9685 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9686 Builder.setFastMathFlags(RdxFMF); 9687 9688 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9689 // The same extra argument may be used several times, so log each attempt 9690 // to use it. 9691 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9692 assert(Pair.first && "DebugLoc must be set."); 9693 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9694 } 9695 9696 // The compare instruction of a min/max is the insertion point for new 9697 // instructions and may be replaced with a new compare instruction. 9698 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9699 assert(isa<SelectInst>(RdxRootInst) && 9700 "Expected min/max reduction to have select root instruction"); 9701 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9702 assert(isa<Instruction>(ScalarCond) && 9703 "Expected min/max reduction to have compare condition"); 9704 return cast<Instruction>(ScalarCond); 9705 }; 9706 9707 // The reduction root is used as the insertion point for new instructions, 9708 // so set it as externally used to prevent it from being deleted. 9709 ExternallyUsedValues[ReductionRoot]; 9710 SmallVector<Value *, 16> IgnoreList; 9711 for (ReductionOpsType &RdxOp : ReductionOps) 9712 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9713 9714 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9715 if (NumReducedVals > ReduxWidth) { 9716 // In the loop below, we are building a tree based on a window of 9717 // 'ReduxWidth' values. 9718 // If the operands of those values have common traits (compare predicate, 9719 // constant operand, etc), then we want to group those together to 9720 // minimize the cost of the reduction. 9721 9722 // TODO: This should be extended to count common operands for 9723 // compares and binops. 9724 9725 // Step 1: Count the number of times each compare predicate occurs. 9726 SmallDenseMap<unsigned, unsigned> PredCountMap; 9727 for (Value *RdxVal : ReducedVals) { 9728 CmpInst::Predicate Pred; 9729 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9730 ++PredCountMap[Pred]; 9731 } 9732 // Step 2: Sort the values so the most common predicates come first. 9733 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9734 CmpInst::Predicate PredA, PredB; 9735 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9736 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9737 return PredCountMap[PredA] > PredCountMap[PredB]; 9738 } 9739 return false; 9740 }); 9741 } 9742 9743 Value *VectorizedTree = nullptr; 9744 unsigned i = 0; 9745 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9746 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9747 V.buildTree(VL, IgnoreList); 9748 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9749 break; 9750 if (V.isLoadCombineReductionCandidate(RdxKind)) 9751 break; 9752 V.reorderTopToBottom(); 9753 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9754 V.buildExternalUses(ExternallyUsedValues); 9755 9756 // For a poison-safe boolean logic reduction, do not replace select 9757 // instructions with logic ops. All reduced values will be frozen (see 9758 // below) to prevent leaking poison. 9759 if (isa<SelectInst>(ReductionRoot) && 9760 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9761 NumReducedVals != ReduxWidth) 9762 break; 9763 9764 V.computeMinimumValueSizes(); 9765 9766 // Estimate cost. 9767 InstructionCost TreeCost = 9768 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9769 InstructionCost ReductionCost = 9770 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9771 InstructionCost Cost = TreeCost + ReductionCost; 9772 if (!Cost.isValid()) { 9773 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9774 return nullptr; 9775 } 9776 if (Cost >= -SLPCostThreshold) { 9777 V.getORE()->emit([&]() { 9778 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9779 cast<Instruction>(VL[0])) 9780 << "Vectorizing horizontal reduction is possible" 9781 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9782 << " and threshold " 9783 << ore::NV("Threshold", -SLPCostThreshold); 9784 }); 9785 break; 9786 } 9787 9788 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9789 << Cost << ". (HorRdx)\n"); 9790 V.getORE()->emit([&]() { 9791 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9792 cast<Instruction>(VL[0])) 9793 << "Vectorized horizontal reduction with cost " 9794 << ore::NV("Cost", Cost) << " and with tree size " 9795 << ore::NV("TreeSize", V.getTreeSize()); 9796 }); 9797 9798 // Vectorize a tree. 9799 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9800 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9801 9802 // Emit a reduction. If the root is a select (min/max idiom), the insert 9803 // point is the compare condition of that select. 9804 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9805 if (isCmpSelMinMax(RdxRootInst)) 9806 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9807 else 9808 Builder.SetInsertPoint(RdxRootInst); 9809 9810 // To prevent poison from leaking across what used to be sequential, safe, 9811 // scalar boolean logic operations, the reduction operand must be frozen. 9812 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9813 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9814 9815 Value *ReducedSubTree = 9816 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9817 9818 if (!VectorizedTree) { 9819 // Initialize the final value in the reduction. 9820 VectorizedTree = ReducedSubTree; 9821 } else { 9822 // Update the final value in the reduction. 9823 Builder.SetCurrentDebugLocation(Loc); 9824 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9825 ReducedSubTree, "op.rdx", ReductionOps); 9826 } 9827 i += ReduxWidth; 9828 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9829 } 9830 9831 if (VectorizedTree) { 9832 // Finish the reduction. 9833 for (; i < NumReducedVals; ++i) { 9834 auto *I = cast<Instruction>(ReducedVals[i]); 9835 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9836 VectorizedTree = 9837 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9838 } 9839 for (auto &Pair : ExternallyUsedValues) { 9840 // Add each externally used value to the final reduction. 9841 for (auto *I : Pair.second) { 9842 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9843 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9844 Pair.first, "op.extra", I); 9845 } 9846 } 9847 9848 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9849 9850 // The original scalar reduction is expected to have no remaining 9851 // uses outside the reduction tree itself. Assert that we got this 9852 // correct, replace internal uses with undef, and mark for eventual 9853 // deletion. 9854 #ifndef NDEBUG 9855 SmallSet<Value *, 4> IgnoreSet; 9856 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 9857 #endif 9858 for (auto *Ignore : IgnoreList) { 9859 #ifndef NDEBUG 9860 for (auto *U : Ignore->users()) { 9861 assert(IgnoreSet.count(U)); 9862 } 9863 #endif 9864 if (!Ignore->use_empty()) { 9865 Value *Undef = UndefValue::get(Ignore->getType()); 9866 Ignore->replaceAllUsesWith(Undef); 9867 } 9868 V.eraseInstruction(cast<Instruction>(Ignore)); 9869 } 9870 } 9871 return VectorizedTree; 9872 } 9873 9874 unsigned numReductionValues() const { return ReducedVals.size(); } 9875 9876 private: 9877 /// Calculate the cost of a reduction. 9878 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9879 Value *FirstReducedVal, unsigned ReduxWidth, 9880 FastMathFlags FMF) { 9881 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9882 Type *ScalarTy = FirstReducedVal->getType(); 9883 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9884 InstructionCost VectorCost, ScalarCost; 9885 switch (RdxKind) { 9886 case RecurKind::Add: 9887 case RecurKind::Mul: 9888 case RecurKind::Or: 9889 case RecurKind::And: 9890 case RecurKind::Xor: 9891 case RecurKind::FAdd: 9892 case RecurKind::FMul: { 9893 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9894 VectorCost = 9895 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9896 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9897 break; 9898 } 9899 case RecurKind::FMax: 9900 case RecurKind::FMin: { 9901 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9902 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9903 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9904 /*IsUnsigned=*/false, CostKind); 9905 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9906 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9907 SclCondTy, RdxPred, CostKind) + 9908 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9909 SclCondTy, RdxPred, CostKind); 9910 break; 9911 } 9912 case RecurKind::SMax: 9913 case RecurKind::SMin: 9914 case RecurKind::UMax: 9915 case RecurKind::UMin: { 9916 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9917 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9918 bool IsUnsigned = 9919 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9920 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9921 CostKind); 9922 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9923 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9924 SclCondTy, RdxPred, CostKind) + 9925 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9926 SclCondTy, RdxPred, CostKind); 9927 break; 9928 } 9929 default: 9930 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9931 } 9932 9933 // Scalar cost is repeated for N-1 elements. 9934 ScalarCost *= (ReduxWidth - 1); 9935 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9936 << " for reduction that starts with " << *FirstReducedVal 9937 << " (It is a splitting reduction)\n"); 9938 return VectorCost - ScalarCost; 9939 } 9940 9941 /// Emit a horizontal reduction of the vectorized value. 9942 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9943 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9944 assert(VectorizedValue && "Need to have a vectorized tree node"); 9945 assert(isPowerOf2_32(ReduxWidth) && 9946 "We only handle power-of-two reductions for now"); 9947 assert(RdxKind != RecurKind::FMulAdd && 9948 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9949 9950 ++NumVectorInstructions; 9951 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9952 } 9953 }; 9954 9955 } // end anonymous namespace 9956 9957 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9958 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9959 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9960 9961 unsigned AggregateSize = 1; 9962 auto *IV = cast<InsertValueInst>(InsertInst); 9963 Type *CurrentType = IV->getType(); 9964 do { 9965 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9966 for (auto *Elt : ST->elements()) 9967 if (Elt != ST->getElementType(0)) // check homogeneity 9968 return None; 9969 AggregateSize *= ST->getNumElements(); 9970 CurrentType = ST->getElementType(0); 9971 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9972 AggregateSize *= AT->getNumElements(); 9973 CurrentType = AT->getElementType(); 9974 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9975 AggregateSize *= VT->getNumElements(); 9976 return AggregateSize; 9977 } else if (CurrentType->isSingleValueType()) { 9978 return AggregateSize; 9979 } else { 9980 return None; 9981 } 9982 } while (true); 9983 } 9984 9985 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9986 TargetTransformInfo *TTI, 9987 SmallVectorImpl<Value *> &BuildVectorOpds, 9988 SmallVectorImpl<Value *> &InsertElts, 9989 unsigned OperandOffset) { 9990 do { 9991 Value *InsertedOperand = LastInsertInst->getOperand(1); 9992 Optional<unsigned> OperandIndex = 9993 getInsertIndex(LastInsertInst, OperandOffset); 9994 if (!OperandIndex) 9995 return; 9996 if (isa<InsertElementInst>(InsertedOperand) || 9997 isa<InsertValueInst>(InsertedOperand)) { 9998 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9999 BuildVectorOpds, InsertElts, *OperandIndex); 10000 10001 } else { 10002 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10003 InsertElts[*OperandIndex] = LastInsertInst; 10004 } 10005 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10006 } while (LastInsertInst != nullptr && 10007 (isa<InsertValueInst>(LastInsertInst) || 10008 isa<InsertElementInst>(LastInsertInst)) && 10009 LastInsertInst->hasOneUse()); 10010 } 10011 10012 /// Recognize construction of vectors like 10013 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10014 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10015 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10016 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10017 /// starting from the last insertelement or insertvalue instruction. 10018 /// 10019 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10020 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10021 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10022 /// 10023 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10024 /// 10025 /// \return true if it matches. 10026 static bool findBuildAggregate(Instruction *LastInsertInst, 10027 TargetTransformInfo *TTI, 10028 SmallVectorImpl<Value *> &BuildVectorOpds, 10029 SmallVectorImpl<Value *> &InsertElts) { 10030 10031 assert((isa<InsertElementInst>(LastInsertInst) || 10032 isa<InsertValueInst>(LastInsertInst)) && 10033 "Expected insertelement or insertvalue instruction!"); 10034 10035 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10036 "Expected empty result vectors!"); 10037 10038 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10039 if (!AggregateSize) 10040 return false; 10041 BuildVectorOpds.resize(*AggregateSize); 10042 InsertElts.resize(*AggregateSize); 10043 10044 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10045 llvm::erase_value(BuildVectorOpds, nullptr); 10046 llvm::erase_value(InsertElts, nullptr); 10047 if (BuildVectorOpds.size() >= 2) 10048 return true; 10049 10050 return false; 10051 } 10052 10053 /// Try and get a reduction value from a phi node. 10054 /// 10055 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10056 /// if they come from either \p ParentBB or a containing loop latch. 10057 /// 10058 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10059 /// if not possible. 10060 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10061 BasicBlock *ParentBB, LoopInfo *LI) { 10062 // There are situations where the reduction value is not dominated by the 10063 // reduction phi. Vectorizing such cases has been reported to cause 10064 // miscompiles. See PR25787. 10065 auto DominatedReduxValue = [&](Value *R) { 10066 return isa<Instruction>(R) && 10067 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10068 }; 10069 10070 Value *Rdx = nullptr; 10071 10072 // Return the incoming value if it comes from the same BB as the phi node. 10073 if (P->getIncomingBlock(0) == ParentBB) { 10074 Rdx = P->getIncomingValue(0); 10075 } else if (P->getIncomingBlock(1) == ParentBB) { 10076 Rdx = P->getIncomingValue(1); 10077 } 10078 10079 if (Rdx && DominatedReduxValue(Rdx)) 10080 return Rdx; 10081 10082 // Otherwise, check whether we have a loop latch to look at. 10083 Loop *BBL = LI->getLoopFor(ParentBB); 10084 if (!BBL) 10085 return nullptr; 10086 BasicBlock *BBLatch = BBL->getLoopLatch(); 10087 if (!BBLatch) 10088 return nullptr; 10089 10090 // There is a loop latch, return the incoming value if it comes from 10091 // that. This reduction pattern occasionally turns up. 10092 if (P->getIncomingBlock(0) == BBLatch) { 10093 Rdx = P->getIncomingValue(0); 10094 } else if (P->getIncomingBlock(1) == BBLatch) { 10095 Rdx = P->getIncomingValue(1); 10096 } 10097 10098 if (Rdx && DominatedReduxValue(Rdx)) 10099 return Rdx; 10100 10101 return nullptr; 10102 } 10103 10104 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10105 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10106 return true; 10107 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10108 return true; 10109 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10110 return true; 10111 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10112 return true; 10113 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10114 return true; 10115 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10116 return true; 10117 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10118 return true; 10119 return false; 10120 } 10121 10122 /// Attempt to reduce a horizontal reduction. 10123 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10124 /// with reduction operators \a Root (or one of its operands) in a basic block 10125 /// \a BB, then check if it can be done. If horizontal reduction is not found 10126 /// and root instruction is a binary operation, vectorization of the operands is 10127 /// attempted. 10128 /// \returns true if a horizontal reduction was matched and reduced or operands 10129 /// of one of the binary instruction were vectorized. 10130 /// \returns false if a horizontal reduction was not matched (or not possible) 10131 /// or no vectorization of any binary operation feeding \a Root instruction was 10132 /// performed. 10133 static bool tryToVectorizeHorReductionOrInstOperands( 10134 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10135 TargetTransformInfo *TTI, 10136 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10137 if (!ShouldVectorizeHor) 10138 return false; 10139 10140 if (!Root) 10141 return false; 10142 10143 if (Root->getParent() != BB || isa<PHINode>(Root)) 10144 return false; 10145 // Start analysis starting from Root instruction. If horizontal reduction is 10146 // found, try to vectorize it. If it is not a horizontal reduction or 10147 // vectorization is not possible or not effective, and currently analyzed 10148 // instruction is a binary operation, try to vectorize the operands, using 10149 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10150 // the same procedure considering each operand as a possible root of the 10151 // horizontal reduction. 10152 // Interrupt the process if the Root instruction itself was vectorized or all 10153 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10154 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10155 // CmpInsts so we can skip extra attempts in 10156 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10157 std::queue<std::pair<Instruction *, unsigned>> Stack; 10158 Stack.emplace(Root, 0); 10159 SmallPtrSet<Value *, 8> VisitedInstrs; 10160 SmallVector<WeakTrackingVH> PostponedInsts; 10161 bool Res = false; 10162 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10163 Value *&B1) -> Value * { 10164 bool IsBinop = matchRdxBop(Inst, B0, B1); 10165 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10166 if (IsBinop || IsSelect) { 10167 HorizontalReduction HorRdx; 10168 if (HorRdx.matchAssociativeReduction(P, Inst)) 10169 return HorRdx.tryToReduce(R, TTI); 10170 } 10171 return nullptr; 10172 }; 10173 while (!Stack.empty()) { 10174 Instruction *Inst; 10175 unsigned Level; 10176 std::tie(Inst, Level) = Stack.front(); 10177 Stack.pop(); 10178 // Do not try to analyze instruction that has already been vectorized. 10179 // This may happen when we vectorize instruction operands on a previous 10180 // iteration while stack was populated before that happened. 10181 if (R.isDeleted(Inst)) 10182 continue; 10183 Value *B0 = nullptr, *B1 = nullptr; 10184 if (Value *V = TryToReduce(Inst, B0, B1)) { 10185 Res = true; 10186 // Set P to nullptr to avoid re-analysis of phi node in 10187 // matchAssociativeReduction function unless this is the root node. 10188 P = nullptr; 10189 if (auto *I = dyn_cast<Instruction>(V)) { 10190 // Try to find another reduction. 10191 Stack.emplace(I, Level); 10192 continue; 10193 } 10194 } else { 10195 bool IsBinop = B0 && B1; 10196 if (P && IsBinop) { 10197 Inst = dyn_cast<Instruction>(B0); 10198 if (Inst == P) 10199 Inst = dyn_cast<Instruction>(B1); 10200 if (!Inst) { 10201 // Set P to nullptr to avoid re-analysis of phi node in 10202 // matchAssociativeReduction function unless this is the root node. 10203 P = nullptr; 10204 continue; 10205 } 10206 } 10207 // Set P to nullptr to avoid re-analysis of phi node in 10208 // matchAssociativeReduction function unless this is the root node. 10209 P = nullptr; 10210 // Do not try to vectorize CmpInst operands, this is done separately. 10211 // Final attempt for binop args vectorization should happen after the loop 10212 // to try to find reductions. 10213 if (!isa<CmpInst>(Inst)) 10214 PostponedInsts.push_back(Inst); 10215 } 10216 10217 // Try to vectorize operands. 10218 // Continue analysis for the instruction from the same basic block only to 10219 // save compile time. 10220 if (++Level < RecursionMaxDepth) 10221 for (auto *Op : Inst->operand_values()) 10222 if (VisitedInstrs.insert(Op).second) 10223 if (auto *I = dyn_cast<Instruction>(Op)) 10224 // Do not try to vectorize CmpInst operands, this is done 10225 // separately. 10226 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10227 I->getParent() == BB) 10228 Stack.emplace(I, Level); 10229 } 10230 // Try to vectorized binops where reductions were not found. 10231 for (Value *V : PostponedInsts) 10232 if (auto *Inst = dyn_cast<Instruction>(V)) 10233 if (!R.isDeleted(Inst)) 10234 Res |= Vectorize(Inst, R); 10235 return Res; 10236 } 10237 10238 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10239 BasicBlock *BB, BoUpSLP &R, 10240 TargetTransformInfo *TTI) { 10241 auto *I = dyn_cast_or_null<Instruction>(V); 10242 if (!I) 10243 return false; 10244 10245 if (!isa<BinaryOperator>(I)) 10246 P = nullptr; 10247 // Try to match and vectorize a horizontal reduction. 10248 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10249 return tryToVectorize(I, R); 10250 }; 10251 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10252 ExtraVectorization); 10253 } 10254 10255 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10256 BasicBlock *BB, BoUpSLP &R) { 10257 const DataLayout &DL = BB->getModule()->getDataLayout(); 10258 if (!R.canMapToVector(IVI->getType(), DL)) 10259 return false; 10260 10261 SmallVector<Value *, 16> BuildVectorOpds; 10262 SmallVector<Value *, 16> BuildVectorInsts; 10263 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10264 return false; 10265 10266 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10267 // Aggregate value is unlikely to be processed in vector register. 10268 return tryToVectorizeList(BuildVectorOpds, R); 10269 } 10270 10271 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10272 BasicBlock *BB, BoUpSLP &R) { 10273 SmallVector<Value *, 16> BuildVectorInsts; 10274 SmallVector<Value *, 16> BuildVectorOpds; 10275 SmallVector<int> Mask; 10276 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10277 (llvm::all_of( 10278 BuildVectorOpds, 10279 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10280 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10281 return false; 10282 10283 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10284 return tryToVectorizeList(BuildVectorInsts, R); 10285 } 10286 10287 template <typename T> 10288 static bool 10289 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10290 function_ref<unsigned(T *)> Limit, 10291 function_ref<bool(T *, T *)> Comparator, 10292 function_ref<bool(T *, T *)> AreCompatible, 10293 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10294 bool LimitForRegisterSize) { 10295 bool Changed = false; 10296 // Sort by type, parent, operands. 10297 stable_sort(Incoming, Comparator); 10298 10299 // Try to vectorize elements base on their type. 10300 SmallVector<T *> Candidates; 10301 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10302 // Look for the next elements with the same type, parent and operand 10303 // kinds. 10304 auto *SameTypeIt = IncIt; 10305 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10306 ++SameTypeIt; 10307 10308 // Try to vectorize them. 10309 unsigned NumElts = (SameTypeIt - IncIt); 10310 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10311 << NumElts << ")\n"); 10312 // The vectorization is a 3-state attempt: 10313 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10314 // size of maximal register at first. 10315 // 2. Try to vectorize remaining instructions with the same type, if 10316 // possible. This may result in the better vectorization results rather than 10317 // if we try just to vectorize instructions with the same/alternate opcodes. 10318 // 3. Final attempt to try to vectorize all instructions with the 10319 // same/alternate ops only, this may result in some extra final 10320 // vectorization. 10321 if (NumElts > 1 && 10322 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10323 // Success start over because instructions might have been changed. 10324 Changed = true; 10325 } else if (NumElts < Limit(*IncIt) && 10326 (Candidates.empty() || 10327 Candidates.front()->getType() == (*IncIt)->getType())) { 10328 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10329 } 10330 // Final attempt to vectorize instructions with the same types. 10331 if (Candidates.size() > 1 && 10332 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10333 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10334 // Success start over because instructions might have been changed. 10335 Changed = true; 10336 } else if (LimitForRegisterSize) { 10337 // Try to vectorize using small vectors. 10338 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10339 It != End;) { 10340 auto *SameTypeIt = It; 10341 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10342 ++SameTypeIt; 10343 unsigned NumElts = (SameTypeIt - It); 10344 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10345 /*LimitForRegisterSize=*/false)) 10346 Changed = true; 10347 It = SameTypeIt; 10348 } 10349 } 10350 Candidates.clear(); 10351 } 10352 10353 // Start over at the next instruction of a different type (or the end). 10354 IncIt = SameTypeIt; 10355 } 10356 return Changed; 10357 } 10358 10359 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10360 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10361 /// operands. If IsCompatibility is false, function implements strict weak 10362 /// ordering relation between two cmp instructions, returning true if the first 10363 /// instruction is "less" than the second, i.e. its predicate is less than the 10364 /// predicate of the second or the operands IDs are less than the operands IDs 10365 /// of the second cmp instruction. 10366 template <bool IsCompatibility> 10367 static bool compareCmp(Value *V, Value *V2, 10368 function_ref<bool(Instruction *)> IsDeleted) { 10369 auto *CI1 = cast<CmpInst>(V); 10370 auto *CI2 = cast<CmpInst>(V2); 10371 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10372 return false; 10373 if (CI1->getOperand(0)->getType()->getTypeID() < 10374 CI2->getOperand(0)->getType()->getTypeID()) 10375 return !IsCompatibility; 10376 if (CI1->getOperand(0)->getType()->getTypeID() > 10377 CI2->getOperand(0)->getType()->getTypeID()) 10378 return false; 10379 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10380 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10381 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10382 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10383 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10384 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10385 if (BasePred1 < BasePred2) 10386 return !IsCompatibility; 10387 if (BasePred1 > BasePred2) 10388 return false; 10389 // Compare operands. 10390 bool LEPreds = Pred1 <= Pred2; 10391 bool GEPreds = Pred1 >= Pred2; 10392 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10393 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10394 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10395 if (Op1->getValueID() < Op2->getValueID()) 10396 return !IsCompatibility; 10397 if (Op1->getValueID() > Op2->getValueID()) 10398 return false; 10399 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10400 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10401 if (I1->getParent() != I2->getParent()) 10402 return false; 10403 InstructionsState S = getSameOpcode({I1, I2}); 10404 if (S.getOpcode()) 10405 continue; 10406 return false; 10407 } 10408 } 10409 return IsCompatibility; 10410 } 10411 10412 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10413 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10414 bool AtTerminator) { 10415 bool OpsChanged = false; 10416 SmallVector<Instruction *, 4> PostponedCmps; 10417 for (auto *I : reverse(Instructions)) { 10418 if (R.isDeleted(I)) 10419 continue; 10420 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10421 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10422 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10423 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10424 else if (isa<CmpInst>(I)) 10425 PostponedCmps.push_back(I); 10426 } 10427 if (AtTerminator) { 10428 // Try to find reductions first. 10429 for (Instruction *I : PostponedCmps) { 10430 if (R.isDeleted(I)) 10431 continue; 10432 for (Value *Op : I->operands()) 10433 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10434 } 10435 // Try to vectorize operands as vector bundles. 10436 for (Instruction *I : PostponedCmps) { 10437 if (R.isDeleted(I)) 10438 continue; 10439 OpsChanged |= tryToVectorize(I, R); 10440 } 10441 // Try to vectorize list of compares. 10442 // Sort by type, compare predicate, etc. 10443 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10444 return compareCmp<false>(V, V2, 10445 [&R](Instruction *I) { return R.isDeleted(I); }); 10446 }; 10447 10448 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10449 if (V1 == V2) 10450 return true; 10451 return compareCmp<true>(V1, V2, 10452 [&R](Instruction *I) { return R.isDeleted(I); }); 10453 }; 10454 auto Limit = [&R](Value *V) { 10455 unsigned EltSize = R.getVectorElementSize(V); 10456 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10457 }; 10458 10459 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10460 OpsChanged |= tryToVectorizeSequence<Value>( 10461 Vals, Limit, CompareSorter, AreCompatibleCompares, 10462 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10463 // Exclude possible reductions from other blocks. 10464 bool ArePossiblyReducedInOtherBlock = 10465 any_of(Candidates, [](Value *V) { 10466 return any_of(V->users(), [V](User *U) { 10467 return isa<SelectInst>(U) && 10468 cast<SelectInst>(U)->getParent() != 10469 cast<Instruction>(V)->getParent(); 10470 }); 10471 }); 10472 if (ArePossiblyReducedInOtherBlock) 10473 return false; 10474 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10475 }, 10476 /*LimitForRegisterSize=*/true); 10477 Instructions.clear(); 10478 } else { 10479 // Insert in reverse order since the PostponedCmps vector was filled in 10480 // reverse order. 10481 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10482 } 10483 return OpsChanged; 10484 } 10485 10486 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10487 bool Changed = false; 10488 SmallVector<Value *, 4> Incoming; 10489 SmallPtrSet<Value *, 16> VisitedInstrs; 10490 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10491 // node. Allows better to identify the chains that can be vectorized in the 10492 // better way. 10493 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10494 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10495 assert(isValidElementType(V1->getType()) && 10496 isValidElementType(V2->getType()) && 10497 "Expected vectorizable types only."); 10498 // It is fine to compare type IDs here, since we expect only vectorizable 10499 // types, like ints, floats and pointers, we don't care about other type. 10500 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10501 return true; 10502 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10503 return false; 10504 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10505 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10506 if (Opcodes1.size() < Opcodes2.size()) 10507 return true; 10508 if (Opcodes1.size() > Opcodes2.size()) 10509 return false; 10510 Optional<bool> ConstOrder; 10511 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10512 // Undefs are compatible with any other value. 10513 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10514 if (!ConstOrder) 10515 ConstOrder = 10516 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10517 continue; 10518 } 10519 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10520 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10521 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10522 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10523 if (!NodeI1) 10524 return NodeI2 != nullptr; 10525 if (!NodeI2) 10526 return false; 10527 assert((NodeI1 == NodeI2) == 10528 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10529 "Different nodes should have different DFS numbers"); 10530 if (NodeI1 != NodeI2) 10531 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10532 InstructionsState S = getSameOpcode({I1, I2}); 10533 if (S.getOpcode()) 10534 continue; 10535 return I1->getOpcode() < I2->getOpcode(); 10536 } 10537 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10538 if (!ConstOrder) 10539 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10540 continue; 10541 } 10542 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10543 return true; 10544 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10545 return false; 10546 } 10547 return ConstOrder && *ConstOrder; 10548 }; 10549 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10550 if (V1 == V2) 10551 return true; 10552 if (V1->getType() != V2->getType()) 10553 return false; 10554 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10555 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10556 if (Opcodes1.size() != Opcodes2.size()) 10557 return false; 10558 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10559 // Undefs are compatible with any other value. 10560 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10561 continue; 10562 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10563 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10564 if (I1->getParent() != I2->getParent()) 10565 return false; 10566 InstructionsState S = getSameOpcode({I1, I2}); 10567 if (S.getOpcode()) 10568 continue; 10569 return false; 10570 } 10571 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10572 continue; 10573 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10574 return false; 10575 } 10576 return true; 10577 }; 10578 auto Limit = [&R](Value *V) { 10579 unsigned EltSize = R.getVectorElementSize(V); 10580 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10581 }; 10582 10583 bool HaveVectorizedPhiNodes = false; 10584 do { 10585 // Collect the incoming values from the PHIs. 10586 Incoming.clear(); 10587 for (Instruction &I : *BB) { 10588 PHINode *P = dyn_cast<PHINode>(&I); 10589 if (!P) 10590 break; 10591 10592 // No need to analyze deleted, vectorized and non-vectorizable 10593 // instructions. 10594 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10595 isValidElementType(P->getType())) 10596 Incoming.push_back(P); 10597 } 10598 10599 // Find the corresponding non-phi nodes for better matching when trying to 10600 // build the tree. 10601 for (Value *V : Incoming) { 10602 SmallVectorImpl<Value *> &Opcodes = 10603 PHIToOpcodes.try_emplace(V).first->getSecond(); 10604 if (!Opcodes.empty()) 10605 continue; 10606 SmallVector<Value *, 4> Nodes(1, V); 10607 SmallPtrSet<Value *, 4> Visited; 10608 while (!Nodes.empty()) { 10609 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10610 if (!Visited.insert(PHI).second) 10611 continue; 10612 for (Value *V : PHI->incoming_values()) { 10613 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10614 Nodes.push_back(PHI1); 10615 continue; 10616 } 10617 Opcodes.emplace_back(V); 10618 } 10619 } 10620 } 10621 10622 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10623 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10624 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10625 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10626 }, 10627 /*LimitForRegisterSize=*/true); 10628 Changed |= HaveVectorizedPhiNodes; 10629 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10630 } while (HaveVectorizedPhiNodes); 10631 10632 VisitedInstrs.clear(); 10633 10634 SmallVector<Instruction *, 8> PostProcessInstructions; 10635 SmallDenseSet<Instruction *, 4> KeyNodes; 10636 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10637 // Skip instructions with scalable type. The num of elements is unknown at 10638 // compile-time for scalable type. 10639 if (isa<ScalableVectorType>(it->getType())) 10640 continue; 10641 10642 // Skip instructions marked for the deletion. 10643 if (R.isDeleted(&*it)) 10644 continue; 10645 // We may go through BB multiple times so skip the one we have checked. 10646 if (!VisitedInstrs.insert(&*it).second) { 10647 if (it->use_empty() && KeyNodes.contains(&*it) && 10648 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10649 it->isTerminator())) { 10650 // We would like to start over since some instructions are deleted 10651 // and the iterator may become invalid value. 10652 Changed = true; 10653 it = BB->begin(); 10654 e = BB->end(); 10655 } 10656 continue; 10657 } 10658 10659 if (isa<DbgInfoIntrinsic>(it)) 10660 continue; 10661 10662 // Try to vectorize reductions that use PHINodes. 10663 if (PHINode *P = dyn_cast<PHINode>(it)) { 10664 // Check that the PHI is a reduction PHI. 10665 if (P->getNumIncomingValues() == 2) { 10666 // Try to match and vectorize a horizontal reduction. 10667 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10668 TTI)) { 10669 Changed = true; 10670 it = BB->begin(); 10671 e = BB->end(); 10672 continue; 10673 } 10674 } 10675 // Try to vectorize the incoming values of the PHI, to catch reductions 10676 // that feed into PHIs. 10677 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10678 // Skip if the incoming block is the current BB for now. Also, bypass 10679 // unreachable IR for efficiency and to avoid crashing. 10680 // TODO: Collect the skipped incoming values and try to vectorize them 10681 // after processing BB. 10682 if (BB == P->getIncomingBlock(I) || 10683 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10684 continue; 10685 10686 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10687 P->getIncomingBlock(I), R, TTI); 10688 } 10689 continue; 10690 } 10691 10692 // Ran into an instruction without users, like terminator, or function call 10693 // with ignored return value, store. Ignore unused instructions (basing on 10694 // instruction type, except for CallInst and InvokeInst). 10695 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10696 isa<InvokeInst>(it))) { 10697 KeyNodes.insert(&*it); 10698 bool OpsChanged = false; 10699 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10700 for (auto *V : it->operand_values()) { 10701 // Try to match and vectorize a horizontal reduction. 10702 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10703 } 10704 } 10705 // Start vectorization of post-process list of instructions from the 10706 // top-tree instructions to try to vectorize as many instructions as 10707 // possible. 10708 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10709 it->isTerminator()); 10710 if (OpsChanged) { 10711 // We would like to start over since some instructions are deleted 10712 // and the iterator may become invalid value. 10713 Changed = true; 10714 it = BB->begin(); 10715 e = BB->end(); 10716 continue; 10717 } 10718 } 10719 10720 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10721 isa<InsertValueInst>(it)) 10722 PostProcessInstructions.push_back(&*it); 10723 } 10724 10725 return Changed; 10726 } 10727 10728 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10729 auto Changed = false; 10730 for (auto &Entry : GEPs) { 10731 // If the getelementptr list has fewer than two elements, there's nothing 10732 // to do. 10733 if (Entry.second.size() < 2) 10734 continue; 10735 10736 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10737 << Entry.second.size() << ".\n"); 10738 10739 // Process the GEP list in chunks suitable for the target's supported 10740 // vector size. If a vector register can't hold 1 element, we are done. We 10741 // are trying to vectorize the index computations, so the maximum number of 10742 // elements is based on the size of the index expression, rather than the 10743 // size of the GEP itself (the target's pointer size). 10744 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10745 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10746 if (MaxVecRegSize < EltSize) 10747 continue; 10748 10749 unsigned MaxElts = MaxVecRegSize / EltSize; 10750 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10751 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10752 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10753 10754 // Initialize a set a candidate getelementptrs. Note that we use a 10755 // SetVector here to preserve program order. If the index computations 10756 // are vectorizable and begin with loads, we want to minimize the chance 10757 // of having to reorder them later. 10758 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10759 10760 // Some of the candidates may have already been vectorized after we 10761 // initially collected them. If so, they are marked as deleted, so remove 10762 // them from the set of candidates. 10763 Candidates.remove_if( 10764 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10765 10766 // Remove from the set of candidates all pairs of getelementptrs with 10767 // constant differences. Such getelementptrs are likely not good 10768 // candidates for vectorization in a bottom-up phase since one can be 10769 // computed from the other. We also ensure all candidate getelementptr 10770 // indices are unique. 10771 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10772 auto *GEPI = GEPList[I]; 10773 if (!Candidates.count(GEPI)) 10774 continue; 10775 auto *SCEVI = SE->getSCEV(GEPList[I]); 10776 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10777 auto *GEPJ = GEPList[J]; 10778 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10779 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10780 Candidates.remove(GEPI); 10781 Candidates.remove(GEPJ); 10782 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10783 Candidates.remove(GEPJ); 10784 } 10785 } 10786 } 10787 10788 // We break out of the above computation as soon as we know there are 10789 // fewer than two candidates remaining. 10790 if (Candidates.size() < 2) 10791 continue; 10792 10793 // Add the single, non-constant index of each candidate to the bundle. We 10794 // ensured the indices met these constraints when we originally collected 10795 // the getelementptrs. 10796 SmallVector<Value *, 16> Bundle(Candidates.size()); 10797 auto BundleIndex = 0u; 10798 for (auto *V : Candidates) { 10799 auto *GEP = cast<GetElementPtrInst>(V); 10800 auto *GEPIdx = GEP->idx_begin()->get(); 10801 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10802 Bundle[BundleIndex++] = GEPIdx; 10803 } 10804 10805 // Try and vectorize the indices. We are currently only interested in 10806 // gather-like cases of the form: 10807 // 10808 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10809 // 10810 // where the loads of "a", the loads of "b", and the subtractions can be 10811 // performed in parallel. It's likely that detecting this pattern in a 10812 // bottom-up phase will be simpler and less costly than building a 10813 // full-blown top-down phase beginning at the consecutive loads. 10814 Changed |= tryToVectorizeList(Bundle, R); 10815 } 10816 } 10817 return Changed; 10818 } 10819 10820 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10821 bool Changed = false; 10822 // Sort by type, base pointers and values operand. Value operands must be 10823 // compatible (have the same opcode, same parent), otherwise it is 10824 // definitely not profitable to try to vectorize them. 10825 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10826 if (V->getPointerOperandType()->getTypeID() < 10827 V2->getPointerOperandType()->getTypeID()) 10828 return true; 10829 if (V->getPointerOperandType()->getTypeID() > 10830 V2->getPointerOperandType()->getTypeID()) 10831 return false; 10832 // UndefValues are compatible with all other values. 10833 if (isa<UndefValue>(V->getValueOperand()) || 10834 isa<UndefValue>(V2->getValueOperand())) 10835 return false; 10836 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10837 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10838 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10839 DT->getNode(I1->getParent()); 10840 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10841 DT->getNode(I2->getParent()); 10842 assert(NodeI1 && "Should only process reachable instructions"); 10843 assert(NodeI1 && "Should only process reachable instructions"); 10844 assert((NodeI1 == NodeI2) == 10845 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10846 "Different nodes should have different DFS numbers"); 10847 if (NodeI1 != NodeI2) 10848 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10849 InstructionsState S = getSameOpcode({I1, I2}); 10850 if (S.getOpcode()) 10851 return false; 10852 return I1->getOpcode() < I2->getOpcode(); 10853 } 10854 if (isa<Constant>(V->getValueOperand()) && 10855 isa<Constant>(V2->getValueOperand())) 10856 return false; 10857 return V->getValueOperand()->getValueID() < 10858 V2->getValueOperand()->getValueID(); 10859 }; 10860 10861 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10862 if (V1 == V2) 10863 return true; 10864 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10865 return false; 10866 // Undefs are compatible with any other value. 10867 if (isa<UndefValue>(V1->getValueOperand()) || 10868 isa<UndefValue>(V2->getValueOperand())) 10869 return true; 10870 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10871 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10872 if (I1->getParent() != I2->getParent()) 10873 return false; 10874 InstructionsState S = getSameOpcode({I1, I2}); 10875 return S.getOpcode() > 0; 10876 } 10877 if (isa<Constant>(V1->getValueOperand()) && 10878 isa<Constant>(V2->getValueOperand())) 10879 return true; 10880 return V1->getValueOperand()->getValueID() == 10881 V2->getValueOperand()->getValueID(); 10882 }; 10883 auto Limit = [&R, this](StoreInst *SI) { 10884 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10885 return R.getMinVF(EltSize); 10886 }; 10887 10888 // Attempt to sort and vectorize each of the store-groups. 10889 for (auto &Pair : Stores) { 10890 if (Pair.second.size() < 2) 10891 continue; 10892 10893 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10894 << Pair.second.size() << ".\n"); 10895 10896 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10897 continue; 10898 10899 Changed |= tryToVectorizeSequence<StoreInst>( 10900 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10901 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10902 return vectorizeStores(Candidates, R); 10903 }, 10904 /*LimitForRegisterSize=*/false); 10905 } 10906 return Changed; 10907 } 10908 10909 char SLPVectorizer::ID = 0; 10910 10911 static const char lv_name[] = "SLP Vectorizer"; 10912 10913 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10914 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10915 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10916 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10917 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10918 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10919 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10920 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10921 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10922 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10923 10924 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10925