1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 // Limit the number of alias checks. The limit is chosen so that 90 // it has no negative effect on the llvm benchmarks. 91 static const unsigned AliasedCheckLimit = 10; 92 93 // Another limit for the alias checks: The maximum distance between load/store 94 // instructions where alias checks are done. 95 // This limit is useful for very large basic blocks. 96 static const unsigned MaxMemDepDistance = 160; 97 98 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 99 /// regions to be handled. 100 static const int MinScheduleRegionSize = 16; 101 102 /// \brief Predicate for the element types that the SLP vectorizer supports. 103 /// 104 /// The most important thing to filter here are types which are invalid in LLVM 105 /// vectors. We also filter target specific types which have absolutely no 106 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 107 /// avoids spending time checking the cost model and realizing that they will 108 /// be inevitably scalarized. 109 static bool isValidElementType(Type *Ty) { 110 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 111 !Ty->isPPC_FP128Ty(); 112 } 113 114 /// \returns the parent basic block if all of the instructions in \p VL 115 /// are in the same block or null otherwise. 116 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 117 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 118 if (!I0) 119 return nullptr; 120 BasicBlock *BB = I0->getParent(); 121 for (int i = 1, e = VL.size(); i < e; i++) { 122 Instruction *I = dyn_cast<Instruction>(VL[i]); 123 if (!I) 124 return nullptr; 125 126 if (BB != I->getParent()) 127 return nullptr; 128 } 129 return BB; 130 } 131 132 /// \returns True if all of the values in \p VL are constants. 133 static bool allConstant(ArrayRef<Value *> VL) { 134 for (Value *i : VL) 135 if (!isa<Constant>(i)) 136 return false; 137 return true; 138 } 139 140 /// \returns True if all of the values in \p VL are identical. 141 static bool isSplat(ArrayRef<Value *> VL) { 142 for (unsigned i = 1, e = VL.size(); i < e; ++i) 143 if (VL[i] != VL[0]) 144 return false; 145 return true; 146 } 147 148 ///\returns Opcode that can be clubbed with \p Op to create an alternate 149 /// sequence which can later be merged as a ShuffleVector instruction. 150 static unsigned getAltOpcode(unsigned Op) { 151 switch (Op) { 152 case Instruction::FAdd: 153 return Instruction::FSub; 154 case Instruction::FSub: 155 return Instruction::FAdd; 156 case Instruction::Add: 157 return Instruction::Sub; 158 case Instruction::Sub: 159 return Instruction::Add; 160 default: 161 return 0; 162 } 163 } 164 165 ///\returns bool representing if Opcode \p Op can be part 166 /// of an alternate sequence which can later be merged as 167 /// a ShuffleVector instruction. 168 static bool canCombineAsAltInst(unsigned Op) { 169 return Op == Instruction::FAdd || Op == Instruction::FSub || 170 Op == Instruction::Sub || Op == Instruction::Add; 171 } 172 173 /// \returns ShuffleVector instruction if instructions in \p VL have 174 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 175 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 176 static unsigned isAltInst(ArrayRef<Value *> VL) { 177 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 178 unsigned Opcode = I0->getOpcode(); 179 unsigned AltOpcode = getAltOpcode(Opcode); 180 for (int i = 1, e = VL.size(); i < e; i++) { 181 Instruction *I = dyn_cast<Instruction>(VL[i]); 182 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 183 return 0; 184 } 185 return Instruction::ShuffleVector; 186 } 187 188 /// \returns The opcode if all of the Instructions in \p VL have the same 189 /// opcode, or zero. 190 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 191 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 192 if (!I0) 193 return 0; 194 unsigned Opcode = I0->getOpcode(); 195 for (int i = 1, e = VL.size(); i < e; i++) { 196 Instruction *I = dyn_cast<Instruction>(VL[i]); 197 if (!I || Opcode != I->getOpcode()) { 198 if (canCombineAsAltInst(Opcode) && i == 1) 199 return isAltInst(VL); 200 return 0; 201 } 202 } 203 return Opcode; 204 } 205 206 /// Get the intersection (logical and) of all of the potential IR flags 207 /// of each scalar operation (VL) that will be converted into a vector (I). 208 /// Flag set: NSW, NUW, exact, and all of fast-math. 209 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 210 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 211 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 212 // Intersection is initialized to the 0th scalar, 213 // so start counting from index '1'. 214 for (int i = 1, e = VL.size(); i < e; ++i) { 215 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 216 Intersection->andIRFlags(Scalar); 217 } 218 VecOp->copyIRFlags(Intersection); 219 } 220 } 221 } 222 223 /// \returns The type that all of the values in \p VL have or null if there 224 /// are different types. 225 static Type* getSameType(ArrayRef<Value *> VL) { 226 Type *Ty = VL[0]->getType(); 227 for (int i = 1, e = VL.size(); i < e; i++) 228 if (VL[i]->getType() != Ty) 229 return nullptr; 230 231 return Ty; 232 } 233 234 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 235 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 236 assert(Opcode == Instruction::ExtractElement || 237 Opcode == Instruction::ExtractValue); 238 if (Opcode == Instruction::ExtractElement) { 239 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 240 return CI && CI->getZExtValue() == Idx; 241 } else { 242 ExtractValueInst *EI = cast<ExtractValueInst>(E); 243 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 244 } 245 } 246 247 /// \returns True if in-tree use also needs extract. This refers to 248 /// possible scalar operand in vectorized instruction. 249 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 250 TargetLibraryInfo *TLI) { 251 252 unsigned Opcode = UserInst->getOpcode(); 253 switch (Opcode) { 254 case Instruction::Load: { 255 LoadInst *LI = cast<LoadInst>(UserInst); 256 return (LI->getPointerOperand() == Scalar); 257 } 258 case Instruction::Store: { 259 StoreInst *SI = cast<StoreInst>(UserInst); 260 return (SI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Call: { 263 CallInst *CI = cast<CallInst>(UserInst); 264 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 265 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 266 return (CI->getArgOperand(1) == Scalar); 267 } 268 } 269 default: 270 return false; 271 } 272 } 273 274 /// \returns the AA location that is being access by the instruction. 275 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 276 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 277 return MemoryLocation::get(SI); 278 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 279 return MemoryLocation::get(LI); 280 return MemoryLocation(); 281 } 282 283 /// \returns True if the instruction is not a volatile or atomic load/store. 284 static bool isSimple(Instruction *I) { 285 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 286 return LI->isSimple(); 287 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 288 return SI->isSimple(); 289 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 290 return !MI->isVolatile(); 291 return true; 292 } 293 294 namespace llvm { 295 namespace slpvectorizer { 296 /// Bottom Up SLP Vectorizer. 297 class BoUpSLP { 298 public: 299 typedef SmallVector<Value *, 8> ValueList; 300 typedef SmallVector<Instruction *, 16> InstrList; 301 typedef SmallPtrSet<Value *, 16> ValueSet; 302 typedef SmallVector<StoreInst *, 8> StoreList; 303 304 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 305 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 306 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 307 const DataLayout *DL) 308 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 309 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 310 DL(DL), Builder(Se->getContext()) { 311 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 312 // Use the vector register size specified by the target unless overridden 313 // by a command-line option. 314 // TODO: It would be better to limit the vectorization factor based on 315 // data type rather than just register size. For example, x86 AVX has 316 // 256-bit registers, but it does not support integer operations 317 // at that width (that requires AVX2). 318 if (MaxVectorRegSizeOption.getNumOccurrences()) 319 MaxVecRegSize = MaxVectorRegSizeOption; 320 else 321 MaxVecRegSize = TTI->getRegisterBitWidth(true); 322 323 MinVecRegSize = MinVectorRegSizeOption; 324 } 325 326 /// \brief Vectorize the tree that starts with the elements in \p VL. 327 /// Returns the vectorized root. 328 Value *vectorizeTree(); 329 330 /// \returns the cost incurred by unwanted spills and fills, caused by 331 /// holding live values over call sites. 332 int getSpillCost(); 333 334 /// \returns the vectorization cost of the subtree that starts at \p VL. 335 /// A negative number means that this is profitable. 336 int getTreeCost(); 337 338 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 339 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 340 void buildTree(ArrayRef<Value *> Roots, 341 ArrayRef<Value *> UserIgnoreLst = None); 342 343 /// Clear the internal data structures that are created by 'buildTree'. 344 void deleteTree() { 345 VectorizableTree.clear(); 346 ScalarToTreeEntry.clear(); 347 MustGather.clear(); 348 ExternalUses.clear(); 349 NumLoadsWantToKeepOrder = 0; 350 NumLoadsWantToChangeOrder = 0; 351 for (auto &Iter : BlocksSchedules) { 352 BlockScheduling *BS = Iter.second.get(); 353 BS->clear(); 354 } 355 MinBWs.clear(); 356 } 357 358 /// \brief Perform LICM and CSE on the newly generated gather sequences. 359 void optimizeGatherSequence(); 360 361 /// \returns true if it is beneficial to reverse the vector order. 362 bool shouldReorder() const { 363 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 364 } 365 366 /// \return The vector element size in bits to use when vectorizing the 367 /// expression tree ending at \p V. If V is a store, the size is the width of 368 /// the stored value. Otherwise, the size is the width of the largest loaded 369 /// value reaching V. This method is used by the vectorizer to calculate 370 /// vectorization factors. 371 unsigned getVectorElementSize(Value *V); 372 373 /// Compute the minimum type sizes required to represent the entries in a 374 /// vectorizable tree. 375 void computeMinimumValueSizes(); 376 377 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 378 unsigned getMaxVecRegSize() const { 379 return MaxVecRegSize; 380 } 381 382 // \returns minimum vector register size as set by cl::opt. 383 unsigned getMinVecRegSize() const { 384 return MinVecRegSize; 385 } 386 387 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 388 /// 389 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 390 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 391 392 private: 393 struct TreeEntry; 394 395 /// \returns the cost of the vectorizable entry. 396 int getEntryCost(TreeEntry *E); 397 398 /// This is the recursive part of buildTree. 399 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 400 401 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 402 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 403 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 404 405 /// Vectorize a single entry in the tree. 406 Value *vectorizeTree(TreeEntry *E); 407 408 /// Vectorize a single entry in the tree, starting in \p VL. 409 Value *vectorizeTree(ArrayRef<Value *> VL); 410 411 /// \returns the pointer to the vectorized value if \p VL is already 412 /// vectorized, or NULL. They may happen in cycles. 413 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 414 415 /// \returns the scalarization cost for this type. Scalarization in this 416 /// context means the creation of vectors from a group of scalars. 417 int getGatherCost(Type *Ty); 418 419 /// \returns the scalarization cost for this list of values. Assuming that 420 /// this subtree gets vectorized, we may need to extract the values from the 421 /// roots. This method calculates the cost of extracting the values. 422 int getGatherCost(ArrayRef<Value *> VL); 423 424 /// \brief Set the Builder insert point to one after the last instruction in 425 /// the bundle 426 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 427 428 /// \returns a vector from a collection of scalars in \p VL. 429 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 430 431 /// \returns whether the VectorizableTree is fully vectorizable and will 432 /// be beneficial even the tree height is tiny. 433 bool isFullyVectorizableTinyTree(); 434 435 /// \reorder commutative operands in alt shuffle if they result in 436 /// vectorized code. 437 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 438 SmallVectorImpl<Value *> &Left, 439 SmallVectorImpl<Value *> &Right); 440 /// \reorder commutative operands to get better probability of 441 /// generating vectorized code. 442 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 443 SmallVectorImpl<Value *> &Left, 444 SmallVectorImpl<Value *> &Right); 445 struct TreeEntry { 446 TreeEntry() : Scalars(), VectorizedValue(nullptr), 447 NeedToGather(0) {} 448 449 /// \returns true if the scalars in VL are equal to this entry. 450 bool isSame(ArrayRef<Value *> VL) const { 451 assert(VL.size() == Scalars.size() && "Invalid size"); 452 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 453 } 454 455 /// A vector of scalars. 456 ValueList Scalars; 457 458 /// The Scalars are vectorized into this value. It is initialized to Null. 459 Value *VectorizedValue; 460 461 /// Do we need to gather this sequence ? 462 bool NeedToGather; 463 }; 464 465 /// Create a new VectorizableTree entry. 466 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 467 VectorizableTree.emplace_back(); 468 int idx = VectorizableTree.size() - 1; 469 TreeEntry *Last = &VectorizableTree[idx]; 470 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 471 Last->NeedToGather = !Vectorized; 472 if (Vectorized) { 473 for (int i = 0, e = VL.size(); i != e; ++i) { 474 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 475 ScalarToTreeEntry[VL[i]] = idx; 476 } 477 } else { 478 MustGather.insert(VL.begin(), VL.end()); 479 } 480 return Last; 481 } 482 483 /// -- Vectorization State -- 484 /// Holds all of the tree entries. 485 std::vector<TreeEntry> VectorizableTree; 486 487 /// Maps a specific scalar to its tree entry. 488 SmallDenseMap<Value*, int> ScalarToTreeEntry; 489 490 /// A list of scalars that we found that we need to keep as scalars. 491 ValueSet MustGather; 492 493 /// This POD struct describes one external user in the vectorized tree. 494 struct ExternalUser { 495 ExternalUser (Value *S, llvm::User *U, int L) : 496 Scalar(S), User(U), Lane(L){} 497 // Which scalar in our function. 498 Value *Scalar; 499 // Which user that uses the scalar. 500 llvm::User *User; 501 // Which lane does the scalar belong to. 502 int Lane; 503 }; 504 typedef SmallVector<ExternalUser, 16> UserList; 505 506 /// Checks if two instructions may access the same memory. 507 /// 508 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 509 /// is invariant in the calling loop. 510 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 511 Instruction *Inst2) { 512 513 // First check if the result is already in the cache. 514 AliasCacheKey key = std::make_pair(Inst1, Inst2); 515 Optional<bool> &result = AliasCache[key]; 516 if (result.hasValue()) { 517 return result.getValue(); 518 } 519 MemoryLocation Loc2 = getLocation(Inst2, AA); 520 bool aliased = true; 521 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 522 // Do the alias check. 523 aliased = AA->alias(Loc1, Loc2); 524 } 525 // Store the result in the cache. 526 result = aliased; 527 return aliased; 528 } 529 530 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 531 532 /// Cache for alias results. 533 /// TODO: consider moving this to the AliasAnalysis itself. 534 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 535 536 /// Removes an instruction from its block and eventually deletes it. 537 /// It's like Instruction::eraseFromParent() except that the actual deletion 538 /// is delayed until BoUpSLP is destructed. 539 /// This is required to ensure that there are no incorrect collisions in the 540 /// AliasCache, which can happen if a new instruction is allocated at the 541 /// same address as a previously deleted instruction. 542 void eraseInstruction(Instruction *I) { 543 I->removeFromParent(); 544 I->dropAllReferences(); 545 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 546 } 547 548 /// Temporary store for deleted instructions. Instructions will be deleted 549 /// eventually when the BoUpSLP is destructed. 550 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 551 552 /// A list of values that need to extracted out of the tree. 553 /// This list holds pairs of (Internal Scalar : External User). 554 UserList ExternalUses; 555 556 /// Values used only by @llvm.assume calls. 557 SmallPtrSet<const Value *, 32> EphValues; 558 559 /// Holds all of the instructions that we gathered. 560 SetVector<Instruction *> GatherSeq; 561 /// A list of blocks that we are going to CSE. 562 SetVector<BasicBlock *> CSEBlocks; 563 564 /// Contains all scheduling relevant data for an instruction. 565 /// A ScheduleData either represents a single instruction or a member of an 566 /// instruction bundle (= a group of instructions which is combined into a 567 /// vector instruction). 568 struct ScheduleData { 569 570 // The initial value for the dependency counters. It means that the 571 // dependencies are not calculated yet. 572 enum { InvalidDeps = -1 }; 573 574 ScheduleData() 575 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 576 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 577 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 578 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 579 580 void init(int BlockSchedulingRegionID) { 581 FirstInBundle = this; 582 NextInBundle = nullptr; 583 NextLoadStore = nullptr; 584 IsScheduled = false; 585 SchedulingRegionID = BlockSchedulingRegionID; 586 UnscheduledDepsInBundle = UnscheduledDeps; 587 clearDependencies(); 588 } 589 590 /// Returns true if the dependency information has been calculated. 591 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 592 593 /// Returns true for single instructions and for bundle representatives 594 /// (= the head of a bundle). 595 bool isSchedulingEntity() const { return FirstInBundle == this; } 596 597 /// Returns true if it represents an instruction bundle and not only a 598 /// single instruction. 599 bool isPartOfBundle() const { 600 return NextInBundle != nullptr || FirstInBundle != this; 601 } 602 603 /// Returns true if it is ready for scheduling, i.e. it has no more 604 /// unscheduled depending instructions/bundles. 605 bool isReady() const { 606 assert(isSchedulingEntity() && 607 "can't consider non-scheduling entity for ready list"); 608 return UnscheduledDepsInBundle == 0 && !IsScheduled; 609 } 610 611 /// Modifies the number of unscheduled dependencies, also updating it for 612 /// the whole bundle. 613 int incrementUnscheduledDeps(int Incr) { 614 UnscheduledDeps += Incr; 615 return FirstInBundle->UnscheduledDepsInBundle += Incr; 616 } 617 618 /// Sets the number of unscheduled dependencies to the number of 619 /// dependencies. 620 void resetUnscheduledDeps() { 621 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 622 } 623 624 /// Clears all dependency information. 625 void clearDependencies() { 626 Dependencies = InvalidDeps; 627 resetUnscheduledDeps(); 628 MemoryDependencies.clear(); 629 } 630 631 void dump(raw_ostream &os) const { 632 if (!isSchedulingEntity()) { 633 os << "/ " << *Inst; 634 } else if (NextInBundle) { 635 os << '[' << *Inst; 636 ScheduleData *SD = NextInBundle; 637 while (SD) { 638 os << ';' << *SD->Inst; 639 SD = SD->NextInBundle; 640 } 641 os << ']'; 642 } else { 643 os << *Inst; 644 } 645 } 646 647 Instruction *Inst; 648 649 /// Points to the head in an instruction bundle (and always to this for 650 /// single instructions). 651 ScheduleData *FirstInBundle; 652 653 /// Single linked list of all instructions in a bundle. Null if it is a 654 /// single instruction. 655 ScheduleData *NextInBundle; 656 657 /// Single linked list of all memory instructions (e.g. load, store, call) 658 /// in the block - until the end of the scheduling region. 659 ScheduleData *NextLoadStore; 660 661 /// The dependent memory instructions. 662 /// This list is derived on demand in calculateDependencies(). 663 SmallVector<ScheduleData *, 4> MemoryDependencies; 664 665 /// This ScheduleData is in the current scheduling region if this matches 666 /// the current SchedulingRegionID of BlockScheduling. 667 int SchedulingRegionID; 668 669 /// Used for getting a "good" final ordering of instructions. 670 int SchedulingPriority; 671 672 /// The number of dependencies. Constitutes of the number of users of the 673 /// instruction plus the number of dependent memory instructions (if any). 674 /// This value is calculated on demand. 675 /// If InvalidDeps, the number of dependencies is not calculated yet. 676 /// 677 int Dependencies; 678 679 /// The number of dependencies minus the number of dependencies of scheduled 680 /// instructions. As soon as this is zero, the instruction/bundle gets ready 681 /// for scheduling. 682 /// Note that this is negative as long as Dependencies is not calculated. 683 int UnscheduledDeps; 684 685 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 686 /// single instructions. 687 int UnscheduledDepsInBundle; 688 689 /// True if this instruction is scheduled (or considered as scheduled in the 690 /// dry-run). 691 bool IsScheduled; 692 }; 693 694 #ifndef NDEBUG 695 friend inline raw_ostream &operator<<(raw_ostream &os, 696 const BoUpSLP::ScheduleData &SD) { 697 SD.dump(os); 698 return os; 699 } 700 #endif 701 702 /// Contains all scheduling data for a basic block. 703 /// 704 struct BlockScheduling { 705 706 BlockScheduling(BasicBlock *BB) 707 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 708 ScheduleStart(nullptr), ScheduleEnd(nullptr), 709 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 710 ScheduleRegionSize(0), 711 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 712 // Make sure that the initial SchedulingRegionID is greater than the 713 // initial SchedulingRegionID in ScheduleData (which is 0). 714 SchedulingRegionID(1) {} 715 716 void clear() { 717 ReadyInsts.clear(); 718 ScheduleStart = nullptr; 719 ScheduleEnd = nullptr; 720 FirstLoadStoreInRegion = nullptr; 721 LastLoadStoreInRegion = nullptr; 722 723 // Reduce the maximum schedule region size by the size of the 724 // previous scheduling run. 725 ScheduleRegionSizeLimit -= ScheduleRegionSize; 726 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 727 ScheduleRegionSizeLimit = MinScheduleRegionSize; 728 ScheduleRegionSize = 0; 729 730 // Make a new scheduling region, i.e. all existing ScheduleData is not 731 // in the new region yet. 732 ++SchedulingRegionID; 733 } 734 735 ScheduleData *getScheduleData(Value *V) { 736 ScheduleData *SD = ScheduleDataMap[V]; 737 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 738 return SD; 739 return nullptr; 740 } 741 742 bool isInSchedulingRegion(ScheduleData *SD) { 743 return SD->SchedulingRegionID == SchedulingRegionID; 744 } 745 746 /// Marks an instruction as scheduled and puts all dependent ready 747 /// instructions into the ready-list. 748 template <typename ReadyListType> 749 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 750 SD->IsScheduled = true; 751 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 752 753 ScheduleData *BundleMember = SD; 754 while (BundleMember) { 755 // Handle the def-use chain dependencies. 756 for (Use &U : BundleMember->Inst->operands()) { 757 ScheduleData *OpDef = getScheduleData(U.get()); 758 if (OpDef && OpDef->hasValidDependencies() && 759 OpDef->incrementUnscheduledDeps(-1) == 0) { 760 // There are no more unscheduled dependencies after decrementing, 761 // so we can put the dependent instruction into the ready list. 762 ScheduleData *DepBundle = OpDef->FirstInBundle; 763 assert(!DepBundle->IsScheduled && 764 "already scheduled bundle gets ready"); 765 ReadyList.insert(DepBundle); 766 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 767 } 768 } 769 // Handle the memory dependencies. 770 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 771 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 772 // There are no more unscheduled dependencies after decrementing, 773 // so we can put the dependent instruction into the ready list. 774 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 775 assert(!DepBundle->IsScheduled && 776 "already scheduled bundle gets ready"); 777 ReadyList.insert(DepBundle); 778 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 779 } 780 } 781 BundleMember = BundleMember->NextInBundle; 782 } 783 } 784 785 /// Put all instructions into the ReadyList which are ready for scheduling. 786 template <typename ReadyListType> 787 void initialFillReadyList(ReadyListType &ReadyList) { 788 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 789 ScheduleData *SD = getScheduleData(I); 790 if (SD->isSchedulingEntity() && SD->isReady()) { 791 ReadyList.insert(SD); 792 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 793 } 794 } 795 } 796 797 /// Checks if a bundle of instructions can be scheduled, i.e. has no 798 /// cyclic dependencies. This is only a dry-run, no instructions are 799 /// actually moved at this stage. 800 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 801 802 /// Un-bundles a group of instructions. 803 void cancelScheduling(ArrayRef<Value *> VL); 804 805 /// Extends the scheduling region so that V is inside the region. 806 /// \returns true if the region size is within the limit. 807 bool extendSchedulingRegion(Value *V); 808 809 /// Initialize the ScheduleData structures for new instructions in the 810 /// scheduling region. 811 void initScheduleData(Instruction *FromI, Instruction *ToI, 812 ScheduleData *PrevLoadStore, 813 ScheduleData *NextLoadStore); 814 815 /// Updates the dependency information of a bundle and of all instructions/ 816 /// bundles which depend on the original bundle. 817 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 818 BoUpSLP *SLP); 819 820 /// Sets all instruction in the scheduling region to un-scheduled. 821 void resetSchedule(); 822 823 BasicBlock *BB; 824 825 /// Simple memory allocation for ScheduleData. 826 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 827 828 /// The size of a ScheduleData array in ScheduleDataChunks. 829 int ChunkSize; 830 831 /// The allocator position in the current chunk, which is the last entry 832 /// of ScheduleDataChunks. 833 int ChunkPos; 834 835 /// Attaches ScheduleData to Instruction. 836 /// Note that the mapping survives during all vectorization iterations, i.e. 837 /// ScheduleData structures are recycled. 838 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 839 840 struct ReadyList : SmallVector<ScheduleData *, 8> { 841 void insert(ScheduleData *SD) { push_back(SD); } 842 }; 843 844 /// The ready-list for scheduling (only used for the dry-run). 845 ReadyList ReadyInsts; 846 847 /// The first instruction of the scheduling region. 848 Instruction *ScheduleStart; 849 850 /// The first instruction _after_ the scheduling region. 851 Instruction *ScheduleEnd; 852 853 /// The first memory accessing instruction in the scheduling region 854 /// (can be null). 855 ScheduleData *FirstLoadStoreInRegion; 856 857 /// The last memory accessing instruction in the scheduling region 858 /// (can be null). 859 ScheduleData *LastLoadStoreInRegion; 860 861 /// The current size of the scheduling region. 862 int ScheduleRegionSize; 863 864 /// The maximum size allowed for the scheduling region. 865 int ScheduleRegionSizeLimit; 866 867 /// The ID of the scheduling region. For a new vectorization iteration this 868 /// is incremented which "removes" all ScheduleData from the region. 869 int SchedulingRegionID; 870 }; 871 872 /// Attaches the BlockScheduling structures to basic blocks. 873 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 874 875 /// Performs the "real" scheduling. Done before vectorization is actually 876 /// performed in a basic block. 877 void scheduleBlock(BlockScheduling *BS); 878 879 /// List of users to ignore during scheduling and that don't need extracting. 880 ArrayRef<Value *> UserIgnoreList; 881 882 // Number of load bundles that contain consecutive loads. 883 int NumLoadsWantToKeepOrder; 884 885 // Number of load bundles that contain consecutive loads in reversed order. 886 int NumLoadsWantToChangeOrder; 887 888 // Analysis and block reference. 889 Function *F; 890 ScalarEvolution *SE; 891 TargetTransformInfo *TTI; 892 TargetLibraryInfo *TLI; 893 AliasAnalysis *AA; 894 LoopInfo *LI; 895 DominatorTree *DT; 896 AssumptionCache *AC; 897 DemandedBits *DB; 898 const DataLayout *DL; 899 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 900 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 901 /// Instruction builder to construct the vectorized tree. 902 IRBuilder<> Builder; 903 904 /// A map of scalar integer values to the smallest bit width with which they 905 /// can legally be represented. 906 MapVector<Value *, uint64_t> MinBWs; 907 }; 908 909 } // end namespace llvm 910 } // end namespace slpvectorizer 911 912 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 913 ArrayRef<Value *> UserIgnoreLst) { 914 deleteTree(); 915 UserIgnoreList = UserIgnoreLst; 916 if (!getSameType(Roots)) 917 return; 918 buildTree_rec(Roots, 0); 919 920 // Collect the values that we need to extract from the tree. 921 for (TreeEntry &EIdx : VectorizableTree) { 922 TreeEntry *Entry = &EIdx; 923 924 // For each lane: 925 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 926 Value *Scalar = Entry->Scalars[Lane]; 927 928 // No need to handle users of gathered values. 929 if (Entry->NeedToGather) 930 continue; 931 932 for (User *U : Scalar->users()) { 933 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 934 935 Instruction *UserInst = dyn_cast<Instruction>(U); 936 if (!UserInst) 937 continue; 938 939 // Skip in-tree scalars that become vectors 940 if (ScalarToTreeEntry.count(U)) { 941 int Idx = ScalarToTreeEntry[U]; 942 TreeEntry *UseEntry = &VectorizableTree[Idx]; 943 Value *UseScalar = UseEntry->Scalars[0]; 944 // Some in-tree scalars will remain as scalar in vectorized 945 // instructions. If that is the case, the one in Lane 0 will 946 // be used. 947 if (UseScalar != U || 948 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 949 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 950 << ".\n"); 951 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 952 continue; 953 } 954 } 955 956 // Ignore users in the user ignore list. 957 if (is_contained(UserIgnoreList, UserInst)) 958 continue; 959 960 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 961 Lane << " from " << *Scalar << ".\n"); 962 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 963 } 964 } 965 } 966 } 967 968 969 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 970 bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy; 971 bool isAltShuffle = false; 972 assert(SameTy && "Invalid types!"); 973 974 if (Depth == RecursionMaxDepth) { 975 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 976 newTreeEntry(VL, false); 977 return; 978 } 979 980 // Don't handle vectors. 981 if (VL[0]->getType()->isVectorTy()) { 982 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 983 newTreeEntry(VL, false); 984 return; 985 } 986 987 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 988 if (SI->getValueOperand()->getType()->isVectorTy()) { 989 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 990 newTreeEntry(VL, false); 991 return; 992 } 993 unsigned Opcode = getSameOpcode(VL); 994 995 // Check that this shuffle vector refers to the alternate 996 // sequence of opcodes. 997 if (Opcode == Instruction::ShuffleVector) { 998 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 999 unsigned Op = I0->getOpcode(); 1000 if (Op != Instruction::ShuffleVector) 1001 isAltShuffle = true; 1002 } 1003 1004 // If all of the operands are identical or constant we have a simple solution. 1005 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1006 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1007 newTreeEntry(VL, false); 1008 return; 1009 } 1010 1011 // We now know that this is a vector of instructions of the same type from 1012 // the same block. 1013 1014 // Don't vectorize ephemeral values. 1015 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1016 if (EphValues.count(VL[i])) { 1017 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1018 ") is ephemeral.\n"); 1019 newTreeEntry(VL, false); 1020 return; 1021 } 1022 } 1023 1024 // Check if this is a duplicate of another entry. 1025 if (ScalarToTreeEntry.count(VL[0])) { 1026 int Idx = ScalarToTreeEntry[VL[0]]; 1027 TreeEntry *E = &VectorizableTree[Idx]; 1028 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1029 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1030 if (E->Scalars[i] != VL[i]) { 1031 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1032 newTreeEntry(VL, false); 1033 return; 1034 } 1035 } 1036 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1037 return; 1038 } 1039 1040 // Check that none of the instructions in the bundle are already in the tree. 1041 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1042 if (ScalarToTreeEntry.count(VL[i])) { 1043 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1044 ") is already in tree.\n"); 1045 newTreeEntry(VL, false); 1046 return; 1047 } 1048 } 1049 1050 // If any of the scalars is marked as a value that needs to stay scalar then 1051 // we need to gather the scalars. 1052 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1053 if (MustGather.count(VL[i])) { 1054 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1055 newTreeEntry(VL, false); 1056 return; 1057 } 1058 } 1059 1060 // Check that all of the users of the scalars that we want to vectorize are 1061 // schedulable. 1062 Instruction *VL0 = cast<Instruction>(VL[0]); 1063 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1064 1065 if (!DT->isReachableFromEntry(BB)) { 1066 // Don't go into unreachable blocks. They may contain instructions with 1067 // dependency cycles which confuse the final scheduling. 1068 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1069 newTreeEntry(VL, false); 1070 return; 1071 } 1072 1073 // Check that every instructions appears once in this bundle. 1074 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1075 for (unsigned j = i+1; j < e; ++j) 1076 if (VL[i] == VL[j]) { 1077 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1078 newTreeEntry(VL, false); 1079 return; 1080 } 1081 1082 auto &BSRef = BlocksSchedules[BB]; 1083 if (!BSRef) { 1084 BSRef = llvm::make_unique<BlockScheduling>(BB); 1085 } 1086 BlockScheduling &BS = *BSRef.get(); 1087 1088 if (!BS.tryScheduleBundle(VL, this)) { 1089 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1090 assert((!BS.getScheduleData(VL[0]) || 1091 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1092 "tryScheduleBundle should cancelScheduling on failure"); 1093 newTreeEntry(VL, false); 1094 return; 1095 } 1096 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1097 1098 switch (Opcode) { 1099 case Instruction::PHI: { 1100 PHINode *PH = dyn_cast<PHINode>(VL0); 1101 1102 // Check for terminator values (e.g. invoke). 1103 for (unsigned j = 0; j < VL.size(); ++j) 1104 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1105 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1106 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1107 if (Term) { 1108 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1109 BS.cancelScheduling(VL); 1110 newTreeEntry(VL, false); 1111 return; 1112 } 1113 } 1114 1115 newTreeEntry(VL, true); 1116 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1117 1118 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1119 ValueList Operands; 1120 // Prepare the operand vector. 1121 for (Value *j : VL) 1122 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1123 PH->getIncomingBlock(i))); 1124 1125 buildTree_rec(Operands, Depth + 1); 1126 } 1127 return; 1128 } 1129 case Instruction::ExtractValue: 1130 case Instruction::ExtractElement: { 1131 bool Reuse = canReuseExtract(VL, Opcode); 1132 if (Reuse) { 1133 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1134 } else { 1135 BS.cancelScheduling(VL); 1136 } 1137 newTreeEntry(VL, Reuse); 1138 return; 1139 } 1140 case Instruction::Load: { 1141 // Check that a vectorized load would load the same memory as a scalar 1142 // load. 1143 // For example we don't want vectorize loads that are smaller than 8 bit. 1144 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1145 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1146 // such a struct we read/write packed bits disagreeing with the 1147 // unvectorized version. 1148 Type *ScalarTy = VL[0]->getType(); 1149 1150 if (DL->getTypeSizeInBits(ScalarTy) != 1151 DL->getTypeAllocSizeInBits(ScalarTy)) { 1152 BS.cancelScheduling(VL); 1153 newTreeEntry(VL, false); 1154 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1155 return; 1156 } 1157 1158 // Make sure all loads in the bundle are simple - we can't vectorize 1159 // atomic or volatile loads. 1160 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1161 LoadInst *L = cast<LoadInst>(VL[i]); 1162 if (!L->isSimple()) { 1163 BS.cancelScheduling(VL); 1164 newTreeEntry(VL, false); 1165 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1166 return; 1167 } 1168 } 1169 1170 // Check if the loads are consecutive, reversed, or neither. 1171 // TODO: What we really want is to sort the loads, but for now, check 1172 // the two likely directions. 1173 bool Consecutive = true; 1174 bool ReverseConsecutive = true; 1175 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1176 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1177 Consecutive = false; 1178 break; 1179 } else { 1180 ReverseConsecutive = false; 1181 } 1182 } 1183 1184 if (Consecutive) { 1185 ++NumLoadsWantToKeepOrder; 1186 newTreeEntry(VL, true); 1187 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1188 return; 1189 } 1190 1191 // If none of the load pairs were consecutive when checked in order, 1192 // check the reverse order. 1193 if (ReverseConsecutive) 1194 for (unsigned i = VL.size() - 1; i > 0; --i) 1195 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1196 ReverseConsecutive = false; 1197 break; 1198 } 1199 1200 BS.cancelScheduling(VL); 1201 newTreeEntry(VL, false); 1202 1203 if (ReverseConsecutive) { 1204 ++NumLoadsWantToChangeOrder; 1205 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1206 } else { 1207 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1208 } 1209 return; 1210 } 1211 case Instruction::ZExt: 1212 case Instruction::SExt: 1213 case Instruction::FPToUI: 1214 case Instruction::FPToSI: 1215 case Instruction::FPExt: 1216 case Instruction::PtrToInt: 1217 case Instruction::IntToPtr: 1218 case Instruction::SIToFP: 1219 case Instruction::UIToFP: 1220 case Instruction::Trunc: 1221 case Instruction::FPTrunc: 1222 case Instruction::BitCast: { 1223 Type *SrcTy = VL0->getOperand(0)->getType(); 1224 for (unsigned i = 0; i < VL.size(); ++i) { 1225 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1226 if (Ty != SrcTy || !isValidElementType(Ty)) { 1227 BS.cancelScheduling(VL); 1228 newTreeEntry(VL, false); 1229 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1230 return; 1231 } 1232 } 1233 newTreeEntry(VL, true); 1234 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1235 1236 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1237 ValueList Operands; 1238 // Prepare the operand vector. 1239 for (Value *j : VL) 1240 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1241 1242 buildTree_rec(Operands, Depth+1); 1243 } 1244 return; 1245 } 1246 case Instruction::ICmp: 1247 case Instruction::FCmp: { 1248 // Check that all of the compares have the same predicate. 1249 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1250 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1251 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1252 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1253 if (Cmp->getPredicate() != P0 || 1254 Cmp->getOperand(0)->getType() != ComparedTy) { 1255 BS.cancelScheduling(VL); 1256 newTreeEntry(VL, false); 1257 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1258 return; 1259 } 1260 } 1261 1262 newTreeEntry(VL, true); 1263 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1264 1265 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1266 ValueList Operands; 1267 // Prepare the operand vector. 1268 for (Value *j : VL) 1269 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1270 1271 buildTree_rec(Operands, Depth+1); 1272 } 1273 return; 1274 } 1275 case Instruction::Select: 1276 case Instruction::Add: 1277 case Instruction::FAdd: 1278 case Instruction::Sub: 1279 case Instruction::FSub: 1280 case Instruction::Mul: 1281 case Instruction::FMul: 1282 case Instruction::UDiv: 1283 case Instruction::SDiv: 1284 case Instruction::FDiv: 1285 case Instruction::URem: 1286 case Instruction::SRem: 1287 case Instruction::FRem: 1288 case Instruction::Shl: 1289 case Instruction::LShr: 1290 case Instruction::AShr: 1291 case Instruction::And: 1292 case Instruction::Or: 1293 case Instruction::Xor: { 1294 newTreeEntry(VL, true); 1295 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1296 1297 // Sort operands of the instructions so that each side is more likely to 1298 // have the same opcode. 1299 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1300 ValueList Left, Right; 1301 reorderInputsAccordingToOpcode(VL, Left, Right); 1302 buildTree_rec(Left, Depth + 1); 1303 buildTree_rec(Right, Depth + 1); 1304 return; 1305 } 1306 1307 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1308 ValueList Operands; 1309 // Prepare the operand vector. 1310 for (Value *j : VL) 1311 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1312 1313 buildTree_rec(Operands, Depth+1); 1314 } 1315 return; 1316 } 1317 case Instruction::GetElementPtr: { 1318 // We don't combine GEPs with complicated (nested) indexing. 1319 for (unsigned j = 0; j < VL.size(); ++j) { 1320 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1321 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1322 BS.cancelScheduling(VL); 1323 newTreeEntry(VL, false); 1324 return; 1325 } 1326 } 1327 1328 // We can't combine several GEPs into one vector if they operate on 1329 // different types. 1330 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1331 for (unsigned j = 0; j < VL.size(); ++j) { 1332 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1333 if (Ty0 != CurTy) { 1334 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1335 BS.cancelScheduling(VL); 1336 newTreeEntry(VL, false); 1337 return; 1338 } 1339 } 1340 1341 // We don't combine GEPs with non-constant indexes. 1342 for (unsigned j = 0; j < VL.size(); ++j) { 1343 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1344 if (!isa<ConstantInt>(Op)) { 1345 DEBUG( 1346 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1347 BS.cancelScheduling(VL); 1348 newTreeEntry(VL, false); 1349 return; 1350 } 1351 } 1352 1353 newTreeEntry(VL, true); 1354 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1355 for (unsigned i = 0, e = 2; i < e; ++i) { 1356 ValueList Operands; 1357 // Prepare the operand vector. 1358 for (Value *j : VL) 1359 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1360 1361 buildTree_rec(Operands, Depth + 1); 1362 } 1363 return; 1364 } 1365 case Instruction::Store: { 1366 // Check if the stores are consecutive or of we need to swizzle them. 1367 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1368 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1369 BS.cancelScheduling(VL); 1370 newTreeEntry(VL, false); 1371 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1372 return; 1373 } 1374 1375 newTreeEntry(VL, true); 1376 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1377 1378 ValueList Operands; 1379 for (Value *j : VL) 1380 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1381 1382 buildTree_rec(Operands, Depth + 1); 1383 return; 1384 } 1385 case Instruction::Call: { 1386 // Check if the calls are all to the same vectorizable intrinsic. 1387 CallInst *CI = cast<CallInst>(VL[0]); 1388 // Check if this is an Intrinsic call or something that can be 1389 // represented by an intrinsic call 1390 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1391 if (!isTriviallyVectorizable(ID)) { 1392 BS.cancelScheduling(VL); 1393 newTreeEntry(VL, false); 1394 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1395 return; 1396 } 1397 Function *Int = CI->getCalledFunction(); 1398 Value *A1I = nullptr; 1399 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1400 A1I = CI->getArgOperand(1); 1401 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1402 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1403 if (!CI2 || CI2->getCalledFunction() != Int || 1404 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1405 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1406 BS.cancelScheduling(VL); 1407 newTreeEntry(VL, false); 1408 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1409 << "\n"); 1410 return; 1411 } 1412 // ctlz,cttz and powi are special intrinsics whose second argument 1413 // should be same in order for them to be vectorized. 1414 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1415 Value *A1J = CI2->getArgOperand(1); 1416 if (A1I != A1J) { 1417 BS.cancelScheduling(VL); 1418 newTreeEntry(VL, false); 1419 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1420 << " argument "<< A1I<<"!=" << A1J 1421 << "\n"); 1422 return; 1423 } 1424 } 1425 // Verify that the bundle operands are identical between the two calls. 1426 if (CI->hasOperandBundles() && 1427 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1428 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1429 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1430 BS.cancelScheduling(VL); 1431 newTreeEntry(VL, false); 1432 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1433 << *VL[i] << '\n'); 1434 return; 1435 } 1436 } 1437 1438 newTreeEntry(VL, true); 1439 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1440 ValueList Operands; 1441 // Prepare the operand vector. 1442 for (Value *j : VL) { 1443 CallInst *CI2 = dyn_cast<CallInst>(j); 1444 Operands.push_back(CI2->getArgOperand(i)); 1445 } 1446 buildTree_rec(Operands, Depth + 1); 1447 } 1448 return; 1449 } 1450 case Instruction::ShuffleVector: { 1451 // If this is not an alternate sequence of opcode like add-sub 1452 // then do not vectorize this instruction. 1453 if (!isAltShuffle) { 1454 BS.cancelScheduling(VL); 1455 newTreeEntry(VL, false); 1456 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1457 return; 1458 } 1459 newTreeEntry(VL, true); 1460 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1461 1462 // Reorder operands if reordering would enable vectorization. 1463 if (isa<BinaryOperator>(VL0)) { 1464 ValueList Left, Right; 1465 reorderAltShuffleOperands(VL, Left, Right); 1466 buildTree_rec(Left, Depth + 1); 1467 buildTree_rec(Right, Depth + 1); 1468 return; 1469 } 1470 1471 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1472 ValueList Operands; 1473 // Prepare the operand vector. 1474 for (Value *j : VL) 1475 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1476 1477 buildTree_rec(Operands, Depth + 1); 1478 } 1479 return; 1480 } 1481 default: 1482 BS.cancelScheduling(VL); 1483 newTreeEntry(VL, false); 1484 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1485 return; 1486 } 1487 } 1488 1489 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1490 unsigned N; 1491 Type *EltTy; 1492 auto *ST = dyn_cast<StructType>(T); 1493 if (ST) { 1494 N = ST->getNumElements(); 1495 EltTy = *ST->element_begin(); 1496 } else { 1497 N = cast<ArrayType>(T)->getNumElements(); 1498 EltTy = cast<ArrayType>(T)->getElementType(); 1499 } 1500 if (!isValidElementType(EltTy)) 1501 return 0; 1502 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1503 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1504 return 0; 1505 if (ST) { 1506 // Check that struct is homogeneous. 1507 for (const auto *Ty : ST->elements()) 1508 if (Ty != EltTy) 1509 return 0; 1510 } 1511 return N; 1512 } 1513 1514 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1515 assert(Opcode == Instruction::ExtractElement || 1516 Opcode == Instruction::ExtractValue); 1517 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1518 // Check if all of the extracts come from the same vector and from the 1519 // correct offset. 1520 Value *VL0 = VL[0]; 1521 Instruction *E0 = cast<Instruction>(VL0); 1522 Value *Vec = E0->getOperand(0); 1523 1524 // We have to extract from a vector/aggregate with the same number of elements. 1525 unsigned NElts; 1526 if (Opcode == Instruction::ExtractValue) { 1527 const DataLayout &DL = E0->getModule()->getDataLayout(); 1528 NElts = canMapToVector(Vec->getType(), DL); 1529 if (!NElts) 1530 return false; 1531 // Check if load can be rewritten as load of vector. 1532 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1533 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1534 return false; 1535 } else { 1536 NElts = Vec->getType()->getVectorNumElements(); 1537 } 1538 1539 if (NElts != VL.size()) 1540 return false; 1541 1542 // Check that all of the indices extract from the correct offset. 1543 if (!matchExtractIndex(E0, 0, Opcode)) 1544 return false; 1545 1546 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1547 Instruction *E = cast<Instruction>(VL[i]); 1548 if (!matchExtractIndex(E, i, Opcode)) 1549 return false; 1550 if (E->getOperand(0) != Vec) 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 int BoUpSLP::getEntryCost(TreeEntry *E) { 1558 ArrayRef<Value*> VL = E->Scalars; 1559 1560 Type *ScalarTy = VL[0]->getType(); 1561 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1562 ScalarTy = SI->getValueOperand()->getType(); 1563 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1564 1565 // If we have computed a smaller type for the expression, update VecTy so 1566 // that the costs will be accurate. 1567 if (MinBWs.count(VL[0])) 1568 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1569 VL.size()); 1570 1571 if (E->NeedToGather) { 1572 if (allConstant(VL)) 1573 return 0; 1574 if (isSplat(VL)) { 1575 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1576 } 1577 return getGatherCost(E->Scalars); 1578 } 1579 unsigned Opcode = getSameOpcode(VL); 1580 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1581 Instruction *VL0 = cast<Instruction>(VL[0]); 1582 switch (Opcode) { 1583 case Instruction::PHI: { 1584 return 0; 1585 } 1586 case Instruction::ExtractValue: 1587 case Instruction::ExtractElement: { 1588 if (canReuseExtract(VL, Opcode)) { 1589 int DeadCost = 0; 1590 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1591 Instruction *E = cast<Instruction>(VL[i]); 1592 if (E->hasOneUse()) 1593 // Take credit for instruction that will become dead. 1594 DeadCost += 1595 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1596 } 1597 return -DeadCost; 1598 } 1599 return getGatherCost(VecTy); 1600 } 1601 case Instruction::ZExt: 1602 case Instruction::SExt: 1603 case Instruction::FPToUI: 1604 case Instruction::FPToSI: 1605 case Instruction::FPExt: 1606 case Instruction::PtrToInt: 1607 case Instruction::IntToPtr: 1608 case Instruction::SIToFP: 1609 case Instruction::UIToFP: 1610 case Instruction::Trunc: 1611 case Instruction::FPTrunc: 1612 case Instruction::BitCast: { 1613 Type *SrcTy = VL0->getOperand(0)->getType(); 1614 1615 // Calculate the cost of this instruction. 1616 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1617 VL0->getType(), SrcTy); 1618 1619 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1620 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1621 return VecCost - ScalarCost; 1622 } 1623 case Instruction::FCmp: 1624 case Instruction::ICmp: 1625 case Instruction::Select: { 1626 // Calculate the cost of this instruction. 1627 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1628 int ScalarCost = VecTy->getNumElements() * 1629 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1630 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1631 return VecCost - ScalarCost; 1632 } 1633 case Instruction::Add: 1634 case Instruction::FAdd: 1635 case Instruction::Sub: 1636 case Instruction::FSub: 1637 case Instruction::Mul: 1638 case Instruction::FMul: 1639 case Instruction::UDiv: 1640 case Instruction::SDiv: 1641 case Instruction::FDiv: 1642 case Instruction::URem: 1643 case Instruction::SRem: 1644 case Instruction::FRem: 1645 case Instruction::Shl: 1646 case Instruction::LShr: 1647 case Instruction::AShr: 1648 case Instruction::And: 1649 case Instruction::Or: 1650 case Instruction::Xor: { 1651 // Certain instructions can be cheaper to vectorize if they have a 1652 // constant second vector operand. 1653 TargetTransformInfo::OperandValueKind Op1VK = 1654 TargetTransformInfo::OK_AnyValue; 1655 TargetTransformInfo::OperandValueKind Op2VK = 1656 TargetTransformInfo::OK_UniformConstantValue; 1657 TargetTransformInfo::OperandValueProperties Op1VP = 1658 TargetTransformInfo::OP_None; 1659 TargetTransformInfo::OperandValueProperties Op2VP = 1660 TargetTransformInfo::OP_None; 1661 1662 // If all operands are exactly the same ConstantInt then set the 1663 // operand kind to OK_UniformConstantValue. 1664 // If instead not all operands are constants, then set the operand kind 1665 // to OK_AnyValue. If all operands are constants but not the same, 1666 // then set the operand kind to OK_NonUniformConstantValue. 1667 ConstantInt *CInt = nullptr; 1668 for (unsigned i = 0; i < VL.size(); ++i) { 1669 const Instruction *I = cast<Instruction>(VL[i]); 1670 if (!isa<ConstantInt>(I->getOperand(1))) { 1671 Op2VK = TargetTransformInfo::OK_AnyValue; 1672 break; 1673 } 1674 if (i == 0) { 1675 CInt = cast<ConstantInt>(I->getOperand(1)); 1676 continue; 1677 } 1678 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1679 CInt != cast<ConstantInt>(I->getOperand(1))) 1680 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1681 } 1682 // FIXME: Currently cost of model modification for division by power of 1683 // 2 is handled for X86 and AArch64. Add support for other targets. 1684 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1685 CInt->getValue().isPowerOf2()) 1686 Op2VP = TargetTransformInfo::OP_PowerOf2; 1687 1688 int ScalarCost = VecTy->getNumElements() * 1689 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1690 Op2VK, Op1VP, Op2VP); 1691 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1692 Op1VP, Op2VP); 1693 return VecCost - ScalarCost; 1694 } 1695 case Instruction::GetElementPtr: { 1696 TargetTransformInfo::OperandValueKind Op1VK = 1697 TargetTransformInfo::OK_AnyValue; 1698 TargetTransformInfo::OperandValueKind Op2VK = 1699 TargetTransformInfo::OK_UniformConstantValue; 1700 1701 int ScalarCost = 1702 VecTy->getNumElements() * 1703 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1704 int VecCost = 1705 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1706 1707 return VecCost - ScalarCost; 1708 } 1709 case Instruction::Load: { 1710 // Cost of wide load - cost of scalar loads. 1711 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1712 int ScalarLdCost = VecTy->getNumElements() * 1713 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1714 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1715 VecTy, alignment, 0); 1716 return VecLdCost - ScalarLdCost; 1717 } 1718 case Instruction::Store: { 1719 // We know that we can merge the stores. Calculate the cost. 1720 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1721 int ScalarStCost = VecTy->getNumElements() * 1722 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1723 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1724 VecTy, alignment, 0); 1725 return VecStCost - ScalarStCost; 1726 } 1727 case Instruction::Call: { 1728 CallInst *CI = cast<CallInst>(VL0); 1729 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1730 1731 // Calculate the cost of the scalar and vector calls. 1732 SmallVector<Type*, 4> ScalarTys, VecTys; 1733 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1734 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1735 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1736 VecTy->getNumElements())); 1737 } 1738 1739 FastMathFlags FMF; 1740 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1741 FMF = FPMO->getFastMathFlags(); 1742 1743 int ScalarCallCost = VecTy->getNumElements() * 1744 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1745 1746 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1747 1748 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1749 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1750 << " for " << *CI << "\n"); 1751 1752 return VecCallCost - ScalarCallCost; 1753 } 1754 case Instruction::ShuffleVector: { 1755 TargetTransformInfo::OperandValueKind Op1VK = 1756 TargetTransformInfo::OK_AnyValue; 1757 TargetTransformInfo::OperandValueKind Op2VK = 1758 TargetTransformInfo::OK_AnyValue; 1759 int ScalarCost = 0; 1760 int VecCost = 0; 1761 for (Value *i : VL) { 1762 Instruction *I = cast<Instruction>(i); 1763 if (!I) 1764 break; 1765 ScalarCost += 1766 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1767 } 1768 // VecCost is equal to sum of the cost of creating 2 vectors 1769 // and the cost of creating shuffle. 1770 Instruction *I0 = cast<Instruction>(VL[0]); 1771 VecCost = 1772 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1773 Instruction *I1 = cast<Instruction>(VL[1]); 1774 VecCost += 1775 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1776 VecCost += 1777 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1778 return VecCost - ScalarCost; 1779 } 1780 default: 1781 llvm_unreachable("Unknown instruction"); 1782 } 1783 } 1784 1785 bool BoUpSLP::isFullyVectorizableTinyTree() { 1786 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1787 VectorizableTree.size() << " is fully vectorizable .\n"); 1788 1789 // We only handle trees of height 2. 1790 if (VectorizableTree.size() != 2) 1791 return false; 1792 1793 // Handle splat and all-constants stores. 1794 if (!VectorizableTree[0].NeedToGather && 1795 (allConstant(VectorizableTree[1].Scalars) || 1796 isSplat(VectorizableTree[1].Scalars))) 1797 return true; 1798 1799 // Gathering cost would be too much for tiny trees. 1800 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1801 return false; 1802 1803 return true; 1804 } 1805 1806 int BoUpSLP::getSpillCost() { 1807 // Walk from the bottom of the tree to the top, tracking which values are 1808 // live. When we see a call instruction that is not part of our tree, 1809 // query TTI to see if there is a cost to keeping values live over it 1810 // (for example, if spills and fills are required). 1811 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1812 int Cost = 0; 1813 1814 SmallPtrSet<Instruction*, 4> LiveValues; 1815 Instruction *PrevInst = nullptr; 1816 1817 for (const auto &N : VectorizableTree) { 1818 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1819 if (!Inst) 1820 continue; 1821 1822 if (!PrevInst) { 1823 PrevInst = Inst; 1824 continue; 1825 } 1826 1827 // Update LiveValues. 1828 LiveValues.erase(PrevInst); 1829 for (auto &J : PrevInst->operands()) { 1830 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1831 LiveValues.insert(cast<Instruction>(&*J)); 1832 } 1833 1834 DEBUG( 1835 dbgs() << "SLP: #LV: " << LiveValues.size(); 1836 for (auto *X : LiveValues) 1837 dbgs() << " " << X->getName(); 1838 dbgs() << ", Looking at "; 1839 Inst->dump(); 1840 ); 1841 1842 // Now find the sequence of instructions between PrevInst and Inst. 1843 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1844 PrevInstIt(PrevInst->getIterator()); 1845 --PrevInstIt; 1846 while (InstIt != PrevInstIt) { 1847 if (PrevInstIt == PrevInst->getParent()->rend()) { 1848 PrevInstIt = Inst->getParent()->rbegin(); 1849 continue; 1850 } 1851 1852 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1853 SmallVector<Type*, 4> V; 1854 for (auto *II : LiveValues) 1855 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1856 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1857 } 1858 1859 ++PrevInstIt; 1860 } 1861 1862 PrevInst = Inst; 1863 } 1864 1865 return Cost; 1866 } 1867 1868 int BoUpSLP::getTreeCost() { 1869 int Cost = 0; 1870 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1871 VectorizableTree.size() << ".\n"); 1872 1873 // We only vectorize tiny trees if it is fully vectorizable. 1874 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1875 if (VectorizableTree.empty()) { 1876 assert(!ExternalUses.size() && "We should not have any external users"); 1877 } 1878 return INT_MAX; 1879 } 1880 1881 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1882 1883 for (TreeEntry &TE : VectorizableTree) { 1884 int C = getEntryCost(&TE); 1885 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1886 << *TE.Scalars[0] << ".\n"); 1887 Cost += C; 1888 } 1889 1890 SmallSet<Value *, 16> ExtractCostCalculated; 1891 int ExtractCost = 0; 1892 for (ExternalUser &EU : ExternalUses) { 1893 // We only add extract cost once for the same scalar. 1894 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1895 continue; 1896 1897 // Uses by ephemeral values are free (because the ephemeral value will be 1898 // removed prior to code generation, and so the extraction will be 1899 // removed as well). 1900 if (EphValues.count(EU.User)) 1901 continue; 1902 1903 // If we plan to rewrite the tree in a smaller type, we will need to sign 1904 // extend the extracted value back to the original type. Here, we account 1905 // for the extract and the added cost of the sign extend if needed. 1906 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1907 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1908 if (MinBWs.count(ScalarRoot)) { 1909 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1910 VecTy = VectorType::get(MinTy, BundleWidth); 1911 ExtractCost += TTI->getExtractWithExtendCost( 1912 Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); 1913 } else { 1914 ExtractCost += 1915 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1916 } 1917 } 1918 1919 int SpillCost = getSpillCost(); 1920 Cost += SpillCost + ExtractCost; 1921 1922 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1923 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1924 << "SLP: Total Cost = " << Cost << ".\n"); 1925 return Cost; 1926 } 1927 1928 int BoUpSLP::getGatherCost(Type *Ty) { 1929 int Cost = 0; 1930 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1931 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1932 return Cost; 1933 } 1934 1935 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1936 // Find the type of the operands in VL. 1937 Type *ScalarTy = VL[0]->getType(); 1938 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1939 ScalarTy = SI->getValueOperand()->getType(); 1940 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1941 // Find the cost of inserting/extracting values from the vector. 1942 return getGatherCost(VecTy); 1943 } 1944 1945 // Reorder commutative operations in alternate shuffle if the resulting vectors 1946 // are consecutive loads. This would allow us to vectorize the tree. 1947 // If we have something like- 1948 // load a[0] - load b[0] 1949 // load b[1] + load a[1] 1950 // load a[2] - load b[2] 1951 // load a[3] + load b[3] 1952 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1953 // code. 1954 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1955 SmallVectorImpl<Value *> &Left, 1956 SmallVectorImpl<Value *> &Right) { 1957 // Push left and right operands of binary operation into Left and Right 1958 for (Value *i : VL) { 1959 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1960 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1961 } 1962 1963 // Reorder if we have a commutative operation and consecutive access 1964 // are on either side of the alternate instructions. 1965 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1966 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1967 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1968 Instruction *VL1 = cast<Instruction>(VL[j]); 1969 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1970 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1971 std::swap(Left[j], Right[j]); 1972 continue; 1973 } else if (VL2->isCommutative() && 1974 isConsecutiveAccess(L, L1, *DL, *SE)) { 1975 std::swap(Left[j + 1], Right[j + 1]); 1976 continue; 1977 } 1978 // else unchanged 1979 } 1980 } 1981 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1982 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1983 Instruction *VL1 = cast<Instruction>(VL[j]); 1984 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1985 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1986 std::swap(Left[j], Right[j]); 1987 continue; 1988 } else if (VL2->isCommutative() && 1989 isConsecutiveAccess(L, L1, *DL, *SE)) { 1990 std::swap(Left[j + 1], Right[j + 1]); 1991 continue; 1992 } 1993 // else unchanged 1994 } 1995 } 1996 } 1997 } 1998 1999 // Return true if I should be commuted before adding it's left and right 2000 // operands to the arrays Left and Right. 2001 // 2002 // The vectorizer is trying to either have all elements one side being 2003 // instruction with the same opcode to enable further vectorization, or having 2004 // a splat to lower the vectorizing cost. 2005 static bool shouldReorderOperands(int i, Instruction &I, 2006 SmallVectorImpl<Value *> &Left, 2007 SmallVectorImpl<Value *> &Right, 2008 bool AllSameOpcodeLeft, 2009 bool AllSameOpcodeRight, bool SplatLeft, 2010 bool SplatRight) { 2011 Value *VLeft = I.getOperand(0); 2012 Value *VRight = I.getOperand(1); 2013 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2014 if (SplatRight) { 2015 if (VRight == Right[i - 1]) 2016 // Preserve SplatRight 2017 return false; 2018 if (VLeft == Right[i - 1]) { 2019 // Commuting would preserve SplatRight, but we don't want to break 2020 // SplatLeft either, i.e. preserve the original order if possible. 2021 // (FIXME: why do we care?) 2022 if (SplatLeft && VLeft == Left[i - 1]) 2023 return false; 2024 return true; 2025 } 2026 } 2027 // Symmetrically handle Right side. 2028 if (SplatLeft) { 2029 if (VLeft == Left[i - 1]) 2030 // Preserve SplatLeft 2031 return false; 2032 if (VRight == Left[i - 1]) 2033 return true; 2034 } 2035 2036 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2037 Instruction *IRight = dyn_cast<Instruction>(VRight); 2038 2039 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2040 // it and not the right, in this case we want to commute. 2041 if (AllSameOpcodeRight) { 2042 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2043 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2044 // Do not commute, a match on the right preserves AllSameOpcodeRight 2045 return false; 2046 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2047 // We have a match and may want to commute, but first check if there is 2048 // not also a match on the existing operands on the Left to preserve 2049 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2050 // (FIXME: why do we care?) 2051 if (AllSameOpcodeLeft && ILeft && 2052 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2053 return false; 2054 return true; 2055 } 2056 } 2057 // Symmetrically handle Left side. 2058 if (AllSameOpcodeLeft) { 2059 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2060 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2061 return false; 2062 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2063 return true; 2064 } 2065 return false; 2066 } 2067 2068 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2069 SmallVectorImpl<Value *> &Left, 2070 SmallVectorImpl<Value *> &Right) { 2071 2072 if (VL.size()) { 2073 // Peel the first iteration out of the loop since there's nothing 2074 // interesting to do anyway and it simplifies the checks in the loop. 2075 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2076 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2077 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2078 // Favor having instruction to the right. FIXME: why? 2079 std::swap(VLeft, VRight); 2080 Left.push_back(VLeft); 2081 Right.push_back(VRight); 2082 } 2083 2084 // Keep track if we have instructions with all the same opcode on one side. 2085 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2086 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2087 // Keep track if we have one side with all the same value (broadcast). 2088 bool SplatLeft = true; 2089 bool SplatRight = true; 2090 2091 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2092 Instruction *I = cast<Instruction>(VL[i]); 2093 assert(I->isCommutative() && "Can only process commutative instruction"); 2094 // Commute to favor either a splat or maximizing having the same opcodes on 2095 // one side. 2096 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2097 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2098 Left.push_back(I->getOperand(1)); 2099 Right.push_back(I->getOperand(0)); 2100 } else { 2101 Left.push_back(I->getOperand(0)); 2102 Right.push_back(I->getOperand(1)); 2103 } 2104 // Update Splat* and AllSameOpcode* after the insertion. 2105 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2106 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2107 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2108 (cast<Instruction>(Left[i - 1])->getOpcode() == 2109 cast<Instruction>(Left[i])->getOpcode()); 2110 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2111 (cast<Instruction>(Right[i - 1])->getOpcode() == 2112 cast<Instruction>(Right[i])->getOpcode()); 2113 } 2114 2115 // If one operand end up being broadcast, return this operand order. 2116 if (SplatRight || SplatLeft) 2117 return; 2118 2119 // Finally check if we can get longer vectorizable chain by reordering 2120 // without breaking the good operand order detected above. 2121 // E.g. If we have something like- 2122 // load a[0] load b[0] 2123 // load b[1] load a[1] 2124 // load a[2] load b[2] 2125 // load a[3] load b[3] 2126 // Reordering the second load b[1] load a[1] would allow us to vectorize 2127 // this code and we still retain AllSameOpcode property. 2128 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2129 // such as- 2130 // add a[0],c[0] load b[0] 2131 // add a[1],c[2] load b[1] 2132 // b[2] load b[2] 2133 // add a[3],c[3] load b[3] 2134 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2135 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2136 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2137 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2138 std::swap(Left[j + 1], Right[j + 1]); 2139 continue; 2140 } 2141 } 2142 } 2143 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2144 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2145 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2146 std::swap(Left[j + 1], Right[j + 1]); 2147 continue; 2148 } 2149 } 2150 } 2151 // else unchanged 2152 } 2153 } 2154 2155 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2156 2157 // Get the basic block this bundle is in. All instructions in the bundle 2158 // should be in this block. 2159 auto *Front = cast<Instruction>(VL.front()); 2160 auto *BB = Front->getParent(); 2161 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2162 return cast<Instruction>(V)->getParent() == BB; 2163 })); 2164 2165 // The last instruction in the bundle in program order. 2166 Instruction *LastInst = nullptr; 2167 2168 // Find the last instruction. The common case should be that BB has been 2169 // scheduled, and the last instruction is VL.back(). So we start with 2170 // VL.back() and iterate over schedule data until we reach the end of the 2171 // bundle. The end of the bundle is marked by null ScheduleData. 2172 if (BlocksSchedules.count(BB)) { 2173 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2174 if (Bundle && Bundle->isPartOfBundle()) 2175 for (; Bundle; Bundle = Bundle->NextInBundle) 2176 LastInst = Bundle->Inst; 2177 } 2178 2179 // LastInst can still be null at this point if there's either not an entry 2180 // for BB in BlocksSchedules or there's no ScheduleData available for 2181 // VL.back(). This can be the case if buildTree_rec aborts for various 2182 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2183 // size is reached, etc.). ScheduleData is initialized in the scheduling 2184 // "dry-run". 2185 // 2186 // If this happens, we can still find the last instruction by brute force. We 2187 // iterate forwards from Front (inclusive) until we either see all 2188 // instructions in the bundle or reach the end of the block. If Front is the 2189 // last instruction in program order, LastInst will be set to Front, and we 2190 // will visit all the remaining instructions in the block. 2191 // 2192 // One of the reasons we exit early from buildTree_rec is to place an upper 2193 // bound on compile-time. Thus, taking an additional compile-time hit here is 2194 // not ideal. However, this should be exceedingly rare since it requires that 2195 // we both exit early from buildTree_rec and that the bundle be out-of-order 2196 // (causing us to iterate all the way to the end of the block). 2197 if (!LastInst) { 2198 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2199 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2200 if (Bundle.erase(&I)) 2201 LastInst = &I; 2202 if (Bundle.empty()) 2203 break; 2204 } 2205 } 2206 2207 // Set the insertion point after the last instruction in the bundle. Set the 2208 // debug location to Front. 2209 Builder.SetInsertPoint(BB, next(BasicBlock::iterator(LastInst))); 2210 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2211 } 2212 2213 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2214 Value *Vec = UndefValue::get(Ty); 2215 // Generate the 'InsertElement' instruction. 2216 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2217 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2218 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2219 GatherSeq.insert(Insrt); 2220 CSEBlocks.insert(Insrt->getParent()); 2221 2222 // Add to our 'need-to-extract' list. 2223 if (ScalarToTreeEntry.count(VL[i])) { 2224 int Idx = ScalarToTreeEntry[VL[i]]; 2225 TreeEntry *E = &VectorizableTree[Idx]; 2226 // Find which lane we need to extract. 2227 int FoundLane = -1; 2228 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2229 // Is this the lane of the scalar that we are looking for ? 2230 if (E->Scalars[Lane] == VL[i]) { 2231 FoundLane = Lane; 2232 break; 2233 } 2234 } 2235 assert(FoundLane >= 0 && "Could not find the correct lane"); 2236 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2237 } 2238 } 2239 } 2240 2241 return Vec; 2242 } 2243 2244 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2245 SmallDenseMap<Value*, int>::const_iterator Entry 2246 = ScalarToTreeEntry.find(VL[0]); 2247 if (Entry != ScalarToTreeEntry.end()) { 2248 int Idx = Entry->second; 2249 const TreeEntry *En = &VectorizableTree[Idx]; 2250 if (En->isSame(VL) && En->VectorizedValue) 2251 return En->VectorizedValue; 2252 } 2253 return nullptr; 2254 } 2255 2256 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2257 if (ScalarToTreeEntry.count(VL[0])) { 2258 int Idx = ScalarToTreeEntry[VL[0]]; 2259 TreeEntry *E = &VectorizableTree[Idx]; 2260 if (E->isSame(VL)) 2261 return vectorizeTree(E); 2262 } 2263 2264 Type *ScalarTy = VL[0]->getType(); 2265 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2266 ScalarTy = SI->getValueOperand()->getType(); 2267 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2268 2269 return Gather(VL, VecTy); 2270 } 2271 2272 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2273 IRBuilder<>::InsertPointGuard Guard(Builder); 2274 2275 if (E->VectorizedValue) { 2276 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2277 return E->VectorizedValue; 2278 } 2279 2280 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2281 Type *ScalarTy = VL0->getType(); 2282 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2283 ScalarTy = SI->getValueOperand()->getType(); 2284 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2285 2286 if (E->NeedToGather) { 2287 setInsertPointAfterBundle(E->Scalars); 2288 auto *V = Gather(E->Scalars, VecTy); 2289 E->VectorizedValue = V; 2290 return V; 2291 } 2292 2293 unsigned Opcode = getSameOpcode(E->Scalars); 2294 2295 switch (Opcode) { 2296 case Instruction::PHI: { 2297 PHINode *PH = dyn_cast<PHINode>(VL0); 2298 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2299 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2300 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2301 E->VectorizedValue = NewPhi; 2302 2303 // PHINodes may have multiple entries from the same block. We want to 2304 // visit every block once. 2305 SmallSet<BasicBlock*, 4> VisitedBBs; 2306 2307 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2308 ValueList Operands; 2309 BasicBlock *IBB = PH->getIncomingBlock(i); 2310 2311 if (!VisitedBBs.insert(IBB).second) { 2312 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2313 continue; 2314 } 2315 2316 // Prepare the operand vector. 2317 for (Value *V : E->Scalars) 2318 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2319 2320 Builder.SetInsertPoint(IBB->getTerminator()); 2321 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2322 Value *Vec = vectorizeTree(Operands); 2323 NewPhi->addIncoming(Vec, IBB); 2324 } 2325 2326 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2327 "Invalid number of incoming values"); 2328 return NewPhi; 2329 } 2330 2331 case Instruction::ExtractElement: { 2332 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2333 Value *V = VL0->getOperand(0); 2334 E->VectorizedValue = V; 2335 return V; 2336 } 2337 setInsertPointAfterBundle(E->Scalars); 2338 auto *V = Gather(E->Scalars, VecTy); 2339 E->VectorizedValue = V; 2340 return V; 2341 } 2342 case Instruction::ExtractValue: { 2343 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2344 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2345 Builder.SetInsertPoint(LI); 2346 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2347 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2348 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2349 E->VectorizedValue = V; 2350 return propagateMetadata(V, E->Scalars); 2351 } 2352 setInsertPointAfterBundle(E->Scalars); 2353 auto *V = Gather(E->Scalars, VecTy); 2354 E->VectorizedValue = V; 2355 return V; 2356 } 2357 case Instruction::ZExt: 2358 case Instruction::SExt: 2359 case Instruction::FPToUI: 2360 case Instruction::FPToSI: 2361 case Instruction::FPExt: 2362 case Instruction::PtrToInt: 2363 case Instruction::IntToPtr: 2364 case Instruction::SIToFP: 2365 case Instruction::UIToFP: 2366 case Instruction::Trunc: 2367 case Instruction::FPTrunc: 2368 case Instruction::BitCast: { 2369 ValueList INVL; 2370 for (Value *V : E->Scalars) 2371 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2372 2373 setInsertPointAfterBundle(E->Scalars); 2374 2375 Value *InVec = vectorizeTree(INVL); 2376 2377 if (Value *V = alreadyVectorized(E->Scalars)) 2378 return V; 2379 2380 CastInst *CI = dyn_cast<CastInst>(VL0); 2381 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2382 E->VectorizedValue = V; 2383 ++NumVectorInstructions; 2384 return V; 2385 } 2386 case Instruction::FCmp: 2387 case Instruction::ICmp: { 2388 ValueList LHSV, RHSV; 2389 for (Value *V : E->Scalars) { 2390 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2391 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2392 } 2393 2394 setInsertPointAfterBundle(E->Scalars); 2395 2396 Value *L = vectorizeTree(LHSV); 2397 Value *R = vectorizeTree(RHSV); 2398 2399 if (Value *V = alreadyVectorized(E->Scalars)) 2400 return V; 2401 2402 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2403 Value *V; 2404 if (Opcode == Instruction::FCmp) 2405 V = Builder.CreateFCmp(P0, L, R); 2406 else 2407 V = Builder.CreateICmp(P0, L, R); 2408 2409 E->VectorizedValue = V; 2410 ++NumVectorInstructions; 2411 return V; 2412 } 2413 case Instruction::Select: { 2414 ValueList TrueVec, FalseVec, CondVec; 2415 for (Value *V : E->Scalars) { 2416 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2417 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2418 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2419 } 2420 2421 setInsertPointAfterBundle(E->Scalars); 2422 2423 Value *Cond = vectorizeTree(CondVec); 2424 Value *True = vectorizeTree(TrueVec); 2425 Value *False = vectorizeTree(FalseVec); 2426 2427 if (Value *V = alreadyVectorized(E->Scalars)) 2428 return V; 2429 2430 Value *V = Builder.CreateSelect(Cond, True, False); 2431 E->VectorizedValue = V; 2432 ++NumVectorInstructions; 2433 return V; 2434 } 2435 case Instruction::Add: 2436 case Instruction::FAdd: 2437 case Instruction::Sub: 2438 case Instruction::FSub: 2439 case Instruction::Mul: 2440 case Instruction::FMul: 2441 case Instruction::UDiv: 2442 case Instruction::SDiv: 2443 case Instruction::FDiv: 2444 case Instruction::URem: 2445 case Instruction::SRem: 2446 case Instruction::FRem: 2447 case Instruction::Shl: 2448 case Instruction::LShr: 2449 case Instruction::AShr: 2450 case Instruction::And: 2451 case Instruction::Or: 2452 case Instruction::Xor: { 2453 ValueList LHSVL, RHSVL; 2454 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2455 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2456 else 2457 for (Value *V : E->Scalars) { 2458 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2459 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2460 } 2461 2462 setInsertPointAfterBundle(E->Scalars); 2463 2464 Value *LHS = vectorizeTree(LHSVL); 2465 Value *RHS = vectorizeTree(RHSVL); 2466 2467 if (LHS == RHS && isa<Instruction>(LHS)) { 2468 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2469 } 2470 2471 if (Value *V = alreadyVectorized(E->Scalars)) 2472 return V; 2473 2474 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2475 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2476 E->VectorizedValue = V; 2477 propagateIRFlags(E->VectorizedValue, E->Scalars); 2478 ++NumVectorInstructions; 2479 2480 if (Instruction *I = dyn_cast<Instruction>(V)) 2481 return propagateMetadata(I, E->Scalars); 2482 2483 return V; 2484 } 2485 case Instruction::Load: { 2486 // Loads are inserted at the head of the tree because we don't want to 2487 // sink them all the way down past store instructions. 2488 setInsertPointAfterBundle(E->Scalars); 2489 2490 LoadInst *LI = cast<LoadInst>(VL0); 2491 Type *ScalarLoadTy = LI->getType(); 2492 unsigned AS = LI->getPointerAddressSpace(); 2493 2494 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2495 VecTy->getPointerTo(AS)); 2496 2497 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2498 // ExternalUses list to make sure that an extract will be generated in the 2499 // future. 2500 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2501 ExternalUses.push_back( 2502 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2503 2504 unsigned Alignment = LI->getAlignment(); 2505 LI = Builder.CreateLoad(VecPtr); 2506 if (!Alignment) { 2507 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2508 } 2509 LI->setAlignment(Alignment); 2510 E->VectorizedValue = LI; 2511 ++NumVectorInstructions; 2512 return propagateMetadata(LI, E->Scalars); 2513 } 2514 case Instruction::Store: { 2515 StoreInst *SI = cast<StoreInst>(VL0); 2516 unsigned Alignment = SI->getAlignment(); 2517 unsigned AS = SI->getPointerAddressSpace(); 2518 2519 ValueList ValueOp; 2520 for (Value *V : E->Scalars) 2521 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2522 2523 setInsertPointAfterBundle(E->Scalars); 2524 2525 Value *VecValue = vectorizeTree(ValueOp); 2526 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2527 VecTy->getPointerTo(AS)); 2528 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2529 2530 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2531 // ExternalUses list to make sure that an extract will be generated in the 2532 // future. 2533 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2534 ExternalUses.push_back( 2535 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2536 2537 if (!Alignment) { 2538 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2539 } 2540 S->setAlignment(Alignment); 2541 E->VectorizedValue = S; 2542 ++NumVectorInstructions; 2543 return propagateMetadata(S, E->Scalars); 2544 } 2545 case Instruction::GetElementPtr: { 2546 setInsertPointAfterBundle(E->Scalars); 2547 2548 ValueList Op0VL; 2549 for (Value *V : E->Scalars) 2550 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2551 2552 Value *Op0 = vectorizeTree(Op0VL); 2553 2554 std::vector<Value *> OpVecs; 2555 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2556 ++j) { 2557 ValueList OpVL; 2558 for (Value *V : E->Scalars) 2559 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2560 2561 Value *OpVec = vectorizeTree(OpVL); 2562 OpVecs.push_back(OpVec); 2563 } 2564 2565 Value *V = Builder.CreateGEP( 2566 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2567 E->VectorizedValue = V; 2568 ++NumVectorInstructions; 2569 2570 if (Instruction *I = dyn_cast<Instruction>(V)) 2571 return propagateMetadata(I, E->Scalars); 2572 2573 return V; 2574 } 2575 case Instruction::Call: { 2576 CallInst *CI = cast<CallInst>(VL0); 2577 setInsertPointAfterBundle(E->Scalars); 2578 Function *FI; 2579 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2580 Value *ScalarArg = nullptr; 2581 if (CI && (FI = CI->getCalledFunction())) { 2582 IID = FI->getIntrinsicID(); 2583 } 2584 std::vector<Value *> OpVecs; 2585 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2586 ValueList OpVL; 2587 // ctlz,cttz and powi are special intrinsics whose second argument is 2588 // a scalar. This argument should not be vectorized. 2589 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2590 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2591 ScalarArg = CEI->getArgOperand(j); 2592 OpVecs.push_back(CEI->getArgOperand(j)); 2593 continue; 2594 } 2595 for (Value *V : E->Scalars) { 2596 CallInst *CEI = cast<CallInst>(V); 2597 OpVL.push_back(CEI->getArgOperand(j)); 2598 } 2599 2600 Value *OpVec = vectorizeTree(OpVL); 2601 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2602 OpVecs.push_back(OpVec); 2603 } 2604 2605 Module *M = F->getParent(); 2606 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2607 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2608 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2609 SmallVector<OperandBundleDef, 1> OpBundles; 2610 CI->getOperandBundlesAsDefs(OpBundles); 2611 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2612 2613 // The scalar argument uses an in-tree scalar so we add the new vectorized 2614 // call to ExternalUses list to make sure that an extract will be 2615 // generated in the future. 2616 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2617 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2618 2619 E->VectorizedValue = V; 2620 ++NumVectorInstructions; 2621 return V; 2622 } 2623 case Instruction::ShuffleVector: { 2624 ValueList LHSVL, RHSVL; 2625 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2626 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2627 setInsertPointAfterBundle(E->Scalars); 2628 2629 Value *LHS = vectorizeTree(LHSVL); 2630 Value *RHS = vectorizeTree(RHSVL); 2631 2632 if (Value *V = alreadyVectorized(E->Scalars)) 2633 return V; 2634 2635 // Create a vector of LHS op1 RHS 2636 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2637 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2638 2639 // Create a vector of LHS op2 RHS 2640 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2641 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2642 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2643 2644 // Create shuffle to take alternate operations from the vector. 2645 // Also, gather up odd and even scalar ops to propagate IR flags to 2646 // each vector operation. 2647 ValueList OddScalars, EvenScalars; 2648 unsigned e = E->Scalars.size(); 2649 SmallVector<Constant *, 8> Mask(e); 2650 for (unsigned i = 0; i < e; ++i) { 2651 if (i & 1) { 2652 Mask[i] = Builder.getInt32(e + i); 2653 OddScalars.push_back(E->Scalars[i]); 2654 } else { 2655 Mask[i] = Builder.getInt32(i); 2656 EvenScalars.push_back(E->Scalars[i]); 2657 } 2658 } 2659 2660 Value *ShuffleMask = ConstantVector::get(Mask); 2661 propagateIRFlags(V0, EvenScalars); 2662 propagateIRFlags(V1, OddScalars); 2663 2664 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2665 E->VectorizedValue = V; 2666 ++NumVectorInstructions; 2667 if (Instruction *I = dyn_cast<Instruction>(V)) 2668 return propagateMetadata(I, E->Scalars); 2669 2670 return V; 2671 } 2672 default: 2673 llvm_unreachable("unknown inst"); 2674 } 2675 return nullptr; 2676 } 2677 2678 Value *BoUpSLP::vectorizeTree() { 2679 2680 // All blocks must be scheduled before any instructions are inserted. 2681 for (auto &BSIter : BlocksSchedules) { 2682 scheduleBlock(BSIter.second.get()); 2683 } 2684 2685 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2686 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2687 2688 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2689 // vectorized root. InstCombine will then rewrite the entire expression. We 2690 // sign extend the extracted values below. 2691 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2692 if (MinBWs.count(ScalarRoot)) { 2693 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2694 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2695 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2696 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2697 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2698 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2699 VectorizableTree[0].VectorizedValue = Trunc; 2700 } 2701 2702 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2703 2704 // Extract all of the elements with the external uses. 2705 for (const auto &ExternalUse : ExternalUses) { 2706 Value *Scalar = ExternalUse.Scalar; 2707 llvm::User *User = ExternalUse.User; 2708 2709 // Skip users that we already RAUW. This happens when one instruction 2710 // has multiple uses of the same value. 2711 if (!is_contained(Scalar->users(), User)) 2712 continue; 2713 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2714 2715 int Idx = ScalarToTreeEntry[Scalar]; 2716 TreeEntry *E = &VectorizableTree[Idx]; 2717 assert(!E->NeedToGather && "Extracting from a gather list"); 2718 2719 Value *Vec = E->VectorizedValue; 2720 assert(Vec && "Can't find vectorizable value"); 2721 2722 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2723 // Generate extracts for out-of-tree users. 2724 // Find the insertion point for the extractelement lane. 2725 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2726 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2727 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2728 if (PH->getIncomingValue(i) == Scalar) { 2729 TerminatorInst *IncomingTerminator = 2730 PH->getIncomingBlock(i)->getTerminator(); 2731 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2732 Builder.SetInsertPoint(VecI->getParent(), 2733 std::next(VecI->getIterator())); 2734 } else { 2735 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2736 } 2737 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2738 if (MinBWs.count(ScalarRoot)) 2739 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2740 CSEBlocks.insert(PH->getIncomingBlock(i)); 2741 PH->setOperand(i, Ex); 2742 } 2743 } 2744 } else { 2745 Builder.SetInsertPoint(cast<Instruction>(User)); 2746 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2747 if (MinBWs.count(ScalarRoot)) 2748 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2749 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2750 User->replaceUsesOfWith(Scalar, Ex); 2751 } 2752 } else { 2753 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2754 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2755 if (MinBWs.count(ScalarRoot)) 2756 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2757 CSEBlocks.insert(&F->getEntryBlock()); 2758 User->replaceUsesOfWith(Scalar, Ex); 2759 } 2760 2761 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2762 } 2763 2764 // For each vectorized value: 2765 for (TreeEntry &EIdx : VectorizableTree) { 2766 TreeEntry *Entry = &EIdx; 2767 2768 // For each lane: 2769 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2770 Value *Scalar = Entry->Scalars[Lane]; 2771 // No need to handle users of gathered values. 2772 if (Entry->NeedToGather) 2773 continue; 2774 2775 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2776 2777 Type *Ty = Scalar->getType(); 2778 if (!Ty->isVoidTy()) { 2779 #ifndef NDEBUG 2780 for (User *U : Scalar->users()) { 2781 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2782 2783 assert((ScalarToTreeEntry.count(U) || 2784 // It is legal to replace users in the ignorelist by undef. 2785 is_contained(UserIgnoreList, U)) && 2786 "Replacing out-of-tree value with undef"); 2787 } 2788 #endif 2789 Value *Undef = UndefValue::get(Ty); 2790 Scalar->replaceAllUsesWith(Undef); 2791 } 2792 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2793 eraseInstruction(cast<Instruction>(Scalar)); 2794 } 2795 } 2796 2797 Builder.ClearInsertionPoint(); 2798 2799 return VectorizableTree[0].VectorizedValue; 2800 } 2801 2802 void BoUpSLP::optimizeGatherSequence() { 2803 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2804 << " gather sequences instructions.\n"); 2805 // LICM InsertElementInst sequences. 2806 for (Instruction *it : GatherSeq) { 2807 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2808 2809 if (!Insert) 2810 continue; 2811 2812 // Check if this block is inside a loop. 2813 Loop *L = LI->getLoopFor(Insert->getParent()); 2814 if (!L) 2815 continue; 2816 2817 // Check if it has a preheader. 2818 BasicBlock *PreHeader = L->getLoopPreheader(); 2819 if (!PreHeader) 2820 continue; 2821 2822 // If the vector or the element that we insert into it are 2823 // instructions that are defined in this basic block then we can't 2824 // hoist this instruction. 2825 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2826 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2827 if (CurrVec && L->contains(CurrVec)) 2828 continue; 2829 if (NewElem && L->contains(NewElem)) 2830 continue; 2831 2832 // We can hoist this instruction. Move it to the pre-header. 2833 Insert->moveBefore(PreHeader->getTerminator()); 2834 } 2835 2836 // Make a list of all reachable blocks in our CSE queue. 2837 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2838 CSEWorkList.reserve(CSEBlocks.size()); 2839 for (BasicBlock *BB : CSEBlocks) 2840 if (DomTreeNode *N = DT->getNode(BB)) { 2841 assert(DT->isReachableFromEntry(N)); 2842 CSEWorkList.push_back(N); 2843 } 2844 2845 // Sort blocks by domination. This ensures we visit a block after all blocks 2846 // dominating it are visited. 2847 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2848 [this](const DomTreeNode *A, const DomTreeNode *B) { 2849 return DT->properlyDominates(A, B); 2850 }); 2851 2852 // Perform O(N^2) search over the gather sequences and merge identical 2853 // instructions. TODO: We can further optimize this scan if we split the 2854 // instructions into different buckets based on the insert lane. 2855 SmallVector<Instruction *, 16> Visited; 2856 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2857 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2858 "Worklist not sorted properly!"); 2859 BasicBlock *BB = (*I)->getBlock(); 2860 // For all instructions in blocks containing gather sequences: 2861 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2862 Instruction *In = &*it++; 2863 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2864 continue; 2865 2866 // Check if we can replace this instruction with any of the 2867 // visited instructions. 2868 for (Instruction *v : Visited) { 2869 if (In->isIdenticalTo(v) && 2870 DT->dominates(v->getParent(), In->getParent())) { 2871 In->replaceAllUsesWith(v); 2872 eraseInstruction(In); 2873 In = nullptr; 2874 break; 2875 } 2876 } 2877 if (In) { 2878 assert(!is_contained(Visited, In)); 2879 Visited.push_back(In); 2880 } 2881 } 2882 } 2883 CSEBlocks.clear(); 2884 GatherSeq.clear(); 2885 } 2886 2887 // Groups the instructions to a bundle (which is then a single scheduling entity) 2888 // and schedules instructions until the bundle gets ready. 2889 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2890 BoUpSLP *SLP) { 2891 if (isa<PHINode>(VL[0])) 2892 return true; 2893 2894 // Initialize the instruction bundle. 2895 Instruction *OldScheduleEnd = ScheduleEnd; 2896 ScheduleData *PrevInBundle = nullptr; 2897 ScheduleData *Bundle = nullptr; 2898 bool ReSchedule = false; 2899 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2900 2901 // Make sure that the scheduling region contains all 2902 // instructions of the bundle. 2903 for (Value *V : VL) { 2904 if (!extendSchedulingRegion(V)) 2905 return false; 2906 } 2907 2908 for (Value *V : VL) { 2909 ScheduleData *BundleMember = getScheduleData(V); 2910 assert(BundleMember && 2911 "no ScheduleData for bundle member (maybe not in same basic block)"); 2912 if (BundleMember->IsScheduled) { 2913 // A bundle member was scheduled as single instruction before and now 2914 // needs to be scheduled as part of the bundle. We just get rid of the 2915 // existing schedule. 2916 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2917 << " was already scheduled\n"); 2918 ReSchedule = true; 2919 } 2920 assert(BundleMember->isSchedulingEntity() && 2921 "bundle member already part of other bundle"); 2922 if (PrevInBundle) { 2923 PrevInBundle->NextInBundle = BundleMember; 2924 } else { 2925 Bundle = BundleMember; 2926 } 2927 BundleMember->UnscheduledDepsInBundle = 0; 2928 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2929 2930 // Group the instructions to a bundle. 2931 BundleMember->FirstInBundle = Bundle; 2932 PrevInBundle = BundleMember; 2933 } 2934 if (ScheduleEnd != OldScheduleEnd) { 2935 // The scheduling region got new instructions at the lower end (or it is a 2936 // new region for the first bundle). This makes it necessary to 2937 // recalculate all dependencies. 2938 // It is seldom that this needs to be done a second time after adding the 2939 // initial bundle to the region. 2940 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2941 ScheduleData *SD = getScheduleData(I); 2942 SD->clearDependencies(); 2943 } 2944 ReSchedule = true; 2945 } 2946 if (ReSchedule) { 2947 resetSchedule(); 2948 initialFillReadyList(ReadyInsts); 2949 } 2950 2951 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2952 << BB->getName() << "\n"); 2953 2954 calculateDependencies(Bundle, true, SLP); 2955 2956 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2957 // means that there are no cyclic dependencies and we can schedule it. 2958 // Note that's important that we don't "schedule" the bundle yet (see 2959 // cancelScheduling). 2960 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2961 2962 ScheduleData *pickedSD = ReadyInsts.back(); 2963 ReadyInsts.pop_back(); 2964 2965 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2966 schedule(pickedSD, ReadyInsts); 2967 } 2968 } 2969 if (!Bundle->isReady()) { 2970 cancelScheduling(VL); 2971 return false; 2972 } 2973 return true; 2974 } 2975 2976 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2977 if (isa<PHINode>(VL[0])) 2978 return; 2979 2980 ScheduleData *Bundle = getScheduleData(VL[0]); 2981 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2982 assert(!Bundle->IsScheduled && 2983 "Can't cancel bundle which is already scheduled"); 2984 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2985 "tried to unbundle something which is not a bundle"); 2986 2987 // Un-bundle: make single instructions out of the bundle. 2988 ScheduleData *BundleMember = Bundle; 2989 while (BundleMember) { 2990 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2991 BundleMember->FirstInBundle = BundleMember; 2992 ScheduleData *Next = BundleMember->NextInBundle; 2993 BundleMember->NextInBundle = nullptr; 2994 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2995 if (BundleMember->UnscheduledDepsInBundle == 0) { 2996 ReadyInsts.insert(BundleMember); 2997 } 2998 BundleMember = Next; 2999 } 3000 } 3001 3002 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3003 if (getScheduleData(V)) 3004 return true; 3005 Instruction *I = dyn_cast<Instruction>(V); 3006 assert(I && "bundle member must be an instruction"); 3007 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3008 if (!ScheduleStart) { 3009 // It's the first instruction in the new region. 3010 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3011 ScheduleStart = I; 3012 ScheduleEnd = I->getNextNode(); 3013 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3014 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3015 return true; 3016 } 3017 // Search up and down at the same time, because we don't know if the new 3018 // instruction is above or below the existing scheduling region. 3019 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 3020 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3021 BasicBlock::iterator DownIter(ScheduleEnd); 3022 BasicBlock::iterator LowerEnd = BB->end(); 3023 for (;;) { 3024 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3025 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3026 return false; 3027 } 3028 3029 if (UpIter != UpperEnd) { 3030 if (&*UpIter == I) { 3031 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3032 ScheduleStart = I; 3033 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3034 return true; 3035 } 3036 UpIter++; 3037 } 3038 if (DownIter != LowerEnd) { 3039 if (&*DownIter == I) { 3040 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3041 nullptr); 3042 ScheduleEnd = I->getNextNode(); 3043 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3044 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3045 return true; 3046 } 3047 DownIter++; 3048 } 3049 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3050 "instruction not found in block"); 3051 } 3052 return true; 3053 } 3054 3055 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3056 Instruction *ToI, 3057 ScheduleData *PrevLoadStore, 3058 ScheduleData *NextLoadStore) { 3059 ScheduleData *CurrentLoadStore = PrevLoadStore; 3060 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3061 ScheduleData *SD = ScheduleDataMap[I]; 3062 if (!SD) { 3063 // Allocate a new ScheduleData for the instruction. 3064 if (ChunkPos >= ChunkSize) { 3065 ScheduleDataChunks.push_back( 3066 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3067 ChunkPos = 0; 3068 } 3069 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3070 ScheduleDataMap[I] = SD; 3071 SD->Inst = I; 3072 } 3073 assert(!isInSchedulingRegion(SD) && 3074 "new ScheduleData already in scheduling region"); 3075 SD->init(SchedulingRegionID); 3076 3077 if (I->mayReadOrWriteMemory()) { 3078 // Update the linked list of memory accessing instructions. 3079 if (CurrentLoadStore) { 3080 CurrentLoadStore->NextLoadStore = SD; 3081 } else { 3082 FirstLoadStoreInRegion = SD; 3083 } 3084 CurrentLoadStore = SD; 3085 } 3086 } 3087 if (NextLoadStore) { 3088 if (CurrentLoadStore) 3089 CurrentLoadStore->NextLoadStore = NextLoadStore; 3090 } else { 3091 LastLoadStoreInRegion = CurrentLoadStore; 3092 } 3093 } 3094 3095 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3096 bool InsertInReadyList, 3097 BoUpSLP *SLP) { 3098 assert(SD->isSchedulingEntity()); 3099 3100 SmallVector<ScheduleData *, 10> WorkList; 3101 WorkList.push_back(SD); 3102 3103 while (!WorkList.empty()) { 3104 ScheduleData *SD = WorkList.back(); 3105 WorkList.pop_back(); 3106 3107 ScheduleData *BundleMember = SD; 3108 while (BundleMember) { 3109 assert(isInSchedulingRegion(BundleMember)); 3110 if (!BundleMember->hasValidDependencies()) { 3111 3112 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3113 BundleMember->Dependencies = 0; 3114 BundleMember->resetUnscheduledDeps(); 3115 3116 // Handle def-use chain dependencies. 3117 for (User *U : BundleMember->Inst->users()) { 3118 if (isa<Instruction>(U)) { 3119 ScheduleData *UseSD = getScheduleData(U); 3120 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3121 BundleMember->Dependencies++; 3122 ScheduleData *DestBundle = UseSD->FirstInBundle; 3123 if (!DestBundle->IsScheduled) { 3124 BundleMember->incrementUnscheduledDeps(1); 3125 } 3126 if (!DestBundle->hasValidDependencies()) { 3127 WorkList.push_back(DestBundle); 3128 } 3129 } 3130 } else { 3131 // I'm not sure if this can ever happen. But we need to be safe. 3132 // This lets the instruction/bundle never be scheduled and 3133 // eventually disable vectorization. 3134 BundleMember->Dependencies++; 3135 BundleMember->incrementUnscheduledDeps(1); 3136 } 3137 } 3138 3139 // Handle the memory dependencies. 3140 ScheduleData *DepDest = BundleMember->NextLoadStore; 3141 if (DepDest) { 3142 Instruction *SrcInst = BundleMember->Inst; 3143 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3144 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3145 unsigned numAliased = 0; 3146 unsigned DistToSrc = 1; 3147 3148 while (DepDest) { 3149 assert(isInSchedulingRegion(DepDest)); 3150 3151 // We have two limits to reduce the complexity: 3152 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3153 // SLP->isAliased (which is the expensive part in this loop). 3154 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3155 // the whole loop (even if the loop is fast, it's quadratic). 3156 // It's important for the loop break condition (see below) to 3157 // check this limit even between two read-only instructions. 3158 if (DistToSrc >= MaxMemDepDistance || 3159 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3160 (numAliased >= AliasedCheckLimit || 3161 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3162 3163 // We increment the counter only if the locations are aliased 3164 // (instead of counting all alias checks). This gives a better 3165 // balance between reduced runtime and accurate dependencies. 3166 numAliased++; 3167 3168 DepDest->MemoryDependencies.push_back(BundleMember); 3169 BundleMember->Dependencies++; 3170 ScheduleData *DestBundle = DepDest->FirstInBundle; 3171 if (!DestBundle->IsScheduled) { 3172 BundleMember->incrementUnscheduledDeps(1); 3173 } 3174 if (!DestBundle->hasValidDependencies()) { 3175 WorkList.push_back(DestBundle); 3176 } 3177 } 3178 DepDest = DepDest->NextLoadStore; 3179 3180 // Example, explaining the loop break condition: Let's assume our 3181 // starting instruction is i0 and MaxMemDepDistance = 3. 3182 // 3183 // +--------v--v--v 3184 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3185 // +--------^--^--^ 3186 // 3187 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3188 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3189 // Previously we already added dependencies from i3 to i6,i7,i8 3190 // (because of MaxMemDepDistance). As we added a dependency from 3191 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3192 // and we can abort this loop at i6. 3193 if (DistToSrc >= 2 * MaxMemDepDistance) 3194 break; 3195 DistToSrc++; 3196 } 3197 } 3198 } 3199 BundleMember = BundleMember->NextInBundle; 3200 } 3201 if (InsertInReadyList && SD->isReady()) { 3202 ReadyInsts.push_back(SD); 3203 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3204 } 3205 } 3206 } 3207 3208 void BoUpSLP::BlockScheduling::resetSchedule() { 3209 assert(ScheduleStart && 3210 "tried to reset schedule on block which has not been scheduled"); 3211 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3212 ScheduleData *SD = getScheduleData(I); 3213 assert(isInSchedulingRegion(SD)); 3214 SD->IsScheduled = false; 3215 SD->resetUnscheduledDeps(); 3216 } 3217 ReadyInsts.clear(); 3218 } 3219 3220 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3221 3222 if (!BS->ScheduleStart) 3223 return; 3224 3225 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3226 3227 BS->resetSchedule(); 3228 3229 // For the real scheduling we use a more sophisticated ready-list: it is 3230 // sorted by the original instruction location. This lets the final schedule 3231 // be as close as possible to the original instruction order. 3232 struct ScheduleDataCompare { 3233 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3234 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3235 } 3236 }; 3237 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3238 3239 // Ensure that all dependency data is updated and fill the ready-list with 3240 // initial instructions. 3241 int Idx = 0; 3242 int NumToSchedule = 0; 3243 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3244 I = I->getNextNode()) { 3245 ScheduleData *SD = BS->getScheduleData(I); 3246 assert( 3247 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3248 "scheduler and vectorizer have different opinion on what is a bundle"); 3249 SD->FirstInBundle->SchedulingPriority = Idx++; 3250 if (SD->isSchedulingEntity()) { 3251 BS->calculateDependencies(SD, false, this); 3252 NumToSchedule++; 3253 } 3254 } 3255 BS->initialFillReadyList(ReadyInsts); 3256 3257 Instruction *LastScheduledInst = BS->ScheduleEnd; 3258 3259 // Do the "real" scheduling. 3260 while (!ReadyInsts.empty()) { 3261 ScheduleData *picked = *ReadyInsts.begin(); 3262 ReadyInsts.erase(ReadyInsts.begin()); 3263 3264 // Move the scheduled instruction(s) to their dedicated places, if not 3265 // there yet. 3266 ScheduleData *BundleMember = picked; 3267 while (BundleMember) { 3268 Instruction *pickedInst = BundleMember->Inst; 3269 if (LastScheduledInst->getNextNode() != pickedInst) { 3270 BS->BB->getInstList().remove(pickedInst); 3271 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3272 pickedInst); 3273 } 3274 LastScheduledInst = pickedInst; 3275 BundleMember = BundleMember->NextInBundle; 3276 } 3277 3278 BS->schedule(picked, ReadyInsts); 3279 NumToSchedule--; 3280 } 3281 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3282 3283 // Avoid duplicate scheduling of the block. 3284 BS->ScheduleStart = nullptr; 3285 } 3286 3287 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3288 // If V is a store, just return the width of the stored value without 3289 // traversing the expression tree. This is the common case. 3290 if (auto *Store = dyn_cast<StoreInst>(V)) 3291 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3292 3293 // If V is not a store, we can traverse the expression tree to find loads 3294 // that feed it. The type of the loaded value may indicate a more suitable 3295 // width than V's type. We want to base the vector element size on the width 3296 // of memory operations where possible. 3297 SmallVector<Instruction *, 16> Worklist; 3298 SmallPtrSet<Instruction *, 16> Visited; 3299 if (auto *I = dyn_cast<Instruction>(V)) 3300 Worklist.push_back(I); 3301 3302 // Traverse the expression tree in bottom-up order looking for loads. If we 3303 // encounter an instruciton we don't yet handle, we give up. 3304 auto MaxWidth = 0u; 3305 auto FoundUnknownInst = false; 3306 while (!Worklist.empty() && !FoundUnknownInst) { 3307 auto *I = Worklist.pop_back_val(); 3308 Visited.insert(I); 3309 3310 // We should only be looking at scalar instructions here. If the current 3311 // instruction has a vector type, give up. 3312 auto *Ty = I->getType(); 3313 if (isa<VectorType>(Ty)) 3314 FoundUnknownInst = true; 3315 3316 // If the current instruction is a load, update MaxWidth to reflect the 3317 // width of the loaded value. 3318 else if (isa<LoadInst>(I)) 3319 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3320 3321 // Otherwise, we need to visit the operands of the instruction. We only 3322 // handle the interesting cases from buildTree here. If an operand is an 3323 // instruction we haven't yet visited, we add it to the worklist. 3324 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3325 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3326 for (Use &U : I->operands()) 3327 if (auto *J = dyn_cast<Instruction>(U.get())) 3328 if (!Visited.count(J)) 3329 Worklist.push_back(J); 3330 } 3331 3332 // If we don't yet handle the instruction, give up. 3333 else 3334 FoundUnknownInst = true; 3335 } 3336 3337 // If we didn't encounter a memory access in the expression tree, or if we 3338 // gave up for some reason, just return the width of V. 3339 if (!MaxWidth || FoundUnknownInst) 3340 return DL->getTypeSizeInBits(V->getType()); 3341 3342 // Otherwise, return the maximum width we found. 3343 return MaxWidth; 3344 } 3345 3346 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3347 // smaller type with a truncation. We collect the values that will be demoted 3348 // in ToDemote and additional roots that require investigating in Roots. 3349 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3350 SmallVectorImpl<Value *> &ToDemote, 3351 SmallVectorImpl<Value *> &Roots) { 3352 3353 // We can always demote constants. 3354 if (isa<Constant>(V)) { 3355 ToDemote.push_back(V); 3356 return true; 3357 } 3358 3359 // If the value is not an instruction in the expression with only one use, it 3360 // cannot be demoted. 3361 auto *I = dyn_cast<Instruction>(V); 3362 if (!I || !I->hasOneUse() || !Expr.count(I)) 3363 return false; 3364 3365 switch (I->getOpcode()) { 3366 3367 // We can always demote truncations and extensions. Since truncations can 3368 // seed additional demotion, we save the truncated value. 3369 case Instruction::Trunc: 3370 Roots.push_back(I->getOperand(0)); 3371 case Instruction::ZExt: 3372 case Instruction::SExt: 3373 break; 3374 3375 // We can demote certain binary operations if we can demote both of their 3376 // operands. 3377 case Instruction::Add: 3378 case Instruction::Sub: 3379 case Instruction::Mul: 3380 case Instruction::And: 3381 case Instruction::Or: 3382 case Instruction::Xor: 3383 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3384 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3385 return false; 3386 break; 3387 3388 // We can demote selects if we can demote their true and false values. 3389 case Instruction::Select: { 3390 SelectInst *SI = cast<SelectInst>(I); 3391 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3392 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3393 return false; 3394 break; 3395 } 3396 3397 // We can demote phis if we can demote all their incoming operands. Note that 3398 // we don't need to worry about cycles since we ensure single use above. 3399 case Instruction::PHI: { 3400 PHINode *PN = cast<PHINode>(I); 3401 for (Value *IncValue : PN->incoming_values()) 3402 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3403 return false; 3404 break; 3405 } 3406 3407 // Otherwise, conservatively give up. 3408 default: 3409 return false; 3410 } 3411 3412 // Record the value that we can demote. 3413 ToDemote.push_back(V); 3414 return true; 3415 } 3416 3417 void BoUpSLP::computeMinimumValueSizes() { 3418 // If there are no external uses, the expression tree must be rooted by a 3419 // store. We can't demote in-memory values, so there is nothing to do here. 3420 if (ExternalUses.empty()) 3421 return; 3422 3423 // We only attempt to truncate integer expressions. 3424 auto &TreeRoot = VectorizableTree[0].Scalars; 3425 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3426 if (!TreeRootIT) 3427 return; 3428 3429 // If the expression is not rooted by a store, these roots should have 3430 // external uses. We will rely on InstCombine to rewrite the expression in 3431 // the narrower type. However, InstCombine only rewrites single-use values. 3432 // This means that if a tree entry other than a root is used externally, it 3433 // must have multiple uses and InstCombine will not rewrite it. The code 3434 // below ensures that only the roots are used externally. 3435 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3436 for (auto &EU : ExternalUses) 3437 if (!Expr.erase(EU.Scalar)) 3438 return; 3439 if (!Expr.empty()) 3440 return; 3441 3442 // Collect the scalar values of the vectorizable expression. We will use this 3443 // context to determine which values can be demoted. If we see a truncation, 3444 // we mark it as seeding another demotion. 3445 for (auto &Entry : VectorizableTree) 3446 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3447 3448 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3449 // have a single external user that is not in the vectorizable tree. 3450 for (auto *Root : TreeRoot) 3451 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3452 return; 3453 3454 // Conservatively determine if we can actually truncate the roots of the 3455 // expression. Collect the values that can be demoted in ToDemote and 3456 // additional roots that require investigating in Roots. 3457 SmallVector<Value *, 32> ToDemote; 3458 SmallVector<Value *, 4> Roots; 3459 for (auto *Root : TreeRoot) 3460 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3461 return; 3462 3463 // The maximum bit width required to represent all the values that can be 3464 // demoted without loss of precision. It would be safe to truncate the roots 3465 // of the expression to this width. 3466 auto MaxBitWidth = 8u; 3467 3468 // We first check if all the bits of the roots are demanded. If they're not, 3469 // we can truncate the roots to this narrower type. 3470 for (auto *Root : TreeRoot) { 3471 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3472 MaxBitWidth = std::max<unsigned>( 3473 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3474 } 3475 3476 // If all the bits of the roots are demanded, we can try a little harder to 3477 // compute a narrower type. This can happen, for example, if the roots are 3478 // getelementptr indices. InstCombine promotes these indices to the pointer 3479 // width. Thus, all their bits are technically demanded even though the 3480 // address computation might be vectorized in a smaller type. 3481 // 3482 // We start by looking at each entry that can be demoted. We compute the 3483 // maximum bit width required to store the scalar by using ValueTracking to 3484 // compute the number of high-order bits we can truncate. 3485 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3486 MaxBitWidth = 8u; 3487 for (auto *Scalar : ToDemote) { 3488 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3489 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3490 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3491 } 3492 } 3493 3494 // Round MaxBitWidth up to the next power-of-two. 3495 if (!isPowerOf2_64(MaxBitWidth)) 3496 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3497 3498 // If the maximum bit width we compute is less than the with of the roots' 3499 // type, we can proceed with the narrowing. Otherwise, do nothing. 3500 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3501 return; 3502 3503 // If we can truncate the root, we must collect additional values that might 3504 // be demoted as a result. That is, those seeded by truncations we will 3505 // modify. 3506 while (!Roots.empty()) 3507 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3508 3509 // Finally, map the values we can demote to the maximum bit with we computed. 3510 for (auto *Scalar : ToDemote) 3511 MinBWs[Scalar] = MaxBitWidth; 3512 } 3513 3514 namespace { 3515 /// The SLPVectorizer Pass. 3516 struct SLPVectorizer : public FunctionPass { 3517 SLPVectorizerPass Impl; 3518 3519 /// Pass identification, replacement for typeid 3520 static char ID; 3521 3522 explicit SLPVectorizer() : FunctionPass(ID) { 3523 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3524 } 3525 3526 3527 bool doInitialization(Module &M) override { 3528 return false; 3529 } 3530 3531 bool runOnFunction(Function &F) override { 3532 if (skipFunction(F)) 3533 return false; 3534 3535 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3536 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3537 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3538 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3539 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3540 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3541 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3542 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3543 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3544 3545 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3546 } 3547 3548 void getAnalysisUsage(AnalysisUsage &AU) const override { 3549 FunctionPass::getAnalysisUsage(AU); 3550 AU.addRequired<AssumptionCacheTracker>(); 3551 AU.addRequired<ScalarEvolutionWrapperPass>(); 3552 AU.addRequired<AAResultsWrapperPass>(); 3553 AU.addRequired<TargetTransformInfoWrapperPass>(); 3554 AU.addRequired<LoopInfoWrapperPass>(); 3555 AU.addRequired<DominatorTreeWrapperPass>(); 3556 AU.addRequired<DemandedBitsWrapperPass>(); 3557 AU.addPreserved<LoopInfoWrapperPass>(); 3558 AU.addPreserved<DominatorTreeWrapperPass>(); 3559 AU.addPreserved<AAResultsWrapperPass>(); 3560 AU.addPreserved<GlobalsAAWrapperPass>(); 3561 AU.setPreservesCFG(); 3562 } 3563 }; 3564 } // end anonymous namespace 3565 3566 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3567 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3568 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3569 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3570 auto *AA = &AM.getResult<AAManager>(F); 3571 auto *LI = &AM.getResult<LoopAnalysis>(F); 3572 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3573 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3574 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3575 3576 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3577 if (!Changed) 3578 return PreservedAnalyses::all(); 3579 PreservedAnalyses PA; 3580 PA.preserve<LoopAnalysis>(); 3581 PA.preserve<DominatorTreeAnalysis>(); 3582 PA.preserve<AAManager>(); 3583 PA.preserve<GlobalsAA>(); 3584 return PA; 3585 } 3586 3587 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3588 TargetTransformInfo *TTI_, 3589 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3590 LoopInfo *LI_, DominatorTree *DT_, 3591 AssumptionCache *AC_, DemandedBits *DB_) { 3592 SE = SE_; 3593 TTI = TTI_; 3594 TLI = TLI_; 3595 AA = AA_; 3596 LI = LI_; 3597 DT = DT_; 3598 AC = AC_; 3599 DB = DB_; 3600 DL = &F.getParent()->getDataLayout(); 3601 3602 Stores.clear(); 3603 GEPs.clear(); 3604 bool Changed = false; 3605 3606 // If the target claims to have no vector registers don't attempt 3607 // vectorization. 3608 if (!TTI->getNumberOfRegisters(true)) 3609 return false; 3610 3611 // Don't vectorize when the attribute NoImplicitFloat is used. 3612 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3613 return false; 3614 3615 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3616 3617 // Use the bottom up slp vectorizer to construct chains that start with 3618 // store instructions. 3619 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3620 3621 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3622 // delete instructions. 3623 3624 // Scan the blocks in the function in post order. 3625 for (auto BB : post_order(&F.getEntryBlock())) { 3626 collectSeedInstructions(BB); 3627 3628 // Vectorize trees that end at stores. 3629 if (!Stores.empty()) { 3630 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3631 << " underlying objects.\n"); 3632 Changed |= vectorizeStoreChains(R); 3633 } 3634 3635 // Vectorize trees that end at reductions. 3636 Changed |= vectorizeChainsInBlock(BB, R); 3637 3638 // Vectorize the index computations of getelementptr instructions. This 3639 // is primarily intended to catch gather-like idioms ending at 3640 // non-consecutive loads. 3641 if (!GEPs.empty()) { 3642 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3643 << " underlying objects.\n"); 3644 Changed |= vectorizeGEPIndices(BB, R); 3645 } 3646 } 3647 3648 if (Changed) { 3649 R.optimizeGatherSequence(); 3650 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3651 DEBUG(verifyFunction(F)); 3652 } 3653 return Changed; 3654 } 3655 3656 /// \brief Check that the Values in the slice in VL array are still existent in 3657 /// the WeakVH array. 3658 /// Vectorization of part of the VL array may cause later values in the VL array 3659 /// to become invalid. We track when this has happened in the WeakVH array. 3660 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3661 unsigned SliceBegin, unsigned SliceSize) { 3662 VL = VL.slice(SliceBegin, SliceSize); 3663 VH = VH.slice(SliceBegin, SliceSize); 3664 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3665 } 3666 3667 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, 3668 int CostThreshold, BoUpSLP &R, 3669 unsigned VecRegSize) { 3670 unsigned ChainLen = Chain.size(); 3671 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3672 << "\n"); 3673 unsigned Sz = R.getVectorElementSize(Chain[0]); 3674 unsigned VF = VecRegSize / Sz; 3675 3676 if (!isPowerOf2_32(Sz) || VF < 2) 3677 return false; 3678 3679 // Keep track of values that were deleted by vectorizing in the loop below. 3680 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3681 3682 bool Changed = false; 3683 // Look for profitable vectorizable trees at all offsets, starting at zero. 3684 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3685 if (i + VF > e) 3686 break; 3687 3688 // Check that a previous iteration of this loop did not delete the Value. 3689 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3690 continue; 3691 3692 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3693 << "\n"); 3694 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3695 3696 R.buildTree(Operands); 3697 R.computeMinimumValueSizes(); 3698 3699 int Cost = R.getTreeCost(); 3700 3701 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3702 if (Cost < CostThreshold) { 3703 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3704 R.vectorizeTree(); 3705 3706 // Move to the next bundle. 3707 i += VF - 1; 3708 Changed = true; 3709 } 3710 } 3711 3712 return Changed; 3713 } 3714 3715 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3716 int costThreshold, BoUpSLP &R) { 3717 SetVector<StoreInst *> Heads, Tails; 3718 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3719 3720 // We may run into multiple chains that merge into a single chain. We mark the 3721 // stores that we vectorized so that we don't visit the same store twice. 3722 BoUpSLP::ValueSet VectorizedStores; 3723 bool Changed = false; 3724 3725 // Do a quadratic search on all of the given stores and find 3726 // all of the pairs of stores that follow each other. 3727 SmallVector<unsigned, 16> IndexQueue; 3728 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3729 IndexQueue.clear(); 3730 // If a store has multiple consecutive store candidates, search Stores 3731 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3732 // This is because usually pairing with immediate succeeding or preceding 3733 // candidate create the best chance to find slp vectorization opportunity. 3734 unsigned j = 0; 3735 for (j = i + 1; j < e; ++j) 3736 IndexQueue.push_back(j); 3737 for (j = i; j > 0; --j) 3738 IndexQueue.push_back(j - 1); 3739 3740 for (auto &k : IndexQueue) { 3741 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3742 Tails.insert(Stores[k]); 3743 Heads.insert(Stores[i]); 3744 ConsecutiveChain[Stores[i]] = Stores[k]; 3745 break; 3746 } 3747 } 3748 } 3749 3750 // For stores that start but don't end a link in the chain: 3751 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3752 it != e; ++it) { 3753 if (Tails.count(*it)) 3754 continue; 3755 3756 // We found a store instr that starts a chain. Now follow the chain and try 3757 // to vectorize it. 3758 BoUpSLP::ValueList Operands; 3759 StoreInst *I = *it; 3760 // Collect the chain into a list. 3761 while (Tails.count(I) || Heads.count(I)) { 3762 if (VectorizedStores.count(I)) 3763 break; 3764 Operands.push_back(I); 3765 // Move to the next value in the chain. 3766 I = ConsecutiveChain[I]; 3767 } 3768 3769 // FIXME: Is division-by-2 the correct step? Should we assert that the 3770 // register size is a power-of-2? 3771 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { 3772 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3773 // Mark the vectorized stores so that we don't vectorize them again. 3774 VectorizedStores.insert(Operands.begin(), Operands.end()); 3775 Changed = true; 3776 break; 3777 } 3778 } 3779 } 3780 3781 return Changed; 3782 } 3783 3784 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3785 3786 // Initialize the collections. We will make a single pass over the block. 3787 Stores.clear(); 3788 GEPs.clear(); 3789 3790 // Visit the store and getelementptr instructions in BB and organize them in 3791 // Stores and GEPs according to the underlying objects of their pointer 3792 // operands. 3793 for (Instruction &I : *BB) { 3794 3795 // Ignore store instructions that are volatile or have a pointer operand 3796 // that doesn't point to a scalar type. 3797 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3798 if (!SI->isSimple()) 3799 continue; 3800 if (!isValidElementType(SI->getValueOperand()->getType())) 3801 continue; 3802 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3803 } 3804 3805 // Ignore getelementptr instructions that have more than one index, a 3806 // constant index, or a pointer operand that doesn't point to a scalar 3807 // type. 3808 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3809 auto Idx = GEP->idx_begin()->get(); 3810 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3811 continue; 3812 if (!isValidElementType(Idx->getType())) 3813 continue; 3814 if (GEP->getType()->isVectorTy()) 3815 continue; 3816 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3817 } 3818 } 3819 } 3820 3821 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3822 if (!A || !B) 3823 return false; 3824 Value *VL[] = { A, B }; 3825 return tryToVectorizeList(VL, R, None, true); 3826 } 3827 3828 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3829 ArrayRef<Value *> BuildVector, 3830 bool allowReorder) { 3831 if (VL.size() < 2) 3832 return false; 3833 3834 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3835 3836 // Check that all of the parts are scalar instructions of the same type. 3837 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3838 if (!I0) 3839 return false; 3840 3841 unsigned Opcode0 = I0->getOpcode(); 3842 3843 // FIXME: Register size should be a parameter to this function, so we can 3844 // try different vectorization factors. 3845 unsigned Sz = R.getVectorElementSize(I0); 3846 unsigned VF = R.getMinVecRegSize() / Sz; 3847 3848 for (Value *V : VL) { 3849 Type *Ty = V->getType(); 3850 if (!isValidElementType(Ty)) 3851 return false; 3852 Instruction *Inst = dyn_cast<Instruction>(V); 3853 if (!Inst || Inst->getOpcode() != Opcode0) 3854 return false; 3855 } 3856 3857 bool Changed = false; 3858 3859 // Keep track of values that were deleted by vectorizing in the loop below. 3860 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3861 3862 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3863 unsigned OpsWidth = 0; 3864 3865 if (i + VF > e) 3866 OpsWidth = e - i; 3867 else 3868 OpsWidth = VF; 3869 3870 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3871 break; 3872 3873 // Check that a previous iteration of this loop did not delete the Value. 3874 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3875 continue; 3876 3877 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3878 << "\n"); 3879 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3880 3881 ArrayRef<Value *> BuildVectorSlice; 3882 if (!BuildVector.empty()) 3883 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3884 3885 R.buildTree(Ops, BuildVectorSlice); 3886 // TODO: check if we can allow reordering for more cases. 3887 if (allowReorder && R.shouldReorder()) { 3888 // Conceptually, there is nothing actually preventing us from trying to 3889 // reorder a larger list. In fact, we do exactly this when vectorizing 3890 // reductions. However, at this point, we only expect to get here from 3891 // tryToVectorizePair(). 3892 assert(Ops.size() == 2); 3893 assert(BuildVectorSlice.empty()); 3894 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3895 R.buildTree(ReorderedOps, None); 3896 } 3897 R.computeMinimumValueSizes(); 3898 int Cost = R.getTreeCost(); 3899 3900 if (Cost < -SLPCostThreshold) { 3901 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3902 Value *VectorizedRoot = R.vectorizeTree(); 3903 3904 // Reconstruct the build vector by extracting the vectorized root. This 3905 // way we handle the case where some elements of the vector are undefined. 3906 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3907 if (!BuildVectorSlice.empty()) { 3908 // The insert point is the last build vector instruction. The vectorized 3909 // root will precede it. This guarantees that we get an instruction. The 3910 // vectorized tree could have been constant folded. 3911 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3912 unsigned VecIdx = 0; 3913 for (auto &V : BuildVectorSlice) { 3914 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3915 ++BasicBlock::iterator(InsertAfter)); 3916 Instruction *I = cast<Instruction>(V); 3917 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 3918 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3919 VectorizedRoot, Builder.getInt32(VecIdx++))); 3920 I->setOperand(1, Extract); 3921 I->removeFromParent(); 3922 I->insertAfter(Extract); 3923 InsertAfter = I; 3924 } 3925 } 3926 // Move to the next bundle. 3927 i += VF - 1; 3928 Changed = true; 3929 } 3930 } 3931 3932 return Changed; 3933 } 3934 3935 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3936 if (!V) 3937 return false; 3938 3939 // Try to vectorize V. 3940 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3941 return true; 3942 3943 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3944 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3945 // Try to skip B. 3946 if (B && B->hasOneUse()) { 3947 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3948 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3949 if (tryToVectorizePair(A, B0, R)) { 3950 return true; 3951 } 3952 if (tryToVectorizePair(A, B1, R)) { 3953 return true; 3954 } 3955 } 3956 3957 // Try to skip A. 3958 if (A && A->hasOneUse()) { 3959 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3960 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3961 if (tryToVectorizePair(A0, B, R)) { 3962 return true; 3963 } 3964 if (tryToVectorizePair(A1, B, R)) { 3965 return true; 3966 } 3967 } 3968 return 0; 3969 } 3970 3971 /// \brief Generate a shuffle mask to be used in a reduction tree. 3972 /// 3973 /// \param VecLen The length of the vector to be reduced. 3974 /// \param NumEltsToRdx The number of elements that should be reduced in the 3975 /// vector. 3976 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3977 /// reduction. A pairwise reduction will generate a mask of 3978 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3979 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3980 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3981 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3982 bool IsPairwise, bool IsLeft, 3983 IRBuilder<> &Builder) { 3984 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3985 3986 SmallVector<Constant *, 32> ShuffleMask( 3987 VecLen, UndefValue::get(Builder.getInt32Ty())); 3988 3989 if (IsPairwise) 3990 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3991 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3992 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3993 else 3994 // Move the upper half of the vector to the lower half. 3995 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3996 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3997 3998 return ConstantVector::get(ShuffleMask); 3999 } 4000 4001 namespace { 4002 /// Model horizontal reductions. 4003 /// 4004 /// A horizontal reduction is a tree of reduction operations (currently add and 4005 /// fadd) that has operations that can be put into a vector as its leaf. 4006 /// For example, this tree: 4007 /// 4008 /// mul mul mul mul 4009 /// \ / \ / 4010 /// + + 4011 /// \ / 4012 /// + 4013 /// This tree has "mul" as its reduced values and "+" as its reduction 4014 /// operations. A reduction might be feeding into a store or a binary operation 4015 /// feeding a phi. 4016 /// ... 4017 /// \ / 4018 /// + 4019 /// | 4020 /// phi += 4021 /// 4022 /// Or: 4023 /// ... 4024 /// \ / 4025 /// + 4026 /// | 4027 /// *p = 4028 /// 4029 class HorizontalReduction { 4030 SmallVector<Value *, 16> ReductionOps; 4031 SmallVector<Value *, 32> ReducedVals; 4032 4033 BinaryOperator *ReductionRoot; 4034 PHINode *ReductionPHI; 4035 4036 /// The opcode of the reduction. 4037 unsigned ReductionOpcode; 4038 /// The opcode of the values we perform a reduction on. 4039 unsigned ReducedValueOpcode; 4040 /// Should we model this reduction as a pairwise reduction tree or a tree that 4041 /// splits the vector in halves and adds those halves. 4042 bool IsPairwiseReduction; 4043 4044 public: 4045 /// The width of one full horizontal reduction operation. 4046 unsigned ReduxWidth; 4047 4048 /// Minimal width of available vector registers. It's used to determine 4049 /// ReduxWidth. 4050 unsigned MinVecRegSize; 4051 4052 HorizontalReduction(unsigned MinVecRegSize) 4053 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 4054 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 4055 MinVecRegSize(MinVecRegSize) {} 4056 4057 /// \brief Try to find a reduction tree. 4058 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4059 assert((!Phi || is_contained(Phi->operands(), B)) && 4060 "Thi phi needs to use the binary operator"); 4061 4062 // We could have a initial reductions that is not an add. 4063 // r *= v1 + v2 + v3 + v4 4064 // In such a case start looking for a tree rooted in the first '+'. 4065 if (Phi) { 4066 if (B->getOperand(0) == Phi) { 4067 Phi = nullptr; 4068 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4069 } else if (B->getOperand(1) == Phi) { 4070 Phi = nullptr; 4071 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4072 } 4073 } 4074 4075 if (!B) 4076 return false; 4077 4078 Type *Ty = B->getType(); 4079 if (!isValidElementType(Ty)) 4080 return false; 4081 4082 const DataLayout &DL = B->getModule()->getDataLayout(); 4083 ReductionOpcode = B->getOpcode(); 4084 ReducedValueOpcode = 0; 4085 // FIXME: Register size should be a parameter to this function, so we can 4086 // try different vectorization factors. 4087 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4088 ReductionRoot = B; 4089 ReductionPHI = Phi; 4090 4091 if (ReduxWidth < 4) 4092 return false; 4093 4094 // We currently only support adds. 4095 if (ReductionOpcode != Instruction::Add && 4096 ReductionOpcode != Instruction::FAdd) 4097 return false; 4098 4099 // Post order traverse the reduction tree starting at B. We only handle true 4100 // trees containing only binary operators or selects. 4101 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4102 Stack.push_back(std::make_pair(B, 0)); 4103 while (!Stack.empty()) { 4104 Instruction *TreeN = Stack.back().first; 4105 unsigned EdgeToVist = Stack.back().second++; 4106 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4107 4108 // Only handle trees in the current basic block. 4109 if (TreeN->getParent() != B->getParent()) 4110 return false; 4111 4112 // Each tree node needs to have one user except for the ultimate 4113 // reduction. 4114 if (!TreeN->hasOneUse() && TreeN != B) 4115 return false; 4116 4117 // Postorder vist. 4118 if (EdgeToVist == 2 || IsReducedValue) { 4119 if (IsReducedValue) { 4120 // Make sure that the opcodes of the operations that we are going to 4121 // reduce match. 4122 if (!ReducedValueOpcode) 4123 ReducedValueOpcode = TreeN->getOpcode(); 4124 else if (ReducedValueOpcode != TreeN->getOpcode()) 4125 return false; 4126 ReducedVals.push_back(TreeN); 4127 } else { 4128 // We need to be able to reassociate the adds. 4129 if (!TreeN->isAssociative()) 4130 return false; 4131 ReductionOps.push_back(TreeN); 4132 } 4133 // Retract. 4134 Stack.pop_back(); 4135 continue; 4136 } 4137 4138 // Visit left or right. 4139 Value *NextV = TreeN->getOperand(EdgeToVist); 4140 // We currently only allow BinaryOperator's and SelectInst's as reduction 4141 // values in our tree. 4142 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 4143 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 4144 else if (NextV != Phi) 4145 return false; 4146 } 4147 return true; 4148 } 4149 4150 /// \brief Attempt to vectorize the tree found by 4151 /// matchAssociativeReduction. 4152 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4153 if (ReducedVals.empty()) 4154 return false; 4155 4156 unsigned NumReducedVals = ReducedVals.size(); 4157 if (NumReducedVals < ReduxWidth) 4158 return false; 4159 4160 Value *VectorizedTree = nullptr; 4161 IRBuilder<> Builder(ReductionRoot); 4162 FastMathFlags Unsafe; 4163 Unsafe.setUnsafeAlgebra(); 4164 Builder.setFastMathFlags(Unsafe); 4165 unsigned i = 0; 4166 4167 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4168 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4169 V.buildTree(VL, ReductionOps); 4170 if (V.shouldReorder()) { 4171 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4172 V.buildTree(Reversed, ReductionOps); 4173 } 4174 V.computeMinimumValueSizes(); 4175 4176 // Estimate cost. 4177 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4178 if (Cost >= -SLPCostThreshold) 4179 break; 4180 4181 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4182 << ". (HorRdx)\n"); 4183 4184 // Vectorize a tree. 4185 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4186 Value *VectorizedRoot = V.vectorizeTree(); 4187 4188 // Emit a reduction. 4189 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4190 if (VectorizedTree) { 4191 Builder.SetCurrentDebugLocation(Loc); 4192 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4193 ReducedSubTree, "bin.rdx"); 4194 } else 4195 VectorizedTree = ReducedSubTree; 4196 } 4197 4198 if (VectorizedTree) { 4199 // Finish the reduction. 4200 for (; i < NumReducedVals; ++i) { 4201 Builder.SetCurrentDebugLocation( 4202 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4203 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4204 ReducedVals[i]); 4205 } 4206 // Update users. 4207 if (ReductionPHI) { 4208 assert(ReductionRoot && "Need a reduction operation"); 4209 ReductionRoot->setOperand(0, VectorizedTree); 4210 ReductionRoot->setOperand(1, ReductionPHI); 4211 } else 4212 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4213 } 4214 return VectorizedTree != nullptr; 4215 } 4216 4217 unsigned numReductionValues() const { 4218 return ReducedVals.size(); 4219 } 4220 4221 private: 4222 /// \brief Calculate the cost of a reduction. 4223 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4224 Type *ScalarTy = FirstReducedVal->getType(); 4225 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4226 4227 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4228 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4229 4230 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4231 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4232 4233 int ScalarReduxCost = 4234 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4235 4236 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4237 << " for reduction that starts with " << *FirstReducedVal 4238 << " (It is a " 4239 << (IsPairwiseReduction ? "pairwise" : "splitting") 4240 << " reduction)\n"); 4241 4242 return VecReduxCost - ScalarReduxCost; 4243 } 4244 4245 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4246 Value *R, const Twine &Name = "") { 4247 if (Opcode == Instruction::FAdd) 4248 return Builder.CreateFAdd(L, R, Name); 4249 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4250 } 4251 4252 /// \brief Emit a horizontal reduction of the vectorized value. 4253 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4254 assert(VectorizedValue && "Need to have a vectorized tree node"); 4255 assert(isPowerOf2_32(ReduxWidth) && 4256 "We only handle power-of-two reductions for now"); 4257 4258 Value *TmpVec = VectorizedValue; 4259 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4260 if (IsPairwiseReduction) { 4261 Value *LeftMask = 4262 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4263 Value *RightMask = 4264 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4265 4266 Value *LeftShuf = Builder.CreateShuffleVector( 4267 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4268 Value *RightShuf = Builder.CreateShuffleVector( 4269 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4270 "rdx.shuf.r"); 4271 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4272 "bin.rdx"); 4273 } else { 4274 Value *UpperHalf = 4275 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4276 Value *Shuf = Builder.CreateShuffleVector( 4277 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4278 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4279 } 4280 } 4281 4282 // The result is in the first element of the vector. 4283 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4284 } 4285 }; 4286 } // end anonymous namespace 4287 4288 /// \brief Recognize construction of vectors like 4289 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4290 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4291 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4292 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4293 /// 4294 /// Returns true if it matches 4295 /// 4296 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4297 SmallVectorImpl<Value *> &BuildVector, 4298 SmallVectorImpl<Value *> &BuildVectorOpds) { 4299 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4300 return false; 4301 4302 InsertElementInst *IE = FirstInsertElem; 4303 while (true) { 4304 BuildVector.push_back(IE); 4305 BuildVectorOpds.push_back(IE->getOperand(1)); 4306 4307 if (IE->use_empty()) 4308 return false; 4309 4310 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4311 if (!NextUse) 4312 return true; 4313 4314 // If this isn't the final use, make sure the next insertelement is the only 4315 // use. It's OK if the final constructed vector is used multiple times 4316 if (!IE->hasOneUse()) 4317 return false; 4318 4319 IE = NextUse; 4320 } 4321 4322 return false; 4323 } 4324 4325 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4326 /// 4327 /// \return true if it matches. 4328 static bool findBuildAggregate(InsertValueInst *IV, 4329 SmallVectorImpl<Value *> &BuildVector, 4330 SmallVectorImpl<Value *> &BuildVectorOpds) { 4331 if (!IV->hasOneUse()) 4332 return false; 4333 Value *V = IV->getAggregateOperand(); 4334 if (!isa<UndefValue>(V)) { 4335 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4336 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4337 return false; 4338 } 4339 BuildVector.push_back(IV); 4340 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4341 return true; 4342 } 4343 4344 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4345 return V->getType() < V2->getType(); 4346 } 4347 4348 /// \brief Try and get a reduction value from a phi node. 4349 /// 4350 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4351 /// if they come from either \p ParentBB or a containing loop latch. 4352 /// 4353 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4354 /// if not possible. 4355 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4356 BasicBlock *ParentBB, LoopInfo *LI) { 4357 // There are situations where the reduction value is not dominated by the 4358 // reduction phi. Vectorizing such cases has been reported to cause 4359 // miscompiles. See PR25787. 4360 auto DominatedReduxValue = [&](Value *R) { 4361 return ( 4362 dyn_cast<Instruction>(R) && 4363 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4364 }; 4365 4366 Value *Rdx = nullptr; 4367 4368 // Return the incoming value if it comes from the same BB as the phi node. 4369 if (P->getIncomingBlock(0) == ParentBB) { 4370 Rdx = P->getIncomingValue(0); 4371 } else if (P->getIncomingBlock(1) == ParentBB) { 4372 Rdx = P->getIncomingValue(1); 4373 } 4374 4375 if (Rdx && DominatedReduxValue(Rdx)) 4376 return Rdx; 4377 4378 // Otherwise, check whether we have a loop latch to look at. 4379 Loop *BBL = LI->getLoopFor(ParentBB); 4380 if (!BBL) 4381 return nullptr; 4382 BasicBlock *BBLatch = BBL->getLoopLatch(); 4383 if (!BBLatch) 4384 return nullptr; 4385 4386 // There is a loop latch, return the incoming value if it comes from 4387 // that. This reduction pattern occassionaly turns up. 4388 if (P->getIncomingBlock(0) == BBLatch) { 4389 Rdx = P->getIncomingValue(0); 4390 } else if (P->getIncomingBlock(1) == BBLatch) { 4391 Rdx = P->getIncomingValue(1); 4392 } 4393 4394 if (Rdx && DominatedReduxValue(Rdx)) 4395 return Rdx; 4396 4397 return nullptr; 4398 } 4399 4400 /// \brief Attempt to reduce a horizontal reduction. 4401 /// If it is legal to match a horizontal reduction feeding 4402 /// the phi node P with reduction operators BI, then check if it 4403 /// can be done. 4404 /// \returns true if a horizontal reduction was matched and reduced. 4405 /// \returns false if a horizontal reduction was not matched. 4406 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4407 BoUpSLP &R, TargetTransformInfo *TTI, 4408 unsigned MinRegSize) { 4409 if (!ShouldVectorizeHor) 4410 return false; 4411 4412 HorizontalReduction HorRdx(MinRegSize); 4413 if (!HorRdx.matchAssociativeReduction(P, BI)) 4414 return false; 4415 4416 // If there is a sufficient number of reduction values, reduce 4417 // to a nearby power-of-2. Can safely generate oversized 4418 // vectors and rely on the backend to split them to legal sizes. 4419 HorRdx.ReduxWidth = 4420 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4421 4422 return HorRdx.tryToReduce(R, TTI); 4423 } 4424 4425 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4426 bool Changed = false; 4427 SmallVector<Value *, 4> Incoming; 4428 SmallSet<Value *, 16> VisitedInstrs; 4429 4430 bool HaveVectorizedPhiNodes = true; 4431 while (HaveVectorizedPhiNodes) { 4432 HaveVectorizedPhiNodes = false; 4433 4434 // Collect the incoming values from the PHIs. 4435 Incoming.clear(); 4436 for (Instruction &I : *BB) { 4437 PHINode *P = dyn_cast<PHINode>(&I); 4438 if (!P) 4439 break; 4440 4441 if (!VisitedInstrs.count(P)) 4442 Incoming.push_back(P); 4443 } 4444 4445 // Sort by type. 4446 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4447 4448 // Try to vectorize elements base on their type. 4449 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4450 E = Incoming.end(); 4451 IncIt != E;) { 4452 4453 // Look for the next elements with the same type. 4454 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4455 while (SameTypeIt != E && 4456 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4457 VisitedInstrs.insert(*SameTypeIt); 4458 ++SameTypeIt; 4459 } 4460 4461 // Try to vectorize them. 4462 unsigned NumElts = (SameTypeIt - IncIt); 4463 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4464 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4465 // Success start over because instructions might have been changed. 4466 HaveVectorizedPhiNodes = true; 4467 Changed = true; 4468 break; 4469 } 4470 4471 // Start over at the next instruction of a different type (or the end). 4472 IncIt = SameTypeIt; 4473 } 4474 } 4475 4476 VisitedInstrs.clear(); 4477 4478 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4479 // We may go through BB multiple times so skip the one we have checked. 4480 if (!VisitedInstrs.insert(&*it).second) 4481 continue; 4482 4483 if (isa<DbgInfoIntrinsic>(it)) 4484 continue; 4485 4486 // Try to vectorize reductions that use PHINodes. 4487 if (PHINode *P = dyn_cast<PHINode>(it)) { 4488 // Check that the PHI is a reduction PHI. 4489 if (P->getNumIncomingValues() != 2) 4490 return Changed; 4491 4492 Value *Rdx = getReductionValue(DT, P, BB, LI); 4493 4494 // Check if this is a Binary Operator. 4495 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4496 if (!BI) 4497 continue; 4498 4499 // Try to match and vectorize a horizontal reduction. 4500 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4501 Changed = true; 4502 it = BB->begin(); 4503 e = BB->end(); 4504 continue; 4505 } 4506 4507 Value *Inst = BI->getOperand(0); 4508 if (Inst == P) 4509 Inst = BI->getOperand(1); 4510 4511 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4512 // We would like to start over since some instructions are deleted 4513 // and the iterator may become invalid value. 4514 Changed = true; 4515 it = BB->begin(); 4516 e = BB->end(); 4517 continue; 4518 } 4519 4520 continue; 4521 } 4522 4523 if (ShouldStartVectorizeHorAtStore) 4524 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4525 if (BinaryOperator *BinOp = 4526 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4527 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4528 R.getMinVecRegSize()) || 4529 tryToVectorize(BinOp, R)) { 4530 Changed = true; 4531 it = BB->begin(); 4532 e = BB->end(); 4533 continue; 4534 } 4535 } 4536 4537 // Try to vectorize horizontal reductions feeding into a return. 4538 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4539 if (RI->getNumOperands() != 0) 4540 if (BinaryOperator *BinOp = 4541 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4542 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4543 if (tryToVectorizePair(BinOp->getOperand(0), 4544 BinOp->getOperand(1), R)) { 4545 Changed = true; 4546 it = BB->begin(); 4547 e = BB->end(); 4548 continue; 4549 } 4550 } 4551 4552 // Try to vectorize trees that start at compare instructions. 4553 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4554 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4555 Changed = true; 4556 // We would like to start over since some instructions are deleted 4557 // and the iterator may become invalid value. 4558 it = BB->begin(); 4559 e = BB->end(); 4560 continue; 4561 } 4562 4563 for (int i = 0; i < 2; ++i) { 4564 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4565 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4566 Changed = true; 4567 // We would like to start over since some instructions are deleted 4568 // and the iterator may become invalid value. 4569 it = BB->begin(); 4570 e = BB->end(); 4571 break; 4572 } 4573 } 4574 } 4575 continue; 4576 } 4577 4578 // Try to vectorize trees that start at insertelement instructions. 4579 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4580 SmallVector<Value *, 16> BuildVector; 4581 SmallVector<Value *, 16> BuildVectorOpds; 4582 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4583 continue; 4584 4585 // Vectorize starting with the build vector operands ignoring the 4586 // BuildVector instructions for the purpose of scheduling and user 4587 // extraction. 4588 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4589 Changed = true; 4590 it = BB->begin(); 4591 e = BB->end(); 4592 } 4593 4594 continue; 4595 } 4596 4597 // Try to vectorize trees that start at insertvalue instructions feeding into 4598 // a store. 4599 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4600 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4601 const DataLayout &DL = BB->getModule()->getDataLayout(); 4602 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4603 SmallVector<Value *, 16> BuildVector; 4604 SmallVector<Value *, 16> BuildVectorOpds; 4605 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4606 continue; 4607 4608 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4609 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4610 Changed = true; 4611 it = BB->begin(); 4612 e = BB->end(); 4613 } 4614 continue; 4615 } 4616 } 4617 } 4618 } 4619 4620 return Changed; 4621 } 4622 4623 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4624 auto Changed = false; 4625 for (auto &Entry : GEPs) { 4626 4627 // If the getelementptr list has fewer than two elements, there's nothing 4628 // to do. 4629 if (Entry.second.size() < 2) 4630 continue; 4631 4632 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4633 << Entry.second.size() << ".\n"); 4634 4635 // We process the getelementptr list in chunks of 16 (like we do for 4636 // stores) to minimize compile-time. 4637 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4638 auto Len = std::min<unsigned>(BE - BI, 16); 4639 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4640 4641 // Initialize a set a candidate getelementptrs. Note that we use a 4642 // SetVector here to preserve program order. If the index computations 4643 // are vectorizable and begin with loads, we want to minimize the chance 4644 // of having to reorder them later. 4645 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4646 4647 // Some of the candidates may have already been vectorized after we 4648 // initially collected them. If so, the WeakVHs will have nullified the 4649 // values, so remove them from the set of candidates. 4650 Candidates.remove(nullptr); 4651 4652 // Remove from the set of candidates all pairs of getelementptrs with 4653 // constant differences. Such getelementptrs are likely not good 4654 // candidates for vectorization in a bottom-up phase since one can be 4655 // computed from the other. We also ensure all candidate getelementptr 4656 // indices are unique. 4657 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4658 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4659 if (!Candidates.count(GEPI)) 4660 continue; 4661 auto *SCEVI = SE->getSCEV(GEPList[I]); 4662 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4663 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4664 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4665 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4666 Candidates.remove(GEPList[I]); 4667 Candidates.remove(GEPList[J]); 4668 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4669 Candidates.remove(GEPList[J]); 4670 } 4671 } 4672 } 4673 4674 // We break out of the above computation as soon as we know there are 4675 // fewer than two candidates remaining. 4676 if (Candidates.size() < 2) 4677 continue; 4678 4679 // Add the single, non-constant index of each candidate to the bundle. We 4680 // ensured the indices met these constraints when we originally collected 4681 // the getelementptrs. 4682 SmallVector<Value *, 16> Bundle(Candidates.size()); 4683 auto BundleIndex = 0u; 4684 for (auto *V : Candidates) { 4685 auto *GEP = cast<GetElementPtrInst>(V); 4686 auto *GEPIdx = GEP->idx_begin()->get(); 4687 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4688 Bundle[BundleIndex++] = GEPIdx; 4689 } 4690 4691 // Try and vectorize the indices. We are currently only interested in 4692 // gather-like cases of the form: 4693 // 4694 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4695 // 4696 // where the loads of "a", the loads of "b", and the subtractions can be 4697 // performed in parallel. It's likely that detecting this pattern in a 4698 // bottom-up phase will be simpler and less costly than building a 4699 // full-blown top-down phase beginning at the consecutive loads. 4700 Changed |= tryToVectorizeList(Bundle, R); 4701 } 4702 } 4703 return Changed; 4704 } 4705 4706 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4707 bool Changed = false; 4708 // Attempt to sort and vectorize each of the store-groups. 4709 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4710 ++it) { 4711 if (it->second.size() < 2) 4712 continue; 4713 4714 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4715 << it->second.size() << ".\n"); 4716 4717 // Process the stores in chunks of 16. 4718 // TODO: The limit of 16 inhibits greater vectorization factors. 4719 // For example, AVX2 supports v32i8. Increasing this limit, however, 4720 // may cause a significant compile-time increase. 4721 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4722 unsigned Len = std::min<unsigned>(CE - CI, 16); 4723 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4724 -SLPCostThreshold, R); 4725 } 4726 } 4727 return Changed; 4728 } 4729 4730 char SLPVectorizer::ID = 0; 4731 static const char lv_name[] = "SLP Vectorizer"; 4732 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4733 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4734 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4735 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4736 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4737 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4738 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4739 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4740 4741 namespace llvm { 4742 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4743 } 4744