1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #ifdef EXPENSIVE_CHECKS
74 #include "llvm/IR/Verifier.h"
75 #endif
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/Local.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 // The maximum depth that the look-ahead score heuristic will explore
168 // when it probing among candidates for vectorization tree roots.
169 // The higher this value, the higher the compilation time overhead but unlike
170 // similar limit for operands ordering this is less frequently used, hence
171 // impact of higher value is less noticeable.
172 static cl::opt<int> RootLookAheadMaxDepth(
173     "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
174     cl::desc("The maximum look-ahead depth for searching best rooting option"));
175 
176 static cl::opt<bool>
177     ViewSLPTree("view-slp-tree", cl::Hidden,
178                 cl::desc("Display the SLP trees with Graphviz"));
179 
180 // Limit the number of alias checks. The limit is chosen so that
181 // it has no negative effect on the llvm benchmarks.
182 static const unsigned AliasedCheckLimit = 10;
183 
184 // Another limit for the alias checks: The maximum distance between load/store
185 // instructions where alias checks are done.
186 // This limit is useful for very large basic blocks.
187 static const unsigned MaxMemDepDistance = 160;
188 
189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
190 /// regions to be handled.
191 static const int MinScheduleRegionSize = 16;
192 
193 /// Predicate for the element types that the SLP vectorizer supports.
194 ///
195 /// The most important thing to filter here are types which are invalid in LLVM
196 /// vectors. We also filter target specific types which have absolutely no
197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
198 /// avoids spending time checking the cost model and realizing that they will
199 /// be inevitably scalarized.
200 static bool isValidElementType(Type *Ty) {
201   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
202          !Ty->isPPC_FP128Ty();
203 }
204 
205 /// \returns True if the value is a constant (but not globals/constant
206 /// expressions).
207 static bool isConstant(Value *V) {
208   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
209 }
210 
211 /// Checks if \p V is one of vector-like instructions, i.e. undef,
212 /// insertelement/extractelement with constant indices for fixed vector type or
213 /// extractvalue instruction.
214 static bool isVectorLikeInstWithConstOps(Value *V) {
215   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
216       !isa<ExtractValueInst, UndefValue>(V))
217     return false;
218   auto *I = dyn_cast<Instruction>(V);
219   if (!I || isa<ExtractValueInst>(I))
220     return true;
221   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
222     return false;
223   if (isa<ExtractElementInst>(I))
224     return isConstant(I->getOperand(1));
225   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
226   return isConstant(I->getOperand(2));
227 }
228 
229 /// \returns true if all of the instructions in \p VL are in the same block or
230 /// false otherwise.
231 static bool allSameBlock(ArrayRef<Value *> VL) {
232   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
233   if (!I0)
234     return false;
235   if (all_of(VL, isVectorLikeInstWithConstOps))
236     return true;
237 
238   BasicBlock *BB = I0->getParent();
239   for (int I = 1, E = VL.size(); I < E; I++) {
240     auto *II = dyn_cast<Instruction>(VL[I]);
241     if (!II)
242       return false;
243 
244     if (BB != II->getParent())
245       return false;
246   }
247   return true;
248 }
249 
250 /// \returns True if all of the values in \p VL are constants (but not
251 /// globals/constant expressions).
252 static bool allConstant(ArrayRef<Value *> VL) {
253   // Constant expressions and globals can't be vectorized like normal integer/FP
254   // constants.
255   return all_of(VL, isConstant);
256 }
257 
258 /// \returns True if all of the values in \p VL are identical or some of them
259 /// are UndefValue.
260 static bool isSplat(ArrayRef<Value *> VL) {
261   Value *FirstNonUndef = nullptr;
262   for (Value *V : VL) {
263     if (isa<UndefValue>(V))
264       continue;
265     if (!FirstNonUndef) {
266       FirstNonUndef = V;
267       continue;
268     }
269     if (V != FirstNonUndef)
270       return false;
271   }
272   return FirstNonUndef != nullptr;
273 }
274 
275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
276 static bool isCommutative(Instruction *I) {
277   if (auto *Cmp = dyn_cast<CmpInst>(I))
278     return Cmp->isCommutative();
279   if (auto *BO = dyn_cast<BinaryOperator>(I))
280     return BO->isCommutative();
281   // TODO: This should check for generic Instruction::isCommutative(), but
282   //       we need to confirm that the caller code correctly handles Intrinsics
283   //       for example (does not have 2 operands).
284   return false;
285 }
286 
287 /// Checks if the given value is actually an undefined constant vector.
288 static bool isUndefVector(const Value *V) {
289   if (isa<UndefValue>(V))
290     return true;
291   auto *C = dyn_cast<Constant>(V);
292   if (!C)
293     return false;
294   if (!C->containsUndefOrPoisonElement())
295     return false;
296   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
297   if (!VecTy)
298     return false;
299   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
300     if (Constant *Elem = C->getAggregateElement(I))
301       if (!isa<UndefValue>(Elem))
302         return false;
303   }
304   return true;
305 }
306 
307 /// Checks if the vector of instructions can be represented as a shuffle, like:
308 /// %x0 = extractelement <4 x i8> %x, i32 0
309 /// %x3 = extractelement <4 x i8> %x, i32 3
310 /// %y1 = extractelement <4 x i8> %y, i32 1
311 /// %y2 = extractelement <4 x i8> %y, i32 2
312 /// %x0x0 = mul i8 %x0, %x0
313 /// %x3x3 = mul i8 %x3, %x3
314 /// %y1y1 = mul i8 %y1, %y1
315 /// %y2y2 = mul i8 %y2, %y2
316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
320 /// ret <4 x i8> %ins4
321 /// can be transformed into:
322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
323 ///                                                         i32 6>
324 /// %2 = mul <4 x i8> %1, %1
325 /// ret <4 x i8> %2
326 /// We convert this initially to something like:
327 /// %x0 = extractelement <4 x i8> %x, i32 0
328 /// %x3 = extractelement <4 x i8> %x, i32 3
329 /// %y1 = extractelement <4 x i8> %y, i32 1
330 /// %y2 = extractelement <4 x i8> %y, i32 2
331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
335 /// %5 = mul <4 x i8> %4, %4
336 /// %6 = extractelement <4 x i8> %5, i32 0
337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
338 /// %7 = extractelement <4 x i8> %5, i32 1
339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
340 /// %8 = extractelement <4 x i8> %5, i32 2
341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
342 /// %9 = extractelement <4 x i8> %5, i32 3
343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
344 /// ret <4 x i8> %ins4
345 /// InstCombiner transforms this into a shuffle and vector mul
346 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
347 /// TODO: Can we split off and reuse the shuffle mask detection from
348 /// TargetTransformInfo::getInstructionThroughput?
349 static Optional<TargetTransformInfo::ShuffleKind>
350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
351   const auto *It =
352       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
353   if (It == VL.end())
354     return None;
355   auto *EI0 = cast<ExtractElementInst>(*It);
356   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
357     return None;
358   unsigned Size =
359       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
360   Value *Vec1 = nullptr;
361   Value *Vec2 = nullptr;
362   enum ShuffleMode { Unknown, Select, Permute };
363   ShuffleMode CommonShuffleMode = Unknown;
364   Mask.assign(VL.size(), UndefMaskElem);
365   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
366     // Undef can be represented as an undef element in a vector.
367     if (isa<UndefValue>(VL[I]))
368       continue;
369     auto *EI = cast<ExtractElementInst>(VL[I]);
370     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
371       return None;
372     auto *Vec = EI->getVectorOperand();
373     // We can extractelement from undef or poison vector.
374     if (isUndefVector(Vec))
375       continue;
376     // All vector operands must have the same number of vector elements.
377     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
378       return None;
379     if (isa<UndefValue>(EI->getIndexOperand()))
380       continue;
381     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
382     if (!Idx)
383       return None;
384     // Undefined behavior if Idx is negative or >= Size.
385     if (Idx->getValue().uge(Size))
386       continue;
387     unsigned IntIdx = Idx->getValue().getZExtValue();
388     Mask[I] = IntIdx;
389     // For correct shuffling we have to have at most 2 different vector operands
390     // in all extractelement instructions.
391     if (!Vec1 || Vec1 == Vec) {
392       Vec1 = Vec;
393     } else if (!Vec2 || Vec2 == Vec) {
394       Vec2 = Vec;
395       Mask[I] += Size;
396     } else {
397       return None;
398     }
399     if (CommonShuffleMode == Permute)
400       continue;
401     // If the extract index is not the same as the operation number, it is a
402     // permutation.
403     if (IntIdx != I) {
404       CommonShuffleMode = Permute;
405       continue;
406     }
407     CommonShuffleMode = Select;
408   }
409   // If we're not crossing lanes in different vectors, consider it as blending.
410   if (CommonShuffleMode == Select && Vec2)
411     return TargetTransformInfo::SK_Select;
412   // If Vec2 was never used, we have a permutation of a single vector, otherwise
413   // we have permutation of 2 vectors.
414   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
415               : TargetTransformInfo::SK_PermuteSingleSrc;
416 }
417 
418 namespace {
419 
420 /// Main data required for vectorization of instructions.
421 struct InstructionsState {
422   /// The very first instruction in the list with the main opcode.
423   Value *OpValue = nullptr;
424 
425   /// The main/alternate instruction.
426   Instruction *MainOp = nullptr;
427   Instruction *AltOp = nullptr;
428 
429   /// The main/alternate opcodes for the list of instructions.
430   unsigned getOpcode() const {
431     return MainOp ? MainOp->getOpcode() : 0;
432   }
433 
434   unsigned getAltOpcode() const {
435     return AltOp ? AltOp->getOpcode() : 0;
436   }
437 
438   /// Some of the instructions in the list have alternate opcodes.
439   bool isAltShuffle() const { return AltOp != MainOp; }
440 
441   bool isOpcodeOrAlt(Instruction *I) const {
442     unsigned CheckedOpcode = I->getOpcode();
443     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
444   }
445 
446   InstructionsState() = delete;
447   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
448       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
449 };
450 
451 } // end anonymous namespace
452 
453 /// Chooses the correct key for scheduling data. If \p Op has the same (or
454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
455 /// OpValue.
456 static Value *isOneOf(const InstructionsState &S, Value *Op) {
457   auto *I = dyn_cast<Instruction>(Op);
458   if (I && S.isOpcodeOrAlt(I))
459     return Op;
460   return S.OpValue;
461 }
462 
463 /// \returns true if \p Opcode is allowed as part of of the main/alternate
464 /// instruction for SLP vectorization.
465 ///
466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
467 /// "shuffled out" lane would result in division by zero.
468 static bool isValidForAlternation(unsigned Opcode) {
469   if (Instruction::isIntDivRem(Opcode))
470     return false;
471 
472   return true;
473 }
474 
475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
476                                        unsigned BaseIndex = 0);
477 
478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
479 /// compatible instructions or constants, or just some other regular values.
480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
481                                 Value *Op1) {
482   return (isConstant(BaseOp0) && isConstant(Op0)) ||
483          (isConstant(BaseOp1) && isConstant(Op1)) ||
484          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
485           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
486          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
487          getSameOpcode({BaseOp1, Op1}).getOpcode();
488 }
489 
490 /// \returns analysis of the Instructions in \p VL described in
491 /// InstructionsState, the Opcode that we suppose the whole list
492 /// could be vectorized even if its structure is diverse.
493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
494                                        unsigned BaseIndex) {
495   // Make sure these are all Instructions.
496   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
497     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
498 
499   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
500   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
501   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
502   CmpInst::Predicate BasePred =
503       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
504               : CmpInst::BAD_ICMP_PREDICATE;
505   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
506   unsigned AltOpcode = Opcode;
507   unsigned AltIndex = BaseIndex;
508 
509   // Check for one alternate opcode from another BinaryOperator.
510   // TODO - generalize to support all operators (types, calls etc.).
511   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
512     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
513     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
514       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
515         continue;
516       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
517           isValidForAlternation(Opcode)) {
518         AltOpcode = InstOpcode;
519         AltIndex = Cnt;
520         continue;
521       }
522     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
523       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
524       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
525       if (Ty0 == Ty1) {
526         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
527           continue;
528         if (Opcode == AltOpcode) {
529           assert(isValidForAlternation(Opcode) &&
530                  isValidForAlternation(InstOpcode) &&
531                  "Cast isn't safe for alternation, logic needs to be updated!");
532           AltOpcode = InstOpcode;
533           AltIndex = Cnt;
534           continue;
535         }
536       }
537     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
538       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
539       auto *Inst = cast<Instruction>(VL[Cnt]);
540       Type *Ty0 = BaseInst->getOperand(0)->getType();
541       Type *Ty1 = Inst->getOperand(0)->getType();
542       if (Ty0 == Ty1) {
543         Value *BaseOp0 = BaseInst->getOperand(0);
544         Value *BaseOp1 = BaseInst->getOperand(1);
545         Value *Op0 = Inst->getOperand(0);
546         Value *Op1 = Inst->getOperand(1);
547         CmpInst::Predicate CurrentPred =
548             cast<CmpInst>(VL[Cnt])->getPredicate();
549         CmpInst::Predicate SwappedCurrentPred =
550             CmpInst::getSwappedPredicate(CurrentPred);
551         // Check for compatible operands. If the corresponding operands are not
552         // compatible - need to perform alternate vectorization.
553         if (InstOpcode == Opcode) {
554           if (BasePred == CurrentPred &&
555               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
556             continue;
557           if (BasePred == SwappedCurrentPred &&
558               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
559             continue;
560           if (E == 2 &&
561               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
562             continue;
563           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
564           CmpInst::Predicate AltPred = AltInst->getPredicate();
565           Value *AltOp0 = AltInst->getOperand(0);
566           Value *AltOp1 = AltInst->getOperand(1);
567           // Check if operands are compatible with alternate operands.
568           if (AltPred == CurrentPred &&
569               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
570             continue;
571           if (AltPred == SwappedCurrentPred &&
572               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
573             continue;
574         }
575         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
576           assert(isValidForAlternation(Opcode) &&
577                  isValidForAlternation(InstOpcode) &&
578                  "Cast isn't safe for alternation, logic needs to be updated!");
579           AltIndex = Cnt;
580           continue;
581         }
582         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
583         CmpInst::Predicate AltPred = AltInst->getPredicate();
584         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
585             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
586           continue;
587       }
588     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
589       continue;
590     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
591   }
592 
593   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
594                            cast<Instruction>(VL[AltIndex]));
595 }
596 
597 /// \returns true if all of the values in \p VL have the same type or false
598 /// otherwise.
599 static bool allSameType(ArrayRef<Value *> VL) {
600   Type *Ty = VL[0]->getType();
601   for (int i = 1, e = VL.size(); i < e; i++)
602     if (VL[i]->getType() != Ty)
603       return false;
604 
605   return true;
606 }
607 
608 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
609 static Optional<unsigned> getExtractIndex(Instruction *E) {
610   unsigned Opcode = E->getOpcode();
611   assert((Opcode == Instruction::ExtractElement ||
612           Opcode == Instruction::ExtractValue) &&
613          "Expected extractelement or extractvalue instruction.");
614   if (Opcode == Instruction::ExtractElement) {
615     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
616     if (!CI)
617       return None;
618     return CI->getZExtValue();
619   }
620   ExtractValueInst *EI = cast<ExtractValueInst>(E);
621   if (EI->getNumIndices() != 1)
622     return None;
623   return *EI->idx_begin();
624 }
625 
626 /// \returns True if in-tree use also needs extract. This refers to
627 /// possible scalar operand in vectorized instruction.
628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
629                                     TargetLibraryInfo *TLI) {
630   unsigned Opcode = UserInst->getOpcode();
631   switch (Opcode) {
632   case Instruction::Load: {
633     LoadInst *LI = cast<LoadInst>(UserInst);
634     return (LI->getPointerOperand() == Scalar);
635   }
636   case Instruction::Store: {
637     StoreInst *SI = cast<StoreInst>(UserInst);
638     return (SI->getPointerOperand() == Scalar);
639   }
640   case Instruction::Call: {
641     CallInst *CI = cast<CallInst>(UserInst);
642     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
643     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
644       if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
645         return (CI->getArgOperand(i) == Scalar);
646     }
647     LLVM_FALLTHROUGH;
648   }
649   default:
650     return false;
651   }
652 }
653 
654 /// \returns the AA location that is being access by the instruction.
655 static MemoryLocation getLocation(Instruction *I) {
656   if (StoreInst *SI = dyn_cast<StoreInst>(I))
657     return MemoryLocation::get(SI);
658   if (LoadInst *LI = dyn_cast<LoadInst>(I))
659     return MemoryLocation::get(LI);
660   return MemoryLocation();
661 }
662 
663 /// \returns True if the instruction is not a volatile or atomic load/store.
664 static bool isSimple(Instruction *I) {
665   if (LoadInst *LI = dyn_cast<LoadInst>(I))
666     return LI->isSimple();
667   if (StoreInst *SI = dyn_cast<StoreInst>(I))
668     return SI->isSimple();
669   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
670     return !MI->isVolatile();
671   return true;
672 }
673 
674 /// Shuffles \p Mask in accordance with the given \p SubMask.
675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
676   if (SubMask.empty())
677     return;
678   if (Mask.empty()) {
679     Mask.append(SubMask.begin(), SubMask.end());
680     return;
681   }
682   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
683   int TermValue = std::min(Mask.size(), SubMask.size());
684   for (int I = 0, E = SubMask.size(); I < E; ++I) {
685     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
686         Mask[SubMask[I]] >= TermValue)
687       continue;
688     NewMask[I] = Mask[SubMask[I]];
689   }
690   Mask.swap(NewMask);
691 }
692 
693 /// Order may have elements assigned special value (size) which is out of
694 /// bounds. Such indices only appear on places which correspond to undef values
695 /// (see canReuseExtract for details) and used in order to avoid undef values
696 /// have effect on operands ordering.
697 /// The first loop below simply finds all unused indices and then the next loop
698 /// nest assigns these indices for undef values positions.
699 /// As an example below Order has two undef positions and they have assigned
700 /// values 3 and 7 respectively:
701 /// before:  6 9 5 4 9 2 1 0
702 /// after:   6 3 5 4 7 2 1 0
703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
704   const unsigned Sz = Order.size();
705   SmallBitVector UnusedIndices(Sz, /*t=*/true);
706   SmallBitVector MaskedIndices(Sz);
707   for (unsigned I = 0; I < Sz; ++I) {
708     if (Order[I] < Sz)
709       UnusedIndices.reset(Order[I]);
710     else
711       MaskedIndices.set(I);
712   }
713   if (MaskedIndices.none())
714     return;
715   assert(UnusedIndices.count() == MaskedIndices.count() &&
716          "Non-synced masked/available indices.");
717   int Idx = UnusedIndices.find_first();
718   int MIdx = MaskedIndices.find_first();
719   while (MIdx >= 0) {
720     assert(Idx >= 0 && "Indices must be synced.");
721     Order[MIdx] = Idx;
722     Idx = UnusedIndices.find_next(Idx);
723     MIdx = MaskedIndices.find_next(MIdx);
724   }
725 }
726 
727 namespace llvm {
728 
729 static void inversePermutation(ArrayRef<unsigned> Indices,
730                                SmallVectorImpl<int> &Mask) {
731   Mask.clear();
732   const unsigned E = Indices.size();
733   Mask.resize(E, UndefMaskElem);
734   for (unsigned I = 0; I < E; ++I)
735     Mask[Indices[I]] = I;
736 }
737 
738 /// \returns inserting index of InsertElement or InsertValue instruction,
739 /// using Offset as base offset for index.
740 static Optional<unsigned> getInsertIndex(const Value *InsertInst,
741                                          unsigned Offset = 0) {
742   int Index = Offset;
743   if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
744     if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
745       auto *VT = cast<FixedVectorType>(IE->getType());
746       if (CI->getValue().uge(VT->getNumElements()))
747         return None;
748       Index *= VT->getNumElements();
749       Index += CI->getZExtValue();
750       return Index;
751     }
752     return None;
753   }
754 
755   const auto *IV = cast<InsertValueInst>(InsertInst);
756   Type *CurrentType = IV->getType();
757   for (unsigned I : IV->indices()) {
758     if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
759       Index *= ST->getNumElements();
760       CurrentType = ST->getElementType(I);
761     } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
762       Index *= AT->getNumElements();
763       CurrentType = AT->getElementType();
764     } else {
765       return None;
766     }
767     Index += I;
768   }
769   return Index;
770 }
771 
772 /// Reorders the list of scalars in accordance with the given \p Mask.
773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
774                            ArrayRef<int> Mask) {
775   assert(!Mask.empty() && "Expected non-empty mask.");
776   SmallVector<Value *> Prev(Scalars.size(),
777                             UndefValue::get(Scalars.front()->getType()));
778   Prev.swap(Scalars);
779   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
780     if (Mask[I] != UndefMaskElem)
781       Scalars[Mask[I]] = Prev[I];
782 }
783 
784 /// Checks if the provided value does not require scheduling. It does not
785 /// require scheduling if this is not an instruction or it is an instruction
786 /// that does not read/write memory and all operands are either not instructions
787 /// or phi nodes or instructions from different blocks.
788 static bool areAllOperandsNonInsts(Value *V) {
789   auto *I = dyn_cast<Instruction>(V);
790   if (!I)
791     return true;
792   return !mayHaveNonDefUseDependency(*I) &&
793     all_of(I->operands(), [I](Value *V) {
794       auto *IO = dyn_cast<Instruction>(V);
795       if (!IO)
796         return true;
797       return isa<PHINode>(IO) || IO->getParent() != I->getParent();
798     });
799 }
800 
801 /// Checks if the provided value does not require scheduling. It does not
802 /// require scheduling if this is not an instruction or it is an instruction
803 /// that does not read/write memory and all users are phi nodes or instructions
804 /// from the different blocks.
805 static bool isUsedOutsideBlock(Value *V) {
806   auto *I = dyn_cast<Instruction>(V);
807   if (!I)
808     return true;
809   // Limits the number of uses to save compile time.
810   constexpr int UsesLimit = 8;
811   return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
812          all_of(I->users(), [I](User *U) {
813            auto *IU = dyn_cast<Instruction>(U);
814            if (!IU)
815              return true;
816            return IU->getParent() != I->getParent() || isa<PHINode>(IU);
817          });
818 }
819 
820 /// Checks if the specified value does not require scheduling. It does not
821 /// require scheduling if all operands and all users do not need to be scheduled
822 /// in the current basic block.
823 static bool doesNotNeedToBeScheduled(Value *V) {
824   return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
825 }
826 
827 /// Checks if the specified array of instructions does not require scheduling.
828 /// It is so if all either instructions have operands that do not require
829 /// scheduling or their users do not require scheduling since they are phis or
830 /// in other basic blocks.
831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
832   return !VL.empty() &&
833          (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
834 }
835 
836 namespace slpvectorizer {
837 
838 /// Bottom Up SLP Vectorizer.
839 class BoUpSLP {
840   struct TreeEntry;
841   struct ScheduleData;
842 
843 public:
844   using ValueList = SmallVector<Value *, 8>;
845   using InstrList = SmallVector<Instruction *, 16>;
846   using ValueSet = SmallPtrSet<Value *, 16>;
847   using StoreList = SmallVector<StoreInst *, 8>;
848   using ExtraValueToDebugLocsMap =
849       MapVector<Value *, SmallVector<Instruction *, 2>>;
850   using OrdersType = SmallVector<unsigned, 4>;
851 
852   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
853           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
854           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
855           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
856       : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
857         DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
858     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
859     // Use the vector register size specified by the target unless overridden
860     // by a command-line option.
861     // TODO: It would be better to limit the vectorization factor based on
862     //       data type rather than just register size. For example, x86 AVX has
863     //       256-bit registers, but it does not support integer operations
864     //       at that width (that requires AVX2).
865     if (MaxVectorRegSizeOption.getNumOccurrences())
866       MaxVecRegSize = MaxVectorRegSizeOption;
867     else
868       MaxVecRegSize =
869           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
870               .getFixedSize();
871 
872     if (MinVectorRegSizeOption.getNumOccurrences())
873       MinVecRegSize = MinVectorRegSizeOption;
874     else
875       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
876   }
877 
878   /// Vectorize the tree that starts with the elements in \p VL.
879   /// Returns the vectorized root.
880   Value *vectorizeTree();
881 
882   /// Vectorize the tree but with the list of externally used values \p
883   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
884   /// generated extractvalue instructions.
885   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
886 
887   /// \returns the cost incurred by unwanted spills and fills, caused by
888   /// holding live values over call sites.
889   InstructionCost getSpillCost() const;
890 
891   /// \returns the vectorization cost of the subtree that starts at \p VL.
892   /// A negative number means that this is profitable.
893   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
894 
895   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
896   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
897   void buildTree(ArrayRef<Value *> Roots,
898                  const SmallDenseSet<Value *> &UserIgnoreLst);
899 
900   /// Construct a vectorizable tree that starts at \p Roots.
901   void buildTree(ArrayRef<Value *> Roots);
902 
903   /// Builds external uses of the vectorized scalars, i.e. the list of
904   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
905   /// ExternallyUsedValues contains additional list of external uses to handle
906   /// vectorization of reductions.
907   void
908   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
909 
910   /// Clear the internal data structures that are created by 'buildTree'.
911   void deleteTree() {
912     VectorizableTree.clear();
913     ScalarToTreeEntry.clear();
914     MustGather.clear();
915     ExternalUses.clear();
916     for (auto &Iter : BlocksSchedules) {
917       BlockScheduling *BS = Iter.second.get();
918       BS->clear();
919     }
920     MinBWs.clear();
921     InstrElementSize.clear();
922     UserIgnoreList = nullptr;
923   }
924 
925   unsigned getTreeSize() const { return VectorizableTree.size(); }
926 
927   /// Perform LICM and CSE on the newly generated gather sequences.
928   void optimizeGatherSequence();
929 
930   /// Checks if the specified gather tree entry \p TE can be represented as a
931   /// shuffled vector entry + (possibly) permutation with other gathers. It
932   /// implements the checks only for possibly ordered scalars (Loads,
933   /// ExtractElement, ExtractValue), which can be part of the graph.
934   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
935 
936   /// Sort loads into increasing pointers offsets to allow greater clustering.
937   Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
938 
939   /// Gets reordering data for the given tree entry. If the entry is vectorized
940   /// - just return ReorderIndices, otherwise check if the scalars can be
941   /// reordered and return the most optimal order.
942   /// \param TopToBottom If true, include the order of vectorized stores and
943   /// insertelement nodes, otherwise skip them.
944   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
945 
946   /// Reorders the current graph to the most profitable order starting from the
947   /// root node to the leaf nodes. The best order is chosen only from the nodes
948   /// of the same size (vectorization factor). Smaller nodes are considered
949   /// parts of subgraph with smaller VF and they are reordered independently. We
950   /// can make it because we still need to extend smaller nodes to the wider VF
951   /// and we can merge reordering shuffles with the widening shuffles.
952   void reorderTopToBottom();
953 
954   /// Reorders the current graph to the most profitable order starting from
955   /// leaves to the root. It allows to rotate small subgraphs and reduce the
956   /// number of reshuffles if the leaf nodes use the same order. In this case we
957   /// can merge the orders and just shuffle user node instead of shuffling its
958   /// operands. Plus, even the leaf nodes have different orders, it allows to
959   /// sink reordering in the graph closer to the root node and merge it later
960   /// during analysis.
961   void reorderBottomToTop(bool IgnoreReorder = false);
962 
963   /// \return The vector element size in bits to use when vectorizing the
964   /// expression tree ending at \p V. If V is a store, the size is the width of
965   /// the stored value. Otherwise, the size is the width of the largest loaded
966   /// value reaching V. This method is used by the vectorizer to calculate
967   /// vectorization factors.
968   unsigned getVectorElementSize(Value *V);
969 
970   /// Compute the minimum type sizes required to represent the entries in a
971   /// vectorizable tree.
972   void computeMinimumValueSizes();
973 
974   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
975   unsigned getMaxVecRegSize() const {
976     return MaxVecRegSize;
977   }
978 
979   // \returns minimum vector register size as set by cl::opt.
980   unsigned getMinVecRegSize() const {
981     return MinVecRegSize;
982   }
983 
984   unsigned getMinVF(unsigned Sz) const {
985     return std::max(2U, getMinVecRegSize() / Sz);
986   }
987 
988   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
989     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
990       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
991     return MaxVF ? MaxVF : UINT_MAX;
992   }
993 
994   /// Check if homogeneous aggregate is isomorphic to some VectorType.
995   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
996   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
997   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
998   ///
999   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1000   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
1001 
1002   /// \returns True if the VectorizableTree is both tiny and not fully
1003   /// vectorizable. We do not vectorize such trees.
1004   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1005 
1006   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1007   /// can be load combined in the backend. Load combining may not be allowed in
1008   /// the IR optimizer, so we do not want to alter the pattern. For example,
1009   /// partially transforming a scalar bswap() pattern into vector code is
1010   /// effectively impossible for the backend to undo.
1011   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1012   ///       may not be necessary.
1013   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1014 
1015   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1016   /// can be load combined in the backend. Load combining may not be allowed in
1017   /// the IR optimizer, so we do not want to alter the pattern. For example,
1018   /// partially transforming a scalar bswap() pattern into vector code is
1019   /// effectively impossible for the backend to undo.
1020   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1021   ///       may not be necessary.
1022   bool isLoadCombineCandidate() const;
1023 
1024   OptimizationRemarkEmitter *getORE() { return ORE; }
1025 
1026   /// This structure holds any data we need about the edges being traversed
1027   /// during buildTree_rec(). We keep track of:
1028   /// (i) the user TreeEntry index, and
1029   /// (ii) the index of the edge.
1030   struct EdgeInfo {
1031     EdgeInfo() = default;
1032     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1033         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1034     /// The user TreeEntry.
1035     TreeEntry *UserTE = nullptr;
1036     /// The operand index of the use.
1037     unsigned EdgeIdx = UINT_MAX;
1038 #ifndef NDEBUG
1039     friend inline raw_ostream &operator<<(raw_ostream &OS,
1040                                           const BoUpSLP::EdgeInfo &EI) {
1041       EI.dump(OS);
1042       return OS;
1043     }
1044     /// Debug print.
1045     void dump(raw_ostream &OS) const {
1046       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1047          << " EdgeIdx:" << EdgeIdx << "}";
1048     }
1049     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
1050 #endif
1051   };
1052 
1053   /// A helper class used for scoring candidates for two consecutive lanes.
1054   class LookAheadHeuristics {
1055     const DataLayout &DL;
1056     ScalarEvolution &SE;
1057     const BoUpSLP &R;
1058     int NumLanes; // Total number of lanes (aka vectorization factor).
1059     int MaxLevel; // The maximum recursion depth for accumulating score.
1060 
1061   public:
1062     LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE,
1063                         const BoUpSLP &R, int NumLanes, int MaxLevel)
1064         : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {}
1065 
1066     // The hard-coded scores listed here are not very important, though it shall
1067     // be higher for better matches to improve the resulting cost. When
1068     // computing the scores of matching one sub-tree with another, we are
1069     // basically counting the number of values that are matching. So even if all
1070     // scores are set to 1, we would still get a decent matching result.
1071     // However, sometimes we have to break ties. For example we may have to
1072     // choose between matching loads vs matching opcodes. This is what these
1073     // scores are helping us with: they provide the order of preference. Also,
1074     // this is important if the scalar is externally used or used in another
1075     // tree entry node in the different lane.
1076 
1077     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1078     static const int ScoreConsecutiveLoads = 4;
1079     /// The same load multiple times. This should have a better score than
1080     /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1081     /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1082     /// a vector load and 1.0 for a broadcast.
1083     static const int ScoreSplatLoads = 3;
1084     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1085     static const int ScoreReversedLoads = 3;
1086     /// ExtractElementInst from same vector and consecutive indexes.
1087     static const int ScoreConsecutiveExtracts = 4;
1088     /// ExtractElementInst from same vector and reversed indices.
1089     static const int ScoreReversedExtracts = 3;
1090     /// Constants.
1091     static const int ScoreConstants = 2;
1092     /// Instructions with the same opcode.
1093     static const int ScoreSameOpcode = 2;
1094     /// Instructions with alt opcodes (e.g, add + sub).
1095     static const int ScoreAltOpcodes = 1;
1096     /// Identical instructions (a.k.a. splat or broadcast).
1097     static const int ScoreSplat = 1;
1098     /// Matching with an undef is preferable to failing.
1099     static const int ScoreUndef = 1;
1100     /// Score for failing to find a decent match.
1101     static const int ScoreFail = 0;
1102     /// Score if all users are vectorized.
1103     static const int ScoreAllUserVectorized = 1;
1104 
1105     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1106     /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1107     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1108     /// MainAltOps.
1109     int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1110                         ArrayRef<Value *> MainAltOps) const {
1111       if (V1 == V2) {
1112         if (isa<LoadInst>(V1)) {
1113           // Retruns true if the users of V1 and V2 won't need to be extracted.
1114           auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1115             // Bail out if we have too many uses to save compilation time.
1116             static constexpr unsigned Limit = 8;
1117             if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1118               return false;
1119 
1120             auto AllUsersVectorized = [U1, U2, this](Value *V) {
1121               return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1122                 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1123               });
1124             };
1125             return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1126           };
1127           // A broadcast of a load can be cheaper on some targets.
1128           if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1129                                           ElementCount::getFixed(NumLanes)) &&
1130               ((int)V1->getNumUses() == NumLanes ||
1131                AllUsersAreInternal(V1, V2)))
1132             return LookAheadHeuristics::ScoreSplatLoads;
1133         }
1134         return LookAheadHeuristics::ScoreSplat;
1135       }
1136 
1137       auto *LI1 = dyn_cast<LoadInst>(V1);
1138       auto *LI2 = dyn_cast<LoadInst>(V2);
1139       if (LI1 && LI2) {
1140         if (LI1->getParent() != LI2->getParent())
1141           return LookAheadHeuristics::ScoreFail;
1142 
1143         Optional<int> Dist = getPointersDiff(
1144             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1145             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1146         if (!Dist || *Dist == 0)
1147           return LookAheadHeuristics::ScoreFail;
1148         // The distance is too large - still may be profitable to use masked
1149         // loads/gathers.
1150         if (std::abs(*Dist) > NumLanes / 2)
1151           return LookAheadHeuristics::ScoreAltOpcodes;
1152         // This still will detect consecutive loads, but we might have "holes"
1153         // in some cases. It is ok for non-power-2 vectorization and may produce
1154         // better results. It should not affect current vectorization.
1155         return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1156                            : LookAheadHeuristics::ScoreReversedLoads;
1157       }
1158 
1159       auto *C1 = dyn_cast<Constant>(V1);
1160       auto *C2 = dyn_cast<Constant>(V2);
1161       if (C1 && C2)
1162         return LookAheadHeuristics::ScoreConstants;
1163 
1164       // Extracts from consecutive indexes of the same vector better score as
1165       // the extracts could be optimized away.
1166       Value *EV1;
1167       ConstantInt *Ex1Idx;
1168       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1169         // Undefs are always profitable for extractelements.
1170         if (isa<UndefValue>(V2))
1171           return LookAheadHeuristics::ScoreConsecutiveExtracts;
1172         Value *EV2 = nullptr;
1173         ConstantInt *Ex2Idx = nullptr;
1174         if (match(V2,
1175                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1176                                                          m_Undef())))) {
1177           // Undefs are always profitable for extractelements.
1178           if (!Ex2Idx)
1179             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1180           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1181             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1182           if (EV2 == EV1) {
1183             int Idx1 = Ex1Idx->getZExtValue();
1184             int Idx2 = Ex2Idx->getZExtValue();
1185             int Dist = Idx2 - Idx1;
1186             // The distance is too large - still may be profitable to use
1187             // shuffles.
1188             if (std::abs(Dist) == 0)
1189               return LookAheadHeuristics::ScoreSplat;
1190             if (std::abs(Dist) > NumLanes / 2)
1191               return LookAheadHeuristics::ScoreSameOpcode;
1192             return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1193                               : LookAheadHeuristics::ScoreReversedExtracts;
1194           }
1195           return LookAheadHeuristics::ScoreAltOpcodes;
1196         }
1197         return LookAheadHeuristics::ScoreFail;
1198       }
1199 
1200       auto *I1 = dyn_cast<Instruction>(V1);
1201       auto *I2 = dyn_cast<Instruction>(V2);
1202       if (I1 && I2) {
1203         if (I1->getParent() != I2->getParent())
1204           return LookAheadHeuristics::ScoreFail;
1205         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1206         Ops.push_back(I1);
1207         Ops.push_back(I2);
1208         InstructionsState S = getSameOpcode(Ops);
1209         // Note: Only consider instructions with <= 2 operands to avoid
1210         // complexity explosion.
1211         if (S.getOpcode() &&
1212             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1213              !S.isAltShuffle()) &&
1214             all_of(Ops, [&S](Value *V) {
1215               return cast<Instruction>(V)->getNumOperands() ==
1216                      S.MainOp->getNumOperands();
1217             }))
1218           return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1219                                   : LookAheadHeuristics::ScoreSameOpcode;
1220       }
1221 
1222       if (isa<UndefValue>(V2))
1223         return LookAheadHeuristics::ScoreUndef;
1224 
1225       return LookAheadHeuristics::ScoreFail;
1226     }
1227 
1228     /// Go through the operands of \p LHS and \p RHS recursively until
1229     /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1230     /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1231     /// of \p U1 and \p U2), except at the beginning of the recursion where
1232     /// these are set to nullptr.
1233     ///
1234     /// For example:
1235     /// \verbatim
1236     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1237     ///     \ /         \ /         \ /        \ /
1238     ///      +           +           +          +
1239     ///     G1          G2          G3         G4
1240     /// \endverbatim
1241     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1242     /// each level recursively, accumulating the score. It starts from matching
1243     /// the additions at level 0, then moves on to the loads (level 1). The
1244     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1245     /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1246     /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1247     /// Please note that the order of the operands does not matter, as we
1248     /// evaluate the score of all profitable combinations of operands. In
1249     /// other words the score of G1 and G4 is the same as G1 and G2. This
1250     /// heuristic is based on ideas described in:
1251     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1252     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1253     ///   Luís F. W. Góes
1254     int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1255                            Instruction *U2, int CurrLevel,
1256                            ArrayRef<Value *> MainAltOps) const {
1257 
1258       // Get the shallow score of V1 and V2.
1259       int ShallowScoreAtThisLevel =
1260           getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1261 
1262       // If reached MaxLevel,
1263       //  or if V1 and V2 are not instructions,
1264       //  or if they are SPLAT,
1265       //  or if they are not consecutive,
1266       //  or if profitable to vectorize loads or extractelements, early return
1267       //  the current cost.
1268       auto *I1 = dyn_cast<Instruction>(LHS);
1269       auto *I2 = dyn_cast<Instruction>(RHS);
1270       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1271           ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1272           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1273             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1274             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1275            ShallowScoreAtThisLevel))
1276         return ShallowScoreAtThisLevel;
1277       assert(I1 && I2 && "Should have early exited.");
1278 
1279       // Contains the I2 operand indexes that got matched with I1 operands.
1280       SmallSet<unsigned, 4> Op2Used;
1281 
1282       // Recursion towards the operands of I1 and I2. We are trying all possible
1283       // operand pairs, and keeping track of the best score.
1284       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1285            OpIdx1 != NumOperands1; ++OpIdx1) {
1286         // Try to pair op1I with the best operand of I2.
1287         int MaxTmpScore = 0;
1288         unsigned MaxOpIdx2 = 0;
1289         bool FoundBest = false;
1290         // If I2 is commutative try all combinations.
1291         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1292         unsigned ToIdx = isCommutative(I2)
1293                              ? I2->getNumOperands()
1294                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1295         assert(FromIdx <= ToIdx && "Bad index");
1296         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1297           // Skip operands already paired with OpIdx1.
1298           if (Op2Used.count(OpIdx2))
1299             continue;
1300           // Recursively calculate the cost at each level
1301           int TmpScore =
1302               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1303                                  I1, I2, CurrLevel + 1, None);
1304           // Look for the best score.
1305           if (TmpScore > LookAheadHeuristics::ScoreFail &&
1306               TmpScore > MaxTmpScore) {
1307             MaxTmpScore = TmpScore;
1308             MaxOpIdx2 = OpIdx2;
1309             FoundBest = true;
1310           }
1311         }
1312         if (FoundBest) {
1313           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1314           Op2Used.insert(MaxOpIdx2);
1315           ShallowScoreAtThisLevel += MaxTmpScore;
1316         }
1317       }
1318       return ShallowScoreAtThisLevel;
1319     }
1320   };
1321   /// A helper data structure to hold the operands of a vector of instructions.
1322   /// This supports a fixed vector length for all operand vectors.
1323   class VLOperands {
1324     /// For each operand we need (i) the value, and (ii) the opcode that it
1325     /// would be attached to if the expression was in a left-linearized form.
1326     /// This is required to avoid illegal operand reordering.
1327     /// For example:
1328     /// \verbatim
1329     ///                         0 Op1
1330     ///                         |/
1331     /// Op1 Op2   Linearized    + Op2
1332     ///   \ /     ---------->   |/
1333     ///    -                    -
1334     ///
1335     /// Op1 - Op2            (0 + Op1) - Op2
1336     /// \endverbatim
1337     ///
1338     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1339     ///
1340     /// Another way to think of this is to track all the operations across the
1341     /// path from the operand all the way to the root of the tree and to
1342     /// calculate the operation that corresponds to this path. For example, the
1343     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1344     /// corresponding operation is a '-' (which matches the one in the
1345     /// linearized tree, as shown above).
1346     ///
1347     /// For lack of a better term, we refer to this operation as Accumulated
1348     /// Path Operation (APO).
1349     struct OperandData {
1350       OperandData() = default;
1351       OperandData(Value *V, bool APO, bool IsUsed)
1352           : V(V), APO(APO), IsUsed(IsUsed) {}
1353       /// The operand value.
1354       Value *V = nullptr;
1355       /// TreeEntries only allow a single opcode, or an alternate sequence of
1356       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1357       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1358       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1359       /// (e.g., Add/Mul)
1360       bool APO = false;
1361       /// Helper data for the reordering function.
1362       bool IsUsed = false;
1363     };
1364 
1365     /// During operand reordering, we are trying to select the operand at lane
1366     /// that matches best with the operand at the neighboring lane. Our
1367     /// selection is based on the type of value we are looking for. For example,
1368     /// if the neighboring lane has a load, we need to look for a load that is
1369     /// accessing a consecutive address. These strategies are summarized in the
1370     /// 'ReorderingMode' enumerator.
1371     enum class ReorderingMode {
1372       Load,     ///< Matching loads to consecutive memory addresses
1373       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1374       Constant, ///< Matching constants
1375       Splat,    ///< Matching the same instruction multiple times (broadcast)
1376       Failed,   ///< We failed to create a vectorizable group
1377     };
1378 
1379     using OperandDataVec = SmallVector<OperandData, 2>;
1380 
1381     /// A vector of operand vectors.
1382     SmallVector<OperandDataVec, 4> OpsVec;
1383 
1384     const DataLayout &DL;
1385     ScalarEvolution &SE;
1386     const BoUpSLP &R;
1387 
1388     /// \returns the operand data at \p OpIdx and \p Lane.
1389     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1390       return OpsVec[OpIdx][Lane];
1391     }
1392 
1393     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1394     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1395       return OpsVec[OpIdx][Lane];
1396     }
1397 
1398     /// Clears the used flag for all entries.
1399     void clearUsed() {
1400       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1401            OpIdx != NumOperands; ++OpIdx)
1402         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1403              ++Lane)
1404           OpsVec[OpIdx][Lane].IsUsed = false;
1405     }
1406 
1407     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1408     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1409       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1410     }
1411 
1412     /// \param Lane lane of the operands under analysis.
1413     /// \param OpIdx operand index in \p Lane lane we're looking the best
1414     /// candidate for.
1415     /// \param Idx operand index of the current candidate value.
1416     /// \returns The additional score due to possible broadcasting of the
1417     /// elements in the lane. It is more profitable to have power-of-2 unique
1418     /// elements in the lane, it will be vectorized with higher probability
1419     /// after removing duplicates. Currently the SLP vectorizer supports only
1420     /// vectorization of the power-of-2 number of unique scalars.
1421     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1422       Value *IdxLaneV = getData(Idx, Lane).V;
1423       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1424         return 0;
1425       SmallPtrSet<Value *, 4> Uniques;
1426       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1427         if (Ln == Lane)
1428           continue;
1429         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1430         if (!isa<Instruction>(OpIdxLnV))
1431           return 0;
1432         Uniques.insert(OpIdxLnV);
1433       }
1434       int UniquesCount = Uniques.size();
1435       int UniquesCntWithIdxLaneV =
1436           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1437       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1438       int UniquesCntWithOpIdxLaneV =
1439           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1440       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1441         return 0;
1442       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1443               UniquesCntWithOpIdxLaneV) -
1444              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1445     }
1446 
1447     /// \param Lane lane of the operands under analysis.
1448     /// \param OpIdx operand index in \p Lane lane we're looking the best
1449     /// candidate for.
1450     /// \param Idx operand index of the current candidate value.
1451     /// \returns The additional score for the scalar which users are all
1452     /// vectorized.
1453     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1454       Value *IdxLaneV = getData(Idx, Lane).V;
1455       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1456       // Do not care about number of uses for vector-like instructions
1457       // (extractelement/extractvalue with constant indices), they are extracts
1458       // themselves and already externally used. Vectorization of such
1459       // instructions does not add extra extractelement instruction, just may
1460       // remove it.
1461       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1462           isVectorLikeInstWithConstOps(OpIdxLaneV))
1463         return LookAheadHeuristics::ScoreAllUserVectorized;
1464       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1465       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1466         return 0;
1467       return R.areAllUsersVectorized(IdxLaneI, None)
1468                  ? LookAheadHeuristics::ScoreAllUserVectorized
1469                  : 0;
1470     }
1471 
1472     /// Score scaling factor for fully compatible instructions but with
1473     /// different number of external uses. Allows better selection of the
1474     /// instructions with less external uses.
1475     static const int ScoreScaleFactor = 10;
1476 
1477     /// \Returns the look-ahead score, which tells us how much the sub-trees
1478     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1479     /// score. This helps break ties in an informed way when we cannot decide on
1480     /// the order of the operands by just considering the immediate
1481     /// predecessors.
1482     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1483                           int Lane, unsigned OpIdx, unsigned Idx,
1484                           bool &IsUsed) {
1485       LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(),
1486                                     LookAheadMaxDepth);
1487       // Keep track of the instruction stack as we recurse into the operands
1488       // during the look-ahead score exploration.
1489       int Score =
1490           LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1491                                        /*CurrLevel=*/1, MainAltOps);
1492       if (Score) {
1493         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1494         if (Score <= -SplatScore) {
1495           // Set the minimum score for splat-like sequence to avoid setting
1496           // failed state.
1497           Score = 1;
1498         } else {
1499           Score += SplatScore;
1500           // Scale score to see the difference between different operands
1501           // and similar operands but all vectorized/not all vectorized
1502           // uses. It does not affect actual selection of the best
1503           // compatible operand in general, just allows to select the
1504           // operand with all vectorized uses.
1505           Score *= ScoreScaleFactor;
1506           Score += getExternalUseScore(Lane, OpIdx, Idx);
1507           IsUsed = true;
1508         }
1509       }
1510       return Score;
1511     }
1512 
1513     /// Best defined scores per lanes between the passes. Used to choose the
1514     /// best operand (with the highest score) between the passes.
1515     /// The key - {Operand Index, Lane}.
1516     /// The value - the best score between the passes for the lane and the
1517     /// operand.
1518     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1519         BestScoresPerLanes;
1520 
1521     // Search all operands in Ops[*][Lane] for the one that matches best
1522     // Ops[OpIdx][LastLane] and return its opreand index.
1523     // If no good match can be found, return None.
1524     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1525                                       ArrayRef<ReorderingMode> ReorderingModes,
1526                                       ArrayRef<Value *> MainAltOps) {
1527       unsigned NumOperands = getNumOperands();
1528 
1529       // The operand of the previous lane at OpIdx.
1530       Value *OpLastLane = getData(OpIdx, LastLane).V;
1531 
1532       // Our strategy mode for OpIdx.
1533       ReorderingMode RMode = ReorderingModes[OpIdx];
1534       if (RMode == ReorderingMode::Failed)
1535         return None;
1536 
1537       // The linearized opcode of the operand at OpIdx, Lane.
1538       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1539 
1540       // The best operand index and its score.
1541       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1542       // are using the score to differentiate between the two.
1543       struct BestOpData {
1544         Optional<unsigned> Idx = None;
1545         unsigned Score = 0;
1546       } BestOp;
1547       BestOp.Score =
1548           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1549               .first->second;
1550 
1551       // Track if the operand must be marked as used. If the operand is set to
1552       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1553       // want to reestimate the operands again on the following iterations).
1554       bool IsUsed =
1555           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1556       // Iterate through all unused operands and look for the best.
1557       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1558         // Get the operand at Idx and Lane.
1559         OperandData &OpData = getData(Idx, Lane);
1560         Value *Op = OpData.V;
1561         bool OpAPO = OpData.APO;
1562 
1563         // Skip already selected operands.
1564         if (OpData.IsUsed)
1565           continue;
1566 
1567         // Skip if we are trying to move the operand to a position with a
1568         // different opcode in the linearized tree form. This would break the
1569         // semantics.
1570         if (OpAPO != OpIdxAPO)
1571           continue;
1572 
1573         // Look for an operand that matches the current mode.
1574         switch (RMode) {
1575         case ReorderingMode::Load:
1576         case ReorderingMode::Constant:
1577         case ReorderingMode::Opcode: {
1578           bool LeftToRight = Lane > LastLane;
1579           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1580           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1581           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1582                                         OpIdx, Idx, IsUsed);
1583           if (Score > static_cast<int>(BestOp.Score)) {
1584             BestOp.Idx = Idx;
1585             BestOp.Score = Score;
1586             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1587           }
1588           break;
1589         }
1590         case ReorderingMode::Splat:
1591           if (Op == OpLastLane)
1592             BestOp.Idx = Idx;
1593           break;
1594         case ReorderingMode::Failed:
1595           llvm_unreachable("Not expected Failed reordering mode.");
1596         }
1597       }
1598 
1599       if (BestOp.Idx) {
1600         getData(*BestOp.Idx, Lane).IsUsed = IsUsed;
1601         return BestOp.Idx;
1602       }
1603       // If we could not find a good match return None.
1604       return None;
1605     }
1606 
1607     /// Helper for reorderOperandVecs.
1608     /// \returns the lane that we should start reordering from. This is the one
1609     /// which has the least number of operands that can freely move about or
1610     /// less profitable because it already has the most optimal set of operands.
1611     unsigned getBestLaneToStartReordering() const {
1612       unsigned Min = UINT_MAX;
1613       unsigned SameOpNumber = 0;
1614       // std::pair<unsigned, unsigned> is used to implement a simple voting
1615       // algorithm and choose the lane with the least number of operands that
1616       // can freely move about or less profitable because it already has the
1617       // most optimal set of operands. The first unsigned is a counter for
1618       // voting, the second unsigned is the counter of lanes with instructions
1619       // with same/alternate opcodes and same parent basic block.
1620       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1621       // Try to be closer to the original results, if we have multiple lanes
1622       // with same cost. If 2 lanes have the same cost, use the one with the
1623       // lowest index.
1624       for (int I = getNumLanes(); I > 0; --I) {
1625         unsigned Lane = I - 1;
1626         OperandsOrderData NumFreeOpsHash =
1627             getMaxNumOperandsThatCanBeReordered(Lane);
1628         // Compare the number of operands that can move and choose the one with
1629         // the least number.
1630         if (NumFreeOpsHash.NumOfAPOs < Min) {
1631           Min = NumFreeOpsHash.NumOfAPOs;
1632           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1633           HashMap.clear();
1634           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1635         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1636                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1637           // Select the most optimal lane in terms of number of operands that
1638           // should be moved around.
1639           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1640           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1641         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1642                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1643           auto It = HashMap.find(NumFreeOpsHash.Hash);
1644           if (It == HashMap.end())
1645             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1646           else
1647             ++It->second.first;
1648         }
1649       }
1650       // Select the lane with the minimum counter.
1651       unsigned BestLane = 0;
1652       unsigned CntMin = UINT_MAX;
1653       for (const auto &Data : reverse(HashMap)) {
1654         if (Data.second.first < CntMin) {
1655           CntMin = Data.second.first;
1656           BestLane = Data.second.second;
1657         }
1658       }
1659       return BestLane;
1660     }
1661 
1662     /// Data structure that helps to reorder operands.
1663     struct OperandsOrderData {
1664       /// The best number of operands with the same APOs, which can be
1665       /// reordered.
1666       unsigned NumOfAPOs = UINT_MAX;
1667       /// Number of operands with the same/alternate instruction opcode and
1668       /// parent.
1669       unsigned NumOpsWithSameOpcodeParent = 0;
1670       /// Hash for the actual operands ordering.
1671       /// Used to count operands, actually their position id and opcode
1672       /// value. It is used in the voting mechanism to find the lane with the
1673       /// least number of operands that can freely move about or less profitable
1674       /// because it already has the most optimal set of operands. Can be
1675       /// replaced with SmallVector<unsigned> instead but hash code is faster
1676       /// and requires less memory.
1677       unsigned Hash = 0;
1678     };
1679     /// \returns the maximum number of operands that are allowed to be reordered
1680     /// for \p Lane and the number of compatible instructions(with the same
1681     /// parent/opcode). This is used as a heuristic for selecting the first lane
1682     /// to start operand reordering.
1683     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1684       unsigned CntTrue = 0;
1685       unsigned NumOperands = getNumOperands();
1686       // Operands with the same APO can be reordered. We therefore need to count
1687       // how many of them we have for each APO, like this: Cnt[APO] = x.
1688       // Since we only have two APOs, namely true and false, we can avoid using
1689       // a map. Instead we can simply count the number of operands that
1690       // correspond to one of them (in this case the 'true' APO), and calculate
1691       // the other by subtracting it from the total number of operands.
1692       // Operands with the same instruction opcode and parent are more
1693       // profitable since we don't need to move them in many cases, with a high
1694       // probability such lane already can be vectorized effectively.
1695       bool AllUndefs = true;
1696       unsigned NumOpsWithSameOpcodeParent = 0;
1697       Instruction *OpcodeI = nullptr;
1698       BasicBlock *Parent = nullptr;
1699       unsigned Hash = 0;
1700       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1701         const OperandData &OpData = getData(OpIdx, Lane);
1702         if (OpData.APO)
1703           ++CntTrue;
1704         // Use Boyer-Moore majority voting for finding the majority opcode and
1705         // the number of times it occurs.
1706         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1707           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1708               I->getParent() != Parent) {
1709             if (NumOpsWithSameOpcodeParent == 0) {
1710               NumOpsWithSameOpcodeParent = 1;
1711               OpcodeI = I;
1712               Parent = I->getParent();
1713             } else {
1714               --NumOpsWithSameOpcodeParent;
1715             }
1716           } else {
1717             ++NumOpsWithSameOpcodeParent;
1718           }
1719         }
1720         Hash = hash_combine(
1721             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1722         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1723       }
1724       if (AllUndefs)
1725         return {};
1726       OperandsOrderData Data;
1727       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1728       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1729       Data.Hash = Hash;
1730       return Data;
1731     }
1732 
1733     /// Go through the instructions in VL and append their operands.
1734     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1735       assert(!VL.empty() && "Bad VL");
1736       assert((empty() || VL.size() == getNumLanes()) &&
1737              "Expected same number of lanes");
1738       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1739       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1740       OpsVec.resize(NumOperands);
1741       unsigned NumLanes = VL.size();
1742       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1743         OpsVec[OpIdx].resize(NumLanes);
1744         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1745           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1746           // Our tree has just 3 nodes: the root and two operands.
1747           // It is therefore trivial to get the APO. We only need to check the
1748           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1749           // RHS operand. The LHS operand of both add and sub is never attached
1750           // to an inversese operation in the linearized form, therefore its APO
1751           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1752 
1753           // Since operand reordering is performed on groups of commutative
1754           // operations or alternating sequences (e.g., +, -), we can safely
1755           // tell the inverse operations by checking commutativity.
1756           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1757           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1758           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1759                                  APO, false};
1760         }
1761       }
1762     }
1763 
1764     /// \returns the number of operands.
1765     unsigned getNumOperands() const { return OpsVec.size(); }
1766 
1767     /// \returns the number of lanes.
1768     unsigned getNumLanes() const { return OpsVec[0].size(); }
1769 
1770     /// \returns the operand value at \p OpIdx and \p Lane.
1771     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1772       return getData(OpIdx, Lane).V;
1773     }
1774 
1775     /// \returns true if the data structure is empty.
1776     bool empty() const { return OpsVec.empty(); }
1777 
1778     /// Clears the data.
1779     void clear() { OpsVec.clear(); }
1780 
1781     /// \Returns true if there are enough operands identical to \p Op to fill
1782     /// the whole vector.
1783     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1784     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1785       bool OpAPO = getData(OpIdx, Lane).APO;
1786       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1787         if (Ln == Lane)
1788           continue;
1789         // This is set to true if we found a candidate for broadcast at Lane.
1790         bool FoundCandidate = false;
1791         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1792           OperandData &Data = getData(OpI, Ln);
1793           if (Data.APO != OpAPO || Data.IsUsed)
1794             continue;
1795           if (Data.V == Op) {
1796             FoundCandidate = true;
1797             Data.IsUsed = true;
1798             break;
1799           }
1800         }
1801         if (!FoundCandidate)
1802           return false;
1803       }
1804       return true;
1805     }
1806 
1807   public:
1808     /// Initialize with all the operands of the instruction vector \p RootVL.
1809     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1810                ScalarEvolution &SE, const BoUpSLP &R)
1811         : DL(DL), SE(SE), R(R) {
1812       // Append all the operands of RootVL.
1813       appendOperandsOfVL(RootVL);
1814     }
1815 
1816     /// \Returns a value vector with the operands across all lanes for the
1817     /// opearnd at \p OpIdx.
1818     ValueList getVL(unsigned OpIdx) const {
1819       ValueList OpVL(OpsVec[OpIdx].size());
1820       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1821              "Expected same num of lanes across all operands");
1822       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1823         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1824       return OpVL;
1825     }
1826 
1827     // Performs operand reordering for 2 or more operands.
1828     // The original operands are in OrigOps[OpIdx][Lane].
1829     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1830     void reorder() {
1831       unsigned NumOperands = getNumOperands();
1832       unsigned NumLanes = getNumLanes();
1833       // Each operand has its own mode. We are using this mode to help us select
1834       // the instructions for each lane, so that they match best with the ones
1835       // we have selected so far.
1836       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1837 
1838       // This is a greedy single-pass algorithm. We are going over each lane
1839       // once and deciding on the best order right away with no back-tracking.
1840       // However, in order to increase its effectiveness, we start with the lane
1841       // that has operands that can move the least. For example, given the
1842       // following lanes:
1843       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1844       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1845       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1846       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1847       // we will start at Lane 1, since the operands of the subtraction cannot
1848       // be reordered. Then we will visit the rest of the lanes in a circular
1849       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1850 
1851       // Find the first lane that we will start our search from.
1852       unsigned FirstLane = getBestLaneToStartReordering();
1853 
1854       // Initialize the modes.
1855       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1856         Value *OpLane0 = getValue(OpIdx, FirstLane);
1857         // Keep track if we have instructions with all the same opcode on one
1858         // side.
1859         if (isa<LoadInst>(OpLane0))
1860           ReorderingModes[OpIdx] = ReorderingMode::Load;
1861         else if (isa<Instruction>(OpLane0)) {
1862           // Check if OpLane0 should be broadcast.
1863           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1864             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1865           else
1866             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1867         }
1868         else if (isa<Constant>(OpLane0))
1869           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1870         else if (isa<Argument>(OpLane0))
1871           // Our best hope is a Splat. It may save some cost in some cases.
1872           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1873         else
1874           // NOTE: This should be unreachable.
1875           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1876       }
1877 
1878       // Check that we don't have same operands. No need to reorder if operands
1879       // are just perfect diamond or shuffled diamond match. Do not do it only
1880       // for possible broadcasts or non-power of 2 number of scalars (just for
1881       // now).
1882       auto &&SkipReordering = [this]() {
1883         SmallPtrSet<Value *, 4> UniqueValues;
1884         ArrayRef<OperandData> Op0 = OpsVec.front();
1885         for (const OperandData &Data : Op0)
1886           UniqueValues.insert(Data.V);
1887         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1888           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1889                 return !UniqueValues.contains(Data.V);
1890               }))
1891             return false;
1892         }
1893         // TODO: Check if we can remove a check for non-power-2 number of
1894         // scalars after full support of non-power-2 vectorization.
1895         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1896       };
1897 
1898       // If the initial strategy fails for any of the operand indexes, then we
1899       // perform reordering again in a second pass. This helps avoid assigning
1900       // high priority to the failed strategy, and should improve reordering for
1901       // the non-failed operand indexes.
1902       for (int Pass = 0; Pass != 2; ++Pass) {
1903         // Check if no need to reorder operands since they're are perfect or
1904         // shuffled diamond match.
1905         // Need to to do it to avoid extra external use cost counting for
1906         // shuffled matches, which may cause regressions.
1907         if (SkipReordering())
1908           break;
1909         // Skip the second pass if the first pass did not fail.
1910         bool StrategyFailed = false;
1911         // Mark all operand data as free to use.
1912         clearUsed();
1913         // We keep the original operand order for the FirstLane, so reorder the
1914         // rest of the lanes. We are visiting the nodes in a circular fashion,
1915         // using FirstLane as the center point and increasing the radius
1916         // distance.
1917         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1918         for (unsigned I = 0; I < NumOperands; ++I)
1919           MainAltOps[I].push_back(getData(I, FirstLane).V);
1920 
1921         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1922           // Visit the lane on the right and then the lane on the left.
1923           for (int Direction : {+1, -1}) {
1924             int Lane = FirstLane + Direction * Distance;
1925             if (Lane < 0 || Lane >= (int)NumLanes)
1926               continue;
1927             int LastLane = Lane - Direction;
1928             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1929                    "Out of bounds");
1930             // Look for a good match for each operand.
1931             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1932               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1933               Optional<unsigned> BestIdx = getBestOperand(
1934                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1935               // By not selecting a value, we allow the operands that follow to
1936               // select a better matching value. We will get a non-null value in
1937               // the next run of getBestOperand().
1938               if (BestIdx) {
1939                 // Swap the current operand with the one returned by
1940                 // getBestOperand().
1941                 swap(OpIdx, *BestIdx, Lane);
1942               } else {
1943                 // We failed to find a best operand, set mode to 'Failed'.
1944                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1945                 // Enable the second pass.
1946                 StrategyFailed = true;
1947               }
1948               // Try to get the alternate opcode and follow it during analysis.
1949               if (MainAltOps[OpIdx].size() != 2) {
1950                 OperandData &AltOp = getData(OpIdx, Lane);
1951                 InstructionsState OpS =
1952                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1953                 if (OpS.getOpcode() && OpS.isAltShuffle())
1954                   MainAltOps[OpIdx].push_back(AltOp.V);
1955               }
1956             }
1957           }
1958         }
1959         // Skip second pass if the strategy did not fail.
1960         if (!StrategyFailed)
1961           break;
1962       }
1963     }
1964 
1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1966     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1967       switch (RMode) {
1968       case ReorderingMode::Load:
1969         return "Load";
1970       case ReorderingMode::Opcode:
1971         return "Opcode";
1972       case ReorderingMode::Constant:
1973         return "Constant";
1974       case ReorderingMode::Splat:
1975         return "Splat";
1976       case ReorderingMode::Failed:
1977         return "Failed";
1978       }
1979       llvm_unreachable("Unimplemented Reordering Type");
1980     }
1981 
1982     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1983                                                    raw_ostream &OS) {
1984       return OS << getModeStr(RMode);
1985     }
1986 
1987     /// Debug print.
1988     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1989       printMode(RMode, dbgs());
1990     }
1991 
1992     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1993       return printMode(RMode, OS);
1994     }
1995 
1996     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1997       const unsigned Indent = 2;
1998       unsigned Cnt = 0;
1999       for (const OperandDataVec &OpDataVec : OpsVec) {
2000         OS << "Operand " << Cnt++ << "\n";
2001         for (const OperandData &OpData : OpDataVec) {
2002           OS.indent(Indent) << "{";
2003           if (Value *V = OpData.V)
2004             OS << *V;
2005           else
2006             OS << "null";
2007           OS << ", APO:" << OpData.APO << "}\n";
2008         }
2009         OS << "\n";
2010       }
2011       return OS;
2012     }
2013 
2014     /// Debug print.
2015     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
2016 #endif
2017   };
2018 
2019   /// Evaluate each pair in \p Candidates and return index into \p Candidates
2020   /// for a pair which have highest score deemed to have best chance to form
2021   /// root of profitable tree to vectorize. Return None if no candidate scored
2022   /// above the LookAheadHeuristics::ScoreFail.
2023   /// \param Limit Lower limit of the cost, considered to be good enough score.
2024   Optional<int>
2025   findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2026                    int Limit = LookAheadHeuristics::ScoreFail) {
2027     LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2,
2028                                   RootLookAheadMaxDepth);
2029     int BestScore = Limit;
2030     Optional<int> Index = None;
2031     for (int I : seq<int>(0, Candidates.size())) {
2032       int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2033                                                Candidates[I].second,
2034                                                /*U1=*/nullptr, /*U2=*/nullptr,
2035                                                /*Level=*/1, None);
2036       if (Score > BestScore) {
2037         BestScore = Score;
2038         Index = I;
2039       }
2040     }
2041     return Index;
2042   }
2043 
2044   /// Checks if the instruction is marked for deletion.
2045   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2046 
2047   /// Removes an instruction from its block and eventually deletes it.
2048   /// It's like Instruction::eraseFromParent() except that the actual deletion
2049   /// is delayed until BoUpSLP is destructed.
2050   void eraseInstruction(Instruction *I) {
2051     DeletedInstructions.insert(I);
2052   }
2053 
2054   /// Checks if the instruction was already analyzed for being possible
2055   /// reduction root.
2056   bool isAnalyzedReductionRoot(Instruction *I) const {
2057     return AnalyzedReductionsRoots.count(I);
2058   }
2059   /// Register given instruction as already analyzed for being possible
2060   /// reduction root.
2061   void analyzedReductionRoot(Instruction *I) {
2062     AnalyzedReductionsRoots.insert(I);
2063   }
2064   /// Checks if the provided list of reduced values was checked already for
2065   /// vectorization.
2066   bool areAnalyzedReductionVals(ArrayRef<Value *> VL) {
2067     return AnalyzedReductionVals.contains(hash_value(VL));
2068   }
2069   /// Adds the list of reduced values to list of already checked values for the
2070   /// vectorization.
2071   void analyzedReductionVals(ArrayRef<Value *> VL) {
2072     AnalyzedReductionVals.insert(hash_value(VL));
2073   }
2074   /// Clear the list of the analyzed reduction root instructions.
2075   void clearReductionData() {
2076     AnalyzedReductionsRoots.clear();
2077     AnalyzedReductionVals.clear();
2078   }
2079   /// Checks if the given value is gathered in one of the nodes.
2080   bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2081     return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2082   }
2083 
2084   ~BoUpSLP();
2085 
2086 private:
2087   /// Check if the operands on the edges \p Edges of the \p UserTE allows
2088   /// reordering (i.e. the operands can be reordered because they have only one
2089   /// user and reordarable).
2090   /// \param ReorderableGathers List of all gather nodes that require reordering
2091   /// (e.g., gather of extractlements or partially vectorizable loads).
2092   /// \param GatherOps List of gather operand nodes for \p UserTE that require
2093   /// reordering, subset of \p NonVectorized.
2094   bool
2095   canReorderOperands(TreeEntry *UserTE,
2096                      SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2097                      ArrayRef<TreeEntry *> ReorderableGathers,
2098                      SmallVectorImpl<TreeEntry *> &GatherOps);
2099 
2100   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2101   /// if any. If it is not vectorized (gather node), returns nullptr.
2102   TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2103     ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2104     TreeEntry *TE = nullptr;
2105     const auto *It = find_if(VL, [this, &TE](Value *V) {
2106       TE = getTreeEntry(V);
2107       return TE;
2108     });
2109     if (It != VL.end() && TE->isSame(VL))
2110       return TE;
2111     return nullptr;
2112   }
2113 
2114   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2115   /// if any. If it is not vectorized (gather node), returns nullptr.
2116   const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2117                                         unsigned OpIdx) const {
2118     return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2119         const_cast<TreeEntry *>(UserTE), OpIdx);
2120   }
2121 
2122   /// Checks if all users of \p I are the part of the vectorization tree.
2123   bool areAllUsersVectorized(Instruction *I,
2124                              ArrayRef<Value *> VectorizedVals) const;
2125 
2126   /// \returns the cost of the vectorizable entry.
2127   InstructionCost getEntryCost(const TreeEntry *E,
2128                                ArrayRef<Value *> VectorizedVals);
2129 
2130   /// This is the recursive part of buildTree.
2131   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2132                      const EdgeInfo &EI);
2133 
2134   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2135   /// be vectorized to use the original vector (or aggregate "bitcast" to a
2136   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2137   /// returns false, setting \p CurrentOrder to either an empty vector or a
2138   /// non-identity permutation that allows to reuse extract instructions.
2139   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2140                        SmallVectorImpl<unsigned> &CurrentOrder) const;
2141 
2142   /// Vectorize a single entry in the tree.
2143   Value *vectorizeTree(TreeEntry *E);
2144 
2145   /// Vectorize a single entry in the tree, starting in \p VL.
2146   Value *vectorizeTree(ArrayRef<Value *> VL);
2147 
2148   /// Create a new vector from a list of scalar values.  Produces a sequence
2149   /// which exploits values reused across lanes, and arranges the inserts
2150   /// for ease of later optimization.
2151   Value *createBuildVector(ArrayRef<Value *> VL);
2152 
2153   /// \returns the scalarization cost for this type. Scalarization in this
2154   /// context means the creation of vectors from a group of scalars. If \p
2155   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
2156   /// vector elements.
2157   InstructionCost getGatherCost(FixedVectorType *Ty,
2158                                 const APInt &ShuffledIndices,
2159                                 bool NeedToShuffle) const;
2160 
2161   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
2162   /// tree entries.
2163   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2164   /// previous tree entries. \p Mask is filled with the shuffle mask.
2165   Optional<TargetTransformInfo::ShuffleKind>
2166   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
2167                         SmallVectorImpl<const TreeEntry *> &Entries);
2168 
2169   /// \returns the scalarization cost for this list of values. Assuming that
2170   /// this subtree gets vectorized, we may need to extract the values from the
2171   /// roots. This method calculates the cost of extracting the values.
2172   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
2173 
2174   /// Set the Builder insert point to one after the last instruction in
2175   /// the bundle
2176   void setInsertPointAfterBundle(const TreeEntry *E);
2177 
2178   /// \returns a vector from a collection of scalars in \p VL.
2179   Value *gather(ArrayRef<Value *> VL);
2180 
2181   /// \returns whether the VectorizableTree is fully vectorizable and will
2182   /// be beneficial even the tree height is tiny.
2183   bool isFullyVectorizableTinyTree(bool ForReduction) const;
2184 
2185   /// Reorder commutative or alt operands to get better probability of
2186   /// generating vectorized code.
2187   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2188                                              SmallVectorImpl<Value *> &Left,
2189                                              SmallVectorImpl<Value *> &Right,
2190                                              const DataLayout &DL,
2191                                              ScalarEvolution &SE,
2192                                              const BoUpSLP &R);
2193 
2194   /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2195   /// users of \p TE and collects the stores. It returns the map from the store
2196   /// pointers to the collected stores.
2197   DenseMap<Value *, SmallVector<StoreInst *, 4>>
2198   collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2199 
2200   /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2201   /// stores in \p StoresVec can for a vector instruction. If so it returns true
2202   /// and populates \p ReorderIndices with the shuffle indices of the the stores
2203   /// when compared to the sorted vector.
2204   bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
2205                      OrdersType &ReorderIndices) const;
2206 
2207   /// Iterates through the users of \p TE, looking for scalar stores that can be
2208   /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2209   /// their order and builds an order index vector for each store bundle. It
2210   /// returns all these order vectors found.
2211   /// We run this after the tree has formed, otherwise we may come across user
2212   /// instructions that are not yet in the tree.
2213   SmallVector<OrdersType, 1>
2214   findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2215 
2216   struct TreeEntry {
2217     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2218     TreeEntry(VecTreeTy &Container) : Container(Container) {}
2219 
2220     /// \returns true if the scalars in VL are equal to this entry.
2221     bool isSame(ArrayRef<Value *> VL) const {
2222       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2223         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2224           return std::equal(VL.begin(), VL.end(), Scalars.begin());
2225         return VL.size() == Mask.size() &&
2226                std::equal(VL.begin(), VL.end(), Mask.begin(),
2227                           [Scalars](Value *V, int Idx) {
2228                             return (isa<UndefValue>(V) &&
2229                                     Idx == UndefMaskElem) ||
2230                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
2231                           });
2232       };
2233       if (!ReorderIndices.empty()) {
2234         // TODO: implement matching if the nodes are just reordered, still can
2235         // treat the vector as the same if the list of scalars matches VL
2236         // directly, without reordering.
2237         SmallVector<int> Mask;
2238         inversePermutation(ReorderIndices, Mask);
2239         if (VL.size() == Scalars.size())
2240           return IsSame(Scalars, Mask);
2241         if (VL.size() == ReuseShuffleIndices.size()) {
2242           ::addMask(Mask, ReuseShuffleIndices);
2243           return IsSame(Scalars, Mask);
2244         }
2245         return false;
2246       }
2247       return IsSame(Scalars, ReuseShuffleIndices);
2248     }
2249 
2250     /// \returns true if current entry has same operands as \p TE.
2251     bool hasEqualOperands(const TreeEntry &TE) const {
2252       if (TE.getNumOperands() != getNumOperands())
2253         return false;
2254       SmallBitVector Used(getNumOperands());
2255       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2256         unsigned PrevCount = Used.count();
2257         for (unsigned K = 0; K < E; ++K) {
2258           if (Used.test(K))
2259             continue;
2260           if (getOperand(K) == TE.getOperand(I)) {
2261             Used.set(K);
2262             break;
2263           }
2264         }
2265         // Check if we actually found the matching operand.
2266         if (PrevCount == Used.count())
2267           return false;
2268       }
2269       return true;
2270     }
2271 
2272     /// \return Final vectorization factor for the node. Defined by the total
2273     /// number of vectorized scalars, including those, used several times in the
2274     /// entry and counted in the \a ReuseShuffleIndices, if any.
2275     unsigned getVectorFactor() const {
2276       if (!ReuseShuffleIndices.empty())
2277         return ReuseShuffleIndices.size();
2278       return Scalars.size();
2279     };
2280 
2281     /// A vector of scalars.
2282     ValueList Scalars;
2283 
2284     /// The Scalars are vectorized into this value. It is initialized to Null.
2285     Value *VectorizedValue = nullptr;
2286 
2287     /// Do we need to gather this sequence or vectorize it
2288     /// (either with vector instruction or with scatter/gather
2289     /// intrinsics for store/load)?
2290     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2291     EntryState State;
2292 
2293     /// Does this sequence require some shuffling?
2294     SmallVector<int, 4> ReuseShuffleIndices;
2295 
2296     /// Does this entry require reordering?
2297     SmallVector<unsigned, 4> ReorderIndices;
2298 
2299     /// Points back to the VectorizableTree.
2300     ///
2301     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2302     /// to be a pointer and needs to be able to initialize the child iterator.
2303     /// Thus we need a reference back to the container to translate the indices
2304     /// to entries.
2305     VecTreeTy &Container;
2306 
2307     /// The TreeEntry index containing the user of this entry.  We can actually
2308     /// have multiple users so the data structure is not truly a tree.
2309     SmallVector<EdgeInfo, 1> UserTreeIndices;
2310 
2311     /// The index of this treeEntry in VectorizableTree.
2312     int Idx = -1;
2313 
2314   private:
2315     /// The operands of each instruction in each lane Operands[op_index][lane].
2316     /// Note: This helps avoid the replication of the code that performs the
2317     /// reordering of operands during buildTree_rec() and vectorizeTree().
2318     SmallVector<ValueList, 2> Operands;
2319 
2320     /// The main/alternate instruction.
2321     Instruction *MainOp = nullptr;
2322     Instruction *AltOp = nullptr;
2323 
2324   public:
2325     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2326     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2327       if (Operands.size() < OpIdx + 1)
2328         Operands.resize(OpIdx + 1);
2329       assert(Operands[OpIdx].empty() && "Already resized?");
2330       assert(OpVL.size() <= Scalars.size() &&
2331              "Number of operands is greater than the number of scalars.");
2332       Operands[OpIdx].resize(OpVL.size());
2333       copy(OpVL, Operands[OpIdx].begin());
2334     }
2335 
2336     /// Set the operands of this bundle in their original order.
2337     void setOperandsInOrder() {
2338       assert(Operands.empty() && "Already initialized?");
2339       auto *I0 = cast<Instruction>(Scalars[0]);
2340       Operands.resize(I0->getNumOperands());
2341       unsigned NumLanes = Scalars.size();
2342       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2343            OpIdx != NumOperands; ++OpIdx) {
2344         Operands[OpIdx].resize(NumLanes);
2345         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2346           auto *I = cast<Instruction>(Scalars[Lane]);
2347           assert(I->getNumOperands() == NumOperands &&
2348                  "Expected same number of operands");
2349           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2350         }
2351       }
2352     }
2353 
2354     /// Reorders operands of the node to the given mask \p Mask.
2355     void reorderOperands(ArrayRef<int> Mask) {
2356       for (ValueList &Operand : Operands)
2357         reorderScalars(Operand, Mask);
2358     }
2359 
2360     /// \returns the \p OpIdx operand of this TreeEntry.
2361     ValueList &getOperand(unsigned OpIdx) {
2362       assert(OpIdx < Operands.size() && "Off bounds");
2363       return Operands[OpIdx];
2364     }
2365 
2366     /// \returns the \p OpIdx operand of this TreeEntry.
2367     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2368       assert(OpIdx < Operands.size() && "Off bounds");
2369       return Operands[OpIdx];
2370     }
2371 
2372     /// \returns the number of operands.
2373     unsigned getNumOperands() const { return Operands.size(); }
2374 
2375     /// \return the single \p OpIdx operand.
2376     Value *getSingleOperand(unsigned OpIdx) const {
2377       assert(OpIdx < Operands.size() && "Off bounds");
2378       assert(!Operands[OpIdx].empty() && "No operand available");
2379       return Operands[OpIdx][0];
2380     }
2381 
2382     /// Some of the instructions in the list have alternate opcodes.
2383     bool isAltShuffle() const { return MainOp != AltOp; }
2384 
2385     bool isOpcodeOrAlt(Instruction *I) const {
2386       unsigned CheckedOpcode = I->getOpcode();
2387       return (getOpcode() == CheckedOpcode ||
2388               getAltOpcode() == CheckedOpcode);
2389     }
2390 
2391     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2392     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2393     /// \p OpValue.
2394     Value *isOneOf(Value *Op) const {
2395       auto *I = dyn_cast<Instruction>(Op);
2396       if (I && isOpcodeOrAlt(I))
2397         return Op;
2398       return MainOp;
2399     }
2400 
2401     void setOperations(const InstructionsState &S) {
2402       MainOp = S.MainOp;
2403       AltOp = S.AltOp;
2404     }
2405 
2406     Instruction *getMainOp() const {
2407       return MainOp;
2408     }
2409 
2410     Instruction *getAltOp() const {
2411       return AltOp;
2412     }
2413 
2414     /// The main/alternate opcodes for the list of instructions.
2415     unsigned getOpcode() const {
2416       return MainOp ? MainOp->getOpcode() : 0;
2417     }
2418 
2419     unsigned getAltOpcode() const {
2420       return AltOp ? AltOp->getOpcode() : 0;
2421     }
2422 
2423     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2424     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2425     int findLaneForValue(Value *V) const {
2426       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2427       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2428       if (!ReorderIndices.empty())
2429         FoundLane = ReorderIndices[FoundLane];
2430       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2431       if (!ReuseShuffleIndices.empty()) {
2432         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2433                                   find(ReuseShuffleIndices, FoundLane));
2434       }
2435       return FoundLane;
2436     }
2437 
2438 #ifndef NDEBUG
2439     /// Debug printer.
2440     LLVM_DUMP_METHOD void dump() const {
2441       dbgs() << Idx << ".\n";
2442       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2443         dbgs() << "Operand " << OpI << ":\n";
2444         for (const Value *V : Operands[OpI])
2445           dbgs().indent(2) << *V << "\n";
2446       }
2447       dbgs() << "Scalars: \n";
2448       for (Value *V : Scalars)
2449         dbgs().indent(2) << *V << "\n";
2450       dbgs() << "State: ";
2451       switch (State) {
2452       case Vectorize:
2453         dbgs() << "Vectorize\n";
2454         break;
2455       case ScatterVectorize:
2456         dbgs() << "ScatterVectorize\n";
2457         break;
2458       case NeedToGather:
2459         dbgs() << "NeedToGather\n";
2460         break;
2461       }
2462       dbgs() << "MainOp: ";
2463       if (MainOp)
2464         dbgs() << *MainOp << "\n";
2465       else
2466         dbgs() << "NULL\n";
2467       dbgs() << "AltOp: ";
2468       if (AltOp)
2469         dbgs() << *AltOp << "\n";
2470       else
2471         dbgs() << "NULL\n";
2472       dbgs() << "VectorizedValue: ";
2473       if (VectorizedValue)
2474         dbgs() << *VectorizedValue << "\n";
2475       else
2476         dbgs() << "NULL\n";
2477       dbgs() << "ReuseShuffleIndices: ";
2478       if (ReuseShuffleIndices.empty())
2479         dbgs() << "Empty";
2480       else
2481         for (int ReuseIdx : ReuseShuffleIndices)
2482           dbgs() << ReuseIdx << ", ";
2483       dbgs() << "\n";
2484       dbgs() << "ReorderIndices: ";
2485       for (unsigned ReorderIdx : ReorderIndices)
2486         dbgs() << ReorderIdx << ", ";
2487       dbgs() << "\n";
2488       dbgs() << "UserTreeIndices: ";
2489       for (const auto &EInfo : UserTreeIndices)
2490         dbgs() << EInfo << ", ";
2491       dbgs() << "\n";
2492     }
2493 #endif
2494   };
2495 
2496 #ifndef NDEBUG
2497   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2498                      InstructionCost VecCost,
2499                      InstructionCost ScalarCost) const {
2500     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2501     dbgs() << "SLP: Costs:\n";
2502     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2503     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2504     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2505     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2506                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2507   }
2508 #endif
2509 
2510   /// Create a new VectorizableTree entry.
2511   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2512                           const InstructionsState &S,
2513                           const EdgeInfo &UserTreeIdx,
2514                           ArrayRef<int> ReuseShuffleIndices = None,
2515                           ArrayRef<unsigned> ReorderIndices = None) {
2516     TreeEntry::EntryState EntryState =
2517         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2518     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2519                         ReuseShuffleIndices, ReorderIndices);
2520   }
2521 
2522   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2523                           TreeEntry::EntryState EntryState,
2524                           Optional<ScheduleData *> Bundle,
2525                           const InstructionsState &S,
2526                           const EdgeInfo &UserTreeIdx,
2527                           ArrayRef<int> ReuseShuffleIndices = None,
2528                           ArrayRef<unsigned> ReorderIndices = None) {
2529     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2530             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2531            "Need to vectorize gather entry?");
2532     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2533     TreeEntry *Last = VectorizableTree.back().get();
2534     Last->Idx = VectorizableTree.size() - 1;
2535     Last->State = EntryState;
2536     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2537                                      ReuseShuffleIndices.end());
2538     if (ReorderIndices.empty()) {
2539       Last->Scalars.assign(VL.begin(), VL.end());
2540       Last->setOperations(S);
2541     } else {
2542       // Reorder scalars and build final mask.
2543       Last->Scalars.assign(VL.size(), nullptr);
2544       transform(ReorderIndices, Last->Scalars.begin(),
2545                 [VL](unsigned Idx) -> Value * {
2546                   if (Idx >= VL.size())
2547                     return UndefValue::get(VL.front()->getType());
2548                   return VL[Idx];
2549                 });
2550       InstructionsState S = getSameOpcode(Last->Scalars);
2551       Last->setOperations(S);
2552       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2553     }
2554     if (Last->State != TreeEntry::NeedToGather) {
2555       for (Value *V : VL) {
2556         assert(!getTreeEntry(V) && "Scalar already in tree!");
2557         ScalarToTreeEntry[V] = Last;
2558       }
2559       // Update the scheduler bundle to point to this TreeEntry.
2560       ScheduleData *BundleMember = *Bundle;
2561       assert((BundleMember || isa<PHINode>(S.MainOp) ||
2562               isVectorLikeInstWithConstOps(S.MainOp) ||
2563               doesNotNeedToSchedule(VL)) &&
2564              "Bundle and VL out of sync");
2565       if (BundleMember) {
2566         for (Value *V : VL) {
2567           if (doesNotNeedToBeScheduled(V))
2568             continue;
2569           assert(BundleMember && "Unexpected end of bundle.");
2570           BundleMember->TE = Last;
2571           BundleMember = BundleMember->NextInBundle;
2572         }
2573       }
2574       assert(!BundleMember && "Bundle and VL out of sync");
2575     } else {
2576       MustGather.insert(VL.begin(), VL.end());
2577     }
2578 
2579     if (UserTreeIdx.UserTE)
2580       Last->UserTreeIndices.push_back(UserTreeIdx);
2581 
2582     return Last;
2583   }
2584 
2585   /// -- Vectorization State --
2586   /// Holds all of the tree entries.
2587   TreeEntry::VecTreeTy VectorizableTree;
2588 
2589 #ifndef NDEBUG
2590   /// Debug printer.
2591   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2592     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2593       VectorizableTree[Id]->dump();
2594       dbgs() << "\n";
2595     }
2596   }
2597 #endif
2598 
2599   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2600 
2601   const TreeEntry *getTreeEntry(Value *V) const {
2602     return ScalarToTreeEntry.lookup(V);
2603   }
2604 
2605   /// Maps a specific scalar to its tree entry.
2606   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2607 
2608   /// Maps a value to the proposed vectorizable size.
2609   SmallDenseMap<Value *, unsigned> InstrElementSize;
2610 
2611   /// A list of scalars that we found that we need to keep as scalars.
2612   ValueSet MustGather;
2613 
2614   /// This POD struct describes one external user in the vectorized tree.
2615   struct ExternalUser {
2616     ExternalUser(Value *S, llvm::User *U, int L)
2617         : Scalar(S), User(U), Lane(L) {}
2618 
2619     // Which scalar in our function.
2620     Value *Scalar;
2621 
2622     // Which user that uses the scalar.
2623     llvm::User *User;
2624 
2625     // Which lane does the scalar belong to.
2626     int Lane;
2627   };
2628   using UserList = SmallVector<ExternalUser, 16>;
2629 
2630   /// Checks if two instructions may access the same memory.
2631   ///
2632   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2633   /// is invariant in the calling loop.
2634   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2635                  Instruction *Inst2) {
2636     // First check if the result is already in the cache.
2637     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2638     Optional<bool> &result = AliasCache[key];
2639     if (result.hasValue()) {
2640       return result.getValue();
2641     }
2642     bool aliased = true;
2643     if (Loc1.Ptr && isSimple(Inst1))
2644       aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2645     // Store the result in the cache.
2646     result = aliased;
2647     return aliased;
2648   }
2649 
2650   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2651 
2652   /// Cache for alias results.
2653   /// TODO: consider moving this to the AliasAnalysis itself.
2654   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2655 
2656   // Cache for pointerMayBeCaptured calls inside AA.  This is preserved
2657   // globally through SLP because we don't perform any action which
2658   // invalidates capture results.
2659   BatchAAResults BatchAA;
2660 
2661   /// Temporary store for deleted instructions. Instructions will be deleted
2662   /// eventually when the BoUpSLP is destructed.  The deferral is required to
2663   /// ensure that there are no incorrect collisions in the AliasCache, which
2664   /// can happen if a new instruction is allocated at the same address as a
2665   /// previously deleted instruction.
2666   DenseSet<Instruction *> DeletedInstructions;
2667 
2668   /// Set of the instruction, being analyzed already for reductions.
2669   SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
2670 
2671   /// Set of hashes for the list of reduction values already being analyzed.
2672   DenseSet<size_t> AnalyzedReductionVals;
2673 
2674   /// A list of values that need to extracted out of the tree.
2675   /// This list holds pairs of (Internal Scalar : External User). External User
2676   /// can be nullptr, it means that this Internal Scalar will be used later,
2677   /// after vectorization.
2678   UserList ExternalUses;
2679 
2680   /// Values used only by @llvm.assume calls.
2681   SmallPtrSet<const Value *, 32> EphValues;
2682 
2683   /// Holds all of the instructions that we gathered.
2684   SetVector<Instruction *> GatherShuffleSeq;
2685 
2686   /// A list of blocks that we are going to CSE.
2687   SetVector<BasicBlock *> CSEBlocks;
2688 
2689   /// Contains all scheduling relevant data for an instruction.
2690   /// A ScheduleData either represents a single instruction or a member of an
2691   /// instruction bundle (= a group of instructions which is combined into a
2692   /// vector instruction).
2693   struct ScheduleData {
2694     // The initial value for the dependency counters. It means that the
2695     // dependencies are not calculated yet.
2696     enum { InvalidDeps = -1 };
2697 
2698     ScheduleData() = default;
2699 
2700     void init(int BlockSchedulingRegionID, Value *OpVal) {
2701       FirstInBundle = this;
2702       NextInBundle = nullptr;
2703       NextLoadStore = nullptr;
2704       IsScheduled = false;
2705       SchedulingRegionID = BlockSchedulingRegionID;
2706       clearDependencies();
2707       OpValue = OpVal;
2708       TE = nullptr;
2709     }
2710 
2711     /// Verify basic self consistency properties
2712     void verify() {
2713       if (hasValidDependencies()) {
2714         assert(UnscheduledDeps <= Dependencies && "invariant");
2715       } else {
2716         assert(UnscheduledDeps == Dependencies && "invariant");
2717       }
2718 
2719       if (IsScheduled) {
2720         assert(isSchedulingEntity() &&
2721                 "unexpected scheduled state");
2722         for (const ScheduleData *BundleMember = this; BundleMember;
2723              BundleMember = BundleMember->NextInBundle) {
2724           assert(BundleMember->hasValidDependencies() &&
2725                  BundleMember->UnscheduledDeps == 0 &&
2726                  "unexpected scheduled state");
2727           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2728                  "only bundle is marked scheduled");
2729         }
2730       }
2731 
2732       assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
2733              "all bundle members must be in same basic block");
2734     }
2735 
2736     /// Returns true if the dependency information has been calculated.
2737     /// Note that depenendency validity can vary between instructions within
2738     /// a single bundle.
2739     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2740 
2741     /// Returns true for single instructions and for bundle representatives
2742     /// (= the head of a bundle).
2743     bool isSchedulingEntity() const { return FirstInBundle == this; }
2744 
2745     /// Returns true if it represents an instruction bundle and not only a
2746     /// single instruction.
2747     bool isPartOfBundle() const {
2748       return NextInBundle != nullptr || FirstInBundle != this || TE;
2749     }
2750 
2751     /// Returns true if it is ready for scheduling, i.e. it has no more
2752     /// unscheduled depending instructions/bundles.
2753     bool isReady() const {
2754       assert(isSchedulingEntity() &&
2755              "can't consider non-scheduling entity for ready list");
2756       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2757     }
2758 
2759     /// Modifies the number of unscheduled dependencies for this instruction,
2760     /// and returns the number of remaining dependencies for the containing
2761     /// bundle.
2762     int incrementUnscheduledDeps(int Incr) {
2763       assert(hasValidDependencies() &&
2764              "increment of unscheduled deps would be meaningless");
2765       UnscheduledDeps += Incr;
2766       return FirstInBundle->unscheduledDepsInBundle();
2767     }
2768 
2769     /// Sets the number of unscheduled dependencies to the number of
2770     /// dependencies.
2771     void resetUnscheduledDeps() {
2772       UnscheduledDeps = Dependencies;
2773     }
2774 
2775     /// Clears all dependency information.
2776     void clearDependencies() {
2777       Dependencies = InvalidDeps;
2778       resetUnscheduledDeps();
2779       MemoryDependencies.clear();
2780       ControlDependencies.clear();
2781     }
2782 
2783     int unscheduledDepsInBundle() const {
2784       assert(isSchedulingEntity() && "only meaningful on the bundle");
2785       int Sum = 0;
2786       for (const ScheduleData *BundleMember = this; BundleMember;
2787            BundleMember = BundleMember->NextInBundle) {
2788         if (BundleMember->UnscheduledDeps == InvalidDeps)
2789           return InvalidDeps;
2790         Sum += BundleMember->UnscheduledDeps;
2791       }
2792       return Sum;
2793     }
2794 
2795     void dump(raw_ostream &os) const {
2796       if (!isSchedulingEntity()) {
2797         os << "/ " << *Inst;
2798       } else if (NextInBundle) {
2799         os << '[' << *Inst;
2800         ScheduleData *SD = NextInBundle;
2801         while (SD) {
2802           os << ';' << *SD->Inst;
2803           SD = SD->NextInBundle;
2804         }
2805         os << ']';
2806       } else {
2807         os << *Inst;
2808       }
2809     }
2810 
2811     Instruction *Inst = nullptr;
2812 
2813     /// Opcode of the current instruction in the schedule data.
2814     Value *OpValue = nullptr;
2815 
2816     /// The TreeEntry that this instruction corresponds to.
2817     TreeEntry *TE = nullptr;
2818 
2819     /// Points to the head in an instruction bundle (and always to this for
2820     /// single instructions).
2821     ScheduleData *FirstInBundle = nullptr;
2822 
2823     /// Single linked list of all instructions in a bundle. Null if it is a
2824     /// single instruction.
2825     ScheduleData *NextInBundle = nullptr;
2826 
2827     /// Single linked list of all memory instructions (e.g. load, store, call)
2828     /// in the block - until the end of the scheduling region.
2829     ScheduleData *NextLoadStore = nullptr;
2830 
2831     /// The dependent memory instructions.
2832     /// This list is derived on demand in calculateDependencies().
2833     SmallVector<ScheduleData *, 4> MemoryDependencies;
2834 
2835     /// List of instructions which this instruction could be control dependent
2836     /// on.  Allowing such nodes to be scheduled below this one could introduce
2837     /// a runtime fault which didn't exist in the original program.
2838     /// ex: this is a load or udiv following a readonly call which inf loops
2839     SmallVector<ScheduleData *, 4> ControlDependencies;
2840 
2841     /// This ScheduleData is in the current scheduling region if this matches
2842     /// the current SchedulingRegionID of BlockScheduling.
2843     int SchedulingRegionID = 0;
2844 
2845     /// Used for getting a "good" final ordering of instructions.
2846     int SchedulingPriority = 0;
2847 
2848     /// The number of dependencies. Constitutes of the number of users of the
2849     /// instruction plus the number of dependent memory instructions (if any).
2850     /// This value is calculated on demand.
2851     /// If InvalidDeps, the number of dependencies is not calculated yet.
2852     int Dependencies = InvalidDeps;
2853 
2854     /// The number of dependencies minus the number of dependencies of scheduled
2855     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2856     /// for scheduling.
2857     /// Note that this is negative as long as Dependencies is not calculated.
2858     int UnscheduledDeps = InvalidDeps;
2859 
2860     /// True if this instruction is scheduled (or considered as scheduled in the
2861     /// dry-run).
2862     bool IsScheduled = false;
2863   };
2864 
2865 #ifndef NDEBUG
2866   friend inline raw_ostream &operator<<(raw_ostream &os,
2867                                         const BoUpSLP::ScheduleData &SD) {
2868     SD.dump(os);
2869     return os;
2870   }
2871 #endif
2872 
2873   friend struct GraphTraits<BoUpSLP *>;
2874   friend struct DOTGraphTraits<BoUpSLP *>;
2875 
2876   /// Contains all scheduling data for a basic block.
2877   /// It does not schedules instructions, which are not memory read/write
2878   /// instructions and their operands are either constants, or arguments, or
2879   /// phis, or instructions from others blocks, or their users are phis or from
2880   /// the other blocks. The resulting vector instructions can be placed at the
2881   /// beginning of the basic block without scheduling (if operands does not need
2882   /// to be scheduled) or at the end of the block (if users are outside of the
2883   /// block). It allows to save some compile time and memory used by the
2884   /// compiler.
2885   /// ScheduleData is assigned for each instruction in between the boundaries of
2886   /// the tree entry, even for those, which are not part of the graph. It is
2887   /// required to correctly follow the dependencies between the instructions and
2888   /// their correct scheduling. The ScheduleData is not allocated for the
2889   /// instructions, which do not require scheduling, like phis, nodes with
2890   /// extractelements/insertelements only or nodes with instructions, with
2891   /// uses/operands outside of the block.
2892   struct BlockScheduling {
2893     BlockScheduling(BasicBlock *BB)
2894         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2895 
2896     void clear() {
2897       ReadyInsts.clear();
2898       ScheduleStart = nullptr;
2899       ScheduleEnd = nullptr;
2900       FirstLoadStoreInRegion = nullptr;
2901       LastLoadStoreInRegion = nullptr;
2902       RegionHasStackSave = false;
2903 
2904       // Reduce the maximum schedule region size by the size of the
2905       // previous scheduling run.
2906       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2907       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2908         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2909       ScheduleRegionSize = 0;
2910 
2911       // Make a new scheduling region, i.e. all existing ScheduleData is not
2912       // in the new region yet.
2913       ++SchedulingRegionID;
2914     }
2915 
2916     ScheduleData *getScheduleData(Instruction *I) {
2917       if (BB != I->getParent())
2918         // Avoid lookup if can't possibly be in map.
2919         return nullptr;
2920       ScheduleData *SD = ScheduleDataMap.lookup(I);
2921       if (SD && isInSchedulingRegion(SD))
2922         return SD;
2923       return nullptr;
2924     }
2925 
2926     ScheduleData *getScheduleData(Value *V) {
2927       if (auto *I = dyn_cast<Instruction>(V))
2928         return getScheduleData(I);
2929       return nullptr;
2930     }
2931 
2932     ScheduleData *getScheduleData(Value *V, Value *Key) {
2933       if (V == Key)
2934         return getScheduleData(V);
2935       auto I = ExtraScheduleDataMap.find(V);
2936       if (I != ExtraScheduleDataMap.end()) {
2937         ScheduleData *SD = I->second.lookup(Key);
2938         if (SD && isInSchedulingRegion(SD))
2939           return SD;
2940       }
2941       return nullptr;
2942     }
2943 
2944     bool isInSchedulingRegion(ScheduleData *SD) const {
2945       return SD->SchedulingRegionID == SchedulingRegionID;
2946     }
2947 
2948     /// Marks an instruction as scheduled and puts all dependent ready
2949     /// instructions into the ready-list.
2950     template <typename ReadyListType>
2951     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2952       SD->IsScheduled = true;
2953       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2954 
2955       for (ScheduleData *BundleMember = SD; BundleMember;
2956            BundleMember = BundleMember->NextInBundle) {
2957         if (BundleMember->Inst != BundleMember->OpValue)
2958           continue;
2959 
2960         // Handle the def-use chain dependencies.
2961 
2962         // Decrement the unscheduled counter and insert to ready list if ready.
2963         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2964           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2965             if (OpDef && OpDef->hasValidDependencies() &&
2966                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2967               // There are no more unscheduled dependencies after
2968               // decrementing, so we can put the dependent instruction
2969               // into the ready list.
2970               ScheduleData *DepBundle = OpDef->FirstInBundle;
2971               assert(!DepBundle->IsScheduled &&
2972                      "already scheduled bundle gets ready");
2973               ReadyList.insert(DepBundle);
2974               LLVM_DEBUG(dbgs()
2975                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2976             }
2977           });
2978         };
2979 
2980         // If BundleMember is a vector bundle, its operands may have been
2981         // reordered during buildTree(). We therefore need to get its operands
2982         // through the TreeEntry.
2983         if (TreeEntry *TE = BundleMember->TE) {
2984           // Need to search for the lane since the tree entry can be reordered.
2985           int Lane = std::distance(TE->Scalars.begin(),
2986                                    find(TE->Scalars, BundleMember->Inst));
2987           assert(Lane >= 0 && "Lane not set");
2988 
2989           // Since vectorization tree is being built recursively this assertion
2990           // ensures that the tree entry has all operands set before reaching
2991           // this code. Couple of exceptions known at the moment are extracts
2992           // where their second (immediate) operand is not added. Since
2993           // immediates do not affect scheduler behavior this is considered
2994           // okay.
2995           auto *In = BundleMember->Inst;
2996           assert(In &&
2997                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2998                   In->getNumOperands() == TE->getNumOperands()) &&
2999                  "Missed TreeEntry operands?");
3000           (void)In; // fake use to avoid build failure when assertions disabled
3001 
3002           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3003                OpIdx != NumOperands; ++OpIdx)
3004             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3005               DecrUnsched(I);
3006         } else {
3007           // If BundleMember is a stand-alone instruction, no operand reordering
3008           // has taken place, so we directly access its operands.
3009           for (Use &U : BundleMember->Inst->operands())
3010             if (auto *I = dyn_cast<Instruction>(U.get()))
3011               DecrUnsched(I);
3012         }
3013         // Handle the memory dependencies.
3014         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3015           if (MemoryDepSD->hasValidDependencies() &&
3016               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3017             // There are no more unscheduled dependencies after decrementing,
3018             // so we can put the dependent instruction into the ready list.
3019             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3020             assert(!DepBundle->IsScheduled &&
3021                    "already scheduled bundle gets ready");
3022             ReadyList.insert(DepBundle);
3023             LLVM_DEBUG(dbgs()
3024                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
3025           }
3026         }
3027         // Handle the control dependencies.
3028         for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3029           if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3030             // There are no more unscheduled dependencies after decrementing,
3031             // so we can put the dependent instruction into the ready list.
3032             ScheduleData *DepBundle = DepSD->FirstInBundle;
3033             assert(!DepBundle->IsScheduled &&
3034                    "already scheduled bundle gets ready");
3035             ReadyList.insert(DepBundle);
3036             LLVM_DEBUG(dbgs()
3037                        << "SLP:    gets ready (ctl): " << *DepBundle << "\n");
3038           }
3039         }
3040 
3041       }
3042     }
3043 
3044     /// Verify basic self consistency properties of the data structure.
3045     void verify() {
3046       if (!ScheduleStart)
3047         return;
3048 
3049       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
3050              ScheduleStart->comesBefore(ScheduleEnd) &&
3051              "Not a valid scheduling region?");
3052 
3053       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3054         auto *SD = getScheduleData(I);
3055         if (!SD)
3056           continue;
3057         assert(isInSchedulingRegion(SD) &&
3058                "primary schedule data not in window?");
3059         assert(isInSchedulingRegion(SD->FirstInBundle) &&
3060                "entire bundle in window!");
3061         (void)SD;
3062         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3063       }
3064 
3065       for (auto *SD : ReadyInsts) {
3066         assert(SD->isSchedulingEntity() && SD->isReady() &&
3067                "item in ready list not ready?");
3068         (void)SD;
3069       }
3070     }
3071 
3072     void doForAllOpcodes(Value *V,
3073                          function_ref<void(ScheduleData *SD)> Action) {
3074       if (ScheduleData *SD = getScheduleData(V))
3075         Action(SD);
3076       auto I = ExtraScheduleDataMap.find(V);
3077       if (I != ExtraScheduleDataMap.end())
3078         for (auto &P : I->second)
3079           if (isInSchedulingRegion(P.second))
3080             Action(P.second);
3081     }
3082 
3083     /// Put all instructions into the ReadyList which are ready for scheduling.
3084     template <typename ReadyListType>
3085     void initialFillReadyList(ReadyListType &ReadyList) {
3086       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3087         doForAllOpcodes(I, [&](ScheduleData *SD) {
3088           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3089               SD->isReady()) {
3090             ReadyList.insert(SD);
3091             LLVM_DEBUG(dbgs()
3092                        << "SLP:    initially in ready list: " << *SD << "\n");
3093           }
3094         });
3095       }
3096     }
3097 
3098     /// Build a bundle from the ScheduleData nodes corresponding to the
3099     /// scalar instruction for each lane.
3100     ScheduleData *buildBundle(ArrayRef<Value *> VL);
3101 
3102     /// Checks if a bundle of instructions can be scheduled, i.e. has no
3103     /// cyclic dependencies. This is only a dry-run, no instructions are
3104     /// actually moved at this stage.
3105     /// \returns the scheduling bundle. The returned Optional value is non-None
3106     /// if \p VL is allowed to be scheduled.
3107     Optional<ScheduleData *>
3108     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3109                       const InstructionsState &S);
3110 
3111     /// Un-bundles a group of instructions.
3112     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3113 
3114     /// Allocates schedule data chunk.
3115     ScheduleData *allocateScheduleDataChunks();
3116 
3117     /// Extends the scheduling region so that V is inside the region.
3118     /// \returns true if the region size is within the limit.
3119     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3120 
3121     /// Initialize the ScheduleData structures for new instructions in the
3122     /// scheduling region.
3123     void initScheduleData(Instruction *FromI, Instruction *ToI,
3124                           ScheduleData *PrevLoadStore,
3125                           ScheduleData *NextLoadStore);
3126 
3127     /// Updates the dependency information of a bundle and of all instructions/
3128     /// bundles which depend on the original bundle.
3129     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3130                                BoUpSLP *SLP);
3131 
3132     /// Sets all instruction in the scheduling region to un-scheduled.
3133     void resetSchedule();
3134 
3135     BasicBlock *BB;
3136 
3137     /// Simple memory allocation for ScheduleData.
3138     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3139 
3140     /// The size of a ScheduleData array in ScheduleDataChunks.
3141     int ChunkSize;
3142 
3143     /// The allocator position in the current chunk, which is the last entry
3144     /// of ScheduleDataChunks.
3145     int ChunkPos;
3146 
3147     /// Attaches ScheduleData to Instruction.
3148     /// Note that the mapping survives during all vectorization iterations, i.e.
3149     /// ScheduleData structures are recycled.
3150     DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3151 
3152     /// Attaches ScheduleData to Instruction with the leading key.
3153     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3154         ExtraScheduleDataMap;
3155 
3156     /// The ready-list for scheduling (only used for the dry-run).
3157     SetVector<ScheduleData *> ReadyInsts;
3158 
3159     /// The first instruction of the scheduling region.
3160     Instruction *ScheduleStart = nullptr;
3161 
3162     /// The first instruction _after_ the scheduling region.
3163     Instruction *ScheduleEnd = nullptr;
3164 
3165     /// The first memory accessing instruction in the scheduling region
3166     /// (can be null).
3167     ScheduleData *FirstLoadStoreInRegion = nullptr;
3168 
3169     /// The last memory accessing instruction in the scheduling region
3170     /// (can be null).
3171     ScheduleData *LastLoadStoreInRegion = nullptr;
3172 
3173     /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3174     /// region?  Used to optimize the dependence calculation for the
3175     /// common case where there isn't.
3176     bool RegionHasStackSave = false;
3177 
3178     /// The current size of the scheduling region.
3179     int ScheduleRegionSize = 0;
3180 
3181     /// The maximum size allowed for the scheduling region.
3182     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3183 
3184     /// The ID of the scheduling region. For a new vectorization iteration this
3185     /// is incremented which "removes" all ScheduleData from the region.
3186     /// Make sure that the initial SchedulingRegionID is greater than the
3187     /// initial SchedulingRegionID in ScheduleData (which is 0).
3188     int SchedulingRegionID = 1;
3189   };
3190 
3191   /// Attaches the BlockScheduling structures to basic blocks.
3192   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3193 
3194   /// Performs the "real" scheduling. Done before vectorization is actually
3195   /// performed in a basic block.
3196   void scheduleBlock(BlockScheduling *BS);
3197 
3198   /// List of users to ignore during scheduling and that don't need extracting.
3199   const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3200 
3201   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3202   /// sorted SmallVectors of unsigned.
3203   struct OrdersTypeDenseMapInfo {
3204     static OrdersType getEmptyKey() {
3205       OrdersType V;
3206       V.push_back(~1U);
3207       return V;
3208     }
3209 
3210     static OrdersType getTombstoneKey() {
3211       OrdersType V;
3212       V.push_back(~2U);
3213       return V;
3214     }
3215 
3216     static unsigned getHashValue(const OrdersType &V) {
3217       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3218     }
3219 
3220     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3221       return LHS == RHS;
3222     }
3223   };
3224 
3225   // Analysis and block reference.
3226   Function *F;
3227   ScalarEvolution *SE;
3228   TargetTransformInfo *TTI;
3229   TargetLibraryInfo *TLI;
3230   LoopInfo *LI;
3231   DominatorTree *DT;
3232   AssumptionCache *AC;
3233   DemandedBits *DB;
3234   const DataLayout *DL;
3235   OptimizationRemarkEmitter *ORE;
3236 
3237   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3238   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3239 
3240   /// Instruction builder to construct the vectorized tree.
3241   IRBuilder<> Builder;
3242 
3243   /// A map of scalar integer values to the smallest bit width with which they
3244   /// can legally be represented. The values map to (width, signed) pairs,
3245   /// where "width" indicates the minimum bit width and "signed" is True if the
3246   /// value must be signed-extended, rather than zero-extended, back to its
3247   /// original width.
3248   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
3249 };
3250 
3251 } // end namespace slpvectorizer
3252 
3253 template <> struct GraphTraits<BoUpSLP *> {
3254   using TreeEntry = BoUpSLP::TreeEntry;
3255 
3256   /// NodeRef has to be a pointer per the GraphWriter.
3257   using NodeRef = TreeEntry *;
3258 
3259   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3260 
3261   /// Add the VectorizableTree to the index iterator to be able to return
3262   /// TreeEntry pointers.
3263   struct ChildIteratorType
3264       : public iterator_adaptor_base<
3265             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3266     ContainerTy &VectorizableTree;
3267 
3268     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3269                       ContainerTy &VT)
3270         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3271 
3272     NodeRef operator*() { return I->UserTE; }
3273   };
3274 
3275   static NodeRef getEntryNode(BoUpSLP &R) {
3276     return R.VectorizableTree[0].get();
3277   }
3278 
3279   static ChildIteratorType child_begin(NodeRef N) {
3280     return {N->UserTreeIndices.begin(), N->Container};
3281   }
3282 
3283   static ChildIteratorType child_end(NodeRef N) {
3284     return {N->UserTreeIndices.end(), N->Container};
3285   }
3286 
3287   /// For the node iterator we just need to turn the TreeEntry iterator into a
3288   /// TreeEntry* iterator so that it dereferences to NodeRef.
3289   class nodes_iterator {
3290     using ItTy = ContainerTy::iterator;
3291     ItTy It;
3292 
3293   public:
3294     nodes_iterator(const ItTy &It2) : It(It2) {}
3295     NodeRef operator*() { return It->get(); }
3296     nodes_iterator operator++() {
3297       ++It;
3298       return *this;
3299     }
3300     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3301   };
3302 
3303   static nodes_iterator nodes_begin(BoUpSLP *R) {
3304     return nodes_iterator(R->VectorizableTree.begin());
3305   }
3306 
3307   static nodes_iterator nodes_end(BoUpSLP *R) {
3308     return nodes_iterator(R->VectorizableTree.end());
3309   }
3310 
3311   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3312 };
3313 
3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3315   using TreeEntry = BoUpSLP::TreeEntry;
3316 
3317   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3318 
3319   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3320     std::string Str;
3321     raw_string_ostream OS(Str);
3322     if (isSplat(Entry->Scalars))
3323       OS << "<splat> ";
3324     for (auto V : Entry->Scalars) {
3325       OS << *V;
3326       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3327             return EU.Scalar == V;
3328           }))
3329         OS << " <extract>";
3330       OS << "\n";
3331     }
3332     return Str;
3333   }
3334 
3335   static std::string getNodeAttributes(const TreeEntry *Entry,
3336                                        const BoUpSLP *) {
3337     if (Entry->State == TreeEntry::NeedToGather)
3338       return "color=red";
3339     return "";
3340   }
3341 };
3342 
3343 } // end namespace llvm
3344 
3345 BoUpSLP::~BoUpSLP() {
3346   SmallVector<WeakTrackingVH> DeadInsts;
3347   for (auto *I : DeletedInstructions) {
3348     for (Use &U : I->operands()) {
3349       auto *Op = dyn_cast<Instruction>(U.get());
3350       if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3351           wouldInstructionBeTriviallyDead(Op, TLI))
3352         DeadInsts.emplace_back(Op);
3353     }
3354     I->dropAllReferences();
3355   }
3356   for (auto *I : DeletedInstructions) {
3357     assert(I->use_empty() &&
3358            "trying to erase instruction with users.");
3359     I->eraseFromParent();
3360   }
3361 
3362   // Cleanup any dead scalar code feeding the vectorized instructions
3363   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3364 
3365 #ifdef EXPENSIVE_CHECKS
3366   // If we could guarantee that this call is not extremely slow, we could
3367   // remove the ifdef limitation (see PR47712).
3368   assert(!verifyFunction(*F, &dbgs()));
3369 #endif
3370 }
3371 
3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3373 /// contains original mask for the scalars reused in the node. Procedure
3374 /// transform this mask in accordance with the given \p Mask.
3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3376   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3377          "Expected non-empty mask.");
3378   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3379   Prev.swap(Reuses);
3380   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3381     if (Mask[I] != UndefMaskElem)
3382       Reuses[Mask[I]] = Prev[I];
3383 }
3384 
3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3386 /// the original order of the scalars. Procedure transforms the provided order
3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3388 /// identity order, \p Order is cleared.
3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3390   assert(!Mask.empty() && "Expected non-empty mask.");
3391   SmallVector<int> MaskOrder;
3392   if (Order.empty()) {
3393     MaskOrder.resize(Mask.size());
3394     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3395   } else {
3396     inversePermutation(Order, MaskOrder);
3397   }
3398   reorderReuses(MaskOrder, Mask);
3399   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3400     Order.clear();
3401     return;
3402   }
3403   Order.assign(Mask.size(), Mask.size());
3404   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3405     if (MaskOrder[I] != UndefMaskElem)
3406       Order[MaskOrder[I]] = I;
3407   fixupOrderingIndices(Order);
3408 }
3409 
3410 Optional<BoUpSLP::OrdersType>
3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3412   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3413   unsigned NumScalars = TE.Scalars.size();
3414   OrdersType CurrentOrder(NumScalars, NumScalars);
3415   SmallVector<int> Positions;
3416   SmallBitVector UsedPositions(NumScalars);
3417   const TreeEntry *STE = nullptr;
3418   // Try to find all gathered scalars that are gets vectorized in other
3419   // vectorize node. Here we can have only one single tree vector node to
3420   // correctly identify order of the gathered scalars.
3421   for (unsigned I = 0; I < NumScalars; ++I) {
3422     Value *V = TE.Scalars[I];
3423     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3424       continue;
3425     if (const auto *LocalSTE = getTreeEntry(V)) {
3426       if (!STE)
3427         STE = LocalSTE;
3428       else if (STE != LocalSTE)
3429         // Take the order only from the single vector node.
3430         return None;
3431       unsigned Lane =
3432           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3433       if (Lane >= NumScalars)
3434         return None;
3435       if (CurrentOrder[Lane] != NumScalars) {
3436         if (Lane != I)
3437           continue;
3438         UsedPositions.reset(CurrentOrder[Lane]);
3439       }
3440       // The partial identity (where only some elements of the gather node are
3441       // in the identity order) is good.
3442       CurrentOrder[Lane] = I;
3443       UsedPositions.set(I);
3444     }
3445   }
3446   // Need to keep the order if we have a vector entry and at least 2 scalars or
3447   // the vectorized entry has just 2 scalars.
3448   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3449     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3450       for (unsigned I = 0; I < NumScalars; ++I)
3451         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3452           return false;
3453       return true;
3454     };
3455     if (IsIdentityOrder(CurrentOrder)) {
3456       CurrentOrder.clear();
3457       return CurrentOrder;
3458     }
3459     auto *It = CurrentOrder.begin();
3460     for (unsigned I = 0; I < NumScalars;) {
3461       if (UsedPositions.test(I)) {
3462         ++I;
3463         continue;
3464       }
3465       if (*It == NumScalars) {
3466         *It = I;
3467         ++I;
3468       }
3469       ++It;
3470     }
3471     return CurrentOrder;
3472   }
3473   return None;
3474 }
3475 
3476 namespace {
3477 /// Tracks the state we can represent the loads in the given sequence.
3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3479 } // anonymous namespace
3480 
3481 /// Checks if the given array of loads can be represented as a vectorized,
3482 /// scatter or just simple gather.
3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3484                                     const TargetTransformInfo &TTI,
3485                                     const DataLayout &DL, ScalarEvolution &SE,
3486                                     LoopInfo &LI,
3487                                     SmallVectorImpl<unsigned> &Order,
3488                                     SmallVectorImpl<Value *> &PointerOps) {
3489   // Check that a vectorized load would load the same memory as a scalar
3490   // load. For example, we don't want to vectorize loads that are smaller
3491   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3492   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3493   // from such a struct, we read/write packed bits disagreeing with the
3494   // unvectorized version.
3495   Type *ScalarTy = VL0->getType();
3496 
3497   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3498     return LoadsState::Gather;
3499 
3500   // Make sure all loads in the bundle are simple - we can't vectorize
3501   // atomic or volatile loads.
3502   PointerOps.clear();
3503   PointerOps.resize(VL.size());
3504   auto *POIter = PointerOps.begin();
3505   for (Value *V : VL) {
3506     auto *L = cast<LoadInst>(V);
3507     if (!L->isSimple())
3508       return LoadsState::Gather;
3509     *POIter = L->getPointerOperand();
3510     ++POIter;
3511   }
3512 
3513   Order.clear();
3514   // Check the order of pointer operands or that all pointers are the same.
3515   bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order);
3516   if (IsSorted || all_of(PointerOps, [&PointerOps](Value *P) {
3517         if (getUnderlyingObject(P) != getUnderlyingObject(PointerOps.front()))
3518           return false;
3519         auto *GEP = dyn_cast<GetElementPtrInst>(P);
3520         if (!GEP)
3521           return false;
3522         auto *GEP0 = cast<GetElementPtrInst>(PointerOps.front());
3523         return GEP->getNumOperands() == 2 &&
3524                ((isConstant(GEP->getOperand(1)) &&
3525                  isConstant(GEP0->getOperand(1))) ||
3526                 getSameOpcode({GEP->getOperand(1), GEP0->getOperand(1)})
3527                     .getOpcode());
3528       })) {
3529     if (IsSorted) {
3530       Value *Ptr0;
3531       Value *PtrN;
3532       if (Order.empty()) {
3533         Ptr0 = PointerOps.front();
3534         PtrN = PointerOps.back();
3535       } else {
3536         Ptr0 = PointerOps[Order.front()];
3537         PtrN = PointerOps[Order.back()];
3538       }
3539       Optional<int> Diff =
3540           getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3541       // Check that the sorted loads are consecutive.
3542       if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3543         return LoadsState::Vectorize;
3544     }
3545     // TODO: need to improve analysis of the pointers, if not all of them are
3546     // GEPs or have > 2 operands, we end up with a gather node, which just
3547     // increases the cost.
3548     Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent());
3549     bool ProfitableGatherPointers =
3550         static_cast<unsigned>(count_if(PointerOps, [L](Value *V) {
3551           return L && L->isLoopInvariant(V);
3552         })) <= VL.size() / 2 && VL.size() > 2;
3553     if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) {
3554           auto *GEP = dyn_cast<GetElementPtrInst>(P);
3555           return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) ||
3556                  (GEP && GEP->getNumOperands() == 2);
3557         })) {
3558       Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3559       for (Value *V : VL)
3560         CommonAlignment =
3561             commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3562       auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3563       if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
3564           !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
3565         return LoadsState::ScatterVectorize;
3566     }
3567   }
3568 
3569   return LoadsState::Gather;
3570 }
3571 
3572 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3573                             const DataLayout &DL, ScalarEvolution &SE,
3574                             SmallVectorImpl<unsigned> &SortedIndices) {
3575   assert(llvm::all_of(
3576              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
3577          "Expected list of pointer operands.");
3578   // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3579   // Ptr into, sort and return the sorted indices with values next to one
3580   // another.
3581   MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3582   Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3583 
3584   unsigned Cnt = 1;
3585   for (Value *Ptr : VL.drop_front()) {
3586     bool Found = any_of(Bases, [&](auto &Base) {
3587       Optional<int> Diff =
3588           getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3589                           /*StrictCheck=*/true);
3590       if (!Diff)
3591         return false;
3592 
3593       Base.second.emplace_back(Ptr, *Diff, Cnt++);
3594       return true;
3595     });
3596 
3597     if (!Found) {
3598       // If we haven't found enough to usefully cluster, return early.
3599       if (Bases.size() > VL.size() / 2 - 1)
3600         return false;
3601 
3602       // Not found already - add a new Base
3603       Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3604     }
3605   }
3606 
3607   // For each of the bases sort the pointers by Offset and check if any of the
3608   // base become consecutively allocated.
3609   bool AnyConsecutive = false;
3610   for (auto &Base : Bases) {
3611     auto &Vec = Base.second;
3612     if (Vec.size() > 1) {
3613       llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3614                                 const std::tuple<Value *, int, unsigned> &Y) {
3615         return std::get<1>(X) < std::get<1>(Y);
3616       });
3617       int InitialOffset = std::get<1>(Vec[0]);
3618       AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) {
3619         return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3620       });
3621     }
3622   }
3623 
3624   // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3625   SortedIndices.clear();
3626   if (!AnyConsecutive)
3627     return false;
3628 
3629   for (auto &Base : Bases) {
3630     for (auto &T : Base.second)
3631       SortedIndices.push_back(std::get<2>(T));
3632   }
3633 
3634   assert(SortedIndices.size() == VL.size() &&
3635          "Expected SortedIndices to be the size of VL");
3636   return true;
3637 }
3638 
3639 Optional<BoUpSLP::OrdersType>
3640 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
3641   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3642   Type *ScalarTy = TE.Scalars[0]->getType();
3643 
3644   SmallVector<Value *> Ptrs;
3645   Ptrs.reserve(TE.Scalars.size());
3646   for (Value *V : TE.Scalars) {
3647     auto *L = dyn_cast<LoadInst>(V);
3648     if (!L || !L->isSimple())
3649       return None;
3650     Ptrs.push_back(L->getPointerOperand());
3651   }
3652 
3653   BoUpSLP::OrdersType Order;
3654   if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
3655     return Order;
3656   return None;
3657 }
3658 
3659 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3660                                                          bool TopToBottom) {
3661   // No need to reorder if need to shuffle reuses, still need to shuffle the
3662   // node.
3663   if (!TE.ReuseShuffleIndices.empty())
3664     return None;
3665   if (TE.State == TreeEntry::Vectorize &&
3666       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3667        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3668       !TE.isAltShuffle())
3669     return TE.ReorderIndices;
3670   if (TE.State == TreeEntry::NeedToGather) {
3671     // TODO: add analysis of other gather nodes with extractelement
3672     // instructions and other values/instructions, not only undefs.
3673     if (((TE.getOpcode() == Instruction::ExtractElement &&
3674           !TE.isAltShuffle()) ||
3675          (all_of(TE.Scalars,
3676                  [](Value *V) {
3677                    return isa<UndefValue, ExtractElementInst>(V);
3678                  }) &&
3679           any_of(TE.Scalars,
3680                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3681         all_of(TE.Scalars,
3682                [](Value *V) {
3683                  auto *EE = dyn_cast<ExtractElementInst>(V);
3684                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3685                }) &&
3686         allSameType(TE.Scalars)) {
3687       // Check that gather of extractelements can be represented as
3688       // just a shuffle of a single vector.
3689       OrdersType CurrentOrder;
3690       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3691       if (Reuse || !CurrentOrder.empty()) {
3692         if (!CurrentOrder.empty())
3693           fixupOrderingIndices(CurrentOrder);
3694         return CurrentOrder;
3695       }
3696     }
3697     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3698       return CurrentOrder;
3699     if (TE.Scalars.size() >= 4)
3700       if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
3701         return Order;
3702   }
3703   return None;
3704 }
3705 
3706 void BoUpSLP::reorderTopToBottom() {
3707   // Maps VF to the graph nodes.
3708   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3709   // ExtractElement gather nodes which can be vectorized and need to handle
3710   // their ordering.
3711   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3712 
3713   // AltShuffles can also have a preferred ordering that leads to fewer
3714   // instructions, e.g., the addsub instruction in x86.
3715   DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders;
3716 
3717   // Maps a TreeEntry to the reorder indices of external users.
3718   DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
3719       ExternalUserReorderMap;
3720   // FIXME: Workaround for syntax error reported by MSVC buildbots.
3721   TargetTransformInfo &TTIRef = *TTI;
3722   // Find all reorderable nodes with the given VF.
3723   // Currently the are vectorized stores,loads,extracts + some gathering of
3724   // extracts.
3725   for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries,
3726                               &GathersToOrders, &ExternalUserReorderMap,
3727                               &AltShufflesToOrders](
3728                                  const std::unique_ptr<TreeEntry> &TE) {
3729     // Look for external users that will probably be vectorized.
3730     SmallVector<OrdersType, 1> ExternalUserReorderIndices =
3731         findExternalStoreUsersReorderIndices(TE.get());
3732     if (!ExternalUserReorderIndices.empty()) {
3733       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3734       ExternalUserReorderMap.try_emplace(TE.get(),
3735                                          std::move(ExternalUserReorderIndices));
3736     }
3737 
3738     // Patterns like [fadd,fsub] can be combined into a single instruction in
3739     // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need
3740     // to take into account their order when looking for the most used order.
3741     if (TE->isAltShuffle()) {
3742       VectorType *VecTy =
3743           FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size());
3744       unsigned Opcode0 = TE->getOpcode();
3745       unsigned Opcode1 = TE->getAltOpcode();
3746       // The opcode mask selects between the two opcodes.
3747       SmallBitVector OpcodeMask(TE->Scalars.size(), 0);
3748       for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size()))
3749         if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1)
3750           OpcodeMask.set(Lane);
3751       // If this pattern is supported by the target then we consider the order.
3752       if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) {
3753         VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3754         AltShufflesToOrders.try_emplace(TE.get(), OrdersType());
3755       }
3756       // TODO: Check the reverse order too.
3757     }
3758 
3759     if (Optional<OrdersType> CurrentOrder =
3760             getReorderingData(*TE, /*TopToBottom=*/true)) {
3761       // Do not include ordering for nodes used in the alt opcode vectorization,
3762       // better to reorder them during bottom-to-top stage. If follow the order
3763       // here, it causes reordering of the whole graph though actually it is
3764       // profitable just to reorder the subgraph that starts from the alternate
3765       // opcode vectorization node. Such nodes already end-up with the shuffle
3766       // instruction and it is just enough to change this shuffle rather than
3767       // rotate the scalars for the whole graph.
3768       unsigned Cnt = 0;
3769       const TreeEntry *UserTE = TE.get();
3770       while (UserTE && Cnt < RecursionMaxDepth) {
3771         if (UserTE->UserTreeIndices.size() != 1)
3772           break;
3773         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3774               return EI.UserTE->State == TreeEntry::Vectorize &&
3775                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3776             }))
3777           return;
3778         UserTE = UserTE->UserTreeIndices.back().UserTE;
3779         ++Cnt;
3780       }
3781       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3782       if (TE->State != TreeEntry::Vectorize)
3783         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3784     }
3785   });
3786 
3787   // Reorder the graph nodes according to their vectorization factor.
3788   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3789        VF /= 2) {
3790     auto It = VFToOrderedEntries.find(VF);
3791     if (It == VFToOrderedEntries.end())
3792       continue;
3793     // Try to find the most profitable order. We just are looking for the most
3794     // used order and reorder scalar elements in the nodes according to this
3795     // mostly used order.
3796     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3797     // All operands are reordered and used only in this node - propagate the
3798     // most used order to the user node.
3799     MapVector<OrdersType, unsigned,
3800               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3801         OrdersUses;
3802     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3803     for (const TreeEntry *OpTE : OrderedEntries) {
3804       // No need to reorder this nodes, still need to extend and to use shuffle,
3805       // just need to merge reordering shuffle and the reuse shuffle.
3806       if (!OpTE->ReuseShuffleIndices.empty())
3807         continue;
3808       // Count number of orders uses.
3809       const auto &Order = [OpTE, &GathersToOrders,
3810                            &AltShufflesToOrders]() -> const OrdersType & {
3811         if (OpTE->State == TreeEntry::NeedToGather) {
3812           auto It = GathersToOrders.find(OpTE);
3813           if (It != GathersToOrders.end())
3814             return It->second;
3815         }
3816         if (OpTE->isAltShuffle()) {
3817           auto It = AltShufflesToOrders.find(OpTE);
3818           if (It != AltShufflesToOrders.end())
3819             return It->second;
3820         }
3821         return OpTE->ReorderIndices;
3822       }();
3823       // First consider the order of the external scalar users.
3824       auto It = ExternalUserReorderMap.find(OpTE);
3825       if (It != ExternalUserReorderMap.end()) {
3826         const auto &ExternalUserReorderIndices = It->second;
3827         for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
3828           ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
3829         // No other useful reorder data in this entry.
3830         if (Order.empty())
3831           continue;
3832       }
3833       // Stores actually store the mask, not the order, need to invert.
3834       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3835           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3836         SmallVector<int> Mask;
3837         inversePermutation(Order, Mask);
3838         unsigned E = Order.size();
3839         OrdersType CurrentOrder(E, E);
3840         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3841           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3842         });
3843         fixupOrderingIndices(CurrentOrder);
3844         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3845       } else {
3846         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3847       }
3848     }
3849     // Set order of the user node.
3850     if (OrdersUses.empty())
3851       continue;
3852     // Choose the most used order.
3853     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3854     unsigned Cnt = OrdersUses.front().second;
3855     for (const auto &Pair : drop_begin(OrdersUses)) {
3856       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3857         BestOrder = Pair.first;
3858         Cnt = Pair.second;
3859       }
3860     }
3861     // Set order of the user node.
3862     if (BestOrder.empty())
3863       continue;
3864     SmallVector<int> Mask;
3865     inversePermutation(BestOrder, Mask);
3866     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3867     unsigned E = BestOrder.size();
3868     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3869       return I < E ? static_cast<int>(I) : UndefMaskElem;
3870     });
3871     // Do an actual reordering, if profitable.
3872     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3873       // Just do the reordering for the nodes with the given VF.
3874       if (TE->Scalars.size() != VF) {
3875         if (TE->ReuseShuffleIndices.size() == VF) {
3876           // Need to reorder the reuses masks of the operands with smaller VF to
3877           // be able to find the match between the graph nodes and scalar
3878           // operands of the given node during vectorization/cost estimation.
3879           assert(all_of(TE->UserTreeIndices,
3880                         [VF, &TE](const EdgeInfo &EI) {
3881                           return EI.UserTE->Scalars.size() == VF ||
3882                                  EI.UserTE->Scalars.size() ==
3883                                      TE->Scalars.size();
3884                         }) &&
3885                  "All users must be of VF size.");
3886           // Update ordering of the operands with the smaller VF than the given
3887           // one.
3888           reorderReuses(TE->ReuseShuffleIndices, Mask);
3889         }
3890         continue;
3891       }
3892       if (TE->State == TreeEntry::Vectorize &&
3893           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3894               InsertElementInst>(TE->getMainOp()) &&
3895           !TE->isAltShuffle()) {
3896         // Build correct orders for extract{element,value}, loads and
3897         // stores.
3898         reorderOrder(TE->ReorderIndices, Mask);
3899         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3900           TE->reorderOperands(Mask);
3901       } else {
3902         // Reorder the node and its operands.
3903         TE->reorderOperands(Mask);
3904         assert(TE->ReorderIndices.empty() &&
3905                "Expected empty reorder sequence.");
3906         reorderScalars(TE->Scalars, Mask);
3907       }
3908       if (!TE->ReuseShuffleIndices.empty()) {
3909         // Apply reversed order to keep the original ordering of the reused
3910         // elements to avoid extra reorder indices shuffling.
3911         OrdersType CurrentOrder;
3912         reorderOrder(CurrentOrder, MaskOrder);
3913         SmallVector<int> NewReuses;
3914         inversePermutation(CurrentOrder, NewReuses);
3915         addMask(NewReuses, TE->ReuseShuffleIndices);
3916         TE->ReuseShuffleIndices.swap(NewReuses);
3917       }
3918     }
3919   }
3920 }
3921 
3922 bool BoUpSLP::canReorderOperands(
3923     TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
3924     ArrayRef<TreeEntry *> ReorderableGathers,
3925     SmallVectorImpl<TreeEntry *> &GatherOps) {
3926   for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
3927     if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3928           return OpData.first == I &&
3929                  OpData.second->State == TreeEntry::Vectorize;
3930         }))
3931       continue;
3932     if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
3933       // Do not reorder if operand node is used by many user nodes.
3934       if (any_of(TE->UserTreeIndices,
3935                  [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
3936         return false;
3937       // Add the node to the list of the ordered nodes with the identity
3938       // order.
3939       Edges.emplace_back(I, TE);
3940       // Add ScatterVectorize nodes to the list of operands, where just
3941       // reordering of the scalars is required. Similar to the gathers, so
3942       // simply add to the list of gathered ops.
3943       if (TE->State != TreeEntry::Vectorize)
3944         GatherOps.push_back(TE);
3945       continue;
3946     }
3947     ArrayRef<Value *> VL = UserTE->getOperand(I);
3948     TreeEntry *Gather = nullptr;
3949     if (count_if(ReorderableGathers,
3950                  [VL, &Gather](TreeEntry *TE) {
3951                    assert(TE->State != TreeEntry::Vectorize &&
3952                           "Only non-vectorized nodes are expected.");
3953                    if (TE->isSame(VL)) {
3954                      Gather = TE;
3955                      return true;
3956                    }
3957                    return false;
3958                  }) > 1 &&
3959         !all_of(VL, isConstant))
3960       return false;
3961     if (Gather)
3962       GatherOps.push_back(Gather);
3963   }
3964   return true;
3965 }
3966 
3967 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3968   SetVector<TreeEntry *> OrderedEntries;
3969   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3970   // Find all reorderable leaf nodes with the given VF.
3971   // Currently the are vectorized loads,extracts without alternate operands +
3972   // some gathering of extracts.
3973   SmallVector<TreeEntry *> NonVectorized;
3974   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3975                               &NonVectorized](
3976                                  const std::unique_ptr<TreeEntry> &TE) {
3977     if (TE->State != TreeEntry::Vectorize)
3978       NonVectorized.push_back(TE.get());
3979     if (Optional<OrdersType> CurrentOrder =
3980             getReorderingData(*TE, /*TopToBottom=*/false)) {
3981       OrderedEntries.insert(TE.get());
3982       if (TE->State != TreeEntry::Vectorize)
3983         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3984     }
3985   });
3986 
3987   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3988   // I.e., if the node has operands, that are reordered, try to make at least
3989   // one operand order in the natural order and reorder others + reorder the
3990   // user node itself.
3991   SmallPtrSet<const TreeEntry *, 4> Visited;
3992   while (!OrderedEntries.empty()) {
3993     // 1. Filter out only reordered nodes.
3994     // 2. If the entry has multiple uses - skip it and jump to the next node.
3995     DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3996     SmallVector<TreeEntry *> Filtered;
3997     for (TreeEntry *TE : OrderedEntries) {
3998       if (!(TE->State == TreeEntry::Vectorize ||
3999             (TE->State == TreeEntry::NeedToGather &&
4000              GathersToOrders.count(TE))) ||
4001           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4002           !all_of(drop_begin(TE->UserTreeIndices),
4003                   [TE](const EdgeInfo &EI) {
4004                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
4005                   }) ||
4006           !Visited.insert(TE).second) {
4007         Filtered.push_back(TE);
4008         continue;
4009       }
4010       // Build a map between user nodes and their operands order to speedup
4011       // search. The graph currently does not provide this dependency directly.
4012       for (EdgeInfo &EI : TE->UserTreeIndices) {
4013         TreeEntry *UserTE = EI.UserTE;
4014         auto It = Users.find(UserTE);
4015         if (It == Users.end())
4016           It = Users.insert({UserTE, {}}).first;
4017         It->second.emplace_back(EI.EdgeIdx, TE);
4018       }
4019     }
4020     // Erase filtered entries.
4021     for_each(Filtered,
4022              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
4023     SmallVector<
4024         std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
4025         UsersVec(Users.begin(), Users.end());
4026     sort(UsersVec, [](const auto &Data1, const auto &Data2) {
4027       return Data1.first->Idx > Data2.first->Idx;
4028     });
4029     for (auto &Data : UsersVec) {
4030       // Check that operands are used only in the User node.
4031       SmallVector<TreeEntry *> GatherOps;
4032       if (!canReorderOperands(Data.first, Data.second, NonVectorized,
4033                               GatherOps)) {
4034         for_each(Data.second,
4035                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4036                    OrderedEntries.remove(Op.second);
4037                  });
4038         continue;
4039       }
4040       // All operands are reordered and used only in this node - propagate the
4041       // most used order to the user node.
4042       MapVector<OrdersType, unsigned,
4043                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
4044           OrdersUses;
4045       // Do the analysis for each tree entry only once, otherwise the order of
4046       // the same node my be considered several times, though might be not
4047       // profitable.
4048       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
4049       SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
4050       for (const auto &Op : Data.second) {
4051         TreeEntry *OpTE = Op.second;
4052         if (!VisitedOps.insert(OpTE).second)
4053           continue;
4054         if (!OpTE->ReuseShuffleIndices.empty() ||
4055             (IgnoreReorder && OpTE == VectorizableTree.front().get()))
4056           continue;
4057         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
4058           if (OpTE->State == TreeEntry::NeedToGather)
4059             return GathersToOrders.find(OpTE)->second;
4060           return OpTE->ReorderIndices;
4061         }();
4062         unsigned NumOps = count_if(
4063             Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
4064               return P.second == OpTE;
4065             });
4066         // Stores actually store the mask, not the order, need to invert.
4067         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
4068             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
4069           SmallVector<int> Mask;
4070           inversePermutation(Order, Mask);
4071           unsigned E = Order.size();
4072           OrdersType CurrentOrder(E, E);
4073           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
4074             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
4075           });
4076           fixupOrderingIndices(CurrentOrder);
4077           OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
4078               NumOps;
4079         } else {
4080           OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
4081         }
4082         auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
4083         const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
4084                                             const TreeEntry *TE) {
4085           if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
4086               (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
4087               (IgnoreReorder && TE->Idx == 0))
4088             return true;
4089           if (TE->State == TreeEntry::NeedToGather) {
4090             auto It = GathersToOrders.find(TE);
4091             if (It != GathersToOrders.end())
4092               return !It->second.empty();
4093             return true;
4094           }
4095           return false;
4096         };
4097         for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
4098           TreeEntry *UserTE = EI.UserTE;
4099           if (!VisitedUsers.insert(UserTE).second)
4100             continue;
4101           // May reorder user node if it requires reordering, has reused
4102           // scalars, is an alternate op vectorize node or its op nodes require
4103           // reordering.
4104           if (AllowsReordering(UserTE))
4105             continue;
4106           // Check if users allow reordering.
4107           // Currently look up just 1 level of operands to avoid increase of
4108           // the compile time.
4109           // Profitable to reorder if definitely more operands allow
4110           // reordering rather than those with natural order.
4111           ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
4112           if (static_cast<unsigned>(count_if(
4113                   Ops, [UserTE, &AllowsReordering](
4114                            const std::pair<unsigned, TreeEntry *> &Op) {
4115                     return AllowsReordering(Op.second) &&
4116                            all_of(Op.second->UserTreeIndices,
4117                                   [UserTE](const EdgeInfo &EI) {
4118                                     return EI.UserTE == UserTE;
4119                                   });
4120                   })) <= Ops.size() / 2)
4121             ++Res.first->second;
4122         }
4123       }
4124       // If no orders - skip current nodes and jump to the next one, if any.
4125       if (OrdersUses.empty()) {
4126         for_each(Data.second,
4127                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4128                    OrderedEntries.remove(Op.second);
4129                  });
4130         continue;
4131       }
4132       // Choose the best order.
4133       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4134       unsigned Cnt = OrdersUses.front().second;
4135       for (const auto &Pair : drop_begin(OrdersUses)) {
4136         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4137           BestOrder = Pair.first;
4138           Cnt = Pair.second;
4139         }
4140       }
4141       // Set order of the user node (reordering of operands and user nodes).
4142       if (BestOrder.empty()) {
4143         for_each(Data.second,
4144                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4145                    OrderedEntries.remove(Op.second);
4146                  });
4147         continue;
4148       }
4149       // Erase operands from OrderedEntries list and adjust their orders.
4150       VisitedOps.clear();
4151       SmallVector<int> Mask;
4152       inversePermutation(BestOrder, Mask);
4153       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
4154       unsigned E = BestOrder.size();
4155       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4156         return I < E ? static_cast<int>(I) : UndefMaskElem;
4157       });
4158       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4159         TreeEntry *TE = Op.second;
4160         OrderedEntries.remove(TE);
4161         if (!VisitedOps.insert(TE).second)
4162           continue;
4163         if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4164           // Just reorder reuses indices.
4165           reorderReuses(TE->ReuseShuffleIndices, Mask);
4166           continue;
4167         }
4168         // Gathers are processed separately.
4169         if (TE->State != TreeEntry::Vectorize)
4170           continue;
4171         assert((BestOrder.size() == TE->ReorderIndices.size() ||
4172                 TE->ReorderIndices.empty()) &&
4173                "Non-matching sizes of user/operand entries.");
4174         reorderOrder(TE->ReorderIndices, Mask);
4175       }
4176       // For gathers just need to reorder its scalars.
4177       for (TreeEntry *Gather : GatherOps) {
4178         assert(Gather->ReorderIndices.empty() &&
4179                "Unexpected reordering of gathers.");
4180         if (!Gather->ReuseShuffleIndices.empty()) {
4181           // Just reorder reuses indices.
4182           reorderReuses(Gather->ReuseShuffleIndices, Mask);
4183           continue;
4184         }
4185         reorderScalars(Gather->Scalars, Mask);
4186         OrderedEntries.remove(Gather);
4187       }
4188       // Reorder operands of the user node and set the ordering for the user
4189       // node itself.
4190       if (Data.first->State != TreeEntry::Vectorize ||
4191           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4192               Data.first->getMainOp()) ||
4193           Data.first->isAltShuffle())
4194         Data.first->reorderOperands(Mask);
4195       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4196           Data.first->isAltShuffle()) {
4197         reorderScalars(Data.first->Scalars, Mask);
4198         reorderOrder(Data.first->ReorderIndices, MaskOrder);
4199         if (Data.first->ReuseShuffleIndices.empty() &&
4200             !Data.first->ReorderIndices.empty() &&
4201             !Data.first->isAltShuffle()) {
4202           // Insert user node to the list to try to sink reordering deeper in
4203           // the graph.
4204           OrderedEntries.insert(Data.first);
4205         }
4206       } else {
4207         reorderOrder(Data.first->ReorderIndices, Mask);
4208       }
4209     }
4210   }
4211   // If the reordering is unnecessary, just remove the reorder.
4212   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4213       VectorizableTree.front()->ReuseShuffleIndices.empty())
4214     VectorizableTree.front()->ReorderIndices.clear();
4215 }
4216 
4217 void BoUpSLP::buildExternalUses(
4218     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4219   // Collect the values that we need to extract from the tree.
4220   for (auto &TEPtr : VectorizableTree) {
4221     TreeEntry *Entry = TEPtr.get();
4222 
4223     // No need to handle users of gathered values.
4224     if (Entry->State == TreeEntry::NeedToGather)
4225       continue;
4226 
4227     // For each lane:
4228     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4229       Value *Scalar = Entry->Scalars[Lane];
4230       int FoundLane = Entry->findLaneForValue(Scalar);
4231 
4232       // Check if the scalar is externally used as an extra arg.
4233       auto ExtI = ExternallyUsedValues.find(Scalar);
4234       if (ExtI != ExternallyUsedValues.end()) {
4235         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
4236                           << Lane << " from " << *Scalar << ".\n");
4237         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4238       }
4239       for (User *U : Scalar->users()) {
4240         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
4241 
4242         Instruction *UserInst = dyn_cast<Instruction>(U);
4243         if (!UserInst)
4244           continue;
4245 
4246         if (isDeleted(UserInst))
4247           continue;
4248 
4249         // Skip in-tree scalars that become vectors
4250         if (TreeEntry *UseEntry = getTreeEntry(U)) {
4251           Value *UseScalar = UseEntry->Scalars[0];
4252           // Some in-tree scalars will remain as scalar in vectorized
4253           // instructions. If that is the case, the one in Lane 0 will
4254           // be used.
4255           if (UseScalar != U ||
4256               UseEntry->State == TreeEntry::ScatterVectorize ||
4257               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
4258             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
4259                               << ".\n");
4260             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
4261             continue;
4262           }
4263         }
4264 
4265         // Ignore users in the user ignore list.
4266         if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4267           continue;
4268 
4269         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
4270                           << Lane << " from " << *Scalar << ".\n");
4271         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
4272       }
4273     }
4274   }
4275 }
4276 
4277 DenseMap<Value *, SmallVector<StoreInst *, 4>>
4278 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4279   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap;
4280   for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4281     Value *V = TE->Scalars[Lane];
4282     // To save compilation time we don't visit if we have too many users.
4283     static constexpr unsigned UsersLimit = 4;
4284     if (V->hasNUsesOrMore(UsersLimit))
4285       break;
4286 
4287     // Collect stores per pointer object.
4288     for (User *U : V->users()) {
4289       auto *SI = dyn_cast<StoreInst>(U);
4290       if (SI == nullptr || !SI->isSimple() ||
4291           !isValidElementType(SI->getValueOperand()->getType()))
4292         continue;
4293       // Skip entry if already
4294       if (getTreeEntry(U))
4295         continue;
4296 
4297       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4298       auto &StoresVec = PtrToStoresMap[Ptr];
4299       // For now just keep one store per pointer object per lane.
4300       // TODO: Extend this to support multiple stores per pointer per lane
4301       if (StoresVec.size() > Lane)
4302         continue;
4303       // Skip if in different BBs.
4304       if (!StoresVec.empty() &&
4305           SI->getParent() != StoresVec.back()->getParent())
4306         continue;
4307       // Make sure that the stores are of the same type.
4308       if (!StoresVec.empty() &&
4309           SI->getValueOperand()->getType() !=
4310               StoresVec.back()->getValueOperand()->getType())
4311         continue;
4312       StoresVec.push_back(SI);
4313     }
4314   }
4315   return PtrToStoresMap;
4316 }
4317 
4318 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
4319                             OrdersType &ReorderIndices) const {
4320   // We check whether the stores in StoreVec can form a vector by sorting them
4321   // and checking whether they are consecutive.
4322 
4323   // To avoid calling getPointersDiff() while sorting we create a vector of
4324   // pairs {store, offset from first} and sort this instead.
4325   SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size());
4326   StoreInst *S0 = StoresVec[0];
4327   StoreOffsetVec[0] = {S0, 0};
4328   Type *S0Ty = S0->getValueOperand()->getType();
4329   Value *S0Ptr = S0->getPointerOperand();
4330   for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
4331     StoreInst *SI = StoresVec[Idx];
4332     Optional<int> Diff =
4333         getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
4334                         SI->getPointerOperand(), *DL, *SE,
4335                         /*StrictCheck=*/true);
4336     // We failed to compare the pointers so just abandon this StoresVec.
4337     if (!Diff)
4338       return false;
4339     StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
4340   }
4341 
4342   // Sort the vector based on the pointers. We create a copy because we may
4343   // need the original later for calculating the reorder (shuffle) indices.
4344   stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
4345                                  const std::pair<StoreInst *, int> &Pair2) {
4346     int Offset1 = Pair1.second;
4347     int Offset2 = Pair2.second;
4348     return Offset1 < Offset2;
4349   });
4350 
4351   // Check if the stores are consecutive by checking if their difference is 1.
4352   for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
4353     if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1)
4354       return false;
4355 
4356   // Calculate the shuffle indices according to their offset against the sorted
4357   // StoreOffsetVec.
4358   ReorderIndices.reserve(StoresVec.size());
4359   for (StoreInst *SI : StoresVec) {
4360     unsigned Idx = find_if(StoreOffsetVec,
4361                            [SI](const std::pair<StoreInst *, int> &Pair) {
4362                              return Pair.first == SI;
4363                            }) -
4364                    StoreOffsetVec.begin();
4365     ReorderIndices.push_back(Idx);
4366   }
4367   // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
4368   // reorderTopToBottom() and reorderBottomToTop(), so we are following the
4369   // same convention here.
4370   auto IsIdentityOrder = [](const OrdersType &Order) {
4371     for (unsigned Idx : seq<unsigned>(0, Order.size()))
4372       if (Idx != Order[Idx])
4373         return false;
4374     return true;
4375   };
4376   if (IsIdentityOrder(ReorderIndices))
4377     ReorderIndices.clear();
4378 
4379   return true;
4380 }
4381 
4382 #ifndef NDEBUG
4383 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
4384   for (unsigned Idx : Order)
4385     dbgs() << Idx << ", ";
4386   dbgs() << "\n";
4387 }
4388 #endif
4389 
4390 SmallVector<BoUpSLP::OrdersType, 1>
4391 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
4392   unsigned NumLanes = TE->Scalars.size();
4393 
4394   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap =
4395       collectUserStores(TE);
4396 
4397   // Holds the reorder indices for each candidate store vector that is a user of
4398   // the current TreeEntry.
4399   SmallVector<OrdersType, 1> ExternalReorderIndices;
4400 
4401   // Now inspect the stores collected per pointer and look for vectorization
4402   // candidates. For each candidate calculate the reorder index vector and push
4403   // it into `ExternalReorderIndices`
4404   for (const auto &Pair : PtrToStoresMap) {
4405     auto &StoresVec = Pair.second;
4406     // If we have fewer than NumLanes stores, then we can't form a vector.
4407     if (StoresVec.size() != NumLanes)
4408       continue;
4409 
4410     // If the stores are not consecutive then abandon this StoresVec.
4411     OrdersType ReorderIndices;
4412     if (!CanFormVector(StoresVec, ReorderIndices))
4413       continue;
4414 
4415     // We now know that the scalars in StoresVec can form a vector instruction,
4416     // so set the reorder indices.
4417     ExternalReorderIndices.push_back(ReorderIndices);
4418   }
4419   return ExternalReorderIndices;
4420 }
4421 
4422 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
4423                         const SmallDenseSet<Value *> &UserIgnoreLst) {
4424   deleteTree();
4425   UserIgnoreList = &UserIgnoreLst;
4426   if (!allSameType(Roots))
4427     return;
4428   buildTree_rec(Roots, 0, EdgeInfo());
4429 }
4430 
4431 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
4432   deleteTree();
4433   if (!allSameType(Roots))
4434     return;
4435   buildTree_rec(Roots, 0, EdgeInfo());
4436 }
4437 
4438 /// \return true if the specified list of values has only one instruction that
4439 /// requires scheduling, false otherwise.
4440 #ifndef NDEBUG
4441 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
4442   Value *NeedsScheduling = nullptr;
4443   for (Value *V : VL) {
4444     if (doesNotNeedToBeScheduled(V))
4445       continue;
4446     if (!NeedsScheduling) {
4447       NeedsScheduling = V;
4448       continue;
4449     }
4450     return false;
4451   }
4452   return NeedsScheduling;
4453 }
4454 #endif
4455 
4456 /// Generates key/subkey pair for the given value to provide effective sorting
4457 /// of the values and better detection of the vectorizable values sequences. The
4458 /// keys/subkeys can be used for better sorting of the values themselves (keys)
4459 /// and in values subgroups (subkeys).
4460 static std::pair<size_t, size_t> generateKeySubkey(
4461     Value *V, const TargetLibraryInfo *TLI,
4462     function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
4463     bool AllowAlternate) {
4464   hash_code Key = hash_value(V->getValueID() + 2);
4465   hash_code SubKey = hash_value(0);
4466   // Sort the loads by the distance between the pointers.
4467   if (auto *LI = dyn_cast<LoadInst>(V)) {
4468     Key = hash_combine(hash_value(Instruction::Load), Key);
4469     if (LI->isSimple())
4470       SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
4471     else
4472       SubKey = hash_value(LI);
4473   } else if (isVectorLikeInstWithConstOps(V)) {
4474     // Sort extracts by the vector operands.
4475     if (isa<ExtractElementInst, UndefValue>(V))
4476       Key = hash_value(Value::UndefValueVal + 1);
4477     if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
4478       if (!isUndefVector(EI->getVectorOperand()) &&
4479           !isa<UndefValue>(EI->getIndexOperand()))
4480         SubKey = hash_value(EI->getVectorOperand());
4481     }
4482   } else if (auto *I = dyn_cast<Instruction>(V)) {
4483     // Sort other instructions just by the opcodes except for CMPInst.
4484     // For CMP also sort by the predicate kind.
4485     if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) &&
4486         isValidForAlternation(I->getOpcode())) {
4487       if (AllowAlternate)
4488         Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
4489       else
4490         Key = hash_combine(hash_value(I->getOpcode()), Key);
4491       SubKey = hash_combine(
4492           hash_value(I->getOpcode()), hash_value(I->getType()),
4493           hash_value(isa<BinaryOperator>(I)
4494                          ? I->getType()
4495                          : cast<CastInst>(I)->getOperand(0)->getType()));
4496       // For casts, look through the only operand to improve compile time.
4497       if (isa<CastInst>(I)) {
4498         std::pair<size_t, size_t> OpVals =
4499             generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator,
4500                               /*=AllowAlternate*/ true);
4501         Key = hash_combine(OpVals.first, Key);
4502         SubKey = hash_combine(OpVals.first, SubKey);
4503       }
4504     } else if (auto *CI = dyn_cast<CmpInst>(I)) {
4505       CmpInst::Predicate Pred = CI->getPredicate();
4506       if (CI->isCommutative())
4507         Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
4508       CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
4509       SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
4510                             hash_value(SwapPred),
4511                             hash_value(CI->getOperand(0)->getType()));
4512     } else if (auto *Call = dyn_cast<CallInst>(I)) {
4513       Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
4514       if (isTriviallyVectorizable(ID)) {
4515         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
4516       } else if (!VFDatabase(*Call).getMappings(*Call).empty()) {
4517         SubKey = hash_combine(hash_value(I->getOpcode()),
4518                               hash_value(Call->getCalledFunction()));
4519       } else {
4520         Key = hash_combine(hash_value(Call), Key);
4521         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
4522       }
4523       for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
4524         SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
4525                               hash_value(Op.Tag), SubKey);
4526     } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
4527       if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
4528         SubKey = hash_value(Gep->getPointerOperand());
4529       else
4530         SubKey = hash_value(Gep);
4531     } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
4532                !isa<ConstantInt>(I->getOperand(1))) {
4533       // Do not try to vectorize instructions with potentially high cost.
4534       SubKey = hash_value(I);
4535     } else {
4536       SubKey = hash_value(I->getOpcode());
4537     }
4538     Key = hash_combine(hash_value(I->getParent()), Key);
4539   }
4540   return std::make_pair(Key, SubKey);
4541 }
4542 
4543 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
4544                             const EdgeInfo &UserTreeIdx) {
4545   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
4546 
4547   SmallVector<int> ReuseShuffleIndicies;
4548   SmallVector<Value *> UniqueValues;
4549   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
4550                                 &UserTreeIdx,
4551                                 this](const InstructionsState &S) {
4552     // Check that every instruction appears once in this bundle.
4553     DenseMap<Value *, unsigned> UniquePositions;
4554     for (Value *V : VL) {
4555       if (isConstant(V)) {
4556         ReuseShuffleIndicies.emplace_back(
4557             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
4558         UniqueValues.emplace_back(V);
4559         continue;
4560       }
4561       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4562       ReuseShuffleIndicies.emplace_back(Res.first->second);
4563       if (Res.second)
4564         UniqueValues.emplace_back(V);
4565     }
4566     size_t NumUniqueScalarValues = UniqueValues.size();
4567     if (NumUniqueScalarValues == VL.size()) {
4568       ReuseShuffleIndicies.clear();
4569     } else {
4570       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
4571       if (NumUniqueScalarValues <= 1 ||
4572           (UniquePositions.size() == 1 && all_of(UniqueValues,
4573                                                  [](Value *V) {
4574                                                    return isa<UndefValue>(V) ||
4575                                                           !isConstant(V);
4576                                                  })) ||
4577           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
4578         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
4579         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4580         return false;
4581       }
4582       VL = UniqueValues;
4583     }
4584     return true;
4585   };
4586 
4587   InstructionsState S = getSameOpcode(VL);
4588   if (Depth == RecursionMaxDepth) {
4589     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
4590     if (TryToFindDuplicates(S))
4591       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4592                    ReuseShuffleIndicies);
4593     return;
4594   }
4595 
4596   // Don't handle scalable vectors
4597   if (S.getOpcode() == Instruction::ExtractElement &&
4598       isa<ScalableVectorType>(
4599           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
4600     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
4601     if (TryToFindDuplicates(S))
4602       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4603                    ReuseShuffleIndicies);
4604     return;
4605   }
4606 
4607   // Don't handle vectors.
4608   if (S.OpValue->getType()->isVectorTy() &&
4609       !isa<InsertElementInst>(S.OpValue)) {
4610     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
4611     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4612     return;
4613   }
4614 
4615   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4616     if (SI->getValueOperand()->getType()->isVectorTy()) {
4617       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
4618       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4619       return;
4620     }
4621 
4622   // If all of the operands are identical or constant we have a simple solution.
4623   // If we deal with insert/extract instructions, they all must have constant
4624   // indices, otherwise we should gather them, not try to vectorize.
4625   // If alternate op node with 2 elements with gathered operands - do not
4626   // vectorize.
4627   auto &&NotProfitableForVectorization = [&S, this,
4628                                           Depth](ArrayRef<Value *> VL) {
4629     if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
4630       return false;
4631     if (VectorizableTree.size() < MinTreeSize)
4632       return false;
4633     if (Depth >= RecursionMaxDepth - 1)
4634       return true;
4635     // Check if all operands are extracts, part of vector node or can build a
4636     // regular vectorize node.
4637     SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
4638     for (Value *V : VL) {
4639       auto *I = cast<Instruction>(V);
4640       InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
4641         return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
4642       }));
4643     }
4644     bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
4645     if ((IsCommutative &&
4646          std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
4647         (!IsCommutative &&
4648          all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
4649       return true;
4650     assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
4651     SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
4652     auto *I1 = cast<Instruction>(VL.front());
4653     auto *I2 = cast<Instruction>(VL.back());
4654     for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4655       Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4656                                              I2->getOperand(Op));
4657     if (static_cast<unsigned>(count_if(
4658             Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4659               return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4660             })) >= S.MainOp->getNumOperands() / 2)
4661       return false;
4662     if (S.MainOp->getNumOperands() > 2)
4663       return true;
4664     if (IsCommutative) {
4665       // Check permuted operands.
4666       Candidates.clear();
4667       for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4668         Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4669                                                I2->getOperand((Op + 1) % E));
4670       if (any_of(
4671               Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4672                 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4673               }))
4674         return false;
4675     }
4676     return true;
4677   };
4678   SmallVector<unsigned> SortedIndices;
4679   BasicBlock *BB = nullptr;
4680   bool AreAllSameInsts =
4681       (S.getOpcode() && allSameBlock(VL)) ||
4682       (S.OpValue->getType()->isPointerTy() && UserTreeIdx.UserTE &&
4683        UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize &&
4684        VL.size() > 2 &&
4685        all_of(VL,
4686               [&BB](Value *V) {
4687                 auto *I = dyn_cast<GetElementPtrInst>(V);
4688                 if (!I)
4689                   return doesNotNeedToBeScheduled(V);
4690                 if (!BB)
4691                   BB = I->getParent();
4692                 return BB == I->getParent() && I->getNumOperands() == 2;
4693               }) &&
4694        BB &&
4695        sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE,
4696                        SortedIndices));
4697   if (allConstant(VL) || isSplat(VL) || !AreAllSameInsts ||
4698       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(
4699            S.OpValue) &&
4700        !all_of(VL, isVectorLikeInstWithConstOps)) ||
4701       NotProfitableForVectorization(VL)) {
4702     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
4703     if (TryToFindDuplicates(S))
4704       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4705                    ReuseShuffleIndicies);
4706     return;
4707   }
4708 
4709   // We now know that this is a vector of instructions of the same type from
4710   // the same block.
4711 
4712   // Don't vectorize ephemeral values.
4713   if (!EphValues.empty()) {
4714     for (Value *V : VL) {
4715       if (EphValues.count(V)) {
4716         LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4717                           << ") is ephemeral.\n");
4718         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4719         return;
4720       }
4721     }
4722   }
4723 
4724   // Check if this is a duplicate of another entry.
4725   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4726     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
4727     if (!E->isSame(VL)) {
4728       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
4729       if (TryToFindDuplicates(S))
4730         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4731                      ReuseShuffleIndicies);
4732       return;
4733     }
4734     // Record the reuse of the tree node.  FIXME, currently this is only used to
4735     // properly draw the graph rather than for the actual vectorization.
4736     E->UserTreeIndices.push_back(UserTreeIdx);
4737     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
4738                       << ".\n");
4739     return;
4740   }
4741 
4742   // Check that none of the instructions in the bundle are already in the tree.
4743   for (Value *V : VL) {
4744     auto *I = dyn_cast<Instruction>(V);
4745     if (!I)
4746       continue;
4747     if (getTreeEntry(I)) {
4748       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4749                         << ") is already in tree.\n");
4750       if (TryToFindDuplicates(S))
4751         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4752                      ReuseShuffleIndicies);
4753       return;
4754     }
4755   }
4756 
4757   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
4758   if (UserIgnoreList && !UserIgnoreList->empty()) {
4759     for (Value *V : VL) {
4760       if (UserIgnoreList && UserIgnoreList->contains(V)) {
4761         LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
4762         if (TryToFindDuplicates(S))
4763           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4764                        ReuseShuffleIndicies);
4765         return;
4766       }
4767     }
4768   }
4769 
4770   // Special processing for sorted pointers for ScatterVectorize node with
4771   // constant indeces only.
4772   if (AreAllSameInsts && !(S.getOpcode() && allSameBlock(VL)) &&
4773       UserTreeIdx.UserTE &&
4774       UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize) {
4775     assert(S.OpValue->getType()->isPointerTy() &&
4776            count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >=
4777                2 &&
4778            "Expected pointers only.");
4779     // Reset S to make it GetElementPtr kind of node.
4780     const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
4781     assert(It != VL.end() && "Expected at least one GEP.");
4782     S = getSameOpcode(*It);
4783   }
4784 
4785   // Check that all of the users of the scalars that we want to vectorize are
4786   // schedulable.
4787   auto *VL0 = cast<Instruction>(S.OpValue);
4788   BB = VL0->getParent();
4789 
4790   if (!DT->isReachableFromEntry(BB)) {
4791     // Don't go into unreachable blocks. They may contain instructions with
4792     // dependency cycles which confuse the final scheduling.
4793     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
4794     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4795     return;
4796   }
4797 
4798   // Check that every instruction appears once in this bundle.
4799   if (!TryToFindDuplicates(S))
4800     return;
4801 
4802   auto &BSRef = BlocksSchedules[BB];
4803   if (!BSRef)
4804     BSRef = std::make_unique<BlockScheduling>(BB);
4805 
4806   BlockScheduling &BS = *BSRef;
4807 
4808   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
4809 #ifdef EXPENSIVE_CHECKS
4810   // Make sure we didn't break any internal invariants
4811   BS.verify();
4812 #endif
4813   if (!Bundle) {
4814     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
4815     assert((!BS.getScheduleData(VL0) ||
4816             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
4817            "tryScheduleBundle should cancelScheduling on failure");
4818     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4819                  ReuseShuffleIndicies);
4820     return;
4821   }
4822   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
4823 
4824   unsigned ShuffleOrOp = S.isAltShuffle() ?
4825                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
4826   switch (ShuffleOrOp) {
4827     case Instruction::PHI: {
4828       auto *PH = cast<PHINode>(VL0);
4829 
4830       // Check for terminator values (e.g. invoke).
4831       for (Value *V : VL)
4832         for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
4833           Instruction *Term = dyn_cast<Instruction>(Incoming);
4834           if (Term && Term->isTerminator()) {
4835             LLVM_DEBUG(dbgs()
4836                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
4837             BS.cancelScheduling(VL, VL0);
4838             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4839                          ReuseShuffleIndicies);
4840             return;
4841           }
4842         }
4843 
4844       TreeEntry *TE =
4845           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
4846       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
4847 
4848       // Keeps the reordered operands to avoid code duplication.
4849       SmallVector<ValueList, 2> OperandsVec;
4850       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
4851         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
4852           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
4853           TE->setOperand(I, Operands);
4854           OperandsVec.push_back(Operands);
4855           continue;
4856         }
4857         ValueList Operands;
4858         // Prepare the operand vector.
4859         for (Value *V : VL)
4860           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
4861               PH->getIncomingBlock(I)));
4862         TE->setOperand(I, Operands);
4863         OperandsVec.push_back(Operands);
4864       }
4865       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
4866         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
4867       return;
4868     }
4869     case Instruction::ExtractValue:
4870     case Instruction::ExtractElement: {
4871       OrdersType CurrentOrder;
4872       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
4873       if (Reuse) {
4874         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
4875         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4876                      ReuseShuffleIndicies);
4877         // This is a special case, as it does not gather, but at the same time
4878         // we are not extending buildTree_rec() towards the operands.
4879         ValueList Op0;
4880         Op0.assign(VL.size(), VL0->getOperand(0));
4881         VectorizableTree.back()->setOperand(0, Op0);
4882         return;
4883       }
4884       if (!CurrentOrder.empty()) {
4885         LLVM_DEBUG({
4886           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
4887                     "with order";
4888           for (unsigned Idx : CurrentOrder)
4889             dbgs() << " " << Idx;
4890           dbgs() << "\n";
4891         });
4892         fixupOrderingIndices(CurrentOrder);
4893         // Insert new order with initial value 0, if it does not exist,
4894         // otherwise return the iterator to the existing one.
4895         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4896                      ReuseShuffleIndicies, CurrentOrder);
4897         // This is a special case, as it does not gather, but at the same time
4898         // we are not extending buildTree_rec() towards the operands.
4899         ValueList Op0;
4900         Op0.assign(VL.size(), VL0->getOperand(0));
4901         VectorizableTree.back()->setOperand(0, Op0);
4902         return;
4903       }
4904       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4905       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4906                    ReuseShuffleIndicies);
4907       BS.cancelScheduling(VL, VL0);
4908       return;
4909     }
4910     case Instruction::InsertElement: {
4911       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4912 
4913       // Check that we have a buildvector and not a shuffle of 2 or more
4914       // different vectors.
4915       ValueSet SourceVectors;
4916       for (Value *V : VL) {
4917         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4918         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4919       }
4920 
4921       if (count_if(VL, [&SourceVectors](Value *V) {
4922             return !SourceVectors.contains(V);
4923           }) >= 2) {
4924         // Found 2nd source vector - cancel.
4925         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4926                              "different source vectors.\n");
4927         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4928         BS.cancelScheduling(VL, VL0);
4929         return;
4930       }
4931 
4932       auto OrdCompare = [](const std::pair<int, int> &P1,
4933                            const std::pair<int, int> &P2) {
4934         return P1.first > P2.first;
4935       };
4936       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4937                     decltype(OrdCompare)>
4938           Indices(OrdCompare);
4939       for (int I = 0, E = VL.size(); I < E; ++I) {
4940         unsigned Idx = *getInsertIndex(VL[I]);
4941         Indices.emplace(Idx, I);
4942       }
4943       OrdersType CurrentOrder(VL.size(), VL.size());
4944       bool IsIdentity = true;
4945       for (int I = 0, E = VL.size(); I < E; ++I) {
4946         CurrentOrder[Indices.top().second] = I;
4947         IsIdentity &= Indices.top().second == I;
4948         Indices.pop();
4949       }
4950       if (IsIdentity)
4951         CurrentOrder.clear();
4952       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4953                                    None, CurrentOrder);
4954       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4955 
4956       constexpr int NumOps = 2;
4957       ValueList VectorOperands[NumOps];
4958       for (int I = 0; I < NumOps; ++I) {
4959         for (Value *V : VL)
4960           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4961 
4962         TE->setOperand(I, VectorOperands[I]);
4963       }
4964       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4965       return;
4966     }
4967     case Instruction::Load: {
4968       // Check that a vectorized load would load the same memory as a scalar
4969       // load. For example, we don't want to vectorize loads that are smaller
4970       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4971       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4972       // from such a struct, we read/write packed bits disagreeing with the
4973       // unvectorized version.
4974       SmallVector<Value *> PointerOps;
4975       OrdersType CurrentOrder;
4976       TreeEntry *TE = nullptr;
4977       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, CurrentOrder,
4978                                 PointerOps)) {
4979       case LoadsState::Vectorize:
4980         if (CurrentOrder.empty()) {
4981           // Original loads are consecutive and does not require reordering.
4982           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4983                             ReuseShuffleIndicies);
4984           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4985         } else {
4986           fixupOrderingIndices(CurrentOrder);
4987           // Need to reorder.
4988           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4989                             ReuseShuffleIndicies, CurrentOrder);
4990           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4991         }
4992         TE->setOperandsInOrder();
4993         break;
4994       case LoadsState::ScatterVectorize:
4995         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4996         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4997                           UserTreeIdx, ReuseShuffleIndicies);
4998         TE->setOperandsInOrder();
4999         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
5000         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
5001         break;
5002       case LoadsState::Gather:
5003         BS.cancelScheduling(VL, VL0);
5004         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5005                      ReuseShuffleIndicies);
5006 #ifndef NDEBUG
5007         Type *ScalarTy = VL0->getType();
5008         if (DL->getTypeSizeInBits(ScalarTy) !=
5009             DL->getTypeAllocSizeInBits(ScalarTy))
5010           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
5011         else if (any_of(VL, [](Value *V) {
5012                    return !cast<LoadInst>(V)->isSimple();
5013                  }))
5014           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
5015         else
5016           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
5017 #endif // NDEBUG
5018         break;
5019       }
5020       return;
5021     }
5022     case Instruction::ZExt:
5023     case Instruction::SExt:
5024     case Instruction::FPToUI:
5025     case Instruction::FPToSI:
5026     case Instruction::FPExt:
5027     case Instruction::PtrToInt:
5028     case Instruction::IntToPtr:
5029     case Instruction::SIToFP:
5030     case Instruction::UIToFP:
5031     case Instruction::Trunc:
5032     case Instruction::FPTrunc:
5033     case Instruction::BitCast: {
5034       Type *SrcTy = VL0->getOperand(0)->getType();
5035       for (Value *V : VL) {
5036         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
5037         if (Ty != SrcTy || !isValidElementType(Ty)) {
5038           BS.cancelScheduling(VL, VL0);
5039           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5040                        ReuseShuffleIndicies);
5041           LLVM_DEBUG(dbgs()
5042                      << "SLP: Gathering casts with different src types.\n");
5043           return;
5044         }
5045       }
5046       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5047                                    ReuseShuffleIndicies);
5048       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
5049 
5050       TE->setOperandsInOrder();
5051       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5052         ValueList Operands;
5053         // Prepare the operand vector.
5054         for (Value *V : VL)
5055           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5056 
5057         buildTree_rec(Operands, Depth + 1, {TE, i});
5058       }
5059       return;
5060     }
5061     case Instruction::ICmp:
5062     case Instruction::FCmp: {
5063       // Check that all of the compares have the same predicate.
5064       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5065       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
5066       Type *ComparedTy = VL0->getOperand(0)->getType();
5067       for (Value *V : VL) {
5068         CmpInst *Cmp = cast<CmpInst>(V);
5069         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
5070             Cmp->getOperand(0)->getType() != ComparedTy) {
5071           BS.cancelScheduling(VL, VL0);
5072           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5073                        ReuseShuffleIndicies);
5074           LLVM_DEBUG(dbgs()
5075                      << "SLP: Gathering cmp with different predicate.\n");
5076           return;
5077         }
5078       }
5079 
5080       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5081                                    ReuseShuffleIndicies);
5082       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
5083 
5084       ValueList Left, Right;
5085       if (cast<CmpInst>(VL0)->isCommutative()) {
5086         // Commutative predicate - collect + sort operands of the instructions
5087         // so that each side is more likely to have the same opcode.
5088         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
5089         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5090       } else {
5091         // Collect operands - commute if it uses the swapped predicate.
5092         for (Value *V : VL) {
5093           auto *Cmp = cast<CmpInst>(V);
5094           Value *LHS = Cmp->getOperand(0);
5095           Value *RHS = Cmp->getOperand(1);
5096           if (Cmp->getPredicate() != P0)
5097             std::swap(LHS, RHS);
5098           Left.push_back(LHS);
5099           Right.push_back(RHS);
5100         }
5101       }
5102       TE->setOperand(0, Left);
5103       TE->setOperand(1, Right);
5104       buildTree_rec(Left, Depth + 1, {TE, 0});
5105       buildTree_rec(Right, Depth + 1, {TE, 1});
5106       return;
5107     }
5108     case Instruction::Select:
5109     case Instruction::FNeg:
5110     case Instruction::Add:
5111     case Instruction::FAdd:
5112     case Instruction::Sub:
5113     case Instruction::FSub:
5114     case Instruction::Mul:
5115     case Instruction::FMul:
5116     case Instruction::UDiv:
5117     case Instruction::SDiv:
5118     case Instruction::FDiv:
5119     case Instruction::URem:
5120     case Instruction::SRem:
5121     case Instruction::FRem:
5122     case Instruction::Shl:
5123     case Instruction::LShr:
5124     case Instruction::AShr:
5125     case Instruction::And:
5126     case Instruction::Or:
5127     case Instruction::Xor: {
5128       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5129                                    ReuseShuffleIndicies);
5130       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
5131 
5132       // Sort operands of the instructions so that each side is more likely to
5133       // have the same opcode.
5134       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
5135         ValueList Left, Right;
5136         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5137         TE->setOperand(0, Left);
5138         TE->setOperand(1, Right);
5139         buildTree_rec(Left, Depth + 1, {TE, 0});
5140         buildTree_rec(Right, Depth + 1, {TE, 1});
5141         return;
5142       }
5143 
5144       TE->setOperandsInOrder();
5145       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5146         ValueList Operands;
5147         // Prepare the operand vector.
5148         for (Value *V : VL)
5149           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5150 
5151         buildTree_rec(Operands, Depth + 1, {TE, i});
5152       }
5153       return;
5154     }
5155     case Instruction::GetElementPtr: {
5156       // We don't combine GEPs with complicated (nested) indexing.
5157       for (Value *V : VL) {
5158         auto *I = dyn_cast<GetElementPtrInst>(V);
5159         if (!I)
5160           continue;
5161         if (I->getNumOperands() != 2) {
5162           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
5163           BS.cancelScheduling(VL, VL0);
5164           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5165                        ReuseShuffleIndicies);
5166           return;
5167         }
5168       }
5169 
5170       // We can't combine several GEPs into one vector if they operate on
5171       // different types.
5172       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5173       for (Value *V : VL) {
5174         auto *GEP = dyn_cast<GEPOperator>(V);
5175         if (!GEP)
5176           continue;
5177         Type *CurTy = GEP->getSourceElementType();
5178         if (Ty0 != CurTy) {
5179           LLVM_DEBUG(dbgs()
5180                      << "SLP: not-vectorizable GEP (different types).\n");
5181           BS.cancelScheduling(VL, VL0);
5182           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5183                        ReuseShuffleIndicies);
5184           return;
5185         }
5186       }
5187 
5188       bool IsScatterUser =
5189           UserTreeIdx.UserTE &&
5190           UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize;
5191       // We don't combine GEPs with non-constant indexes.
5192       Type *Ty1 = VL0->getOperand(1)->getType();
5193       for (Value *V : VL) {
5194         auto *I = dyn_cast<GetElementPtrInst>(V);
5195         if (!I)
5196           continue;
5197         auto *Op = I->getOperand(1);
5198         if ((!IsScatterUser && !isa<ConstantInt>(Op)) ||
5199             (Op->getType() != Ty1 &&
5200              ((IsScatterUser && !isa<ConstantInt>(Op)) ||
5201               Op->getType()->getScalarSizeInBits() >
5202                   DL->getIndexSizeInBits(
5203                       V->getType()->getPointerAddressSpace())))) {
5204           LLVM_DEBUG(dbgs()
5205                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
5206           BS.cancelScheduling(VL, VL0);
5207           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5208                        ReuseShuffleIndicies);
5209           return;
5210         }
5211       }
5212 
5213       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5214                                    ReuseShuffleIndicies);
5215       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
5216       SmallVector<ValueList, 2> Operands(2);
5217       // Prepare the operand vector for pointer operands.
5218       for (Value *V : VL) {
5219         auto *GEP = dyn_cast<GetElementPtrInst>(V);
5220         if (!GEP) {
5221           Operands.front().push_back(V);
5222           continue;
5223         }
5224         Operands.front().push_back(GEP->getPointerOperand());
5225       }
5226       TE->setOperand(0, Operands.front());
5227       // Need to cast all indices to the same type before vectorization to
5228       // avoid crash.
5229       // Required to be able to find correct matches between different gather
5230       // nodes and reuse the vectorized values rather than trying to gather them
5231       // again.
5232       int IndexIdx = 1;
5233       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
5234       Type *Ty = all_of(VL,
5235                         [VL0Ty, IndexIdx](Value *V) {
5236                           auto *GEP = dyn_cast<GetElementPtrInst>(V);
5237                           if (!GEP)
5238                             return true;
5239                           return VL0Ty == GEP->getOperand(IndexIdx)->getType();
5240                         })
5241                      ? VL0Ty
5242                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5243                                             ->getPointerOperandType()
5244                                             ->getScalarType());
5245       // Prepare the operand vector.
5246       for (Value *V : VL) {
5247         auto *I = dyn_cast<GetElementPtrInst>(V);
5248         if (!I) {
5249           Operands.back().push_back(
5250               ConstantInt::get(Ty, 0, /*isSigned=*/false));
5251           continue;
5252         }
5253         auto *Op = I->getOperand(IndexIdx);
5254         auto *CI = dyn_cast<ConstantInt>(Op);
5255         if (!CI)
5256           Operands.back().push_back(Op);
5257         else
5258           Operands.back().push_back(ConstantExpr::getIntegerCast(
5259               CI, Ty, CI->getValue().isSignBitSet()));
5260       }
5261       TE->setOperand(IndexIdx, Operands.back());
5262 
5263       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
5264         buildTree_rec(Operands[I], Depth + 1, {TE, I});
5265       return;
5266     }
5267     case Instruction::Store: {
5268       // Check if the stores are consecutive or if we need to swizzle them.
5269       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5270       // Avoid types that are padded when being allocated as scalars, while
5271       // being packed together in a vector (such as i1).
5272       if (DL->getTypeSizeInBits(ScalarTy) !=
5273           DL->getTypeAllocSizeInBits(ScalarTy)) {
5274         BS.cancelScheduling(VL, VL0);
5275         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5276                      ReuseShuffleIndicies);
5277         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
5278         return;
5279       }
5280       // Make sure all stores in the bundle are simple - we can't vectorize
5281       // atomic or volatile stores.
5282       SmallVector<Value *, 4> PointerOps(VL.size());
5283       ValueList Operands(VL.size());
5284       auto POIter = PointerOps.begin();
5285       auto OIter = Operands.begin();
5286       for (Value *V : VL) {
5287         auto *SI = cast<StoreInst>(V);
5288         if (!SI->isSimple()) {
5289           BS.cancelScheduling(VL, VL0);
5290           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5291                        ReuseShuffleIndicies);
5292           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
5293           return;
5294         }
5295         *POIter = SI->getPointerOperand();
5296         *OIter = SI->getValueOperand();
5297         ++POIter;
5298         ++OIter;
5299       }
5300 
5301       OrdersType CurrentOrder;
5302       // Check the order of pointer operands.
5303       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5304         Value *Ptr0;
5305         Value *PtrN;
5306         if (CurrentOrder.empty()) {
5307           Ptr0 = PointerOps.front();
5308           PtrN = PointerOps.back();
5309         } else {
5310           Ptr0 = PointerOps[CurrentOrder.front()];
5311           PtrN = PointerOps[CurrentOrder.back()];
5312         }
5313         Optional<int> Dist =
5314             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5315         // Check that the sorted pointer operands are consecutive.
5316         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
5317           if (CurrentOrder.empty()) {
5318             // Original stores are consecutive and does not require reordering.
5319             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
5320                                          UserTreeIdx, ReuseShuffleIndicies);
5321             TE->setOperandsInOrder();
5322             buildTree_rec(Operands, Depth + 1, {TE, 0});
5323             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
5324           } else {
5325             fixupOrderingIndices(CurrentOrder);
5326             TreeEntry *TE =
5327                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5328                              ReuseShuffleIndicies, CurrentOrder);
5329             TE->setOperandsInOrder();
5330             buildTree_rec(Operands, Depth + 1, {TE, 0});
5331             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
5332           }
5333           return;
5334         }
5335       }
5336 
5337       BS.cancelScheduling(VL, VL0);
5338       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5339                    ReuseShuffleIndicies);
5340       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
5341       return;
5342     }
5343     case Instruction::Call: {
5344       // Check if the calls are all to the same vectorizable intrinsic or
5345       // library function.
5346       CallInst *CI = cast<CallInst>(VL0);
5347       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5348 
5349       VFShape Shape = VFShape::get(
5350           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5351           false /*HasGlobalPred*/);
5352       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5353 
5354       if (!VecFunc && !isTriviallyVectorizable(ID)) {
5355         BS.cancelScheduling(VL, VL0);
5356         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5357                      ReuseShuffleIndicies);
5358         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
5359         return;
5360       }
5361       Function *F = CI->getCalledFunction();
5362       unsigned NumArgs = CI->arg_size();
5363       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
5364       for (unsigned j = 0; j != NumArgs; ++j)
5365         if (isVectorIntrinsicWithScalarOpAtArg(ID, j))
5366           ScalarArgs[j] = CI->getArgOperand(j);
5367       for (Value *V : VL) {
5368         CallInst *CI2 = dyn_cast<CallInst>(V);
5369         if (!CI2 || CI2->getCalledFunction() != F ||
5370             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5371             (VecFunc &&
5372              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5373             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5374           BS.cancelScheduling(VL, VL0);
5375           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5376                        ReuseShuffleIndicies);
5377           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
5378                             << "\n");
5379           return;
5380         }
5381         // Some intrinsics have scalar arguments and should be same in order for
5382         // them to be vectorized.
5383         for (unsigned j = 0; j != NumArgs; ++j) {
5384           if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) {
5385             Value *A1J = CI2->getArgOperand(j);
5386             if (ScalarArgs[j] != A1J) {
5387               BS.cancelScheduling(VL, VL0);
5388               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5389                            ReuseShuffleIndicies);
5390               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
5391                                 << " argument " << ScalarArgs[j] << "!=" << A1J
5392                                 << "\n");
5393               return;
5394             }
5395           }
5396         }
5397         // Verify that the bundle operands are identical between the two calls.
5398         if (CI->hasOperandBundles() &&
5399             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5400                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
5401                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5402           BS.cancelScheduling(VL, VL0);
5403           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5404                        ReuseShuffleIndicies);
5405           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
5406                             << *CI << "!=" << *V << '\n');
5407           return;
5408         }
5409       }
5410 
5411       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5412                                    ReuseShuffleIndicies);
5413       TE->setOperandsInOrder();
5414       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
5415         // For scalar operands no need to to create an entry since no need to
5416         // vectorize it.
5417         if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
5418           continue;
5419         ValueList Operands;
5420         // Prepare the operand vector.
5421         for (Value *V : VL) {
5422           auto *CI2 = cast<CallInst>(V);
5423           Operands.push_back(CI2->getArgOperand(i));
5424         }
5425         buildTree_rec(Operands, Depth + 1, {TE, i});
5426       }
5427       return;
5428     }
5429     case Instruction::ShuffleVector: {
5430       // If this is not an alternate sequence of opcode like add-sub
5431       // then do not vectorize this instruction.
5432       if (!S.isAltShuffle()) {
5433         BS.cancelScheduling(VL, VL0);
5434         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5435                      ReuseShuffleIndicies);
5436         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
5437         return;
5438       }
5439       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5440                                    ReuseShuffleIndicies);
5441       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
5442 
5443       // Reorder operands if reordering would enable vectorization.
5444       auto *CI = dyn_cast<CmpInst>(VL0);
5445       if (isa<BinaryOperator>(VL0) || CI) {
5446         ValueList Left, Right;
5447         if (!CI || all_of(VL, [](Value *V) {
5448               return cast<CmpInst>(V)->isCommutative();
5449             })) {
5450           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5451         } else {
5452           CmpInst::Predicate P0 = CI->getPredicate();
5453           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
5454           assert(P0 != AltP0 &&
5455                  "Expected different main/alternate predicates.");
5456           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5457           Value *BaseOp0 = VL0->getOperand(0);
5458           Value *BaseOp1 = VL0->getOperand(1);
5459           // Collect operands - commute if it uses the swapped predicate or
5460           // alternate operation.
5461           for (Value *V : VL) {
5462             auto *Cmp = cast<CmpInst>(V);
5463             Value *LHS = Cmp->getOperand(0);
5464             Value *RHS = Cmp->getOperand(1);
5465             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
5466             if (P0 == AltP0Swapped) {
5467               if (CI != Cmp && S.AltOp != Cmp &&
5468                   ((P0 == CurrentPred &&
5469                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
5470                    (AltP0 == CurrentPred &&
5471                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
5472                 std::swap(LHS, RHS);
5473             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
5474               std::swap(LHS, RHS);
5475             }
5476             Left.push_back(LHS);
5477             Right.push_back(RHS);
5478           }
5479         }
5480         TE->setOperand(0, Left);
5481         TE->setOperand(1, Right);
5482         buildTree_rec(Left, Depth + 1, {TE, 0});
5483         buildTree_rec(Right, Depth + 1, {TE, 1});
5484         return;
5485       }
5486 
5487       TE->setOperandsInOrder();
5488       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5489         ValueList Operands;
5490         // Prepare the operand vector.
5491         for (Value *V : VL)
5492           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5493 
5494         buildTree_rec(Operands, Depth + 1, {TE, i});
5495       }
5496       return;
5497     }
5498     default:
5499       BS.cancelScheduling(VL, VL0);
5500       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5501                    ReuseShuffleIndicies);
5502       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
5503       return;
5504   }
5505 }
5506 
5507 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
5508   unsigned N = 1;
5509   Type *EltTy = T;
5510 
5511   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
5512          isa<VectorType>(EltTy)) {
5513     if (auto *ST = dyn_cast<StructType>(EltTy)) {
5514       // Check that struct is homogeneous.
5515       for (const auto *Ty : ST->elements())
5516         if (Ty != *ST->element_begin())
5517           return 0;
5518       N *= ST->getNumElements();
5519       EltTy = *ST->element_begin();
5520     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
5521       N *= AT->getNumElements();
5522       EltTy = AT->getElementType();
5523     } else {
5524       auto *VT = cast<FixedVectorType>(EltTy);
5525       N *= VT->getNumElements();
5526       EltTy = VT->getElementType();
5527     }
5528   }
5529 
5530   if (!isValidElementType(EltTy))
5531     return 0;
5532   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
5533   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
5534     return 0;
5535   return N;
5536 }
5537 
5538 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
5539                               SmallVectorImpl<unsigned> &CurrentOrder) const {
5540   const auto *It = find_if(VL, [](Value *V) {
5541     return isa<ExtractElementInst, ExtractValueInst>(V);
5542   });
5543   assert(It != VL.end() && "Expected at least one extract instruction.");
5544   auto *E0 = cast<Instruction>(*It);
5545   assert(all_of(VL,
5546                 [](Value *V) {
5547                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
5548                       V);
5549                 }) &&
5550          "Invalid opcode");
5551   // Check if all of the extracts come from the same vector and from the
5552   // correct offset.
5553   Value *Vec = E0->getOperand(0);
5554 
5555   CurrentOrder.clear();
5556 
5557   // We have to extract from a vector/aggregate with the same number of elements.
5558   unsigned NElts;
5559   if (E0->getOpcode() == Instruction::ExtractValue) {
5560     const DataLayout &DL = E0->getModule()->getDataLayout();
5561     NElts = canMapToVector(Vec->getType(), DL);
5562     if (!NElts)
5563       return false;
5564     // Check if load can be rewritten as load of vector.
5565     LoadInst *LI = dyn_cast<LoadInst>(Vec);
5566     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
5567       return false;
5568   } else {
5569     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
5570   }
5571 
5572   if (NElts != VL.size())
5573     return false;
5574 
5575   // Check that all of the indices extract from the correct offset.
5576   bool ShouldKeepOrder = true;
5577   unsigned E = VL.size();
5578   // Assign to all items the initial value E + 1 so we can check if the extract
5579   // instruction index was used already.
5580   // Also, later we can check that all the indices are used and we have a
5581   // consecutive access in the extract instructions, by checking that no
5582   // element of CurrentOrder still has value E + 1.
5583   CurrentOrder.assign(E, E);
5584   unsigned I = 0;
5585   for (; I < E; ++I) {
5586     auto *Inst = dyn_cast<Instruction>(VL[I]);
5587     if (!Inst)
5588       continue;
5589     if (Inst->getOperand(0) != Vec)
5590       break;
5591     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
5592       if (isa<UndefValue>(EE->getIndexOperand()))
5593         continue;
5594     Optional<unsigned> Idx = getExtractIndex(Inst);
5595     if (!Idx)
5596       break;
5597     const unsigned ExtIdx = *Idx;
5598     if (ExtIdx != I) {
5599       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
5600         break;
5601       ShouldKeepOrder = false;
5602       CurrentOrder[ExtIdx] = I;
5603     } else {
5604       if (CurrentOrder[I] != E)
5605         break;
5606       CurrentOrder[I] = I;
5607     }
5608   }
5609   if (I < E) {
5610     CurrentOrder.clear();
5611     return false;
5612   }
5613   if (ShouldKeepOrder)
5614     CurrentOrder.clear();
5615 
5616   return ShouldKeepOrder;
5617 }
5618 
5619 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
5620                                     ArrayRef<Value *> VectorizedVals) const {
5621   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
5622          all_of(I->users(), [this](User *U) {
5623            return ScalarToTreeEntry.count(U) > 0 ||
5624                   isVectorLikeInstWithConstOps(U) ||
5625                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
5626          });
5627 }
5628 
5629 static std::pair<InstructionCost, InstructionCost>
5630 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
5631                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
5632   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5633 
5634   // Calculate the cost of the scalar and vector calls.
5635   SmallVector<Type *, 4> VecTys;
5636   for (Use &Arg : CI->args())
5637     VecTys.push_back(
5638         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
5639   FastMathFlags FMF;
5640   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
5641     FMF = FPCI->getFastMathFlags();
5642   SmallVector<const Value *> Arguments(CI->args());
5643   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
5644                                     dyn_cast<IntrinsicInst>(CI));
5645   auto IntrinsicCost =
5646     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
5647 
5648   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5649                                      VecTy->getNumElements())),
5650                             false /*HasGlobalPred*/);
5651   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5652   auto LibCost = IntrinsicCost;
5653   if (!CI->isNoBuiltin() && VecFunc) {
5654     // Calculate the cost of the vector library call.
5655     // If the corresponding vector call is cheaper, return its cost.
5656     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
5657                                     TTI::TCK_RecipThroughput);
5658   }
5659   return {IntrinsicCost, LibCost};
5660 }
5661 
5662 /// Compute the cost of creating a vector of type \p VecTy containing the
5663 /// extracted values from \p VL.
5664 static InstructionCost
5665 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
5666                    TargetTransformInfo::ShuffleKind ShuffleKind,
5667                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
5668   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
5669 
5670   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
5671       VecTy->getNumElements() < NumOfParts)
5672     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
5673 
5674   bool AllConsecutive = true;
5675   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
5676   unsigned Idx = -1;
5677   InstructionCost Cost = 0;
5678 
5679   // Process extracts in blocks of EltsPerVector to check if the source vector
5680   // operand can be re-used directly. If not, add the cost of creating a shuffle
5681   // to extract the values into a vector register.
5682   SmallVector<int> RegMask(EltsPerVector, UndefMaskElem);
5683   for (auto *V : VL) {
5684     ++Idx;
5685 
5686     // Need to exclude undefs from analysis.
5687     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
5688       continue;
5689 
5690     // Reached the start of a new vector registers.
5691     if (Idx % EltsPerVector == 0) {
5692       RegMask.assign(EltsPerVector, UndefMaskElem);
5693       AllConsecutive = true;
5694       continue;
5695     }
5696 
5697     // Check all extracts for a vector register on the target directly
5698     // extract values in order.
5699     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
5700     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
5701       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
5702       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
5703                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
5704       RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector;
5705     }
5706 
5707     if (AllConsecutive)
5708       continue;
5709 
5710     // Skip all indices, except for the last index per vector block.
5711     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
5712       continue;
5713 
5714     // If we have a series of extracts which are not consecutive and hence
5715     // cannot re-use the source vector register directly, compute the shuffle
5716     // cost to extract the vector with EltsPerVector elements.
5717     Cost += TTI.getShuffleCost(
5718         TargetTransformInfo::SK_PermuteSingleSrc,
5719         FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask);
5720   }
5721   return Cost;
5722 }
5723 
5724 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
5725 /// operations operands.
5726 static void
5727 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
5728                       ArrayRef<int> ReusesIndices,
5729                       const function_ref<bool(Instruction *)> IsAltOp,
5730                       SmallVectorImpl<int> &Mask,
5731                       SmallVectorImpl<Value *> *OpScalars = nullptr,
5732                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
5733   unsigned Sz = VL.size();
5734   Mask.assign(Sz, UndefMaskElem);
5735   SmallVector<int> OrderMask;
5736   if (!ReorderIndices.empty())
5737     inversePermutation(ReorderIndices, OrderMask);
5738   for (unsigned I = 0; I < Sz; ++I) {
5739     unsigned Idx = I;
5740     if (!ReorderIndices.empty())
5741       Idx = OrderMask[I];
5742     auto *OpInst = cast<Instruction>(VL[Idx]);
5743     if (IsAltOp(OpInst)) {
5744       Mask[I] = Sz + Idx;
5745       if (AltScalars)
5746         AltScalars->push_back(OpInst);
5747     } else {
5748       Mask[I] = Idx;
5749       if (OpScalars)
5750         OpScalars->push_back(OpInst);
5751     }
5752   }
5753   if (!ReusesIndices.empty()) {
5754     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
5755     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
5756       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
5757     });
5758     Mask.swap(NewMask);
5759   }
5760 }
5761 
5762 /// Checks if the specified instruction \p I is an alternate operation for the
5763 /// given \p MainOp and \p AltOp instructions.
5764 static bool isAlternateInstruction(const Instruction *I,
5765                                    const Instruction *MainOp,
5766                                    const Instruction *AltOp) {
5767   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
5768     auto *AltCI0 = cast<CmpInst>(AltOp);
5769     auto *CI = cast<CmpInst>(I);
5770     CmpInst::Predicate P0 = CI0->getPredicate();
5771     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
5772     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
5773     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5774     CmpInst::Predicate CurrentPred = CI->getPredicate();
5775     if (P0 == AltP0Swapped)
5776       return I == AltCI0 ||
5777              (I != MainOp &&
5778               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
5779                                    CI->getOperand(0), CI->getOperand(1)));
5780     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
5781   }
5782   return I->getOpcode() == AltOp->getOpcode();
5783 }
5784 
5785 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
5786                                       ArrayRef<Value *> VectorizedVals) {
5787   ArrayRef<Value*> VL = E->Scalars;
5788 
5789   Type *ScalarTy = VL[0]->getType();
5790   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
5791     ScalarTy = SI->getValueOperand()->getType();
5792   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
5793     ScalarTy = CI->getOperand(0)->getType();
5794   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
5795     ScalarTy = IE->getOperand(1)->getType();
5796   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
5797   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5798 
5799   // If we have computed a smaller type for the expression, update VecTy so
5800   // that the costs will be accurate.
5801   if (MinBWs.count(VL[0]))
5802     VecTy = FixedVectorType::get(
5803         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
5804   unsigned EntryVF = E->getVectorFactor();
5805   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
5806 
5807   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5808   // FIXME: it tries to fix a problem with MSVC buildbots.
5809   TargetTransformInfo &TTIRef = *TTI;
5810   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
5811                                VectorizedVals, E](InstructionCost &Cost) {
5812     DenseMap<Value *, int> ExtractVectorsTys;
5813     SmallPtrSet<Value *, 4> CheckedExtracts;
5814     for (auto *V : VL) {
5815       if (isa<UndefValue>(V))
5816         continue;
5817       // If all users of instruction are going to be vectorized and this
5818       // instruction itself is not going to be vectorized, consider this
5819       // instruction as dead and remove its cost from the final cost of the
5820       // vectorized tree.
5821       // Also, avoid adjusting the cost for extractelements with multiple uses
5822       // in different graph entries.
5823       const TreeEntry *VE = getTreeEntry(V);
5824       if (!CheckedExtracts.insert(V).second ||
5825           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
5826           (VE && VE != E))
5827         continue;
5828       auto *EE = cast<ExtractElementInst>(V);
5829       Optional<unsigned> EEIdx = getExtractIndex(EE);
5830       if (!EEIdx)
5831         continue;
5832       unsigned Idx = *EEIdx;
5833       if (TTIRef.getNumberOfParts(VecTy) !=
5834           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
5835         auto It =
5836             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
5837         It->getSecond() = std::min<int>(It->second, Idx);
5838       }
5839       // Take credit for instruction that will become dead.
5840       if (EE->hasOneUse()) {
5841         Instruction *Ext = EE->user_back();
5842         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5843             all_of(Ext->users(),
5844                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
5845           // Use getExtractWithExtendCost() to calculate the cost of
5846           // extractelement/ext pair.
5847           Cost -=
5848               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
5849                                               EE->getVectorOperandType(), Idx);
5850           // Add back the cost of s|zext which is subtracted separately.
5851           Cost += TTIRef.getCastInstrCost(
5852               Ext->getOpcode(), Ext->getType(), EE->getType(),
5853               TTI::getCastContextHint(Ext), CostKind, Ext);
5854           continue;
5855         }
5856       }
5857       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
5858                                         EE->getVectorOperandType(), Idx);
5859     }
5860     // Add a cost for subvector extracts/inserts if required.
5861     for (const auto &Data : ExtractVectorsTys) {
5862       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
5863       unsigned NumElts = VecTy->getNumElements();
5864       if (Data.second % NumElts == 0)
5865         continue;
5866       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
5867         unsigned Idx = (Data.second / NumElts) * NumElts;
5868         unsigned EENumElts = EEVTy->getNumElements();
5869         if (Idx + NumElts <= EENumElts) {
5870           Cost +=
5871               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5872                                     EEVTy, None, Idx, VecTy);
5873         } else {
5874           // Need to round up the subvector type vectorization factor to avoid a
5875           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
5876           // <= EENumElts.
5877           auto *SubVT =
5878               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
5879           Cost +=
5880               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5881                                     EEVTy, None, Idx, SubVT);
5882         }
5883       } else {
5884         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
5885                                       VecTy, None, 0, EEVTy);
5886       }
5887     }
5888   };
5889   if (E->State == TreeEntry::NeedToGather) {
5890     if (allConstant(VL))
5891       return 0;
5892     if (isa<InsertElementInst>(VL[0]))
5893       return InstructionCost::getInvalid();
5894     SmallVector<int> Mask;
5895     SmallVector<const TreeEntry *> Entries;
5896     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5897         isGatherShuffledEntry(E, Mask, Entries);
5898     if (Shuffle) {
5899       InstructionCost GatherCost = 0;
5900       if (ShuffleVectorInst::isIdentityMask(Mask)) {
5901         // Perfect match in the graph, will reuse the previously vectorized
5902         // node. Cost is 0.
5903         LLVM_DEBUG(
5904             dbgs()
5905             << "SLP: perfect diamond match for gather bundle that starts with "
5906             << *VL.front() << ".\n");
5907         if (NeedToShuffleReuses)
5908           GatherCost =
5909               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5910                                   FinalVecTy, E->ReuseShuffleIndices);
5911       } else {
5912         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
5913                           << " entries for bundle that starts with "
5914                           << *VL.front() << ".\n");
5915         // Detected that instead of gather we can emit a shuffle of single/two
5916         // previously vectorized nodes. Add the cost of the permutation rather
5917         // than gather.
5918         ::addMask(Mask, E->ReuseShuffleIndices);
5919         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
5920       }
5921       return GatherCost;
5922     }
5923     if ((E->getOpcode() == Instruction::ExtractElement ||
5924          all_of(E->Scalars,
5925                 [](Value *V) {
5926                   return isa<ExtractElementInst, UndefValue>(V);
5927                 })) &&
5928         allSameType(VL)) {
5929       // Check that gather of extractelements can be represented as just a
5930       // shuffle of a single/two vectors the scalars are extracted from.
5931       SmallVector<int> Mask;
5932       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5933           isFixedVectorShuffle(VL, Mask);
5934       if (ShuffleKind) {
5935         // Found the bunch of extractelement instructions that must be gathered
5936         // into a vector and can be represented as a permutation elements in a
5937         // single input vector or of 2 input vectors.
5938         InstructionCost Cost =
5939             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5940         AdjustExtractsCost(Cost);
5941         if (NeedToShuffleReuses)
5942           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5943                                       FinalVecTy, E->ReuseShuffleIndices);
5944         return Cost;
5945       }
5946     }
5947     if (isSplat(VL)) {
5948       // Found the broadcasting of the single scalar, calculate the cost as the
5949       // broadcast.
5950       assert(VecTy == FinalVecTy &&
5951              "No reused scalars expected for broadcast.");
5952       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
5953                                  /*Mask=*/None, /*Index=*/0,
5954                                  /*SubTp=*/nullptr, /*Args=*/VL[0]);
5955     }
5956     InstructionCost ReuseShuffleCost = 0;
5957     if (NeedToShuffleReuses)
5958       ReuseShuffleCost = TTI->getShuffleCost(
5959           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5960     // Improve gather cost for gather of loads, if we can group some of the
5961     // loads into vector loads.
5962     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5963         !E->isAltShuffle()) {
5964       BoUpSLP::ValueSet VectorizedLoads;
5965       unsigned StartIdx = 0;
5966       unsigned VF = VL.size() / 2;
5967       unsigned VectorizedCnt = 0;
5968       unsigned ScatterVectorizeCnt = 0;
5969       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5970       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5971         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5972              Cnt += VF) {
5973           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5974           if (!VectorizedLoads.count(Slice.front()) &&
5975               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5976             SmallVector<Value *> PointerOps;
5977             OrdersType CurrentOrder;
5978             LoadsState LS =
5979                 canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, *SE, *LI,
5980                                   CurrentOrder, PointerOps);
5981             switch (LS) {
5982             case LoadsState::Vectorize:
5983             case LoadsState::ScatterVectorize:
5984               // Mark the vectorized loads so that we don't vectorize them
5985               // again.
5986               if (LS == LoadsState::Vectorize)
5987                 ++VectorizedCnt;
5988               else
5989                 ++ScatterVectorizeCnt;
5990               VectorizedLoads.insert(Slice.begin(), Slice.end());
5991               // If we vectorized initial block, no need to try to vectorize it
5992               // again.
5993               if (Cnt == StartIdx)
5994                 StartIdx += VF;
5995               break;
5996             case LoadsState::Gather:
5997               break;
5998             }
5999           }
6000         }
6001         // Check if the whole array was vectorized already - exit.
6002         if (StartIdx >= VL.size())
6003           break;
6004         // Found vectorizable parts - exit.
6005         if (!VectorizedLoads.empty())
6006           break;
6007       }
6008       if (!VectorizedLoads.empty()) {
6009         InstructionCost GatherCost = 0;
6010         unsigned NumParts = TTI->getNumberOfParts(VecTy);
6011         bool NeedInsertSubvectorAnalysis =
6012             !NumParts || (VL.size() / VF) > NumParts;
6013         // Get the cost for gathered loads.
6014         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
6015           if (VectorizedLoads.contains(VL[I]))
6016             continue;
6017           GatherCost += getGatherCost(VL.slice(I, VF));
6018         }
6019         // The cost for vectorized loads.
6020         InstructionCost ScalarsCost = 0;
6021         for (Value *V : VectorizedLoads) {
6022           auto *LI = cast<LoadInst>(V);
6023           ScalarsCost += TTI->getMemoryOpCost(
6024               Instruction::Load, LI->getType(), LI->getAlign(),
6025               LI->getPointerAddressSpace(), CostKind, LI);
6026         }
6027         auto *LI = cast<LoadInst>(E->getMainOp());
6028         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
6029         Align Alignment = LI->getAlign();
6030         GatherCost +=
6031             VectorizedCnt *
6032             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
6033                                  LI->getPointerAddressSpace(), CostKind, LI);
6034         GatherCost += ScatterVectorizeCnt *
6035                       TTI->getGatherScatterOpCost(
6036                           Instruction::Load, LoadTy, LI->getPointerOperand(),
6037                           /*VariableMask=*/false, Alignment, CostKind, LI);
6038         if (NeedInsertSubvectorAnalysis) {
6039           // Add the cost for the subvectors insert.
6040           for (int I = VF, E = VL.size(); I < E; I += VF)
6041             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
6042                                               None, I, LoadTy);
6043         }
6044         return ReuseShuffleCost + GatherCost - ScalarsCost;
6045       }
6046     }
6047     return ReuseShuffleCost + getGatherCost(VL);
6048   }
6049   InstructionCost CommonCost = 0;
6050   SmallVector<int> Mask;
6051   if (!E->ReorderIndices.empty()) {
6052     SmallVector<int> NewMask;
6053     if (E->getOpcode() == Instruction::Store) {
6054       // For stores the order is actually a mask.
6055       NewMask.resize(E->ReorderIndices.size());
6056       copy(E->ReorderIndices, NewMask.begin());
6057     } else {
6058       inversePermutation(E->ReorderIndices, NewMask);
6059     }
6060     ::addMask(Mask, NewMask);
6061   }
6062   if (NeedToShuffleReuses)
6063     ::addMask(Mask, E->ReuseShuffleIndices);
6064   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
6065     CommonCost =
6066         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
6067   assert((E->State == TreeEntry::Vectorize ||
6068           E->State == TreeEntry::ScatterVectorize) &&
6069          "Unhandled state");
6070   assert(E->getOpcode() &&
6071          ((allSameType(VL) && allSameBlock(VL)) ||
6072           (E->getOpcode() == Instruction::GetElementPtr &&
6073            E->getMainOp()->getType()->isPointerTy())) &&
6074          "Invalid VL");
6075   Instruction *VL0 = E->getMainOp();
6076   unsigned ShuffleOrOp =
6077       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6078   switch (ShuffleOrOp) {
6079     case Instruction::PHI:
6080       return 0;
6081 
6082     case Instruction::ExtractValue:
6083     case Instruction::ExtractElement: {
6084       // The common cost of removal ExtractElement/ExtractValue instructions +
6085       // the cost of shuffles, if required to resuffle the original vector.
6086       if (NeedToShuffleReuses) {
6087         unsigned Idx = 0;
6088         for (unsigned I : E->ReuseShuffleIndices) {
6089           if (ShuffleOrOp == Instruction::ExtractElement) {
6090             auto *EE = cast<ExtractElementInst>(VL[I]);
6091             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
6092                                                   EE->getVectorOperandType(),
6093                                                   *getExtractIndex(EE));
6094           } else {
6095             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
6096                                                   VecTy, Idx);
6097             ++Idx;
6098           }
6099         }
6100         Idx = EntryVF;
6101         for (Value *V : VL) {
6102           if (ShuffleOrOp == Instruction::ExtractElement) {
6103             auto *EE = cast<ExtractElementInst>(V);
6104             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
6105                                                   EE->getVectorOperandType(),
6106                                                   *getExtractIndex(EE));
6107           } else {
6108             --Idx;
6109             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
6110                                                   VecTy, Idx);
6111           }
6112         }
6113       }
6114       if (ShuffleOrOp == Instruction::ExtractValue) {
6115         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
6116           auto *EI = cast<Instruction>(VL[I]);
6117           // Take credit for instruction that will become dead.
6118           if (EI->hasOneUse()) {
6119             Instruction *Ext = EI->user_back();
6120             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
6121                 all_of(Ext->users(),
6122                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
6123               // Use getExtractWithExtendCost() to calculate the cost of
6124               // extractelement/ext pair.
6125               CommonCost -= TTI->getExtractWithExtendCost(
6126                   Ext->getOpcode(), Ext->getType(), VecTy, I);
6127               // Add back the cost of s|zext which is subtracted separately.
6128               CommonCost += TTI->getCastInstrCost(
6129                   Ext->getOpcode(), Ext->getType(), EI->getType(),
6130                   TTI::getCastContextHint(Ext), CostKind, Ext);
6131               continue;
6132             }
6133           }
6134           CommonCost -=
6135               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
6136         }
6137       } else {
6138         AdjustExtractsCost(CommonCost);
6139       }
6140       return CommonCost;
6141     }
6142     case Instruction::InsertElement: {
6143       assert(E->ReuseShuffleIndices.empty() &&
6144              "Unique insertelements only are expected.");
6145       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
6146 
6147       unsigned const NumElts = SrcVecTy->getNumElements();
6148       unsigned const NumScalars = VL.size();
6149       APInt DemandedElts = APInt::getZero(NumElts);
6150       // TODO: Add support for Instruction::InsertValue.
6151       SmallVector<int> Mask;
6152       if (!E->ReorderIndices.empty()) {
6153         inversePermutation(E->ReorderIndices, Mask);
6154         Mask.append(NumElts - NumScalars, UndefMaskElem);
6155       } else {
6156         Mask.assign(NumElts, UndefMaskElem);
6157         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6158       }
6159       unsigned Offset = *getInsertIndex(VL0);
6160       bool IsIdentity = true;
6161       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6162       Mask.swap(PrevMask);
6163       for (unsigned I = 0; I < NumScalars; ++I) {
6164         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
6165         DemandedElts.setBit(InsertIdx);
6166         IsIdentity &= InsertIdx - Offset == I;
6167         Mask[InsertIdx - Offset] = I;
6168       }
6169       assert(Offset < NumElts && "Failed to find vector index offset");
6170 
6171       InstructionCost Cost = 0;
6172       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
6173                                             /*Insert*/ true, /*Extract*/ false);
6174 
6175       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
6176         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
6177         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
6178         Cost += TTI->getShuffleCost(
6179             TargetTransformInfo::SK_PermuteSingleSrc,
6180             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
6181       } else if (!IsIdentity) {
6182         auto *FirstInsert =
6183             cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6184               return !is_contained(E->Scalars,
6185                                    cast<Instruction>(V)->getOperand(0));
6186             }));
6187         if (isUndefVector(FirstInsert->getOperand(0))) {
6188           Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
6189         } else {
6190           SmallVector<int> InsertMask(NumElts);
6191           std::iota(InsertMask.begin(), InsertMask.end(), 0);
6192           for (unsigned I = 0; I < NumElts; I++) {
6193             if (Mask[I] != UndefMaskElem)
6194               InsertMask[Offset + I] = NumElts + I;
6195           }
6196           Cost +=
6197               TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
6198         }
6199       }
6200 
6201       return Cost;
6202     }
6203     case Instruction::ZExt:
6204     case Instruction::SExt:
6205     case Instruction::FPToUI:
6206     case Instruction::FPToSI:
6207     case Instruction::FPExt:
6208     case Instruction::PtrToInt:
6209     case Instruction::IntToPtr:
6210     case Instruction::SIToFP:
6211     case Instruction::UIToFP:
6212     case Instruction::Trunc:
6213     case Instruction::FPTrunc:
6214     case Instruction::BitCast: {
6215       Type *SrcTy = VL0->getOperand(0)->getType();
6216       InstructionCost ScalarEltCost =
6217           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
6218                                 TTI::getCastContextHint(VL0), CostKind, VL0);
6219       if (NeedToShuffleReuses) {
6220         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6221       }
6222 
6223       // Calculate the cost of this instruction.
6224       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
6225 
6226       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
6227       InstructionCost VecCost = 0;
6228       // Check if the values are candidates to demote.
6229       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
6230         VecCost = CommonCost + TTI->getCastInstrCost(
6231                                    E->getOpcode(), VecTy, SrcVecTy,
6232                                    TTI::getCastContextHint(VL0), CostKind, VL0);
6233       }
6234       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6235       return VecCost - ScalarCost;
6236     }
6237     case Instruction::FCmp:
6238     case Instruction::ICmp:
6239     case Instruction::Select: {
6240       // Calculate the cost of this instruction.
6241       InstructionCost ScalarEltCost =
6242           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6243                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
6244       if (NeedToShuffleReuses) {
6245         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6246       }
6247       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
6248       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6249 
6250       // Check if all entries in VL are either compares or selects with compares
6251       // as condition that have the same predicates.
6252       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
6253       bool First = true;
6254       for (auto *V : VL) {
6255         CmpInst::Predicate CurrentPred;
6256         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
6257         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
6258              !match(V, MatchCmp)) ||
6259             (!First && VecPred != CurrentPred)) {
6260           VecPred = CmpInst::BAD_ICMP_PREDICATE;
6261           break;
6262         }
6263         First = false;
6264         VecPred = CurrentPred;
6265       }
6266 
6267       InstructionCost VecCost = TTI->getCmpSelInstrCost(
6268           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
6269       // Check if it is possible and profitable to use min/max for selects in
6270       // VL.
6271       //
6272       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
6273       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
6274         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
6275                                           {VecTy, VecTy});
6276         InstructionCost IntrinsicCost =
6277             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6278         // If the selects are the only uses of the compares, they will be dead
6279         // and we can adjust the cost by removing their cost.
6280         if (IntrinsicAndUse.second)
6281           IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
6282                                                    MaskTy, VecPred, CostKind);
6283         VecCost = std::min(VecCost, IntrinsicCost);
6284       }
6285       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6286       return CommonCost + VecCost - ScalarCost;
6287     }
6288     case Instruction::FNeg:
6289     case Instruction::Add:
6290     case Instruction::FAdd:
6291     case Instruction::Sub:
6292     case Instruction::FSub:
6293     case Instruction::Mul:
6294     case Instruction::FMul:
6295     case Instruction::UDiv:
6296     case Instruction::SDiv:
6297     case Instruction::FDiv:
6298     case Instruction::URem:
6299     case Instruction::SRem:
6300     case Instruction::FRem:
6301     case Instruction::Shl:
6302     case Instruction::LShr:
6303     case Instruction::AShr:
6304     case Instruction::And:
6305     case Instruction::Or:
6306     case Instruction::Xor: {
6307       // Certain instructions can be cheaper to vectorize if they have a
6308       // constant second vector operand.
6309       TargetTransformInfo::OperandValueKind Op1VK =
6310           TargetTransformInfo::OK_AnyValue;
6311       TargetTransformInfo::OperandValueKind Op2VK =
6312           TargetTransformInfo::OK_UniformConstantValue;
6313       TargetTransformInfo::OperandValueProperties Op1VP =
6314           TargetTransformInfo::OP_None;
6315       TargetTransformInfo::OperandValueProperties Op2VP =
6316           TargetTransformInfo::OP_PowerOf2;
6317 
6318       // If all operands are exactly the same ConstantInt then set the
6319       // operand kind to OK_UniformConstantValue.
6320       // If instead not all operands are constants, then set the operand kind
6321       // to OK_AnyValue. If all operands are constants but not the same,
6322       // then set the operand kind to OK_NonUniformConstantValue.
6323       ConstantInt *CInt0 = nullptr;
6324       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
6325         const Instruction *I = cast<Instruction>(VL[i]);
6326         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
6327         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
6328         if (!CInt) {
6329           Op2VK = TargetTransformInfo::OK_AnyValue;
6330           Op2VP = TargetTransformInfo::OP_None;
6331           break;
6332         }
6333         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
6334             !CInt->getValue().isPowerOf2())
6335           Op2VP = TargetTransformInfo::OP_None;
6336         if (i == 0) {
6337           CInt0 = CInt;
6338           continue;
6339         }
6340         if (CInt0 != CInt)
6341           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6342       }
6343 
6344       SmallVector<const Value *, 4> Operands(VL0->operand_values());
6345       InstructionCost ScalarEltCost =
6346           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
6347                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6348       if (NeedToShuffleReuses) {
6349         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6350       }
6351       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6352       InstructionCost VecCost =
6353           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
6354                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6355       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6356       return CommonCost + VecCost - ScalarCost;
6357     }
6358     case Instruction::GetElementPtr: {
6359       TargetTransformInfo::OperandValueKind Op1VK =
6360           TargetTransformInfo::OK_AnyValue;
6361       TargetTransformInfo::OperandValueKind Op2VK =
6362           any_of(VL,
6363                  [](Value *V) {
6364                    return isa<GetElementPtrInst>(V) &&
6365                           !isConstant(
6366                               cast<GetElementPtrInst>(V)->getOperand(1));
6367                  })
6368               ? TargetTransformInfo::OK_AnyValue
6369               : TargetTransformInfo::OK_UniformConstantValue;
6370 
6371       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
6372           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
6373       if (NeedToShuffleReuses) {
6374         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6375       }
6376       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6377       InstructionCost VecCost = TTI->getArithmeticInstrCost(
6378           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
6379       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6380       return CommonCost + VecCost - ScalarCost;
6381     }
6382     case Instruction::Load: {
6383       // Cost of wide load - cost of scalar loads.
6384       Align Alignment = cast<LoadInst>(VL0)->getAlign();
6385       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6386           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
6387       if (NeedToShuffleReuses) {
6388         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6389       }
6390       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
6391       InstructionCost VecLdCost;
6392       if (E->State == TreeEntry::Vectorize) {
6393         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
6394                                          CostKind, VL0);
6395       } else {
6396         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
6397         Align CommonAlignment = Alignment;
6398         for (Value *V : VL)
6399           CommonAlignment =
6400               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
6401         VecLdCost = TTI->getGatherScatterOpCost(
6402             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
6403             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
6404       }
6405       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
6406       return CommonCost + VecLdCost - ScalarLdCost;
6407     }
6408     case Instruction::Store: {
6409       // We know that we can merge the stores. Calculate the cost.
6410       bool IsReorder = !E->ReorderIndices.empty();
6411       auto *SI =
6412           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
6413       Align Alignment = SI->getAlign();
6414       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6415           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
6416       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
6417       InstructionCost VecStCost = TTI->getMemoryOpCost(
6418           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
6419       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
6420       return CommonCost + VecStCost - ScalarStCost;
6421     }
6422     case Instruction::Call: {
6423       CallInst *CI = cast<CallInst>(VL0);
6424       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6425 
6426       // Calculate the cost of the scalar and vector calls.
6427       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
6428       InstructionCost ScalarEltCost =
6429           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6430       if (NeedToShuffleReuses) {
6431         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6432       }
6433       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
6434 
6435       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6436       InstructionCost VecCallCost =
6437           std::min(VecCallCosts.first, VecCallCosts.second);
6438 
6439       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
6440                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
6441                         << " for " << *CI << "\n");
6442 
6443       return CommonCost + VecCallCost - ScalarCallCost;
6444     }
6445     case Instruction::ShuffleVector: {
6446       assert(E->isAltShuffle() &&
6447              ((Instruction::isBinaryOp(E->getOpcode()) &&
6448                Instruction::isBinaryOp(E->getAltOpcode())) ||
6449               (Instruction::isCast(E->getOpcode()) &&
6450                Instruction::isCast(E->getAltOpcode())) ||
6451               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
6452              "Invalid Shuffle Vector Operand");
6453       InstructionCost ScalarCost = 0;
6454       if (NeedToShuffleReuses) {
6455         for (unsigned Idx : E->ReuseShuffleIndices) {
6456           Instruction *I = cast<Instruction>(VL[Idx]);
6457           CommonCost -= TTI->getInstructionCost(I, CostKind);
6458         }
6459         for (Value *V : VL) {
6460           Instruction *I = cast<Instruction>(V);
6461           CommonCost += TTI->getInstructionCost(I, CostKind);
6462         }
6463       }
6464       for (Value *V : VL) {
6465         Instruction *I = cast<Instruction>(V);
6466         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6467         ScalarCost += TTI->getInstructionCost(I, CostKind);
6468       }
6469       // VecCost is equal to sum of the cost of creating 2 vectors
6470       // and the cost of creating shuffle.
6471       InstructionCost VecCost = 0;
6472       // Try to find the previous shuffle node with the same operands and same
6473       // main/alternate ops.
6474       auto &&TryFindNodeWithEqualOperands = [this, E]() {
6475         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
6476           if (TE.get() == E)
6477             break;
6478           if (TE->isAltShuffle() &&
6479               ((TE->getOpcode() == E->getOpcode() &&
6480                 TE->getAltOpcode() == E->getAltOpcode()) ||
6481                (TE->getOpcode() == E->getAltOpcode() &&
6482                 TE->getAltOpcode() == E->getOpcode())) &&
6483               TE->hasEqualOperands(*E))
6484             return true;
6485         }
6486         return false;
6487       };
6488       if (TryFindNodeWithEqualOperands()) {
6489         LLVM_DEBUG({
6490           dbgs() << "SLP: diamond match for alternate node found.\n";
6491           E->dump();
6492         });
6493         // No need to add new vector costs here since we're going to reuse
6494         // same main/alternate vector ops, just do different shuffling.
6495       } else if (Instruction::isBinaryOp(E->getOpcode())) {
6496         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
6497         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
6498                                                CostKind);
6499       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
6500         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
6501                                           Builder.getInt1Ty(),
6502                                           CI0->getPredicate(), CostKind, VL0);
6503         VecCost += TTI->getCmpSelInstrCost(
6504             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6505             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
6506             E->getAltOp());
6507       } else {
6508         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
6509         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
6510         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
6511         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
6512         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
6513                                         TTI::CastContextHint::None, CostKind);
6514         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
6515                                          TTI::CastContextHint::None, CostKind);
6516       }
6517 
6518       if (E->ReuseShuffleIndices.empty()) {
6519         CommonCost =
6520             TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy);
6521       } else {
6522         SmallVector<int> Mask;
6523         buildShuffleEntryMask(
6524             E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
6525             [E](Instruction *I) {
6526               assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6527               return I->getOpcode() == E->getAltOpcode();
6528             },
6529             Mask);
6530         CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
6531                                          FinalVecTy, Mask);
6532       }
6533       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6534       return CommonCost + VecCost - ScalarCost;
6535     }
6536     default:
6537       llvm_unreachable("Unknown instruction");
6538   }
6539 }
6540 
6541 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
6542   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
6543                     << VectorizableTree.size() << " is fully vectorizable .\n");
6544 
6545   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
6546     SmallVector<int> Mask;
6547     return TE->State == TreeEntry::NeedToGather &&
6548            !any_of(TE->Scalars,
6549                    [this](Value *V) { return EphValues.contains(V); }) &&
6550            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
6551             TE->Scalars.size() < Limit ||
6552             ((TE->getOpcode() == Instruction::ExtractElement ||
6553               all_of(TE->Scalars,
6554                      [](Value *V) {
6555                        return isa<ExtractElementInst, UndefValue>(V);
6556                      })) &&
6557              isFixedVectorShuffle(TE->Scalars, Mask)) ||
6558             (TE->State == TreeEntry::NeedToGather &&
6559              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
6560   };
6561 
6562   // We only handle trees of heights 1 and 2.
6563   if (VectorizableTree.size() == 1 &&
6564       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
6565        (ForReduction &&
6566         AreVectorizableGathers(VectorizableTree[0].get(),
6567                                VectorizableTree[0]->Scalars.size()) &&
6568         VectorizableTree[0]->getVectorFactor() > 2)))
6569     return true;
6570 
6571   if (VectorizableTree.size() != 2)
6572     return false;
6573 
6574   // Handle splat and all-constants stores. Also try to vectorize tiny trees
6575   // with the second gather nodes if they have less scalar operands rather than
6576   // the initial tree element (may be profitable to shuffle the second gather)
6577   // or they are extractelements, which form shuffle.
6578   SmallVector<int> Mask;
6579   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
6580       AreVectorizableGathers(VectorizableTree[1].get(),
6581                              VectorizableTree[0]->Scalars.size()))
6582     return true;
6583 
6584   // Gathering cost would be too much for tiny trees.
6585   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
6586       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
6587        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
6588     return false;
6589 
6590   return true;
6591 }
6592 
6593 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
6594                                        TargetTransformInfo *TTI,
6595                                        bool MustMatchOrInst) {
6596   // Look past the root to find a source value. Arbitrarily follow the
6597   // path through operand 0 of any 'or'. Also, peek through optional
6598   // shift-left-by-multiple-of-8-bits.
6599   Value *ZextLoad = Root;
6600   const APInt *ShAmtC;
6601   bool FoundOr = false;
6602   while (!isa<ConstantExpr>(ZextLoad) &&
6603          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
6604           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
6605            ShAmtC->urem(8) == 0))) {
6606     auto *BinOp = cast<BinaryOperator>(ZextLoad);
6607     ZextLoad = BinOp->getOperand(0);
6608     if (BinOp->getOpcode() == Instruction::Or)
6609       FoundOr = true;
6610   }
6611   // Check if the input is an extended load of the required or/shift expression.
6612   Value *Load;
6613   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
6614       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
6615     return false;
6616 
6617   // Require that the total load bit width is a legal integer type.
6618   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
6619   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
6620   Type *SrcTy = Load->getType();
6621   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
6622   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
6623     return false;
6624 
6625   // Everything matched - assume that we can fold the whole sequence using
6626   // load combining.
6627   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
6628              << *(cast<Instruction>(Root)) << "\n");
6629 
6630   return true;
6631 }
6632 
6633 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
6634   if (RdxKind != RecurKind::Or)
6635     return false;
6636 
6637   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6638   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
6639   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
6640                                     /* MatchOr */ false);
6641 }
6642 
6643 bool BoUpSLP::isLoadCombineCandidate() const {
6644   // Peek through a final sequence of stores and check if all operations are
6645   // likely to be load-combined.
6646   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6647   for (Value *Scalar : VectorizableTree[0]->Scalars) {
6648     Value *X;
6649     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
6650         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
6651       return false;
6652   }
6653   return true;
6654 }
6655 
6656 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
6657   // No need to vectorize inserts of gathered values.
6658   if (VectorizableTree.size() == 2 &&
6659       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
6660       VectorizableTree[1]->State == TreeEntry::NeedToGather)
6661     return true;
6662 
6663   // We can vectorize the tree if its size is greater than or equal to the
6664   // minimum size specified by the MinTreeSize command line option.
6665   if (VectorizableTree.size() >= MinTreeSize)
6666     return false;
6667 
6668   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
6669   // can vectorize it if we can prove it fully vectorizable.
6670   if (isFullyVectorizableTinyTree(ForReduction))
6671     return false;
6672 
6673   assert(VectorizableTree.empty()
6674              ? ExternalUses.empty()
6675              : true && "We shouldn't have any external users");
6676 
6677   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
6678   // vectorizable.
6679   return true;
6680 }
6681 
6682 InstructionCost BoUpSLP::getSpillCost() const {
6683   // Walk from the bottom of the tree to the top, tracking which values are
6684   // live. When we see a call instruction that is not part of our tree,
6685   // query TTI to see if there is a cost to keeping values live over it
6686   // (for example, if spills and fills are required).
6687   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
6688   InstructionCost Cost = 0;
6689 
6690   SmallPtrSet<Instruction*, 4> LiveValues;
6691   Instruction *PrevInst = nullptr;
6692 
6693   // The entries in VectorizableTree are not necessarily ordered by their
6694   // position in basic blocks. Collect them and order them by dominance so later
6695   // instructions are guaranteed to be visited first. For instructions in
6696   // different basic blocks, we only scan to the beginning of the block, so
6697   // their order does not matter, as long as all instructions in a basic block
6698   // are grouped together. Using dominance ensures a deterministic order.
6699   SmallVector<Instruction *, 16> OrderedScalars;
6700   for (const auto &TEPtr : VectorizableTree) {
6701     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
6702     if (!Inst)
6703       continue;
6704     OrderedScalars.push_back(Inst);
6705   }
6706   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
6707     auto *NodeA = DT->getNode(A->getParent());
6708     auto *NodeB = DT->getNode(B->getParent());
6709     assert(NodeA && "Should only process reachable instructions");
6710     assert(NodeB && "Should only process reachable instructions");
6711     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
6712            "Different nodes should have different DFS numbers");
6713     if (NodeA != NodeB)
6714       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
6715     return B->comesBefore(A);
6716   });
6717 
6718   for (Instruction *Inst : OrderedScalars) {
6719     if (!PrevInst) {
6720       PrevInst = Inst;
6721       continue;
6722     }
6723 
6724     // Update LiveValues.
6725     LiveValues.erase(PrevInst);
6726     for (auto &J : PrevInst->operands()) {
6727       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
6728         LiveValues.insert(cast<Instruction>(&*J));
6729     }
6730 
6731     LLVM_DEBUG({
6732       dbgs() << "SLP: #LV: " << LiveValues.size();
6733       for (auto *X : LiveValues)
6734         dbgs() << " " << X->getName();
6735       dbgs() << ", Looking at ";
6736       Inst->dump();
6737     });
6738 
6739     // Now find the sequence of instructions between PrevInst and Inst.
6740     unsigned NumCalls = 0;
6741     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
6742                                  PrevInstIt =
6743                                      PrevInst->getIterator().getReverse();
6744     while (InstIt != PrevInstIt) {
6745       if (PrevInstIt == PrevInst->getParent()->rend()) {
6746         PrevInstIt = Inst->getParent()->rbegin();
6747         continue;
6748       }
6749 
6750       // Debug information does not impact spill cost.
6751       if ((isa<CallInst>(&*PrevInstIt) &&
6752            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
6753           &*PrevInstIt != PrevInst)
6754         NumCalls++;
6755 
6756       ++PrevInstIt;
6757     }
6758 
6759     if (NumCalls) {
6760       SmallVector<Type*, 4> V;
6761       for (auto *II : LiveValues) {
6762         auto *ScalarTy = II->getType();
6763         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
6764           ScalarTy = VectorTy->getElementType();
6765         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
6766       }
6767       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
6768     }
6769 
6770     PrevInst = Inst;
6771   }
6772 
6773   return Cost;
6774 }
6775 
6776 /// Check if two insertelement instructions are from the same buildvector.
6777 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
6778                                             InsertElementInst *V) {
6779   // Instructions must be from the same basic blocks.
6780   if (VU->getParent() != V->getParent())
6781     return false;
6782   // Checks if 2 insertelements are from the same buildvector.
6783   if (VU->getType() != V->getType())
6784     return false;
6785   // Multiple used inserts are separate nodes.
6786   if (!VU->hasOneUse() && !V->hasOneUse())
6787     return false;
6788   auto *IE1 = VU;
6789   auto *IE2 = V;
6790   unsigned Idx1 = *getInsertIndex(IE1);
6791   unsigned Idx2 = *getInsertIndex(IE2);
6792   // Go through the vector operand of insertelement instructions trying to find
6793   // either VU as the original vector for IE2 or V as the original vector for
6794   // IE1.
6795   do {
6796     if (IE2 == VU)
6797       return VU->hasOneUse();
6798     if (IE1 == V)
6799       return V->hasOneUse();
6800     if (IE1) {
6801       if ((IE1 != VU && !IE1->hasOneUse()) ||
6802           getInsertIndex(IE1).value_or(Idx2) == Idx2)
6803         IE1 = nullptr;
6804       else
6805         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
6806     }
6807     if (IE2) {
6808       if ((IE2 != V && !IE2->hasOneUse()) ||
6809           getInsertIndex(IE2).value_or(Idx1) == Idx1)
6810         IE2 = nullptr;
6811       else
6812         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
6813     }
6814   } while (IE1 || IE2);
6815   return false;
6816 }
6817 
6818 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
6819 /// buildvector sequence.
6820 static bool isFirstInsertElement(const InsertElementInst *IE1,
6821                                  const InsertElementInst *IE2) {
6822   if (IE1 == IE2)
6823     return false;
6824   const auto *I1 = IE1;
6825   const auto *I2 = IE2;
6826   const InsertElementInst *PrevI1;
6827   const InsertElementInst *PrevI2;
6828   unsigned Idx1 = *getInsertIndex(IE1);
6829   unsigned Idx2 = *getInsertIndex(IE2);
6830   do {
6831     if (I2 == IE1)
6832       return true;
6833     if (I1 == IE2)
6834       return false;
6835     PrevI1 = I1;
6836     PrevI2 = I2;
6837     if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
6838         getInsertIndex(I1).value_or(Idx2) != Idx2)
6839       I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
6840     if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
6841         getInsertIndex(I2).value_or(Idx1) != Idx1)
6842       I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
6843   } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
6844   llvm_unreachable("Two different buildvectors not expected.");
6845 }
6846 
6847 namespace {
6848 /// Returns incoming Value *, if the requested type is Value * too, or a default
6849 /// value, otherwise.
6850 struct ValueSelect {
6851   template <typename U>
6852   static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type
6853   get(Value *V) {
6854     return V;
6855   }
6856   template <typename U>
6857   static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type
6858   get(Value *) {
6859     return U();
6860   }
6861 };
6862 } // namespace
6863 
6864 /// Does the analysis of the provided shuffle masks and performs the requested
6865 /// actions on the vectors with the given shuffle masks. It tries to do it in
6866 /// several steps.
6867 /// 1. If the Base vector is not undef vector, resizing the very first mask to
6868 /// have common VF and perform action for 2 input vectors (including non-undef
6869 /// Base). Other shuffle masks are combined with the resulting after the 1 stage
6870 /// and processed as a shuffle of 2 elements.
6871 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
6872 /// action only for 1 vector with the given mask, if it is not the identity
6873 /// mask.
6874 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
6875 /// vectors, combing the masks properly between the steps.
6876 template <typename T>
6877 static T *performExtractsShuffleAction(
6878     MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
6879     function_ref<unsigned(T *)> GetVF,
6880     function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction,
6881     function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
6882   assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
6883   SmallVector<int> Mask(ShuffleMask.begin()->second);
6884   auto VMIt = std::next(ShuffleMask.begin());
6885   T *Prev = nullptr;
6886   bool IsBaseNotUndef = !isUndefVector(Base);
6887   if (IsBaseNotUndef) {
6888     // Base is not undef, need to combine it with the next subvectors.
6889     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6890     for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
6891       if (Mask[Idx] == UndefMaskElem)
6892         Mask[Idx] = Idx;
6893       else
6894         Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
6895     }
6896     auto *V = ValueSelect::get<T *>(Base);
6897     (void)V;
6898     assert((!V || GetVF(V) == Mask.size()) &&
6899            "Expected base vector of VF number of elements.");
6900     Prev = Action(Mask, {nullptr, Res.first});
6901   } else if (ShuffleMask.size() == 1) {
6902     // Base is undef and only 1 vector is shuffled - perform the action only for
6903     // single vector, if the mask is not the identity mask.
6904     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6905     if (Res.second)
6906       // Identity mask is found.
6907       Prev = Res.first;
6908     else
6909       Prev = Action(Mask, {ShuffleMask.begin()->first});
6910   } else {
6911     // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
6912     // shuffles step by step, combining shuffle between the steps.
6913     unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
6914     unsigned Vec2VF = GetVF(VMIt->first);
6915     if (Vec1VF == Vec2VF) {
6916       // No need to resize the input vectors since they are of the same size, we
6917       // can shuffle them directly.
6918       ArrayRef<int> SecMask = VMIt->second;
6919       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6920         if (SecMask[I] != UndefMaskElem) {
6921           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6922           Mask[I] = SecMask[I] + Vec1VF;
6923         }
6924       }
6925       Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
6926     } else {
6927       // Vectors of different sizes - resize and reshuffle.
6928       std::pair<T *, bool> Res1 =
6929           ResizeAction(ShuffleMask.begin()->first, Mask);
6930       std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second);
6931       ArrayRef<int> SecMask = VMIt->second;
6932       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6933         if (Mask[I] != UndefMaskElem) {
6934           assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars.");
6935           if (Res1.second)
6936             Mask[I] = I;
6937         } else if (SecMask[I] != UndefMaskElem) {
6938           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6939           Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
6940         }
6941       }
6942       Prev = Action(Mask, {Res1.first, Res2.first});
6943     }
6944     VMIt = std::next(VMIt);
6945   }
6946   // Perform requested actions for the remaining masks/vectors.
6947   for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
6948     // Shuffle other input vectors, if any.
6949     std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second);
6950     ArrayRef<int> SecMask = VMIt->second;
6951     for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6952       if (SecMask[I] != UndefMaskElem) {
6953         assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) &&
6954                "Multiple uses of scalars.");
6955         Mask[I] = (Res.second ? I : SecMask[I]) + VF;
6956       } else if (Mask[I] != UndefMaskElem) {
6957         Mask[I] = I;
6958       }
6959     }
6960     Prev = Action(Mask, {Prev, Res.first});
6961   }
6962   return Prev;
6963 }
6964 
6965 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
6966   InstructionCost Cost = 0;
6967   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
6968                     << VectorizableTree.size() << ".\n");
6969 
6970   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
6971 
6972   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
6973     TreeEntry &TE = *VectorizableTree[I];
6974 
6975     InstructionCost C = getEntryCost(&TE, VectorizedVals);
6976     Cost += C;
6977     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6978                       << " for bundle that starts with " << *TE.Scalars[0]
6979                       << ".\n"
6980                       << "SLP: Current total cost = " << Cost << "\n");
6981   }
6982 
6983   SmallPtrSet<Value *, 16> ExtractCostCalculated;
6984   InstructionCost ExtractCost = 0;
6985   SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
6986   SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
6987   SmallVector<APInt> DemandedElts;
6988   for (ExternalUser &EU : ExternalUses) {
6989     // We only add extract cost once for the same scalar.
6990     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
6991         !ExtractCostCalculated.insert(EU.Scalar).second)
6992       continue;
6993 
6994     // Uses by ephemeral values are free (because the ephemeral value will be
6995     // removed prior to code generation, and so the extraction will be
6996     // removed as well).
6997     if (EphValues.count(EU.User))
6998       continue;
6999 
7000     // No extract cost for vector "scalar"
7001     if (isa<FixedVectorType>(EU.Scalar->getType()))
7002       continue;
7003 
7004     // Already counted the cost for external uses when tried to adjust the cost
7005     // for extractelements, no need to add it again.
7006     if (isa<ExtractElementInst>(EU.Scalar))
7007       continue;
7008 
7009     // If found user is an insertelement, do not calculate extract cost but try
7010     // to detect it as a final shuffled/identity match.
7011     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
7012       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
7013         Optional<unsigned> InsertIdx = getInsertIndex(VU);
7014         if (InsertIdx) {
7015           const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
7016           auto *It =
7017               find_if(FirstUsers,
7018                       [VU](const std::pair<Value *, const TreeEntry *> &Pair) {
7019                         return areTwoInsertFromSameBuildVector(
7020                             VU, cast<InsertElementInst>(Pair.first));
7021                       });
7022           int VecId = -1;
7023           if (It == FirstUsers.end()) {
7024             (void)ShuffleMasks.emplace_back();
7025             SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
7026             if (Mask.empty())
7027               Mask.assign(FTy->getNumElements(), UndefMaskElem);
7028             // Find the insertvector, vectorized in tree, if any.
7029             Value *Base = VU;
7030             while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
7031               if (IEBase != EU.User &&
7032                   (!IEBase->hasOneUse() ||
7033                    getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx))
7034                 break;
7035               // Build the mask for the vectorized insertelement instructions.
7036               if (const TreeEntry *E = getTreeEntry(IEBase)) {
7037                 VU = IEBase;
7038                 do {
7039                   IEBase = cast<InsertElementInst>(Base);
7040                   int Idx = *getInsertIndex(IEBase);
7041                   assert(Mask[Idx] == UndefMaskElem &&
7042                          "InsertElementInstruction used already.");
7043                   Mask[Idx] = Idx;
7044                   Base = IEBase->getOperand(0);
7045                 } while (E == getTreeEntry(Base));
7046                 break;
7047               }
7048               Base = cast<InsertElementInst>(Base)->getOperand(0);
7049             }
7050             FirstUsers.emplace_back(VU, ScalarTE);
7051             DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
7052             VecId = FirstUsers.size() - 1;
7053           } else {
7054             if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
7055               It->first = VU;
7056             VecId = std::distance(FirstUsers.begin(), It);
7057           }
7058           int InIdx = *InsertIdx;
7059           SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
7060           if (Mask.empty())
7061             Mask.assign(FTy->getNumElements(), UndefMaskElem);
7062           Mask[InIdx] = EU.Lane;
7063           DemandedElts[VecId].setBit(InIdx);
7064           continue;
7065         }
7066       }
7067     }
7068 
7069     // If we plan to rewrite the tree in a smaller type, we will need to sign
7070     // extend the extracted value back to the original type. Here, we account
7071     // for the extract and the added cost of the sign extend if needed.
7072     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
7073     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7074     if (MinBWs.count(ScalarRoot)) {
7075       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7076       auto Extend =
7077           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
7078       VecTy = FixedVectorType::get(MinTy, BundleWidth);
7079       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
7080                                                    VecTy, EU.Lane);
7081     } else {
7082       ExtractCost +=
7083           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
7084     }
7085   }
7086 
7087   InstructionCost SpillCost = getSpillCost();
7088   Cost += SpillCost + ExtractCost;
7089   auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) {
7090     InstructionCost C = 0;
7091     unsigned VF = Mask.size();
7092     unsigned VecVF = TE->getVectorFactor();
7093     if (VF != VecVF &&
7094         (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
7095          (all_of(Mask,
7096                  [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) &&
7097           !ShuffleVectorInst::isIdentityMask(Mask)))) {
7098       SmallVector<int> OrigMask(VecVF, UndefMaskElem);
7099       std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
7100                 OrigMask.begin());
7101       C = TTI->getShuffleCost(
7102           TTI::SK_PermuteSingleSrc,
7103           FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
7104       LLVM_DEBUG(
7105           dbgs() << "SLP: Adding cost " << C
7106                  << " for final shuffle of insertelement external users.\n";
7107           TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
7108       Cost += C;
7109       return std::make_pair(TE, true);
7110     }
7111     return std::make_pair(TE, false);
7112   };
7113   // Calculate the cost of the reshuffled vectors, if any.
7114   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
7115     Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
7116     unsigned VF = ShuffleMasks[I].begin()->second.size();
7117     auto *FTy = FixedVectorType::get(
7118         cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF);
7119     auto Vector = ShuffleMasks[I].takeVector();
7120     auto &&EstimateShufflesCost = [this, FTy,
7121                                    &Cost](ArrayRef<int> Mask,
7122                                           ArrayRef<const TreeEntry *> TEs) {
7123       assert((TEs.size() == 1 || TEs.size() == 2) &&
7124              "Expected exactly 1 or 2 tree entries.");
7125       if (TEs.size() == 1) {
7126         int Limit = 2 * Mask.size();
7127         if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) ||
7128             !ShuffleVectorInst::isIdentityMask(Mask)) {
7129           InstructionCost C =
7130               TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
7131           LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7132                             << " for final shuffle of insertelement "
7133                                "external users.\n";
7134                      TEs.front()->dump();
7135                      dbgs() << "SLP: Current total cost = " << Cost << "\n");
7136           Cost += C;
7137         }
7138       } else {
7139         InstructionCost C =
7140             TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
7141         LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
7142                           << " for final shuffle of vector node and external "
7143                              "insertelement users.\n";
7144                    if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
7145                    dbgs() << "SLP: Current total cost = " << Cost << "\n");
7146         Cost += C;
7147       }
7148       return TEs.back();
7149     };
7150     (void)performExtractsShuffleAction<const TreeEntry>(
7151         makeMutableArrayRef(Vector.data(), Vector.size()), Base,
7152         [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
7153         EstimateShufflesCost);
7154     InstructionCost InsertCost = TTI->getScalarizationOverhead(
7155         cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
7156         /*Insert*/ true, /*Extract*/ false);
7157     Cost -= InsertCost;
7158   }
7159 
7160 #ifndef NDEBUG
7161   SmallString<256> Str;
7162   {
7163     raw_svector_ostream OS(Str);
7164     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
7165        << "SLP: Extract Cost = " << ExtractCost << ".\n"
7166        << "SLP: Total Cost = " << Cost << ".\n";
7167   }
7168   LLVM_DEBUG(dbgs() << Str);
7169   if (ViewSLPTree)
7170     ViewGraph(this, "SLP" + F->getName(), false, Str);
7171 #endif
7172 
7173   return Cost;
7174 }
7175 
7176 Optional<TargetTransformInfo::ShuffleKind>
7177 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
7178                                SmallVectorImpl<const TreeEntry *> &Entries) {
7179   // TODO: currently checking only for Scalars in the tree entry, need to count
7180   // reused elements too for better cost estimation.
7181   Mask.assign(TE->Scalars.size(), UndefMaskElem);
7182   Entries.clear();
7183   // Build a lists of values to tree entries.
7184   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
7185   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
7186     if (EntryPtr.get() == TE)
7187       break;
7188     if (EntryPtr->State != TreeEntry::NeedToGather)
7189       continue;
7190     for (Value *V : EntryPtr->Scalars)
7191       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
7192   }
7193   // Find all tree entries used by the gathered values. If no common entries
7194   // found - not a shuffle.
7195   // Here we build a set of tree nodes for each gathered value and trying to
7196   // find the intersection between these sets. If we have at least one common
7197   // tree node for each gathered value - we have just a permutation of the
7198   // single vector. If we have 2 different sets, we're in situation where we
7199   // have a permutation of 2 input vectors.
7200   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
7201   DenseMap<Value *, int> UsedValuesEntry;
7202   for (Value *V : TE->Scalars) {
7203     if (isa<UndefValue>(V))
7204       continue;
7205     // Build a list of tree entries where V is used.
7206     SmallPtrSet<const TreeEntry *, 4> VToTEs;
7207     auto It = ValueToTEs.find(V);
7208     if (It != ValueToTEs.end())
7209       VToTEs = It->second;
7210     if (const TreeEntry *VTE = getTreeEntry(V))
7211       VToTEs.insert(VTE);
7212     if (VToTEs.empty())
7213       return None;
7214     if (UsedTEs.empty()) {
7215       // The first iteration, just insert the list of nodes to vector.
7216       UsedTEs.push_back(VToTEs);
7217     } else {
7218       // Need to check if there are any previously used tree nodes which use V.
7219       // If there are no such nodes, consider that we have another one input
7220       // vector.
7221       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
7222       unsigned Idx = 0;
7223       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
7224         // Do we have a non-empty intersection of previously listed tree entries
7225         // and tree entries using current V?
7226         set_intersect(VToTEs, Set);
7227         if (!VToTEs.empty()) {
7228           // Yes, write the new subset and continue analysis for the next
7229           // scalar.
7230           Set.swap(VToTEs);
7231           break;
7232         }
7233         VToTEs = SavedVToTEs;
7234         ++Idx;
7235       }
7236       // No non-empty intersection found - need to add a second set of possible
7237       // source vectors.
7238       if (Idx == UsedTEs.size()) {
7239         // If the number of input vectors is greater than 2 - not a permutation,
7240         // fallback to the regular gather.
7241         if (UsedTEs.size() == 2)
7242           return None;
7243         UsedTEs.push_back(SavedVToTEs);
7244         Idx = UsedTEs.size() - 1;
7245       }
7246       UsedValuesEntry.try_emplace(V, Idx);
7247     }
7248   }
7249 
7250   if (UsedTEs.empty()) {
7251     assert(all_of(TE->Scalars, UndefValue::classof) &&
7252            "Expected vector of undefs only.");
7253     return None;
7254   }
7255 
7256   unsigned VF = 0;
7257   if (UsedTEs.size() == 1) {
7258     // Try to find the perfect match in another gather node at first.
7259     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
7260       return EntryPtr->isSame(TE->Scalars);
7261     });
7262     if (It != UsedTEs.front().end()) {
7263       Entries.push_back(*It);
7264       std::iota(Mask.begin(), Mask.end(), 0);
7265       return TargetTransformInfo::SK_PermuteSingleSrc;
7266     }
7267     // No perfect match, just shuffle, so choose the first tree node.
7268     Entries.push_back(*UsedTEs.front().begin());
7269   } else {
7270     // Try to find nodes with the same vector factor.
7271     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
7272     DenseMap<int, const TreeEntry *> VFToTE;
7273     for (const TreeEntry *TE : UsedTEs.front())
7274       VFToTE.try_emplace(TE->getVectorFactor(), TE);
7275     for (const TreeEntry *TE : UsedTEs.back()) {
7276       auto It = VFToTE.find(TE->getVectorFactor());
7277       if (It != VFToTE.end()) {
7278         VF = It->first;
7279         Entries.push_back(It->second);
7280         Entries.push_back(TE);
7281         break;
7282       }
7283     }
7284     // No 2 source vectors with the same vector factor - give up and do regular
7285     // gather.
7286     if (Entries.empty())
7287       return None;
7288   }
7289 
7290   // Build a shuffle mask for better cost estimation and vector emission.
7291   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
7292     Value *V = TE->Scalars[I];
7293     if (isa<UndefValue>(V))
7294       continue;
7295     unsigned Idx = UsedValuesEntry.lookup(V);
7296     const TreeEntry *VTE = Entries[Idx];
7297     int FoundLane = VTE->findLaneForValue(V);
7298     Mask[I] = Idx * VF + FoundLane;
7299     // Extra check required by isSingleSourceMaskImpl function (called by
7300     // ShuffleVectorInst::isSingleSourceMask).
7301     if (Mask[I] >= 2 * E)
7302       return None;
7303   }
7304   switch (Entries.size()) {
7305   case 1:
7306     return TargetTransformInfo::SK_PermuteSingleSrc;
7307   case 2:
7308     return TargetTransformInfo::SK_PermuteTwoSrc;
7309   default:
7310     break;
7311   }
7312   return None;
7313 }
7314 
7315 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
7316                                        const APInt &ShuffledIndices,
7317                                        bool NeedToShuffle) const {
7318   InstructionCost Cost =
7319       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
7320                                     /*Extract*/ false);
7321   if (NeedToShuffle)
7322     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
7323   return Cost;
7324 }
7325 
7326 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
7327   // Find the type of the operands in VL.
7328   Type *ScalarTy = VL[0]->getType();
7329   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
7330     ScalarTy = SI->getValueOperand()->getType();
7331   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7332   bool DuplicateNonConst = false;
7333   // Find the cost of inserting/extracting values from the vector.
7334   // Check if the same elements are inserted several times and count them as
7335   // shuffle candidates.
7336   APInt ShuffledElements = APInt::getZero(VL.size());
7337   DenseSet<Value *> UniqueElements;
7338   // Iterate in reverse order to consider insert elements with the high cost.
7339   for (unsigned I = VL.size(); I > 0; --I) {
7340     unsigned Idx = I - 1;
7341     // No need to shuffle duplicates for constants.
7342     if (isConstant(VL[Idx])) {
7343       ShuffledElements.setBit(Idx);
7344       continue;
7345     }
7346     if (!UniqueElements.insert(VL[Idx]).second) {
7347       DuplicateNonConst = true;
7348       ShuffledElements.setBit(Idx);
7349     }
7350   }
7351   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
7352 }
7353 
7354 // Perform operand reordering on the instructions in VL and return the reordered
7355 // operands in Left and Right.
7356 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
7357                                              SmallVectorImpl<Value *> &Left,
7358                                              SmallVectorImpl<Value *> &Right,
7359                                              const DataLayout &DL,
7360                                              ScalarEvolution &SE,
7361                                              const BoUpSLP &R) {
7362   if (VL.empty())
7363     return;
7364   VLOperands Ops(VL, DL, SE, R);
7365   // Reorder the operands in place.
7366   Ops.reorder();
7367   Left = Ops.getVL(0);
7368   Right = Ops.getVL(1);
7369 }
7370 
7371 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
7372   // Get the basic block this bundle is in. All instructions in the bundle
7373   // should be in this block (except for extractelement-like instructions with
7374   // constant indeces).
7375   auto *Front = E->getMainOp();
7376   auto *BB = Front->getParent();
7377   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
7378     if (E->getOpcode() == Instruction::GetElementPtr &&
7379         !isa<GetElementPtrInst>(V))
7380       return true;
7381     auto *I = cast<Instruction>(V);
7382     return !E->isOpcodeOrAlt(I) || I->getParent() == BB ||
7383            isVectorLikeInstWithConstOps(I);
7384   }));
7385 
7386   auto &&FindLastInst = [E, Front, this, &BB]() {
7387     Instruction *LastInst = Front;
7388     for (Value *V : E->Scalars) {
7389       auto *I = dyn_cast<Instruction>(V);
7390       if (!I)
7391         continue;
7392       if (LastInst->getParent() == I->getParent()) {
7393         if (LastInst->comesBefore(I))
7394           LastInst = I;
7395         continue;
7396       }
7397       assert(isVectorLikeInstWithConstOps(LastInst) &&
7398              isVectorLikeInstWithConstOps(I) &&
7399              "Expected vector-like insts only.");
7400       if (!DT->isReachableFromEntry(LastInst->getParent())) {
7401         LastInst = I;
7402         continue;
7403       }
7404       if (!DT->isReachableFromEntry(I->getParent()))
7405         continue;
7406       auto *NodeA = DT->getNode(LastInst->getParent());
7407       auto *NodeB = DT->getNode(I->getParent());
7408       assert(NodeA && "Should only process reachable instructions");
7409       assert(NodeB && "Should only process reachable instructions");
7410       assert((NodeA == NodeB) ==
7411                  (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
7412              "Different nodes should have different DFS numbers");
7413       if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn())
7414         LastInst = I;
7415     }
7416     BB = LastInst->getParent();
7417     return LastInst;
7418   };
7419 
7420   auto &&FindFirstInst = [E, Front]() {
7421     Instruction *FirstInst = Front;
7422     for (Value *V : E->Scalars) {
7423       auto *I = dyn_cast<Instruction>(V);
7424       if (!I)
7425         continue;
7426       if (I->comesBefore(FirstInst))
7427         FirstInst = I;
7428     }
7429     return FirstInst;
7430   };
7431 
7432   // Set the insert point to the beginning of the basic block if the entry
7433   // should not be scheduled.
7434   if (E->State != TreeEntry::NeedToGather &&
7435       doesNotNeedToSchedule(E->Scalars)) {
7436     Instruction *InsertInst;
7437     if (all_of(E->Scalars, isUsedOutsideBlock))
7438       InsertInst = FindLastInst();
7439     else
7440       InsertInst = FindFirstInst();
7441     // If the instruction is PHI, set the insert point after all the PHIs.
7442     if (isa<PHINode>(InsertInst))
7443       InsertInst = BB->getFirstNonPHI();
7444     BasicBlock::iterator InsertPt = InsertInst->getIterator();
7445     Builder.SetInsertPoint(BB, InsertPt);
7446     Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7447     return;
7448   }
7449 
7450   // The last instruction in the bundle in program order.
7451   Instruction *LastInst = nullptr;
7452 
7453   // Find the last instruction. The common case should be that BB has been
7454   // scheduled, and the last instruction is VL.back(). So we start with
7455   // VL.back() and iterate over schedule data until we reach the end of the
7456   // bundle. The end of the bundle is marked by null ScheduleData.
7457   if (BlocksSchedules.count(BB)) {
7458     Value *V = E->isOneOf(E->Scalars.back());
7459     if (doesNotNeedToBeScheduled(V))
7460       V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
7461     auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
7462     if (Bundle && Bundle->isPartOfBundle())
7463       for (; Bundle; Bundle = Bundle->NextInBundle)
7464         if (Bundle->OpValue == Bundle->Inst)
7465           LastInst = Bundle->Inst;
7466   }
7467 
7468   // LastInst can still be null at this point if there's either not an entry
7469   // for BB in BlocksSchedules or there's no ScheduleData available for
7470   // VL.back(). This can be the case if buildTree_rec aborts for various
7471   // reasons (e.g., the maximum recursion depth is reached, the maximum region
7472   // size is reached, etc.). ScheduleData is initialized in the scheduling
7473   // "dry-run".
7474   //
7475   // If this happens, we can still find the last instruction by brute force. We
7476   // iterate forwards from Front (inclusive) until we either see all
7477   // instructions in the bundle or reach the end of the block. If Front is the
7478   // last instruction in program order, LastInst will be set to Front, and we
7479   // will visit all the remaining instructions in the block.
7480   //
7481   // One of the reasons we exit early from buildTree_rec is to place an upper
7482   // bound on compile-time. Thus, taking an additional compile-time hit here is
7483   // not ideal. However, this should be exceedingly rare since it requires that
7484   // we both exit early from buildTree_rec and that the bundle be out-of-order
7485   // (causing us to iterate all the way to the end of the block).
7486   if (!LastInst) {
7487     LastInst = FindLastInst();
7488     // If the instruction is PHI, set the insert point after all the PHIs.
7489     if (isa<PHINode>(LastInst))
7490       LastInst = BB->getFirstNonPHI()->getPrevNode();
7491   }
7492   assert(LastInst && "Failed to find last instruction in bundle");
7493 
7494   // Set the insertion point after the last instruction in the bundle. Set the
7495   // debug location to Front.
7496   Builder.SetInsertPoint(BB, std::next(LastInst->getIterator()));
7497   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7498 }
7499 
7500 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
7501   // List of instructions/lanes from current block and/or the blocks which are
7502   // part of the current loop. These instructions will be inserted at the end to
7503   // make it possible to optimize loops and hoist invariant instructions out of
7504   // the loops body with better chances for success.
7505   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
7506   SmallSet<int, 4> PostponedIndices;
7507   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
7508   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
7509     SmallPtrSet<BasicBlock *, 4> Visited;
7510     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
7511       InsertBB = InsertBB->getSinglePredecessor();
7512     return InsertBB && InsertBB == InstBB;
7513   };
7514   for (int I = 0, E = VL.size(); I < E; ++I) {
7515     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
7516       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
7517            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
7518           PostponedIndices.insert(I).second)
7519         PostponedInsts.emplace_back(Inst, I);
7520   }
7521 
7522   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
7523     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
7524     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
7525     if (!InsElt)
7526       return Vec;
7527     GatherShuffleSeq.insert(InsElt);
7528     CSEBlocks.insert(InsElt->getParent());
7529     // Add to our 'need-to-extract' list.
7530     if (TreeEntry *Entry = getTreeEntry(V)) {
7531       // Find which lane we need to extract.
7532       unsigned FoundLane = Entry->findLaneForValue(V);
7533       ExternalUses.emplace_back(V, InsElt, FoundLane);
7534     }
7535     return Vec;
7536   };
7537   Value *Val0 =
7538       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
7539   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
7540   Value *Vec = PoisonValue::get(VecTy);
7541   SmallVector<int> NonConsts;
7542   // Insert constant values at first.
7543   for (int I = 0, E = VL.size(); I < E; ++I) {
7544     if (PostponedIndices.contains(I))
7545       continue;
7546     if (!isConstant(VL[I])) {
7547       NonConsts.push_back(I);
7548       continue;
7549     }
7550     Vec = CreateInsertElement(Vec, VL[I], I);
7551   }
7552   // Insert non-constant values.
7553   for (int I : NonConsts)
7554     Vec = CreateInsertElement(Vec, VL[I], I);
7555   // Append instructions, which are/may be part of the loop, in the end to make
7556   // it possible to hoist non-loop-based instructions.
7557   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
7558     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
7559 
7560   return Vec;
7561 }
7562 
7563 namespace {
7564 /// Merges shuffle masks and emits final shuffle instruction, if required.
7565 class ShuffleInstructionBuilder {
7566   IRBuilderBase &Builder;
7567   const unsigned VF = 0;
7568   bool IsFinalized = false;
7569   SmallVector<int, 4> Mask;
7570   /// Holds all of the instructions that we gathered.
7571   SetVector<Instruction *> &GatherShuffleSeq;
7572   /// A list of blocks that we are going to CSE.
7573   SetVector<BasicBlock *> &CSEBlocks;
7574 
7575 public:
7576   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
7577                             SetVector<Instruction *> &GatherShuffleSeq,
7578                             SetVector<BasicBlock *> &CSEBlocks)
7579       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
7580         CSEBlocks(CSEBlocks) {}
7581 
7582   /// Adds a mask, inverting it before applying.
7583   void addInversedMask(ArrayRef<unsigned> SubMask) {
7584     if (SubMask.empty())
7585       return;
7586     SmallVector<int, 4> NewMask;
7587     inversePermutation(SubMask, NewMask);
7588     addMask(NewMask);
7589   }
7590 
7591   /// Functions adds masks, merging them into  single one.
7592   void addMask(ArrayRef<unsigned> SubMask) {
7593     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
7594     addMask(NewMask);
7595   }
7596 
7597   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
7598 
7599   Value *finalize(Value *V) {
7600     IsFinalized = true;
7601     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
7602     if (VF == ValueVF && Mask.empty())
7603       return V;
7604     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
7605     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
7606     addMask(NormalizedMask);
7607 
7608     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
7609       return V;
7610     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
7611     if (auto *I = dyn_cast<Instruction>(Vec)) {
7612       GatherShuffleSeq.insert(I);
7613       CSEBlocks.insert(I->getParent());
7614     }
7615     return Vec;
7616   }
7617 
7618   ~ShuffleInstructionBuilder() {
7619     assert((IsFinalized || Mask.empty()) &&
7620            "Shuffle construction must be finalized.");
7621   }
7622 };
7623 } // namespace
7624 
7625 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
7626   const unsigned VF = VL.size();
7627   InstructionsState S = getSameOpcode(VL);
7628   // Special processing for GEPs bundle, which may include non-gep values.
7629   if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) {
7630     const auto *It =
7631         find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); });
7632     if (It != VL.end())
7633       S = getSameOpcode(*It);
7634   }
7635   if (S.getOpcode()) {
7636     if (TreeEntry *E = getTreeEntry(S.OpValue))
7637       if (E->isSame(VL)) {
7638         Value *V = vectorizeTree(E);
7639         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
7640           if (!E->ReuseShuffleIndices.empty()) {
7641             // Reshuffle to get only unique values.
7642             // If some of the scalars are duplicated in the vectorization tree
7643             // entry, we do not vectorize them but instead generate a mask for
7644             // the reuses. But if there are several users of the same entry,
7645             // they may have different vectorization factors. This is especially
7646             // important for PHI nodes. In this case, we need to adapt the
7647             // resulting instruction for the user vectorization factor and have
7648             // to reshuffle it again to take only unique elements of the vector.
7649             // Without this code the function incorrectly returns reduced vector
7650             // instruction with the same elements, not with the unique ones.
7651 
7652             // block:
7653             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
7654             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
7655             // ... (use %2)
7656             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
7657             // br %block
7658             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
7659             SmallSet<int, 4> UsedIdxs;
7660             int Pos = 0;
7661             int Sz = VL.size();
7662             for (int Idx : E->ReuseShuffleIndices) {
7663               if (Idx != Sz && Idx != UndefMaskElem &&
7664                   UsedIdxs.insert(Idx).second)
7665                 UniqueIdxs[Idx] = Pos;
7666               ++Pos;
7667             }
7668             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
7669                                             "less than original vector size.");
7670             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
7671             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
7672           } else {
7673             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
7674                    "Expected vectorization factor less "
7675                    "than original vector size.");
7676             SmallVector<int> UniformMask(VF, 0);
7677             std::iota(UniformMask.begin(), UniformMask.end(), 0);
7678             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
7679           }
7680           if (auto *I = dyn_cast<Instruction>(V)) {
7681             GatherShuffleSeq.insert(I);
7682             CSEBlocks.insert(I->getParent());
7683           }
7684         }
7685         return V;
7686       }
7687   }
7688 
7689   // Can't vectorize this, so simply build a new vector with each lane
7690   // corresponding to the requested value.
7691   return createBuildVector(VL);
7692 }
7693 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) {
7694   unsigned VF = VL.size();
7695   // Exploit possible reuse of values across lanes.
7696   SmallVector<int> ReuseShuffleIndicies;
7697   SmallVector<Value *> UniqueValues;
7698   if (VL.size() > 2) {
7699     DenseMap<Value *, unsigned> UniquePositions;
7700     unsigned NumValues =
7701         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
7702                                     return !isa<UndefValue>(V);
7703                                   }).base());
7704     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
7705     int UniqueVals = 0;
7706     for (Value *V : VL.drop_back(VL.size() - VF)) {
7707       if (isa<UndefValue>(V)) {
7708         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
7709         continue;
7710       }
7711       if (isConstant(V)) {
7712         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
7713         UniqueValues.emplace_back(V);
7714         continue;
7715       }
7716       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
7717       ReuseShuffleIndicies.emplace_back(Res.first->second);
7718       if (Res.second) {
7719         UniqueValues.emplace_back(V);
7720         ++UniqueVals;
7721       }
7722     }
7723     if (UniqueVals == 1 && UniqueValues.size() == 1) {
7724       // Emit pure splat vector.
7725       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
7726                                   UndefMaskElem);
7727     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
7728       if (UniqueValues.empty()) {
7729         assert(all_of(VL, UndefValue::classof) && "Expected list of undefs.");
7730         NumValues = VF;
7731       }
7732       ReuseShuffleIndicies.clear();
7733       UniqueValues.clear();
7734       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
7735     }
7736     UniqueValues.append(VF - UniqueValues.size(),
7737                         PoisonValue::get(VL[0]->getType()));
7738     VL = UniqueValues;
7739   }
7740 
7741   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7742                                            CSEBlocks);
7743   Value *Vec = gather(VL);
7744   if (!ReuseShuffleIndicies.empty()) {
7745     ShuffleBuilder.addMask(ReuseShuffleIndicies);
7746     Vec = ShuffleBuilder.finalize(Vec);
7747   }
7748   return Vec;
7749 }
7750 
7751 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
7752   IRBuilder<>::InsertPointGuard Guard(Builder);
7753 
7754   if (E->VectorizedValue) {
7755     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
7756     return E->VectorizedValue;
7757   }
7758 
7759   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
7760   unsigned VF = E->getVectorFactor();
7761   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7762                                            CSEBlocks);
7763   if (E->State == TreeEntry::NeedToGather) {
7764     if (E->getMainOp())
7765       setInsertPointAfterBundle(E);
7766     Value *Vec;
7767     SmallVector<int> Mask;
7768     SmallVector<const TreeEntry *> Entries;
7769     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
7770         isGatherShuffledEntry(E, Mask, Entries);
7771     if (Shuffle) {
7772       assert((Entries.size() == 1 || Entries.size() == 2) &&
7773              "Expected shuffle of 1 or 2 entries.");
7774       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
7775                                         Entries.back()->VectorizedValue, Mask);
7776       if (auto *I = dyn_cast<Instruction>(Vec)) {
7777         GatherShuffleSeq.insert(I);
7778         CSEBlocks.insert(I->getParent());
7779       }
7780     } else {
7781       Vec = gather(E->Scalars);
7782     }
7783     if (NeedToShuffleReuses) {
7784       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7785       Vec = ShuffleBuilder.finalize(Vec);
7786     }
7787     E->VectorizedValue = Vec;
7788     return Vec;
7789   }
7790 
7791   assert((E->State == TreeEntry::Vectorize ||
7792           E->State == TreeEntry::ScatterVectorize) &&
7793          "Unhandled state");
7794   unsigned ShuffleOrOp =
7795       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
7796   Instruction *VL0 = E->getMainOp();
7797   Type *ScalarTy = VL0->getType();
7798   if (auto *Store = dyn_cast<StoreInst>(VL0))
7799     ScalarTy = Store->getValueOperand()->getType();
7800   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
7801     ScalarTy = IE->getOperand(1)->getType();
7802   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
7803   switch (ShuffleOrOp) {
7804     case Instruction::PHI: {
7805       assert(
7806           (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
7807           "PHI reordering is free.");
7808       auto *PH = cast<PHINode>(VL0);
7809       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
7810       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7811       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
7812       Value *V = NewPhi;
7813 
7814       // Adjust insertion point once all PHI's have been generated.
7815       Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
7816       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7817 
7818       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7819       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7820       V = ShuffleBuilder.finalize(V);
7821 
7822       E->VectorizedValue = V;
7823 
7824       // PHINodes may have multiple entries from the same block. We want to
7825       // visit every block once.
7826       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
7827 
7828       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
7829         ValueList Operands;
7830         BasicBlock *IBB = PH->getIncomingBlock(i);
7831 
7832         if (!VisitedBBs.insert(IBB).second) {
7833           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
7834           continue;
7835         }
7836 
7837         Builder.SetInsertPoint(IBB->getTerminator());
7838         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7839         Value *Vec = vectorizeTree(E->getOperand(i));
7840         NewPhi->addIncoming(Vec, IBB);
7841       }
7842 
7843       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
7844              "Invalid number of incoming values");
7845       return V;
7846     }
7847 
7848     case Instruction::ExtractElement: {
7849       Value *V = E->getSingleOperand(0);
7850       Builder.SetInsertPoint(VL0);
7851       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7852       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7853       V = ShuffleBuilder.finalize(V);
7854       E->VectorizedValue = V;
7855       return V;
7856     }
7857     case Instruction::ExtractValue: {
7858       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
7859       Builder.SetInsertPoint(LI);
7860       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
7861       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
7862       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
7863       Value *NewV = propagateMetadata(V, E->Scalars);
7864       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7865       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7866       NewV = ShuffleBuilder.finalize(NewV);
7867       E->VectorizedValue = NewV;
7868       return NewV;
7869     }
7870     case Instruction::InsertElement: {
7871       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
7872       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
7873       Value *V = vectorizeTree(E->getOperand(1));
7874 
7875       // Create InsertVector shuffle if necessary
7876       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
7877         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
7878       }));
7879       const unsigned NumElts =
7880           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
7881       const unsigned NumScalars = E->Scalars.size();
7882 
7883       unsigned Offset = *getInsertIndex(VL0);
7884       assert(Offset < NumElts && "Failed to find vector index offset");
7885 
7886       // Create shuffle to resize vector
7887       SmallVector<int> Mask;
7888       if (!E->ReorderIndices.empty()) {
7889         inversePermutation(E->ReorderIndices, Mask);
7890         Mask.append(NumElts - NumScalars, UndefMaskElem);
7891       } else {
7892         Mask.assign(NumElts, UndefMaskElem);
7893         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
7894       }
7895       // Create InsertVector shuffle if necessary
7896       bool IsIdentity = true;
7897       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
7898       Mask.swap(PrevMask);
7899       for (unsigned I = 0; I < NumScalars; ++I) {
7900         Value *Scalar = E->Scalars[PrevMask[I]];
7901         unsigned InsertIdx = *getInsertIndex(Scalar);
7902         IsIdentity &= InsertIdx - Offset == I;
7903         Mask[InsertIdx - Offset] = I;
7904       }
7905       if (!IsIdentity || NumElts != NumScalars) {
7906         V = Builder.CreateShuffleVector(V, Mask);
7907         if (auto *I = dyn_cast<Instruction>(V)) {
7908           GatherShuffleSeq.insert(I);
7909           CSEBlocks.insert(I->getParent());
7910         }
7911       }
7912 
7913       if ((!IsIdentity || Offset != 0 ||
7914            !isUndefVector(FirstInsert->getOperand(0))) &&
7915           NumElts != NumScalars) {
7916         SmallVector<int> InsertMask(NumElts);
7917         std::iota(InsertMask.begin(), InsertMask.end(), 0);
7918         for (unsigned I = 0; I < NumElts; I++) {
7919           if (Mask[I] != UndefMaskElem)
7920             InsertMask[Offset + I] = NumElts + I;
7921         }
7922 
7923         V = Builder.CreateShuffleVector(
7924             FirstInsert->getOperand(0), V, InsertMask,
7925             cast<Instruction>(E->Scalars.back())->getName());
7926         if (auto *I = dyn_cast<Instruction>(V)) {
7927           GatherShuffleSeq.insert(I);
7928           CSEBlocks.insert(I->getParent());
7929         }
7930       }
7931 
7932       ++NumVectorInstructions;
7933       E->VectorizedValue = V;
7934       return V;
7935     }
7936     case Instruction::ZExt:
7937     case Instruction::SExt:
7938     case Instruction::FPToUI:
7939     case Instruction::FPToSI:
7940     case Instruction::FPExt:
7941     case Instruction::PtrToInt:
7942     case Instruction::IntToPtr:
7943     case Instruction::SIToFP:
7944     case Instruction::UIToFP:
7945     case Instruction::Trunc:
7946     case Instruction::FPTrunc:
7947     case Instruction::BitCast: {
7948       setInsertPointAfterBundle(E);
7949 
7950       Value *InVec = vectorizeTree(E->getOperand(0));
7951 
7952       if (E->VectorizedValue) {
7953         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7954         return E->VectorizedValue;
7955       }
7956 
7957       auto *CI = cast<CastInst>(VL0);
7958       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
7959       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7960       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7961       V = ShuffleBuilder.finalize(V);
7962 
7963       E->VectorizedValue = V;
7964       ++NumVectorInstructions;
7965       return V;
7966     }
7967     case Instruction::FCmp:
7968     case Instruction::ICmp: {
7969       setInsertPointAfterBundle(E);
7970 
7971       Value *L = vectorizeTree(E->getOperand(0));
7972       Value *R = vectorizeTree(E->getOperand(1));
7973 
7974       if (E->VectorizedValue) {
7975         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7976         return E->VectorizedValue;
7977       }
7978 
7979       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
7980       Value *V = Builder.CreateCmp(P0, L, R);
7981       propagateIRFlags(V, E->Scalars, VL0);
7982       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7983       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7984       V = ShuffleBuilder.finalize(V);
7985 
7986       E->VectorizedValue = V;
7987       ++NumVectorInstructions;
7988       return V;
7989     }
7990     case Instruction::Select: {
7991       setInsertPointAfterBundle(E);
7992 
7993       Value *Cond = vectorizeTree(E->getOperand(0));
7994       Value *True = vectorizeTree(E->getOperand(1));
7995       Value *False = vectorizeTree(E->getOperand(2));
7996 
7997       if (E->VectorizedValue) {
7998         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7999         return E->VectorizedValue;
8000       }
8001 
8002       Value *V = Builder.CreateSelect(Cond, True, False);
8003       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8004       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8005       V = ShuffleBuilder.finalize(V);
8006 
8007       E->VectorizedValue = V;
8008       ++NumVectorInstructions;
8009       return V;
8010     }
8011     case Instruction::FNeg: {
8012       setInsertPointAfterBundle(E);
8013 
8014       Value *Op = vectorizeTree(E->getOperand(0));
8015 
8016       if (E->VectorizedValue) {
8017         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8018         return E->VectorizedValue;
8019       }
8020 
8021       Value *V = Builder.CreateUnOp(
8022           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
8023       propagateIRFlags(V, E->Scalars, VL0);
8024       if (auto *I = dyn_cast<Instruction>(V))
8025         V = propagateMetadata(I, E->Scalars);
8026 
8027       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8028       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8029       V = ShuffleBuilder.finalize(V);
8030 
8031       E->VectorizedValue = V;
8032       ++NumVectorInstructions;
8033 
8034       return V;
8035     }
8036     case Instruction::Add:
8037     case Instruction::FAdd:
8038     case Instruction::Sub:
8039     case Instruction::FSub:
8040     case Instruction::Mul:
8041     case Instruction::FMul:
8042     case Instruction::UDiv:
8043     case Instruction::SDiv:
8044     case Instruction::FDiv:
8045     case Instruction::URem:
8046     case Instruction::SRem:
8047     case Instruction::FRem:
8048     case Instruction::Shl:
8049     case Instruction::LShr:
8050     case Instruction::AShr:
8051     case Instruction::And:
8052     case Instruction::Or:
8053     case Instruction::Xor: {
8054       setInsertPointAfterBundle(E);
8055 
8056       Value *LHS = vectorizeTree(E->getOperand(0));
8057       Value *RHS = vectorizeTree(E->getOperand(1));
8058 
8059       if (E->VectorizedValue) {
8060         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8061         return E->VectorizedValue;
8062       }
8063 
8064       Value *V = Builder.CreateBinOp(
8065           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
8066           RHS);
8067       propagateIRFlags(V, E->Scalars, VL0);
8068       if (auto *I = dyn_cast<Instruction>(V))
8069         V = propagateMetadata(I, E->Scalars);
8070 
8071       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8072       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8073       V = ShuffleBuilder.finalize(V);
8074 
8075       E->VectorizedValue = V;
8076       ++NumVectorInstructions;
8077 
8078       return V;
8079     }
8080     case Instruction::Load: {
8081       // Loads are inserted at the head of the tree because we don't want to
8082       // sink them all the way down past store instructions.
8083       setInsertPointAfterBundle(E);
8084 
8085       LoadInst *LI = cast<LoadInst>(VL0);
8086       Instruction *NewLI;
8087       unsigned AS = LI->getPointerAddressSpace();
8088       Value *PO = LI->getPointerOperand();
8089       if (E->State == TreeEntry::Vectorize) {
8090         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
8091         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
8092 
8093         // The pointer operand uses an in-tree scalar so we add the new BitCast
8094         // or LoadInst to ExternalUses list to make sure that an extract will
8095         // be generated in the future.
8096         if (TreeEntry *Entry = getTreeEntry(PO)) {
8097           // Find which lane we need to extract.
8098           unsigned FoundLane = Entry->findLaneForValue(PO);
8099           ExternalUses.emplace_back(
8100               PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
8101         }
8102       } else {
8103         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
8104         Value *VecPtr = vectorizeTree(E->getOperand(0));
8105         // Use the minimum alignment of the gathered loads.
8106         Align CommonAlignment = LI->getAlign();
8107         for (Value *V : E->Scalars)
8108           CommonAlignment =
8109               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
8110         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
8111       }
8112       Value *V = propagateMetadata(NewLI, E->Scalars);
8113 
8114       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8115       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8116       V = ShuffleBuilder.finalize(V);
8117       E->VectorizedValue = V;
8118       ++NumVectorInstructions;
8119       return V;
8120     }
8121     case Instruction::Store: {
8122       auto *SI = cast<StoreInst>(VL0);
8123       unsigned AS = SI->getPointerAddressSpace();
8124 
8125       setInsertPointAfterBundle(E);
8126 
8127       Value *VecValue = vectorizeTree(E->getOperand(0));
8128       ShuffleBuilder.addMask(E->ReorderIndices);
8129       VecValue = ShuffleBuilder.finalize(VecValue);
8130 
8131       Value *ScalarPtr = SI->getPointerOperand();
8132       Value *VecPtr = Builder.CreateBitCast(
8133           ScalarPtr, VecValue->getType()->getPointerTo(AS));
8134       StoreInst *ST =
8135           Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
8136 
8137       // The pointer operand uses an in-tree scalar, so add the new BitCast or
8138       // StoreInst to ExternalUses to make sure that an extract will be
8139       // generated in the future.
8140       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
8141         // Find which lane we need to extract.
8142         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
8143         ExternalUses.push_back(ExternalUser(
8144             ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
8145             FoundLane));
8146       }
8147 
8148       Value *V = propagateMetadata(ST, E->Scalars);
8149 
8150       E->VectorizedValue = V;
8151       ++NumVectorInstructions;
8152       return V;
8153     }
8154     case Instruction::GetElementPtr: {
8155       auto *GEP0 = cast<GetElementPtrInst>(VL0);
8156       setInsertPointAfterBundle(E);
8157 
8158       Value *Op0 = vectorizeTree(E->getOperand(0));
8159 
8160       SmallVector<Value *> OpVecs;
8161       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
8162         Value *OpVec = vectorizeTree(E->getOperand(J));
8163         OpVecs.push_back(OpVec);
8164       }
8165 
8166       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
8167       if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) {
8168         SmallVector<Value *> GEPs;
8169         for (Value *V : E->Scalars) {
8170           if (isa<GetElementPtrInst>(V))
8171             GEPs.push_back(V);
8172         }
8173         V = propagateMetadata(I, GEPs);
8174       }
8175 
8176       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8177       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8178       V = ShuffleBuilder.finalize(V);
8179 
8180       E->VectorizedValue = V;
8181       ++NumVectorInstructions;
8182 
8183       return V;
8184     }
8185     case Instruction::Call: {
8186       CallInst *CI = cast<CallInst>(VL0);
8187       setInsertPointAfterBundle(E);
8188 
8189       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
8190       if (Function *FI = CI->getCalledFunction())
8191         IID = FI->getIntrinsicID();
8192 
8193       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8194 
8195       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
8196       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
8197                           VecCallCosts.first <= VecCallCosts.second;
8198 
8199       Value *ScalarArg = nullptr;
8200       std::vector<Value *> OpVecs;
8201       SmallVector<Type *, 2> TysForDecl =
8202           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
8203       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
8204         ValueList OpVL;
8205         // Some intrinsics have scalar arguments. This argument should not be
8206         // vectorized.
8207         if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) {
8208           CallInst *CEI = cast<CallInst>(VL0);
8209           ScalarArg = CEI->getArgOperand(j);
8210           OpVecs.push_back(CEI->getArgOperand(j));
8211           if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8212             TysForDecl.push_back(ScalarArg->getType());
8213           continue;
8214         }
8215 
8216         Value *OpVec = vectorizeTree(E->getOperand(j));
8217         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
8218         OpVecs.push_back(OpVec);
8219         if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8220           TysForDecl.push_back(OpVec->getType());
8221       }
8222 
8223       Function *CF;
8224       if (!UseIntrinsic) {
8225         VFShape Shape =
8226             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
8227                                   VecTy->getNumElements())),
8228                          false /*HasGlobalPred*/);
8229         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
8230       } else {
8231         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
8232       }
8233 
8234       SmallVector<OperandBundleDef, 1> OpBundles;
8235       CI->getOperandBundlesAsDefs(OpBundles);
8236       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
8237 
8238       // The scalar argument uses an in-tree scalar so we add the new vectorized
8239       // call to ExternalUses list to make sure that an extract will be
8240       // generated in the future.
8241       if (ScalarArg) {
8242         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
8243           // Find which lane we need to extract.
8244           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
8245           ExternalUses.push_back(
8246               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
8247         }
8248       }
8249 
8250       propagateIRFlags(V, E->Scalars, VL0);
8251       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8252       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8253       V = ShuffleBuilder.finalize(V);
8254 
8255       E->VectorizedValue = V;
8256       ++NumVectorInstructions;
8257       return V;
8258     }
8259     case Instruction::ShuffleVector: {
8260       assert(E->isAltShuffle() &&
8261              ((Instruction::isBinaryOp(E->getOpcode()) &&
8262                Instruction::isBinaryOp(E->getAltOpcode())) ||
8263               (Instruction::isCast(E->getOpcode()) &&
8264                Instruction::isCast(E->getAltOpcode())) ||
8265               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
8266              "Invalid Shuffle Vector Operand");
8267 
8268       Value *LHS = nullptr, *RHS = nullptr;
8269       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
8270         setInsertPointAfterBundle(E);
8271         LHS = vectorizeTree(E->getOperand(0));
8272         RHS = vectorizeTree(E->getOperand(1));
8273       } else {
8274         setInsertPointAfterBundle(E);
8275         LHS = vectorizeTree(E->getOperand(0));
8276       }
8277 
8278       if (E->VectorizedValue) {
8279         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8280         return E->VectorizedValue;
8281       }
8282 
8283       Value *V0, *V1;
8284       if (Instruction::isBinaryOp(E->getOpcode())) {
8285         V0 = Builder.CreateBinOp(
8286             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
8287         V1 = Builder.CreateBinOp(
8288             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
8289       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8290         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
8291         auto *AltCI = cast<CmpInst>(E->getAltOp());
8292         CmpInst::Predicate AltPred = AltCI->getPredicate();
8293         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
8294       } else {
8295         V0 = Builder.CreateCast(
8296             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
8297         V1 = Builder.CreateCast(
8298             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
8299       }
8300       // Add V0 and V1 to later analysis to try to find and remove matching
8301       // instruction, if any.
8302       for (Value *V : {V0, V1}) {
8303         if (auto *I = dyn_cast<Instruction>(V)) {
8304           GatherShuffleSeq.insert(I);
8305           CSEBlocks.insert(I->getParent());
8306         }
8307       }
8308 
8309       // Create shuffle to take alternate operations from the vector.
8310       // Also, gather up main and alt scalar ops to propagate IR flags to
8311       // each vector operation.
8312       ValueList OpScalars, AltScalars;
8313       SmallVector<int> Mask;
8314       buildShuffleEntryMask(
8315           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
8316           [E](Instruction *I) {
8317             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
8318             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
8319           },
8320           Mask, &OpScalars, &AltScalars);
8321 
8322       propagateIRFlags(V0, OpScalars);
8323       propagateIRFlags(V1, AltScalars);
8324 
8325       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
8326       if (auto *I = dyn_cast<Instruction>(V)) {
8327         V = propagateMetadata(I, E->Scalars);
8328         GatherShuffleSeq.insert(I);
8329         CSEBlocks.insert(I->getParent());
8330       }
8331       V = ShuffleBuilder.finalize(V);
8332 
8333       E->VectorizedValue = V;
8334       ++NumVectorInstructions;
8335 
8336       return V;
8337     }
8338     default:
8339     llvm_unreachable("unknown inst");
8340   }
8341   return nullptr;
8342 }
8343 
8344 Value *BoUpSLP::vectorizeTree() {
8345   ExtraValueToDebugLocsMap ExternallyUsedValues;
8346   return vectorizeTree(ExternallyUsedValues);
8347 }
8348 
8349 namespace {
8350 /// Data type for handling buildvector sequences with the reused scalars from
8351 /// other tree entries.
8352 struct ShuffledInsertData {
8353   /// List of insertelements to be replaced by shuffles.
8354   SmallVector<InsertElementInst *> InsertElements;
8355   /// The parent vectors and shuffle mask for the given list of inserts.
8356   MapVector<Value *, SmallVector<int>> ValueMasks;
8357 };
8358 } // namespace
8359 
8360 Value *
8361 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
8362   // All blocks must be scheduled before any instructions are inserted.
8363   for (auto &BSIter : BlocksSchedules) {
8364     scheduleBlock(BSIter.second.get());
8365   }
8366 
8367   Builder.SetInsertPoint(&F->getEntryBlock().front());
8368   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
8369 
8370   // If the vectorized tree can be rewritten in a smaller type, we truncate the
8371   // vectorized root. InstCombine will then rewrite the entire expression. We
8372   // sign extend the extracted values below.
8373   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
8374   if (MinBWs.count(ScalarRoot)) {
8375     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
8376       // If current instr is a phi and not the last phi, insert it after the
8377       // last phi node.
8378       if (isa<PHINode>(I))
8379         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
8380       else
8381         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
8382     }
8383     auto BundleWidth = VectorizableTree[0]->Scalars.size();
8384     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
8385     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
8386     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
8387     VectorizableTree[0]->VectorizedValue = Trunc;
8388   }
8389 
8390   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
8391                     << " values .\n");
8392 
8393   SmallVector<ShuffledInsertData> ShuffledInserts;
8394   // Maps vector instruction to original insertelement instruction
8395   DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
8396   // Extract all of the elements with the external uses.
8397   for (const auto &ExternalUse : ExternalUses) {
8398     Value *Scalar = ExternalUse.Scalar;
8399     llvm::User *User = ExternalUse.User;
8400 
8401     // Skip users that we already RAUW. This happens when one instruction
8402     // has multiple uses of the same value.
8403     if (User && !is_contained(Scalar->users(), User))
8404       continue;
8405     TreeEntry *E = getTreeEntry(Scalar);
8406     assert(E && "Invalid scalar");
8407     assert(E->State != TreeEntry::NeedToGather &&
8408            "Extracting from a gather list");
8409     // Non-instruction pointers are not deleted, just skip them.
8410     if (E->getOpcode() == Instruction::GetElementPtr &&
8411         !isa<GetElementPtrInst>(Scalar))
8412       continue;
8413 
8414     Value *Vec = E->VectorizedValue;
8415     assert(Vec && "Can't find vectorizable value");
8416 
8417     Value *Lane = Builder.getInt32(ExternalUse.Lane);
8418     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
8419       if (Scalar->getType() != Vec->getType()) {
8420         Value *Ex;
8421         // "Reuse" the existing extract to improve final codegen.
8422         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
8423           Ex = Builder.CreateExtractElement(ES->getOperand(0),
8424                                             ES->getOperand(1));
8425         } else {
8426           Ex = Builder.CreateExtractElement(Vec, Lane);
8427         }
8428         // If necessary, sign-extend or zero-extend ScalarRoot
8429         // to the larger type.
8430         if (!MinBWs.count(ScalarRoot))
8431           return Ex;
8432         if (MinBWs[ScalarRoot].second)
8433           return Builder.CreateSExt(Ex, Scalar->getType());
8434         return Builder.CreateZExt(Ex, Scalar->getType());
8435       }
8436       assert(isa<FixedVectorType>(Scalar->getType()) &&
8437              isa<InsertElementInst>(Scalar) &&
8438              "In-tree scalar of vector type is not insertelement?");
8439       auto *IE = cast<InsertElementInst>(Scalar);
8440       VectorToInsertElement.try_emplace(Vec, IE);
8441       return Vec;
8442     };
8443     // If User == nullptr, the Scalar is used as extra arg. Generate
8444     // ExtractElement instruction and update the record for this scalar in
8445     // ExternallyUsedValues.
8446     if (!User) {
8447       assert(ExternallyUsedValues.count(Scalar) &&
8448              "Scalar with nullptr as an external user must be registered in "
8449              "ExternallyUsedValues map");
8450       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8451         Builder.SetInsertPoint(VecI->getParent(),
8452                                std::next(VecI->getIterator()));
8453       } else {
8454         Builder.SetInsertPoint(&F->getEntryBlock().front());
8455       }
8456       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8457       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
8458       auto &NewInstLocs = ExternallyUsedValues[NewInst];
8459       auto It = ExternallyUsedValues.find(Scalar);
8460       assert(It != ExternallyUsedValues.end() &&
8461              "Externally used scalar is not found in ExternallyUsedValues");
8462       NewInstLocs.append(It->second);
8463       ExternallyUsedValues.erase(Scalar);
8464       // Required to update internally referenced instructions.
8465       Scalar->replaceAllUsesWith(NewInst);
8466       continue;
8467     }
8468 
8469     if (auto *VU = dyn_cast<InsertElementInst>(User)) {
8470       // Skip if the scalar is another vector op or Vec is not an instruction.
8471       if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
8472         if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
8473           Optional<unsigned> InsertIdx = getInsertIndex(VU);
8474           if (InsertIdx) {
8475             // Need to use original vector, if the root is truncated.
8476             if (MinBWs.count(Scalar) &&
8477                 VectorizableTree[0]->VectorizedValue == Vec)
8478               Vec = VectorRoot;
8479             auto *It =
8480                 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
8481                   // Checks if 2 insertelements are from the same buildvector.
8482                   InsertElementInst *VecInsert = Data.InsertElements.front();
8483                   return areTwoInsertFromSameBuildVector(VU, VecInsert);
8484                 });
8485             unsigned Idx = *InsertIdx;
8486             if (It == ShuffledInserts.end()) {
8487               (void)ShuffledInserts.emplace_back();
8488               It = std::next(ShuffledInserts.begin(),
8489                              ShuffledInserts.size() - 1);
8490               SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8491               if (Mask.empty())
8492                 Mask.assign(FTy->getNumElements(), UndefMaskElem);
8493               // Find the insertvector, vectorized in tree, if any.
8494               Value *Base = VU;
8495               while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
8496                 if (IEBase != User &&
8497                     (!IEBase->hasOneUse() ||
8498                      getInsertIndex(IEBase).value_or(Idx) == Idx))
8499                   break;
8500                 // Build the mask for the vectorized insertelement instructions.
8501                 if (const TreeEntry *E = getTreeEntry(IEBase)) {
8502                   do {
8503                     IEBase = cast<InsertElementInst>(Base);
8504                     int IEIdx = *getInsertIndex(IEBase);
8505                     assert(Mask[Idx] == UndefMaskElem &&
8506                            "InsertElementInstruction used already.");
8507                     Mask[IEIdx] = IEIdx;
8508                     Base = IEBase->getOperand(0);
8509                   } while (E == getTreeEntry(Base));
8510                   break;
8511                 }
8512                 Base = cast<InsertElementInst>(Base)->getOperand(0);
8513                 // After the vectorization the def-use chain has changed, need
8514                 // to look through original insertelement instructions, if they
8515                 // get replaced by vector instructions.
8516                 auto It = VectorToInsertElement.find(Base);
8517                 if (It != VectorToInsertElement.end())
8518                   Base = It->second;
8519               }
8520             }
8521             SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8522             if (Mask.empty())
8523               Mask.assign(FTy->getNumElements(), UndefMaskElem);
8524             Mask[Idx] = ExternalUse.Lane;
8525             It->InsertElements.push_back(cast<InsertElementInst>(User));
8526             continue;
8527           }
8528         }
8529       }
8530     }
8531 
8532     // Generate extracts for out-of-tree users.
8533     // Find the insertion point for the extractelement lane.
8534     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8535       if (PHINode *PH = dyn_cast<PHINode>(User)) {
8536         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
8537           if (PH->getIncomingValue(i) == Scalar) {
8538             Instruction *IncomingTerminator =
8539                 PH->getIncomingBlock(i)->getTerminator();
8540             if (isa<CatchSwitchInst>(IncomingTerminator)) {
8541               Builder.SetInsertPoint(VecI->getParent(),
8542                                      std::next(VecI->getIterator()));
8543             } else {
8544               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
8545             }
8546             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8547             CSEBlocks.insert(PH->getIncomingBlock(i));
8548             PH->setOperand(i, NewInst);
8549           }
8550         }
8551       } else {
8552         Builder.SetInsertPoint(cast<Instruction>(User));
8553         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8554         CSEBlocks.insert(cast<Instruction>(User)->getParent());
8555         User->replaceUsesOfWith(Scalar, NewInst);
8556       }
8557     } else {
8558       Builder.SetInsertPoint(&F->getEntryBlock().front());
8559       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8560       CSEBlocks.insert(&F->getEntryBlock());
8561       User->replaceUsesOfWith(Scalar, NewInst);
8562     }
8563 
8564     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
8565   }
8566 
8567   // Checks if the mask is an identity mask.
8568   auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) {
8569     int Limit = Mask.size();
8570     return VecTy->getNumElements() == Mask.size() &&
8571            all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) &&
8572            ShuffleVectorInst::isIdentityMask(Mask);
8573   };
8574   // Tries to combine 2 different masks into single one.
8575   auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) {
8576     SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
8577     for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
8578       if (ExtMask[I] == UndefMaskElem)
8579         continue;
8580       NewMask[I] = Mask[ExtMask[I]];
8581     }
8582     Mask.swap(NewMask);
8583   };
8584   // Peek through shuffles, trying to simplify the final shuffle code.
8585   auto &&PeekThroughShuffles =
8586       [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask,
8587                                        bool CheckForLengthChange = false) {
8588         while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
8589           // Exit if not a fixed vector type or changing size shuffle.
8590           if (!isa<FixedVectorType>(SV->getType()) ||
8591               (CheckForLengthChange && SV->changesLength()))
8592             break;
8593           // Exit if the identity or broadcast mask is found.
8594           if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) ||
8595               SV->isZeroEltSplat())
8596             break;
8597           bool IsOp1Undef = isUndefVector(SV->getOperand(0));
8598           bool IsOp2Undef = isUndefVector(SV->getOperand(1));
8599           if (!IsOp1Undef && !IsOp2Undef)
8600             break;
8601           SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
8602                                        SV->getShuffleMask().end());
8603           CombineMasks(ShuffleMask, Mask);
8604           Mask.swap(ShuffleMask);
8605           if (IsOp2Undef)
8606             V = SV->getOperand(0);
8607           else
8608             V = SV->getOperand(1);
8609         }
8610       };
8611   // Smart shuffle instruction emission, walks through shuffles trees and
8612   // tries to find the best matching vector for the actual shuffle
8613   // instruction.
8614   auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles,
8615                           &CombineMasks](Value *V1, Value *V2,
8616                                          ArrayRef<int> Mask) -> Value * {
8617     assert(V1 && "Expected at least one vector value.");
8618     if (V2 && !isUndefVector(V2)) {
8619       // Peek through shuffles.
8620       Value *Op1 = V1;
8621       Value *Op2 = V2;
8622       int VF =
8623           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
8624       SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
8625       SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
8626       for (int I = 0, E = Mask.size(); I < E; ++I) {
8627         if (Mask[I] < VF)
8628           CombinedMask1[I] = Mask[I];
8629         else
8630           CombinedMask2[I] = Mask[I] - VF;
8631       }
8632       Value *PrevOp1;
8633       Value *PrevOp2;
8634       do {
8635         PrevOp1 = Op1;
8636         PrevOp2 = Op2;
8637         PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true);
8638         PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true);
8639         // Check if we have 2 resizing shuffles - need to peek through operands
8640         // again.
8641         if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
8642           if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2))
8643             if (SV1->getOperand(0)->getType() ==
8644                     SV2->getOperand(0)->getType() &&
8645                 SV1->getOperand(0)->getType() != SV1->getType() &&
8646                 isUndefVector(SV1->getOperand(1)) &&
8647                 isUndefVector(SV2->getOperand(1))) {
8648               Op1 = SV1->getOperand(0);
8649               Op2 = SV2->getOperand(0);
8650               SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
8651                                             SV1->getShuffleMask().end());
8652               CombineMasks(ShuffleMask1, CombinedMask1);
8653               CombinedMask1.swap(ShuffleMask1);
8654               SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
8655                                             SV2->getShuffleMask().end());
8656               CombineMasks(ShuffleMask2, CombinedMask2);
8657               CombinedMask2.swap(ShuffleMask2);
8658             }
8659       } while (PrevOp1 != Op1 || PrevOp2 != Op2);
8660       VF = cast<VectorType>(Op1->getType())
8661                ->getElementCount()
8662                .getKnownMinValue();
8663       for (int I = 0, E = Mask.size(); I < E; ++I) {
8664         if (CombinedMask2[I] != UndefMaskElem) {
8665           assert(CombinedMask1[I] == UndefMaskElem &&
8666                  "Expected undefined mask element");
8667           CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
8668         }
8669       }
8670       Value *Vec = Builder.CreateShuffleVector(
8671           Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
8672           CombinedMask1);
8673       if (auto *I = dyn_cast<Instruction>(Vec)) {
8674         GatherShuffleSeq.insert(I);
8675         CSEBlocks.insert(I->getParent());
8676       }
8677       return Vec;
8678     }
8679     if (isa<PoisonValue>(V1))
8680       return PoisonValue::get(FixedVectorType::get(
8681           cast<VectorType>(V1->getType())->getElementType(), Mask.size()));
8682     Value *Op = V1;
8683     SmallVector<int> CombinedMask(Mask.begin(), Mask.end());
8684     PeekThroughShuffles(Op, CombinedMask);
8685     if (!isa<FixedVectorType>(Op->getType()) ||
8686         !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) {
8687       Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask);
8688       if (auto *I = dyn_cast<Instruction>(Vec)) {
8689         GatherShuffleSeq.insert(I);
8690         CSEBlocks.insert(I->getParent());
8691       }
8692       return Vec;
8693     }
8694     return Op;
8695   };
8696 
8697   auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) {
8698     unsigned VF = Mask.size();
8699     unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
8700     if (VF != VecVF) {
8701       if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
8702         Vec = CreateShuffle(Vec, nullptr, Mask);
8703         return std::make_pair(Vec, true);
8704       }
8705       SmallVector<int> ResizeMask(VF, UndefMaskElem);
8706       for (unsigned I = 0; I < VF; ++I) {
8707         if (Mask[I] != UndefMaskElem)
8708           ResizeMask[Mask[I]] = Mask[I];
8709       }
8710       Vec = CreateShuffle(Vec, nullptr, ResizeMask);
8711     }
8712 
8713     return std::make_pair(Vec, false);
8714   };
8715   // Perform shuffling of the vectorize tree entries for better handling of
8716   // external extracts.
8717   for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
8718     // Find the first and the last instruction in the list of insertelements.
8719     sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
8720     InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
8721     InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
8722     Builder.SetInsertPoint(LastInsert);
8723     auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
8724     Value *NewInst = performExtractsShuffleAction<Value>(
8725         makeMutableArrayRef(Vector.data(), Vector.size()),
8726         FirstInsert->getOperand(0),
8727         [](Value *Vec) {
8728           return cast<VectorType>(Vec->getType())
8729               ->getElementCount()
8730               .getKnownMinValue();
8731         },
8732         ResizeToVF,
8733         [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
8734                                       ArrayRef<Value *> Vals) {
8735           assert((Vals.size() == 1 || Vals.size() == 2) &&
8736                  "Expected exactly 1 or 2 input values.");
8737           if (Vals.size() == 1) {
8738             // Do not create shuffle if the mask is a simple identity
8739             // non-resizing mask.
8740             if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
8741                                    ->getNumElements() ||
8742                 !ShuffleVectorInst::isIdentityMask(Mask))
8743               return CreateShuffle(Vals.front(), nullptr, Mask);
8744             return Vals.front();
8745           }
8746           return CreateShuffle(Vals.front() ? Vals.front()
8747                                             : FirstInsert->getOperand(0),
8748                                Vals.back(), Mask);
8749         });
8750     auto It = ShuffledInserts[I].InsertElements.rbegin();
8751     // Rebuild buildvector chain.
8752     InsertElementInst *II = nullptr;
8753     if (It != ShuffledInserts[I].InsertElements.rend())
8754       II = *It;
8755     SmallVector<Instruction *> Inserts;
8756     while (It != ShuffledInserts[I].InsertElements.rend()) {
8757       assert(II && "Must be an insertelement instruction.");
8758       if (*It == II)
8759         ++It;
8760       else
8761         Inserts.push_back(cast<Instruction>(II));
8762       II = dyn_cast<InsertElementInst>(II->getOperand(0));
8763     }
8764     for (Instruction *II : reverse(Inserts)) {
8765       II->replaceUsesOfWith(II->getOperand(0), NewInst);
8766       if (auto *NewI = dyn_cast<Instruction>(NewInst))
8767         if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
8768           II->moveAfter(NewI);
8769       NewInst = II;
8770     }
8771     LastInsert->replaceAllUsesWith(NewInst);
8772     for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
8773       IE->replaceUsesOfWith(IE->getOperand(1),
8774                             PoisonValue::get(IE->getOperand(1)->getType()));
8775       eraseInstruction(IE);
8776     }
8777     CSEBlocks.insert(LastInsert->getParent());
8778   }
8779 
8780   // For each vectorized value:
8781   for (auto &TEPtr : VectorizableTree) {
8782     TreeEntry *Entry = TEPtr.get();
8783 
8784     // No need to handle users of gathered values.
8785     if (Entry->State == TreeEntry::NeedToGather)
8786       continue;
8787 
8788     assert(Entry->VectorizedValue && "Can't find vectorizable value");
8789 
8790     // For each lane:
8791     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
8792       Value *Scalar = Entry->Scalars[Lane];
8793 
8794       if (Entry->getOpcode() == Instruction::GetElementPtr &&
8795           !isa<GetElementPtrInst>(Scalar))
8796         continue;
8797 #ifndef NDEBUG
8798       Type *Ty = Scalar->getType();
8799       if (!Ty->isVoidTy()) {
8800         for (User *U : Scalar->users()) {
8801           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
8802 
8803           // It is legal to delete users in the ignorelist.
8804           assert((getTreeEntry(U) ||
8805                   (UserIgnoreList && UserIgnoreList->contains(U)) ||
8806                   (isa_and_nonnull<Instruction>(U) &&
8807                    isDeleted(cast<Instruction>(U)))) &&
8808                  "Deleting out-of-tree value");
8809         }
8810       }
8811 #endif
8812       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
8813       eraseInstruction(cast<Instruction>(Scalar));
8814     }
8815   }
8816 
8817   Builder.ClearInsertionPoint();
8818   InstrElementSize.clear();
8819 
8820   return VectorizableTree[0]->VectorizedValue;
8821 }
8822 
8823 void BoUpSLP::optimizeGatherSequence() {
8824   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
8825                     << " gather sequences instructions.\n");
8826   // LICM InsertElementInst sequences.
8827   for (Instruction *I : GatherShuffleSeq) {
8828     if (isDeleted(I))
8829       continue;
8830 
8831     // Check if this block is inside a loop.
8832     Loop *L = LI->getLoopFor(I->getParent());
8833     if (!L)
8834       continue;
8835 
8836     // Check if it has a preheader.
8837     BasicBlock *PreHeader = L->getLoopPreheader();
8838     if (!PreHeader)
8839       continue;
8840 
8841     // If the vector or the element that we insert into it are
8842     // instructions that are defined in this basic block then we can't
8843     // hoist this instruction.
8844     if (any_of(I->operands(), [L](Value *V) {
8845           auto *OpI = dyn_cast<Instruction>(V);
8846           return OpI && L->contains(OpI);
8847         }))
8848       continue;
8849 
8850     // We can hoist this instruction. Move it to the pre-header.
8851     I->moveBefore(PreHeader->getTerminator());
8852   }
8853 
8854   // Make a list of all reachable blocks in our CSE queue.
8855   SmallVector<const DomTreeNode *, 8> CSEWorkList;
8856   CSEWorkList.reserve(CSEBlocks.size());
8857   for (BasicBlock *BB : CSEBlocks)
8858     if (DomTreeNode *N = DT->getNode(BB)) {
8859       assert(DT->isReachableFromEntry(N));
8860       CSEWorkList.push_back(N);
8861     }
8862 
8863   // Sort blocks by domination. This ensures we visit a block after all blocks
8864   // dominating it are visited.
8865   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
8866     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
8867            "Different nodes should have different DFS numbers");
8868     return A->getDFSNumIn() < B->getDFSNumIn();
8869   });
8870 
8871   // Less defined shuffles can be replaced by the more defined copies.
8872   // Between two shuffles one is less defined if it has the same vector operands
8873   // and its mask indeces are the same as in the first one or undefs. E.g.
8874   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
8875   // poison, <0, 0, 0, 0>.
8876   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
8877                                            SmallVectorImpl<int> &NewMask) {
8878     if (I1->getType() != I2->getType())
8879       return false;
8880     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
8881     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
8882     if (!SI1 || !SI2)
8883       return I1->isIdenticalTo(I2);
8884     if (SI1->isIdenticalTo(SI2))
8885       return true;
8886     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
8887       if (SI1->getOperand(I) != SI2->getOperand(I))
8888         return false;
8889     // Check if the second instruction is more defined than the first one.
8890     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
8891     ArrayRef<int> SM1 = SI1->getShuffleMask();
8892     // Count trailing undefs in the mask to check the final number of used
8893     // registers.
8894     unsigned LastUndefsCnt = 0;
8895     for (int I = 0, E = NewMask.size(); I < E; ++I) {
8896       if (SM1[I] == UndefMaskElem)
8897         ++LastUndefsCnt;
8898       else
8899         LastUndefsCnt = 0;
8900       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
8901           NewMask[I] != SM1[I])
8902         return false;
8903       if (NewMask[I] == UndefMaskElem)
8904         NewMask[I] = SM1[I];
8905     }
8906     // Check if the last undefs actually change the final number of used vector
8907     // registers.
8908     return SM1.size() - LastUndefsCnt > 1 &&
8909            TTI->getNumberOfParts(SI1->getType()) ==
8910                TTI->getNumberOfParts(
8911                    FixedVectorType::get(SI1->getType()->getElementType(),
8912                                         SM1.size() - LastUndefsCnt));
8913   };
8914   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
8915   // instructions. TODO: We can further optimize this scan if we split the
8916   // instructions into different buckets based on the insert lane.
8917   SmallVector<Instruction *, 16> Visited;
8918   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
8919     assert(*I &&
8920            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
8921            "Worklist not sorted properly!");
8922     BasicBlock *BB = (*I)->getBlock();
8923     // For all instructions in blocks containing gather sequences:
8924     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
8925       if (isDeleted(&In))
8926         continue;
8927       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
8928           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
8929         continue;
8930 
8931       // Check if we can replace this instruction with any of the
8932       // visited instructions.
8933       bool Replaced = false;
8934       for (Instruction *&V : Visited) {
8935         SmallVector<int> NewMask;
8936         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
8937             DT->dominates(V->getParent(), In.getParent())) {
8938           In.replaceAllUsesWith(V);
8939           eraseInstruction(&In);
8940           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
8941             if (!NewMask.empty())
8942               SI->setShuffleMask(NewMask);
8943           Replaced = true;
8944           break;
8945         }
8946         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
8947             GatherShuffleSeq.contains(V) &&
8948             IsIdenticalOrLessDefined(V, &In, NewMask) &&
8949             DT->dominates(In.getParent(), V->getParent())) {
8950           In.moveAfter(V);
8951           V->replaceAllUsesWith(&In);
8952           eraseInstruction(V);
8953           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
8954             if (!NewMask.empty())
8955               SI->setShuffleMask(NewMask);
8956           V = &In;
8957           Replaced = true;
8958           break;
8959         }
8960       }
8961       if (!Replaced) {
8962         assert(!is_contained(Visited, &In));
8963         Visited.push_back(&In);
8964       }
8965     }
8966   }
8967   CSEBlocks.clear();
8968   GatherShuffleSeq.clear();
8969 }
8970 
8971 BoUpSLP::ScheduleData *
8972 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
8973   ScheduleData *Bundle = nullptr;
8974   ScheduleData *PrevInBundle = nullptr;
8975   for (Value *V : VL) {
8976     if (doesNotNeedToBeScheduled(V))
8977       continue;
8978     ScheduleData *BundleMember = getScheduleData(V);
8979     assert(BundleMember &&
8980            "no ScheduleData for bundle member "
8981            "(maybe not in same basic block)");
8982     assert(BundleMember->isSchedulingEntity() &&
8983            "bundle member already part of other bundle");
8984     if (PrevInBundle) {
8985       PrevInBundle->NextInBundle = BundleMember;
8986     } else {
8987       Bundle = BundleMember;
8988     }
8989 
8990     // Group the instructions to a bundle.
8991     BundleMember->FirstInBundle = Bundle;
8992     PrevInBundle = BundleMember;
8993   }
8994   assert(Bundle && "Failed to find schedule bundle");
8995   return Bundle;
8996 }
8997 
8998 // Groups the instructions to a bundle (which is then a single scheduling entity)
8999 // and schedules instructions until the bundle gets ready.
9000 Optional<BoUpSLP::ScheduleData *>
9001 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
9002                                             const InstructionsState &S) {
9003   // No need to schedule PHIs, insertelement, extractelement and extractvalue
9004   // instructions.
9005   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
9006       doesNotNeedToSchedule(VL))
9007     return nullptr;
9008 
9009   // Initialize the instruction bundle.
9010   Instruction *OldScheduleEnd = ScheduleEnd;
9011   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
9012 
9013   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
9014                                                          ScheduleData *Bundle) {
9015     // The scheduling region got new instructions at the lower end (or it is a
9016     // new region for the first bundle). This makes it necessary to
9017     // recalculate all dependencies.
9018     // It is seldom that this needs to be done a second time after adding the
9019     // initial bundle to the region.
9020     if (ScheduleEnd != OldScheduleEnd) {
9021       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
9022         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
9023       ReSchedule = true;
9024     }
9025     if (Bundle) {
9026       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
9027                         << " in block " << BB->getName() << "\n");
9028       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
9029     }
9030 
9031     if (ReSchedule) {
9032       resetSchedule();
9033       initialFillReadyList(ReadyInsts);
9034     }
9035 
9036     // Now try to schedule the new bundle or (if no bundle) just calculate
9037     // dependencies. As soon as the bundle is "ready" it means that there are no
9038     // cyclic dependencies and we can schedule it. Note that's important that we
9039     // don't "schedule" the bundle yet (see cancelScheduling).
9040     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
9041            !ReadyInsts.empty()) {
9042       ScheduleData *Picked = ReadyInsts.pop_back_val();
9043       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
9044              "must be ready to schedule");
9045       schedule(Picked, ReadyInsts);
9046     }
9047   };
9048 
9049   // Make sure that the scheduling region contains all
9050   // instructions of the bundle.
9051   for (Value *V : VL) {
9052     if (doesNotNeedToBeScheduled(V))
9053       continue;
9054     if (!extendSchedulingRegion(V, S)) {
9055       // If the scheduling region got new instructions at the lower end (or it
9056       // is a new region for the first bundle). This makes it necessary to
9057       // recalculate all dependencies.
9058       // Otherwise the compiler may crash trying to incorrectly calculate
9059       // dependencies and emit instruction in the wrong order at the actual
9060       // scheduling.
9061       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
9062       return None;
9063     }
9064   }
9065 
9066   bool ReSchedule = false;
9067   for (Value *V : VL) {
9068     if (doesNotNeedToBeScheduled(V))
9069       continue;
9070     ScheduleData *BundleMember = getScheduleData(V);
9071     assert(BundleMember &&
9072            "no ScheduleData for bundle member (maybe not in same basic block)");
9073 
9074     // Make sure we don't leave the pieces of the bundle in the ready list when
9075     // whole bundle might not be ready.
9076     ReadyInsts.remove(BundleMember);
9077 
9078     if (!BundleMember->IsScheduled)
9079       continue;
9080     // A bundle member was scheduled as single instruction before and now
9081     // needs to be scheduled as part of the bundle. We just get rid of the
9082     // existing schedule.
9083     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
9084                       << " was already scheduled\n");
9085     ReSchedule = true;
9086   }
9087 
9088   auto *Bundle = buildBundle(VL);
9089   TryScheduleBundleImpl(ReSchedule, Bundle);
9090   if (!Bundle->isReady()) {
9091     cancelScheduling(VL, S.OpValue);
9092     return None;
9093   }
9094   return Bundle;
9095 }
9096 
9097 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
9098                                                 Value *OpValue) {
9099   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
9100       doesNotNeedToSchedule(VL))
9101     return;
9102 
9103   if (doesNotNeedToBeScheduled(OpValue))
9104     OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
9105   ScheduleData *Bundle = getScheduleData(OpValue);
9106   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
9107   assert(!Bundle->IsScheduled &&
9108          "Can't cancel bundle which is already scheduled");
9109   assert(Bundle->isSchedulingEntity() &&
9110          (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
9111          "tried to unbundle something which is not a bundle");
9112 
9113   // Remove the bundle from the ready list.
9114   if (Bundle->isReady())
9115     ReadyInsts.remove(Bundle);
9116 
9117   // Un-bundle: make single instructions out of the bundle.
9118   ScheduleData *BundleMember = Bundle;
9119   while (BundleMember) {
9120     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
9121     BundleMember->FirstInBundle = BundleMember;
9122     ScheduleData *Next = BundleMember->NextInBundle;
9123     BundleMember->NextInBundle = nullptr;
9124     BundleMember->TE = nullptr;
9125     if (BundleMember->unscheduledDepsInBundle() == 0) {
9126       ReadyInsts.insert(BundleMember);
9127     }
9128     BundleMember = Next;
9129   }
9130 }
9131 
9132 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
9133   // Allocate a new ScheduleData for the instruction.
9134   if (ChunkPos >= ChunkSize) {
9135     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
9136     ChunkPos = 0;
9137   }
9138   return &(ScheduleDataChunks.back()[ChunkPos++]);
9139 }
9140 
9141 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
9142                                                       const InstructionsState &S) {
9143   if (getScheduleData(V, isOneOf(S, V)))
9144     return true;
9145   Instruction *I = dyn_cast<Instruction>(V);
9146   assert(I && "bundle member must be an instruction");
9147   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
9148          !doesNotNeedToBeScheduled(I) &&
9149          "phi nodes/insertelements/extractelements/extractvalues don't need to "
9150          "be scheduled");
9151   auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
9152     ScheduleData *ISD = getScheduleData(I);
9153     if (!ISD)
9154       return false;
9155     assert(isInSchedulingRegion(ISD) &&
9156            "ScheduleData not in scheduling region");
9157     ScheduleData *SD = allocateScheduleDataChunks();
9158     SD->Inst = I;
9159     SD->init(SchedulingRegionID, S.OpValue);
9160     ExtraScheduleDataMap[I][S.OpValue] = SD;
9161     return true;
9162   };
9163   if (CheckScheduleForI(I))
9164     return true;
9165   if (!ScheduleStart) {
9166     // It's the first instruction in the new region.
9167     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
9168     ScheduleStart = I;
9169     ScheduleEnd = I->getNextNode();
9170     if (isOneOf(S, I) != I)
9171       CheckScheduleForI(I);
9172     assert(ScheduleEnd && "tried to vectorize a terminator?");
9173     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
9174     return true;
9175   }
9176   // Search up and down at the same time, because we don't know if the new
9177   // instruction is above or below the existing scheduling region.
9178   BasicBlock::reverse_iterator UpIter =
9179       ++ScheduleStart->getIterator().getReverse();
9180   BasicBlock::reverse_iterator UpperEnd = BB->rend();
9181   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
9182   BasicBlock::iterator LowerEnd = BB->end();
9183   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
9184          &*DownIter != I) {
9185     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
9186       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
9187       return false;
9188     }
9189 
9190     ++UpIter;
9191     ++DownIter;
9192   }
9193   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
9194     assert(I->getParent() == ScheduleStart->getParent() &&
9195            "Instruction is in wrong basic block.");
9196     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
9197     ScheduleStart = I;
9198     if (isOneOf(S, I) != I)
9199       CheckScheduleForI(I);
9200     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
9201                       << "\n");
9202     return true;
9203   }
9204   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
9205          "Expected to reach top of the basic block or instruction down the "
9206          "lower end.");
9207   assert(I->getParent() == ScheduleEnd->getParent() &&
9208          "Instruction is in wrong basic block.");
9209   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
9210                    nullptr);
9211   ScheduleEnd = I->getNextNode();
9212   if (isOneOf(S, I) != I)
9213     CheckScheduleForI(I);
9214   assert(ScheduleEnd && "tried to vectorize a terminator?");
9215   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
9216   return true;
9217 }
9218 
9219 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
9220                                                 Instruction *ToI,
9221                                                 ScheduleData *PrevLoadStore,
9222                                                 ScheduleData *NextLoadStore) {
9223   ScheduleData *CurrentLoadStore = PrevLoadStore;
9224   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
9225     // No need to allocate data for non-schedulable instructions.
9226     if (doesNotNeedToBeScheduled(I))
9227       continue;
9228     ScheduleData *SD = ScheduleDataMap.lookup(I);
9229     if (!SD) {
9230       SD = allocateScheduleDataChunks();
9231       ScheduleDataMap[I] = SD;
9232       SD->Inst = I;
9233     }
9234     assert(!isInSchedulingRegion(SD) &&
9235            "new ScheduleData already in scheduling region");
9236     SD->init(SchedulingRegionID, I);
9237 
9238     if (I->mayReadOrWriteMemory() &&
9239         (!isa<IntrinsicInst>(I) ||
9240          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
9241           cast<IntrinsicInst>(I)->getIntrinsicID() !=
9242               Intrinsic::pseudoprobe))) {
9243       // Update the linked list of memory accessing instructions.
9244       if (CurrentLoadStore) {
9245         CurrentLoadStore->NextLoadStore = SD;
9246       } else {
9247         FirstLoadStoreInRegion = SD;
9248       }
9249       CurrentLoadStore = SD;
9250     }
9251 
9252     if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9253         match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9254       RegionHasStackSave = true;
9255   }
9256   if (NextLoadStore) {
9257     if (CurrentLoadStore)
9258       CurrentLoadStore->NextLoadStore = NextLoadStore;
9259   } else {
9260     LastLoadStoreInRegion = CurrentLoadStore;
9261   }
9262 }
9263 
9264 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
9265                                                      bool InsertInReadyList,
9266                                                      BoUpSLP *SLP) {
9267   assert(SD->isSchedulingEntity());
9268 
9269   SmallVector<ScheduleData *, 10> WorkList;
9270   WorkList.push_back(SD);
9271 
9272   while (!WorkList.empty()) {
9273     ScheduleData *SD = WorkList.pop_back_val();
9274     for (ScheduleData *BundleMember = SD; BundleMember;
9275          BundleMember = BundleMember->NextInBundle) {
9276       assert(isInSchedulingRegion(BundleMember));
9277       if (BundleMember->hasValidDependencies())
9278         continue;
9279 
9280       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
9281                  << "\n");
9282       BundleMember->Dependencies = 0;
9283       BundleMember->resetUnscheduledDeps();
9284 
9285       // Handle def-use chain dependencies.
9286       if (BundleMember->OpValue != BundleMember->Inst) {
9287         if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
9288           BundleMember->Dependencies++;
9289           ScheduleData *DestBundle = UseSD->FirstInBundle;
9290           if (!DestBundle->IsScheduled)
9291             BundleMember->incrementUnscheduledDeps(1);
9292           if (!DestBundle->hasValidDependencies())
9293             WorkList.push_back(DestBundle);
9294         }
9295       } else {
9296         for (User *U : BundleMember->Inst->users()) {
9297           if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
9298             BundleMember->Dependencies++;
9299             ScheduleData *DestBundle = UseSD->FirstInBundle;
9300             if (!DestBundle->IsScheduled)
9301               BundleMember->incrementUnscheduledDeps(1);
9302             if (!DestBundle->hasValidDependencies())
9303               WorkList.push_back(DestBundle);
9304           }
9305         }
9306       }
9307 
9308       auto makeControlDependent = [&](Instruction *I) {
9309         auto *DepDest = getScheduleData(I);
9310         assert(DepDest && "must be in schedule window");
9311         DepDest->ControlDependencies.push_back(BundleMember);
9312         BundleMember->Dependencies++;
9313         ScheduleData *DestBundle = DepDest->FirstInBundle;
9314         if (!DestBundle->IsScheduled)
9315           BundleMember->incrementUnscheduledDeps(1);
9316         if (!DestBundle->hasValidDependencies())
9317           WorkList.push_back(DestBundle);
9318       };
9319 
9320       // Any instruction which isn't safe to speculate at the begining of the
9321       // block is control dependend on any early exit or non-willreturn call
9322       // which proceeds it.
9323       if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
9324         for (Instruction *I = BundleMember->Inst->getNextNode();
9325              I != ScheduleEnd; I = I->getNextNode()) {
9326           if (isSafeToSpeculativelyExecute(I, &*BB->begin()))
9327             continue;
9328 
9329           // Add the dependency
9330           makeControlDependent(I);
9331 
9332           if (!isGuaranteedToTransferExecutionToSuccessor(I))
9333             // Everything past here must be control dependent on I.
9334             break;
9335         }
9336       }
9337 
9338       if (RegionHasStackSave) {
9339         // If we have an inalloc alloca instruction, it needs to be scheduled
9340         // after any preceeding stacksave.  We also need to prevent any alloca
9341         // from reordering above a preceeding stackrestore.
9342         if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
9343             match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
9344           for (Instruction *I = BundleMember->Inst->getNextNode();
9345                I != ScheduleEnd; I = I->getNextNode()) {
9346             if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9347                 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9348               // Any allocas past here must be control dependent on I, and I
9349               // must be memory dependend on BundleMember->Inst.
9350               break;
9351 
9352             if (!isa<AllocaInst>(I))
9353               continue;
9354 
9355             // Add the dependency
9356             makeControlDependent(I);
9357           }
9358         }
9359 
9360         // In addition to the cases handle just above, we need to prevent
9361         // allocas from moving below a stacksave.  The stackrestore case
9362         // is currently thought to be conservatism.
9363         if (isa<AllocaInst>(BundleMember->Inst)) {
9364           for (Instruction *I = BundleMember->Inst->getNextNode();
9365                I != ScheduleEnd; I = I->getNextNode()) {
9366             if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
9367                 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9368               continue;
9369 
9370             // Add the dependency
9371             makeControlDependent(I);
9372             break;
9373           }
9374         }
9375       }
9376 
9377       // Handle the memory dependencies (if any).
9378       ScheduleData *DepDest = BundleMember->NextLoadStore;
9379       if (!DepDest)
9380         continue;
9381       Instruction *SrcInst = BundleMember->Inst;
9382       assert(SrcInst->mayReadOrWriteMemory() &&
9383              "NextLoadStore list for non memory effecting bundle?");
9384       MemoryLocation SrcLoc = getLocation(SrcInst);
9385       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
9386       unsigned numAliased = 0;
9387       unsigned DistToSrc = 1;
9388 
9389       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
9390         assert(isInSchedulingRegion(DepDest));
9391 
9392         // We have two limits to reduce the complexity:
9393         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
9394         //    SLP->isAliased (which is the expensive part in this loop).
9395         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
9396         //    the whole loop (even if the loop is fast, it's quadratic).
9397         //    It's important for the loop break condition (see below) to
9398         //    check this limit even between two read-only instructions.
9399         if (DistToSrc >= MaxMemDepDistance ||
9400             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
9401              (numAliased >= AliasedCheckLimit ||
9402               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
9403 
9404           // We increment the counter only if the locations are aliased
9405           // (instead of counting all alias checks). This gives a better
9406           // balance between reduced runtime and accurate dependencies.
9407           numAliased++;
9408 
9409           DepDest->MemoryDependencies.push_back(BundleMember);
9410           BundleMember->Dependencies++;
9411           ScheduleData *DestBundle = DepDest->FirstInBundle;
9412           if (!DestBundle->IsScheduled) {
9413             BundleMember->incrementUnscheduledDeps(1);
9414           }
9415           if (!DestBundle->hasValidDependencies()) {
9416             WorkList.push_back(DestBundle);
9417           }
9418         }
9419 
9420         // Example, explaining the loop break condition: Let's assume our
9421         // starting instruction is i0 and MaxMemDepDistance = 3.
9422         //
9423         //                      +--------v--v--v
9424         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
9425         //             +--------^--^--^
9426         //
9427         // MaxMemDepDistance let us stop alias-checking at i3 and we add
9428         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
9429         // Previously we already added dependencies from i3 to i6,i7,i8
9430         // (because of MaxMemDepDistance). As we added a dependency from
9431         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
9432         // and we can abort this loop at i6.
9433         if (DistToSrc >= 2 * MaxMemDepDistance)
9434           break;
9435         DistToSrc++;
9436       }
9437     }
9438     if (InsertInReadyList && SD->isReady()) {
9439       ReadyInsts.insert(SD);
9440       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
9441                         << "\n");
9442     }
9443   }
9444 }
9445 
9446 void BoUpSLP::BlockScheduling::resetSchedule() {
9447   assert(ScheduleStart &&
9448          "tried to reset schedule on block which has not been scheduled");
9449   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
9450     doForAllOpcodes(I, [&](ScheduleData *SD) {
9451       assert(isInSchedulingRegion(SD) &&
9452              "ScheduleData not in scheduling region");
9453       SD->IsScheduled = false;
9454       SD->resetUnscheduledDeps();
9455     });
9456   }
9457   ReadyInsts.clear();
9458 }
9459 
9460 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
9461   if (!BS->ScheduleStart)
9462     return;
9463 
9464   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
9465 
9466   // A key point - if we got here, pre-scheduling was able to find a valid
9467   // scheduling of the sub-graph of the scheduling window which consists
9468   // of all vector bundles and their transitive users.  As such, we do not
9469   // need to reschedule anything *outside of* that subgraph.
9470 
9471   BS->resetSchedule();
9472 
9473   // For the real scheduling we use a more sophisticated ready-list: it is
9474   // sorted by the original instruction location. This lets the final schedule
9475   // be as  close as possible to the original instruction order.
9476   // WARNING: If changing this order causes a correctness issue, that means
9477   // there is some missing dependence edge in the schedule data graph.
9478   struct ScheduleDataCompare {
9479     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
9480       return SD2->SchedulingPriority < SD1->SchedulingPriority;
9481     }
9482   };
9483   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
9484 
9485   // Ensure that all dependency data is updated (for nodes in the sub-graph)
9486   // and fill the ready-list with initial instructions.
9487   int Idx = 0;
9488   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
9489        I = I->getNextNode()) {
9490     BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
9491       TreeEntry *SDTE = getTreeEntry(SD->Inst);
9492       (void)SDTE;
9493       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
9494               SD->isPartOfBundle() ==
9495                   (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
9496              "scheduler and vectorizer bundle mismatch");
9497       SD->FirstInBundle->SchedulingPriority = Idx++;
9498 
9499       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
9500         BS->calculateDependencies(SD, false, this);
9501     });
9502   }
9503   BS->initialFillReadyList(ReadyInsts);
9504 
9505   Instruction *LastScheduledInst = BS->ScheduleEnd;
9506 
9507   // Do the "real" scheduling.
9508   while (!ReadyInsts.empty()) {
9509     ScheduleData *picked = *ReadyInsts.begin();
9510     ReadyInsts.erase(ReadyInsts.begin());
9511 
9512     // Move the scheduled instruction(s) to their dedicated places, if not
9513     // there yet.
9514     for (ScheduleData *BundleMember = picked; BundleMember;
9515          BundleMember = BundleMember->NextInBundle) {
9516       Instruction *pickedInst = BundleMember->Inst;
9517       if (pickedInst->getNextNode() != LastScheduledInst)
9518         pickedInst->moveBefore(LastScheduledInst);
9519       LastScheduledInst = pickedInst;
9520     }
9521 
9522     BS->schedule(picked, ReadyInsts);
9523   }
9524 
9525   // Check that we didn't break any of our invariants.
9526 #ifdef EXPENSIVE_CHECKS
9527   BS->verify();
9528 #endif
9529 
9530 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
9531   // Check that all schedulable entities got scheduled
9532   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
9533     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
9534       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
9535         assert(SD->IsScheduled && "must be scheduled at this point");
9536       }
9537     });
9538   }
9539 #endif
9540 
9541   // Avoid duplicate scheduling of the block.
9542   BS->ScheduleStart = nullptr;
9543 }
9544 
9545 unsigned BoUpSLP::getVectorElementSize(Value *V) {
9546   // If V is a store, just return the width of the stored value (or value
9547   // truncated just before storing) without traversing the expression tree.
9548   // This is the common case.
9549   if (auto *Store = dyn_cast<StoreInst>(V))
9550     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
9551 
9552   if (auto *IEI = dyn_cast<InsertElementInst>(V))
9553     return getVectorElementSize(IEI->getOperand(1));
9554 
9555   auto E = InstrElementSize.find(V);
9556   if (E != InstrElementSize.end())
9557     return E->second;
9558 
9559   // If V is not a store, we can traverse the expression tree to find loads
9560   // that feed it. The type of the loaded value may indicate a more suitable
9561   // width than V's type. We want to base the vector element size on the width
9562   // of memory operations where possible.
9563   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
9564   SmallPtrSet<Instruction *, 16> Visited;
9565   if (auto *I = dyn_cast<Instruction>(V)) {
9566     Worklist.emplace_back(I, I->getParent());
9567     Visited.insert(I);
9568   }
9569 
9570   // Traverse the expression tree in bottom-up order looking for loads. If we
9571   // encounter an instruction we don't yet handle, we give up.
9572   auto Width = 0u;
9573   while (!Worklist.empty()) {
9574     Instruction *I;
9575     BasicBlock *Parent;
9576     std::tie(I, Parent) = Worklist.pop_back_val();
9577 
9578     // We should only be looking at scalar instructions here. If the current
9579     // instruction has a vector type, skip.
9580     auto *Ty = I->getType();
9581     if (isa<VectorType>(Ty))
9582       continue;
9583 
9584     // If the current instruction is a load, update MaxWidth to reflect the
9585     // width of the loaded value.
9586     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
9587         isa<ExtractValueInst>(I))
9588       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
9589 
9590     // Otherwise, we need to visit the operands of the instruction. We only
9591     // handle the interesting cases from buildTree here. If an operand is an
9592     // instruction we haven't yet visited and from the same basic block as the
9593     // user or the use is a PHI node, we add it to the worklist.
9594     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9595              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
9596              isa<UnaryOperator>(I)) {
9597       for (Use &U : I->operands())
9598         if (auto *J = dyn_cast<Instruction>(U.get()))
9599           if (Visited.insert(J).second &&
9600               (isa<PHINode>(I) || J->getParent() == Parent))
9601             Worklist.emplace_back(J, J->getParent());
9602     } else {
9603       break;
9604     }
9605   }
9606 
9607   // If we didn't encounter a memory access in the expression tree, or if we
9608   // gave up for some reason, just return the width of V. Otherwise, return the
9609   // maximum width we found.
9610   if (!Width) {
9611     if (auto *CI = dyn_cast<CmpInst>(V))
9612       V = CI->getOperand(0);
9613     Width = DL->getTypeSizeInBits(V->getType());
9614   }
9615 
9616   for (Instruction *I : Visited)
9617     InstrElementSize[I] = Width;
9618 
9619   return Width;
9620 }
9621 
9622 // Determine if a value V in a vectorizable expression Expr can be demoted to a
9623 // smaller type with a truncation. We collect the values that will be demoted
9624 // in ToDemote and additional roots that require investigating in Roots.
9625 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
9626                                   SmallVectorImpl<Value *> &ToDemote,
9627                                   SmallVectorImpl<Value *> &Roots) {
9628   // We can always demote constants.
9629   if (isa<Constant>(V)) {
9630     ToDemote.push_back(V);
9631     return true;
9632   }
9633 
9634   // If the value is not an instruction in the expression with only one use, it
9635   // cannot be demoted.
9636   auto *I = dyn_cast<Instruction>(V);
9637   if (!I || !I->hasOneUse() || !Expr.count(I))
9638     return false;
9639 
9640   switch (I->getOpcode()) {
9641 
9642   // We can always demote truncations and extensions. Since truncations can
9643   // seed additional demotion, we save the truncated value.
9644   case Instruction::Trunc:
9645     Roots.push_back(I->getOperand(0));
9646     break;
9647   case Instruction::ZExt:
9648   case Instruction::SExt:
9649     if (isa<ExtractElementInst>(I->getOperand(0)) ||
9650         isa<InsertElementInst>(I->getOperand(0)))
9651       return false;
9652     break;
9653 
9654   // We can demote certain binary operations if we can demote both of their
9655   // operands.
9656   case Instruction::Add:
9657   case Instruction::Sub:
9658   case Instruction::Mul:
9659   case Instruction::And:
9660   case Instruction::Or:
9661   case Instruction::Xor:
9662     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
9663         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
9664       return false;
9665     break;
9666 
9667   // We can demote selects if we can demote their true and false values.
9668   case Instruction::Select: {
9669     SelectInst *SI = cast<SelectInst>(I);
9670     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
9671         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
9672       return false;
9673     break;
9674   }
9675 
9676   // We can demote phis if we can demote all their incoming operands. Note that
9677   // we don't need to worry about cycles since we ensure single use above.
9678   case Instruction::PHI: {
9679     PHINode *PN = cast<PHINode>(I);
9680     for (Value *IncValue : PN->incoming_values())
9681       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
9682         return false;
9683     break;
9684   }
9685 
9686   // Otherwise, conservatively give up.
9687   default:
9688     return false;
9689   }
9690 
9691   // Record the value that we can demote.
9692   ToDemote.push_back(V);
9693   return true;
9694 }
9695 
9696 void BoUpSLP::computeMinimumValueSizes() {
9697   // If there are no external uses, the expression tree must be rooted by a
9698   // store. We can't demote in-memory values, so there is nothing to do here.
9699   if (ExternalUses.empty())
9700     return;
9701 
9702   // We only attempt to truncate integer expressions.
9703   auto &TreeRoot = VectorizableTree[0]->Scalars;
9704   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
9705   if (!TreeRootIT)
9706     return;
9707 
9708   // If the expression is not rooted by a store, these roots should have
9709   // external uses. We will rely on InstCombine to rewrite the expression in
9710   // the narrower type. However, InstCombine only rewrites single-use values.
9711   // This means that if a tree entry other than a root is used externally, it
9712   // must have multiple uses and InstCombine will not rewrite it. The code
9713   // below ensures that only the roots are used externally.
9714   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
9715   for (auto &EU : ExternalUses)
9716     if (!Expr.erase(EU.Scalar))
9717       return;
9718   if (!Expr.empty())
9719     return;
9720 
9721   // Collect the scalar values of the vectorizable expression. We will use this
9722   // context to determine which values can be demoted. If we see a truncation,
9723   // we mark it as seeding another demotion.
9724   for (auto &EntryPtr : VectorizableTree)
9725     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
9726 
9727   // Ensure the roots of the vectorizable tree don't form a cycle. They must
9728   // have a single external user that is not in the vectorizable tree.
9729   for (auto *Root : TreeRoot)
9730     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
9731       return;
9732 
9733   // Conservatively determine if we can actually truncate the roots of the
9734   // expression. Collect the values that can be demoted in ToDemote and
9735   // additional roots that require investigating in Roots.
9736   SmallVector<Value *, 32> ToDemote;
9737   SmallVector<Value *, 4> Roots;
9738   for (auto *Root : TreeRoot)
9739     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
9740       return;
9741 
9742   // The maximum bit width required to represent all the values that can be
9743   // demoted without loss of precision. It would be safe to truncate the roots
9744   // of the expression to this width.
9745   auto MaxBitWidth = 8u;
9746 
9747   // We first check if all the bits of the roots are demanded. If they're not,
9748   // we can truncate the roots to this narrower type.
9749   for (auto *Root : TreeRoot) {
9750     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
9751     MaxBitWidth = std::max<unsigned>(
9752         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
9753   }
9754 
9755   // True if the roots can be zero-extended back to their original type, rather
9756   // than sign-extended. We know that if the leading bits are not demanded, we
9757   // can safely zero-extend. So we initialize IsKnownPositive to True.
9758   bool IsKnownPositive = true;
9759 
9760   // If all the bits of the roots are demanded, we can try a little harder to
9761   // compute a narrower type. This can happen, for example, if the roots are
9762   // getelementptr indices. InstCombine promotes these indices to the pointer
9763   // width. Thus, all their bits are technically demanded even though the
9764   // address computation might be vectorized in a smaller type.
9765   //
9766   // We start by looking at each entry that can be demoted. We compute the
9767   // maximum bit width required to store the scalar by using ValueTracking to
9768   // compute the number of high-order bits we can truncate.
9769   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
9770       llvm::all_of(TreeRoot, [](Value *R) {
9771         assert(R->hasOneUse() && "Root should have only one use!");
9772         return isa<GetElementPtrInst>(R->user_back());
9773       })) {
9774     MaxBitWidth = 8u;
9775 
9776     // Determine if the sign bit of all the roots is known to be zero. If not,
9777     // IsKnownPositive is set to False.
9778     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
9779       KnownBits Known = computeKnownBits(R, *DL);
9780       return Known.isNonNegative();
9781     });
9782 
9783     // Determine the maximum number of bits required to store the scalar
9784     // values.
9785     for (auto *Scalar : ToDemote) {
9786       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
9787       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
9788       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
9789     }
9790 
9791     // If we can't prove that the sign bit is zero, we must add one to the
9792     // maximum bit width to account for the unknown sign bit. This preserves
9793     // the existing sign bit so we can safely sign-extend the root back to the
9794     // original type. Otherwise, if we know the sign bit is zero, we will
9795     // zero-extend the root instead.
9796     //
9797     // FIXME: This is somewhat suboptimal, as there will be cases where adding
9798     //        one to the maximum bit width will yield a larger-than-necessary
9799     //        type. In general, we need to add an extra bit only if we can't
9800     //        prove that the upper bit of the original type is equal to the
9801     //        upper bit of the proposed smaller type. If these two bits are the
9802     //        same (either zero or one) we know that sign-extending from the
9803     //        smaller type will result in the same value. Here, since we can't
9804     //        yet prove this, we are just making the proposed smaller type
9805     //        larger to ensure correctness.
9806     if (!IsKnownPositive)
9807       ++MaxBitWidth;
9808   }
9809 
9810   // Round MaxBitWidth up to the next power-of-two.
9811   if (!isPowerOf2_64(MaxBitWidth))
9812     MaxBitWidth = NextPowerOf2(MaxBitWidth);
9813 
9814   // If the maximum bit width we compute is less than the with of the roots'
9815   // type, we can proceed with the narrowing. Otherwise, do nothing.
9816   if (MaxBitWidth >= TreeRootIT->getBitWidth())
9817     return;
9818 
9819   // If we can truncate the root, we must collect additional values that might
9820   // be demoted as a result. That is, those seeded by truncations we will
9821   // modify.
9822   while (!Roots.empty())
9823     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
9824 
9825   // Finally, map the values we can demote to the maximum bit with we computed.
9826   for (auto *Scalar : ToDemote)
9827     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
9828 }
9829 
9830 namespace {
9831 
9832 /// The SLPVectorizer Pass.
9833 struct SLPVectorizer : public FunctionPass {
9834   SLPVectorizerPass Impl;
9835 
9836   /// Pass identification, replacement for typeid
9837   static char ID;
9838 
9839   explicit SLPVectorizer() : FunctionPass(ID) {
9840     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
9841   }
9842 
9843   bool doInitialization(Module &M) override { return false; }
9844 
9845   bool runOnFunction(Function &F) override {
9846     if (skipFunction(F))
9847       return false;
9848 
9849     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
9850     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
9851     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
9852     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
9853     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
9854     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
9855     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
9856     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
9857     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
9858     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
9859 
9860     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9861   }
9862 
9863   void getAnalysisUsage(AnalysisUsage &AU) const override {
9864     FunctionPass::getAnalysisUsage(AU);
9865     AU.addRequired<AssumptionCacheTracker>();
9866     AU.addRequired<ScalarEvolutionWrapperPass>();
9867     AU.addRequired<AAResultsWrapperPass>();
9868     AU.addRequired<TargetTransformInfoWrapperPass>();
9869     AU.addRequired<LoopInfoWrapperPass>();
9870     AU.addRequired<DominatorTreeWrapperPass>();
9871     AU.addRequired<DemandedBitsWrapperPass>();
9872     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
9873     AU.addRequired<InjectTLIMappingsLegacy>();
9874     AU.addPreserved<LoopInfoWrapperPass>();
9875     AU.addPreserved<DominatorTreeWrapperPass>();
9876     AU.addPreserved<AAResultsWrapperPass>();
9877     AU.addPreserved<GlobalsAAWrapperPass>();
9878     AU.setPreservesCFG();
9879   }
9880 };
9881 
9882 } // end anonymous namespace
9883 
9884 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
9885   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
9886   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
9887   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
9888   auto *AA = &AM.getResult<AAManager>(F);
9889   auto *LI = &AM.getResult<LoopAnalysis>(F);
9890   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
9891   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
9892   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
9893   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
9894 
9895   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9896   if (!Changed)
9897     return PreservedAnalyses::all();
9898 
9899   PreservedAnalyses PA;
9900   PA.preserveSet<CFGAnalyses>();
9901   return PA;
9902 }
9903 
9904 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
9905                                 TargetTransformInfo *TTI_,
9906                                 TargetLibraryInfo *TLI_, AAResults *AA_,
9907                                 LoopInfo *LI_, DominatorTree *DT_,
9908                                 AssumptionCache *AC_, DemandedBits *DB_,
9909                                 OptimizationRemarkEmitter *ORE_) {
9910   if (!RunSLPVectorization)
9911     return false;
9912   SE = SE_;
9913   TTI = TTI_;
9914   TLI = TLI_;
9915   AA = AA_;
9916   LI = LI_;
9917   DT = DT_;
9918   AC = AC_;
9919   DB = DB_;
9920   DL = &F.getParent()->getDataLayout();
9921 
9922   Stores.clear();
9923   GEPs.clear();
9924   bool Changed = false;
9925 
9926   // If the target claims to have no vector registers don't attempt
9927   // vectorization.
9928   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
9929     LLVM_DEBUG(
9930         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
9931     return false;
9932   }
9933 
9934   // Don't vectorize when the attribute NoImplicitFloat is used.
9935   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
9936     return false;
9937 
9938   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
9939 
9940   // Use the bottom up slp vectorizer to construct chains that start with
9941   // store instructions.
9942   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
9943 
9944   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
9945   // delete instructions.
9946 
9947   // Update DFS numbers now so that we can use them for ordering.
9948   DT->updateDFSNumbers();
9949 
9950   // Scan the blocks in the function in post order.
9951   for (auto BB : post_order(&F.getEntryBlock())) {
9952     // Start new block - clear the list of reduction roots.
9953     R.clearReductionData();
9954     collectSeedInstructions(BB);
9955 
9956     // Vectorize trees that end at stores.
9957     if (!Stores.empty()) {
9958       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
9959                         << " underlying objects.\n");
9960       Changed |= vectorizeStoreChains(R);
9961     }
9962 
9963     // Vectorize trees that end at reductions.
9964     Changed |= vectorizeChainsInBlock(BB, R);
9965 
9966     // Vectorize the index computations of getelementptr instructions. This
9967     // is primarily intended to catch gather-like idioms ending at
9968     // non-consecutive loads.
9969     if (!GEPs.empty()) {
9970       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
9971                         << " underlying objects.\n");
9972       Changed |= vectorizeGEPIndices(BB, R);
9973     }
9974   }
9975 
9976   if (Changed) {
9977     R.optimizeGatherSequence();
9978     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
9979   }
9980   return Changed;
9981 }
9982 
9983 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
9984                                             unsigned Idx, unsigned MinVF) {
9985   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
9986                     << "\n");
9987   const unsigned Sz = R.getVectorElementSize(Chain[0]);
9988   unsigned VF = Chain.size();
9989 
9990   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
9991     return false;
9992 
9993   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
9994                     << "\n");
9995 
9996   R.buildTree(Chain);
9997   if (R.isTreeTinyAndNotFullyVectorizable())
9998     return false;
9999   if (R.isLoadCombineCandidate())
10000     return false;
10001   R.reorderTopToBottom();
10002   R.reorderBottomToTop();
10003   R.buildExternalUses();
10004 
10005   R.computeMinimumValueSizes();
10006 
10007   InstructionCost Cost = R.getTreeCost();
10008 
10009   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
10010   if (Cost < -SLPCostThreshold) {
10011     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
10012 
10013     using namespace ore;
10014 
10015     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
10016                                         cast<StoreInst>(Chain[0]))
10017                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
10018                      << " and with tree size "
10019                      << NV("TreeSize", R.getTreeSize()));
10020 
10021     R.vectorizeTree();
10022     return true;
10023   }
10024 
10025   return false;
10026 }
10027 
10028 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
10029                                         BoUpSLP &R) {
10030   // We may run into multiple chains that merge into a single chain. We mark the
10031   // stores that we vectorized so that we don't visit the same store twice.
10032   BoUpSLP::ValueSet VectorizedStores;
10033   bool Changed = false;
10034 
10035   int E = Stores.size();
10036   SmallBitVector Tails(E, false);
10037   int MaxIter = MaxStoreLookup.getValue();
10038   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
10039       E, std::make_pair(E, INT_MAX));
10040   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
10041   int IterCnt;
10042   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
10043                                   &CheckedPairs,
10044                                   &ConsecutiveChain](int K, int Idx) {
10045     if (IterCnt >= MaxIter)
10046       return true;
10047     if (CheckedPairs[Idx].test(K))
10048       return ConsecutiveChain[K].second == 1 &&
10049              ConsecutiveChain[K].first == Idx;
10050     ++IterCnt;
10051     CheckedPairs[Idx].set(K);
10052     CheckedPairs[K].set(Idx);
10053     Optional<int> Diff = getPointersDiff(
10054         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
10055         Stores[Idx]->getValueOperand()->getType(),
10056         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
10057     if (!Diff || *Diff == 0)
10058       return false;
10059     int Val = *Diff;
10060     if (Val < 0) {
10061       if (ConsecutiveChain[Idx].second > -Val) {
10062         Tails.set(K);
10063         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
10064       }
10065       return false;
10066     }
10067     if (ConsecutiveChain[K].second <= Val)
10068       return false;
10069 
10070     Tails.set(Idx);
10071     ConsecutiveChain[K] = std::make_pair(Idx, Val);
10072     return Val == 1;
10073   };
10074   // Do a quadratic search on all of the given stores in reverse order and find
10075   // all of the pairs of stores that follow each other.
10076   for (int Idx = E - 1; Idx >= 0; --Idx) {
10077     // If a store has multiple consecutive store candidates, search according
10078     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
10079     // This is because usually pairing with immediate succeeding or preceding
10080     // candidate create the best chance to find slp vectorization opportunity.
10081     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
10082     IterCnt = 0;
10083     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
10084       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
10085           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
10086         break;
10087   }
10088 
10089   // Tracks if we tried to vectorize stores starting from the given tail
10090   // already.
10091   SmallBitVector TriedTails(E, false);
10092   // For stores that start but don't end a link in the chain:
10093   for (int Cnt = E; Cnt > 0; --Cnt) {
10094     int I = Cnt - 1;
10095     if (ConsecutiveChain[I].first == E || Tails.test(I))
10096       continue;
10097     // We found a store instr that starts a chain. Now follow the chain and try
10098     // to vectorize it.
10099     BoUpSLP::ValueList Operands;
10100     // Collect the chain into a list.
10101     while (I != E && !VectorizedStores.count(Stores[I])) {
10102       Operands.push_back(Stores[I]);
10103       Tails.set(I);
10104       if (ConsecutiveChain[I].second != 1) {
10105         // Mark the new end in the chain and go back, if required. It might be
10106         // required if the original stores come in reversed order, for example.
10107         if (ConsecutiveChain[I].first != E &&
10108             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
10109             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
10110           TriedTails.set(I);
10111           Tails.reset(ConsecutiveChain[I].first);
10112           if (Cnt < ConsecutiveChain[I].first + 2)
10113             Cnt = ConsecutiveChain[I].first + 2;
10114         }
10115         break;
10116       }
10117       // Move to the next value in the chain.
10118       I = ConsecutiveChain[I].first;
10119     }
10120     assert(!Operands.empty() && "Expected non-empty list of stores.");
10121 
10122     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10123     unsigned EltSize = R.getVectorElementSize(Operands[0]);
10124     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
10125 
10126     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
10127                               MaxElts);
10128     auto *Store = cast<StoreInst>(Operands[0]);
10129     Type *StoreTy = Store->getValueOperand()->getType();
10130     Type *ValueTy = StoreTy;
10131     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
10132       ValueTy = Trunc->getSrcTy();
10133     unsigned MinVF = TTI->getStoreMinimumVF(
10134         R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
10135 
10136     // FIXME: Is division-by-2 the correct step? Should we assert that the
10137     // register size is a power-of-2?
10138     unsigned StartIdx = 0;
10139     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
10140       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
10141         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
10142         if (!VectorizedStores.count(Slice.front()) &&
10143             !VectorizedStores.count(Slice.back()) &&
10144             vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
10145           // Mark the vectorized stores so that we don't vectorize them again.
10146           VectorizedStores.insert(Slice.begin(), Slice.end());
10147           Changed = true;
10148           // If we vectorized initial block, no need to try to vectorize it
10149           // again.
10150           if (Cnt == StartIdx)
10151             StartIdx += Size;
10152           Cnt += Size;
10153           continue;
10154         }
10155         ++Cnt;
10156       }
10157       // Check if the whole array was vectorized already - exit.
10158       if (StartIdx >= Operands.size())
10159         break;
10160     }
10161   }
10162 
10163   return Changed;
10164 }
10165 
10166 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
10167   // Initialize the collections. We will make a single pass over the block.
10168   Stores.clear();
10169   GEPs.clear();
10170 
10171   // Visit the store and getelementptr instructions in BB and organize them in
10172   // Stores and GEPs according to the underlying objects of their pointer
10173   // operands.
10174   for (Instruction &I : *BB) {
10175     // Ignore store instructions that are volatile or have a pointer operand
10176     // that doesn't point to a scalar type.
10177     if (auto *SI = dyn_cast<StoreInst>(&I)) {
10178       if (!SI->isSimple())
10179         continue;
10180       if (!isValidElementType(SI->getValueOperand()->getType()))
10181         continue;
10182       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
10183     }
10184 
10185     // Ignore getelementptr instructions that have more than one index, a
10186     // constant index, or a pointer operand that doesn't point to a scalar
10187     // type.
10188     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
10189       auto Idx = GEP->idx_begin()->get();
10190       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
10191         continue;
10192       if (!isValidElementType(Idx->getType()))
10193         continue;
10194       if (GEP->getType()->isVectorTy())
10195         continue;
10196       GEPs[GEP->getPointerOperand()].push_back(GEP);
10197     }
10198   }
10199 }
10200 
10201 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
10202   if (!A || !B)
10203     return false;
10204   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
10205     return false;
10206   Value *VL[] = {A, B};
10207   return tryToVectorizeList(VL, R);
10208 }
10209 
10210 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
10211                                            bool LimitForRegisterSize) {
10212   if (VL.size() < 2)
10213     return false;
10214 
10215   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
10216                     << VL.size() << ".\n");
10217 
10218   // Check that all of the parts are instructions of the same type,
10219   // we permit an alternate opcode via InstructionsState.
10220   InstructionsState S = getSameOpcode(VL);
10221   if (!S.getOpcode())
10222     return false;
10223 
10224   Instruction *I0 = cast<Instruction>(S.OpValue);
10225   // Make sure invalid types (including vector type) are rejected before
10226   // determining vectorization factor for scalar instructions.
10227   for (Value *V : VL) {
10228     Type *Ty = V->getType();
10229     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
10230       // NOTE: the following will give user internal llvm type name, which may
10231       // not be useful.
10232       R.getORE()->emit([&]() {
10233         std::string type_str;
10234         llvm::raw_string_ostream rso(type_str);
10235         Ty->print(rso);
10236         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
10237                << "Cannot SLP vectorize list: type "
10238                << rso.str() + " is unsupported by vectorizer";
10239       });
10240       return false;
10241     }
10242   }
10243 
10244   unsigned Sz = R.getVectorElementSize(I0);
10245   unsigned MinVF = R.getMinVF(Sz);
10246   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
10247   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
10248   if (MaxVF < 2) {
10249     R.getORE()->emit([&]() {
10250       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
10251              << "Cannot SLP vectorize list: vectorization factor "
10252              << "less than 2 is not supported";
10253     });
10254     return false;
10255   }
10256 
10257   bool Changed = false;
10258   bool CandidateFound = false;
10259   InstructionCost MinCost = SLPCostThreshold.getValue();
10260   Type *ScalarTy = VL[0]->getType();
10261   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
10262     ScalarTy = IE->getOperand(1)->getType();
10263 
10264   unsigned NextInst = 0, MaxInst = VL.size();
10265   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
10266     // No actual vectorization should happen, if number of parts is the same as
10267     // provided vectorization factor (i.e. the scalar type is used for vector
10268     // code during codegen).
10269     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
10270     if (TTI->getNumberOfParts(VecTy) == VF)
10271       continue;
10272     for (unsigned I = NextInst; I < MaxInst; ++I) {
10273       unsigned OpsWidth = 0;
10274 
10275       if (I + VF > MaxInst)
10276         OpsWidth = MaxInst - I;
10277       else
10278         OpsWidth = VF;
10279 
10280       if (!isPowerOf2_32(OpsWidth))
10281         continue;
10282 
10283       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
10284           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
10285         break;
10286 
10287       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
10288       // Check that a previous iteration of this loop did not delete the Value.
10289       if (llvm::any_of(Ops, [&R](Value *V) {
10290             auto *I = dyn_cast<Instruction>(V);
10291             return I && R.isDeleted(I);
10292           }))
10293         continue;
10294 
10295       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
10296                         << "\n");
10297 
10298       R.buildTree(Ops);
10299       if (R.isTreeTinyAndNotFullyVectorizable())
10300         continue;
10301       R.reorderTopToBottom();
10302       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
10303       R.buildExternalUses();
10304 
10305       R.computeMinimumValueSizes();
10306       InstructionCost Cost = R.getTreeCost();
10307       CandidateFound = true;
10308       MinCost = std::min(MinCost, Cost);
10309 
10310       if (Cost < -SLPCostThreshold) {
10311         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
10312         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
10313                                                     cast<Instruction>(Ops[0]))
10314                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
10315                                  << " and with tree size "
10316                                  << ore::NV("TreeSize", R.getTreeSize()));
10317 
10318         R.vectorizeTree();
10319         // Move to the next bundle.
10320         I += VF - 1;
10321         NextInst = I + 1;
10322         Changed = true;
10323       }
10324     }
10325   }
10326 
10327   if (!Changed && CandidateFound) {
10328     R.getORE()->emit([&]() {
10329       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
10330              << "List vectorization was possible but not beneficial with cost "
10331              << ore::NV("Cost", MinCost) << " >= "
10332              << ore::NV("Treshold", -SLPCostThreshold);
10333     });
10334   } else if (!Changed) {
10335     R.getORE()->emit([&]() {
10336       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
10337              << "Cannot SLP vectorize list: vectorization was impossible"
10338              << " with available vectorization factors";
10339     });
10340   }
10341   return Changed;
10342 }
10343 
10344 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
10345   if (!I)
10346     return false;
10347 
10348   if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) ||
10349       isa<VectorType>(I->getType()))
10350     return false;
10351 
10352   Value *P = I->getParent();
10353 
10354   // Vectorize in current basic block only.
10355   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
10356   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
10357   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
10358     return false;
10359 
10360   // First collect all possible candidates
10361   SmallVector<std::pair<Value *, Value *>, 4> Candidates;
10362   Candidates.emplace_back(Op0, Op1);
10363 
10364   auto *A = dyn_cast<BinaryOperator>(Op0);
10365   auto *B = dyn_cast<BinaryOperator>(Op1);
10366   // Try to skip B.
10367   if (A && B && B->hasOneUse()) {
10368     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
10369     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
10370     if (B0 && B0->getParent() == P)
10371       Candidates.emplace_back(A, B0);
10372     if (B1 && B1->getParent() == P)
10373       Candidates.emplace_back(A, B1);
10374   }
10375   // Try to skip A.
10376   if (B && A && A->hasOneUse()) {
10377     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
10378     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
10379     if (A0 && A0->getParent() == P)
10380       Candidates.emplace_back(A0, B);
10381     if (A1 && A1->getParent() == P)
10382       Candidates.emplace_back(A1, B);
10383   }
10384 
10385   if (Candidates.size() == 1)
10386     return tryToVectorizePair(Op0, Op1, R);
10387 
10388   // We have multiple options. Try to pick the single best.
10389   Optional<int> BestCandidate = R.findBestRootPair(Candidates);
10390   if (!BestCandidate)
10391     return false;
10392   return tryToVectorizePair(Candidates[*BestCandidate].first,
10393                             Candidates[*BestCandidate].second, R);
10394 }
10395 
10396 namespace {
10397 
10398 /// Model horizontal reductions.
10399 ///
10400 /// A horizontal reduction is a tree of reduction instructions that has values
10401 /// that can be put into a vector as its leaves. For example:
10402 ///
10403 /// mul mul mul mul
10404 ///  \  /    \  /
10405 ///   +       +
10406 ///    \     /
10407 ///       +
10408 /// This tree has "mul" as its leaf values and "+" as its reduction
10409 /// instructions. A reduction can feed into a store or a binary operation
10410 /// feeding a phi.
10411 ///    ...
10412 ///    \  /
10413 ///     +
10414 ///     |
10415 ///  phi +=
10416 ///
10417 ///  Or:
10418 ///    ...
10419 ///    \  /
10420 ///     +
10421 ///     |
10422 ///   *p =
10423 ///
10424 class HorizontalReduction {
10425   using ReductionOpsType = SmallVector<Value *, 16>;
10426   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
10427   ReductionOpsListType ReductionOps;
10428   /// List of possibly reduced values.
10429   SmallVector<SmallVector<Value *>> ReducedVals;
10430   /// Maps reduced value to the corresponding reduction operation.
10431   DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
10432   // Use map vector to make stable output.
10433   MapVector<Instruction *, Value *> ExtraArgs;
10434   WeakTrackingVH ReductionRoot;
10435   /// The type of reduction operation.
10436   RecurKind RdxKind;
10437 
10438   static bool isCmpSelMinMax(Instruction *I) {
10439     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
10440            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
10441   }
10442 
10443   // And/or are potentially poison-safe logical patterns like:
10444   // select x, y, false
10445   // select x, true, y
10446   static bool isBoolLogicOp(Instruction *I) {
10447     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
10448            match(I, m_LogicalOr(m_Value(), m_Value()));
10449   }
10450 
10451   /// Checks if instruction is associative and can be vectorized.
10452   static bool isVectorizable(RecurKind Kind, Instruction *I) {
10453     if (Kind == RecurKind::None)
10454       return false;
10455 
10456     // Integer ops that map to select instructions or intrinsics are fine.
10457     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
10458         isBoolLogicOp(I))
10459       return true;
10460 
10461     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
10462       // FP min/max are associative except for NaN and -0.0. We do not
10463       // have to rule out -0.0 here because the intrinsic semantics do not
10464       // specify a fixed result for it.
10465       return I->getFastMathFlags().noNaNs();
10466     }
10467 
10468     return I->isAssociative();
10469   }
10470 
10471   static Value *getRdxOperand(Instruction *I, unsigned Index) {
10472     // Poison-safe 'or' takes the form: select X, true, Y
10473     // To make that work with the normal operand processing, we skip the
10474     // true value operand.
10475     // TODO: Change the code and data structures to handle this without a hack.
10476     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
10477       return I->getOperand(2);
10478     return I->getOperand(Index);
10479   }
10480 
10481   /// Creates reduction operation with the current opcode.
10482   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
10483                          Value *RHS, const Twine &Name, bool UseSelect) {
10484     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
10485     switch (Kind) {
10486     case RecurKind::Or:
10487       if (UseSelect &&
10488           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10489         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
10490       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10491                                  Name);
10492     case RecurKind::And:
10493       if (UseSelect &&
10494           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10495         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
10496       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10497                                  Name);
10498     case RecurKind::Add:
10499     case RecurKind::Mul:
10500     case RecurKind::Xor:
10501     case RecurKind::FAdd:
10502     case RecurKind::FMul:
10503       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10504                                  Name);
10505     case RecurKind::FMax:
10506       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
10507     case RecurKind::FMin:
10508       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
10509     case RecurKind::SMax:
10510       if (UseSelect) {
10511         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
10512         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10513       }
10514       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
10515     case RecurKind::SMin:
10516       if (UseSelect) {
10517         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
10518         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10519       }
10520       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
10521     case RecurKind::UMax:
10522       if (UseSelect) {
10523         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
10524         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10525       }
10526       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
10527     case RecurKind::UMin:
10528       if (UseSelect) {
10529         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
10530         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10531       }
10532       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
10533     default:
10534       llvm_unreachable("Unknown reduction operation.");
10535     }
10536   }
10537 
10538   /// Creates reduction operation with the current opcode with the IR flags
10539   /// from \p ReductionOps, dropping nuw/nsw flags.
10540   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
10541                          Value *RHS, const Twine &Name,
10542                          const ReductionOpsListType &ReductionOps) {
10543     bool UseSelect = ReductionOps.size() == 2 ||
10544                      // Logical or/and.
10545                      (ReductionOps.size() == 1 &&
10546                       isa<SelectInst>(ReductionOps.front().front()));
10547     assert((!UseSelect || ReductionOps.size() != 2 ||
10548             isa<SelectInst>(ReductionOps[1][0])) &&
10549            "Expected cmp + select pairs for reduction");
10550     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
10551     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
10552       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
10553         propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
10554                          /*IncludeWrapFlags=*/false);
10555         propagateIRFlags(Op, ReductionOps[1], nullptr,
10556                          /*IncludeWrapFlags=*/false);
10557         return Op;
10558       }
10559     }
10560     propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
10561     return Op;
10562   }
10563 
10564   static RecurKind getRdxKind(Value *V) {
10565     auto *I = dyn_cast<Instruction>(V);
10566     if (!I)
10567       return RecurKind::None;
10568     if (match(I, m_Add(m_Value(), m_Value())))
10569       return RecurKind::Add;
10570     if (match(I, m_Mul(m_Value(), m_Value())))
10571       return RecurKind::Mul;
10572     if (match(I, m_And(m_Value(), m_Value())) ||
10573         match(I, m_LogicalAnd(m_Value(), m_Value())))
10574       return RecurKind::And;
10575     if (match(I, m_Or(m_Value(), m_Value())) ||
10576         match(I, m_LogicalOr(m_Value(), m_Value())))
10577       return RecurKind::Or;
10578     if (match(I, m_Xor(m_Value(), m_Value())))
10579       return RecurKind::Xor;
10580     if (match(I, m_FAdd(m_Value(), m_Value())))
10581       return RecurKind::FAdd;
10582     if (match(I, m_FMul(m_Value(), m_Value())))
10583       return RecurKind::FMul;
10584 
10585     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
10586       return RecurKind::FMax;
10587     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
10588       return RecurKind::FMin;
10589 
10590     // This matches either cmp+select or intrinsics. SLP is expected to handle
10591     // either form.
10592     // TODO: If we are canonicalizing to intrinsics, we can remove several
10593     //       special-case paths that deal with selects.
10594     if (match(I, m_SMax(m_Value(), m_Value())))
10595       return RecurKind::SMax;
10596     if (match(I, m_SMin(m_Value(), m_Value())))
10597       return RecurKind::SMin;
10598     if (match(I, m_UMax(m_Value(), m_Value())))
10599       return RecurKind::UMax;
10600     if (match(I, m_UMin(m_Value(), m_Value())))
10601       return RecurKind::UMin;
10602 
10603     if (auto *Select = dyn_cast<SelectInst>(I)) {
10604       // Try harder: look for min/max pattern based on instructions producing
10605       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
10606       // During the intermediate stages of SLP, it's very common to have
10607       // pattern like this (since optimizeGatherSequence is run only once
10608       // at the end):
10609       // %1 = extractelement <2 x i32> %a, i32 0
10610       // %2 = extractelement <2 x i32> %a, i32 1
10611       // %cond = icmp sgt i32 %1, %2
10612       // %3 = extractelement <2 x i32> %a, i32 0
10613       // %4 = extractelement <2 x i32> %a, i32 1
10614       // %select = select i1 %cond, i32 %3, i32 %4
10615       CmpInst::Predicate Pred;
10616       Instruction *L1;
10617       Instruction *L2;
10618 
10619       Value *LHS = Select->getTrueValue();
10620       Value *RHS = Select->getFalseValue();
10621       Value *Cond = Select->getCondition();
10622 
10623       // TODO: Support inverse predicates.
10624       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
10625         if (!isa<ExtractElementInst>(RHS) ||
10626             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10627           return RecurKind::None;
10628       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
10629         if (!isa<ExtractElementInst>(LHS) ||
10630             !L1->isIdenticalTo(cast<Instruction>(LHS)))
10631           return RecurKind::None;
10632       } else {
10633         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
10634           return RecurKind::None;
10635         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
10636             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
10637             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10638           return RecurKind::None;
10639       }
10640 
10641       switch (Pred) {
10642       default:
10643         return RecurKind::None;
10644       case CmpInst::ICMP_SGT:
10645       case CmpInst::ICMP_SGE:
10646         return RecurKind::SMax;
10647       case CmpInst::ICMP_SLT:
10648       case CmpInst::ICMP_SLE:
10649         return RecurKind::SMin;
10650       case CmpInst::ICMP_UGT:
10651       case CmpInst::ICMP_UGE:
10652         return RecurKind::UMax;
10653       case CmpInst::ICMP_ULT:
10654       case CmpInst::ICMP_ULE:
10655         return RecurKind::UMin;
10656       }
10657     }
10658     return RecurKind::None;
10659   }
10660 
10661   /// Get the index of the first operand.
10662   static unsigned getFirstOperandIndex(Instruction *I) {
10663     return isCmpSelMinMax(I) ? 1 : 0;
10664   }
10665 
10666   /// Total number of operands in the reduction operation.
10667   static unsigned getNumberOfOperands(Instruction *I) {
10668     return isCmpSelMinMax(I) ? 3 : 2;
10669   }
10670 
10671   /// Checks if the instruction is in basic block \p BB.
10672   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
10673   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
10674     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
10675       auto *Sel = cast<SelectInst>(I);
10676       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
10677       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
10678     }
10679     return I->getParent() == BB;
10680   }
10681 
10682   /// Expected number of uses for reduction operations/reduced values.
10683   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
10684     if (IsCmpSelMinMax) {
10685       // SelectInst must be used twice while the condition op must have single
10686       // use only.
10687       if (auto *Sel = dyn_cast<SelectInst>(I))
10688         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
10689       return I->hasNUses(2);
10690     }
10691 
10692     // Arithmetic reduction operation must be used once only.
10693     return I->hasOneUse();
10694   }
10695 
10696   /// Initializes the list of reduction operations.
10697   void initReductionOps(Instruction *I) {
10698     if (isCmpSelMinMax(I))
10699       ReductionOps.assign(2, ReductionOpsType());
10700     else
10701       ReductionOps.assign(1, ReductionOpsType());
10702   }
10703 
10704   /// Add all reduction operations for the reduction instruction \p I.
10705   void addReductionOps(Instruction *I) {
10706     if (isCmpSelMinMax(I)) {
10707       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
10708       ReductionOps[1].emplace_back(I);
10709     } else {
10710       ReductionOps[0].emplace_back(I);
10711     }
10712   }
10713 
10714   static Value *getLHS(RecurKind Kind, Instruction *I) {
10715     if (Kind == RecurKind::None)
10716       return nullptr;
10717     return I->getOperand(getFirstOperandIndex(I));
10718   }
10719   static Value *getRHS(RecurKind Kind, Instruction *I) {
10720     if (Kind == RecurKind::None)
10721       return nullptr;
10722     return I->getOperand(getFirstOperandIndex(I) + 1);
10723   }
10724 
10725 public:
10726   HorizontalReduction() = default;
10727 
10728   /// Try to find a reduction tree.
10729   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst,
10730                                  ScalarEvolution &SE, const DataLayout &DL,
10731                                  const TargetLibraryInfo &TLI) {
10732     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
10733            "Phi needs to use the binary operator");
10734     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
10735             isa<IntrinsicInst>(Inst)) &&
10736            "Expected binop, select, or intrinsic for reduction matching");
10737     RdxKind = getRdxKind(Inst);
10738 
10739     // We could have a initial reductions that is not an add.
10740     //  r *= v1 + v2 + v3 + v4
10741     // In such a case start looking for a tree rooted in the first '+'.
10742     if (Phi) {
10743       if (getLHS(RdxKind, Inst) == Phi) {
10744         Phi = nullptr;
10745         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
10746         if (!Inst)
10747           return false;
10748         RdxKind = getRdxKind(Inst);
10749       } else if (getRHS(RdxKind, Inst) == Phi) {
10750         Phi = nullptr;
10751         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
10752         if (!Inst)
10753           return false;
10754         RdxKind = getRdxKind(Inst);
10755       }
10756     }
10757 
10758     if (!isVectorizable(RdxKind, Inst))
10759       return false;
10760 
10761     // Analyze "regular" integer/FP types for reductions - no target-specific
10762     // types or pointers.
10763     Type *Ty = Inst->getType();
10764     if (!isValidElementType(Ty) || Ty->isPointerTy())
10765       return false;
10766 
10767     // Though the ultimate reduction may have multiple uses, its condition must
10768     // have only single use.
10769     if (auto *Sel = dyn_cast<SelectInst>(Inst))
10770       if (!Sel->getCondition()->hasOneUse())
10771         return false;
10772 
10773     ReductionRoot = Inst;
10774 
10775     // Iterate through all the operands of the possible reduction tree and
10776     // gather all the reduced values, sorting them by their value id.
10777     BasicBlock *BB = Inst->getParent();
10778     bool IsCmpSelMinMax = isCmpSelMinMax(Inst);
10779     SmallVector<Instruction *> Worklist(1, Inst);
10780     // Checks if the operands of the \p TreeN instruction are also reduction
10781     // operations or should be treated as reduced values or an extra argument,
10782     // which is not part of the reduction.
10783     auto &&CheckOperands = [this, IsCmpSelMinMax,
10784                             BB](Instruction *TreeN,
10785                                 SmallVectorImpl<Value *> &ExtraArgs,
10786                                 SmallVectorImpl<Value *> &PossibleReducedVals,
10787                                 SmallVectorImpl<Instruction *> &ReductionOps) {
10788       for (int I = getFirstOperandIndex(TreeN),
10789                End = getNumberOfOperands(TreeN);
10790            I < End; ++I) {
10791         Value *EdgeVal = getRdxOperand(TreeN, I);
10792         ReducedValsToOps[EdgeVal].push_back(TreeN);
10793         auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
10794         // Edge has wrong parent - mark as an extra argument.
10795         if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
10796             !hasSameParent(EdgeInst, BB)) {
10797           ExtraArgs.push_back(EdgeVal);
10798           continue;
10799         }
10800         // If the edge is not an instruction, or it is different from the main
10801         // reduction opcode or has too many uses - possible reduced value.
10802         if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
10803             IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
10804             !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
10805             !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) {
10806           PossibleReducedVals.push_back(EdgeVal);
10807           continue;
10808         }
10809         ReductionOps.push_back(EdgeInst);
10810       }
10811     };
10812     // Try to regroup reduced values so that it gets more profitable to try to
10813     // reduce them. Values are grouped by their value ids, instructions - by
10814     // instruction op id and/or alternate op id, plus do extra analysis for
10815     // loads (grouping them by the distabce between pointers) and cmp
10816     // instructions (grouping them by the predicate).
10817     MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
10818         PossibleReducedVals;
10819     initReductionOps(Inst);
10820     while (!Worklist.empty()) {
10821       Instruction *TreeN = Worklist.pop_back_val();
10822       SmallVector<Value *> Args;
10823       SmallVector<Value *> PossibleRedVals;
10824       SmallVector<Instruction *> PossibleReductionOps;
10825       CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
10826       // If too many extra args - mark the instruction itself as a reduction
10827       // value, not a reduction operation.
10828       if (Args.size() < 2) {
10829         addReductionOps(TreeN);
10830         // Add extra args.
10831         if (!Args.empty()) {
10832           assert(Args.size() == 1 && "Expected only single argument.");
10833           ExtraArgs[TreeN] = Args.front();
10834         }
10835         // Add reduction values. The values are sorted for better vectorization
10836         // results.
10837         for (Value *V : PossibleRedVals) {
10838           size_t Key, Idx;
10839           std::tie(Key, Idx) = generateKeySubkey(
10840               V, &TLI,
10841               [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10842                 auto It = PossibleReducedVals.find(Key);
10843                 if (It != PossibleReducedVals.end()) {
10844                   for (const auto &LoadData : It->second) {
10845                     auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10846                     if (getPointersDiff(RLI->getType(),
10847                                         RLI->getPointerOperand(), LI->getType(),
10848                                         LI->getPointerOperand(), DL, SE,
10849                                         /*StrictCheck=*/true))
10850                       return hash_value(RLI->getPointerOperand());
10851                   }
10852                 }
10853                 return hash_value(LI->getPointerOperand());
10854               },
10855               /*AllowAlternate=*/false);
10856           ++PossibleReducedVals[Key][Idx]
10857                 .insert(std::make_pair(V, 0))
10858                 .first->second;
10859         }
10860         Worklist.append(PossibleReductionOps.rbegin(),
10861                         PossibleReductionOps.rend());
10862       } else {
10863         size_t Key, Idx;
10864         std::tie(Key, Idx) = generateKeySubkey(
10865             TreeN, &TLI,
10866             [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10867               auto It = PossibleReducedVals.find(Key);
10868               if (It != PossibleReducedVals.end()) {
10869                 for (const auto &LoadData : It->second) {
10870                   auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10871                   if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
10872                                       LI->getType(), LI->getPointerOperand(),
10873                                       DL, SE, /*StrictCheck=*/true))
10874                     return hash_value(RLI->getPointerOperand());
10875                 }
10876               }
10877               return hash_value(LI->getPointerOperand());
10878             },
10879             /*AllowAlternate=*/false);
10880         ++PossibleReducedVals[Key][Idx]
10881               .insert(std::make_pair(TreeN, 0))
10882               .first->second;
10883       }
10884     }
10885     auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
10886     // Sort values by the total number of values kinds to start the reduction
10887     // from the longest possible reduced values sequences.
10888     for (auto &PossibleReducedVals : PossibleReducedValsVect) {
10889       auto PossibleRedVals = PossibleReducedVals.second.takeVector();
10890       SmallVector<SmallVector<Value *>> PossibleRedValsVect;
10891       for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
10892            It != E; ++It) {
10893         PossibleRedValsVect.emplace_back();
10894         auto RedValsVect = It->second.takeVector();
10895         stable_sort(RedValsVect, [](const auto &P1, const auto &P2) {
10896           return P1.second < P2.second;
10897         });
10898         for (const std::pair<Value *, unsigned> &Data : RedValsVect)
10899           PossibleRedValsVect.back().append(Data.second, Data.first);
10900       }
10901       stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
10902         return P1.size() > P2.size();
10903       });
10904       ReducedVals.emplace_back();
10905       for (ArrayRef<Value *> Data : PossibleRedValsVect)
10906         ReducedVals.back().append(Data.rbegin(), Data.rend());
10907     }
10908     // Sort the reduced values by number of same/alternate opcode and/or pointer
10909     // operand.
10910     stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
10911       return P1.size() > P2.size();
10912     });
10913     return true;
10914   }
10915 
10916   /// Attempt to vectorize the tree found by matchAssociativeReduction.
10917   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
10918     constexpr int ReductionLimit = 4;
10919     constexpr unsigned RegMaxNumber = 4;
10920     constexpr unsigned RedValsMaxNumber = 128;
10921     // If there are a sufficient number of reduction values, reduce
10922     // to a nearby power-of-2. We can safely generate oversized
10923     // vectors and rely on the backend to split them to legal sizes.
10924     unsigned NumReducedVals = std::accumulate(
10925         ReducedVals.begin(), ReducedVals.end(), 0,
10926         [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); });
10927     if (NumReducedVals < ReductionLimit)
10928       return nullptr;
10929 
10930     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
10931 
10932     // Track the reduced values in case if they are replaced by extractelement
10933     // because of the vectorization.
10934     DenseMap<Value *, WeakTrackingVH> TrackedVals;
10935     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
10936     // The same extra argument may be used several times, so log each attempt
10937     // to use it.
10938     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
10939       assert(Pair.first && "DebugLoc must be set.");
10940       ExternallyUsedValues[Pair.second].push_back(Pair.first);
10941       TrackedVals.try_emplace(Pair.second, Pair.second);
10942     }
10943 
10944     // The compare instruction of a min/max is the insertion point for new
10945     // instructions and may be replaced with a new compare instruction.
10946     auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
10947       assert(isa<SelectInst>(RdxRootInst) &&
10948              "Expected min/max reduction to have select root instruction");
10949       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
10950       assert(isa<Instruction>(ScalarCond) &&
10951              "Expected min/max reduction to have compare condition");
10952       return cast<Instruction>(ScalarCond);
10953     };
10954 
10955     // The reduction root is used as the insertion point for new instructions,
10956     // so set it as externally used to prevent it from being deleted.
10957     ExternallyUsedValues[ReductionRoot];
10958     SmallDenseSet<Value *> IgnoreList;
10959     for (ReductionOpsType &RdxOps : ReductionOps)
10960       for (Value *RdxOp : RdxOps) {
10961         if (!RdxOp)
10962           continue;
10963         IgnoreList.insert(RdxOp);
10964       }
10965     bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
10966 
10967     // Need to track reduced vals, they may be changed during vectorization of
10968     // subvectors.
10969     for (ArrayRef<Value *> Candidates : ReducedVals)
10970       for (Value *V : Candidates)
10971         TrackedVals.try_emplace(V, V);
10972 
10973     DenseMap<Value *, unsigned> VectorizedVals;
10974     Value *VectorizedTree = nullptr;
10975     bool CheckForReusedReductionOps = false;
10976     // Try to vectorize elements based on their type.
10977     for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
10978       ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
10979       InstructionsState S = getSameOpcode(OrigReducedVals);
10980       SmallVector<Value *> Candidates;
10981       DenseMap<Value *, Value *> TrackedToOrig;
10982       for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
10983         Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
10984         // Check if the reduction value was not overriden by the extractelement
10985         // instruction because of the vectorization and exclude it, if it is not
10986         // compatible with other values.
10987         if (auto *Inst = dyn_cast<Instruction>(RdxVal))
10988           if (isVectorLikeInstWithConstOps(Inst) &&
10989               (!S.getOpcode() || !S.isOpcodeOrAlt(Inst)))
10990             continue;
10991         Candidates.push_back(RdxVal);
10992         TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
10993       }
10994       bool ShuffledExtracts = false;
10995       // Try to handle shuffled extractelements.
10996       if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
10997           I + 1 < E) {
10998         InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]);
10999         if (NextS.getOpcode() == Instruction::ExtractElement &&
11000             !NextS.isAltShuffle()) {
11001           SmallVector<Value *> CommonCandidates(Candidates);
11002           for (Value *RV : ReducedVals[I + 1]) {
11003             Value *RdxVal = TrackedVals.find(RV)->second;
11004             // Check if the reduction value was not overriden by the
11005             // extractelement instruction because of the vectorization and
11006             // exclude it, if it is not compatible with other values.
11007             if (auto *Inst = dyn_cast<Instruction>(RdxVal))
11008               if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
11009                 continue;
11010             CommonCandidates.push_back(RdxVal);
11011             TrackedToOrig.try_emplace(RdxVal, RV);
11012           }
11013           SmallVector<int> Mask;
11014           if (isFixedVectorShuffle(CommonCandidates, Mask)) {
11015             ++I;
11016             Candidates.swap(CommonCandidates);
11017             ShuffledExtracts = true;
11018           }
11019         }
11020       }
11021       unsigned NumReducedVals = Candidates.size();
11022       if (NumReducedVals < ReductionLimit)
11023         continue;
11024 
11025       unsigned MaxVecRegSize = V.getMaxVecRegSize();
11026       unsigned EltSize = V.getVectorElementSize(Candidates[0]);
11027       unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize);
11028 
11029       unsigned ReduxWidth = std::min<unsigned>(
11030           PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
11031       unsigned Start = 0;
11032       unsigned Pos = Start;
11033       // Restarts vectorization attempt with lower vector factor.
11034       unsigned PrevReduxWidth = ReduxWidth;
11035       bool CheckForReusedReductionOpsLocal = false;
11036       auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
11037                                   &CheckForReusedReductionOpsLocal,
11038                                   &PrevReduxWidth, &V,
11039                                   &IgnoreList](bool IgnoreVL = false) {
11040         bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
11041         if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
11042           // Check if any of the reduction ops are gathered. If so, worth
11043           // trying again with less number of reduction ops.
11044           CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
11045         }
11046         ++Pos;
11047         if (Pos < NumReducedVals - ReduxWidth + 1)
11048           return IsAnyRedOpGathered;
11049         Pos = Start;
11050         ReduxWidth /= 2;
11051         return IsAnyRedOpGathered;
11052       };
11053       while (Pos < NumReducedVals - ReduxWidth + 1 &&
11054              ReduxWidth >= ReductionLimit) {
11055         // Dependency in tree of the reduction ops - drop this attempt, try
11056         // later.
11057         if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
11058             Start == 0) {
11059           CheckForReusedReductionOps = true;
11060           break;
11061         }
11062         PrevReduxWidth = ReduxWidth;
11063         ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
11064         // Beeing analyzed already - skip.
11065         if (V.areAnalyzedReductionVals(VL)) {
11066           (void)AdjustReducedVals(/*IgnoreVL=*/true);
11067           continue;
11068         }
11069         // Early exit if any of the reduction values were deleted during
11070         // previous vectorization attempts.
11071         if (any_of(VL, [&V](Value *RedVal) {
11072               auto *RedValI = dyn_cast<Instruction>(RedVal);
11073               if (!RedValI)
11074                 return false;
11075               return V.isDeleted(RedValI);
11076             }))
11077           break;
11078         V.buildTree(VL, IgnoreList);
11079         if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
11080           if (!AdjustReducedVals())
11081             V.analyzedReductionVals(VL);
11082           continue;
11083         }
11084         if (V.isLoadCombineReductionCandidate(RdxKind)) {
11085           if (!AdjustReducedVals())
11086             V.analyzedReductionVals(VL);
11087           continue;
11088         }
11089         V.reorderTopToBottom();
11090         // No need to reorder the root node at all.
11091         V.reorderBottomToTop(/*IgnoreReorder=*/true);
11092         // Keep extracted other reduction values, if they are used in the
11093         // vectorization trees.
11094         BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
11095             ExternallyUsedValues);
11096         for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
11097           if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
11098             continue;
11099           for_each(ReducedVals[Cnt],
11100                    [&LocalExternallyUsedValues, &TrackedVals](Value *V) {
11101                      if (isa<Instruction>(V))
11102                        LocalExternallyUsedValues[TrackedVals[V]];
11103                    });
11104         }
11105         // Number of uses of the candidates in the vector of values.
11106         SmallDenseMap<Value *, unsigned> NumUses;
11107         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11108           Value *V = Candidates[Cnt];
11109           if (NumUses.count(V) > 0)
11110             continue;
11111           NumUses[V] = std::count(VL.begin(), VL.end(), V);
11112         }
11113         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11114           Value *V = Candidates[Cnt];
11115           if (NumUses.count(V) > 0)
11116             continue;
11117           NumUses[V] = std::count(VL.begin(), VL.end(), V);
11118         }
11119         // Gather externally used values.
11120         SmallPtrSet<Value *, 4> Visited;
11121         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
11122           Value *V = Candidates[Cnt];
11123           if (!Visited.insert(V).second)
11124             continue;
11125           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11126           if (NumOps != ReducedValsToOps.find(V)->second.size())
11127             LocalExternallyUsedValues[V];
11128         }
11129         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
11130           Value *V = Candidates[Cnt];
11131           if (!Visited.insert(V).second)
11132             continue;
11133           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
11134           if (NumOps != ReducedValsToOps.find(V)->second.size())
11135             LocalExternallyUsedValues[V];
11136         }
11137         V.buildExternalUses(LocalExternallyUsedValues);
11138 
11139         V.computeMinimumValueSizes();
11140 
11141         // Intersect the fast-math-flags from all reduction operations.
11142         FastMathFlags RdxFMF;
11143         RdxFMF.set();
11144         for (Value *U : IgnoreList)
11145           if (auto *FPMO = dyn_cast<FPMathOperator>(U))
11146             RdxFMF &= FPMO->getFastMathFlags();
11147         // Estimate cost.
11148         InstructionCost TreeCost = V.getTreeCost(VL);
11149         InstructionCost ReductionCost =
11150             getReductionCost(TTI, VL, ReduxWidth, RdxFMF);
11151         InstructionCost Cost = TreeCost + ReductionCost;
11152         if (!Cost.isValid()) {
11153           LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
11154           return nullptr;
11155         }
11156         if (Cost >= -SLPCostThreshold) {
11157           V.getORE()->emit([&]() {
11158             return OptimizationRemarkMissed(
11159                        SV_NAME, "HorSLPNotBeneficial",
11160                        ReducedValsToOps.find(VL[0])->second.front())
11161                    << "Vectorizing horizontal reduction is possible"
11162                    << "but not beneficial with cost " << ore::NV("Cost", Cost)
11163                    << " and threshold "
11164                    << ore::NV("Threshold", -SLPCostThreshold);
11165           });
11166           if (!AdjustReducedVals())
11167             V.analyzedReductionVals(VL);
11168           continue;
11169         }
11170 
11171         LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
11172                           << Cost << ". (HorRdx)\n");
11173         V.getORE()->emit([&]() {
11174           return OptimizationRemark(
11175                      SV_NAME, "VectorizedHorizontalReduction",
11176                      ReducedValsToOps.find(VL[0])->second.front())
11177                  << "Vectorized horizontal reduction with cost "
11178                  << ore::NV("Cost", Cost) << " and with tree size "
11179                  << ore::NV("TreeSize", V.getTreeSize());
11180         });
11181 
11182         Builder.setFastMathFlags(RdxFMF);
11183 
11184         // Vectorize a tree.
11185         Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues);
11186 
11187         // Emit a reduction. If the root is a select (min/max idiom), the insert
11188         // point is the compare condition of that select.
11189         Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
11190         if (IsCmpSelMinMax)
11191           Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst));
11192         else
11193           Builder.SetInsertPoint(RdxRootInst);
11194 
11195         // To prevent poison from leaking across what used to be sequential,
11196         // safe, scalar boolean logic operations, the reduction operand must be
11197         // frozen.
11198         if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
11199           VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
11200 
11201         Value *ReducedSubTree =
11202             emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
11203 
11204         if (!VectorizedTree) {
11205           // Initialize the final value in the reduction.
11206           VectorizedTree = ReducedSubTree;
11207         } else {
11208           // Update the final value in the reduction.
11209           Builder.SetCurrentDebugLocation(
11210               cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
11211           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11212                                     ReducedSubTree, "op.rdx", ReductionOps);
11213         }
11214         // Count vectorized reduced values to exclude them from final reduction.
11215         for (Value *V : VL)
11216           ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0)
11217                 .first->getSecond();
11218         Pos += ReduxWidth;
11219         Start = Pos;
11220         ReduxWidth = PowerOf2Floor(NumReducedVals - Pos);
11221       }
11222     }
11223     if (VectorizedTree) {
11224       // Finish the reduction.
11225       // Need to add extra arguments and not vectorized possible reduction
11226       // values.
11227       // Try to avoid dependencies between the scalar remainders after
11228       // reductions.
11229       auto &&FinalGen =
11230           [this, &Builder,
11231            &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) {
11232             unsigned Sz = InstVals.size();
11233             SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
11234                                                                      Sz % 2);
11235             for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
11236               Instruction *RedOp = InstVals[I + 1].first;
11237               Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11238               Value *RdxVal1 = InstVals[I].second;
11239               Value *StableRdxVal1 = RdxVal1;
11240               auto It1 = TrackedVals.find(RdxVal1);
11241               if (It1 != TrackedVals.end())
11242                 StableRdxVal1 = It1->second;
11243               Value *RdxVal2 = InstVals[I + 1].second;
11244               Value *StableRdxVal2 = RdxVal2;
11245               auto It2 = TrackedVals.find(RdxVal2);
11246               if (It2 != TrackedVals.end())
11247                 StableRdxVal2 = It2->second;
11248               Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
11249                                          StableRdxVal2, "op.rdx", ReductionOps);
11250               ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
11251             }
11252             if (Sz % 2 == 1)
11253               ExtraReds[Sz / 2] = InstVals.back();
11254             return ExtraReds;
11255           };
11256       SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
11257       SmallPtrSet<Value *, 8> Visited;
11258       for (ArrayRef<Value *> Candidates : ReducedVals) {
11259         for (Value *RdxVal : Candidates) {
11260           if (!Visited.insert(RdxVal).second)
11261             continue;
11262           unsigned NumOps = VectorizedVals.lookup(RdxVal);
11263           for (Instruction *RedOp :
11264                makeArrayRef(ReducedValsToOps.find(RdxVal)->second)
11265                    .drop_back(NumOps))
11266             ExtraReductions.emplace_back(RedOp, RdxVal);
11267         }
11268       }
11269       for (auto &Pair : ExternallyUsedValues) {
11270         // Add each externally used value to the final reduction.
11271         for (auto *I : Pair.second)
11272           ExtraReductions.emplace_back(I, Pair.first);
11273       }
11274       // Iterate through all not-vectorized reduction values/extra arguments.
11275       while (ExtraReductions.size() > 1) {
11276         SmallVector<std::pair<Instruction *, Value *>> NewReds =
11277             FinalGen(ExtraReductions);
11278         ExtraReductions.swap(NewReds);
11279       }
11280       // Final reduction.
11281       if (ExtraReductions.size() == 1) {
11282         Instruction *RedOp = ExtraReductions.back().first;
11283         Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11284         Value *RdxVal = ExtraReductions.back().second;
11285         Value *StableRdxVal = RdxVal;
11286         auto It = TrackedVals.find(RdxVal);
11287         if (It != TrackedVals.end())
11288           StableRdxVal = It->second;
11289         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11290                                   StableRdxVal, "op.rdx", ReductionOps);
11291       }
11292 
11293       ReductionRoot->replaceAllUsesWith(VectorizedTree);
11294 
11295       // The original scalar reduction is expected to have no remaining
11296       // uses outside the reduction tree itself.  Assert that we got this
11297       // correct, replace internal uses with undef, and mark for eventual
11298       // deletion.
11299 #ifndef NDEBUG
11300       SmallSet<Value *, 4> IgnoreSet;
11301       for (ArrayRef<Value *> RdxOps : ReductionOps)
11302         IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
11303 #endif
11304       for (ArrayRef<Value *> RdxOps : ReductionOps) {
11305         for (Value *Ignore : RdxOps) {
11306           if (!Ignore)
11307             continue;
11308 #ifndef NDEBUG
11309           for (auto *U : Ignore->users()) {
11310             assert(IgnoreSet.count(U) &&
11311                    "All users must be either in the reduction ops list.");
11312           }
11313 #endif
11314           if (!Ignore->use_empty()) {
11315             Value *Undef = UndefValue::get(Ignore->getType());
11316             Ignore->replaceAllUsesWith(Undef);
11317           }
11318           V.eraseInstruction(cast<Instruction>(Ignore));
11319         }
11320       }
11321     } else if (!CheckForReusedReductionOps) {
11322       for (ReductionOpsType &RdxOps : ReductionOps)
11323         for (Value *RdxOp : RdxOps)
11324           V.analyzedReductionRoot(cast<Instruction>(RdxOp));
11325     }
11326     return VectorizedTree;
11327   }
11328 
11329 private:
11330   /// Calculate the cost of a reduction.
11331   InstructionCost getReductionCost(TargetTransformInfo *TTI,
11332                                    ArrayRef<Value *> ReducedVals,
11333                                    unsigned ReduxWidth, FastMathFlags FMF) {
11334     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
11335     Value *FirstReducedVal = ReducedVals.front();
11336     Type *ScalarTy = FirstReducedVal->getType();
11337     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
11338     InstructionCost VectorCost = 0, ScalarCost;
11339     // If all of the reduced values are constant, the vector cost is 0, since
11340     // the reduction value can be calculated at the compile time.
11341     bool AllConsts = all_of(ReducedVals, isConstant);
11342     switch (RdxKind) {
11343     case RecurKind::Add:
11344     case RecurKind::Mul:
11345     case RecurKind::Or:
11346     case RecurKind::And:
11347     case RecurKind::Xor:
11348     case RecurKind::FAdd:
11349     case RecurKind::FMul: {
11350       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
11351       if (!AllConsts)
11352         VectorCost =
11353             TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
11354       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
11355       break;
11356     }
11357     case RecurKind::FMax:
11358     case RecurKind::FMin: {
11359       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11360       if (!AllConsts) {
11361         auto *VecCondTy =
11362             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11363         VectorCost =
11364             TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11365                                         /*IsUnsigned=*/false, CostKind);
11366       }
11367       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11368       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
11369                                            SclCondTy, RdxPred, CostKind) +
11370                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11371                                            SclCondTy, RdxPred, CostKind);
11372       break;
11373     }
11374     case RecurKind::SMax:
11375     case RecurKind::SMin:
11376     case RecurKind::UMax:
11377     case RecurKind::UMin: {
11378       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11379       if (!AllConsts) {
11380         auto *VecCondTy =
11381             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11382         bool IsUnsigned =
11383             RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
11384         VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11385                                                  IsUnsigned, CostKind);
11386       }
11387       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11388       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
11389                                            SclCondTy, RdxPred, CostKind) +
11390                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11391                                            SclCondTy, RdxPred, CostKind);
11392       break;
11393     }
11394     default:
11395       llvm_unreachable("Expected arithmetic or min/max reduction operation");
11396     }
11397 
11398     // Scalar cost is repeated for N-1 elements.
11399     ScalarCost *= (ReduxWidth - 1);
11400     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
11401                       << " for reduction that starts with " << *FirstReducedVal
11402                       << " (It is a splitting reduction)\n");
11403     return VectorCost - ScalarCost;
11404   }
11405 
11406   /// Emit a horizontal reduction of the vectorized value.
11407   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
11408                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
11409     assert(VectorizedValue && "Need to have a vectorized tree node");
11410     assert(isPowerOf2_32(ReduxWidth) &&
11411            "We only handle power-of-two reductions for now");
11412     assert(RdxKind != RecurKind::FMulAdd &&
11413            "A call to the llvm.fmuladd intrinsic is not handled yet");
11414 
11415     ++NumVectorInstructions;
11416     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
11417   }
11418 };
11419 
11420 } // end anonymous namespace
11421 
11422 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
11423   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
11424     return cast<FixedVectorType>(IE->getType())->getNumElements();
11425 
11426   unsigned AggregateSize = 1;
11427   auto *IV = cast<InsertValueInst>(InsertInst);
11428   Type *CurrentType = IV->getType();
11429   do {
11430     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
11431       for (auto *Elt : ST->elements())
11432         if (Elt != ST->getElementType(0)) // check homogeneity
11433           return None;
11434       AggregateSize *= ST->getNumElements();
11435       CurrentType = ST->getElementType(0);
11436     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
11437       AggregateSize *= AT->getNumElements();
11438       CurrentType = AT->getElementType();
11439     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
11440       AggregateSize *= VT->getNumElements();
11441       return AggregateSize;
11442     } else if (CurrentType->isSingleValueType()) {
11443       return AggregateSize;
11444     } else {
11445       return None;
11446     }
11447   } while (true);
11448 }
11449 
11450 static void findBuildAggregate_rec(Instruction *LastInsertInst,
11451                                    TargetTransformInfo *TTI,
11452                                    SmallVectorImpl<Value *> &BuildVectorOpds,
11453                                    SmallVectorImpl<Value *> &InsertElts,
11454                                    unsigned OperandOffset) {
11455   do {
11456     Value *InsertedOperand = LastInsertInst->getOperand(1);
11457     Optional<unsigned> OperandIndex =
11458         getInsertIndex(LastInsertInst, OperandOffset);
11459     if (!OperandIndex)
11460       return;
11461     if (isa<InsertElementInst>(InsertedOperand) ||
11462         isa<InsertValueInst>(InsertedOperand)) {
11463       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
11464                              BuildVectorOpds, InsertElts, *OperandIndex);
11465 
11466     } else {
11467       BuildVectorOpds[*OperandIndex] = InsertedOperand;
11468       InsertElts[*OperandIndex] = LastInsertInst;
11469     }
11470     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
11471   } while (LastInsertInst != nullptr &&
11472            (isa<InsertValueInst>(LastInsertInst) ||
11473             isa<InsertElementInst>(LastInsertInst)) &&
11474            LastInsertInst->hasOneUse());
11475 }
11476 
11477 /// Recognize construction of vectors like
11478 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
11479 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
11480 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
11481 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
11482 ///  starting from the last insertelement or insertvalue instruction.
11483 ///
11484 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
11485 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
11486 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
11487 ///
11488 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
11489 ///
11490 /// \return true if it matches.
11491 static bool findBuildAggregate(Instruction *LastInsertInst,
11492                                TargetTransformInfo *TTI,
11493                                SmallVectorImpl<Value *> &BuildVectorOpds,
11494                                SmallVectorImpl<Value *> &InsertElts) {
11495 
11496   assert((isa<InsertElementInst>(LastInsertInst) ||
11497           isa<InsertValueInst>(LastInsertInst)) &&
11498          "Expected insertelement or insertvalue instruction!");
11499 
11500   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
11501          "Expected empty result vectors!");
11502 
11503   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
11504   if (!AggregateSize)
11505     return false;
11506   BuildVectorOpds.resize(*AggregateSize);
11507   InsertElts.resize(*AggregateSize);
11508 
11509   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
11510   llvm::erase_value(BuildVectorOpds, nullptr);
11511   llvm::erase_value(InsertElts, nullptr);
11512   if (BuildVectorOpds.size() >= 2)
11513     return true;
11514 
11515   return false;
11516 }
11517 
11518 /// Try and get a reduction value from a phi node.
11519 ///
11520 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
11521 /// if they come from either \p ParentBB or a containing loop latch.
11522 ///
11523 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
11524 /// if not possible.
11525 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
11526                                 BasicBlock *ParentBB, LoopInfo *LI) {
11527   // There are situations where the reduction value is not dominated by the
11528   // reduction phi. Vectorizing such cases has been reported to cause
11529   // miscompiles. See PR25787.
11530   auto DominatedReduxValue = [&](Value *R) {
11531     return isa<Instruction>(R) &&
11532            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
11533   };
11534 
11535   Value *Rdx = nullptr;
11536 
11537   // Return the incoming value if it comes from the same BB as the phi node.
11538   if (P->getIncomingBlock(0) == ParentBB) {
11539     Rdx = P->getIncomingValue(0);
11540   } else if (P->getIncomingBlock(1) == ParentBB) {
11541     Rdx = P->getIncomingValue(1);
11542   }
11543 
11544   if (Rdx && DominatedReduxValue(Rdx))
11545     return Rdx;
11546 
11547   // Otherwise, check whether we have a loop latch to look at.
11548   Loop *BBL = LI->getLoopFor(ParentBB);
11549   if (!BBL)
11550     return nullptr;
11551   BasicBlock *BBLatch = BBL->getLoopLatch();
11552   if (!BBLatch)
11553     return nullptr;
11554 
11555   // There is a loop latch, return the incoming value if it comes from
11556   // that. This reduction pattern occasionally turns up.
11557   if (P->getIncomingBlock(0) == BBLatch) {
11558     Rdx = P->getIncomingValue(0);
11559   } else if (P->getIncomingBlock(1) == BBLatch) {
11560     Rdx = P->getIncomingValue(1);
11561   }
11562 
11563   if (Rdx && DominatedReduxValue(Rdx))
11564     return Rdx;
11565 
11566   return nullptr;
11567 }
11568 
11569 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
11570   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
11571     return true;
11572   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
11573     return true;
11574   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
11575     return true;
11576   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
11577     return true;
11578   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
11579     return true;
11580   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
11581     return true;
11582   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
11583     return true;
11584   return false;
11585 }
11586 
11587 /// Attempt to reduce a horizontal reduction.
11588 /// If it is legal to match a horizontal reduction feeding the phi node \a P
11589 /// with reduction operators \a Root (or one of its operands) in a basic block
11590 /// \a BB, then check if it can be done. If horizontal reduction is not found
11591 /// and root instruction is a binary operation, vectorization of the operands is
11592 /// attempted.
11593 /// \returns true if a horizontal reduction was matched and reduced or operands
11594 /// of one of the binary instruction were vectorized.
11595 /// \returns false if a horizontal reduction was not matched (or not possible)
11596 /// or no vectorization of any binary operation feeding \a Root instruction was
11597 /// performed.
11598 static bool tryToVectorizeHorReductionOrInstOperands(
11599     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
11600     TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL,
11601     const TargetLibraryInfo &TLI,
11602     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
11603   if (!ShouldVectorizeHor)
11604     return false;
11605 
11606   if (!Root)
11607     return false;
11608 
11609   if (Root->getParent() != BB || isa<PHINode>(Root))
11610     return false;
11611   // Start analysis starting from Root instruction. If horizontal reduction is
11612   // found, try to vectorize it. If it is not a horizontal reduction or
11613   // vectorization is not possible or not effective, and currently analyzed
11614   // instruction is a binary operation, try to vectorize the operands, using
11615   // pre-order DFS traversal order. If the operands were not vectorized, repeat
11616   // the same procedure considering each operand as a possible root of the
11617   // horizontal reduction.
11618   // Interrupt the process if the Root instruction itself was vectorized or all
11619   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
11620   // Skip the analysis of CmpInsts. Compiler implements postanalysis of the
11621   // CmpInsts so we can skip extra attempts in
11622   // tryToVectorizeHorReductionOrInstOperands and save compile time.
11623   std::queue<std::pair<Instruction *, unsigned>> Stack;
11624   Stack.emplace(Root, 0);
11625   SmallPtrSet<Value *, 8> VisitedInstrs;
11626   SmallVector<WeakTrackingVH> PostponedInsts;
11627   bool Res = false;
11628   auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst,
11629                                                      Value *&B0,
11630                                                      Value *&B1) -> Value * {
11631     if (R.isAnalyzedReductionRoot(Inst))
11632       return nullptr;
11633     bool IsBinop = matchRdxBop(Inst, B0, B1);
11634     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
11635     if (IsBinop || IsSelect) {
11636       HorizontalReduction HorRdx;
11637       if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI))
11638         return HorRdx.tryToReduce(R, TTI);
11639     }
11640     return nullptr;
11641   };
11642   while (!Stack.empty()) {
11643     Instruction *Inst;
11644     unsigned Level;
11645     std::tie(Inst, Level) = Stack.front();
11646     Stack.pop();
11647     // Do not try to analyze instruction that has already been vectorized.
11648     // This may happen when we vectorize instruction operands on a previous
11649     // iteration while stack was populated before that happened.
11650     if (R.isDeleted(Inst))
11651       continue;
11652     Value *B0 = nullptr, *B1 = nullptr;
11653     if (Value *V = TryToReduce(Inst, B0, B1)) {
11654       Res = true;
11655       // Set P to nullptr to avoid re-analysis of phi node in
11656       // matchAssociativeReduction function unless this is the root node.
11657       P = nullptr;
11658       if (auto *I = dyn_cast<Instruction>(V)) {
11659         // Try to find another reduction.
11660         Stack.emplace(I, Level);
11661         continue;
11662       }
11663     } else {
11664       bool IsBinop = B0 && B1;
11665       if (P && IsBinop) {
11666         Inst = dyn_cast<Instruction>(B0);
11667         if (Inst == P)
11668           Inst = dyn_cast<Instruction>(B1);
11669         if (!Inst) {
11670           // Set P to nullptr to avoid re-analysis of phi node in
11671           // matchAssociativeReduction function unless this is the root node.
11672           P = nullptr;
11673           continue;
11674         }
11675       }
11676       // Set P to nullptr to avoid re-analysis of phi node in
11677       // matchAssociativeReduction function unless this is the root node.
11678       P = nullptr;
11679       // Do not try to vectorize CmpInst operands, this is done separately.
11680       // Final attempt for binop args vectorization should happen after the loop
11681       // to try to find reductions.
11682       if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst))
11683         PostponedInsts.push_back(Inst);
11684     }
11685 
11686     // Try to vectorize operands.
11687     // Continue analysis for the instruction from the same basic block only to
11688     // save compile time.
11689     if (++Level < RecursionMaxDepth)
11690       for (auto *Op : Inst->operand_values())
11691         if (VisitedInstrs.insert(Op).second)
11692           if (auto *I = dyn_cast<Instruction>(Op))
11693             // Do not try to vectorize CmpInst operands,  this is done
11694             // separately.
11695             if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
11696                 !R.isDeleted(I) && I->getParent() == BB)
11697               Stack.emplace(I, Level);
11698   }
11699   // Try to vectorized binops where reductions were not found.
11700   for (Value *V : PostponedInsts)
11701     if (auto *Inst = dyn_cast<Instruction>(V))
11702       if (!R.isDeleted(Inst))
11703         Res |= Vectorize(Inst, R);
11704   return Res;
11705 }
11706 
11707 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
11708                                                  BasicBlock *BB, BoUpSLP &R,
11709                                                  TargetTransformInfo *TTI) {
11710   auto *I = dyn_cast_or_null<Instruction>(V);
11711   if (!I)
11712     return false;
11713 
11714   if (!isa<BinaryOperator>(I))
11715     P = nullptr;
11716   // Try to match and vectorize a horizontal reduction.
11717   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
11718     return tryToVectorize(I, R);
11719   };
11720   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL,
11721                                                   *TLI, ExtraVectorization);
11722 }
11723 
11724 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
11725                                                  BasicBlock *BB, BoUpSLP &R) {
11726   const DataLayout &DL = BB->getModule()->getDataLayout();
11727   if (!R.canMapToVector(IVI->getType(), DL))
11728     return false;
11729 
11730   SmallVector<Value *, 16> BuildVectorOpds;
11731   SmallVector<Value *, 16> BuildVectorInsts;
11732   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
11733     return false;
11734 
11735   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
11736   // Aggregate value is unlikely to be processed in vector register.
11737   return tryToVectorizeList(BuildVectorOpds, R);
11738 }
11739 
11740 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
11741                                                    BasicBlock *BB, BoUpSLP &R) {
11742   SmallVector<Value *, 16> BuildVectorInsts;
11743   SmallVector<Value *, 16> BuildVectorOpds;
11744   SmallVector<int> Mask;
11745   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
11746       (llvm::all_of(
11747            BuildVectorOpds,
11748            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
11749        isFixedVectorShuffle(BuildVectorOpds, Mask)))
11750     return false;
11751 
11752   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
11753   return tryToVectorizeList(BuildVectorInsts, R);
11754 }
11755 
11756 template <typename T>
11757 static bool
11758 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
11759                        function_ref<unsigned(T *)> Limit,
11760                        function_ref<bool(T *, T *)> Comparator,
11761                        function_ref<bool(T *, T *)> AreCompatible,
11762                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
11763                        bool LimitForRegisterSize) {
11764   bool Changed = false;
11765   // Sort by type, parent, operands.
11766   stable_sort(Incoming, Comparator);
11767 
11768   // Try to vectorize elements base on their type.
11769   SmallVector<T *> Candidates;
11770   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
11771     // Look for the next elements with the same type, parent and operand
11772     // kinds.
11773     auto *SameTypeIt = IncIt;
11774     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
11775       ++SameTypeIt;
11776 
11777     // Try to vectorize them.
11778     unsigned NumElts = (SameTypeIt - IncIt);
11779     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
11780                       << NumElts << ")\n");
11781     // The vectorization is a 3-state attempt:
11782     // 1. Try to vectorize instructions with the same/alternate opcodes with the
11783     // size of maximal register at first.
11784     // 2. Try to vectorize remaining instructions with the same type, if
11785     // possible. This may result in the better vectorization results rather than
11786     // if we try just to vectorize instructions with the same/alternate opcodes.
11787     // 3. Final attempt to try to vectorize all instructions with the
11788     // same/alternate ops only, this may result in some extra final
11789     // vectorization.
11790     if (NumElts > 1 &&
11791         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
11792       // Success start over because instructions might have been changed.
11793       Changed = true;
11794     } else if (NumElts < Limit(*IncIt) &&
11795                (Candidates.empty() ||
11796                 Candidates.front()->getType() == (*IncIt)->getType())) {
11797       Candidates.append(IncIt, std::next(IncIt, NumElts));
11798     }
11799     // Final attempt to vectorize instructions with the same types.
11800     if (Candidates.size() > 1 &&
11801         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
11802       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
11803         // Success start over because instructions might have been changed.
11804         Changed = true;
11805       } else if (LimitForRegisterSize) {
11806         // Try to vectorize using small vectors.
11807         for (auto *It = Candidates.begin(), *End = Candidates.end();
11808              It != End;) {
11809           auto *SameTypeIt = It;
11810           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
11811             ++SameTypeIt;
11812           unsigned NumElts = (SameTypeIt - It);
11813           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
11814                                             /*LimitForRegisterSize=*/false))
11815             Changed = true;
11816           It = SameTypeIt;
11817         }
11818       }
11819       Candidates.clear();
11820     }
11821 
11822     // Start over at the next instruction of a different type (or the end).
11823     IncIt = SameTypeIt;
11824   }
11825   return Changed;
11826 }
11827 
11828 /// Compare two cmp instructions. If IsCompatibility is true, function returns
11829 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
11830 /// operands. If IsCompatibility is false, function implements strict weak
11831 /// ordering relation between two cmp instructions, returning true if the first
11832 /// instruction is "less" than the second, i.e. its predicate is less than the
11833 /// predicate of the second or the operands IDs are less than the operands IDs
11834 /// of the second cmp instruction.
11835 template <bool IsCompatibility>
11836 static bool compareCmp(Value *V, Value *V2,
11837                        function_ref<bool(Instruction *)> IsDeleted) {
11838   auto *CI1 = cast<CmpInst>(V);
11839   auto *CI2 = cast<CmpInst>(V2);
11840   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
11841     return false;
11842   if (CI1->getOperand(0)->getType()->getTypeID() <
11843       CI2->getOperand(0)->getType()->getTypeID())
11844     return !IsCompatibility;
11845   if (CI1->getOperand(0)->getType()->getTypeID() >
11846       CI2->getOperand(0)->getType()->getTypeID())
11847     return false;
11848   CmpInst::Predicate Pred1 = CI1->getPredicate();
11849   CmpInst::Predicate Pred2 = CI2->getPredicate();
11850   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
11851   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
11852   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
11853   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
11854   if (BasePred1 < BasePred2)
11855     return !IsCompatibility;
11856   if (BasePred1 > BasePred2)
11857     return false;
11858   // Compare operands.
11859   bool LEPreds = Pred1 <= Pred2;
11860   bool GEPreds = Pred1 >= Pred2;
11861   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
11862     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
11863     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
11864     if (Op1->getValueID() < Op2->getValueID())
11865       return !IsCompatibility;
11866     if (Op1->getValueID() > Op2->getValueID())
11867       return false;
11868     if (auto *I1 = dyn_cast<Instruction>(Op1))
11869       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
11870         if (I1->getParent() != I2->getParent())
11871           return false;
11872         InstructionsState S = getSameOpcode({I1, I2});
11873         if (S.getOpcode())
11874           continue;
11875         return false;
11876       }
11877   }
11878   return IsCompatibility;
11879 }
11880 
11881 bool SLPVectorizerPass::vectorizeSimpleInstructions(
11882     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
11883     bool AtTerminator) {
11884   bool OpsChanged = false;
11885   SmallVector<Instruction *, 4> PostponedCmps;
11886   for (auto *I : reverse(Instructions)) {
11887     if (R.isDeleted(I))
11888       continue;
11889     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
11890       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
11891     } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
11892       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
11893     } else if (isa<CmpInst>(I)) {
11894       PostponedCmps.push_back(I);
11895       continue;
11896     }
11897     // Try to find reductions in buildvector sequnces.
11898     OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI);
11899   }
11900   if (AtTerminator) {
11901     // Try to find reductions first.
11902     for (Instruction *I : PostponedCmps) {
11903       if (R.isDeleted(I))
11904         continue;
11905       for (Value *Op : I->operands())
11906         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
11907     }
11908     // Try to vectorize operands as vector bundles.
11909     for (Instruction *I : PostponedCmps) {
11910       if (R.isDeleted(I))
11911         continue;
11912       OpsChanged |= tryToVectorize(I, R);
11913     }
11914     // Try to vectorize list of compares.
11915     // Sort by type, compare predicate, etc.
11916     auto &&CompareSorter = [&R](Value *V, Value *V2) {
11917       return compareCmp<false>(V, V2,
11918                                [&R](Instruction *I) { return R.isDeleted(I); });
11919     };
11920 
11921     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
11922       if (V1 == V2)
11923         return true;
11924       return compareCmp<true>(V1, V2,
11925                               [&R](Instruction *I) { return R.isDeleted(I); });
11926     };
11927     auto Limit = [&R](Value *V) {
11928       unsigned EltSize = R.getVectorElementSize(V);
11929       return std::max(2U, R.getMaxVecRegSize() / EltSize);
11930     };
11931 
11932     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
11933     OpsChanged |= tryToVectorizeSequence<Value>(
11934         Vals, Limit, CompareSorter, AreCompatibleCompares,
11935         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
11936           // Exclude possible reductions from other blocks.
11937           bool ArePossiblyReducedInOtherBlock =
11938               any_of(Candidates, [](Value *V) {
11939                 return any_of(V->users(), [V](User *U) {
11940                   return isa<SelectInst>(U) &&
11941                          cast<SelectInst>(U)->getParent() !=
11942                              cast<Instruction>(V)->getParent();
11943                 });
11944               });
11945           if (ArePossiblyReducedInOtherBlock)
11946             return false;
11947           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
11948         },
11949         /*LimitForRegisterSize=*/true);
11950     Instructions.clear();
11951   } else {
11952     // Insert in reverse order since the PostponedCmps vector was filled in
11953     // reverse order.
11954     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
11955   }
11956   return OpsChanged;
11957 }
11958 
11959 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
11960   bool Changed = false;
11961   SmallVector<Value *, 4> Incoming;
11962   SmallPtrSet<Value *, 16> VisitedInstrs;
11963   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
11964   // node. Allows better to identify the chains that can be vectorized in the
11965   // better way.
11966   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
11967   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
11968     assert(isValidElementType(V1->getType()) &&
11969            isValidElementType(V2->getType()) &&
11970            "Expected vectorizable types only.");
11971     // It is fine to compare type IDs here, since we expect only vectorizable
11972     // types, like ints, floats and pointers, we don't care about other type.
11973     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
11974       return true;
11975     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
11976       return false;
11977     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
11978     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
11979     if (Opcodes1.size() < Opcodes2.size())
11980       return true;
11981     if (Opcodes1.size() > Opcodes2.size())
11982       return false;
11983     Optional<bool> ConstOrder;
11984     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
11985       // Undefs are compatible with any other value.
11986       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
11987         if (!ConstOrder)
11988           ConstOrder =
11989               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
11990         continue;
11991       }
11992       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
11993         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
11994           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
11995           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
11996           if (!NodeI1)
11997             return NodeI2 != nullptr;
11998           if (!NodeI2)
11999             return false;
12000           assert((NodeI1 == NodeI2) ==
12001                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12002                  "Different nodes should have different DFS numbers");
12003           if (NodeI1 != NodeI2)
12004             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12005           InstructionsState S = getSameOpcode({I1, I2});
12006           if (S.getOpcode())
12007             continue;
12008           return I1->getOpcode() < I2->getOpcode();
12009         }
12010       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
12011         if (!ConstOrder)
12012           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
12013         continue;
12014       }
12015       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
12016         return true;
12017       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
12018         return false;
12019     }
12020     return ConstOrder && *ConstOrder;
12021   };
12022   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
12023     if (V1 == V2)
12024       return true;
12025     if (V1->getType() != V2->getType())
12026       return false;
12027     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
12028     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
12029     if (Opcodes1.size() != Opcodes2.size())
12030       return false;
12031     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
12032       // Undefs are compatible with any other value.
12033       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
12034         continue;
12035       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
12036         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
12037           if (I1->getParent() != I2->getParent())
12038             return false;
12039           InstructionsState S = getSameOpcode({I1, I2});
12040           if (S.getOpcode())
12041             continue;
12042           return false;
12043         }
12044       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
12045         continue;
12046       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
12047         return false;
12048     }
12049     return true;
12050   };
12051   auto Limit = [&R](Value *V) {
12052     unsigned EltSize = R.getVectorElementSize(V);
12053     return std::max(2U, R.getMaxVecRegSize() / EltSize);
12054   };
12055 
12056   bool HaveVectorizedPhiNodes = false;
12057   do {
12058     // Collect the incoming values from the PHIs.
12059     Incoming.clear();
12060     for (Instruction &I : *BB) {
12061       PHINode *P = dyn_cast<PHINode>(&I);
12062       if (!P)
12063         break;
12064 
12065       // No need to analyze deleted, vectorized and non-vectorizable
12066       // instructions.
12067       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
12068           isValidElementType(P->getType()))
12069         Incoming.push_back(P);
12070     }
12071 
12072     // Find the corresponding non-phi nodes for better matching when trying to
12073     // build the tree.
12074     for (Value *V : Incoming) {
12075       SmallVectorImpl<Value *> &Opcodes =
12076           PHIToOpcodes.try_emplace(V).first->getSecond();
12077       if (!Opcodes.empty())
12078         continue;
12079       SmallVector<Value *, 4> Nodes(1, V);
12080       SmallPtrSet<Value *, 4> Visited;
12081       while (!Nodes.empty()) {
12082         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
12083         if (!Visited.insert(PHI).second)
12084           continue;
12085         for (Value *V : PHI->incoming_values()) {
12086           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
12087             Nodes.push_back(PHI1);
12088             continue;
12089           }
12090           Opcodes.emplace_back(V);
12091         }
12092       }
12093     }
12094 
12095     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
12096         Incoming, Limit, PHICompare, AreCompatiblePHIs,
12097         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
12098           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
12099         },
12100         /*LimitForRegisterSize=*/true);
12101     Changed |= HaveVectorizedPhiNodes;
12102     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
12103   } while (HaveVectorizedPhiNodes);
12104 
12105   VisitedInstrs.clear();
12106 
12107   SmallVector<Instruction *, 8> PostProcessInstructions;
12108   SmallDenseSet<Instruction *, 4> KeyNodes;
12109   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
12110     // Skip instructions with scalable type. The num of elements is unknown at
12111     // compile-time for scalable type.
12112     if (isa<ScalableVectorType>(it->getType()))
12113       continue;
12114 
12115     // Skip instructions marked for the deletion.
12116     if (R.isDeleted(&*it))
12117       continue;
12118     // We may go through BB multiple times so skip the one we have checked.
12119     if (!VisitedInstrs.insert(&*it).second) {
12120       if (it->use_empty() && KeyNodes.contains(&*it) &&
12121           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12122                                       it->isTerminator())) {
12123         // We would like to start over since some instructions are deleted
12124         // and the iterator may become invalid value.
12125         Changed = true;
12126         it = BB->begin();
12127         e = BB->end();
12128       }
12129       continue;
12130     }
12131 
12132     if (isa<DbgInfoIntrinsic>(it))
12133       continue;
12134 
12135     // Try to vectorize reductions that use PHINodes.
12136     if (PHINode *P = dyn_cast<PHINode>(it)) {
12137       // Check that the PHI is a reduction PHI.
12138       if (P->getNumIncomingValues() == 2) {
12139         // Try to match and vectorize a horizontal reduction.
12140         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
12141                                      TTI)) {
12142           Changed = true;
12143           it = BB->begin();
12144           e = BB->end();
12145           continue;
12146         }
12147       }
12148       // Try to vectorize the incoming values of the PHI, to catch reductions
12149       // that feed into PHIs.
12150       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
12151         // Skip if the incoming block is the current BB for now. Also, bypass
12152         // unreachable IR for efficiency and to avoid crashing.
12153         // TODO: Collect the skipped incoming values and try to vectorize them
12154         // after processing BB.
12155         if (BB == P->getIncomingBlock(I) ||
12156             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
12157           continue;
12158 
12159         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
12160                                             P->getIncomingBlock(I), R, TTI);
12161       }
12162       continue;
12163     }
12164 
12165     // Ran into an instruction without users, like terminator, or function call
12166     // with ignored return value, store. Ignore unused instructions (basing on
12167     // instruction type, except for CallInst and InvokeInst).
12168     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
12169                             isa<InvokeInst>(it))) {
12170       KeyNodes.insert(&*it);
12171       bool OpsChanged = false;
12172       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
12173         for (auto *V : it->operand_values()) {
12174           // Try to match and vectorize a horizontal reduction.
12175           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
12176         }
12177       }
12178       // Start vectorization of post-process list of instructions from the
12179       // top-tree instructions to try to vectorize as many instructions as
12180       // possible.
12181       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
12182                                                 it->isTerminator());
12183       if (OpsChanged) {
12184         // We would like to start over since some instructions are deleted
12185         // and the iterator may become invalid value.
12186         Changed = true;
12187         it = BB->begin();
12188         e = BB->end();
12189         continue;
12190       }
12191     }
12192 
12193     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
12194         isa<InsertValueInst>(it))
12195       PostProcessInstructions.push_back(&*it);
12196   }
12197 
12198   return Changed;
12199 }
12200 
12201 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
12202   auto Changed = false;
12203   for (auto &Entry : GEPs) {
12204     // If the getelementptr list has fewer than two elements, there's nothing
12205     // to do.
12206     if (Entry.second.size() < 2)
12207       continue;
12208 
12209     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
12210                       << Entry.second.size() << ".\n");
12211 
12212     // Process the GEP list in chunks suitable for the target's supported
12213     // vector size. If a vector register can't hold 1 element, we are done. We
12214     // are trying to vectorize the index computations, so the maximum number of
12215     // elements is based on the size of the index expression, rather than the
12216     // size of the GEP itself (the target's pointer size).
12217     unsigned MaxVecRegSize = R.getMaxVecRegSize();
12218     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
12219     if (MaxVecRegSize < EltSize)
12220       continue;
12221 
12222     unsigned MaxElts = MaxVecRegSize / EltSize;
12223     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
12224       auto Len = std::min<unsigned>(BE - BI, MaxElts);
12225       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
12226 
12227       // Initialize a set a candidate getelementptrs. Note that we use a
12228       // SetVector here to preserve program order. If the index computations
12229       // are vectorizable and begin with loads, we want to minimize the chance
12230       // of having to reorder them later.
12231       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
12232 
12233       // Some of the candidates may have already been vectorized after we
12234       // initially collected them. If so, they are marked as deleted, so remove
12235       // them from the set of candidates.
12236       Candidates.remove_if(
12237           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
12238 
12239       // Remove from the set of candidates all pairs of getelementptrs with
12240       // constant differences. Such getelementptrs are likely not good
12241       // candidates for vectorization in a bottom-up phase since one can be
12242       // computed from the other. We also ensure all candidate getelementptr
12243       // indices are unique.
12244       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
12245         auto *GEPI = GEPList[I];
12246         if (!Candidates.count(GEPI))
12247           continue;
12248         auto *SCEVI = SE->getSCEV(GEPList[I]);
12249         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
12250           auto *GEPJ = GEPList[J];
12251           auto *SCEVJ = SE->getSCEV(GEPList[J]);
12252           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
12253             Candidates.remove(GEPI);
12254             Candidates.remove(GEPJ);
12255           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
12256             Candidates.remove(GEPJ);
12257           }
12258         }
12259       }
12260 
12261       // We break out of the above computation as soon as we know there are
12262       // fewer than two candidates remaining.
12263       if (Candidates.size() < 2)
12264         continue;
12265 
12266       // Add the single, non-constant index of each candidate to the bundle. We
12267       // ensured the indices met these constraints when we originally collected
12268       // the getelementptrs.
12269       SmallVector<Value *, 16> Bundle(Candidates.size());
12270       auto BundleIndex = 0u;
12271       for (auto *V : Candidates) {
12272         auto *GEP = cast<GetElementPtrInst>(V);
12273         auto *GEPIdx = GEP->idx_begin()->get();
12274         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
12275         Bundle[BundleIndex++] = GEPIdx;
12276       }
12277 
12278       // Try and vectorize the indices. We are currently only interested in
12279       // gather-like cases of the form:
12280       //
12281       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
12282       //
12283       // where the loads of "a", the loads of "b", and the subtractions can be
12284       // performed in parallel. It's likely that detecting this pattern in a
12285       // bottom-up phase will be simpler and less costly than building a
12286       // full-blown top-down phase beginning at the consecutive loads.
12287       Changed |= tryToVectorizeList(Bundle, R);
12288     }
12289   }
12290   return Changed;
12291 }
12292 
12293 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
12294   bool Changed = false;
12295   // Sort by type, base pointers and values operand. Value operands must be
12296   // compatible (have the same opcode, same parent), otherwise it is
12297   // definitely not profitable to try to vectorize them.
12298   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
12299     if (V->getPointerOperandType()->getTypeID() <
12300         V2->getPointerOperandType()->getTypeID())
12301       return true;
12302     if (V->getPointerOperandType()->getTypeID() >
12303         V2->getPointerOperandType()->getTypeID())
12304       return false;
12305     // UndefValues are compatible with all other values.
12306     if (isa<UndefValue>(V->getValueOperand()) ||
12307         isa<UndefValue>(V2->getValueOperand()))
12308       return false;
12309     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
12310       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12311         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
12312             DT->getNode(I1->getParent());
12313         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
12314             DT->getNode(I2->getParent());
12315         assert(NodeI1 && "Should only process reachable instructions");
12316         assert(NodeI2 && "Should only process reachable instructions");
12317         assert((NodeI1 == NodeI2) ==
12318                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12319                "Different nodes should have different DFS numbers");
12320         if (NodeI1 != NodeI2)
12321           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12322         InstructionsState S = getSameOpcode({I1, I2});
12323         if (S.getOpcode())
12324           return false;
12325         return I1->getOpcode() < I2->getOpcode();
12326       }
12327     if (isa<Constant>(V->getValueOperand()) &&
12328         isa<Constant>(V2->getValueOperand()))
12329       return false;
12330     return V->getValueOperand()->getValueID() <
12331            V2->getValueOperand()->getValueID();
12332   };
12333 
12334   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
12335     if (V1 == V2)
12336       return true;
12337     if (V1->getPointerOperandType() != V2->getPointerOperandType())
12338       return false;
12339     // Undefs are compatible with any other value.
12340     if (isa<UndefValue>(V1->getValueOperand()) ||
12341         isa<UndefValue>(V2->getValueOperand()))
12342       return true;
12343     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
12344       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12345         if (I1->getParent() != I2->getParent())
12346           return false;
12347         InstructionsState S = getSameOpcode({I1, I2});
12348         return S.getOpcode() > 0;
12349       }
12350     if (isa<Constant>(V1->getValueOperand()) &&
12351         isa<Constant>(V2->getValueOperand()))
12352       return true;
12353     return V1->getValueOperand()->getValueID() ==
12354            V2->getValueOperand()->getValueID();
12355   };
12356   auto Limit = [&R, this](StoreInst *SI) {
12357     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
12358     return R.getMinVF(EltSize);
12359   };
12360 
12361   // Attempt to sort and vectorize each of the store-groups.
12362   for (auto &Pair : Stores) {
12363     if (Pair.second.size() < 2)
12364       continue;
12365 
12366     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
12367                       << Pair.second.size() << ".\n");
12368 
12369     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
12370       continue;
12371 
12372     Changed |= tryToVectorizeSequence<StoreInst>(
12373         Pair.second, Limit, StoreSorter, AreCompatibleStores,
12374         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
12375           return vectorizeStores(Candidates, R);
12376         },
12377         /*LimitForRegisterSize=*/false);
12378   }
12379   return Changed;
12380 }
12381 
12382 char SLPVectorizer::ID = 0;
12383 
12384 static const char lv_name[] = "SLP Vectorizer";
12385 
12386 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
12387 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
12388 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
12389 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12390 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
12391 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
12392 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
12393 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
12394 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
12395 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
12396 
12397 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
12398