1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// TODO: Can we split off and reuse the shuffle mask detection from 291 /// TargetTransformInfo::getInstructionThroughput? 292 static Optional<TargetTransformInfo::ShuffleKind> 293 isShuffle(ArrayRef<Value *> VL) { 294 auto *EI0 = cast<ExtractElementInst>(VL[0]); 295 unsigned Size = 296 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 297 Value *Vec1 = nullptr; 298 Value *Vec2 = nullptr; 299 enum ShuffleMode { Unknown, Select, Permute }; 300 ShuffleMode CommonShuffleMode = Unknown; 301 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 302 auto *EI = cast<ExtractElementInst>(VL[I]); 303 auto *Vec = EI->getVectorOperand(); 304 // All vector operands must have the same number of vector elements. 305 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 306 return None; 307 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 308 if (!Idx) 309 return None; 310 // Undefined behavior if Idx is negative or >= Size. 311 if (Idx->getValue().uge(Size)) 312 continue; 313 unsigned IntIdx = Idx->getValue().getZExtValue(); 314 // We can extractelement from undef or poison vector. 315 if (isa<UndefValue>(Vec)) 316 continue; 317 // For correct shuffling we have to have at most 2 different vector operands 318 // in all extractelement instructions. 319 if (!Vec1 || Vec1 == Vec) 320 Vec1 = Vec; 321 else if (!Vec2 || Vec2 == Vec) 322 Vec2 = Vec; 323 else 324 return None; 325 if (CommonShuffleMode == Permute) 326 continue; 327 // If the extract index is not the same as the operation number, it is a 328 // permutation. 329 if (IntIdx != I) { 330 CommonShuffleMode = Permute; 331 continue; 332 } 333 CommonShuffleMode = Select; 334 } 335 // If we're not crossing lanes in different vectors, consider it as blending. 336 if (CommonShuffleMode == Select && Vec2) 337 return TargetTransformInfo::SK_Select; 338 // If Vec2 was never used, we have a permutation of a single vector, otherwise 339 // we have permutation of 2 vectors. 340 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 341 : TargetTransformInfo::SK_PermuteSingleSrc; 342 } 343 344 namespace { 345 346 /// Main data required for vectorization of instructions. 347 struct InstructionsState { 348 /// The very first instruction in the list with the main opcode. 349 Value *OpValue = nullptr; 350 351 /// The main/alternate instruction. 352 Instruction *MainOp = nullptr; 353 Instruction *AltOp = nullptr; 354 355 /// The main/alternate opcodes for the list of instructions. 356 unsigned getOpcode() const { 357 return MainOp ? MainOp->getOpcode() : 0; 358 } 359 360 unsigned getAltOpcode() const { 361 return AltOp ? AltOp->getOpcode() : 0; 362 } 363 364 /// Some of the instructions in the list have alternate opcodes. 365 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 366 367 bool isOpcodeOrAlt(Instruction *I) const { 368 unsigned CheckedOpcode = I->getOpcode(); 369 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 370 } 371 372 InstructionsState() = delete; 373 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 374 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 375 }; 376 377 } // end anonymous namespace 378 379 /// Chooses the correct key for scheduling data. If \p Op has the same (or 380 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 381 /// OpValue. 382 static Value *isOneOf(const InstructionsState &S, Value *Op) { 383 auto *I = dyn_cast<Instruction>(Op); 384 if (I && S.isOpcodeOrAlt(I)) 385 return Op; 386 return S.OpValue; 387 } 388 389 /// \returns true if \p Opcode is allowed as part of of the main/alternate 390 /// instruction for SLP vectorization. 391 /// 392 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 393 /// "shuffled out" lane would result in division by zero. 394 static bool isValidForAlternation(unsigned Opcode) { 395 if (Instruction::isIntDivRem(Opcode)) 396 return false; 397 398 return true; 399 } 400 401 /// \returns analysis of the Instructions in \p VL described in 402 /// InstructionsState, the Opcode that we suppose the whole list 403 /// could be vectorized even if its structure is diverse. 404 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 405 unsigned BaseIndex = 0) { 406 // Make sure these are all Instructions. 407 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 408 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 409 410 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 411 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 412 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 413 unsigned AltOpcode = Opcode; 414 unsigned AltIndex = BaseIndex; 415 416 // Check for one alternate opcode from another BinaryOperator. 417 // TODO - generalize to support all operators (types, calls etc.). 418 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 419 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 420 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 421 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 422 continue; 423 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 424 isValidForAlternation(Opcode)) { 425 AltOpcode = InstOpcode; 426 AltIndex = Cnt; 427 continue; 428 } 429 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 430 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 431 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 432 if (Ty0 == Ty1) { 433 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 434 continue; 435 if (Opcode == AltOpcode) { 436 assert(isValidForAlternation(Opcode) && 437 isValidForAlternation(InstOpcode) && 438 "Cast isn't safe for alternation, logic needs to be updated!"); 439 AltOpcode = InstOpcode; 440 AltIndex = Cnt; 441 continue; 442 } 443 } 444 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 445 continue; 446 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 447 } 448 449 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 450 cast<Instruction>(VL[AltIndex])); 451 } 452 453 /// \returns true if all of the values in \p VL have the same type or false 454 /// otherwise. 455 static bool allSameType(ArrayRef<Value *> VL) { 456 Type *Ty = VL[0]->getType(); 457 for (int i = 1, e = VL.size(); i < e; i++) 458 if (VL[i]->getType() != Ty) 459 return false; 460 461 return true; 462 } 463 464 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 465 static Optional<unsigned> getExtractIndex(Instruction *E) { 466 unsigned Opcode = E->getOpcode(); 467 assert((Opcode == Instruction::ExtractElement || 468 Opcode == Instruction::ExtractValue) && 469 "Expected extractelement or extractvalue instruction."); 470 if (Opcode == Instruction::ExtractElement) { 471 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 472 if (!CI) 473 return None; 474 return CI->getZExtValue(); 475 } 476 ExtractValueInst *EI = cast<ExtractValueInst>(E); 477 if (EI->getNumIndices() != 1) 478 return None; 479 return *EI->idx_begin(); 480 } 481 482 /// \returns True if in-tree use also needs extract. This refers to 483 /// possible scalar operand in vectorized instruction. 484 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 485 TargetLibraryInfo *TLI) { 486 unsigned Opcode = UserInst->getOpcode(); 487 switch (Opcode) { 488 case Instruction::Load: { 489 LoadInst *LI = cast<LoadInst>(UserInst); 490 return (LI->getPointerOperand() == Scalar); 491 } 492 case Instruction::Store: { 493 StoreInst *SI = cast<StoreInst>(UserInst); 494 return (SI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Call: { 497 CallInst *CI = cast<CallInst>(UserInst); 498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 499 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 500 if (hasVectorInstrinsicScalarOpd(ID, i)) 501 return (CI->getArgOperand(i) == Scalar); 502 } 503 LLVM_FALLTHROUGH; 504 } 505 default: 506 return false; 507 } 508 } 509 510 /// \returns the AA location that is being access by the instruction. 511 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return MemoryLocation::get(SI); 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return MemoryLocation::get(LI); 516 return MemoryLocation(); 517 } 518 519 /// \returns True if the instruction is not a volatile or atomic load/store. 520 static bool isSimple(Instruction *I) { 521 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 522 return LI->isSimple(); 523 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 524 return SI->isSimple(); 525 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 526 return !MI->isVolatile(); 527 return true; 528 } 529 530 namespace llvm { 531 532 static void inversePermutation(ArrayRef<unsigned> Indices, 533 SmallVectorImpl<int> &Mask) { 534 Mask.clear(); 535 const unsigned E = Indices.size(); 536 Mask.resize(E, E + 1); 537 for (unsigned I = 0; I < E; ++I) 538 Mask[Indices[I]] = I; 539 } 540 541 namespace slpvectorizer { 542 543 /// Bottom Up SLP Vectorizer. 544 class BoUpSLP { 545 struct TreeEntry; 546 struct ScheduleData; 547 548 public: 549 using ValueList = SmallVector<Value *, 8>; 550 using InstrList = SmallVector<Instruction *, 16>; 551 using ValueSet = SmallPtrSet<Value *, 16>; 552 using StoreList = SmallVector<StoreInst *, 8>; 553 using ExtraValueToDebugLocsMap = 554 MapVector<Value *, SmallVector<Instruction *, 2>>; 555 using OrdersType = SmallVector<unsigned, 4>; 556 557 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 558 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 559 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 560 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 561 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 562 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 563 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 564 // Use the vector register size specified by the target unless overridden 565 // by a command-line option. 566 // TODO: It would be better to limit the vectorization factor based on 567 // data type rather than just register size. For example, x86 AVX has 568 // 256-bit registers, but it does not support integer operations 569 // at that width (that requires AVX2). 570 if (MaxVectorRegSizeOption.getNumOccurrences()) 571 MaxVecRegSize = MaxVectorRegSizeOption; 572 else 573 MaxVecRegSize = TTI->getRegisterBitWidth(true); 574 575 if (MinVectorRegSizeOption.getNumOccurrences()) 576 MinVecRegSize = MinVectorRegSizeOption; 577 else 578 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 579 } 580 581 /// Vectorize the tree that starts with the elements in \p VL. 582 /// Returns the vectorized root. 583 Value *vectorizeTree(); 584 585 /// Vectorize the tree but with the list of externally used values \p 586 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 587 /// generated extractvalue instructions. 588 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 589 590 /// \returns the cost incurred by unwanted spills and fills, caused by 591 /// holding live values over call sites. 592 InstructionCost getSpillCost() const; 593 594 /// \returns the vectorization cost of the subtree that starts at \p VL. 595 /// A negative number means that this is profitable. 596 InstructionCost getTreeCost(); 597 598 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 599 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 600 void buildTree(ArrayRef<Value *> Roots, 601 ArrayRef<Value *> UserIgnoreLst = None); 602 603 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 604 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 605 /// into account (and updating it, if required) list of externally used 606 /// values stored in \p ExternallyUsedValues. 607 void buildTree(ArrayRef<Value *> Roots, 608 ExtraValueToDebugLocsMap &ExternallyUsedValues, 609 ArrayRef<Value *> UserIgnoreLst = None); 610 611 /// Clear the internal data structures that are created by 'buildTree'. 612 void deleteTree() { 613 VectorizableTree.clear(); 614 ScalarToTreeEntry.clear(); 615 MustGather.clear(); 616 ExternalUses.clear(); 617 NumOpsWantToKeepOrder.clear(); 618 NumOpsWantToKeepOriginalOrder = 0; 619 for (auto &Iter : BlocksSchedules) { 620 BlockScheduling *BS = Iter.second.get(); 621 BS->clear(); 622 } 623 MinBWs.clear(); 624 } 625 626 unsigned getTreeSize() const { return VectorizableTree.size(); } 627 628 /// Perform LICM and CSE on the newly generated gather sequences. 629 void optimizeGatherSequence(); 630 631 /// \returns The best order of instructions for vectorization. 632 Optional<ArrayRef<unsigned>> bestOrder() const { 633 assert(llvm::all_of( 634 NumOpsWantToKeepOrder, 635 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 636 return D.getFirst().size() == 637 VectorizableTree[0]->Scalars.size(); 638 }) && 639 "All orders must have the same size as number of instructions in " 640 "tree node."); 641 auto I = std::max_element( 642 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 643 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 644 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 645 return D1.second < D2.second; 646 }); 647 if (I == NumOpsWantToKeepOrder.end() || 648 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 649 return None; 650 651 return makeArrayRef(I->getFirst()); 652 } 653 654 /// Builds the correct order for root instructions. 655 /// If some leaves have the same instructions to be vectorized, we may 656 /// incorrectly evaluate the best order for the root node (it is built for the 657 /// vector of instructions without repeated instructions and, thus, has less 658 /// elements than the root node). This function builds the correct order for 659 /// the root node. 660 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 661 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 662 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 663 /// be reordered, the best order will be \<1, 0\>. We need to extend this 664 /// order for the root node. For the root node this order should look like 665 /// \<3, 0, 1, 2\>. This function extends the order for the reused 666 /// instructions. 667 void findRootOrder(OrdersType &Order) { 668 // If the leaf has the same number of instructions to vectorize as the root 669 // - order must be set already. 670 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 671 if (Order.size() == RootSize) 672 return; 673 SmallVector<unsigned, 4> RealOrder(Order.size()); 674 std::swap(Order, RealOrder); 675 SmallVector<int, 4> Mask; 676 inversePermutation(RealOrder, Mask); 677 Order.assign(Mask.begin(), Mask.end()); 678 // The leaf has less number of instructions - need to find the true order of 679 // the root. 680 // Scan the nodes starting from the leaf back to the root. 681 const TreeEntry *PNode = VectorizableTree.back().get(); 682 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 683 SmallPtrSet<const TreeEntry *, 4> Visited; 684 while (!Nodes.empty() && Order.size() != RootSize) { 685 const TreeEntry *PNode = Nodes.pop_back_val(); 686 if (!Visited.insert(PNode).second) 687 continue; 688 const TreeEntry &Node = *PNode; 689 for (const EdgeInfo &EI : Node.UserTreeIndices) 690 if (EI.UserTE) 691 Nodes.push_back(EI.UserTE); 692 if (Node.ReuseShuffleIndices.empty()) 693 continue; 694 // Build the order for the parent node. 695 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 696 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 697 // The algorithm of the order extension is: 698 // 1. Calculate the number of the same instructions for the order. 699 // 2. Calculate the index of the new order: total number of instructions 700 // with order less than the order of the current instruction + reuse 701 // number of the current instruction. 702 // 3. The new order is just the index of the instruction in the original 703 // vector of the instructions. 704 for (unsigned I : Node.ReuseShuffleIndices) 705 ++OrderCounter[Order[I]]; 706 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 707 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 708 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 709 unsigned OrderIdx = Order[ReusedIdx]; 710 unsigned NewIdx = 0; 711 for (unsigned J = 0; J < OrderIdx; ++J) 712 NewIdx += OrderCounter[J]; 713 NewIdx += CurrentCounter[OrderIdx]; 714 ++CurrentCounter[OrderIdx]; 715 assert(NewOrder[NewIdx] == RootSize && 716 "The order index should not be written already."); 717 NewOrder[NewIdx] = I; 718 } 719 std::swap(Order, NewOrder); 720 } 721 assert(Order.size() == RootSize && 722 "Root node is expected or the size of the order must be the same as " 723 "the number of elements in the root node."); 724 assert(llvm::all_of(Order, 725 [RootSize](unsigned Val) { return Val != RootSize; }) && 726 "All indices must be initialized"); 727 } 728 729 /// \return The vector element size in bits to use when vectorizing the 730 /// expression tree ending at \p V. If V is a store, the size is the width of 731 /// the stored value. Otherwise, the size is the width of the largest loaded 732 /// value reaching V. This method is used by the vectorizer to calculate 733 /// vectorization factors. 734 unsigned getVectorElementSize(Value *V); 735 736 /// Compute the minimum type sizes required to represent the entries in a 737 /// vectorizable tree. 738 void computeMinimumValueSizes(); 739 740 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 741 unsigned getMaxVecRegSize() const { 742 return MaxVecRegSize; 743 } 744 745 // \returns minimum vector register size as set by cl::opt. 746 unsigned getMinVecRegSize() const { 747 return MinVecRegSize; 748 } 749 750 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 751 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 752 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 753 return MaxVF ? MaxVF : UINT_MAX; 754 } 755 756 /// Check if homogeneous aggregate is isomorphic to some VectorType. 757 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 758 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 759 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 760 /// 761 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 762 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 763 764 /// \returns True if the VectorizableTree is both tiny and not fully 765 /// vectorizable. We do not vectorize such trees. 766 bool isTreeTinyAndNotFullyVectorizable() const; 767 768 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 776 777 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 778 /// can be load combined in the backend. Load combining may not be allowed in 779 /// the IR optimizer, so we do not want to alter the pattern. For example, 780 /// partially transforming a scalar bswap() pattern into vector code is 781 /// effectively impossible for the backend to undo. 782 /// TODO: If load combining is allowed in the IR optimizer, this analysis 783 /// may not be necessary. 784 bool isLoadCombineCandidate() const; 785 786 OptimizationRemarkEmitter *getORE() { return ORE; } 787 788 /// This structure holds any data we need about the edges being traversed 789 /// during buildTree_rec(). We keep track of: 790 /// (i) the user TreeEntry index, and 791 /// (ii) the index of the edge. 792 struct EdgeInfo { 793 EdgeInfo() = default; 794 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 795 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 796 /// The user TreeEntry. 797 TreeEntry *UserTE = nullptr; 798 /// The operand index of the use. 799 unsigned EdgeIdx = UINT_MAX; 800 #ifndef NDEBUG 801 friend inline raw_ostream &operator<<(raw_ostream &OS, 802 const BoUpSLP::EdgeInfo &EI) { 803 EI.dump(OS); 804 return OS; 805 } 806 /// Debug print. 807 void dump(raw_ostream &OS) const { 808 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 809 << " EdgeIdx:" << EdgeIdx << "}"; 810 } 811 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 812 #endif 813 }; 814 815 /// A helper data structure to hold the operands of a vector of instructions. 816 /// This supports a fixed vector length for all operand vectors. 817 class VLOperands { 818 /// For each operand we need (i) the value, and (ii) the opcode that it 819 /// would be attached to if the expression was in a left-linearized form. 820 /// This is required to avoid illegal operand reordering. 821 /// For example: 822 /// \verbatim 823 /// 0 Op1 824 /// |/ 825 /// Op1 Op2 Linearized + Op2 826 /// \ / ----------> |/ 827 /// - - 828 /// 829 /// Op1 - Op2 (0 + Op1) - Op2 830 /// \endverbatim 831 /// 832 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 833 /// 834 /// Another way to think of this is to track all the operations across the 835 /// path from the operand all the way to the root of the tree and to 836 /// calculate the operation that corresponds to this path. For example, the 837 /// path from Op2 to the root crosses the RHS of the '-', therefore the 838 /// corresponding operation is a '-' (which matches the one in the 839 /// linearized tree, as shown above). 840 /// 841 /// For lack of a better term, we refer to this operation as Accumulated 842 /// Path Operation (APO). 843 struct OperandData { 844 OperandData() = default; 845 OperandData(Value *V, bool APO, bool IsUsed) 846 : V(V), APO(APO), IsUsed(IsUsed) {} 847 /// The operand value. 848 Value *V = nullptr; 849 /// TreeEntries only allow a single opcode, or an alternate sequence of 850 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 851 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 852 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 853 /// (e.g., Add/Mul) 854 bool APO = false; 855 /// Helper data for the reordering function. 856 bool IsUsed = false; 857 }; 858 859 /// During operand reordering, we are trying to select the operand at lane 860 /// that matches best with the operand at the neighboring lane. Our 861 /// selection is based on the type of value we are looking for. For example, 862 /// if the neighboring lane has a load, we need to look for a load that is 863 /// accessing a consecutive address. These strategies are summarized in the 864 /// 'ReorderingMode' enumerator. 865 enum class ReorderingMode { 866 Load, ///< Matching loads to consecutive memory addresses 867 Opcode, ///< Matching instructions based on opcode (same or alternate) 868 Constant, ///< Matching constants 869 Splat, ///< Matching the same instruction multiple times (broadcast) 870 Failed, ///< We failed to create a vectorizable group 871 }; 872 873 using OperandDataVec = SmallVector<OperandData, 2>; 874 875 /// A vector of operand vectors. 876 SmallVector<OperandDataVec, 4> OpsVec; 877 878 const DataLayout &DL; 879 ScalarEvolution &SE; 880 const BoUpSLP &R; 881 882 /// \returns the operand data at \p OpIdx and \p Lane. 883 OperandData &getData(unsigned OpIdx, unsigned Lane) { 884 return OpsVec[OpIdx][Lane]; 885 } 886 887 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 888 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 889 return OpsVec[OpIdx][Lane]; 890 } 891 892 /// Clears the used flag for all entries. 893 void clearUsed() { 894 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 895 OpIdx != NumOperands; ++OpIdx) 896 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 897 ++Lane) 898 OpsVec[OpIdx][Lane].IsUsed = false; 899 } 900 901 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 902 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 903 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 904 } 905 906 // The hard-coded scores listed here are not very important. When computing 907 // the scores of matching one sub-tree with another, we are basically 908 // counting the number of values that are matching. So even if all scores 909 // are set to 1, we would still get a decent matching result. 910 // However, sometimes we have to break ties. For example we may have to 911 // choose between matching loads vs matching opcodes. This is what these 912 // scores are helping us with: they provide the order of preference. 913 914 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 915 static const int ScoreConsecutiveLoads = 3; 916 /// ExtractElementInst from same vector and consecutive indexes. 917 static const int ScoreConsecutiveExtracts = 3; 918 /// Constants. 919 static const int ScoreConstants = 2; 920 /// Instructions with the same opcode. 921 static const int ScoreSameOpcode = 2; 922 /// Instructions with alt opcodes (e.g, add + sub). 923 static const int ScoreAltOpcodes = 1; 924 /// Identical instructions (a.k.a. splat or broadcast). 925 static const int ScoreSplat = 1; 926 /// Matching with an undef is preferable to failing. 927 static const int ScoreUndef = 1; 928 /// Score for failing to find a decent match. 929 static const int ScoreFail = 0; 930 /// User exteranl to the vectorized code. 931 static const int ExternalUseCost = 1; 932 /// The user is internal but in a different lane. 933 static const int UserInDiffLaneCost = ExternalUseCost; 934 935 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 936 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 937 ScalarEvolution &SE) { 938 auto *LI1 = dyn_cast<LoadInst>(V1); 939 auto *LI2 = dyn_cast<LoadInst>(V2); 940 if (LI1 && LI2) 941 return isConsecutiveAccess(LI1, LI2, DL, SE) 942 ? VLOperands::ScoreConsecutiveLoads 943 : VLOperands::ScoreFail; 944 945 auto *C1 = dyn_cast<Constant>(V1); 946 auto *C2 = dyn_cast<Constant>(V2); 947 if (C1 && C2) 948 return VLOperands::ScoreConstants; 949 950 // Extracts from consecutive indexes of the same vector better score as 951 // the extracts could be optimized away. 952 Value *EV; 953 ConstantInt *Ex1Idx, *Ex2Idx; 954 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 955 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 956 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 957 return VLOperands::ScoreConsecutiveExtracts; 958 959 auto *I1 = dyn_cast<Instruction>(V1); 960 auto *I2 = dyn_cast<Instruction>(V2); 961 if (I1 && I2) { 962 if (I1 == I2) 963 return VLOperands::ScoreSplat; 964 InstructionsState S = getSameOpcode({I1, I2}); 965 // Note: Only consider instructions with <= 2 operands to avoid 966 // complexity explosion. 967 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 968 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 969 : VLOperands::ScoreSameOpcode; 970 } 971 972 if (isa<UndefValue>(V2)) 973 return VLOperands::ScoreUndef; 974 975 return VLOperands::ScoreFail; 976 } 977 978 /// Holds the values and their lane that are taking part in the look-ahead 979 /// score calculation. This is used in the external uses cost calculation. 980 SmallDenseMap<Value *, int> InLookAheadValues; 981 982 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 983 /// either external to the vectorized code, or require shuffling. 984 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 985 const std::pair<Value *, int> &RHS) { 986 int Cost = 0; 987 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 988 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 989 Value *V = Values[Idx].first; 990 // Calculate the absolute lane, using the minimum relative lane of LHS 991 // and RHS as base and Idx as the offset. 992 int Ln = std::min(LHS.second, RHS.second) + Idx; 993 assert(Ln >= 0 && "Bad lane calculation"); 994 unsigned UsersBudget = LookAheadUsersBudget; 995 for (User *U : V->users()) { 996 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 997 // The user is in the VectorizableTree. Check if we need to insert. 998 auto It = llvm::find(UserTE->Scalars, U); 999 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1000 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1001 assert(UserLn >= 0 && "Bad lane"); 1002 if (UserLn != Ln) 1003 Cost += UserInDiffLaneCost; 1004 } else { 1005 // Check if the user is in the look-ahead code. 1006 auto It2 = InLookAheadValues.find(U); 1007 if (It2 != InLookAheadValues.end()) { 1008 // The user is in the look-ahead code. Check the lane. 1009 if (It2->second != Ln) 1010 Cost += UserInDiffLaneCost; 1011 } else { 1012 // The user is neither in SLP tree nor in the look-ahead code. 1013 Cost += ExternalUseCost; 1014 } 1015 } 1016 // Limit the number of visited uses to cap compilation time. 1017 if (--UsersBudget == 0) 1018 break; 1019 } 1020 } 1021 return Cost; 1022 } 1023 1024 /// Go through the operands of \p LHS and \p RHS recursively until \p 1025 /// MaxLevel, and return the cummulative score. For example: 1026 /// \verbatim 1027 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1028 /// \ / \ / \ / \ / 1029 /// + + + + 1030 /// G1 G2 G3 G4 1031 /// \endverbatim 1032 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1033 /// each level recursively, accumulating the score. It starts from matching 1034 /// the additions at level 0, then moves on to the loads (level 1). The 1035 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1036 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1037 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1038 /// Please note that the order of the operands does not matter, as we 1039 /// evaluate the score of all profitable combinations of operands. In 1040 /// other words the score of G1 and G4 is the same as G1 and G2. This 1041 /// heuristic is based on ideas described in: 1042 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1043 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1044 /// Luís F. W. Góes 1045 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1046 const std::pair<Value *, int> &RHS, int CurrLevel, 1047 int MaxLevel) { 1048 1049 Value *V1 = LHS.first; 1050 Value *V2 = RHS.first; 1051 // Get the shallow score of V1 and V2. 1052 int ShallowScoreAtThisLevel = 1053 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1054 getExternalUsesCost(LHS, RHS)); 1055 int Lane1 = LHS.second; 1056 int Lane2 = RHS.second; 1057 1058 // If reached MaxLevel, 1059 // or if V1 and V2 are not instructions, 1060 // or if they are SPLAT, 1061 // or if they are not consecutive, early return the current cost. 1062 auto *I1 = dyn_cast<Instruction>(V1); 1063 auto *I2 = dyn_cast<Instruction>(V2); 1064 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1065 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1066 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1067 return ShallowScoreAtThisLevel; 1068 assert(I1 && I2 && "Should have early exited."); 1069 1070 // Keep track of in-tree values for determining the external-use cost. 1071 InLookAheadValues[V1] = Lane1; 1072 InLookAheadValues[V2] = Lane2; 1073 1074 // Contains the I2 operand indexes that got matched with I1 operands. 1075 SmallSet<unsigned, 4> Op2Used; 1076 1077 // Recursion towards the operands of I1 and I2. We are trying all possbile 1078 // operand pairs, and keeping track of the best score. 1079 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1080 OpIdx1 != NumOperands1; ++OpIdx1) { 1081 // Try to pair op1I with the best operand of I2. 1082 int MaxTmpScore = 0; 1083 unsigned MaxOpIdx2 = 0; 1084 bool FoundBest = false; 1085 // If I2 is commutative try all combinations. 1086 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1087 unsigned ToIdx = isCommutative(I2) 1088 ? I2->getNumOperands() 1089 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1090 assert(FromIdx <= ToIdx && "Bad index"); 1091 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1092 // Skip operands already paired with OpIdx1. 1093 if (Op2Used.count(OpIdx2)) 1094 continue; 1095 // Recursively calculate the cost at each level 1096 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1097 {I2->getOperand(OpIdx2), Lane2}, 1098 CurrLevel + 1, MaxLevel); 1099 // Look for the best score. 1100 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1101 MaxTmpScore = TmpScore; 1102 MaxOpIdx2 = OpIdx2; 1103 FoundBest = true; 1104 } 1105 } 1106 if (FoundBest) { 1107 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1108 Op2Used.insert(MaxOpIdx2); 1109 ShallowScoreAtThisLevel += MaxTmpScore; 1110 } 1111 } 1112 return ShallowScoreAtThisLevel; 1113 } 1114 1115 /// \Returns the look-ahead score, which tells us how much the sub-trees 1116 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1117 /// score. This helps break ties in an informed way when we cannot decide on 1118 /// the order of the operands by just considering the immediate 1119 /// predecessors. 1120 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1121 const std::pair<Value *, int> &RHS) { 1122 InLookAheadValues.clear(); 1123 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1124 } 1125 1126 // Search all operands in Ops[*][Lane] for the one that matches best 1127 // Ops[OpIdx][LastLane] and return its opreand index. 1128 // If no good match can be found, return None. 1129 Optional<unsigned> 1130 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1131 ArrayRef<ReorderingMode> ReorderingModes) { 1132 unsigned NumOperands = getNumOperands(); 1133 1134 // The operand of the previous lane at OpIdx. 1135 Value *OpLastLane = getData(OpIdx, LastLane).V; 1136 1137 // Our strategy mode for OpIdx. 1138 ReorderingMode RMode = ReorderingModes[OpIdx]; 1139 1140 // The linearized opcode of the operand at OpIdx, Lane. 1141 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1142 1143 // The best operand index and its score. 1144 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1145 // are using the score to differentiate between the two. 1146 struct BestOpData { 1147 Optional<unsigned> Idx = None; 1148 unsigned Score = 0; 1149 } BestOp; 1150 1151 // Iterate through all unused operands and look for the best. 1152 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1153 // Get the operand at Idx and Lane. 1154 OperandData &OpData = getData(Idx, Lane); 1155 Value *Op = OpData.V; 1156 bool OpAPO = OpData.APO; 1157 1158 // Skip already selected operands. 1159 if (OpData.IsUsed) 1160 continue; 1161 1162 // Skip if we are trying to move the operand to a position with a 1163 // different opcode in the linearized tree form. This would break the 1164 // semantics. 1165 if (OpAPO != OpIdxAPO) 1166 continue; 1167 1168 // Look for an operand that matches the current mode. 1169 switch (RMode) { 1170 case ReorderingMode::Load: 1171 case ReorderingMode::Constant: 1172 case ReorderingMode::Opcode: { 1173 bool LeftToRight = Lane > LastLane; 1174 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1175 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1176 unsigned Score = 1177 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1178 if (Score > BestOp.Score) { 1179 BestOp.Idx = Idx; 1180 BestOp.Score = Score; 1181 } 1182 break; 1183 } 1184 case ReorderingMode::Splat: 1185 if (Op == OpLastLane) 1186 BestOp.Idx = Idx; 1187 break; 1188 case ReorderingMode::Failed: 1189 return None; 1190 } 1191 } 1192 1193 if (BestOp.Idx) { 1194 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1195 return BestOp.Idx; 1196 } 1197 // If we could not find a good match return None. 1198 return None; 1199 } 1200 1201 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1202 /// reordering from. This is the one which has the least number of operands 1203 /// that can freely move about. 1204 unsigned getBestLaneToStartReordering() const { 1205 unsigned BestLane = 0; 1206 unsigned Min = UINT_MAX; 1207 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1208 ++Lane) { 1209 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1210 if (NumFreeOps < Min) { 1211 Min = NumFreeOps; 1212 BestLane = Lane; 1213 } 1214 } 1215 return BestLane; 1216 } 1217 1218 /// \Returns the maximum number of operands that are allowed to be reordered 1219 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1220 /// start operand reordering. 1221 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1222 unsigned CntTrue = 0; 1223 unsigned NumOperands = getNumOperands(); 1224 // Operands with the same APO can be reordered. We therefore need to count 1225 // how many of them we have for each APO, like this: Cnt[APO] = x. 1226 // Since we only have two APOs, namely true and false, we can avoid using 1227 // a map. Instead we can simply count the number of operands that 1228 // correspond to one of them (in this case the 'true' APO), and calculate 1229 // the other by subtracting it from the total number of operands. 1230 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1231 if (getData(OpIdx, Lane).APO) 1232 ++CntTrue; 1233 unsigned CntFalse = NumOperands - CntTrue; 1234 return std::max(CntTrue, CntFalse); 1235 } 1236 1237 /// Go through the instructions in VL and append their operands. 1238 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1239 assert(!VL.empty() && "Bad VL"); 1240 assert((empty() || VL.size() == getNumLanes()) && 1241 "Expected same number of lanes"); 1242 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1243 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1244 OpsVec.resize(NumOperands); 1245 unsigned NumLanes = VL.size(); 1246 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1247 OpsVec[OpIdx].resize(NumLanes); 1248 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1249 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1250 // Our tree has just 3 nodes: the root and two operands. 1251 // It is therefore trivial to get the APO. We only need to check the 1252 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1253 // RHS operand. The LHS operand of both add and sub is never attached 1254 // to an inversese operation in the linearized form, therefore its APO 1255 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1256 1257 // Since operand reordering is performed on groups of commutative 1258 // operations or alternating sequences (e.g., +, -), we can safely 1259 // tell the inverse operations by checking commutativity. 1260 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1261 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1262 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1263 APO, false}; 1264 } 1265 } 1266 } 1267 1268 /// \returns the number of operands. 1269 unsigned getNumOperands() const { return OpsVec.size(); } 1270 1271 /// \returns the number of lanes. 1272 unsigned getNumLanes() const { return OpsVec[0].size(); } 1273 1274 /// \returns the operand value at \p OpIdx and \p Lane. 1275 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1276 return getData(OpIdx, Lane).V; 1277 } 1278 1279 /// \returns true if the data structure is empty. 1280 bool empty() const { return OpsVec.empty(); } 1281 1282 /// Clears the data. 1283 void clear() { OpsVec.clear(); } 1284 1285 /// \Returns true if there are enough operands identical to \p Op to fill 1286 /// the whole vector. 1287 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1288 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1289 bool OpAPO = getData(OpIdx, Lane).APO; 1290 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 // This is set to true if we found a candidate for broadcast at Lane. 1294 bool FoundCandidate = false; 1295 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1296 OperandData &Data = getData(OpI, Ln); 1297 if (Data.APO != OpAPO || Data.IsUsed) 1298 continue; 1299 if (Data.V == Op) { 1300 FoundCandidate = true; 1301 Data.IsUsed = true; 1302 break; 1303 } 1304 } 1305 if (!FoundCandidate) 1306 return false; 1307 } 1308 return true; 1309 } 1310 1311 public: 1312 /// Initialize with all the operands of the instruction vector \p RootVL. 1313 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1314 ScalarEvolution &SE, const BoUpSLP &R) 1315 : DL(DL), SE(SE), R(R) { 1316 // Append all the operands of RootVL. 1317 appendOperandsOfVL(RootVL); 1318 } 1319 1320 /// \Returns a value vector with the operands across all lanes for the 1321 /// opearnd at \p OpIdx. 1322 ValueList getVL(unsigned OpIdx) const { 1323 ValueList OpVL(OpsVec[OpIdx].size()); 1324 assert(OpsVec[OpIdx].size() == getNumLanes() && 1325 "Expected same num of lanes across all operands"); 1326 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1327 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1328 return OpVL; 1329 } 1330 1331 // Performs operand reordering for 2 or more operands. 1332 // The original operands are in OrigOps[OpIdx][Lane]. 1333 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1334 void reorder() { 1335 unsigned NumOperands = getNumOperands(); 1336 unsigned NumLanes = getNumLanes(); 1337 // Each operand has its own mode. We are using this mode to help us select 1338 // the instructions for each lane, so that they match best with the ones 1339 // we have selected so far. 1340 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1341 1342 // This is a greedy single-pass algorithm. We are going over each lane 1343 // once and deciding on the best order right away with no back-tracking. 1344 // However, in order to increase its effectiveness, we start with the lane 1345 // that has operands that can move the least. For example, given the 1346 // following lanes: 1347 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1348 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1349 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1350 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1351 // we will start at Lane 1, since the operands of the subtraction cannot 1352 // be reordered. Then we will visit the rest of the lanes in a circular 1353 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1354 1355 // Find the first lane that we will start our search from. 1356 unsigned FirstLane = getBestLaneToStartReordering(); 1357 1358 // Initialize the modes. 1359 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1360 Value *OpLane0 = getValue(OpIdx, FirstLane); 1361 // Keep track if we have instructions with all the same opcode on one 1362 // side. 1363 if (isa<LoadInst>(OpLane0)) 1364 ReorderingModes[OpIdx] = ReorderingMode::Load; 1365 else if (isa<Instruction>(OpLane0)) { 1366 // Check if OpLane0 should be broadcast. 1367 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1368 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1369 else 1370 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1371 } 1372 else if (isa<Constant>(OpLane0)) 1373 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1374 else if (isa<Argument>(OpLane0)) 1375 // Our best hope is a Splat. It may save some cost in some cases. 1376 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1377 else 1378 // NOTE: This should be unreachable. 1379 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1380 } 1381 1382 // If the initial strategy fails for any of the operand indexes, then we 1383 // perform reordering again in a second pass. This helps avoid assigning 1384 // high priority to the failed strategy, and should improve reordering for 1385 // the non-failed operand indexes. 1386 for (int Pass = 0; Pass != 2; ++Pass) { 1387 // Skip the second pass if the first pass did not fail. 1388 bool StrategyFailed = false; 1389 // Mark all operand data as free to use. 1390 clearUsed(); 1391 // We keep the original operand order for the FirstLane, so reorder the 1392 // rest of the lanes. We are visiting the nodes in a circular fashion, 1393 // using FirstLane as the center point and increasing the radius 1394 // distance. 1395 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1396 // Visit the lane on the right and then the lane on the left. 1397 for (int Direction : {+1, -1}) { 1398 int Lane = FirstLane + Direction * Distance; 1399 if (Lane < 0 || Lane >= (int)NumLanes) 1400 continue; 1401 int LastLane = Lane - Direction; 1402 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1403 "Out of bounds"); 1404 // Look for a good match for each operand. 1405 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1406 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1407 Optional<unsigned> BestIdx = 1408 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1409 // By not selecting a value, we allow the operands that follow to 1410 // select a better matching value. We will get a non-null value in 1411 // the next run of getBestOperand(). 1412 if (BestIdx) { 1413 // Swap the current operand with the one returned by 1414 // getBestOperand(). 1415 swap(OpIdx, BestIdx.getValue(), Lane); 1416 } else { 1417 // We failed to find a best operand, set mode to 'Failed'. 1418 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1419 // Enable the second pass. 1420 StrategyFailed = true; 1421 } 1422 } 1423 } 1424 } 1425 // Skip second pass if the strategy did not fail. 1426 if (!StrategyFailed) 1427 break; 1428 } 1429 } 1430 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1433 switch (RMode) { 1434 case ReorderingMode::Load: 1435 return "Load"; 1436 case ReorderingMode::Opcode: 1437 return "Opcode"; 1438 case ReorderingMode::Constant: 1439 return "Constant"; 1440 case ReorderingMode::Splat: 1441 return "Splat"; 1442 case ReorderingMode::Failed: 1443 return "Failed"; 1444 } 1445 llvm_unreachable("Unimplemented Reordering Type"); 1446 } 1447 1448 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1449 raw_ostream &OS) { 1450 return OS << getModeStr(RMode); 1451 } 1452 1453 /// Debug print. 1454 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1455 printMode(RMode, dbgs()); 1456 } 1457 1458 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1459 return printMode(RMode, OS); 1460 } 1461 1462 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1463 const unsigned Indent = 2; 1464 unsigned Cnt = 0; 1465 for (const OperandDataVec &OpDataVec : OpsVec) { 1466 OS << "Operand " << Cnt++ << "\n"; 1467 for (const OperandData &OpData : OpDataVec) { 1468 OS.indent(Indent) << "{"; 1469 if (Value *V = OpData.V) 1470 OS << *V; 1471 else 1472 OS << "null"; 1473 OS << ", APO:" << OpData.APO << "}\n"; 1474 } 1475 OS << "\n"; 1476 } 1477 return OS; 1478 } 1479 1480 /// Debug print. 1481 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1482 #endif 1483 }; 1484 1485 /// Checks if the instruction is marked for deletion. 1486 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1487 1488 /// Marks values operands for later deletion by replacing them with Undefs. 1489 void eraseInstructions(ArrayRef<Value *> AV); 1490 1491 ~BoUpSLP(); 1492 1493 private: 1494 /// Checks if all users of \p I are the part of the vectorization tree. 1495 bool areAllUsersVectorized(Instruction *I) const; 1496 1497 /// \returns the cost of the vectorizable entry. 1498 InstructionCost getEntryCost(TreeEntry *E); 1499 1500 /// This is the recursive part of buildTree. 1501 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1502 const EdgeInfo &EI); 1503 1504 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1505 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1506 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1507 /// returns false, setting \p CurrentOrder to either an empty vector or a 1508 /// non-identity permutation that allows to reuse extract instructions. 1509 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1510 SmallVectorImpl<unsigned> &CurrentOrder) const; 1511 1512 /// Vectorize a single entry in the tree. 1513 Value *vectorizeTree(TreeEntry *E); 1514 1515 /// Vectorize a single entry in the tree, starting in \p VL. 1516 Value *vectorizeTree(ArrayRef<Value *> VL); 1517 1518 /// \returns the scalarization cost for this type. Scalarization in this 1519 /// context means the creation of vectors from a group of scalars. 1520 InstructionCost 1521 getGatherCost(FixedVectorType *Ty, 1522 const DenseSet<unsigned> &ShuffledIndices) const; 1523 1524 /// \returns the scalarization cost for this list of values. Assuming that 1525 /// this subtree gets vectorized, we may need to extract the values from the 1526 /// roots. This method calculates the cost of extracting the values. 1527 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1528 1529 /// Set the Builder insert point to one after the last instruction in 1530 /// the bundle 1531 void setInsertPointAfterBundle(TreeEntry *E); 1532 1533 /// \returns a vector from a collection of scalars in \p VL. 1534 Value *gather(ArrayRef<Value *> VL); 1535 1536 /// \returns whether the VectorizableTree is fully vectorizable and will 1537 /// be beneficial even the tree height is tiny. 1538 bool isFullyVectorizableTinyTree() const; 1539 1540 /// Reorder commutative or alt operands to get better probability of 1541 /// generating vectorized code. 1542 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1543 SmallVectorImpl<Value *> &Left, 1544 SmallVectorImpl<Value *> &Right, 1545 const DataLayout &DL, 1546 ScalarEvolution &SE, 1547 const BoUpSLP &R); 1548 struct TreeEntry { 1549 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1550 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1551 1552 /// \returns true if the scalars in VL are equal to this entry. 1553 bool isSame(ArrayRef<Value *> VL) const { 1554 if (VL.size() == Scalars.size()) 1555 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1556 return VL.size() == ReuseShuffleIndices.size() && 1557 std::equal( 1558 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1559 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1560 } 1561 1562 /// A vector of scalars. 1563 ValueList Scalars; 1564 1565 /// The Scalars are vectorized into this value. It is initialized to Null. 1566 Value *VectorizedValue = nullptr; 1567 1568 /// Do we need to gather this sequence or vectorize it 1569 /// (either with vector instruction or with scatter/gather 1570 /// intrinsics for store/load)? 1571 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1572 EntryState State; 1573 1574 /// Does this sequence require some shuffling? 1575 SmallVector<int, 4> ReuseShuffleIndices; 1576 1577 /// Does this entry require reordering? 1578 SmallVector<unsigned, 4> ReorderIndices; 1579 1580 /// Points back to the VectorizableTree. 1581 /// 1582 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1583 /// to be a pointer and needs to be able to initialize the child iterator. 1584 /// Thus we need a reference back to the container to translate the indices 1585 /// to entries. 1586 VecTreeTy &Container; 1587 1588 /// The TreeEntry index containing the user of this entry. We can actually 1589 /// have multiple users so the data structure is not truly a tree. 1590 SmallVector<EdgeInfo, 1> UserTreeIndices; 1591 1592 /// The index of this treeEntry in VectorizableTree. 1593 int Idx = -1; 1594 1595 private: 1596 /// The operands of each instruction in each lane Operands[op_index][lane]. 1597 /// Note: This helps avoid the replication of the code that performs the 1598 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1599 SmallVector<ValueList, 2> Operands; 1600 1601 /// The main/alternate instruction. 1602 Instruction *MainOp = nullptr; 1603 Instruction *AltOp = nullptr; 1604 1605 public: 1606 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1607 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1608 if (Operands.size() < OpIdx + 1) 1609 Operands.resize(OpIdx + 1); 1610 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1611 Operands[OpIdx].resize(Scalars.size()); 1612 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1613 Operands[OpIdx][Lane] = OpVL[Lane]; 1614 } 1615 1616 /// Set the operands of this bundle in their original order. 1617 void setOperandsInOrder() { 1618 assert(Operands.empty() && "Already initialized?"); 1619 auto *I0 = cast<Instruction>(Scalars[0]); 1620 Operands.resize(I0->getNumOperands()); 1621 unsigned NumLanes = Scalars.size(); 1622 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1623 OpIdx != NumOperands; ++OpIdx) { 1624 Operands[OpIdx].resize(NumLanes); 1625 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1626 auto *I = cast<Instruction>(Scalars[Lane]); 1627 assert(I->getNumOperands() == NumOperands && 1628 "Expected same number of operands"); 1629 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1630 } 1631 } 1632 } 1633 1634 /// \returns the \p OpIdx operand of this TreeEntry. 1635 ValueList &getOperand(unsigned OpIdx) { 1636 assert(OpIdx < Operands.size() && "Off bounds"); 1637 return Operands[OpIdx]; 1638 } 1639 1640 /// \returns the number of operands. 1641 unsigned getNumOperands() const { return Operands.size(); } 1642 1643 /// \return the single \p OpIdx operand. 1644 Value *getSingleOperand(unsigned OpIdx) const { 1645 assert(OpIdx < Operands.size() && "Off bounds"); 1646 assert(!Operands[OpIdx].empty() && "No operand available"); 1647 return Operands[OpIdx][0]; 1648 } 1649 1650 /// Some of the instructions in the list have alternate opcodes. 1651 bool isAltShuffle() const { 1652 return getOpcode() != getAltOpcode(); 1653 } 1654 1655 bool isOpcodeOrAlt(Instruction *I) const { 1656 unsigned CheckedOpcode = I->getOpcode(); 1657 return (getOpcode() == CheckedOpcode || 1658 getAltOpcode() == CheckedOpcode); 1659 } 1660 1661 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1662 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1663 /// \p OpValue. 1664 Value *isOneOf(Value *Op) const { 1665 auto *I = dyn_cast<Instruction>(Op); 1666 if (I && isOpcodeOrAlt(I)) 1667 return Op; 1668 return MainOp; 1669 } 1670 1671 void setOperations(const InstructionsState &S) { 1672 MainOp = S.MainOp; 1673 AltOp = S.AltOp; 1674 } 1675 1676 Instruction *getMainOp() const { 1677 return MainOp; 1678 } 1679 1680 Instruction *getAltOp() const { 1681 return AltOp; 1682 } 1683 1684 /// The main/alternate opcodes for the list of instructions. 1685 unsigned getOpcode() const { 1686 return MainOp ? MainOp->getOpcode() : 0; 1687 } 1688 1689 unsigned getAltOpcode() const { 1690 return AltOp ? AltOp->getOpcode() : 0; 1691 } 1692 1693 /// Update operations state of this entry if reorder occurred. 1694 bool updateStateIfReorder() { 1695 if (ReorderIndices.empty()) 1696 return false; 1697 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1698 setOperations(S); 1699 return true; 1700 } 1701 1702 #ifndef NDEBUG 1703 /// Debug printer. 1704 LLVM_DUMP_METHOD void dump() const { 1705 dbgs() << Idx << ".\n"; 1706 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1707 dbgs() << "Operand " << OpI << ":\n"; 1708 for (const Value *V : Operands[OpI]) 1709 dbgs().indent(2) << *V << "\n"; 1710 } 1711 dbgs() << "Scalars: \n"; 1712 for (Value *V : Scalars) 1713 dbgs().indent(2) << *V << "\n"; 1714 dbgs() << "State: "; 1715 switch (State) { 1716 case Vectorize: 1717 dbgs() << "Vectorize\n"; 1718 break; 1719 case ScatterVectorize: 1720 dbgs() << "ScatterVectorize\n"; 1721 break; 1722 case NeedToGather: 1723 dbgs() << "NeedToGather\n"; 1724 break; 1725 } 1726 dbgs() << "MainOp: "; 1727 if (MainOp) 1728 dbgs() << *MainOp << "\n"; 1729 else 1730 dbgs() << "NULL\n"; 1731 dbgs() << "AltOp: "; 1732 if (AltOp) 1733 dbgs() << *AltOp << "\n"; 1734 else 1735 dbgs() << "NULL\n"; 1736 dbgs() << "VectorizedValue: "; 1737 if (VectorizedValue) 1738 dbgs() << *VectorizedValue << "\n"; 1739 else 1740 dbgs() << "NULL\n"; 1741 dbgs() << "ReuseShuffleIndices: "; 1742 if (ReuseShuffleIndices.empty()) 1743 dbgs() << "Empty"; 1744 else 1745 for (unsigned ReuseIdx : ReuseShuffleIndices) 1746 dbgs() << ReuseIdx << ", "; 1747 dbgs() << "\n"; 1748 dbgs() << "ReorderIndices: "; 1749 for (unsigned ReorderIdx : ReorderIndices) 1750 dbgs() << ReorderIdx << ", "; 1751 dbgs() << "\n"; 1752 dbgs() << "UserTreeIndices: "; 1753 for (const auto &EInfo : UserTreeIndices) 1754 dbgs() << EInfo << ", "; 1755 dbgs() << "\n"; 1756 } 1757 #endif 1758 }; 1759 1760 #ifndef NDEBUG 1761 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1762 InstructionCost VecCost, 1763 InstructionCost ScalarCost) const { 1764 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1765 dbgs() << "SLP: Costs:\n"; 1766 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1767 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1768 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1769 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1770 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1771 } 1772 #endif 1773 1774 /// Create a new VectorizableTree entry. 1775 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1776 const InstructionsState &S, 1777 const EdgeInfo &UserTreeIdx, 1778 ArrayRef<unsigned> ReuseShuffleIndices = None, 1779 ArrayRef<unsigned> ReorderIndices = None) { 1780 TreeEntry::EntryState EntryState = 1781 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1782 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1783 ReuseShuffleIndices, ReorderIndices); 1784 } 1785 1786 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1787 TreeEntry::EntryState EntryState, 1788 Optional<ScheduleData *> Bundle, 1789 const InstructionsState &S, 1790 const EdgeInfo &UserTreeIdx, 1791 ArrayRef<unsigned> ReuseShuffleIndices = None, 1792 ArrayRef<unsigned> ReorderIndices = None) { 1793 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1794 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1795 "Need to vectorize gather entry?"); 1796 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1797 TreeEntry *Last = VectorizableTree.back().get(); 1798 Last->Idx = VectorizableTree.size() - 1; 1799 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1800 Last->State = EntryState; 1801 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1802 ReuseShuffleIndices.end()); 1803 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1804 Last->setOperations(S); 1805 if (Last->State != TreeEntry::NeedToGather) { 1806 for (Value *V : VL) { 1807 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1808 ScalarToTreeEntry[V] = Last; 1809 } 1810 // Update the scheduler bundle to point to this TreeEntry. 1811 unsigned Lane = 0; 1812 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1813 BundleMember = BundleMember->NextInBundle) { 1814 BundleMember->TE = Last; 1815 BundleMember->Lane = Lane; 1816 ++Lane; 1817 } 1818 assert((!Bundle.getValue() || Lane == VL.size()) && 1819 "Bundle and VL out of sync"); 1820 } else { 1821 MustGather.insert(VL.begin(), VL.end()); 1822 } 1823 1824 if (UserTreeIdx.UserTE) 1825 Last->UserTreeIndices.push_back(UserTreeIdx); 1826 1827 return Last; 1828 } 1829 1830 /// -- Vectorization State -- 1831 /// Holds all of the tree entries. 1832 TreeEntry::VecTreeTy VectorizableTree; 1833 1834 #ifndef NDEBUG 1835 /// Debug printer. 1836 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1837 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1838 VectorizableTree[Id]->dump(); 1839 dbgs() << "\n"; 1840 } 1841 } 1842 #endif 1843 1844 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1845 1846 const TreeEntry *getTreeEntry(Value *V) const { 1847 return ScalarToTreeEntry.lookup(V); 1848 } 1849 1850 /// Maps a specific scalar to its tree entry. 1851 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1852 1853 /// Maps a value to the proposed vectorizable size. 1854 SmallDenseMap<Value *, unsigned> InstrElementSize; 1855 1856 /// A list of scalars that we found that we need to keep as scalars. 1857 ValueSet MustGather; 1858 1859 /// This POD struct describes one external user in the vectorized tree. 1860 struct ExternalUser { 1861 ExternalUser(Value *S, llvm::User *U, int L) 1862 : Scalar(S), User(U), Lane(L) {} 1863 1864 // Which scalar in our function. 1865 Value *Scalar; 1866 1867 // Which user that uses the scalar. 1868 llvm::User *User; 1869 1870 // Which lane does the scalar belong to. 1871 int Lane; 1872 }; 1873 using UserList = SmallVector<ExternalUser, 16>; 1874 1875 /// Checks if two instructions may access the same memory. 1876 /// 1877 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1878 /// is invariant in the calling loop. 1879 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1880 Instruction *Inst2) { 1881 // First check if the result is already in the cache. 1882 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1883 Optional<bool> &result = AliasCache[key]; 1884 if (result.hasValue()) { 1885 return result.getValue(); 1886 } 1887 MemoryLocation Loc2 = getLocation(Inst2, AA); 1888 bool aliased = true; 1889 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1890 // Do the alias check. 1891 aliased = AA->alias(Loc1, Loc2); 1892 } 1893 // Store the result in the cache. 1894 result = aliased; 1895 return aliased; 1896 } 1897 1898 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1899 1900 /// Cache for alias results. 1901 /// TODO: consider moving this to the AliasAnalysis itself. 1902 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1903 1904 /// Removes an instruction from its block and eventually deletes it. 1905 /// It's like Instruction::eraseFromParent() except that the actual deletion 1906 /// is delayed until BoUpSLP is destructed. 1907 /// This is required to ensure that there are no incorrect collisions in the 1908 /// AliasCache, which can happen if a new instruction is allocated at the 1909 /// same address as a previously deleted instruction. 1910 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1911 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1912 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1913 } 1914 1915 /// Temporary store for deleted instructions. Instructions will be deleted 1916 /// eventually when the BoUpSLP is destructed. 1917 DenseMap<Instruction *, bool> DeletedInstructions; 1918 1919 /// A list of values that need to extracted out of the tree. 1920 /// This list holds pairs of (Internal Scalar : External User). External User 1921 /// can be nullptr, it means that this Internal Scalar will be used later, 1922 /// after vectorization. 1923 UserList ExternalUses; 1924 1925 /// Values used only by @llvm.assume calls. 1926 SmallPtrSet<const Value *, 32> EphValues; 1927 1928 /// Holds all of the instructions that we gathered. 1929 SetVector<Instruction *> GatherSeq; 1930 1931 /// A list of blocks that we are going to CSE. 1932 SetVector<BasicBlock *> CSEBlocks; 1933 1934 /// Contains all scheduling relevant data for an instruction. 1935 /// A ScheduleData either represents a single instruction or a member of an 1936 /// instruction bundle (= a group of instructions which is combined into a 1937 /// vector instruction). 1938 struct ScheduleData { 1939 // The initial value for the dependency counters. It means that the 1940 // dependencies are not calculated yet. 1941 enum { InvalidDeps = -1 }; 1942 1943 ScheduleData() = default; 1944 1945 void init(int BlockSchedulingRegionID, Value *OpVal) { 1946 FirstInBundle = this; 1947 NextInBundle = nullptr; 1948 NextLoadStore = nullptr; 1949 IsScheduled = false; 1950 SchedulingRegionID = BlockSchedulingRegionID; 1951 UnscheduledDepsInBundle = UnscheduledDeps; 1952 clearDependencies(); 1953 OpValue = OpVal; 1954 TE = nullptr; 1955 Lane = -1; 1956 } 1957 1958 /// Returns true if the dependency information has been calculated. 1959 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1960 1961 /// Returns true for single instructions and for bundle representatives 1962 /// (= the head of a bundle). 1963 bool isSchedulingEntity() const { return FirstInBundle == this; } 1964 1965 /// Returns true if it represents an instruction bundle and not only a 1966 /// single instruction. 1967 bool isPartOfBundle() const { 1968 return NextInBundle != nullptr || FirstInBundle != this; 1969 } 1970 1971 /// Returns true if it is ready for scheduling, i.e. it has no more 1972 /// unscheduled depending instructions/bundles. 1973 bool isReady() const { 1974 assert(isSchedulingEntity() && 1975 "can't consider non-scheduling entity for ready list"); 1976 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1977 } 1978 1979 /// Modifies the number of unscheduled dependencies, also updating it for 1980 /// the whole bundle. 1981 int incrementUnscheduledDeps(int Incr) { 1982 UnscheduledDeps += Incr; 1983 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1984 } 1985 1986 /// Sets the number of unscheduled dependencies to the number of 1987 /// dependencies. 1988 void resetUnscheduledDeps() { 1989 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1990 } 1991 1992 /// Clears all dependency information. 1993 void clearDependencies() { 1994 Dependencies = InvalidDeps; 1995 resetUnscheduledDeps(); 1996 MemoryDependencies.clear(); 1997 } 1998 1999 void dump(raw_ostream &os) const { 2000 if (!isSchedulingEntity()) { 2001 os << "/ " << *Inst; 2002 } else if (NextInBundle) { 2003 os << '[' << *Inst; 2004 ScheduleData *SD = NextInBundle; 2005 while (SD) { 2006 os << ';' << *SD->Inst; 2007 SD = SD->NextInBundle; 2008 } 2009 os << ']'; 2010 } else { 2011 os << *Inst; 2012 } 2013 } 2014 2015 Instruction *Inst = nullptr; 2016 2017 /// Points to the head in an instruction bundle (and always to this for 2018 /// single instructions). 2019 ScheduleData *FirstInBundle = nullptr; 2020 2021 /// Single linked list of all instructions in a bundle. Null if it is a 2022 /// single instruction. 2023 ScheduleData *NextInBundle = nullptr; 2024 2025 /// Single linked list of all memory instructions (e.g. load, store, call) 2026 /// in the block - until the end of the scheduling region. 2027 ScheduleData *NextLoadStore = nullptr; 2028 2029 /// The dependent memory instructions. 2030 /// This list is derived on demand in calculateDependencies(). 2031 SmallVector<ScheduleData *, 4> MemoryDependencies; 2032 2033 /// This ScheduleData is in the current scheduling region if this matches 2034 /// the current SchedulingRegionID of BlockScheduling. 2035 int SchedulingRegionID = 0; 2036 2037 /// Used for getting a "good" final ordering of instructions. 2038 int SchedulingPriority = 0; 2039 2040 /// The number of dependencies. Constitutes of the number of users of the 2041 /// instruction plus the number of dependent memory instructions (if any). 2042 /// This value is calculated on demand. 2043 /// If InvalidDeps, the number of dependencies is not calculated yet. 2044 int Dependencies = InvalidDeps; 2045 2046 /// The number of dependencies minus the number of dependencies of scheduled 2047 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2048 /// for scheduling. 2049 /// Note that this is negative as long as Dependencies is not calculated. 2050 int UnscheduledDeps = InvalidDeps; 2051 2052 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2053 /// single instructions. 2054 int UnscheduledDepsInBundle = InvalidDeps; 2055 2056 /// True if this instruction is scheduled (or considered as scheduled in the 2057 /// dry-run). 2058 bool IsScheduled = false; 2059 2060 /// Opcode of the current instruction in the schedule data. 2061 Value *OpValue = nullptr; 2062 2063 /// The TreeEntry that this instruction corresponds to. 2064 TreeEntry *TE = nullptr; 2065 2066 /// The lane of this node in the TreeEntry. 2067 int Lane = -1; 2068 }; 2069 2070 #ifndef NDEBUG 2071 friend inline raw_ostream &operator<<(raw_ostream &os, 2072 const BoUpSLP::ScheduleData &SD) { 2073 SD.dump(os); 2074 return os; 2075 } 2076 #endif 2077 2078 friend struct GraphTraits<BoUpSLP *>; 2079 friend struct DOTGraphTraits<BoUpSLP *>; 2080 2081 /// Contains all scheduling data for a basic block. 2082 struct BlockScheduling { 2083 BlockScheduling(BasicBlock *BB) 2084 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2085 2086 void clear() { 2087 ReadyInsts.clear(); 2088 ScheduleStart = nullptr; 2089 ScheduleEnd = nullptr; 2090 FirstLoadStoreInRegion = nullptr; 2091 LastLoadStoreInRegion = nullptr; 2092 2093 // Reduce the maximum schedule region size by the size of the 2094 // previous scheduling run. 2095 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2096 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2097 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2098 ScheduleRegionSize = 0; 2099 2100 // Make a new scheduling region, i.e. all existing ScheduleData is not 2101 // in the new region yet. 2102 ++SchedulingRegionID; 2103 } 2104 2105 ScheduleData *getScheduleData(Value *V) { 2106 ScheduleData *SD = ScheduleDataMap[V]; 2107 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2108 return SD; 2109 return nullptr; 2110 } 2111 2112 ScheduleData *getScheduleData(Value *V, Value *Key) { 2113 if (V == Key) 2114 return getScheduleData(V); 2115 auto I = ExtraScheduleDataMap.find(V); 2116 if (I != ExtraScheduleDataMap.end()) { 2117 ScheduleData *SD = I->second[Key]; 2118 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2119 return SD; 2120 } 2121 return nullptr; 2122 } 2123 2124 bool isInSchedulingRegion(ScheduleData *SD) const { 2125 return SD->SchedulingRegionID == SchedulingRegionID; 2126 } 2127 2128 /// Marks an instruction as scheduled and puts all dependent ready 2129 /// instructions into the ready-list. 2130 template <typename ReadyListType> 2131 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2132 SD->IsScheduled = true; 2133 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2134 2135 ScheduleData *BundleMember = SD; 2136 while (BundleMember) { 2137 if (BundleMember->Inst != BundleMember->OpValue) { 2138 BundleMember = BundleMember->NextInBundle; 2139 continue; 2140 } 2141 // Handle the def-use chain dependencies. 2142 2143 // Decrement the unscheduled counter and insert to ready list if ready. 2144 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2145 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2146 if (OpDef && OpDef->hasValidDependencies() && 2147 OpDef->incrementUnscheduledDeps(-1) == 0) { 2148 // There are no more unscheduled dependencies after 2149 // decrementing, so we can put the dependent instruction 2150 // into the ready list. 2151 ScheduleData *DepBundle = OpDef->FirstInBundle; 2152 assert(!DepBundle->IsScheduled && 2153 "already scheduled bundle gets ready"); 2154 ReadyList.insert(DepBundle); 2155 LLVM_DEBUG(dbgs() 2156 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2157 } 2158 }); 2159 }; 2160 2161 // If BundleMember is a vector bundle, its operands may have been 2162 // reordered duiring buildTree(). We therefore need to get its operands 2163 // through the TreeEntry. 2164 if (TreeEntry *TE = BundleMember->TE) { 2165 int Lane = BundleMember->Lane; 2166 assert(Lane >= 0 && "Lane not set"); 2167 2168 // Since vectorization tree is being built recursively this assertion 2169 // ensures that the tree entry has all operands set before reaching 2170 // this code. Couple of exceptions known at the moment are extracts 2171 // where their second (immediate) operand is not added. Since 2172 // immediates do not affect scheduler behavior this is considered 2173 // okay. 2174 auto *In = TE->getMainOp(); 2175 assert(In && 2176 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2177 In->getNumOperands() == TE->getNumOperands()) && 2178 "Missed TreeEntry operands?"); 2179 (void)In; // fake use to avoid build failure when assertions disabled 2180 2181 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2182 OpIdx != NumOperands; ++OpIdx) 2183 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2184 DecrUnsched(I); 2185 } else { 2186 // If BundleMember is a stand-alone instruction, no operand reordering 2187 // has taken place, so we directly access its operands. 2188 for (Use &U : BundleMember->Inst->operands()) 2189 if (auto *I = dyn_cast<Instruction>(U.get())) 2190 DecrUnsched(I); 2191 } 2192 // Handle the memory dependencies. 2193 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2194 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2195 // There are no more unscheduled dependencies after decrementing, 2196 // so we can put the dependent instruction into the ready list. 2197 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2198 assert(!DepBundle->IsScheduled && 2199 "already scheduled bundle gets ready"); 2200 ReadyList.insert(DepBundle); 2201 LLVM_DEBUG(dbgs() 2202 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2203 } 2204 } 2205 BundleMember = BundleMember->NextInBundle; 2206 } 2207 } 2208 2209 void doForAllOpcodes(Value *V, 2210 function_ref<void(ScheduleData *SD)> Action) { 2211 if (ScheduleData *SD = getScheduleData(V)) 2212 Action(SD); 2213 auto I = ExtraScheduleDataMap.find(V); 2214 if (I != ExtraScheduleDataMap.end()) 2215 for (auto &P : I->second) 2216 if (P.second->SchedulingRegionID == SchedulingRegionID) 2217 Action(P.second); 2218 } 2219 2220 /// Put all instructions into the ReadyList which are ready for scheduling. 2221 template <typename ReadyListType> 2222 void initialFillReadyList(ReadyListType &ReadyList) { 2223 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2224 doForAllOpcodes(I, [&](ScheduleData *SD) { 2225 if (SD->isSchedulingEntity() && SD->isReady()) { 2226 ReadyList.insert(SD); 2227 LLVM_DEBUG(dbgs() 2228 << "SLP: initially in ready list: " << *I << "\n"); 2229 } 2230 }); 2231 } 2232 } 2233 2234 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2235 /// cyclic dependencies. This is only a dry-run, no instructions are 2236 /// actually moved at this stage. 2237 /// \returns the scheduling bundle. The returned Optional value is non-None 2238 /// if \p VL is allowed to be scheduled. 2239 Optional<ScheduleData *> 2240 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2241 const InstructionsState &S); 2242 2243 /// Un-bundles a group of instructions. 2244 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2245 2246 /// Allocates schedule data chunk. 2247 ScheduleData *allocateScheduleDataChunks(); 2248 2249 /// Extends the scheduling region so that V is inside the region. 2250 /// \returns true if the region size is within the limit. 2251 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2252 2253 /// Initialize the ScheduleData structures for new instructions in the 2254 /// scheduling region. 2255 void initScheduleData(Instruction *FromI, Instruction *ToI, 2256 ScheduleData *PrevLoadStore, 2257 ScheduleData *NextLoadStore); 2258 2259 /// Updates the dependency information of a bundle and of all instructions/ 2260 /// bundles which depend on the original bundle. 2261 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2262 BoUpSLP *SLP); 2263 2264 /// Sets all instruction in the scheduling region to un-scheduled. 2265 void resetSchedule(); 2266 2267 BasicBlock *BB; 2268 2269 /// Simple memory allocation for ScheduleData. 2270 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2271 2272 /// The size of a ScheduleData array in ScheduleDataChunks. 2273 int ChunkSize; 2274 2275 /// The allocator position in the current chunk, which is the last entry 2276 /// of ScheduleDataChunks. 2277 int ChunkPos; 2278 2279 /// Attaches ScheduleData to Instruction. 2280 /// Note that the mapping survives during all vectorization iterations, i.e. 2281 /// ScheduleData structures are recycled. 2282 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2283 2284 /// Attaches ScheduleData to Instruction with the leading key. 2285 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2286 ExtraScheduleDataMap; 2287 2288 struct ReadyList : SmallVector<ScheduleData *, 8> { 2289 void insert(ScheduleData *SD) { push_back(SD); } 2290 }; 2291 2292 /// The ready-list for scheduling (only used for the dry-run). 2293 ReadyList ReadyInsts; 2294 2295 /// The first instruction of the scheduling region. 2296 Instruction *ScheduleStart = nullptr; 2297 2298 /// The first instruction _after_ the scheduling region. 2299 Instruction *ScheduleEnd = nullptr; 2300 2301 /// The first memory accessing instruction in the scheduling region 2302 /// (can be null). 2303 ScheduleData *FirstLoadStoreInRegion = nullptr; 2304 2305 /// The last memory accessing instruction in the scheduling region 2306 /// (can be null). 2307 ScheduleData *LastLoadStoreInRegion = nullptr; 2308 2309 /// The current size of the scheduling region. 2310 int ScheduleRegionSize = 0; 2311 2312 /// The maximum size allowed for the scheduling region. 2313 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2314 2315 /// The ID of the scheduling region. For a new vectorization iteration this 2316 /// is incremented which "removes" all ScheduleData from the region. 2317 // Make sure that the initial SchedulingRegionID is greater than the 2318 // initial SchedulingRegionID in ScheduleData (which is 0). 2319 int SchedulingRegionID = 1; 2320 }; 2321 2322 /// Attaches the BlockScheduling structures to basic blocks. 2323 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2324 2325 /// Performs the "real" scheduling. Done before vectorization is actually 2326 /// performed in a basic block. 2327 void scheduleBlock(BlockScheduling *BS); 2328 2329 /// List of users to ignore during scheduling and that don't need extracting. 2330 ArrayRef<Value *> UserIgnoreList; 2331 2332 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2333 /// sorted SmallVectors of unsigned. 2334 struct OrdersTypeDenseMapInfo { 2335 static OrdersType getEmptyKey() { 2336 OrdersType V; 2337 V.push_back(~1U); 2338 return V; 2339 } 2340 2341 static OrdersType getTombstoneKey() { 2342 OrdersType V; 2343 V.push_back(~2U); 2344 return V; 2345 } 2346 2347 static unsigned getHashValue(const OrdersType &V) { 2348 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2349 } 2350 2351 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2352 return LHS == RHS; 2353 } 2354 }; 2355 2356 /// Contains orders of operations along with the number of bundles that have 2357 /// operations in this order. It stores only those orders that require 2358 /// reordering, if reordering is not required it is counted using \a 2359 /// NumOpsWantToKeepOriginalOrder. 2360 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2361 /// Number of bundles that do not require reordering. 2362 unsigned NumOpsWantToKeepOriginalOrder = 0; 2363 2364 // Analysis and block reference. 2365 Function *F; 2366 ScalarEvolution *SE; 2367 TargetTransformInfo *TTI; 2368 TargetLibraryInfo *TLI; 2369 AAResults *AA; 2370 LoopInfo *LI; 2371 DominatorTree *DT; 2372 AssumptionCache *AC; 2373 DemandedBits *DB; 2374 const DataLayout *DL; 2375 OptimizationRemarkEmitter *ORE; 2376 2377 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2378 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2379 2380 /// Instruction builder to construct the vectorized tree. 2381 IRBuilder<> Builder; 2382 2383 /// A map of scalar integer values to the smallest bit width with which they 2384 /// can legally be represented. The values map to (width, signed) pairs, 2385 /// where "width" indicates the minimum bit width and "signed" is True if the 2386 /// value must be signed-extended, rather than zero-extended, back to its 2387 /// original width. 2388 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2389 }; 2390 2391 } // end namespace slpvectorizer 2392 2393 template <> struct GraphTraits<BoUpSLP *> { 2394 using TreeEntry = BoUpSLP::TreeEntry; 2395 2396 /// NodeRef has to be a pointer per the GraphWriter. 2397 using NodeRef = TreeEntry *; 2398 2399 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2400 2401 /// Add the VectorizableTree to the index iterator to be able to return 2402 /// TreeEntry pointers. 2403 struct ChildIteratorType 2404 : public iterator_adaptor_base< 2405 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2406 ContainerTy &VectorizableTree; 2407 2408 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2409 ContainerTy &VT) 2410 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2411 2412 NodeRef operator*() { return I->UserTE; } 2413 }; 2414 2415 static NodeRef getEntryNode(BoUpSLP &R) { 2416 return R.VectorizableTree[0].get(); 2417 } 2418 2419 static ChildIteratorType child_begin(NodeRef N) { 2420 return {N->UserTreeIndices.begin(), N->Container}; 2421 } 2422 2423 static ChildIteratorType child_end(NodeRef N) { 2424 return {N->UserTreeIndices.end(), N->Container}; 2425 } 2426 2427 /// For the node iterator we just need to turn the TreeEntry iterator into a 2428 /// TreeEntry* iterator so that it dereferences to NodeRef. 2429 class nodes_iterator { 2430 using ItTy = ContainerTy::iterator; 2431 ItTy It; 2432 2433 public: 2434 nodes_iterator(const ItTy &It2) : It(It2) {} 2435 NodeRef operator*() { return It->get(); } 2436 nodes_iterator operator++() { 2437 ++It; 2438 return *this; 2439 } 2440 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2441 }; 2442 2443 static nodes_iterator nodes_begin(BoUpSLP *R) { 2444 return nodes_iterator(R->VectorizableTree.begin()); 2445 } 2446 2447 static nodes_iterator nodes_end(BoUpSLP *R) { 2448 return nodes_iterator(R->VectorizableTree.end()); 2449 } 2450 2451 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2452 }; 2453 2454 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2455 using TreeEntry = BoUpSLP::TreeEntry; 2456 2457 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2458 2459 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2460 std::string Str; 2461 raw_string_ostream OS(Str); 2462 if (isSplat(Entry->Scalars)) { 2463 OS << "<splat> " << *Entry->Scalars[0]; 2464 return Str; 2465 } 2466 for (auto V : Entry->Scalars) { 2467 OS << *V; 2468 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2469 return EU.Scalar == V; 2470 })) 2471 OS << " <extract>"; 2472 OS << "\n"; 2473 } 2474 return Str; 2475 } 2476 2477 static std::string getNodeAttributes(const TreeEntry *Entry, 2478 const BoUpSLP *) { 2479 if (Entry->State == TreeEntry::NeedToGather) 2480 return "color=red"; 2481 return ""; 2482 } 2483 }; 2484 2485 } // end namespace llvm 2486 2487 BoUpSLP::~BoUpSLP() { 2488 for (const auto &Pair : DeletedInstructions) { 2489 // Replace operands of ignored instructions with Undefs in case if they were 2490 // marked for deletion. 2491 if (Pair.getSecond()) { 2492 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2493 Pair.getFirst()->replaceAllUsesWith(Undef); 2494 } 2495 Pair.getFirst()->dropAllReferences(); 2496 } 2497 for (const auto &Pair : DeletedInstructions) { 2498 assert(Pair.getFirst()->use_empty() && 2499 "trying to erase instruction with users."); 2500 Pair.getFirst()->eraseFromParent(); 2501 } 2502 #ifdef EXPENSIVE_CHECKS 2503 // If we could guarantee that this call is not extremely slow, we could 2504 // remove the ifdef limitation (see PR47712). 2505 assert(!verifyFunction(*F, &dbgs())); 2506 #endif 2507 } 2508 2509 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2510 for (auto *V : AV) { 2511 if (auto *I = dyn_cast<Instruction>(V)) 2512 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2513 }; 2514 } 2515 2516 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2517 ArrayRef<Value *> UserIgnoreLst) { 2518 ExtraValueToDebugLocsMap ExternallyUsedValues; 2519 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2520 } 2521 2522 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2523 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2524 ArrayRef<Value *> UserIgnoreLst) { 2525 deleteTree(); 2526 UserIgnoreList = UserIgnoreLst; 2527 if (!allSameType(Roots)) 2528 return; 2529 buildTree_rec(Roots, 0, EdgeInfo()); 2530 2531 // Collect the values that we need to extract from the tree. 2532 for (auto &TEPtr : VectorizableTree) { 2533 TreeEntry *Entry = TEPtr.get(); 2534 2535 // No need to handle users of gathered values. 2536 if (Entry->State == TreeEntry::NeedToGather) 2537 continue; 2538 2539 // For each lane: 2540 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2541 Value *Scalar = Entry->Scalars[Lane]; 2542 int FoundLane = Lane; 2543 if (!Entry->ReuseShuffleIndices.empty()) { 2544 FoundLane = 2545 std::distance(Entry->ReuseShuffleIndices.begin(), 2546 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2547 } 2548 2549 // Check if the scalar is externally used as an extra arg. 2550 auto ExtI = ExternallyUsedValues.find(Scalar); 2551 if (ExtI != ExternallyUsedValues.end()) { 2552 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2553 << Lane << " from " << *Scalar << ".\n"); 2554 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2555 } 2556 for (User *U : Scalar->users()) { 2557 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2558 2559 Instruction *UserInst = dyn_cast<Instruction>(U); 2560 if (!UserInst) 2561 continue; 2562 2563 // Skip in-tree scalars that become vectors 2564 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2565 Value *UseScalar = UseEntry->Scalars[0]; 2566 // Some in-tree scalars will remain as scalar in vectorized 2567 // instructions. If that is the case, the one in Lane 0 will 2568 // be used. 2569 if (UseScalar != U || 2570 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2571 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2572 << ".\n"); 2573 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2574 continue; 2575 } 2576 } 2577 2578 // Ignore users in the user ignore list. 2579 if (is_contained(UserIgnoreList, UserInst)) 2580 continue; 2581 2582 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2583 << Lane << " from " << *Scalar << ".\n"); 2584 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2585 } 2586 } 2587 } 2588 } 2589 2590 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2591 const EdgeInfo &UserTreeIdx) { 2592 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2593 2594 InstructionsState S = getSameOpcode(VL); 2595 if (Depth == RecursionMaxDepth) { 2596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2598 return; 2599 } 2600 2601 // Don't handle vectors. 2602 if (S.OpValue->getType()->isVectorTy()) { 2603 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2604 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2605 return; 2606 } 2607 2608 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2609 if (SI->getValueOperand()->getType()->isVectorTy()) { 2610 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2611 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2612 return; 2613 } 2614 2615 // If all of the operands are identical or constant we have a simple solution. 2616 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2617 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2619 return; 2620 } 2621 2622 // We now know that this is a vector of instructions of the same type from 2623 // the same block. 2624 2625 // Don't vectorize ephemeral values. 2626 for (Value *V : VL) { 2627 if (EphValues.count(V)) { 2628 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2629 << ") is ephemeral.\n"); 2630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2631 return; 2632 } 2633 } 2634 2635 // Check if this is a duplicate of another entry. 2636 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2637 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2638 if (!E->isSame(VL)) { 2639 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2640 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2641 return; 2642 } 2643 // Record the reuse of the tree node. FIXME, currently this is only used to 2644 // properly draw the graph rather than for the actual vectorization. 2645 E->UserTreeIndices.push_back(UserTreeIdx); 2646 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2647 << ".\n"); 2648 return; 2649 } 2650 2651 // Check that none of the instructions in the bundle are already in the tree. 2652 for (Value *V : VL) { 2653 auto *I = dyn_cast<Instruction>(V); 2654 if (!I) 2655 continue; 2656 if (getTreeEntry(I)) { 2657 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2658 << ") is already in tree.\n"); 2659 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2660 return; 2661 } 2662 } 2663 2664 // If any of the scalars is marked as a value that needs to stay scalar, then 2665 // we need to gather the scalars. 2666 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2667 for (Value *V : VL) { 2668 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2669 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2671 return; 2672 } 2673 } 2674 2675 // Check that all of the users of the scalars that we want to vectorize are 2676 // schedulable. 2677 auto *VL0 = cast<Instruction>(S.OpValue); 2678 BasicBlock *BB = VL0->getParent(); 2679 2680 if (!DT->isReachableFromEntry(BB)) { 2681 // Don't go into unreachable blocks. They may contain instructions with 2682 // dependency cycles which confuse the final scheduling. 2683 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2685 return; 2686 } 2687 2688 // Check that every instruction appears once in this bundle. 2689 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2690 SmallVector<Value *, 4> UniqueValues; 2691 DenseMap<Value *, unsigned> UniquePositions; 2692 for (Value *V : VL) { 2693 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2694 ReuseShuffleIndicies.emplace_back(Res.first->second); 2695 if (Res.second) 2696 UniqueValues.emplace_back(V); 2697 } 2698 size_t NumUniqueScalarValues = UniqueValues.size(); 2699 if (NumUniqueScalarValues == VL.size()) { 2700 ReuseShuffleIndicies.clear(); 2701 } else { 2702 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2703 if (NumUniqueScalarValues <= 1 || 2704 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2705 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2707 return; 2708 } 2709 VL = UniqueValues; 2710 } 2711 2712 auto &BSRef = BlocksSchedules[BB]; 2713 if (!BSRef) 2714 BSRef = std::make_unique<BlockScheduling>(BB); 2715 2716 BlockScheduling &BS = *BSRef.get(); 2717 2718 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2719 if (!Bundle) { 2720 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2721 assert((!BS.getScheduleData(VL0) || 2722 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2723 "tryScheduleBundle should cancelScheduling on failure"); 2724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2725 ReuseShuffleIndicies); 2726 return; 2727 } 2728 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2729 2730 unsigned ShuffleOrOp = S.isAltShuffle() ? 2731 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2732 switch (ShuffleOrOp) { 2733 case Instruction::PHI: { 2734 auto *PH = cast<PHINode>(VL0); 2735 2736 // Check for terminator values (e.g. invoke). 2737 for (Value *V : VL) 2738 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2739 Instruction *Term = dyn_cast<Instruction>( 2740 cast<PHINode>(V)->getIncomingValueForBlock( 2741 PH->getIncomingBlock(I))); 2742 if (Term && Term->isTerminator()) { 2743 LLVM_DEBUG(dbgs() 2744 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2745 BS.cancelScheduling(VL, VL0); 2746 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2747 ReuseShuffleIndicies); 2748 return; 2749 } 2750 } 2751 2752 TreeEntry *TE = 2753 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2754 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2755 2756 // Keeps the reordered operands to avoid code duplication. 2757 SmallVector<ValueList, 2> OperandsVec; 2758 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2759 ValueList Operands; 2760 // Prepare the operand vector. 2761 for (Value *V : VL) 2762 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2763 PH->getIncomingBlock(I))); 2764 TE->setOperand(I, Operands); 2765 OperandsVec.push_back(Operands); 2766 } 2767 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2768 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2769 return; 2770 } 2771 case Instruction::ExtractValue: 2772 case Instruction::ExtractElement: { 2773 OrdersType CurrentOrder; 2774 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2775 if (Reuse) { 2776 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2777 ++NumOpsWantToKeepOriginalOrder; 2778 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2779 ReuseShuffleIndicies); 2780 // This is a special case, as it does not gather, but at the same time 2781 // we are not extending buildTree_rec() towards the operands. 2782 ValueList Op0; 2783 Op0.assign(VL.size(), VL0->getOperand(0)); 2784 VectorizableTree.back()->setOperand(0, Op0); 2785 return; 2786 } 2787 if (!CurrentOrder.empty()) { 2788 LLVM_DEBUG({ 2789 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2790 "with order"; 2791 for (unsigned Idx : CurrentOrder) 2792 dbgs() << " " << Idx; 2793 dbgs() << "\n"; 2794 }); 2795 // Insert new order with initial value 0, if it does not exist, 2796 // otherwise return the iterator to the existing one. 2797 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2798 ReuseShuffleIndicies, CurrentOrder); 2799 findRootOrder(CurrentOrder); 2800 ++NumOpsWantToKeepOrder[CurrentOrder]; 2801 // This is a special case, as it does not gather, but at the same time 2802 // we are not extending buildTree_rec() towards the operands. 2803 ValueList Op0; 2804 Op0.assign(VL.size(), VL0->getOperand(0)); 2805 VectorizableTree.back()->setOperand(0, Op0); 2806 return; 2807 } 2808 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2809 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2810 ReuseShuffleIndicies); 2811 BS.cancelScheduling(VL, VL0); 2812 return; 2813 } 2814 case Instruction::Load: { 2815 // Check that a vectorized load would load the same memory as a scalar 2816 // load. For example, we don't want to vectorize loads that are smaller 2817 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2818 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2819 // from such a struct, we read/write packed bits disagreeing with the 2820 // unvectorized version. 2821 Type *ScalarTy = VL0->getType(); 2822 2823 if (DL->getTypeSizeInBits(ScalarTy) != 2824 DL->getTypeAllocSizeInBits(ScalarTy)) { 2825 BS.cancelScheduling(VL, VL0); 2826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2827 ReuseShuffleIndicies); 2828 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2829 return; 2830 } 2831 2832 // Make sure all loads in the bundle are simple - we can't vectorize 2833 // atomic or volatile loads. 2834 SmallVector<Value *, 4> PointerOps(VL.size()); 2835 auto POIter = PointerOps.begin(); 2836 for (Value *V : VL) { 2837 auto *L = cast<LoadInst>(V); 2838 if (!L->isSimple()) { 2839 BS.cancelScheduling(VL, VL0); 2840 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2841 ReuseShuffleIndicies); 2842 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2843 return; 2844 } 2845 *POIter = L->getPointerOperand(); 2846 ++POIter; 2847 } 2848 2849 OrdersType CurrentOrder; 2850 // Check the order of pointer operands. 2851 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2852 Value *Ptr0; 2853 Value *PtrN; 2854 if (CurrentOrder.empty()) { 2855 Ptr0 = PointerOps.front(); 2856 PtrN = PointerOps.back(); 2857 } else { 2858 Ptr0 = PointerOps[CurrentOrder.front()]; 2859 PtrN = PointerOps[CurrentOrder.back()]; 2860 } 2861 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2862 const SCEV *ScevN = SE->getSCEV(PtrN); 2863 const auto *Diff = 2864 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2865 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2866 // Check that the sorted loads are consecutive. 2867 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2868 if (CurrentOrder.empty()) { 2869 // Original loads are consecutive and does not require reordering. 2870 ++NumOpsWantToKeepOriginalOrder; 2871 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2872 UserTreeIdx, ReuseShuffleIndicies); 2873 TE->setOperandsInOrder(); 2874 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2875 } else { 2876 // Need to reorder. 2877 TreeEntry *TE = 2878 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2879 ReuseShuffleIndicies, CurrentOrder); 2880 TE->setOperandsInOrder(); 2881 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2882 findRootOrder(CurrentOrder); 2883 ++NumOpsWantToKeepOrder[CurrentOrder]; 2884 } 2885 return; 2886 } 2887 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2888 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2889 UserTreeIdx, ReuseShuffleIndicies); 2890 TE->setOperandsInOrder(); 2891 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2892 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2893 return; 2894 } 2895 2896 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2897 BS.cancelScheduling(VL, VL0); 2898 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2899 ReuseShuffleIndicies); 2900 return; 2901 } 2902 case Instruction::ZExt: 2903 case Instruction::SExt: 2904 case Instruction::FPToUI: 2905 case Instruction::FPToSI: 2906 case Instruction::FPExt: 2907 case Instruction::PtrToInt: 2908 case Instruction::IntToPtr: 2909 case Instruction::SIToFP: 2910 case Instruction::UIToFP: 2911 case Instruction::Trunc: 2912 case Instruction::FPTrunc: 2913 case Instruction::BitCast: { 2914 Type *SrcTy = VL0->getOperand(0)->getType(); 2915 for (Value *V : VL) { 2916 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2917 if (Ty != SrcTy || !isValidElementType(Ty)) { 2918 BS.cancelScheduling(VL, VL0); 2919 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2920 ReuseShuffleIndicies); 2921 LLVM_DEBUG(dbgs() 2922 << "SLP: Gathering casts with different src types.\n"); 2923 return; 2924 } 2925 } 2926 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2927 ReuseShuffleIndicies); 2928 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2929 2930 TE->setOperandsInOrder(); 2931 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2932 ValueList Operands; 2933 // Prepare the operand vector. 2934 for (Value *V : VL) 2935 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2936 2937 buildTree_rec(Operands, Depth + 1, {TE, i}); 2938 } 2939 return; 2940 } 2941 case Instruction::ICmp: 2942 case Instruction::FCmp: { 2943 // Check that all of the compares have the same predicate. 2944 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2945 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2946 Type *ComparedTy = VL0->getOperand(0)->getType(); 2947 for (Value *V : VL) { 2948 CmpInst *Cmp = cast<CmpInst>(V); 2949 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2950 Cmp->getOperand(0)->getType() != ComparedTy) { 2951 BS.cancelScheduling(VL, VL0); 2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies); 2954 LLVM_DEBUG(dbgs() 2955 << "SLP: Gathering cmp with different predicate.\n"); 2956 return; 2957 } 2958 } 2959 2960 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2961 ReuseShuffleIndicies); 2962 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2963 2964 ValueList Left, Right; 2965 if (cast<CmpInst>(VL0)->isCommutative()) { 2966 // Commutative predicate - collect + sort operands of the instructions 2967 // so that each side is more likely to have the same opcode. 2968 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2969 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2970 } else { 2971 // Collect operands - commute if it uses the swapped predicate. 2972 for (Value *V : VL) { 2973 auto *Cmp = cast<CmpInst>(V); 2974 Value *LHS = Cmp->getOperand(0); 2975 Value *RHS = Cmp->getOperand(1); 2976 if (Cmp->getPredicate() != P0) 2977 std::swap(LHS, RHS); 2978 Left.push_back(LHS); 2979 Right.push_back(RHS); 2980 } 2981 } 2982 TE->setOperand(0, Left); 2983 TE->setOperand(1, Right); 2984 buildTree_rec(Left, Depth + 1, {TE, 0}); 2985 buildTree_rec(Right, Depth + 1, {TE, 1}); 2986 return; 2987 } 2988 case Instruction::Select: 2989 case Instruction::FNeg: 2990 case Instruction::Add: 2991 case Instruction::FAdd: 2992 case Instruction::Sub: 2993 case Instruction::FSub: 2994 case Instruction::Mul: 2995 case Instruction::FMul: 2996 case Instruction::UDiv: 2997 case Instruction::SDiv: 2998 case Instruction::FDiv: 2999 case Instruction::URem: 3000 case Instruction::SRem: 3001 case Instruction::FRem: 3002 case Instruction::Shl: 3003 case Instruction::LShr: 3004 case Instruction::AShr: 3005 case Instruction::And: 3006 case Instruction::Or: 3007 case Instruction::Xor: { 3008 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3009 ReuseShuffleIndicies); 3010 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3011 3012 // Sort operands of the instructions so that each side is more likely to 3013 // have the same opcode. 3014 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3015 ValueList Left, Right; 3016 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3017 TE->setOperand(0, Left); 3018 TE->setOperand(1, Right); 3019 buildTree_rec(Left, Depth + 1, {TE, 0}); 3020 buildTree_rec(Right, Depth + 1, {TE, 1}); 3021 return; 3022 } 3023 3024 TE->setOperandsInOrder(); 3025 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3026 ValueList Operands; 3027 // Prepare the operand vector. 3028 for (Value *V : VL) 3029 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3030 3031 buildTree_rec(Operands, Depth + 1, {TE, i}); 3032 } 3033 return; 3034 } 3035 case Instruction::GetElementPtr: { 3036 // We don't combine GEPs with complicated (nested) indexing. 3037 for (Value *V : VL) { 3038 if (cast<Instruction>(V)->getNumOperands() != 2) { 3039 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3040 BS.cancelScheduling(VL, VL0); 3041 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 return; 3044 } 3045 } 3046 3047 // We can't combine several GEPs into one vector if they operate on 3048 // different types. 3049 Type *Ty0 = VL0->getOperand(0)->getType(); 3050 for (Value *V : VL) { 3051 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3052 if (Ty0 != CurTy) { 3053 LLVM_DEBUG(dbgs() 3054 << "SLP: not-vectorizable GEP (different types).\n"); 3055 BS.cancelScheduling(VL, VL0); 3056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3057 ReuseShuffleIndicies); 3058 return; 3059 } 3060 } 3061 3062 // We don't combine GEPs with non-constant indexes. 3063 Type *Ty1 = VL0->getOperand(1)->getType(); 3064 for (Value *V : VL) { 3065 auto Op = cast<Instruction>(V)->getOperand(1); 3066 if (!isa<ConstantInt>(Op) || 3067 (Op->getType() != Ty1 && 3068 Op->getType()->getScalarSizeInBits() > 3069 DL->getIndexSizeInBits( 3070 V->getType()->getPointerAddressSpace()))) { 3071 LLVM_DEBUG(dbgs() 3072 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3073 BS.cancelScheduling(VL, VL0); 3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 return; 3077 } 3078 } 3079 3080 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3081 ReuseShuffleIndicies); 3082 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3083 TE->setOperandsInOrder(); 3084 for (unsigned i = 0, e = 2; i < e; ++i) { 3085 ValueList Operands; 3086 // Prepare the operand vector. 3087 for (Value *V : VL) 3088 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3089 3090 buildTree_rec(Operands, Depth + 1, {TE, i}); 3091 } 3092 return; 3093 } 3094 case Instruction::Store: { 3095 // Check if the stores are consecutive or if we need to swizzle them. 3096 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3097 // Avoid types that are padded when being allocated as scalars, while 3098 // being packed together in a vector (such as i1). 3099 if (DL->getTypeSizeInBits(ScalarTy) != 3100 DL->getTypeAllocSizeInBits(ScalarTy)) { 3101 BS.cancelScheduling(VL, VL0); 3102 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3103 ReuseShuffleIndicies); 3104 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3105 return; 3106 } 3107 // Make sure all stores in the bundle are simple - we can't vectorize 3108 // atomic or volatile stores. 3109 SmallVector<Value *, 4> PointerOps(VL.size()); 3110 ValueList Operands(VL.size()); 3111 auto POIter = PointerOps.begin(); 3112 auto OIter = Operands.begin(); 3113 for (Value *V : VL) { 3114 auto *SI = cast<StoreInst>(V); 3115 if (!SI->isSimple()) { 3116 BS.cancelScheduling(VL, VL0); 3117 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3118 ReuseShuffleIndicies); 3119 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3120 return; 3121 } 3122 *POIter = SI->getPointerOperand(); 3123 *OIter = SI->getValueOperand(); 3124 ++POIter; 3125 ++OIter; 3126 } 3127 3128 OrdersType CurrentOrder; 3129 // Check the order of pointer operands. 3130 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3131 Value *Ptr0; 3132 Value *PtrN; 3133 if (CurrentOrder.empty()) { 3134 Ptr0 = PointerOps.front(); 3135 PtrN = PointerOps.back(); 3136 } else { 3137 Ptr0 = PointerOps[CurrentOrder.front()]; 3138 PtrN = PointerOps[CurrentOrder.back()]; 3139 } 3140 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3141 const SCEV *ScevN = SE->getSCEV(PtrN); 3142 const auto *Diff = 3143 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3144 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3145 // Check that the sorted pointer operands are consecutive. 3146 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3147 if (CurrentOrder.empty()) { 3148 // Original stores are consecutive and does not require reordering. 3149 ++NumOpsWantToKeepOriginalOrder; 3150 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3151 UserTreeIdx, ReuseShuffleIndicies); 3152 TE->setOperandsInOrder(); 3153 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3154 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3155 } else { 3156 TreeEntry *TE = 3157 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3158 ReuseShuffleIndicies, CurrentOrder); 3159 TE->setOperandsInOrder(); 3160 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3161 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3162 findRootOrder(CurrentOrder); 3163 ++NumOpsWantToKeepOrder[CurrentOrder]; 3164 } 3165 return; 3166 } 3167 } 3168 3169 BS.cancelScheduling(VL, VL0); 3170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3171 ReuseShuffleIndicies); 3172 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3173 return; 3174 } 3175 case Instruction::Call: { 3176 // Check if the calls are all to the same vectorizable intrinsic or 3177 // library function. 3178 CallInst *CI = cast<CallInst>(VL0); 3179 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3180 3181 VFShape Shape = VFShape::get( 3182 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3183 false /*HasGlobalPred*/); 3184 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3185 3186 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3187 BS.cancelScheduling(VL, VL0); 3188 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3189 ReuseShuffleIndicies); 3190 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3191 return; 3192 } 3193 Function *F = CI->getCalledFunction(); 3194 unsigned NumArgs = CI->getNumArgOperands(); 3195 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3196 for (unsigned j = 0; j != NumArgs; ++j) 3197 if (hasVectorInstrinsicScalarOpd(ID, j)) 3198 ScalarArgs[j] = CI->getArgOperand(j); 3199 for (Value *V : VL) { 3200 CallInst *CI2 = dyn_cast<CallInst>(V); 3201 if (!CI2 || CI2->getCalledFunction() != F || 3202 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3203 (VecFunc && 3204 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3205 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3206 BS.cancelScheduling(VL, VL0); 3207 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3208 ReuseShuffleIndicies); 3209 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3210 << "\n"); 3211 return; 3212 } 3213 // Some intrinsics have scalar arguments and should be same in order for 3214 // them to be vectorized. 3215 for (unsigned j = 0; j != NumArgs; ++j) { 3216 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3217 Value *A1J = CI2->getArgOperand(j); 3218 if (ScalarArgs[j] != A1J) { 3219 BS.cancelScheduling(VL, VL0); 3220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3221 ReuseShuffleIndicies); 3222 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3223 << " argument " << ScalarArgs[j] << "!=" << A1J 3224 << "\n"); 3225 return; 3226 } 3227 } 3228 } 3229 // Verify that the bundle operands are identical between the two calls. 3230 if (CI->hasOperandBundles() && 3231 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3232 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3233 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3234 BS.cancelScheduling(VL, VL0); 3235 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3236 ReuseShuffleIndicies); 3237 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3238 << *CI << "!=" << *V << '\n'); 3239 return; 3240 } 3241 } 3242 3243 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3244 ReuseShuffleIndicies); 3245 TE->setOperandsInOrder(); 3246 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3247 ValueList Operands; 3248 // Prepare the operand vector. 3249 for (Value *V : VL) { 3250 auto *CI2 = cast<CallInst>(V); 3251 Operands.push_back(CI2->getArgOperand(i)); 3252 } 3253 buildTree_rec(Operands, Depth + 1, {TE, i}); 3254 } 3255 return; 3256 } 3257 case Instruction::ShuffleVector: { 3258 // If this is not an alternate sequence of opcode like add-sub 3259 // then do not vectorize this instruction. 3260 if (!S.isAltShuffle()) { 3261 BS.cancelScheduling(VL, VL0); 3262 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3263 ReuseShuffleIndicies); 3264 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3265 return; 3266 } 3267 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3268 ReuseShuffleIndicies); 3269 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3270 3271 // Reorder operands if reordering would enable vectorization. 3272 if (isa<BinaryOperator>(VL0)) { 3273 ValueList Left, Right; 3274 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3275 TE->setOperand(0, Left); 3276 TE->setOperand(1, Right); 3277 buildTree_rec(Left, Depth + 1, {TE, 0}); 3278 buildTree_rec(Right, Depth + 1, {TE, 1}); 3279 return; 3280 } 3281 3282 TE->setOperandsInOrder(); 3283 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3284 ValueList Operands; 3285 // Prepare the operand vector. 3286 for (Value *V : VL) 3287 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3288 3289 buildTree_rec(Operands, Depth + 1, {TE, i}); 3290 } 3291 return; 3292 } 3293 default: 3294 BS.cancelScheduling(VL, VL0); 3295 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3296 ReuseShuffleIndicies); 3297 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3298 return; 3299 } 3300 } 3301 3302 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3303 unsigned N = 1; 3304 Type *EltTy = T; 3305 3306 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3307 isa<VectorType>(EltTy)) { 3308 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3309 // Check that struct is homogeneous. 3310 for (const auto *Ty : ST->elements()) 3311 if (Ty != *ST->element_begin()) 3312 return 0; 3313 N *= ST->getNumElements(); 3314 EltTy = *ST->element_begin(); 3315 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3316 N *= AT->getNumElements(); 3317 EltTy = AT->getElementType(); 3318 } else { 3319 auto *VT = cast<FixedVectorType>(EltTy); 3320 N *= VT->getNumElements(); 3321 EltTy = VT->getElementType(); 3322 } 3323 } 3324 3325 if (!isValidElementType(EltTy)) 3326 return 0; 3327 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3328 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3329 return 0; 3330 return N; 3331 } 3332 3333 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3334 SmallVectorImpl<unsigned> &CurrentOrder) const { 3335 Instruction *E0 = cast<Instruction>(OpValue); 3336 assert(E0->getOpcode() == Instruction::ExtractElement || 3337 E0->getOpcode() == Instruction::ExtractValue); 3338 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3339 // Check if all of the extracts come from the same vector and from the 3340 // correct offset. 3341 Value *Vec = E0->getOperand(0); 3342 3343 CurrentOrder.clear(); 3344 3345 // We have to extract from a vector/aggregate with the same number of elements. 3346 unsigned NElts; 3347 if (E0->getOpcode() == Instruction::ExtractValue) { 3348 const DataLayout &DL = E0->getModule()->getDataLayout(); 3349 NElts = canMapToVector(Vec->getType(), DL); 3350 if (!NElts) 3351 return false; 3352 // Check if load can be rewritten as load of vector. 3353 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3354 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3355 return false; 3356 } else { 3357 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3358 } 3359 3360 if (NElts != VL.size()) 3361 return false; 3362 3363 // Check that all of the indices extract from the correct offset. 3364 bool ShouldKeepOrder = true; 3365 unsigned E = VL.size(); 3366 // Assign to all items the initial value E + 1 so we can check if the extract 3367 // instruction index was used already. 3368 // Also, later we can check that all the indices are used and we have a 3369 // consecutive access in the extract instructions, by checking that no 3370 // element of CurrentOrder still has value E + 1. 3371 CurrentOrder.assign(E, E + 1); 3372 unsigned I = 0; 3373 for (; I < E; ++I) { 3374 auto *Inst = cast<Instruction>(VL[I]); 3375 if (Inst->getOperand(0) != Vec) 3376 break; 3377 Optional<unsigned> Idx = getExtractIndex(Inst); 3378 if (!Idx) 3379 break; 3380 const unsigned ExtIdx = *Idx; 3381 if (ExtIdx != I) { 3382 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3383 break; 3384 ShouldKeepOrder = false; 3385 CurrentOrder[ExtIdx] = I; 3386 } else { 3387 if (CurrentOrder[I] != E + 1) 3388 break; 3389 CurrentOrder[I] = I; 3390 } 3391 } 3392 if (I < E) { 3393 CurrentOrder.clear(); 3394 return false; 3395 } 3396 3397 return ShouldKeepOrder; 3398 } 3399 3400 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3401 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3402 return ScalarToTreeEntry.count(U) > 0; 3403 }); 3404 } 3405 3406 static std::pair<unsigned, unsigned> 3407 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3408 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3409 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3410 3411 // Calculate the cost of the scalar and vector calls. 3412 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3413 int IntrinsicCost = 3414 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3415 3416 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3417 VecTy->getNumElements())), 3418 false /*HasGlobalPred*/); 3419 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3420 int LibCost = IntrinsicCost; 3421 if (!CI->isNoBuiltin() && VecFunc) { 3422 // Calculate the cost of the vector library call. 3423 SmallVector<Type *, 4> VecTys; 3424 for (Use &Arg : CI->args()) 3425 VecTys.push_back( 3426 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3427 3428 // If the corresponding vector call is cheaper, return its cost. 3429 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3430 TTI::TCK_RecipThroughput); 3431 } 3432 return {IntrinsicCost, LibCost}; 3433 } 3434 3435 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3436 ArrayRef<Value*> VL = E->Scalars; 3437 3438 Type *ScalarTy = VL[0]->getType(); 3439 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3440 ScalarTy = SI->getValueOperand()->getType(); 3441 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3442 ScalarTy = CI->getOperand(0)->getType(); 3443 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3444 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3445 3446 // If we have computed a smaller type for the expression, update VecTy so 3447 // that the costs will be accurate. 3448 if (MinBWs.count(VL[0])) 3449 VecTy = FixedVectorType::get( 3450 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3451 3452 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3453 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3454 InstructionCost ReuseShuffleCost = 0; 3455 if (NeedToShuffleReuses) { 3456 ReuseShuffleCost = 3457 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3458 } 3459 if (E->State == TreeEntry::NeedToGather) { 3460 if (allConstant(VL)) 3461 return 0; 3462 if (isSplat(VL)) { 3463 return ReuseShuffleCost + 3464 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3465 } 3466 if (E->getOpcode() == Instruction::ExtractElement && 3467 allSameType(VL) && allSameBlock(VL)) { 3468 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3469 if (ShuffleKind.hasValue()) { 3470 InstructionCost Cost = 3471 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3472 for (auto *V : VL) { 3473 // If all users of instruction are going to be vectorized and this 3474 // instruction itself is not going to be vectorized, consider this 3475 // instruction as dead and remove its cost from the final cost of the 3476 // vectorized tree. 3477 if (areAllUsersVectorized(cast<Instruction>(V)) && 3478 !ScalarToTreeEntry.count(V)) { 3479 auto *IO = cast<ConstantInt>( 3480 cast<ExtractElementInst>(V)->getIndexOperand()); 3481 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3482 IO->getZExtValue()); 3483 } 3484 } 3485 return ReuseShuffleCost + Cost; 3486 } 3487 } 3488 return ReuseShuffleCost + getGatherCost(VL); 3489 } 3490 assert((E->State == TreeEntry::Vectorize || 3491 E->State == TreeEntry::ScatterVectorize) && 3492 "Unhandled state"); 3493 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3494 Instruction *VL0 = E->getMainOp(); 3495 unsigned ShuffleOrOp = 3496 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3497 switch (ShuffleOrOp) { 3498 case Instruction::PHI: 3499 return 0; 3500 3501 case Instruction::ExtractValue: 3502 case Instruction::ExtractElement: { 3503 if (NeedToShuffleReuses) { 3504 unsigned Idx = 0; 3505 for (unsigned I : E->ReuseShuffleIndices) { 3506 if (ShuffleOrOp == Instruction::ExtractElement) { 3507 auto *IO = cast<ConstantInt>( 3508 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3509 Idx = IO->getZExtValue(); 3510 ReuseShuffleCost -= TTI->getVectorInstrCost( 3511 Instruction::ExtractElement, VecTy, Idx); 3512 } else { 3513 ReuseShuffleCost -= TTI->getVectorInstrCost( 3514 Instruction::ExtractElement, VecTy, Idx); 3515 ++Idx; 3516 } 3517 } 3518 Idx = ReuseShuffleNumbers; 3519 for (Value *V : VL) { 3520 if (ShuffleOrOp == Instruction::ExtractElement) { 3521 auto *IO = cast<ConstantInt>( 3522 cast<ExtractElementInst>(V)->getIndexOperand()); 3523 Idx = IO->getZExtValue(); 3524 } else { 3525 --Idx; 3526 } 3527 ReuseShuffleCost += 3528 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3529 } 3530 } 3531 InstructionCost DeadCost = ReuseShuffleCost; 3532 if (!E->ReorderIndices.empty()) { 3533 // TODO: Merge this shuffle with the ReuseShuffleCost. 3534 DeadCost += TTI->getShuffleCost( 3535 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3536 } 3537 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3538 Instruction *EI = cast<Instruction>(VL[I]); 3539 // If all users are going to be vectorized, instruction can be 3540 // considered as dead. 3541 // The same, if have only one user, it will be vectorized for sure. 3542 if (areAllUsersVectorized(EI)) { 3543 // Take credit for instruction that will become dead. 3544 if (EI->hasOneUse()) { 3545 Instruction *Ext = EI->user_back(); 3546 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3547 all_of(Ext->users(), 3548 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3549 // Use getExtractWithExtendCost() to calculate the cost of 3550 // extractelement/ext pair. 3551 DeadCost -= TTI->getExtractWithExtendCost( 3552 Ext->getOpcode(), Ext->getType(), VecTy, I); 3553 // Add back the cost of s|zext which is subtracted separately. 3554 DeadCost += TTI->getCastInstrCost( 3555 Ext->getOpcode(), Ext->getType(), EI->getType(), 3556 TTI::getCastContextHint(Ext), CostKind, Ext); 3557 continue; 3558 } 3559 } 3560 DeadCost -= 3561 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3562 } 3563 } 3564 return DeadCost; 3565 } 3566 case Instruction::ZExt: 3567 case Instruction::SExt: 3568 case Instruction::FPToUI: 3569 case Instruction::FPToSI: 3570 case Instruction::FPExt: 3571 case Instruction::PtrToInt: 3572 case Instruction::IntToPtr: 3573 case Instruction::SIToFP: 3574 case Instruction::UIToFP: 3575 case Instruction::Trunc: 3576 case Instruction::FPTrunc: 3577 case Instruction::BitCast: { 3578 Type *SrcTy = VL0->getOperand(0)->getType(); 3579 InstructionCost ScalarEltCost = 3580 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3581 TTI::getCastContextHint(VL0), CostKind, VL0); 3582 if (NeedToShuffleReuses) { 3583 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3584 } 3585 3586 // Calculate the cost of this instruction. 3587 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3588 3589 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3590 InstructionCost VecCost = 0; 3591 // Check if the values are candidates to demote. 3592 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3593 VecCost = 3594 ReuseShuffleCost + 3595 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3596 TTI::getCastContextHint(VL0), CostKind, VL0); 3597 } 3598 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3599 return VecCost - ScalarCost; 3600 } 3601 case Instruction::FCmp: 3602 case Instruction::ICmp: 3603 case Instruction::Select: { 3604 // Calculate the cost of this instruction. 3605 InstructionCost ScalarEltCost = 3606 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3607 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3608 if (NeedToShuffleReuses) { 3609 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3610 } 3611 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3612 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3613 3614 // Check if all entries in VL are either compares or selects with compares 3615 // as condition that have the same predicates. 3616 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3617 bool First = true; 3618 for (auto *V : VL) { 3619 CmpInst::Predicate CurrentPred; 3620 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3621 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3622 !match(V, MatchCmp)) || 3623 (!First && VecPred != CurrentPred)) { 3624 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3625 break; 3626 } 3627 First = false; 3628 VecPred = CurrentPred; 3629 } 3630 3631 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3632 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3633 // Check if it is possible and profitable to use min/max for selects in 3634 // VL. 3635 // 3636 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3637 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3638 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3639 {VecTy, VecTy}); 3640 InstructionCost IntrinsicCost = 3641 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3642 // If the selects are the only uses of the compares, they will be dead 3643 // and we can adjust the cost by removing their cost. 3644 if (IntrinsicAndUse.second) 3645 IntrinsicCost -= 3646 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3647 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3648 VecCost = std::min(VecCost, IntrinsicCost); 3649 } 3650 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3651 return ReuseShuffleCost + VecCost - ScalarCost; 3652 } 3653 case Instruction::FNeg: 3654 case Instruction::Add: 3655 case Instruction::FAdd: 3656 case Instruction::Sub: 3657 case Instruction::FSub: 3658 case Instruction::Mul: 3659 case Instruction::FMul: 3660 case Instruction::UDiv: 3661 case Instruction::SDiv: 3662 case Instruction::FDiv: 3663 case Instruction::URem: 3664 case Instruction::SRem: 3665 case Instruction::FRem: 3666 case Instruction::Shl: 3667 case Instruction::LShr: 3668 case Instruction::AShr: 3669 case Instruction::And: 3670 case Instruction::Or: 3671 case Instruction::Xor: { 3672 // Certain instructions can be cheaper to vectorize if they have a 3673 // constant second vector operand. 3674 TargetTransformInfo::OperandValueKind Op1VK = 3675 TargetTransformInfo::OK_AnyValue; 3676 TargetTransformInfo::OperandValueKind Op2VK = 3677 TargetTransformInfo::OK_UniformConstantValue; 3678 TargetTransformInfo::OperandValueProperties Op1VP = 3679 TargetTransformInfo::OP_None; 3680 TargetTransformInfo::OperandValueProperties Op2VP = 3681 TargetTransformInfo::OP_PowerOf2; 3682 3683 // If all operands are exactly the same ConstantInt then set the 3684 // operand kind to OK_UniformConstantValue. 3685 // If instead not all operands are constants, then set the operand kind 3686 // to OK_AnyValue. If all operands are constants but not the same, 3687 // then set the operand kind to OK_NonUniformConstantValue. 3688 ConstantInt *CInt0 = nullptr; 3689 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3690 const Instruction *I = cast<Instruction>(VL[i]); 3691 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3692 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3693 if (!CInt) { 3694 Op2VK = TargetTransformInfo::OK_AnyValue; 3695 Op2VP = TargetTransformInfo::OP_None; 3696 break; 3697 } 3698 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3699 !CInt->getValue().isPowerOf2()) 3700 Op2VP = TargetTransformInfo::OP_None; 3701 if (i == 0) { 3702 CInt0 = CInt; 3703 continue; 3704 } 3705 if (CInt0 != CInt) 3706 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3707 } 3708 3709 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3710 InstructionCost ScalarEltCost = 3711 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3712 Op2VK, Op1VP, Op2VP, Operands, VL0); 3713 if (NeedToShuffleReuses) { 3714 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3715 } 3716 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3717 InstructionCost VecCost = 3718 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3719 Op2VK, Op1VP, Op2VP, Operands, VL0); 3720 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3721 return ReuseShuffleCost + VecCost - ScalarCost; 3722 } 3723 case Instruction::GetElementPtr: { 3724 TargetTransformInfo::OperandValueKind Op1VK = 3725 TargetTransformInfo::OK_AnyValue; 3726 TargetTransformInfo::OperandValueKind Op2VK = 3727 TargetTransformInfo::OK_UniformConstantValue; 3728 3729 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3730 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3731 if (NeedToShuffleReuses) { 3732 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3733 } 3734 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3735 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3736 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3737 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3738 return ReuseShuffleCost + VecCost - ScalarCost; 3739 } 3740 case Instruction::Load: { 3741 // Cost of wide load - cost of scalar loads. 3742 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3743 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3744 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3745 if (NeedToShuffleReuses) { 3746 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3747 } 3748 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3749 InstructionCost VecLdCost; 3750 if (E->State == TreeEntry::Vectorize) { 3751 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3752 CostKind, VL0); 3753 } else { 3754 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3755 VecLdCost = TTI->getGatherScatterOpCost( 3756 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3757 /*VariableMask=*/false, alignment, CostKind, VL0); 3758 } 3759 if (!E->ReorderIndices.empty()) { 3760 // TODO: Merge this shuffle with the ReuseShuffleCost. 3761 VecLdCost += TTI->getShuffleCost( 3762 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3763 } 3764 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3765 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3766 } 3767 case Instruction::Store: { 3768 // We know that we can merge the stores. Calculate the cost. 3769 bool IsReorder = !E->ReorderIndices.empty(); 3770 auto *SI = 3771 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3772 Align Alignment = SI->getAlign(); 3773 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3774 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3775 if (NeedToShuffleReuses) 3776 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3777 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3778 InstructionCost VecStCost = TTI->getMemoryOpCost( 3779 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3780 if (IsReorder) { 3781 // TODO: Merge this shuffle with the ReuseShuffleCost. 3782 VecStCost += TTI->getShuffleCost( 3783 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3784 } 3785 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3786 return ReuseShuffleCost + VecStCost - ScalarStCost; 3787 } 3788 case Instruction::Call: { 3789 CallInst *CI = cast<CallInst>(VL0); 3790 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3791 3792 // Calculate the cost of the scalar and vector calls. 3793 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3794 InstructionCost ScalarEltCost = 3795 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3796 if (NeedToShuffleReuses) { 3797 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3798 } 3799 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3800 3801 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3802 InstructionCost VecCallCost = 3803 std::min(VecCallCosts.first, VecCallCosts.second); 3804 3805 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3806 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3807 << " for " << *CI << "\n"); 3808 3809 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3810 } 3811 case Instruction::ShuffleVector: { 3812 assert(E->isAltShuffle() && 3813 ((Instruction::isBinaryOp(E->getOpcode()) && 3814 Instruction::isBinaryOp(E->getAltOpcode())) || 3815 (Instruction::isCast(E->getOpcode()) && 3816 Instruction::isCast(E->getAltOpcode()))) && 3817 "Invalid Shuffle Vector Operand"); 3818 InstructionCost ScalarCost = 0; 3819 if (NeedToShuffleReuses) { 3820 for (unsigned Idx : E->ReuseShuffleIndices) { 3821 Instruction *I = cast<Instruction>(VL[Idx]); 3822 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3823 } 3824 for (Value *V : VL) { 3825 Instruction *I = cast<Instruction>(V); 3826 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3827 } 3828 } 3829 for (Value *V : VL) { 3830 Instruction *I = cast<Instruction>(V); 3831 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3832 ScalarCost += TTI->getInstructionCost(I, CostKind); 3833 } 3834 // VecCost is equal to sum of the cost of creating 2 vectors 3835 // and the cost of creating shuffle. 3836 InstructionCost VecCost = 0; 3837 if (Instruction::isBinaryOp(E->getOpcode())) { 3838 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3839 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3840 CostKind); 3841 } else { 3842 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3843 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3844 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3845 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3846 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3847 TTI::CastContextHint::None, CostKind); 3848 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3849 TTI::CastContextHint::None, CostKind); 3850 } 3851 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3852 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3853 return ReuseShuffleCost + VecCost - ScalarCost; 3854 } 3855 default: 3856 llvm_unreachable("Unknown instruction"); 3857 } 3858 } 3859 3860 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3861 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3862 << VectorizableTree.size() << " is fully vectorizable .\n"); 3863 3864 // We only handle trees of heights 1 and 2. 3865 if (VectorizableTree.size() == 1 && 3866 VectorizableTree[0]->State == TreeEntry::Vectorize) 3867 return true; 3868 3869 if (VectorizableTree.size() != 2) 3870 return false; 3871 3872 // Handle splat and all-constants stores. 3873 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3874 (allConstant(VectorizableTree[1]->Scalars) || 3875 isSplat(VectorizableTree[1]->Scalars))) 3876 return true; 3877 3878 // Gathering cost would be too much for tiny trees. 3879 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3880 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3881 return false; 3882 3883 return true; 3884 } 3885 3886 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3887 TargetTransformInfo *TTI) { 3888 // Look past the root to find a source value. Arbitrarily follow the 3889 // path through operand 0 of any 'or'. Also, peek through optional 3890 // shift-left-by-multiple-of-8-bits. 3891 Value *ZextLoad = Root; 3892 const APInt *ShAmtC; 3893 while (!isa<ConstantExpr>(ZextLoad) && 3894 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3895 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3896 ShAmtC->urem(8) == 0))) 3897 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3898 3899 // Check if the input is an extended load of the required or/shift expression. 3900 Value *LoadPtr; 3901 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3902 return false; 3903 3904 // Require that the total load bit width is a legal integer type. 3905 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3906 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3907 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3908 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3909 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3910 return false; 3911 3912 // Everything matched - assume that we can fold the whole sequence using 3913 // load combining. 3914 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3915 << *(cast<Instruction>(Root)) << "\n"); 3916 3917 return true; 3918 } 3919 3920 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3921 if (RdxKind != RecurKind::Or) 3922 return false; 3923 3924 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3925 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3926 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3927 } 3928 3929 bool BoUpSLP::isLoadCombineCandidate() const { 3930 // Peek through a final sequence of stores and check if all operations are 3931 // likely to be load-combined. 3932 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3933 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3934 Value *X; 3935 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3936 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3937 return false; 3938 } 3939 return true; 3940 } 3941 3942 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3943 // We can vectorize the tree if its size is greater than or equal to the 3944 // minimum size specified by the MinTreeSize command line option. 3945 if (VectorizableTree.size() >= MinTreeSize) 3946 return false; 3947 3948 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3949 // can vectorize it if we can prove it fully vectorizable. 3950 if (isFullyVectorizableTinyTree()) 3951 return false; 3952 3953 assert(VectorizableTree.empty() 3954 ? ExternalUses.empty() 3955 : true && "We shouldn't have any external users"); 3956 3957 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3958 // vectorizable. 3959 return true; 3960 } 3961 3962 InstructionCost BoUpSLP::getSpillCost() const { 3963 // Walk from the bottom of the tree to the top, tracking which values are 3964 // live. When we see a call instruction that is not part of our tree, 3965 // query TTI to see if there is a cost to keeping values live over it 3966 // (for example, if spills and fills are required). 3967 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3968 InstructionCost Cost = 0; 3969 3970 SmallPtrSet<Instruction*, 4> LiveValues; 3971 Instruction *PrevInst = nullptr; 3972 3973 // The entries in VectorizableTree are not necessarily ordered by their 3974 // position in basic blocks. Collect them and order them by dominance so later 3975 // instructions are guaranteed to be visited first. For instructions in 3976 // different basic blocks, we only scan to the beginning of the block, so 3977 // their order does not matter, as long as all instructions in a basic block 3978 // are grouped together. Using dominance ensures a deterministic order. 3979 SmallVector<Instruction *, 16> OrderedScalars; 3980 for (const auto &TEPtr : VectorizableTree) { 3981 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3982 if (!Inst) 3983 continue; 3984 OrderedScalars.push_back(Inst); 3985 } 3986 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3987 return DT->dominates(B, A); 3988 }); 3989 3990 for (Instruction *Inst : OrderedScalars) { 3991 if (!PrevInst) { 3992 PrevInst = Inst; 3993 continue; 3994 } 3995 3996 // Update LiveValues. 3997 LiveValues.erase(PrevInst); 3998 for (auto &J : PrevInst->operands()) { 3999 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4000 LiveValues.insert(cast<Instruction>(&*J)); 4001 } 4002 4003 LLVM_DEBUG({ 4004 dbgs() << "SLP: #LV: " << LiveValues.size(); 4005 for (auto *X : LiveValues) 4006 dbgs() << " " << X->getName(); 4007 dbgs() << ", Looking at "; 4008 Inst->dump(); 4009 }); 4010 4011 // Now find the sequence of instructions between PrevInst and Inst. 4012 unsigned NumCalls = 0; 4013 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4014 PrevInstIt = 4015 PrevInst->getIterator().getReverse(); 4016 while (InstIt != PrevInstIt) { 4017 if (PrevInstIt == PrevInst->getParent()->rend()) { 4018 PrevInstIt = Inst->getParent()->rbegin(); 4019 continue; 4020 } 4021 4022 // Debug information does not impact spill cost. 4023 if ((isa<CallInst>(&*PrevInstIt) && 4024 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4025 &*PrevInstIt != PrevInst) 4026 NumCalls++; 4027 4028 ++PrevInstIt; 4029 } 4030 4031 if (NumCalls) { 4032 SmallVector<Type*, 4> V; 4033 for (auto *II : LiveValues) 4034 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4035 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4036 } 4037 4038 PrevInst = Inst; 4039 } 4040 4041 return Cost; 4042 } 4043 4044 InstructionCost BoUpSLP::getTreeCost() { 4045 InstructionCost Cost = 0; 4046 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4047 << VectorizableTree.size() << ".\n"); 4048 4049 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4050 4051 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4052 TreeEntry &TE = *VectorizableTree[I].get(); 4053 4054 // We create duplicate tree entries for gather sequences that have multiple 4055 // uses. However, we should not compute the cost of duplicate sequences. 4056 // For example, if we have a build vector (i.e., insertelement sequence) 4057 // that is used by more than one vector instruction, we only need to 4058 // compute the cost of the insertelement instructions once. The redundant 4059 // instructions will be eliminated by CSE. 4060 // 4061 // We should consider not creating duplicate tree entries for gather 4062 // sequences, and instead add additional edges to the tree representing 4063 // their uses. Since such an approach results in fewer total entries, 4064 // existing heuristics based on tree size may yield different results. 4065 // 4066 if (TE.State == TreeEntry::NeedToGather && 4067 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4068 VectorizableTree.end(), 4069 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4070 return EntryPtr->State == TreeEntry::NeedToGather && 4071 EntryPtr->isSame(TE.Scalars); 4072 })) 4073 continue; 4074 4075 InstructionCost C = getEntryCost(&TE); 4076 Cost += C; 4077 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4078 << " for bundle that starts with " << *TE.Scalars[0] 4079 << ".\n" 4080 << "SLP: Current total cost = " << Cost << "\n"); 4081 } 4082 4083 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4084 InstructionCost ExtractCost = 0; 4085 for (ExternalUser &EU : ExternalUses) { 4086 // We only add extract cost once for the same scalar. 4087 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4088 continue; 4089 4090 // Uses by ephemeral values are free (because the ephemeral value will be 4091 // removed prior to code generation, and so the extraction will be 4092 // removed as well). 4093 if (EphValues.count(EU.User)) 4094 continue; 4095 4096 // If we plan to rewrite the tree in a smaller type, we will need to sign 4097 // extend the extracted value back to the original type. Here, we account 4098 // for the extract and the added cost of the sign extend if needed. 4099 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4100 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4101 if (MinBWs.count(ScalarRoot)) { 4102 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4103 auto Extend = 4104 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4105 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4106 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4107 VecTy, EU.Lane); 4108 } else { 4109 ExtractCost += 4110 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4111 } 4112 } 4113 4114 InstructionCost SpillCost = getSpillCost(); 4115 Cost += SpillCost + ExtractCost; 4116 4117 #ifndef NDEBUG 4118 SmallString<256> Str; 4119 { 4120 raw_svector_ostream OS(Str); 4121 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4122 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4123 << "SLP: Total Cost = " << Cost << ".\n"; 4124 } 4125 LLVM_DEBUG(dbgs() << Str); 4126 if (ViewSLPTree) 4127 ViewGraph(this, "SLP" + F->getName(), false, Str); 4128 #endif 4129 4130 return Cost; 4131 } 4132 4133 InstructionCost 4134 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4135 const DenseSet<unsigned> &ShuffledIndices) const { 4136 unsigned NumElts = Ty->getNumElements(); 4137 APInt DemandedElts = APInt::getNullValue(NumElts); 4138 for (unsigned I = 0; I < NumElts; ++I) 4139 if (!ShuffledIndices.count(I)) 4140 DemandedElts.setBit(I); 4141 InstructionCost Cost = 4142 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4143 /*Extract*/ false); 4144 if (!ShuffledIndices.empty()) 4145 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4146 return Cost; 4147 } 4148 4149 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4150 // Find the type of the operands in VL. 4151 Type *ScalarTy = VL[0]->getType(); 4152 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4153 ScalarTy = SI->getValueOperand()->getType(); 4154 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4155 // Find the cost of inserting/extracting values from the vector. 4156 // Check if the same elements are inserted several times and count them as 4157 // shuffle candidates. 4158 DenseSet<unsigned> ShuffledElements; 4159 DenseSet<Value *> UniqueElements; 4160 // Iterate in reverse order to consider insert elements with the high cost. 4161 for (unsigned I = VL.size(); I > 0; --I) { 4162 unsigned Idx = I - 1; 4163 if (!UniqueElements.insert(VL[Idx]).second) 4164 ShuffledElements.insert(Idx); 4165 } 4166 return getGatherCost(VecTy, ShuffledElements); 4167 } 4168 4169 // Perform operand reordering on the instructions in VL and return the reordered 4170 // operands in Left and Right. 4171 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4172 SmallVectorImpl<Value *> &Left, 4173 SmallVectorImpl<Value *> &Right, 4174 const DataLayout &DL, 4175 ScalarEvolution &SE, 4176 const BoUpSLP &R) { 4177 if (VL.empty()) 4178 return; 4179 VLOperands Ops(VL, DL, SE, R); 4180 // Reorder the operands in place. 4181 Ops.reorder(); 4182 Left = Ops.getVL(0); 4183 Right = Ops.getVL(1); 4184 } 4185 4186 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4187 // Get the basic block this bundle is in. All instructions in the bundle 4188 // should be in this block. 4189 auto *Front = E->getMainOp(); 4190 auto *BB = Front->getParent(); 4191 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4192 auto *I = cast<Instruction>(V); 4193 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4194 })); 4195 4196 // The last instruction in the bundle in program order. 4197 Instruction *LastInst = nullptr; 4198 4199 // Find the last instruction. The common case should be that BB has been 4200 // scheduled, and the last instruction is VL.back(). So we start with 4201 // VL.back() and iterate over schedule data until we reach the end of the 4202 // bundle. The end of the bundle is marked by null ScheduleData. 4203 if (BlocksSchedules.count(BB)) { 4204 auto *Bundle = 4205 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4206 if (Bundle && Bundle->isPartOfBundle()) 4207 for (; Bundle; Bundle = Bundle->NextInBundle) 4208 if (Bundle->OpValue == Bundle->Inst) 4209 LastInst = Bundle->Inst; 4210 } 4211 4212 // LastInst can still be null at this point if there's either not an entry 4213 // for BB in BlocksSchedules or there's no ScheduleData available for 4214 // VL.back(). This can be the case if buildTree_rec aborts for various 4215 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4216 // size is reached, etc.). ScheduleData is initialized in the scheduling 4217 // "dry-run". 4218 // 4219 // If this happens, we can still find the last instruction by brute force. We 4220 // iterate forwards from Front (inclusive) until we either see all 4221 // instructions in the bundle or reach the end of the block. If Front is the 4222 // last instruction in program order, LastInst will be set to Front, and we 4223 // will visit all the remaining instructions in the block. 4224 // 4225 // One of the reasons we exit early from buildTree_rec is to place an upper 4226 // bound on compile-time. Thus, taking an additional compile-time hit here is 4227 // not ideal. However, this should be exceedingly rare since it requires that 4228 // we both exit early from buildTree_rec and that the bundle be out-of-order 4229 // (causing us to iterate all the way to the end of the block). 4230 if (!LastInst) { 4231 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4232 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4233 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4234 LastInst = &I; 4235 if (Bundle.empty()) 4236 break; 4237 } 4238 } 4239 assert(LastInst && "Failed to find last instruction in bundle"); 4240 4241 // Set the insertion point after the last instruction in the bundle. Set the 4242 // debug location to Front. 4243 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4244 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4245 } 4246 4247 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4248 Value *Val0 = 4249 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4250 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4251 Value *Vec = PoisonValue::get(VecTy); 4252 unsigned InsIndex = 0; 4253 for (Value *Val : VL) { 4254 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4255 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4256 if (!InsElt) 4257 continue; 4258 GatherSeq.insert(InsElt); 4259 CSEBlocks.insert(InsElt->getParent()); 4260 // Add to our 'need-to-extract' list. 4261 if (TreeEntry *Entry = getTreeEntry(Val)) { 4262 // Find which lane we need to extract. 4263 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4264 find(Entry->Scalars, Val)); 4265 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4266 if (!Entry->ReuseShuffleIndices.empty()) { 4267 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4268 find(Entry->ReuseShuffleIndices, FoundLane)); 4269 } 4270 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4271 } 4272 } 4273 4274 return Vec; 4275 } 4276 4277 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4278 InstructionsState S = getSameOpcode(VL); 4279 if (S.getOpcode()) { 4280 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4281 if (E->isSame(VL)) { 4282 Value *V = vectorizeTree(E); 4283 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4284 // We need to get the vectorized value but without shuffle. 4285 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4286 V = SV->getOperand(0); 4287 } else { 4288 // Reshuffle to get only unique values. 4289 SmallVector<int, 4> UniqueIdxs; 4290 SmallSet<int, 4> UsedIdxs; 4291 for (int Idx : E->ReuseShuffleIndices) 4292 if (UsedIdxs.insert(Idx).second) 4293 UniqueIdxs.emplace_back(Idx); 4294 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4295 } 4296 } 4297 return V; 4298 } 4299 } 4300 } 4301 4302 // Check that every instruction appears once in this bundle. 4303 SmallVector<int, 4> ReuseShuffleIndicies; 4304 SmallVector<Value *, 4> UniqueValues; 4305 if (VL.size() > 2) { 4306 DenseMap<Value *, unsigned> UniquePositions; 4307 for (Value *V : VL) { 4308 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4309 ReuseShuffleIndicies.emplace_back(Res.first->second); 4310 if (Res.second || isa<Constant>(V)) 4311 UniqueValues.emplace_back(V); 4312 } 4313 // Do not shuffle single element or if number of unique values is not power 4314 // of 2. 4315 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4316 !llvm::isPowerOf2_32(UniqueValues.size())) 4317 ReuseShuffleIndicies.clear(); 4318 else 4319 VL = UniqueValues; 4320 } 4321 4322 Value *Vec = gather(VL); 4323 if (!ReuseShuffleIndicies.empty()) { 4324 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4325 if (auto *I = dyn_cast<Instruction>(Vec)) { 4326 GatherSeq.insert(I); 4327 CSEBlocks.insert(I->getParent()); 4328 } 4329 } 4330 return Vec; 4331 } 4332 4333 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4334 IRBuilder<>::InsertPointGuard Guard(Builder); 4335 4336 if (E->VectorizedValue) { 4337 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4338 return E->VectorizedValue; 4339 } 4340 4341 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4342 if (E->State == TreeEntry::NeedToGather) { 4343 setInsertPointAfterBundle(E); 4344 Value *Vec = gather(E->Scalars); 4345 if (NeedToShuffleReuses) { 4346 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4347 if (auto *I = dyn_cast<Instruction>(Vec)) { 4348 GatherSeq.insert(I); 4349 CSEBlocks.insert(I->getParent()); 4350 } 4351 } 4352 E->VectorizedValue = Vec; 4353 return Vec; 4354 } 4355 4356 assert((E->State == TreeEntry::Vectorize || 4357 E->State == TreeEntry::ScatterVectorize) && 4358 "Unhandled state"); 4359 unsigned ShuffleOrOp = 4360 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4361 Instruction *VL0 = E->getMainOp(); 4362 Type *ScalarTy = VL0->getType(); 4363 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4364 ScalarTy = Store->getValueOperand()->getType(); 4365 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4366 switch (ShuffleOrOp) { 4367 case Instruction::PHI: { 4368 auto *PH = cast<PHINode>(VL0); 4369 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4370 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4371 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4372 Value *V = NewPhi; 4373 if (NeedToShuffleReuses) 4374 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4375 4376 E->VectorizedValue = V; 4377 4378 // PHINodes may have multiple entries from the same block. We want to 4379 // visit every block once. 4380 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4381 4382 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4383 ValueList Operands; 4384 BasicBlock *IBB = PH->getIncomingBlock(i); 4385 4386 if (!VisitedBBs.insert(IBB).second) { 4387 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4388 continue; 4389 } 4390 4391 Builder.SetInsertPoint(IBB->getTerminator()); 4392 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4393 Value *Vec = vectorizeTree(E->getOperand(i)); 4394 NewPhi->addIncoming(Vec, IBB); 4395 } 4396 4397 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4398 "Invalid number of incoming values"); 4399 return V; 4400 } 4401 4402 case Instruction::ExtractElement: { 4403 Value *V = E->getSingleOperand(0); 4404 if (!E->ReorderIndices.empty()) { 4405 SmallVector<int, 4> Mask; 4406 inversePermutation(E->ReorderIndices, Mask); 4407 Builder.SetInsertPoint(VL0); 4408 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4409 } 4410 if (NeedToShuffleReuses) { 4411 // TODO: Merge this shuffle with the ReorderShuffleMask. 4412 if (E->ReorderIndices.empty()) 4413 Builder.SetInsertPoint(VL0); 4414 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4415 } 4416 E->VectorizedValue = V; 4417 return V; 4418 } 4419 case Instruction::ExtractValue: { 4420 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4421 Builder.SetInsertPoint(LI); 4422 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4423 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4424 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4425 Value *NewV = propagateMetadata(V, E->Scalars); 4426 if (!E->ReorderIndices.empty()) { 4427 SmallVector<int, 4> Mask; 4428 inversePermutation(E->ReorderIndices, Mask); 4429 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4430 } 4431 if (NeedToShuffleReuses) { 4432 // TODO: Merge this shuffle with the ReorderShuffleMask. 4433 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4434 "shuffle"); 4435 } 4436 E->VectorizedValue = NewV; 4437 return NewV; 4438 } 4439 case Instruction::ZExt: 4440 case Instruction::SExt: 4441 case Instruction::FPToUI: 4442 case Instruction::FPToSI: 4443 case Instruction::FPExt: 4444 case Instruction::PtrToInt: 4445 case Instruction::IntToPtr: 4446 case Instruction::SIToFP: 4447 case Instruction::UIToFP: 4448 case Instruction::Trunc: 4449 case Instruction::FPTrunc: 4450 case Instruction::BitCast: { 4451 setInsertPointAfterBundle(E); 4452 4453 Value *InVec = vectorizeTree(E->getOperand(0)); 4454 4455 if (E->VectorizedValue) { 4456 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4457 return E->VectorizedValue; 4458 } 4459 4460 auto *CI = cast<CastInst>(VL0); 4461 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4462 if (NeedToShuffleReuses) 4463 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4464 4465 E->VectorizedValue = V; 4466 ++NumVectorInstructions; 4467 return V; 4468 } 4469 case Instruction::FCmp: 4470 case Instruction::ICmp: { 4471 setInsertPointAfterBundle(E); 4472 4473 Value *L = vectorizeTree(E->getOperand(0)); 4474 Value *R = vectorizeTree(E->getOperand(1)); 4475 4476 if (E->VectorizedValue) { 4477 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4478 return E->VectorizedValue; 4479 } 4480 4481 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4482 Value *V = Builder.CreateCmp(P0, L, R); 4483 propagateIRFlags(V, E->Scalars, VL0); 4484 if (NeedToShuffleReuses) 4485 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4486 4487 E->VectorizedValue = V; 4488 ++NumVectorInstructions; 4489 return V; 4490 } 4491 case Instruction::Select: { 4492 setInsertPointAfterBundle(E); 4493 4494 Value *Cond = vectorizeTree(E->getOperand(0)); 4495 Value *True = vectorizeTree(E->getOperand(1)); 4496 Value *False = vectorizeTree(E->getOperand(2)); 4497 4498 if (E->VectorizedValue) { 4499 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4500 return E->VectorizedValue; 4501 } 4502 4503 Value *V = Builder.CreateSelect(Cond, True, False); 4504 if (NeedToShuffleReuses) 4505 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4506 4507 E->VectorizedValue = V; 4508 ++NumVectorInstructions; 4509 return V; 4510 } 4511 case Instruction::FNeg: { 4512 setInsertPointAfterBundle(E); 4513 4514 Value *Op = vectorizeTree(E->getOperand(0)); 4515 4516 if (E->VectorizedValue) { 4517 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4518 return E->VectorizedValue; 4519 } 4520 4521 Value *V = Builder.CreateUnOp( 4522 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4523 propagateIRFlags(V, E->Scalars, VL0); 4524 if (auto *I = dyn_cast<Instruction>(V)) 4525 V = propagateMetadata(I, E->Scalars); 4526 4527 if (NeedToShuffleReuses) 4528 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4529 4530 E->VectorizedValue = V; 4531 ++NumVectorInstructions; 4532 4533 return V; 4534 } 4535 case Instruction::Add: 4536 case Instruction::FAdd: 4537 case Instruction::Sub: 4538 case Instruction::FSub: 4539 case Instruction::Mul: 4540 case Instruction::FMul: 4541 case Instruction::UDiv: 4542 case Instruction::SDiv: 4543 case Instruction::FDiv: 4544 case Instruction::URem: 4545 case Instruction::SRem: 4546 case Instruction::FRem: 4547 case Instruction::Shl: 4548 case Instruction::LShr: 4549 case Instruction::AShr: 4550 case Instruction::And: 4551 case Instruction::Or: 4552 case Instruction::Xor: { 4553 setInsertPointAfterBundle(E); 4554 4555 Value *LHS = vectorizeTree(E->getOperand(0)); 4556 Value *RHS = vectorizeTree(E->getOperand(1)); 4557 4558 if (E->VectorizedValue) { 4559 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4560 return E->VectorizedValue; 4561 } 4562 4563 Value *V = Builder.CreateBinOp( 4564 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4565 RHS); 4566 propagateIRFlags(V, E->Scalars, VL0); 4567 if (auto *I = dyn_cast<Instruction>(V)) 4568 V = propagateMetadata(I, E->Scalars); 4569 4570 if (NeedToShuffleReuses) 4571 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4572 4573 E->VectorizedValue = V; 4574 ++NumVectorInstructions; 4575 4576 return V; 4577 } 4578 case Instruction::Load: { 4579 // Loads are inserted at the head of the tree because we don't want to 4580 // sink them all the way down past store instructions. 4581 bool IsReorder = E->updateStateIfReorder(); 4582 if (IsReorder) 4583 VL0 = E->getMainOp(); 4584 setInsertPointAfterBundle(E); 4585 4586 LoadInst *LI = cast<LoadInst>(VL0); 4587 Instruction *NewLI; 4588 unsigned AS = LI->getPointerAddressSpace(); 4589 Value *PO = LI->getPointerOperand(); 4590 if (E->State == TreeEntry::Vectorize) { 4591 4592 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4593 4594 // The pointer operand uses an in-tree scalar so we add the new BitCast 4595 // to ExternalUses list to make sure that an extract will be generated 4596 // in the future. 4597 if (getTreeEntry(PO)) 4598 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4599 4600 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4601 } else { 4602 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4603 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4604 // Use the minimum alignment of the gathered loads. 4605 Align CommonAlignment = LI->getAlign(); 4606 for (Value *V : E->Scalars) 4607 CommonAlignment = 4608 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4609 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4610 } 4611 Value *V = propagateMetadata(NewLI, E->Scalars); 4612 4613 if (IsReorder) { 4614 SmallVector<int, 4> Mask; 4615 inversePermutation(E->ReorderIndices, Mask); 4616 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4617 } 4618 if (NeedToShuffleReuses) { 4619 // TODO: Merge this shuffle with the ReorderShuffleMask. 4620 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4621 } 4622 E->VectorizedValue = V; 4623 ++NumVectorInstructions; 4624 return V; 4625 } 4626 case Instruction::Store: { 4627 bool IsReorder = !E->ReorderIndices.empty(); 4628 auto *SI = cast<StoreInst>( 4629 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4630 unsigned AS = SI->getPointerAddressSpace(); 4631 4632 setInsertPointAfterBundle(E); 4633 4634 Value *VecValue = vectorizeTree(E->getOperand(0)); 4635 if (IsReorder) { 4636 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4637 E->ReorderIndices.end()); 4638 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4639 } 4640 Value *ScalarPtr = SI->getPointerOperand(); 4641 Value *VecPtr = Builder.CreateBitCast( 4642 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4643 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4644 SI->getAlign()); 4645 4646 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4647 // ExternalUses to make sure that an extract will be generated in the 4648 // future. 4649 if (getTreeEntry(ScalarPtr)) 4650 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4651 4652 Value *V = propagateMetadata(ST, E->Scalars); 4653 if (NeedToShuffleReuses) 4654 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4655 4656 E->VectorizedValue = V; 4657 ++NumVectorInstructions; 4658 return V; 4659 } 4660 case Instruction::GetElementPtr: { 4661 setInsertPointAfterBundle(E); 4662 4663 Value *Op0 = vectorizeTree(E->getOperand(0)); 4664 4665 std::vector<Value *> OpVecs; 4666 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4667 ++j) { 4668 ValueList &VL = E->getOperand(j); 4669 // Need to cast all elements to the same type before vectorization to 4670 // avoid crash. 4671 Type *VL0Ty = VL0->getOperand(j)->getType(); 4672 Type *Ty = llvm::all_of( 4673 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4674 ? VL0Ty 4675 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4676 ->getPointerOperandType() 4677 ->getScalarType()); 4678 for (Value *&V : VL) { 4679 auto *CI = cast<ConstantInt>(V); 4680 V = ConstantExpr::getIntegerCast(CI, Ty, 4681 CI->getValue().isSignBitSet()); 4682 } 4683 Value *OpVec = vectorizeTree(VL); 4684 OpVecs.push_back(OpVec); 4685 } 4686 4687 Value *V = Builder.CreateGEP( 4688 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4689 if (Instruction *I = dyn_cast<Instruction>(V)) 4690 V = propagateMetadata(I, E->Scalars); 4691 4692 if (NeedToShuffleReuses) 4693 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4694 4695 E->VectorizedValue = V; 4696 ++NumVectorInstructions; 4697 4698 return V; 4699 } 4700 case Instruction::Call: { 4701 CallInst *CI = cast<CallInst>(VL0); 4702 setInsertPointAfterBundle(E); 4703 4704 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4705 if (Function *FI = CI->getCalledFunction()) 4706 IID = FI->getIntrinsicID(); 4707 4708 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4709 4710 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4711 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4712 VecCallCosts.first <= VecCallCosts.second; 4713 4714 Value *ScalarArg = nullptr; 4715 std::vector<Value *> OpVecs; 4716 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4717 ValueList OpVL; 4718 // Some intrinsics have scalar arguments. This argument should not be 4719 // vectorized. 4720 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4721 CallInst *CEI = cast<CallInst>(VL0); 4722 ScalarArg = CEI->getArgOperand(j); 4723 OpVecs.push_back(CEI->getArgOperand(j)); 4724 continue; 4725 } 4726 4727 Value *OpVec = vectorizeTree(E->getOperand(j)); 4728 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4729 OpVecs.push_back(OpVec); 4730 } 4731 4732 Function *CF; 4733 if (!UseIntrinsic) { 4734 VFShape Shape = 4735 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4736 VecTy->getNumElements())), 4737 false /*HasGlobalPred*/); 4738 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4739 } else { 4740 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4741 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4742 } 4743 4744 SmallVector<OperandBundleDef, 1> OpBundles; 4745 CI->getOperandBundlesAsDefs(OpBundles); 4746 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4747 4748 // The scalar argument uses an in-tree scalar so we add the new vectorized 4749 // call to ExternalUses list to make sure that an extract will be 4750 // generated in the future. 4751 if (ScalarArg && getTreeEntry(ScalarArg)) 4752 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4753 4754 propagateIRFlags(V, E->Scalars, VL0); 4755 if (NeedToShuffleReuses) 4756 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4757 4758 E->VectorizedValue = V; 4759 ++NumVectorInstructions; 4760 return V; 4761 } 4762 case Instruction::ShuffleVector: { 4763 assert(E->isAltShuffle() && 4764 ((Instruction::isBinaryOp(E->getOpcode()) && 4765 Instruction::isBinaryOp(E->getAltOpcode())) || 4766 (Instruction::isCast(E->getOpcode()) && 4767 Instruction::isCast(E->getAltOpcode()))) && 4768 "Invalid Shuffle Vector Operand"); 4769 4770 Value *LHS = nullptr, *RHS = nullptr; 4771 if (Instruction::isBinaryOp(E->getOpcode())) { 4772 setInsertPointAfterBundle(E); 4773 LHS = vectorizeTree(E->getOperand(0)); 4774 RHS = vectorizeTree(E->getOperand(1)); 4775 } else { 4776 setInsertPointAfterBundle(E); 4777 LHS = vectorizeTree(E->getOperand(0)); 4778 } 4779 4780 if (E->VectorizedValue) { 4781 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4782 return E->VectorizedValue; 4783 } 4784 4785 Value *V0, *V1; 4786 if (Instruction::isBinaryOp(E->getOpcode())) { 4787 V0 = Builder.CreateBinOp( 4788 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4789 V1 = Builder.CreateBinOp( 4790 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4791 } else { 4792 V0 = Builder.CreateCast( 4793 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4794 V1 = Builder.CreateCast( 4795 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4796 } 4797 4798 // Create shuffle to take alternate operations from the vector. 4799 // Also, gather up main and alt scalar ops to propagate IR flags to 4800 // each vector operation. 4801 ValueList OpScalars, AltScalars; 4802 unsigned e = E->Scalars.size(); 4803 SmallVector<int, 8> Mask(e); 4804 for (unsigned i = 0; i < e; ++i) { 4805 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4806 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4807 if (OpInst->getOpcode() == E->getAltOpcode()) { 4808 Mask[i] = e + i; 4809 AltScalars.push_back(E->Scalars[i]); 4810 } else { 4811 Mask[i] = i; 4812 OpScalars.push_back(E->Scalars[i]); 4813 } 4814 } 4815 4816 propagateIRFlags(V0, OpScalars); 4817 propagateIRFlags(V1, AltScalars); 4818 4819 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4820 if (Instruction *I = dyn_cast<Instruction>(V)) 4821 V = propagateMetadata(I, E->Scalars); 4822 if (NeedToShuffleReuses) 4823 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4824 4825 E->VectorizedValue = V; 4826 ++NumVectorInstructions; 4827 4828 return V; 4829 } 4830 default: 4831 llvm_unreachable("unknown inst"); 4832 } 4833 return nullptr; 4834 } 4835 4836 Value *BoUpSLP::vectorizeTree() { 4837 ExtraValueToDebugLocsMap ExternallyUsedValues; 4838 return vectorizeTree(ExternallyUsedValues); 4839 } 4840 4841 Value * 4842 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4843 // All blocks must be scheduled before any instructions are inserted. 4844 for (auto &BSIter : BlocksSchedules) { 4845 scheduleBlock(BSIter.second.get()); 4846 } 4847 4848 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4849 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4850 4851 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4852 // vectorized root. InstCombine will then rewrite the entire expression. We 4853 // sign extend the extracted values below. 4854 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4855 if (MinBWs.count(ScalarRoot)) { 4856 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4857 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4858 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4859 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4860 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4861 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4862 VectorizableTree[0]->VectorizedValue = Trunc; 4863 } 4864 4865 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4866 << " values .\n"); 4867 4868 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4869 // specified by ScalarType. 4870 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4871 if (!MinBWs.count(ScalarRoot)) 4872 return Ex; 4873 if (MinBWs[ScalarRoot].second) 4874 return Builder.CreateSExt(Ex, ScalarType); 4875 return Builder.CreateZExt(Ex, ScalarType); 4876 }; 4877 4878 // Extract all of the elements with the external uses. 4879 for (const auto &ExternalUse : ExternalUses) { 4880 Value *Scalar = ExternalUse.Scalar; 4881 llvm::User *User = ExternalUse.User; 4882 4883 // Skip users that we already RAUW. This happens when one instruction 4884 // has multiple uses of the same value. 4885 if (User && !is_contained(Scalar->users(), User)) 4886 continue; 4887 TreeEntry *E = getTreeEntry(Scalar); 4888 assert(E && "Invalid scalar"); 4889 assert(E->State != TreeEntry::NeedToGather && 4890 "Extracting from a gather list"); 4891 4892 Value *Vec = E->VectorizedValue; 4893 assert(Vec && "Can't find vectorizable value"); 4894 4895 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4896 // If User == nullptr, the Scalar is used as extra arg. Generate 4897 // ExtractElement instruction and update the record for this scalar in 4898 // ExternallyUsedValues. 4899 if (!User) { 4900 assert(ExternallyUsedValues.count(Scalar) && 4901 "Scalar with nullptr as an external user must be registered in " 4902 "ExternallyUsedValues map"); 4903 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4904 Builder.SetInsertPoint(VecI->getParent(), 4905 std::next(VecI->getIterator())); 4906 } else { 4907 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4908 } 4909 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4910 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4911 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4912 auto &Locs = ExternallyUsedValues[Scalar]; 4913 ExternallyUsedValues.insert({Ex, Locs}); 4914 ExternallyUsedValues.erase(Scalar); 4915 // Required to update internally referenced instructions. 4916 Scalar->replaceAllUsesWith(Ex); 4917 continue; 4918 } 4919 4920 // Generate extracts for out-of-tree users. 4921 // Find the insertion point for the extractelement lane. 4922 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4923 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4924 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4925 if (PH->getIncomingValue(i) == Scalar) { 4926 Instruction *IncomingTerminator = 4927 PH->getIncomingBlock(i)->getTerminator(); 4928 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4929 Builder.SetInsertPoint(VecI->getParent(), 4930 std::next(VecI->getIterator())); 4931 } else { 4932 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4933 } 4934 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4935 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4936 CSEBlocks.insert(PH->getIncomingBlock(i)); 4937 PH->setOperand(i, Ex); 4938 } 4939 } 4940 } else { 4941 Builder.SetInsertPoint(cast<Instruction>(User)); 4942 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4943 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4944 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4945 User->replaceUsesOfWith(Scalar, Ex); 4946 } 4947 } else { 4948 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4949 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4950 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4951 CSEBlocks.insert(&F->getEntryBlock()); 4952 User->replaceUsesOfWith(Scalar, Ex); 4953 } 4954 4955 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4956 } 4957 4958 // For each vectorized value: 4959 for (auto &TEPtr : VectorizableTree) { 4960 TreeEntry *Entry = TEPtr.get(); 4961 4962 // No need to handle users of gathered values. 4963 if (Entry->State == TreeEntry::NeedToGather) 4964 continue; 4965 4966 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4967 4968 // For each lane: 4969 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4970 Value *Scalar = Entry->Scalars[Lane]; 4971 4972 #ifndef NDEBUG 4973 Type *Ty = Scalar->getType(); 4974 if (!Ty->isVoidTy()) { 4975 for (User *U : Scalar->users()) { 4976 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4977 4978 // It is legal to delete users in the ignorelist. 4979 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4980 "Deleting out-of-tree value"); 4981 } 4982 } 4983 #endif 4984 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4985 eraseInstruction(cast<Instruction>(Scalar)); 4986 } 4987 } 4988 4989 Builder.ClearInsertionPoint(); 4990 InstrElementSize.clear(); 4991 4992 return VectorizableTree[0]->VectorizedValue; 4993 } 4994 4995 void BoUpSLP::optimizeGatherSequence() { 4996 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4997 << " gather sequences instructions.\n"); 4998 // LICM InsertElementInst sequences. 4999 for (Instruction *I : GatherSeq) { 5000 if (isDeleted(I)) 5001 continue; 5002 5003 // Check if this block is inside a loop. 5004 Loop *L = LI->getLoopFor(I->getParent()); 5005 if (!L) 5006 continue; 5007 5008 // Check if it has a preheader. 5009 BasicBlock *PreHeader = L->getLoopPreheader(); 5010 if (!PreHeader) 5011 continue; 5012 5013 // If the vector or the element that we insert into it are 5014 // instructions that are defined in this basic block then we can't 5015 // hoist this instruction. 5016 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5017 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5018 if (Op0 && L->contains(Op0)) 5019 continue; 5020 if (Op1 && L->contains(Op1)) 5021 continue; 5022 5023 // We can hoist this instruction. Move it to the pre-header. 5024 I->moveBefore(PreHeader->getTerminator()); 5025 } 5026 5027 // Make a list of all reachable blocks in our CSE queue. 5028 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5029 CSEWorkList.reserve(CSEBlocks.size()); 5030 for (BasicBlock *BB : CSEBlocks) 5031 if (DomTreeNode *N = DT->getNode(BB)) { 5032 assert(DT->isReachableFromEntry(N)); 5033 CSEWorkList.push_back(N); 5034 } 5035 5036 // Sort blocks by domination. This ensures we visit a block after all blocks 5037 // dominating it are visited. 5038 llvm::stable_sort(CSEWorkList, 5039 [this](const DomTreeNode *A, const DomTreeNode *B) { 5040 return DT->properlyDominates(A, B); 5041 }); 5042 5043 // Perform O(N^2) search over the gather sequences and merge identical 5044 // instructions. TODO: We can further optimize this scan if we split the 5045 // instructions into different buckets based on the insert lane. 5046 SmallVector<Instruction *, 16> Visited; 5047 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5048 assert(*I && 5049 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5050 "Worklist not sorted properly!"); 5051 BasicBlock *BB = (*I)->getBlock(); 5052 // For all instructions in blocks containing gather sequences: 5053 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5054 Instruction *In = &*it++; 5055 if (isDeleted(In)) 5056 continue; 5057 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5058 continue; 5059 5060 // Check if we can replace this instruction with any of the 5061 // visited instructions. 5062 for (Instruction *v : Visited) { 5063 if (In->isIdenticalTo(v) && 5064 DT->dominates(v->getParent(), In->getParent())) { 5065 In->replaceAllUsesWith(v); 5066 eraseInstruction(In); 5067 In = nullptr; 5068 break; 5069 } 5070 } 5071 if (In) { 5072 assert(!is_contained(Visited, In)); 5073 Visited.push_back(In); 5074 } 5075 } 5076 } 5077 CSEBlocks.clear(); 5078 GatherSeq.clear(); 5079 } 5080 5081 // Groups the instructions to a bundle (which is then a single scheduling entity) 5082 // and schedules instructions until the bundle gets ready. 5083 Optional<BoUpSLP::ScheduleData *> 5084 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5085 const InstructionsState &S) { 5086 if (isa<PHINode>(S.OpValue)) 5087 return nullptr; 5088 5089 // Initialize the instruction bundle. 5090 Instruction *OldScheduleEnd = ScheduleEnd; 5091 ScheduleData *PrevInBundle = nullptr; 5092 ScheduleData *Bundle = nullptr; 5093 bool ReSchedule = false; 5094 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5095 5096 // Make sure that the scheduling region contains all 5097 // instructions of the bundle. 5098 for (Value *V : VL) { 5099 if (!extendSchedulingRegion(V, S)) 5100 return None; 5101 } 5102 5103 for (Value *V : VL) { 5104 ScheduleData *BundleMember = getScheduleData(V); 5105 assert(BundleMember && 5106 "no ScheduleData for bundle member (maybe not in same basic block)"); 5107 if (BundleMember->IsScheduled) { 5108 // A bundle member was scheduled as single instruction before and now 5109 // needs to be scheduled as part of the bundle. We just get rid of the 5110 // existing schedule. 5111 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5112 << " was already scheduled\n"); 5113 ReSchedule = true; 5114 } 5115 assert(BundleMember->isSchedulingEntity() && 5116 "bundle member already part of other bundle"); 5117 if (PrevInBundle) { 5118 PrevInBundle->NextInBundle = BundleMember; 5119 } else { 5120 Bundle = BundleMember; 5121 } 5122 BundleMember->UnscheduledDepsInBundle = 0; 5123 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5124 5125 // Group the instructions to a bundle. 5126 BundleMember->FirstInBundle = Bundle; 5127 PrevInBundle = BundleMember; 5128 } 5129 if (ScheduleEnd != OldScheduleEnd) { 5130 // The scheduling region got new instructions at the lower end (or it is a 5131 // new region for the first bundle). This makes it necessary to 5132 // recalculate all dependencies. 5133 // It is seldom that this needs to be done a second time after adding the 5134 // initial bundle to the region. 5135 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5136 doForAllOpcodes(I, [](ScheduleData *SD) { 5137 SD->clearDependencies(); 5138 }); 5139 } 5140 ReSchedule = true; 5141 } 5142 if (ReSchedule) { 5143 resetSchedule(); 5144 initialFillReadyList(ReadyInsts); 5145 } 5146 assert(Bundle && "Failed to find schedule bundle"); 5147 5148 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5149 << BB->getName() << "\n"); 5150 5151 calculateDependencies(Bundle, true, SLP); 5152 5153 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5154 // means that there are no cyclic dependencies and we can schedule it. 5155 // Note that's important that we don't "schedule" the bundle yet (see 5156 // cancelScheduling). 5157 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5158 5159 ScheduleData *pickedSD = ReadyInsts.back(); 5160 ReadyInsts.pop_back(); 5161 5162 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5163 schedule(pickedSD, ReadyInsts); 5164 } 5165 } 5166 if (!Bundle->isReady()) { 5167 cancelScheduling(VL, S.OpValue); 5168 return None; 5169 } 5170 return Bundle; 5171 } 5172 5173 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5174 Value *OpValue) { 5175 if (isa<PHINode>(OpValue)) 5176 return; 5177 5178 ScheduleData *Bundle = getScheduleData(OpValue); 5179 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5180 assert(!Bundle->IsScheduled && 5181 "Can't cancel bundle which is already scheduled"); 5182 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5183 "tried to unbundle something which is not a bundle"); 5184 5185 // Un-bundle: make single instructions out of the bundle. 5186 ScheduleData *BundleMember = Bundle; 5187 while (BundleMember) { 5188 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5189 BundleMember->FirstInBundle = BundleMember; 5190 ScheduleData *Next = BundleMember->NextInBundle; 5191 BundleMember->NextInBundle = nullptr; 5192 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5193 if (BundleMember->UnscheduledDepsInBundle == 0) { 5194 ReadyInsts.insert(BundleMember); 5195 } 5196 BundleMember = Next; 5197 } 5198 } 5199 5200 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5201 // Allocate a new ScheduleData for the instruction. 5202 if (ChunkPos >= ChunkSize) { 5203 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5204 ChunkPos = 0; 5205 } 5206 return &(ScheduleDataChunks.back()[ChunkPos++]); 5207 } 5208 5209 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5210 const InstructionsState &S) { 5211 if (getScheduleData(V, isOneOf(S, V))) 5212 return true; 5213 Instruction *I = dyn_cast<Instruction>(V); 5214 assert(I && "bundle member must be an instruction"); 5215 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5216 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5217 ScheduleData *ISD = getScheduleData(I); 5218 if (!ISD) 5219 return false; 5220 assert(isInSchedulingRegion(ISD) && 5221 "ScheduleData not in scheduling region"); 5222 ScheduleData *SD = allocateScheduleDataChunks(); 5223 SD->Inst = I; 5224 SD->init(SchedulingRegionID, S.OpValue); 5225 ExtraScheduleDataMap[I][S.OpValue] = SD; 5226 return true; 5227 }; 5228 if (CheckSheduleForI(I)) 5229 return true; 5230 if (!ScheduleStart) { 5231 // It's the first instruction in the new region. 5232 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5233 ScheduleStart = I; 5234 ScheduleEnd = I->getNextNode(); 5235 if (isOneOf(S, I) != I) 5236 CheckSheduleForI(I); 5237 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5238 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5239 return true; 5240 } 5241 // Search up and down at the same time, because we don't know if the new 5242 // instruction is above or below the existing scheduling region. 5243 BasicBlock::reverse_iterator UpIter = 5244 ++ScheduleStart->getIterator().getReverse(); 5245 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5246 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5247 BasicBlock::iterator LowerEnd = BB->end(); 5248 while (true) { 5249 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5250 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5251 return false; 5252 } 5253 5254 if (UpIter != UpperEnd) { 5255 if (&*UpIter == I) { 5256 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5257 ScheduleStart = I; 5258 if (isOneOf(S, I) != I) 5259 CheckSheduleForI(I); 5260 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5261 << "\n"); 5262 return true; 5263 } 5264 ++UpIter; 5265 } 5266 if (DownIter != LowerEnd) { 5267 if (&*DownIter == I) { 5268 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5269 nullptr); 5270 ScheduleEnd = I->getNextNode(); 5271 if (isOneOf(S, I) != I) 5272 CheckSheduleForI(I); 5273 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5274 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5275 << "\n"); 5276 return true; 5277 } 5278 ++DownIter; 5279 } 5280 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5281 "instruction not found in block"); 5282 } 5283 return true; 5284 } 5285 5286 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5287 Instruction *ToI, 5288 ScheduleData *PrevLoadStore, 5289 ScheduleData *NextLoadStore) { 5290 ScheduleData *CurrentLoadStore = PrevLoadStore; 5291 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5292 ScheduleData *SD = ScheduleDataMap[I]; 5293 if (!SD) { 5294 SD = allocateScheduleDataChunks(); 5295 ScheduleDataMap[I] = SD; 5296 SD->Inst = I; 5297 } 5298 assert(!isInSchedulingRegion(SD) && 5299 "new ScheduleData already in scheduling region"); 5300 SD->init(SchedulingRegionID, I); 5301 5302 if (I->mayReadOrWriteMemory() && 5303 (!isa<IntrinsicInst>(I) || 5304 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5305 cast<IntrinsicInst>(I)->getIntrinsicID() != 5306 Intrinsic::pseudoprobe))) { 5307 // Update the linked list of memory accessing instructions. 5308 if (CurrentLoadStore) { 5309 CurrentLoadStore->NextLoadStore = SD; 5310 } else { 5311 FirstLoadStoreInRegion = SD; 5312 } 5313 CurrentLoadStore = SD; 5314 } 5315 } 5316 if (NextLoadStore) { 5317 if (CurrentLoadStore) 5318 CurrentLoadStore->NextLoadStore = NextLoadStore; 5319 } else { 5320 LastLoadStoreInRegion = CurrentLoadStore; 5321 } 5322 } 5323 5324 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5325 bool InsertInReadyList, 5326 BoUpSLP *SLP) { 5327 assert(SD->isSchedulingEntity()); 5328 5329 SmallVector<ScheduleData *, 10> WorkList; 5330 WorkList.push_back(SD); 5331 5332 while (!WorkList.empty()) { 5333 ScheduleData *SD = WorkList.back(); 5334 WorkList.pop_back(); 5335 5336 ScheduleData *BundleMember = SD; 5337 while (BundleMember) { 5338 assert(isInSchedulingRegion(BundleMember)); 5339 if (!BundleMember->hasValidDependencies()) { 5340 5341 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5342 << "\n"); 5343 BundleMember->Dependencies = 0; 5344 BundleMember->resetUnscheduledDeps(); 5345 5346 // Handle def-use chain dependencies. 5347 if (BundleMember->OpValue != BundleMember->Inst) { 5348 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5349 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5350 BundleMember->Dependencies++; 5351 ScheduleData *DestBundle = UseSD->FirstInBundle; 5352 if (!DestBundle->IsScheduled) 5353 BundleMember->incrementUnscheduledDeps(1); 5354 if (!DestBundle->hasValidDependencies()) 5355 WorkList.push_back(DestBundle); 5356 } 5357 } else { 5358 for (User *U : BundleMember->Inst->users()) { 5359 if (isa<Instruction>(U)) { 5360 ScheduleData *UseSD = getScheduleData(U); 5361 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5362 BundleMember->Dependencies++; 5363 ScheduleData *DestBundle = UseSD->FirstInBundle; 5364 if (!DestBundle->IsScheduled) 5365 BundleMember->incrementUnscheduledDeps(1); 5366 if (!DestBundle->hasValidDependencies()) 5367 WorkList.push_back(DestBundle); 5368 } 5369 } else { 5370 // I'm not sure if this can ever happen. But we need to be safe. 5371 // This lets the instruction/bundle never be scheduled and 5372 // eventually disable vectorization. 5373 BundleMember->Dependencies++; 5374 BundleMember->incrementUnscheduledDeps(1); 5375 } 5376 } 5377 } 5378 5379 // Handle the memory dependencies. 5380 ScheduleData *DepDest = BundleMember->NextLoadStore; 5381 if (DepDest) { 5382 Instruction *SrcInst = BundleMember->Inst; 5383 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5384 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5385 unsigned numAliased = 0; 5386 unsigned DistToSrc = 1; 5387 5388 while (DepDest) { 5389 assert(isInSchedulingRegion(DepDest)); 5390 5391 // We have two limits to reduce the complexity: 5392 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5393 // SLP->isAliased (which is the expensive part in this loop). 5394 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5395 // the whole loop (even if the loop is fast, it's quadratic). 5396 // It's important for the loop break condition (see below) to 5397 // check this limit even between two read-only instructions. 5398 if (DistToSrc >= MaxMemDepDistance || 5399 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5400 (numAliased >= AliasedCheckLimit || 5401 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5402 5403 // We increment the counter only if the locations are aliased 5404 // (instead of counting all alias checks). This gives a better 5405 // balance between reduced runtime and accurate dependencies. 5406 numAliased++; 5407 5408 DepDest->MemoryDependencies.push_back(BundleMember); 5409 BundleMember->Dependencies++; 5410 ScheduleData *DestBundle = DepDest->FirstInBundle; 5411 if (!DestBundle->IsScheduled) { 5412 BundleMember->incrementUnscheduledDeps(1); 5413 } 5414 if (!DestBundle->hasValidDependencies()) { 5415 WorkList.push_back(DestBundle); 5416 } 5417 } 5418 DepDest = DepDest->NextLoadStore; 5419 5420 // Example, explaining the loop break condition: Let's assume our 5421 // starting instruction is i0 and MaxMemDepDistance = 3. 5422 // 5423 // +--------v--v--v 5424 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5425 // +--------^--^--^ 5426 // 5427 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5428 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5429 // Previously we already added dependencies from i3 to i6,i7,i8 5430 // (because of MaxMemDepDistance). As we added a dependency from 5431 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5432 // and we can abort this loop at i6. 5433 if (DistToSrc >= 2 * MaxMemDepDistance) 5434 break; 5435 DistToSrc++; 5436 } 5437 } 5438 } 5439 BundleMember = BundleMember->NextInBundle; 5440 } 5441 if (InsertInReadyList && SD->isReady()) { 5442 ReadyInsts.push_back(SD); 5443 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5444 << "\n"); 5445 } 5446 } 5447 } 5448 5449 void BoUpSLP::BlockScheduling::resetSchedule() { 5450 assert(ScheduleStart && 5451 "tried to reset schedule on block which has not been scheduled"); 5452 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5453 doForAllOpcodes(I, [&](ScheduleData *SD) { 5454 assert(isInSchedulingRegion(SD) && 5455 "ScheduleData not in scheduling region"); 5456 SD->IsScheduled = false; 5457 SD->resetUnscheduledDeps(); 5458 }); 5459 } 5460 ReadyInsts.clear(); 5461 } 5462 5463 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5464 if (!BS->ScheduleStart) 5465 return; 5466 5467 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5468 5469 BS->resetSchedule(); 5470 5471 // For the real scheduling we use a more sophisticated ready-list: it is 5472 // sorted by the original instruction location. This lets the final schedule 5473 // be as close as possible to the original instruction order. 5474 struct ScheduleDataCompare { 5475 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5476 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5477 } 5478 }; 5479 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5480 5481 // Ensure that all dependency data is updated and fill the ready-list with 5482 // initial instructions. 5483 int Idx = 0; 5484 int NumToSchedule = 0; 5485 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5486 I = I->getNextNode()) { 5487 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5488 assert(SD->isPartOfBundle() == 5489 (getTreeEntry(SD->Inst) != nullptr) && 5490 "scheduler and vectorizer bundle mismatch"); 5491 SD->FirstInBundle->SchedulingPriority = Idx++; 5492 if (SD->isSchedulingEntity()) { 5493 BS->calculateDependencies(SD, false, this); 5494 NumToSchedule++; 5495 } 5496 }); 5497 } 5498 BS->initialFillReadyList(ReadyInsts); 5499 5500 Instruction *LastScheduledInst = BS->ScheduleEnd; 5501 5502 // Do the "real" scheduling. 5503 while (!ReadyInsts.empty()) { 5504 ScheduleData *picked = *ReadyInsts.begin(); 5505 ReadyInsts.erase(ReadyInsts.begin()); 5506 5507 // Move the scheduled instruction(s) to their dedicated places, if not 5508 // there yet. 5509 ScheduleData *BundleMember = picked; 5510 while (BundleMember) { 5511 Instruction *pickedInst = BundleMember->Inst; 5512 if (LastScheduledInst->getNextNode() != pickedInst) { 5513 BS->BB->getInstList().remove(pickedInst); 5514 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5515 pickedInst); 5516 } 5517 LastScheduledInst = pickedInst; 5518 BundleMember = BundleMember->NextInBundle; 5519 } 5520 5521 BS->schedule(picked, ReadyInsts); 5522 NumToSchedule--; 5523 } 5524 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5525 5526 // Avoid duplicate scheduling of the block. 5527 BS->ScheduleStart = nullptr; 5528 } 5529 5530 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5531 // If V is a store, just return the width of the stored value (or value 5532 // truncated just before storing) without traversing the expression tree. 5533 // This is the common case. 5534 if (auto *Store = dyn_cast<StoreInst>(V)) { 5535 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5536 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5537 else 5538 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5539 } 5540 5541 auto E = InstrElementSize.find(V); 5542 if (E != InstrElementSize.end()) 5543 return E->second; 5544 5545 // If V is not a store, we can traverse the expression tree to find loads 5546 // that feed it. The type of the loaded value may indicate a more suitable 5547 // width than V's type. We want to base the vector element size on the width 5548 // of memory operations where possible. 5549 SmallVector<Instruction *, 16> Worklist; 5550 SmallPtrSet<Instruction *, 16> Visited; 5551 if (auto *I = dyn_cast<Instruction>(V)) { 5552 Worklist.push_back(I); 5553 Visited.insert(I); 5554 } 5555 5556 // Traverse the expression tree in bottom-up order looking for loads. If we 5557 // encounter an instruction we don't yet handle, we give up. 5558 auto MaxWidth = 0u; 5559 auto FoundUnknownInst = false; 5560 while (!Worklist.empty() && !FoundUnknownInst) { 5561 auto *I = Worklist.pop_back_val(); 5562 5563 // We should only be looking at scalar instructions here. If the current 5564 // instruction has a vector type, give up. 5565 auto *Ty = I->getType(); 5566 if (isa<VectorType>(Ty)) 5567 FoundUnknownInst = true; 5568 5569 // If the current instruction is a load, update MaxWidth to reflect the 5570 // width of the loaded value. 5571 else if (isa<LoadInst>(I)) 5572 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5573 5574 // Otherwise, we need to visit the operands of the instruction. We only 5575 // handle the interesting cases from buildTree here. If an operand is an 5576 // instruction we haven't yet visited, we add it to the worklist. 5577 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5578 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5579 for (Use &U : I->operands()) 5580 if (auto *J = dyn_cast<Instruction>(U.get())) 5581 if (Visited.insert(J).second) 5582 Worklist.push_back(J); 5583 } 5584 5585 // If we don't yet handle the instruction, give up. 5586 else 5587 FoundUnknownInst = true; 5588 } 5589 5590 int Width = MaxWidth; 5591 // If we didn't encounter a memory access in the expression tree, or if we 5592 // gave up for some reason, just return the width of V. Otherwise, return the 5593 // maximum width we found. 5594 if (!MaxWidth || FoundUnknownInst) 5595 Width = DL->getTypeSizeInBits(V->getType()); 5596 5597 for (Instruction *I : Visited) 5598 InstrElementSize[I] = Width; 5599 5600 return Width; 5601 } 5602 5603 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5604 // smaller type with a truncation. We collect the values that will be demoted 5605 // in ToDemote and additional roots that require investigating in Roots. 5606 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5607 SmallVectorImpl<Value *> &ToDemote, 5608 SmallVectorImpl<Value *> &Roots) { 5609 // We can always demote constants. 5610 if (isa<Constant>(V)) { 5611 ToDemote.push_back(V); 5612 return true; 5613 } 5614 5615 // If the value is not an instruction in the expression with only one use, it 5616 // cannot be demoted. 5617 auto *I = dyn_cast<Instruction>(V); 5618 if (!I || !I->hasOneUse() || !Expr.count(I)) 5619 return false; 5620 5621 switch (I->getOpcode()) { 5622 5623 // We can always demote truncations and extensions. Since truncations can 5624 // seed additional demotion, we save the truncated value. 5625 case Instruction::Trunc: 5626 Roots.push_back(I->getOperand(0)); 5627 break; 5628 case Instruction::ZExt: 5629 case Instruction::SExt: 5630 break; 5631 5632 // We can demote certain binary operations if we can demote both of their 5633 // operands. 5634 case Instruction::Add: 5635 case Instruction::Sub: 5636 case Instruction::Mul: 5637 case Instruction::And: 5638 case Instruction::Or: 5639 case Instruction::Xor: 5640 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5641 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5642 return false; 5643 break; 5644 5645 // We can demote selects if we can demote their true and false values. 5646 case Instruction::Select: { 5647 SelectInst *SI = cast<SelectInst>(I); 5648 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5649 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5650 return false; 5651 break; 5652 } 5653 5654 // We can demote phis if we can demote all their incoming operands. Note that 5655 // we don't need to worry about cycles since we ensure single use above. 5656 case Instruction::PHI: { 5657 PHINode *PN = cast<PHINode>(I); 5658 for (Value *IncValue : PN->incoming_values()) 5659 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5660 return false; 5661 break; 5662 } 5663 5664 // Otherwise, conservatively give up. 5665 default: 5666 return false; 5667 } 5668 5669 // Record the value that we can demote. 5670 ToDemote.push_back(V); 5671 return true; 5672 } 5673 5674 void BoUpSLP::computeMinimumValueSizes() { 5675 // If there are no external uses, the expression tree must be rooted by a 5676 // store. We can't demote in-memory values, so there is nothing to do here. 5677 if (ExternalUses.empty()) 5678 return; 5679 5680 // We only attempt to truncate integer expressions. 5681 auto &TreeRoot = VectorizableTree[0]->Scalars; 5682 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5683 if (!TreeRootIT) 5684 return; 5685 5686 // If the expression is not rooted by a store, these roots should have 5687 // external uses. We will rely on InstCombine to rewrite the expression in 5688 // the narrower type. However, InstCombine only rewrites single-use values. 5689 // This means that if a tree entry other than a root is used externally, it 5690 // must have multiple uses and InstCombine will not rewrite it. The code 5691 // below ensures that only the roots are used externally. 5692 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5693 for (auto &EU : ExternalUses) 5694 if (!Expr.erase(EU.Scalar)) 5695 return; 5696 if (!Expr.empty()) 5697 return; 5698 5699 // Collect the scalar values of the vectorizable expression. We will use this 5700 // context to determine which values can be demoted. If we see a truncation, 5701 // we mark it as seeding another demotion. 5702 for (auto &EntryPtr : VectorizableTree) 5703 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5704 5705 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5706 // have a single external user that is not in the vectorizable tree. 5707 for (auto *Root : TreeRoot) 5708 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5709 return; 5710 5711 // Conservatively determine if we can actually truncate the roots of the 5712 // expression. Collect the values that can be demoted in ToDemote and 5713 // additional roots that require investigating in Roots. 5714 SmallVector<Value *, 32> ToDemote; 5715 SmallVector<Value *, 4> Roots; 5716 for (auto *Root : TreeRoot) 5717 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5718 return; 5719 5720 // The maximum bit width required to represent all the values that can be 5721 // demoted without loss of precision. It would be safe to truncate the roots 5722 // of the expression to this width. 5723 auto MaxBitWidth = 8u; 5724 5725 // We first check if all the bits of the roots are demanded. If they're not, 5726 // we can truncate the roots to this narrower type. 5727 for (auto *Root : TreeRoot) { 5728 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5729 MaxBitWidth = std::max<unsigned>( 5730 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5731 } 5732 5733 // True if the roots can be zero-extended back to their original type, rather 5734 // than sign-extended. We know that if the leading bits are not demanded, we 5735 // can safely zero-extend. So we initialize IsKnownPositive to True. 5736 bool IsKnownPositive = true; 5737 5738 // If all the bits of the roots are demanded, we can try a little harder to 5739 // compute a narrower type. This can happen, for example, if the roots are 5740 // getelementptr indices. InstCombine promotes these indices to the pointer 5741 // width. Thus, all their bits are technically demanded even though the 5742 // address computation might be vectorized in a smaller type. 5743 // 5744 // We start by looking at each entry that can be demoted. We compute the 5745 // maximum bit width required to store the scalar by using ValueTracking to 5746 // compute the number of high-order bits we can truncate. 5747 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5748 llvm::all_of(TreeRoot, [](Value *R) { 5749 assert(R->hasOneUse() && "Root should have only one use!"); 5750 return isa<GetElementPtrInst>(R->user_back()); 5751 })) { 5752 MaxBitWidth = 8u; 5753 5754 // Determine if the sign bit of all the roots is known to be zero. If not, 5755 // IsKnownPositive is set to False. 5756 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5757 KnownBits Known = computeKnownBits(R, *DL); 5758 return Known.isNonNegative(); 5759 }); 5760 5761 // Determine the maximum number of bits required to store the scalar 5762 // values. 5763 for (auto *Scalar : ToDemote) { 5764 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5765 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5766 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5767 } 5768 5769 // If we can't prove that the sign bit is zero, we must add one to the 5770 // maximum bit width to account for the unknown sign bit. This preserves 5771 // the existing sign bit so we can safely sign-extend the root back to the 5772 // original type. Otherwise, if we know the sign bit is zero, we will 5773 // zero-extend the root instead. 5774 // 5775 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5776 // one to the maximum bit width will yield a larger-than-necessary 5777 // type. In general, we need to add an extra bit only if we can't 5778 // prove that the upper bit of the original type is equal to the 5779 // upper bit of the proposed smaller type. If these two bits are the 5780 // same (either zero or one) we know that sign-extending from the 5781 // smaller type will result in the same value. Here, since we can't 5782 // yet prove this, we are just making the proposed smaller type 5783 // larger to ensure correctness. 5784 if (!IsKnownPositive) 5785 ++MaxBitWidth; 5786 } 5787 5788 // Round MaxBitWidth up to the next power-of-two. 5789 if (!isPowerOf2_64(MaxBitWidth)) 5790 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5791 5792 // If the maximum bit width we compute is less than the with of the roots' 5793 // type, we can proceed with the narrowing. Otherwise, do nothing. 5794 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5795 return; 5796 5797 // If we can truncate the root, we must collect additional values that might 5798 // be demoted as a result. That is, those seeded by truncations we will 5799 // modify. 5800 while (!Roots.empty()) 5801 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5802 5803 // Finally, map the values we can demote to the maximum bit with we computed. 5804 for (auto *Scalar : ToDemote) 5805 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5806 } 5807 5808 namespace { 5809 5810 /// The SLPVectorizer Pass. 5811 struct SLPVectorizer : public FunctionPass { 5812 SLPVectorizerPass Impl; 5813 5814 /// Pass identification, replacement for typeid 5815 static char ID; 5816 5817 explicit SLPVectorizer() : FunctionPass(ID) { 5818 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5819 } 5820 5821 bool doInitialization(Module &M) override { 5822 return false; 5823 } 5824 5825 bool runOnFunction(Function &F) override { 5826 if (skipFunction(F)) 5827 return false; 5828 5829 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5830 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5831 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5832 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5833 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5834 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5835 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5836 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5837 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5838 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5839 5840 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5841 } 5842 5843 void getAnalysisUsage(AnalysisUsage &AU) const override { 5844 FunctionPass::getAnalysisUsage(AU); 5845 AU.addRequired<AssumptionCacheTracker>(); 5846 AU.addRequired<ScalarEvolutionWrapperPass>(); 5847 AU.addRequired<AAResultsWrapperPass>(); 5848 AU.addRequired<TargetTransformInfoWrapperPass>(); 5849 AU.addRequired<LoopInfoWrapperPass>(); 5850 AU.addRequired<DominatorTreeWrapperPass>(); 5851 AU.addRequired<DemandedBitsWrapperPass>(); 5852 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5853 AU.addRequired<InjectTLIMappingsLegacy>(); 5854 AU.addPreserved<LoopInfoWrapperPass>(); 5855 AU.addPreserved<DominatorTreeWrapperPass>(); 5856 AU.addPreserved<AAResultsWrapperPass>(); 5857 AU.addPreserved<GlobalsAAWrapperPass>(); 5858 AU.setPreservesCFG(); 5859 } 5860 }; 5861 5862 } // end anonymous namespace 5863 5864 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5865 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5866 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5867 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5868 auto *AA = &AM.getResult<AAManager>(F); 5869 auto *LI = &AM.getResult<LoopAnalysis>(F); 5870 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5871 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5872 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5873 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5874 5875 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5876 if (!Changed) 5877 return PreservedAnalyses::all(); 5878 5879 PreservedAnalyses PA; 5880 PA.preserveSet<CFGAnalyses>(); 5881 PA.preserve<AAManager>(); 5882 PA.preserve<GlobalsAA>(); 5883 return PA; 5884 } 5885 5886 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5887 TargetTransformInfo *TTI_, 5888 TargetLibraryInfo *TLI_, AAResults *AA_, 5889 LoopInfo *LI_, DominatorTree *DT_, 5890 AssumptionCache *AC_, DemandedBits *DB_, 5891 OptimizationRemarkEmitter *ORE_) { 5892 if (!RunSLPVectorization) 5893 return false; 5894 SE = SE_; 5895 TTI = TTI_; 5896 TLI = TLI_; 5897 AA = AA_; 5898 LI = LI_; 5899 DT = DT_; 5900 AC = AC_; 5901 DB = DB_; 5902 DL = &F.getParent()->getDataLayout(); 5903 5904 Stores.clear(); 5905 GEPs.clear(); 5906 bool Changed = false; 5907 5908 // If the target claims to have no vector registers don't attempt 5909 // vectorization. 5910 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5911 return false; 5912 5913 // Don't vectorize when the attribute NoImplicitFloat is used. 5914 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5915 return false; 5916 5917 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5918 5919 // Use the bottom up slp vectorizer to construct chains that start with 5920 // store instructions. 5921 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5922 5923 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5924 // delete instructions. 5925 5926 // Scan the blocks in the function in post order. 5927 for (auto BB : post_order(&F.getEntryBlock())) { 5928 collectSeedInstructions(BB); 5929 5930 // Vectorize trees that end at stores. 5931 if (!Stores.empty()) { 5932 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5933 << " underlying objects.\n"); 5934 Changed |= vectorizeStoreChains(R); 5935 } 5936 5937 // Vectorize trees that end at reductions. 5938 Changed |= vectorizeChainsInBlock(BB, R); 5939 5940 // Vectorize the index computations of getelementptr instructions. This 5941 // is primarily intended to catch gather-like idioms ending at 5942 // non-consecutive loads. 5943 if (!GEPs.empty()) { 5944 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5945 << " underlying objects.\n"); 5946 Changed |= vectorizeGEPIndices(BB, R); 5947 } 5948 } 5949 5950 if (Changed) { 5951 R.optimizeGatherSequence(); 5952 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5953 } 5954 return Changed; 5955 } 5956 5957 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5958 unsigned Idx) { 5959 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5960 << "\n"); 5961 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5962 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5963 unsigned VF = Chain.size(); 5964 5965 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5966 return false; 5967 5968 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5969 << "\n"); 5970 5971 R.buildTree(Chain); 5972 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5973 // TODO: Handle orders of size less than number of elements in the vector. 5974 if (Order && Order->size() == Chain.size()) { 5975 // TODO: reorder tree nodes without tree rebuilding. 5976 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5977 llvm::transform(*Order, ReorderedOps.begin(), 5978 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5979 R.buildTree(ReorderedOps); 5980 } 5981 if (R.isTreeTinyAndNotFullyVectorizable()) 5982 return false; 5983 if (R.isLoadCombineCandidate()) 5984 return false; 5985 5986 R.computeMinimumValueSizes(); 5987 5988 InstructionCost Cost = R.getTreeCost(); 5989 5990 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 5991 if (Cost.isValid() && Cost < -SLPCostThreshold) { 5992 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 5993 5994 using namespace ore; 5995 5996 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5997 cast<StoreInst>(Chain[0])) 5998 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5999 << " and with tree size " 6000 << NV("TreeSize", R.getTreeSize())); 6001 6002 R.vectorizeTree(); 6003 return true; 6004 } 6005 6006 return false; 6007 } 6008 6009 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6010 BoUpSLP &R) { 6011 // We may run into multiple chains that merge into a single chain. We mark the 6012 // stores that we vectorized so that we don't visit the same store twice. 6013 BoUpSLP::ValueSet VectorizedStores; 6014 bool Changed = false; 6015 6016 int E = Stores.size(); 6017 SmallBitVector Tails(E, false); 6018 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6019 int MaxIter = MaxStoreLookup.getValue(); 6020 int IterCnt; 6021 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6022 &ConsecutiveChain](int K, int Idx) { 6023 if (IterCnt >= MaxIter) 6024 return true; 6025 ++IterCnt; 6026 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6027 return false; 6028 6029 Tails.set(Idx); 6030 ConsecutiveChain[K] = Idx; 6031 return true; 6032 }; 6033 // Do a quadratic search on all of the given stores in reverse order and find 6034 // all of the pairs of stores that follow each other. 6035 for (int Idx = E - 1; Idx >= 0; --Idx) { 6036 // If a store has multiple consecutive store candidates, search according 6037 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6038 // This is because usually pairing with immediate succeeding or preceding 6039 // candidate create the best chance to find slp vectorization opportunity. 6040 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6041 IterCnt = 0; 6042 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6043 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6044 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6045 break; 6046 } 6047 6048 // For stores that start but don't end a link in the chain: 6049 for (int Cnt = E; Cnt > 0; --Cnt) { 6050 int I = Cnt - 1; 6051 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6052 continue; 6053 // We found a store instr that starts a chain. Now follow the chain and try 6054 // to vectorize it. 6055 BoUpSLP::ValueList Operands; 6056 // Collect the chain into a list. 6057 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6058 Operands.push_back(Stores[I]); 6059 // Move to the next value in the chain. 6060 I = ConsecutiveChain[I]; 6061 } 6062 6063 // If a vector register can't hold 1 element, we are done. 6064 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6065 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6066 if (MaxVecRegSize % EltSize != 0) 6067 continue; 6068 6069 unsigned MaxElts = MaxVecRegSize / EltSize; 6070 // FIXME: Is division-by-2 the correct step? Should we assert that the 6071 // register size is a power-of-2? 6072 unsigned StartIdx = 0; 6073 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6074 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6075 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6076 if (!VectorizedStores.count(Slice.front()) && 6077 !VectorizedStores.count(Slice.back()) && 6078 vectorizeStoreChain(Slice, R, Cnt)) { 6079 // Mark the vectorized stores so that we don't vectorize them again. 6080 VectorizedStores.insert(Slice.begin(), Slice.end()); 6081 Changed = true; 6082 // If we vectorized initial block, no need to try to vectorize it 6083 // again. 6084 if (Cnt == StartIdx) 6085 StartIdx += Size; 6086 Cnt += Size; 6087 continue; 6088 } 6089 ++Cnt; 6090 } 6091 // Check if the whole array was vectorized already - exit. 6092 if (StartIdx >= Operands.size()) 6093 break; 6094 } 6095 } 6096 6097 return Changed; 6098 } 6099 6100 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6101 // Initialize the collections. We will make a single pass over the block. 6102 Stores.clear(); 6103 GEPs.clear(); 6104 6105 // Visit the store and getelementptr instructions in BB and organize them in 6106 // Stores and GEPs according to the underlying objects of their pointer 6107 // operands. 6108 for (Instruction &I : *BB) { 6109 // Ignore store instructions that are volatile or have a pointer operand 6110 // that doesn't point to a scalar type. 6111 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6112 if (!SI->isSimple()) 6113 continue; 6114 if (!isValidElementType(SI->getValueOperand()->getType())) 6115 continue; 6116 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6117 } 6118 6119 // Ignore getelementptr instructions that have more than one index, a 6120 // constant index, or a pointer operand that doesn't point to a scalar 6121 // type. 6122 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6123 auto Idx = GEP->idx_begin()->get(); 6124 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6125 continue; 6126 if (!isValidElementType(Idx->getType())) 6127 continue; 6128 if (GEP->getType()->isVectorTy()) 6129 continue; 6130 GEPs[GEP->getPointerOperand()].push_back(GEP); 6131 } 6132 } 6133 } 6134 6135 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6136 if (!A || !B) 6137 return false; 6138 Value *VL[] = {A, B}; 6139 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6140 } 6141 6142 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6143 bool AllowReorder, 6144 ArrayRef<Value *> InsertUses) { 6145 if (VL.size() < 2) 6146 return false; 6147 6148 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6149 << VL.size() << ".\n"); 6150 6151 // Check that all of the parts are instructions of the same type, 6152 // we permit an alternate opcode via InstructionsState. 6153 InstructionsState S = getSameOpcode(VL); 6154 if (!S.getOpcode()) 6155 return false; 6156 6157 Instruction *I0 = cast<Instruction>(S.OpValue); 6158 // Make sure invalid types (including vector type) are rejected before 6159 // determining vectorization factor for scalar instructions. 6160 for (Value *V : VL) { 6161 Type *Ty = V->getType(); 6162 if (!isValidElementType(Ty)) { 6163 // NOTE: the following will give user internal llvm type name, which may 6164 // not be useful. 6165 R.getORE()->emit([&]() { 6166 std::string type_str; 6167 llvm::raw_string_ostream rso(type_str); 6168 Ty->print(rso); 6169 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6170 << "Cannot SLP vectorize list: type " 6171 << rso.str() + " is unsupported by vectorizer"; 6172 }); 6173 return false; 6174 } 6175 } 6176 6177 unsigned Sz = R.getVectorElementSize(I0); 6178 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6179 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6180 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6181 if (MaxVF < 2) { 6182 R.getORE()->emit([&]() { 6183 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6184 << "Cannot SLP vectorize list: vectorization factor " 6185 << "less than 2 is not supported"; 6186 }); 6187 return false; 6188 } 6189 6190 bool Changed = false; 6191 bool CandidateFound = false; 6192 InstructionCost MinCost = SLPCostThreshold.getValue(); 6193 6194 bool CompensateUseCost = 6195 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6196 return V && isa<InsertElementInst>(V); 6197 }); 6198 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6199 "Each scalar expected to have an associated InsertElement user."); 6200 6201 unsigned NextInst = 0, MaxInst = VL.size(); 6202 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6203 // No actual vectorization should happen, if number of parts is the same as 6204 // provided vectorization factor (i.e. the scalar type is used for vector 6205 // code during codegen). 6206 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6207 if (TTI->getNumberOfParts(VecTy) == VF) 6208 continue; 6209 for (unsigned I = NextInst; I < MaxInst; ++I) { 6210 unsigned OpsWidth = 0; 6211 6212 if (I + VF > MaxInst) 6213 OpsWidth = MaxInst - I; 6214 else 6215 OpsWidth = VF; 6216 6217 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6218 break; 6219 6220 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6221 // Check that a previous iteration of this loop did not delete the Value. 6222 if (llvm::any_of(Ops, [&R](Value *V) { 6223 auto *I = dyn_cast<Instruction>(V); 6224 return I && R.isDeleted(I); 6225 })) 6226 continue; 6227 6228 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6229 << "\n"); 6230 6231 R.buildTree(Ops); 6232 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6233 // TODO: check if we can allow reordering for more cases. 6234 if (AllowReorder && Order) { 6235 // TODO: reorder tree nodes without tree rebuilding. 6236 // Conceptually, there is nothing actually preventing us from trying to 6237 // reorder a larger list. In fact, we do exactly this when vectorizing 6238 // reductions. However, at this point, we only expect to get here when 6239 // there are exactly two operations. 6240 assert(Ops.size() == 2); 6241 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6242 R.buildTree(ReorderedOps, None); 6243 } 6244 if (R.isTreeTinyAndNotFullyVectorizable()) 6245 continue; 6246 6247 R.computeMinimumValueSizes(); 6248 InstructionCost Cost = R.getTreeCost(); 6249 CandidateFound = true; 6250 if (CompensateUseCost) { 6251 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6252 // rather than sum of single inserts as the latter may overestimate 6253 // cost. This work should imply improving cost estimation for extracts 6254 // that added in for external (for vectorization tree) users,i.e. that 6255 // part should also switch to same interface. 6256 // For example, the following case is projected code after SLP: 6257 // %4 = extractelement <4 x i64> %3, i32 0 6258 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6259 // %5 = extractelement <4 x i64> %3, i32 1 6260 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6261 // %6 = extractelement <4 x i64> %3, i32 2 6262 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6263 // %7 = extractelement <4 x i64> %3, i32 3 6264 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6265 // 6266 // Extracts here added by SLP in order to feed users (the inserts) of 6267 // original scalars and contribute to "ExtractCost" at cost evaluation. 6268 // The inserts in turn form sequence to build an aggregate that 6269 // detected by findBuildAggregate routine. 6270 // SLP makes an assumption that such sequence will be optimized away 6271 // later (instcombine) so it tries to compensate ExctractCost with 6272 // cost of insert sequence. 6273 // Current per element cost calculation approach is not quite accurate 6274 // and tends to create bias toward favoring vectorization. 6275 // Switching to the TTI interface might help a bit. 6276 // Alternative solution could be pattern-match to detect a no-op or 6277 // shuffle. 6278 InstructionCost UserCost = 0; 6279 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6280 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6281 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6282 UserCost += TTI->getVectorInstrCost( 6283 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6284 } 6285 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6286 << ".\n"); 6287 Cost -= UserCost; 6288 } 6289 6290 MinCost = std::min(MinCost, Cost); 6291 6292 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6293 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6294 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6295 cast<Instruction>(Ops[0])) 6296 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6297 << " and with tree size " 6298 << ore::NV("TreeSize", R.getTreeSize())); 6299 6300 R.vectorizeTree(); 6301 // Move to the next bundle. 6302 I += VF - 1; 6303 NextInst = I + 1; 6304 Changed = true; 6305 } 6306 } 6307 } 6308 6309 if (!Changed && CandidateFound) { 6310 R.getORE()->emit([&]() { 6311 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6312 << "List vectorization was possible but not beneficial with cost " 6313 << ore::NV("Cost", MinCost) << " >= " 6314 << ore::NV("Treshold", -SLPCostThreshold); 6315 }); 6316 } else if (!Changed) { 6317 R.getORE()->emit([&]() { 6318 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6319 << "Cannot SLP vectorize list: vectorization was impossible" 6320 << " with available vectorization factors"; 6321 }); 6322 } 6323 return Changed; 6324 } 6325 6326 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6327 if (!I) 6328 return false; 6329 6330 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6331 return false; 6332 6333 Value *P = I->getParent(); 6334 6335 // Vectorize in current basic block only. 6336 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6337 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6338 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6339 return false; 6340 6341 // Try to vectorize V. 6342 if (tryToVectorizePair(Op0, Op1, R)) 6343 return true; 6344 6345 auto *A = dyn_cast<BinaryOperator>(Op0); 6346 auto *B = dyn_cast<BinaryOperator>(Op1); 6347 // Try to skip B. 6348 if (B && B->hasOneUse()) { 6349 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6350 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6351 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6352 return true; 6353 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6354 return true; 6355 } 6356 6357 // Try to skip A. 6358 if (A && A->hasOneUse()) { 6359 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6360 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6361 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6362 return true; 6363 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6364 return true; 6365 } 6366 return false; 6367 } 6368 6369 namespace { 6370 6371 /// Model horizontal reductions. 6372 /// 6373 /// A horizontal reduction is a tree of reduction instructions that has values 6374 /// that can be put into a vector as its leaves. For example: 6375 /// 6376 /// mul mul mul mul 6377 /// \ / \ / 6378 /// + + 6379 /// \ / 6380 /// + 6381 /// This tree has "mul" as its leaf values and "+" as its reduction 6382 /// instructions. A reduction can feed into a store or a binary operation 6383 /// feeding a phi. 6384 /// ... 6385 /// \ / 6386 /// + 6387 /// | 6388 /// phi += 6389 /// 6390 /// Or: 6391 /// ... 6392 /// \ / 6393 /// + 6394 /// | 6395 /// *p = 6396 /// 6397 class HorizontalReduction { 6398 using ReductionOpsType = SmallVector<Value *, 16>; 6399 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6400 ReductionOpsListType ReductionOps; 6401 SmallVector<Value *, 32> ReducedVals; 6402 // Use map vector to make stable output. 6403 MapVector<Instruction *, Value *> ExtraArgs; 6404 6405 /// This wraps functionality around a RecurKind (reduction kind). 6406 /// TODO: Remove this class if callers can use the 'Kind' value directly? 6407 class OperationData { 6408 /// Kind of the reduction operation. 6409 RecurKind Kind = RecurKind::None; 6410 bool IsLeafValue = false; 6411 6412 public: 6413 explicit OperationData() = default; 6414 6415 /// Constructor for reduced values. They are identified by the bool only. 6416 explicit OperationData(Instruction &I) { IsLeafValue = true; } 6417 6418 /// Constructor for reduction operations with opcode and type. 6419 OperationData(RecurKind RdxKind) : Kind(RdxKind) { 6420 assert(Kind != RecurKind::None && "Expected reduction operation."); 6421 } 6422 6423 explicit operator bool() const { 6424 return IsLeafValue || Kind != RecurKind::None; 6425 } 6426 6427 /// Checks if two operation data are both a reduction op or both a reduced 6428 /// value. 6429 bool operator==(const OperationData &OD) const { 6430 return Kind == OD.Kind && IsLeafValue == OD.IsLeafValue; 6431 } 6432 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6433 6434 /// Get kind of reduction data. 6435 RecurKind getKind() const { return Kind; } 6436 }; 6437 6438 WeakTrackingVH ReductionRoot; 6439 6440 /// The operation data of the reduction operation. 6441 OperationData RdxTreeInst; 6442 6443 /// Checks if instruction is associative and can be vectorized. 6444 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6445 if (Kind == RecurKind::None) 6446 return false; 6447 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6448 return true; 6449 6450 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6451 // FP min/max are associative except for NaN and -0.0. We do not 6452 // have to rule out -0.0 here because the intrinsic semantics do not 6453 // specify a fixed result for it. 6454 // TODO: This is artificially restricted to fast because the code that 6455 // creates reductions assumes/produces fast ops. 6456 return I->getFastMathFlags().isFast(); 6457 } 6458 6459 return I->isAssociative(); 6460 } 6461 6462 /// Checks if the ParentStackElem.first should be marked as a reduction 6463 /// operation with an extra argument or as extra argument itself. 6464 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6465 Value *ExtraArg) { 6466 if (ExtraArgs.count(ParentStackElem.first)) { 6467 ExtraArgs[ParentStackElem.first] = nullptr; 6468 // We ran into something like: 6469 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6470 // The whole ParentStackElem.first should be considered as an extra value 6471 // in this case. 6472 // Do not perform analysis of remaining operands of ParentStackElem.first 6473 // instruction, this whole instruction is an extra argument. 6474 OperationData OpData = getOperationData(ParentStackElem.first); 6475 ParentStackElem.second = getNumberOfOperands(OpData.getKind()); 6476 } else { 6477 // We ran into something like: 6478 // ParentStackElem.first += ... + ExtraArg + ... 6479 ExtraArgs[ParentStackElem.first] = ExtraArg; 6480 } 6481 } 6482 6483 /// Creates reduction operation with the current opcode. 6484 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6485 Value *RHS, const Twine &Name) { 6486 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6487 switch (Kind) { 6488 case RecurKind::Add: 6489 case RecurKind::Mul: 6490 case RecurKind::Or: 6491 case RecurKind::And: 6492 case RecurKind::Xor: 6493 case RecurKind::FAdd: 6494 case RecurKind::FMul: 6495 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6496 Name); 6497 case RecurKind::FMax: 6498 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6499 case RecurKind::FMin: 6500 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6501 6502 case RecurKind::SMax: { 6503 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6504 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6505 } 6506 case RecurKind::SMin: { 6507 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6508 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6509 } 6510 case RecurKind::UMax: { 6511 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6512 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6513 } 6514 case RecurKind::UMin: { 6515 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6516 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6517 } 6518 default: 6519 llvm_unreachable("Unknown reduction operation."); 6520 } 6521 } 6522 6523 /// Creates reduction operation with the current opcode with the IR flags 6524 /// from \p ReductionOps. 6525 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6526 Value *RHS, const Twine &Name, 6527 const ReductionOpsListType &ReductionOps) { 6528 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6529 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6530 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6531 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6532 propagateIRFlags(Op, ReductionOps[1]); 6533 return Op; 6534 } 6535 propagateIRFlags(Op, ReductionOps[0]); 6536 return Op; 6537 } 6538 /// Creates reduction operation with the current opcode with the IR flags 6539 /// from \p I. 6540 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6541 Value *RHS, const Twine &Name, Instruction *I) { 6542 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6543 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6544 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6545 propagateIRFlags(Sel->getCondition(), 6546 cast<SelectInst>(I)->getCondition()); 6547 } 6548 } 6549 propagateIRFlags(Op, I); 6550 return Op; 6551 } 6552 6553 static OperationData getOperationData(Instruction *I) { 6554 if (!I) 6555 return OperationData(); 6556 6557 TargetTransformInfo::ReductionFlags RdxFlags; 6558 if (match(I, m_Add(m_Value(), m_Value()))) 6559 return OperationData(RecurKind::Add); 6560 if (match(I, m_Mul(m_Value(), m_Value()))) 6561 return OperationData(RecurKind::Mul); 6562 if (match(I, m_And(m_Value(), m_Value()))) 6563 return OperationData(RecurKind::And); 6564 if (match(I, m_Or(m_Value(), m_Value()))) 6565 return OperationData(RecurKind::Or); 6566 if (match(I, m_Xor(m_Value(), m_Value()))) 6567 return OperationData(RecurKind::Xor); 6568 if (match(I, m_FAdd(m_Value(), m_Value()))) 6569 return OperationData(RecurKind::FAdd); 6570 if (match(I, m_FMul(m_Value(), m_Value()))) 6571 return OperationData(RecurKind::FMul); 6572 6573 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6574 return OperationData(RecurKind::FMax); 6575 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6576 return OperationData(RecurKind::FMin); 6577 6578 if (match(I, m_SMax(m_Value(), m_Value()))) 6579 return OperationData(RecurKind::SMax); 6580 if (match(I, m_SMin(m_Value(), m_Value()))) 6581 return OperationData(RecurKind::SMin); 6582 if (match(I, m_UMax(m_Value(), m_Value()))) 6583 return OperationData(RecurKind::UMax); 6584 if (match(I, m_UMin(m_Value(), m_Value()))) 6585 return OperationData(RecurKind::UMin); 6586 6587 if (auto *Select = dyn_cast<SelectInst>(I)) { 6588 // Try harder: look for min/max pattern based on instructions producing 6589 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6590 // During the intermediate stages of SLP, it's very common to have 6591 // pattern like this (since optimizeGatherSequence is run only once 6592 // at the end): 6593 // %1 = extractelement <2 x i32> %a, i32 0 6594 // %2 = extractelement <2 x i32> %a, i32 1 6595 // %cond = icmp sgt i32 %1, %2 6596 // %3 = extractelement <2 x i32> %a, i32 0 6597 // %4 = extractelement <2 x i32> %a, i32 1 6598 // %select = select i1 %cond, i32 %3, i32 %4 6599 CmpInst::Predicate Pred; 6600 Instruction *L1; 6601 Instruction *L2; 6602 6603 Value *LHS = Select->getTrueValue(); 6604 Value *RHS = Select->getFalseValue(); 6605 Value *Cond = Select->getCondition(); 6606 6607 // TODO: Support inverse predicates. 6608 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6609 if (!isa<ExtractElementInst>(RHS) || 6610 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6611 return OperationData(*I); 6612 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6613 if (!isa<ExtractElementInst>(LHS) || 6614 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6615 return OperationData(*I); 6616 } else { 6617 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6618 return OperationData(*I); 6619 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6620 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6621 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6622 return OperationData(*I); 6623 } 6624 6625 TargetTransformInfo::ReductionFlags RdxFlags; 6626 switch (Pred) { 6627 default: 6628 return OperationData(*I); 6629 case CmpInst::ICMP_SGT: 6630 case CmpInst::ICMP_SGE: 6631 return OperationData(RecurKind::SMax); 6632 case CmpInst::ICMP_SLT: 6633 case CmpInst::ICMP_SLE: 6634 return OperationData(RecurKind::SMin); 6635 case CmpInst::ICMP_UGT: 6636 case CmpInst::ICMP_UGE: 6637 return OperationData(RecurKind::UMax); 6638 case CmpInst::ICMP_ULT: 6639 case CmpInst::ICMP_ULE: 6640 return OperationData(RecurKind::UMin); 6641 } 6642 } 6643 return OperationData(*I); 6644 } 6645 6646 /// Return true if this operation is a cmp+select idiom. 6647 static bool isCmpSel(RecurKind Kind) { 6648 return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); 6649 } 6650 6651 /// Get the index of the first operand. 6652 static unsigned getFirstOperandIndex(RecurKind Kind) { 6653 // We allow calling this before 'Kind' is set, so handle that specially. 6654 if (Kind == RecurKind::None) 6655 return 0; 6656 return isCmpSel(Kind) ? 1 : 0; 6657 } 6658 6659 /// Total number of operands in the reduction operation. 6660 static unsigned getNumberOfOperands(RecurKind Kind) { 6661 return isCmpSel(Kind) ? 3 : 2; 6662 } 6663 6664 /// Checks if the instruction is in basic block \p BB. 6665 /// For a min/max reduction check that both compare and select are in \p BB. 6666 static bool hasSameParent(RecurKind Kind, Instruction *I, BasicBlock *BB, 6667 bool IsRedOp) { 6668 if (IsRedOp && isCmpSel(Kind)) { 6669 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6670 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6671 } 6672 return I->getParent() == BB; 6673 } 6674 6675 /// Expected number of uses for reduction operations/reduced values. 6676 static bool hasRequiredNumberOfUses(RecurKind Kind, Instruction *I, 6677 bool IsReductionOp) { 6678 // SelectInst must be used twice while the condition op must have single 6679 // use only. 6680 if (isCmpSel(Kind)) 6681 return I->hasNUses(2) && 6682 (!IsReductionOp || 6683 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6684 6685 // Arithmetic reduction operation must be used once only. 6686 return I->hasOneUse(); 6687 } 6688 6689 /// Initializes the list of reduction operations. 6690 void initReductionOps(RecurKind Kind) { 6691 if (isCmpSel(Kind)) 6692 ReductionOps.assign(2, ReductionOpsType()); 6693 else 6694 ReductionOps.assign(1, ReductionOpsType()); 6695 } 6696 6697 /// Add all reduction operations for the reduction instruction \p I. 6698 void addReductionOps(RecurKind Kind, Instruction *I) { 6699 assert(Kind != RecurKind::None && "Expected reduction operation."); 6700 if (isCmpSel(Kind)) { 6701 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6702 ReductionOps[1].emplace_back(I); 6703 } else { 6704 ReductionOps[0].emplace_back(I); 6705 } 6706 } 6707 6708 static Value *getLHS(RecurKind Kind, Instruction *I) { 6709 if (Kind == RecurKind::None) 6710 return nullptr; 6711 return I->getOperand(getFirstOperandIndex(Kind)); 6712 } 6713 static Value *getRHS(RecurKind Kind, Instruction *I) { 6714 if (Kind == RecurKind::None) 6715 return nullptr; 6716 return I->getOperand(getFirstOperandIndex(Kind) + 1); 6717 } 6718 6719 public: 6720 HorizontalReduction() = default; 6721 6722 /// Try to find a reduction tree. 6723 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6724 assert((!Phi || is_contained(Phi->operands(), B)) && 6725 "Phi needs to use the binary operator"); 6726 6727 RdxTreeInst = getOperationData(B); 6728 6729 // We could have a initial reductions that is not an add. 6730 // r *= v1 + v2 + v3 + v4 6731 // In such a case start looking for a tree rooted in the first '+'. 6732 if (Phi) { 6733 if (getLHS(RdxTreeInst.getKind(), B) == Phi) { 6734 Phi = nullptr; 6735 B = dyn_cast<Instruction>(getRHS(RdxTreeInst.getKind(), B)); 6736 RdxTreeInst = getOperationData(B); 6737 } else if (getRHS(RdxTreeInst.getKind(), B) == Phi) { 6738 Phi = nullptr; 6739 B = dyn_cast<Instruction>(getLHS(RdxTreeInst.getKind(), B)); 6740 RdxTreeInst = getOperationData(B); 6741 } 6742 } 6743 6744 if (!isVectorizable(RdxTreeInst.getKind(), B)) 6745 return false; 6746 6747 // Analyze "regular" integer/FP types for reductions - no target-specific 6748 // types or pointers. 6749 Type *Ty = B->getType(); 6750 if (!isValidElementType(Ty) || Ty->isPointerTy()) 6751 return false; 6752 6753 ReductionRoot = B; 6754 6755 // The opcode for leaf values that we perform a reduction on. 6756 // For example: load(x) + load(y) + load(z) + fptoui(w) 6757 // The leaf opcode for 'w' does not match, so we don't include it as a 6758 // potential candidate for the reduction. 6759 unsigned LeafOpcode = 0; 6760 6761 // Post order traverse the reduction tree starting at B. We only handle true 6762 // trees containing only binary operators. 6763 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6764 Stack.push_back( 6765 std::make_pair(B, getFirstOperandIndex(RdxTreeInst.getKind()))); 6766 initReductionOps(RdxTreeInst.getKind()); 6767 while (!Stack.empty()) { 6768 Instruction *TreeN = Stack.back().first; 6769 unsigned EdgeToVisit = Stack.back().second++; 6770 const OperationData OpData = getOperationData(TreeN); 6771 bool IsReducedValue = OpData != RdxTreeInst; 6772 6773 // Postorder visit. 6774 if (IsReducedValue || 6775 EdgeToVisit == getNumberOfOperands(OpData.getKind())) { 6776 if (IsReducedValue) 6777 ReducedVals.push_back(TreeN); 6778 else { 6779 auto I = ExtraArgs.find(TreeN); 6780 if (I != ExtraArgs.end() && !I->second) { 6781 // Check if TreeN is an extra argument of its parent operation. 6782 if (Stack.size() <= 1) { 6783 // TreeN can't be an extra argument as it is a root reduction 6784 // operation. 6785 return false; 6786 } 6787 // Yes, TreeN is an extra argument, do not add it to a list of 6788 // reduction operations. 6789 // Stack[Stack.size() - 2] always points to the parent operation. 6790 markExtraArg(Stack[Stack.size() - 2], TreeN); 6791 ExtraArgs.erase(TreeN); 6792 } else 6793 addReductionOps(RdxTreeInst.getKind(), TreeN); 6794 } 6795 // Retract. 6796 Stack.pop_back(); 6797 continue; 6798 } 6799 6800 // Visit left or right. 6801 Value *NextV = TreeN->getOperand(EdgeToVisit); 6802 auto *I = dyn_cast<Instruction>(NextV); 6803 const OperationData EdgeOpData = getOperationData(I); 6804 // Continue analysis if the next operand is a reduction operation or 6805 // (possibly) a leaf value. If the leaf value opcode is not set, 6806 // the first met operation != reduction operation is considered as the 6807 // leaf opcode. 6808 // Only handle trees in the current basic block. 6809 // Each tree node needs to have minimal number of users except for the 6810 // ultimate reduction. 6811 const bool IsRdxInst = EdgeOpData == RdxTreeInst; 6812 if (I && I != Phi && I != B && 6813 hasSameParent(RdxTreeInst.getKind(), I, B->getParent(), IsRdxInst) && 6814 hasRequiredNumberOfUses(RdxTreeInst.getKind(), I, IsRdxInst) && 6815 (!LeafOpcode || LeafOpcode == I->getOpcode() || IsRdxInst)) { 6816 if (IsRdxInst) { 6817 // We need to be able to reassociate the reduction operations. 6818 if (!isVectorizable(EdgeOpData.getKind(), I)) { 6819 // I is an extra argument for TreeN (its parent operation). 6820 markExtraArg(Stack.back(), I); 6821 continue; 6822 } 6823 } else if (!LeafOpcode) { 6824 LeafOpcode = I->getOpcode(); 6825 } 6826 Stack.push_back( 6827 std::make_pair(I, getFirstOperandIndex(EdgeOpData.getKind()))); 6828 continue; 6829 } 6830 // NextV is an extra argument for TreeN (its parent operation). 6831 markExtraArg(Stack.back(), NextV); 6832 } 6833 return true; 6834 } 6835 6836 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6837 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6838 // If there are a sufficient number of reduction values, reduce 6839 // to a nearby power-of-2. We can safely generate oversized 6840 // vectors and rely on the backend to split them to legal sizes. 6841 unsigned NumReducedVals = ReducedVals.size(); 6842 if (NumReducedVals < 4) 6843 return false; 6844 6845 // FIXME: Fast-math-flags should be set based on the instructions in the 6846 // reduction (not all of 'fast' are required). 6847 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6848 FastMathFlags Unsafe; 6849 Unsafe.setFast(); 6850 Builder.setFastMathFlags(Unsafe); 6851 6852 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6853 // The same extra argument may be used several times, so log each attempt 6854 // to use it. 6855 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6856 assert(Pair.first && "DebugLoc must be set."); 6857 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6858 } 6859 6860 // The compare instruction of a min/max is the insertion point for new 6861 // instructions and may be replaced with a new compare instruction. 6862 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6863 assert(isa<SelectInst>(RdxRootInst) && 6864 "Expected min/max reduction to have select root instruction"); 6865 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6866 assert(isa<Instruction>(ScalarCond) && 6867 "Expected min/max reduction to have compare condition"); 6868 return cast<Instruction>(ScalarCond); 6869 }; 6870 6871 // The reduction root is used as the insertion point for new instructions, 6872 // so set it as externally used to prevent it from being deleted. 6873 ExternallyUsedValues[ReductionRoot]; 6874 SmallVector<Value *, 16> IgnoreList; 6875 for (ReductionOpsType &RdxOp : ReductionOps) 6876 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6877 6878 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6879 if (NumReducedVals > ReduxWidth) { 6880 // In the loop below, we are building a tree based on a window of 6881 // 'ReduxWidth' values. 6882 // If the operands of those values have common traits (compare predicate, 6883 // constant operand, etc), then we want to group those together to 6884 // minimize the cost of the reduction. 6885 6886 // TODO: This should be extended to count common operands for 6887 // compares and binops. 6888 6889 // Step 1: Count the number of times each compare predicate occurs. 6890 SmallDenseMap<unsigned, unsigned> PredCountMap; 6891 for (Value *RdxVal : ReducedVals) { 6892 CmpInst::Predicate Pred; 6893 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6894 ++PredCountMap[Pred]; 6895 } 6896 // Step 2: Sort the values so the most common predicates come first. 6897 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6898 CmpInst::Predicate PredA, PredB; 6899 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6900 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6901 return PredCountMap[PredA] > PredCountMap[PredB]; 6902 } 6903 return false; 6904 }); 6905 } 6906 6907 Value *VectorizedTree = nullptr; 6908 unsigned i = 0; 6909 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6910 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6911 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6912 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6913 if (Order) { 6914 assert(Order->size() == VL.size() && 6915 "Order size must be the same as number of vectorized " 6916 "instructions."); 6917 // TODO: reorder tree nodes without tree rebuilding. 6918 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6919 llvm::transform(*Order, ReorderedOps.begin(), 6920 [VL](const unsigned Idx) { return VL[Idx]; }); 6921 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6922 } 6923 if (V.isTreeTinyAndNotFullyVectorizable()) 6924 break; 6925 if (V.isLoadCombineReductionCandidate(RdxTreeInst.getKind())) 6926 break; 6927 6928 V.computeMinimumValueSizes(); 6929 6930 // Estimate cost. 6931 InstructionCost TreeCost = V.getTreeCost(); 6932 InstructionCost ReductionCost = 6933 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6934 InstructionCost Cost = TreeCost + ReductionCost; 6935 if (!Cost.isValid()) { 6936 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 6937 return false; 6938 } 6939 if (Cost >= -SLPCostThreshold) { 6940 V.getORE()->emit([&]() { 6941 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 6942 cast<Instruction>(VL[0])) 6943 << "Vectorizing horizontal reduction is possible" 6944 << "but not beneficial with cost " << ore::NV("Cost", Cost) 6945 << " and threshold " 6946 << ore::NV("Threshold", -SLPCostThreshold); 6947 }); 6948 break; 6949 } 6950 6951 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6952 << Cost << ". (HorRdx)\n"); 6953 V.getORE()->emit([&]() { 6954 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 6955 cast<Instruction>(VL[0])) 6956 << "Vectorized horizontal reduction with cost " 6957 << ore::NV("Cost", Cost) << " and with tree size " 6958 << ore::NV("TreeSize", V.getTreeSize()); 6959 }); 6960 6961 // Vectorize a tree. 6962 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6963 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6964 6965 // Emit a reduction. If the root is a select (min/max idiom), the insert 6966 // point is the compare condition of that select. 6967 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6968 if (isCmpSel(RdxTreeInst.getKind())) 6969 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6970 else 6971 Builder.SetInsertPoint(RdxRootInst); 6972 6973 Value *ReducedSubTree = 6974 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6975 6976 if (!VectorizedTree) { 6977 // Initialize the final value in the reduction. 6978 VectorizedTree = ReducedSubTree; 6979 } else { 6980 // Update the final value in the reduction. 6981 Builder.SetCurrentDebugLocation(Loc); 6982 VectorizedTree = 6983 createOp(Builder, RdxTreeInst.getKind(), VectorizedTree, 6984 ReducedSubTree, "op.rdx", ReductionOps); 6985 } 6986 i += ReduxWidth; 6987 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6988 } 6989 6990 if (VectorizedTree) { 6991 // Finish the reduction. 6992 for (; i < NumReducedVals; ++i) { 6993 auto *I = cast<Instruction>(ReducedVals[i]); 6994 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6995 VectorizedTree = createOp(Builder, RdxTreeInst.getKind(), 6996 VectorizedTree, I, "", ReductionOps); 6997 } 6998 for (auto &Pair : ExternallyUsedValues) { 6999 // Add each externally used value to the final reduction. 7000 for (auto *I : Pair.second) { 7001 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7002 VectorizedTree = createOp(Builder, RdxTreeInst.getKind(), 7003 VectorizedTree, Pair.first, "op.extra", I); 7004 } 7005 } 7006 7007 // Update users. For a min/max reduction that ends with a compare and 7008 // select, we also have to RAUW for the compare instruction feeding the 7009 // reduction root. That's because the original compare may have extra uses 7010 // besides the final select of the reduction. 7011 if (isCmpSel(RdxTreeInst.getKind())) { 7012 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7013 Instruction *ScalarCmp = 7014 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7015 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7016 } 7017 } 7018 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7019 7020 // Mark all scalar reduction ops for deletion, they are replaced by the 7021 // vector reductions. 7022 V.eraseInstructions(IgnoreList); 7023 } 7024 return VectorizedTree != nullptr; 7025 } 7026 7027 unsigned numReductionValues() const { return ReducedVals.size(); } 7028 7029 private: 7030 /// Calculate the cost of a reduction. 7031 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7032 unsigned ReduxWidth) { 7033 Type *ScalarTy = FirstReducedVal->getType(); 7034 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7035 7036 RecurKind Kind = RdxTreeInst.getKind(); 7037 int VectorCost, ScalarCost; 7038 switch (Kind) { 7039 case RecurKind::Add: 7040 case RecurKind::Mul: 7041 case RecurKind::Or: 7042 case RecurKind::And: 7043 case RecurKind::Xor: 7044 case RecurKind::FAdd: 7045 case RecurKind::FMul: { 7046 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7047 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7048 /*IsPairwiseForm=*/false); 7049 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7050 break; 7051 } 7052 case RecurKind::FMax: 7053 case RecurKind::FMin: { 7054 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7055 VectorCost = 7056 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7057 /*pairwise=*/false, /*unsigned=*/false); 7058 ScalarCost = 7059 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7060 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7061 CmpInst::makeCmpResultType(ScalarTy)); 7062 break; 7063 } 7064 case RecurKind::SMax: 7065 case RecurKind::SMin: 7066 case RecurKind::UMax: 7067 case RecurKind::UMin: { 7068 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7069 bool IsUnsigned = Kind == RecurKind::UMax || Kind == RecurKind::UMin; 7070 VectorCost = 7071 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7072 /*IsPairwiseForm=*/false, IsUnsigned); 7073 ScalarCost = 7074 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7075 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7076 CmpInst::makeCmpResultType(ScalarTy)); 7077 break; 7078 } 7079 default: 7080 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7081 } 7082 7083 // Scalar cost is repeated for N-1 elements. 7084 ScalarCost *= (ReduxWidth - 1); 7085 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7086 << " for reduction that starts with " << *FirstReducedVal 7087 << " (It is a splitting reduction)\n"); 7088 return VectorCost - ScalarCost; 7089 } 7090 7091 /// Emit a horizontal reduction of the vectorized value. 7092 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7093 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7094 assert(VectorizedValue && "Need to have a vectorized tree node"); 7095 assert(isPowerOf2_32(ReduxWidth) && 7096 "We only handle power-of-two reductions for now"); 7097 7098 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7099 // to 'fast'. 7100 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7101 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, 7102 RdxTreeInst.getKind(), 7103 ReductionOps.back()); 7104 } 7105 }; 7106 7107 } // end anonymous namespace 7108 7109 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7110 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7111 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7112 7113 unsigned AggregateSize = 1; 7114 auto *IV = cast<InsertValueInst>(InsertInst); 7115 Type *CurrentType = IV->getType(); 7116 do { 7117 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7118 for (auto *Elt : ST->elements()) 7119 if (Elt != ST->getElementType(0)) // check homogeneity 7120 return None; 7121 AggregateSize *= ST->getNumElements(); 7122 CurrentType = ST->getElementType(0); 7123 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7124 AggregateSize *= AT->getNumElements(); 7125 CurrentType = AT->getElementType(); 7126 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7127 AggregateSize *= VT->getNumElements(); 7128 return AggregateSize; 7129 } else if (CurrentType->isSingleValueType()) { 7130 return AggregateSize; 7131 } else { 7132 return None; 7133 } 7134 } while (true); 7135 } 7136 7137 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7138 unsigned OperandOffset) { 7139 unsigned OperandIndex = OperandOffset; 7140 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7141 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7142 auto *VT = cast<FixedVectorType>(IE->getType()); 7143 OperandIndex *= VT->getNumElements(); 7144 OperandIndex += CI->getZExtValue(); 7145 return OperandIndex; 7146 } 7147 return None; 7148 } 7149 7150 auto *IV = cast<InsertValueInst>(InsertInst); 7151 Type *CurrentType = IV->getType(); 7152 for (unsigned int Index : IV->indices()) { 7153 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7154 OperandIndex *= ST->getNumElements(); 7155 CurrentType = ST->getElementType(Index); 7156 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7157 OperandIndex *= AT->getNumElements(); 7158 CurrentType = AT->getElementType(); 7159 } else { 7160 return None; 7161 } 7162 OperandIndex += Index; 7163 } 7164 return OperandIndex; 7165 } 7166 7167 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7168 TargetTransformInfo *TTI, 7169 SmallVectorImpl<Value *> &BuildVectorOpds, 7170 SmallVectorImpl<Value *> &InsertElts, 7171 unsigned OperandOffset) { 7172 do { 7173 Value *InsertedOperand = LastInsertInst->getOperand(1); 7174 Optional<unsigned> OperandIndex = 7175 getOperandIndex(LastInsertInst, OperandOffset); 7176 if (!OperandIndex) 7177 return false; 7178 if (isa<InsertElementInst>(InsertedOperand) || 7179 isa<InsertValueInst>(InsertedOperand)) { 7180 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7181 BuildVectorOpds, InsertElts, *OperandIndex)) 7182 return false; 7183 } else { 7184 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7185 InsertElts[*OperandIndex] = LastInsertInst; 7186 } 7187 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7188 return true; 7189 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7190 } while (LastInsertInst != nullptr && 7191 (isa<InsertValueInst>(LastInsertInst) || 7192 isa<InsertElementInst>(LastInsertInst)) && 7193 LastInsertInst->hasOneUse()); 7194 return false; 7195 } 7196 7197 /// Recognize construction of vectors like 7198 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7199 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7200 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7201 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7202 /// starting from the last insertelement or insertvalue instruction. 7203 /// 7204 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7205 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7206 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7207 /// 7208 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7209 /// 7210 /// \return true if it matches. 7211 static bool findBuildAggregate(Instruction *LastInsertInst, 7212 TargetTransformInfo *TTI, 7213 SmallVectorImpl<Value *> &BuildVectorOpds, 7214 SmallVectorImpl<Value *> &InsertElts) { 7215 7216 assert((isa<InsertElementInst>(LastInsertInst) || 7217 isa<InsertValueInst>(LastInsertInst)) && 7218 "Expected insertelement or insertvalue instruction!"); 7219 7220 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7221 "Expected empty result vectors!"); 7222 7223 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7224 if (!AggregateSize) 7225 return false; 7226 BuildVectorOpds.resize(*AggregateSize); 7227 InsertElts.resize(*AggregateSize); 7228 7229 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7230 0)) { 7231 llvm::erase_value(BuildVectorOpds, nullptr); 7232 llvm::erase_value(InsertElts, nullptr); 7233 if (BuildVectorOpds.size() >= 2) 7234 return true; 7235 } 7236 7237 return false; 7238 } 7239 7240 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7241 return V->getType() < V2->getType(); 7242 } 7243 7244 /// Try and get a reduction value from a phi node. 7245 /// 7246 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7247 /// if they come from either \p ParentBB or a containing loop latch. 7248 /// 7249 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7250 /// if not possible. 7251 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7252 BasicBlock *ParentBB, LoopInfo *LI) { 7253 // There are situations where the reduction value is not dominated by the 7254 // reduction phi. Vectorizing such cases has been reported to cause 7255 // miscompiles. See PR25787. 7256 auto DominatedReduxValue = [&](Value *R) { 7257 return isa<Instruction>(R) && 7258 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7259 }; 7260 7261 Value *Rdx = nullptr; 7262 7263 // Return the incoming value if it comes from the same BB as the phi node. 7264 if (P->getIncomingBlock(0) == ParentBB) { 7265 Rdx = P->getIncomingValue(0); 7266 } else if (P->getIncomingBlock(1) == ParentBB) { 7267 Rdx = P->getIncomingValue(1); 7268 } 7269 7270 if (Rdx && DominatedReduxValue(Rdx)) 7271 return Rdx; 7272 7273 // Otherwise, check whether we have a loop latch to look at. 7274 Loop *BBL = LI->getLoopFor(ParentBB); 7275 if (!BBL) 7276 return nullptr; 7277 BasicBlock *BBLatch = BBL->getLoopLatch(); 7278 if (!BBLatch) 7279 return nullptr; 7280 7281 // There is a loop latch, return the incoming value if it comes from 7282 // that. This reduction pattern occasionally turns up. 7283 if (P->getIncomingBlock(0) == BBLatch) { 7284 Rdx = P->getIncomingValue(0); 7285 } else if (P->getIncomingBlock(1) == BBLatch) { 7286 Rdx = P->getIncomingValue(1); 7287 } 7288 7289 if (Rdx && DominatedReduxValue(Rdx)) 7290 return Rdx; 7291 7292 return nullptr; 7293 } 7294 7295 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7296 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7297 return true; 7298 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7299 return true; 7300 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7301 return true; 7302 return false; 7303 } 7304 7305 /// Attempt to reduce a horizontal reduction. 7306 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7307 /// with reduction operators \a Root (or one of its operands) in a basic block 7308 /// \a BB, then check if it can be done. If horizontal reduction is not found 7309 /// and root instruction is a binary operation, vectorization of the operands is 7310 /// attempted. 7311 /// \returns true if a horizontal reduction was matched and reduced or operands 7312 /// of one of the binary instruction were vectorized. 7313 /// \returns false if a horizontal reduction was not matched (or not possible) 7314 /// or no vectorization of any binary operation feeding \a Root instruction was 7315 /// performed. 7316 static bool tryToVectorizeHorReductionOrInstOperands( 7317 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7318 TargetTransformInfo *TTI, 7319 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7320 if (!ShouldVectorizeHor) 7321 return false; 7322 7323 if (!Root) 7324 return false; 7325 7326 if (Root->getParent() != BB || isa<PHINode>(Root)) 7327 return false; 7328 // Start analysis starting from Root instruction. If horizontal reduction is 7329 // found, try to vectorize it. If it is not a horizontal reduction or 7330 // vectorization is not possible or not effective, and currently analyzed 7331 // instruction is a binary operation, try to vectorize the operands, using 7332 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7333 // the same procedure considering each operand as a possible root of the 7334 // horizontal reduction. 7335 // Interrupt the process if the Root instruction itself was vectorized or all 7336 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7337 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7338 SmallPtrSet<Value *, 8> VisitedInstrs; 7339 bool Res = false; 7340 while (!Stack.empty()) { 7341 Instruction *Inst; 7342 unsigned Level; 7343 std::tie(Inst, Level) = Stack.pop_back_val(); 7344 Value *B0, *B1; 7345 bool IsBinop = matchRdxBop(Inst, B0, B1); 7346 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7347 if (IsBinop || IsSelect) { 7348 HorizontalReduction HorRdx; 7349 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7350 if (HorRdx.tryToReduce(R, TTI)) { 7351 Res = true; 7352 // Set P to nullptr to avoid re-analysis of phi node in 7353 // matchAssociativeReduction function unless this is the root node. 7354 P = nullptr; 7355 continue; 7356 } 7357 } 7358 if (P && IsBinop) { 7359 Inst = dyn_cast<Instruction>(B0); 7360 if (Inst == P) 7361 Inst = dyn_cast<Instruction>(B1); 7362 if (!Inst) { 7363 // Set P to nullptr to avoid re-analysis of phi node in 7364 // matchAssociativeReduction function unless this is the root node. 7365 P = nullptr; 7366 continue; 7367 } 7368 } 7369 } 7370 // Set P to nullptr to avoid re-analysis of phi node in 7371 // matchAssociativeReduction function unless this is the root node. 7372 P = nullptr; 7373 if (Vectorize(Inst, R)) { 7374 Res = true; 7375 continue; 7376 } 7377 7378 // Try to vectorize operands. 7379 // Continue analysis for the instruction from the same basic block only to 7380 // save compile time. 7381 if (++Level < RecursionMaxDepth) 7382 for (auto *Op : Inst->operand_values()) 7383 if (VisitedInstrs.insert(Op).second) 7384 if (auto *I = dyn_cast<Instruction>(Op)) 7385 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7386 Stack.emplace_back(I, Level); 7387 } 7388 return Res; 7389 } 7390 7391 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7392 BasicBlock *BB, BoUpSLP &R, 7393 TargetTransformInfo *TTI) { 7394 auto *I = dyn_cast_or_null<Instruction>(V); 7395 if (!I) 7396 return false; 7397 7398 if (!isa<BinaryOperator>(I)) 7399 P = nullptr; 7400 // Try to match and vectorize a horizontal reduction. 7401 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7402 return tryToVectorize(I, R); 7403 }; 7404 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7405 ExtraVectorization); 7406 } 7407 7408 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7409 BasicBlock *BB, BoUpSLP &R) { 7410 const DataLayout &DL = BB->getModule()->getDataLayout(); 7411 if (!R.canMapToVector(IVI->getType(), DL)) 7412 return false; 7413 7414 SmallVector<Value *, 16> BuildVectorOpds; 7415 SmallVector<Value *, 16> BuildVectorInsts; 7416 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7417 return false; 7418 7419 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7420 // Aggregate value is unlikely to be processed in vector register, we need to 7421 // extract scalars into scalar registers, so NeedExtraction is set true. 7422 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7423 BuildVectorInsts); 7424 } 7425 7426 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7427 BasicBlock *BB, BoUpSLP &R) { 7428 SmallVector<Value *, 16> BuildVectorInsts; 7429 SmallVector<Value *, 16> BuildVectorOpds; 7430 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7431 (llvm::all_of(BuildVectorOpds, 7432 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7433 isShuffle(BuildVectorOpds))) 7434 return false; 7435 7436 // Vectorize starting with the build vector operands ignoring the BuildVector 7437 // instructions for the purpose of scheduling and user extraction. 7438 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7439 BuildVectorInsts); 7440 } 7441 7442 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7443 BoUpSLP &R) { 7444 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7445 return true; 7446 7447 bool OpsChanged = false; 7448 for (int Idx = 0; Idx < 2; ++Idx) { 7449 OpsChanged |= 7450 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7451 } 7452 return OpsChanged; 7453 } 7454 7455 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7456 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7457 bool OpsChanged = false; 7458 for (auto *I : reverse(Instructions)) { 7459 if (R.isDeleted(I)) 7460 continue; 7461 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7462 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7463 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7464 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7465 else if (auto *CI = dyn_cast<CmpInst>(I)) 7466 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7467 } 7468 Instructions.clear(); 7469 return OpsChanged; 7470 } 7471 7472 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7473 bool Changed = false; 7474 SmallVector<Value *, 4> Incoming; 7475 SmallPtrSet<Value *, 16> VisitedInstrs; 7476 7477 bool HaveVectorizedPhiNodes = true; 7478 while (HaveVectorizedPhiNodes) { 7479 HaveVectorizedPhiNodes = false; 7480 7481 // Collect the incoming values from the PHIs. 7482 Incoming.clear(); 7483 for (Instruction &I : *BB) { 7484 PHINode *P = dyn_cast<PHINode>(&I); 7485 if (!P) 7486 break; 7487 7488 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7489 Incoming.push_back(P); 7490 } 7491 7492 // Sort by type. 7493 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7494 7495 // Try to vectorize elements base on their type. 7496 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7497 E = Incoming.end(); 7498 IncIt != E;) { 7499 7500 // Look for the next elements with the same type. 7501 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7502 while (SameTypeIt != E && 7503 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7504 VisitedInstrs.insert(*SameTypeIt); 7505 ++SameTypeIt; 7506 } 7507 7508 // Try to vectorize them. 7509 unsigned NumElts = (SameTypeIt - IncIt); 7510 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7511 << NumElts << ")\n"); 7512 // The order in which the phi nodes appear in the program does not matter. 7513 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7514 // is done when there are exactly two elements since tryToVectorizeList 7515 // asserts that there are only two values when AllowReorder is true. 7516 bool AllowReorder = NumElts == 2; 7517 if (NumElts > 1 && 7518 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7519 // Success start over because instructions might have been changed. 7520 HaveVectorizedPhiNodes = true; 7521 Changed = true; 7522 break; 7523 } 7524 7525 // Start over at the next instruction of a different type (or the end). 7526 IncIt = SameTypeIt; 7527 } 7528 } 7529 7530 VisitedInstrs.clear(); 7531 7532 SmallVector<Instruction *, 8> PostProcessInstructions; 7533 SmallDenseSet<Instruction *, 4> KeyNodes; 7534 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7535 // Skip instructions with scalable type. The num of elements is unknown at 7536 // compile-time for scalable type. 7537 if (isa<ScalableVectorType>(it->getType())) 7538 continue; 7539 7540 // Skip instructions marked for the deletion. 7541 if (R.isDeleted(&*it)) 7542 continue; 7543 // We may go through BB multiple times so skip the one we have checked. 7544 if (!VisitedInstrs.insert(&*it).second) { 7545 if (it->use_empty() && KeyNodes.contains(&*it) && 7546 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7547 // We would like to start over since some instructions are deleted 7548 // and the iterator may become invalid value. 7549 Changed = true; 7550 it = BB->begin(); 7551 e = BB->end(); 7552 } 7553 continue; 7554 } 7555 7556 if (isa<DbgInfoIntrinsic>(it)) 7557 continue; 7558 7559 // Try to vectorize reductions that use PHINodes. 7560 if (PHINode *P = dyn_cast<PHINode>(it)) { 7561 // Check that the PHI is a reduction PHI. 7562 if (P->getNumIncomingValues() == 2) { 7563 // Try to match and vectorize a horizontal reduction. 7564 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7565 TTI)) { 7566 Changed = true; 7567 it = BB->begin(); 7568 e = BB->end(); 7569 continue; 7570 } 7571 } 7572 // Try to vectorize the incoming values of the PHI, to catch reductions 7573 // that feed into PHIs. 7574 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7575 // Skip if the incoming block is the current BB for now. Also, bypass 7576 // unreachable IR for efficiency and to avoid crashing. 7577 // TODO: Collect the skipped incoming values and try to vectorize them 7578 // after processing BB. 7579 if (BB == P->getIncomingBlock(I) || 7580 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7581 continue; 7582 7583 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7584 P->getIncomingBlock(I), R, TTI); 7585 } 7586 continue; 7587 } 7588 7589 // Ran into an instruction without users, like terminator, or function call 7590 // with ignored return value, store. Ignore unused instructions (basing on 7591 // instruction type, except for CallInst and InvokeInst). 7592 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7593 isa<InvokeInst>(it))) { 7594 KeyNodes.insert(&*it); 7595 bool OpsChanged = false; 7596 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7597 for (auto *V : it->operand_values()) { 7598 // Try to match and vectorize a horizontal reduction. 7599 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7600 } 7601 } 7602 // Start vectorization of post-process list of instructions from the 7603 // top-tree instructions to try to vectorize as many instructions as 7604 // possible. 7605 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7606 if (OpsChanged) { 7607 // We would like to start over since some instructions are deleted 7608 // and the iterator may become invalid value. 7609 Changed = true; 7610 it = BB->begin(); 7611 e = BB->end(); 7612 continue; 7613 } 7614 } 7615 7616 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7617 isa<InsertValueInst>(it)) 7618 PostProcessInstructions.push_back(&*it); 7619 } 7620 7621 return Changed; 7622 } 7623 7624 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7625 auto Changed = false; 7626 for (auto &Entry : GEPs) { 7627 // If the getelementptr list has fewer than two elements, there's nothing 7628 // to do. 7629 if (Entry.second.size() < 2) 7630 continue; 7631 7632 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7633 << Entry.second.size() << ".\n"); 7634 7635 // Process the GEP list in chunks suitable for the target's supported 7636 // vector size. If a vector register can't hold 1 element, we are done. We 7637 // are trying to vectorize the index computations, so the maximum number of 7638 // elements is based on the size of the index expression, rather than the 7639 // size of the GEP itself (the target's pointer size). 7640 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7641 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7642 if (MaxVecRegSize < EltSize) 7643 continue; 7644 7645 unsigned MaxElts = MaxVecRegSize / EltSize; 7646 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7647 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7648 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7649 7650 // Initialize a set a candidate getelementptrs. Note that we use a 7651 // SetVector here to preserve program order. If the index computations 7652 // are vectorizable and begin with loads, we want to minimize the chance 7653 // of having to reorder them later. 7654 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7655 7656 // Some of the candidates may have already been vectorized after we 7657 // initially collected them. If so, they are marked as deleted, so remove 7658 // them from the set of candidates. 7659 Candidates.remove_if( 7660 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7661 7662 // Remove from the set of candidates all pairs of getelementptrs with 7663 // constant differences. Such getelementptrs are likely not good 7664 // candidates for vectorization in a bottom-up phase since one can be 7665 // computed from the other. We also ensure all candidate getelementptr 7666 // indices are unique. 7667 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7668 auto *GEPI = GEPList[I]; 7669 if (!Candidates.count(GEPI)) 7670 continue; 7671 auto *SCEVI = SE->getSCEV(GEPList[I]); 7672 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7673 auto *GEPJ = GEPList[J]; 7674 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7675 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7676 Candidates.remove(GEPI); 7677 Candidates.remove(GEPJ); 7678 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7679 Candidates.remove(GEPJ); 7680 } 7681 } 7682 } 7683 7684 // We break out of the above computation as soon as we know there are 7685 // fewer than two candidates remaining. 7686 if (Candidates.size() < 2) 7687 continue; 7688 7689 // Add the single, non-constant index of each candidate to the bundle. We 7690 // ensured the indices met these constraints when we originally collected 7691 // the getelementptrs. 7692 SmallVector<Value *, 16> Bundle(Candidates.size()); 7693 auto BundleIndex = 0u; 7694 for (auto *V : Candidates) { 7695 auto *GEP = cast<GetElementPtrInst>(V); 7696 auto *GEPIdx = GEP->idx_begin()->get(); 7697 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7698 Bundle[BundleIndex++] = GEPIdx; 7699 } 7700 7701 // Try and vectorize the indices. We are currently only interested in 7702 // gather-like cases of the form: 7703 // 7704 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7705 // 7706 // where the loads of "a", the loads of "b", and the subtractions can be 7707 // performed in parallel. It's likely that detecting this pattern in a 7708 // bottom-up phase will be simpler and less costly than building a 7709 // full-blown top-down phase beginning at the consecutive loads. 7710 Changed |= tryToVectorizeList(Bundle, R); 7711 } 7712 } 7713 return Changed; 7714 } 7715 7716 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7717 bool Changed = false; 7718 // Attempt to sort and vectorize each of the store-groups. 7719 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7720 ++it) { 7721 if (it->second.size() < 2) 7722 continue; 7723 7724 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7725 << it->second.size() << ".\n"); 7726 7727 Changed |= vectorizeStores(it->second, R); 7728 } 7729 return Changed; 7730 } 7731 7732 char SLPVectorizer::ID = 0; 7733 7734 static const char lv_name[] = "SLP Vectorizer"; 7735 7736 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7737 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7738 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7739 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7740 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7741 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7742 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7743 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7744 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7745 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7746 7747 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7748