1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 456 assert(Opcode == Instruction::ExtractElement || 457 Opcode == Instruction::ExtractValue); 458 if (Opcode == Instruction::ExtractElement) { 459 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 460 return CI && CI->getZExtValue() == Idx; 461 } else { 462 ExtractValueInst *EI = cast<ExtractValueInst>(E); 463 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 464 } 465 } 466 467 /// \returns True if in-tree use also needs extract. This refers to 468 /// possible scalar operand in vectorized instruction. 469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 470 TargetLibraryInfo *TLI) { 471 unsigned Opcode = UserInst->getOpcode(); 472 switch (Opcode) { 473 case Instruction::Load: { 474 LoadInst *LI = cast<LoadInst>(UserInst); 475 return (LI->getPointerOperand() == Scalar); 476 } 477 case Instruction::Store: { 478 StoreInst *SI = cast<StoreInst>(UserInst); 479 return (SI->getPointerOperand() == Scalar); 480 } 481 case Instruction::Call: { 482 CallInst *CI = cast<CallInst>(UserInst); 483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 484 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 485 return (CI->getArgOperand(1) == Scalar); 486 } 487 LLVM_FALLTHROUGH; 488 } 489 default: 490 return false; 491 } 492 } 493 494 /// \returns the AA location that is being access by the instruction. 495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 496 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 497 return MemoryLocation::get(SI); 498 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 499 return MemoryLocation::get(LI); 500 return MemoryLocation(); 501 } 502 503 /// \returns True if the instruction is not a volatile or atomic load/store. 504 static bool isSimple(Instruction *I) { 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return LI->isSimple(); 507 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 508 return SI->isSimple(); 509 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 510 return !MI->isVolatile(); 511 return true; 512 } 513 514 namespace llvm { 515 516 namespace slpvectorizer { 517 518 /// Bottom Up SLP Vectorizer. 519 class BoUpSLP { 520 public: 521 using ValueList = SmallVector<Value *, 8>; 522 using InstrList = SmallVector<Instruction *, 16>; 523 using ValueSet = SmallPtrSet<Value *, 16>; 524 using StoreList = SmallVector<StoreInst *, 8>; 525 using ExtraValueToDebugLocsMap = 526 MapVector<Value *, SmallVector<Instruction *, 2>>; 527 528 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 529 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 530 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 531 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 532 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 533 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 534 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 535 // Use the vector register size specified by the target unless overridden 536 // by a command-line option. 537 // TODO: It would be better to limit the vectorization factor based on 538 // data type rather than just register size. For example, x86 AVX has 539 // 256-bit registers, but it does not support integer operations 540 // at that width (that requires AVX2). 541 if (MaxVectorRegSizeOption.getNumOccurrences()) 542 MaxVecRegSize = MaxVectorRegSizeOption; 543 else 544 MaxVecRegSize = TTI->getRegisterBitWidth(true); 545 546 if (MinVectorRegSizeOption.getNumOccurrences()) 547 MinVecRegSize = MinVectorRegSizeOption; 548 else 549 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 550 } 551 552 /// \brief Vectorize the tree that starts with the elements in \p VL. 553 /// Returns the vectorized root. 554 Value *vectorizeTree(); 555 556 /// Vectorize the tree but with the list of externally used values \p 557 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 558 /// generated extractvalue instructions. 559 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 560 561 /// \returns the cost incurred by unwanted spills and fills, caused by 562 /// holding live values over call sites. 563 int getSpillCost(); 564 565 /// \returns the vectorization cost of the subtree that starts at \p VL. 566 /// A negative number means that this is profitable. 567 int getTreeCost(); 568 569 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 570 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 571 void buildTree(ArrayRef<Value *> Roots, 572 ArrayRef<Value *> UserIgnoreLst = None); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 576 /// into account (anf updating it, if required) list of externally used 577 /// values stored in \p ExternallyUsedValues. 578 void buildTree(ArrayRef<Value *> Roots, 579 ExtraValueToDebugLocsMap &ExternallyUsedValues, 580 ArrayRef<Value *> UserIgnoreLst = None); 581 582 /// Clear the internal data structures that are created by 'buildTree'. 583 void deleteTree() { 584 VectorizableTree.clear(); 585 ScalarToTreeEntry.clear(); 586 MustGather.clear(); 587 ExternalUses.clear(); 588 NumOpsWantToKeepOrder.clear(); 589 for (auto &Iter : BlocksSchedules) { 590 BlockScheduling *BS = Iter.second.get(); 591 BS->clear(); 592 } 593 MinBWs.clear(); 594 } 595 596 unsigned getTreeSize() const { return VectorizableTree.size(); } 597 598 /// \brief Perform LICM and CSE on the newly generated gather sequences. 599 void optimizeGatherSequence(); 600 601 /// \returns true if it is beneficial to reverse the vector order. 602 bool shouldReorder() const { 603 return std::accumulate( 604 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 0, 605 [](int Val1, 606 const decltype(NumOpsWantToKeepOrder)::value_type &Val2) { 607 return Val1 + (Val2.second < 0 ? 1 : -1); 608 }) > 0; 609 } 610 611 /// \return The vector element size in bits to use when vectorizing the 612 /// expression tree ending at \p V. If V is a store, the size is the width of 613 /// the stored value. Otherwise, the size is the width of the largest loaded 614 /// value reaching V. This method is used by the vectorizer to calculate 615 /// vectorization factors. 616 unsigned getVectorElementSize(Value *V); 617 618 /// Compute the minimum type sizes required to represent the entries in a 619 /// vectorizable tree. 620 void computeMinimumValueSizes(); 621 622 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 623 unsigned getMaxVecRegSize() const { 624 return MaxVecRegSize; 625 } 626 627 // \returns minimum vector register size as set by cl::opt. 628 unsigned getMinVecRegSize() const { 629 return MinVecRegSize; 630 } 631 632 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 633 /// 634 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 635 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 636 637 /// \returns True if the VectorizableTree is both tiny and not fully 638 /// vectorizable. We do not vectorize such trees. 639 bool isTreeTinyAndNotFullyVectorizable(); 640 641 OptimizationRemarkEmitter *getORE() { return ORE; } 642 643 private: 644 struct TreeEntry; 645 646 /// Checks if all users of \p I are the part of the vectorization tree. 647 bool areAllUsersVectorized(Instruction *I) const; 648 649 /// \returns the cost of the vectorizable entry. 650 int getEntryCost(TreeEntry *E); 651 652 /// This is the recursive part of buildTree. 653 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 654 655 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 656 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 657 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 658 659 /// Vectorize a single entry in the tree. 660 Value *vectorizeTree(TreeEntry *E); 661 662 /// Vectorize a single entry in the tree, starting in \p VL. 663 Value *vectorizeTree(ArrayRef<Value *> VL); 664 665 /// \returns the scalarization cost for this type. Scalarization in this 666 /// context means the creation of vectors from a group of scalars. 667 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 668 669 /// \returns the scalarization cost for this list of values. Assuming that 670 /// this subtree gets vectorized, we may need to extract the values from the 671 /// roots. This method calculates the cost of extracting the values. 672 int getGatherCost(ArrayRef<Value *> VL); 673 674 /// \brief Set the Builder insert point to one after the last instruction in 675 /// the bundle 676 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 677 678 /// \returns a vector from a collection of scalars in \p VL. 679 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 680 681 /// \returns whether the VectorizableTree is fully vectorizable and will 682 /// be beneficial even the tree height is tiny. 683 bool isFullyVectorizableTinyTree(); 684 685 /// \reorder commutative operands in alt shuffle if they result in 686 /// vectorized code. 687 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 688 SmallVectorImpl<Value *> &Left, 689 SmallVectorImpl<Value *> &Right); 690 691 /// \reorder commutative operands to get better probability of 692 /// generating vectorized code. 693 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 694 SmallVectorImpl<Value *> &Left, 695 SmallVectorImpl<Value *> &Right); 696 struct TreeEntry { 697 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 698 699 /// \returns true if the scalars in VL are equal to this entry. 700 bool isSame(ArrayRef<Value *> VL) const { 701 if (VL.size() == Scalars.size()) 702 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 703 return VL.size() == ReuseShuffleIndices.size() && 704 std::equal( 705 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 706 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 707 } 708 709 /// A vector of scalars. 710 ValueList Scalars; 711 712 /// The Scalars are vectorized into this value. It is initialized to Null. 713 Value *VectorizedValue = nullptr; 714 715 /// Do we need to gather this sequence ? 716 bool NeedToGather = false; 717 718 /// Does this sequence require some shuffling? 719 SmallVector<unsigned, 4> ReuseShuffleIndices; 720 721 /// Points back to the VectorizableTree. 722 /// 723 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 724 /// to be a pointer and needs to be able to initialize the child iterator. 725 /// Thus we need a reference back to the container to translate the indices 726 /// to entries. 727 std::vector<TreeEntry> &Container; 728 729 /// The TreeEntry index containing the user of this entry. We can actually 730 /// have multiple users so the data structure is not truly a tree. 731 SmallVector<int, 1> UserTreeIndices; 732 }; 733 734 /// Create a new VectorizableTree entry. 735 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 736 ArrayRef<unsigned> ReuseShuffleIndices = None) { 737 VectorizableTree.emplace_back(VectorizableTree); 738 int idx = VectorizableTree.size() - 1; 739 TreeEntry *Last = &VectorizableTree[idx]; 740 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 741 Last->NeedToGather = !Vectorized; 742 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 743 ReuseShuffleIndices.end()); 744 if (Vectorized) { 745 for (int i = 0, e = VL.size(); i != e; ++i) { 746 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 747 ScalarToTreeEntry[VL[i]] = idx; 748 } 749 } else { 750 MustGather.insert(VL.begin(), VL.end()); 751 } 752 753 if (UserTreeIdx >= 0) 754 Last->UserTreeIndices.push_back(UserTreeIdx); 755 UserTreeIdx = idx; 756 } 757 758 /// -- Vectorization State -- 759 /// Holds all of the tree entries. 760 std::vector<TreeEntry> VectorizableTree; 761 762 TreeEntry *getTreeEntry(Value *V) { 763 auto I = ScalarToTreeEntry.find(V); 764 if (I != ScalarToTreeEntry.end()) 765 return &VectorizableTree[I->second]; 766 return nullptr; 767 } 768 769 /// Maps a specific scalar to its tree entry. 770 SmallDenseMap<Value*, int> ScalarToTreeEntry; 771 772 /// A list of scalars that we found that we need to keep as scalars. 773 ValueSet MustGather; 774 775 /// This POD struct describes one external user in the vectorized tree. 776 struct ExternalUser { 777 ExternalUser(Value *S, llvm::User *U, int L) 778 : Scalar(S), User(U), Lane(L) {} 779 780 // Which scalar in our function. 781 Value *Scalar; 782 783 // Which user that uses the scalar. 784 llvm::User *User; 785 786 // Which lane does the scalar belong to. 787 int Lane; 788 }; 789 using UserList = SmallVector<ExternalUser, 16>; 790 791 /// Checks if two instructions may access the same memory. 792 /// 793 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 794 /// is invariant in the calling loop. 795 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 796 Instruction *Inst2) { 797 // First check if the result is already in the cache. 798 AliasCacheKey key = std::make_pair(Inst1, Inst2); 799 Optional<bool> &result = AliasCache[key]; 800 if (result.hasValue()) { 801 return result.getValue(); 802 } 803 MemoryLocation Loc2 = getLocation(Inst2, AA); 804 bool aliased = true; 805 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 806 // Do the alias check. 807 aliased = AA->alias(Loc1, Loc2); 808 } 809 // Store the result in the cache. 810 result = aliased; 811 return aliased; 812 } 813 814 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 815 816 /// Cache for alias results. 817 /// TODO: consider moving this to the AliasAnalysis itself. 818 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 819 820 /// Removes an instruction from its block and eventually deletes it. 821 /// It's like Instruction::eraseFromParent() except that the actual deletion 822 /// is delayed until BoUpSLP is destructed. 823 /// This is required to ensure that there are no incorrect collisions in the 824 /// AliasCache, which can happen if a new instruction is allocated at the 825 /// same address as a previously deleted instruction. 826 void eraseInstruction(Instruction *I) { 827 I->removeFromParent(); 828 I->dropAllReferences(); 829 DeletedInstructions.emplace_back(I); 830 } 831 832 /// Temporary store for deleted instructions. Instructions will be deleted 833 /// eventually when the BoUpSLP is destructed. 834 SmallVector<unique_value, 8> DeletedInstructions; 835 836 /// A list of values that need to extracted out of the tree. 837 /// This list holds pairs of (Internal Scalar : External User). External User 838 /// can be nullptr, it means that this Internal Scalar will be used later, 839 /// after vectorization. 840 UserList ExternalUses; 841 842 /// Values used only by @llvm.assume calls. 843 SmallPtrSet<const Value *, 32> EphValues; 844 845 /// Holds all of the instructions that we gathered. 846 SetVector<Instruction *> GatherSeq; 847 848 /// A list of blocks that we are going to CSE. 849 SetVector<BasicBlock *> CSEBlocks; 850 851 /// Contains all scheduling relevant data for an instruction. 852 /// A ScheduleData either represents a single instruction or a member of an 853 /// instruction bundle (= a group of instructions which is combined into a 854 /// vector instruction). 855 struct ScheduleData { 856 // The initial value for the dependency counters. It means that the 857 // dependencies are not calculated yet. 858 enum { InvalidDeps = -1 }; 859 860 ScheduleData() = default; 861 862 void init(int BlockSchedulingRegionID, Value *OpVal) { 863 FirstInBundle = this; 864 NextInBundle = nullptr; 865 NextLoadStore = nullptr; 866 IsScheduled = false; 867 SchedulingRegionID = BlockSchedulingRegionID; 868 UnscheduledDepsInBundle = UnscheduledDeps; 869 clearDependencies(); 870 OpValue = OpVal; 871 } 872 873 /// Returns true if the dependency information has been calculated. 874 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 875 876 /// Returns true for single instructions and for bundle representatives 877 /// (= the head of a bundle). 878 bool isSchedulingEntity() const { return FirstInBundle == this; } 879 880 /// Returns true if it represents an instruction bundle and not only a 881 /// single instruction. 882 bool isPartOfBundle() const { 883 return NextInBundle != nullptr || FirstInBundle != this; 884 } 885 886 /// Returns true if it is ready for scheduling, i.e. it has no more 887 /// unscheduled depending instructions/bundles. 888 bool isReady() const { 889 assert(isSchedulingEntity() && 890 "can't consider non-scheduling entity for ready list"); 891 return UnscheduledDepsInBundle == 0 && !IsScheduled; 892 } 893 894 /// Modifies the number of unscheduled dependencies, also updating it for 895 /// the whole bundle. 896 int incrementUnscheduledDeps(int Incr) { 897 UnscheduledDeps += Incr; 898 return FirstInBundle->UnscheduledDepsInBundle += Incr; 899 } 900 901 /// Sets the number of unscheduled dependencies to the number of 902 /// dependencies. 903 void resetUnscheduledDeps() { 904 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 905 } 906 907 /// Clears all dependency information. 908 void clearDependencies() { 909 Dependencies = InvalidDeps; 910 resetUnscheduledDeps(); 911 MemoryDependencies.clear(); 912 } 913 914 void dump(raw_ostream &os) const { 915 if (!isSchedulingEntity()) { 916 os << "/ " << *Inst; 917 } else if (NextInBundle) { 918 os << '[' << *Inst; 919 ScheduleData *SD = NextInBundle; 920 while (SD) { 921 os << ';' << *SD->Inst; 922 SD = SD->NextInBundle; 923 } 924 os << ']'; 925 } else { 926 os << *Inst; 927 } 928 } 929 930 Instruction *Inst = nullptr; 931 932 /// Points to the head in an instruction bundle (and always to this for 933 /// single instructions). 934 ScheduleData *FirstInBundle = nullptr; 935 936 /// Single linked list of all instructions in a bundle. Null if it is a 937 /// single instruction. 938 ScheduleData *NextInBundle = nullptr; 939 940 /// Single linked list of all memory instructions (e.g. load, store, call) 941 /// in the block - until the end of the scheduling region. 942 ScheduleData *NextLoadStore = nullptr; 943 944 /// The dependent memory instructions. 945 /// This list is derived on demand in calculateDependencies(). 946 SmallVector<ScheduleData *, 4> MemoryDependencies; 947 948 /// This ScheduleData is in the current scheduling region if this matches 949 /// the current SchedulingRegionID of BlockScheduling. 950 int SchedulingRegionID = 0; 951 952 /// Used for getting a "good" final ordering of instructions. 953 int SchedulingPriority = 0; 954 955 /// The number of dependencies. Constitutes of the number of users of the 956 /// instruction plus the number of dependent memory instructions (if any). 957 /// This value is calculated on demand. 958 /// If InvalidDeps, the number of dependencies is not calculated yet. 959 int Dependencies = InvalidDeps; 960 961 /// The number of dependencies minus the number of dependencies of scheduled 962 /// instructions. As soon as this is zero, the instruction/bundle gets ready 963 /// for scheduling. 964 /// Note that this is negative as long as Dependencies is not calculated. 965 int UnscheduledDeps = InvalidDeps; 966 967 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 968 /// single instructions. 969 int UnscheduledDepsInBundle = InvalidDeps; 970 971 /// True if this instruction is scheduled (or considered as scheduled in the 972 /// dry-run). 973 bool IsScheduled = false; 974 975 /// Opcode of the current instruction in the schedule data. 976 Value *OpValue = nullptr; 977 }; 978 979 #ifndef NDEBUG 980 friend inline raw_ostream &operator<<(raw_ostream &os, 981 const BoUpSLP::ScheduleData &SD) { 982 SD.dump(os); 983 return os; 984 } 985 #endif 986 987 friend struct GraphTraits<BoUpSLP *>; 988 friend struct DOTGraphTraits<BoUpSLP *>; 989 990 /// Contains all scheduling data for a basic block. 991 struct BlockScheduling { 992 BlockScheduling(BasicBlock *BB) 993 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 994 995 void clear() { 996 ReadyInsts.clear(); 997 ScheduleStart = nullptr; 998 ScheduleEnd = nullptr; 999 FirstLoadStoreInRegion = nullptr; 1000 LastLoadStoreInRegion = nullptr; 1001 1002 // Reduce the maximum schedule region size by the size of the 1003 // previous scheduling run. 1004 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1005 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1006 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1007 ScheduleRegionSize = 0; 1008 1009 // Make a new scheduling region, i.e. all existing ScheduleData is not 1010 // in the new region yet. 1011 ++SchedulingRegionID; 1012 } 1013 1014 ScheduleData *getScheduleData(Value *V) { 1015 ScheduleData *SD = ScheduleDataMap[V]; 1016 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1017 return SD; 1018 return nullptr; 1019 } 1020 1021 ScheduleData *getScheduleData(Value *V, Value *Key) { 1022 if (V == Key) 1023 return getScheduleData(V); 1024 auto I = ExtraScheduleDataMap.find(V); 1025 if (I != ExtraScheduleDataMap.end()) { 1026 ScheduleData *SD = I->second[Key]; 1027 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1028 return SD; 1029 } 1030 return nullptr; 1031 } 1032 1033 bool isInSchedulingRegion(ScheduleData *SD) { 1034 return SD->SchedulingRegionID == SchedulingRegionID; 1035 } 1036 1037 /// Marks an instruction as scheduled and puts all dependent ready 1038 /// instructions into the ready-list. 1039 template <typename ReadyListType> 1040 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1041 SD->IsScheduled = true; 1042 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1043 1044 ScheduleData *BundleMember = SD; 1045 while (BundleMember) { 1046 if (BundleMember->Inst != BundleMember->OpValue) { 1047 BundleMember = BundleMember->NextInBundle; 1048 continue; 1049 } 1050 // Handle the def-use chain dependencies. 1051 for (Use &U : BundleMember->Inst->operands()) { 1052 auto *I = dyn_cast<Instruction>(U.get()); 1053 if (!I) 1054 continue; 1055 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1056 if (OpDef && OpDef->hasValidDependencies() && 1057 OpDef->incrementUnscheduledDeps(-1) == 0) { 1058 // There are no more unscheduled dependencies after 1059 // decrementing, so we can put the dependent instruction 1060 // into the ready list. 1061 ScheduleData *DepBundle = OpDef->FirstInBundle; 1062 assert(!DepBundle->IsScheduled && 1063 "already scheduled bundle gets ready"); 1064 ReadyList.insert(DepBundle); 1065 DEBUG(dbgs() 1066 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1067 } 1068 }); 1069 } 1070 // Handle the memory dependencies. 1071 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1072 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1073 // There are no more unscheduled dependencies after decrementing, 1074 // so we can put the dependent instruction into the ready list. 1075 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1076 assert(!DepBundle->IsScheduled && 1077 "already scheduled bundle gets ready"); 1078 ReadyList.insert(DepBundle); 1079 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1080 << "\n"); 1081 } 1082 } 1083 BundleMember = BundleMember->NextInBundle; 1084 } 1085 } 1086 1087 void doForAllOpcodes(Value *V, 1088 function_ref<void(ScheduleData *SD)> Action) { 1089 if (ScheduleData *SD = getScheduleData(V)) 1090 Action(SD); 1091 auto I = ExtraScheduleDataMap.find(V); 1092 if (I != ExtraScheduleDataMap.end()) 1093 for (auto &P : I->second) 1094 if (P.second->SchedulingRegionID == SchedulingRegionID) 1095 Action(P.second); 1096 } 1097 1098 /// Put all instructions into the ReadyList which are ready for scheduling. 1099 template <typename ReadyListType> 1100 void initialFillReadyList(ReadyListType &ReadyList) { 1101 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1102 doForAllOpcodes(I, [&](ScheduleData *SD) { 1103 if (SD->isSchedulingEntity() && SD->isReady()) { 1104 ReadyList.insert(SD); 1105 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1106 } 1107 }); 1108 } 1109 } 1110 1111 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1112 /// cyclic dependencies. This is only a dry-run, no instructions are 1113 /// actually moved at this stage. 1114 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1115 1116 /// Un-bundles a group of instructions. 1117 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1118 1119 /// Allocates schedule data chunk. 1120 ScheduleData *allocateScheduleDataChunks(); 1121 1122 /// Extends the scheduling region so that V is inside the region. 1123 /// \returns true if the region size is within the limit. 1124 bool extendSchedulingRegion(Value *V, Value *OpValue); 1125 1126 /// Initialize the ScheduleData structures for new instructions in the 1127 /// scheduling region. 1128 void initScheduleData(Instruction *FromI, Instruction *ToI, 1129 ScheduleData *PrevLoadStore, 1130 ScheduleData *NextLoadStore); 1131 1132 /// Updates the dependency information of a bundle and of all instructions/ 1133 /// bundles which depend on the original bundle. 1134 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1135 BoUpSLP *SLP); 1136 1137 /// Sets all instruction in the scheduling region to un-scheduled. 1138 void resetSchedule(); 1139 1140 BasicBlock *BB; 1141 1142 /// Simple memory allocation for ScheduleData. 1143 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1144 1145 /// The size of a ScheduleData array in ScheduleDataChunks. 1146 int ChunkSize; 1147 1148 /// The allocator position in the current chunk, which is the last entry 1149 /// of ScheduleDataChunks. 1150 int ChunkPos; 1151 1152 /// Attaches ScheduleData to Instruction. 1153 /// Note that the mapping survives during all vectorization iterations, i.e. 1154 /// ScheduleData structures are recycled. 1155 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1156 1157 /// Attaches ScheduleData to Instruction with the leading key. 1158 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1159 ExtraScheduleDataMap; 1160 1161 struct ReadyList : SmallVector<ScheduleData *, 8> { 1162 void insert(ScheduleData *SD) { push_back(SD); } 1163 }; 1164 1165 /// The ready-list for scheduling (only used for the dry-run). 1166 ReadyList ReadyInsts; 1167 1168 /// The first instruction of the scheduling region. 1169 Instruction *ScheduleStart = nullptr; 1170 1171 /// The first instruction _after_ the scheduling region. 1172 Instruction *ScheduleEnd = nullptr; 1173 1174 /// The first memory accessing instruction in the scheduling region 1175 /// (can be null). 1176 ScheduleData *FirstLoadStoreInRegion = nullptr; 1177 1178 /// The last memory accessing instruction in the scheduling region 1179 /// (can be null). 1180 ScheduleData *LastLoadStoreInRegion = nullptr; 1181 1182 /// The current size of the scheduling region. 1183 int ScheduleRegionSize = 0; 1184 1185 /// The maximum size allowed for the scheduling region. 1186 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1187 1188 /// The ID of the scheduling region. For a new vectorization iteration this 1189 /// is incremented which "removes" all ScheduleData from the region. 1190 // Make sure that the initial SchedulingRegionID is greater than the 1191 // initial SchedulingRegionID in ScheduleData (which is 0). 1192 int SchedulingRegionID = 1; 1193 }; 1194 1195 /// Attaches the BlockScheduling structures to basic blocks. 1196 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1197 1198 /// Performs the "real" scheduling. Done before vectorization is actually 1199 /// performed in a basic block. 1200 void scheduleBlock(BlockScheduling *BS); 1201 1202 /// List of users to ignore during scheduling and that don't need extracting. 1203 ArrayRef<Value *> UserIgnoreList; 1204 1205 /// Number of operation bundles that contain consecutive operations - number 1206 /// of operation bundles that contain consecutive operations in reversed 1207 /// order. 1208 DenseMap<unsigned, int> NumOpsWantToKeepOrder; 1209 1210 // Analysis and block reference. 1211 Function *F; 1212 ScalarEvolution *SE; 1213 TargetTransformInfo *TTI; 1214 TargetLibraryInfo *TLI; 1215 AliasAnalysis *AA; 1216 LoopInfo *LI; 1217 DominatorTree *DT; 1218 AssumptionCache *AC; 1219 DemandedBits *DB; 1220 const DataLayout *DL; 1221 OptimizationRemarkEmitter *ORE; 1222 1223 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1224 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1225 1226 /// Instruction builder to construct the vectorized tree. 1227 IRBuilder<> Builder; 1228 1229 /// A map of scalar integer values to the smallest bit width with which they 1230 /// can legally be represented. The values map to (width, signed) pairs, 1231 /// where "width" indicates the minimum bit width and "signed" is True if the 1232 /// value must be signed-extended, rather than zero-extended, back to its 1233 /// original width. 1234 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1235 }; 1236 1237 } // end namespace slpvectorizer 1238 1239 template <> struct GraphTraits<BoUpSLP *> { 1240 using TreeEntry = BoUpSLP::TreeEntry; 1241 1242 /// NodeRef has to be a pointer per the GraphWriter. 1243 using NodeRef = TreeEntry *; 1244 1245 /// \brief Add the VectorizableTree to the index iterator to be able to return 1246 /// TreeEntry pointers. 1247 struct ChildIteratorType 1248 : public iterator_adaptor_base<ChildIteratorType, 1249 SmallVector<int, 1>::iterator> { 1250 std::vector<TreeEntry> &VectorizableTree; 1251 1252 ChildIteratorType(SmallVector<int, 1>::iterator W, 1253 std::vector<TreeEntry> &VT) 1254 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1255 1256 NodeRef operator*() { return &VectorizableTree[*I]; } 1257 }; 1258 1259 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1260 1261 static ChildIteratorType child_begin(NodeRef N) { 1262 return {N->UserTreeIndices.begin(), N->Container}; 1263 } 1264 1265 static ChildIteratorType child_end(NodeRef N) { 1266 return {N->UserTreeIndices.end(), N->Container}; 1267 } 1268 1269 /// For the node iterator we just need to turn the TreeEntry iterator into a 1270 /// TreeEntry* iterator so that it dereferences to NodeRef. 1271 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1272 1273 static nodes_iterator nodes_begin(BoUpSLP *R) { 1274 return nodes_iterator(R->VectorizableTree.begin()); 1275 } 1276 1277 static nodes_iterator nodes_end(BoUpSLP *R) { 1278 return nodes_iterator(R->VectorizableTree.end()); 1279 } 1280 1281 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1282 }; 1283 1284 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1285 using TreeEntry = BoUpSLP::TreeEntry; 1286 1287 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1288 1289 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1290 std::string Str; 1291 raw_string_ostream OS(Str); 1292 if (isSplat(Entry->Scalars)) { 1293 OS << "<splat> " << *Entry->Scalars[0]; 1294 return Str; 1295 } 1296 for (auto V : Entry->Scalars) { 1297 OS << *V; 1298 if (std::any_of( 1299 R->ExternalUses.begin(), R->ExternalUses.end(), 1300 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1301 OS << " <extract>"; 1302 OS << "\n"; 1303 } 1304 return Str; 1305 } 1306 1307 static std::string getNodeAttributes(const TreeEntry *Entry, 1308 const BoUpSLP *) { 1309 if (Entry->NeedToGather) 1310 return "color=red"; 1311 return ""; 1312 } 1313 }; 1314 1315 } // end namespace llvm 1316 1317 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1318 ArrayRef<Value *> UserIgnoreLst) { 1319 ExtraValueToDebugLocsMap ExternallyUsedValues; 1320 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1321 } 1322 1323 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1324 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1325 ArrayRef<Value *> UserIgnoreLst) { 1326 deleteTree(); 1327 UserIgnoreList = UserIgnoreLst; 1328 if (!allSameType(Roots)) 1329 return; 1330 buildTree_rec(Roots, 0, -1); 1331 1332 // Collect the values that we need to extract from the tree. 1333 for (TreeEntry &EIdx : VectorizableTree) { 1334 TreeEntry *Entry = &EIdx; 1335 1336 // No need to handle users of gathered values. 1337 if (Entry->NeedToGather) 1338 continue; 1339 1340 // For each lane: 1341 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1342 Value *Scalar = Entry->Scalars[Lane]; 1343 int FoundLane = Lane; 1344 if (!Entry->ReuseShuffleIndices.empty()) { 1345 FoundLane = 1346 std::distance(Entry->ReuseShuffleIndices.begin(), 1347 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1348 } 1349 1350 // Check if the scalar is externally used as an extra arg. 1351 auto ExtI = ExternallyUsedValues.find(Scalar); 1352 if (ExtI != ExternallyUsedValues.end()) { 1353 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1354 Lane << " from " << *Scalar << ".\n"); 1355 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1356 } 1357 for (User *U : Scalar->users()) { 1358 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1359 1360 Instruction *UserInst = dyn_cast<Instruction>(U); 1361 if (!UserInst) 1362 continue; 1363 1364 // Skip in-tree scalars that become vectors 1365 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1366 Value *UseScalar = UseEntry->Scalars[0]; 1367 // Some in-tree scalars will remain as scalar in vectorized 1368 // instructions. If that is the case, the one in Lane 0 will 1369 // be used. 1370 if (UseScalar != U || 1371 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1372 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1373 << ".\n"); 1374 assert(!UseEntry->NeedToGather && "Bad state"); 1375 continue; 1376 } 1377 } 1378 1379 // Ignore users in the user ignore list. 1380 if (is_contained(UserIgnoreList, UserInst)) 1381 continue; 1382 1383 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1384 Lane << " from " << *Scalar << ".\n"); 1385 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1386 } 1387 } 1388 } 1389 } 1390 1391 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1392 int UserTreeIdx) { 1393 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1394 1395 InstructionsState S = getSameOpcode(VL); 1396 if (Depth == RecursionMaxDepth) { 1397 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1398 newTreeEntry(VL, false, UserTreeIdx); 1399 return; 1400 } 1401 1402 // Don't handle vectors. 1403 if (S.OpValue->getType()->isVectorTy()) { 1404 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1405 newTreeEntry(VL, false, UserTreeIdx); 1406 return; 1407 } 1408 1409 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1410 if (SI->getValueOperand()->getType()->isVectorTy()) { 1411 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1412 newTreeEntry(VL, false, UserTreeIdx); 1413 return; 1414 } 1415 1416 // If all of the operands are identical or constant we have a simple solution. 1417 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1418 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1419 newTreeEntry(VL, false, UserTreeIdx); 1420 return; 1421 } 1422 1423 // We now know that this is a vector of instructions of the same type from 1424 // the same block. 1425 1426 // Don't vectorize ephemeral values. 1427 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1428 if (EphValues.count(VL[i])) { 1429 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1430 ") is ephemeral.\n"); 1431 newTreeEntry(VL, false, UserTreeIdx); 1432 return; 1433 } 1434 } 1435 1436 // Check if this is a duplicate of another entry. 1437 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1438 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1439 if (!E->isSame(VL)) { 1440 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1441 newTreeEntry(VL, false, UserTreeIdx); 1442 return; 1443 } 1444 // Record the reuse of the tree node. FIXME, currently this is only used to 1445 // properly draw the graph rather than for the actual vectorization. 1446 E->UserTreeIndices.push_back(UserTreeIdx); 1447 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1448 return; 1449 } 1450 1451 // Check that none of the instructions in the bundle are already in the tree. 1452 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1453 auto *I = dyn_cast<Instruction>(VL[i]); 1454 if (!I) 1455 continue; 1456 if (getTreeEntry(I)) { 1457 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1458 ") is already in tree.\n"); 1459 newTreeEntry(VL, false, UserTreeIdx); 1460 return; 1461 } 1462 } 1463 1464 // If any of the scalars is marked as a value that needs to stay scalar, then 1465 // we need to gather the scalars. 1466 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1467 if (MustGather.count(VL[i])) { 1468 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1469 newTreeEntry(VL, false, UserTreeIdx); 1470 return; 1471 } 1472 } 1473 1474 // Check that all of the users of the scalars that we want to vectorize are 1475 // schedulable. 1476 auto *VL0 = cast<Instruction>(S.OpValue); 1477 BasicBlock *BB = VL0->getParent(); 1478 1479 if (!DT->isReachableFromEntry(BB)) { 1480 // Don't go into unreachable blocks. They may contain instructions with 1481 // dependency cycles which confuse the final scheduling. 1482 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1483 newTreeEntry(VL, false, UserTreeIdx); 1484 return; 1485 } 1486 1487 // Check that every instruction appears once in this bundle. 1488 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1489 SmallVector<Value *, 4> UniqueValues; 1490 DenseMap<Value *, unsigned> UniquePositions; 1491 for (Value *V : VL) { 1492 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1493 ReuseShuffleIndicies.emplace_back(Res.first->second); 1494 if (Res.second) 1495 UniqueValues.emplace_back(V); 1496 } 1497 if (UniqueValues.size() == VL.size()) { 1498 ReuseShuffleIndicies.clear(); 1499 } else { 1500 DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1501 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1502 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1503 newTreeEntry(VL, false, UserTreeIdx); 1504 return; 1505 } 1506 VL = UniqueValues; 1507 } 1508 1509 auto &BSRef = BlocksSchedules[BB]; 1510 if (!BSRef) 1511 BSRef = llvm::make_unique<BlockScheduling>(BB); 1512 1513 BlockScheduling &BS = *BSRef.get(); 1514 1515 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1516 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1517 assert((!BS.getScheduleData(VL0) || 1518 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1519 "tryScheduleBundle should cancelScheduling on failure"); 1520 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1521 return; 1522 } 1523 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1524 1525 unsigned ShuffleOrOp = S.IsAltShuffle ? 1526 (unsigned) Instruction::ShuffleVector : S.Opcode; 1527 switch (ShuffleOrOp) { 1528 case Instruction::PHI: { 1529 PHINode *PH = dyn_cast<PHINode>(VL0); 1530 1531 // Check for terminator values (e.g. invoke). 1532 for (unsigned j = 0; j < VL.size(); ++j) 1533 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1534 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1535 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1536 if (Term) { 1537 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1538 BS.cancelScheduling(VL, VL0); 1539 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1540 return; 1541 } 1542 } 1543 1544 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1545 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1546 1547 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1548 ValueList Operands; 1549 // Prepare the operand vector. 1550 for (Value *j : VL) 1551 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1552 PH->getIncomingBlock(i))); 1553 1554 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1555 } 1556 return; 1557 } 1558 case Instruction::ExtractValue: 1559 case Instruction::ExtractElement: { 1560 bool Reuse = canReuseExtract(VL, VL0); 1561 if (Reuse) { 1562 DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1563 ++NumOpsWantToKeepOrder[S.Opcode]; 1564 } else { 1565 SmallVector<Value *, 4> ReverseVL(VL.rbegin(), VL.rend()); 1566 if (canReuseExtract(ReverseVL, VL0)) 1567 --NumOpsWantToKeepOrder[S.Opcode]; 1568 BS.cancelScheduling(VL, VL0); 1569 } 1570 newTreeEntry(VL, Reuse, UserTreeIdx, ReuseShuffleIndicies); 1571 return; 1572 } 1573 case Instruction::Load: { 1574 // Check that a vectorized load would load the same memory as a scalar 1575 // load. For example, we don't want to vectorize loads that are smaller 1576 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1577 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1578 // from such a struct, we read/write packed bits disagreeing with the 1579 // unvectorized version. 1580 Type *ScalarTy = VL0->getType(); 1581 1582 if (DL->getTypeSizeInBits(ScalarTy) != 1583 DL->getTypeAllocSizeInBits(ScalarTy)) { 1584 BS.cancelScheduling(VL, VL0); 1585 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1586 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1587 return; 1588 } 1589 1590 // Make sure all loads in the bundle are simple - we can't vectorize 1591 // atomic or volatile loads. 1592 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1593 LoadInst *L = cast<LoadInst>(VL[i]); 1594 if (!L->isSimple()) { 1595 BS.cancelScheduling(VL, VL0); 1596 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1597 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1598 return; 1599 } 1600 } 1601 1602 // Check if the loads are consecutive, reversed, or neither. 1603 // TODO: What we really want is to sort the loads, but for now, check 1604 // the two likely directions. 1605 bool Consecutive = true; 1606 bool ReverseConsecutive = true; 1607 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1608 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1609 Consecutive = false; 1610 break; 1611 } else { 1612 ReverseConsecutive = false; 1613 } 1614 } 1615 1616 if (Consecutive) { 1617 ++NumOpsWantToKeepOrder[S.Opcode]; 1618 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1619 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1620 return; 1621 } 1622 1623 // If none of the load pairs were consecutive when checked in order, 1624 // check the reverse order. 1625 if (ReverseConsecutive) 1626 for (unsigned i = VL.size() - 1; i > 0; --i) 1627 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1628 ReverseConsecutive = false; 1629 break; 1630 } 1631 1632 if (ReverseConsecutive) { 1633 --NumOpsWantToKeepOrder[S.Opcode]; 1634 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1635 DEBUG(dbgs() << "SLP: added a vector of reversed loads.\n"); 1636 return; 1637 } 1638 1639 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1640 BS.cancelScheduling(VL, VL0); 1641 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1642 return; 1643 } 1644 case Instruction::ZExt: 1645 case Instruction::SExt: 1646 case Instruction::FPToUI: 1647 case Instruction::FPToSI: 1648 case Instruction::FPExt: 1649 case Instruction::PtrToInt: 1650 case Instruction::IntToPtr: 1651 case Instruction::SIToFP: 1652 case Instruction::UIToFP: 1653 case Instruction::Trunc: 1654 case Instruction::FPTrunc: 1655 case Instruction::BitCast: { 1656 Type *SrcTy = VL0->getOperand(0)->getType(); 1657 for (unsigned i = 0; i < VL.size(); ++i) { 1658 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1659 if (Ty != SrcTy || !isValidElementType(Ty)) { 1660 BS.cancelScheduling(VL, VL0); 1661 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1662 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1663 return; 1664 } 1665 } 1666 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1667 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1668 1669 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1670 ValueList Operands; 1671 // Prepare the operand vector. 1672 for (Value *j : VL) 1673 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1674 1675 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1676 } 1677 return; 1678 } 1679 case Instruction::ICmp: 1680 case Instruction::FCmp: { 1681 // Check that all of the compares have the same predicate. 1682 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1683 Type *ComparedTy = VL0->getOperand(0)->getType(); 1684 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1685 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1686 if (Cmp->getPredicate() != P0 || 1687 Cmp->getOperand(0)->getType() != ComparedTy) { 1688 BS.cancelScheduling(VL, VL0); 1689 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1690 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1691 return; 1692 } 1693 } 1694 1695 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1696 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1697 1698 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1699 ValueList Operands; 1700 // Prepare the operand vector. 1701 for (Value *j : VL) 1702 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1703 1704 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1705 } 1706 return; 1707 } 1708 case Instruction::Select: 1709 case Instruction::Add: 1710 case Instruction::FAdd: 1711 case Instruction::Sub: 1712 case Instruction::FSub: 1713 case Instruction::Mul: 1714 case Instruction::FMul: 1715 case Instruction::UDiv: 1716 case Instruction::SDiv: 1717 case Instruction::FDiv: 1718 case Instruction::URem: 1719 case Instruction::SRem: 1720 case Instruction::FRem: 1721 case Instruction::Shl: 1722 case Instruction::LShr: 1723 case Instruction::AShr: 1724 case Instruction::And: 1725 case Instruction::Or: 1726 case Instruction::Xor: 1727 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1728 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1729 1730 // Sort operands of the instructions so that each side is more likely to 1731 // have the same opcode. 1732 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1733 ValueList Left, Right; 1734 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1735 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1736 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1737 return; 1738 } 1739 1740 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1741 ValueList Operands; 1742 // Prepare the operand vector. 1743 for (Value *j : VL) 1744 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1745 1746 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1747 } 1748 return; 1749 1750 case Instruction::GetElementPtr: { 1751 // We don't combine GEPs with complicated (nested) indexing. 1752 for (unsigned j = 0; j < VL.size(); ++j) { 1753 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1754 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1755 BS.cancelScheduling(VL, VL0); 1756 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1757 return; 1758 } 1759 } 1760 1761 // We can't combine several GEPs into one vector if they operate on 1762 // different types. 1763 Type *Ty0 = VL0->getOperand(0)->getType(); 1764 for (unsigned j = 0; j < VL.size(); ++j) { 1765 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1766 if (Ty0 != CurTy) { 1767 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1768 BS.cancelScheduling(VL, VL0); 1769 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1770 return; 1771 } 1772 } 1773 1774 // We don't combine GEPs with non-constant indexes. 1775 for (unsigned j = 0; j < VL.size(); ++j) { 1776 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1777 if (!isa<ConstantInt>(Op)) { 1778 DEBUG( 1779 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1780 BS.cancelScheduling(VL, VL0); 1781 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1782 return; 1783 } 1784 } 1785 1786 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1787 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1788 for (unsigned i = 0, e = 2; i < e; ++i) { 1789 ValueList Operands; 1790 // Prepare the operand vector. 1791 for (Value *j : VL) 1792 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1793 1794 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1795 } 1796 return; 1797 } 1798 case Instruction::Store: { 1799 // Check if the stores are consecutive or of we need to swizzle them. 1800 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1801 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1802 BS.cancelScheduling(VL, VL0); 1803 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1804 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1805 return; 1806 } 1807 1808 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1809 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1810 1811 ValueList Operands; 1812 for (Value *j : VL) 1813 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1814 1815 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1816 return; 1817 } 1818 case Instruction::Call: { 1819 // Check if the calls are all to the same vectorizable intrinsic. 1820 CallInst *CI = cast<CallInst>(VL0); 1821 // Check if this is an Intrinsic call or something that can be 1822 // represented by an intrinsic call 1823 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1824 if (!isTriviallyVectorizable(ID)) { 1825 BS.cancelScheduling(VL, VL0); 1826 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1827 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1828 return; 1829 } 1830 Function *Int = CI->getCalledFunction(); 1831 Value *A1I = nullptr; 1832 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1833 A1I = CI->getArgOperand(1); 1834 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1835 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1836 if (!CI2 || CI2->getCalledFunction() != Int || 1837 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1838 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1839 BS.cancelScheduling(VL, VL0); 1840 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1841 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1842 << "\n"); 1843 return; 1844 } 1845 // ctlz,cttz and powi are special intrinsics whose second argument 1846 // should be same in order for them to be vectorized. 1847 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1848 Value *A1J = CI2->getArgOperand(1); 1849 if (A1I != A1J) { 1850 BS.cancelScheduling(VL, VL0); 1851 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1852 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1853 << " argument "<< A1I<<"!=" << A1J 1854 << "\n"); 1855 return; 1856 } 1857 } 1858 // Verify that the bundle operands are identical between the two calls. 1859 if (CI->hasOperandBundles() && 1860 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1861 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1862 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1863 BS.cancelScheduling(VL, VL0); 1864 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1865 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1866 << *VL[i] << '\n'); 1867 return; 1868 } 1869 } 1870 1871 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1872 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1873 ValueList Operands; 1874 // Prepare the operand vector. 1875 for (Value *j : VL) { 1876 CallInst *CI2 = dyn_cast<CallInst>(j); 1877 Operands.push_back(CI2->getArgOperand(i)); 1878 } 1879 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1880 } 1881 return; 1882 } 1883 case Instruction::ShuffleVector: 1884 // If this is not an alternate sequence of opcode like add-sub 1885 // then do not vectorize this instruction. 1886 if (!S.IsAltShuffle) { 1887 BS.cancelScheduling(VL, VL0); 1888 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1889 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1890 return; 1891 } 1892 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1893 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1894 1895 // Reorder operands if reordering would enable vectorization. 1896 if (isa<BinaryOperator>(VL0)) { 1897 ValueList Left, Right; 1898 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1899 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1900 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1901 return; 1902 } 1903 1904 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1905 ValueList Operands; 1906 // Prepare the operand vector. 1907 for (Value *j : VL) 1908 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1909 1910 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1911 } 1912 return; 1913 1914 default: 1915 BS.cancelScheduling(VL, VL0); 1916 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1917 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1918 return; 1919 } 1920 } 1921 1922 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1923 unsigned N; 1924 Type *EltTy; 1925 auto *ST = dyn_cast<StructType>(T); 1926 if (ST) { 1927 N = ST->getNumElements(); 1928 EltTy = *ST->element_begin(); 1929 } else { 1930 N = cast<ArrayType>(T)->getNumElements(); 1931 EltTy = cast<ArrayType>(T)->getElementType(); 1932 } 1933 if (!isValidElementType(EltTy)) 1934 return 0; 1935 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1936 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1937 return 0; 1938 if (ST) { 1939 // Check that struct is homogeneous. 1940 for (const auto *Ty : ST->elements()) 1941 if (Ty != EltTy) 1942 return 0; 1943 } 1944 return N; 1945 } 1946 1947 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1948 Instruction *E0 = cast<Instruction>(OpValue); 1949 assert(E0->getOpcode() == Instruction::ExtractElement || 1950 E0->getOpcode() == Instruction::ExtractValue); 1951 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1952 // Check if all of the extracts come from the same vector and from the 1953 // correct offset. 1954 Value *Vec = E0->getOperand(0); 1955 1956 // We have to extract from a vector/aggregate with the same number of elements. 1957 unsigned NElts; 1958 if (E0->getOpcode() == Instruction::ExtractValue) { 1959 const DataLayout &DL = E0->getModule()->getDataLayout(); 1960 NElts = canMapToVector(Vec->getType(), DL); 1961 if (!NElts) 1962 return false; 1963 // Check if load can be rewritten as load of vector. 1964 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1965 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1966 return false; 1967 } else { 1968 NElts = Vec->getType()->getVectorNumElements(); 1969 } 1970 1971 if (NElts != VL.size()) 1972 return false; 1973 1974 // Check that all of the indices extract from the correct offset. 1975 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1976 Instruction *Inst = cast<Instruction>(VL[I]); 1977 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1978 return false; 1979 if (Inst->getOperand(0) != Vec) 1980 return false; 1981 } 1982 1983 return true; 1984 } 1985 1986 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1987 return I->hasOneUse() || 1988 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1989 return ScalarToTreeEntry.count(U) > 0; 1990 }); 1991 } 1992 1993 int BoUpSLP::getEntryCost(TreeEntry *E) { 1994 ArrayRef<Value*> VL = E->Scalars; 1995 1996 Type *ScalarTy = VL[0]->getType(); 1997 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1998 ScalarTy = SI->getValueOperand()->getType(); 1999 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2000 ScalarTy = CI->getOperand(0)->getType(); 2001 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2002 2003 // If we have computed a smaller type for the expression, update VecTy so 2004 // that the costs will be accurate. 2005 if (MinBWs.count(VL[0])) 2006 VecTy = VectorType::get( 2007 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2008 2009 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2010 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2011 int ReuseShuffleCost = 0; 2012 if (NeedToShuffleReuses) { 2013 ReuseShuffleCost = 2014 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2015 } 2016 if (E->NeedToGather) { 2017 if (allConstant(VL)) 2018 return 0; 2019 if (isSplat(VL)) { 2020 return ReuseShuffleCost + 2021 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2022 } 2023 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2024 allSameType(VL) && allSameBlock(VL)) { 2025 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2026 if (ShuffleKind.hasValue()) { 2027 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2028 for (auto *V : VL) { 2029 // If all users of instruction are going to be vectorized and this 2030 // instruction itself is not going to be vectorized, consider this 2031 // instruction as dead and remove its cost from the final cost of the 2032 // vectorized tree. 2033 if (areAllUsersVectorized(cast<Instruction>(V)) && 2034 !ScalarToTreeEntry.count(V)) { 2035 auto *IO = cast<ConstantInt>( 2036 cast<ExtractElementInst>(V)->getIndexOperand()); 2037 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2038 IO->getZExtValue()); 2039 } 2040 } 2041 return ReuseShuffleCost + Cost; 2042 } 2043 } 2044 return ReuseShuffleCost + getGatherCost(VL); 2045 } 2046 InstructionsState S = getSameOpcode(VL); 2047 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2048 Instruction *VL0 = cast<Instruction>(S.OpValue); 2049 unsigned ShuffleOrOp = S.IsAltShuffle ? 2050 (unsigned) Instruction::ShuffleVector : S.Opcode; 2051 switch (ShuffleOrOp) { 2052 case Instruction::PHI: 2053 return 0; 2054 2055 case Instruction::ExtractValue: 2056 case Instruction::ExtractElement: 2057 if (NeedToShuffleReuses) { 2058 unsigned Idx = 0; 2059 for (unsigned I : E->ReuseShuffleIndices) { 2060 if (ShuffleOrOp == Instruction::ExtractElement) { 2061 auto *IO = cast<ConstantInt>( 2062 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2063 Idx = IO->getZExtValue(); 2064 ReuseShuffleCost -= TTI->getVectorInstrCost( 2065 Instruction::ExtractElement, VecTy, Idx); 2066 } else { 2067 ReuseShuffleCost -= TTI->getVectorInstrCost( 2068 Instruction::ExtractElement, VecTy, Idx); 2069 ++Idx; 2070 } 2071 } 2072 Idx = ReuseShuffleNumbers; 2073 for (Value *V : VL) { 2074 if (ShuffleOrOp == Instruction::ExtractElement) { 2075 auto *IO = cast<ConstantInt>( 2076 cast<ExtractElementInst>(V)->getIndexOperand()); 2077 Idx = IO->getZExtValue(); 2078 } else { 2079 --Idx; 2080 } 2081 ReuseShuffleCost += 2082 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2083 } 2084 } 2085 if (canReuseExtract(VL, S.OpValue)) { 2086 int DeadCost = ReuseShuffleCost; 2087 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2088 Instruction *E = cast<Instruction>(VL[i]); 2089 // If all users are going to be vectorized, instruction can be 2090 // considered as dead. 2091 // The same, if have only one user, it will be vectorized for sure. 2092 if (areAllUsersVectorized(E)) 2093 // Take credit for instruction that will become dead. 2094 DeadCost -= 2095 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2096 } 2097 return DeadCost; 2098 } 2099 return ReuseShuffleCost + getGatherCost(VL); 2100 2101 case Instruction::ZExt: 2102 case Instruction::SExt: 2103 case Instruction::FPToUI: 2104 case Instruction::FPToSI: 2105 case Instruction::FPExt: 2106 case Instruction::PtrToInt: 2107 case Instruction::IntToPtr: 2108 case Instruction::SIToFP: 2109 case Instruction::UIToFP: 2110 case Instruction::Trunc: 2111 case Instruction::FPTrunc: 2112 case Instruction::BitCast: { 2113 Type *SrcTy = VL0->getOperand(0)->getType(); 2114 if (NeedToShuffleReuses) { 2115 ReuseShuffleCost -= 2116 (ReuseShuffleNumbers - VL.size()) * 2117 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2118 } 2119 2120 // Calculate the cost of this instruction. 2121 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2122 VL0->getType(), SrcTy, VL0); 2123 2124 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2125 int VecCost = 0; 2126 // Check if the values are candidates to demote. 2127 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2128 VecCost = ReuseShuffleCost + 2129 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2130 } 2131 return VecCost - ScalarCost; 2132 } 2133 case Instruction::FCmp: 2134 case Instruction::ICmp: 2135 case Instruction::Select: { 2136 // Calculate the cost of this instruction. 2137 if (NeedToShuffleReuses) { 2138 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2139 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2140 Builder.getInt1Ty(), VL0); 2141 } 2142 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2143 int ScalarCost = VecTy->getNumElements() * 2144 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2145 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2146 return ReuseShuffleCost + VecCost - ScalarCost; 2147 } 2148 case Instruction::Add: 2149 case Instruction::FAdd: 2150 case Instruction::Sub: 2151 case Instruction::FSub: 2152 case Instruction::Mul: 2153 case Instruction::FMul: 2154 case Instruction::UDiv: 2155 case Instruction::SDiv: 2156 case Instruction::FDiv: 2157 case Instruction::URem: 2158 case Instruction::SRem: 2159 case Instruction::FRem: 2160 case Instruction::Shl: 2161 case Instruction::LShr: 2162 case Instruction::AShr: 2163 case Instruction::And: 2164 case Instruction::Or: 2165 case Instruction::Xor: { 2166 // Certain instructions can be cheaper to vectorize if they have a 2167 // constant second vector operand. 2168 TargetTransformInfo::OperandValueKind Op1VK = 2169 TargetTransformInfo::OK_AnyValue; 2170 TargetTransformInfo::OperandValueKind Op2VK = 2171 TargetTransformInfo::OK_UniformConstantValue; 2172 TargetTransformInfo::OperandValueProperties Op1VP = 2173 TargetTransformInfo::OP_None; 2174 TargetTransformInfo::OperandValueProperties Op2VP = 2175 TargetTransformInfo::OP_None; 2176 2177 // If all operands are exactly the same ConstantInt then set the 2178 // operand kind to OK_UniformConstantValue. 2179 // If instead not all operands are constants, then set the operand kind 2180 // to OK_AnyValue. If all operands are constants but not the same, 2181 // then set the operand kind to OK_NonUniformConstantValue. 2182 ConstantInt *CInt = nullptr; 2183 for (unsigned i = 0; i < VL.size(); ++i) { 2184 const Instruction *I = cast<Instruction>(VL[i]); 2185 if (!isa<ConstantInt>(I->getOperand(1))) { 2186 Op2VK = TargetTransformInfo::OK_AnyValue; 2187 break; 2188 } 2189 if (i == 0) { 2190 CInt = cast<ConstantInt>(I->getOperand(1)); 2191 continue; 2192 } 2193 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2194 CInt != cast<ConstantInt>(I->getOperand(1))) 2195 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2196 } 2197 // FIXME: Currently cost of model modification for division by power of 2198 // 2 is handled for X86 and AArch64. Add support for other targets. 2199 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2200 CInt->getValue().isPowerOf2()) 2201 Op2VP = TargetTransformInfo::OP_PowerOf2; 2202 2203 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2204 if (NeedToShuffleReuses) { 2205 ReuseShuffleCost -= 2206 (ReuseShuffleNumbers - VL.size()) * 2207 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2208 Op2VP, Operands); 2209 } 2210 int ScalarCost = 2211 VecTy->getNumElements() * 2212 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2213 Op2VP, Operands); 2214 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2215 Op1VP, Op2VP, Operands); 2216 return ReuseShuffleCost + VecCost - ScalarCost; 2217 } 2218 case Instruction::GetElementPtr: { 2219 TargetTransformInfo::OperandValueKind Op1VK = 2220 TargetTransformInfo::OK_AnyValue; 2221 TargetTransformInfo::OperandValueKind Op2VK = 2222 TargetTransformInfo::OK_UniformConstantValue; 2223 2224 if (NeedToShuffleReuses) { 2225 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2226 TTI->getArithmeticInstrCost(Instruction::Add, 2227 ScalarTy, Op1VK, Op2VK); 2228 } 2229 int ScalarCost = 2230 VecTy->getNumElements() * 2231 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2232 int VecCost = 2233 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2234 2235 return ReuseShuffleCost + VecCost - ScalarCost; 2236 } 2237 case Instruction::Load: { 2238 // Cost of wide load - cost of scalar loads. 2239 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2240 if (NeedToShuffleReuses) { 2241 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2242 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2243 alignment, 0, VL0); 2244 } 2245 int ScalarLdCost = VecTy->getNumElements() * 2246 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2247 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2248 VecTy, alignment, 0, VL0); 2249 if (!isConsecutiveAccess(VL[0], VL[1], *DL, *SE)) { 2250 VecLdCost += TTI->getShuffleCost( 2251 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2252 } 2253 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2254 } 2255 case Instruction::Store: { 2256 // We know that we can merge the stores. Calculate the cost. 2257 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2258 if (NeedToShuffleReuses) { 2259 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2260 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2261 alignment, 0, VL0); 2262 } 2263 int ScalarStCost = VecTy->getNumElements() * 2264 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2265 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2266 VecTy, alignment, 0, VL0); 2267 return ReuseShuffleCost + VecStCost - ScalarStCost; 2268 } 2269 case Instruction::Call: { 2270 CallInst *CI = cast<CallInst>(VL0); 2271 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2272 2273 // Calculate the cost of the scalar and vector calls. 2274 SmallVector<Type*, 4> ScalarTys; 2275 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2276 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2277 2278 FastMathFlags FMF; 2279 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2280 FMF = FPMO->getFastMathFlags(); 2281 2282 if (NeedToShuffleReuses) { 2283 ReuseShuffleCost -= 2284 (ReuseShuffleNumbers - VL.size()) * 2285 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2286 } 2287 int ScalarCallCost = VecTy->getNumElements() * 2288 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2289 2290 SmallVector<Value *, 4> Args(CI->arg_operands()); 2291 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2292 VecTy->getNumElements()); 2293 2294 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2295 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2296 << " for " << *CI << "\n"); 2297 2298 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2299 } 2300 case Instruction::ShuffleVector: { 2301 TargetTransformInfo::OperandValueKind Op1VK = 2302 TargetTransformInfo::OK_AnyValue; 2303 TargetTransformInfo::OperandValueKind Op2VK = 2304 TargetTransformInfo::OK_AnyValue; 2305 int ScalarCost = 0; 2306 if (NeedToShuffleReuses) { 2307 for (unsigned Idx : E->ReuseShuffleIndices) { 2308 Instruction *I = cast<Instruction>(VL[Idx]); 2309 if (!I) 2310 continue; 2311 ReuseShuffleCost -= TTI->getArithmeticInstrCost( 2312 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2313 } 2314 for (Value *V : VL) { 2315 Instruction *I = cast<Instruction>(V); 2316 if (!I) 2317 continue; 2318 ReuseShuffleCost += TTI->getArithmeticInstrCost( 2319 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2320 } 2321 } 2322 int VecCost = 0; 2323 for (Value *i : VL) { 2324 Instruction *I = cast<Instruction>(i); 2325 if (!I) 2326 break; 2327 ScalarCost += 2328 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2329 } 2330 // VecCost is equal to sum of the cost of creating 2 vectors 2331 // and the cost of creating shuffle. 2332 Instruction *I0 = cast<Instruction>(VL[0]); 2333 VecCost = 2334 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2335 Instruction *I1 = cast<Instruction>(VL[1]); 2336 VecCost += 2337 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2338 VecCost += 2339 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2340 return ReuseShuffleCost + VecCost - ScalarCost; 2341 } 2342 default: 2343 llvm_unreachable("Unknown instruction"); 2344 } 2345 } 2346 2347 bool BoUpSLP::isFullyVectorizableTinyTree() { 2348 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2349 VectorizableTree.size() << " is fully vectorizable .\n"); 2350 2351 // We only handle trees of heights 1 and 2. 2352 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2353 return true; 2354 2355 if (VectorizableTree.size() != 2) 2356 return false; 2357 2358 // Handle splat and all-constants stores. 2359 if (!VectorizableTree[0].NeedToGather && 2360 (allConstant(VectorizableTree[1].Scalars) || 2361 isSplat(VectorizableTree[1].Scalars))) 2362 return true; 2363 2364 // Gathering cost would be too much for tiny trees. 2365 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2366 return false; 2367 2368 return true; 2369 } 2370 2371 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2372 // We can vectorize the tree if its size is greater than or equal to the 2373 // minimum size specified by the MinTreeSize command line option. 2374 if (VectorizableTree.size() >= MinTreeSize) 2375 return false; 2376 2377 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2378 // can vectorize it if we can prove it fully vectorizable. 2379 if (isFullyVectorizableTinyTree()) 2380 return false; 2381 2382 assert(VectorizableTree.empty() 2383 ? ExternalUses.empty() 2384 : true && "We shouldn't have any external users"); 2385 2386 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2387 // vectorizable. 2388 return true; 2389 } 2390 2391 int BoUpSLP::getSpillCost() { 2392 // Walk from the bottom of the tree to the top, tracking which values are 2393 // live. When we see a call instruction that is not part of our tree, 2394 // query TTI to see if there is a cost to keeping values live over it 2395 // (for example, if spills and fills are required). 2396 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2397 int Cost = 0; 2398 2399 SmallPtrSet<Instruction*, 4> LiveValues; 2400 Instruction *PrevInst = nullptr; 2401 2402 for (const auto &N : VectorizableTree) { 2403 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2404 if (!Inst) 2405 continue; 2406 2407 if (!PrevInst) { 2408 PrevInst = Inst; 2409 continue; 2410 } 2411 2412 // Update LiveValues. 2413 LiveValues.erase(PrevInst); 2414 for (auto &J : PrevInst->operands()) { 2415 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2416 LiveValues.insert(cast<Instruction>(&*J)); 2417 } 2418 2419 DEBUG( 2420 dbgs() << "SLP: #LV: " << LiveValues.size(); 2421 for (auto *X : LiveValues) 2422 dbgs() << " " << X->getName(); 2423 dbgs() << ", Looking at "; 2424 Inst->dump(); 2425 ); 2426 2427 // Now find the sequence of instructions between PrevInst and Inst. 2428 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2429 PrevInstIt = 2430 PrevInst->getIterator().getReverse(); 2431 while (InstIt != PrevInstIt) { 2432 if (PrevInstIt == PrevInst->getParent()->rend()) { 2433 PrevInstIt = Inst->getParent()->rbegin(); 2434 continue; 2435 } 2436 2437 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2438 SmallVector<Type*, 4> V; 2439 for (auto *II : LiveValues) 2440 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2441 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2442 } 2443 2444 ++PrevInstIt; 2445 } 2446 2447 PrevInst = Inst; 2448 } 2449 2450 return Cost; 2451 } 2452 2453 int BoUpSLP::getTreeCost() { 2454 int Cost = 0; 2455 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2456 VectorizableTree.size() << ".\n"); 2457 2458 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2459 2460 for (TreeEntry &TE : VectorizableTree) { 2461 int C = getEntryCost(&TE); 2462 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2463 << *TE.Scalars[0] << ".\n"); 2464 Cost += C; 2465 } 2466 2467 SmallSet<Value *, 16> ExtractCostCalculated; 2468 int ExtractCost = 0; 2469 for (ExternalUser &EU : ExternalUses) { 2470 // We only add extract cost once for the same scalar. 2471 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2472 continue; 2473 2474 // Uses by ephemeral values are free (because the ephemeral value will be 2475 // removed prior to code generation, and so the extraction will be 2476 // removed as well). 2477 if (EphValues.count(EU.User)) 2478 continue; 2479 2480 // If we plan to rewrite the tree in a smaller type, we will need to sign 2481 // extend the extracted value back to the original type. Here, we account 2482 // for the extract and the added cost of the sign extend if needed. 2483 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2484 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2485 if (MinBWs.count(ScalarRoot)) { 2486 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2487 auto Extend = 2488 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2489 VecTy = VectorType::get(MinTy, BundleWidth); 2490 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2491 VecTy, EU.Lane); 2492 } else { 2493 ExtractCost += 2494 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2495 } 2496 } 2497 2498 int SpillCost = getSpillCost(); 2499 Cost += SpillCost + ExtractCost; 2500 2501 std::string Str; 2502 { 2503 raw_string_ostream OS(Str); 2504 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2505 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2506 << "SLP: Total Cost = " << Cost << ".\n"; 2507 } 2508 DEBUG(dbgs() << Str); 2509 2510 if (ViewSLPTree) 2511 ViewGraph(this, "SLP" + F->getName(), false, Str); 2512 2513 return Cost; 2514 } 2515 2516 int BoUpSLP::getGatherCost(Type *Ty, 2517 const DenseSet<unsigned> &ShuffledIndices) { 2518 int Cost = 0; 2519 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2520 if (!ShuffledIndices.count(i)) 2521 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2522 if (!ShuffledIndices.empty()) 2523 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2524 return Cost; 2525 } 2526 2527 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2528 // Find the type of the operands in VL. 2529 Type *ScalarTy = VL[0]->getType(); 2530 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2531 ScalarTy = SI->getValueOperand()->getType(); 2532 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2533 // Find the cost of inserting/extracting values from the vector. 2534 // Check if the same elements are inserted several times and count them as 2535 // shuffle candidates. 2536 DenseSet<unsigned> ShuffledElements; 2537 DenseSet<Value *> UniqueElements; 2538 // Iterate in reverse order to consider insert elements with the high cost. 2539 for (unsigned I = VL.size(); I > 0; --I) { 2540 unsigned Idx = I - 1; 2541 if (!UniqueElements.insert(VL[Idx]).second) 2542 ShuffledElements.insert(Idx); 2543 } 2544 return getGatherCost(VecTy, ShuffledElements); 2545 } 2546 2547 // Reorder commutative operations in alternate shuffle if the resulting vectors 2548 // are consecutive loads. This would allow us to vectorize the tree. 2549 // If we have something like- 2550 // load a[0] - load b[0] 2551 // load b[1] + load a[1] 2552 // load a[2] - load b[2] 2553 // load a[3] + load b[3] 2554 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2555 // code. 2556 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2557 SmallVectorImpl<Value *> &Left, 2558 SmallVectorImpl<Value *> &Right) { 2559 // Push left and right operands of binary operation into Left and Right 2560 unsigned AltOpcode = getAltOpcode(Opcode); 2561 (void)AltOpcode; 2562 for (Value *V : VL) { 2563 auto *I = cast<Instruction>(V); 2564 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2565 "Incorrect instruction in vector"); 2566 Left.push_back(I->getOperand(0)); 2567 Right.push_back(I->getOperand(1)); 2568 } 2569 2570 // Reorder if we have a commutative operation and consecutive access 2571 // are on either side of the alternate instructions. 2572 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2573 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2574 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2575 Instruction *VL1 = cast<Instruction>(VL[j]); 2576 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2577 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2578 std::swap(Left[j], Right[j]); 2579 continue; 2580 } else if (VL2->isCommutative() && 2581 isConsecutiveAccess(L, L1, *DL, *SE)) { 2582 std::swap(Left[j + 1], Right[j + 1]); 2583 continue; 2584 } 2585 // else unchanged 2586 } 2587 } 2588 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2589 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2590 Instruction *VL1 = cast<Instruction>(VL[j]); 2591 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2592 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2593 std::swap(Left[j], Right[j]); 2594 continue; 2595 } else if (VL2->isCommutative() && 2596 isConsecutiveAccess(L, L1, *DL, *SE)) { 2597 std::swap(Left[j + 1], Right[j + 1]); 2598 continue; 2599 } 2600 // else unchanged 2601 } 2602 } 2603 } 2604 } 2605 2606 // Return true if I should be commuted before adding it's left and right 2607 // operands to the arrays Left and Right. 2608 // 2609 // The vectorizer is trying to either have all elements one side being 2610 // instruction with the same opcode to enable further vectorization, or having 2611 // a splat to lower the vectorizing cost. 2612 static bool shouldReorderOperands( 2613 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2614 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2615 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2616 VLeft = I.getOperand(0); 2617 VRight = I.getOperand(1); 2618 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2619 if (SplatRight) { 2620 if (VRight == Right[i - 1]) 2621 // Preserve SplatRight 2622 return false; 2623 if (VLeft == Right[i - 1]) { 2624 // Commuting would preserve SplatRight, but we don't want to break 2625 // SplatLeft either, i.e. preserve the original order if possible. 2626 // (FIXME: why do we care?) 2627 if (SplatLeft && VLeft == Left[i - 1]) 2628 return false; 2629 return true; 2630 } 2631 } 2632 // Symmetrically handle Right side. 2633 if (SplatLeft) { 2634 if (VLeft == Left[i - 1]) 2635 // Preserve SplatLeft 2636 return false; 2637 if (VRight == Left[i - 1]) 2638 return true; 2639 } 2640 2641 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2642 Instruction *IRight = dyn_cast<Instruction>(VRight); 2643 2644 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2645 // it and not the right, in this case we want to commute. 2646 if (AllSameOpcodeRight) { 2647 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2648 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2649 // Do not commute, a match on the right preserves AllSameOpcodeRight 2650 return false; 2651 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2652 // We have a match and may want to commute, but first check if there is 2653 // not also a match on the existing operands on the Left to preserve 2654 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2655 // (FIXME: why do we care?) 2656 if (AllSameOpcodeLeft && ILeft && 2657 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2658 return false; 2659 return true; 2660 } 2661 } 2662 // Symmetrically handle Left side. 2663 if (AllSameOpcodeLeft) { 2664 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2665 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2666 return false; 2667 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2668 return true; 2669 } 2670 return false; 2671 } 2672 2673 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2674 ArrayRef<Value *> VL, 2675 SmallVectorImpl<Value *> &Left, 2676 SmallVectorImpl<Value *> &Right) { 2677 if (!VL.empty()) { 2678 // Peel the first iteration out of the loop since there's nothing 2679 // interesting to do anyway and it simplifies the checks in the loop. 2680 auto *I = cast<Instruction>(VL[0]); 2681 Value *VLeft = I->getOperand(0); 2682 Value *VRight = I->getOperand(1); 2683 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2684 // Favor having instruction to the right. FIXME: why? 2685 std::swap(VLeft, VRight); 2686 Left.push_back(VLeft); 2687 Right.push_back(VRight); 2688 } 2689 2690 // Keep track if we have instructions with all the same opcode on one side. 2691 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2692 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2693 // Keep track if we have one side with all the same value (broadcast). 2694 bool SplatLeft = true; 2695 bool SplatRight = true; 2696 2697 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2698 Instruction *I = cast<Instruction>(VL[i]); 2699 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2700 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2701 "Can only process commutative instruction"); 2702 // Commute to favor either a splat or maximizing having the same opcodes on 2703 // one side. 2704 Value *VLeft; 2705 Value *VRight; 2706 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2707 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2708 VRight)) { 2709 Left.push_back(VRight); 2710 Right.push_back(VLeft); 2711 } else { 2712 Left.push_back(VLeft); 2713 Right.push_back(VRight); 2714 } 2715 // Update Splat* and AllSameOpcode* after the insertion. 2716 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2717 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2718 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2719 (cast<Instruction>(Left[i - 1])->getOpcode() == 2720 cast<Instruction>(Left[i])->getOpcode()); 2721 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2722 (cast<Instruction>(Right[i - 1])->getOpcode() == 2723 cast<Instruction>(Right[i])->getOpcode()); 2724 } 2725 2726 // If one operand end up being broadcast, return this operand order. 2727 if (SplatRight || SplatLeft) 2728 return; 2729 2730 // Finally check if we can get longer vectorizable chain by reordering 2731 // without breaking the good operand order detected above. 2732 // E.g. If we have something like- 2733 // load a[0] load b[0] 2734 // load b[1] load a[1] 2735 // load a[2] load b[2] 2736 // load a[3] load b[3] 2737 // Reordering the second load b[1] load a[1] would allow us to vectorize 2738 // this code and we still retain AllSameOpcode property. 2739 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2740 // such as- 2741 // add a[0],c[0] load b[0] 2742 // add a[1],c[2] load b[1] 2743 // b[2] load b[2] 2744 // add a[3],c[3] load b[3] 2745 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2746 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2747 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2748 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2749 std::swap(Left[j + 1], Right[j + 1]); 2750 continue; 2751 } 2752 } 2753 } 2754 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2755 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2756 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2757 std::swap(Left[j + 1], Right[j + 1]); 2758 continue; 2759 } 2760 } 2761 } 2762 // else unchanged 2763 } 2764 } 2765 2766 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2767 // Get the basic block this bundle is in. All instructions in the bundle 2768 // should be in this block. 2769 auto *Front = cast<Instruction>(OpValue); 2770 auto *BB = Front->getParent(); 2771 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2772 const unsigned AltOpcode = getAltOpcode(Opcode); 2773 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2774 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2775 cast<Instruction>(V)->getOpcode()) || 2776 cast<Instruction>(V)->getParent() == BB; 2777 })); 2778 2779 // The last instruction in the bundle in program order. 2780 Instruction *LastInst = nullptr; 2781 2782 // Find the last instruction. The common case should be that BB has been 2783 // scheduled, and the last instruction is VL.back(). So we start with 2784 // VL.back() and iterate over schedule data until we reach the end of the 2785 // bundle. The end of the bundle is marked by null ScheduleData. 2786 if (BlocksSchedules.count(BB)) { 2787 auto *Bundle = 2788 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2789 if (Bundle && Bundle->isPartOfBundle()) 2790 for (; Bundle; Bundle = Bundle->NextInBundle) 2791 if (Bundle->OpValue == Bundle->Inst) 2792 LastInst = Bundle->Inst; 2793 } 2794 2795 // LastInst can still be null at this point if there's either not an entry 2796 // for BB in BlocksSchedules or there's no ScheduleData available for 2797 // VL.back(). This can be the case if buildTree_rec aborts for various 2798 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2799 // size is reached, etc.). ScheduleData is initialized in the scheduling 2800 // "dry-run". 2801 // 2802 // If this happens, we can still find the last instruction by brute force. We 2803 // iterate forwards from Front (inclusive) until we either see all 2804 // instructions in the bundle or reach the end of the block. If Front is the 2805 // last instruction in program order, LastInst will be set to Front, and we 2806 // will visit all the remaining instructions in the block. 2807 // 2808 // One of the reasons we exit early from buildTree_rec is to place an upper 2809 // bound on compile-time. Thus, taking an additional compile-time hit here is 2810 // not ideal. However, this should be exceedingly rare since it requires that 2811 // we both exit early from buildTree_rec and that the bundle be out-of-order 2812 // (causing us to iterate all the way to the end of the block). 2813 if (!LastInst) { 2814 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2815 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2816 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2817 LastInst = &I; 2818 if (Bundle.empty()) 2819 break; 2820 } 2821 } 2822 2823 // Set the insertion point after the last instruction in the bundle. Set the 2824 // debug location to Front. 2825 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2826 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2827 } 2828 2829 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2830 Value *Vec = UndefValue::get(Ty); 2831 // Generate the 'InsertElement' instruction. 2832 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2833 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2834 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2835 GatherSeq.insert(Insrt); 2836 CSEBlocks.insert(Insrt->getParent()); 2837 2838 // Add to our 'need-to-extract' list. 2839 if (TreeEntry *E = getTreeEntry(VL[i])) { 2840 // Find which lane we need to extract. 2841 int FoundLane = -1; 2842 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2843 // Is this the lane of the scalar that we are looking for ? 2844 if (E->Scalars[Lane] == VL[i]) { 2845 FoundLane = Lane; 2846 break; 2847 } 2848 } 2849 assert(FoundLane >= 0 && "Could not find the correct lane"); 2850 if (!E->ReuseShuffleIndices.empty()) { 2851 FoundLane = 2852 std::distance(E->ReuseShuffleIndices.begin(), 2853 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2854 } 2855 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2856 } 2857 } 2858 } 2859 2860 return Vec; 2861 } 2862 2863 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2864 InstructionsState S = getSameOpcode(VL); 2865 if (S.Opcode) { 2866 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2867 if (E->isSame(VL)) { 2868 Value *V = vectorizeTree(E); 2869 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2870 // We need to get the vectorized value but without shuffle. 2871 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2872 V = SV->getOperand(0); 2873 } else { 2874 // Reshuffle to get only unique values. 2875 SmallVector<unsigned, 4> UniqueIdxs; 2876 SmallSet<unsigned, 4> UsedIdxs; 2877 for(unsigned Idx : E->ReuseShuffleIndices) 2878 if (UsedIdxs.insert(Idx).second) 2879 UniqueIdxs.emplace_back(Idx); 2880 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2881 UniqueIdxs); 2882 } 2883 } 2884 return V; 2885 } 2886 } 2887 } 2888 2889 Type *ScalarTy = S.OpValue->getType(); 2890 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2891 ScalarTy = SI->getValueOperand()->getType(); 2892 2893 // Check that every instruction appears once in this bundle. 2894 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2895 SmallVector<Value *, 4> UniqueValues; 2896 if (VL.size() > 2) { 2897 DenseMap<Value *, unsigned> UniquePositions; 2898 for (Value *V : VL) { 2899 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2900 ReuseShuffleIndicies.emplace_back(Res.first->second); 2901 if (Res.second || isa<Constant>(V)) 2902 UniqueValues.emplace_back(V); 2903 } 2904 // Do not shuffle single element or if number of unique values is not power 2905 // of 2. 2906 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2907 !llvm::isPowerOf2_32(UniqueValues.size())) 2908 ReuseShuffleIndicies.clear(); 2909 else 2910 VL = UniqueValues; 2911 } 2912 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2913 2914 Value *V = Gather(VL, VecTy); 2915 if (!ReuseShuffleIndicies.empty()) { 2916 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2917 ReuseShuffleIndicies, "shuffle"); 2918 if (auto *I = dyn_cast<Instruction>(V)) { 2919 GatherSeq.insert(I); 2920 CSEBlocks.insert(I->getParent()); 2921 } 2922 } 2923 return V; 2924 } 2925 2926 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2927 IRBuilder<>::InsertPointGuard Guard(Builder); 2928 2929 if (E->VectorizedValue) { 2930 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2931 return E->VectorizedValue; 2932 } 2933 2934 InstructionsState S = getSameOpcode(E->Scalars); 2935 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2936 Type *ScalarTy = VL0->getType(); 2937 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2938 ScalarTy = SI->getValueOperand()->getType(); 2939 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2940 2941 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2942 2943 if (E->NeedToGather) { 2944 setInsertPointAfterBundle(E->Scalars, VL0); 2945 auto *V = Gather(E->Scalars, VecTy); 2946 if (NeedToShuffleReuses) { 2947 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2948 E->ReuseShuffleIndices, "shuffle"); 2949 if (auto *I = dyn_cast<Instruction>(V)) { 2950 GatherSeq.insert(I); 2951 CSEBlocks.insert(I->getParent()); 2952 } 2953 } 2954 E->VectorizedValue = V; 2955 return V; 2956 } 2957 2958 unsigned ShuffleOrOp = S.IsAltShuffle ? 2959 (unsigned) Instruction::ShuffleVector : S.Opcode; 2960 switch (ShuffleOrOp) { 2961 case Instruction::PHI: { 2962 PHINode *PH = dyn_cast<PHINode>(VL0); 2963 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2964 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2965 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2966 Value *V = NewPhi; 2967 if (NeedToShuffleReuses) { 2968 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 2969 E->ReuseShuffleIndices, "shuffle"); 2970 } 2971 E->VectorizedValue = V; 2972 2973 // PHINodes may have multiple entries from the same block. We want to 2974 // visit every block once. 2975 SmallSet<BasicBlock*, 4> VisitedBBs; 2976 2977 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2978 ValueList Operands; 2979 BasicBlock *IBB = PH->getIncomingBlock(i); 2980 2981 if (!VisitedBBs.insert(IBB).second) { 2982 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2983 continue; 2984 } 2985 2986 // Prepare the operand vector. 2987 for (Value *V : E->Scalars) 2988 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2989 2990 Builder.SetInsertPoint(IBB->getTerminator()); 2991 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2992 Value *Vec = vectorizeTree(Operands); 2993 NewPhi->addIncoming(Vec, IBB); 2994 } 2995 2996 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2997 "Invalid number of incoming values"); 2998 return V; 2999 } 3000 3001 case Instruction::ExtractElement: { 3002 if (canReuseExtract(E->Scalars, VL0)) { 3003 Value *V = VL0->getOperand(0); 3004 if (NeedToShuffleReuses) { 3005 Builder.SetInsertPoint(VL0); 3006 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3007 E->ReuseShuffleIndices, "shuffle"); 3008 } 3009 E->VectorizedValue = V; 3010 return V; 3011 } 3012 setInsertPointAfterBundle(E->Scalars, VL0); 3013 auto *V = Gather(E->Scalars, VecTy); 3014 if (NeedToShuffleReuses) { 3015 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3016 E->ReuseShuffleIndices, "shuffle"); 3017 if (auto *I = dyn_cast<Instruction>(V)) { 3018 GatherSeq.insert(I); 3019 CSEBlocks.insert(I->getParent()); 3020 } 3021 } 3022 E->VectorizedValue = V; 3023 return V; 3024 } 3025 case Instruction::ExtractValue: { 3026 if (canReuseExtract(E->Scalars, VL0)) { 3027 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3028 Builder.SetInsertPoint(LI); 3029 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3030 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3031 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3032 Value *NewV = propagateMetadata(V, E->Scalars); 3033 if (NeedToShuffleReuses) { 3034 NewV = Builder.CreateShuffleVector( 3035 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3036 } 3037 E->VectorizedValue = NewV; 3038 return NewV; 3039 } 3040 setInsertPointAfterBundle(E->Scalars, VL0); 3041 auto *V = Gather(E->Scalars, VecTy); 3042 if (NeedToShuffleReuses) { 3043 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3044 E->ReuseShuffleIndices, "shuffle"); 3045 if (auto *I = dyn_cast<Instruction>(V)) { 3046 GatherSeq.insert(I); 3047 CSEBlocks.insert(I->getParent()); 3048 } 3049 } 3050 E->VectorizedValue = V; 3051 return V; 3052 } 3053 case Instruction::ZExt: 3054 case Instruction::SExt: 3055 case Instruction::FPToUI: 3056 case Instruction::FPToSI: 3057 case Instruction::FPExt: 3058 case Instruction::PtrToInt: 3059 case Instruction::IntToPtr: 3060 case Instruction::SIToFP: 3061 case Instruction::UIToFP: 3062 case Instruction::Trunc: 3063 case Instruction::FPTrunc: 3064 case Instruction::BitCast: { 3065 ValueList INVL; 3066 for (Value *V : E->Scalars) 3067 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3068 3069 setInsertPointAfterBundle(E->Scalars, VL0); 3070 3071 Value *InVec = vectorizeTree(INVL); 3072 3073 if (E->VectorizedValue) { 3074 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3075 return E->VectorizedValue; 3076 } 3077 3078 CastInst *CI = dyn_cast<CastInst>(VL0); 3079 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3080 if (NeedToShuffleReuses) { 3081 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3082 E->ReuseShuffleIndices, "shuffle"); 3083 } 3084 E->VectorizedValue = V; 3085 ++NumVectorInstructions; 3086 return V; 3087 } 3088 case Instruction::FCmp: 3089 case Instruction::ICmp: { 3090 ValueList LHSV, RHSV; 3091 for (Value *V : E->Scalars) { 3092 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3093 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3094 } 3095 3096 setInsertPointAfterBundle(E->Scalars, VL0); 3097 3098 Value *L = vectorizeTree(LHSV); 3099 Value *R = vectorizeTree(RHSV); 3100 3101 if (E->VectorizedValue) { 3102 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3103 return E->VectorizedValue; 3104 } 3105 3106 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3107 Value *V; 3108 if (S.Opcode == Instruction::FCmp) 3109 V = Builder.CreateFCmp(P0, L, R); 3110 else 3111 V = Builder.CreateICmp(P0, L, R); 3112 3113 propagateIRFlags(V, E->Scalars, VL0); 3114 if (NeedToShuffleReuses) { 3115 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3116 E->ReuseShuffleIndices, "shuffle"); 3117 } 3118 E->VectorizedValue = V; 3119 ++NumVectorInstructions; 3120 return V; 3121 } 3122 case Instruction::Select: { 3123 ValueList TrueVec, FalseVec, CondVec; 3124 for (Value *V : E->Scalars) { 3125 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3126 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3127 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3128 } 3129 3130 setInsertPointAfterBundle(E->Scalars, VL0); 3131 3132 Value *Cond = vectorizeTree(CondVec); 3133 Value *True = vectorizeTree(TrueVec); 3134 Value *False = vectorizeTree(FalseVec); 3135 3136 if (E->VectorizedValue) { 3137 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3138 return E->VectorizedValue; 3139 } 3140 3141 Value *V = Builder.CreateSelect(Cond, True, False); 3142 if (NeedToShuffleReuses) { 3143 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3144 E->ReuseShuffleIndices, "shuffle"); 3145 } 3146 E->VectorizedValue = V; 3147 ++NumVectorInstructions; 3148 return V; 3149 } 3150 case Instruction::Add: 3151 case Instruction::FAdd: 3152 case Instruction::Sub: 3153 case Instruction::FSub: 3154 case Instruction::Mul: 3155 case Instruction::FMul: 3156 case Instruction::UDiv: 3157 case Instruction::SDiv: 3158 case Instruction::FDiv: 3159 case Instruction::URem: 3160 case Instruction::SRem: 3161 case Instruction::FRem: 3162 case Instruction::Shl: 3163 case Instruction::LShr: 3164 case Instruction::AShr: 3165 case Instruction::And: 3166 case Instruction::Or: 3167 case Instruction::Xor: { 3168 ValueList LHSVL, RHSVL; 3169 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3170 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3171 RHSVL); 3172 else 3173 for (Value *V : E->Scalars) { 3174 auto *I = cast<Instruction>(V); 3175 LHSVL.push_back(I->getOperand(0)); 3176 RHSVL.push_back(I->getOperand(1)); 3177 } 3178 3179 setInsertPointAfterBundle(E->Scalars, VL0); 3180 3181 Value *LHS = vectorizeTree(LHSVL); 3182 Value *RHS = vectorizeTree(RHSVL); 3183 3184 if (E->VectorizedValue) { 3185 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3186 return E->VectorizedValue; 3187 } 3188 3189 Value *V = Builder.CreateBinOp( 3190 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3191 propagateIRFlags(V, E->Scalars, VL0); 3192 if (auto *I = dyn_cast<Instruction>(V)) 3193 V = propagateMetadata(I, E->Scalars); 3194 3195 if (NeedToShuffleReuses) { 3196 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3197 E->ReuseShuffleIndices, "shuffle"); 3198 } 3199 E->VectorizedValue = V; 3200 ++NumVectorInstructions; 3201 3202 return V; 3203 } 3204 case Instruction::Load: { 3205 // Loads are inserted at the head of the tree because we don't want to 3206 // sink them all the way down past store instructions. 3207 bool IsReversed = 3208 !isConsecutiveAccess(E->Scalars[0], E->Scalars[1], *DL, *SE); 3209 if (IsReversed) 3210 VL0 = cast<Instruction>(E->Scalars.back()); 3211 setInsertPointAfterBundle(E->Scalars, VL0); 3212 3213 LoadInst *LI = cast<LoadInst>(VL0); 3214 Type *ScalarLoadTy = LI->getType(); 3215 unsigned AS = LI->getPointerAddressSpace(); 3216 3217 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3218 VecTy->getPointerTo(AS)); 3219 3220 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3221 // ExternalUses list to make sure that an extract will be generated in the 3222 // future. 3223 Value *PO = LI->getPointerOperand(); 3224 if (getTreeEntry(PO)) 3225 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3226 3227 unsigned Alignment = LI->getAlignment(); 3228 LI = Builder.CreateLoad(VecPtr); 3229 if (!Alignment) { 3230 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3231 } 3232 LI->setAlignment(Alignment); 3233 Value *V = propagateMetadata(LI, E->Scalars); 3234 if (IsReversed) { 3235 SmallVector<uint32_t, 4> Mask(E->Scalars.size()); 3236 std::iota(Mask.rbegin(), Mask.rend(), 0); 3237 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask); 3238 } 3239 if (NeedToShuffleReuses) { 3240 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3241 E->ReuseShuffleIndices, "shuffle"); 3242 } 3243 E->VectorizedValue = V; 3244 ++NumVectorInstructions; 3245 return V; 3246 } 3247 case Instruction::Store: { 3248 StoreInst *SI = cast<StoreInst>(VL0); 3249 unsigned Alignment = SI->getAlignment(); 3250 unsigned AS = SI->getPointerAddressSpace(); 3251 3252 ValueList ScalarStoreValues; 3253 for (Value *V : E->Scalars) 3254 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3255 3256 setInsertPointAfterBundle(E->Scalars, VL0); 3257 3258 Value *VecValue = vectorizeTree(ScalarStoreValues); 3259 Value *ScalarPtr = SI->getPointerOperand(); 3260 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3261 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3262 3263 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3264 // ExternalUses to make sure that an extract will be generated in the 3265 // future. 3266 if (getTreeEntry(ScalarPtr)) 3267 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3268 3269 if (!Alignment) 3270 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3271 3272 S->setAlignment(Alignment); 3273 Value *V = propagateMetadata(S, E->Scalars); 3274 if (NeedToShuffleReuses) { 3275 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3276 E->ReuseShuffleIndices, "shuffle"); 3277 } 3278 E->VectorizedValue = V; 3279 ++NumVectorInstructions; 3280 return V; 3281 } 3282 case Instruction::GetElementPtr: { 3283 setInsertPointAfterBundle(E->Scalars, VL0); 3284 3285 ValueList Op0VL; 3286 for (Value *V : E->Scalars) 3287 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3288 3289 Value *Op0 = vectorizeTree(Op0VL); 3290 3291 std::vector<Value *> OpVecs; 3292 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3293 ++j) { 3294 ValueList OpVL; 3295 for (Value *V : E->Scalars) 3296 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3297 3298 Value *OpVec = vectorizeTree(OpVL); 3299 OpVecs.push_back(OpVec); 3300 } 3301 3302 Value *V = Builder.CreateGEP( 3303 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3304 if (Instruction *I = dyn_cast<Instruction>(V)) 3305 V = propagateMetadata(I, E->Scalars); 3306 3307 if (NeedToShuffleReuses) { 3308 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3309 E->ReuseShuffleIndices, "shuffle"); 3310 } 3311 E->VectorizedValue = V; 3312 ++NumVectorInstructions; 3313 3314 return V; 3315 } 3316 case Instruction::Call: { 3317 CallInst *CI = cast<CallInst>(VL0); 3318 setInsertPointAfterBundle(E->Scalars, VL0); 3319 Function *FI; 3320 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3321 Value *ScalarArg = nullptr; 3322 if (CI && (FI = CI->getCalledFunction())) { 3323 IID = FI->getIntrinsicID(); 3324 } 3325 std::vector<Value *> OpVecs; 3326 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3327 ValueList OpVL; 3328 // ctlz,cttz and powi are special intrinsics whose second argument is 3329 // a scalar. This argument should not be vectorized. 3330 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3331 CallInst *CEI = cast<CallInst>(VL0); 3332 ScalarArg = CEI->getArgOperand(j); 3333 OpVecs.push_back(CEI->getArgOperand(j)); 3334 continue; 3335 } 3336 for (Value *V : E->Scalars) { 3337 CallInst *CEI = cast<CallInst>(V); 3338 OpVL.push_back(CEI->getArgOperand(j)); 3339 } 3340 3341 Value *OpVec = vectorizeTree(OpVL); 3342 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3343 OpVecs.push_back(OpVec); 3344 } 3345 3346 Module *M = F->getParent(); 3347 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3348 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3349 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3350 SmallVector<OperandBundleDef, 1> OpBundles; 3351 CI->getOperandBundlesAsDefs(OpBundles); 3352 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3353 3354 // The scalar argument uses an in-tree scalar so we add the new vectorized 3355 // call to ExternalUses list to make sure that an extract will be 3356 // generated in the future. 3357 if (ScalarArg && getTreeEntry(ScalarArg)) 3358 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3359 3360 propagateIRFlags(V, E->Scalars, VL0); 3361 if (NeedToShuffleReuses) { 3362 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3363 E->ReuseShuffleIndices, "shuffle"); 3364 } 3365 E->VectorizedValue = V; 3366 ++NumVectorInstructions; 3367 return V; 3368 } 3369 case Instruction::ShuffleVector: { 3370 ValueList LHSVL, RHSVL; 3371 assert(Instruction::isBinaryOp(S.Opcode) && 3372 "Invalid Shuffle Vector Operand"); 3373 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3374 setInsertPointAfterBundle(E->Scalars, VL0); 3375 3376 Value *LHS = vectorizeTree(LHSVL); 3377 Value *RHS = vectorizeTree(RHSVL); 3378 3379 if (E->VectorizedValue) { 3380 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3381 return E->VectorizedValue; 3382 } 3383 3384 // Create a vector of LHS op1 RHS 3385 Value *V0 = Builder.CreateBinOp( 3386 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3387 3388 unsigned AltOpcode = getAltOpcode(S.Opcode); 3389 // Create a vector of LHS op2 RHS 3390 Value *V1 = Builder.CreateBinOp( 3391 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3392 3393 // Create shuffle to take alternate operations from the vector. 3394 // Also, gather up odd and even scalar ops to propagate IR flags to 3395 // each vector operation. 3396 ValueList OddScalars, EvenScalars; 3397 unsigned e = E->Scalars.size(); 3398 SmallVector<Constant *, 8> Mask(e); 3399 for (unsigned i = 0; i < e; ++i) { 3400 if (isOdd(i)) { 3401 Mask[i] = Builder.getInt32(e + i); 3402 OddScalars.push_back(E->Scalars[i]); 3403 } else { 3404 Mask[i] = Builder.getInt32(i); 3405 EvenScalars.push_back(E->Scalars[i]); 3406 } 3407 } 3408 3409 Value *ShuffleMask = ConstantVector::get(Mask); 3410 propagateIRFlags(V0, EvenScalars); 3411 propagateIRFlags(V1, OddScalars); 3412 3413 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3414 if (Instruction *I = dyn_cast<Instruction>(V)) 3415 V = propagateMetadata(I, E->Scalars); 3416 if (NeedToShuffleReuses) { 3417 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3418 E->ReuseShuffleIndices, "shuffle"); 3419 } 3420 E->VectorizedValue = V; 3421 ++NumVectorInstructions; 3422 3423 return V; 3424 } 3425 default: 3426 llvm_unreachable("unknown inst"); 3427 } 3428 return nullptr; 3429 } 3430 3431 Value *BoUpSLP::vectorizeTree() { 3432 ExtraValueToDebugLocsMap ExternallyUsedValues; 3433 return vectorizeTree(ExternallyUsedValues); 3434 } 3435 3436 Value * 3437 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3438 // All blocks must be scheduled before any instructions are inserted. 3439 for (auto &BSIter : BlocksSchedules) { 3440 scheduleBlock(BSIter.second.get()); 3441 } 3442 3443 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3444 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3445 3446 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3447 // vectorized root. InstCombine will then rewrite the entire expression. We 3448 // sign extend the extracted values below. 3449 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3450 if (MinBWs.count(ScalarRoot)) { 3451 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3452 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3453 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3454 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3455 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3456 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3457 VectorizableTree[0].VectorizedValue = Trunc; 3458 } 3459 3460 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3461 3462 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3463 // specified by ScalarType. 3464 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3465 if (!MinBWs.count(ScalarRoot)) 3466 return Ex; 3467 if (MinBWs[ScalarRoot].second) 3468 return Builder.CreateSExt(Ex, ScalarType); 3469 return Builder.CreateZExt(Ex, ScalarType); 3470 }; 3471 3472 // Extract all of the elements with the external uses. 3473 for (const auto &ExternalUse : ExternalUses) { 3474 Value *Scalar = ExternalUse.Scalar; 3475 llvm::User *User = ExternalUse.User; 3476 3477 // Skip users that we already RAUW. This happens when one instruction 3478 // has multiple uses of the same value. 3479 if (User && !is_contained(Scalar->users(), User)) 3480 continue; 3481 TreeEntry *E = getTreeEntry(Scalar); 3482 assert(E && "Invalid scalar"); 3483 assert(!E->NeedToGather && "Extracting from a gather list"); 3484 3485 Value *Vec = E->VectorizedValue; 3486 assert(Vec && "Can't find vectorizable value"); 3487 3488 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3489 // If User == nullptr, the Scalar is used as extra arg. Generate 3490 // ExtractElement instruction and update the record for this scalar in 3491 // ExternallyUsedValues. 3492 if (!User) { 3493 assert(ExternallyUsedValues.count(Scalar) && 3494 "Scalar with nullptr as an external user must be registered in " 3495 "ExternallyUsedValues map"); 3496 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3497 Builder.SetInsertPoint(VecI->getParent(), 3498 std::next(VecI->getIterator())); 3499 } else { 3500 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3501 } 3502 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3503 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3504 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3505 auto &Locs = ExternallyUsedValues[Scalar]; 3506 ExternallyUsedValues.insert({Ex, Locs}); 3507 ExternallyUsedValues.erase(Scalar); 3508 continue; 3509 } 3510 3511 // Generate extracts for out-of-tree users. 3512 // Find the insertion point for the extractelement lane. 3513 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3514 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3515 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3516 if (PH->getIncomingValue(i) == Scalar) { 3517 TerminatorInst *IncomingTerminator = 3518 PH->getIncomingBlock(i)->getTerminator(); 3519 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3520 Builder.SetInsertPoint(VecI->getParent(), 3521 std::next(VecI->getIterator())); 3522 } else { 3523 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3524 } 3525 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3526 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3527 CSEBlocks.insert(PH->getIncomingBlock(i)); 3528 PH->setOperand(i, Ex); 3529 } 3530 } 3531 } else { 3532 Builder.SetInsertPoint(cast<Instruction>(User)); 3533 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3534 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3535 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3536 User->replaceUsesOfWith(Scalar, Ex); 3537 } 3538 } else { 3539 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3540 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3541 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3542 CSEBlocks.insert(&F->getEntryBlock()); 3543 User->replaceUsesOfWith(Scalar, Ex); 3544 } 3545 3546 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3547 } 3548 3549 // For each vectorized value: 3550 for (TreeEntry &EIdx : VectorizableTree) { 3551 TreeEntry *Entry = &EIdx; 3552 3553 // No need to handle users of gathered values. 3554 if (Entry->NeedToGather) 3555 continue; 3556 3557 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3558 3559 // For each lane: 3560 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3561 Value *Scalar = Entry->Scalars[Lane]; 3562 3563 Type *Ty = Scalar->getType(); 3564 if (!Ty->isVoidTy()) { 3565 #ifndef NDEBUG 3566 for (User *U : Scalar->users()) { 3567 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3568 3569 // It is legal to replace users in the ignorelist by undef. 3570 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3571 "Replacing out-of-tree value with undef"); 3572 } 3573 #endif 3574 Value *Undef = UndefValue::get(Ty); 3575 Scalar->replaceAllUsesWith(Undef); 3576 } 3577 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3578 eraseInstruction(cast<Instruction>(Scalar)); 3579 } 3580 } 3581 3582 Builder.ClearInsertionPoint(); 3583 3584 return VectorizableTree[0].VectorizedValue; 3585 } 3586 3587 void BoUpSLP::optimizeGatherSequence() { 3588 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3589 << " gather sequences instructions.\n"); 3590 // LICM InsertElementInst sequences. 3591 for (Instruction *I : GatherSeq) { 3592 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3593 continue; 3594 3595 // Check if this block is inside a loop. 3596 Loop *L = LI->getLoopFor(I->getParent()); 3597 if (!L) 3598 continue; 3599 3600 // Check if it has a preheader. 3601 BasicBlock *PreHeader = L->getLoopPreheader(); 3602 if (!PreHeader) 3603 continue; 3604 3605 // If the vector or the element that we insert into it are 3606 // instructions that are defined in this basic block then we can't 3607 // hoist this instruction. 3608 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3609 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3610 if (Op0 && L->contains(Op0)) 3611 continue; 3612 if (Op1 && L->contains(Op1)) 3613 continue; 3614 3615 // We can hoist this instruction. Move it to the pre-header. 3616 I->moveBefore(PreHeader->getTerminator()); 3617 } 3618 3619 // Make a list of all reachable blocks in our CSE queue. 3620 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3621 CSEWorkList.reserve(CSEBlocks.size()); 3622 for (BasicBlock *BB : CSEBlocks) 3623 if (DomTreeNode *N = DT->getNode(BB)) { 3624 assert(DT->isReachableFromEntry(N)); 3625 CSEWorkList.push_back(N); 3626 } 3627 3628 // Sort blocks by domination. This ensures we visit a block after all blocks 3629 // dominating it are visited. 3630 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3631 [this](const DomTreeNode *A, const DomTreeNode *B) { 3632 return DT->properlyDominates(A, B); 3633 }); 3634 3635 // Perform O(N^2) search over the gather sequences and merge identical 3636 // instructions. TODO: We can further optimize this scan if we split the 3637 // instructions into different buckets based on the insert lane. 3638 SmallVector<Instruction *, 16> Visited; 3639 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3640 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3641 "Worklist not sorted properly!"); 3642 BasicBlock *BB = (*I)->getBlock(); 3643 // For all instructions in blocks containing gather sequences: 3644 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3645 Instruction *In = &*it++; 3646 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3647 continue; 3648 3649 // Check if we can replace this instruction with any of the 3650 // visited instructions. 3651 for (Instruction *v : Visited) { 3652 if (In->isIdenticalTo(v) && 3653 DT->dominates(v->getParent(), In->getParent())) { 3654 In->replaceAllUsesWith(v); 3655 eraseInstruction(In); 3656 In = nullptr; 3657 break; 3658 } 3659 } 3660 if (In) { 3661 assert(!is_contained(Visited, In)); 3662 Visited.push_back(In); 3663 } 3664 } 3665 } 3666 CSEBlocks.clear(); 3667 GatherSeq.clear(); 3668 } 3669 3670 // Groups the instructions to a bundle (which is then a single scheduling entity) 3671 // and schedules instructions until the bundle gets ready. 3672 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3673 BoUpSLP *SLP, Value *OpValue) { 3674 if (isa<PHINode>(OpValue)) 3675 return true; 3676 3677 // Initialize the instruction bundle. 3678 Instruction *OldScheduleEnd = ScheduleEnd; 3679 ScheduleData *PrevInBundle = nullptr; 3680 ScheduleData *Bundle = nullptr; 3681 bool ReSchedule = false; 3682 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3683 3684 // Make sure that the scheduling region contains all 3685 // instructions of the bundle. 3686 for (Value *V : VL) { 3687 if (!extendSchedulingRegion(V, OpValue)) 3688 return false; 3689 } 3690 3691 for (Value *V : VL) { 3692 ScheduleData *BundleMember = getScheduleData(V); 3693 assert(BundleMember && 3694 "no ScheduleData for bundle member (maybe not in same basic block)"); 3695 if (BundleMember->IsScheduled) { 3696 // A bundle member was scheduled as single instruction before and now 3697 // needs to be scheduled as part of the bundle. We just get rid of the 3698 // existing schedule. 3699 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3700 << " was already scheduled\n"); 3701 ReSchedule = true; 3702 } 3703 assert(BundleMember->isSchedulingEntity() && 3704 "bundle member already part of other bundle"); 3705 if (PrevInBundle) { 3706 PrevInBundle->NextInBundle = BundleMember; 3707 } else { 3708 Bundle = BundleMember; 3709 } 3710 BundleMember->UnscheduledDepsInBundle = 0; 3711 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3712 3713 // Group the instructions to a bundle. 3714 BundleMember->FirstInBundle = Bundle; 3715 PrevInBundle = BundleMember; 3716 } 3717 if (ScheduleEnd != OldScheduleEnd) { 3718 // The scheduling region got new instructions at the lower end (or it is a 3719 // new region for the first bundle). This makes it necessary to 3720 // recalculate all dependencies. 3721 // It is seldom that this needs to be done a second time after adding the 3722 // initial bundle to the region. 3723 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3724 doForAllOpcodes(I, [](ScheduleData *SD) { 3725 SD->clearDependencies(); 3726 }); 3727 } 3728 ReSchedule = true; 3729 } 3730 if (ReSchedule) { 3731 resetSchedule(); 3732 initialFillReadyList(ReadyInsts); 3733 } 3734 3735 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3736 << BB->getName() << "\n"); 3737 3738 calculateDependencies(Bundle, true, SLP); 3739 3740 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3741 // means that there are no cyclic dependencies and we can schedule it. 3742 // Note that's important that we don't "schedule" the bundle yet (see 3743 // cancelScheduling). 3744 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3745 3746 ScheduleData *pickedSD = ReadyInsts.back(); 3747 ReadyInsts.pop_back(); 3748 3749 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3750 schedule(pickedSD, ReadyInsts); 3751 } 3752 } 3753 if (!Bundle->isReady()) { 3754 cancelScheduling(VL, OpValue); 3755 return false; 3756 } 3757 return true; 3758 } 3759 3760 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3761 Value *OpValue) { 3762 if (isa<PHINode>(OpValue)) 3763 return; 3764 3765 ScheduleData *Bundle = getScheduleData(OpValue); 3766 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3767 assert(!Bundle->IsScheduled && 3768 "Can't cancel bundle which is already scheduled"); 3769 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3770 "tried to unbundle something which is not a bundle"); 3771 3772 // Un-bundle: make single instructions out of the bundle. 3773 ScheduleData *BundleMember = Bundle; 3774 while (BundleMember) { 3775 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3776 BundleMember->FirstInBundle = BundleMember; 3777 ScheduleData *Next = BundleMember->NextInBundle; 3778 BundleMember->NextInBundle = nullptr; 3779 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3780 if (BundleMember->UnscheduledDepsInBundle == 0) { 3781 ReadyInsts.insert(BundleMember); 3782 } 3783 BundleMember = Next; 3784 } 3785 } 3786 3787 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3788 // Allocate a new ScheduleData for the instruction. 3789 if (ChunkPos >= ChunkSize) { 3790 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3791 ChunkPos = 0; 3792 } 3793 return &(ScheduleDataChunks.back()[ChunkPos++]); 3794 } 3795 3796 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3797 Value *OpValue) { 3798 if (getScheduleData(V, isOneOf(OpValue, V))) 3799 return true; 3800 Instruction *I = dyn_cast<Instruction>(V); 3801 assert(I && "bundle member must be an instruction"); 3802 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3803 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3804 ScheduleData *ISD = getScheduleData(I); 3805 if (!ISD) 3806 return false; 3807 assert(isInSchedulingRegion(ISD) && 3808 "ScheduleData not in scheduling region"); 3809 ScheduleData *SD = allocateScheduleDataChunks(); 3810 SD->Inst = I; 3811 SD->init(SchedulingRegionID, OpValue); 3812 ExtraScheduleDataMap[I][OpValue] = SD; 3813 return true; 3814 }; 3815 if (CheckSheduleForI(I)) 3816 return true; 3817 if (!ScheduleStart) { 3818 // It's the first instruction in the new region. 3819 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3820 ScheduleStart = I; 3821 ScheduleEnd = I->getNextNode(); 3822 if (isOneOf(OpValue, I) != I) 3823 CheckSheduleForI(I); 3824 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3825 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3826 return true; 3827 } 3828 // Search up and down at the same time, because we don't know if the new 3829 // instruction is above or below the existing scheduling region. 3830 BasicBlock::reverse_iterator UpIter = 3831 ++ScheduleStart->getIterator().getReverse(); 3832 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3833 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3834 BasicBlock::iterator LowerEnd = BB->end(); 3835 while (true) { 3836 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3837 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3838 return false; 3839 } 3840 3841 if (UpIter != UpperEnd) { 3842 if (&*UpIter == I) { 3843 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3844 ScheduleStart = I; 3845 if (isOneOf(OpValue, I) != I) 3846 CheckSheduleForI(I); 3847 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3848 return true; 3849 } 3850 UpIter++; 3851 } 3852 if (DownIter != LowerEnd) { 3853 if (&*DownIter == I) { 3854 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3855 nullptr); 3856 ScheduleEnd = I->getNextNode(); 3857 if (isOneOf(OpValue, I) != I) 3858 CheckSheduleForI(I); 3859 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3860 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3861 return true; 3862 } 3863 DownIter++; 3864 } 3865 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3866 "instruction not found in block"); 3867 } 3868 return true; 3869 } 3870 3871 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3872 Instruction *ToI, 3873 ScheduleData *PrevLoadStore, 3874 ScheduleData *NextLoadStore) { 3875 ScheduleData *CurrentLoadStore = PrevLoadStore; 3876 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3877 ScheduleData *SD = ScheduleDataMap[I]; 3878 if (!SD) { 3879 SD = allocateScheduleDataChunks(); 3880 ScheduleDataMap[I] = SD; 3881 SD->Inst = I; 3882 } 3883 assert(!isInSchedulingRegion(SD) && 3884 "new ScheduleData already in scheduling region"); 3885 SD->init(SchedulingRegionID, I); 3886 3887 if (I->mayReadOrWriteMemory() && 3888 (!isa<IntrinsicInst>(I) || 3889 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3890 // Update the linked list of memory accessing instructions. 3891 if (CurrentLoadStore) { 3892 CurrentLoadStore->NextLoadStore = SD; 3893 } else { 3894 FirstLoadStoreInRegion = SD; 3895 } 3896 CurrentLoadStore = SD; 3897 } 3898 } 3899 if (NextLoadStore) { 3900 if (CurrentLoadStore) 3901 CurrentLoadStore->NextLoadStore = NextLoadStore; 3902 } else { 3903 LastLoadStoreInRegion = CurrentLoadStore; 3904 } 3905 } 3906 3907 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3908 bool InsertInReadyList, 3909 BoUpSLP *SLP) { 3910 assert(SD->isSchedulingEntity()); 3911 3912 SmallVector<ScheduleData *, 10> WorkList; 3913 WorkList.push_back(SD); 3914 3915 while (!WorkList.empty()) { 3916 ScheduleData *SD = WorkList.back(); 3917 WorkList.pop_back(); 3918 3919 ScheduleData *BundleMember = SD; 3920 while (BundleMember) { 3921 assert(isInSchedulingRegion(BundleMember)); 3922 if (!BundleMember->hasValidDependencies()) { 3923 3924 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3925 BundleMember->Dependencies = 0; 3926 BundleMember->resetUnscheduledDeps(); 3927 3928 // Handle def-use chain dependencies. 3929 if (BundleMember->OpValue != BundleMember->Inst) { 3930 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3931 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3932 BundleMember->Dependencies++; 3933 ScheduleData *DestBundle = UseSD->FirstInBundle; 3934 if (!DestBundle->IsScheduled) 3935 BundleMember->incrementUnscheduledDeps(1); 3936 if (!DestBundle->hasValidDependencies()) 3937 WorkList.push_back(DestBundle); 3938 } 3939 } else { 3940 for (User *U : BundleMember->Inst->users()) { 3941 if (isa<Instruction>(U)) { 3942 ScheduleData *UseSD = getScheduleData(U); 3943 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3944 BundleMember->Dependencies++; 3945 ScheduleData *DestBundle = UseSD->FirstInBundle; 3946 if (!DestBundle->IsScheduled) 3947 BundleMember->incrementUnscheduledDeps(1); 3948 if (!DestBundle->hasValidDependencies()) 3949 WorkList.push_back(DestBundle); 3950 } 3951 } else { 3952 // I'm not sure if this can ever happen. But we need to be safe. 3953 // This lets the instruction/bundle never be scheduled and 3954 // eventually disable vectorization. 3955 BundleMember->Dependencies++; 3956 BundleMember->incrementUnscheduledDeps(1); 3957 } 3958 } 3959 } 3960 3961 // Handle the memory dependencies. 3962 ScheduleData *DepDest = BundleMember->NextLoadStore; 3963 if (DepDest) { 3964 Instruction *SrcInst = BundleMember->Inst; 3965 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3966 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3967 unsigned numAliased = 0; 3968 unsigned DistToSrc = 1; 3969 3970 while (DepDest) { 3971 assert(isInSchedulingRegion(DepDest)); 3972 3973 // We have two limits to reduce the complexity: 3974 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3975 // SLP->isAliased (which is the expensive part in this loop). 3976 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3977 // the whole loop (even if the loop is fast, it's quadratic). 3978 // It's important for the loop break condition (see below) to 3979 // check this limit even between two read-only instructions. 3980 if (DistToSrc >= MaxMemDepDistance || 3981 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3982 (numAliased >= AliasedCheckLimit || 3983 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3984 3985 // We increment the counter only if the locations are aliased 3986 // (instead of counting all alias checks). This gives a better 3987 // balance between reduced runtime and accurate dependencies. 3988 numAliased++; 3989 3990 DepDest->MemoryDependencies.push_back(BundleMember); 3991 BundleMember->Dependencies++; 3992 ScheduleData *DestBundle = DepDest->FirstInBundle; 3993 if (!DestBundle->IsScheduled) { 3994 BundleMember->incrementUnscheduledDeps(1); 3995 } 3996 if (!DestBundle->hasValidDependencies()) { 3997 WorkList.push_back(DestBundle); 3998 } 3999 } 4000 DepDest = DepDest->NextLoadStore; 4001 4002 // Example, explaining the loop break condition: Let's assume our 4003 // starting instruction is i0 and MaxMemDepDistance = 3. 4004 // 4005 // +--------v--v--v 4006 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4007 // +--------^--^--^ 4008 // 4009 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4010 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4011 // Previously we already added dependencies from i3 to i6,i7,i8 4012 // (because of MaxMemDepDistance). As we added a dependency from 4013 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4014 // and we can abort this loop at i6. 4015 if (DistToSrc >= 2 * MaxMemDepDistance) 4016 break; 4017 DistToSrc++; 4018 } 4019 } 4020 } 4021 BundleMember = BundleMember->NextInBundle; 4022 } 4023 if (InsertInReadyList && SD->isReady()) { 4024 ReadyInsts.push_back(SD); 4025 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 4026 } 4027 } 4028 } 4029 4030 void BoUpSLP::BlockScheduling::resetSchedule() { 4031 assert(ScheduleStart && 4032 "tried to reset schedule on block which has not been scheduled"); 4033 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4034 doForAllOpcodes(I, [&](ScheduleData *SD) { 4035 assert(isInSchedulingRegion(SD) && 4036 "ScheduleData not in scheduling region"); 4037 SD->IsScheduled = false; 4038 SD->resetUnscheduledDeps(); 4039 }); 4040 } 4041 ReadyInsts.clear(); 4042 } 4043 4044 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4045 if (!BS->ScheduleStart) 4046 return; 4047 4048 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4049 4050 BS->resetSchedule(); 4051 4052 // For the real scheduling we use a more sophisticated ready-list: it is 4053 // sorted by the original instruction location. This lets the final schedule 4054 // be as close as possible to the original instruction order. 4055 struct ScheduleDataCompare { 4056 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4057 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4058 } 4059 }; 4060 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4061 4062 // Ensure that all dependency data is updated and fill the ready-list with 4063 // initial instructions. 4064 int Idx = 0; 4065 int NumToSchedule = 0; 4066 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4067 I = I->getNextNode()) { 4068 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4069 assert(SD->isPartOfBundle() == 4070 (getTreeEntry(SD->Inst) != nullptr) && 4071 "scheduler and vectorizer bundle mismatch"); 4072 SD->FirstInBundle->SchedulingPriority = Idx++; 4073 if (SD->isSchedulingEntity()) { 4074 BS->calculateDependencies(SD, false, this); 4075 NumToSchedule++; 4076 } 4077 }); 4078 } 4079 BS->initialFillReadyList(ReadyInsts); 4080 4081 Instruction *LastScheduledInst = BS->ScheduleEnd; 4082 4083 // Do the "real" scheduling. 4084 while (!ReadyInsts.empty()) { 4085 ScheduleData *picked = *ReadyInsts.begin(); 4086 ReadyInsts.erase(ReadyInsts.begin()); 4087 4088 // Move the scheduled instruction(s) to their dedicated places, if not 4089 // there yet. 4090 ScheduleData *BundleMember = picked; 4091 while (BundleMember) { 4092 Instruction *pickedInst = BundleMember->Inst; 4093 if (LastScheduledInst->getNextNode() != pickedInst) { 4094 BS->BB->getInstList().remove(pickedInst); 4095 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4096 pickedInst); 4097 } 4098 LastScheduledInst = pickedInst; 4099 BundleMember = BundleMember->NextInBundle; 4100 } 4101 4102 BS->schedule(picked, ReadyInsts); 4103 NumToSchedule--; 4104 } 4105 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4106 4107 // Avoid duplicate scheduling of the block. 4108 BS->ScheduleStart = nullptr; 4109 } 4110 4111 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4112 // If V is a store, just return the width of the stored value without 4113 // traversing the expression tree. This is the common case. 4114 if (auto *Store = dyn_cast<StoreInst>(V)) 4115 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4116 4117 // If V is not a store, we can traverse the expression tree to find loads 4118 // that feed it. The type of the loaded value may indicate a more suitable 4119 // width than V's type. We want to base the vector element size on the width 4120 // of memory operations where possible. 4121 SmallVector<Instruction *, 16> Worklist; 4122 SmallPtrSet<Instruction *, 16> Visited; 4123 if (auto *I = dyn_cast<Instruction>(V)) 4124 Worklist.push_back(I); 4125 4126 // Traverse the expression tree in bottom-up order looking for loads. If we 4127 // encounter an instruciton we don't yet handle, we give up. 4128 auto MaxWidth = 0u; 4129 auto FoundUnknownInst = false; 4130 while (!Worklist.empty() && !FoundUnknownInst) { 4131 auto *I = Worklist.pop_back_val(); 4132 Visited.insert(I); 4133 4134 // We should only be looking at scalar instructions here. If the current 4135 // instruction has a vector type, give up. 4136 auto *Ty = I->getType(); 4137 if (isa<VectorType>(Ty)) 4138 FoundUnknownInst = true; 4139 4140 // If the current instruction is a load, update MaxWidth to reflect the 4141 // width of the loaded value. 4142 else if (isa<LoadInst>(I)) 4143 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4144 4145 // Otherwise, we need to visit the operands of the instruction. We only 4146 // handle the interesting cases from buildTree here. If an operand is an 4147 // instruction we haven't yet visited, we add it to the worklist. 4148 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4149 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4150 for (Use &U : I->operands()) 4151 if (auto *J = dyn_cast<Instruction>(U.get())) 4152 if (!Visited.count(J)) 4153 Worklist.push_back(J); 4154 } 4155 4156 // If we don't yet handle the instruction, give up. 4157 else 4158 FoundUnknownInst = true; 4159 } 4160 4161 // If we didn't encounter a memory access in the expression tree, or if we 4162 // gave up for some reason, just return the width of V. 4163 if (!MaxWidth || FoundUnknownInst) 4164 return DL->getTypeSizeInBits(V->getType()); 4165 4166 // Otherwise, return the maximum width we found. 4167 return MaxWidth; 4168 } 4169 4170 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4171 // smaller type with a truncation. We collect the values that will be demoted 4172 // in ToDemote and additional roots that require investigating in Roots. 4173 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4174 SmallVectorImpl<Value *> &ToDemote, 4175 SmallVectorImpl<Value *> &Roots) { 4176 // We can always demote constants. 4177 if (isa<Constant>(V)) { 4178 ToDemote.push_back(V); 4179 return true; 4180 } 4181 4182 // If the value is not an instruction in the expression with only one use, it 4183 // cannot be demoted. 4184 auto *I = dyn_cast<Instruction>(V); 4185 if (!I || !I->hasOneUse() || !Expr.count(I)) 4186 return false; 4187 4188 switch (I->getOpcode()) { 4189 4190 // We can always demote truncations and extensions. Since truncations can 4191 // seed additional demotion, we save the truncated value. 4192 case Instruction::Trunc: 4193 Roots.push_back(I->getOperand(0)); 4194 break; 4195 case Instruction::ZExt: 4196 case Instruction::SExt: 4197 break; 4198 4199 // We can demote certain binary operations if we can demote both of their 4200 // operands. 4201 case Instruction::Add: 4202 case Instruction::Sub: 4203 case Instruction::Mul: 4204 case Instruction::And: 4205 case Instruction::Or: 4206 case Instruction::Xor: 4207 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4208 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4209 return false; 4210 break; 4211 4212 // We can demote selects if we can demote their true and false values. 4213 case Instruction::Select: { 4214 SelectInst *SI = cast<SelectInst>(I); 4215 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4216 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4217 return false; 4218 break; 4219 } 4220 4221 // We can demote phis if we can demote all their incoming operands. Note that 4222 // we don't need to worry about cycles since we ensure single use above. 4223 case Instruction::PHI: { 4224 PHINode *PN = cast<PHINode>(I); 4225 for (Value *IncValue : PN->incoming_values()) 4226 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4227 return false; 4228 break; 4229 } 4230 4231 // Otherwise, conservatively give up. 4232 default: 4233 return false; 4234 } 4235 4236 // Record the value that we can demote. 4237 ToDemote.push_back(V); 4238 return true; 4239 } 4240 4241 void BoUpSLP::computeMinimumValueSizes() { 4242 // If there are no external uses, the expression tree must be rooted by a 4243 // store. We can't demote in-memory values, so there is nothing to do here. 4244 if (ExternalUses.empty()) 4245 return; 4246 4247 // We only attempt to truncate integer expressions. 4248 auto &TreeRoot = VectorizableTree[0].Scalars; 4249 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4250 if (!TreeRootIT) 4251 return; 4252 4253 // If the expression is not rooted by a store, these roots should have 4254 // external uses. We will rely on InstCombine to rewrite the expression in 4255 // the narrower type. However, InstCombine only rewrites single-use values. 4256 // This means that if a tree entry other than a root is used externally, it 4257 // must have multiple uses and InstCombine will not rewrite it. The code 4258 // below ensures that only the roots are used externally. 4259 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4260 for (auto &EU : ExternalUses) 4261 if (!Expr.erase(EU.Scalar)) 4262 return; 4263 if (!Expr.empty()) 4264 return; 4265 4266 // Collect the scalar values of the vectorizable expression. We will use this 4267 // context to determine which values can be demoted. If we see a truncation, 4268 // we mark it as seeding another demotion. 4269 for (auto &Entry : VectorizableTree) 4270 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4271 4272 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4273 // have a single external user that is not in the vectorizable tree. 4274 for (auto *Root : TreeRoot) 4275 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4276 return; 4277 4278 // Conservatively determine if we can actually truncate the roots of the 4279 // expression. Collect the values that can be demoted in ToDemote and 4280 // additional roots that require investigating in Roots. 4281 SmallVector<Value *, 32> ToDemote; 4282 SmallVector<Value *, 4> Roots; 4283 for (auto *Root : TreeRoot) { 4284 // Do not include top zext/sext/trunc operations to those to be demoted, it 4285 // produces noise cast<vect>, trunc <vect>, exctract <vect>, cast <extract> 4286 // sequence. 4287 if (isa<Constant>(Root)) 4288 continue; 4289 auto *I = dyn_cast<Instruction>(Root); 4290 if (!I || !I->hasOneUse() || !Expr.count(I)) 4291 return; 4292 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) 4293 continue; 4294 if (auto *TI = dyn_cast<TruncInst>(I)) { 4295 Roots.push_back(TI->getOperand(0)); 4296 continue; 4297 } 4298 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4299 return; 4300 } 4301 4302 // The maximum bit width required to represent all the values that can be 4303 // demoted without loss of precision. It would be safe to truncate the roots 4304 // of the expression to this width. 4305 auto MaxBitWidth = 8u; 4306 4307 // We first check if all the bits of the roots are demanded. If they're not, 4308 // we can truncate the roots to this narrower type. 4309 for (auto *Root : TreeRoot) { 4310 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4311 MaxBitWidth = std::max<unsigned>( 4312 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4313 } 4314 4315 // True if the roots can be zero-extended back to their original type, rather 4316 // than sign-extended. We know that if the leading bits are not demanded, we 4317 // can safely zero-extend. So we initialize IsKnownPositive to True. 4318 bool IsKnownPositive = true; 4319 4320 // If all the bits of the roots are demanded, we can try a little harder to 4321 // compute a narrower type. This can happen, for example, if the roots are 4322 // getelementptr indices. InstCombine promotes these indices to the pointer 4323 // width. Thus, all their bits are technically demanded even though the 4324 // address computation might be vectorized in a smaller type. 4325 // 4326 // We start by looking at each entry that can be demoted. We compute the 4327 // maximum bit width required to store the scalar by using ValueTracking to 4328 // compute the number of high-order bits we can truncate. 4329 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4330 MaxBitWidth = 8u; 4331 4332 // Determine if the sign bit of all the roots is known to be zero. If not, 4333 // IsKnownPositive is set to False. 4334 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4335 KnownBits Known = computeKnownBits(R, *DL); 4336 return Known.isNonNegative(); 4337 }); 4338 4339 // Determine the maximum number of bits required to store the scalar 4340 // values. 4341 for (auto *Scalar : ToDemote) { 4342 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4343 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4344 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4345 } 4346 4347 // If we can't prove that the sign bit is zero, we must add one to the 4348 // maximum bit width to account for the unknown sign bit. This preserves 4349 // the existing sign bit so we can safely sign-extend the root back to the 4350 // original type. Otherwise, if we know the sign bit is zero, we will 4351 // zero-extend the root instead. 4352 // 4353 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4354 // one to the maximum bit width will yield a larger-than-necessary 4355 // type. In general, we need to add an extra bit only if we can't 4356 // prove that the upper bit of the original type is equal to the 4357 // upper bit of the proposed smaller type. If these two bits are the 4358 // same (either zero or one) we know that sign-extending from the 4359 // smaller type will result in the same value. Here, since we can't 4360 // yet prove this, we are just making the proposed smaller type 4361 // larger to ensure correctness. 4362 if (!IsKnownPositive) 4363 ++MaxBitWidth; 4364 } 4365 4366 // Round MaxBitWidth up to the next power-of-two. 4367 if (!isPowerOf2_64(MaxBitWidth)) 4368 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4369 4370 // If the maximum bit width we compute is less than the with of the roots' 4371 // type, we can proceed with the narrowing. Otherwise, do nothing. 4372 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4373 return; 4374 4375 // If we can truncate the root, we must collect additional values that might 4376 // be demoted as a result. That is, those seeded by truncations we will 4377 // modify. 4378 while (!Roots.empty()) 4379 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4380 4381 // Finally, map the values we can demote to the maximum bit with we computed. 4382 for (auto *Scalar : ToDemote) 4383 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4384 } 4385 4386 namespace { 4387 4388 /// The SLPVectorizer Pass. 4389 struct SLPVectorizer : public FunctionPass { 4390 SLPVectorizerPass Impl; 4391 4392 /// Pass identification, replacement for typeid 4393 static char ID; 4394 4395 explicit SLPVectorizer() : FunctionPass(ID) { 4396 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4397 } 4398 4399 bool doInitialization(Module &M) override { 4400 return false; 4401 } 4402 4403 bool runOnFunction(Function &F) override { 4404 if (skipFunction(F)) 4405 return false; 4406 4407 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4408 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4409 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4410 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4411 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4412 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4413 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4414 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4415 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4416 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4417 4418 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4419 } 4420 4421 void getAnalysisUsage(AnalysisUsage &AU) const override { 4422 FunctionPass::getAnalysisUsage(AU); 4423 AU.addRequired<AssumptionCacheTracker>(); 4424 AU.addRequired<ScalarEvolutionWrapperPass>(); 4425 AU.addRequired<AAResultsWrapperPass>(); 4426 AU.addRequired<TargetTransformInfoWrapperPass>(); 4427 AU.addRequired<LoopInfoWrapperPass>(); 4428 AU.addRequired<DominatorTreeWrapperPass>(); 4429 AU.addRequired<DemandedBitsWrapperPass>(); 4430 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4431 AU.addPreserved<LoopInfoWrapperPass>(); 4432 AU.addPreserved<DominatorTreeWrapperPass>(); 4433 AU.addPreserved<AAResultsWrapperPass>(); 4434 AU.addPreserved<GlobalsAAWrapperPass>(); 4435 AU.setPreservesCFG(); 4436 } 4437 }; 4438 4439 } // end anonymous namespace 4440 4441 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4442 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4443 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4444 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4445 auto *AA = &AM.getResult<AAManager>(F); 4446 auto *LI = &AM.getResult<LoopAnalysis>(F); 4447 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4448 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4449 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4450 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4451 4452 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4453 if (!Changed) 4454 return PreservedAnalyses::all(); 4455 4456 PreservedAnalyses PA; 4457 PA.preserveSet<CFGAnalyses>(); 4458 PA.preserve<AAManager>(); 4459 PA.preserve<GlobalsAA>(); 4460 return PA; 4461 } 4462 4463 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4464 TargetTransformInfo *TTI_, 4465 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4466 LoopInfo *LI_, DominatorTree *DT_, 4467 AssumptionCache *AC_, DemandedBits *DB_, 4468 OptimizationRemarkEmitter *ORE_) { 4469 SE = SE_; 4470 TTI = TTI_; 4471 TLI = TLI_; 4472 AA = AA_; 4473 LI = LI_; 4474 DT = DT_; 4475 AC = AC_; 4476 DB = DB_; 4477 DL = &F.getParent()->getDataLayout(); 4478 4479 Stores.clear(); 4480 GEPs.clear(); 4481 bool Changed = false; 4482 4483 // If the target claims to have no vector registers don't attempt 4484 // vectorization. 4485 if (!TTI->getNumberOfRegisters(true)) 4486 return false; 4487 4488 // Don't vectorize when the attribute NoImplicitFloat is used. 4489 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4490 return false; 4491 4492 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4493 4494 // Use the bottom up slp vectorizer to construct chains that start with 4495 // store instructions. 4496 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4497 4498 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4499 // delete instructions. 4500 4501 // Scan the blocks in the function in post order. 4502 for (auto BB : post_order(&F.getEntryBlock())) { 4503 collectSeedInstructions(BB); 4504 4505 // Vectorize trees that end at stores. 4506 if (!Stores.empty()) { 4507 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4508 << " underlying objects.\n"); 4509 Changed |= vectorizeStoreChains(R); 4510 } 4511 4512 // Vectorize trees that end at reductions. 4513 Changed |= vectorizeChainsInBlock(BB, R); 4514 4515 // Vectorize the index computations of getelementptr instructions. This 4516 // is primarily intended to catch gather-like idioms ending at 4517 // non-consecutive loads. 4518 if (!GEPs.empty()) { 4519 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4520 << " underlying objects.\n"); 4521 Changed |= vectorizeGEPIndices(BB, R); 4522 } 4523 } 4524 4525 if (Changed) { 4526 R.optimizeGatherSequence(); 4527 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4528 DEBUG(verifyFunction(F)); 4529 } 4530 return Changed; 4531 } 4532 4533 /// \brief Check that the Values in the slice in VL array are still existent in 4534 /// the WeakTrackingVH array. 4535 /// Vectorization of part of the VL array may cause later values in the VL array 4536 /// to become invalid. We track when this has happened in the WeakTrackingVH 4537 /// array. 4538 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4539 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4540 unsigned SliceSize) { 4541 VL = VL.slice(SliceBegin, SliceSize); 4542 VH = VH.slice(SliceBegin, SliceSize); 4543 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4544 } 4545 4546 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4547 unsigned VecRegSize) { 4548 const unsigned ChainLen = Chain.size(); 4549 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4550 << "\n"); 4551 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4552 const unsigned VF = VecRegSize / Sz; 4553 4554 if (!isPowerOf2_32(Sz) || VF < 2) 4555 return false; 4556 4557 // Keep track of values that were deleted by vectorizing in the loop below. 4558 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4559 4560 bool Changed = false; 4561 // Look for profitable vectorizable trees at all offsets, starting at zero. 4562 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4563 4564 // Check that a previous iteration of this loop did not delete the Value. 4565 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4566 continue; 4567 4568 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4569 << "\n"); 4570 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4571 4572 R.buildTree(Operands); 4573 if (R.isTreeTinyAndNotFullyVectorizable()) 4574 continue; 4575 4576 R.computeMinimumValueSizes(); 4577 4578 int Cost = R.getTreeCost(); 4579 4580 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4581 if (Cost < -SLPCostThreshold) { 4582 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4583 4584 using namespace ore; 4585 4586 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4587 cast<StoreInst>(Chain[i])) 4588 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4589 << " and with tree size " 4590 << NV("TreeSize", R.getTreeSize())); 4591 4592 R.vectorizeTree(); 4593 4594 // Move to the next bundle. 4595 i += VF - 1; 4596 Changed = true; 4597 } 4598 } 4599 4600 return Changed; 4601 } 4602 4603 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4604 BoUpSLP &R) { 4605 SetVector<StoreInst *> Heads; 4606 SmallDenseSet<StoreInst *> Tails; 4607 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4608 4609 // We may run into multiple chains that merge into a single chain. We mark the 4610 // stores that we vectorized so that we don't visit the same store twice. 4611 BoUpSLP::ValueSet VectorizedStores; 4612 bool Changed = false; 4613 4614 // Do a quadratic search on all of the given stores in reverse order and find 4615 // all of the pairs of stores that follow each other. 4616 SmallVector<unsigned, 16> IndexQueue; 4617 unsigned E = Stores.size(); 4618 IndexQueue.resize(E - 1); 4619 for (unsigned I = E; I > 0; --I) { 4620 unsigned Idx = I - 1; 4621 // If a store has multiple consecutive store candidates, search Stores 4622 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4623 // This is because usually pairing with immediate succeeding or preceding 4624 // candidate create the best chance to find slp vectorization opportunity. 4625 unsigned Offset = 1; 4626 unsigned Cnt = 0; 4627 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4628 if (Idx >= Offset) { 4629 IndexQueue[Cnt] = Idx - Offset; 4630 ++Cnt; 4631 } 4632 if (Idx + Offset < E) { 4633 IndexQueue[Cnt] = Idx + Offset; 4634 ++Cnt; 4635 } 4636 } 4637 4638 for (auto K : IndexQueue) { 4639 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4640 Tails.insert(Stores[Idx]); 4641 Heads.insert(Stores[K]); 4642 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4643 break; 4644 } 4645 } 4646 } 4647 4648 // For stores that start but don't end a link in the chain: 4649 for (auto *SI : llvm::reverse(Heads)) { 4650 if (Tails.count(SI)) 4651 continue; 4652 4653 // We found a store instr that starts a chain. Now follow the chain and try 4654 // to vectorize it. 4655 BoUpSLP::ValueList Operands; 4656 StoreInst *I = SI; 4657 // Collect the chain into a list. 4658 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4659 Operands.push_back(I); 4660 // Move to the next value in the chain. 4661 I = ConsecutiveChain[I]; 4662 } 4663 4664 // FIXME: Is division-by-2 the correct step? Should we assert that the 4665 // register size is a power-of-2? 4666 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4667 Size /= 2) { 4668 if (vectorizeStoreChain(Operands, R, Size)) { 4669 // Mark the vectorized stores so that we don't vectorize them again. 4670 VectorizedStores.insert(Operands.begin(), Operands.end()); 4671 Changed = true; 4672 break; 4673 } 4674 } 4675 } 4676 4677 return Changed; 4678 } 4679 4680 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4681 // Initialize the collections. We will make a single pass over the block. 4682 Stores.clear(); 4683 GEPs.clear(); 4684 4685 // Visit the store and getelementptr instructions in BB and organize them in 4686 // Stores and GEPs according to the underlying objects of their pointer 4687 // operands. 4688 for (Instruction &I : *BB) { 4689 // Ignore store instructions that are volatile or have a pointer operand 4690 // that doesn't point to a scalar type. 4691 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4692 if (!SI->isSimple()) 4693 continue; 4694 if (!isValidElementType(SI->getValueOperand()->getType())) 4695 continue; 4696 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4697 } 4698 4699 // Ignore getelementptr instructions that have more than one index, a 4700 // constant index, or a pointer operand that doesn't point to a scalar 4701 // type. 4702 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4703 auto Idx = GEP->idx_begin()->get(); 4704 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4705 continue; 4706 if (!isValidElementType(Idx->getType())) 4707 continue; 4708 if (GEP->getType()->isVectorTy()) 4709 continue; 4710 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4711 } 4712 } 4713 } 4714 4715 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4716 if (!A || !B) 4717 return false; 4718 Value *VL[] = { A, B }; 4719 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4720 } 4721 4722 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4723 int UserCost, bool AllowReorder) { 4724 if (VL.size() < 2) 4725 return false; 4726 4727 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4728 << ".\n"); 4729 4730 // Check that all of the parts are scalar instructions of the same type. 4731 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4732 if (!I0) 4733 return false; 4734 4735 unsigned Opcode0 = I0->getOpcode(); 4736 4737 unsigned Sz = R.getVectorElementSize(I0); 4738 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4739 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4740 if (MaxVF < 2) { 4741 R.getORE()->emit([&]() { 4742 return OptimizationRemarkMissed( 4743 SV_NAME, "SmallVF", I0) 4744 << "Cannot SLP vectorize list: vectorization factor " 4745 << "less than 2 is not supported"; 4746 }); 4747 return false; 4748 } 4749 4750 for (Value *V : VL) { 4751 Type *Ty = V->getType(); 4752 if (!isValidElementType(Ty)) { 4753 // NOTE: the following will give user internal llvm type name, which may not be useful 4754 R.getORE()->emit([&]() { 4755 std::string type_str; 4756 llvm::raw_string_ostream rso(type_str); 4757 Ty->print(rso); 4758 return OptimizationRemarkMissed( 4759 SV_NAME, "UnsupportedType", I0) 4760 << "Cannot SLP vectorize list: type " 4761 << rso.str() + " is unsupported by vectorizer"; 4762 }); 4763 return false; 4764 } 4765 Instruction *Inst = dyn_cast<Instruction>(V); 4766 4767 if (!Inst) 4768 return false; 4769 if (Inst->getOpcode() != Opcode0) { 4770 R.getORE()->emit([&]() { 4771 return OptimizationRemarkMissed( 4772 SV_NAME, "InequableTypes", I0) 4773 << "Cannot SLP vectorize list: not all of the " 4774 << "parts of scalar instructions are of the same type: " 4775 << ore::NV("Instruction1Opcode", I0) << " and " 4776 << ore::NV("Instruction2Opcode", Inst); 4777 }); 4778 return false; 4779 } 4780 } 4781 4782 bool Changed = false; 4783 bool CandidateFound = false; 4784 int MinCost = SLPCostThreshold; 4785 4786 // Keep track of values that were deleted by vectorizing in the loop below. 4787 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4788 4789 unsigned NextInst = 0, MaxInst = VL.size(); 4790 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4791 VF /= 2) { 4792 // No actual vectorization should happen, if number of parts is the same as 4793 // provided vectorization factor (i.e. the scalar type is used for vector 4794 // code during codegen). 4795 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4796 if (TTI->getNumberOfParts(VecTy) == VF) 4797 continue; 4798 for (unsigned I = NextInst; I < MaxInst; ++I) { 4799 unsigned OpsWidth = 0; 4800 4801 if (I + VF > MaxInst) 4802 OpsWidth = MaxInst - I; 4803 else 4804 OpsWidth = VF; 4805 4806 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4807 break; 4808 4809 // Check that a previous iteration of this loop did not delete the Value. 4810 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4811 continue; 4812 4813 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4814 << "\n"); 4815 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4816 4817 R.buildTree(Ops); 4818 // TODO: check if we can allow reordering for more cases. 4819 if (AllowReorder && R.shouldReorder()) { 4820 // Conceptually, there is nothing actually preventing us from trying to 4821 // reorder a larger list. In fact, we do exactly this when vectorizing 4822 // reductions. However, at this point, we only expect to get here when 4823 // there are exactly two operations. 4824 assert(Ops.size() == 2); 4825 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4826 R.buildTree(ReorderedOps, None); 4827 } 4828 if (R.isTreeTinyAndNotFullyVectorizable()) 4829 continue; 4830 4831 R.computeMinimumValueSizes(); 4832 int Cost = R.getTreeCost() - UserCost; 4833 CandidateFound = true; 4834 MinCost = std::min(MinCost, Cost); 4835 4836 if (Cost < -SLPCostThreshold) { 4837 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4838 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4839 cast<Instruction>(Ops[0])) 4840 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4841 << " and with tree size " 4842 << ore::NV("TreeSize", R.getTreeSize())); 4843 4844 R.vectorizeTree(); 4845 // Move to the next bundle. 4846 I += VF - 1; 4847 NextInst = I + 1; 4848 Changed = true; 4849 } 4850 } 4851 } 4852 4853 if (!Changed && CandidateFound) { 4854 R.getORE()->emit([&]() { 4855 return OptimizationRemarkMissed( 4856 SV_NAME, "NotBeneficial", I0) 4857 << "List vectorization was possible but not beneficial with cost " 4858 << ore::NV("Cost", MinCost) << " >= " 4859 << ore::NV("Treshold", -SLPCostThreshold); 4860 }); 4861 } else if (!Changed) { 4862 R.getORE()->emit([&]() { 4863 return OptimizationRemarkMissed( 4864 SV_NAME, "NotPossible", I0) 4865 << "Cannot SLP vectorize list: vectorization was impossible" 4866 << " with available vectorization factors"; 4867 }); 4868 } 4869 return Changed; 4870 } 4871 4872 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4873 if (!I) 4874 return false; 4875 4876 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4877 return false; 4878 4879 Value *P = I->getParent(); 4880 4881 // Vectorize in current basic block only. 4882 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4883 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4884 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4885 return false; 4886 4887 // Try to vectorize V. 4888 if (tryToVectorizePair(Op0, Op1, R)) 4889 return true; 4890 4891 auto *A = dyn_cast<BinaryOperator>(Op0); 4892 auto *B = dyn_cast<BinaryOperator>(Op1); 4893 // Try to skip B. 4894 if (B && B->hasOneUse()) { 4895 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4896 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4897 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4898 return true; 4899 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4900 return true; 4901 } 4902 4903 // Try to skip A. 4904 if (A && A->hasOneUse()) { 4905 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4906 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4907 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4908 return true; 4909 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4910 return true; 4911 } 4912 return false; 4913 } 4914 4915 /// \brief Generate a shuffle mask to be used in a reduction tree. 4916 /// 4917 /// \param VecLen The length of the vector to be reduced. 4918 /// \param NumEltsToRdx The number of elements that should be reduced in the 4919 /// vector. 4920 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4921 /// reduction. A pairwise reduction will generate a mask of 4922 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4923 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4924 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4925 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4926 bool IsPairwise, bool IsLeft, 4927 IRBuilder<> &Builder) { 4928 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4929 4930 SmallVector<Constant *, 32> ShuffleMask( 4931 VecLen, UndefValue::get(Builder.getInt32Ty())); 4932 4933 if (IsPairwise) 4934 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4935 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4936 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4937 else 4938 // Move the upper half of the vector to the lower half. 4939 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4940 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4941 4942 return ConstantVector::get(ShuffleMask); 4943 } 4944 4945 namespace { 4946 4947 /// Model horizontal reductions. 4948 /// 4949 /// A horizontal reduction is a tree of reduction operations (currently add and 4950 /// fadd) that has operations that can be put into a vector as its leaf. 4951 /// For example, this tree: 4952 /// 4953 /// mul mul mul mul 4954 /// \ / \ / 4955 /// + + 4956 /// \ / 4957 /// + 4958 /// This tree has "mul" as its reduced values and "+" as its reduction 4959 /// operations. A reduction might be feeding into a store or a binary operation 4960 /// feeding a phi. 4961 /// ... 4962 /// \ / 4963 /// + 4964 /// | 4965 /// phi += 4966 /// 4967 /// Or: 4968 /// ... 4969 /// \ / 4970 /// + 4971 /// | 4972 /// *p = 4973 /// 4974 class HorizontalReduction { 4975 using ReductionOpsType = SmallVector<Value *, 16>; 4976 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 4977 ReductionOpsListType ReductionOps; 4978 SmallVector<Value *, 32> ReducedVals; 4979 // Use map vector to make stable output. 4980 MapVector<Instruction *, Value *> ExtraArgs; 4981 4982 /// Kind of the reduction data. 4983 enum ReductionKind { 4984 RK_None, /// Not a reduction. 4985 RK_Arithmetic, /// Binary reduction data. 4986 RK_Min, /// Minimum reduction data. 4987 RK_UMin, /// Unsigned minimum reduction data. 4988 RK_Max, /// Maximum reduction data. 4989 RK_UMax, /// Unsigned maximum reduction data. 4990 }; 4991 4992 /// Contains info about operation, like its opcode, left and right operands. 4993 class OperationData { 4994 /// Opcode of the instruction. 4995 unsigned Opcode = 0; 4996 4997 /// Left operand of the reduction operation. 4998 Value *LHS = nullptr; 4999 5000 /// Right operand of the reduction operation. 5001 Value *RHS = nullptr; 5002 5003 /// Kind of the reduction operation. 5004 ReductionKind Kind = RK_None; 5005 5006 /// True if float point min/max reduction has no NaNs. 5007 bool NoNaN = false; 5008 5009 /// Checks if the reduction operation can be vectorized. 5010 bool isVectorizable() const { 5011 return LHS && RHS && 5012 // We currently only support adds && min/max reductions. 5013 ((Kind == RK_Arithmetic && 5014 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5015 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5016 (Kind == RK_Min || Kind == RK_Max)) || 5017 (Opcode == Instruction::ICmp && 5018 (Kind == RK_UMin || Kind == RK_UMax))); 5019 } 5020 5021 /// Creates reduction operation with the current opcode. 5022 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5023 assert(isVectorizable() && 5024 "Expected add|fadd or min/max reduction operation."); 5025 Value *Cmp; 5026 switch (Kind) { 5027 case RK_Arithmetic: 5028 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5029 Name); 5030 case RK_Min: 5031 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5032 : Builder.CreateFCmpOLT(LHS, RHS); 5033 break; 5034 case RK_Max: 5035 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5036 : Builder.CreateFCmpOGT(LHS, RHS); 5037 break; 5038 case RK_UMin: 5039 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5040 Cmp = Builder.CreateICmpULT(LHS, RHS); 5041 break; 5042 case RK_UMax: 5043 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5044 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5045 break; 5046 case RK_None: 5047 llvm_unreachable("Unknown reduction operation."); 5048 } 5049 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5050 } 5051 5052 public: 5053 explicit OperationData() = default; 5054 5055 /// Construction for reduced values. They are identified by opcode only and 5056 /// don't have associated LHS/RHS values. 5057 explicit OperationData(Value *V) { 5058 if (auto *I = dyn_cast<Instruction>(V)) 5059 Opcode = I->getOpcode(); 5060 } 5061 5062 /// Constructor for reduction operations with opcode and its left and 5063 /// right operands. 5064 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5065 bool NoNaN = false) 5066 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5067 assert(Kind != RK_None && "One of the reduction operations is expected."); 5068 } 5069 5070 explicit operator bool() const { return Opcode; } 5071 5072 /// Get the index of the first operand. 5073 unsigned getFirstOperandIndex() const { 5074 assert(!!*this && "The opcode is not set."); 5075 switch (Kind) { 5076 case RK_Min: 5077 case RK_UMin: 5078 case RK_Max: 5079 case RK_UMax: 5080 return 1; 5081 case RK_Arithmetic: 5082 case RK_None: 5083 break; 5084 } 5085 return 0; 5086 } 5087 5088 /// Total number of operands in the reduction operation. 5089 unsigned getNumberOfOperands() const { 5090 assert(Kind != RK_None && !!*this && LHS && RHS && 5091 "Expected reduction operation."); 5092 switch (Kind) { 5093 case RK_Arithmetic: 5094 return 2; 5095 case RK_Min: 5096 case RK_UMin: 5097 case RK_Max: 5098 case RK_UMax: 5099 return 3; 5100 case RK_None: 5101 break; 5102 } 5103 llvm_unreachable("Reduction kind is not set"); 5104 } 5105 5106 /// Checks if the operation has the same parent as \p P. 5107 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5108 assert(Kind != RK_None && !!*this && LHS && RHS && 5109 "Expected reduction operation."); 5110 if (!IsRedOp) 5111 return I->getParent() == P; 5112 switch (Kind) { 5113 case RK_Arithmetic: 5114 // Arithmetic reduction operation must be used once only. 5115 return I->getParent() == P; 5116 case RK_Min: 5117 case RK_UMin: 5118 case RK_Max: 5119 case RK_UMax: { 5120 // SelectInst must be used twice while the condition op must have single 5121 // use only. 5122 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5123 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5124 } 5125 case RK_None: 5126 break; 5127 } 5128 llvm_unreachable("Reduction kind is not set"); 5129 } 5130 /// Expected number of uses for reduction operations/reduced values. 5131 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5132 assert(Kind != RK_None && !!*this && LHS && RHS && 5133 "Expected reduction operation."); 5134 switch (Kind) { 5135 case RK_Arithmetic: 5136 return I->hasOneUse(); 5137 case RK_Min: 5138 case RK_UMin: 5139 case RK_Max: 5140 case RK_UMax: 5141 return I->hasNUses(2) && 5142 (!IsReductionOp || 5143 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5144 case RK_None: 5145 break; 5146 } 5147 llvm_unreachable("Reduction kind is not set"); 5148 } 5149 5150 /// Initializes the list of reduction operations. 5151 void initReductionOps(ReductionOpsListType &ReductionOps) { 5152 assert(Kind != RK_None && !!*this && LHS && RHS && 5153 "Expected reduction operation."); 5154 switch (Kind) { 5155 case RK_Arithmetic: 5156 ReductionOps.assign(1, ReductionOpsType()); 5157 break; 5158 case RK_Min: 5159 case RK_UMin: 5160 case RK_Max: 5161 case RK_UMax: 5162 ReductionOps.assign(2, ReductionOpsType()); 5163 break; 5164 case RK_None: 5165 llvm_unreachable("Reduction kind is not set"); 5166 } 5167 } 5168 /// Add all reduction operations for the reduction instruction \p I. 5169 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5170 assert(Kind != RK_None && !!*this && LHS && RHS && 5171 "Expected reduction operation."); 5172 switch (Kind) { 5173 case RK_Arithmetic: 5174 ReductionOps[0].emplace_back(I); 5175 break; 5176 case RK_Min: 5177 case RK_UMin: 5178 case RK_Max: 5179 case RK_UMax: 5180 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5181 ReductionOps[1].emplace_back(I); 5182 break; 5183 case RK_None: 5184 llvm_unreachable("Reduction kind is not set"); 5185 } 5186 } 5187 5188 /// Checks if instruction is associative and can be vectorized. 5189 bool isAssociative(Instruction *I) const { 5190 assert(Kind != RK_None && *this && LHS && RHS && 5191 "Expected reduction operation."); 5192 switch (Kind) { 5193 case RK_Arithmetic: 5194 return I->isAssociative(); 5195 case RK_Min: 5196 case RK_Max: 5197 return Opcode == Instruction::ICmp || 5198 cast<Instruction>(I->getOperand(0))->isFast(); 5199 case RK_UMin: 5200 case RK_UMax: 5201 assert(Opcode == Instruction::ICmp && 5202 "Only integer compare operation is expected."); 5203 return true; 5204 case RK_None: 5205 break; 5206 } 5207 llvm_unreachable("Reduction kind is not set"); 5208 } 5209 5210 /// Checks if the reduction operation can be vectorized. 5211 bool isVectorizable(Instruction *I) const { 5212 return isVectorizable() && isAssociative(I); 5213 } 5214 5215 /// Checks if two operation data are both a reduction op or both a reduced 5216 /// value. 5217 bool operator==(const OperationData &OD) { 5218 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5219 "One of the comparing operations is incorrect."); 5220 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5221 } 5222 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5223 void clear() { 5224 Opcode = 0; 5225 LHS = nullptr; 5226 RHS = nullptr; 5227 Kind = RK_None; 5228 NoNaN = false; 5229 } 5230 5231 /// Get the opcode of the reduction operation. 5232 unsigned getOpcode() const { 5233 assert(isVectorizable() && "Expected vectorizable operation."); 5234 return Opcode; 5235 } 5236 5237 /// Get kind of reduction data. 5238 ReductionKind getKind() const { return Kind; } 5239 Value *getLHS() const { return LHS; } 5240 Value *getRHS() const { return RHS; } 5241 Type *getConditionType() const { 5242 switch (Kind) { 5243 case RK_Arithmetic: 5244 return nullptr; 5245 case RK_Min: 5246 case RK_Max: 5247 case RK_UMin: 5248 case RK_UMax: 5249 return CmpInst::makeCmpResultType(LHS->getType()); 5250 case RK_None: 5251 break; 5252 } 5253 llvm_unreachable("Reduction kind is not set"); 5254 } 5255 5256 /// Creates reduction operation with the current opcode with the IR flags 5257 /// from \p ReductionOps. 5258 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5259 const ReductionOpsListType &ReductionOps) const { 5260 assert(isVectorizable() && 5261 "Expected add|fadd or min/max reduction operation."); 5262 auto *Op = createOp(Builder, Name); 5263 switch (Kind) { 5264 case RK_Arithmetic: 5265 propagateIRFlags(Op, ReductionOps[0]); 5266 return Op; 5267 case RK_Min: 5268 case RK_Max: 5269 case RK_UMin: 5270 case RK_UMax: 5271 if (auto *SI = dyn_cast<SelectInst>(Op)) 5272 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5273 propagateIRFlags(Op, ReductionOps[1]); 5274 return Op; 5275 case RK_None: 5276 break; 5277 } 5278 llvm_unreachable("Unknown reduction operation."); 5279 } 5280 /// Creates reduction operation with the current opcode with the IR flags 5281 /// from \p I. 5282 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5283 Instruction *I) const { 5284 assert(isVectorizable() && 5285 "Expected add|fadd or min/max reduction operation."); 5286 auto *Op = createOp(Builder, Name); 5287 switch (Kind) { 5288 case RK_Arithmetic: 5289 propagateIRFlags(Op, I); 5290 return Op; 5291 case RK_Min: 5292 case RK_Max: 5293 case RK_UMin: 5294 case RK_UMax: 5295 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5296 propagateIRFlags(SI->getCondition(), 5297 cast<SelectInst>(I)->getCondition()); 5298 } 5299 propagateIRFlags(Op, I); 5300 return Op; 5301 case RK_None: 5302 break; 5303 } 5304 llvm_unreachable("Unknown reduction operation."); 5305 } 5306 5307 TargetTransformInfo::ReductionFlags getFlags() const { 5308 TargetTransformInfo::ReductionFlags Flags; 5309 Flags.NoNaN = NoNaN; 5310 switch (Kind) { 5311 case RK_Arithmetic: 5312 break; 5313 case RK_Min: 5314 Flags.IsSigned = Opcode == Instruction::ICmp; 5315 Flags.IsMaxOp = false; 5316 break; 5317 case RK_Max: 5318 Flags.IsSigned = Opcode == Instruction::ICmp; 5319 Flags.IsMaxOp = true; 5320 break; 5321 case RK_UMin: 5322 Flags.IsSigned = false; 5323 Flags.IsMaxOp = false; 5324 break; 5325 case RK_UMax: 5326 Flags.IsSigned = false; 5327 Flags.IsMaxOp = true; 5328 break; 5329 case RK_None: 5330 llvm_unreachable("Reduction kind is not set"); 5331 } 5332 return Flags; 5333 } 5334 }; 5335 5336 Instruction *ReductionRoot = nullptr; 5337 5338 /// The operation data of the reduction operation. 5339 OperationData ReductionData; 5340 5341 /// The operation data of the values we perform a reduction on. 5342 OperationData ReducedValueData; 5343 5344 /// Should we model this reduction as a pairwise reduction tree or a tree that 5345 /// splits the vector in halves and adds those halves. 5346 bool IsPairwiseReduction = false; 5347 5348 /// Checks if the ParentStackElem.first should be marked as a reduction 5349 /// operation with an extra argument or as extra argument itself. 5350 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5351 Value *ExtraArg) { 5352 if (ExtraArgs.count(ParentStackElem.first)) { 5353 ExtraArgs[ParentStackElem.first] = nullptr; 5354 // We ran into something like: 5355 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5356 // The whole ParentStackElem.first should be considered as an extra value 5357 // in this case. 5358 // Do not perform analysis of remaining operands of ParentStackElem.first 5359 // instruction, this whole instruction is an extra argument. 5360 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5361 } else { 5362 // We ran into something like: 5363 // ParentStackElem.first += ... + ExtraArg + ... 5364 ExtraArgs[ParentStackElem.first] = ExtraArg; 5365 } 5366 } 5367 5368 static OperationData getOperationData(Value *V) { 5369 if (!V) 5370 return OperationData(); 5371 5372 Value *LHS; 5373 Value *RHS; 5374 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5375 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5376 RK_Arithmetic); 5377 } 5378 if (auto *Select = dyn_cast<SelectInst>(V)) { 5379 // Look for a min/max pattern. 5380 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5381 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5382 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5383 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5384 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5385 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5386 return OperationData( 5387 Instruction::FCmp, LHS, RHS, RK_Min, 5388 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5389 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5390 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5391 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5392 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5393 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5394 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5395 return OperationData( 5396 Instruction::FCmp, LHS, RHS, RK_Max, 5397 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5398 } 5399 } 5400 return OperationData(V); 5401 } 5402 5403 public: 5404 HorizontalReduction() = default; 5405 5406 /// \brief Try to find a reduction tree. 5407 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5408 assert((!Phi || is_contained(Phi->operands(), B)) && 5409 "Thi phi needs to use the binary operator"); 5410 5411 ReductionData = getOperationData(B); 5412 5413 // We could have a initial reductions that is not an add. 5414 // r *= v1 + v2 + v3 + v4 5415 // In such a case start looking for a tree rooted in the first '+'. 5416 if (Phi) { 5417 if (ReductionData.getLHS() == Phi) { 5418 Phi = nullptr; 5419 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5420 ReductionData = getOperationData(B); 5421 } else if (ReductionData.getRHS() == Phi) { 5422 Phi = nullptr; 5423 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5424 ReductionData = getOperationData(B); 5425 } 5426 } 5427 5428 if (!ReductionData.isVectorizable(B)) 5429 return false; 5430 5431 Type *Ty = B->getType(); 5432 if (!isValidElementType(Ty)) 5433 return false; 5434 5435 ReducedValueData.clear(); 5436 ReductionRoot = B; 5437 5438 // Post order traverse the reduction tree starting at B. We only handle true 5439 // trees containing only binary operators. 5440 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5441 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5442 ReductionData.initReductionOps(ReductionOps); 5443 while (!Stack.empty()) { 5444 Instruction *TreeN = Stack.back().first; 5445 unsigned EdgeToVist = Stack.back().second++; 5446 OperationData OpData = getOperationData(TreeN); 5447 bool IsReducedValue = OpData != ReductionData; 5448 5449 // Postorder vist. 5450 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5451 if (IsReducedValue) 5452 ReducedVals.push_back(TreeN); 5453 else { 5454 auto I = ExtraArgs.find(TreeN); 5455 if (I != ExtraArgs.end() && !I->second) { 5456 // Check if TreeN is an extra argument of its parent operation. 5457 if (Stack.size() <= 1) { 5458 // TreeN can't be an extra argument as it is a root reduction 5459 // operation. 5460 return false; 5461 } 5462 // Yes, TreeN is an extra argument, do not add it to a list of 5463 // reduction operations. 5464 // Stack[Stack.size() - 2] always points to the parent operation. 5465 markExtraArg(Stack[Stack.size() - 2], TreeN); 5466 ExtraArgs.erase(TreeN); 5467 } else 5468 ReductionData.addReductionOps(TreeN, ReductionOps); 5469 } 5470 // Retract. 5471 Stack.pop_back(); 5472 continue; 5473 } 5474 5475 // Visit left or right. 5476 Value *NextV = TreeN->getOperand(EdgeToVist); 5477 if (NextV != Phi) { 5478 auto *I = dyn_cast<Instruction>(NextV); 5479 OpData = getOperationData(I); 5480 // Continue analysis if the next operand is a reduction operation or 5481 // (possibly) a reduced value. If the reduced value opcode is not set, 5482 // the first met operation != reduction operation is considered as the 5483 // reduced value class. 5484 if (I && (!ReducedValueData || OpData == ReducedValueData || 5485 OpData == ReductionData)) { 5486 const bool IsReductionOperation = OpData == ReductionData; 5487 // Only handle trees in the current basic block. 5488 if (!ReductionData.hasSameParent(I, B->getParent(), 5489 IsReductionOperation)) { 5490 // I is an extra argument for TreeN (its parent operation). 5491 markExtraArg(Stack.back(), I); 5492 continue; 5493 } 5494 5495 // Each tree node needs to have minimal number of users except for the 5496 // ultimate reduction. 5497 if (!ReductionData.hasRequiredNumberOfUses(I, 5498 OpData == ReductionData) && 5499 I != B) { 5500 // I is an extra argument for TreeN (its parent operation). 5501 markExtraArg(Stack.back(), I); 5502 continue; 5503 } 5504 5505 if (IsReductionOperation) { 5506 // We need to be able to reassociate the reduction operations. 5507 if (!OpData.isAssociative(I)) { 5508 // I is an extra argument for TreeN (its parent operation). 5509 markExtraArg(Stack.back(), I); 5510 continue; 5511 } 5512 } else if (ReducedValueData && 5513 ReducedValueData != OpData) { 5514 // Make sure that the opcodes of the operations that we are going to 5515 // reduce match. 5516 // I is an extra argument for TreeN (its parent operation). 5517 markExtraArg(Stack.back(), I); 5518 continue; 5519 } else if (!ReducedValueData) 5520 ReducedValueData = OpData; 5521 5522 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5523 continue; 5524 } 5525 } 5526 // NextV is an extra argument for TreeN (its parent operation). 5527 markExtraArg(Stack.back(), NextV); 5528 } 5529 return true; 5530 } 5531 5532 /// \brief Attempt to vectorize the tree found by 5533 /// matchAssociativeReduction. 5534 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5535 if (ReducedVals.empty()) 5536 return false; 5537 5538 // If there is a sufficient number of reduction values, reduce 5539 // to a nearby power-of-2. Can safely generate oversized 5540 // vectors and rely on the backend to split them to legal sizes. 5541 unsigned NumReducedVals = ReducedVals.size(); 5542 if (NumReducedVals < 4) 5543 return false; 5544 5545 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5546 5547 Value *VectorizedTree = nullptr; 5548 IRBuilder<> Builder(ReductionRoot); 5549 FastMathFlags Unsafe; 5550 Unsafe.setFast(); 5551 Builder.setFastMathFlags(Unsafe); 5552 unsigned i = 0; 5553 5554 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5555 // The same extra argument may be used several time, so log each attempt 5556 // to use it. 5557 for (auto &Pair : ExtraArgs) 5558 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5559 SmallVector<Value *, 16> IgnoreList; 5560 for (auto &V : ReductionOps) 5561 IgnoreList.append(V.begin(), V.end()); 5562 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5563 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5564 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5565 if (V.shouldReorder()) { 5566 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5567 V.buildTree(Reversed, ExternallyUsedValues, IgnoreList); 5568 } 5569 if (V.isTreeTinyAndNotFullyVectorizable()) 5570 break; 5571 5572 V.computeMinimumValueSizes(); 5573 5574 // Estimate cost. 5575 int Cost = 5576 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5577 if (Cost >= -SLPCostThreshold) { 5578 V.getORE()->emit([&]() { 5579 return OptimizationRemarkMissed( 5580 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5581 << "Vectorizing horizontal reduction is possible" 5582 << "but not beneficial with cost " 5583 << ore::NV("Cost", Cost) << " and threshold " 5584 << ore::NV("Threshold", -SLPCostThreshold); 5585 }); 5586 break; 5587 } 5588 5589 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5590 << ". (HorRdx)\n"); 5591 V.getORE()->emit([&]() { 5592 return OptimizationRemark( 5593 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5594 << "Vectorized horizontal reduction with cost " 5595 << ore::NV("Cost", Cost) << " and with tree size " 5596 << ore::NV("TreeSize", V.getTreeSize()); 5597 }); 5598 5599 // Vectorize a tree. 5600 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5601 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5602 5603 // Emit a reduction. 5604 Value *ReducedSubTree = 5605 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5606 if (VectorizedTree) { 5607 Builder.SetCurrentDebugLocation(Loc); 5608 OperationData VectReductionData(ReductionData.getOpcode(), 5609 VectorizedTree, ReducedSubTree, 5610 ReductionData.getKind()); 5611 VectorizedTree = 5612 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5613 } else 5614 VectorizedTree = ReducedSubTree; 5615 i += ReduxWidth; 5616 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5617 } 5618 5619 if (VectorizedTree) { 5620 // Finish the reduction. 5621 for (; i < NumReducedVals; ++i) { 5622 auto *I = cast<Instruction>(ReducedVals[i]); 5623 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5624 OperationData VectReductionData(ReductionData.getOpcode(), 5625 VectorizedTree, I, 5626 ReductionData.getKind()); 5627 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5628 } 5629 for (auto &Pair : ExternallyUsedValues) { 5630 assert(!Pair.second.empty() && 5631 "At least one DebugLoc must be inserted"); 5632 // Add each externally used value to the final reduction. 5633 for (auto *I : Pair.second) { 5634 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5635 OperationData VectReductionData(ReductionData.getOpcode(), 5636 VectorizedTree, Pair.first, 5637 ReductionData.getKind()); 5638 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5639 } 5640 } 5641 // Update users. 5642 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5643 } 5644 return VectorizedTree != nullptr; 5645 } 5646 5647 unsigned numReductionValues() const { 5648 return ReducedVals.size(); 5649 } 5650 5651 private: 5652 /// \brief Calculate the cost of a reduction. 5653 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5654 unsigned ReduxWidth) { 5655 Type *ScalarTy = FirstReducedVal->getType(); 5656 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5657 5658 int PairwiseRdxCost; 5659 int SplittingRdxCost; 5660 switch (ReductionData.getKind()) { 5661 case RK_Arithmetic: 5662 PairwiseRdxCost = 5663 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5664 /*IsPairwiseForm=*/true); 5665 SplittingRdxCost = 5666 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5667 /*IsPairwiseForm=*/false); 5668 break; 5669 case RK_Min: 5670 case RK_Max: 5671 case RK_UMin: 5672 case RK_UMax: { 5673 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5674 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5675 ReductionData.getKind() == RK_UMax; 5676 PairwiseRdxCost = 5677 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5678 /*IsPairwiseForm=*/true, IsUnsigned); 5679 SplittingRdxCost = 5680 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5681 /*IsPairwiseForm=*/false, IsUnsigned); 5682 break; 5683 } 5684 case RK_None: 5685 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5686 } 5687 5688 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5689 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5690 5691 int ScalarReduxCost; 5692 switch (ReductionData.getKind()) { 5693 case RK_Arithmetic: 5694 ScalarReduxCost = 5695 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5696 break; 5697 case RK_Min: 5698 case RK_Max: 5699 case RK_UMin: 5700 case RK_UMax: 5701 ScalarReduxCost = 5702 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5703 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5704 CmpInst::makeCmpResultType(ScalarTy)); 5705 break; 5706 case RK_None: 5707 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5708 } 5709 ScalarReduxCost *= (ReduxWidth - 1); 5710 5711 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5712 << " for reduction that starts with " << *FirstReducedVal 5713 << " (It is a " 5714 << (IsPairwiseReduction ? "pairwise" : "splitting") 5715 << " reduction)\n"); 5716 5717 return VecReduxCost - ScalarReduxCost; 5718 } 5719 5720 /// \brief Emit a horizontal reduction of the vectorized value. 5721 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5722 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5723 assert(VectorizedValue && "Need to have a vectorized tree node"); 5724 assert(isPowerOf2_32(ReduxWidth) && 5725 "We only handle power-of-two reductions for now"); 5726 5727 if (!IsPairwiseReduction) 5728 return createSimpleTargetReduction( 5729 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5730 ReductionData.getFlags(), ReductionOps.back()); 5731 5732 Value *TmpVec = VectorizedValue; 5733 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5734 Value *LeftMask = 5735 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5736 Value *RightMask = 5737 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5738 5739 Value *LeftShuf = Builder.CreateShuffleVector( 5740 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5741 Value *RightShuf = Builder.CreateShuffleVector( 5742 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5743 "rdx.shuf.r"); 5744 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5745 RightShuf, ReductionData.getKind()); 5746 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5747 } 5748 5749 // The result is in the first element of the vector. 5750 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5751 } 5752 }; 5753 5754 } // end anonymous namespace 5755 5756 /// \brief Recognize construction of vectors like 5757 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5758 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5759 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5760 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5761 /// starting from the last insertelement instruction. 5762 /// 5763 /// Returns true if it matches 5764 static bool findBuildVector(InsertElementInst *LastInsertElem, 5765 TargetTransformInfo *TTI, 5766 SmallVectorImpl<Value *> &BuildVectorOpds, 5767 int &UserCost) { 5768 UserCost = 0; 5769 Value *V = nullptr; 5770 do { 5771 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5772 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5773 LastInsertElem->getType(), 5774 CI->getZExtValue()); 5775 } 5776 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5777 V = LastInsertElem->getOperand(0); 5778 if (isa<UndefValue>(V)) 5779 break; 5780 LastInsertElem = dyn_cast<InsertElementInst>(V); 5781 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5782 return false; 5783 } while (true); 5784 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5785 return true; 5786 } 5787 5788 /// \brief Like findBuildVector, but looks for construction of aggregate. 5789 /// 5790 /// \return true if it matches. 5791 static bool findBuildAggregate(InsertValueInst *IV, 5792 SmallVectorImpl<Value *> &BuildVectorOpds) { 5793 Value *V; 5794 do { 5795 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5796 V = IV->getAggregateOperand(); 5797 if (isa<UndefValue>(V)) 5798 break; 5799 IV = dyn_cast<InsertValueInst>(V); 5800 if (!IV || !IV->hasOneUse()) 5801 return false; 5802 } while (true); 5803 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5804 return true; 5805 } 5806 5807 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5808 return V->getType() < V2->getType(); 5809 } 5810 5811 /// \brief Try and get a reduction value from a phi node. 5812 /// 5813 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5814 /// if they come from either \p ParentBB or a containing loop latch. 5815 /// 5816 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5817 /// if not possible. 5818 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5819 BasicBlock *ParentBB, LoopInfo *LI) { 5820 // There are situations where the reduction value is not dominated by the 5821 // reduction phi. Vectorizing such cases has been reported to cause 5822 // miscompiles. See PR25787. 5823 auto DominatedReduxValue = [&](Value *R) { 5824 return ( 5825 dyn_cast<Instruction>(R) && 5826 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5827 }; 5828 5829 Value *Rdx = nullptr; 5830 5831 // Return the incoming value if it comes from the same BB as the phi node. 5832 if (P->getIncomingBlock(0) == ParentBB) { 5833 Rdx = P->getIncomingValue(0); 5834 } else if (P->getIncomingBlock(1) == ParentBB) { 5835 Rdx = P->getIncomingValue(1); 5836 } 5837 5838 if (Rdx && DominatedReduxValue(Rdx)) 5839 return Rdx; 5840 5841 // Otherwise, check whether we have a loop latch to look at. 5842 Loop *BBL = LI->getLoopFor(ParentBB); 5843 if (!BBL) 5844 return nullptr; 5845 BasicBlock *BBLatch = BBL->getLoopLatch(); 5846 if (!BBLatch) 5847 return nullptr; 5848 5849 // There is a loop latch, return the incoming value if it comes from 5850 // that. This reduction pattern occasionally turns up. 5851 if (P->getIncomingBlock(0) == BBLatch) { 5852 Rdx = P->getIncomingValue(0); 5853 } else if (P->getIncomingBlock(1) == BBLatch) { 5854 Rdx = P->getIncomingValue(1); 5855 } 5856 5857 if (Rdx && DominatedReduxValue(Rdx)) 5858 return Rdx; 5859 5860 return nullptr; 5861 } 5862 5863 /// Attempt to reduce a horizontal reduction. 5864 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5865 /// with reduction operators \a Root (or one of its operands) in a basic block 5866 /// \a BB, then check if it can be done. If horizontal reduction is not found 5867 /// and root instruction is a binary operation, vectorization of the operands is 5868 /// attempted. 5869 /// \returns true if a horizontal reduction was matched and reduced or operands 5870 /// of one of the binary instruction were vectorized. 5871 /// \returns false if a horizontal reduction was not matched (or not possible) 5872 /// or no vectorization of any binary operation feeding \a Root instruction was 5873 /// performed. 5874 static bool tryToVectorizeHorReductionOrInstOperands( 5875 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5876 TargetTransformInfo *TTI, 5877 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5878 if (!ShouldVectorizeHor) 5879 return false; 5880 5881 if (!Root) 5882 return false; 5883 5884 if (Root->getParent() != BB || isa<PHINode>(Root)) 5885 return false; 5886 // Start analysis starting from Root instruction. If horizontal reduction is 5887 // found, try to vectorize it. If it is not a horizontal reduction or 5888 // vectorization is not possible or not effective, and currently analyzed 5889 // instruction is a binary operation, try to vectorize the operands, using 5890 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5891 // the same procedure considering each operand as a possible root of the 5892 // horizontal reduction. 5893 // Interrupt the process if the Root instruction itself was vectorized or all 5894 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5895 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5896 SmallSet<Value *, 8> VisitedInstrs; 5897 bool Res = false; 5898 while (!Stack.empty()) { 5899 Value *V; 5900 unsigned Level; 5901 std::tie(V, Level) = Stack.pop_back_val(); 5902 if (!V) 5903 continue; 5904 auto *Inst = dyn_cast<Instruction>(V); 5905 if (!Inst) 5906 continue; 5907 auto *BI = dyn_cast<BinaryOperator>(Inst); 5908 auto *SI = dyn_cast<SelectInst>(Inst); 5909 if (BI || SI) { 5910 HorizontalReduction HorRdx; 5911 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5912 if (HorRdx.tryToReduce(R, TTI)) { 5913 Res = true; 5914 // Set P to nullptr to avoid re-analysis of phi node in 5915 // matchAssociativeReduction function unless this is the root node. 5916 P = nullptr; 5917 continue; 5918 } 5919 } 5920 if (P && BI) { 5921 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5922 if (Inst == P) 5923 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5924 if (!Inst) { 5925 // Set P to nullptr to avoid re-analysis of phi node in 5926 // matchAssociativeReduction function unless this is the root node. 5927 P = nullptr; 5928 continue; 5929 } 5930 } 5931 } 5932 // Set P to nullptr to avoid re-analysis of phi node in 5933 // matchAssociativeReduction function unless this is the root node. 5934 P = nullptr; 5935 if (Vectorize(Inst, R)) { 5936 Res = true; 5937 continue; 5938 } 5939 5940 // Try to vectorize operands. 5941 // Continue analysis for the instruction from the same basic block only to 5942 // save compile time. 5943 if (++Level < RecursionMaxDepth) 5944 for (auto *Op : Inst->operand_values()) 5945 if (VisitedInstrs.insert(Op).second) 5946 if (auto *I = dyn_cast<Instruction>(Op)) 5947 if (!isa<PHINode>(I) && I->getParent() == BB) 5948 Stack.emplace_back(Op, Level); 5949 } 5950 return Res; 5951 } 5952 5953 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5954 BasicBlock *BB, BoUpSLP &R, 5955 TargetTransformInfo *TTI) { 5956 if (!V) 5957 return false; 5958 auto *I = dyn_cast<Instruction>(V); 5959 if (!I) 5960 return false; 5961 5962 if (!isa<BinaryOperator>(I)) 5963 P = nullptr; 5964 // Try to match and vectorize a horizontal reduction. 5965 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5966 return tryToVectorize(I, R); 5967 }; 5968 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5969 ExtraVectorization); 5970 } 5971 5972 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5973 BasicBlock *BB, BoUpSLP &R) { 5974 const DataLayout &DL = BB->getModule()->getDataLayout(); 5975 if (!R.canMapToVector(IVI->getType(), DL)) 5976 return false; 5977 5978 SmallVector<Value *, 16> BuildVectorOpds; 5979 if (!findBuildAggregate(IVI, BuildVectorOpds)) 5980 return false; 5981 5982 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5983 // Aggregate value is unlikely to be processed in vector register, we need to 5984 // extract scalars into scalar registers, so NeedExtraction is set true. 5985 return tryToVectorizeList(BuildVectorOpds, R); 5986 } 5987 5988 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5989 BasicBlock *BB, BoUpSLP &R) { 5990 int UserCost; 5991 SmallVector<Value *, 16> BuildVectorOpds; 5992 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 5993 (llvm::all_of(BuildVectorOpds, 5994 [](Value *V) { return isa<ExtractElementInst>(V); }) && 5995 isShuffle(BuildVectorOpds))) 5996 return false; 5997 5998 // Vectorize starting with the build vector operands ignoring the BuildVector 5999 // instructions for the purpose of scheduling and user extraction. 6000 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6001 } 6002 6003 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6004 BoUpSLP &R) { 6005 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6006 return true; 6007 6008 bool OpsChanged = false; 6009 for (int Idx = 0; Idx < 2; ++Idx) { 6010 OpsChanged |= 6011 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6012 } 6013 return OpsChanged; 6014 } 6015 6016 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6017 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6018 bool OpsChanged = false; 6019 for (auto &VH : reverse(Instructions)) { 6020 auto *I = dyn_cast_or_null<Instruction>(VH); 6021 if (!I) 6022 continue; 6023 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6024 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6025 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6026 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6027 else if (auto *CI = dyn_cast<CmpInst>(I)) 6028 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6029 } 6030 Instructions.clear(); 6031 return OpsChanged; 6032 } 6033 6034 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6035 bool Changed = false; 6036 SmallVector<Value *, 4> Incoming; 6037 SmallSet<Value *, 16> VisitedInstrs; 6038 6039 bool HaveVectorizedPhiNodes = true; 6040 while (HaveVectorizedPhiNodes) { 6041 HaveVectorizedPhiNodes = false; 6042 6043 // Collect the incoming values from the PHIs. 6044 Incoming.clear(); 6045 for (Instruction &I : *BB) { 6046 PHINode *P = dyn_cast<PHINode>(&I); 6047 if (!P) 6048 break; 6049 6050 if (!VisitedInstrs.count(P)) 6051 Incoming.push_back(P); 6052 } 6053 6054 // Sort by type. 6055 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6056 6057 // Try to vectorize elements base on their type. 6058 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6059 E = Incoming.end(); 6060 IncIt != E;) { 6061 6062 // Look for the next elements with the same type. 6063 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6064 while (SameTypeIt != E && 6065 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6066 VisitedInstrs.insert(*SameTypeIt); 6067 ++SameTypeIt; 6068 } 6069 6070 // Try to vectorize them. 6071 unsigned NumElts = (SameTypeIt - IncIt); 6072 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 6073 // The order in which the phi nodes appear in the program does not matter. 6074 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6075 // is done when there are exactly two elements since tryToVectorizeList 6076 // asserts that there are only two values when AllowReorder is true. 6077 bool AllowReorder = NumElts == 2; 6078 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6079 /*UserCost=*/0, AllowReorder)) { 6080 // Success start over because instructions might have been changed. 6081 HaveVectorizedPhiNodes = true; 6082 Changed = true; 6083 break; 6084 } 6085 6086 // Start over at the next instruction of a different type (or the end). 6087 IncIt = SameTypeIt; 6088 } 6089 } 6090 6091 VisitedInstrs.clear(); 6092 6093 SmallVector<WeakVH, 8> PostProcessInstructions; 6094 SmallDenseSet<Instruction *, 4> KeyNodes; 6095 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6096 // We may go through BB multiple times so skip the one we have checked. 6097 if (!VisitedInstrs.insert(&*it).second) { 6098 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6099 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6100 // We would like to start over since some instructions are deleted 6101 // and the iterator may become invalid value. 6102 Changed = true; 6103 it = BB->begin(); 6104 e = BB->end(); 6105 } 6106 continue; 6107 } 6108 6109 if (isa<DbgInfoIntrinsic>(it)) 6110 continue; 6111 6112 // Try to vectorize reductions that use PHINodes. 6113 if (PHINode *P = dyn_cast<PHINode>(it)) { 6114 // Check that the PHI is a reduction PHI. 6115 if (P->getNumIncomingValues() != 2) 6116 return Changed; 6117 6118 // Try to match and vectorize a horizontal reduction. 6119 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6120 TTI)) { 6121 Changed = true; 6122 it = BB->begin(); 6123 e = BB->end(); 6124 continue; 6125 } 6126 continue; 6127 } 6128 6129 // Ran into an instruction without users, like terminator, or function call 6130 // with ignored return value, store. Ignore unused instructions (basing on 6131 // instruction type, except for CallInst and InvokeInst). 6132 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6133 isa<InvokeInst>(it))) { 6134 KeyNodes.insert(&*it); 6135 bool OpsChanged = false; 6136 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6137 for (auto *V : it->operand_values()) { 6138 // Try to match and vectorize a horizontal reduction. 6139 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6140 } 6141 } 6142 // Start vectorization of post-process list of instructions from the 6143 // top-tree instructions to try to vectorize as many instructions as 6144 // possible. 6145 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6146 if (OpsChanged) { 6147 // We would like to start over since some instructions are deleted 6148 // and the iterator may become invalid value. 6149 Changed = true; 6150 it = BB->begin(); 6151 e = BB->end(); 6152 continue; 6153 } 6154 } 6155 6156 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6157 isa<InsertValueInst>(it)) 6158 PostProcessInstructions.push_back(&*it); 6159 6160 } 6161 6162 return Changed; 6163 } 6164 6165 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6166 auto Changed = false; 6167 for (auto &Entry : GEPs) { 6168 // If the getelementptr list has fewer than two elements, there's nothing 6169 // to do. 6170 if (Entry.second.size() < 2) 6171 continue; 6172 6173 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6174 << Entry.second.size() << ".\n"); 6175 6176 // We process the getelementptr list in chunks of 16 (like we do for 6177 // stores) to minimize compile-time. 6178 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6179 auto Len = std::min<unsigned>(BE - BI, 16); 6180 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6181 6182 // Initialize a set a candidate getelementptrs. Note that we use a 6183 // SetVector here to preserve program order. If the index computations 6184 // are vectorizable and begin with loads, we want to minimize the chance 6185 // of having to reorder them later. 6186 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6187 6188 // Some of the candidates may have already been vectorized after we 6189 // initially collected them. If so, the WeakTrackingVHs will have 6190 // nullified the 6191 // values, so remove them from the set of candidates. 6192 Candidates.remove(nullptr); 6193 6194 // Remove from the set of candidates all pairs of getelementptrs with 6195 // constant differences. Such getelementptrs are likely not good 6196 // candidates for vectorization in a bottom-up phase since one can be 6197 // computed from the other. We also ensure all candidate getelementptr 6198 // indices are unique. 6199 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6200 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6201 if (!Candidates.count(GEPI)) 6202 continue; 6203 auto *SCEVI = SE->getSCEV(GEPList[I]); 6204 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6205 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6206 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6207 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6208 Candidates.remove(GEPList[I]); 6209 Candidates.remove(GEPList[J]); 6210 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6211 Candidates.remove(GEPList[J]); 6212 } 6213 } 6214 } 6215 6216 // We break out of the above computation as soon as we know there are 6217 // fewer than two candidates remaining. 6218 if (Candidates.size() < 2) 6219 continue; 6220 6221 // Add the single, non-constant index of each candidate to the bundle. We 6222 // ensured the indices met these constraints when we originally collected 6223 // the getelementptrs. 6224 SmallVector<Value *, 16> Bundle(Candidates.size()); 6225 auto BundleIndex = 0u; 6226 for (auto *V : Candidates) { 6227 auto *GEP = cast<GetElementPtrInst>(V); 6228 auto *GEPIdx = GEP->idx_begin()->get(); 6229 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6230 Bundle[BundleIndex++] = GEPIdx; 6231 } 6232 6233 // Try and vectorize the indices. We are currently only interested in 6234 // gather-like cases of the form: 6235 // 6236 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6237 // 6238 // where the loads of "a", the loads of "b", and the subtractions can be 6239 // performed in parallel. It's likely that detecting this pattern in a 6240 // bottom-up phase will be simpler and less costly than building a 6241 // full-blown top-down phase beginning at the consecutive loads. 6242 Changed |= tryToVectorizeList(Bundle, R); 6243 } 6244 } 6245 return Changed; 6246 } 6247 6248 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6249 bool Changed = false; 6250 // Attempt to sort and vectorize each of the store-groups. 6251 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6252 ++it) { 6253 if (it->second.size() < 2) 6254 continue; 6255 6256 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6257 << it->second.size() << ".\n"); 6258 6259 // Process the stores in chunks of 16. 6260 // TODO: The limit of 16 inhibits greater vectorization factors. 6261 // For example, AVX2 supports v32i8. Increasing this limit, however, 6262 // may cause a significant compile-time increase. 6263 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6264 unsigned Len = std::min<unsigned>(CE - CI, 16); 6265 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6266 } 6267 } 6268 return Changed; 6269 } 6270 6271 char SLPVectorizer::ID = 0; 6272 6273 static const char lv_name[] = "SLP Vectorizer"; 6274 6275 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6276 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6277 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6278 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6279 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6280 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6281 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6282 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6283 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6284 6285 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6286