1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static Optional<unsigned> getExtractIndex(Instruction *E) { 456 unsigned Opcode = E->getOpcode(); 457 assert((Opcode == Instruction::ExtractElement || 458 Opcode == Instruction::ExtractValue) && 459 "Expected extractelement or extractvalue instruction."); 460 if (Opcode == Instruction::ExtractElement) { 461 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 462 if (!CI) 463 return None; 464 return CI->getZExtValue(); 465 } 466 ExtractValueInst *EI = cast<ExtractValueInst>(E); 467 if (EI->getNumIndices() != 1) 468 return None; 469 return *EI->idx_begin(); 470 } 471 472 /// \returns True if in-tree use also needs extract. This refers to 473 /// possible scalar operand in vectorized instruction. 474 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 475 TargetLibraryInfo *TLI) { 476 unsigned Opcode = UserInst->getOpcode(); 477 switch (Opcode) { 478 case Instruction::Load: { 479 LoadInst *LI = cast<LoadInst>(UserInst); 480 return (LI->getPointerOperand() == Scalar); 481 } 482 case Instruction::Store: { 483 StoreInst *SI = cast<StoreInst>(UserInst); 484 return (SI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Call: { 487 CallInst *CI = cast<CallInst>(UserInst); 488 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 489 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 490 return (CI->getArgOperand(1) == Scalar); 491 } 492 LLVM_FALLTHROUGH; 493 } 494 default: 495 return false; 496 } 497 } 498 499 /// \returns the AA location that is being access by the instruction. 500 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 501 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 502 return MemoryLocation::get(SI); 503 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 504 return MemoryLocation::get(LI); 505 return MemoryLocation(); 506 } 507 508 /// \returns True if the instruction is not a volatile or atomic load/store. 509 static bool isSimple(Instruction *I) { 510 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 511 return LI->isSimple(); 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return SI->isSimple(); 514 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 515 return !MI->isVolatile(); 516 return true; 517 } 518 519 namespace llvm { 520 521 namespace slpvectorizer { 522 523 /// Bottom Up SLP Vectorizer. 524 class BoUpSLP { 525 public: 526 using ValueList = SmallVector<Value *, 8>; 527 using InstrList = SmallVector<Instruction *, 16>; 528 using ValueSet = SmallPtrSet<Value *, 16>; 529 using StoreList = SmallVector<StoreInst *, 8>; 530 using ExtraValueToDebugLocsMap = 531 MapVector<Value *, SmallVector<Instruction *, 2>>; 532 533 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 534 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 535 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 536 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 537 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 538 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 539 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 540 // Use the vector register size specified by the target unless overridden 541 // by a command-line option. 542 // TODO: It would be better to limit the vectorization factor based on 543 // data type rather than just register size. For example, x86 AVX has 544 // 256-bit registers, but it does not support integer operations 545 // at that width (that requires AVX2). 546 if (MaxVectorRegSizeOption.getNumOccurrences()) 547 MaxVecRegSize = MaxVectorRegSizeOption; 548 else 549 MaxVecRegSize = TTI->getRegisterBitWidth(true); 550 551 if (MinVectorRegSizeOption.getNumOccurrences()) 552 MinVecRegSize = MinVectorRegSizeOption; 553 else 554 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 555 } 556 557 /// \brief Vectorize the tree that starts with the elements in \p VL. 558 /// Returns the vectorized root. 559 Value *vectorizeTree(); 560 561 /// Vectorize the tree but with the list of externally used values \p 562 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 563 /// generated extractvalue instructions. 564 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 565 566 /// \returns the cost incurred by unwanted spills and fills, caused by 567 /// holding live values over call sites. 568 int getSpillCost(); 569 570 /// \returns the vectorization cost of the subtree that starts at \p VL. 571 /// A negative number means that this is profitable. 572 int getTreeCost(); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 576 void buildTree(ArrayRef<Value *> Roots, 577 ArrayRef<Value *> UserIgnoreLst = None); 578 579 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 580 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 581 /// into account (anf updating it, if required) list of externally used 582 /// values stored in \p ExternallyUsedValues. 583 void buildTree(ArrayRef<Value *> Roots, 584 ExtraValueToDebugLocsMap &ExternallyUsedValues, 585 ArrayRef<Value *> UserIgnoreLst = None); 586 587 /// Clear the internal data structures that are created by 'buildTree'. 588 void deleteTree() { 589 VectorizableTree.clear(); 590 ScalarToTreeEntry.clear(); 591 MustGather.clear(); 592 ExternalUses.clear(); 593 NumOpsWantToKeepOrder.clear(); 594 NumOpsWantToKeepOriginalOrder = 0; 595 for (auto &Iter : BlocksSchedules) { 596 BlockScheduling *BS = Iter.second.get(); 597 BS->clear(); 598 } 599 MinBWs.clear(); 600 } 601 602 unsigned getTreeSize() const { return VectorizableTree.size(); } 603 604 /// \brief Perform LICM and CSE on the newly generated gather sequences. 605 void optimizeGatherSequence(); 606 607 /// \returns The best order of instructions for vectorization. 608 Optional<ArrayRef<unsigned>> bestOrder() const { 609 auto I = std::max_element( 610 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 611 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 612 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 613 return D1.second < D2.second; 614 }); 615 if (I == NumOpsWantToKeepOrder.end() || 616 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 617 return None; 618 619 return makeArrayRef(I->getFirst()); 620 } 621 622 /// \return The vector element size in bits to use when vectorizing the 623 /// expression tree ending at \p V. If V is a store, the size is the width of 624 /// the stored value. Otherwise, the size is the width of the largest loaded 625 /// value reaching V. This method is used by the vectorizer to calculate 626 /// vectorization factors. 627 unsigned getVectorElementSize(Value *V); 628 629 /// Compute the minimum type sizes required to represent the entries in a 630 /// vectorizable tree. 631 void computeMinimumValueSizes(); 632 633 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 634 unsigned getMaxVecRegSize() const { 635 return MaxVecRegSize; 636 } 637 638 // \returns minimum vector register size as set by cl::opt. 639 unsigned getMinVecRegSize() const { 640 return MinVecRegSize; 641 } 642 643 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 644 /// 645 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 646 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 647 648 /// \returns True if the VectorizableTree is both tiny and not fully 649 /// vectorizable. We do not vectorize such trees. 650 bool isTreeTinyAndNotFullyVectorizable(); 651 652 OptimizationRemarkEmitter *getORE() { return ORE; } 653 654 private: 655 struct TreeEntry; 656 657 /// Checks if all users of \p I are the part of the vectorization tree. 658 bool areAllUsersVectorized(Instruction *I) const; 659 660 /// \returns the cost of the vectorizable entry. 661 int getEntryCost(TreeEntry *E); 662 663 /// This is the recursive part of buildTree. 664 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 665 666 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 667 /// be vectorized to use the original vector (or aggregate "bitcast" to a 668 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 669 /// returns false, setting \p CurrentOrder to either an empty vector or a 670 /// non-identity permutation that allows to reuse extract instructions. 671 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 672 SmallVectorImpl<unsigned> &CurrentOrder) const; 673 674 /// Vectorize a single entry in the tree. 675 Value *vectorizeTree(TreeEntry *E); 676 677 /// Vectorize a single entry in the tree, starting in \p VL. 678 Value *vectorizeTree(ArrayRef<Value *> VL); 679 680 /// \returns the scalarization cost for this type. Scalarization in this 681 /// context means the creation of vectors from a group of scalars. 682 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 683 684 /// \returns the scalarization cost for this list of values. Assuming that 685 /// this subtree gets vectorized, we may need to extract the values from the 686 /// roots. This method calculates the cost of extracting the values. 687 int getGatherCost(ArrayRef<Value *> VL); 688 689 /// \brief Set the Builder insert point to one after the last instruction in 690 /// the bundle 691 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 692 693 /// \returns a vector from a collection of scalars in \p VL. 694 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 695 696 /// \returns whether the VectorizableTree is fully vectorizable and will 697 /// be beneficial even the tree height is tiny. 698 bool isFullyVectorizableTinyTree(); 699 700 /// \reorder commutative operands in alt shuffle if they result in 701 /// vectorized code. 702 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 703 SmallVectorImpl<Value *> &Left, 704 SmallVectorImpl<Value *> &Right); 705 706 /// \reorder commutative operands to get better probability of 707 /// generating vectorized code. 708 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 709 SmallVectorImpl<Value *> &Left, 710 SmallVectorImpl<Value *> &Right); 711 struct TreeEntry { 712 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 713 714 /// \returns true if the scalars in VL are equal to this entry. 715 bool isSame(ArrayRef<Value *> VL) const { 716 if (VL.size() == Scalars.size()) 717 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 718 return VL.size() == ReuseShuffleIndices.size() && 719 std::equal( 720 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 721 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 722 } 723 724 /// A vector of scalars. 725 ValueList Scalars; 726 727 /// The Scalars are vectorized into this value. It is initialized to Null. 728 Value *VectorizedValue = nullptr; 729 730 /// Do we need to gather this sequence ? 731 bool NeedToGather = false; 732 733 /// Does this sequence require some shuffling? 734 SmallVector<unsigned, 4> ReuseShuffleIndices; 735 736 /// Does this entry require reordering? 737 ArrayRef<unsigned> ReorderIndices; 738 739 /// Points back to the VectorizableTree. 740 /// 741 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 742 /// to be a pointer and needs to be able to initialize the child iterator. 743 /// Thus we need a reference back to the container to translate the indices 744 /// to entries. 745 std::vector<TreeEntry> &Container; 746 747 /// The TreeEntry index containing the user of this entry. We can actually 748 /// have multiple users so the data structure is not truly a tree. 749 SmallVector<int, 1> UserTreeIndices; 750 }; 751 752 /// Create a new VectorizableTree entry. 753 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 754 ArrayRef<unsigned> ReuseShuffleIndices = None, 755 ArrayRef<unsigned> ReorderIndices = None) { 756 VectorizableTree.emplace_back(VectorizableTree); 757 int idx = VectorizableTree.size() - 1; 758 TreeEntry *Last = &VectorizableTree[idx]; 759 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 760 Last->NeedToGather = !Vectorized; 761 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 762 ReuseShuffleIndices.end()); 763 Last->ReorderIndices = ReorderIndices; 764 if (Vectorized) { 765 for (int i = 0, e = VL.size(); i != e; ++i) { 766 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 767 ScalarToTreeEntry[VL[i]] = idx; 768 } 769 } else { 770 MustGather.insert(VL.begin(), VL.end()); 771 } 772 773 if (UserTreeIdx >= 0) 774 Last->UserTreeIndices.push_back(UserTreeIdx); 775 UserTreeIdx = idx; 776 } 777 778 /// -- Vectorization State -- 779 /// Holds all of the tree entries. 780 std::vector<TreeEntry> VectorizableTree; 781 782 TreeEntry *getTreeEntry(Value *V) { 783 auto I = ScalarToTreeEntry.find(V); 784 if (I != ScalarToTreeEntry.end()) 785 return &VectorizableTree[I->second]; 786 return nullptr; 787 } 788 789 /// Maps a specific scalar to its tree entry. 790 SmallDenseMap<Value*, int> ScalarToTreeEntry; 791 792 /// A list of scalars that we found that we need to keep as scalars. 793 ValueSet MustGather; 794 795 /// This POD struct describes one external user in the vectorized tree. 796 struct ExternalUser { 797 ExternalUser(Value *S, llvm::User *U, int L) 798 : Scalar(S), User(U), Lane(L) {} 799 800 // Which scalar in our function. 801 Value *Scalar; 802 803 // Which user that uses the scalar. 804 llvm::User *User; 805 806 // Which lane does the scalar belong to. 807 int Lane; 808 }; 809 using UserList = SmallVector<ExternalUser, 16>; 810 811 /// Checks if two instructions may access the same memory. 812 /// 813 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 814 /// is invariant in the calling loop. 815 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 816 Instruction *Inst2) { 817 // First check if the result is already in the cache. 818 AliasCacheKey key = std::make_pair(Inst1, Inst2); 819 Optional<bool> &result = AliasCache[key]; 820 if (result.hasValue()) { 821 return result.getValue(); 822 } 823 MemoryLocation Loc2 = getLocation(Inst2, AA); 824 bool aliased = true; 825 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 826 // Do the alias check. 827 aliased = AA->alias(Loc1, Loc2); 828 } 829 // Store the result in the cache. 830 result = aliased; 831 return aliased; 832 } 833 834 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 835 836 /// Cache for alias results. 837 /// TODO: consider moving this to the AliasAnalysis itself. 838 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 839 840 /// Removes an instruction from its block and eventually deletes it. 841 /// It's like Instruction::eraseFromParent() except that the actual deletion 842 /// is delayed until BoUpSLP is destructed. 843 /// This is required to ensure that there are no incorrect collisions in the 844 /// AliasCache, which can happen if a new instruction is allocated at the 845 /// same address as a previously deleted instruction. 846 void eraseInstruction(Instruction *I) { 847 I->removeFromParent(); 848 I->dropAllReferences(); 849 DeletedInstructions.emplace_back(I); 850 } 851 852 /// Temporary store for deleted instructions. Instructions will be deleted 853 /// eventually when the BoUpSLP is destructed. 854 SmallVector<unique_value, 8> DeletedInstructions; 855 856 /// A list of values that need to extracted out of the tree. 857 /// This list holds pairs of (Internal Scalar : External User). External User 858 /// can be nullptr, it means that this Internal Scalar will be used later, 859 /// after vectorization. 860 UserList ExternalUses; 861 862 /// Values used only by @llvm.assume calls. 863 SmallPtrSet<const Value *, 32> EphValues; 864 865 /// Holds all of the instructions that we gathered. 866 SetVector<Instruction *> GatherSeq; 867 868 /// A list of blocks that we are going to CSE. 869 SetVector<BasicBlock *> CSEBlocks; 870 871 /// Contains all scheduling relevant data for an instruction. 872 /// A ScheduleData either represents a single instruction or a member of an 873 /// instruction bundle (= a group of instructions which is combined into a 874 /// vector instruction). 875 struct ScheduleData { 876 // The initial value for the dependency counters. It means that the 877 // dependencies are not calculated yet. 878 enum { InvalidDeps = -1 }; 879 880 ScheduleData() = default; 881 882 void init(int BlockSchedulingRegionID, Value *OpVal) { 883 FirstInBundle = this; 884 NextInBundle = nullptr; 885 NextLoadStore = nullptr; 886 IsScheduled = false; 887 SchedulingRegionID = BlockSchedulingRegionID; 888 UnscheduledDepsInBundle = UnscheduledDeps; 889 clearDependencies(); 890 OpValue = OpVal; 891 } 892 893 /// Returns true if the dependency information has been calculated. 894 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 895 896 /// Returns true for single instructions and for bundle representatives 897 /// (= the head of a bundle). 898 bool isSchedulingEntity() const { return FirstInBundle == this; } 899 900 /// Returns true if it represents an instruction bundle and not only a 901 /// single instruction. 902 bool isPartOfBundle() const { 903 return NextInBundle != nullptr || FirstInBundle != this; 904 } 905 906 /// Returns true if it is ready for scheduling, i.e. it has no more 907 /// unscheduled depending instructions/bundles. 908 bool isReady() const { 909 assert(isSchedulingEntity() && 910 "can't consider non-scheduling entity for ready list"); 911 return UnscheduledDepsInBundle == 0 && !IsScheduled; 912 } 913 914 /// Modifies the number of unscheduled dependencies, also updating it for 915 /// the whole bundle. 916 int incrementUnscheduledDeps(int Incr) { 917 UnscheduledDeps += Incr; 918 return FirstInBundle->UnscheduledDepsInBundle += Incr; 919 } 920 921 /// Sets the number of unscheduled dependencies to the number of 922 /// dependencies. 923 void resetUnscheduledDeps() { 924 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 925 } 926 927 /// Clears all dependency information. 928 void clearDependencies() { 929 Dependencies = InvalidDeps; 930 resetUnscheduledDeps(); 931 MemoryDependencies.clear(); 932 } 933 934 void dump(raw_ostream &os) const { 935 if (!isSchedulingEntity()) { 936 os << "/ " << *Inst; 937 } else if (NextInBundle) { 938 os << '[' << *Inst; 939 ScheduleData *SD = NextInBundle; 940 while (SD) { 941 os << ';' << *SD->Inst; 942 SD = SD->NextInBundle; 943 } 944 os << ']'; 945 } else { 946 os << *Inst; 947 } 948 } 949 950 Instruction *Inst = nullptr; 951 952 /// Points to the head in an instruction bundle (and always to this for 953 /// single instructions). 954 ScheduleData *FirstInBundle = nullptr; 955 956 /// Single linked list of all instructions in a bundle. Null if it is a 957 /// single instruction. 958 ScheduleData *NextInBundle = nullptr; 959 960 /// Single linked list of all memory instructions (e.g. load, store, call) 961 /// in the block - until the end of the scheduling region. 962 ScheduleData *NextLoadStore = nullptr; 963 964 /// The dependent memory instructions. 965 /// This list is derived on demand in calculateDependencies(). 966 SmallVector<ScheduleData *, 4> MemoryDependencies; 967 968 /// This ScheduleData is in the current scheduling region if this matches 969 /// the current SchedulingRegionID of BlockScheduling. 970 int SchedulingRegionID = 0; 971 972 /// Used for getting a "good" final ordering of instructions. 973 int SchedulingPriority = 0; 974 975 /// The number of dependencies. Constitutes of the number of users of the 976 /// instruction plus the number of dependent memory instructions (if any). 977 /// This value is calculated on demand. 978 /// If InvalidDeps, the number of dependencies is not calculated yet. 979 int Dependencies = InvalidDeps; 980 981 /// The number of dependencies minus the number of dependencies of scheduled 982 /// instructions. As soon as this is zero, the instruction/bundle gets ready 983 /// for scheduling. 984 /// Note that this is negative as long as Dependencies is not calculated. 985 int UnscheduledDeps = InvalidDeps; 986 987 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 988 /// single instructions. 989 int UnscheduledDepsInBundle = InvalidDeps; 990 991 /// True if this instruction is scheduled (or considered as scheduled in the 992 /// dry-run). 993 bool IsScheduled = false; 994 995 /// Opcode of the current instruction in the schedule data. 996 Value *OpValue = nullptr; 997 }; 998 999 #ifndef NDEBUG 1000 friend inline raw_ostream &operator<<(raw_ostream &os, 1001 const BoUpSLP::ScheduleData &SD) { 1002 SD.dump(os); 1003 return os; 1004 } 1005 #endif 1006 1007 friend struct GraphTraits<BoUpSLP *>; 1008 friend struct DOTGraphTraits<BoUpSLP *>; 1009 1010 /// Contains all scheduling data for a basic block. 1011 struct BlockScheduling { 1012 BlockScheduling(BasicBlock *BB) 1013 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1014 1015 void clear() { 1016 ReadyInsts.clear(); 1017 ScheduleStart = nullptr; 1018 ScheduleEnd = nullptr; 1019 FirstLoadStoreInRegion = nullptr; 1020 LastLoadStoreInRegion = nullptr; 1021 1022 // Reduce the maximum schedule region size by the size of the 1023 // previous scheduling run. 1024 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1025 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1026 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1027 ScheduleRegionSize = 0; 1028 1029 // Make a new scheduling region, i.e. all existing ScheduleData is not 1030 // in the new region yet. 1031 ++SchedulingRegionID; 1032 } 1033 1034 ScheduleData *getScheduleData(Value *V) { 1035 ScheduleData *SD = ScheduleDataMap[V]; 1036 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1037 return SD; 1038 return nullptr; 1039 } 1040 1041 ScheduleData *getScheduleData(Value *V, Value *Key) { 1042 if (V == Key) 1043 return getScheduleData(V); 1044 auto I = ExtraScheduleDataMap.find(V); 1045 if (I != ExtraScheduleDataMap.end()) { 1046 ScheduleData *SD = I->second[Key]; 1047 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1048 return SD; 1049 } 1050 return nullptr; 1051 } 1052 1053 bool isInSchedulingRegion(ScheduleData *SD) { 1054 return SD->SchedulingRegionID == SchedulingRegionID; 1055 } 1056 1057 /// Marks an instruction as scheduled and puts all dependent ready 1058 /// instructions into the ready-list. 1059 template <typename ReadyListType> 1060 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1061 SD->IsScheduled = true; 1062 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1063 1064 ScheduleData *BundleMember = SD; 1065 while (BundleMember) { 1066 if (BundleMember->Inst != BundleMember->OpValue) { 1067 BundleMember = BundleMember->NextInBundle; 1068 continue; 1069 } 1070 // Handle the def-use chain dependencies. 1071 for (Use &U : BundleMember->Inst->operands()) { 1072 auto *I = dyn_cast<Instruction>(U.get()); 1073 if (!I) 1074 continue; 1075 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1076 if (OpDef && OpDef->hasValidDependencies() && 1077 OpDef->incrementUnscheduledDeps(-1) == 0) { 1078 // There are no more unscheduled dependencies after 1079 // decrementing, so we can put the dependent instruction 1080 // into the ready list. 1081 ScheduleData *DepBundle = OpDef->FirstInBundle; 1082 assert(!DepBundle->IsScheduled && 1083 "already scheduled bundle gets ready"); 1084 ReadyList.insert(DepBundle); 1085 DEBUG(dbgs() 1086 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1087 } 1088 }); 1089 } 1090 // Handle the memory dependencies. 1091 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1092 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1093 // There are no more unscheduled dependencies after decrementing, 1094 // so we can put the dependent instruction into the ready list. 1095 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1096 assert(!DepBundle->IsScheduled && 1097 "already scheduled bundle gets ready"); 1098 ReadyList.insert(DepBundle); 1099 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1100 << "\n"); 1101 } 1102 } 1103 BundleMember = BundleMember->NextInBundle; 1104 } 1105 } 1106 1107 void doForAllOpcodes(Value *V, 1108 function_ref<void(ScheduleData *SD)> Action) { 1109 if (ScheduleData *SD = getScheduleData(V)) 1110 Action(SD); 1111 auto I = ExtraScheduleDataMap.find(V); 1112 if (I != ExtraScheduleDataMap.end()) 1113 for (auto &P : I->second) 1114 if (P.second->SchedulingRegionID == SchedulingRegionID) 1115 Action(P.second); 1116 } 1117 1118 /// Put all instructions into the ReadyList which are ready for scheduling. 1119 template <typename ReadyListType> 1120 void initialFillReadyList(ReadyListType &ReadyList) { 1121 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1122 doForAllOpcodes(I, [&](ScheduleData *SD) { 1123 if (SD->isSchedulingEntity() && SD->isReady()) { 1124 ReadyList.insert(SD); 1125 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1126 } 1127 }); 1128 } 1129 } 1130 1131 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1132 /// cyclic dependencies. This is only a dry-run, no instructions are 1133 /// actually moved at this stage. 1134 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1135 1136 /// Un-bundles a group of instructions. 1137 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1138 1139 /// Allocates schedule data chunk. 1140 ScheduleData *allocateScheduleDataChunks(); 1141 1142 /// Extends the scheduling region so that V is inside the region. 1143 /// \returns true if the region size is within the limit. 1144 bool extendSchedulingRegion(Value *V, Value *OpValue); 1145 1146 /// Initialize the ScheduleData structures for new instructions in the 1147 /// scheduling region. 1148 void initScheduleData(Instruction *FromI, Instruction *ToI, 1149 ScheduleData *PrevLoadStore, 1150 ScheduleData *NextLoadStore); 1151 1152 /// Updates the dependency information of a bundle and of all instructions/ 1153 /// bundles which depend on the original bundle. 1154 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1155 BoUpSLP *SLP); 1156 1157 /// Sets all instruction in the scheduling region to un-scheduled. 1158 void resetSchedule(); 1159 1160 BasicBlock *BB; 1161 1162 /// Simple memory allocation for ScheduleData. 1163 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1164 1165 /// The size of a ScheduleData array in ScheduleDataChunks. 1166 int ChunkSize; 1167 1168 /// The allocator position in the current chunk, which is the last entry 1169 /// of ScheduleDataChunks. 1170 int ChunkPos; 1171 1172 /// Attaches ScheduleData to Instruction. 1173 /// Note that the mapping survives during all vectorization iterations, i.e. 1174 /// ScheduleData structures are recycled. 1175 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1176 1177 /// Attaches ScheduleData to Instruction with the leading key. 1178 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1179 ExtraScheduleDataMap; 1180 1181 struct ReadyList : SmallVector<ScheduleData *, 8> { 1182 void insert(ScheduleData *SD) { push_back(SD); } 1183 }; 1184 1185 /// The ready-list for scheduling (only used for the dry-run). 1186 ReadyList ReadyInsts; 1187 1188 /// The first instruction of the scheduling region. 1189 Instruction *ScheduleStart = nullptr; 1190 1191 /// The first instruction _after_ the scheduling region. 1192 Instruction *ScheduleEnd = nullptr; 1193 1194 /// The first memory accessing instruction in the scheduling region 1195 /// (can be null). 1196 ScheduleData *FirstLoadStoreInRegion = nullptr; 1197 1198 /// The last memory accessing instruction in the scheduling region 1199 /// (can be null). 1200 ScheduleData *LastLoadStoreInRegion = nullptr; 1201 1202 /// The current size of the scheduling region. 1203 int ScheduleRegionSize = 0; 1204 1205 /// The maximum size allowed for the scheduling region. 1206 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1207 1208 /// The ID of the scheduling region. For a new vectorization iteration this 1209 /// is incremented which "removes" all ScheduleData from the region. 1210 // Make sure that the initial SchedulingRegionID is greater than the 1211 // initial SchedulingRegionID in ScheduleData (which is 0). 1212 int SchedulingRegionID = 1; 1213 }; 1214 1215 /// Attaches the BlockScheduling structures to basic blocks. 1216 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1217 1218 /// Performs the "real" scheduling. Done before vectorization is actually 1219 /// performed in a basic block. 1220 void scheduleBlock(BlockScheduling *BS); 1221 1222 /// List of users to ignore during scheduling and that don't need extracting. 1223 ArrayRef<Value *> UserIgnoreList; 1224 1225 using OrdersType = SmallVector<unsigned, 4>; 1226 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1227 /// sorted SmallVectors of unsigned. 1228 struct OrdersTypeDenseMapInfo { 1229 static OrdersType getEmptyKey() { 1230 OrdersType V; 1231 V.push_back(~1U); 1232 return V; 1233 } 1234 1235 static OrdersType getTombstoneKey() { 1236 OrdersType V; 1237 V.push_back(~2U); 1238 return V; 1239 } 1240 1241 static unsigned getHashValue(const OrdersType &V) { 1242 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1243 } 1244 1245 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1246 return LHS == RHS; 1247 } 1248 }; 1249 1250 /// Contains orders of operations along with the number of bundles that have 1251 /// operations in this order. It stores only those orders that require 1252 /// reordering, if reordering is not required it is counted using \a 1253 /// NumOpsWantToKeepOriginalOrder. 1254 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1255 /// Number of bundles that do not require reordering. 1256 unsigned NumOpsWantToKeepOriginalOrder = 0; 1257 1258 // Analysis and block reference. 1259 Function *F; 1260 ScalarEvolution *SE; 1261 TargetTransformInfo *TTI; 1262 TargetLibraryInfo *TLI; 1263 AliasAnalysis *AA; 1264 LoopInfo *LI; 1265 DominatorTree *DT; 1266 AssumptionCache *AC; 1267 DemandedBits *DB; 1268 const DataLayout *DL; 1269 OptimizationRemarkEmitter *ORE; 1270 1271 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1272 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1273 1274 /// Instruction builder to construct the vectorized tree. 1275 IRBuilder<> Builder; 1276 1277 /// A map of scalar integer values to the smallest bit width with which they 1278 /// can legally be represented. The values map to (width, signed) pairs, 1279 /// where "width" indicates the minimum bit width and "signed" is True if the 1280 /// value must be signed-extended, rather than zero-extended, back to its 1281 /// original width. 1282 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1283 }; 1284 1285 } // end namespace slpvectorizer 1286 1287 template <> struct GraphTraits<BoUpSLP *> { 1288 using TreeEntry = BoUpSLP::TreeEntry; 1289 1290 /// NodeRef has to be a pointer per the GraphWriter. 1291 using NodeRef = TreeEntry *; 1292 1293 /// \brief Add the VectorizableTree to the index iterator to be able to return 1294 /// TreeEntry pointers. 1295 struct ChildIteratorType 1296 : public iterator_adaptor_base<ChildIteratorType, 1297 SmallVector<int, 1>::iterator> { 1298 std::vector<TreeEntry> &VectorizableTree; 1299 1300 ChildIteratorType(SmallVector<int, 1>::iterator W, 1301 std::vector<TreeEntry> &VT) 1302 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1303 1304 NodeRef operator*() { return &VectorizableTree[*I]; } 1305 }; 1306 1307 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1308 1309 static ChildIteratorType child_begin(NodeRef N) { 1310 return {N->UserTreeIndices.begin(), N->Container}; 1311 } 1312 1313 static ChildIteratorType child_end(NodeRef N) { 1314 return {N->UserTreeIndices.end(), N->Container}; 1315 } 1316 1317 /// For the node iterator we just need to turn the TreeEntry iterator into a 1318 /// TreeEntry* iterator so that it dereferences to NodeRef. 1319 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1320 1321 static nodes_iterator nodes_begin(BoUpSLP *R) { 1322 return nodes_iterator(R->VectorizableTree.begin()); 1323 } 1324 1325 static nodes_iterator nodes_end(BoUpSLP *R) { 1326 return nodes_iterator(R->VectorizableTree.end()); 1327 } 1328 1329 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1330 }; 1331 1332 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1333 using TreeEntry = BoUpSLP::TreeEntry; 1334 1335 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1336 1337 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1338 std::string Str; 1339 raw_string_ostream OS(Str); 1340 if (isSplat(Entry->Scalars)) { 1341 OS << "<splat> " << *Entry->Scalars[0]; 1342 return Str; 1343 } 1344 for (auto V : Entry->Scalars) { 1345 OS << *V; 1346 if (std::any_of( 1347 R->ExternalUses.begin(), R->ExternalUses.end(), 1348 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1349 OS << " <extract>"; 1350 OS << "\n"; 1351 } 1352 return Str; 1353 } 1354 1355 static std::string getNodeAttributes(const TreeEntry *Entry, 1356 const BoUpSLP *) { 1357 if (Entry->NeedToGather) 1358 return "color=red"; 1359 return ""; 1360 } 1361 }; 1362 1363 } // end namespace llvm 1364 1365 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1366 ArrayRef<Value *> UserIgnoreLst) { 1367 ExtraValueToDebugLocsMap ExternallyUsedValues; 1368 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1369 } 1370 1371 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1372 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1373 ArrayRef<Value *> UserIgnoreLst) { 1374 deleteTree(); 1375 UserIgnoreList = UserIgnoreLst; 1376 if (!allSameType(Roots)) 1377 return; 1378 buildTree_rec(Roots, 0, -1); 1379 1380 // Collect the values that we need to extract from the tree. 1381 for (TreeEntry &EIdx : VectorizableTree) { 1382 TreeEntry *Entry = &EIdx; 1383 1384 // No need to handle users of gathered values. 1385 if (Entry->NeedToGather) 1386 continue; 1387 1388 // For each lane: 1389 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1390 Value *Scalar = Entry->Scalars[Lane]; 1391 int FoundLane = Lane; 1392 if (!Entry->ReuseShuffleIndices.empty()) { 1393 FoundLane = 1394 std::distance(Entry->ReuseShuffleIndices.begin(), 1395 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1396 } 1397 1398 // Check if the scalar is externally used as an extra arg. 1399 auto ExtI = ExternallyUsedValues.find(Scalar); 1400 if (ExtI != ExternallyUsedValues.end()) { 1401 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1402 Lane << " from " << *Scalar << ".\n"); 1403 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1404 } 1405 for (User *U : Scalar->users()) { 1406 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1407 1408 Instruction *UserInst = dyn_cast<Instruction>(U); 1409 if (!UserInst) 1410 continue; 1411 1412 // Skip in-tree scalars that become vectors 1413 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1414 Value *UseScalar = UseEntry->Scalars[0]; 1415 // Some in-tree scalars will remain as scalar in vectorized 1416 // instructions. If that is the case, the one in Lane 0 will 1417 // be used. 1418 if (UseScalar != U || 1419 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1420 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1421 << ".\n"); 1422 assert(!UseEntry->NeedToGather && "Bad state"); 1423 continue; 1424 } 1425 } 1426 1427 // Ignore users in the user ignore list. 1428 if (is_contained(UserIgnoreList, UserInst)) 1429 continue; 1430 1431 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1432 Lane << " from " << *Scalar << ".\n"); 1433 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1434 } 1435 } 1436 } 1437 } 1438 1439 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1440 int UserTreeIdx) { 1441 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1442 1443 InstructionsState S = getSameOpcode(VL); 1444 if (Depth == RecursionMaxDepth) { 1445 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1446 newTreeEntry(VL, false, UserTreeIdx); 1447 return; 1448 } 1449 1450 // Don't handle vectors. 1451 if (S.OpValue->getType()->isVectorTy()) { 1452 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1453 newTreeEntry(VL, false, UserTreeIdx); 1454 return; 1455 } 1456 1457 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1458 if (SI->getValueOperand()->getType()->isVectorTy()) { 1459 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1460 newTreeEntry(VL, false, UserTreeIdx); 1461 return; 1462 } 1463 1464 // If all of the operands are identical or constant we have a simple solution. 1465 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1466 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1467 newTreeEntry(VL, false, UserTreeIdx); 1468 return; 1469 } 1470 1471 // We now know that this is a vector of instructions of the same type from 1472 // the same block. 1473 1474 // Don't vectorize ephemeral values. 1475 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1476 if (EphValues.count(VL[i])) { 1477 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1478 ") is ephemeral.\n"); 1479 newTreeEntry(VL, false, UserTreeIdx); 1480 return; 1481 } 1482 } 1483 1484 // Check if this is a duplicate of another entry. 1485 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1486 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1487 if (!E->isSame(VL)) { 1488 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1489 newTreeEntry(VL, false, UserTreeIdx); 1490 return; 1491 } 1492 // Record the reuse of the tree node. FIXME, currently this is only used to 1493 // properly draw the graph rather than for the actual vectorization. 1494 E->UserTreeIndices.push_back(UserTreeIdx); 1495 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1496 return; 1497 } 1498 1499 // Check that none of the instructions in the bundle are already in the tree. 1500 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1501 auto *I = dyn_cast<Instruction>(VL[i]); 1502 if (!I) 1503 continue; 1504 if (getTreeEntry(I)) { 1505 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1506 ") is already in tree.\n"); 1507 newTreeEntry(VL, false, UserTreeIdx); 1508 return; 1509 } 1510 } 1511 1512 // If any of the scalars is marked as a value that needs to stay scalar, then 1513 // we need to gather the scalars. 1514 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1515 if (MustGather.count(VL[i])) { 1516 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1517 newTreeEntry(VL, false, UserTreeIdx); 1518 return; 1519 } 1520 } 1521 1522 // Check that all of the users of the scalars that we want to vectorize are 1523 // schedulable. 1524 auto *VL0 = cast<Instruction>(S.OpValue); 1525 BasicBlock *BB = VL0->getParent(); 1526 1527 if (!DT->isReachableFromEntry(BB)) { 1528 // Don't go into unreachable blocks. They may contain instructions with 1529 // dependency cycles which confuse the final scheduling. 1530 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1531 newTreeEntry(VL, false, UserTreeIdx); 1532 return; 1533 } 1534 1535 // Check that every instruction appears once in this bundle. 1536 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1537 SmallVector<Value *, 4> UniqueValues; 1538 DenseMap<Value *, unsigned> UniquePositions; 1539 for (Value *V : VL) { 1540 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1541 ReuseShuffleIndicies.emplace_back(Res.first->second); 1542 if (Res.second) 1543 UniqueValues.emplace_back(V); 1544 } 1545 if (UniqueValues.size() == VL.size()) { 1546 ReuseShuffleIndicies.clear(); 1547 } else { 1548 DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1549 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1550 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1551 newTreeEntry(VL, false, UserTreeIdx); 1552 return; 1553 } 1554 VL = UniqueValues; 1555 } 1556 1557 auto &BSRef = BlocksSchedules[BB]; 1558 if (!BSRef) 1559 BSRef = llvm::make_unique<BlockScheduling>(BB); 1560 1561 BlockScheduling &BS = *BSRef.get(); 1562 1563 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1564 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1565 assert((!BS.getScheduleData(VL0) || 1566 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1567 "tryScheduleBundle should cancelScheduling on failure"); 1568 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1569 return; 1570 } 1571 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1572 1573 unsigned ShuffleOrOp = S.IsAltShuffle ? 1574 (unsigned) Instruction::ShuffleVector : S.Opcode; 1575 switch (ShuffleOrOp) { 1576 case Instruction::PHI: { 1577 PHINode *PH = dyn_cast<PHINode>(VL0); 1578 1579 // Check for terminator values (e.g. invoke). 1580 for (unsigned j = 0; j < VL.size(); ++j) 1581 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1582 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1583 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1584 if (Term) { 1585 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1586 BS.cancelScheduling(VL, VL0); 1587 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1588 return; 1589 } 1590 } 1591 1592 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1593 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1594 1595 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1596 ValueList Operands; 1597 // Prepare the operand vector. 1598 for (Value *j : VL) 1599 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1600 PH->getIncomingBlock(i))); 1601 1602 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1603 } 1604 return; 1605 } 1606 case Instruction::ExtractValue: 1607 case Instruction::ExtractElement: { 1608 OrdersType CurrentOrder; 1609 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1610 if (Reuse) { 1611 DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1612 ++NumOpsWantToKeepOriginalOrder; 1613 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1614 ReuseShuffleIndicies); 1615 return; 1616 } 1617 if (!CurrentOrder.empty()) { 1618 DEBUG({ 1619 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1620 "with order"; 1621 for (unsigned Idx : CurrentOrder) 1622 dbgs() << " " << Idx; 1623 dbgs() << "\n"; 1624 }); 1625 // Insert new order with initial value 0, if it does not exist, 1626 // otherwise return the iterator to the existing one. 1627 auto StoredCurrentOrderAndNum = 1628 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1629 ++StoredCurrentOrderAndNum->getSecond(); 1630 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1631 StoredCurrentOrderAndNum->getFirst()); 1632 return; 1633 } 1634 DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1635 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1636 BS.cancelScheduling(VL, VL0); 1637 return; 1638 } 1639 case Instruction::Load: { 1640 // Check that a vectorized load would load the same memory as a scalar 1641 // load. For example, we don't want to vectorize loads that are smaller 1642 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1643 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1644 // from such a struct, we read/write packed bits disagreeing with the 1645 // unvectorized version. 1646 Type *ScalarTy = VL0->getType(); 1647 1648 if (DL->getTypeSizeInBits(ScalarTy) != 1649 DL->getTypeAllocSizeInBits(ScalarTy)) { 1650 BS.cancelScheduling(VL, VL0); 1651 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1652 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1653 return; 1654 } 1655 1656 // Make sure all loads in the bundle are simple - we can't vectorize 1657 // atomic or volatile loads. 1658 SmallVector<Value *, 4> PointerOps(VL.size()); 1659 auto POIter = PointerOps.begin(); 1660 for (Value *V : VL) { 1661 auto *L = cast<LoadInst>(V); 1662 if (!L->isSimple()) { 1663 BS.cancelScheduling(VL, VL0); 1664 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1665 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1666 return; 1667 } 1668 *POIter = L->getPointerOperand(); 1669 ++POIter; 1670 } 1671 1672 OrdersType CurrentOrder; 1673 // Check the order of pointer operands. 1674 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1675 Value *Ptr0; 1676 Value *PtrN; 1677 if (CurrentOrder.empty()) { 1678 Ptr0 = PointerOps.front(); 1679 PtrN = PointerOps.back(); 1680 } else { 1681 Ptr0 = PointerOps[CurrentOrder.front()]; 1682 PtrN = PointerOps[CurrentOrder.back()]; 1683 } 1684 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1685 const SCEV *ScevN = SE->getSCEV(PtrN); 1686 const auto *Diff = 1687 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1688 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1689 // Check that the sorted loads are consecutive. 1690 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1691 if (CurrentOrder.empty()) { 1692 // Original loads are consecutive and does not require reordering. 1693 ++NumOpsWantToKeepOriginalOrder; 1694 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1695 ReuseShuffleIndicies); 1696 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1697 } else { 1698 // Need to reorder. 1699 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1700 ++I->getSecond(); 1701 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1702 ReuseShuffleIndicies, I->getFirst()); 1703 DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1704 } 1705 return; 1706 } 1707 } 1708 1709 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1710 BS.cancelScheduling(VL, VL0); 1711 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1712 return; 1713 } 1714 case Instruction::ZExt: 1715 case Instruction::SExt: 1716 case Instruction::FPToUI: 1717 case Instruction::FPToSI: 1718 case Instruction::FPExt: 1719 case Instruction::PtrToInt: 1720 case Instruction::IntToPtr: 1721 case Instruction::SIToFP: 1722 case Instruction::UIToFP: 1723 case Instruction::Trunc: 1724 case Instruction::FPTrunc: 1725 case Instruction::BitCast: { 1726 Type *SrcTy = VL0->getOperand(0)->getType(); 1727 for (unsigned i = 0; i < VL.size(); ++i) { 1728 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1729 if (Ty != SrcTy || !isValidElementType(Ty)) { 1730 BS.cancelScheduling(VL, VL0); 1731 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1732 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1733 return; 1734 } 1735 } 1736 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1737 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1738 1739 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1740 ValueList Operands; 1741 // Prepare the operand vector. 1742 for (Value *j : VL) 1743 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1744 1745 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1746 } 1747 return; 1748 } 1749 case Instruction::ICmp: 1750 case Instruction::FCmp: { 1751 // Check that all of the compares have the same predicate. 1752 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1753 Type *ComparedTy = VL0->getOperand(0)->getType(); 1754 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1755 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1756 if (Cmp->getPredicate() != P0 || 1757 Cmp->getOperand(0)->getType() != ComparedTy) { 1758 BS.cancelScheduling(VL, VL0); 1759 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1760 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1761 return; 1762 } 1763 } 1764 1765 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1766 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1767 1768 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1769 ValueList Operands; 1770 // Prepare the operand vector. 1771 for (Value *j : VL) 1772 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1773 1774 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1775 } 1776 return; 1777 } 1778 case Instruction::Select: 1779 case Instruction::Add: 1780 case Instruction::FAdd: 1781 case Instruction::Sub: 1782 case Instruction::FSub: 1783 case Instruction::Mul: 1784 case Instruction::FMul: 1785 case Instruction::UDiv: 1786 case Instruction::SDiv: 1787 case Instruction::FDiv: 1788 case Instruction::URem: 1789 case Instruction::SRem: 1790 case Instruction::FRem: 1791 case Instruction::Shl: 1792 case Instruction::LShr: 1793 case Instruction::AShr: 1794 case Instruction::And: 1795 case Instruction::Or: 1796 case Instruction::Xor: 1797 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1798 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1799 1800 // Sort operands of the instructions so that each side is more likely to 1801 // have the same opcode. 1802 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1803 ValueList Left, Right; 1804 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1805 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1806 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1807 return; 1808 } 1809 1810 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1811 ValueList Operands; 1812 // Prepare the operand vector. 1813 for (Value *j : VL) 1814 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1815 1816 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1817 } 1818 return; 1819 1820 case Instruction::GetElementPtr: { 1821 // We don't combine GEPs with complicated (nested) indexing. 1822 for (unsigned j = 0; j < VL.size(); ++j) { 1823 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1824 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1825 BS.cancelScheduling(VL, VL0); 1826 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1827 return; 1828 } 1829 } 1830 1831 // We can't combine several GEPs into one vector if they operate on 1832 // different types. 1833 Type *Ty0 = VL0->getOperand(0)->getType(); 1834 for (unsigned j = 0; j < VL.size(); ++j) { 1835 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1836 if (Ty0 != CurTy) { 1837 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1838 BS.cancelScheduling(VL, VL0); 1839 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1840 return; 1841 } 1842 } 1843 1844 // We don't combine GEPs with non-constant indexes. 1845 for (unsigned j = 0; j < VL.size(); ++j) { 1846 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1847 if (!isa<ConstantInt>(Op)) { 1848 DEBUG( 1849 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1850 BS.cancelScheduling(VL, VL0); 1851 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1852 return; 1853 } 1854 } 1855 1856 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1857 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1858 for (unsigned i = 0, e = 2; i < e; ++i) { 1859 ValueList Operands; 1860 // Prepare the operand vector. 1861 for (Value *j : VL) 1862 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1863 1864 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1865 } 1866 return; 1867 } 1868 case Instruction::Store: { 1869 // Check if the stores are consecutive or of we need to swizzle them. 1870 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1871 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1872 BS.cancelScheduling(VL, VL0); 1873 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1874 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1875 return; 1876 } 1877 1878 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1879 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1880 1881 ValueList Operands; 1882 for (Value *j : VL) 1883 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1884 1885 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1886 return; 1887 } 1888 case Instruction::Call: { 1889 // Check if the calls are all to the same vectorizable intrinsic. 1890 CallInst *CI = cast<CallInst>(VL0); 1891 // Check if this is an Intrinsic call or something that can be 1892 // represented by an intrinsic call 1893 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1894 if (!isTriviallyVectorizable(ID)) { 1895 BS.cancelScheduling(VL, VL0); 1896 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1897 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1898 return; 1899 } 1900 Function *Int = CI->getCalledFunction(); 1901 Value *A1I = nullptr; 1902 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1903 A1I = CI->getArgOperand(1); 1904 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1905 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1906 if (!CI2 || CI2->getCalledFunction() != Int || 1907 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1908 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1909 BS.cancelScheduling(VL, VL0); 1910 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1911 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1912 << "\n"); 1913 return; 1914 } 1915 // ctlz,cttz and powi are special intrinsics whose second argument 1916 // should be same in order for them to be vectorized. 1917 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1918 Value *A1J = CI2->getArgOperand(1); 1919 if (A1I != A1J) { 1920 BS.cancelScheduling(VL, VL0); 1921 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1922 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1923 << " argument "<< A1I<<"!=" << A1J 1924 << "\n"); 1925 return; 1926 } 1927 } 1928 // Verify that the bundle operands are identical between the two calls. 1929 if (CI->hasOperandBundles() && 1930 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1931 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1932 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1933 BS.cancelScheduling(VL, VL0); 1934 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1935 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1936 << *VL[i] << '\n'); 1937 return; 1938 } 1939 } 1940 1941 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1942 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1943 ValueList Operands; 1944 // Prepare the operand vector. 1945 for (Value *j : VL) { 1946 CallInst *CI2 = dyn_cast<CallInst>(j); 1947 Operands.push_back(CI2->getArgOperand(i)); 1948 } 1949 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1950 } 1951 return; 1952 } 1953 case Instruction::ShuffleVector: 1954 // If this is not an alternate sequence of opcode like add-sub 1955 // then do not vectorize this instruction. 1956 if (!S.IsAltShuffle) { 1957 BS.cancelScheduling(VL, VL0); 1958 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1959 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1960 return; 1961 } 1962 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1963 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1964 1965 // Reorder operands if reordering would enable vectorization. 1966 if (isa<BinaryOperator>(VL0)) { 1967 ValueList Left, Right; 1968 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1969 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1970 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1971 return; 1972 } 1973 1974 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1975 ValueList Operands; 1976 // Prepare the operand vector. 1977 for (Value *j : VL) 1978 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1979 1980 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1981 } 1982 return; 1983 1984 default: 1985 BS.cancelScheduling(VL, VL0); 1986 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1987 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1988 return; 1989 } 1990 } 1991 1992 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1993 unsigned N; 1994 Type *EltTy; 1995 auto *ST = dyn_cast<StructType>(T); 1996 if (ST) { 1997 N = ST->getNumElements(); 1998 EltTy = *ST->element_begin(); 1999 } else { 2000 N = cast<ArrayType>(T)->getNumElements(); 2001 EltTy = cast<ArrayType>(T)->getElementType(); 2002 } 2003 if (!isValidElementType(EltTy)) 2004 return 0; 2005 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2006 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2007 return 0; 2008 if (ST) { 2009 // Check that struct is homogeneous. 2010 for (const auto *Ty : ST->elements()) 2011 if (Ty != EltTy) 2012 return 0; 2013 } 2014 return N; 2015 } 2016 2017 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2018 SmallVectorImpl<unsigned> &CurrentOrder) const { 2019 Instruction *E0 = cast<Instruction>(OpValue); 2020 assert(E0->getOpcode() == Instruction::ExtractElement || 2021 E0->getOpcode() == Instruction::ExtractValue); 2022 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 2023 // Check if all of the extracts come from the same vector and from the 2024 // correct offset. 2025 Value *Vec = E0->getOperand(0); 2026 2027 CurrentOrder.clear(); 2028 2029 // We have to extract from a vector/aggregate with the same number of elements. 2030 unsigned NElts; 2031 if (E0->getOpcode() == Instruction::ExtractValue) { 2032 const DataLayout &DL = E0->getModule()->getDataLayout(); 2033 NElts = canMapToVector(Vec->getType(), DL); 2034 if (!NElts) 2035 return false; 2036 // Check if load can be rewritten as load of vector. 2037 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2038 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2039 return false; 2040 } else { 2041 NElts = Vec->getType()->getVectorNumElements(); 2042 } 2043 2044 if (NElts != VL.size()) 2045 return false; 2046 2047 // Check that all of the indices extract from the correct offset. 2048 bool ShouldKeepOrder = true; 2049 unsigned E = VL.size(); 2050 // Assign to all items the initial value E + 1 so we can check if the extract 2051 // instruction index was used already. 2052 // Also, later we can check that all the indices are used and we have a 2053 // consecutive access in the extract instructions, by checking that no 2054 // element of CurrentOrder still has value E + 1. 2055 CurrentOrder.assign(E, E + 1); 2056 unsigned I = 0; 2057 for (; I < E; ++I) { 2058 auto *Inst = cast<Instruction>(VL[I]); 2059 if (Inst->getOperand(0) != Vec) 2060 break; 2061 Optional<unsigned> Idx = getExtractIndex(Inst); 2062 if (!Idx) 2063 break; 2064 const unsigned ExtIdx = *Idx; 2065 if (ExtIdx != I) { 2066 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2067 break; 2068 ShouldKeepOrder = false; 2069 CurrentOrder[ExtIdx] = I; 2070 } else { 2071 if (CurrentOrder[I] != E + 1) 2072 break; 2073 CurrentOrder[I] = I; 2074 } 2075 } 2076 if (I < E) { 2077 CurrentOrder.clear(); 2078 return false; 2079 } 2080 2081 return ShouldKeepOrder; 2082 } 2083 2084 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2085 return I->hasOneUse() || 2086 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2087 return ScalarToTreeEntry.count(U) > 0; 2088 }); 2089 } 2090 2091 int BoUpSLP::getEntryCost(TreeEntry *E) { 2092 ArrayRef<Value*> VL = E->Scalars; 2093 2094 Type *ScalarTy = VL[0]->getType(); 2095 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2096 ScalarTy = SI->getValueOperand()->getType(); 2097 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2098 ScalarTy = CI->getOperand(0)->getType(); 2099 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2100 2101 // If we have computed a smaller type for the expression, update VecTy so 2102 // that the costs will be accurate. 2103 if (MinBWs.count(VL[0])) 2104 VecTy = VectorType::get( 2105 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2106 2107 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2108 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2109 int ReuseShuffleCost = 0; 2110 if (NeedToShuffleReuses) { 2111 ReuseShuffleCost = 2112 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2113 } 2114 if (E->NeedToGather) { 2115 if (allConstant(VL)) 2116 return 0; 2117 if (isSplat(VL)) { 2118 return ReuseShuffleCost + 2119 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2120 } 2121 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2122 allSameType(VL) && allSameBlock(VL)) { 2123 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2124 if (ShuffleKind.hasValue()) { 2125 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2126 for (auto *V : VL) { 2127 // If all users of instruction are going to be vectorized and this 2128 // instruction itself is not going to be vectorized, consider this 2129 // instruction as dead and remove its cost from the final cost of the 2130 // vectorized tree. 2131 if (areAllUsersVectorized(cast<Instruction>(V)) && 2132 !ScalarToTreeEntry.count(V)) { 2133 auto *IO = cast<ConstantInt>( 2134 cast<ExtractElementInst>(V)->getIndexOperand()); 2135 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2136 IO->getZExtValue()); 2137 } 2138 } 2139 return ReuseShuffleCost + Cost; 2140 } 2141 } 2142 return ReuseShuffleCost + getGatherCost(VL); 2143 } 2144 InstructionsState S = getSameOpcode(VL); 2145 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2146 Instruction *VL0 = cast<Instruction>(S.OpValue); 2147 unsigned ShuffleOrOp = S.IsAltShuffle ? 2148 (unsigned) Instruction::ShuffleVector : S.Opcode; 2149 switch (ShuffleOrOp) { 2150 case Instruction::PHI: 2151 return 0; 2152 2153 case Instruction::ExtractValue: 2154 case Instruction::ExtractElement: 2155 if (NeedToShuffleReuses) { 2156 unsigned Idx = 0; 2157 for (unsigned I : E->ReuseShuffleIndices) { 2158 if (ShuffleOrOp == Instruction::ExtractElement) { 2159 auto *IO = cast<ConstantInt>( 2160 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2161 Idx = IO->getZExtValue(); 2162 ReuseShuffleCost -= TTI->getVectorInstrCost( 2163 Instruction::ExtractElement, VecTy, Idx); 2164 } else { 2165 ReuseShuffleCost -= TTI->getVectorInstrCost( 2166 Instruction::ExtractElement, VecTy, Idx); 2167 ++Idx; 2168 } 2169 } 2170 Idx = ReuseShuffleNumbers; 2171 for (Value *V : VL) { 2172 if (ShuffleOrOp == Instruction::ExtractElement) { 2173 auto *IO = cast<ConstantInt>( 2174 cast<ExtractElementInst>(V)->getIndexOperand()); 2175 Idx = IO->getZExtValue(); 2176 } else { 2177 --Idx; 2178 } 2179 ReuseShuffleCost += 2180 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2181 } 2182 } 2183 if (!E->NeedToGather) { 2184 int DeadCost = ReuseShuffleCost; 2185 if (!E->ReorderIndices.empty()) { 2186 // TODO: Merge this shuffle with the ReuseShuffleCost. 2187 DeadCost += TTI->getShuffleCost( 2188 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2189 } 2190 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2191 Instruction *E = cast<Instruction>(VL[i]); 2192 // If all users are going to be vectorized, instruction can be 2193 // considered as dead. 2194 // The same, if have only one user, it will be vectorized for sure. 2195 if (areAllUsersVectorized(E)) 2196 // Take credit for instruction that will become dead. 2197 DeadCost -= 2198 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2199 } 2200 return DeadCost; 2201 } 2202 return ReuseShuffleCost + getGatherCost(VL); 2203 2204 case Instruction::ZExt: 2205 case Instruction::SExt: 2206 case Instruction::FPToUI: 2207 case Instruction::FPToSI: 2208 case Instruction::FPExt: 2209 case Instruction::PtrToInt: 2210 case Instruction::IntToPtr: 2211 case Instruction::SIToFP: 2212 case Instruction::UIToFP: 2213 case Instruction::Trunc: 2214 case Instruction::FPTrunc: 2215 case Instruction::BitCast: { 2216 Type *SrcTy = VL0->getOperand(0)->getType(); 2217 if (NeedToShuffleReuses) { 2218 ReuseShuffleCost -= 2219 (ReuseShuffleNumbers - VL.size()) * 2220 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2221 } 2222 2223 // Calculate the cost of this instruction. 2224 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2225 VL0->getType(), SrcTy, VL0); 2226 2227 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2228 int VecCost = 0; 2229 // Check if the values are candidates to demote. 2230 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2231 VecCost = ReuseShuffleCost + 2232 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2233 } 2234 return VecCost - ScalarCost; 2235 } 2236 case Instruction::FCmp: 2237 case Instruction::ICmp: 2238 case Instruction::Select: { 2239 // Calculate the cost of this instruction. 2240 if (NeedToShuffleReuses) { 2241 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2242 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2243 Builder.getInt1Ty(), VL0); 2244 } 2245 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2246 int ScalarCost = VecTy->getNumElements() * 2247 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2248 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2249 return ReuseShuffleCost + VecCost - ScalarCost; 2250 } 2251 case Instruction::Add: 2252 case Instruction::FAdd: 2253 case Instruction::Sub: 2254 case Instruction::FSub: 2255 case Instruction::Mul: 2256 case Instruction::FMul: 2257 case Instruction::UDiv: 2258 case Instruction::SDiv: 2259 case Instruction::FDiv: 2260 case Instruction::URem: 2261 case Instruction::SRem: 2262 case Instruction::FRem: 2263 case Instruction::Shl: 2264 case Instruction::LShr: 2265 case Instruction::AShr: 2266 case Instruction::And: 2267 case Instruction::Or: 2268 case Instruction::Xor: { 2269 // Certain instructions can be cheaper to vectorize if they have a 2270 // constant second vector operand. 2271 TargetTransformInfo::OperandValueKind Op1VK = 2272 TargetTransformInfo::OK_AnyValue; 2273 TargetTransformInfo::OperandValueKind Op2VK = 2274 TargetTransformInfo::OK_UniformConstantValue; 2275 TargetTransformInfo::OperandValueProperties Op1VP = 2276 TargetTransformInfo::OP_None; 2277 TargetTransformInfo::OperandValueProperties Op2VP = 2278 TargetTransformInfo::OP_None; 2279 2280 // If all operands are exactly the same ConstantInt then set the 2281 // operand kind to OK_UniformConstantValue. 2282 // If instead not all operands are constants, then set the operand kind 2283 // to OK_AnyValue. If all operands are constants but not the same, 2284 // then set the operand kind to OK_NonUniformConstantValue. 2285 ConstantInt *CInt = nullptr; 2286 for (unsigned i = 0; i < VL.size(); ++i) { 2287 const Instruction *I = cast<Instruction>(VL[i]); 2288 if (!isa<ConstantInt>(I->getOperand(1))) { 2289 Op2VK = TargetTransformInfo::OK_AnyValue; 2290 break; 2291 } 2292 if (i == 0) { 2293 CInt = cast<ConstantInt>(I->getOperand(1)); 2294 continue; 2295 } 2296 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2297 CInt != cast<ConstantInt>(I->getOperand(1))) 2298 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2299 } 2300 // FIXME: Currently cost of model modification for division by power of 2301 // 2 is handled for X86 and AArch64. Add support for other targets. 2302 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2303 CInt->getValue().isPowerOf2()) 2304 Op2VP = TargetTransformInfo::OP_PowerOf2; 2305 2306 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2307 if (NeedToShuffleReuses) { 2308 ReuseShuffleCost -= 2309 (ReuseShuffleNumbers - VL.size()) * 2310 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2311 Op2VP, Operands); 2312 } 2313 int ScalarCost = 2314 VecTy->getNumElements() * 2315 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2316 Op2VP, Operands); 2317 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2318 Op1VP, Op2VP, Operands); 2319 return ReuseShuffleCost + VecCost - ScalarCost; 2320 } 2321 case Instruction::GetElementPtr: { 2322 TargetTransformInfo::OperandValueKind Op1VK = 2323 TargetTransformInfo::OK_AnyValue; 2324 TargetTransformInfo::OperandValueKind Op2VK = 2325 TargetTransformInfo::OK_UniformConstantValue; 2326 2327 if (NeedToShuffleReuses) { 2328 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2329 TTI->getArithmeticInstrCost(Instruction::Add, 2330 ScalarTy, Op1VK, Op2VK); 2331 } 2332 int ScalarCost = 2333 VecTy->getNumElements() * 2334 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2335 int VecCost = 2336 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2337 2338 return ReuseShuffleCost + VecCost - ScalarCost; 2339 } 2340 case Instruction::Load: { 2341 // Cost of wide load - cost of scalar loads. 2342 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2343 if (NeedToShuffleReuses) { 2344 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2345 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2346 alignment, 0, VL0); 2347 } 2348 int ScalarLdCost = VecTy->getNumElements() * 2349 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2350 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2351 VecTy, alignment, 0, VL0); 2352 if (!E->ReorderIndices.empty()) { 2353 // TODO: Merge this shuffle with the ReuseShuffleCost. 2354 VecLdCost += TTI->getShuffleCost( 2355 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2356 } 2357 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2358 } 2359 case Instruction::Store: { 2360 // We know that we can merge the stores. Calculate the cost. 2361 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2362 if (NeedToShuffleReuses) { 2363 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2364 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2365 alignment, 0, VL0); 2366 } 2367 int ScalarStCost = VecTy->getNumElements() * 2368 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2369 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2370 VecTy, alignment, 0, VL0); 2371 return ReuseShuffleCost + VecStCost - ScalarStCost; 2372 } 2373 case Instruction::Call: { 2374 CallInst *CI = cast<CallInst>(VL0); 2375 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2376 2377 // Calculate the cost of the scalar and vector calls. 2378 SmallVector<Type*, 4> ScalarTys; 2379 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2380 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2381 2382 FastMathFlags FMF; 2383 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2384 FMF = FPMO->getFastMathFlags(); 2385 2386 if (NeedToShuffleReuses) { 2387 ReuseShuffleCost -= 2388 (ReuseShuffleNumbers - VL.size()) * 2389 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2390 } 2391 int ScalarCallCost = VecTy->getNumElements() * 2392 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2393 2394 SmallVector<Value *, 4> Args(CI->arg_operands()); 2395 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2396 VecTy->getNumElements()); 2397 2398 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2399 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2400 << " for " << *CI << "\n"); 2401 2402 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2403 } 2404 case Instruction::ShuffleVector: { 2405 TargetTransformInfo::OperandValueKind Op1VK = 2406 TargetTransformInfo::OK_AnyValue; 2407 TargetTransformInfo::OperandValueKind Op2VK = 2408 TargetTransformInfo::OK_AnyValue; 2409 int ScalarCost = 0; 2410 if (NeedToShuffleReuses) { 2411 for (unsigned Idx : E->ReuseShuffleIndices) { 2412 Instruction *I = cast<Instruction>(VL[Idx]); 2413 if (!I) 2414 continue; 2415 ReuseShuffleCost -= TTI->getArithmeticInstrCost( 2416 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2417 } 2418 for (Value *V : VL) { 2419 Instruction *I = cast<Instruction>(V); 2420 if (!I) 2421 continue; 2422 ReuseShuffleCost += TTI->getArithmeticInstrCost( 2423 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2424 } 2425 } 2426 int VecCost = 0; 2427 for (Value *i : VL) { 2428 Instruction *I = cast<Instruction>(i); 2429 if (!I) 2430 break; 2431 ScalarCost += 2432 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2433 } 2434 // VecCost is equal to sum of the cost of creating 2 vectors 2435 // and the cost of creating shuffle. 2436 Instruction *I0 = cast<Instruction>(VL[0]); 2437 VecCost = 2438 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2439 Instruction *I1 = cast<Instruction>(VL[1]); 2440 VecCost += 2441 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2442 VecCost += 2443 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2444 return ReuseShuffleCost + VecCost - ScalarCost; 2445 } 2446 default: 2447 llvm_unreachable("Unknown instruction"); 2448 } 2449 } 2450 2451 bool BoUpSLP::isFullyVectorizableTinyTree() { 2452 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2453 VectorizableTree.size() << " is fully vectorizable .\n"); 2454 2455 // We only handle trees of heights 1 and 2. 2456 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2457 return true; 2458 2459 if (VectorizableTree.size() != 2) 2460 return false; 2461 2462 // Handle splat and all-constants stores. 2463 if (!VectorizableTree[0].NeedToGather && 2464 (allConstant(VectorizableTree[1].Scalars) || 2465 isSplat(VectorizableTree[1].Scalars))) 2466 return true; 2467 2468 // Gathering cost would be too much for tiny trees. 2469 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2470 return false; 2471 2472 return true; 2473 } 2474 2475 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2476 // We can vectorize the tree if its size is greater than or equal to the 2477 // minimum size specified by the MinTreeSize command line option. 2478 if (VectorizableTree.size() >= MinTreeSize) 2479 return false; 2480 2481 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2482 // can vectorize it if we can prove it fully vectorizable. 2483 if (isFullyVectorizableTinyTree()) 2484 return false; 2485 2486 assert(VectorizableTree.empty() 2487 ? ExternalUses.empty() 2488 : true && "We shouldn't have any external users"); 2489 2490 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2491 // vectorizable. 2492 return true; 2493 } 2494 2495 int BoUpSLP::getSpillCost() { 2496 // Walk from the bottom of the tree to the top, tracking which values are 2497 // live. When we see a call instruction that is not part of our tree, 2498 // query TTI to see if there is a cost to keeping values live over it 2499 // (for example, if spills and fills are required). 2500 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2501 int Cost = 0; 2502 2503 SmallPtrSet<Instruction*, 4> LiveValues; 2504 Instruction *PrevInst = nullptr; 2505 2506 for (const auto &N : VectorizableTree) { 2507 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2508 if (!Inst) 2509 continue; 2510 2511 if (!PrevInst) { 2512 PrevInst = Inst; 2513 continue; 2514 } 2515 2516 // Update LiveValues. 2517 LiveValues.erase(PrevInst); 2518 for (auto &J : PrevInst->operands()) { 2519 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2520 LiveValues.insert(cast<Instruction>(&*J)); 2521 } 2522 2523 DEBUG({ 2524 dbgs() << "SLP: #LV: " << LiveValues.size(); 2525 for (auto *X : LiveValues) 2526 dbgs() << " " << X->getName(); 2527 dbgs() << ", Looking at "; 2528 Inst->dump(); 2529 }); 2530 2531 // Now find the sequence of instructions between PrevInst and Inst. 2532 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2533 PrevInstIt = 2534 PrevInst->getIterator().getReverse(); 2535 while (InstIt != PrevInstIt) { 2536 if (PrevInstIt == PrevInst->getParent()->rend()) { 2537 PrevInstIt = Inst->getParent()->rbegin(); 2538 continue; 2539 } 2540 2541 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2542 SmallVector<Type*, 4> V; 2543 for (auto *II : LiveValues) 2544 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2545 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2546 } 2547 2548 ++PrevInstIt; 2549 } 2550 2551 PrevInst = Inst; 2552 } 2553 2554 return Cost; 2555 } 2556 2557 int BoUpSLP::getTreeCost() { 2558 int Cost = 0; 2559 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2560 VectorizableTree.size() << ".\n"); 2561 2562 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2563 2564 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2565 TreeEntry &TE = VectorizableTree[I]; 2566 2567 // We create duplicate tree entries for gather sequences that have multiple 2568 // uses. However, we should not compute the cost of duplicate sequences. 2569 // For example, if we have a build vector (i.e., insertelement sequence) 2570 // that is used by more than one vector instruction, we only need to 2571 // compute the cost of the insertelement instructions once. The redundent 2572 // instructions will be eliminated by CSE. 2573 // 2574 // We should consider not creating duplicate tree entries for gather 2575 // sequences, and instead add additional edges to the tree representing 2576 // their uses. Since such an approach results in fewer total entries, 2577 // existing heuristics based on tree size may yeild different results. 2578 // 2579 if (TE.NeedToGather && 2580 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2581 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2582 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2583 })) 2584 continue; 2585 2586 int C = getEntryCost(&TE); 2587 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2588 << *TE.Scalars[0] << ".\n"); 2589 Cost += C; 2590 } 2591 2592 SmallSet<Value *, 16> ExtractCostCalculated; 2593 int ExtractCost = 0; 2594 for (ExternalUser &EU : ExternalUses) { 2595 // We only add extract cost once for the same scalar. 2596 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2597 continue; 2598 2599 // Uses by ephemeral values are free (because the ephemeral value will be 2600 // removed prior to code generation, and so the extraction will be 2601 // removed as well). 2602 if (EphValues.count(EU.User)) 2603 continue; 2604 2605 // If we plan to rewrite the tree in a smaller type, we will need to sign 2606 // extend the extracted value back to the original type. Here, we account 2607 // for the extract and the added cost of the sign extend if needed. 2608 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2609 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2610 if (MinBWs.count(ScalarRoot)) { 2611 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2612 auto Extend = 2613 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2614 VecTy = VectorType::get(MinTy, BundleWidth); 2615 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2616 VecTy, EU.Lane); 2617 } else { 2618 ExtractCost += 2619 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2620 } 2621 } 2622 2623 int SpillCost = getSpillCost(); 2624 Cost += SpillCost + ExtractCost; 2625 2626 std::string Str; 2627 { 2628 raw_string_ostream OS(Str); 2629 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2630 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2631 << "SLP: Total Cost = " << Cost << ".\n"; 2632 } 2633 DEBUG(dbgs() << Str); 2634 2635 if (ViewSLPTree) 2636 ViewGraph(this, "SLP" + F->getName(), false, Str); 2637 2638 return Cost; 2639 } 2640 2641 int BoUpSLP::getGatherCost(Type *Ty, 2642 const DenseSet<unsigned> &ShuffledIndices) { 2643 int Cost = 0; 2644 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2645 if (!ShuffledIndices.count(i)) 2646 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2647 if (!ShuffledIndices.empty()) 2648 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2649 return Cost; 2650 } 2651 2652 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2653 // Find the type of the operands in VL. 2654 Type *ScalarTy = VL[0]->getType(); 2655 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2656 ScalarTy = SI->getValueOperand()->getType(); 2657 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2658 // Find the cost of inserting/extracting values from the vector. 2659 // Check if the same elements are inserted several times and count them as 2660 // shuffle candidates. 2661 DenseSet<unsigned> ShuffledElements; 2662 DenseSet<Value *> UniqueElements; 2663 // Iterate in reverse order to consider insert elements with the high cost. 2664 for (unsigned I = VL.size(); I > 0; --I) { 2665 unsigned Idx = I - 1; 2666 if (!UniqueElements.insert(VL[Idx]).second) 2667 ShuffledElements.insert(Idx); 2668 } 2669 return getGatherCost(VecTy, ShuffledElements); 2670 } 2671 2672 // Reorder commutative operations in alternate shuffle if the resulting vectors 2673 // are consecutive loads. This would allow us to vectorize the tree. 2674 // If we have something like- 2675 // load a[0] - load b[0] 2676 // load b[1] + load a[1] 2677 // load a[2] - load b[2] 2678 // load a[3] + load b[3] 2679 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2680 // code. 2681 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2682 SmallVectorImpl<Value *> &Left, 2683 SmallVectorImpl<Value *> &Right) { 2684 // Push left and right operands of binary operation into Left and Right 2685 unsigned AltOpcode = getAltOpcode(Opcode); 2686 (void)AltOpcode; 2687 for (Value *V : VL) { 2688 auto *I = cast<Instruction>(V); 2689 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2690 "Incorrect instruction in vector"); 2691 Left.push_back(I->getOperand(0)); 2692 Right.push_back(I->getOperand(1)); 2693 } 2694 2695 // Reorder if we have a commutative operation and consecutive access 2696 // are on either side of the alternate instructions. 2697 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2698 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2699 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2700 Instruction *VL1 = cast<Instruction>(VL[j]); 2701 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2702 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2703 std::swap(Left[j], Right[j]); 2704 continue; 2705 } else if (VL2->isCommutative() && 2706 isConsecutiveAccess(L, L1, *DL, *SE)) { 2707 std::swap(Left[j + 1], Right[j + 1]); 2708 continue; 2709 } 2710 // else unchanged 2711 } 2712 } 2713 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2714 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2715 Instruction *VL1 = cast<Instruction>(VL[j]); 2716 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2717 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2718 std::swap(Left[j], Right[j]); 2719 continue; 2720 } else if (VL2->isCommutative() && 2721 isConsecutiveAccess(L, L1, *DL, *SE)) { 2722 std::swap(Left[j + 1], Right[j + 1]); 2723 continue; 2724 } 2725 // else unchanged 2726 } 2727 } 2728 } 2729 } 2730 2731 // Return true if I should be commuted before adding it's left and right 2732 // operands to the arrays Left and Right. 2733 // 2734 // The vectorizer is trying to either have all elements one side being 2735 // instruction with the same opcode to enable further vectorization, or having 2736 // a splat to lower the vectorizing cost. 2737 static bool shouldReorderOperands( 2738 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2739 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2740 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2741 VLeft = I.getOperand(0); 2742 VRight = I.getOperand(1); 2743 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2744 if (SplatRight) { 2745 if (VRight == Right[i - 1]) 2746 // Preserve SplatRight 2747 return false; 2748 if (VLeft == Right[i - 1]) { 2749 // Commuting would preserve SplatRight, but we don't want to break 2750 // SplatLeft either, i.e. preserve the original order if possible. 2751 // (FIXME: why do we care?) 2752 if (SplatLeft && VLeft == Left[i - 1]) 2753 return false; 2754 return true; 2755 } 2756 } 2757 // Symmetrically handle Right side. 2758 if (SplatLeft) { 2759 if (VLeft == Left[i - 1]) 2760 // Preserve SplatLeft 2761 return false; 2762 if (VRight == Left[i - 1]) 2763 return true; 2764 } 2765 2766 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2767 Instruction *IRight = dyn_cast<Instruction>(VRight); 2768 2769 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2770 // it and not the right, in this case we want to commute. 2771 if (AllSameOpcodeRight) { 2772 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2773 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2774 // Do not commute, a match on the right preserves AllSameOpcodeRight 2775 return false; 2776 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2777 // We have a match and may want to commute, but first check if there is 2778 // not also a match on the existing operands on the Left to preserve 2779 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2780 // (FIXME: why do we care?) 2781 if (AllSameOpcodeLeft && ILeft && 2782 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2783 return false; 2784 return true; 2785 } 2786 } 2787 // Symmetrically handle Left side. 2788 if (AllSameOpcodeLeft) { 2789 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2790 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2791 return false; 2792 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2793 return true; 2794 } 2795 return false; 2796 } 2797 2798 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2799 ArrayRef<Value *> VL, 2800 SmallVectorImpl<Value *> &Left, 2801 SmallVectorImpl<Value *> &Right) { 2802 if (!VL.empty()) { 2803 // Peel the first iteration out of the loop since there's nothing 2804 // interesting to do anyway and it simplifies the checks in the loop. 2805 auto *I = cast<Instruction>(VL[0]); 2806 Value *VLeft = I->getOperand(0); 2807 Value *VRight = I->getOperand(1); 2808 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2809 // Favor having instruction to the right. FIXME: why? 2810 std::swap(VLeft, VRight); 2811 Left.push_back(VLeft); 2812 Right.push_back(VRight); 2813 } 2814 2815 // Keep track if we have instructions with all the same opcode on one side. 2816 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2817 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2818 // Keep track if we have one side with all the same value (broadcast). 2819 bool SplatLeft = true; 2820 bool SplatRight = true; 2821 2822 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2823 Instruction *I = cast<Instruction>(VL[i]); 2824 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2825 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2826 "Can only process commutative instruction"); 2827 // Commute to favor either a splat or maximizing having the same opcodes on 2828 // one side. 2829 Value *VLeft; 2830 Value *VRight; 2831 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2832 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2833 VRight)) { 2834 Left.push_back(VRight); 2835 Right.push_back(VLeft); 2836 } else { 2837 Left.push_back(VLeft); 2838 Right.push_back(VRight); 2839 } 2840 // Update Splat* and AllSameOpcode* after the insertion. 2841 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2842 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2843 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2844 (cast<Instruction>(Left[i - 1])->getOpcode() == 2845 cast<Instruction>(Left[i])->getOpcode()); 2846 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2847 (cast<Instruction>(Right[i - 1])->getOpcode() == 2848 cast<Instruction>(Right[i])->getOpcode()); 2849 } 2850 2851 // If one operand end up being broadcast, return this operand order. 2852 if (SplatRight || SplatLeft) 2853 return; 2854 2855 // Finally check if we can get longer vectorizable chain by reordering 2856 // without breaking the good operand order detected above. 2857 // E.g. If we have something like- 2858 // load a[0] load b[0] 2859 // load b[1] load a[1] 2860 // load a[2] load b[2] 2861 // load a[3] load b[3] 2862 // Reordering the second load b[1] load a[1] would allow us to vectorize 2863 // this code and we still retain AllSameOpcode property. 2864 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2865 // such as- 2866 // add a[0],c[0] load b[0] 2867 // add a[1],c[2] load b[1] 2868 // b[2] load b[2] 2869 // add a[3],c[3] load b[3] 2870 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2871 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2872 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2873 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2874 std::swap(Left[j + 1], Right[j + 1]); 2875 continue; 2876 } 2877 } 2878 } 2879 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2880 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2881 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2882 std::swap(Left[j + 1], Right[j + 1]); 2883 continue; 2884 } 2885 } 2886 } 2887 // else unchanged 2888 } 2889 } 2890 2891 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2892 // Get the basic block this bundle is in. All instructions in the bundle 2893 // should be in this block. 2894 auto *Front = cast<Instruction>(OpValue); 2895 auto *BB = Front->getParent(); 2896 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2897 const unsigned AltOpcode = getAltOpcode(Opcode); 2898 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2899 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2900 cast<Instruction>(V)->getOpcode()) || 2901 cast<Instruction>(V)->getParent() == BB; 2902 })); 2903 2904 // The last instruction in the bundle in program order. 2905 Instruction *LastInst = nullptr; 2906 2907 // Find the last instruction. The common case should be that BB has been 2908 // scheduled, and the last instruction is VL.back(). So we start with 2909 // VL.back() and iterate over schedule data until we reach the end of the 2910 // bundle. The end of the bundle is marked by null ScheduleData. 2911 if (BlocksSchedules.count(BB)) { 2912 auto *Bundle = 2913 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2914 if (Bundle && Bundle->isPartOfBundle()) 2915 for (; Bundle; Bundle = Bundle->NextInBundle) 2916 if (Bundle->OpValue == Bundle->Inst) 2917 LastInst = Bundle->Inst; 2918 } 2919 2920 // LastInst can still be null at this point if there's either not an entry 2921 // for BB in BlocksSchedules or there's no ScheduleData available for 2922 // VL.back(). This can be the case if buildTree_rec aborts for various 2923 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2924 // size is reached, etc.). ScheduleData is initialized in the scheduling 2925 // "dry-run". 2926 // 2927 // If this happens, we can still find the last instruction by brute force. We 2928 // iterate forwards from Front (inclusive) until we either see all 2929 // instructions in the bundle or reach the end of the block. If Front is the 2930 // last instruction in program order, LastInst will be set to Front, and we 2931 // will visit all the remaining instructions in the block. 2932 // 2933 // One of the reasons we exit early from buildTree_rec is to place an upper 2934 // bound on compile-time. Thus, taking an additional compile-time hit here is 2935 // not ideal. However, this should be exceedingly rare since it requires that 2936 // we both exit early from buildTree_rec and that the bundle be out-of-order 2937 // (causing us to iterate all the way to the end of the block). 2938 if (!LastInst) { 2939 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2940 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2941 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2942 LastInst = &I; 2943 if (Bundle.empty()) 2944 break; 2945 } 2946 } 2947 2948 // Set the insertion point after the last instruction in the bundle. Set the 2949 // debug location to Front. 2950 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2951 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2952 } 2953 2954 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2955 Value *Vec = UndefValue::get(Ty); 2956 // Generate the 'InsertElement' instruction. 2957 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2958 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2959 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2960 GatherSeq.insert(Insrt); 2961 CSEBlocks.insert(Insrt->getParent()); 2962 2963 // Add to our 'need-to-extract' list. 2964 if (TreeEntry *E = getTreeEntry(VL[i])) { 2965 // Find which lane we need to extract. 2966 int FoundLane = -1; 2967 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2968 // Is this the lane of the scalar that we are looking for ? 2969 if (E->Scalars[Lane] == VL[i]) { 2970 FoundLane = Lane; 2971 break; 2972 } 2973 } 2974 assert(FoundLane >= 0 && "Could not find the correct lane"); 2975 if (!E->ReuseShuffleIndices.empty()) { 2976 FoundLane = 2977 std::distance(E->ReuseShuffleIndices.begin(), 2978 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2979 } 2980 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2981 } 2982 } 2983 } 2984 2985 return Vec; 2986 } 2987 2988 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2989 InstructionsState S = getSameOpcode(VL); 2990 if (S.Opcode) { 2991 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2992 if (E->isSame(VL)) { 2993 Value *V = vectorizeTree(E); 2994 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2995 // We need to get the vectorized value but without shuffle. 2996 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2997 V = SV->getOperand(0); 2998 } else { 2999 // Reshuffle to get only unique values. 3000 SmallVector<unsigned, 4> UniqueIdxs; 3001 SmallSet<unsigned, 4> UsedIdxs; 3002 for(unsigned Idx : E->ReuseShuffleIndices) 3003 if (UsedIdxs.insert(Idx).second) 3004 UniqueIdxs.emplace_back(Idx); 3005 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3006 UniqueIdxs); 3007 } 3008 } 3009 return V; 3010 } 3011 } 3012 } 3013 3014 Type *ScalarTy = S.OpValue->getType(); 3015 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3016 ScalarTy = SI->getValueOperand()->getType(); 3017 3018 // Check that every instruction appears once in this bundle. 3019 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3020 SmallVector<Value *, 4> UniqueValues; 3021 if (VL.size() > 2) { 3022 DenseMap<Value *, unsigned> UniquePositions; 3023 for (Value *V : VL) { 3024 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3025 ReuseShuffleIndicies.emplace_back(Res.first->second); 3026 if (Res.second || isa<Constant>(V)) 3027 UniqueValues.emplace_back(V); 3028 } 3029 // Do not shuffle single element or if number of unique values is not power 3030 // of 2. 3031 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3032 !llvm::isPowerOf2_32(UniqueValues.size())) 3033 ReuseShuffleIndicies.clear(); 3034 else 3035 VL = UniqueValues; 3036 } 3037 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3038 3039 Value *V = Gather(VL, VecTy); 3040 if (!ReuseShuffleIndicies.empty()) { 3041 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3042 ReuseShuffleIndicies, "shuffle"); 3043 if (auto *I = dyn_cast<Instruction>(V)) { 3044 GatherSeq.insert(I); 3045 CSEBlocks.insert(I->getParent()); 3046 } 3047 } 3048 return V; 3049 } 3050 3051 static void inversePermutation(ArrayRef<unsigned> Indices, 3052 SmallVectorImpl<unsigned> &Mask) { 3053 Mask.clear(); 3054 const unsigned E = Indices.size(); 3055 Mask.resize(E); 3056 for (unsigned I = 0; I < E; ++I) 3057 Mask[Indices[I]] = I; 3058 } 3059 3060 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3061 IRBuilder<>::InsertPointGuard Guard(Builder); 3062 3063 if (E->VectorizedValue) { 3064 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3065 return E->VectorizedValue; 3066 } 3067 3068 InstructionsState S = getSameOpcode(E->Scalars); 3069 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 3070 Type *ScalarTy = VL0->getType(); 3071 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3072 ScalarTy = SI->getValueOperand()->getType(); 3073 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3074 3075 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3076 3077 if (E->NeedToGather) { 3078 setInsertPointAfterBundle(E->Scalars, VL0); 3079 auto *V = Gather(E->Scalars, VecTy); 3080 if (NeedToShuffleReuses) { 3081 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3082 E->ReuseShuffleIndices, "shuffle"); 3083 if (auto *I = dyn_cast<Instruction>(V)) { 3084 GatherSeq.insert(I); 3085 CSEBlocks.insert(I->getParent()); 3086 } 3087 } 3088 E->VectorizedValue = V; 3089 return V; 3090 } 3091 3092 unsigned ShuffleOrOp = S.IsAltShuffle ? 3093 (unsigned) Instruction::ShuffleVector : S.Opcode; 3094 switch (ShuffleOrOp) { 3095 case Instruction::PHI: { 3096 PHINode *PH = dyn_cast<PHINode>(VL0); 3097 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3098 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3099 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3100 Value *V = NewPhi; 3101 if (NeedToShuffleReuses) { 3102 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3103 E->ReuseShuffleIndices, "shuffle"); 3104 } 3105 E->VectorizedValue = V; 3106 3107 // PHINodes may have multiple entries from the same block. We want to 3108 // visit every block once. 3109 SmallSet<BasicBlock*, 4> VisitedBBs; 3110 3111 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3112 ValueList Operands; 3113 BasicBlock *IBB = PH->getIncomingBlock(i); 3114 3115 if (!VisitedBBs.insert(IBB).second) { 3116 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3117 continue; 3118 } 3119 3120 // Prepare the operand vector. 3121 for (Value *V : E->Scalars) 3122 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3123 3124 Builder.SetInsertPoint(IBB->getTerminator()); 3125 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3126 Value *Vec = vectorizeTree(Operands); 3127 NewPhi->addIncoming(Vec, IBB); 3128 } 3129 3130 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3131 "Invalid number of incoming values"); 3132 return V; 3133 } 3134 3135 case Instruction::ExtractElement: { 3136 if (!E->NeedToGather) { 3137 Value *V = VL0->getOperand(0); 3138 if (!E->ReorderIndices.empty()) { 3139 OrdersType Mask; 3140 inversePermutation(E->ReorderIndices, Mask); 3141 Builder.SetInsertPoint(VL0); 3142 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3143 "reorder_shuffle"); 3144 } 3145 if (NeedToShuffleReuses) { 3146 // TODO: Merge this shuffle with the ReorderShuffleMask. 3147 if (!E->ReorderIndices.empty()) 3148 Builder.SetInsertPoint(VL0); 3149 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3150 E->ReuseShuffleIndices, "shuffle"); 3151 } 3152 E->VectorizedValue = V; 3153 return V; 3154 } 3155 setInsertPointAfterBundle(E->Scalars, VL0); 3156 auto *V = Gather(E->Scalars, VecTy); 3157 if (NeedToShuffleReuses) { 3158 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3159 E->ReuseShuffleIndices, "shuffle"); 3160 if (auto *I = dyn_cast<Instruction>(V)) { 3161 GatherSeq.insert(I); 3162 CSEBlocks.insert(I->getParent()); 3163 } 3164 } 3165 E->VectorizedValue = V; 3166 return V; 3167 } 3168 case Instruction::ExtractValue: { 3169 if (!E->NeedToGather) { 3170 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3171 Builder.SetInsertPoint(LI); 3172 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3173 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3174 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3175 Value *NewV = propagateMetadata(V, E->Scalars); 3176 if (!E->ReorderIndices.empty()) { 3177 OrdersType Mask; 3178 inversePermutation(E->ReorderIndices, Mask); 3179 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3180 "reorder_shuffle"); 3181 } 3182 if (NeedToShuffleReuses) { 3183 // TODO: Merge this shuffle with the ReorderShuffleMask. 3184 NewV = Builder.CreateShuffleVector( 3185 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3186 } 3187 E->VectorizedValue = NewV; 3188 return NewV; 3189 } 3190 setInsertPointAfterBundle(E->Scalars, VL0); 3191 auto *V = Gather(E->Scalars, VecTy); 3192 if (NeedToShuffleReuses) { 3193 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3194 E->ReuseShuffleIndices, "shuffle"); 3195 if (auto *I = dyn_cast<Instruction>(V)) { 3196 GatherSeq.insert(I); 3197 CSEBlocks.insert(I->getParent()); 3198 } 3199 } 3200 E->VectorizedValue = V; 3201 return V; 3202 } 3203 case Instruction::ZExt: 3204 case Instruction::SExt: 3205 case Instruction::FPToUI: 3206 case Instruction::FPToSI: 3207 case Instruction::FPExt: 3208 case Instruction::PtrToInt: 3209 case Instruction::IntToPtr: 3210 case Instruction::SIToFP: 3211 case Instruction::UIToFP: 3212 case Instruction::Trunc: 3213 case Instruction::FPTrunc: 3214 case Instruction::BitCast: { 3215 ValueList INVL; 3216 for (Value *V : E->Scalars) 3217 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3218 3219 setInsertPointAfterBundle(E->Scalars, VL0); 3220 3221 Value *InVec = vectorizeTree(INVL); 3222 3223 if (E->VectorizedValue) { 3224 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3225 return E->VectorizedValue; 3226 } 3227 3228 CastInst *CI = dyn_cast<CastInst>(VL0); 3229 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3230 if (NeedToShuffleReuses) { 3231 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3232 E->ReuseShuffleIndices, "shuffle"); 3233 } 3234 E->VectorizedValue = V; 3235 ++NumVectorInstructions; 3236 return V; 3237 } 3238 case Instruction::FCmp: 3239 case Instruction::ICmp: { 3240 ValueList LHSV, RHSV; 3241 for (Value *V : E->Scalars) { 3242 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3243 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3244 } 3245 3246 setInsertPointAfterBundle(E->Scalars, VL0); 3247 3248 Value *L = vectorizeTree(LHSV); 3249 Value *R = vectorizeTree(RHSV); 3250 3251 if (E->VectorizedValue) { 3252 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3253 return E->VectorizedValue; 3254 } 3255 3256 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3257 Value *V; 3258 if (S.Opcode == Instruction::FCmp) 3259 V = Builder.CreateFCmp(P0, L, R); 3260 else 3261 V = Builder.CreateICmp(P0, L, R); 3262 3263 propagateIRFlags(V, E->Scalars, VL0); 3264 if (NeedToShuffleReuses) { 3265 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3266 E->ReuseShuffleIndices, "shuffle"); 3267 } 3268 E->VectorizedValue = V; 3269 ++NumVectorInstructions; 3270 return V; 3271 } 3272 case Instruction::Select: { 3273 ValueList TrueVec, FalseVec, CondVec; 3274 for (Value *V : E->Scalars) { 3275 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3276 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3277 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3278 } 3279 3280 setInsertPointAfterBundle(E->Scalars, VL0); 3281 3282 Value *Cond = vectorizeTree(CondVec); 3283 Value *True = vectorizeTree(TrueVec); 3284 Value *False = vectorizeTree(FalseVec); 3285 3286 if (E->VectorizedValue) { 3287 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3288 return E->VectorizedValue; 3289 } 3290 3291 Value *V = Builder.CreateSelect(Cond, True, False); 3292 if (NeedToShuffleReuses) { 3293 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3294 E->ReuseShuffleIndices, "shuffle"); 3295 } 3296 E->VectorizedValue = V; 3297 ++NumVectorInstructions; 3298 return V; 3299 } 3300 case Instruction::Add: 3301 case Instruction::FAdd: 3302 case Instruction::Sub: 3303 case Instruction::FSub: 3304 case Instruction::Mul: 3305 case Instruction::FMul: 3306 case Instruction::UDiv: 3307 case Instruction::SDiv: 3308 case Instruction::FDiv: 3309 case Instruction::URem: 3310 case Instruction::SRem: 3311 case Instruction::FRem: 3312 case Instruction::Shl: 3313 case Instruction::LShr: 3314 case Instruction::AShr: 3315 case Instruction::And: 3316 case Instruction::Or: 3317 case Instruction::Xor: { 3318 ValueList LHSVL, RHSVL; 3319 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3320 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3321 RHSVL); 3322 else 3323 for (Value *V : E->Scalars) { 3324 auto *I = cast<Instruction>(V); 3325 LHSVL.push_back(I->getOperand(0)); 3326 RHSVL.push_back(I->getOperand(1)); 3327 } 3328 3329 setInsertPointAfterBundle(E->Scalars, VL0); 3330 3331 Value *LHS = vectorizeTree(LHSVL); 3332 Value *RHS = vectorizeTree(RHSVL); 3333 3334 if (E->VectorizedValue) { 3335 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3336 return E->VectorizedValue; 3337 } 3338 3339 Value *V = Builder.CreateBinOp( 3340 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3341 propagateIRFlags(V, E->Scalars, VL0); 3342 if (auto *I = dyn_cast<Instruction>(V)) 3343 V = propagateMetadata(I, E->Scalars); 3344 3345 if (NeedToShuffleReuses) { 3346 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3347 E->ReuseShuffleIndices, "shuffle"); 3348 } 3349 E->VectorizedValue = V; 3350 ++NumVectorInstructions; 3351 3352 return V; 3353 } 3354 case Instruction::Load: { 3355 // Loads are inserted at the head of the tree because we don't want to 3356 // sink them all the way down past store instructions. 3357 bool IsReorder = !E->ReorderIndices.empty(); 3358 if (IsReorder) 3359 VL0 = cast<Instruction>(E->Scalars[E->ReorderIndices.front()]); 3360 setInsertPointAfterBundle(E->Scalars, VL0); 3361 3362 LoadInst *LI = cast<LoadInst>(VL0); 3363 Type *ScalarLoadTy = LI->getType(); 3364 unsigned AS = LI->getPointerAddressSpace(); 3365 3366 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3367 VecTy->getPointerTo(AS)); 3368 3369 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3370 // ExternalUses list to make sure that an extract will be generated in the 3371 // future. 3372 Value *PO = LI->getPointerOperand(); 3373 if (getTreeEntry(PO)) 3374 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3375 3376 unsigned Alignment = LI->getAlignment(); 3377 LI = Builder.CreateLoad(VecPtr); 3378 if (!Alignment) { 3379 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3380 } 3381 LI->setAlignment(Alignment); 3382 Value *V = propagateMetadata(LI, E->Scalars); 3383 if (IsReorder) { 3384 OrdersType Mask; 3385 inversePermutation(E->ReorderIndices, Mask); 3386 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3387 Mask, "reorder_shuffle"); 3388 } 3389 if (NeedToShuffleReuses) { 3390 // TODO: Merge this shuffle with the ReorderShuffleMask. 3391 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3392 E->ReuseShuffleIndices, "shuffle"); 3393 } 3394 E->VectorizedValue = V; 3395 ++NumVectorInstructions; 3396 return V; 3397 } 3398 case Instruction::Store: { 3399 StoreInst *SI = cast<StoreInst>(VL0); 3400 unsigned Alignment = SI->getAlignment(); 3401 unsigned AS = SI->getPointerAddressSpace(); 3402 3403 ValueList ScalarStoreValues; 3404 for (Value *V : E->Scalars) 3405 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3406 3407 setInsertPointAfterBundle(E->Scalars, VL0); 3408 3409 Value *VecValue = vectorizeTree(ScalarStoreValues); 3410 Value *ScalarPtr = SI->getPointerOperand(); 3411 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3412 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3413 3414 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3415 // ExternalUses to make sure that an extract will be generated in the 3416 // future. 3417 if (getTreeEntry(ScalarPtr)) 3418 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3419 3420 if (!Alignment) 3421 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3422 3423 S->setAlignment(Alignment); 3424 Value *V = propagateMetadata(S, E->Scalars); 3425 if (NeedToShuffleReuses) { 3426 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3427 E->ReuseShuffleIndices, "shuffle"); 3428 } 3429 E->VectorizedValue = V; 3430 ++NumVectorInstructions; 3431 return V; 3432 } 3433 case Instruction::GetElementPtr: { 3434 setInsertPointAfterBundle(E->Scalars, VL0); 3435 3436 ValueList Op0VL; 3437 for (Value *V : E->Scalars) 3438 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3439 3440 Value *Op0 = vectorizeTree(Op0VL); 3441 3442 std::vector<Value *> OpVecs; 3443 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3444 ++j) { 3445 ValueList OpVL; 3446 for (Value *V : E->Scalars) 3447 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3448 3449 Value *OpVec = vectorizeTree(OpVL); 3450 OpVecs.push_back(OpVec); 3451 } 3452 3453 Value *V = Builder.CreateGEP( 3454 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3455 if (Instruction *I = dyn_cast<Instruction>(V)) 3456 V = propagateMetadata(I, E->Scalars); 3457 3458 if (NeedToShuffleReuses) { 3459 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3460 E->ReuseShuffleIndices, "shuffle"); 3461 } 3462 E->VectorizedValue = V; 3463 ++NumVectorInstructions; 3464 3465 return V; 3466 } 3467 case Instruction::Call: { 3468 CallInst *CI = cast<CallInst>(VL0); 3469 setInsertPointAfterBundle(E->Scalars, VL0); 3470 Function *FI; 3471 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3472 Value *ScalarArg = nullptr; 3473 if (CI && (FI = CI->getCalledFunction())) { 3474 IID = FI->getIntrinsicID(); 3475 } 3476 std::vector<Value *> OpVecs; 3477 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3478 ValueList OpVL; 3479 // ctlz,cttz and powi are special intrinsics whose second argument is 3480 // a scalar. This argument should not be vectorized. 3481 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3482 CallInst *CEI = cast<CallInst>(VL0); 3483 ScalarArg = CEI->getArgOperand(j); 3484 OpVecs.push_back(CEI->getArgOperand(j)); 3485 continue; 3486 } 3487 for (Value *V : E->Scalars) { 3488 CallInst *CEI = cast<CallInst>(V); 3489 OpVL.push_back(CEI->getArgOperand(j)); 3490 } 3491 3492 Value *OpVec = vectorizeTree(OpVL); 3493 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3494 OpVecs.push_back(OpVec); 3495 } 3496 3497 Module *M = F->getParent(); 3498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3499 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3500 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3501 SmallVector<OperandBundleDef, 1> OpBundles; 3502 CI->getOperandBundlesAsDefs(OpBundles); 3503 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3504 3505 // The scalar argument uses an in-tree scalar so we add the new vectorized 3506 // call to ExternalUses list to make sure that an extract will be 3507 // generated in the future. 3508 if (ScalarArg && getTreeEntry(ScalarArg)) 3509 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3510 3511 propagateIRFlags(V, E->Scalars, VL0); 3512 if (NeedToShuffleReuses) { 3513 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3514 E->ReuseShuffleIndices, "shuffle"); 3515 } 3516 E->VectorizedValue = V; 3517 ++NumVectorInstructions; 3518 return V; 3519 } 3520 case Instruction::ShuffleVector: { 3521 ValueList LHSVL, RHSVL; 3522 assert(Instruction::isBinaryOp(S.Opcode) && 3523 "Invalid Shuffle Vector Operand"); 3524 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3525 setInsertPointAfterBundle(E->Scalars, VL0); 3526 3527 Value *LHS = vectorizeTree(LHSVL); 3528 Value *RHS = vectorizeTree(RHSVL); 3529 3530 if (E->VectorizedValue) { 3531 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3532 return E->VectorizedValue; 3533 } 3534 3535 // Create a vector of LHS op1 RHS 3536 Value *V0 = Builder.CreateBinOp( 3537 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3538 3539 unsigned AltOpcode = getAltOpcode(S.Opcode); 3540 // Create a vector of LHS op2 RHS 3541 Value *V1 = Builder.CreateBinOp( 3542 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3543 3544 // Create shuffle to take alternate operations from the vector. 3545 // Also, gather up odd and even scalar ops to propagate IR flags to 3546 // each vector operation. 3547 ValueList OddScalars, EvenScalars; 3548 unsigned e = E->Scalars.size(); 3549 SmallVector<Constant *, 8> Mask(e); 3550 for (unsigned i = 0; i < e; ++i) { 3551 if (isOdd(i)) { 3552 Mask[i] = Builder.getInt32(e + i); 3553 OddScalars.push_back(E->Scalars[i]); 3554 } else { 3555 Mask[i] = Builder.getInt32(i); 3556 EvenScalars.push_back(E->Scalars[i]); 3557 } 3558 } 3559 3560 Value *ShuffleMask = ConstantVector::get(Mask); 3561 propagateIRFlags(V0, EvenScalars); 3562 propagateIRFlags(V1, OddScalars); 3563 3564 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3565 if (Instruction *I = dyn_cast<Instruction>(V)) 3566 V = propagateMetadata(I, E->Scalars); 3567 if (NeedToShuffleReuses) { 3568 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3569 E->ReuseShuffleIndices, "shuffle"); 3570 } 3571 E->VectorizedValue = V; 3572 ++NumVectorInstructions; 3573 3574 return V; 3575 } 3576 default: 3577 llvm_unreachable("unknown inst"); 3578 } 3579 return nullptr; 3580 } 3581 3582 Value *BoUpSLP::vectorizeTree() { 3583 ExtraValueToDebugLocsMap ExternallyUsedValues; 3584 return vectorizeTree(ExternallyUsedValues); 3585 } 3586 3587 Value * 3588 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3589 // All blocks must be scheduled before any instructions are inserted. 3590 for (auto &BSIter : BlocksSchedules) { 3591 scheduleBlock(BSIter.second.get()); 3592 } 3593 3594 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3595 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3596 3597 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3598 // vectorized root. InstCombine will then rewrite the entire expression. We 3599 // sign extend the extracted values below. 3600 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3601 if (MinBWs.count(ScalarRoot)) { 3602 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3603 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3604 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3605 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3606 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3607 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3608 VectorizableTree[0].VectorizedValue = Trunc; 3609 } 3610 3611 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3612 3613 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3614 // specified by ScalarType. 3615 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3616 if (!MinBWs.count(ScalarRoot)) 3617 return Ex; 3618 if (MinBWs[ScalarRoot].second) 3619 return Builder.CreateSExt(Ex, ScalarType); 3620 return Builder.CreateZExt(Ex, ScalarType); 3621 }; 3622 3623 // Extract all of the elements with the external uses. 3624 for (const auto &ExternalUse : ExternalUses) { 3625 Value *Scalar = ExternalUse.Scalar; 3626 llvm::User *User = ExternalUse.User; 3627 3628 // Skip users that we already RAUW. This happens when one instruction 3629 // has multiple uses of the same value. 3630 if (User && !is_contained(Scalar->users(), User)) 3631 continue; 3632 TreeEntry *E = getTreeEntry(Scalar); 3633 assert(E && "Invalid scalar"); 3634 assert(!E->NeedToGather && "Extracting from a gather list"); 3635 3636 Value *Vec = E->VectorizedValue; 3637 assert(Vec && "Can't find vectorizable value"); 3638 3639 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3640 // If User == nullptr, the Scalar is used as extra arg. Generate 3641 // ExtractElement instruction and update the record for this scalar in 3642 // ExternallyUsedValues. 3643 if (!User) { 3644 assert(ExternallyUsedValues.count(Scalar) && 3645 "Scalar with nullptr as an external user must be registered in " 3646 "ExternallyUsedValues map"); 3647 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3648 Builder.SetInsertPoint(VecI->getParent(), 3649 std::next(VecI->getIterator())); 3650 } else { 3651 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3652 } 3653 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3654 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3655 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3656 auto &Locs = ExternallyUsedValues[Scalar]; 3657 ExternallyUsedValues.insert({Ex, Locs}); 3658 ExternallyUsedValues.erase(Scalar); 3659 continue; 3660 } 3661 3662 // Generate extracts for out-of-tree users. 3663 // Find the insertion point for the extractelement lane. 3664 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3665 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3666 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3667 if (PH->getIncomingValue(i) == Scalar) { 3668 TerminatorInst *IncomingTerminator = 3669 PH->getIncomingBlock(i)->getTerminator(); 3670 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3671 Builder.SetInsertPoint(VecI->getParent(), 3672 std::next(VecI->getIterator())); 3673 } else { 3674 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3675 } 3676 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3677 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3678 CSEBlocks.insert(PH->getIncomingBlock(i)); 3679 PH->setOperand(i, Ex); 3680 } 3681 } 3682 } else { 3683 Builder.SetInsertPoint(cast<Instruction>(User)); 3684 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3685 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3686 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3687 User->replaceUsesOfWith(Scalar, Ex); 3688 } 3689 } else { 3690 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3691 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3692 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3693 CSEBlocks.insert(&F->getEntryBlock()); 3694 User->replaceUsesOfWith(Scalar, Ex); 3695 } 3696 3697 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3698 } 3699 3700 // For each vectorized value: 3701 for (TreeEntry &EIdx : VectorizableTree) { 3702 TreeEntry *Entry = &EIdx; 3703 3704 // No need to handle users of gathered values. 3705 if (Entry->NeedToGather) 3706 continue; 3707 3708 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3709 3710 // For each lane: 3711 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3712 Value *Scalar = Entry->Scalars[Lane]; 3713 3714 Type *Ty = Scalar->getType(); 3715 if (!Ty->isVoidTy()) { 3716 #ifndef NDEBUG 3717 for (User *U : Scalar->users()) { 3718 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3719 3720 // It is legal to replace users in the ignorelist by undef. 3721 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3722 "Replacing out-of-tree value with undef"); 3723 } 3724 #endif 3725 Value *Undef = UndefValue::get(Ty); 3726 Scalar->replaceAllUsesWith(Undef); 3727 } 3728 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3729 eraseInstruction(cast<Instruction>(Scalar)); 3730 } 3731 } 3732 3733 Builder.ClearInsertionPoint(); 3734 3735 return VectorizableTree[0].VectorizedValue; 3736 } 3737 3738 void BoUpSLP::optimizeGatherSequence() { 3739 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3740 << " gather sequences instructions.\n"); 3741 // LICM InsertElementInst sequences. 3742 for (Instruction *I : GatherSeq) { 3743 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3744 continue; 3745 3746 // Check if this block is inside a loop. 3747 Loop *L = LI->getLoopFor(I->getParent()); 3748 if (!L) 3749 continue; 3750 3751 // Check if it has a preheader. 3752 BasicBlock *PreHeader = L->getLoopPreheader(); 3753 if (!PreHeader) 3754 continue; 3755 3756 // If the vector or the element that we insert into it are 3757 // instructions that are defined in this basic block then we can't 3758 // hoist this instruction. 3759 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3760 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3761 if (Op0 && L->contains(Op0)) 3762 continue; 3763 if (Op1 && L->contains(Op1)) 3764 continue; 3765 3766 // We can hoist this instruction. Move it to the pre-header. 3767 I->moveBefore(PreHeader->getTerminator()); 3768 } 3769 3770 // Make a list of all reachable blocks in our CSE queue. 3771 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3772 CSEWorkList.reserve(CSEBlocks.size()); 3773 for (BasicBlock *BB : CSEBlocks) 3774 if (DomTreeNode *N = DT->getNode(BB)) { 3775 assert(DT->isReachableFromEntry(N)); 3776 CSEWorkList.push_back(N); 3777 } 3778 3779 // Sort blocks by domination. This ensures we visit a block after all blocks 3780 // dominating it are visited. 3781 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3782 [this](const DomTreeNode *A, const DomTreeNode *B) { 3783 return DT->properlyDominates(A, B); 3784 }); 3785 3786 // Perform O(N^2) search over the gather sequences and merge identical 3787 // instructions. TODO: We can further optimize this scan if we split the 3788 // instructions into different buckets based on the insert lane. 3789 SmallVector<Instruction *, 16> Visited; 3790 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3791 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3792 "Worklist not sorted properly!"); 3793 BasicBlock *BB = (*I)->getBlock(); 3794 // For all instructions in blocks containing gather sequences: 3795 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3796 Instruction *In = &*it++; 3797 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3798 continue; 3799 3800 // Check if we can replace this instruction with any of the 3801 // visited instructions. 3802 for (Instruction *v : Visited) { 3803 if (In->isIdenticalTo(v) && 3804 DT->dominates(v->getParent(), In->getParent())) { 3805 In->replaceAllUsesWith(v); 3806 eraseInstruction(In); 3807 In = nullptr; 3808 break; 3809 } 3810 } 3811 if (In) { 3812 assert(!is_contained(Visited, In)); 3813 Visited.push_back(In); 3814 } 3815 } 3816 } 3817 CSEBlocks.clear(); 3818 GatherSeq.clear(); 3819 } 3820 3821 // Groups the instructions to a bundle (which is then a single scheduling entity) 3822 // and schedules instructions until the bundle gets ready. 3823 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3824 BoUpSLP *SLP, Value *OpValue) { 3825 if (isa<PHINode>(OpValue)) 3826 return true; 3827 3828 // Initialize the instruction bundle. 3829 Instruction *OldScheduleEnd = ScheduleEnd; 3830 ScheduleData *PrevInBundle = nullptr; 3831 ScheduleData *Bundle = nullptr; 3832 bool ReSchedule = false; 3833 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3834 3835 // Make sure that the scheduling region contains all 3836 // instructions of the bundle. 3837 for (Value *V : VL) { 3838 if (!extendSchedulingRegion(V, OpValue)) 3839 return false; 3840 } 3841 3842 for (Value *V : VL) { 3843 ScheduleData *BundleMember = getScheduleData(V); 3844 assert(BundleMember && 3845 "no ScheduleData for bundle member (maybe not in same basic block)"); 3846 if (BundleMember->IsScheduled) { 3847 // A bundle member was scheduled as single instruction before and now 3848 // needs to be scheduled as part of the bundle. We just get rid of the 3849 // existing schedule. 3850 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3851 << " was already scheduled\n"); 3852 ReSchedule = true; 3853 } 3854 assert(BundleMember->isSchedulingEntity() && 3855 "bundle member already part of other bundle"); 3856 if (PrevInBundle) { 3857 PrevInBundle->NextInBundle = BundleMember; 3858 } else { 3859 Bundle = BundleMember; 3860 } 3861 BundleMember->UnscheduledDepsInBundle = 0; 3862 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3863 3864 // Group the instructions to a bundle. 3865 BundleMember->FirstInBundle = Bundle; 3866 PrevInBundle = BundleMember; 3867 } 3868 if (ScheduleEnd != OldScheduleEnd) { 3869 // The scheduling region got new instructions at the lower end (or it is a 3870 // new region for the first bundle). This makes it necessary to 3871 // recalculate all dependencies. 3872 // It is seldom that this needs to be done a second time after adding the 3873 // initial bundle to the region. 3874 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3875 doForAllOpcodes(I, [](ScheduleData *SD) { 3876 SD->clearDependencies(); 3877 }); 3878 } 3879 ReSchedule = true; 3880 } 3881 if (ReSchedule) { 3882 resetSchedule(); 3883 initialFillReadyList(ReadyInsts); 3884 } 3885 3886 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3887 << BB->getName() << "\n"); 3888 3889 calculateDependencies(Bundle, true, SLP); 3890 3891 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3892 // means that there are no cyclic dependencies and we can schedule it. 3893 // Note that's important that we don't "schedule" the bundle yet (see 3894 // cancelScheduling). 3895 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3896 3897 ScheduleData *pickedSD = ReadyInsts.back(); 3898 ReadyInsts.pop_back(); 3899 3900 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3901 schedule(pickedSD, ReadyInsts); 3902 } 3903 } 3904 if (!Bundle->isReady()) { 3905 cancelScheduling(VL, OpValue); 3906 return false; 3907 } 3908 return true; 3909 } 3910 3911 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3912 Value *OpValue) { 3913 if (isa<PHINode>(OpValue)) 3914 return; 3915 3916 ScheduleData *Bundle = getScheduleData(OpValue); 3917 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3918 assert(!Bundle->IsScheduled && 3919 "Can't cancel bundle which is already scheduled"); 3920 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3921 "tried to unbundle something which is not a bundle"); 3922 3923 // Un-bundle: make single instructions out of the bundle. 3924 ScheduleData *BundleMember = Bundle; 3925 while (BundleMember) { 3926 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3927 BundleMember->FirstInBundle = BundleMember; 3928 ScheduleData *Next = BundleMember->NextInBundle; 3929 BundleMember->NextInBundle = nullptr; 3930 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3931 if (BundleMember->UnscheduledDepsInBundle == 0) { 3932 ReadyInsts.insert(BundleMember); 3933 } 3934 BundleMember = Next; 3935 } 3936 } 3937 3938 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3939 // Allocate a new ScheduleData for the instruction. 3940 if (ChunkPos >= ChunkSize) { 3941 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3942 ChunkPos = 0; 3943 } 3944 return &(ScheduleDataChunks.back()[ChunkPos++]); 3945 } 3946 3947 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3948 Value *OpValue) { 3949 if (getScheduleData(V, isOneOf(OpValue, V))) 3950 return true; 3951 Instruction *I = dyn_cast<Instruction>(V); 3952 assert(I && "bundle member must be an instruction"); 3953 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3954 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3955 ScheduleData *ISD = getScheduleData(I); 3956 if (!ISD) 3957 return false; 3958 assert(isInSchedulingRegion(ISD) && 3959 "ScheduleData not in scheduling region"); 3960 ScheduleData *SD = allocateScheduleDataChunks(); 3961 SD->Inst = I; 3962 SD->init(SchedulingRegionID, OpValue); 3963 ExtraScheduleDataMap[I][OpValue] = SD; 3964 return true; 3965 }; 3966 if (CheckSheduleForI(I)) 3967 return true; 3968 if (!ScheduleStart) { 3969 // It's the first instruction in the new region. 3970 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3971 ScheduleStart = I; 3972 ScheduleEnd = I->getNextNode(); 3973 if (isOneOf(OpValue, I) != I) 3974 CheckSheduleForI(I); 3975 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3976 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3977 return true; 3978 } 3979 // Search up and down at the same time, because we don't know if the new 3980 // instruction is above or below the existing scheduling region. 3981 BasicBlock::reverse_iterator UpIter = 3982 ++ScheduleStart->getIterator().getReverse(); 3983 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3984 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3985 BasicBlock::iterator LowerEnd = BB->end(); 3986 while (true) { 3987 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3988 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3989 return false; 3990 } 3991 3992 if (UpIter != UpperEnd) { 3993 if (&*UpIter == I) { 3994 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3995 ScheduleStart = I; 3996 if (isOneOf(OpValue, I) != I) 3997 CheckSheduleForI(I); 3998 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3999 return true; 4000 } 4001 UpIter++; 4002 } 4003 if (DownIter != LowerEnd) { 4004 if (&*DownIter == I) { 4005 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4006 nullptr); 4007 ScheduleEnd = I->getNextNode(); 4008 if (isOneOf(OpValue, I) != I) 4009 CheckSheduleForI(I); 4010 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 4011 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 4012 return true; 4013 } 4014 DownIter++; 4015 } 4016 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4017 "instruction not found in block"); 4018 } 4019 return true; 4020 } 4021 4022 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4023 Instruction *ToI, 4024 ScheduleData *PrevLoadStore, 4025 ScheduleData *NextLoadStore) { 4026 ScheduleData *CurrentLoadStore = PrevLoadStore; 4027 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4028 ScheduleData *SD = ScheduleDataMap[I]; 4029 if (!SD) { 4030 SD = allocateScheduleDataChunks(); 4031 ScheduleDataMap[I] = SD; 4032 SD->Inst = I; 4033 } 4034 assert(!isInSchedulingRegion(SD) && 4035 "new ScheduleData already in scheduling region"); 4036 SD->init(SchedulingRegionID, I); 4037 4038 if (I->mayReadOrWriteMemory() && 4039 (!isa<IntrinsicInst>(I) || 4040 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4041 // Update the linked list of memory accessing instructions. 4042 if (CurrentLoadStore) { 4043 CurrentLoadStore->NextLoadStore = SD; 4044 } else { 4045 FirstLoadStoreInRegion = SD; 4046 } 4047 CurrentLoadStore = SD; 4048 } 4049 } 4050 if (NextLoadStore) { 4051 if (CurrentLoadStore) 4052 CurrentLoadStore->NextLoadStore = NextLoadStore; 4053 } else { 4054 LastLoadStoreInRegion = CurrentLoadStore; 4055 } 4056 } 4057 4058 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4059 bool InsertInReadyList, 4060 BoUpSLP *SLP) { 4061 assert(SD->isSchedulingEntity()); 4062 4063 SmallVector<ScheduleData *, 10> WorkList; 4064 WorkList.push_back(SD); 4065 4066 while (!WorkList.empty()) { 4067 ScheduleData *SD = WorkList.back(); 4068 WorkList.pop_back(); 4069 4070 ScheduleData *BundleMember = SD; 4071 while (BundleMember) { 4072 assert(isInSchedulingRegion(BundleMember)); 4073 if (!BundleMember->hasValidDependencies()) { 4074 4075 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 4076 BundleMember->Dependencies = 0; 4077 BundleMember->resetUnscheduledDeps(); 4078 4079 // Handle def-use chain dependencies. 4080 if (BundleMember->OpValue != BundleMember->Inst) { 4081 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4082 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4083 BundleMember->Dependencies++; 4084 ScheduleData *DestBundle = UseSD->FirstInBundle; 4085 if (!DestBundle->IsScheduled) 4086 BundleMember->incrementUnscheduledDeps(1); 4087 if (!DestBundle->hasValidDependencies()) 4088 WorkList.push_back(DestBundle); 4089 } 4090 } else { 4091 for (User *U : BundleMember->Inst->users()) { 4092 if (isa<Instruction>(U)) { 4093 ScheduleData *UseSD = getScheduleData(U); 4094 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4095 BundleMember->Dependencies++; 4096 ScheduleData *DestBundle = UseSD->FirstInBundle; 4097 if (!DestBundle->IsScheduled) 4098 BundleMember->incrementUnscheduledDeps(1); 4099 if (!DestBundle->hasValidDependencies()) 4100 WorkList.push_back(DestBundle); 4101 } 4102 } else { 4103 // I'm not sure if this can ever happen. But we need to be safe. 4104 // This lets the instruction/bundle never be scheduled and 4105 // eventually disable vectorization. 4106 BundleMember->Dependencies++; 4107 BundleMember->incrementUnscheduledDeps(1); 4108 } 4109 } 4110 } 4111 4112 // Handle the memory dependencies. 4113 ScheduleData *DepDest = BundleMember->NextLoadStore; 4114 if (DepDest) { 4115 Instruction *SrcInst = BundleMember->Inst; 4116 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4117 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4118 unsigned numAliased = 0; 4119 unsigned DistToSrc = 1; 4120 4121 while (DepDest) { 4122 assert(isInSchedulingRegion(DepDest)); 4123 4124 // We have two limits to reduce the complexity: 4125 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4126 // SLP->isAliased (which is the expensive part in this loop). 4127 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4128 // the whole loop (even if the loop is fast, it's quadratic). 4129 // It's important for the loop break condition (see below) to 4130 // check this limit even between two read-only instructions. 4131 if (DistToSrc >= MaxMemDepDistance || 4132 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4133 (numAliased >= AliasedCheckLimit || 4134 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4135 4136 // We increment the counter only if the locations are aliased 4137 // (instead of counting all alias checks). This gives a better 4138 // balance between reduced runtime and accurate dependencies. 4139 numAliased++; 4140 4141 DepDest->MemoryDependencies.push_back(BundleMember); 4142 BundleMember->Dependencies++; 4143 ScheduleData *DestBundle = DepDest->FirstInBundle; 4144 if (!DestBundle->IsScheduled) { 4145 BundleMember->incrementUnscheduledDeps(1); 4146 } 4147 if (!DestBundle->hasValidDependencies()) { 4148 WorkList.push_back(DestBundle); 4149 } 4150 } 4151 DepDest = DepDest->NextLoadStore; 4152 4153 // Example, explaining the loop break condition: Let's assume our 4154 // starting instruction is i0 and MaxMemDepDistance = 3. 4155 // 4156 // +--------v--v--v 4157 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4158 // +--------^--^--^ 4159 // 4160 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4161 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4162 // Previously we already added dependencies from i3 to i6,i7,i8 4163 // (because of MaxMemDepDistance). As we added a dependency from 4164 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4165 // and we can abort this loop at i6. 4166 if (DistToSrc >= 2 * MaxMemDepDistance) 4167 break; 4168 DistToSrc++; 4169 } 4170 } 4171 } 4172 BundleMember = BundleMember->NextInBundle; 4173 } 4174 if (InsertInReadyList && SD->isReady()) { 4175 ReadyInsts.push_back(SD); 4176 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 4177 } 4178 } 4179 } 4180 4181 void BoUpSLP::BlockScheduling::resetSchedule() { 4182 assert(ScheduleStart && 4183 "tried to reset schedule on block which has not been scheduled"); 4184 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4185 doForAllOpcodes(I, [&](ScheduleData *SD) { 4186 assert(isInSchedulingRegion(SD) && 4187 "ScheduleData not in scheduling region"); 4188 SD->IsScheduled = false; 4189 SD->resetUnscheduledDeps(); 4190 }); 4191 } 4192 ReadyInsts.clear(); 4193 } 4194 4195 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4196 if (!BS->ScheduleStart) 4197 return; 4198 4199 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4200 4201 BS->resetSchedule(); 4202 4203 // For the real scheduling we use a more sophisticated ready-list: it is 4204 // sorted by the original instruction location. This lets the final schedule 4205 // be as close as possible to the original instruction order. 4206 struct ScheduleDataCompare { 4207 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4208 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4209 } 4210 }; 4211 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4212 4213 // Ensure that all dependency data is updated and fill the ready-list with 4214 // initial instructions. 4215 int Idx = 0; 4216 int NumToSchedule = 0; 4217 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4218 I = I->getNextNode()) { 4219 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4220 assert(SD->isPartOfBundle() == 4221 (getTreeEntry(SD->Inst) != nullptr) && 4222 "scheduler and vectorizer bundle mismatch"); 4223 SD->FirstInBundle->SchedulingPriority = Idx++; 4224 if (SD->isSchedulingEntity()) { 4225 BS->calculateDependencies(SD, false, this); 4226 NumToSchedule++; 4227 } 4228 }); 4229 } 4230 BS->initialFillReadyList(ReadyInsts); 4231 4232 Instruction *LastScheduledInst = BS->ScheduleEnd; 4233 4234 // Do the "real" scheduling. 4235 while (!ReadyInsts.empty()) { 4236 ScheduleData *picked = *ReadyInsts.begin(); 4237 ReadyInsts.erase(ReadyInsts.begin()); 4238 4239 // Move the scheduled instruction(s) to their dedicated places, if not 4240 // there yet. 4241 ScheduleData *BundleMember = picked; 4242 while (BundleMember) { 4243 Instruction *pickedInst = BundleMember->Inst; 4244 if (LastScheduledInst->getNextNode() != pickedInst) { 4245 BS->BB->getInstList().remove(pickedInst); 4246 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4247 pickedInst); 4248 } 4249 LastScheduledInst = pickedInst; 4250 BundleMember = BundleMember->NextInBundle; 4251 } 4252 4253 BS->schedule(picked, ReadyInsts); 4254 NumToSchedule--; 4255 } 4256 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4257 4258 // Avoid duplicate scheduling of the block. 4259 BS->ScheduleStart = nullptr; 4260 } 4261 4262 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4263 // If V is a store, just return the width of the stored value without 4264 // traversing the expression tree. This is the common case. 4265 if (auto *Store = dyn_cast<StoreInst>(V)) 4266 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4267 4268 // If V is not a store, we can traverse the expression tree to find loads 4269 // that feed it. The type of the loaded value may indicate a more suitable 4270 // width than V's type. We want to base the vector element size on the width 4271 // of memory operations where possible. 4272 SmallVector<Instruction *, 16> Worklist; 4273 SmallPtrSet<Instruction *, 16> Visited; 4274 if (auto *I = dyn_cast<Instruction>(V)) 4275 Worklist.push_back(I); 4276 4277 // Traverse the expression tree in bottom-up order looking for loads. If we 4278 // encounter an instruciton we don't yet handle, we give up. 4279 auto MaxWidth = 0u; 4280 auto FoundUnknownInst = false; 4281 while (!Worklist.empty() && !FoundUnknownInst) { 4282 auto *I = Worklist.pop_back_val(); 4283 Visited.insert(I); 4284 4285 // We should only be looking at scalar instructions here. If the current 4286 // instruction has a vector type, give up. 4287 auto *Ty = I->getType(); 4288 if (isa<VectorType>(Ty)) 4289 FoundUnknownInst = true; 4290 4291 // If the current instruction is a load, update MaxWidth to reflect the 4292 // width of the loaded value. 4293 else if (isa<LoadInst>(I)) 4294 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4295 4296 // Otherwise, we need to visit the operands of the instruction. We only 4297 // handle the interesting cases from buildTree here. If an operand is an 4298 // instruction we haven't yet visited, we add it to the worklist. 4299 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4300 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4301 for (Use &U : I->operands()) 4302 if (auto *J = dyn_cast<Instruction>(U.get())) 4303 if (!Visited.count(J)) 4304 Worklist.push_back(J); 4305 } 4306 4307 // If we don't yet handle the instruction, give up. 4308 else 4309 FoundUnknownInst = true; 4310 } 4311 4312 // If we didn't encounter a memory access in the expression tree, or if we 4313 // gave up for some reason, just return the width of V. 4314 if (!MaxWidth || FoundUnknownInst) 4315 return DL->getTypeSizeInBits(V->getType()); 4316 4317 // Otherwise, return the maximum width we found. 4318 return MaxWidth; 4319 } 4320 4321 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4322 // smaller type with a truncation. We collect the values that will be demoted 4323 // in ToDemote and additional roots that require investigating in Roots. 4324 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4325 SmallVectorImpl<Value *> &ToDemote, 4326 SmallVectorImpl<Value *> &Roots) { 4327 // We can always demote constants. 4328 if (isa<Constant>(V)) { 4329 ToDemote.push_back(V); 4330 return true; 4331 } 4332 4333 // If the value is not an instruction in the expression with only one use, it 4334 // cannot be demoted. 4335 auto *I = dyn_cast<Instruction>(V); 4336 if (!I || !I->hasOneUse() || !Expr.count(I)) 4337 return false; 4338 4339 switch (I->getOpcode()) { 4340 4341 // We can always demote truncations and extensions. Since truncations can 4342 // seed additional demotion, we save the truncated value. 4343 case Instruction::Trunc: 4344 Roots.push_back(I->getOperand(0)); 4345 break; 4346 case Instruction::ZExt: 4347 case Instruction::SExt: 4348 break; 4349 4350 // We can demote certain binary operations if we can demote both of their 4351 // operands. 4352 case Instruction::Add: 4353 case Instruction::Sub: 4354 case Instruction::Mul: 4355 case Instruction::And: 4356 case Instruction::Or: 4357 case Instruction::Xor: 4358 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4359 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4360 return false; 4361 break; 4362 4363 // We can demote selects if we can demote their true and false values. 4364 case Instruction::Select: { 4365 SelectInst *SI = cast<SelectInst>(I); 4366 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4367 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4368 return false; 4369 break; 4370 } 4371 4372 // We can demote phis if we can demote all their incoming operands. Note that 4373 // we don't need to worry about cycles since we ensure single use above. 4374 case Instruction::PHI: { 4375 PHINode *PN = cast<PHINode>(I); 4376 for (Value *IncValue : PN->incoming_values()) 4377 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4378 return false; 4379 break; 4380 } 4381 4382 // Otherwise, conservatively give up. 4383 default: 4384 return false; 4385 } 4386 4387 // Record the value that we can demote. 4388 ToDemote.push_back(V); 4389 return true; 4390 } 4391 4392 void BoUpSLP::computeMinimumValueSizes() { 4393 // If there are no external uses, the expression tree must be rooted by a 4394 // store. We can't demote in-memory values, so there is nothing to do here. 4395 if (ExternalUses.empty()) 4396 return; 4397 4398 // We only attempt to truncate integer expressions. 4399 auto &TreeRoot = VectorizableTree[0].Scalars; 4400 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4401 if (!TreeRootIT) 4402 return; 4403 4404 // If the expression is not rooted by a store, these roots should have 4405 // external uses. We will rely on InstCombine to rewrite the expression in 4406 // the narrower type. However, InstCombine only rewrites single-use values. 4407 // This means that if a tree entry other than a root is used externally, it 4408 // must have multiple uses and InstCombine will not rewrite it. The code 4409 // below ensures that only the roots are used externally. 4410 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4411 for (auto &EU : ExternalUses) 4412 if (!Expr.erase(EU.Scalar)) 4413 return; 4414 if (!Expr.empty()) 4415 return; 4416 4417 // Collect the scalar values of the vectorizable expression. We will use this 4418 // context to determine which values can be demoted. If we see a truncation, 4419 // we mark it as seeding another demotion. 4420 for (auto &Entry : VectorizableTree) 4421 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4422 4423 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4424 // have a single external user that is not in the vectorizable tree. 4425 for (auto *Root : TreeRoot) 4426 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4427 return; 4428 4429 // Conservatively determine if we can actually truncate the roots of the 4430 // expression. Collect the values that can be demoted in ToDemote and 4431 // additional roots that require investigating in Roots. 4432 SmallVector<Value *, 32> ToDemote; 4433 SmallVector<Value *, 4> Roots; 4434 for (auto *Root : TreeRoot) 4435 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4436 return; 4437 4438 // The maximum bit width required to represent all the values that can be 4439 // demoted without loss of precision. It would be safe to truncate the roots 4440 // of the expression to this width. 4441 auto MaxBitWidth = 8u; 4442 4443 // We first check if all the bits of the roots are demanded. If they're not, 4444 // we can truncate the roots to this narrower type. 4445 for (auto *Root : TreeRoot) { 4446 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4447 MaxBitWidth = std::max<unsigned>( 4448 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4449 } 4450 4451 // True if the roots can be zero-extended back to their original type, rather 4452 // than sign-extended. We know that if the leading bits are not demanded, we 4453 // can safely zero-extend. So we initialize IsKnownPositive to True. 4454 bool IsKnownPositive = true; 4455 4456 // If all the bits of the roots are demanded, we can try a little harder to 4457 // compute a narrower type. This can happen, for example, if the roots are 4458 // getelementptr indices. InstCombine promotes these indices to the pointer 4459 // width. Thus, all their bits are technically demanded even though the 4460 // address computation might be vectorized in a smaller type. 4461 // 4462 // We start by looking at each entry that can be demoted. We compute the 4463 // maximum bit width required to store the scalar by using ValueTracking to 4464 // compute the number of high-order bits we can truncate. 4465 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4466 llvm::all_of(TreeRoot, [](Value *R) { 4467 assert(R->hasOneUse() && "Root should have only one use!"); 4468 return isa<GetElementPtrInst>(R->user_back()); 4469 })) { 4470 MaxBitWidth = 8u; 4471 4472 // Determine if the sign bit of all the roots is known to be zero. If not, 4473 // IsKnownPositive is set to False. 4474 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4475 KnownBits Known = computeKnownBits(R, *DL); 4476 return Known.isNonNegative(); 4477 }); 4478 4479 // Determine the maximum number of bits required to store the scalar 4480 // values. 4481 for (auto *Scalar : ToDemote) { 4482 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4483 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4484 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4485 } 4486 4487 // If we can't prove that the sign bit is zero, we must add one to the 4488 // maximum bit width to account for the unknown sign bit. This preserves 4489 // the existing sign bit so we can safely sign-extend the root back to the 4490 // original type. Otherwise, if we know the sign bit is zero, we will 4491 // zero-extend the root instead. 4492 // 4493 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4494 // one to the maximum bit width will yield a larger-than-necessary 4495 // type. In general, we need to add an extra bit only if we can't 4496 // prove that the upper bit of the original type is equal to the 4497 // upper bit of the proposed smaller type. If these two bits are the 4498 // same (either zero or one) we know that sign-extending from the 4499 // smaller type will result in the same value. Here, since we can't 4500 // yet prove this, we are just making the proposed smaller type 4501 // larger to ensure correctness. 4502 if (!IsKnownPositive) 4503 ++MaxBitWidth; 4504 } 4505 4506 // Round MaxBitWidth up to the next power-of-two. 4507 if (!isPowerOf2_64(MaxBitWidth)) 4508 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4509 4510 // If the maximum bit width we compute is less than the with of the roots' 4511 // type, we can proceed with the narrowing. Otherwise, do nothing. 4512 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4513 return; 4514 4515 // If we can truncate the root, we must collect additional values that might 4516 // be demoted as a result. That is, those seeded by truncations we will 4517 // modify. 4518 while (!Roots.empty()) 4519 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4520 4521 // Finally, map the values we can demote to the maximum bit with we computed. 4522 for (auto *Scalar : ToDemote) 4523 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4524 } 4525 4526 namespace { 4527 4528 /// The SLPVectorizer Pass. 4529 struct SLPVectorizer : public FunctionPass { 4530 SLPVectorizerPass Impl; 4531 4532 /// Pass identification, replacement for typeid 4533 static char ID; 4534 4535 explicit SLPVectorizer() : FunctionPass(ID) { 4536 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4537 } 4538 4539 bool doInitialization(Module &M) override { 4540 return false; 4541 } 4542 4543 bool runOnFunction(Function &F) override { 4544 if (skipFunction(F)) 4545 return false; 4546 4547 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4548 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4549 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4550 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4551 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4552 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4553 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4554 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4555 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4556 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4557 4558 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4559 } 4560 4561 void getAnalysisUsage(AnalysisUsage &AU) const override { 4562 FunctionPass::getAnalysisUsage(AU); 4563 AU.addRequired<AssumptionCacheTracker>(); 4564 AU.addRequired<ScalarEvolutionWrapperPass>(); 4565 AU.addRequired<AAResultsWrapperPass>(); 4566 AU.addRequired<TargetTransformInfoWrapperPass>(); 4567 AU.addRequired<LoopInfoWrapperPass>(); 4568 AU.addRequired<DominatorTreeWrapperPass>(); 4569 AU.addRequired<DemandedBitsWrapperPass>(); 4570 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4571 AU.addPreserved<LoopInfoWrapperPass>(); 4572 AU.addPreserved<DominatorTreeWrapperPass>(); 4573 AU.addPreserved<AAResultsWrapperPass>(); 4574 AU.addPreserved<GlobalsAAWrapperPass>(); 4575 AU.setPreservesCFG(); 4576 } 4577 }; 4578 4579 } // end anonymous namespace 4580 4581 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4582 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4583 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4584 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4585 auto *AA = &AM.getResult<AAManager>(F); 4586 auto *LI = &AM.getResult<LoopAnalysis>(F); 4587 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4588 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4589 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4590 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4591 4592 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4593 if (!Changed) 4594 return PreservedAnalyses::all(); 4595 4596 PreservedAnalyses PA; 4597 PA.preserveSet<CFGAnalyses>(); 4598 PA.preserve<AAManager>(); 4599 PA.preserve<GlobalsAA>(); 4600 return PA; 4601 } 4602 4603 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4604 TargetTransformInfo *TTI_, 4605 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4606 LoopInfo *LI_, DominatorTree *DT_, 4607 AssumptionCache *AC_, DemandedBits *DB_, 4608 OptimizationRemarkEmitter *ORE_) { 4609 SE = SE_; 4610 TTI = TTI_; 4611 TLI = TLI_; 4612 AA = AA_; 4613 LI = LI_; 4614 DT = DT_; 4615 AC = AC_; 4616 DB = DB_; 4617 DL = &F.getParent()->getDataLayout(); 4618 4619 Stores.clear(); 4620 GEPs.clear(); 4621 bool Changed = false; 4622 4623 // If the target claims to have no vector registers don't attempt 4624 // vectorization. 4625 if (!TTI->getNumberOfRegisters(true)) 4626 return false; 4627 4628 // Don't vectorize when the attribute NoImplicitFloat is used. 4629 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4630 return false; 4631 4632 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4633 4634 // Use the bottom up slp vectorizer to construct chains that start with 4635 // store instructions. 4636 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4637 4638 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4639 // delete instructions. 4640 4641 // Scan the blocks in the function in post order. 4642 for (auto BB : post_order(&F.getEntryBlock())) { 4643 collectSeedInstructions(BB); 4644 4645 // Vectorize trees that end at stores. 4646 if (!Stores.empty()) { 4647 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4648 << " underlying objects.\n"); 4649 Changed |= vectorizeStoreChains(R); 4650 } 4651 4652 // Vectorize trees that end at reductions. 4653 Changed |= vectorizeChainsInBlock(BB, R); 4654 4655 // Vectorize the index computations of getelementptr instructions. This 4656 // is primarily intended to catch gather-like idioms ending at 4657 // non-consecutive loads. 4658 if (!GEPs.empty()) { 4659 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4660 << " underlying objects.\n"); 4661 Changed |= vectorizeGEPIndices(BB, R); 4662 } 4663 } 4664 4665 if (Changed) { 4666 R.optimizeGatherSequence(); 4667 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4668 DEBUG(verifyFunction(F)); 4669 } 4670 return Changed; 4671 } 4672 4673 /// \brief Check that the Values in the slice in VL array are still existent in 4674 /// the WeakTrackingVH array. 4675 /// Vectorization of part of the VL array may cause later values in the VL array 4676 /// to become invalid. We track when this has happened in the WeakTrackingVH 4677 /// array. 4678 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4679 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4680 unsigned SliceSize) { 4681 VL = VL.slice(SliceBegin, SliceSize); 4682 VH = VH.slice(SliceBegin, SliceSize); 4683 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4684 } 4685 4686 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4687 unsigned VecRegSize) { 4688 const unsigned ChainLen = Chain.size(); 4689 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4690 << "\n"); 4691 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4692 const unsigned VF = VecRegSize / Sz; 4693 4694 if (!isPowerOf2_32(Sz) || VF < 2) 4695 return false; 4696 4697 // Keep track of values that were deleted by vectorizing in the loop below. 4698 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4699 4700 bool Changed = false; 4701 // Look for profitable vectorizable trees at all offsets, starting at zero. 4702 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4703 4704 // Check that a previous iteration of this loop did not delete the Value. 4705 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4706 continue; 4707 4708 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4709 << "\n"); 4710 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4711 4712 R.buildTree(Operands); 4713 if (R.isTreeTinyAndNotFullyVectorizable()) 4714 continue; 4715 4716 R.computeMinimumValueSizes(); 4717 4718 int Cost = R.getTreeCost(); 4719 4720 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4721 if (Cost < -SLPCostThreshold) { 4722 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4723 4724 using namespace ore; 4725 4726 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4727 cast<StoreInst>(Chain[i])) 4728 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4729 << " and with tree size " 4730 << NV("TreeSize", R.getTreeSize())); 4731 4732 R.vectorizeTree(); 4733 4734 // Move to the next bundle. 4735 i += VF - 1; 4736 Changed = true; 4737 } 4738 } 4739 4740 return Changed; 4741 } 4742 4743 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4744 BoUpSLP &R) { 4745 SetVector<StoreInst *> Heads; 4746 SmallDenseSet<StoreInst *> Tails; 4747 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4748 4749 // We may run into multiple chains that merge into a single chain. We mark the 4750 // stores that we vectorized so that we don't visit the same store twice. 4751 BoUpSLP::ValueSet VectorizedStores; 4752 bool Changed = false; 4753 4754 // Do a quadratic search on all of the given stores in reverse order and find 4755 // all of the pairs of stores that follow each other. 4756 SmallVector<unsigned, 16> IndexQueue; 4757 unsigned E = Stores.size(); 4758 IndexQueue.resize(E - 1); 4759 for (unsigned I = E; I > 0; --I) { 4760 unsigned Idx = I - 1; 4761 // If a store has multiple consecutive store candidates, search Stores 4762 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4763 // This is because usually pairing with immediate succeeding or preceding 4764 // candidate create the best chance to find slp vectorization opportunity. 4765 unsigned Offset = 1; 4766 unsigned Cnt = 0; 4767 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4768 if (Idx >= Offset) { 4769 IndexQueue[Cnt] = Idx - Offset; 4770 ++Cnt; 4771 } 4772 if (Idx + Offset < E) { 4773 IndexQueue[Cnt] = Idx + Offset; 4774 ++Cnt; 4775 } 4776 } 4777 4778 for (auto K : IndexQueue) { 4779 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4780 Tails.insert(Stores[Idx]); 4781 Heads.insert(Stores[K]); 4782 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4783 break; 4784 } 4785 } 4786 } 4787 4788 // For stores that start but don't end a link in the chain: 4789 for (auto *SI : llvm::reverse(Heads)) { 4790 if (Tails.count(SI)) 4791 continue; 4792 4793 // We found a store instr that starts a chain. Now follow the chain and try 4794 // to vectorize it. 4795 BoUpSLP::ValueList Operands; 4796 StoreInst *I = SI; 4797 // Collect the chain into a list. 4798 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4799 Operands.push_back(I); 4800 // Move to the next value in the chain. 4801 I = ConsecutiveChain[I]; 4802 } 4803 4804 // FIXME: Is division-by-2 the correct step? Should we assert that the 4805 // register size is a power-of-2? 4806 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4807 Size /= 2) { 4808 if (vectorizeStoreChain(Operands, R, Size)) { 4809 // Mark the vectorized stores so that we don't vectorize them again. 4810 VectorizedStores.insert(Operands.begin(), Operands.end()); 4811 Changed = true; 4812 break; 4813 } 4814 } 4815 } 4816 4817 return Changed; 4818 } 4819 4820 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4821 // Initialize the collections. We will make a single pass over the block. 4822 Stores.clear(); 4823 GEPs.clear(); 4824 4825 // Visit the store and getelementptr instructions in BB and organize them in 4826 // Stores and GEPs according to the underlying objects of their pointer 4827 // operands. 4828 for (Instruction &I : *BB) { 4829 // Ignore store instructions that are volatile or have a pointer operand 4830 // that doesn't point to a scalar type. 4831 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4832 if (!SI->isSimple()) 4833 continue; 4834 if (!isValidElementType(SI->getValueOperand()->getType())) 4835 continue; 4836 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4837 } 4838 4839 // Ignore getelementptr instructions that have more than one index, a 4840 // constant index, or a pointer operand that doesn't point to a scalar 4841 // type. 4842 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4843 auto Idx = GEP->idx_begin()->get(); 4844 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4845 continue; 4846 if (!isValidElementType(Idx->getType())) 4847 continue; 4848 if (GEP->getType()->isVectorTy()) 4849 continue; 4850 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4851 } 4852 } 4853 } 4854 4855 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4856 if (!A || !B) 4857 return false; 4858 Value *VL[] = { A, B }; 4859 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4860 } 4861 4862 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4863 int UserCost, bool AllowReorder) { 4864 if (VL.size() < 2) 4865 return false; 4866 4867 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4868 << ".\n"); 4869 4870 // Check that all of the parts are scalar instructions of the same type. 4871 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4872 if (!I0) 4873 return false; 4874 4875 unsigned Opcode0 = I0->getOpcode(); 4876 4877 unsigned Sz = R.getVectorElementSize(I0); 4878 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4879 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4880 if (MaxVF < 2) { 4881 R.getORE()->emit([&]() { 4882 return OptimizationRemarkMissed( 4883 SV_NAME, "SmallVF", I0) 4884 << "Cannot SLP vectorize list: vectorization factor " 4885 << "less than 2 is not supported"; 4886 }); 4887 return false; 4888 } 4889 4890 for (Value *V : VL) { 4891 Type *Ty = V->getType(); 4892 if (!isValidElementType(Ty)) { 4893 // NOTE: the following will give user internal llvm type name, which may not be useful 4894 R.getORE()->emit([&]() { 4895 std::string type_str; 4896 llvm::raw_string_ostream rso(type_str); 4897 Ty->print(rso); 4898 return OptimizationRemarkMissed( 4899 SV_NAME, "UnsupportedType", I0) 4900 << "Cannot SLP vectorize list: type " 4901 << rso.str() + " is unsupported by vectorizer"; 4902 }); 4903 return false; 4904 } 4905 Instruction *Inst = dyn_cast<Instruction>(V); 4906 4907 if (!Inst) 4908 return false; 4909 if (Inst->getOpcode() != Opcode0) { 4910 R.getORE()->emit([&]() { 4911 return OptimizationRemarkMissed( 4912 SV_NAME, "InequableTypes", I0) 4913 << "Cannot SLP vectorize list: not all of the " 4914 << "parts of scalar instructions are of the same type: " 4915 << ore::NV("Instruction1Opcode", I0) << " and " 4916 << ore::NV("Instruction2Opcode", Inst); 4917 }); 4918 return false; 4919 } 4920 } 4921 4922 bool Changed = false; 4923 bool CandidateFound = false; 4924 int MinCost = SLPCostThreshold; 4925 4926 // Keep track of values that were deleted by vectorizing in the loop below. 4927 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4928 4929 unsigned NextInst = 0, MaxInst = VL.size(); 4930 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4931 VF /= 2) { 4932 // No actual vectorization should happen, if number of parts is the same as 4933 // provided vectorization factor (i.e. the scalar type is used for vector 4934 // code during codegen). 4935 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4936 if (TTI->getNumberOfParts(VecTy) == VF) 4937 continue; 4938 for (unsigned I = NextInst; I < MaxInst; ++I) { 4939 unsigned OpsWidth = 0; 4940 4941 if (I + VF > MaxInst) 4942 OpsWidth = MaxInst - I; 4943 else 4944 OpsWidth = VF; 4945 4946 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4947 break; 4948 4949 // Check that a previous iteration of this loop did not delete the Value. 4950 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4951 continue; 4952 4953 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4954 << "\n"); 4955 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4956 4957 R.buildTree(Ops); 4958 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4959 // TODO: check if we can allow reordering for more cases. 4960 if (AllowReorder && Order) { 4961 // TODO: reorder tree nodes without tree rebuilding. 4962 // Conceptually, there is nothing actually preventing us from trying to 4963 // reorder a larger list. In fact, we do exactly this when vectorizing 4964 // reductions. However, at this point, we only expect to get here when 4965 // there are exactly two operations. 4966 assert(Ops.size() == 2); 4967 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4968 R.buildTree(ReorderedOps, None); 4969 } 4970 if (R.isTreeTinyAndNotFullyVectorizable()) 4971 continue; 4972 4973 R.computeMinimumValueSizes(); 4974 int Cost = R.getTreeCost() - UserCost; 4975 CandidateFound = true; 4976 MinCost = std::min(MinCost, Cost); 4977 4978 if (Cost < -SLPCostThreshold) { 4979 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4980 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4981 cast<Instruction>(Ops[0])) 4982 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4983 << " and with tree size " 4984 << ore::NV("TreeSize", R.getTreeSize())); 4985 4986 R.vectorizeTree(); 4987 // Move to the next bundle. 4988 I += VF - 1; 4989 NextInst = I + 1; 4990 Changed = true; 4991 } 4992 } 4993 } 4994 4995 if (!Changed && CandidateFound) { 4996 R.getORE()->emit([&]() { 4997 return OptimizationRemarkMissed( 4998 SV_NAME, "NotBeneficial", I0) 4999 << "List vectorization was possible but not beneficial with cost " 5000 << ore::NV("Cost", MinCost) << " >= " 5001 << ore::NV("Treshold", -SLPCostThreshold); 5002 }); 5003 } else if (!Changed) { 5004 R.getORE()->emit([&]() { 5005 return OptimizationRemarkMissed( 5006 SV_NAME, "NotPossible", I0) 5007 << "Cannot SLP vectorize list: vectorization was impossible" 5008 << " with available vectorization factors"; 5009 }); 5010 } 5011 return Changed; 5012 } 5013 5014 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5015 if (!I) 5016 return false; 5017 5018 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5019 return false; 5020 5021 Value *P = I->getParent(); 5022 5023 // Vectorize in current basic block only. 5024 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5025 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5026 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5027 return false; 5028 5029 // Try to vectorize V. 5030 if (tryToVectorizePair(Op0, Op1, R)) 5031 return true; 5032 5033 auto *A = dyn_cast<BinaryOperator>(Op0); 5034 auto *B = dyn_cast<BinaryOperator>(Op1); 5035 // Try to skip B. 5036 if (B && B->hasOneUse()) { 5037 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5038 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5039 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5040 return true; 5041 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5042 return true; 5043 } 5044 5045 // Try to skip A. 5046 if (A && A->hasOneUse()) { 5047 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5048 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5049 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5050 return true; 5051 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5052 return true; 5053 } 5054 return false; 5055 } 5056 5057 /// \brief Generate a shuffle mask to be used in a reduction tree. 5058 /// 5059 /// \param VecLen The length of the vector to be reduced. 5060 /// \param NumEltsToRdx The number of elements that should be reduced in the 5061 /// vector. 5062 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5063 /// reduction. A pairwise reduction will generate a mask of 5064 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5065 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5066 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5067 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5068 bool IsPairwise, bool IsLeft, 5069 IRBuilder<> &Builder) { 5070 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5071 5072 SmallVector<Constant *, 32> ShuffleMask( 5073 VecLen, UndefValue::get(Builder.getInt32Ty())); 5074 5075 if (IsPairwise) 5076 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5077 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5078 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5079 else 5080 // Move the upper half of the vector to the lower half. 5081 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5082 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5083 5084 return ConstantVector::get(ShuffleMask); 5085 } 5086 5087 namespace { 5088 5089 /// Model horizontal reductions. 5090 /// 5091 /// A horizontal reduction is a tree of reduction operations (currently add and 5092 /// fadd) that has operations that can be put into a vector as its leaf. 5093 /// For example, this tree: 5094 /// 5095 /// mul mul mul mul 5096 /// \ / \ / 5097 /// + + 5098 /// \ / 5099 /// + 5100 /// This tree has "mul" as its reduced values and "+" as its reduction 5101 /// operations. A reduction might be feeding into a store or a binary operation 5102 /// feeding a phi. 5103 /// ... 5104 /// \ / 5105 /// + 5106 /// | 5107 /// phi += 5108 /// 5109 /// Or: 5110 /// ... 5111 /// \ / 5112 /// + 5113 /// | 5114 /// *p = 5115 /// 5116 class HorizontalReduction { 5117 using ReductionOpsType = SmallVector<Value *, 16>; 5118 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5119 ReductionOpsListType ReductionOps; 5120 SmallVector<Value *, 32> ReducedVals; 5121 // Use map vector to make stable output. 5122 MapVector<Instruction *, Value *> ExtraArgs; 5123 5124 /// Kind of the reduction data. 5125 enum ReductionKind { 5126 RK_None, /// Not a reduction. 5127 RK_Arithmetic, /// Binary reduction data. 5128 RK_Min, /// Minimum reduction data. 5129 RK_UMin, /// Unsigned minimum reduction data. 5130 RK_Max, /// Maximum reduction data. 5131 RK_UMax, /// Unsigned maximum reduction data. 5132 }; 5133 5134 /// Contains info about operation, like its opcode, left and right operands. 5135 class OperationData { 5136 /// Opcode of the instruction. 5137 unsigned Opcode = 0; 5138 5139 /// Left operand of the reduction operation. 5140 Value *LHS = nullptr; 5141 5142 /// Right operand of the reduction operation. 5143 Value *RHS = nullptr; 5144 5145 /// Kind of the reduction operation. 5146 ReductionKind Kind = RK_None; 5147 5148 /// True if float point min/max reduction has no NaNs. 5149 bool NoNaN = false; 5150 5151 /// Checks if the reduction operation can be vectorized. 5152 bool isVectorizable() const { 5153 return LHS && RHS && 5154 // We currently only support adds && min/max reductions. 5155 ((Kind == RK_Arithmetic && 5156 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5157 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5158 (Kind == RK_Min || Kind == RK_Max)) || 5159 (Opcode == Instruction::ICmp && 5160 (Kind == RK_UMin || Kind == RK_UMax))); 5161 } 5162 5163 /// Creates reduction operation with the current opcode. 5164 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5165 assert(isVectorizable() && 5166 "Expected add|fadd or min/max reduction operation."); 5167 Value *Cmp; 5168 switch (Kind) { 5169 case RK_Arithmetic: 5170 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5171 Name); 5172 case RK_Min: 5173 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5174 : Builder.CreateFCmpOLT(LHS, RHS); 5175 break; 5176 case RK_Max: 5177 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5178 : Builder.CreateFCmpOGT(LHS, RHS); 5179 break; 5180 case RK_UMin: 5181 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5182 Cmp = Builder.CreateICmpULT(LHS, RHS); 5183 break; 5184 case RK_UMax: 5185 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5186 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5187 break; 5188 case RK_None: 5189 llvm_unreachable("Unknown reduction operation."); 5190 } 5191 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5192 } 5193 5194 public: 5195 explicit OperationData() = default; 5196 5197 /// Construction for reduced values. They are identified by opcode only and 5198 /// don't have associated LHS/RHS values. 5199 explicit OperationData(Value *V) { 5200 if (auto *I = dyn_cast<Instruction>(V)) 5201 Opcode = I->getOpcode(); 5202 } 5203 5204 /// Constructor for reduction operations with opcode and its left and 5205 /// right operands. 5206 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5207 bool NoNaN = false) 5208 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5209 assert(Kind != RK_None && "One of the reduction operations is expected."); 5210 } 5211 5212 explicit operator bool() const { return Opcode; } 5213 5214 /// Get the index of the first operand. 5215 unsigned getFirstOperandIndex() const { 5216 assert(!!*this && "The opcode is not set."); 5217 switch (Kind) { 5218 case RK_Min: 5219 case RK_UMin: 5220 case RK_Max: 5221 case RK_UMax: 5222 return 1; 5223 case RK_Arithmetic: 5224 case RK_None: 5225 break; 5226 } 5227 return 0; 5228 } 5229 5230 /// Total number of operands in the reduction operation. 5231 unsigned getNumberOfOperands() const { 5232 assert(Kind != RK_None && !!*this && LHS && RHS && 5233 "Expected reduction operation."); 5234 switch (Kind) { 5235 case RK_Arithmetic: 5236 return 2; 5237 case RK_Min: 5238 case RK_UMin: 5239 case RK_Max: 5240 case RK_UMax: 5241 return 3; 5242 case RK_None: 5243 break; 5244 } 5245 llvm_unreachable("Reduction kind is not set"); 5246 } 5247 5248 /// Checks if the operation has the same parent as \p P. 5249 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5250 assert(Kind != RK_None && !!*this && LHS && RHS && 5251 "Expected reduction operation."); 5252 if (!IsRedOp) 5253 return I->getParent() == P; 5254 switch (Kind) { 5255 case RK_Arithmetic: 5256 // Arithmetic reduction operation must be used once only. 5257 return I->getParent() == P; 5258 case RK_Min: 5259 case RK_UMin: 5260 case RK_Max: 5261 case RK_UMax: { 5262 // SelectInst must be used twice while the condition op must have single 5263 // use only. 5264 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5265 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5266 } 5267 case RK_None: 5268 break; 5269 } 5270 llvm_unreachable("Reduction kind is not set"); 5271 } 5272 /// Expected number of uses for reduction operations/reduced values. 5273 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5274 assert(Kind != RK_None && !!*this && LHS && RHS && 5275 "Expected reduction operation."); 5276 switch (Kind) { 5277 case RK_Arithmetic: 5278 return I->hasOneUse(); 5279 case RK_Min: 5280 case RK_UMin: 5281 case RK_Max: 5282 case RK_UMax: 5283 return I->hasNUses(2) && 5284 (!IsReductionOp || 5285 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5286 case RK_None: 5287 break; 5288 } 5289 llvm_unreachable("Reduction kind is not set"); 5290 } 5291 5292 /// Initializes the list of reduction operations. 5293 void initReductionOps(ReductionOpsListType &ReductionOps) { 5294 assert(Kind != RK_None && !!*this && LHS && RHS && 5295 "Expected reduction operation."); 5296 switch (Kind) { 5297 case RK_Arithmetic: 5298 ReductionOps.assign(1, ReductionOpsType()); 5299 break; 5300 case RK_Min: 5301 case RK_UMin: 5302 case RK_Max: 5303 case RK_UMax: 5304 ReductionOps.assign(2, ReductionOpsType()); 5305 break; 5306 case RK_None: 5307 llvm_unreachable("Reduction kind is not set"); 5308 } 5309 } 5310 /// Add all reduction operations for the reduction instruction \p I. 5311 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5312 assert(Kind != RK_None && !!*this && LHS && RHS && 5313 "Expected reduction operation."); 5314 switch (Kind) { 5315 case RK_Arithmetic: 5316 ReductionOps[0].emplace_back(I); 5317 break; 5318 case RK_Min: 5319 case RK_UMin: 5320 case RK_Max: 5321 case RK_UMax: 5322 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5323 ReductionOps[1].emplace_back(I); 5324 break; 5325 case RK_None: 5326 llvm_unreachable("Reduction kind is not set"); 5327 } 5328 } 5329 5330 /// Checks if instruction is associative and can be vectorized. 5331 bool isAssociative(Instruction *I) const { 5332 assert(Kind != RK_None && *this && LHS && RHS && 5333 "Expected reduction operation."); 5334 switch (Kind) { 5335 case RK_Arithmetic: 5336 return I->isAssociative(); 5337 case RK_Min: 5338 case RK_Max: 5339 return Opcode == Instruction::ICmp || 5340 cast<Instruction>(I->getOperand(0))->isFast(); 5341 case RK_UMin: 5342 case RK_UMax: 5343 assert(Opcode == Instruction::ICmp && 5344 "Only integer compare operation is expected."); 5345 return true; 5346 case RK_None: 5347 break; 5348 } 5349 llvm_unreachable("Reduction kind is not set"); 5350 } 5351 5352 /// Checks if the reduction operation can be vectorized. 5353 bool isVectorizable(Instruction *I) const { 5354 return isVectorizable() && isAssociative(I); 5355 } 5356 5357 /// Checks if two operation data are both a reduction op or both a reduced 5358 /// value. 5359 bool operator==(const OperationData &OD) { 5360 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5361 "One of the comparing operations is incorrect."); 5362 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5363 } 5364 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5365 void clear() { 5366 Opcode = 0; 5367 LHS = nullptr; 5368 RHS = nullptr; 5369 Kind = RK_None; 5370 NoNaN = false; 5371 } 5372 5373 /// Get the opcode of the reduction operation. 5374 unsigned getOpcode() const { 5375 assert(isVectorizable() && "Expected vectorizable operation."); 5376 return Opcode; 5377 } 5378 5379 /// Get kind of reduction data. 5380 ReductionKind getKind() const { return Kind; } 5381 Value *getLHS() const { return LHS; } 5382 Value *getRHS() const { return RHS; } 5383 Type *getConditionType() const { 5384 switch (Kind) { 5385 case RK_Arithmetic: 5386 return nullptr; 5387 case RK_Min: 5388 case RK_Max: 5389 case RK_UMin: 5390 case RK_UMax: 5391 return CmpInst::makeCmpResultType(LHS->getType()); 5392 case RK_None: 5393 break; 5394 } 5395 llvm_unreachable("Reduction kind is not set"); 5396 } 5397 5398 /// Creates reduction operation with the current opcode with the IR flags 5399 /// from \p ReductionOps. 5400 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5401 const ReductionOpsListType &ReductionOps) const { 5402 assert(isVectorizable() && 5403 "Expected add|fadd or min/max reduction operation."); 5404 auto *Op = createOp(Builder, Name); 5405 switch (Kind) { 5406 case RK_Arithmetic: 5407 propagateIRFlags(Op, ReductionOps[0]); 5408 return Op; 5409 case RK_Min: 5410 case RK_Max: 5411 case RK_UMin: 5412 case RK_UMax: 5413 if (auto *SI = dyn_cast<SelectInst>(Op)) 5414 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5415 propagateIRFlags(Op, ReductionOps[1]); 5416 return Op; 5417 case RK_None: 5418 break; 5419 } 5420 llvm_unreachable("Unknown reduction operation."); 5421 } 5422 /// Creates reduction operation with the current opcode with the IR flags 5423 /// from \p I. 5424 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5425 Instruction *I) const { 5426 assert(isVectorizable() && 5427 "Expected add|fadd or min/max reduction operation."); 5428 auto *Op = createOp(Builder, Name); 5429 switch (Kind) { 5430 case RK_Arithmetic: 5431 propagateIRFlags(Op, I); 5432 return Op; 5433 case RK_Min: 5434 case RK_Max: 5435 case RK_UMin: 5436 case RK_UMax: 5437 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5438 propagateIRFlags(SI->getCondition(), 5439 cast<SelectInst>(I)->getCondition()); 5440 } 5441 propagateIRFlags(Op, I); 5442 return Op; 5443 case RK_None: 5444 break; 5445 } 5446 llvm_unreachable("Unknown reduction operation."); 5447 } 5448 5449 TargetTransformInfo::ReductionFlags getFlags() const { 5450 TargetTransformInfo::ReductionFlags Flags; 5451 Flags.NoNaN = NoNaN; 5452 switch (Kind) { 5453 case RK_Arithmetic: 5454 break; 5455 case RK_Min: 5456 Flags.IsSigned = Opcode == Instruction::ICmp; 5457 Flags.IsMaxOp = false; 5458 break; 5459 case RK_Max: 5460 Flags.IsSigned = Opcode == Instruction::ICmp; 5461 Flags.IsMaxOp = true; 5462 break; 5463 case RK_UMin: 5464 Flags.IsSigned = false; 5465 Flags.IsMaxOp = false; 5466 break; 5467 case RK_UMax: 5468 Flags.IsSigned = false; 5469 Flags.IsMaxOp = true; 5470 break; 5471 case RK_None: 5472 llvm_unreachable("Reduction kind is not set"); 5473 } 5474 return Flags; 5475 } 5476 }; 5477 5478 Instruction *ReductionRoot = nullptr; 5479 5480 /// The operation data of the reduction operation. 5481 OperationData ReductionData; 5482 5483 /// The operation data of the values we perform a reduction on. 5484 OperationData ReducedValueData; 5485 5486 /// Should we model this reduction as a pairwise reduction tree or a tree that 5487 /// splits the vector in halves and adds those halves. 5488 bool IsPairwiseReduction = false; 5489 5490 /// Checks if the ParentStackElem.first should be marked as a reduction 5491 /// operation with an extra argument or as extra argument itself. 5492 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5493 Value *ExtraArg) { 5494 if (ExtraArgs.count(ParentStackElem.first)) { 5495 ExtraArgs[ParentStackElem.first] = nullptr; 5496 // We ran into something like: 5497 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5498 // The whole ParentStackElem.first should be considered as an extra value 5499 // in this case. 5500 // Do not perform analysis of remaining operands of ParentStackElem.first 5501 // instruction, this whole instruction is an extra argument. 5502 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5503 } else { 5504 // We ran into something like: 5505 // ParentStackElem.first += ... + ExtraArg + ... 5506 ExtraArgs[ParentStackElem.first] = ExtraArg; 5507 } 5508 } 5509 5510 static OperationData getOperationData(Value *V) { 5511 if (!V) 5512 return OperationData(); 5513 5514 Value *LHS; 5515 Value *RHS; 5516 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5517 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5518 RK_Arithmetic); 5519 } 5520 if (auto *Select = dyn_cast<SelectInst>(V)) { 5521 // Look for a min/max pattern. 5522 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5523 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5524 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5525 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5526 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5527 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5528 return OperationData( 5529 Instruction::FCmp, LHS, RHS, RK_Min, 5530 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5531 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5532 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5533 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5534 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5535 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5536 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5537 return OperationData( 5538 Instruction::FCmp, LHS, RHS, RK_Max, 5539 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5540 } 5541 } 5542 return OperationData(V); 5543 } 5544 5545 public: 5546 HorizontalReduction() = default; 5547 5548 /// \brief Try to find a reduction tree. 5549 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5550 assert((!Phi || is_contained(Phi->operands(), B)) && 5551 "Thi phi needs to use the binary operator"); 5552 5553 ReductionData = getOperationData(B); 5554 5555 // We could have a initial reductions that is not an add. 5556 // r *= v1 + v2 + v3 + v4 5557 // In such a case start looking for a tree rooted in the first '+'. 5558 if (Phi) { 5559 if (ReductionData.getLHS() == Phi) { 5560 Phi = nullptr; 5561 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5562 ReductionData = getOperationData(B); 5563 } else if (ReductionData.getRHS() == Phi) { 5564 Phi = nullptr; 5565 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5566 ReductionData = getOperationData(B); 5567 } 5568 } 5569 5570 if (!ReductionData.isVectorizable(B)) 5571 return false; 5572 5573 Type *Ty = B->getType(); 5574 if (!isValidElementType(Ty)) 5575 return false; 5576 5577 ReducedValueData.clear(); 5578 ReductionRoot = B; 5579 5580 // Post order traverse the reduction tree starting at B. We only handle true 5581 // trees containing only binary operators. 5582 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5583 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5584 ReductionData.initReductionOps(ReductionOps); 5585 while (!Stack.empty()) { 5586 Instruction *TreeN = Stack.back().first; 5587 unsigned EdgeToVist = Stack.back().second++; 5588 OperationData OpData = getOperationData(TreeN); 5589 bool IsReducedValue = OpData != ReductionData; 5590 5591 // Postorder vist. 5592 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5593 if (IsReducedValue) 5594 ReducedVals.push_back(TreeN); 5595 else { 5596 auto I = ExtraArgs.find(TreeN); 5597 if (I != ExtraArgs.end() && !I->second) { 5598 // Check if TreeN is an extra argument of its parent operation. 5599 if (Stack.size() <= 1) { 5600 // TreeN can't be an extra argument as it is a root reduction 5601 // operation. 5602 return false; 5603 } 5604 // Yes, TreeN is an extra argument, do not add it to a list of 5605 // reduction operations. 5606 // Stack[Stack.size() - 2] always points to the parent operation. 5607 markExtraArg(Stack[Stack.size() - 2], TreeN); 5608 ExtraArgs.erase(TreeN); 5609 } else 5610 ReductionData.addReductionOps(TreeN, ReductionOps); 5611 } 5612 // Retract. 5613 Stack.pop_back(); 5614 continue; 5615 } 5616 5617 // Visit left or right. 5618 Value *NextV = TreeN->getOperand(EdgeToVist); 5619 if (NextV != Phi) { 5620 auto *I = dyn_cast<Instruction>(NextV); 5621 OpData = getOperationData(I); 5622 // Continue analysis if the next operand is a reduction operation or 5623 // (possibly) a reduced value. If the reduced value opcode is not set, 5624 // the first met operation != reduction operation is considered as the 5625 // reduced value class. 5626 if (I && (!ReducedValueData || OpData == ReducedValueData || 5627 OpData == ReductionData)) { 5628 const bool IsReductionOperation = OpData == ReductionData; 5629 // Only handle trees in the current basic block. 5630 if (!ReductionData.hasSameParent(I, B->getParent(), 5631 IsReductionOperation)) { 5632 // I is an extra argument for TreeN (its parent operation). 5633 markExtraArg(Stack.back(), I); 5634 continue; 5635 } 5636 5637 // Each tree node needs to have minimal number of users except for the 5638 // ultimate reduction. 5639 if (!ReductionData.hasRequiredNumberOfUses(I, 5640 OpData == ReductionData) && 5641 I != B) { 5642 // I is an extra argument for TreeN (its parent operation). 5643 markExtraArg(Stack.back(), I); 5644 continue; 5645 } 5646 5647 if (IsReductionOperation) { 5648 // We need to be able to reassociate the reduction operations. 5649 if (!OpData.isAssociative(I)) { 5650 // I is an extra argument for TreeN (its parent operation). 5651 markExtraArg(Stack.back(), I); 5652 continue; 5653 } 5654 } else if (ReducedValueData && 5655 ReducedValueData != OpData) { 5656 // Make sure that the opcodes of the operations that we are going to 5657 // reduce match. 5658 // I is an extra argument for TreeN (its parent operation). 5659 markExtraArg(Stack.back(), I); 5660 continue; 5661 } else if (!ReducedValueData) 5662 ReducedValueData = OpData; 5663 5664 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5665 continue; 5666 } 5667 } 5668 // NextV is an extra argument for TreeN (its parent operation). 5669 markExtraArg(Stack.back(), NextV); 5670 } 5671 return true; 5672 } 5673 5674 /// \brief Attempt to vectorize the tree found by 5675 /// matchAssociativeReduction. 5676 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5677 if (ReducedVals.empty()) 5678 return false; 5679 5680 // If there is a sufficient number of reduction values, reduce 5681 // to a nearby power-of-2. Can safely generate oversized 5682 // vectors and rely on the backend to split them to legal sizes. 5683 unsigned NumReducedVals = ReducedVals.size(); 5684 if (NumReducedVals < 4) 5685 return false; 5686 5687 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5688 5689 Value *VectorizedTree = nullptr; 5690 IRBuilder<> Builder(ReductionRoot); 5691 FastMathFlags Unsafe; 5692 Unsafe.setFast(); 5693 Builder.setFastMathFlags(Unsafe); 5694 unsigned i = 0; 5695 5696 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5697 // The same extra argument may be used several time, so log each attempt 5698 // to use it. 5699 for (auto &Pair : ExtraArgs) 5700 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5701 SmallVector<Value *, 16> IgnoreList; 5702 for (auto &V : ReductionOps) 5703 IgnoreList.append(V.begin(), V.end()); 5704 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5705 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5706 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5707 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5708 // TODO: Handle orders of size less than number of elements in the vector. 5709 if (Order && Order->size() == VL.size()) { 5710 // TODO: reorder tree nodes without tree rebuilding. 5711 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5712 llvm::transform(*Order, ReorderedOps.begin(), 5713 [VL](const unsigned Idx) { return VL[Idx]; }); 5714 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5715 } 5716 if (V.isTreeTinyAndNotFullyVectorizable()) 5717 break; 5718 5719 V.computeMinimumValueSizes(); 5720 5721 // Estimate cost. 5722 int Cost = 5723 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5724 if (Cost >= -SLPCostThreshold) { 5725 V.getORE()->emit([&]() { 5726 return OptimizationRemarkMissed( 5727 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5728 << "Vectorizing horizontal reduction is possible" 5729 << "but not beneficial with cost " 5730 << ore::NV("Cost", Cost) << " and threshold " 5731 << ore::NV("Threshold", -SLPCostThreshold); 5732 }); 5733 break; 5734 } 5735 5736 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5737 << ". (HorRdx)\n"); 5738 V.getORE()->emit([&]() { 5739 return OptimizationRemark( 5740 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5741 << "Vectorized horizontal reduction with cost " 5742 << ore::NV("Cost", Cost) << " and with tree size " 5743 << ore::NV("TreeSize", V.getTreeSize()); 5744 }); 5745 5746 // Vectorize a tree. 5747 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5748 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5749 5750 // Emit a reduction. 5751 Value *ReducedSubTree = 5752 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5753 if (VectorizedTree) { 5754 Builder.SetCurrentDebugLocation(Loc); 5755 OperationData VectReductionData(ReductionData.getOpcode(), 5756 VectorizedTree, ReducedSubTree, 5757 ReductionData.getKind()); 5758 VectorizedTree = 5759 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5760 } else 5761 VectorizedTree = ReducedSubTree; 5762 i += ReduxWidth; 5763 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5764 } 5765 5766 if (VectorizedTree) { 5767 // Finish the reduction. 5768 for (; i < NumReducedVals; ++i) { 5769 auto *I = cast<Instruction>(ReducedVals[i]); 5770 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5771 OperationData VectReductionData(ReductionData.getOpcode(), 5772 VectorizedTree, I, 5773 ReductionData.getKind()); 5774 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5775 } 5776 for (auto &Pair : ExternallyUsedValues) { 5777 assert(!Pair.second.empty() && 5778 "At least one DebugLoc must be inserted"); 5779 // Add each externally used value to the final reduction. 5780 for (auto *I : Pair.second) { 5781 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5782 OperationData VectReductionData(ReductionData.getOpcode(), 5783 VectorizedTree, Pair.first, 5784 ReductionData.getKind()); 5785 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5786 } 5787 } 5788 // Update users. 5789 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5790 } 5791 return VectorizedTree != nullptr; 5792 } 5793 5794 unsigned numReductionValues() const { 5795 return ReducedVals.size(); 5796 } 5797 5798 private: 5799 /// \brief Calculate the cost of a reduction. 5800 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5801 unsigned ReduxWidth) { 5802 Type *ScalarTy = FirstReducedVal->getType(); 5803 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5804 5805 int PairwiseRdxCost; 5806 int SplittingRdxCost; 5807 switch (ReductionData.getKind()) { 5808 case RK_Arithmetic: 5809 PairwiseRdxCost = 5810 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5811 /*IsPairwiseForm=*/true); 5812 SplittingRdxCost = 5813 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5814 /*IsPairwiseForm=*/false); 5815 break; 5816 case RK_Min: 5817 case RK_Max: 5818 case RK_UMin: 5819 case RK_UMax: { 5820 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5821 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5822 ReductionData.getKind() == RK_UMax; 5823 PairwiseRdxCost = 5824 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5825 /*IsPairwiseForm=*/true, IsUnsigned); 5826 SplittingRdxCost = 5827 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5828 /*IsPairwiseForm=*/false, IsUnsigned); 5829 break; 5830 } 5831 case RK_None: 5832 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5833 } 5834 5835 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5836 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5837 5838 int ScalarReduxCost; 5839 switch (ReductionData.getKind()) { 5840 case RK_Arithmetic: 5841 ScalarReduxCost = 5842 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5843 break; 5844 case RK_Min: 5845 case RK_Max: 5846 case RK_UMin: 5847 case RK_UMax: 5848 ScalarReduxCost = 5849 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5850 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5851 CmpInst::makeCmpResultType(ScalarTy)); 5852 break; 5853 case RK_None: 5854 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5855 } 5856 ScalarReduxCost *= (ReduxWidth - 1); 5857 5858 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5859 << " for reduction that starts with " << *FirstReducedVal 5860 << " (It is a " 5861 << (IsPairwiseReduction ? "pairwise" : "splitting") 5862 << " reduction)\n"); 5863 5864 return VecReduxCost - ScalarReduxCost; 5865 } 5866 5867 /// \brief Emit a horizontal reduction of the vectorized value. 5868 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5869 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5870 assert(VectorizedValue && "Need to have a vectorized tree node"); 5871 assert(isPowerOf2_32(ReduxWidth) && 5872 "We only handle power-of-two reductions for now"); 5873 5874 if (!IsPairwiseReduction) 5875 return createSimpleTargetReduction( 5876 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5877 ReductionData.getFlags(), ReductionOps.back()); 5878 5879 Value *TmpVec = VectorizedValue; 5880 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5881 Value *LeftMask = 5882 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5883 Value *RightMask = 5884 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5885 5886 Value *LeftShuf = Builder.CreateShuffleVector( 5887 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5888 Value *RightShuf = Builder.CreateShuffleVector( 5889 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5890 "rdx.shuf.r"); 5891 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5892 RightShuf, ReductionData.getKind()); 5893 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5894 } 5895 5896 // The result is in the first element of the vector. 5897 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5898 } 5899 }; 5900 5901 } // end anonymous namespace 5902 5903 /// \brief Recognize construction of vectors like 5904 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5905 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5906 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5907 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5908 /// starting from the last insertelement instruction. 5909 /// 5910 /// Returns true if it matches 5911 static bool findBuildVector(InsertElementInst *LastInsertElem, 5912 TargetTransformInfo *TTI, 5913 SmallVectorImpl<Value *> &BuildVectorOpds, 5914 int &UserCost) { 5915 UserCost = 0; 5916 Value *V = nullptr; 5917 do { 5918 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5919 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5920 LastInsertElem->getType(), 5921 CI->getZExtValue()); 5922 } 5923 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5924 V = LastInsertElem->getOperand(0); 5925 if (isa<UndefValue>(V)) 5926 break; 5927 LastInsertElem = dyn_cast<InsertElementInst>(V); 5928 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5929 return false; 5930 } while (true); 5931 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5932 return true; 5933 } 5934 5935 /// \brief Like findBuildVector, but looks for construction of aggregate. 5936 /// 5937 /// \return true if it matches. 5938 static bool findBuildAggregate(InsertValueInst *IV, 5939 SmallVectorImpl<Value *> &BuildVectorOpds) { 5940 Value *V; 5941 do { 5942 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5943 V = IV->getAggregateOperand(); 5944 if (isa<UndefValue>(V)) 5945 break; 5946 IV = dyn_cast<InsertValueInst>(V); 5947 if (!IV || !IV->hasOneUse()) 5948 return false; 5949 } while (true); 5950 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5951 return true; 5952 } 5953 5954 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5955 return V->getType() < V2->getType(); 5956 } 5957 5958 /// \brief Try and get a reduction value from a phi node. 5959 /// 5960 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5961 /// if they come from either \p ParentBB or a containing loop latch. 5962 /// 5963 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5964 /// if not possible. 5965 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5966 BasicBlock *ParentBB, LoopInfo *LI) { 5967 // There are situations where the reduction value is not dominated by the 5968 // reduction phi. Vectorizing such cases has been reported to cause 5969 // miscompiles. See PR25787. 5970 auto DominatedReduxValue = [&](Value *R) { 5971 return ( 5972 dyn_cast<Instruction>(R) && 5973 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5974 }; 5975 5976 Value *Rdx = nullptr; 5977 5978 // Return the incoming value if it comes from the same BB as the phi node. 5979 if (P->getIncomingBlock(0) == ParentBB) { 5980 Rdx = P->getIncomingValue(0); 5981 } else if (P->getIncomingBlock(1) == ParentBB) { 5982 Rdx = P->getIncomingValue(1); 5983 } 5984 5985 if (Rdx && DominatedReduxValue(Rdx)) 5986 return Rdx; 5987 5988 // Otherwise, check whether we have a loop latch to look at. 5989 Loop *BBL = LI->getLoopFor(ParentBB); 5990 if (!BBL) 5991 return nullptr; 5992 BasicBlock *BBLatch = BBL->getLoopLatch(); 5993 if (!BBLatch) 5994 return nullptr; 5995 5996 // There is a loop latch, return the incoming value if it comes from 5997 // that. This reduction pattern occasionally turns up. 5998 if (P->getIncomingBlock(0) == BBLatch) { 5999 Rdx = P->getIncomingValue(0); 6000 } else if (P->getIncomingBlock(1) == BBLatch) { 6001 Rdx = P->getIncomingValue(1); 6002 } 6003 6004 if (Rdx && DominatedReduxValue(Rdx)) 6005 return Rdx; 6006 6007 return nullptr; 6008 } 6009 6010 /// Attempt to reduce a horizontal reduction. 6011 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6012 /// with reduction operators \a Root (or one of its operands) in a basic block 6013 /// \a BB, then check if it can be done. If horizontal reduction is not found 6014 /// and root instruction is a binary operation, vectorization of the operands is 6015 /// attempted. 6016 /// \returns true if a horizontal reduction was matched and reduced or operands 6017 /// of one of the binary instruction were vectorized. 6018 /// \returns false if a horizontal reduction was not matched (or not possible) 6019 /// or no vectorization of any binary operation feeding \a Root instruction was 6020 /// performed. 6021 static bool tryToVectorizeHorReductionOrInstOperands( 6022 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6023 TargetTransformInfo *TTI, 6024 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6025 if (!ShouldVectorizeHor) 6026 return false; 6027 6028 if (!Root) 6029 return false; 6030 6031 if (Root->getParent() != BB || isa<PHINode>(Root)) 6032 return false; 6033 // Start analysis starting from Root instruction. If horizontal reduction is 6034 // found, try to vectorize it. If it is not a horizontal reduction or 6035 // vectorization is not possible or not effective, and currently analyzed 6036 // instruction is a binary operation, try to vectorize the operands, using 6037 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6038 // the same procedure considering each operand as a possible root of the 6039 // horizontal reduction. 6040 // Interrupt the process if the Root instruction itself was vectorized or all 6041 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6042 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6043 SmallSet<Value *, 8> VisitedInstrs; 6044 bool Res = false; 6045 while (!Stack.empty()) { 6046 Value *V; 6047 unsigned Level; 6048 std::tie(V, Level) = Stack.pop_back_val(); 6049 if (!V) 6050 continue; 6051 auto *Inst = dyn_cast<Instruction>(V); 6052 if (!Inst) 6053 continue; 6054 auto *BI = dyn_cast<BinaryOperator>(Inst); 6055 auto *SI = dyn_cast<SelectInst>(Inst); 6056 if (BI || SI) { 6057 HorizontalReduction HorRdx; 6058 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6059 if (HorRdx.tryToReduce(R, TTI)) { 6060 Res = true; 6061 // Set P to nullptr to avoid re-analysis of phi node in 6062 // matchAssociativeReduction function unless this is the root node. 6063 P = nullptr; 6064 continue; 6065 } 6066 } 6067 if (P && BI) { 6068 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6069 if (Inst == P) 6070 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6071 if (!Inst) { 6072 // Set P to nullptr to avoid re-analysis of phi node in 6073 // matchAssociativeReduction function unless this is the root node. 6074 P = nullptr; 6075 continue; 6076 } 6077 } 6078 } 6079 // Set P to nullptr to avoid re-analysis of phi node in 6080 // matchAssociativeReduction function unless this is the root node. 6081 P = nullptr; 6082 if (Vectorize(Inst, R)) { 6083 Res = true; 6084 continue; 6085 } 6086 6087 // Try to vectorize operands. 6088 // Continue analysis for the instruction from the same basic block only to 6089 // save compile time. 6090 if (++Level < RecursionMaxDepth) 6091 for (auto *Op : Inst->operand_values()) 6092 if (VisitedInstrs.insert(Op).second) 6093 if (auto *I = dyn_cast<Instruction>(Op)) 6094 if (!isa<PHINode>(I) && I->getParent() == BB) 6095 Stack.emplace_back(Op, Level); 6096 } 6097 return Res; 6098 } 6099 6100 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6101 BasicBlock *BB, BoUpSLP &R, 6102 TargetTransformInfo *TTI) { 6103 if (!V) 6104 return false; 6105 auto *I = dyn_cast<Instruction>(V); 6106 if (!I) 6107 return false; 6108 6109 if (!isa<BinaryOperator>(I)) 6110 P = nullptr; 6111 // Try to match and vectorize a horizontal reduction. 6112 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6113 return tryToVectorize(I, R); 6114 }; 6115 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6116 ExtraVectorization); 6117 } 6118 6119 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6120 BasicBlock *BB, BoUpSLP &R) { 6121 const DataLayout &DL = BB->getModule()->getDataLayout(); 6122 if (!R.canMapToVector(IVI->getType(), DL)) 6123 return false; 6124 6125 SmallVector<Value *, 16> BuildVectorOpds; 6126 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6127 return false; 6128 6129 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6130 // Aggregate value is unlikely to be processed in vector register, we need to 6131 // extract scalars into scalar registers, so NeedExtraction is set true. 6132 return tryToVectorizeList(BuildVectorOpds, R); 6133 } 6134 6135 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6136 BasicBlock *BB, BoUpSLP &R) { 6137 int UserCost; 6138 SmallVector<Value *, 16> BuildVectorOpds; 6139 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6140 (llvm::all_of(BuildVectorOpds, 6141 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6142 isShuffle(BuildVectorOpds))) 6143 return false; 6144 6145 // Vectorize starting with the build vector operands ignoring the BuildVector 6146 // instructions for the purpose of scheduling and user extraction. 6147 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6148 } 6149 6150 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6151 BoUpSLP &R) { 6152 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6153 return true; 6154 6155 bool OpsChanged = false; 6156 for (int Idx = 0; Idx < 2; ++Idx) { 6157 OpsChanged |= 6158 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6159 } 6160 return OpsChanged; 6161 } 6162 6163 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6164 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6165 bool OpsChanged = false; 6166 for (auto &VH : reverse(Instructions)) { 6167 auto *I = dyn_cast_or_null<Instruction>(VH); 6168 if (!I) 6169 continue; 6170 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6171 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6172 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6173 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6174 else if (auto *CI = dyn_cast<CmpInst>(I)) 6175 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6176 } 6177 Instructions.clear(); 6178 return OpsChanged; 6179 } 6180 6181 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6182 bool Changed = false; 6183 SmallVector<Value *, 4> Incoming; 6184 SmallSet<Value *, 16> VisitedInstrs; 6185 6186 bool HaveVectorizedPhiNodes = true; 6187 while (HaveVectorizedPhiNodes) { 6188 HaveVectorizedPhiNodes = false; 6189 6190 // Collect the incoming values from the PHIs. 6191 Incoming.clear(); 6192 for (Instruction &I : *BB) { 6193 PHINode *P = dyn_cast<PHINode>(&I); 6194 if (!P) 6195 break; 6196 6197 if (!VisitedInstrs.count(P)) 6198 Incoming.push_back(P); 6199 } 6200 6201 // Sort by type. 6202 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6203 6204 // Try to vectorize elements base on their type. 6205 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6206 E = Incoming.end(); 6207 IncIt != E;) { 6208 6209 // Look for the next elements with the same type. 6210 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6211 while (SameTypeIt != E && 6212 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6213 VisitedInstrs.insert(*SameTypeIt); 6214 ++SameTypeIt; 6215 } 6216 6217 // Try to vectorize them. 6218 unsigned NumElts = (SameTypeIt - IncIt); 6219 DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts 6220 << ")\n"); 6221 // The order in which the phi nodes appear in the program does not matter. 6222 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6223 // is done when there are exactly two elements since tryToVectorizeList 6224 // asserts that there are only two values when AllowReorder is true. 6225 bool AllowReorder = NumElts == 2; 6226 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6227 /*UserCost=*/0, AllowReorder)) { 6228 // Success start over because instructions might have been changed. 6229 HaveVectorizedPhiNodes = true; 6230 Changed = true; 6231 break; 6232 } 6233 6234 // Start over at the next instruction of a different type (or the end). 6235 IncIt = SameTypeIt; 6236 } 6237 } 6238 6239 VisitedInstrs.clear(); 6240 6241 SmallVector<WeakVH, 8> PostProcessInstructions; 6242 SmallDenseSet<Instruction *, 4> KeyNodes; 6243 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6244 // We may go through BB multiple times so skip the one we have checked. 6245 if (!VisitedInstrs.insert(&*it).second) { 6246 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6247 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6248 // We would like to start over since some instructions are deleted 6249 // and the iterator may become invalid value. 6250 Changed = true; 6251 it = BB->begin(); 6252 e = BB->end(); 6253 } 6254 continue; 6255 } 6256 6257 if (isa<DbgInfoIntrinsic>(it)) 6258 continue; 6259 6260 // Try to vectorize reductions that use PHINodes. 6261 if (PHINode *P = dyn_cast<PHINode>(it)) { 6262 // Check that the PHI is a reduction PHI. 6263 if (P->getNumIncomingValues() != 2) 6264 return Changed; 6265 6266 // Try to match and vectorize a horizontal reduction. 6267 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6268 TTI)) { 6269 Changed = true; 6270 it = BB->begin(); 6271 e = BB->end(); 6272 continue; 6273 } 6274 continue; 6275 } 6276 6277 // Ran into an instruction without users, like terminator, or function call 6278 // with ignored return value, store. Ignore unused instructions (basing on 6279 // instruction type, except for CallInst and InvokeInst). 6280 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6281 isa<InvokeInst>(it))) { 6282 KeyNodes.insert(&*it); 6283 bool OpsChanged = false; 6284 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6285 for (auto *V : it->operand_values()) { 6286 // Try to match and vectorize a horizontal reduction. 6287 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6288 } 6289 } 6290 // Start vectorization of post-process list of instructions from the 6291 // top-tree instructions to try to vectorize as many instructions as 6292 // possible. 6293 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6294 if (OpsChanged) { 6295 // We would like to start over since some instructions are deleted 6296 // and the iterator may become invalid value. 6297 Changed = true; 6298 it = BB->begin(); 6299 e = BB->end(); 6300 continue; 6301 } 6302 } 6303 6304 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6305 isa<InsertValueInst>(it)) 6306 PostProcessInstructions.push_back(&*it); 6307 6308 } 6309 6310 return Changed; 6311 } 6312 6313 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6314 auto Changed = false; 6315 for (auto &Entry : GEPs) { 6316 // If the getelementptr list has fewer than two elements, there's nothing 6317 // to do. 6318 if (Entry.second.size() < 2) 6319 continue; 6320 6321 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6322 << Entry.second.size() << ".\n"); 6323 6324 // We process the getelementptr list in chunks of 16 (like we do for 6325 // stores) to minimize compile-time. 6326 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6327 auto Len = std::min<unsigned>(BE - BI, 16); 6328 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6329 6330 // Initialize a set a candidate getelementptrs. Note that we use a 6331 // SetVector here to preserve program order. If the index computations 6332 // are vectorizable and begin with loads, we want to minimize the chance 6333 // of having to reorder them later. 6334 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6335 6336 // Some of the candidates may have already been vectorized after we 6337 // initially collected them. If so, the WeakTrackingVHs will have 6338 // nullified the 6339 // values, so remove them from the set of candidates. 6340 Candidates.remove(nullptr); 6341 6342 // Remove from the set of candidates all pairs of getelementptrs with 6343 // constant differences. Such getelementptrs are likely not good 6344 // candidates for vectorization in a bottom-up phase since one can be 6345 // computed from the other. We also ensure all candidate getelementptr 6346 // indices are unique. 6347 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6348 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6349 if (!Candidates.count(GEPI)) 6350 continue; 6351 auto *SCEVI = SE->getSCEV(GEPList[I]); 6352 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6353 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6354 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6355 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6356 Candidates.remove(GEPList[I]); 6357 Candidates.remove(GEPList[J]); 6358 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6359 Candidates.remove(GEPList[J]); 6360 } 6361 } 6362 } 6363 6364 // We break out of the above computation as soon as we know there are 6365 // fewer than two candidates remaining. 6366 if (Candidates.size() < 2) 6367 continue; 6368 6369 // Add the single, non-constant index of each candidate to the bundle. We 6370 // ensured the indices met these constraints when we originally collected 6371 // the getelementptrs. 6372 SmallVector<Value *, 16> Bundle(Candidates.size()); 6373 auto BundleIndex = 0u; 6374 for (auto *V : Candidates) { 6375 auto *GEP = cast<GetElementPtrInst>(V); 6376 auto *GEPIdx = GEP->idx_begin()->get(); 6377 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6378 Bundle[BundleIndex++] = GEPIdx; 6379 } 6380 6381 // Try and vectorize the indices. We are currently only interested in 6382 // gather-like cases of the form: 6383 // 6384 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6385 // 6386 // where the loads of "a", the loads of "b", and the subtractions can be 6387 // performed in parallel. It's likely that detecting this pattern in a 6388 // bottom-up phase will be simpler and less costly than building a 6389 // full-blown top-down phase beginning at the consecutive loads. 6390 Changed |= tryToVectorizeList(Bundle, R); 6391 } 6392 } 6393 return Changed; 6394 } 6395 6396 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6397 bool Changed = false; 6398 // Attempt to sort and vectorize each of the store-groups. 6399 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6400 ++it) { 6401 if (it->second.size() < 2) 6402 continue; 6403 6404 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6405 << it->second.size() << ".\n"); 6406 6407 // Process the stores in chunks of 16. 6408 // TODO: The limit of 16 inhibits greater vectorization factors. 6409 // For example, AVX2 supports v32i8. Increasing this limit, however, 6410 // may cause a significant compile-time increase. 6411 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6412 unsigned Len = std::min<unsigned>(CE - CI, 16); 6413 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6414 } 6415 } 6416 return Changed; 6417 } 6418 6419 char SLPVectorizer::ID = 0; 6420 6421 static const char lv_name[] = "SLP Vectorizer"; 6422 6423 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6424 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6425 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6426 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6427 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6428 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6429 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6430 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6431 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6432 6433 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6434