1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static Optional<unsigned> getExtractIndex(Instruction *E) { 456 unsigned Opcode = E->getOpcode(); 457 assert((Opcode == Instruction::ExtractElement || 458 Opcode == Instruction::ExtractValue) && 459 "Expected extractelement or extractvalue instruction."); 460 if (Opcode == Instruction::ExtractElement) { 461 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 462 if (!CI) 463 return None; 464 return CI->getZExtValue(); 465 } 466 ExtractValueInst *EI = cast<ExtractValueInst>(E); 467 if (EI->getNumIndices() != 1) 468 return None; 469 return *EI->idx_begin(); 470 } 471 472 /// \returns True if in-tree use also needs extract. This refers to 473 /// possible scalar operand in vectorized instruction. 474 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 475 TargetLibraryInfo *TLI) { 476 unsigned Opcode = UserInst->getOpcode(); 477 switch (Opcode) { 478 case Instruction::Load: { 479 LoadInst *LI = cast<LoadInst>(UserInst); 480 return (LI->getPointerOperand() == Scalar); 481 } 482 case Instruction::Store: { 483 StoreInst *SI = cast<StoreInst>(UserInst); 484 return (SI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Call: { 487 CallInst *CI = cast<CallInst>(UserInst); 488 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 489 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 490 return (CI->getArgOperand(1) == Scalar); 491 } 492 LLVM_FALLTHROUGH; 493 } 494 default: 495 return false; 496 } 497 } 498 499 /// \returns the AA location that is being access by the instruction. 500 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 501 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 502 return MemoryLocation::get(SI); 503 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 504 return MemoryLocation::get(LI); 505 return MemoryLocation(); 506 } 507 508 /// \returns True if the instruction is not a volatile or atomic load/store. 509 static bool isSimple(Instruction *I) { 510 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 511 return LI->isSimple(); 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return SI->isSimple(); 514 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 515 return !MI->isVolatile(); 516 return true; 517 } 518 519 namespace llvm { 520 521 namespace slpvectorizer { 522 523 /// Bottom Up SLP Vectorizer. 524 class BoUpSLP { 525 public: 526 using ValueList = SmallVector<Value *, 8>; 527 using InstrList = SmallVector<Instruction *, 16>; 528 using ValueSet = SmallPtrSet<Value *, 16>; 529 using StoreList = SmallVector<StoreInst *, 8>; 530 using ExtraValueToDebugLocsMap = 531 MapVector<Value *, SmallVector<Instruction *, 2>>; 532 533 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 534 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 535 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 536 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 537 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 538 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 539 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 540 // Use the vector register size specified by the target unless overridden 541 // by a command-line option. 542 // TODO: It would be better to limit the vectorization factor based on 543 // data type rather than just register size. For example, x86 AVX has 544 // 256-bit registers, but it does not support integer operations 545 // at that width (that requires AVX2). 546 if (MaxVectorRegSizeOption.getNumOccurrences()) 547 MaxVecRegSize = MaxVectorRegSizeOption; 548 else 549 MaxVecRegSize = TTI->getRegisterBitWidth(true); 550 551 if (MinVectorRegSizeOption.getNumOccurrences()) 552 MinVecRegSize = MinVectorRegSizeOption; 553 else 554 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 555 } 556 557 /// \brief Vectorize the tree that starts with the elements in \p VL. 558 /// Returns the vectorized root. 559 Value *vectorizeTree(); 560 561 /// Vectorize the tree but with the list of externally used values \p 562 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 563 /// generated extractvalue instructions. 564 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 565 566 /// \returns the cost incurred by unwanted spills and fills, caused by 567 /// holding live values over call sites. 568 int getSpillCost(); 569 570 /// \returns the vectorization cost of the subtree that starts at \p VL. 571 /// A negative number means that this is profitable. 572 int getTreeCost(); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 576 void buildTree(ArrayRef<Value *> Roots, 577 ArrayRef<Value *> UserIgnoreLst = None); 578 579 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 580 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 581 /// into account (anf updating it, if required) list of externally used 582 /// values stored in \p ExternallyUsedValues. 583 void buildTree(ArrayRef<Value *> Roots, 584 ExtraValueToDebugLocsMap &ExternallyUsedValues, 585 ArrayRef<Value *> UserIgnoreLst = None); 586 587 /// Clear the internal data structures that are created by 'buildTree'. 588 void deleteTree() { 589 VectorizableTree.clear(); 590 ScalarToTreeEntry.clear(); 591 MustGather.clear(); 592 ExternalUses.clear(); 593 NumOpsWantToKeepOrder.clear(); 594 NumOpsWantToKeepOriginalOrder = 0; 595 for (auto &Iter : BlocksSchedules) { 596 BlockScheduling *BS = Iter.second.get(); 597 BS->clear(); 598 } 599 MinBWs.clear(); 600 } 601 602 unsigned getTreeSize() const { return VectorizableTree.size(); } 603 604 /// \brief Perform LICM and CSE on the newly generated gather sequences. 605 void optimizeGatherSequence(); 606 607 /// \returns The best order of instructions for vectorization. 608 Optional<ArrayRef<unsigned>> bestOrder() const { 609 auto I = std::max_element( 610 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 611 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 612 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 613 return D1.second < D2.second; 614 }); 615 if (I == NumOpsWantToKeepOrder.end() || 616 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 617 return None; 618 619 return makeArrayRef(I->getFirst()); 620 } 621 622 /// \return The vector element size in bits to use when vectorizing the 623 /// expression tree ending at \p V. If V is a store, the size is the width of 624 /// the stored value. Otherwise, the size is the width of the largest loaded 625 /// value reaching V. This method is used by the vectorizer to calculate 626 /// vectorization factors. 627 unsigned getVectorElementSize(Value *V); 628 629 /// Compute the minimum type sizes required to represent the entries in a 630 /// vectorizable tree. 631 void computeMinimumValueSizes(); 632 633 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 634 unsigned getMaxVecRegSize() const { 635 return MaxVecRegSize; 636 } 637 638 // \returns minimum vector register size as set by cl::opt. 639 unsigned getMinVecRegSize() const { 640 return MinVecRegSize; 641 } 642 643 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 644 /// 645 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 646 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 647 648 /// \returns True if the VectorizableTree is both tiny and not fully 649 /// vectorizable. We do not vectorize such trees. 650 bool isTreeTinyAndNotFullyVectorizable(); 651 652 OptimizationRemarkEmitter *getORE() { return ORE; } 653 654 private: 655 struct TreeEntry; 656 657 /// Checks if all users of \p I are the part of the vectorization tree. 658 bool areAllUsersVectorized(Instruction *I) const; 659 660 /// \returns the cost of the vectorizable entry. 661 int getEntryCost(TreeEntry *E); 662 663 /// This is the recursive part of buildTree. 664 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 665 666 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 667 /// be vectorized to use the original vector (or aggregate "bitcast" to a 668 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 669 /// returns false, setting \p CurrentOrder to either an empty vector or a 670 /// non-identity permutation that allows to reuse extract instructions. 671 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 672 SmallVectorImpl<unsigned> &CurrentOrder) const; 673 674 /// Vectorize a single entry in the tree. 675 Value *vectorizeTree(TreeEntry *E); 676 677 /// Vectorize a single entry in the tree, starting in \p VL. 678 Value *vectorizeTree(ArrayRef<Value *> VL); 679 680 /// \returns the scalarization cost for this type. Scalarization in this 681 /// context means the creation of vectors from a group of scalars. 682 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 683 684 /// \returns the scalarization cost for this list of values. Assuming that 685 /// this subtree gets vectorized, we may need to extract the values from the 686 /// roots. This method calculates the cost of extracting the values. 687 int getGatherCost(ArrayRef<Value *> VL); 688 689 /// \brief Set the Builder insert point to one after the last instruction in 690 /// the bundle 691 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 692 693 /// \returns a vector from a collection of scalars in \p VL. 694 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 695 696 /// \returns whether the VectorizableTree is fully vectorizable and will 697 /// be beneficial even the tree height is tiny. 698 bool isFullyVectorizableTinyTree(); 699 700 /// \reorder commutative operands in alt shuffle if they result in 701 /// vectorized code. 702 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 703 SmallVectorImpl<Value *> &Left, 704 SmallVectorImpl<Value *> &Right); 705 706 /// \reorder commutative operands to get better probability of 707 /// generating vectorized code. 708 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 709 SmallVectorImpl<Value *> &Left, 710 SmallVectorImpl<Value *> &Right); 711 struct TreeEntry { 712 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 713 714 /// \returns true if the scalars in VL are equal to this entry. 715 bool isSame(ArrayRef<Value *> VL) const { 716 if (VL.size() == Scalars.size()) 717 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 718 return VL.size() == ReuseShuffleIndices.size() && 719 std::equal( 720 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 721 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 722 } 723 724 /// A vector of scalars. 725 ValueList Scalars; 726 727 /// The Scalars are vectorized into this value. It is initialized to Null. 728 Value *VectorizedValue = nullptr; 729 730 /// Do we need to gather this sequence ? 731 bool NeedToGather = false; 732 733 /// Does this sequence require some shuffling? 734 SmallVector<unsigned, 4> ReuseShuffleIndices; 735 736 /// Does this entry require reordering? 737 ArrayRef<unsigned> ReorderIndices; 738 739 /// Points back to the VectorizableTree. 740 /// 741 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 742 /// to be a pointer and needs to be able to initialize the child iterator. 743 /// Thus we need a reference back to the container to translate the indices 744 /// to entries. 745 std::vector<TreeEntry> &Container; 746 747 /// The TreeEntry index containing the user of this entry. We can actually 748 /// have multiple users so the data structure is not truly a tree. 749 SmallVector<int, 1> UserTreeIndices; 750 }; 751 752 /// Create a new VectorizableTree entry. 753 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 754 ArrayRef<unsigned> ReuseShuffleIndices = None, 755 ArrayRef<unsigned> ReorderIndices = None) { 756 VectorizableTree.emplace_back(VectorizableTree); 757 int idx = VectorizableTree.size() - 1; 758 TreeEntry *Last = &VectorizableTree[idx]; 759 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 760 Last->NeedToGather = !Vectorized; 761 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 762 ReuseShuffleIndices.end()); 763 Last->ReorderIndices = ReorderIndices; 764 if (Vectorized) { 765 for (int i = 0, e = VL.size(); i != e; ++i) { 766 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 767 ScalarToTreeEntry[VL[i]] = idx; 768 } 769 } else { 770 MustGather.insert(VL.begin(), VL.end()); 771 } 772 773 if (UserTreeIdx >= 0) 774 Last->UserTreeIndices.push_back(UserTreeIdx); 775 UserTreeIdx = idx; 776 } 777 778 /// -- Vectorization State -- 779 /// Holds all of the tree entries. 780 std::vector<TreeEntry> VectorizableTree; 781 782 TreeEntry *getTreeEntry(Value *V) { 783 auto I = ScalarToTreeEntry.find(V); 784 if (I != ScalarToTreeEntry.end()) 785 return &VectorizableTree[I->second]; 786 return nullptr; 787 } 788 789 /// Maps a specific scalar to its tree entry. 790 SmallDenseMap<Value*, int> ScalarToTreeEntry; 791 792 /// A list of scalars that we found that we need to keep as scalars. 793 ValueSet MustGather; 794 795 /// This POD struct describes one external user in the vectorized tree. 796 struct ExternalUser { 797 ExternalUser(Value *S, llvm::User *U, int L) 798 : Scalar(S), User(U), Lane(L) {} 799 800 // Which scalar in our function. 801 Value *Scalar; 802 803 // Which user that uses the scalar. 804 llvm::User *User; 805 806 // Which lane does the scalar belong to. 807 int Lane; 808 }; 809 using UserList = SmallVector<ExternalUser, 16>; 810 811 /// Checks if two instructions may access the same memory. 812 /// 813 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 814 /// is invariant in the calling loop. 815 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 816 Instruction *Inst2) { 817 // First check if the result is already in the cache. 818 AliasCacheKey key = std::make_pair(Inst1, Inst2); 819 Optional<bool> &result = AliasCache[key]; 820 if (result.hasValue()) { 821 return result.getValue(); 822 } 823 MemoryLocation Loc2 = getLocation(Inst2, AA); 824 bool aliased = true; 825 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 826 // Do the alias check. 827 aliased = AA->alias(Loc1, Loc2); 828 } 829 // Store the result in the cache. 830 result = aliased; 831 return aliased; 832 } 833 834 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 835 836 /// Cache for alias results. 837 /// TODO: consider moving this to the AliasAnalysis itself. 838 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 839 840 /// Removes an instruction from its block and eventually deletes it. 841 /// It's like Instruction::eraseFromParent() except that the actual deletion 842 /// is delayed until BoUpSLP is destructed. 843 /// This is required to ensure that there are no incorrect collisions in the 844 /// AliasCache, which can happen if a new instruction is allocated at the 845 /// same address as a previously deleted instruction. 846 void eraseInstruction(Instruction *I) { 847 I->removeFromParent(); 848 I->dropAllReferences(); 849 DeletedInstructions.emplace_back(I); 850 } 851 852 /// Temporary store for deleted instructions. Instructions will be deleted 853 /// eventually when the BoUpSLP is destructed. 854 SmallVector<unique_value, 8> DeletedInstructions; 855 856 /// A list of values that need to extracted out of the tree. 857 /// This list holds pairs of (Internal Scalar : External User). External User 858 /// can be nullptr, it means that this Internal Scalar will be used later, 859 /// after vectorization. 860 UserList ExternalUses; 861 862 /// Values used only by @llvm.assume calls. 863 SmallPtrSet<const Value *, 32> EphValues; 864 865 /// Holds all of the instructions that we gathered. 866 SetVector<Instruction *> GatherSeq; 867 868 /// A list of blocks that we are going to CSE. 869 SetVector<BasicBlock *> CSEBlocks; 870 871 /// Contains all scheduling relevant data for an instruction. 872 /// A ScheduleData either represents a single instruction or a member of an 873 /// instruction bundle (= a group of instructions which is combined into a 874 /// vector instruction). 875 struct ScheduleData { 876 // The initial value for the dependency counters. It means that the 877 // dependencies are not calculated yet. 878 enum { InvalidDeps = -1 }; 879 880 ScheduleData() = default; 881 882 void init(int BlockSchedulingRegionID, Value *OpVal) { 883 FirstInBundle = this; 884 NextInBundle = nullptr; 885 NextLoadStore = nullptr; 886 IsScheduled = false; 887 SchedulingRegionID = BlockSchedulingRegionID; 888 UnscheduledDepsInBundle = UnscheduledDeps; 889 clearDependencies(); 890 OpValue = OpVal; 891 } 892 893 /// Returns true if the dependency information has been calculated. 894 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 895 896 /// Returns true for single instructions and for bundle representatives 897 /// (= the head of a bundle). 898 bool isSchedulingEntity() const { return FirstInBundle == this; } 899 900 /// Returns true if it represents an instruction bundle and not only a 901 /// single instruction. 902 bool isPartOfBundle() const { 903 return NextInBundle != nullptr || FirstInBundle != this; 904 } 905 906 /// Returns true if it is ready for scheduling, i.e. it has no more 907 /// unscheduled depending instructions/bundles. 908 bool isReady() const { 909 assert(isSchedulingEntity() && 910 "can't consider non-scheduling entity for ready list"); 911 return UnscheduledDepsInBundle == 0 && !IsScheduled; 912 } 913 914 /// Modifies the number of unscheduled dependencies, also updating it for 915 /// the whole bundle. 916 int incrementUnscheduledDeps(int Incr) { 917 UnscheduledDeps += Incr; 918 return FirstInBundle->UnscheduledDepsInBundle += Incr; 919 } 920 921 /// Sets the number of unscheduled dependencies to the number of 922 /// dependencies. 923 void resetUnscheduledDeps() { 924 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 925 } 926 927 /// Clears all dependency information. 928 void clearDependencies() { 929 Dependencies = InvalidDeps; 930 resetUnscheduledDeps(); 931 MemoryDependencies.clear(); 932 } 933 934 void dump(raw_ostream &os) const { 935 if (!isSchedulingEntity()) { 936 os << "/ " << *Inst; 937 } else if (NextInBundle) { 938 os << '[' << *Inst; 939 ScheduleData *SD = NextInBundle; 940 while (SD) { 941 os << ';' << *SD->Inst; 942 SD = SD->NextInBundle; 943 } 944 os << ']'; 945 } else { 946 os << *Inst; 947 } 948 } 949 950 Instruction *Inst = nullptr; 951 952 /// Points to the head in an instruction bundle (and always to this for 953 /// single instructions). 954 ScheduleData *FirstInBundle = nullptr; 955 956 /// Single linked list of all instructions in a bundle. Null if it is a 957 /// single instruction. 958 ScheduleData *NextInBundle = nullptr; 959 960 /// Single linked list of all memory instructions (e.g. load, store, call) 961 /// in the block - until the end of the scheduling region. 962 ScheduleData *NextLoadStore = nullptr; 963 964 /// The dependent memory instructions. 965 /// This list is derived on demand in calculateDependencies(). 966 SmallVector<ScheduleData *, 4> MemoryDependencies; 967 968 /// This ScheduleData is in the current scheduling region if this matches 969 /// the current SchedulingRegionID of BlockScheduling. 970 int SchedulingRegionID = 0; 971 972 /// Used for getting a "good" final ordering of instructions. 973 int SchedulingPriority = 0; 974 975 /// The number of dependencies. Constitutes of the number of users of the 976 /// instruction plus the number of dependent memory instructions (if any). 977 /// This value is calculated on demand. 978 /// If InvalidDeps, the number of dependencies is not calculated yet. 979 int Dependencies = InvalidDeps; 980 981 /// The number of dependencies minus the number of dependencies of scheduled 982 /// instructions. As soon as this is zero, the instruction/bundle gets ready 983 /// for scheduling. 984 /// Note that this is negative as long as Dependencies is not calculated. 985 int UnscheduledDeps = InvalidDeps; 986 987 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 988 /// single instructions. 989 int UnscheduledDepsInBundle = InvalidDeps; 990 991 /// True if this instruction is scheduled (or considered as scheduled in the 992 /// dry-run). 993 bool IsScheduled = false; 994 995 /// Opcode of the current instruction in the schedule data. 996 Value *OpValue = nullptr; 997 }; 998 999 #ifndef NDEBUG 1000 friend inline raw_ostream &operator<<(raw_ostream &os, 1001 const BoUpSLP::ScheduleData &SD) { 1002 SD.dump(os); 1003 return os; 1004 } 1005 #endif 1006 1007 friend struct GraphTraits<BoUpSLP *>; 1008 friend struct DOTGraphTraits<BoUpSLP *>; 1009 1010 /// Contains all scheduling data for a basic block. 1011 struct BlockScheduling { 1012 BlockScheduling(BasicBlock *BB) 1013 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1014 1015 void clear() { 1016 ReadyInsts.clear(); 1017 ScheduleStart = nullptr; 1018 ScheduleEnd = nullptr; 1019 FirstLoadStoreInRegion = nullptr; 1020 LastLoadStoreInRegion = nullptr; 1021 1022 // Reduce the maximum schedule region size by the size of the 1023 // previous scheduling run. 1024 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1025 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1026 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1027 ScheduleRegionSize = 0; 1028 1029 // Make a new scheduling region, i.e. all existing ScheduleData is not 1030 // in the new region yet. 1031 ++SchedulingRegionID; 1032 } 1033 1034 ScheduleData *getScheduleData(Value *V) { 1035 ScheduleData *SD = ScheduleDataMap[V]; 1036 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1037 return SD; 1038 return nullptr; 1039 } 1040 1041 ScheduleData *getScheduleData(Value *V, Value *Key) { 1042 if (V == Key) 1043 return getScheduleData(V); 1044 auto I = ExtraScheduleDataMap.find(V); 1045 if (I != ExtraScheduleDataMap.end()) { 1046 ScheduleData *SD = I->second[Key]; 1047 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1048 return SD; 1049 } 1050 return nullptr; 1051 } 1052 1053 bool isInSchedulingRegion(ScheduleData *SD) { 1054 return SD->SchedulingRegionID == SchedulingRegionID; 1055 } 1056 1057 /// Marks an instruction as scheduled and puts all dependent ready 1058 /// instructions into the ready-list. 1059 template <typename ReadyListType> 1060 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1061 SD->IsScheduled = true; 1062 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1063 1064 ScheduleData *BundleMember = SD; 1065 while (BundleMember) { 1066 if (BundleMember->Inst != BundleMember->OpValue) { 1067 BundleMember = BundleMember->NextInBundle; 1068 continue; 1069 } 1070 // Handle the def-use chain dependencies. 1071 for (Use &U : BundleMember->Inst->operands()) { 1072 auto *I = dyn_cast<Instruction>(U.get()); 1073 if (!I) 1074 continue; 1075 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1076 if (OpDef && OpDef->hasValidDependencies() && 1077 OpDef->incrementUnscheduledDeps(-1) == 0) { 1078 // There are no more unscheduled dependencies after 1079 // decrementing, so we can put the dependent instruction 1080 // into the ready list. 1081 ScheduleData *DepBundle = OpDef->FirstInBundle; 1082 assert(!DepBundle->IsScheduled && 1083 "already scheduled bundle gets ready"); 1084 ReadyList.insert(DepBundle); 1085 DEBUG(dbgs() 1086 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1087 } 1088 }); 1089 } 1090 // Handle the memory dependencies. 1091 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1092 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1093 // There are no more unscheduled dependencies after decrementing, 1094 // so we can put the dependent instruction into the ready list. 1095 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1096 assert(!DepBundle->IsScheduled && 1097 "already scheduled bundle gets ready"); 1098 ReadyList.insert(DepBundle); 1099 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1100 << "\n"); 1101 } 1102 } 1103 BundleMember = BundleMember->NextInBundle; 1104 } 1105 } 1106 1107 void doForAllOpcodes(Value *V, 1108 function_ref<void(ScheduleData *SD)> Action) { 1109 if (ScheduleData *SD = getScheduleData(V)) 1110 Action(SD); 1111 auto I = ExtraScheduleDataMap.find(V); 1112 if (I != ExtraScheduleDataMap.end()) 1113 for (auto &P : I->second) 1114 if (P.second->SchedulingRegionID == SchedulingRegionID) 1115 Action(P.second); 1116 } 1117 1118 /// Put all instructions into the ReadyList which are ready for scheduling. 1119 template <typename ReadyListType> 1120 void initialFillReadyList(ReadyListType &ReadyList) { 1121 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1122 doForAllOpcodes(I, [&](ScheduleData *SD) { 1123 if (SD->isSchedulingEntity() && SD->isReady()) { 1124 ReadyList.insert(SD); 1125 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1126 } 1127 }); 1128 } 1129 } 1130 1131 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1132 /// cyclic dependencies. This is only a dry-run, no instructions are 1133 /// actually moved at this stage. 1134 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1135 1136 /// Un-bundles a group of instructions. 1137 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1138 1139 /// Allocates schedule data chunk. 1140 ScheduleData *allocateScheduleDataChunks(); 1141 1142 /// Extends the scheduling region so that V is inside the region. 1143 /// \returns true if the region size is within the limit. 1144 bool extendSchedulingRegion(Value *V, Value *OpValue); 1145 1146 /// Initialize the ScheduleData structures for new instructions in the 1147 /// scheduling region. 1148 void initScheduleData(Instruction *FromI, Instruction *ToI, 1149 ScheduleData *PrevLoadStore, 1150 ScheduleData *NextLoadStore); 1151 1152 /// Updates the dependency information of a bundle and of all instructions/ 1153 /// bundles which depend on the original bundle. 1154 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1155 BoUpSLP *SLP); 1156 1157 /// Sets all instruction in the scheduling region to un-scheduled. 1158 void resetSchedule(); 1159 1160 BasicBlock *BB; 1161 1162 /// Simple memory allocation for ScheduleData. 1163 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1164 1165 /// The size of a ScheduleData array in ScheduleDataChunks. 1166 int ChunkSize; 1167 1168 /// The allocator position in the current chunk, which is the last entry 1169 /// of ScheduleDataChunks. 1170 int ChunkPos; 1171 1172 /// Attaches ScheduleData to Instruction. 1173 /// Note that the mapping survives during all vectorization iterations, i.e. 1174 /// ScheduleData structures are recycled. 1175 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1176 1177 /// Attaches ScheduleData to Instruction with the leading key. 1178 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1179 ExtraScheduleDataMap; 1180 1181 struct ReadyList : SmallVector<ScheduleData *, 8> { 1182 void insert(ScheduleData *SD) { push_back(SD); } 1183 }; 1184 1185 /// The ready-list for scheduling (only used for the dry-run). 1186 ReadyList ReadyInsts; 1187 1188 /// The first instruction of the scheduling region. 1189 Instruction *ScheduleStart = nullptr; 1190 1191 /// The first instruction _after_ the scheduling region. 1192 Instruction *ScheduleEnd = nullptr; 1193 1194 /// The first memory accessing instruction in the scheduling region 1195 /// (can be null). 1196 ScheduleData *FirstLoadStoreInRegion = nullptr; 1197 1198 /// The last memory accessing instruction in the scheduling region 1199 /// (can be null). 1200 ScheduleData *LastLoadStoreInRegion = nullptr; 1201 1202 /// The current size of the scheduling region. 1203 int ScheduleRegionSize = 0; 1204 1205 /// The maximum size allowed for the scheduling region. 1206 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1207 1208 /// The ID of the scheduling region. For a new vectorization iteration this 1209 /// is incremented which "removes" all ScheduleData from the region. 1210 // Make sure that the initial SchedulingRegionID is greater than the 1211 // initial SchedulingRegionID in ScheduleData (which is 0). 1212 int SchedulingRegionID = 1; 1213 }; 1214 1215 /// Attaches the BlockScheduling structures to basic blocks. 1216 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1217 1218 /// Performs the "real" scheduling. Done before vectorization is actually 1219 /// performed in a basic block. 1220 void scheduleBlock(BlockScheduling *BS); 1221 1222 /// List of users to ignore during scheduling and that don't need extracting. 1223 ArrayRef<Value *> UserIgnoreList; 1224 1225 using OrdersType = SmallVector<unsigned, 4>; 1226 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1227 /// sorted SmallVectors of unsigned. 1228 struct OrdersTypeDenseMapInfo { 1229 static OrdersType getEmptyKey() { 1230 OrdersType V; 1231 V.push_back(~1U); 1232 return V; 1233 } 1234 1235 static OrdersType getTombstoneKey() { 1236 OrdersType V; 1237 V.push_back(~2U); 1238 return V; 1239 } 1240 1241 static unsigned getHashValue(const OrdersType &V) { 1242 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1243 } 1244 1245 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1246 return LHS == RHS; 1247 } 1248 }; 1249 1250 /// Contains orders of operations along with the number of bundles that have 1251 /// operations in this order. It stores only those orders that require 1252 /// reordering, if reordering is not required it is counted using \a 1253 /// NumOpsWantToKeepOriginalOrder. 1254 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1255 /// Number of bundles that do not require reordering. 1256 unsigned NumOpsWantToKeepOriginalOrder = 0; 1257 1258 // Analysis and block reference. 1259 Function *F; 1260 ScalarEvolution *SE; 1261 TargetTransformInfo *TTI; 1262 TargetLibraryInfo *TLI; 1263 AliasAnalysis *AA; 1264 LoopInfo *LI; 1265 DominatorTree *DT; 1266 AssumptionCache *AC; 1267 DemandedBits *DB; 1268 const DataLayout *DL; 1269 OptimizationRemarkEmitter *ORE; 1270 1271 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1272 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1273 1274 /// Instruction builder to construct the vectorized tree. 1275 IRBuilder<> Builder; 1276 1277 /// A map of scalar integer values to the smallest bit width with which they 1278 /// can legally be represented. The values map to (width, signed) pairs, 1279 /// where "width" indicates the minimum bit width and "signed" is True if the 1280 /// value must be signed-extended, rather than zero-extended, back to its 1281 /// original width. 1282 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1283 }; 1284 1285 } // end namespace slpvectorizer 1286 1287 template <> struct GraphTraits<BoUpSLP *> { 1288 using TreeEntry = BoUpSLP::TreeEntry; 1289 1290 /// NodeRef has to be a pointer per the GraphWriter. 1291 using NodeRef = TreeEntry *; 1292 1293 /// \brief Add the VectorizableTree to the index iterator to be able to return 1294 /// TreeEntry pointers. 1295 struct ChildIteratorType 1296 : public iterator_adaptor_base<ChildIteratorType, 1297 SmallVector<int, 1>::iterator> { 1298 std::vector<TreeEntry> &VectorizableTree; 1299 1300 ChildIteratorType(SmallVector<int, 1>::iterator W, 1301 std::vector<TreeEntry> &VT) 1302 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1303 1304 NodeRef operator*() { return &VectorizableTree[*I]; } 1305 }; 1306 1307 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1308 1309 static ChildIteratorType child_begin(NodeRef N) { 1310 return {N->UserTreeIndices.begin(), N->Container}; 1311 } 1312 1313 static ChildIteratorType child_end(NodeRef N) { 1314 return {N->UserTreeIndices.end(), N->Container}; 1315 } 1316 1317 /// For the node iterator we just need to turn the TreeEntry iterator into a 1318 /// TreeEntry* iterator so that it dereferences to NodeRef. 1319 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1320 1321 static nodes_iterator nodes_begin(BoUpSLP *R) { 1322 return nodes_iterator(R->VectorizableTree.begin()); 1323 } 1324 1325 static nodes_iterator nodes_end(BoUpSLP *R) { 1326 return nodes_iterator(R->VectorizableTree.end()); 1327 } 1328 1329 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1330 }; 1331 1332 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1333 using TreeEntry = BoUpSLP::TreeEntry; 1334 1335 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1336 1337 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1338 std::string Str; 1339 raw_string_ostream OS(Str); 1340 if (isSplat(Entry->Scalars)) { 1341 OS << "<splat> " << *Entry->Scalars[0]; 1342 return Str; 1343 } 1344 for (auto V : Entry->Scalars) { 1345 OS << *V; 1346 if (std::any_of( 1347 R->ExternalUses.begin(), R->ExternalUses.end(), 1348 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1349 OS << " <extract>"; 1350 OS << "\n"; 1351 } 1352 return Str; 1353 } 1354 1355 static std::string getNodeAttributes(const TreeEntry *Entry, 1356 const BoUpSLP *) { 1357 if (Entry->NeedToGather) 1358 return "color=red"; 1359 return ""; 1360 } 1361 }; 1362 1363 } // end namespace llvm 1364 1365 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1366 ArrayRef<Value *> UserIgnoreLst) { 1367 ExtraValueToDebugLocsMap ExternallyUsedValues; 1368 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1369 } 1370 1371 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1372 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1373 ArrayRef<Value *> UserIgnoreLst) { 1374 deleteTree(); 1375 UserIgnoreList = UserIgnoreLst; 1376 if (!allSameType(Roots)) 1377 return; 1378 buildTree_rec(Roots, 0, -1); 1379 1380 // Collect the values that we need to extract from the tree. 1381 for (TreeEntry &EIdx : VectorizableTree) { 1382 TreeEntry *Entry = &EIdx; 1383 1384 // No need to handle users of gathered values. 1385 if (Entry->NeedToGather) 1386 continue; 1387 1388 // For each lane: 1389 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1390 Value *Scalar = Entry->Scalars[Lane]; 1391 int FoundLane = Lane; 1392 if (!Entry->ReuseShuffleIndices.empty()) { 1393 FoundLane = 1394 std::distance(Entry->ReuseShuffleIndices.begin(), 1395 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1396 } 1397 1398 // Check if the scalar is externally used as an extra arg. 1399 auto ExtI = ExternallyUsedValues.find(Scalar); 1400 if (ExtI != ExternallyUsedValues.end()) { 1401 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1402 Lane << " from " << *Scalar << ".\n"); 1403 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1404 } 1405 for (User *U : Scalar->users()) { 1406 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1407 1408 Instruction *UserInst = dyn_cast<Instruction>(U); 1409 if (!UserInst) 1410 continue; 1411 1412 // Skip in-tree scalars that become vectors 1413 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1414 Value *UseScalar = UseEntry->Scalars[0]; 1415 // Some in-tree scalars will remain as scalar in vectorized 1416 // instructions. If that is the case, the one in Lane 0 will 1417 // be used. 1418 if (UseScalar != U || 1419 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1420 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1421 << ".\n"); 1422 assert(!UseEntry->NeedToGather && "Bad state"); 1423 continue; 1424 } 1425 } 1426 1427 // Ignore users in the user ignore list. 1428 if (is_contained(UserIgnoreList, UserInst)) 1429 continue; 1430 1431 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1432 Lane << " from " << *Scalar << ".\n"); 1433 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1434 } 1435 } 1436 } 1437 } 1438 1439 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1440 int UserTreeIdx) { 1441 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1442 1443 InstructionsState S = getSameOpcode(VL); 1444 if (Depth == RecursionMaxDepth) { 1445 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1446 newTreeEntry(VL, false, UserTreeIdx); 1447 return; 1448 } 1449 1450 // Don't handle vectors. 1451 if (S.OpValue->getType()->isVectorTy()) { 1452 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1453 newTreeEntry(VL, false, UserTreeIdx); 1454 return; 1455 } 1456 1457 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1458 if (SI->getValueOperand()->getType()->isVectorTy()) { 1459 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1460 newTreeEntry(VL, false, UserTreeIdx); 1461 return; 1462 } 1463 1464 // If all of the operands are identical or constant we have a simple solution. 1465 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1466 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1467 newTreeEntry(VL, false, UserTreeIdx); 1468 return; 1469 } 1470 1471 // We now know that this is a vector of instructions of the same type from 1472 // the same block. 1473 1474 // Don't vectorize ephemeral values. 1475 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1476 if (EphValues.count(VL[i])) { 1477 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1478 ") is ephemeral.\n"); 1479 newTreeEntry(VL, false, UserTreeIdx); 1480 return; 1481 } 1482 } 1483 1484 // Check if this is a duplicate of another entry. 1485 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1486 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1487 if (!E->isSame(VL)) { 1488 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1489 newTreeEntry(VL, false, UserTreeIdx); 1490 return; 1491 } 1492 // Record the reuse of the tree node. FIXME, currently this is only used to 1493 // properly draw the graph rather than for the actual vectorization. 1494 E->UserTreeIndices.push_back(UserTreeIdx); 1495 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1496 return; 1497 } 1498 1499 // Check that none of the instructions in the bundle are already in the tree. 1500 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1501 auto *I = dyn_cast<Instruction>(VL[i]); 1502 if (!I) 1503 continue; 1504 if (getTreeEntry(I)) { 1505 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1506 ") is already in tree.\n"); 1507 newTreeEntry(VL, false, UserTreeIdx); 1508 return; 1509 } 1510 } 1511 1512 // If any of the scalars is marked as a value that needs to stay scalar, then 1513 // we need to gather the scalars. 1514 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1515 if (MustGather.count(VL[i])) { 1516 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1517 newTreeEntry(VL, false, UserTreeIdx); 1518 return; 1519 } 1520 } 1521 1522 // Check that all of the users of the scalars that we want to vectorize are 1523 // schedulable. 1524 auto *VL0 = cast<Instruction>(S.OpValue); 1525 BasicBlock *BB = VL0->getParent(); 1526 1527 if (!DT->isReachableFromEntry(BB)) { 1528 // Don't go into unreachable blocks. They may contain instructions with 1529 // dependency cycles which confuse the final scheduling. 1530 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1531 newTreeEntry(VL, false, UserTreeIdx); 1532 return; 1533 } 1534 1535 // Check that every instruction appears once in this bundle. 1536 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1537 SmallVector<Value *, 4> UniqueValues; 1538 DenseMap<Value *, unsigned> UniquePositions; 1539 for (Value *V : VL) { 1540 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1541 ReuseShuffleIndicies.emplace_back(Res.first->second); 1542 if (Res.second) 1543 UniqueValues.emplace_back(V); 1544 } 1545 if (UniqueValues.size() == VL.size()) { 1546 ReuseShuffleIndicies.clear(); 1547 } else { 1548 DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1549 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1550 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1551 newTreeEntry(VL, false, UserTreeIdx); 1552 return; 1553 } 1554 VL = UniqueValues; 1555 } 1556 1557 auto &BSRef = BlocksSchedules[BB]; 1558 if (!BSRef) 1559 BSRef = llvm::make_unique<BlockScheduling>(BB); 1560 1561 BlockScheduling &BS = *BSRef.get(); 1562 1563 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1564 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1565 assert((!BS.getScheduleData(VL0) || 1566 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1567 "tryScheduleBundle should cancelScheduling on failure"); 1568 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1569 return; 1570 } 1571 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1572 1573 unsigned ShuffleOrOp = S.IsAltShuffle ? 1574 (unsigned) Instruction::ShuffleVector : S.Opcode; 1575 switch (ShuffleOrOp) { 1576 case Instruction::PHI: { 1577 PHINode *PH = dyn_cast<PHINode>(VL0); 1578 1579 // Check for terminator values (e.g. invoke). 1580 for (unsigned j = 0; j < VL.size(); ++j) 1581 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1582 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1583 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1584 if (Term) { 1585 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1586 BS.cancelScheduling(VL, VL0); 1587 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1588 return; 1589 } 1590 } 1591 1592 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1593 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1594 1595 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1596 ValueList Operands; 1597 // Prepare the operand vector. 1598 for (Value *j : VL) 1599 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1600 PH->getIncomingBlock(i))); 1601 1602 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1603 } 1604 return; 1605 } 1606 case Instruction::ExtractValue: 1607 case Instruction::ExtractElement: { 1608 OrdersType CurrentOrder; 1609 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1610 if (Reuse) { 1611 DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1612 ++NumOpsWantToKeepOriginalOrder; 1613 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1614 ReuseShuffleIndicies); 1615 return; 1616 } 1617 if (!CurrentOrder.empty()) { 1618 DEBUG({ 1619 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1620 "with order"; 1621 for (unsigned Idx : CurrentOrder) 1622 dbgs() << " " << Idx; 1623 dbgs() << "\n"; 1624 }); 1625 // Insert new order with initial value 0, if it does not exist, 1626 // otherwise return the iterator to the existing one. 1627 auto StoredCurrentOrderAndNum = 1628 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1629 ++StoredCurrentOrderAndNum->getSecond(); 1630 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1631 StoredCurrentOrderAndNum->getFirst()); 1632 return; 1633 } 1634 DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1635 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1636 BS.cancelScheduling(VL, VL0); 1637 return; 1638 } 1639 case Instruction::Load: { 1640 // Check that a vectorized load would load the same memory as a scalar 1641 // load. For example, we don't want to vectorize loads that are smaller 1642 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1643 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1644 // from such a struct, we read/write packed bits disagreeing with the 1645 // unvectorized version. 1646 Type *ScalarTy = VL0->getType(); 1647 1648 if (DL->getTypeSizeInBits(ScalarTy) != 1649 DL->getTypeAllocSizeInBits(ScalarTy)) { 1650 BS.cancelScheduling(VL, VL0); 1651 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1652 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1653 return; 1654 } 1655 1656 // Make sure all loads in the bundle are simple - we can't vectorize 1657 // atomic or volatile loads. 1658 SmallVector<Value *, 4> PointerOps(VL.size()); 1659 auto POIter = PointerOps.begin(); 1660 for (Value *V : VL) { 1661 auto *L = cast<LoadInst>(V); 1662 if (!L->isSimple()) { 1663 BS.cancelScheduling(VL, VL0); 1664 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1665 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1666 return; 1667 } 1668 *POIter = L->getPointerOperand(); 1669 ++POIter; 1670 } 1671 1672 OrdersType CurrentOrder; 1673 // Check the order of pointer operands. 1674 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1675 Value *Ptr0; 1676 Value *PtrN; 1677 if (CurrentOrder.empty()) { 1678 Ptr0 = PointerOps.front(); 1679 PtrN = PointerOps.back(); 1680 } else { 1681 Ptr0 = PointerOps[CurrentOrder.front()]; 1682 PtrN = PointerOps[CurrentOrder.back()]; 1683 } 1684 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1685 const SCEV *ScevN = SE->getSCEV(PtrN); 1686 const auto *Diff = 1687 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1688 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1689 // Check that the sorted loads are consecutive. 1690 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1691 if (CurrentOrder.empty()) { 1692 // Original loads are consecutive and does not require reordering. 1693 ++NumOpsWantToKeepOriginalOrder; 1694 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1695 ReuseShuffleIndicies); 1696 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1697 } else { 1698 // Need to reorder. 1699 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1700 ++I->getSecond(); 1701 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1702 ReuseShuffleIndicies, I->getFirst()); 1703 DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1704 } 1705 return; 1706 } 1707 } 1708 1709 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1710 BS.cancelScheduling(VL, VL0); 1711 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1712 return; 1713 } 1714 case Instruction::ZExt: 1715 case Instruction::SExt: 1716 case Instruction::FPToUI: 1717 case Instruction::FPToSI: 1718 case Instruction::FPExt: 1719 case Instruction::PtrToInt: 1720 case Instruction::IntToPtr: 1721 case Instruction::SIToFP: 1722 case Instruction::UIToFP: 1723 case Instruction::Trunc: 1724 case Instruction::FPTrunc: 1725 case Instruction::BitCast: { 1726 Type *SrcTy = VL0->getOperand(0)->getType(); 1727 for (unsigned i = 0; i < VL.size(); ++i) { 1728 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1729 if (Ty != SrcTy || !isValidElementType(Ty)) { 1730 BS.cancelScheduling(VL, VL0); 1731 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1732 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1733 return; 1734 } 1735 } 1736 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1737 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1738 1739 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1740 ValueList Operands; 1741 // Prepare the operand vector. 1742 for (Value *j : VL) 1743 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1744 1745 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1746 } 1747 return; 1748 } 1749 case Instruction::ICmp: 1750 case Instruction::FCmp: { 1751 // Check that all of the compares have the same predicate. 1752 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1753 Type *ComparedTy = VL0->getOperand(0)->getType(); 1754 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1755 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1756 if (Cmp->getPredicate() != P0 || 1757 Cmp->getOperand(0)->getType() != ComparedTy) { 1758 BS.cancelScheduling(VL, VL0); 1759 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1760 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1761 return; 1762 } 1763 } 1764 1765 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1766 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1767 1768 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1769 ValueList Operands; 1770 // Prepare the operand vector. 1771 for (Value *j : VL) 1772 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1773 1774 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1775 } 1776 return; 1777 } 1778 case Instruction::Select: 1779 case Instruction::Add: 1780 case Instruction::FAdd: 1781 case Instruction::Sub: 1782 case Instruction::FSub: 1783 case Instruction::Mul: 1784 case Instruction::FMul: 1785 case Instruction::UDiv: 1786 case Instruction::SDiv: 1787 case Instruction::FDiv: 1788 case Instruction::URem: 1789 case Instruction::SRem: 1790 case Instruction::FRem: 1791 case Instruction::Shl: 1792 case Instruction::LShr: 1793 case Instruction::AShr: 1794 case Instruction::And: 1795 case Instruction::Or: 1796 case Instruction::Xor: 1797 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1798 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1799 1800 // Sort operands of the instructions so that each side is more likely to 1801 // have the same opcode. 1802 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1803 ValueList Left, Right; 1804 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1805 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1806 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1807 return; 1808 } 1809 1810 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1811 ValueList Operands; 1812 // Prepare the operand vector. 1813 for (Value *j : VL) 1814 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1815 1816 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1817 } 1818 return; 1819 1820 case Instruction::GetElementPtr: { 1821 // We don't combine GEPs with complicated (nested) indexing. 1822 for (unsigned j = 0; j < VL.size(); ++j) { 1823 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1824 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1825 BS.cancelScheduling(VL, VL0); 1826 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1827 return; 1828 } 1829 } 1830 1831 // We can't combine several GEPs into one vector if they operate on 1832 // different types. 1833 Type *Ty0 = VL0->getOperand(0)->getType(); 1834 for (unsigned j = 0; j < VL.size(); ++j) { 1835 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1836 if (Ty0 != CurTy) { 1837 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1838 BS.cancelScheduling(VL, VL0); 1839 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1840 return; 1841 } 1842 } 1843 1844 // We don't combine GEPs with non-constant indexes. 1845 for (unsigned j = 0; j < VL.size(); ++j) { 1846 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1847 if (!isa<ConstantInt>(Op)) { 1848 DEBUG( 1849 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1850 BS.cancelScheduling(VL, VL0); 1851 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1852 return; 1853 } 1854 } 1855 1856 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1857 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1858 for (unsigned i = 0, e = 2; i < e; ++i) { 1859 ValueList Operands; 1860 // Prepare the operand vector. 1861 for (Value *j : VL) 1862 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1863 1864 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1865 } 1866 return; 1867 } 1868 case Instruction::Store: { 1869 // Check if the stores are consecutive or of we need to swizzle them. 1870 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1871 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1872 BS.cancelScheduling(VL, VL0); 1873 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1874 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1875 return; 1876 } 1877 1878 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1879 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1880 1881 ValueList Operands; 1882 for (Value *j : VL) 1883 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1884 1885 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1886 return; 1887 } 1888 case Instruction::Call: { 1889 // Check if the calls are all to the same vectorizable intrinsic. 1890 CallInst *CI = cast<CallInst>(VL0); 1891 // Check if this is an Intrinsic call or something that can be 1892 // represented by an intrinsic call 1893 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1894 if (!isTriviallyVectorizable(ID)) { 1895 BS.cancelScheduling(VL, VL0); 1896 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1897 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1898 return; 1899 } 1900 Function *Int = CI->getCalledFunction(); 1901 Value *A1I = nullptr; 1902 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1903 A1I = CI->getArgOperand(1); 1904 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1905 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1906 if (!CI2 || CI2->getCalledFunction() != Int || 1907 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1908 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1909 BS.cancelScheduling(VL, VL0); 1910 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1911 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1912 << "\n"); 1913 return; 1914 } 1915 // ctlz,cttz and powi are special intrinsics whose second argument 1916 // should be same in order for them to be vectorized. 1917 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1918 Value *A1J = CI2->getArgOperand(1); 1919 if (A1I != A1J) { 1920 BS.cancelScheduling(VL, VL0); 1921 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1922 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1923 << " argument "<< A1I<<"!=" << A1J 1924 << "\n"); 1925 return; 1926 } 1927 } 1928 // Verify that the bundle operands are identical between the two calls. 1929 if (CI->hasOperandBundles() && 1930 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1931 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1932 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1933 BS.cancelScheduling(VL, VL0); 1934 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1935 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1936 << *VL[i] << '\n'); 1937 return; 1938 } 1939 } 1940 1941 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1942 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1943 ValueList Operands; 1944 // Prepare the operand vector. 1945 for (Value *j : VL) { 1946 CallInst *CI2 = dyn_cast<CallInst>(j); 1947 Operands.push_back(CI2->getArgOperand(i)); 1948 } 1949 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1950 } 1951 return; 1952 } 1953 case Instruction::ShuffleVector: 1954 // If this is not an alternate sequence of opcode like add-sub 1955 // then do not vectorize this instruction. 1956 if (!S.IsAltShuffle) { 1957 BS.cancelScheduling(VL, VL0); 1958 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1959 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1960 return; 1961 } 1962 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1963 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1964 1965 // Reorder operands if reordering would enable vectorization. 1966 if (isa<BinaryOperator>(VL0)) { 1967 ValueList Left, Right; 1968 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1969 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1970 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1971 return; 1972 } 1973 1974 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1975 ValueList Operands; 1976 // Prepare the operand vector. 1977 for (Value *j : VL) 1978 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1979 1980 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1981 } 1982 return; 1983 1984 default: 1985 BS.cancelScheduling(VL, VL0); 1986 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1987 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1988 return; 1989 } 1990 } 1991 1992 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1993 unsigned N; 1994 Type *EltTy; 1995 auto *ST = dyn_cast<StructType>(T); 1996 if (ST) { 1997 N = ST->getNumElements(); 1998 EltTy = *ST->element_begin(); 1999 } else { 2000 N = cast<ArrayType>(T)->getNumElements(); 2001 EltTy = cast<ArrayType>(T)->getElementType(); 2002 } 2003 if (!isValidElementType(EltTy)) 2004 return 0; 2005 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2006 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2007 return 0; 2008 if (ST) { 2009 // Check that struct is homogeneous. 2010 for (const auto *Ty : ST->elements()) 2011 if (Ty != EltTy) 2012 return 0; 2013 } 2014 return N; 2015 } 2016 2017 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2018 SmallVectorImpl<unsigned> &CurrentOrder) const { 2019 Instruction *E0 = cast<Instruction>(OpValue); 2020 assert(E0->getOpcode() == Instruction::ExtractElement || 2021 E0->getOpcode() == Instruction::ExtractValue); 2022 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 2023 // Check if all of the extracts come from the same vector and from the 2024 // correct offset. 2025 Value *Vec = E0->getOperand(0); 2026 2027 CurrentOrder.clear(); 2028 2029 // We have to extract from a vector/aggregate with the same number of elements. 2030 unsigned NElts; 2031 if (E0->getOpcode() == Instruction::ExtractValue) { 2032 const DataLayout &DL = E0->getModule()->getDataLayout(); 2033 NElts = canMapToVector(Vec->getType(), DL); 2034 if (!NElts) 2035 return false; 2036 // Check if load can be rewritten as load of vector. 2037 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2038 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2039 return false; 2040 } else { 2041 NElts = Vec->getType()->getVectorNumElements(); 2042 } 2043 2044 if (NElts != VL.size()) 2045 return false; 2046 2047 // Check that all of the indices extract from the correct offset. 2048 bool ShouldKeepOrder = true; 2049 unsigned E = VL.size(); 2050 // Assign to all items the initial value E + 1 so we can check if the extract 2051 // instruction index was used already. 2052 // Also, later we can check that all the indices are used and we have a 2053 // consecutive access in the extract instructions, by checking that no 2054 // element of CurrentOrder still has value E + 1. 2055 CurrentOrder.assign(E, E + 1); 2056 unsigned I = 0; 2057 for (; I < E; ++I) { 2058 auto *Inst = cast<Instruction>(VL[I]); 2059 if (Inst->getOperand(0) != Vec) 2060 break; 2061 Optional<unsigned> Idx = getExtractIndex(Inst); 2062 if (!Idx) 2063 break; 2064 const unsigned ExtIdx = *Idx; 2065 if (ExtIdx != I) { 2066 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2067 break; 2068 ShouldKeepOrder = false; 2069 CurrentOrder[ExtIdx] = I; 2070 } else { 2071 if (CurrentOrder[I] != E + 1) 2072 break; 2073 CurrentOrder[I] = I; 2074 } 2075 } 2076 if (I < E) { 2077 CurrentOrder.clear(); 2078 return false; 2079 } 2080 2081 return ShouldKeepOrder; 2082 } 2083 2084 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2085 return I->hasOneUse() || 2086 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2087 return ScalarToTreeEntry.count(U) > 0; 2088 }); 2089 } 2090 2091 int BoUpSLP::getEntryCost(TreeEntry *E) { 2092 ArrayRef<Value*> VL = E->Scalars; 2093 2094 Type *ScalarTy = VL[0]->getType(); 2095 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2096 ScalarTy = SI->getValueOperand()->getType(); 2097 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2098 ScalarTy = CI->getOperand(0)->getType(); 2099 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2100 2101 // If we have computed a smaller type for the expression, update VecTy so 2102 // that the costs will be accurate. 2103 if (MinBWs.count(VL[0])) 2104 VecTy = VectorType::get( 2105 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2106 2107 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2108 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2109 int ReuseShuffleCost = 0; 2110 if (NeedToShuffleReuses) { 2111 ReuseShuffleCost = 2112 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2113 } 2114 if (E->NeedToGather) { 2115 if (allConstant(VL)) 2116 return 0; 2117 if (isSplat(VL)) { 2118 return ReuseShuffleCost + 2119 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2120 } 2121 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement && 2122 allSameType(VL) && allSameBlock(VL)) { 2123 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2124 if (ShuffleKind.hasValue()) { 2125 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2126 for (auto *V : VL) { 2127 // If all users of instruction are going to be vectorized and this 2128 // instruction itself is not going to be vectorized, consider this 2129 // instruction as dead and remove its cost from the final cost of the 2130 // vectorized tree. 2131 if (areAllUsersVectorized(cast<Instruction>(V)) && 2132 !ScalarToTreeEntry.count(V)) { 2133 auto *IO = cast<ConstantInt>( 2134 cast<ExtractElementInst>(V)->getIndexOperand()); 2135 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2136 IO->getZExtValue()); 2137 } 2138 } 2139 return ReuseShuffleCost + Cost; 2140 } 2141 } 2142 return ReuseShuffleCost + getGatherCost(VL); 2143 } 2144 InstructionsState S = getSameOpcode(VL); 2145 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2146 Instruction *VL0 = cast<Instruction>(S.OpValue); 2147 unsigned ShuffleOrOp = S.IsAltShuffle ? 2148 (unsigned) Instruction::ShuffleVector : S.Opcode; 2149 switch (ShuffleOrOp) { 2150 case Instruction::PHI: 2151 return 0; 2152 2153 case Instruction::ExtractValue: 2154 case Instruction::ExtractElement: 2155 if (NeedToShuffleReuses) { 2156 unsigned Idx = 0; 2157 for (unsigned I : E->ReuseShuffleIndices) { 2158 if (ShuffleOrOp == Instruction::ExtractElement) { 2159 auto *IO = cast<ConstantInt>( 2160 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2161 Idx = IO->getZExtValue(); 2162 ReuseShuffleCost -= TTI->getVectorInstrCost( 2163 Instruction::ExtractElement, VecTy, Idx); 2164 } else { 2165 ReuseShuffleCost -= TTI->getVectorInstrCost( 2166 Instruction::ExtractElement, VecTy, Idx); 2167 ++Idx; 2168 } 2169 } 2170 Idx = ReuseShuffleNumbers; 2171 for (Value *V : VL) { 2172 if (ShuffleOrOp == Instruction::ExtractElement) { 2173 auto *IO = cast<ConstantInt>( 2174 cast<ExtractElementInst>(V)->getIndexOperand()); 2175 Idx = IO->getZExtValue(); 2176 } else { 2177 --Idx; 2178 } 2179 ReuseShuffleCost += 2180 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2181 } 2182 } 2183 if (!E->NeedToGather) { 2184 int DeadCost = ReuseShuffleCost; 2185 if (!E->ReorderIndices.empty()) { 2186 // TODO: Merge this shuffle with the ReuseShuffleCost. 2187 DeadCost += TTI->getShuffleCost( 2188 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2189 } 2190 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2191 Instruction *E = cast<Instruction>(VL[i]); 2192 // If all users are going to be vectorized, instruction can be 2193 // considered as dead. 2194 // The same, if have only one user, it will be vectorized for sure. 2195 if (areAllUsersVectorized(E)) { 2196 // Take credit for instruction that will become dead. 2197 if (E->hasOneUse()) { 2198 Instruction *Ext = E->user_back(); 2199 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2200 all_of(Ext->users(), 2201 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2202 // Use getExtractWithExtendCost() to calculate the cost of 2203 // extractelement/ext pair. 2204 DeadCost -= TTI->getExtractWithExtendCost( 2205 Ext->getOpcode(), Ext->getType(), VecTy, i); 2206 // Add back the cost of s|zext which is subtracted seperately. 2207 DeadCost += TTI->getCastInstrCost( 2208 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2209 continue; 2210 } 2211 } 2212 DeadCost -= 2213 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2214 } 2215 } 2216 return DeadCost; 2217 } 2218 return ReuseShuffleCost + getGatherCost(VL); 2219 2220 case Instruction::ZExt: 2221 case Instruction::SExt: 2222 case Instruction::FPToUI: 2223 case Instruction::FPToSI: 2224 case Instruction::FPExt: 2225 case Instruction::PtrToInt: 2226 case Instruction::IntToPtr: 2227 case Instruction::SIToFP: 2228 case Instruction::UIToFP: 2229 case Instruction::Trunc: 2230 case Instruction::FPTrunc: 2231 case Instruction::BitCast: { 2232 Type *SrcTy = VL0->getOperand(0)->getType(); 2233 if (NeedToShuffleReuses) { 2234 ReuseShuffleCost -= 2235 (ReuseShuffleNumbers - VL.size()) * 2236 TTI->getCastInstrCost(S.Opcode, ScalarTy, SrcTy, VL0); 2237 } 2238 2239 // Calculate the cost of this instruction. 2240 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2241 VL0->getType(), SrcTy, VL0); 2242 2243 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2244 int VecCost = 0; 2245 // Check if the values are candidates to demote. 2246 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2247 VecCost = ReuseShuffleCost + 2248 TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2249 } 2250 return VecCost - ScalarCost; 2251 } 2252 case Instruction::FCmp: 2253 case Instruction::ICmp: 2254 case Instruction::Select: { 2255 // Calculate the cost of this instruction. 2256 if (NeedToShuffleReuses) { 2257 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2258 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, 2259 Builder.getInt1Ty(), VL0); 2260 } 2261 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2262 int ScalarCost = VecTy->getNumElements() * 2263 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2264 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2265 return ReuseShuffleCost + VecCost - ScalarCost; 2266 } 2267 case Instruction::Add: 2268 case Instruction::FAdd: 2269 case Instruction::Sub: 2270 case Instruction::FSub: 2271 case Instruction::Mul: 2272 case Instruction::FMul: 2273 case Instruction::UDiv: 2274 case Instruction::SDiv: 2275 case Instruction::FDiv: 2276 case Instruction::URem: 2277 case Instruction::SRem: 2278 case Instruction::FRem: 2279 case Instruction::Shl: 2280 case Instruction::LShr: 2281 case Instruction::AShr: 2282 case Instruction::And: 2283 case Instruction::Or: 2284 case Instruction::Xor: { 2285 // Certain instructions can be cheaper to vectorize if they have a 2286 // constant second vector operand. 2287 TargetTransformInfo::OperandValueKind Op1VK = 2288 TargetTransformInfo::OK_AnyValue; 2289 TargetTransformInfo::OperandValueKind Op2VK = 2290 TargetTransformInfo::OK_UniformConstantValue; 2291 TargetTransformInfo::OperandValueProperties Op1VP = 2292 TargetTransformInfo::OP_None; 2293 TargetTransformInfo::OperandValueProperties Op2VP = 2294 TargetTransformInfo::OP_None; 2295 2296 // If all operands are exactly the same ConstantInt then set the 2297 // operand kind to OK_UniformConstantValue. 2298 // If instead not all operands are constants, then set the operand kind 2299 // to OK_AnyValue. If all operands are constants but not the same, 2300 // then set the operand kind to OK_NonUniformConstantValue. 2301 ConstantInt *CInt = nullptr; 2302 for (unsigned i = 0; i < VL.size(); ++i) { 2303 const Instruction *I = cast<Instruction>(VL[i]); 2304 if (!isa<ConstantInt>(I->getOperand(1))) { 2305 Op2VK = TargetTransformInfo::OK_AnyValue; 2306 break; 2307 } 2308 if (i == 0) { 2309 CInt = cast<ConstantInt>(I->getOperand(1)); 2310 continue; 2311 } 2312 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2313 CInt != cast<ConstantInt>(I->getOperand(1))) 2314 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2315 } 2316 // FIXME: Currently cost of model modification for division by power of 2317 // 2 is handled for X86 and AArch64. Add support for other targets. 2318 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2319 CInt->getValue().isPowerOf2()) 2320 Op2VP = TargetTransformInfo::OP_PowerOf2; 2321 2322 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2323 if (NeedToShuffleReuses) { 2324 ReuseShuffleCost -= 2325 (ReuseShuffleNumbers - VL.size()) * 2326 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2327 Op2VP, Operands); 2328 } 2329 int ScalarCost = 2330 VecTy->getNumElements() * 2331 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2332 Op2VP, Operands); 2333 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2334 Op1VP, Op2VP, Operands); 2335 return ReuseShuffleCost + VecCost - ScalarCost; 2336 } 2337 case Instruction::GetElementPtr: { 2338 TargetTransformInfo::OperandValueKind Op1VK = 2339 TargetTransformInfo::OK_AnyValue; 2340 TargetTransformInfo::OperandValueKind Op2VK = 2341 TargetTransformInfo::OK_UniformConstantValue; 2342 2343 if (NeedToShuffleReuses) { 2344 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2345 TTI->getArithmeticInstrCost(Instruction::Add, 2346 ScalarTy, Op1VK, Op2VK); 2347 } 2348 int ScalarCost = 2349 VecTy->getNumElements() * 2350 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2351 int VecCost = 2352 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2353 2354 return ReuseShuffleCost + VecCost - ScalarCost; 2355 } 2356 case Instruction::Load: { 2357 // Cost of wide load - cost of scalar loads. 2358 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2359 if (NeedToShuffleReuses) { 2360 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2361 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 2362 alignment, 0, VL0); 2363 } 2364 int ScalarLdCost = VecTy->getNumElements() * 2365 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2366 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2367 VecTy, alignment, 0, VL0); 2368 if (!E->ReorderIndices.empty()) { 2369 // TODO: Merge this shuffle with the ReuseShuffleCost. 2370 VecLdCost += TTI->getShuffleCost( 2371 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2372 } 2373 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2374 } 2375 case Instruction::Store: { 2376 // We know that we can merge the stores. Calculate the cost. 2377 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2378 if (NeedToShuffleReuses) { 2379 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * 2380 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 2381 alignment, 0, VL0); 2382 } 2383 int ScalarStCost = VecTy->getNumElements() * 2384 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2385 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2386 VecTy, alignment, 0, VL0); 2387 return ReuseShuffleCost + VecStCost - ScalarStCost; 2388 } 2389 case Instruction::Call: { 2390 CallInst *CI = cast<CallInst>(VL0); 2391 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2392 2393 // Calculate the cost of the scalar and vector calls. 2394 SmallVector<Type*, 4> ScalarTys; 2395 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2396 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2397 2398 FastMathFlags FMF; 2399 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2400 FMF = FPMO->getFastMathFlags(); 2401 2402 if (NeedToShuffleReuses) { 2403 ReuseShuffleCost -= 2404 (ReuseShuffleNumbers - VL.size()) * 2405 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2406 } 2407 int ScalarCallCost = VecTy->getNumElements() * 2408 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2409 2410 SmallVector<Value *, 4> Args(CI->arg_operands()); 2411 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2412 VecTy->getNumElements()); 2413 2414 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2415 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2416 << " for " << *CI << "\n"); 2417 2418 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2419 } 2420 case Instruction::ShuffleVector: { 2421 TargetTransformInfo::OperandValueKind Op1VK = 2422 TargetTransformInfo::OK_AnyValue; 2423 TargetTransformInfo::OperandValueKind Op2VK = 2424 TargetTransformInfo::OK_AnyValue; 2425 int ScalarCost = 0; 2426 if (NeedToShuffleReuses) { 2427 for (unsigned Idx : E->ReuseShuffleIndices) { 2428 Instruction *I = cast<Instruction>(VL[Idx]); 2429 if (!I) 2430 continue; 2431 ReuseShuffleCost -= TTI->getArithmeticInstrCost( 2432 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2433 } 2434 for (Value *V : VL) { 2435 Instruction *I = cast<Instruction>(V); 2436 if (!I) 2437 continue; 2438 ReuseShuffleCost += TTI->getArithmeticInstrCost( 2439 I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2440 } 2441 } 2442 int VecCost = 0; 2443 for (Value *i : VL) { 2444 Instruction *I = cast<Instruction>(i); 2445 if (!I) 2446 break; 2447 ScalarCost += 2448 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2449 } 2450 // VecCost is equal to sum of the cost of creating 2 vectors 2451 // and the cost of creating shuffle. 2452 Instruction *I0 = cast<Instruction>(VL[0]); 2453 VecCost = 2454 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2455 Instruction *I1 = cast<Instruction>(VL[1]); 2456 VecCost += 2457 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2458 VecCost += 2459 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2460 return ReuseShuffleCost + VecCost - ScalarCost; 2461 } 2462 default: 2463 llvm_unreachable("Unknown instruction"); 2464 } 2465 } 2466 2467 bool BoUpSLP::isFullyVectorizableTinyTree() { 2468 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2469 VectorizableTree.size() << " is fully vectorizable .\n"); 2470 2471 // We only handle trees of heights 1 and 2. 2472 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2473 return true; 2474 2475 if (VectorizableTree.size() != 2) 2476 return false; 2477 2478 // Handle splat and all-constants stores. 2479 if (!VectorizableTree[0].NeedToGather && 2480 (allConstant(VectorizableTree[1].Scalars) || 2481 isSplat(VectorizableTree[1].Scalars))) 2482 return true; 2483 2484 // Gathering cost would be too much for tiny trees. 2485 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2486 return false; 2487 2488 return true; 2489 } 2490 2491 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2492 // We can vectorize the tree if its size is greater than or equal to the 2493 // minimum size specified by the MinTreeSize command line option. 2494 if (VectorizableTree.size() >= MinTreeSize) 2495 return false; 2496 2497 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2498 // can vectorize it if we can prove it fully vectorizable. 2499 if (isFullyVectorizableTinyTree()) 2500 return false; 2501 2502 assert(VectorizableTree.empty() 2503 ? ExternalUses.empty() 2504 : true && "We shouldn't have any external users"); 2505 2506 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2507 // vectorizable. 2508 return true; 2509 } 2510 2511 int BoUpSLP::getSpillCost() { 2512 // Walk from the bottom of the tree to the top, tracking which values are 2513 // live. When we see a call instruction that is not part of our tree, 2514 // query TTI to see if there is a cost to keeping values live over it 2515 // (for example, if spills and fills are required). 2516 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2517 int Cost = 0; 2518 2519 SmallPtrSet<Instruction*, 4> LiveValues; 2520 Instruction *PrevInst = nullptr; 2521 2522 for (const auto &N : VectorizableTree) { 2523 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2524 if (!Inst) 2525 continue; 2526 2527 if (!PrevInst) { 2528 PrevInst = Inst; 2529 continue; 2530 } 2531 2532 // Update LiveValues. 2533 LiveValues.erase(PrevInst); 2534 for (auto &J : PrevInst->operands()) { 2535 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2536 LiveValues.insert(cast<Instruction>(&*J)); 2537 } 2538 2539 DEBUG({ 2540 dbgs() << "SLP: #LV: " << LiveValues.size(); 2541 for (auto *X : LiveValues) 2542 dbgs() << " " << X->getName(); 2543 dbgs() << ", Looking at "; 2544 Inst->dump(); 2545 }); 2546 2547 // Now find the sequence of instructions between PrevInst and Inst. 2548 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2549 PrevInstIt = 2550 PrevInst->getIterator().getReverse(); 2551 while (InstIt != PrevInstIt) { 2552 if (PrevInstIt == PrevInst->getParent()->rend()) { 2553 PrevInstIt = Inst->getParent()->rbegin(); 2554 continue; 2555 } 2556 2557 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2558 SmallVector<Type*, 4> V; 2559 for (auto *II : LiveValues) 2560 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2561 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2562 } 2563 2564 ++PrevInstIt; 2565 } 2566 2567 PrevInst = Inst; 2568 } 2569 2570 return Cost; 2571 } 2572 2573 int BoUpSLP::getTreeCost() { 2574 int Cost = 0; 2575 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2576 VectorizableTree.size() << ".\n"); 2577 2578 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2579 2580 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2581 TreeEntry &TE = VectorizableTree[I]; 2582 2583 // We create duplicate tree entries for gather sequences that have multiple 2584 // uses. However, we should not compute the cost of duplicate sequences. 2585 // For example, if we have a build vector (i.e., insertelement sequence) 2586 // that is used by more than one vector instruction, we only need to 2587 // compute the cost of the insertelement instructions once. The redundent 2588 // instructions will be eliminated by CSE. 2589 // 2590 // We should consider not creating duplicate tree entries for gather 2591 // sequences, and instead add additional edges to the tree representing 2592 // their uses. Since such an approach results in fewer total entries, 2593 // existing heuristics based on tree size may yeild different results. 2594 // 2595 if (TE.NeedToGather && 2596 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2597 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2598 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2599 })) 2600 continue; 2601 2602 int C = getEntryCost(&TE); 2603 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2604 << *TE.Scalars[0] << ".\n"); 2605 Cost += C; 2606 } 2607 2608 SmallSet<Value *, 16> ExtractCostCalculated; 2609 int ExtractCost = 0; 2610 for (ExternalUser &EU : ExternalUses) { 2611 // We only add extract cost once for the same scalar. 2612 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2613 continue; 2614 2615 // Uses by ephemeral values are free (because the ephemeral value will be 2616 // removed prior to code generation, and so the extraction will be 2617 // removed as well). 2618 if (EphValues.count(EU.User)) 2619 continue; 2620 2621 // If we plan to rewrite the tree in a smaller type, we will need to sign 2622 // extend the extracted value back to the original type. Here, we account 2623 // for the extract and the added cost of the sign extend if needed. 2624 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2625 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2626 if (MinBWs.count(ScalarRoot)) { 2627 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2628 auto Extend = 2629 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2630 VecTy = VectorType::get(MinTy, BundleWidth); 2631 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2632 VecTy, EU.Lane); 2633 } else { 2634 ExtractCost += 2635 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2636 } 2637 } 2638 2639 int SpillCost = getSpillCost(); 2640 Cost += SpillCost + ExtractCost; 2641 2642 std::string Str; 2643 { 2644 raw_string_ostream OS(Str); 2645 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2646 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2647 << "SLP: Total Cost = " << Cost << ".\n"; 2648 } 2649 DEBUG(dbgs() << Str); 2650 2651 if (ViewSLPTree) 2652 ViewGraph(this, "SLP" + F->getName(), false, Str); 2653 2654 return Cost; 2655 } 2656 2657 int BoUpSLP::getGatherCost(Type *Ty, 2658 const DenseSet<unsigned> &ShuffledIndices) { 2659 int Cost = 0; 2660 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2661 if (!ShuffledIndices.count(i)) 2662 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2663 if (!ShuffledIndices.empty()) 2664 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2665 return Cost; 2666 } 2667 2668 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2669 // Find the type of the operands in VL. 2670 Type *ScalarTy = VL[0]->getType(); 2671 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2672 ScalarTy = SI->getValueOperand()->getType(); 2673 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2674 // Find the cost of inserting/extracting values from the vector. 2675 // Check if the same elements are inserted several times and count them as 2676 // shuffle candidates. 2677 DenseSet<unsigned> ShuffledElements; 2678 DenseSet<Value *> UniqueElements; 2679 // Iterate in reverse order to consider insert elements with the high cost. 2680 for (unsigned I = VL.size(); I > 0; --I) { 2681 unsigned Idx = I - 1; 2682 if (!UniqueElements.insert(VL[Idx]).second) 2683 ShuffledElements.insert(Idx); 2684 } 2685 return getGatherCost(VecTy, ShuffledElements); 2686 } 2687 2688 // Reorder commutative operations in alternate shuffle if the resulting vectors 2689 // are consecutive loads. This would allow us to vectorize the tree. 2690 // If we have something like- 2691 // load a[0] - load b[0] 2692 // load b[1] + load a[1] 2693 // load a[2] - load b[2] 2694 // load a[3] + load b[3] 2695 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2696 // code. 2697 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2698 SmallVectorImpl<Value *> &Left, 2699 SmallVectorImpl<Value *> &Right) { 2700 // Push left and right operands of binary operation into Left and Right 2701 unsigned AltOpcode = getAltOpcode(Opcode); 2702 (void)AltOpcode; 2703 for (Value *V : VL) { 2704 auto *I = cast<Instruction>(V); 2705 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2706 "Incorrect instruction in vector"); 2707 Left.push_back(I->getOperand(0)); 2708 Right.push_back(I->getOperand(1)); 2709 } 2710 2711 // Reorder if we have a commutative operation and consecutive access 2712 // are on either side of the alternate instructions. 2713 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2714 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2715 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2716 Instruction *VL1 = cast<Instruction>(VL[j]); 2717 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2718 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2719 std::swap(Left[j], Right[j]); 2720 continue; 2721 } else if (VL2->isCommutative() && 2722 isConsecutiveAccess(L, L1, *DL, *SE)) { 2723 std::swap(Left[j + 1], Right[j + 1]); 2724 continue; 2725 } 2726 // else unchanged 2727 } 2728 } 2729 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2730 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2731 Instruction *VL1 = cast<Instruction>(VL[j]); 2732 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2733 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2734 std::swap(Left[j], Right[j]); 2735 continue; 2736 } else if (VL2->isCommutative() && 2737 isConsecutiveAccess(L, L1, *DL, *SE)) { 2738 std::swap(Left[j + 1], Right[j + 1]); 2739 continue; 2740 } 2741 // else unchanged 2742 } 2743 } 2744 } 2745 } 2746 2747 // Return true if I should be commuted before adding it's left and right 2748 // operands to the arrays Left and Right. 2749 // 2750 // The vectorizer is trying to either have all elements one side being 2751 // instruction with the same opcode to enable further vectorization, or having 2752 // a splat to lower the vectorizing cost. 2753 static bool shouldReorderOperands( 2754 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2755 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2756 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2757 VLeft = I.getOperand(0); 2758 VRight = I.getOperand(1); 2759 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2760 if (SplatRight) { 2761 if (VRight == Right[i - 1]) 2762 // Preserve SplatRight 2763 return false; 2764 if (VLeft == Right[i - 1]) { 2765 // Commuting would preserve SplatRight, but we don't want to break 2766 // SplatLeft either, i.e. preserve the original order if possible. 2767 // (FIXME: why do we care?) 2768 if (SplatLeft && VLeft == Left[i - 1]) 2769 return false; 2770 return true; 2771 } 2772 } 2773 // Symmetrically handle Right side. 2774 if (SplatLeft) { 2775 if (VLeft == Left[i - 1]) 2776 // Preserve SplatLeft 2777 return false; 2778 if (VRight == Left[i - 1]) 2779 return true; 2780 } 2781 2782 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2783 Instruction *IRight = dyn_cast<Instruction>(VRight); 2784 2785 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2786 // it and not the right, in this case we want to commute. 2787 if (AllSameOpcodeRight) { 2788 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2789 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2790 // Do not commute, a match on the right preserves AllSameOpcodeRight 2791 return false; 2792 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2793 // We have a match and may want to commute, but first check if there is 2794 // not also a match on the existing operands on the Left to preserve 2795 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2796 // (FIXME: why do we care?) 2797 if (AllSameOpcodeLeft && ILeft && 2798 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2799 return false; 2800 return true; 2801 } 2802 } 2803 // Symmetrically handle Left side. 2804 if (AllSameOpcodeLeft) { 2805 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2806 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2807 return false; 2808 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2809 return true; 2810 } 2811 return false; 2812 } 2813 2814 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2815 ArrayRef<Value *> VL, 2816 SmallVectorImpl<Value *> &Left, 2817 SmallVectorImpl<Value *> &Right) { 2818 if (!VL.empty()) { 2819 // Peel the first iteration out of the loop since there's nothing 2820 // interesting to do anyway and it simplifies the checks in the loop. 2821 auto *I = cast<Instruction>(VL[0]); 2822 Value *VLeft = I->getOperand(0); 2823 Value *VRight = I->getOperand(1); 2824 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2825 // Favor having instruction to the right. FIXME: why? 2826 std::swap(VLeft, VRight); 2827 Left.push_back(VLeft); 2828 Right.push_back(VRight); 2829 } 2830 2831 // Keep track if we have instructions with all the same opcode on one side. 2832 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2833 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2834 // Keep track if we have one side with all the same value (broadcast). 2835 bool SplatLeft = true; 2836 bool SplatRight = true; 2837 2838 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2839 Instruction *I = cast<Instruction>(VL[i]); 2840 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2841 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2842 "Can only process commutative instruction"); 2843 // Commute to favor either a splat or maximizing having the same opcodes on 2844 // one side. 2845 Value *VLeft; 2846 Value *VRight; 2847 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2848 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2849 VRight)) { 2850 Left.push_back(VRight); 2851 Right.push_back(VLeft); 2852 } else { 2853 Left.push_back(VLeft); 2854 Right.push_back(VRight); 2855 } 2856 // Update Splat* and AllSameOpcode* after the insertion. 2857 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2858 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2859 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2860 (cast<Instruction>(Left[i - 1])->getOpcode() == 2861 cast<Instruction>(Left[i])->getOpcode()); 2862 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2863 (cast<Instruction>(Right[i - 1])->getOpcode() == 2864 cast<Instruction>(Right[i])->getOpcode()); 2865 } 2866 2867 // If one operand end up being broadcast, return this operand order. 2868 if (SplatRight || SplatLeft) 2869 return; 2870 2871 // Finally check if we can get longer vectorizable chain by reordering 2872 // without breaking the good operand order detected above. 2873 // E.g. If we have something like- 2874 // load a[0] load b[0] 2875 // load b[1] load a[1] 2876 // load a[2] load b[2] 2877 // load a[3] load b[3] 2878 // Reordering the second load b[1] load a[1] would allow us to vectorize 2879 // this code and we still retain AllSameOpcode property. 2880 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2881 // such as- 2882 // add a[0],c[0] load b[0] 2883 // add a[1],c[2] load b[1] 2884 // b[2] load b[2] 2885 // add a[3],c[3] load b[3] 2886 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2887 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2888 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2889 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2890 std::swap(Left[j + 1], Right[j + 1]); 2891 continue; 2892 } 2893 } 2894 } 2895 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2896 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2897 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2898 std::swap(Left[j + 1], Right[j + 1]); 2899 continue; 2900 } 2901 } 2902 } 2903 // else unchanged 2904 } 2905 } 2906 2907 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2908 // Get the basic block this bundle is in. All instructions in the bundle 2909 // should be in this block. 2910 auto *Front = cast<Instruction>(OpValue); 2911 auto *BB = Front->getParent(); 2912 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2913 const unsigned AltOpcode = getAltOpcode(Opcode); 2914 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2915 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2916 cast<Instruction>(V)->getOpcode()) || 2917 cast<Instruction>(V)->getParent() == BB; 2918 })); 2919 2920 // The last instruction in the bundle in program order. 2921 Instruction *LastInst = nullptr; 2922 2923 // Find the last instruction. The common case should be that BB has been 2924 // scheduled, and the last instruction is VL.back(). So we start with 2925 // VL.back() and iterate over schedule data until we reach the end of the 2926 // bundle. The end of the bundle is marked by null ScheduleData. 2927 if (BlocksSchedules.count(BB)) { 2928 auto *Bundle = 2929 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2930 if (Bundle && Bundle->isPartOfBundle()) 2931 for (; Bundle; Bundle = Bundle->NextInBundle) 2932 if (Bundle->OpValue == Bundle->Inst) 2933 LastInst = Bundle->Inst; 2934 } 2935 2936 // LastInst can still be null at this point if there's either not an entry 2937 // for BB in BlocksSchedules or there's no ScheduleData available for 2938 // VL.back(). This can be the case if buildTree_rec aborts for various 2939 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2940 // size is reached, etc.). ScheduleData is initialized in the scheduling 2941 // "dry-run". 2942 // 2943 // If this happens, we can still find the last instruction by brute force. We 2944 // iterate forwards from Front (inclusive) until we either see all 2945 // instructions in the bundle or reach the end of the block. If Front is the 2946 // last instruction in program order, LastInst will be set to Front, and we 2947 // will visit all the remaining instructions in the block. 2948 // 2949 // One of the reasons we exit early from buildTree_rec is to place an upper 2950 // bound on compile-time. Thus, taking an additional compile-time hit here is 2951 // not ideal. However, this should be exceedingly rare since it requires that 2952 // we both exit early from buildTree_rec and that the bundle be out-of-order 2953 // (causing us to iterate all the way to the end of the block). 2954 if (!LastInst) { 2955 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2956 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2957 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2958 LastInst = &I; 2959 if (Bundle.empty()) 2960 break; 2961 } 2962 } 2963 2964 // Set the insertion point after the last instruction in the bundle. Set the 2965 // debug location to Front. 2966 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2967 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2968 } 2969 2970 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2971 Value *Vec = UndefValue::get(Ty); 2972 // Generate the 'InsertElement' instruction. 2973 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2974 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2975 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2976 GatherSeq.insert(Insrt); 2977 CSEBlocks.insert(Insrt->getParent()); 2978 2979 // Add to our 'need-to-extract' list. 2980 if (TreeEntry *E = getTreeEntry(VL[i])) { 2981 // Find which lane we need to extract. 2982 int FoundLane = -1; 2983 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2984 // Is this the lane of the scalar that we are looking for ? 2985 if (E->Scalars[Lane] == VL[i]) { 2986 FoundLane = Lane; 2987 break; 2988 } 2989 } 2990 assert(FoundLane >= 0 && "Could not find the correct lane"); 2991 if (!E->ReuseShuffleIndices.empty()) { 2992 FoundLane = 2993 std::distance(E->ReuseShuffleIndices.begin(), 2994 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2995 } 2996 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2997 } 2998 } 2999 } 3000 3001 return Vec; 3002 } 3003 3004 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3005 InstructionsState S = getSameOpcode(VL); 3006 if (S.Opcode) { 3007 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3008 if (E->isSame(VL)) { 3009 Value *V = vectorizeTree(E); 3010 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3011 // We need to get the vectorized value but without shuffle. 3012 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3013 V = SV->getOperand(0); 3014 } else { 3015 // Reshuffle to get only unique values. 3016 SmallVector<unsigned, 4> UniqueIdxs; 3017 SmallSet<unsigned, 4> UsedIdxs; 3018 for(unsigned Idx : E->ReuseShuffleIndices) 3019 if (UsedIdxs.insert(Idx).second) 3020 UniqueIdxs.emplace_back(Idx); 3021 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3022 UniqueIdxs); 3023 } 3024 } 3025 return V; 3026 } 3027 } 3028 } 3029 3030 Type *ScalarTy = S.OpValue->getType(); 3031 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3032 ScalarTy = SI->getValueOperand()->getType(); 3033 3034 // Check that every instruction appears once in this bundle. 3035 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3036 SmallVector<Value *, 4> UniqueValues; 3037 if (VL.size() > 2) { 3038 DenseMap<Value *, unsigned> UniquePositions; 3039 for (Value *V : VL) { 3040 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3041 ReuseShuffleIndicies.emplace_back(Res.first->second); 3042 if (Res.second || isa<Constant>(V)) 3043 UniqueValues.emplace_back(V); 3044 } 3045 // Do not shuffle single element or if number of unique values is not power 3046 // of 2. 3047 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3048 !llvm::isPowerOf2_32(UniqueValues.size())) 3049 ReuseShuffleIndicies.clear(); 3050 else 3051 VL = UniqueValues; 3052 } 3053 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3054 3055 Value *V = Gather(VL, VecTy); 3056 if (!ReuseShuffleIndicies.empty()) { 3057 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3058 ReuseShuffleIndicies, "shuffle"); 3059 if (auto *I = dyn_cast<Instruction>(V)) { 3060 GatherSeq.insert(I); 3061 CSEBlocks.insert(I->getParent()); 3062 } 3063 } 3064 return V; 3065 } 3066 3067 static void inversePermutation(ArrayRef<unsigned> Indices, 3068 SmallVectorImpl<unsigned> &Mask) { 3069 Mask.clear(); 3070 const unsigned E = Indices.size(); 3071 Mask.resize(E); 3072 for (unsigned I = 0; I < E; ++I) 3073 Mask[Indices[I]] = I; 3074 } 3075 3076 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3077 IRBuilder<>::InsertPointGuard Guard(Builder); 3078 3079 if (E->VectorizedValue) { 3080 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3081 return E->VectorizedValue; 3082 } 3083 3084 InstructionsState S = getSameOpcode(E->Scalars); 3085 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 3086 Type *ScalarTy = VL0->getType(); 3087 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3088 ScalarTy = SI->getValueOperand()->getType(); 3089 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3090 3091 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3092 3093 if (E->NeedToGather) { 3094 setInsertPointAfterBundle(E->Scalars, VL0); 3095 auto *V = Gather(E->Scalars, VecTy); 3096 if (NeedToShuffleReuses) { 3097 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3098 E->ReuseShuffleIndices, "shuffle"); 3099 if (auto *I = dyn_cast<Instruction>(V)) { 3100 GatherSeq.insert(I); 3101 CSEBlocks.insert(I->getParent()); 3102 } 3103 } 3104 E->VectorizedValue = V; 3105 return V; 3106 } 3107 3108 unsigned ShuffleOrOp = S.IsAltShuffle ? 3109 (unsigned) Instruction::ShuffleVector : S.Opcode; 3110 switch (ShuffleOrOp) { 3111 case Instruction::PHI: { 3112 PHINode *PH = dyn_cast<PHINode>(VL0); 3113 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3114 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3115 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3116 Value *V = NewPhi; 3117 if (NeedToShuffleReuses) { 3118 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3119 E->ReuseShuffleIndices, "shuffle"); 3120 } 3121 E->VectorizedValue = V; 3122 3123 // PHINodes may have multiple entries from the same block. We want to 3124 // visit every block once. 3125 SmallSet<BasicBlock*, 4> VisitedBBs; 3126 3127 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3128 ValueList Operands; 3129 BasicBlock *IBB = PH->getIncomingBlock(i); 3130 3131 if (!VisitedBBs.insert(IBB).second) { 3132 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3133 continue; 3134 } 3135 3136 // Prepare the operand vector. 3137 for (Value *V : E->Scalars) 3138 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3139 3140 Builder.SetInsertPoint(IBB->getTerminator()); 3141 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3142 Value *Vec = vectorizeTree(Operands); 3143 NewPhi->addIncoming(Vec, IBB); 3144 } 3145 3146 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3147 "Invalid number of incoming values"); 3148 return V; 3149 } 3150 3151 case Instruction::ExtractElement: { 3152 if (!E->NeedToGather) { 3153 Value *V = VL0->getOperand(0); 3154 if (!E->ReorderIndices.empty()) { 3155 OrdersType Mask; 3156 inversePermutation(E->ReorderIndices, Mask); 3157 Builder.SetInsertPoint(VL0); 3158 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3159 "reorder_shuffle"); 3160 } 3161 if (NeedToShuffleReuses) { 3162 // TODO: Merge this shuffle with the ReorderShuffleMask. 3163 if (!E->ReorderIndices.empty()) 3164 Builder.SetInsertPoint(VL0); 3165 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3166 E->ReuseShuffleIndices, "shuffle"); 3167 } 3168 E->VectorizedValue = V; 3169 return V; 3170 } 3171 setInsertPointAfterBundle(E->Scalars, VL0); 3172 auto *V = Gather(E->Scalars, VecTy); 3173 if (NeedToShuffleReuses) { 3174 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3175 E->ReuseShuffleIndices, "shuffle"); 3176 if (auto *I = dyn_cast<Instruction>(V)) { 3177 GatherSeq.insert(I); 3178 CSEBlocks.insert(I->getParent()); 3179 } 3180 } 3181 E->VectorizedValue = V; 3182 return V; 3183 } 3184 case Instruction::ExtractValue: { 3185 if (!E->NeedToGather) { 3186 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3187 Builder.SetInsertPoint(LI); 3188 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3189 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3190 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3191 Value *NewV = propagateMetadata(V, E->Scalars); 3192 if (!E->ReorderIndices.empty()) { 3193 OrdersType Mask; 3194 inversePermutation(E->ReorderIndices, Mask); 3195 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3196 "reorder_shuffle"); 3197 } 3198 if (NeedToShuffleReuses) { 3199 // TODO: Merge this shuffle with the ReorderShuffleMask. 3200 NewV = Builder.CreateShuffleVector( 3201 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3202 } 3203 E->VectorizedValue = NewV; 3204 return NewV; 3205 } 3206 setInsertPointAfterBundle(E->Scalars, VL0); 3207 auto *V = Gather(E->Scalars, VecTy); 3208 if (NeedToShuffleReuses) { 3209 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3210 E->ReuseShuffleIndices, "shuffle"); 3211 if (auto *I = dyn_cast<Instruction>(V)) { 3212 GatherSeq.insert(I); 3213 CSEBlocks.insert(I->getParent()); 3214 } 3215 } 3216 E->VectorizedValue = V; 3217 return V; 3218 } 3219 case Instruction::ZExt: 3220 case Instruction::SExt: 3221 case Instruction::FPToUI: 3222 case Instruction::FPToSI: 3223 case Instruction::FPExt: 3224 case Instruction::PtrToInt: 3225 case Instruction::IntToPtr: 3226 case Instruction::SIToFP: 3227 case Instruction::UIToFP: 3228 case Instruction::Trunc: 3229 case Instruction::FPTrunc: 3230 case Instruction::BitCast: { 3231 ValueList INVL; 3232 for (Value *V : E->Scalars) 3233 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3234 3235 setInsertPointAfterBundle(E->Scalars, VL0); 3236 3237 Value *InVec = vectorizeTree(INVL); 3238 3239 if (E->VectorizedValue) { 3240 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3241 return E->VectorizedValue; 3242 } 3243 3244 CastInst *CI = dyn_cast<CastInst>(VL0); 3245 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3246 if (NeedToShuffleReuses) { 3247 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3248 E->ReuseShuffleIndices, "shuffle"); 3249 } 3250 E->VectorizedValue = V; 3251 ++NumVectorInstructions; 3252 return V; 3253 } 3254 case Instruction::FCmp: 3255 case Instruction::ICmp: { 3256 ValueList LHSV, RHSV; 3257 for (Value *V : E->Scalars) { 3258 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3259 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3260 } 3261 3262 setInsertPointAfterBundle(E->Scalars, VL0); 3263 3264 Value *L = vectorizeTree(LHSV); 3265 Value *R = vectorizeTree(RHSV); 3266 3267 if (E->VectorizedValue) { 3268 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3269 return E->VectorizedValue; 3270 } 3271 3272 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3273 Value *V; 3274 if (S.Opcode == Instruction::FCmp) 3275 V = Builder.CreateFCmp(P0, L, R); 3276 else 3277 V = Builder.CreateICmp(P0, L, R); 3278 3279 propagateIRFlags(V, E->Scalars, VL0); 3280 if (NeedToShuffleReuses) { 3281 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3282 E->ReuseShuffleIndices, "shuffle"); 3283 } 3284 E->VectorizedValue = V; 3285 ++NumVectorInstructions; 3286 return V; 3287 } 3288 case Instruction::Select: { 3289 ValueList TrueVec, FalseVec, CondVec; 3290 for (Value *V : E->Scalars) { 3291 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3292 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3293 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3294 } 3295 3296 setInsertPointAfterBundle(E->Scalars, VL0); 3297 3298 Value *Cond = vectorizeTree(CondVec); 3299 Value *True = vectorizeTree(TrueVec); 3300 Value *False = vectorizeTree(FalseVec); 3301 3302 if (E->VectorizedValue) { 3303 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3304 return E->VectorizedValue; 3305 } 3306 3307 Value *V = Builder.CreateSelect(Cond, True, False); 3308 if (NeedToShuffleReuses) { 3309 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3310 E->ReuseShuffleIndices, "shuffle"); 3311 } 3312 E->VectorizedValue = V; 3313 ++NumVectorInstructions; 3314 return V; 3315 } 3316 case Instruction::Add: 3317 case Instruction::FAdd: 3318 case Instruction::Sub: 3319 case Instruction::FSub: 3320 case Instruction::Mul: 3321 case Instruction::FMul: 3322 case Instruction::UDiv: 3323 case Instruction::SDiv: 3324 case Instruction::FDiv: 3325 case Instruction::URem: 3326 case Instruction::SRem: 3327 case Instruction::FRem: 3328 case Instruction::Shl: 3329 case Instruction::LShr: 3330 case Instruction::AShr: 3331 case Instruction::And: 3332 case Instruction::Or: 3333 case Instruction::Xor: { 3334 ValueList LHSVL, RHSVL; 3335 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3336 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 3337 RHSVL); 3338 else 3339 for (Value *V : E->Scalars) { 3340 auto *I = cast<Instruction>(V); 3341 LHSVL.push_back(I->getOperand(0)); 3342 RHSVL.push_back(I->getOperand(1)); 3343 } 3344 3345 setInsertPointAfterBundle(E->Scalars, VL0); 3346 3347 Value *LHS = vectorizeTree(LHSVL); 3348 Value *RHS = vectorizeTree(RHSVL); 3349 3350 if (E->VectorizedValue) { 3351 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3352 return E->VectorizedValue; 3353 } 3354 3355 Value *V = Builder.CreateBinOp( 3356 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3357 propagateIRFlags(V, E->Scalars, VL0); 3358 if (auto *I = dyn_cast<Instruction>(V)) 3359 V = propagateMetadata(I, E->Scalars); 3360 3361 if (NeedToShuffleReuses) { 3362 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3363 E->ReuseShuffleIndices, "shuffle"); 3364 } 3365 E->VectorizedValue = V; 3366 ++NumVectorInstructions; 3367 3368 return V; 3369 } 3370 case Instruction::Load: { 3371 // Loads are inserted at the head of the tree because we don't want to 3372 // sink them all the way down past store instructions. 3373 bool IsReorder = !E->ReorderIndices.empty(); 3374 if (IsReorder) 3375 VL0 = cast<Instruction>(E->Scalars[E->ReorderIndices.front()]); 3376 setInsertPointAfterBundle(E->Scalars, VL0); 3377 3378 LoadInst *LI = cast<LoadInst>(VL0); 3379 Type *ScalarLoadTy = LI->getType(); 3380 unsigned AS = LI->getPointerAddressSpace(); 3381 3382 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3383 VecTy->getPointerTo(AS)); 3384 3385 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3386 // ExternalUses list to make sure that an extract will be generated in the 3387 // future. 3388 Value *PO = LI->getPointerOperand(); 3389 if (getTreeEntry(PO)) 3390 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3391 3392 unsigned Alignment = LI->getAlignment(); 3393 LI = Builder.CreateLoad(VecPtr); 3394 if (!Alignment) { 3395 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3396 } 3397 LI->setAlignment(Alignment); 3398 Value *V = propagateMetadata(LI, E->Scalars); 3399 if (IsReorder) { 3400 OrdersType Mask; 3401 inversePermutation(E->ReorderIndices, Mask); 3402 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3403 Mask, "reorder_shuffle"); 3404 } 3405 if (NeedToShuffleReuses) { 3406 // TODO: Merge this shuffle with the ReorderShuffleMask. 3407 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3408 E->ReuseShuffleIndices, "shuffle"); 3409 } 3410 E->VectorizedValue = V; 3411 ++NumVectorInstructions; 3412 return V; 3413 } 3414 case Instruction::Store: { 3415 StoreInst *SI = cast<StoreInst>(VL0); 3416 unsigned Alignment = SI->getAlignment(); 3417 unsigned AS = SI->getPointerAddressSpace(); 3418 3419 ValueList ScalarStoreValues; 3420 for (Value *V : E->Scalars) 3421 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3422 3423 setInsertPointAfterBundle(E->Scalars, VL0); 3424 3425 Value *VecValue = vectorizeTree(ScalarStoreValues); 3426 Value *ScalarPtr = SI->getPointerOperand(); 3427 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3428 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3429 3430 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3431 // ExternalUses to make sure that an extract will be generated in the 3432 // future. 3433 if (getTreeEntry(ScalarPtr)) 3434 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3435 3436 if (!Alignment) 3437 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3438 3439 S->setAlignment(Alignment); 3440 Value *V = propagateMetadata(S, E->Scalars); 3441 if (NeedToShuffleReuses) { 3442 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3443 E->ReuseShuffleIndices, "shuffle"); 3444 } 3445 E->VectorizedValue = V; 3446 ++NumVectorInstructions; 3447 return V; 3448 } 3449 case Instruction::GetElementPtr: { 3450 setInsertPointAfterBundle(E->Scalars, VL0); 3451 3452 ValueList Op0VL; 3453 for (Value *V : E->Scalars) 3454 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3455 3456 Value *Op0 = vectorizeTree(Op0VL); 3457 3458 std::vector<Value *> OpVecs; 3459 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3460 ++j) { 3461 ValueList OpVL; 3462 for (Value *V : E->Scalars) 3463 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3464 3465 Value *OpVec = vectorizeTree(OpVL); 3466 OpVecs.push_back(OpVec); 3467 } 3468 3469 Value *V = Builder.CreateGEP( 3470 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3471 if (Instruction *I = dyn_cast<Instruction>(V)) 3472 V = propagateMetadata(I, E->Scalars); 3473 3474 if (NeedToShuffleReuses) { 3475 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3476 E->ReuseShuffleIndices, "shuffle"); 3477 } 3478 E->VectorizedValue = V; 3479 ++NumVectorInstructions; 3480 3481 return V; 3482 } 3483 case Instruction::Call: { 3484 CallInst *CI = cast<CallInst>(VL0); 3485 setInsertPointAfterBundle(E->Scalars, VL0); 3486 Function *FI; 3487 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3488 Value *ScalarArg = nullptr; 3489 if (CI && (FI = CI->getCalledFunction())) { 3490 IID = FI->getIntrinsicID(); 3491 } 3492 std::vector<Value *> OpVecs; 3493 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3494 ValueList OpVL; 3495 // ctlz,cttz and powi are special intrinsics whose second argument is 3496 // a scalar. This argument should not be vectorized. 3497 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3498 CallInst *CEI = cast<CallInst>(VL0); 3499 ScalarArg = CEI->getArgOperand(j); 3500 OpVecs.push_back(CEI->getArgOperand(j)); 3501 continue; 3502 } 3503 for (Value *V : E->Scalars) { 3504 CallInst *CEI = cast<CallInst>(V); 3505 OpVL.push_back(CEI->getArgOperand(j)); 3506 } 3507 3508 Value *OpVec = vectorizeTree(OpVL); 3509 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3510 OpVecs.push_back(OpVec); 3511 } 3512 3513 Module *M = F->getParent(); 3514 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3515 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3516 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3517 SmallVector<OperandBundleDef, 1> OpBundles; 3518 CI->getOperandBundlesAsDefs(OpBundles); 3519 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3520 3521 // The scalar argument uses an in-tree scalar so we add the new vectorized 3522 // call to ExternalUses list to make sure that an extract will be 3523 // generated in the future. 3524 if (ScalarArg && getTreeEntry(ScalarArg)) 3525 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3526 3527 propagateIRFlags(V, E->Scalars, VL0); 3528 if (NeedToShuffleReuses) { 3529 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3530 E->ReuseShuffleIndices, "shuffle"); 3531 } 3532 E->VectorizedValue = V; 3533 ++NumVectorInstructions; 3534 return V; 3535 } 3536 case Instruction::ShuffleVector: { 3537 ValueList LHSVL, RHSVL; 3538 assert(Instruction::isBinaryOp(S.Opcode) && 3539 "Invalid Shuffle Vector Operand"); 3540 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3541 setInsertPointAfterBundle(E->Scalars, VL0); 3542 3543 Value *LHS = vectorizeTree(LHSVL); 3544 Value *RHS = vectorizeTree(RHSVL); 3545 3546 if (E->VectorizedValue) { 3547 DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3548 return E->VectorizedValue; 3549 } 3550 3551 // Create a vector of LHS op1 RHS 3552 Value *V0 = Builder.CreateBinOp( 3553 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3554 3555 unsigned AltOpcode = getAltOpcode(S.Opcode); 3556 // Create a vector of LHS op2 RHS 3557 Value *V1 = Builder.CreateBinOp( 3558 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3559 3560 // Create shuffle to take alternate operations from the vector. 3561 // Also, gather up odd and even scalar ops to propagate IR flags to 3562 // each vector operation. 3563 ValueList OddScalars, EvenScalars; 3564 unsigned e = E->Scalars.size(); 3565 SmallVector<Constant *, 8> Mask(e); 3566 for (unsigned i = 0; i < e; ++i) { 3567 if (isOdd(i)) { 3568 Mask[i] = Builder.getInt32(e + i); 3569 OddScalars.push_back(E->Scalars[i]); 3570 } else { 3571 Mask[i] = Builder.getInt32(i); 3572 EvenScalars.push_back(E->Scalars[i]); 3573 } 3574 } 3575 3576 Value *ShuffleMask = ConstantVector::get(Mask); 3577 propagateIRFlags(V0, EvenScalars); 3578 propagateIRFlags(V1, OddScalars); 3579 3580 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3581 if (Instruction *I = dyn_cast<Instruction>(V)) 3582 V = propagateMetadata(I, E->Scalars); 3583 if (NeedToShuffleReuses) { 3584 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3585 E->ReuseShuffleIndices, "shuffle"); 3586 } 3587 E->VectorizedValue = V; 3588 ++NumVectorInstructions; 3589 3590 return V; 3591 } 3592 default: 3593 llvm_unreachable("unknown inst"); 3594 } 3595 return nullptr; 3596 } 3597 3598 Value *BoUpSLP::vectorizeTree() { 3599 ExtraValueToDebugLocsMap ExternallyUsedValues; 3600 return vectorizeTree(ExternallyUsedValues); 3601 } 3602 3603 Value * 3604 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3605 // All blocks must be scheduled before any instructions are inserted. 3606 for (auto &BSIter : BlocksSchedules) { 3607 scheduleBlock(BSIter.second.get()); 3608 } 3609 3610 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3611 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3612 3613 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3614 // vectorized root. InstCombine will then rewrite the entire expression. We 3615 // sign extend the extracted values below. 3616 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3617 if (MinBWs.count(ScalarRoot)) { 3618 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3619 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3620 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3621 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3622 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3623 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3624 VectorizableTree[0].VectorizedValue = Trunc; 3625 } 3626 3627 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3628 3629 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3630 // specified by ScalarType. 3631 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3632 if (!MinBWs.count(ScalarRoot)) 3633 return Ex; 3634 if (MinBWs[ScalarRoot].second) 3635 return Builder.CreateSExt(Ex, ScalarType); 3636 return Builder.CreateZExt(Ex, ScalarType); 3637 }; 3638 3639 // Extract all of the elements with the external uses. 3640 for (const auto &ExternalUse : ExternalUses) { 3641 Value *Scalar = ExternalUse.Scalar; 3642 llvm::User *User = ExternalUse.User; 3643 3644 // Skip users that we already RAUW. This happens when one instruction 3645 // has multiple uses of the same value. 3646 if (User && !is_contained(Scalar->users(), User)) 3647 continue; 3648 TreeEntry *E = getTreeEntry(Scalar); 3649 assert(E && "Invalid scalar"); 3650 assert(!E->NeedToGather && "Extracting from a gather list"); 3651 3652 Value *Vec = E->VectorizedValue; 3653 assert(Vec && "Can't find vectorizable value"); 3654 3655 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3656 // If User == nullptr, the Scalar is used as extra arg. Generate 3657 // ExtractElement instruction and update the record for this scalar in 3658 // ExternallyUsedValues. 3659 if (!User) { 3660 assert(ExternallyUsedValues.count(Scalar) && 3661 "Scalar with nullptr as an external user must be registered in " 3662 "ExternallyUsedValues map"); 3663 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3664 Builder.SetInsertPoint(VecI->getParent(), 3665 std::next(VecI->getIterator())); 3666 } else { 3667 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3668 } 3669 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3670 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3671 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3672 auto &Locs = ExternallyUsedValues[Scalar]; 3673 ExternallyUsedValues.insert({Ex, Locs}); 3674 ExternallyUsedValues.erase(Scalar); 3675 continue; 3676 } 3677 3678 // Generate extracts for out-of-tree users. 3679 // Find the insertion point for the extractelement lane. 3680 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3681 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3682 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3683 if (PH->getIncomingValue(i) == Scalar) { 3684 TerminatorInst *IncomingTerminator = 3685 PH->getIncomingBlock(i)->getTerminator(); 3686 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3687 Builder.SetInsertPoint(VecI->getParent(), 3688 std::next(VecI->getIterator())); 3689 } else { 3690 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3691 } 3692 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3693 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3694 CSEBlocks.insert(PH->getIncomingBlock(i)); 3695 PH->setOperand(i, Ex); 3696 } 3697 } 3698 } else { 3699 Builder.SetInsertPoint(cast<Instruction>(User)); 3700 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3701 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3702 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3703 User->replaceUsesOfWith(Scalar, Ex); 3704 } 3705 } else { 3706 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3707 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3708 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3709 CSEBlocks.insert(&F->getEntryBlock()); 3710 User->replaceUsesOfWith(Scalar, Ex); 3711 } 3712 3713 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3714 } 3715 3716 // For each vectorized value: 3717 for (TreeEntry &EIdx : VectorizableTree) { 3718 TreeEntry *Entry = &EIdx; 3719 3720 // No need to handle users of gathered values. 3721 if (Entry->NeedToGather) 3722 continue; 3723 3724 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3725 3726 // For each lane: 3727 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3728 Value *Scalar = Entry->Scalars[Lane]; 3729 3730 Type *Ty = Scalar->getType(); 3731 if (!Ty->isVoidTy()) { 3732 #ifndef NDEBUG 3733 for (User *U : Scalar->users()) { 3734 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3735 3736 // It is legal to replace users in the ignorelist by undef. 3737 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3738 "Replacing out-of-tree value with undef"); 3739 } 3740 #endif 3741 Value *Undef = UndefValue::get(Ty); 3742 Scalar->replaceAllUsesWith(Undef); 3743 } 3744 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3745 eraseInstruction(cast<Instruction>(Scalar)); 3746 } 3747 } 3748 3749 Builder.ClearInsertionPoint(); 3750 3751 return VectorizableTree[0].VectorizedValue; 3752 } 3753 3754 void BoUpSLP::optimizeGatherSequence() { 3755 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3756 << " gather sequences instructions.\n"); 3757 // LICM InsertElementInst sequences. 3758 for (Instruction *I : GatherSeq) { 3759 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3760 continue; 3761 3762 // Check if this block is inside a loop. 3763 Loop *L = LI->getLoopFor(I->getParent()); 3764 if (!L) 3765 continue; 3766 3767 // Check if it has a preheader. 3768 BasicBlock *PreHeader = L->getLoopPreheader(); 3769 if (!PreHeader) 3770 continue; 3771 3772 // If the vector or the element that we insert into it are 3773 // instructions that are defined in this basic block then we can't 3774 // hoist this instruction. 3775 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3776 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3777 if (Op0 && L->contains(Op0)) 3778 continue; 3779 if (Op1 && L->contains(Op1)) 3780 continue; 3781 3782 // We can hoist this instruction. Move it to the pre-header. 3783 I->moveBefore(PreHeader->getTerminator()); 3784 } 3785 3786 // Make a list of all reachable blocks in our CSE queue. 3787 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3788 CSEWorkList.reserve(CSEBlocks.size()); 3789 for (BasicBlock *BB : CSEBlocks) 3790 if (DomTreeNode *N = DT->getNode(BB)) { 3791 assert(DT->isReachableFromEntry(N)); 3792 CSEWorkList.push_back(N); 3793 } 3794 3795 // Sort blocks by domination. This ensures we visit a block after all blocks 3796 // dominating it are visited. 3797 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3798 [this](const DomTreeNode *A, const DomTreeNode *B) { 3799 return DT->properlyDominates(A, B); 3800 }); 3801 3802 // Perform O(N^2) search over the gather sequences and merge identical 3803 // instructions. TODO: We can further optimize this scan if we split the 3804 // instructions into different buckets based on the insert lane. 3805 SmallVector<Instruction *, 16> Visited; 3806 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3807 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3808 "Worklist not sorted properly!"); 3809 BasicBlock *BB = (*I)->getBlock(); 3810 // For all instructions in blocks containing gather sequences: 3811 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3812 Instruction *In = &*it++; 3813 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3814 continue; 3815 3816 // Check if we can replace this instruction with any of the 3817 // visited instructions. 3818 for (Instruction *v : Visited) { 3819 if (In->isIdenticalTo(v) && 3820 DT->dominates(v->getParent(), In->getParent())) { 3821 In->replaceAllUsesWith(v); 3822 eraseInstruction(In); 3823 In = nullptr; 3824 break; 3825 } 3826 } 3827 if (In) { 3828 assert(!is_contained(Visited, In)); 3829 Visited.push_back(In); 3830 } 3831 } 3832 } 3833 CSEBlocks.clear(); 3834 GatherSeq.clear(); 3835 } 3836 3837 // Groups the instructions to a bundle (which is then a single scheduling entity) 3838 // and schedules instructions until the bundle gets ready. 3839 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3840 BoUpSLP *SLP, Value *OpValue) { 3841 if (isa<PHINode>(OpValue)) 3842 return true; 3843 3844 // Initialize the instruction bundle. 3845 Instruction *OldScheduleEnd = ScheduleEnd; 3846 ScheduleData *PrevInBundle = nullptr; 3847 ScheduleData *Bundle = nullptr; 3848 bool ReSchedule = false; 3849 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3850 3851 // Make sure that the scheduling region contains all 3852 // instructions of the bundle. 3853 for (Value *V : VL) { 3854 if (!extendSchedulingRegion(V, OpValue)) 3855 return false; 3856 } 3857 3858 for (Value *V : VL) { 3859 ScheduleData *BundleMember = getScheduleData(V); 3860 assert(BundleMember && 3861 "no ScheduleData for bundle member (maybe not in same basic block)"); 3862 if (BundleMember->IsScheduled) { 3863 // A bundle member was scheduled as single instruction before and now 3864 // needs to be scheduled as part of the bundle. We just get rid of the 3865 // existing schedule. 3866 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3867 << " was already scheduled\n"); 3868 ReSchedule = true; 3869 } 3870 assert(BundleMember->isSchedulingEntity() && 3871 "bundle member already part of other bundle"); 3872 if (PrevInBundle) { 3873 PrevInBundle->NextInBundle = BundleMember; 3874 } else { 3875 Bundle = BundleMember; 3876 } 3877 BundleMember->UnscheduledDepsInBundle = 0; 3878 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3879 3880 // Group the instructions to a bundle. 3881 BundleMember->FirstInBundle = Bundle; 3882 PrevInBundle = BundleMember; 3883 } 3884 if (ScheduleEnd != OldScheduleEnd) { 3885 // The scheduling region got new instructions at the lower end (or it is a 3886 // new region for the first bundle). This makes it necessary to 3887 // recalculate all dependencies. 3888 // It is seldom that this needs to be done a second time after adding the 3889 // initial bundle to the region. 3890 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3891 doForAllOpcodes(I, [](ScheduleData *SD) { 3892 SD->clearDependencies(); 3893 }); 3894 } 3895 ReSchedule = true; 3896 } 3897 if (ReSchedule) { 3898 resetSchedule(); 3899 initialFillReadyList(ReadyInsts); 3900 } 3901 3902 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3903 << BB->getName() << "\n"); 3904 3905 calculateDependencies(Bundle, true, SLP); 3906 3907 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3908 // means that there are no cyclic dependencies and we can schedule it. 3909 // Note that's important that we don't "schedule" the bundle yet (see 3910 // cancelScheduling). 3911 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3912 3913 ScheduleData *pickedSD = ReadyInsts.back(); 3914 ReadyInsts.pop_back(); 3915 3916 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3917 schedule(pickedSD, ReadyInsts); 3918 } 3919 } 3920 if (!Bundle->isReady()) { 3921 cancelScheduling(VL, OpValue); 3922 return false; 3923 } 3924 return true; 3925 } 3926 3927 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3928 Value *OpValue) { 3929 if (isa<PHINode>(OpValue)) 3930 return; 3931 3932 ScheduleData *Bundle = getScheduleData(OpValue); 3933 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3934 assert(!Bundle->IsScheduled && 3935 "Can't cancel bundle which is already scheduled"); 3936 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3937 "tried to unbundle something which is not a bundle"); 3938 3939 // Un-bundle: make single instructions out of the bundle. 3940 ScheduleData *BundleMember = Bundle; 3941 while (BundleMember) { 3942 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3943 BundleMember->FirstInBundle = BundleMember; 3944 ScheduleData *Next = BundleMember->NextInBundle; 3945 BundleMember->NextInBundle = nullptr; 3946 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3947 if (BundleMember->UnscheduledDepsInBundle == 0) { 3948 ReadyInsts.insert(BundleMember); 3949 } 3950 BundleMember = Next; 3951 } 3952 } 3953 3954 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3955 // Allocate a new ScheduleData for the instruction. 3956 if (ChunkPos >= ChunkSize) { 3957 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3958 ChunkPos = 0; 3959 } 3960 return &(ScheduleDataChunks.back()[ChunkPos++]); 3961 } 3962 3963 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3964 Value *OpValue) { 3965 if (getScheduleData(V, isOneOf(OpValue, V))) 3966 return true; 3967 Instruction *I = dyn_cast<Instruction>(V); 3968 assert(I && "bundle member must be an instruction"); 3969 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3970 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3971 ScheduleData *ISD = getScheduleData(I); 3972 if (!ISD) 3973 return false; 3974 assert(isInSchedulingRegion(ISD) && 3975 "ScheduleData not in scheduling region"); 3976 ScheduleData *SD = allocateScheduleDataChunks(); 3977 SD->Inst = I; 3978 SD->init(SchedulingRegionID, OpValue); 3979 ExtraScheduleDataMap[I][OpValue] = SD; 3980 return true; 3981 }; 3982 if (CheckSheduleForI(I)) 3983 return true; 3984 if (!ScheduleStart) { 3985 // It's the first instruction in the new region. 3986 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3987 ScheduleStart = I; 3988 ScheduleEnd = I->getNextNode(); 3989 if (isOneOf(OpValue, I) != I) 3990 CheckSheduleForI(I); 3991 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3992 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3993 return true; 3994 } 3995 // Search up and down at the same time, because we don't know if the new 3996 // instruction is above or below the existing scheduling region. 3997 BasicBlock::reverse_iterator UpIter = 3998 ++ScheduleStart->getIterator().getReverse(); 3999 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4000 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4001 BasicBlock::iterator LowerEnd = BB->end(); 4002 while (true) { 4003 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4004 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4005 return false; 4006 } 4007 4008 if (UpIter != UpperEnd) { 4009 if (&*UpIter == I) { 4010 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4011 ScheduleStart = I; 4012 if (isOneOf(OpValue, I) != I) 4013 CheckSheduleForI(I); 4014 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 4015 return true; 4016 } 4017 UpIter++; 4018 } 4019 if (DownIter != LowerEnd) { 4020 if (&*DownIter == I) { 4021 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4022 nullptr); 4023 ScheduleEnd = I->getNextNode(); 4024 if (isOneOf(OpValue, I) != I) 4025 CheckSheduleForI(I); 4026 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 4027 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 4028 return true; 4029 } 4030 DownIter++; 4031 } 4032 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4033 "instruction not found in block"); 4034 } 4035 return true; 4036 } 4037 4038 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4039 Instruction *ToI, 4040 ScheduleData *PrevLoadStore, 4041 ScheduleData *NextLoadStore) { 4042 ScheduleData *CurrentLoadStore = PrevLoadStore; 4043 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4044 ScheduleData *SD = ScheduleDataMap[I]; 4045 if (!SD) { 4046 SD = allocateScheduleDataChunks(); 4047 ScheduleDataMap[I] = SD; 4048 SD->Inst = I; 4049 } 4050 assert(!isInSchedulingRegion(SD) && 4051 "new ScheduleData already in scheduling region"); 4052 SD->init(SchedulingRegionID, I); 4053 4054 if (I->mayReadOrWriteMemory() && 4055 (!isa<IntrinsicInst>(I) || 4056 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4057 // Update the linked list of memory accessing instructions. 4058 if (CurrentLoadStore) { 4059 CurrentLoadStore->NextLoadStore = SD; 4060 } else { 4061 FirstLoadStoreInRegion = SD; 4062 } 4063 CurrentLoadStore = SD; 4064 } 4065 } 4066 if (NextLoadStore) { 4067 if (CurrentLoadStore) 4068 CurrentLoadStore->NextLoadStore = NextLoadStore; 4069 } else { 4070 LastLoadStoreInRegion = CurrentLoadStore; 4071 } 4072 } 4073 4074 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4075 bool InsertInReadyList, 4076 BoUpSLP *SLP) { 4077 assert(SD->isSchedulingEntity()); 4078 4079 SmallVector<ScheduleData *, 10> WorkList; 4080 WorkList.push_back(SD); 4081 4082 while (!WorkList.empty()) { 4083 ScheduleData *SD = WorkList.back(); 4084 WorkList.pop_back(); 4085 4086 ScheduleData *BundleMember = SD; 4087 while (BundleMember) { 4088 assert(isInSchedulingRegion(BundleMember)); 4089 if (!BundleMember->hasValidDependencies()) { 4090 4091 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 4092 BundleMember->Dependencies = 0; 4093 BundleMember->resetUnscheduledDeps(); 4094 4095 // Handle def-use chain dependencies. 4096 if (BundleMember->OpValue != BundleMember->Inst) { 4097 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4098 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4099 BundleMember->Dependencies++; 4100 ScheduleData *DestBundle = UseSD->FirstInBundle; 4101 if (!DestBundle->IsScheduled) 4102 BundleMember->incrementUnscheduledDeps(1); 4103 if (!DestBundle->hasValidDependencies()) 4104 WorkList.push_back(DestBundle); 4105 } 4106 } else { 4107 for (User *U : BundleMember->Inst->users()) { 4108 if (isa<Instruction>(U)) { 4109 ScheduleData *UseSD = getScheduleData(U); 4110 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4111 BundleMember->Dependencies++; 4112 ScheduleData *DestBundle = UseSD->FirstInBundle; 4113 if (!DestBundle->IsScheduled) 4114 BundleMember->incrementUnscheduledDeps(1); 4115 if (!DestBundle->hasValidDependencies()) 4116 WorkList.push_back(DestBundle); 4117 } 4118 } else { 4119 // I'm not sure if this can ever happen. But we need to be safe. 4120 // This lets the instruction/bundle never be scheduled and 4121 // eventually disable vectorization. 4122 BundleMember->Dependencies++; 4123 BundleMember->incrementUnscheduledDeps(1); 4124 } 4125 } 4126 } 4127 4128 // Handle the memory dependencies. 4129 ScheduleData *DepDest = BundleMember->NextLoadStore; 4130 if (DepDest) { 4131 Instruction *SrcInst = BundleMember->Inst; 4132 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4133 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4134 unsigned numAliased = 0; 4135 unsigned DistToSrc = 1; 4136 4137 while (DepDest) { 4138 assert(isInSchedulingRegion(DepDest)); 4139 4140 // We have two limits to reduce the complexity: 4141 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4142 // SLP->isAliased (which is the expensive part in this loop). 4143 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4144 // the whole loop (even if the loop is fast, it's quadratic). 4145 // It's important for the loop break condition (see below) to 4146 // check this limit even between two read-only instructions. 4147 if (DistToSrc >= MaxMemDepDistance || 4148 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4149 (numAliased >= AliasedCheckLimit || 4150 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4151 4152 // We increment the counter only if the locations are aliased 4153 // (instead of counting all alias checks). This gives a better 4154 // balance between reduced runtime and accurate dependencies. 4155 numAliased++; 4156 4157 DepDest->MemoryDependencies.push_back(BundleMember); 4158 BundleMember->Dependencies++; 4159 ScheduleData *DestBundle = DepDest->FirstInBundle; 4160 if (!DestBundle->IsScheduled) { 4161 BundleMember->incrementUnscheduledDeps(1); 4162 } 4163 if (!DestBundle->hasValidDependencies()) { 4164 WorkList.push_back(DestBundle); 4165 } 4166 } 4167 DepDest = DepDest->NextLoadStore; 4168 4169 // Example, explaining the loop break condition: Let's assume our 4170 // starting instruction is i0 and MaxMemDepDistance = 3. 4171 // 4172 // +--------v--v--v 4173 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4174 // +--------^--^--^ 4175 // 4176 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4177 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4178 // Previously we already added dependencies from i3 to i6,i7,i8 4179 // (because of MaxMemDepDistance). As we added a dependency from 4180 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4181 // and we can abort this loop at i6. 4182 if (DistToSrc >= 2 * MaxMemDepDistance) 4183 break; 4184 DistToSrc++; 4185 } 4186 } 4187 } 4188 BundleMember = BundleMember->NextInBundle; 4189 } 4190 if (InsertInReadyList && SD->isReady()) { 4191 ReadyInsts.push_back(SD); 4192 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 4193 } 4194 } 4195 } 4196 4197 void BoUpSLP::BlockScheduling::resetSchedule() { 4198 assert(ScheduleStart && 4199 "tried to reset schedule on block which has not been scheduled"); 4200 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4201 doForAllOpcodes(I, [&](ScheduleData *SD) { 4202 assert(isInSchedulingRegion(SD) && 4203 "ScheduleData not in scheduling region"); 4204 SD->IsScheduled = false; 4205 SD->resetUnscheduledDeps(); 4206 }); 4207 } 4208 ReadyInsts.clear(); 4209 } 4210 4211 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4212 if (!BS->ScheduleStart) 4213 return; 4214 4215 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4216 4217 BS->resetSchedule(); 4218 4219 // For the real scheduling we use a more sophisticated ready-list: it is 4220 // sorted by the original instruction location. This lets the final schedule 4221 // be as close as possible to the original instruction order. 4222 struct ScheduleDataCompare { 4223 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4224 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4225 } 4226 }; 4227 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4228 4229 // Ensure that all dependency data is updated and fill the ready-list with 4230 // initial instructions. 4231 int Idx = 0; 4232 int NumToSchedule = 0; 4233 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4234 I = I->getNextNode()) { 4235 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4236 assert(SD->isPartOfBundle() == 4237 (getTreeEntry(SD->Inst) != nullptr) && 4238 "scheduler and vectorizer bundle mismatch"); 4239 SD->FirstInBundle->SchedulingPriority = Idx++; 4240 if (SD->isSchedulingEntity()) { 4241 BS->calculateDependencies(SD, false, this); 4242 NumToSchedule++; 4243 } 4244 }); 4245 } 4246 BS->initialFillReadyList(ReadyInsts); 4247 4248 Instruction *LastScheduledInst = BS->ScheduleEnd; 4249 4250 // Do the "real" scheduling. 4251 while (!ReadyInsts.empty()) { 4252 ScheduleData *picked = *ReadyInsts.begin(); 4253 ReadyInsts.erase(ReadyInsts.begin()); 4254 4255 // Move the scheduled instruction(s) to their dedicated places, if not 4256 // there yet. 4257 ScheduleData *BundleMember = picked; 4258 while (BundleMember) { 4259 Instruction *pickedInst = BundleMember->Inst; 4260 if (LastScheduledInst->getNextNode() != pickedInst) { 4261 BS->BB->getInstList().remove(pickedInst); 4262 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4263 pickedInst); 4264 } 4265 LastScheduledInst = pickedInst; 4266 BundleMember = BundleMember->NextInBundle; 4267 } 4268 4269 BS->schedule(picked, ReadyInsts); 4270 NumToSchedule--; 4271 } 4272 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4273 4274 // Avoid duplicate scheduling of the block. 4275 BS->ScheduleStart = nullptr; 4276 } 4277 4278 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4279 // If V is a store, just return the width of the stored value without 4280 // traversing the expression tree. This is the common case. 4281 if (auto *Store = dyn_cast<StoreInst>(V)) 4282 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4283 4284 // If V is not a store, we can traverse the expression tree to find loads 4285 // that feed it. The type of the loaded value may indicate a more suitable 4286 // width than V's type. We want to base the vector element size on the width 4287 // of memory operations where possible. 4288 SmallVector<Instruction *, 16> Worklist; 4289 SmallPtrSet<Instruction *, 16> Visited; 4290 if (auto *I = dyn_cast<Instruction>(V)) 4291 Worklist.push_back(I); 4292 4293 // Traverse the expression tree in bottom-up order looking for loads. If we 4294 // encounter an instruciton we don't yet handle, we give up. 4295 auto MaxWidth = 0u; 4296 auto FoundUnknownInst = false; 4297 while (!Worklist.empty() && !FoundUnknownInst) { 4298 auto *I = Worklist.pop_back_val(); 4299 Visited.insert(I); 4300 4301 // We should only be looking at scalar instructions here. If the current 4302 // instruction has a vector type, give up. 4303 auto *Ty = I->getType(); 4304 if (isa<VectorType>(Ty)) 4305 FoundUnknownInst = true; 4306 4307 // If the current instruction is a load, update MaxWidth to reflect the 4308 // width of the loaded value. 4309 else if (isa<LoadInst>(I)) 4310 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4311 4312 // Otherwise, we need to visit the operands of the instruction. We only 4313 // handle the interesting cases from buildTree here. If an operand is an 4314 // instruction we haven't yet visited, we add it to the worklist. 4315 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4316 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4317 for (Use &U : I->operands()) 4318 if (auto *J = dyn_cast<Instruction>(U.get())) 4319 if (!Visited.count(J)) 4320 Worklist.push_back(J); 4321 } 4322 4323 // If we don't yet handle the instruction, give up. 4324 else 4325 FoundUnknownInst = true; 4326 } 4327 4328 // If we didn't encounter a memory access in the expression tree, or if we 4329 // gave up for some reason, just return the width of V. 4330 if (!MaxWidth || FoundUnknownInst) 4331 return DL->getTypeSizeInBits(V->getType()); 4332 4333 // Otherwise, return the maximum width we found. 4334 return MaxWidth; 4335 } 4336 4337 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4338 // smaller type with a truncation. We collect the values that will be demoted 4339 // in ToDemote and additional roots that require investigating in Roots. 4340 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4341 SmallVectorImpl<Value *> &ToDemote, 4342 SmallVectorImpl<Value *> &Roots) { 4343 // We can always demote constants. 4344 if (isa<Constant>(V)) { 4345 ToDemote.push_back(V); 4346 return true; 4347 } 4348 4349 // If the value is not an instruction in the expression with only one use, it 4350 // cannot be demoted. 4351 auto *I = dyn_cast<Instruction>(V); 4352 if (!I || !I->hasOneUse() || !Expr.count(I)) 4353 return false; 4354 4355 switch (I->getOpcode()) { 4356 4357 // We can always demote truncations and extensions. Since truncations can 4358 // seed additional demotion, we save the truncated value. 4359 case Instruction::Trunc: 4360 Roots.push_back(I->getOperand(0)); 4361 break; 4362 case Instruction::ZExt: 4363 case Instruction::SExt: 4364 break; 4365 4366 // We can demote certain binary operations if we can demote both of their 4367 // operands. 4368 case Instruction::Add: 4369 case Instruction::Sub: 4370 case Instruction::Mul: 4371 case Instruction::And: 4372 case Instruction::Or: 4373 case Instruction::Xor: 4374 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4375 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4376 return false; 4377 break; 4378 4379 // We can demote selects if we can demote their true and false values. 4380 case Instruction::Select: { 4381 SelectInst *SI = cast<SelectInst>(I); 4382 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4383 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4384 return false; 4385 break; 4386 } 4387 4388 // We can demote phis if we can demote all their incoming operands. Note that 4389 // we don't need to worry about cycles since we ensure single use above. 4390 case Instruction::PHI: { 4391 PHINode *PN = cast<PHINode>(I); 4392 for (Value *IncValue : PN->incoming_values()) 4393 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4394 return false; 4395 break; 4396 } 4397 4398 // Otherwise, conservatively give up. 4399 default: 4400 return false; 4401 } 4402 4403 // Record the value that we can demote. 4404 ToDemote.push_back(V); 4405 return true; 4406 } 4407 4408 void BoUpSLP::computeMinimumValueSizes() { 4409 // If there are no external uses, the expression tree must be rooted by a 4410 // store. We can't demote in-memory values, so there is nothing to do here. 4411 if (ExternalUses.empty()) 4412 return; 4413 4414 // We only attempt to truncate integer expressions. 4415 auto &TreeRoot = VectorizableTree[0].Scalars; 4416 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4417 if (!TreeRootIT) 4418 return; 4419 4420 // If the expression is not rooted by a store, these roots should have 4421 // external uses. We will rely on InstCombine to rewrite the expression in 4422 // the narrower type. However, InstCombine only rewrites single-use values. 4423 // This means that if a tree entry other than a root is used externally, it 4424 // must have multiple uses and InstCombine will not rewrite it. The code 4425 // below ensures that only the roots are used externally. 4426 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4427 for (auto &EU : ExternalUses) 4428 if (!Expr.erase(EU.Scalar)) 4429 return; 4430 if (!Expr.empty()) 4431 return; 4432 4433 // Collect the scalar values of the vectorizable expression. We will use this 4434 // context to determine which values can be demoted. If we see a truncation, 4435 // we mark it as seeding another demotion. 4436 for (auto &Entry : VectorizableTree) 4437 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4438 4439 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4440 // have a single external user that is not in the vectorizable tree. 4441 for (auto *Root : TreeRoot) 4442 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4443 return; 4444 4445 // Conservatively determine if we can actually truncate the roots of the 4446 // expression. Collect the values that can be demoted in ToDemote and 4447 // additional roots that require investigating in Roots. 4448 SmallVector<Value *, 32> ToDemote; 4449 SmallVector<Value *, 4> Roots; 4450 for (auto *Root : TreeRoot) 4451 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4452 return; 4453 4454 // The maximum bit width required to represent all the values that can be 4455 // demoted without loss of precision. It would be safe to truncate the roots 4456 // of the expression to this width. 4457 auto MaxBitWidth = 8u; 4458 4459 // We first check if all the bits of the roots are demanded. If they're not, 4460 // we can truncate the roots to this narrower type. 4461 for (auto *Root : TreeRoot) { 4462 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4463 MaxBitWidth = std::max<unsigned>( 4464 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4465 } 4466 4467 // True if the roots can be zero-extended back to their original type, rather 4468 // than sign-extended. We know that if the leading bits are not demanded, we 4469 // can safely zero-extend. So we initialize IsKnownPositive to True. 4470 bool IsKnownPositive = true; 4471 4472 // If all the bits of the roots are demanded, we can try a little harder to 4473 // compute a narrower type. This can happen, for example, if the roots are 4474 // getelementptr indices. InstCombine promotes these indices to the pointer 4475 // width. Thus, all their bits are technically demanded even though the 4476 // address computation might be vectorized in a smaller type. 4477 // 4478 // We start by looking at each entry that can be demoted. We compute the 4479 // maximum bit width required to store the scalar by using ValueTracking to 4480 // compute the number of high-order bits we can truncate. 4481 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4482 llvm::all_of(TreeRoot, [](Value *R) { 4483 assert(R->hasOneUse() && "Root should have only one use!"); 4484 return isa<GetElementPtrInst>(R->user_back()); 4485 })) { 4486 MaxBitWidth = 8u; 4487 4488 // Determine if the sign bit of all the roots is known to be zero. If not, 4489 // IsKnownPositive is set to False. 4490 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4491 KnownBits Known = computeKnownBits(R, *DL); 4492 return Known.isNonNegative(); 4493 }); 4494 4495 // Determine the maximum number of bits required to store the scalar 4496 // values. 4497 for (auto *Scalar : ToDemote) { 4498 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4499 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4500 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4501 } 4502 4503 // If we can't prove that the sign bit is zero, we must add one to the 4504 // maximum bit width to account for the unknown sign bit. This preserves 4505 // the existing sign bit so we can safely sign-extend the root back to the 4506 // original type. Otherwise, if we know the sign bit is zero, we will 4507 // zero-extend the root instead. 4508 // 4509 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4510 // one to the maximum bit width will yield a larger-than-necessary 4511 // type. In general, we need to add an extra bit only if we can't 4512 // prove that the upper bit of the original type is equal to the 4513 // upper bit of the proposed smaller type. If these two bits are the 4514 // same (either zero or one) we know that sign-extending from the 4515 // smaller type will result in the same value. Here, since we can't 4516 // yet prove this, we are just making the proposed smaller type 4517 // larger to ensure correctness. 4518 if (!IsKnownPositive) 4519 ++MaxBitWidth; 4520 } 4521 4522 // Round MaxBitWidth up to the next power-of-two. 4523 if (!isPowerOf2_64(MaxBitWidth)) 4524 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4525 4526 // If the maximum bit width we compute is less than the with of the roots' 4527 // type, we can proceed with the narrowing. Otherwise, do nothing. 4528 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4529 return; 4530 4531 // If we can truncate the root, we must collect additional values that might 4532 // be demoted as a result. That is, those seeded by truncations we will 4533 // modify. 4534 while (!Roots.empty()) 4535 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4536 4537 // Finally, map the values we can demote to the maximum bit with we computed. 4538 for (auto *Scalar : ToDemote) 4539 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4540 } 4541 4542 namespace { 4543 4544 /// The SLPVectorizer Pass. 4545 struct SLPVectorizer : public FunctionPass { 4546 SLPVectorizerPass Impl; 4547 4548 /// Pass identification, replacement for typeid 4549 static char ID; 4550 4551 explicit SLPVectorizer() : FunctionPass(ID) { 4552 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4553 } 4554 4555 bool doInitialization(Module &M) override { 4556 return false; 4557 } 4558 4559 bool runOnFunction(Function &F) override { 4560 if (skipFunction(F)) 4561 return false; 4562 4563 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4564 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4565 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4566 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4567 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4568 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4569 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4570 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4571 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4572 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4573 4574 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4575 } 4576 4577 void getAnalysisUsage(AnalysisUsage &AU) const override { 4578 FunctionPass::getAnalysisUsage(AU); 4579 AU.addRequired<AssumptionCacheTracker>(); 4580 AU.addRequired<ScalarEvolutionWrapperPass>(); 4581 AU.addRequired<AAResultsWrapperPass>(); 4582 AU.addRequired<TargetTransformInfoWrapperPass>(); 4583 AU.addRequired<LoopInfoWrapperPass>(); 4584 AU.addRequired<DominatorTreeWrapperPass>(); 4585 AU.addRequired<DemandedBitsWrapperPass>(); 4586 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4587 AU.addPreserved<LoopInfoWrapperPass>(); 4588 AU.addPreserved<DominatorTreeWrapperPass>(); 4589 AU.addPreserved<AAResultsWrapperPass>(); 4590 AU.addPreserved<GlobalsAAWrapperPass>(); 4591 AU.setPreservesCFG(); 4592 } 4593 }; 4594 4595 } // end anonymous namespace 4596 4597 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4598 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4599 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4600 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4601 auto *AA = &AM.getResult<AAManager>(F); 4602 auto *LI = &AM.getResult<LoopAnalysis>(F); 4603 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4604 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4605 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4606 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4607 4608 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4609 if (!Changed) 4610 return PreservedAnalyses::all(); 4611 4612 PreservedAnalyses PA; 4613 PA.preserveSet<CFGAnalyses>(); 4614 PA.preserve<AAManager>(); 4615 PA.preserve<GlobalsAA>(); 4616 return PA; 4617 } 4618 4619 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4620 TargetTransformInfo *TTI_, 4621 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4622 LoopInfo *LI_, DominatorTree *DT_, 4623 AssumptionCache *AC_, DemandedBits *DB_, 4624 OptimizationRemarkEmitter *ORE_) { 4625 SE = SE_; 4626 TTI = TTI_; 4627 TLI = TLI_; 4628 AA = AA_; 4629 LI = LI_; 4630 DT = DT_; 4631 AC = AC_; 4632 DB = DB_; 4633 DL = &F.getParent()->getDataLayout(); 4634 4635 Stores.clear(); 4636 GEPs.clear(); 4637 bool Changed = false; 4638 4639 // If the target claims to have no vector registers don't attempt 4640 // vectorization. 4641 if (!TTI->getNumberOfRegisters(true)) 4642 return false; 4643 4644 // Don't vectorize when the attribute NoImplicitFloat is used. 4645 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4646 return false; 4647 4648 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4649 4650 // Use the bottom up slp vectorizer to construct chains that start with 4651 // store instructions. 4652 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4653 4654 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4655 // delete instructions. 4656 4657 // Scan the blocks in the function in post order. 4658 for (auto BB : post_order(&F.getEntryBlock())) { 4659 collectSeedInstructions(BB); 4660 4661 // Vectorize trees that end at stores. 4662 if (!Stores.empty()) { 4663 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4664 << " underlying objects.\n"); 4665 Changed |= vectorizeStoreChains(R); 4666 } 4667 4668 // Vectorize trees that end at reductions. 4669 Changed |= vectorizeChainsInBlock(BB, R); 4670 4671 // Vectorize the index computations of getelementptr instructions. This 4672 // is primarily intended to catch gather-like idioms ending at 4673 // non-consecutive loads. 4674 if (!GEPs.empty()) { 4675 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4676 << " underlying objects.\n"); 4677 Changed |= vectorizeGEPIndices(BB, R); 4678 } 4679 } 4680 4681 if (Changed) { 4682 R.optimizeGatherSequence(); 4683 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4684 DEBUG(verifyFunction(F)); 4685 } 4686 return Changed; 4687 } 4688 4689 /// \brief Check that the Values in the slice in VL array are still existent in 4690 /// the WeakTrackingVH array. 4691 /// Vectorization of part of the VL array may cause later values in the VL array 4692 /// to become invalid. We track when this has happened in the WeakTrackingVH 4693 /// array. 4694 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4695 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4696 unsigned SliceSize) { 4697 VL = VL.slice(SliceBegin, SliceSize); 4698 VH = VH.slice(SliceBegin, SliceSize); 4699 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4700 } 4701 4702 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4703 unsigned VecRegSize) { 4704 const unsigned ChainLen = Chain.size(); 4705 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4706 << "\n"); 4707 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4708 const unsigned VF = VecRegSize / Sz; 4709 4710 if (!isPowerOf2_32(Sz) || VF < 2) 4711 return false; 4712 4713 // Keep track of values that were deleted by vectorizing in the loop below. 4714 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4715 4716 bool Changed = false; 4717 // Look for profitable vectorizable trees at all offsets, starting at zero. 4718 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4719 4720 // Check that a previous iteration of this loop did not delete the Value. 4721 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4722 continue; 4723 4724 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4725 << "\n"); 4726 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4727 4728 R.buildTree(Operands); 4729 if (R.isTreeTinyAndNotFullyVectorizable()) 4730 continue; 4731 4732 R.computeMinimumValueSizes(); 4733 4734 int Cost = R.getTreeCost(); 4735 4736 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4737 if (Cost < -SLPCostThreshold) { 4738 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4739 4740 using namespace ore; 4741 4742 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4743 cast<StoreInst>(Chain[i])) 4744 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4745 << " and with tree size " 4746 << NV("TreeSize", R.getTreeSize())); 4747 4748 R.vectorizeTree(); 4749 4750 // Move to the next bundle. 4751 i += VF - 1; 4752 Changed = true; 4753 } 4754 } 4755 4756 return Changed; 4757 } 4758 4759 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4760 BoUpSLP &R) { 4761 SetVector<StoreInst *> Heads; 4762 SmallDenseSet<StoreInst *> Tails; 4763 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4764 4765 // We may run into multiple chains that merge into a single chain. We mark the 4766 // stores that we vectorized so that we don't visit the same store twice. 4767 BoUpSLP::ValueSet VectorizedStores; 4768 bool Changed = false; 4769 4770 // Do a quadratic search on all of the given stores in reverse order and find 4771 // all of the pairs of stores that follow each other. 4772 SmallVector<unsigned, 16> IndexQueue; 4773 unsigned E = Stores.size(); 4774 IndexQueue.resize(E - 1); 4775 for (unsigned I = E; I > 0; --I) { 4776 unsigned Idx = I - 1; 4777 // If a store has multiple consecutive store candidates, search Stores 4778 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4779 // This is because usually pairing with immediate succeeding or preceding 4780 // candidate create the best chance to find slp vectorization opportunity. 4781 unsigned Offset = 1; 4782 unsigned Cnt = 0; 4783 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4784 if (Idx >= Offset) { 4785 IndexQueue[Cnt] = Idx - Offset; 4786 ++Cnt; 4787 } 4788 if (Idx + Offset < E) { 4789 IndexQueue[Cnt] = Idx + Offset; 4790 ++Cnt; 4791 } 4792 } 4793 4794 for (auto K : IndexQueue) { 4795 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4796 Tails.insert(Stores[Idx]); 4797 Heads.insert(Stores[K]); 4798 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4799 break; 4800 } 4801 } 4802 } 4803 4804 // For stores that start but don't end a link in the chain: 4805 for (auto *SI : llvm::reverse(Heads)) { 4806 if (Tails.count(SI)) 4807 continue; 4808 4809 // We found a store instr that starts a chain. Now follow the chain and try 4810 // to vectorize it. 4811 BoUpSLP::ValueList Operands; 4812 StoreInst *I = SI; 4813 // Collect the chain into a list. 4814 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4815 Operands.push_back(I); 4816 // Move to the next value in the chain. 4817 I = ConsecutiveChain[I]; 4818 } 4819 4820 // FIXME: Is division-by-2 the correct step? Should we assert that the 4821 // register size is a power-of-2? 4822 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4823 Size /= 2) { 4824 if (vectorizeStoreChain(Operands, R, Size)) { 4825 // Mark the vectorized stores so that we don't vectorize them again. 4826 VectorizedStores.insert(Operands.begin(), Operands.end()); 4827 Changed = true; 4828 break; 4829 } 4830 } 4831 } 4832 4833 return Changed; 4834 } 4835 4836 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4837 // Initialize the collections. We will make a single pass over the block. 4838 Stores.clear(); 4839 GEPs.clear(); 4840 4841 // Visit the store and getelementptr instructions in BB and organize them in 4842 // Stores and GEPs according to the underlying objects of their pointer 4843 // operands. 4844 for (Instruction &I : *BB) { 4845 // Ignore store instructions that are volatile or have a pointer operand 4846 // that doesn't point to a scalar type. 4847 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4848 if (!SI->isSimple()) 4849 continue; 4850 if (!isValidElementType(SI->getValueOperand()->getType())) 4851 continue; 4852 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4853 } 4854 4855 // Ignore getelementptr instructions that have more than one index, a 4856 // constant index, or a pointer operand that doesn't point to a scalar 4857 // type. 4858 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4859 auto Idx = GEP->idx_begin()->get(); 4860 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4861 continue; 4862 if (!isValidElementType(Idx->getType())) 4863 continue; 4864 if (GEP->getType()->isVectorTy()) 4865 continue; 4866 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4867 } 4868 } 4869 } 4870 4871 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4872 if (!A || !B) 4873 return false; 4874 Value *VL[] = { A, B }; 4875 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4876 } 4877 4878 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4879 int UserCost, bool AllowReorder) { 4880 if (VL.size() < 2) 4881 return false; 4882 4883 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4884 << ".\n"); 4885 4886 // Check that all of the parts are scalar instructions of the same type. 4887 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4888 if (!I0) 4889 return false; 4890 4891 unsigned Opcode0 = I0->getOpcode(); 4892 4893 unsigned Sz = R.getVectorElementSize(I0); 4894 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4895 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4896 if (MaxVF < 2) { 4897 R.getORE()->emit([&]() { 4898 return OptimizationRemarkMissed( 4899 SV_NAME, "SmallVF", I0) 4900 << "Cannot SLP vectorize list: vectorization factor " 4901 << "less than 2 is not supported"; 4902 }); 4903 return false; 4904 } 4905 4906 for (Value *V : VL) { 4907 Type *Ty = V->getType(); 4908 if (!isValidElementType(Ty)) { 4909 // NOTE: the following will give user internal llvm type name, which may not be useful 4910 R.getORE()->emit([&]() { 4911 std::string type_str; 4912 llvm::raw_string_ostream rso(type_str); 4913 Ty->print(rso); 4914 return OptimizationRemarkMissed( 4915 SV_NAME, "UnsupportedType", I0) 4916 << "Cannot SLP vectorize list: type " 4917 << rso.str() + " is unsupported by vectorizer"; 4918 }); 4919 return false; 4920 } 4921 Instruction *Inst = dyn_cast<Instruction>(V); 4922 4923 if (!Inst) 4924 return false; 4925 if (Inst->getOpcode() != Opcode0) { 4926 R.getORE()->emit([&]() { 4927 return OptimizationRemarkMissed( 4928 SV_NAME, "InequableTypes", I0) 4929 << "Cannot SLP vectorize list: not all of the " 4930 << "parts of scalar instructions are of the same type: " 4931 << ore::NV("Instruction1Opcode", I0) << " and " 4932 << ore::NV("Instruction2Opcode", Inst); 4933 }); 4934 return false; 4935 } 4936 } 4937 4938 bool Changed = false; 4939 bool CandidateFound = false; 4940 int MinCost = SLPCostThreshold; 4941 4942 // Keep track of values that were deleted by vectorizing in the loop below. 4943 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4944 4945 unsigned NextInst = 0, MaxInst = VL.size(); 4946 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4947 VF /= 2) { 4948 // No actual vectorization should happen, if number of parts is the same as 4949 // provided vectorization factor (i.e. the scalar type is used for vector 4950 // code during codegen). 4951 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4952 if (TTI->getNumberOfParts(VecTy) == VF) 4953 continue; 4954 for (unsigned I = NextInst; I < MaxInst; ++I) { 4955 unsigned OpsWidth = 0; 4956 4957 if (I + VF > MaxInst) 4958 OpsWidth = MaxInst - I; 4959 else 4960 OpsWidth = VF; 4961 4962 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4963 break; 4964 4965 // Check that a previous iteration of this loop did not delete the Value. 4966 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4967 continue; 4968 4969 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4970 << "\n"); 4971 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4972 4973 R.buildTree(Ops); 4974 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4975 // TODO: check if we can allow reordering for more cases. 4976 if (AllowReorder && Order) { 4977 // TODO: reorder tree nodes without tree rebuilding. 4978 // Conceptually, there is nothing actually preventing us from trying to 4979 // reorder a larger list. In fact, we do exactly this when vectorizing 4980 // reductions. However, at this point, we only expect to get here when 4981 // there are exactly two operations. 4982 assert(Ops.size() == 2); 4983 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4984 R.buildTree(ReorderedOps, None); 4985 } 4986 if (R.isTreeTinyAndNotFullyVectorizable()) 4987 continue; 4988 4989 R.computeMinimumValueSizes(); 4990 int Cost = R.getTreeCost() - UserCost; 4991 CandidateFound = true; 4992 MinCost = std::min(MinCost, Cost); 4993 4994 if (Cost < -SLPCostThreshold) { 4995 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4996 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4997 cast<Instruction>(Ops[0])) 4998 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4999 << " and with tree size " 5000 << ore::NV("TreeSize", R.getTreeSize())); 5001 5002 R.vectorizeTree(); 5003 // Move to the next bundle. 5004 I += VF - 1; 5005 NextInst = I + 1; 5006 Changed = true; 5007 } 5008 } 5009 } 5010 5011 if (!Changed && CandidateFound) { 5012 R.getORE()->emit([&]() { 5013 return OptimizationRemarkMissed( 5014 SV_NAME, "NotBeneficial", I0) 5015 << "List vectorization was possible but not beneficial with cost " 5016 << ore::NV("Cost", MinCost) << " >= " 5017 << ore::NV("Treshold", -SLPCostThreshold); 5018 }); 5019 } else if (!Changed) { 5020 R.getORE()->emit([&]() { 5021 return OptimizationRemarkMissed( 5022 SV_NAME, "NotPossible", I0) 5023 << "Cannot SLP vectorize list: vectorization was impossible" 5024 << " with available vectorization factors"; 5025 }); 5026 } 5027 return Changed; 5028 } 5029 5030 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5031 if (!I) 5032 return false; 5033 5034 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5035 return false; 5036 5037 Value *P = I->getParent(); 5038 5039 // Vectorize in current basic block only. 5040 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5041 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5042 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5043 return false; 5044 5045 // Try to vectorize V. 5046 if (tryToVectorizePair(Op0, Op1, R)) 5047 return true; 5048 5049 auto *A = dyn_cast<BinaryOperator>(Op0); 5050 auto *B = dyn_cast<BinaryOperator>(Op1); 5051 // Try to skip B. 5052 if (B && B->hasOneUse()) { 5053 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5054 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5055 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5056 return true; 5057 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5058 return true; 5059 } 5060 5061 // Try to skip A. 5062 if (A && A->hasOneUse()) { 5063 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5064 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5065 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5066 return true; 5067 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5068 return true; 5069 } 5070 return false; 5071 } 5072 5073 /// \brief Generate a shuffle mask to be used in a reduction tree. 5074 /// 5075 /// \param VecLen The length of the vector to be reduced. 5076 /// \param NumEltsToRdx The number of elements that should be reduced in the 5077 /// vector. 5078 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5079 /// reduction. A pairwise reduction will generate a mask of 5080 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5081 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5082 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5083 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5084 bool IsPairwise, bool IsLeft, 5085 IRBuilder<> &Builder) { 5086 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5087 5088 SmallVector<Constant *, 32> ShuffleMask( 5089 VecLen, UndefValue::get(Builder.getInt32Ty())); 5090 5091 if (IsPairwise) 5092 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5093 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5094 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5095 else 5096 // Move the upper half of the vector to the lower half. 5097 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5098 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5099 5100 return ConstantVector::get(ShuffleMask); 5101 } 5102 5103 namespace { 5104 5105 /// Model horizontal reductions. 5106 /// 5107 /// A horizontal reduction is a tree of reduction operations (currently add and 5108 /// fadd) that has operations that can be put into a vector as its leaf. 5109 /// For example, this tree: 5110 /// 5111 /// mul mul mul mul 5112 /// \ / \ / 5113 /// + + 5114 /// \ / 5115 /// + 5116 /// This tree has "mul" as its reduced values and "+" as its reduction 5117 /// operations. A reduction might be feeding into a store or a binary operation 5118 /// feeding a phi. 5119 /// ... 5120 /// \ / 5121 /// + 5122 /// | 5123 /// phi += 5124 /// 5125 /// Or: 5126 /// ... 5127 /// \ / 5128 /// + 5129 /// | 5130 /// *p = 5131 /// 5132 class HorizontalReduction { 5133 using ReductionOpsType = SmallVector<Value *, 16>; 5134 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5135 ReductionOpsListType ReductionOps; 5136 SmallVector<Value *, 32> ReducedVals; 5137 // Use map vector to make stable output. 5138 MapVector<Instruction *, Value *> ExtraArgs; 5139 5140 /// Kind of the reduction data. 5141 enum ReductionKind { 5142 RK_None, /// Not a reduction. 5143 RK_Arithmetic, /// Binary reduction data. 5144 RK_Min, /// Minimum reduction data. 5145 RK_UMin, /// Unsigned minimum reduction data. 5146 RK_Max, /// Maximum reduction data. 5147 RK_UMax, /// Unsigned maximum reduction data. 5148 }; 5149 5150 /// Contains info about operation, like its opcode, left and right operands. 5151 class OperationData { 5152 /// Opcode of the instruction. 5153 unsigned Opcode = 0; 5154 5155 /// Left operand of the reduction operation. 5156 Value *LHS = nullptr; 5157 5158 /// Right operand of the reduction operation. 5159 Value *RHS = nullptr; 5160 5161 /// Kind of the reduction operation. 5162 ReductionKind Kind = RK_None; 5163 5164 /// True if float point min/max reduction has no NaNs. 5165 bool NoNaN = false; 5166 5167 /// Checks if the reduction operation can be vectorized. 5168 bool isVectorizable() const { 5169 return LHS && RHS && 5170 // We currently only support adds && min/max reductions. 5171 ((Kind == RK_Arithmetic && 5172 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 5173 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5174 (Kind == RK_Min || Kind == RK_Max)) || 5175 (Opcode == Instruction::ICmp && 5176 (Kind == RK_UMin || Kind == RK_UMax))); 5177 } 5178 5179 /// Creates reduction operation with the current opcode. 5180 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5181 assert(isVectorizable() && 5182 "Expected add|fadd or min/max reduction operation."); 5183 Value *Cmp; 5184 switch (Kind) { 5185 case RK_Arithmetic: 5186 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5187 Name); 5188 case RK_Min: 5189 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5190 : Builder.CreateFCmpOLT(LHS, RHS); 5191 break; 5192 case RK_Max: 5193 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5194 : Builder.CreateFCmpOGT(LHS, RHS); 5195 break; 5196 case RK_UMin: 5197 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5198 Cmp = Builder.CreateICmpULT(LHS, RHS); 5199 break; 5200 case RK_UMax: 5201 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5202 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5203 break; 5204 case RK_None: 5205 llvm_unreachable("Unknown reduction operation."); 5206 } 5207 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5208 } 5209 5210 public: 5211 explicit OperationData() = default; 5212 5213 /// Construction for reduced values. They are identified by opcode only and 5214 /// don't have associated LHS/RHS values. 5215 explicit OperationData(Value *V) { 5216 if (auto *I = dyn_cast<Instruction>(V)) 5217 Opcode = I->getOpcode(); 5218 } 5219 5220 /// Constructor for reduction operations with opcode and its left and 5221 /// right operands. 5222 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5223 bool NoNaN = false) 5224 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5225 assert(Kind != RK_None && "One of the reduction operations is expected."); 5226 } 5227 5228 explicit operator bool() const { return Opcode; } 5229 5230 /// Get the index of the first operand. 5231 unsigned getFirstOperandIndex() const { 5232 assert(!!*this && "The opcode is not set."); 5233 switch (Kind) { 5234 case RK_Min: 5235 case RK_UMin: 5236 case RK_Max: 5237 case RK_UMax: 5238 return 1; 5239 case RK_Arithmetic: 5240 case RK_None: 5241 break; 5242 } 5243 return 0; 5244 } 5245 5246 /// Total number of operands in the reduction operation. 5247 unsigned getNumberOfOperands() const { 5248 assert(Kind != RK_None && !!*this && LHS && RHS && 5249 "Expected reduction operation."); 5250 switch (Kind) { 5251 case RK_Arithmetic: 5252 return 2; 5253 case RK_Min: 5254 case RK_UMin: 5255 case RK_Max: 5256 case RK_UMax: 5257 return 3; 5258 case RK_None: 5259 break; 5260 } 5261 llvm_unreachable("Reduction kind is not set"); 5262 } 5263 5264 /// Checks if the operation has the same parent as \p P. 5265 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5266 assert(Kind != RK_None && !!*this && LHS && RHS && 5267 "Expected reduction operation."); 5268 if (!IsRedOp) 5269 return I->getParent() == P; 5270 switch (Kind) { 5271 case RK_Arithmetic: 5272 // Arithmetic reduction operation must be used once only. 5273 return I->getParent() == P; 5274 case RK_Min: 5275 case RK_UMin: 5276 case RK_Max: 5277 case RK_UMax: { 5278 // SelectInst must be used twice while the condition op must have single 5279 // use only. 5280 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5281 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5282 } 5283 case RK_None: 5284 break; 5285 } 5286 llvm_unreachable("Reduction kind is not set"); 5287 } 5288 /// Expected number of uses for reduction operations/reduced values. 5289 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5290 assert(Kind != RK_None && !!*this && LHS && RHS && 5291 "Expected reduction operation."); 5292 switch (Kind) { 5293 case RK_Arithmetic: 5294 return I->hasOneUse(); 5295 case RK_Min: 5296 case RK_UMin: 5297 case RK_Max: 5298 case RK_UMax: 5299 return I->hasNUses(2) && 5300 (!IsReductionOp || 5301 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5302 case RK_None: 5303 break; 5304 } 5305 llvm_unreachable("Reduction kind is not set"); 5306 } 5307 5308 /// Initializes the list of reduction operations. 5309 void initReductionOps(ReductionOpsListType &ReductionOps) { 5310 assert(Kind != RK_None && !!*this && LHS && RHS && 5311 "Expected reduction operation."); 5312 switch (Kind) { 5313 case RK_Arithmetic: 5314 ReductionOps.assign(1, ReductionOpsType()); 5315 break; 5316 case RK_Min: 5317 case RK_UMin: 5318 case RK_Max: 5319 case RK_UMax: 5320 ReductionOps.assign(2, ReductionOpsType()); 5321 break; 5322 case RK_None: 5323 llvm_unreachable("Reduction kind is not set"); 5324 } 5325 } 5326 /// Add all reduction operations for the reduction instruction \p I. 5327 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5328 assert(Kind != RK_None && !!*this && LHS && RHS && 5329 "Expected reduction operation."); 5330 switch (Kind) { 5331 case RK_Arithmetic: 5332 ReductionOps[0].emplace_back(I); 5333 break; 5334 case RK_Min: 5335 case RK_UMin: 5336 case RK_Max: 5337 case RK_UMax: 5338 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5339 ReductionOps[1].emplace_back(I); 5340 break; 5341 case RK_None: 5342 llvm_unreachable("Reduction kind is not set"); 5343 } 5344 } 5345 5346 /// Checks if instruction is associative and can be vectorized. 5347 bool isAssociative(Instruction *I) const { 5348 assert(Kind != RK_None && *this && LHS && RHS && 5349 "Expected reduction operation."); 5350 switch (Kind) { 5351 case RK_Arithmetic: 5352 return I->isAssociative(); 5353 case RK_Min: 5354 case RK_Max: 5355 return Opcode == Instruction::ICmp || 5356 cast<Instruction>(I->getOperand(0))->isFast(); 5357 case RK_UMin: 5358 case RK_UMax: 5359 assert(Opcode == Instruction::ICmp && 5360 "Only integer compare operation is expected."); 5361 return true; 5362 case RK_None: 5363 break; 5364 } 5365 llvm_unreachable("Reduction kind is not set"); 5366 } 5367 5368 /// Checks if the reduction operation can be vectorized. 5369 bool isVectorizable(Instruction *I) const { 5370 return isVectorizable() && isAssociative(I); 5371 } 5372 5373 /// Checks if two operation data are both a reduction op or both a reduced 5374 /// value. 5375 bool operator==(const OperationData &OD) { 5376 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5377 "One of the comparing operations is incorrect."); 5378 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5379 } 5380 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5381 void clear() { 5382 Opcode = 0; 5383 LHS = nullptr; 5384 RHS = nullptr; 5385 Kind = RK_None; 5386 NoNaN = false; 5387 } 5388 5389 /// Get the opcode of the reduction operation. 5390 unsigned getOpcode() const { 5391 assert(isVectorizable() && "Expected vectorizable operation."); 5392 return Opcode; 5393 } 5394 5395 /// Get kind of reduction data. 5396 ReductionKind getKind() const { return Kind; } 5397 Value *getLHS() const { return LHS; } 5398 Value *getRHS() const { return RHS; } 5399 Type *getConditionType() const { 5400 switch (Kind) { 5401 case RK_Arithmetic: 5402 return nullptr; 5403 case RK_Min: 5404 case RK_Max: 5405 case RK_UMin: 5406 case RK_UMax: 5407 return CmpInst::makeCmpResultType(LHS->getType()); 5408 case RK_None: 5409 break; 5410 } 5411 llvm_unreachable("Reduction kind is not set"); 5412 } 5413 5414 /// Creates reduction operation with the current opcode with the IR flags 5415 /// from \p ReductionOps. 5416 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5417 const ReductionOpsListType &ReductionOps) const { 5418 assert(isVectorizable() && 5419 "Expected add|fadd or min/max reduction operation."); 5420 auto *Op = createOp(Builder, Name); 5421 switch (Kind) { 5422 case RK_Arithmetic: 5423 propagateIRFlags(Op, ReductionOps[0]); 5424 return Op; 5425 case RK_Min: 5426 case RK_Max: 5427 case RK_UMin: 5428 case RK_UMax: 5429 if (auto *SI = dyn_cast<SelectInst>(Op)) 5430 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5431 propagateIRFlags(Op, ReductionOps[1]); 5432 return Op; 5433 case RK_None: 5434 break; 5435 } 5436 llvm_unreachable("Unknown reduction operation."); 5437 } 5438 /// Creates reduction operation with the current opcode with the IR flags 5439 /// from \p I. 5440 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5441 Instruction *I) const { 5442 assert(isVectorizable() && 5443 "Expected add|fadd or min/max reduction operation."); 5444 auto *Op = createOp(Builder, Name); 5445 switch (Kind) { 5446 case RK_Arithmetic: 5447 propagateIRFlags(Op, I); 5448 return Op; 5449 case RK_Min: 5450 case RK_Max: 5451 case RK_UMin: 5452 case RK_UMax: 5453 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5454 propagateIRFlags(SI->getCondition(), 5455 cast<SelectInst>(I)->getCondition()); 5456 } 5457 propagateIRFlags(Op, I); 5458 return Op; 5459 case RK_None: 5460 break; 5461 } 5462 llvm_unreachable("Unknown reduction operation."); 5463 } 5464 5465 TargetTransformInfo::ReductionFlags getFlags() const { 5466 TargetTransformInfo::ReductionFlags Flags; 5467 Flags.NoNaN = NoNaN; 5468 switch (Kind) { 5469 case RK_Arithmetic: 5470 break; 5471 case RK_Min: 5472 Flags.IsSigned = Opcode == Instruction::ICmp; 5473 Flags.IsMaxOp = false; 5474 break; 5475 case RK_Max: 5476 Flags.IsSigned = Opcode == Instruction::ICmp; 5477 Flags.IsMaxOp = true; 5478 break; 5479 case RK_UMin: 5480 Flags.IsSigned = false; 5481 Flags.IsMaxOp = false; 5482 break; 5483 case RK_UMax: 5484 Flags.IsSigned = false; 5485 Flags.IsMaxOp = true; 5486 break; 5487 case RK_None: 5488 llvm_unreachable("Reduction kind is not set"); 5489 } 5490 return Flags; 5491 } 5492 }; 5493 5494 Instruction *ReductionRoot = nullptr; 5495 5496 /// The operation data of the reduction operation. 5497 OperationData ReductionData; 5498 5499 /// The operation data of the values we perform a reduction on. 5500 OperationData ReducedValueData; 5501 5502 /// Should we model this reduction as a pairwise reduction tree or a tree that 5503 /// splits the vector in halves and adds those halves. 5504 bool IsPairwiseReduction = false; 5505 5506 /// Checks if the ParentStackElem.first should be marked as a reduction 5507 /// operation with an extra argument or as extra argument itself. 5508 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5509 Value *ExtraArg) { 5510 if (ExtraArgs.count(ParentStackElem.first)) { 5511 ExtraArgs[ParentStackElem.first] = nullptr; 5512 // We ran into something like: 5513 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5514 // The whole ParentStackElem.first should be considered as an extra value 5515 // in this case. 5516 // Do not perform analysis of remaining operands of ParentStackElem.first 5517 // instruction, this whole instruction is an extra argument. 5518 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5519 } else { 5520 // We ran into something like: 5521 // ParentStackElem.first += ... + ExtraArg + ... 5522 ExtraArgs[ParentStackElem.first] = ExtraArg; 5523 } 5524 } 5525 5526 static OperationData getOperationData(Value *V) { 5527 if (!V) 5528 return OperationData(); 5529 5530 Value *LHS; 5531 Value *RHS; 5532 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5533 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5534 RK_Arithmetic); 5535 } 5536 if (auto *Select = dyn_cast<SelectInst>(V)) { 5537 // Look for a min/max pattern. 5538 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5539 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5540 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5541 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5542 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5543 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5544 return OperationData( 5545 Instruction::FCmp, LHS, RHS, RK_Min, 5546 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5547 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5548 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5549 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5550 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5551 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5552 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5553 return OperationData( 5554 Instruction::FCmp, LHS, RHS, RK_Max, 5555 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5556 } 5557 } 5558 return OperationData(V); 5559 } 5560 5561 public: 5562 HorizontalReduction() = default; 5563 5564 /// \brief Try to find a reduction tree. 5565 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5566 assert((!Phi || is_contained(Phi->operands(), B)) && 5567 "Thi phi needs to use the binary operator"); 5568 5569 ReductionData = getOperationData(B); 5570 5571 // We could have a initial reductions that is not an add. 5572 // r *= v1 + v2 + v3 + v4 5573 // In such a case start looking for a tree rooted in the first '+'. 5574 if (Phi) { 5575 if (ReductionData.getLHS() == Phi) { 5576 Phi = nullptr; 5577 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5578 ReductionData = getOperationData(B); 5579 } else if (ReductionData.getRHS() == Phi) { 5580 Phi = nullptr; 5581 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5582 ReductionData = getOperationData(B); 5583 } 5584 } 5585 5586 if (!ReductionData.isVectorizable(B)) 5587 return false; 5588 5589 Type *Ty = B->getType(); 5590 if (!isValidElementType(Ty)) 5591 return false; 5592 5593 ReducedValueData.clear(); 5594 ReductionRoot = B; 5595 5596 // Post order traverse the reduction tree starting at B. We only handle true 5597 // trees containing only binary operators. 5598 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5599 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5600 ReductionData.initReductionOps(ReductionOps); 5601 while (!Stack.empty()) { 5602 Instruction *TreeN = Stack.back().first; 5603 unsigned EdgeToVist = Stack.back().second++; 5604 OperationData OpData = getOperationData(TreeN); 5605 bool IsReducedValue = OpData != ReductionData; 5606 5607 // Postorder vist. 5608 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5609 if (IsReducedValue) 5610 ReducedVals.push_back(TreeN); 5611 else { 5612 auto I = ExtraArgs.find(TreeN); 5613 if (I != ExtraArgs.end() && !I->second) { 5614 // Check if TreeN is an extra argument of its parent operation. 5615 if (Stack.size() <= 1) { 5616 // TreeN can't be an extra argument as it is a root reduction 5617 // operation. 5618 return false; 5619 } 5620 // Yes, TreeN is an extra argument, do not add it to a list of 5621 // reduction operations. 5622 // Stack[Stack.size() - 2] always points to the parent operation. 5623 markExtraArg(Stack[Stack.size() - 2], TreeN); 5624 ExtraArgs.erase(TreeN); 5625 } else 5626 ReductionData.addReductionOps(TreeN, ReductionOps); 5627 } 5628 // Retract. 5629 Stack.pop_back(); 5630 continue; 5631 } 5632 5633 // Visit left or right. 5634 Value *NextV = TreeN->getOperand(EdgeToVist); 5635 if (NextV != Phi) { 5636 auto *I = dyn_cast<Instruction>(NextV); 5637 OpData = getOperationData(I); 5638 // Continue analysis if the next operand is a reduction operation or 5639 // (possibly) a reduced value. If the reduced value opcode is not set, 5640 // the first met operation != reduction operation is considered as the 5641 // reduced value class. 5642 if (I && (!ReducedValueData || OpData == ReducedValueData || 5643 OpData == ReductionData)) { 5644 const bool IsReductionOperation = OpData == ReductionData; 5645 // Only handle trees in the current basic block. 5646 if (!ReductionData.hasSameParent(I, B->getParent(), 5647 IsReductionOperation)) { 5648 // I is an extra argument for TreeN (its parent operation). 5649 markExtraArg(Stack.back(), I); 5650 continue; 5651 } 5652 5653 // Each tree node needs to have minimal number of users except for the 5654 // ultimate reduction. 5655 if (!ReductionData.hasRequiredNumberOfUses(I, 5656 OpData == ReductionData) && 5657 I != B) { 5658 // I is an extra argument for TreeN (its parent operation). 5659 markExtraArg(Stack.back(), I); 5660 continue; 5661 } 5662 5663 if (IsReductionOperation) { 5664 // We need to be able to reassociate the reduction operations. 5665 if (!OpData.isAssociative(I)) { 5666 // I is an extra argument for TreeN (its parent operation). 5667 markExtraArg(Stack.back(), I); 5668 continue; 5669 } 5670 } else if (ReducedValueData && 5671 ReducedValueData != OpData) { 5672 // Make sure that the opcodes of the operations that we are going to 5673 // reduce match. 5674 // I is an extra argument for TreeN (its parent operation). 5675 markExtraArg(Stack.back(), I); 5676 continue; 5677 } else if (!ReducedValueData) 5678 ReducedValueData = OpData; 5679 5680 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5681 continue; 5682 } 5683 } 5684 // NextV is an extra argument for TreeN (its parent operation). 5685 markExtraArg(Stack.back(), NextV); 5686 } 5687 return true; 5688 } 5689 5690 /// \brief Attempt to vectorize the tree found by 5691 /// matchAssociativeReduction. 5692 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5693 if (ReducedVals.empty()) 5694 return false; 5695 5696 // If there is a sufficient number of reduction values, reduce 5697 // to a nearby power-of-2. Can safely generate oversized 5698 // vectors and rely on the backend to split them to legal sizes. 5699 unsigned NumReducedVals = ReducedVals.size(); 5700 if (NumReducedVals < 4) 5701 return false; 5702 5703 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5704 5705 Value *VectorizedTree = nullptr; 5706 IRBuilder<> Builder(ReductionRoot); 5707 FastMathFlags Unsafe; 5708 Unsafe.setFast(); 5709 Builder.setFastMathFlags(Unsafe); 5710 unsigned i = 0; 5711 5712 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5713 // The same extra argument may be used several time, so log each attempt 5714 // to use it. 5715 for (auto &Pair : ExtraArgs) 5716 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5717 SmallVector<Value *, 16> IgnoreList; 5718 for (auto &V : ReductionOps) 5719 IgnoreList.append(V.begin(), V.end()); 5720 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5721 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5722 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5723 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5724 // TODO: Handle orders of size less than number of elements in the vector. 5725 if (Order && Order->size() == VL.size()) { 5726 // TODO: reorder tree nodes without tree rebuilding. 5727 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5728 llvm::transform(*Order, ReorderedOps.begin(), 5729 [VL](const unsigned Idx) { return VL[Idx]; }); 5730 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5731 } 5732 if (V.isTreeTinyAndNotFullyVectorizable()) 5733 break; 5734 5735 V.computeMinimumValueSizes(); 5736 5737 // Estimate cost. 5738 int Cost = 5739 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5740 if (Cost >= -SLPCostThreshold) { 5741 V.getORE()->emit([&]() { 5742 return OptimizationRemarkMissed( 5743 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5744 << "Vectorizing horizontal reduction is possible" 5745 << "but not beneficial with cost " 5746 << ore::NV("Cost", Cost) << " and threshold " 5747 << ore::NV("Threshold", -SLPCostThreshold); 5748 }); 5749 break; 5750 } 5751 5752 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5753 << ". (HorRdx)\n"); 5754 V.getORE()->emit([&]() { 5755 return OptimizationRemark( 5756 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5757 << "Vectorized horizontal reduction with cost " 5758 << ore::NV("Cost", Cost) << " and with tree size " 5759 << ore::NV("TreeSize", V.getTreeSize()); 5760 }); 5761 5762 // Vectorize a tree. 5763 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5764 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5765 5766 // Emit a reduction. 5767 Value *ReducedSubTree = 5768 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5769 if (VectorizedTree) { 5770 Builder.SetCurrentDebugLocation(Loc); 5771 OperationData VectReductionData(ReductionData.getOpcode(), 5772 VectorizedTree, ReducedSubTree, 5773 ReductionData.getKind()); 5774 VectorizedTree = 5775 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5776 } else 5777 VectorizedTree = ReducedSubTree; 5778 i += ReduxWidth; 5779 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5780 } 5781 5782 if (VectorizedTree) { 5783 // Finish the reduction. 5784 for (; i < NumReducedVals; ++i) { 5785 auto *I = cast<Instruction>(ReducedVals[i]); 5786 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5787 OperationData VectReductionData(ReductionData.getOpcode(), 5788 VectorizedTree, I, 5789 ReductionData.getKind()); 5790 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5791 } 5792 for (auto &Pair : ExternallyUsedValues) { 5793 assert(!Pair.second.empty() && 5794 "At least one DebugLoc must be inserted"); 5795 // Add each externally used value to the final reduction. 5796 for (auto *I : Pair.second) { 5797 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5798 OperationData VectReductionData(ReductionData.getOpcode(), 5799 VectorizedTree, Pair.first, 5800 ReductionData.getKind()); 5801 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5802 } 5803 } 5804 // Update users. 5805 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5806 } 5807 return VectorizedTree != nullptr; 5808 } 5809 5810 unsigned numReductionValues() const { 5811 return ReducedVals.size(); 5812 } 5813 5814 private: 5815 /// \brief Calculate the cost of a reduction. 5816 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5817 unsigned ReduxWidth) { 5818 Type *ScalarTy = FirstReducedVal->getType(); 5819 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5820 5821 int PairwiseRdxCost; 5822 int SplittingRdxCost; 5823 switch (ReductionData.getKind()) { 5824 case RK_Arithmetic: 5825 PairwiseRdxCost = 5826 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5827 /*IsPairwiseForm=*/true); 5828 SplittingRdxCost = 5829 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5830 /*IsPairwiseForm=*/false); 5831 break; 5832 case RK_Min: 5833 case RK_Max: 5834 case RK_UMin: 5835 case RK_UMax: { 5836 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5837 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5838 ReductionData.getKind() == RK_UMax; 5839 PairwiseRdxCost = 5840 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5841 /*IsPairwiseForm=*/true, IsUnsigned); 5842 SplittingRdxCost = 5843 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5844 /*IsPairwiseForm=*/false, IsUnsigned); 5845 break; 5846 } 5847 case RK_None: 5848 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5849 } 5850 5851 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5852 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5853 5854 int ScalarReduxCost; 5855 switch (ReductionData.getKind()) { 5856 case RK_Arithmetic: 5857 ScalarReduxCost = 5858 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5859 break; 5860 case RK_Min: 5861 case RK_Max: 5862 case RK_UMin: 5863 case RK_UMax: 5864 ScalarReduxCost = 5865 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5866 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5867 CmpInst::makeCmpResultType(ScalarTy)); 5868 break; 5869 case RK_None: 5870 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5871 } 5872 ScalarReduxCost *= (ReduxWidth - 1); 5873 5874 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5875 << " for reduction that starts with " << *FirstReducedVal 5876 << " (It is a " 5877 << (IsPairwiseReduction ? "pairwise" : "splitting") 5878 << " reduction)\n"); 5879 5880 return VecReduxCost - ScalarReduxCost; 5881 } 5882 5883 /// \brief Emit a horizontal reduction of the vectorized value. 5884 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5885 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5886 assert(VectorizedValue && "Need to have a vectorized tree node"); 5887 assert(isPowerOf2_32(ReduxWidth) && 5888 "We only handle power-of-two reductions for now"); 5889 5890 if (!IsPairwiseReduction) 5891 return createSimpleTargetReduction( 5892 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5893 ReductionData.getFlags(), ReductionOps.back()); 5894 5895 Value *TmpVec = VectorizedValue; 5896 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5897 Value *LeftMask = 5898 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5899 Value *RightMask = 5900 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5901 5902 Value *LeftShuf = Builder.CreateShuffleVector( 5903 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5904 Value *RightShuf = Builder.CreateShuffleVector( 5905 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5906 "rdx.shuf.r"); 5907 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5908 RightShuf, ReductionData.getKind()); 5909 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5910 } 5911 5912 // The result is in the first element of the vector. 5913 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5914 } 5915 }; 5916 5917 } // end anonymous namespace 5918 5919 /// \brief Recognize construction of vectors like 5920 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5921 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5922 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5923 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5924 /// starting from the last insertelement instruction. 5925 /// 5926 /// Returns true if it matches 5927 static bool findBuildVector(InsertElementInst *LastInsertElem, 5928 TargetTransformInfo *TTI, 5929 SmallVectorImpl<Value *> &BuildVectorOpds, 5930 int &UserCost) { 5931 UserCost = 0; 5932 Value *V = nullptr; 5933 do { 5934 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5935 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5936 LastInsertElem->getType(), 5937 CI->getZExtValue()); 5938 } 5939 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5940 V = LastInsertElem->getOperand(0); 5941 if (isa<UndefValue>(V)) 5942 break; 5943 LastInsertElem = dyn_cast<InsertElementInst>(V); 5944 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5945 return false; 5946 } while (true); 5947 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5948 return true; 5949 } 5950 5951 /// \brief Like findBuildVector, but looks for construction of aggregate. 5952 /// 5953 /// \return true if it matches. 5954 static bool findBuildAggregate(InsertValueInst *IV, 5955 SmallVectorImpl<Value *> &BuildVectorOpds) { 5956 Value *V; 5957 do { 5958 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5959 V = IV->getAggregateOperand(); 5960 if (isa<UndefValue>(V)) 5961 break; 5962 IV = dyn_cast<InsertValueInst>(V); 5963 if (!IV || !IV->hasOneUse()) 5964 return false; 5965 } while (true); 5966 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5967 return true; 5968 } 5969 5970 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5971 return V->getType() < V2->getType(); 5972 } 5973 5974 /// \brief Try and get a reduction value from a phi node. 5975 /// 5976 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5977 /// if they come from either \p ParentBB or a containing loop latch. 5978 /// 5979 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5980 /// if not possible. 5981 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5982 BasicBlock *ParentBB, LoopInfo *LI) { 5983 // There are situations where the reduction value is not dominated by the 5984 // reduction phi. Vectorizing such cases has been reported to cause 5985 // miscompiles. See PR25787. 5986 auto DominatedReduxValue = [&](Value *R) { 5987 return ( 5988 dyn_cast<Instruction>(R) && 5989 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5990 }; 5991 5992 Value *Rdx = nullptr; 5993 5994 // Return the incoming value if it comes from the same BB as the phi node. 5995 if (P->getIncomingBlock(0) == ParentBB) { 5996 Rdx = P->getIncomingValue(0); 5997 } else if (P->getIncomingBlock(1) == ParentBB) { 5998 Rdx = P->getIncomingValue(1); 5999 } 6000 6001 if (Rdx && DominatedReduxValue(Rdx)) 6002 return Rdx; 6003 6004 // Otherwise, check whether we have a loop latch to look at. 6005 Loop *BBL = LI->getLoopFor(ParentBB); 6006 if (!BBL) 6007 return nullptr; 6008 BasicBlock *BBLatch = BBL->getLoopLatch(); 6009 if (!BBLatch) 6010 return nullptr; 6011 6012 // There is a loop latch, return the incoming value if it comes from 6013 // that. This reduction pattern occasionally turns up. 6014 if (P->getIncomingBlock(0) == BBLatch) { 6015 Rdx = P->getIncomingValue(0); 6016 } else if (P->getIncomingBlock(1) == BBLatch) { 6017 Rdx = P->getIncomingValue(1); 6018 } 6019 6020 if (Rdx && DominatedReduxValue(Rdx)) 6021 return Rdx; 6022 6023 return nullptr; 6024 } 6025 6026 /// Attempt to reduce a horizontal reduction. 6027 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6028 /// with reduction operators \a Root (or one of its operands) in a basic block 6029 /// \a BB, then check if it can be done. If horizontal reduction is not found 6030 /// and root instruction is a binary operation, vectorization of the operands is 6031 /// attempted. 6032 /// \returns true if a horizontal reduction was matched and reduced or operands 6033 /// of one of the binary instruction were vectorized. 6034 /// \returns false if a horizontal reduction was not matched (or not possible) 6035 /// or no vectorization of any binary operation feeding \a Root instruction was 6036 /// performed. 6037 static bool tryToVectorizeHorReductionOrInstOperands( 6038 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6039 TargetTransformInfo *TTI, 6040 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6041 if (!ShouldVectorizeHor) 6042 return false; 6043 6044 if (!Root) 6045 return false; 6046 6047 if (Root->getParent() != BB || isa<PHINode>(Root)) 6048 return false; 6049 // Start analysis starting from Root instruction. If horizontal reduction is 6050 // found, try to vectorize it. If it is not a horizontal reduction or 6051 // vectorization is not possible or not effective, and currently analyzed 6052 // instruction is a binary operation, try to vectorize the operands, using 6053 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6054 // the same procedure considering each operand as a possible root of the 6055 // horizontal reduction. 6056 // Interrupt the process if the Root instruction itself was vectorized or all 6057 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6058 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6059 SmallSet<Value *, 8> VisitedInstrs; 6060 bool Res = false; 6061 while (!Stack.empty()) { 6062 Value *V; 6063 unsigned Level; 6064 std::tie(V, Level) = Stack.pop_back_val(); 6065 if (!V) 6066 continue; 6067 auto *Inst = dyn_cast<Instruction>(V); 6068 if (!Inst) 6069 continue; 6070 auto *BI = dyn_cast<BinaryOperator>(Inst); 6071 auto *SI = dyn_cast<SelectInst>(Inst); 6072 if (BI || SI) { 6073 HorizontalReduction HorRdx; 6074 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6075 if (HorRdx.tryToReduce(R, TTI)) { 6076 Res = true; 6077 // Set P to nullptr to avoid re-analysis of phi node in 6078 // matchAssociativeReduction function unless this is the root node. 6079 P = nullptr; 6080 continue; 6081 } 6082 } 6083 if (P && BI) { 6084 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6085 if (Inst == P) 6086 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6087 if (!Inst) { 6088 // Set P to nullptr to avoid re-analysis of phi node in 6089 // matchAssociativeReduction function unless this is the root node. 6090 P = nullptr; 6091 continue; 6092 } 6093 } 6094 } 6095 // Set P to nullptr to avoid re-analysis of phi node in 6096 // matchAssociativeReduction function unless this is the root node. 6097 P = nullptr; 6098 if (Vectorize(Inst, R)) { 6099 Res = true; 6100 continue; 6101 } 6102 6103 // Try to vectorize operands. 6104 // Continue analysis for the instruction from the same basic block only to 6105 // save compile time. 6106 if (++Level < RecursionMaxDepth) 6107 for (auto *Op : Inst->operand_values()) 6108 if (VisitedInstrs.insert(Op).second) 6109 if (auto *I = dyn_cast<Instruction>(Op)) 6110 if (!isa<PHINode>(I) && I->getParent() == BB) 6111 Stack.emplace_back(Op, Level); 6112 } 6113 return Res; 6114 } 6115 6116 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6117 BasicBlock *BB, BoUpSLP &R, 6118 TargetTransformInfo *TTI) { 6119 if (!V) 6120 return false; 6121 auto *I = dyn_cast<Instruction>(V); 6122 if (!I) 6123 return false; 6124 6125 if (!isa<BinaryOperator>(I)) 6126 P = nullptr; 6127 // Try to match and vectorize a horizontal reduction. 6128 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6129 return tryToVectorize(I, R); 6130 }; 6131 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6132 ExtraVectorization); 6133 } 6134 6135 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6136 BasicBlock *BB, BoUpSLP &R) { 6137 const DataLayout &DL = BB->getModule()->getDataLayout(); 6138 if (!R.canMapToVector(IVI->getType(), DL)) 6139 return false; 6140 6141 SmallVector<Value *, 16> BuildVectorOpds; 6142 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6143 return false; 6144 6145 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6146 // Aggregate value is unlikely to be processed in vector register, we need to 6147 // extract scalars into scalar registers, so NeedExtraction is set true. 6148 return tryToVectorizeList(BuildVectorOpds, R); 6149 } 6150 6151 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6152 BasicBlock *BB, BoUpSLP &R) { 6153 int UserCost; 6154 SmallVector<Value *, 16> BuildVectorOpds; 6155 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6156 (llvm::all_of(BuildVectorOpds, 6157 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6158 isShuffle(BuildVectorOpds))) 6159 return false; 6160 6161 // Vectorize starting with the build vector operands ignoring the BuildVector 6162 // instructions for the purpose of scheduling and user extraction. 6163 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6164 } 6165 6166 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6167 BoUpSLP &R) { 6168 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6169 return true; 6170 6171 bool OpsChanged = false; 6172 for (int Idx = 0; Idx < 2; ++Idx) { 6173 OpsChanged |= 6174 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6175 } 6176 return OpsChanged; 6177 } 6178 6179 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6180 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6181 bool OpsChanged = false; 6182 for (auto &VH : reverse(Instructions)) { 6183 auto *I = dyn_cast_or_null<Instruction>(VH); 6184 if (!I) 6185 continue; 6186 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6187 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6188 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6189 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6190 else if (auto *CI = dyn_cast<CmpInst>(I)) 6191 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6192 } 6193 Instructions.clear(); 6194 return OpsChanged; 6195 } 6196 6197 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6198 bool Changed = false; 6199 SmallVector<Value *, 4> Incoming; 6200 SmallSet<Value *, 16> VisitedInstrs; 6201 6202 bool HaveVectorizedPhiNodes = true; 6203 while (HaveVectorizedPhiNodes) { 6204 HaveVectorizedPhiNodes = false; 6205 6206 // Collect the incoming values from the PHIs. 6207 Incoming.clear(); 6208 for (Instruction &I : *BB) { 6209 PHINode *P = dyn_cast<PHINode>(&I); 6210 if (!P) 6211 break; 6212 6213 if (!VisitedInstrs.count(P)) 6214 Incoming.push_back(P); 6215 } 6216 6217 // Sort by type. 6218 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6219 6220 // Try to vectorize elements base on their type. 6221 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6222 E = Incoming.end(); 6223 IncIt != E;) { 6224 6225 // Look for the next elements with the same type. 6226 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6227 while (SameTypeIt != E && 6228 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6229 VisitedInstrs.insert(*SameTypeIt); 6230 ++SameTypeIt; 6231 } 6232 6233 // Try to vectorize them. 6234 unsigned NumElts = (SameTypeIt - IncIt); 6235 DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts 6236 << ")\n"); 6237 // The order in which the phi nodes appear in the program does not matter. 6238 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6239 // is done when there are exactly two elements since tryToVectorizeList 6240 // asserts that there are only two values when AllowReorder is true. 6241 bool AllowReorder = NumElts == 2; 6242 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6243 /*UserCost=*/0, AllowReorder)) { 6244 // Success start over because instructions might have been changed. 6245 HaveVectorizedPhiNodes = true; 6246 Changed = true; 6247 break; 6248 } 6249 6250 // Start over at the next instruction of a different type (or the end). 6251 IncIt = SameTypeIt; 6252 } 6253 } 6254 6255 VisitedInstrs.clear(); 6256 6257 SmallVector<WeakVH, 8> PostProcessInstructions; 6258 SmallDenseSet<Instruction *, 4> KeyNodes; 6259 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6260 // We may go through BB multiple times so skip the one we have checked. 6261 if (!VisitedInstrs.insert(&*it).second) { 6262 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6263 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6264 // We would like to start over since some instructions are deleted 6265 // and the iterator may become invalid value. 6266 Changed = true; 6267 it = BB->begin(); 6268 e = BB->end(); 6269 } 6270 continue; 6271 } 6272 6273 if (isa<DbgInfoIntrinsic>(it)) 6274 continue; 6275 6276 // Try to vectorize reductions that use PHINodes. 6277 if (PHINode *P = dyn_cast<PHINode>(it)) { 6278 // Check that the PHI is a reduction PHI. 6279 if (P->getNumIncomingValues() != 2) 6280 return Changed; 6281 6282 // Try to match and vectorize a horizontal reduction. 6283 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6284 TTI)) { 6285 Changed = true; 6286 it = BB->begin(); 6287 e = BB->end(); 6288 continue; 6289 } 6290 continue; 6291 } 6292 6293 // Ran into an instruction without users, like terminator, or function call 6294 // with ignored return value, store. Ignore unused instructions (basing on 6295 // instruction type, except for CallInst and InvokeInst). 6296 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6297 isa<InvokeInst>(it))) { 6298 KeyNodes.insert(&*it); 6299 bool OpsChanged = false; 6300 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6301 for (auto *V : it->operand_values()) { 6302 // Try to match and vectorize a horizontal reduction. 6303 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6304 } 6305 } 6306 // Start vectorization of post-process list of instructions from the 6307 // top-tree instructions to try to vectorize as many instructions as 6308 // possible. 6309 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6310 if (OpsChanged) { 6311 // We would like to start over since some instructions are deleted 6312 // and the iterator may become invalid value. 6313 Changed = true; 6314 it = BB->begin(); 6315 e = BB->end(); 6316 continue; 6317 } 6318 } 6319 6320 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6321 isa<InsertValueInst>(it)) 6322 PostProcessInstructions.push_back(&*it); 6323 6324 } 6325 6326 return Changed; 6327 } 6328 6329 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6330 auto Changed = false; 6331 for (auto &Entry : GEPs) { 6332 // If the getelementptr list has fewer than two elements, there's nothing 6333 // to do. 6334 if (Entry.second.size() < 2) 6335 continue; 6336 6337 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6338 << Entry.second.size() << ".\n"); 6339 6340 // We process the getelementptr list in chunks of 16 (like we do for 6341 // stores) to minimize compile-time. 6342 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6343 auto Len = std::min<unsigned>(BE - BI, 16); 6344 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6345 6346 // Initialize a set a candidate getelementptrs. Note that we use a 6347 // SetVector here to preserve program order. If the index computations 6348 // are vectorizable and begin with loads, we want to minimize the chance 6349 // of having to reorder them later. 6350 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6351 6352 // Some of the candidates may have already been vectorized after we 6353 // initially collected them. If so, the WeakTrackingVHs will have 6354 // nullified the 6355 // values, so remove them from the set of candidates. 6356 Candidates.remove(nullptr); 6357 6358 // Remove from the set of candidates all pairs of getelementptrs with 6359 // constant differences. Such getelementptrs are likely not good 6360 // candidates for vectorization in a bottom-up phase since one can be 6361 // computed from the other. We also ensure all candidate getelementptr 6362 // indices are unique. 6363 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6364 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6365 if (!Candidates.count(GEPI)) 6366 continue; 6367 auto *SCEVI = SE->getSCEV(GEPList[I]); 6368 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6369 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6370 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6371 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6372 Candidates.remove(GEPList[I]); 6373 Candidates.remove(GEPList[J]); 6374 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6375 Candidates.remove(GEPList[J]); 6376 } 6377 } 6378 } 6379 6380 // We break out of the above computation as soon as we know there are 6381 // fewer than two candidates remaining. 6382 if (Candidates.size() < 2) 6383 continue; 6384 6385 // Add the single, non-constant index of each candidate to the bundle. We 6386 // ensured the indices met these constraints when we originally collected 6387 // the getelementptrs. 6388 SmallVector<Value *, 16> Bundle(Candidates.size()); 6389 auto BundleIndex = 0u; 6390 for (auto *V : Candidates) { 6391 auto *GEP = cast<GetElementPtrInst>(V); 6392 auto *GEPIdx = GEP->idx_begin()->get(); 6393 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6394 Bundle[BundleIndex++] = GEPIdx; 6395 } 6396 6397 // Try and vectorize the indices. We are currently only interested in 6398 // gather-like cases of the form: 6399 // 6400 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6401 // 6402 // where the loads of "a", the loads of "b", and the subtractions can be 6403 // performed in parallel. It's likely that detecting this pattern in a 6404 // bottom-up phase will be simpler and less costly than building a 6405 // full-blown top-down phase beginning at the consecutive loads. 6406 Changed |= tryToVectorizeList(Bundle, R); 6407 } 6408 } 6409 return Changed; 6410 } 6411 6412 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6413 bool Changed = false; 6414 // Attempt to sort and vectorize each of the store-groups. 6415 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6416 ++it) { 6417 if (it->second.size() < 2) 6418 continue; 6419 6420 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6421 << it->second.size() << ".\n"); 6422 6423 // Process the stores in chunks of 16. 6424 // TODO: The limit of 16 inhibits greater vectorization factors. 6425 // For example, AVX2 supports v32i8. Increasing this limit, however, 6426 // may cause a significant compile-time increase. 6427 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 6428 unsigned Len = std::min<unsigned>(CE - CI, 16); 6429 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6430 } 6431 } 6432 return Changed; 6433 } 6434 6435 char SLPVectorizer::ID = 0; 6436 6437 static const char lv_name[] = "SLP Vectorizer"; 6438 6439 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6440 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6441 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6442 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6443 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6444 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6445 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6446 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6447 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6448 6449 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6450