1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 ArrayRef<Value *> UserIgnoreLst = None); 899 900 /// Builds external uses of the vectorized scalars, i.e. the list of 901 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 902 /// ExternallyUsedValues contains additional list of external uses to handle 903 /// vectorization of reductions. 904 void 905 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 906 907 /// Clear the internal data structures that are created by 'buildTree'. 908 void deleteTree() { 909 VectorizableTree.clear(); 910 ScalarToTreeEntry.clear(); 911 MustGather.clear(); 912 ExternalUses.clear(); 913 for (auto &Iter : BlocksSchedules) { 914 BlockScheduling *BS = Iter.second.get(); 915 BS->clear(); 916 } 917 MinBWs.clear(); 918 InstrElementSize.clear(); 919 } 920 921 unsigned getTreeSize() const { return VectorizableTree.size(); } 922 923 /// Perform LICM and CSE on the newly generated gather sequences. 924 void optimizeGatherSequence(); 925 926 /// Checks if the specified gather tree entry \p TE can be represented as a 927 /// shuffled vector entry + (possibly) permutation with other gathers. It 928 /// implements the checks only for possibly ordered scalars (Loads, 929 /// ExtractElement, ExtractValue), which can be part of the graph. 930 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 931 932 /// Sort loads into increasing pointers offsets to allow greater clustering. 933 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 934 935 /// Gets reordering data for the given tree entry. If the entry is vectorized 936 /// - just return ReorderIndices, otherwise check if the scalars can be 937 /// reordered and return the most optimal order. 938 /// \param TopToBottom If true, include the order of vectorized stores and 939 /// insertelement nodes, otherwise skip them. 940 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 941 942 /// Reorders the current graph to the most profitable order starting from the 943 /// root node to the leaf nodes. The best order is chosen only from the nodes 944 /// of the same size (vectorization factor). Smaller nodes are considered 945 /// parts of subgraph with smaller VF and they are reordered independently. We 946 /// can make it because we still need to extend smaller nodes to the wider VF 947 /// and we can merge reordering shuffles with the widening shuffles. 948 void reorderTopToBottom(); 949 950 /// Reorders the current graph to the most profitable order starting from 951 /// leaves to the root. It allows to rotate small subgraphs and reduce the 952 /// number of reshuffles if the leaf nodes use the same order. In this case we 953 /// can merge the orders and just shuffle user node instead of shuffling its 954 /// operands. Plus, even the leaf nodes have different orders, it allows to 955 /// sink reordering in the graph closer to the root node and merge it later 956 /// during analysis. 957 void reorderBottomToTop(bool IgnoreReorder = false); 958 959 /// \return The vector element size in bits to use when vectorizing the 960 /// expression tree ending at \p V. If V is a store, the size is the width of 961 /// the stored value. Otherwise, the size is the width of the largest loaded 962 /// value reaching V. This method is used by the vectorizer to calculate 963 /// vectorization factors. 964 unsigned getVectorElementSize(Value *V); 965 966 /// Compute the minimum type sizes required to represent the entries in a 967 /// vectorizable tree. 968 void computeMinimumValueSizes(); 969 970 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 971 unsigned getMaxVecRegSize() const { 972 return MaxVecRegSize; 973 } 974 975 // \returns minimum vector register size as set by cl::opt. 976 unsigned getMinVecRegSize() const { 977 return MinVecRegSize; 978 } 979 980 unsigned getMinVF(unsigned Sz) const { 981 return std::max(2U, getMinVecRegSize() / Sz); 982 } 983 984 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 985 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 986 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 987 return MaxVF ? MaxVF : UINT_MAX; 988 } 989 990 /// Check if homogeneous aggregate is isomorphic to some VectorType. 991 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 992 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 993 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 994 /// 995 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 996 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 997 998 /// \returns True if the VectorizableTree is both tiny and not fully 999 /// vectorizable. We do not vectorize such trees. 1000 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1001 1002 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1003 /// can be load combined in the backend. Load combining may not be allowed in 1004 /// the IR optimizer, so we do not want to alter the pattern. For example, 1005 /// partially transforming a scalar bswap() pattern into vector code is 1006 /// effectively impossible for the backend to undo. 1007 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1008 /// may not be necessary. 1009 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1010 1011 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1012 /// can be load combined in the backend. Load combining may not be allowed in 1013 /// the IR optimizer, so we do not want to alter the pattern. For example, 1014 /// partially transforming a scalar bswap() pattern into vector code is 1015 /// effectively impossible for the backend to undo. 1016 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1017 /// may not be necessary. 1018 bool isLoadCombineCandidate() const; 1019 1020 OptimizationRemarkEmitter *getORE() { return ORE; } 1021 1022 /// This structure holds any data we need about the edges being traversed 1023 /// during buildTree_rec(). We keep track of: 1024 /// (i) the user TreeEntry index, and 1025 /// (ii) the index of the edge. 1026 struct EdgeInfo { 1027 EdgeInfo() = default; 1028 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1029 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1030 /// The user TreeEntry. 1031 TreeEntry *UserTE = nullptr; 1032 /// The operand index of the use. 1033 unsigned EdgeIdx = UINT_MAX; 1034 #ifndef NDEBUG 1035 friend inline raw_ostream &operator<<(raw_ostream &OS, 1036 const BoUpSLP::EdgeInfo &EI) { 1037 EI.dump(OS); 1038 return OS; 1039 } 1040 /// Debug print. 1041 void dump(raw_ostream &OS) const { 1042 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1043 << " EdgeIdx:" << EdgeIdx << "}"; 1044 } 1045 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1046 #endif 1047 }; 1048 1049 /// A helper class used for scoring candidates for two consecutive lanes. 1050 class LookAheadHeuristics { 1051 const DataLayout &DL; 1052 ScalarEvolution &SE; 1053 const BoUpSLP &R; 1054 int NumLanes; // Total number of lanes (aka vectorization factor). 1055 int MaxLevel; // The maximum recursion depth for accumulating score. 1056 1057 public: 1058 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1059 const BoUpSLP &R, int NumLanes, int MaxLevel) 1060 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1061 1062 // The hard-coded scores listed here are not very important, though it shall 1063 // be higher for better matches to improve the resulting cost. When 1064 // computing the scores of matching one sub-tree with another, we are 1065 // basically counting the number of values that are matching. So even if all 1066 // scores are set to 1, we would still get a decent matching result. 1067 // However, sometimes we have to break ties. For example we may have to 1068 // choose between matching loads vs matching opcodes. This is what these 1069 // scores are helping us with: they provide the order of preference. Also, 1070 // this is important if the scalar is externally used or used in another 1071 // tree entry node in the different lane. 1072 1073 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1074 static const int ScoreConsecutiveLoads = 4; 1075 /// The same load multiple times. This should have a better score than 1076 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1077 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1078 /// a vector load and 1.0 for a broadcast. 1079 static const int ScoreSplatLoads = 3; 1080 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1081 static const int ScoreReversedLoads = 3; 1082 /// ExtractElementInst from same vector and consecutive indexes. 1083 static const int ScoreConsecutiveExtracts = 4; 1084 /// ExtractElementInst from same vector and reversed indices. 1085 static const int ScoreReversedExtracts = 3; 1086 /// Constants. 1087 static const int ScoreConstants = 2; 1088 /// Instructions with the same opcode. 1089 static const int ScoreSameOpcode = 2; 1090 /// Instructions with alt opcodes (e.g, add + sub). 1091 static const int ScoreAltOpcodes = 1; 1092 /// Identical instructions (a.k.a. splat or broadcast). 1093 static const int ScoreSplat = 1; 1094 /// Matching with an undef is preferable to failing. 1095 static const int ScoreUndef = 1; 1096 /// Score for failing to find a decent match. 1097 static const int ScoreFail = 0; 1098 /// Score if all users are vectorized. 1099 static const int ScoreAllUserVectorized = 1; 1100 1101 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1102 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1103 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1104 /// MainAltOps. 1105 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1106 ArrayRef<Value *> MainAltOps) const { 1107 if (V1 == V2) { 1108 if (isa<LoadInst>(V1)) { 1109 // Retruns true if the users of V1 and V2 won't need to be extracted. 1110 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1111 // Bail out if we have too many uses to save compilation time. 1112 static constexpr unsigned Limit = 8; 1113 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1114 return false; 1115 1116 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1117 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1118 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1119 }); 1120 }; 1121 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1122 }; 1123 // A broadcast of a load can be cheaper on some targets. 1124 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1125 ElementCount::getFixed(NumLanes)) && 1126 ((int)V1->getNumUses() == NumLanes || 1127 AllUsersAreInternal(V1, V2))) 1128 return LookAheadHeuristics::ScoreSplatLoads; 1129 } 1130 return LookAheadHeuristics::ScoreSplat; 1131 } 1132 1133 auto *LI1 = dyn_cast<LoadInst>(V1); 1134 auto *LI2 = dyn_cast<LoadInst>(V2); 1135 if (LI1 && LI2) { 1136 if (LI1->getParent() != LI2->getParent()) 1137 return LookAheadHeuristics::ScoreFail; 1138 1139 Optional<int> Dist = getPointersDiff( 1140 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1141 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1142 if (!Dist || *Dist == 0) 1143 return LookAheadHeuristics::ScoreFail; 1144 // The distance is too large - still may be profitable to use masked 1145 // loads/gathers. 1146 if (std::abs(*Dist) > NumLanes / 2) 1147 return LookAheadHeuristics::ScoreAltOpcodes; 1148 // This still will detect consecutive loads, but we might have "holes" 1149 // in some cases. It is ok for non-power-2 vectorization and may produce 1150 // better results. It should not affect current vectorization. 1151 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1152 : LookAheadHeuristics::ScoreReversedLoads; 1153 } 1154 1155 auto *C1 = dyn_cast<Constant>(V1); 1156 auto *C2 = dyn_cast<Constant>(V2); 1157 if (C1 && C2) 1158 return LookAheadHeuristics::ScoreConstants; 1159 1160 // Extracts from consecutive indexes of the same vector better score as 1161 // the extracts could be optimized away. 1162 Value *EV1; 1163 ConstantInt *Ex1Idx; 1164 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1165 // Undefs are always profitable for extractelements. 1166 if (isa<UndefValue>(V2)) 1167 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1168 Value *EV2 = nullptr; 1169 ConstantInt *Ex2Idx = nullptr; 1170 if (match(V2, 1171 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1172 m_Undef())))) { 1173 // Undefs are always profitable for extractelements. 1174 if (!Ex2Idx) 1175 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1176 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1177 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1178 if (EV2 == EV1) { 1179 int Idx1 = Ex1Idx->getZExtValue(); 1180 int Idx2 = Ex2Idx->getZExtValue(); 1181 int Dist = Idx2 - Idx1; 1182 // The distance is too large - still may be profitable to use 1183 // shuffles. 1184 if (std::abs(Dist) == 0) 1185 return LookAheadHeuristics::ScoreSplat; 1186 if (std::abs(Dist) > NumLanes / 2) 1187 return LookAheadHeuristics::ScoreSameOpcode; 1188 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1189 : LookAheadHeuristics::ScoreReversedExtracts; 1190 } 1191 return LookAheadHeuristics::ScoreAltOpcodes; 1192 } 1193 return LookAheadHeuristics::ScoreFail; 1194 } 1195 1196 auto *I1 = dyn_cast<Instruction>(V1); 1197 auto *I2 = dyn_cast<Instruction>(V2); 1198 if (I1 && I2) { 1199 if (I1->getParent() != I2->getParent()) 1200 return LookAheadHeuristics::ScoreFail; 1201 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1202 Ops.push_back(I1); 1203 Ops.push_back(I2); 1204 InstructionsState S = getSameOpcode(Ops); 1205 // Note: Only consider instructions with <= 2 operands to avoid 1206 // complexity explosion. 1207 if (S.getOpcode() && 1208 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1209 !S.isAltShuffle()) && 1210 all_of(Ops, [&S](Value *V) { 1211 return cast<Instruction>(V)->getNumOperands() == 1212 S.MainOp->getNumOperands(); 1213 })) 1214 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1215 : LookAheadHeuristics::ScoreSameOpcode; 1216 } 1217 1218 if (isa<UndefValue>(V2)) 1219 return LookAheadHeuristics::ScoreUndef; 1220 1221 return LookAheadHeuristics::ScoreFail; 1222 } 1223 1224 /// Go through the operands of \p LHS and \p RHS recursively until 1225 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1226 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1227 /// of \p U1 and \p U2), except at the beginning of the recursion where 1228 /// these are set to nullptr. 1229 /// 1230 /// For example: 1231 /// \verbatim 1232 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1233 /// \ / \ / \ / \ / 1234 /// + + + + 1235 /// G1 G2 G3 G4 1236 /// \endverbatim 1237 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1238 /// each level recursively, accumulating the score. It starts from matching 1239 /// the additions at level 0, then moves on to the loads (level 1). The 1240 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1241 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1242 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1243 /// Please note that the order of the operands does not matter, as we 1244 /// evaluate the score of all profitable combinations of operands. In 1245 /// other words the score of G1 and G4 is the same as G1 and G2. This 1246 /// heuristic is based on ideas described in: 1247 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1248 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1249 /// Luís F. W. Góes 1250 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1251 Instruction *U2, int CurrLevel, 1252 ArrayRef<Value *> MainAltOps) const { 1253 1254 // Get the shallow score of V1 and V2. 1255 int ShallowScoreAtThisLevel = 1256 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1257 1258 // If reached MaxLevel, 1259 // or if V1 and V2 are not instructions, 1260 // or if they are SPLAT, 1261 // or if they are not consecutive, 1262 // or if profitable to vectorize loads or extractelements, early return 1263 // the current cost. 1264 auto *I1 = dyn_cast<Instruction>(LHS); 1265 auto *I2 = dyn_cast<Instruction>(RHS); 1266 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1267 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1268 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1269 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1270 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1271 ShallowScoreAtThisLevel)) 1272 return ShallowScoreAtThisLevel; 1273 assert(I1 && I2 && "Should have early exited."); 1274 1275 // Contains the I2 operand indexes that got matched with I1 operands. 1276 SmallSet<unsigned, 4> Op2Used; 1277 1278 // Recursion towards the operands of I1 and I2. We are trying all possible 1279 // operand pairs, and keeping track of the best score. 1280 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1281 OpIdx1 != NumOperands1; ++OpIdx1) { 1282 // Try to pair op1I with the best operand of I2. 1283 int MaxTmpScore = 0; 1284 unsigned MaxOpIdx2 = 0; 1285 bool FoundBest = false; 1286 // If I2 is commutative try all combinations. 1287 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1288 unsigned ToIdx = isCommutative(I2) 1289 ? I2->getNumOperands() 1290 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1291 assert(FromIdx <= ToIdx && "Bad index"); 1292 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1293 // Skip operands already paired with OpIdx1. 1294 if (Op2Used.count(OpIdx2)) 1295 continue; 1296 // Recursively calculate the cost at each level 1297 int TmpScore = 1298 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1299 I1, I2, CurrLevel + 1, None); 1300 // Look for the best score. 1301 if (TmpScore > LookAheadHeuristics::ScoreFail && 1302 TmpScore > MaxTmpScore) { 1303 MaxTmpScore = TmpScore; 1304 MaxOpIdx2 = OpIdx2; 1305 FoundBest = true; 1306 } 1307 } 1308 if (FoundBest) { 1309 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1310 Op2Used.insert(MaxOpIdx2); 1311 ShallowScoreAtThisLevel += MaxTmpScore; 1312 } 1313 } 1314 return ShallowScoreAtThisLevel; 1315 } 1316 }; 1317 /// A helper data structure to hold the operands of a vector of instructions. 1318 /// This supports a fixed vector length for all operand vectors. 1319 class VLOperands { 1320 /// For each operand we need (i) the value, and (ii) the opcode that it 1321 /// would be attached to if the expression was in a left-linearized form. 1322 /// This is required to avoid illegal operand reordering. 1323 /// For example: 1324 /// \verbatim 1325 /// 0 Op1 1326 /// |/ 1327 /// Op1 Op2 Linearized + Op2 1328 /// \ / ----------> |/ 1329 /// - - 1330 /// 1331 /// Op1 - Op2 (0 + Op1) - Op2 1332 /// \endverbatim 1333 /// 1334 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1335 /// 1336 /// Another way to think of this is to track all the operations across the 1337 /// path from the operand all the way to the root of the tree and to 1338 /// calculate the operation that corresponds to this path. For example, the 1339 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1340 /// corresponding operation is a '-' (which matches the one in the 1341 /// linearized tree, as shown above). 1342 /// 1343 /// For lack of a better term, we refer to this operation as Accumulated 1344 /// Path Operation (APO). 1345 struct OperandData { 1346 OperandData() = default; 1347 OperandData(Value *V, bool APO, bool IsUsed) 1348 : V(V), APO(APO), IsUsed(IsUsed) {} 1349 /// The operand value. 1350 Value *V = nullptr; 1351 /// TreeEntries only allow a single opcode, or an alternate sequence of 1352 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1353 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1354 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1355 /// (e.g., Add/Mul) 1356 bool APO = false; 1357 /// Helper data for the reordering function. 1358 bool IsUsed = false; 1359 }; 1360 1361 /// During operand reordering, we are trying to select the operand at lane 1362 /// that matches best with the operand at the neighboring lane. Our 1363 /// selection is based on the type of value we are looking for. For example, 1364 /// if the neighboring lane has a load, we need to look for a load that is 1365 /// accessing a consecutive address. These strategies are summarized in the 1366 /// 'ReorderingMode' enumerator. 1367 enum class ReorderingMode { 1368 Load, ///< Matching loads to consecutive memory addresses 1369 Opcode, ///< Matching instructions based on opcode (same or alternate) 1370 Constant, ///< Matching constants 1371 Splat, ///< Matching the same instruction multiple times (broadcast) 1372 Failed, ///< We failed to create a vectorizable group 1373 }; 1374 1375 using OperandDataVec = SmallVector<OperandData, 2>; 1376 1377 /// A vector of operand vectors. 1378 SmallVector<OperandDataVec, 4> OpsVec; 1379 1380 const DataLayout &DL; 1381 ScalarEvolution &SE; 1382 const BoUpSLP &R; 1383 1384 /// \returns the operand data at \p OpIdx and \p Lane. 1385 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1386 return OpsVec[OpIdx][Lane]; 1387 } 1388 1389 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1390 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1391 return OpsVec[OpIdx][Lane]; 1392 } 1393 1394 /// Clears the used flag for all entries. 1395 void clearUsed() { 1396 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1397 OpIdx != NumOperands; ++OpIdx) 1398 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1399 ++Lane) 1400 OpsVec[OpIdx][Lane].IsUsed = false; 1401 } 1402 1403 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1404 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1405 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1406 } 1407 1408 /// \param Lane lane of the operands under analysis. 1409 /// \param OpIdx operand index in \p Lane lane we're looking the best 1410 /// candidate for. 1411 /// \param Idx operand index of the current candidate value. 1412 /// \returns The additional score due to possible broadcasting of the 1413 /// elements in the lane. It is more profitable to have power-of-2 unique 1414 /// elements in the lane, it will be vectorized with higher probability 1415 /// after removing duplicates. Currently the SLP vectorizer supports only 1416 /// vectorization of the power-of-2 number of unique scalars. 1417 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1418 Value *IdxLaneV = getData(Idx, Lane).V; 1419 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1420 return 0; 1421 SmallPtrSet<Value *, 4> Uniques; 1422 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1423 if (Ln == Lane) 1424 continue; 1425 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1426 if (!isa<Instruction>(OpIdxLnV)) 1427 return 0; 1428 Uniques.insert(OpIdxLnV); 1429 } 1430 int UniquesCount = Uniques.size(); 1431 int UniquesCntWithIdxLaneV = 1432 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1433 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1434 int UniquesCntWithOpIdxLaneV = 1435 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1436 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1437 return 0; 1438 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1439 UniquesCntWithOpIdxLaneV) - 1440 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1441 } 1442 1443 /// \param Lane lane of the operands under analysis. 1444 /// \param OpIdx operand index in \p Lane lane we're looking the best 1445 /// candidate for. 1446 /// \param Idx operand index of the current candidate value. 1447 /// \returns The additional score for the scalar which users are all 1448 /// vectorized. 1449 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1450 Value *IdxLaneV = getData(Idx, Lane).V; 1451 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1452 // Do not care about number of uses for vector-like instructions 1453 // (extractelement/extractvalue with constant indices), they are extracts 1454 // themselves and already externally used. Vectorization of such 1455 // instructions does not add extra extractelement instruction, just may 1456 // remove it. 1457 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1458 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1459 return LookAheadHeuristics::ScoreAllUserVectorized; 1460 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1461 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1462 return 0; 1463 return R.areAllUsersVectorized(IdxLaneI, None) 1464 ? LookAheadHeuristics::ScoreAllUserVectorized 1465 : 0; 1466 } 1467 1468 /// Score scaling factor for fully compatible instructions but with 1469 /// different number of external uses. Allows better selection of the 1470 /// instructions with less external uses. 1471 static const int ScoreScaleFactor = 10; 1472 1473 /// \Returns the look-ahead score, which tells us how much the sub-trees 1474 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1475 /// score. This helps break ties in an informed way when we cannot decide on 1476 /// the order of the operands by just considering the immediate 1477 /// predecessors. 1478 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1479 int Lane, unsigned OpIdx, unsigned Idx, 1480 bool &IsUsed) { 1481 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1482 LookAheadMaxDepth); 1483 // Keep track of the instruction stack as we recurse into the operands 1484 // during the look-ahead score exploration. 1485 int Score = 1486 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1487 /*CurrLevel=*/1, MainAltOps); 1488 if (Score) { 1489 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1490 if (Score <= -SplatScore) { 1491 // Set the minimum score for splat-like sequence to avoid setting 1492 // failed state. 1493 Score = 1; 1494 } else { 1495 Score += SplatScore; 1496 // Scale score to see the difference between different operands 1497 // and similar operands but all vectorized/not all vectorized 1498 // uses. It does not affect actual selection of the best 1499 // compatible operand in general, just allows to select the 1500 // operand with all vectorized uses. 1501 Score *= ScoreScaleFactor; 1502 Score += getExternalUseScore(Lane, OpIdx, Idx); 1503 IsUsed = true; 1504 } 1505 } 1506 return Score; 1507 } 1508 1509 /// Best defined scores per lanes between the passes. Used to choose the 1510 /// best operand (with the highest score) between the passes. 1511 /// The key - {Operand Index, Lane}. 1512 /// The value - the best score between the passes for the lane and the 1513 /// operand. 1514 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1515 BestScoresPerLanes; 1516 1517 // Search all operands in Ops[*][Lane] for the one that matches best 1518 // Ops[OpIdx][LastLane] and return its opreand index. 1519 // If no good match can be found, return None. 1520 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1521 ArrayRef<ReorderingMode> ReorderingModes, 1522 ArrayRef<Value *> MainAltOps) { 1523 unsigned NumOperands = getNumOperands(); 1524 1525 // The operand of the previous lane at OpIdx. 1526 Value *OpLastLane = getData(OpIdx, LastLane).V; 1527 1528 // Our strategy mode for OpIdx. 1529 ReorderingMode RMode = ReorderingModes[OpIdx]; 1530 if (RMode == ReorderingMode::Failed) 1531 return None; 1532 1533 // The linearized opcode of the operand at OpIdx, Lane. 1534 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1535 1536 // The best operand index and its score. 1537 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1538 // are using the score to differentiate between the two. 1539 struct BestOpData { 1540 Optional<unsigned> Idx = None; 1541 unsigned Score = 0; 1542 } BestOp; 1543 BestOp.Score = 1544 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1545 .first->second; 1546 1547 // Track if the operand must be marked as used. If the operand is set to 1548 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1549 // want to reestimate the operands again on the following iterations). 1550 bool IsUsed = 1551 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1552 // Iterate through all unused operands and look for the best. 1553 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1554 // Get the operand at Idx and Lane. 1555 OperandData &OpData = getData(Idx, Lane); 1556 Value *Op = OpData.V; 1557 bool OpAPO = OpData.APO; 1558 1559 // Skip already selected operands. 1560 if (OpData.IsUsed) 1561 continue; 1562 1563 // Skip if we are trying to move the operand to a position with a 1564 // different opcode in the linearized tree form. This would break the 1565 // semantics. 1566 if (OpAPO != OpIdxAPO) 1567 continue; 1568 1569 // Look for an operand that matches the current mode. 1570 switch (RMode) { 1571 case ReorderingMode::Load: 1572 case ReorderingMode::Constant: 1573 case ReorderingMode::Opcode: { 1574 bool LeftToRight = Lane > LastLane; 1575 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1576 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1577 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1578 OpIdx, Idx, IsUsed); 1579 if (Score > static_cast<int>(BestOp.Score)) { 1580 BestOp.Idx = Idx; 1581 BestOp.Score = Score; 1582 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1583 } 1584 break; 1585 } 1586 case ReorderingMode::Splat: 1587 if (Op == OpLastLane) 1588 BestOp.Idx = Idx; 1589 break; 1590 case ReorderingMode::Failed: 1591 llvm_unreachable("Not expected Failed reordering mode."); 1592 } 1593 } 1594 1595 if (BestOp.Idx) { 1596 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1597 return BestOp.Idx; 1598 } 1599 // If we could not find a good match return None. 1600 return None; 1601 } 1602 1603 /// Helper for reorderOperandVecs. 1604 /// \returns the lane that we should start reordering from. This is the one 1605 /// which has the least number of operands that can freely move about or 1606 /// less profitable because it already has the most optimal set of operands. 1607 unsigned getBestLaneToStartReordering() const { 1608 unsigned Min = UINT_MAX; 1609 unsigned SameOpNumber = 0; 1610 // std::pair<unsigned, unsigned> is used to implement a simple voting 1611 // algorithm and choose the lane with the least number of operands that 1612 // can freely move about or less profitable because it already has the 1613 // most optimal set of operands. The first unsigned is a counter for 1614 // voting, the second unsigned is the counter of lanes with instructions 1615 // with same/alternate opcodes and same parent basic block. 1616 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1617 // Try to be closer to the original results, if we have multiple lanes 1618 // with same cost. If 2 lanes have the same cost, use the one with the 1619 // lowest index. 1620 for (int I = getNumLanes(); I > 0; --I) { 1621 unsigned Lane = I - 1; 1622 OperandsOrderData NumFreeOpsHash = 1623 getMaxNumOperandsThatCanBeReordered(Lane); 1624 // Compare the number of operands that can move and choose the one with 1625 // the least number. 1626 if (NumFreeOpsHash.NumOfAPOs < Min) { 1627 Min = NumFreeOpsHash.NumOfAPOs; 1628 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1629 HashMap.clear(); 1630 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1631 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1632 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1633 // Select the most optimal lane in terms of number of operands that 1634 // should be moved around. 1635 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1636 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1637 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1638 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1639 auto It = HashMap.find(NumFreeOpsHash.Hash); 1640 if (It == HashMap.end()) 1641 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1642 else 1643 ++It->second.first; 1644 } 1645 } 1646 // Select the lane with the minimum counter. 1647 unsigned BestLane = 0; 1648 unsigned CntMin = UINT_MAX; 1649 for (const auto &Data : reverse(HashMap)) { 1650 if (Data.second.first < CntMin) { 1651 CntMin = Data.second.first; 1652 BestLane = Data.second.second; 1653 } 1654 } 1655 return BestLane; 1656 } 1657 1658 /// Data structure that helps to reorder operands. 1659 struct OperandsOrderData { 1660 /// The best number of operands with the same APOs, which can be 1661 /// reordered. 1662 unsigned NumOfAPOs = UINT_MAX; 1663 /// Number of operands with the same/alternate instruction opcode and 1664 /// parent. 1665 unsigned NumOpsWithSameOpcodeParent = 0; 1666 /// Hash for the actual operands ordering. 1667 /// Used to count operands, actually their position id and opcode 1668 /// value. It is used in the voting mechanism to find the lane with the 1669 /// least number of operands that can freely move about or less profitable 1670 /// because it already has the most optimal set of operands. Can be 1671 /// replaced with SmallVector<unsigned> instead but hash code is faster 1672 /// and requires less memory. 1673 unsigned Hash = 0; 1674 }; 1675 /// \returns the maximum number of operands that are allowed to be reordered 1676 /// for \p Lane and the number of compatible instructions(with the same 1677 /// parent/opcode). This is used as a heuristic for selecting the first lane 1678 /// to start operand reordering. 1679 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1680 unsigned CntTrue = 0; 1681 unsigned NumOperands = getNumOperands(); 1682 // Operands with the same APO can be reordered. We therefore need to count 1683 // how many of them we have for each APO, like this: Cnt[APO] = x. 1684 // Since we only have two APOs, namely true and false, we can avoid using 1685 // a map. Instead we can simply count the number of operands that 1686 // correspond to one of them (in this case the 'true' APO), and calculate 1687 // the other by subtracting it from the total number of operands. 1688 // Operands with the same instruction opcode and parent are more 1689 // profitable since we don't need to move them in many cases, with a high 1690 // probability such lane already can be vectorized effectively. 1691 bool AllUndefs = true; 1692 unsigned NumOpsWithSameOpcodeParent = 0; 1693 Instruction *OpcodeI = nullptr; 1694 BasicBlock *Parent = nullptr; 1695 unsigned Hash = 0; 1696 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1697 const OperandData &OpData = getData(OpIdx, Lane); 1698 if (OpData.APO) 1699 ++CntTrue; 1700 // Use Boyer-Moore majority voting for finding the majority opcode and 1701 // the number of times it occurs. 1702 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1703 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1704 I->getParent() != Parent) { 1705 if (NumOpsWithSameOpcodeParent == 0) { 1706 NumOpsWithSameOpcodeParent = 1; 1707 OpcodeI = I; 1708 Parent = I->getParent(); 1709 } else { 1710 --NumOpsWithSameOpcodeParent; 1711 } 1712 } else { 1713 ++NumOpsWithSameOpcodeParent; 1714 } 1715 } 1716 Hash = hash_combine( 1717 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1718 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1719 } 1720 if (AllUndefs) 1721 return {}; 1722 OperandsOrderData Data; 1723 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1724 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1725 Data.Hash = Hash; 1726 return Data; 1727 } 1728 1729 /// Go through the instructions in VL and append their operands. 1730 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1731 assert(!VL.empty() && "Bad VL"); 1732 assert((empty() || VL.size() == getNumLanes()) && 1733 "Expected same number of lanes"); 1734 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1735 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1736 OpsVec.resize(NumOperands); 1737 unsigned NumLanes = VL.size(); 1738 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1739 OpsVec[OpIdx].resize(NumLanes); 1740 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1741 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1742 // Our tree has just 3 nodes: the root and two operands. 1743 // It is therefore trivial to get the APO. We only need to check the 1744 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1745 // RHS operand. The LHS operand of both add and sub is never attached 1746 // to an inversese operation in the linearized form, therefore its APO 1747 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1748 1749 // Since operand reordering is performed on groups of commutative 1750 // operations or alternating sequences (e.g., +, -), we can safely 1751 // tell the inverse operations by checking commutativity. 1752 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1753 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1754 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1755 APO, false}; 1756 } 1757 } 1758 } 1759 1760 /// \returns the number of operands. 1761 unsigned getNumOperands() const { return OpsVec.size(); } 1762 1763 /// \returns the number of lanes. 1764 unsigned getNumLanes() const { return OpsVec[0].size(); } 1765 1766 /// \returns the operand value at \p OpIdx and \p Lane. 1767 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1768 return getData(OpIdx, Lane).V; 1769 } 1770 1771 /// \returns true if the data structure is empty. 1772 bool empty() const { return OpsVec.empty(); } 1773 1774 /// Clears the data. 1775 void clear() { OpsVec.clear(); } 1776 1777 /// \Returns true if there are enough operands identical to \p Op to fill 1778 /// the whole vector. 1779 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1780 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1781 bool OpAPO = getData(OpIdx, Lane).APO; 1782 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1783 if (Ln == Lane) 1784 continue; 1785 // This is set to true if we found a candidate for broadcast at Lane. 1786 bool FoundCandidate = false; 1787 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1788 OperandData &Data = getData(OpI, Ln); 1789 if (Data.APO != OpAPO || Data.IsUsed) 1790 continue; 1791 if (Data.V == Op) { 1792 FoundCandidate = true; 1793 Data.IsUsed = true; 1794 break; 1795 } 1796 } 1797 if (!FoundCandidate) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 public: 1804 /// Initialize with all the operands of the instruction vector \p RootVL. 1805 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1806 ScalarEvolution &SE, const BoUpSLP &R) 1807 : DL(DL), SE(SE), R(R) { 1808 // Append all the operands of RootVL. 1809 appendOperandsOfVL(RootVL); 1810 } 1811 1812 /// \Returns a value vector with the operands across all lanes for the 1813 /// opearnd at \p OpIdx. 1814 ValueList getVL(unsigned OpIdx) const { 1815 ValueList OpVL(OpsVec[OpIdx].size()); 1816 assert(OpsVec[OpIdx].size() == getNumLanes() && 1817 "Expected same num of lanes across all operands"); 1818 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1819 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1820 return OpVL; 1821 } 1822 1823 // Performs operand reordering for 2 or more operands. 1824 // The original operands are in OrigOps[OpIdx][Lane]. 1825 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1826 void reorder() { 1827 unsigned NumOperands = getNumOperands(); 1828 unsigned NumLanes = getNumLanes(); 1829 // Each operand has its own mode. We are using this mode to help us select 1830 // the instructions for each lane, so that they match best with the ones 1831 // we have selected so far. 1832 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1833 1834 // This is a greedy single-pass algorithm. We are going over each lane 1835 // once and deciding on the best order right away with no back-tracking. 1836 // However, in order to increase its effectiveness, we start with the lane 1837 // that has operands that can move the least. For example, given the 1838 // following lanes: 1839 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1840 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1841 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1842 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1843 // we will start at Lane 1, since the operands of the subtraction cannot 1844 // be reordered. Then we will visit the rest of the lanes in a circular 1845 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1846 1847 // Find the first lane that we will start our search from. 1848 unsigned FirstLane = getBestLaneToStartReordering(); 1849 1850 // Initialize the modes. 1851 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1852 Value *OpLane0 = getValue(OpIdx, FirstLane); 1853 // Keep track if we have instructions with all the same opcode on one 1854 // side. 1855 if (isa<LoadInst>(OpLane0)) 1856 ReorderingModes[OpIdx] = ReorderingMode::Load; 1857 else if (isa<Instruction>(OpLane0)) { 1858 // Check if OpLane0 should be broadcast. 1859 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1861 else 1862 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1863 } 1864 else if (isa<Constant>(OpLane0)) 1865 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1866 else if (isa<Argument>(OpLane0)) 1867 // Our best hope is a Splat. It may save some cost in some cases. 1868 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1869 else 1870 // NOTE: This should be unreachable. 1871 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1872 } 1873 1874 // Check that we don't have same operands. No need to reorder if operands 1875 // are just perfect diamond or shuffled diamond match. Do not do it only 1876 // for possible broadcasts or non-power of 2 number of scalars (just for 1877 // now). 1878 auto &&SkipReordering = [this]() { 1879 SmallPtrSet<Value *, 4> UniqueValues; 1880 ArrayRef<OperandData> Op0 = OpsVec.front(); 1881 for (const OperandData &Data : Op0) 1882 UniqueValues.insert(Data.V); 1883 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1884 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1885 return !UniqueValues.contains(Data.V); 1886 })) 1887 return false; 1888 } 1889 // TODO: Check if we can remove a check for non-power-2 number of 1890 // scalars after full support of non-power-2 vectorization. 1891 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1892 }; 1893 1894 // If the initial strategy fails for any of the operand indexes, then we 1895 // perform reordering again in a second pass. This helps avoid assigning 1896 // high priority to the failed strategy, and should improve reordering for 1897 // the non-failed operand indexes. 1898 for (int Pass = 0; Pass != 2; ++Pass) { 1899 // Check if no need to reorder operands since they're are perfect or 1900 // shuffled diamond match. 1901 // Need to to do it to avoid extra external use cost counting for 1902 // shuffled matches, which may cause regressions. 1903 if (SkipReordering()) 1904 break; 1905 // Skip the second pass if the first pass did not fail. 1906 bool StrategyFailed = false; 1907 // Mark all operand data as free to use. 1908 clearUsed(); 1909 // We keep the original operand order for the FirstLane, so reorder the 1910 // rest of the lanes. We are visiting the nodes in a circular fashion, 1911 // using FirstLane as the center point and increasing the radius 1912 // distance. 1913 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1914 for (unsigned I = 0; I < NumOperands; ++I) 1915 MainAltOps[I].push_back(getData(I, FirstLane).V); 1916 1917 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1918 // Visit the lane on the right and then the lane on the left. 1919 for (int Direction : {+1, -1}) { 1920 int Lane = FirstLane + Direction * Distance; 1921 if (Lane < 0 || Lane >= (int)NumLanes) 1922 continue; 1923 int LastLane = Lane - Direction; 1924 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1925 "Out of bounds"); 1926 // Look for a good match for each operand. 1927 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1928 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1929 Optional<unsigned> BestIdx = getBestOperand( 1930 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1931 // By not selecting a value, we allow the operands that follow to 1932 // select a better matching value. We will get a non-null value in 1933 // the next run of getBestOperand(). 1934 if (BestIdx) { 1935 // Swap the current operand with the one returned by 1936 // getBestOperand(). 1937 swap(OpIdx, BestIdx.getValue(), Lane); 1938 } else { 1939 // We failed to find a best operand, set mode to 'Failed'. 1940 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1941 // Enable the second pass. 1942 StrategyFailed = true; 1943 } 1944 // Try to get the alternate opcode and follow it during analysis. 1945 if (MainAltOps[OpIdx].size() != 2) { 1946 OperandData &AltOp = getData(OpIdx, Lane); 1947 InstructionsState OpS = 1948 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1949 if (OpS.getOpcode() && OpS.isAltShuffle()) 1950 MainAltOps[OpIdx].push_back(AltOp.V); 1951 } 1952 } 1953 } 1954 } 1955 // Skip second pass if the strategy did not fail. 1956 if (!StrategyFailed) 1957 break; 1958 } 1959 } 1960 1961 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1962 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1963 switch (RMode) { 1964 case ReorderingMode::Load: 1965 return "Load"; 1966 case ReorderingMode::Opcode: 1967 return "Opcode"; 1968 case ReorderingMode::Constant: 1969 return "Constant"; 1970 case ReorderingMode::Splat: 1971 return "Splat"; 1972 case ReorderingMode::Failed: 1973 return "Failed"; 1974 } 1975 llvm_unreachable("Unimplemented Reordering Type"); 1976 } 1977 1978 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1979 raw_ostream &OS) { 1980 return OS << getModeStr(RMode); 1981 } 1982 1983 /// Debug print. 1984 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1985 printMode(RMode, dbgs()); 1986 } 1987 1988 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1989 return printMode(RMode, OS); 1990 } 1991 1992 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1993 const unsigned Indent = 2; 1994 unsigned Cnt = 0; 1995 for (const OperandDataVec &OpDataVec : OpsVec) { 1996 OS << "Operand " << Cnt++ << "\n"; 1997 for (const OperandData &OpData : OpDataVec) { 1998 OS.indent(Indent) << "{"; 1999 if (Value *V = OpData.V) 2000 OS << *V; 2001 else 2002 OS << "null"; 2003 OS << ", APO:" << OpData.APO << "}\n"; 2004 } 2005 OS << "\n"; 2006 } 2007 return OS; 2008 } 2009 2010 /// Debug print. 2011 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2012 #endif 2013 }; 2014 2015 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2016 /// for a pair which have highest score deemed to have best chance to form 2017 /// root of profitable tree to vectorize. Return None if no candidate scored 2018 /// above the LookAheadHeuristics::ScoreFail. 2019 Optional<int> 2020 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates) { 2021 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2022 RootLookAheadMaxDepth); 2023 int BestScore = LookAheadHeuristics::ScoreFail; 2024 Optional<int> Index = None; 2025 for (int I : seq<int>(0, Candidates.size())) { 2026 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2027 Candidates[I].second, 2028 /*U1=*/nullptr, /*U2=*/nullptr, 2029 /*Level=*/1, None); 2030 if (Score > BestScore) { 2031 BestScore = Score; 2032 Index = I; 2033 } 2034 } 2035 return Index; 2036 } 2037 2038 /// Checks if the instruction is marked for deletion. 2039 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2040 2041 /// Removes an instruction from its block and eventually deletes it. 2042 /// It's like Instruction::eraseFromParent() except that the actual deletion 2043 /// is delayed until BoUpSLP is destructed. 2044 void eraseInstruction(Instruction *I) { 2045 DeletedInstructions.insert(I); 2046 } 2047 2048 /// Checks if the instruction was already analyzed for being possible 2049 /// reduction root. 2050 bool isAnalizedReductionRoot(Instruction *I) const { 2051 return AnalizedReductionsRoots.count(I); 2052 } 2053 /// Register given instruction as already analyzed for being possible 2054 /// reduction root. 2055 void analyzedReductionRoot(Instruction *I) { 2056 AnalizedReductionsRoots.insert(I); 2057 } 2058 /// Checks if the provided list of reduced values was checked already for 2059 /// vectorization. 2060 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2061 return AnalyzedReductionVals.contains(hash_value(VL)); 2062 } 2063 /// Adds the list of reduced values to list of already checked values for the 2064 /// vectorization. 2065 void analyzedReductionVals(ArrayRef<Value *> VL) { 2066 AnalyzedReductionVals.insert(hash_value(VL)); 2067 } 2068 /// Clear the list of the analyzed reduction root instructions. 2069 void clearReductionData() { 2070 AnalizedReductionsRoots.clear(); 2071 AnalyzedReductionVals.clear(); 2072 } 2073 /// Checks if the given value is gathered in one of the nodes. 2074 bool isGathered(Value *V) const { 2075 return MustGather.contains(V); 2076 } 2077 2078 ~BoUpSLP(); 2079 2080 private: 2081 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2082 /// reordering (i.e. the operands can be reordered because they have only one 2083 /// user and reordarable). 2084 /// \param ReorderableGathers List of all gather nodes that require reordering 2085 /// (e.g., gather of extractlements or partially vectorizable loads). 2086 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2087 /// reordering, subset of \p NonVectorized. 2088 bool 2089 canReorderOperands(TreeEntry *UserTE, 2090 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2091 ArrayRef<TreeEntry *> ReorderableGathers, 2092 SmallVectorImpl<TreeEntry *> &GatherOps); 2093 2094 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2095 /// if any. If it is not vectorized (gather node), returns nullptr. 2096 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2097 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2098 TreeEntry *TE = nullptr; 2099 const auto *It = find_if(VL, [this, &TE](Value *V) { 2100 TE = getTreeEntry(V); 2101 return TE; 2102 }); 2103 if (It != VL.end() && TE->isSame(VL)) 2104 return TE; 2105 return nullptr; 2106 } 2107 2108 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2109 /// if any. If it is not vectorized (gather node), returns nullptr. 2110 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2111 unsigned OpIdx) const { 2112 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2113 const_cast<TreeEntry *>(UserTE), OpIdx); 2114 } 2115 2116 /// Checks if all users of \p I are the part of the vectorization tree. 2117 bool areAllUsersVectorized(Instruction *I, 2118 ArrayRef<Value *> VectorizedVals) const; 2119 2120 /// \returns the cost of the vectorizable entry. 2121 InstructionCost getEntryCost(const TreeEntry *E, 2122 ArrayRef<Value *> VectorizedVals); 2123 2124 /// This is the recursive part of buildTree. 2125 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2126 const EdgeInfo &EI); 2127 2128 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2129 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2130 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2131 /// returns false, setting \p CurrentOrder to either an empty vector or a 2132 /// non-identity permutation that allows to reuse extract instructions. 2133 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2134 SmallVectorImpl<unsigned> &CurrentOrder) const; 2135 2136 /// Vectorize a single entry in the tree. 2137 Value *vectorizeTree(TreeEntry *E); 2138 2139 /// Vectorize a single entry in the tree, starting in \p VL. 2140 Value *vectorizeTree(ArrayRef<Value *> VL); 2141 2142 /// Create a new vector from a list of scalar values. Produces a sequence 2143 /// which exploits values reused across lanes, and arranges the inserts 2144 /// for ease of later optimization. 2145 Value *createBuildVector(ArrayRef<Value *> VL); 2146 2147 /// \returns the scalarization cost for this type. Scalarization in this 2148 /// context means the creation of vectors from a group of scalars. If \p 2149 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2150 /// vector elements. 2151 InstructionCost getGatherCost(FixedVectorType *Ty, 2152 const APInt &ShuffledIndices, 2153 bool NeedToShuffle) const; 2154 2155 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2156 /// tree entries. 2157 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2158 /// previous tree entries. \p Mask is filled with the shuffle mask. 2159 Optional<TargetTransformInfo::ShuffleKind> 2160 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2161 SmallVectorImpl<const TreeEntry *> &Entries); 2162 2163 /// \returns the scalarization cost for this list of values. Assuming that 2164 /// this subtree gets vectorized, we may need to extract the values from the 2165 /// roots. This method calculates the cost of extracting the values. 2166 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2167 2168 /// Set the Builder insert point to one after the last instruction in 2169 /// the bundle 2170 void setInsertPointAfterBundle(const TreeEntry *E); 2171 2172 /// \returns a vector from a collection of scalars in \p VL. 2173 Value *gather(ArrayRef<Value *> VL); 2174 2175 /// \returns whether the VectorizableTree is fully vectorizable and will 2176 /// be beneficial even the tree height is tiny. 2177 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2178 2179 /// Reorder commutative or alt operands to get better probability of 2180 /// generating vectorized code. 2181 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2182 SmallVectorImpl<Value *> &Left, 2183 SmallVectorImpl<Value *> &Right, 2184 const DataLayout &DL, 2185 ScalarEvolution &SE, 2186 const BoUpSLP &R); 2187 struct TreeEntry { 2188 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2189 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2190 2191 /// \returns true if the scalars in VL are equal to this entry. 2192 bool isSame(ArrayRef<Value *> VL) const { 2193 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2194 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2195 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2196 return VL.size() == Mask.size() && 2197 std::equal(VL.begin(), VL.end(), Mask.begin(), 2198 [Scalars](Value *V, int Idx) { 2199 return (isa<UndefValue>(V) && 2200 Idx == UndefMaskElem) || 2201 (Idx != UndefMaskElem && V == Scalars[Idx]); 2202 }); 2203 }; 2204 if (!ReorderIndices.empty()) { 2205 // TODO: implement matching if the nodes are just reordered, still can 2206 // treat the vector as the same if the list of scalars matches VL 2207 // directly, without reordering. 2208 SmallVector<int> Mask; 2209 inversePermutation(ReorderIndices, Mask); 2210 if (VL.size() == Scalars.size()) 2211 return IsSame(Scalars, Mask); 2212 if (VL.size() == ReuseShuffleIndices.size()) { 2213 ::addMask(Mask, ReuseShuffleIndices); 2214 return IsSame(Scalars, Mask); 2215 } 2216 return false; 2217 } 2218 return IsSame(Scalars, ReuseShuffleIndices); 2219 } 2220 2221 /// \returns true if current entry has same operands as \p TE. 2222 bool hasEqualOperands(const TreeEntry &TE) const { 2223 if (TE.getNumOperands() != getNumOperands()) 2224 return false; 2225 SmallBitVector Used(getNumOperands()); 2226 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2227 unsigned PrevCount = Used.count(); 2228 for (unsigned K = 0; K < E; ++K) { 2229 if (Used.test(K)) 2230 continue; 2231 if (getOperand(K) == TE.getOperand(I)) { 2232 Used.set(K); 2233 break; 2234 } 2235 } 2236 // Check if we actually found the matching operand. 2237 if (PrevCount == Used.count()) 2238 return false; 2239 } 2240 return true; 2241 } 2242 2243 /// \return Final vectorization factor for the node. Defined by the total 2244 /// number of vectorized scalars, including those, used several times in the 2245 /// entry and counted in the \a ReuseShuffleIndices, if any. 2246 unsigned getVectorFactor() const { 2247 if (!ReuseShuffleIndices.empty()) 2248 return ReuseShuffleIndices.size(); 2249 return Scalars.size(); 2250 }; 2251 2252 /// A vector of scalars. 2253 ValueList Scalars; 2254 2255 /// The Scalars are vectorized into this value. It is initialized to Null. 2256 Value *VectorizedValue = nullptr; 2257 2258 /// Do we need to gather this sequence or vectorize it 2259 /// (either with vector instruction or with scatter/gather 2260 /// intrinsics for store/load)? 2261 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2262 EntryState State; 2263 2264 /// Does this sequence require some shuffling? 2265 SmallVector<int, 4> ReuseShuffleIndices; 2266 2267 /// Does this entry require reordering? 2268 SmallVector<unsigned, 4> ReorderIndices; 2269 2270 /// Points back to the VectorizableTree. 2271 /// 2272 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2273 /// to be a pointer and needs to be able to initialize the child iterator. 2274 /// Thus we need a reference back to the container to translate the indices 2275 /// to entries. 2276 VecTreeTy &Container; 2277 2278 /// The TreeEntry index containing the user of this entry. We can actually 2279 /// have multiple users so the data structure is not truly a tree. 2280 SmallVector<EdgeInfo, 1> UserTreeIndices; 2281 2282 /// The index of this treeEntry in VectorizableTree. 2283 int Idx = -1; 2284 2285 private: 2286 /// The operands of each instruction in each lane Operands[op_index][lane]. 2287 /// Note: This helps avoid the replication of the code that performs the 2288 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2289 SmallVector<ValueList, 2> Operands; 2290 2291 /// The main/alternate instruction. 2292 Instruction *MainOp = nullptr; 2293 Instruction *AltOp = nullptr; 2294 2295 public: 2296 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2297 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2298 if (Operands.size() < OpIdx + 1) 2299 Operands.resize(OpIdx + 1); 2300 assert(Operands[OpIdx].empty() && "Already resized?"); 2301 assert(OpVL.size() <= Scalars.size() && 2302 "Number of operands is greater than the number of scalars."); 2303 Operands[OpIdx].resize(OpVL.size()); 2304 copy(OpVL, Operands[OpIdx].begin()); 2305 } 2306 2307 /// Set the operands of this bundle in their original order. 2308 void setOperandsInOrder() { 2309 assert(Operands.empty() && "Already initialized?"); 2310 auto *I0 = cast<Instruction>(Scalars[0]); 2311 Operands.resize(I0->getNumOperands()); 2312 unsigned NumLanes = Scalars.size(); 2313 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2314 OpIdx != NumOperands; ++OpIdx) { 2315 Operands[OpIdx].resize(NumLanes); 2316 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2317 auto *I = cast<Instruction>(Scalars[Lane]); 2318 assert(I->getNumOperands() == NumOperands && 2319 "Expected same number of operands"); 2320 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2321 } 2322 } 2323 } 2324 2325 /// Reorders operands of the node to the given mask \p Mask. 2326 void reorderOperands(ArrayRef<int> Mask) { 2327 for (ValueList &Operand : Operands) 2328 reorderScalars(Operand, Mask); 2329 } 2330 2331 /// \returns the \p OpIdx operand of this TreeEntry. 2332 ValueList &getOperand(unsigned OpIdx) { 2333 assert(OpIdx < Operands.size() && "Off bounds"); 2334 return Operands[OpIdx]; 2335 } 2336 2337 /// \returns the \p OpIdx operand of this TreeEntry. 2338 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2339 assert(OpIdx < Operands.size() && "Off bounds"); 2340 return Operands[OpIdx]; 2341 } 2342 2343 /// \returns the number of operands. 2344 unsigned getNumOperands() const { return Operands.size(); } 2345 2346 /// \return the single \p OpIdx operand. 2347 Value *getSingleOperand(unsigned OpIdx) const { 2348 assert(OpIdx < Operands.size() && "Off bounds"); 2349 assert(!Operands[OpIdx].empty() && "No operand available"); 2350 return Operands[OpIdx][0]; 2351 } 2352 2353 /// Some of the instructions in the list have alternate opcodes. 2354 bool isAltShuffle() const { return MainOp != AltOp; } 2355 2356 bool isOpcodeOrAlt(Instruction *I) const { 2357 unsigned CheckedOpcode = I->getOpcode(); 2358 return (getOpcode() == CheckedOpcode || 2359 getAltOpcode() == CheckedOpcode); 2360 } 2361 2362 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2363 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2364 /// \p OpValue. 2365 Value *isOneOf(Value *Op) const { 2366 auto *I = dyn_cast<Instruction>(Op); 2367 if (I && isOpcodeOrAlt(I)) 2368 return Op; 2369 return MainOp; 2370 } 2371 2372 void setOperations(const InstructionsState &S) { 2373 MainOp = S.MainOp; 2374 AltOp = S.AltOp; 2375 } 2376 2377 Instruction *getMainOp() const { 2378 return MainOp; 2379 } 2380 2381 Instruction *getAltOp() const { 2382 return AltOp; 2383 } 2384 2385 /// The main/alternate opcodes for the list of instructions. 2386 unsigned getOpcode() const { 2387 return MainOp ? MainOp->getOpcode() : 0; 2388 } 2389 2390 unsigned getAltOpcode() const { 2391 return AltOp ? AltOp->getOpcode() : 0; 2392 } 2393 2394 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2395 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2396 int findLaneForValue(Value *V) const { 2397 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2398 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2399 if (!ReorderIndices.empty()) 2400 FoundLane = ReorderIndices[FoundLane]; 2401 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2402 if (!ReuseShuffleIndices.empty()) { 2403 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2404 find(ReuseShuffleIndices, FoundLane)); 2405 } 2406 return FoundLane; 2407 } 2408 2409 #ifndef NDEBUG 2410 /// Debug printer. 2411 LLVM_DUMP_METHOD void dump() const { 2412 dbgs() << Idx << ".\n"; 2413 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2414 dbgs() << "Operand " << OpI << ":\n"; 2415 for (const Value *V : Operands[OpI]) 2416 dbgs().indent(2) << *V << "\n"; 2417 } 2418 dbgs() << "Scalars: \n"; 2419 for (Value *V : Scalars) 2420 dbgs().indent(2) << *V << "\n"; 2421 dbgs() << "State: "; 2422 switch (State) { 2423 case Vectorize: 2424 dbgs() << "Vectorize\n"; 2425 break; 2426 case ScatterVectorize: 2427 dbgs() << "ScatterVectorize\n"; 2428 break; 2429 case NeedToGather: 2430 dbgs() << "NeedToGather\n"; 2431 break; 2432 } 2433 dbgs() << "MainOp: "; 2434 if (MainOp) 2435 dbgs() << *MainOp << "\n"; 2436 else 2437 dbgs() << "NULL\n"; 2438 dbgs() << "AltOp: "; 2439 if (AltOp) 2440 dbgs() << *AltOp << "\n"; 2441 else 2442 dbgs() << "NULL\n"; 2443 dbgs() << "VectorizedValue: "; 2444 if (VectorizedValue) 2445 dbgs() << *VectorizedValue << "\n"; 2446 else 2447 dbgs() << "NULL\n"; 2448 dbgs() << "ReuseShuffleIndices: "; 2449 if (ReuseShuffleIndices.empty()) 2450 dbgs() << "Empty"; 2451 else 2452 for (int ReuseIdx : ReuseShuffleIndices) 2453 dbgs() << ReuseIdx << ", "; 2454 dbgs() << "\n"; 2455 dbgs() << "ReorderIndices: "; 2456 for (unsigned ReorderIdx : ReorderIndices) 2457 dbgs() << ReorderIdx << ", "; 2458 dbgs() << "\n"; 2459 dbgs() << "UserTreeIndices: "; 2460 for (const auto &EInfo : UserTreeIndices) 2461 dbgs() << EInfo << ", "; 2462 dbgs() << "\n"; 2463 } 2464 #endif 2465 }; 2466 2467 #ifndef NDEBUG 2468 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2469 InstructionCost VecCost, 2470 InstructionCost ScalarCost) const { 2471 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2472 dbgs() << "SLP: Costs:\n"; 2473 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2474 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2475 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2476 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2477 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2478 } 2479 #endif 2480 2481 /// Create a new VectorizableTree entry. 2482 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2483 const InstructionsState &S, 2484 const EdgeInfo &UserTreeIdx, 2485 ArrayRef<int> ReuseShuffleIndices = None, 2486 ArrayRef<unsigned> ReorderIndices = None) { 2487 TreeEntry::EntryState EntryState = 2488 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2489 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2490 ReuseShuffleIndices, ReorderIndices); 2491 } 2492 2493 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2494 TreeEntry::EntryState EntryState, 2495 Optional<ScheduleData *> Bundle, 2496 const InstructionsState &S, 2497 const EdgeInfo &UserTreeIdx, 2498 ArrayRef<int> ReuseShuffleIndices = None, 2499 ArrayRef<unsigned> ReorderIndices = None) { 2500 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2501 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2502 "Need to vectorize gather entry?"); 2503 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2504 TreeEntry *Last = VectorizableTree.back().get(); 2505 Last->Idx = VectorizableTree.size() - 1; 2506 Last->State = EntryState; 2507 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2508 ReuseShuffleIndices.end()); 2509 if (ReorderIndices.empty()) { 2510 Last->Scalars.assign(VL.begin(), VL.end()); 2511 Last->setOperations(S); 2512 } else { 2513 // Reorder scalars and build final mask. 2514 Last->Scalars.assign(VL.size(), nullptr); 2515 transform(ReorderIndices, Last->Scalars.begin(), 2516 [VL](unsigned Idx) -> Value * { 2517 if (Idx >= VL.size()) 2518 return UndefValue::get(VL.front()->getType()); 2519 return VL[Idx]; 2520 }); 2521 InstructionsState S = getSameOpcode(Last->Scalars); 2522 Last->setOperations(S); 2523 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2524 } 2525 if (Last->State != TreeEntry::NeedToGather) { 2526 for (Value *V : VL) { 2527 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2528 ScalarToTreeEntry[V] = Last; 2529 } 2530 // Update the scheduler bundle to point to this TreeEntry. 2531 ScheduleData *BundleMember = Bundle.getValue(); 2532 assert((BundleMember || isa<PHINode>(S.MainOp) || 2533 isVectorLikeInstWithConstOps(S.MainOp) || 2534 doesNotNeedToSchedule(VL)) && 2535 "Bundle and VL out of sync"); 2536 if (BundleMember) { 2537 for (Value *V : VL) { 2538 if (doesNotNeedToBeScheduled(V)) 2539 continue; 2540 assert(BundleMember && "Unexpected end of bundle."); 2541 BundleMember->TE = Last; 2542 BundleMember = BundleMember->NextInBundle; 2543 } 2544 } 2545 assert(!BundleMember && "Bundle and VL out of sync"); 2546 } else { 2547 MustGather.insert(VL.begin(), VL.end()); 2548 } 2549 2550 if (UserTreeIdx.UserTE) 2551 Last->UserTreeIndices.push_back(UserTreeIdx); 2552 2553 return Last; 2554 } 2555 2556 /// -- Vectorization State -- 2557 /// Holds all of the tree entries. 2558 TreeEntry::VecTreeTy VectorizableTree; 2559 2560 #ifndef NDEBUG 2561 /// Debug printer. 2562 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2563 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2564 VectorizableTree[Id]->dump(); 2565 dbgs() << "\n"; 2566 } 2567 } 2568 #endif 2569 2570 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2571 2572 const TreeEntry *getTreeEntry(Value *V) const { 2573 return ScalarToTreeEntry.lookup(V); 2574 } 2575 2576 /// Maps a specific scalar to its tree entry. 2577 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2578 2579 /// Maps a value to the proposed vectorizable size. 2580 SmallDenseMap<Value *, unsigned> InstrElementSize; 2581 2582 /// A list of scalars that we found that we need to keep as scalars. 2583 ValueSet MustGather; 2584 2585 /// This POD struct describes one external user in the vectorized tree. 2586 struct ExternalUser { 2587 ExternalUser(Value *S, llvm::User *U, int L) 2588 : Scalar(S), User(U), Lane(L) {} 2589 2590 // Which scalar in our function. 2591 Value *Scalar; 2592 2593 // Which user that uses the scalar. 2594 llvm::User *User; 2595 2596 // Which lane does the scalar belong to. 2597 int Lane; 2598 }; 2599 using UserList = SmallVector<ExternalUser, 16>; 2600 2601 /// Checks if two instructions may access the same memory. 2602 /// 2603 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2604 /// is invariant in the calling loop. 2605 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2606 Instruction *Inst2) { 2607 // First check if the result is already in the cache. 2608 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2609 Optional<bool> &result = AliasCache[key]; 2610 if (result.hasValue()) { 2611 return result.getValue(); 2612 } 2613 bool aliased = true; 2614 if (Loc1.Ptr && isSimple(Inst1)) 2615 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2616 // Store the result in the cache. 2617 result = aliased; 2618 return aliased; 2619 } 2620 2621 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2622 2623 /// Cache for alias results. 2624 /// TODO: consider moving this to the AliasAnalysis itself. 2625 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2626 2627 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2628 // globally through SLP because we don't perform any action which 2629 // invalidates capture results. 2630 BatchAAResults BatchAA; 2631 2632 /// Temporary store for deleted instructions. Instructions will be deleted 2633 /// eventually when the BoUpSLP is destructed. The deferral is required to 2634 /// ensure that there are no incorrect collisions in the AliasCache, which 2635 /// can happen if a new instruction is allocated at the same address as a 2636 /// previously deleted instruction. 2637 DenseSet<Instruction *> DeletedInstructions; 2638 2639 /// Set of the instruction, being analyzed already for reductions. 2640 SmallPtrSet<Instruction *, 16> AnalizedReductionsRoots; 2641 2642 /// Set of hashes for the list of reduction values already being analyzed. 2643 DenseSet<size_t> AnalyzedReductionVals; 2644 2645 /// A list of values that need to extracted out of the tree. 2646 /// This list holds pairs of (Internal Scalar : External User). External User 2647 /// can be nullptr, it means that this Internal Scalar will be used later, 2648 /// after vectorization. 2649 UserList ExternalUses; 2650 2651 /// Values used only by @llvm.assume calls. 2652 SmallPtrSet<const Value *, 32> EphValues; 2653 2654 /// Holds all of the instructions that we gathered. 2655 SetVector<Instruction *> GatherShuffleSeq; 2656 2657 /// A list of blocks that we are going to CSE. 2658 SetVector<BasicBlock *> CSEBlocks; 2659 2660 /// Contains all scheduling relevant data for an instruction. 2661 /// A ScheduleData either represents a single instruction or a member of an 2662 /// instruction bundle (= a group of instructions which is combined into a 2663 /// vector instruction). 2664 struct ScheduleData { 2665 // The initial value for the dependency counters. It means that the 2666 // dependencies are not calculated yet. 2667 enum { InvalidDeps = -1 }; 2668 2669 ScheduleData() = default; 2670 2671 void init(int BlockSchedulingRegionID, Value *OpVal) { 2672 FirstInBundle = this; 2673 NextInBundle = nullptr; 2674 NextLoadStore = nullptr; 2675 IsScheduled = false; 2676 SchedulingRegionID = BlockSchedulingRegionID; 2677 clearDependencies(); 2678 OpValue = OpVal; 2679 TE = nullptr; 2680 } 2681 2682 /// Verify basic self consistency properties 2683 void verify() { 2684 if (hasValidDependencies()) { 2685 assert(UnscheduledDeps <= Dependencies && "invariant"); 2686 } else { 2687 assert(UnscheduledDeps == Dependencies && "invariant"); 2688 } 2689 2690 if (IsScheduled) { 2691 assert(isSchedulingEntity() && 2692 "unexpected scheduled state"); 2693 for (const ScheduleData *BundleMember = this; BundleMember; 2694 BundleMember = BundleMember->NextInBundle) { 2695 assert(BundleMember->hasValidDependencies() && 2696 BundleMember->UnscheduledDeps == 0 && 2697 "unexpected scheduled state"); 2698 assert((BundleMember == this || !BundleMember->IsScheduled) && 2699 "only bundle is marked scheduled"); 2700 } 2701 } 2702 2703 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2704 "all bundle members must be in same basic block"); 2705 } 2706 2707 /// Returns true if the dependency information has been calculated. 2708 /// Note that depenendency validity can vary between instructions within 2709 /// a single bundle. 2710 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2711 2712 /// Returns true for single instructions and for bundle representatives 2713 /// (= the head of a bundle). 2714 bool isSchedulingEntity() const { return FirstInBundle == this; } 2715 2716 /// Returns true if it represents an instruction bundle and not only a 2717 /// single instruction. 2718 bool isPartOfBundle() const { 2719 return NextInBundle != nullptr || FirstInBundle != this || TE; 2720 } 2721 2722 /// Returns true if it is ready for scheduling, i.e. it has no more 2723 /// unscheduled depending instructions/bundles. 2724 bool isReady() const { 2725 assert(isSchedulingEntity() && 2726 "can't consider non-scheduling entity for ready list"); 2727 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2728 } 2729 2730 /// Modifies the number of unscheduled dependencies for this instruction, 2731 /// and returns the number of remaining dependencies for the containing 2732 /// bundle. 2733 int incrementUnscheduledDeps(int Incr) { 2734 assert(hasValidDependencies() && 2735 "increment of unscheduled deps would be meaningless"); 2736 UnscheduledDeps += Incr; 2737 return FirstInBundle->unscheduledDepsInBundle(); 2738 } 2739 2740 /// Sets the number of unscheduled dependencies to the number of 2741 /// dependencies. 2742 void resetUnscheduledDeps() { 2743 UnscheduledDeps = Dependencies; 2744 } 2745 2746 /// Clears all dependency information. 2747 void clearDependencies() { 2748 Dependencies = InvalidDeps; 2749 resetUnscheduledDeps(); 2750 MemoryDependencies.clear(); 2751 ControlDependencies.clear(); 2752 } 2753 2754 int unscheduledDepsInBundle() const { 2755 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2756 int Sum = 0; 2757 for (const ScheduleData *BundleMember = this; BundleMember; 2758 BundleMember = BundleMember->NextInBundle) { 2759 if (BundleMember->UnscheduledDeps == InvalidDeps) 2760 return InvalidDeps; 2761 Sum += BundleMember->UnscheduledDeps; 2762 } 2763 return Sum; 2764 } 2765 2766 void dump(raw_ostream &os) const { 2767 if (!isSchedulingEntity()) { 2768 os << "/ " << *Inst; 2769 } else if (NextInBundle) { 2770 os << '[' << *Inst; 2771 ScheduleData *SD = NextInBundle; 2772 while (SD) { 2773 os << ';' << *SD->Inst; 2774 SD = SD->NextInBundle; 2775 } 2776 os << ']'; 2777 } else { 2778 os << *Inst; 2779 } 2780 } 2781 2782 Instruction *Inst = nullptr; 2783 2784 /// Opcode of the current instruction in the schedule data. 2785 Value *OpValue = nullptr; 2786 2787 /// The TreeEntry that this instruction corresponds to. 2788 TreeEntry *TE = nullptr; 2789 2790 /// Points to the head in an instruction bundle (and always to this for 2791 /// single instructions). 2792 ScheduleData *FirstInBundle = nullptr; 2793 2794 /// Single linked list of all instructions in a bundle. Null if it is a 2795 /// single instruction. 2796 ScheduleData *NextInBundle = nullptr; 2797 2798 /// Single linked list of all memory instructions (e.g. load, store, call) 2799 /// in the block - until the end of the scheduling region. 2800 ScheduleData *NextLoadStore = nullptr; 2801 2802 /// The dependent memory instructions. 2803 /// This list is derived on demand in calculateDependencies(). 2804 SmallVector<ScheduleData *, 4> MemoryDependencies; 2805 2806 /// List of instructions which this instruction could be control dependent 2807 /// on. Allowing such nodes to be scheduled below this one could introduce 2808 /// a runtime fault which didn't exist in the original program. 2809 /// ex: this is a load or udiv following a readonly call which inf loops 2810 SmallVector<ScheduleData *, 4> ControlDependencies; 2811 2812 /// This ScheduleData is in the current scheduling region if this matches 2813 /// the current SchedulingRegionID of BlockScheduling. 2814 int SchedulingRegionID = 0; 2815 2816 /// Used for getting a "good" final ordering of instructions. 2817 int SchedulingPriority = 0; 2818 2819 /// The number of dependencies. Constitutes of the number of users of the 2820 /// instruction plus the number of dependent memory instructions (if any). 2821 /// This value is calculated on demand. 2822 /// If InvalidDeps, the number of dependencies is not calculated yet. 2823 int Dependencies = InvalidDeps; 2824 2825 /// The number of dependencies minus the number of dependencies of scheduled 2826 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2827 /// for scheduling. 2828 /// Note that this is negative as long as Dependencies is not calculated. 2829 int UnscheduledDeps = InvalidDeps; 2830 2831 /// True if this instruction is scheduled (or considered as scheduled in the 2832 /// dry-run). 2833 bool IsScheduled = false; 2834 }; 2835 2836 #ifndef NDEBUG 2837 friend inline raw_ostream &operator<<(raw_ostream &os, 2838 const BoUpSLP::ScheduleData &SD) { 2839 SD.dump(os); 2840 return os; 2841 } 2842 #endif 2843 2844 friend struct GraphTraits<BoUpSLP *>; 2845 friend struct DOTGraphTraits<BoUpSLP *>; 2846 2847 /// Contains all scheduling data for a basic block. 2848 /// It does not schedules instructions, which are not memory read/write 2849 /// instructions and their operands are either constants, or arguments, or 2850 /// phis, or instructions from others blocks, or their users are phis or from 2851 /// the other blocks. The resulting vector instructions can be placed at the 2852 /// beginning of the basic block without scheduling (if operands does not need 2853 /// to be scheduled) or at the end of the block (if users are outside of the 2854 /// block). It allows to save some compile time and memory used by the 2855 /// compiler. 2856 /// ScheduleData is assigned for each instruction in between the boundaries of 2857 /// the tree entry, even for those, which are not part of the graph. It is 2858 /// required to correctly follow the dependencies between the instructions and 2859 /// their correct scheduling. The ScheduleData is not allocated for the 2860 /// instructions, which do not require scheduling, like phis, nodes with 2861 /// extractelements/insertelements only or nodes with instructions, with 2862 /// uses/operands outside of the block. 2863 struct BlockScheduling { 2864 BlockScheduling(BasicBlock *BB) 2865 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2866 2867 void clear() { 2868 ReadyInsts.clear(); 2869 ScheduleStart = nullptr; 2870 ScheduleEnd = nullptr; 2871 FirstLoadStoreInRegion = nullptr; 2872 LastLoadStoreInRegion = nullptr; 2873 RegionHasStackSave = false; 2874 2875 // Reduce the maximum schedule region size by the size of the 2876 // previous scheduling run. 2877 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2878 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2879 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2880 ScheduleRegionSize = 0; 2881 2882 // Make a new scheduling region, i.e. all existing ScheduleData is not 2883 // in the new region yet. 2884 ++SchedulingRegionID; 2885 } 2886 2887 ScheduleData *getScheduleData(Instruction *I) { 2888 if (BB != I->getParent()) 2889 // Avoid lookup if can't possibly be in map. 2890 return nullptr; 2891 ScheduleData *SD = ScheduleDataMap.lookup(I); 2892 if (SD && isInSchedulingRegion(SD)) 2893 return SD; 2894 return nullptr; 2895 } 2896 2897 ScheduleData *getScheduleData(Value *V) { 2898 if (auto *I = dyn_cast<Instruction>(V)) 2899 return getScheduleData(I); 2900 return nullptr; 2901 } 2902 2903 ScheduleData *getScheduleData(Value *V, Value *Key) { 2904 if (V == Key) 2905 return getScheduleData(V); 2906 auto I = ExtraScheduleDataMap.find(V); 2907 if (I != ExtraScheduleDataMap.end()) { 2908 ScheduleData *SD = I->second.lookup(Key); 2909 if (SD && isInSchedulingRegion(SD)) 2910 return SD; 2911 } 2912 return nullptr; 2913 } 2914 2915 bool isInSchedulingRegion(ScheduleData *SD) const { 2916 return SD->SchedulingRegionID == SchedulingRegionID; 2917 } 2918 2919 /// Marks an instruction as scheduled and puts all dependent ready 2920 /// instructions into the ready-list. 2921 template <typename ReadyListType> 2922 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2923 SD->IsScheduled = true; 2924 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2925 2926 for (ScheduleData *BundleMember = SD; BundleMember; 2927 BundleMember = BundleMember->NextInBundle) { 2928 if (BundleMember->Inst != BundleMember->OpValue) 2929 continue; 2930 2931 // Handle the def-use chain dependencies. 2932 2933 // Decrement the unscheduled counter and insert to ready list if ready. 2934 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2935 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2936 if (OpDef && OpDef->hasValidDependencies() && 2937 OpDef->incrementUnscheduledDeps(-1) == 0) { 2938 // There are no more unscheduled dependencies after 2939 // decrementing, so we can put the dependent instruction 2940 // into the ready list. 2941 ScheduleData *DepBundle = OpDef->FirstInBundle; 2942 assert(!DepBundle->IsScheduled && 2943 "already scheduled bundle gets ready"); 2944 ReadyList.insert(DepBundle); 2945 LLVM_DEBUG(dbgs() 2946 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2947 } 2948 }); 2949 }; 2950 2951 // If BundleMember is a vector bundle, its operands may have been 2952 // reordered during buildTree(). We therefore need to get its operands 2953 // through the TreeEntry. 2954 if (TreeEntry *TE = BundleMember->TE) { 2955 // Need to search for the lane since the tree entry can be reordered. 2956 int Lane = std::distance(TE->Scalars.begin(), 2957 find(TE->Scalars, BundleMember->Inst)); 2958 assert(Lane >= 0 && "Lane not set"); 2959 2960 // Since vectorization tree is being built recursively this assertion 2961 // ensures that the tree entry has all operands set before reaching 2962 // this code. Couple of exceptions known at the moment are extracts 2963 // where their second (immediate) operand is not added. Since 2964 // immediates do not affect scheduler behavior this is considered 2965 // okay. 2966 auto *In = BundleMember->Inst; 2967 assert(In && 2968 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2969 In->getNumOperands() == TE->getNumOperands()) && 2970 "Missed TreeEntry operands?"); 2971 (void)In; // fake use to avoid build failure when assertions disabled 2972 2973 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2974 OpIdx != NumOperands; ++OpIdx) 2975 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2976 DecrUnsched(I); 2977 } else { 2978 // If BundleMember is a stand-alone instruction, no operand reordering 2979 // has taken place, so we directly access its operands. 2980 for (Use &U : BundleMember->Inst->operands()) 2981 if (auto *I = dyn_cast<Instruction>(U.get())) 2982 DecrUnsched(I); 2983 } 2984 // Handle the memory dependencies. 2985 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2986 if (MemoryDepSD->hasValidDependencies() && 2987 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2988 // There are no more unscheduled dependencies after decrementing, 2989 // so we can put the dependent instruction into the ready list. 2990 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2991 assert(!DepBundle->IsScheduled && 2992 "already scheduled bundle gets ready"); 2993 ReadyList.insert(DepBundle); 2994 LLVM_DEBUG(dbgs() 2995 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2996 } 2997 } 2998 // Handle the control dependencies. 2999 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3000 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3001 // There are no more unscheduled dependencies after decrementing, 3002 // so we can put the dependent instruction into the ready list. 3003 ScheduleData *DepBundle = DepSD->FirstInBundle; 3004 assert(!DepBundle->IsScheduled && 3005 "already scheduled bundle gets ready"); 3006 ReadyList.insert(DepBundle); 3007 LLVM_DEBUG(dbgs() 3008 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3009 } 3010 } 3011 3012 } 3013 } 3014 3015 /// Verify basic self consistency properties of the data structure. 3016 void verify() { 3017 if (!ScheduleStart) 3018 return; 3019 3020 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3021 ScheduleStart->comesBefore(ScheduleEnd) && 3022 "Not a valid scheduling region?"); 3023 3024 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3025 auto *SD = getScheduleData(I); 3026 if (!SD) 3027 continue; 3028 assert(isInSchedulingRegion(SD) && 3029 "primary schedule data not in window?"); 3030 assert(isInSchedulingRegion(SD->FirstInBundle) && 3031 "entire bundle in window!"); 3032 (void)SD; 3033 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3034 } 3035 3036 for (auto *SD : ReadyInsts) { 3037 assert(SD->isSchedulingEntity() && SD->isReady() && 3038 "item in ready list not ready?"); 3039 (void)SD; 3040 } 3041 } 3042 3043 void doForAllOpcodes(Value *V, 3044 function_ref<void(ScheduleData *SD)> Action) { 3045 if (ScheduleData *SD = getScheduleData(V)) 3046 Action(SD); 3047 auto I = ExtraScheduleDataMap.find(V); 3048 if (I != ExtraScheduleDataMap.end()) 3049 for (auto &P : I->second) 3050 if (isInSchedulingRegion(P.second)) 3051 Action(P.second); 3052 } 3053 3054 /// Put all instructions into the ReadyList which are ready for scheduling. 3055 template <typename ReadyListType> 3056 void initialFillReadyList(ReadyListType &ReadyList) { 3057 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3058 doForAllOpcodes(I, [&](ScheduleData *SD) { 3059 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3060 SD->isReady()) { 3061 ReadyList.insert(SD); 3062 LLVM_DEBUG(dbgs() 3063 << "SLP: initially in ready list: " << *SD << "\n"); 3064 } 3065 }); 3066 } 3067 } 3068 3069 /// Build a bundle from the ScheduleData nodes corresponding to the 3070 /// scalar instruction for each lane. 3071 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3072 3073 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3074 /// cyclic dependencies. This is only a dry-run, no instructions are 3075 /// actually moved at this stage. 3076 /// \returns the scheduling bundle. The returned Optional value is non-None 3077 /// if \p VL is allowed to be scheduled. 3078 Optional<ScheduleData *> 3079 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3080 const InstructionsState &S); 3081 3082 /// Un-bundles a group of instructions. 3083 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3084 3085 /// Allocates schedule data chunk. 3086 ScheduleData *allocateScheduleDataChunks(); 3087 3088 /// Extends the scheduling region so that V is inside the region. 3089 /// \returns true if the region size is within the limit. 3090 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3091 3092 /// Initialize the ScheduleData structures for new instructions in the 3093 /// scheduling region. 3094 void initScheduleData(Instruction *FromI, Instruction *ToI, 3095 ScheduleData *PrevLoadStore, 3096 ScheduleData *NextLoadStore); 3097 3098 /// Updates the dependency information of a bundle and of all instructions/ 3099 /// bundles which depend on the original bundle. 3100 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3101 BoUpSLP *SLP); 3102 3103 /// Sets all instruction in the scheduling region to un-scheduled. 3104 void resetSchedule(); 3105 3106 BasicBlock *BB; 3107 3108 /// Simple memory allocation for ScheduleData. 3109 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3110 3111 /// The size of a ScheduleData array in ScheduleDataChunks. 3112 int ChunkSize; 3113 3114 /// The allocator position in the current chunk, which is the last entry 3115 /// of ScheduleDataChunks. 3116 int ChunkPos; 3117 3118 /// Attaches ScheduleData to Instruction. 3119 /// Note that the mapping survives during all vectorization iterations, i.e. 3120 /// ScheduleData structures are recycled. 3121 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3122 3123 /// Attaches ScheduleData to Instruction with the leading key. 3124 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3125 ExtraScheduleDataMap; 3126 3127 /// The ready-list for scheduling (only used for the dry-run). 3128 SetVector<ScheduleData *> ReadyInsts; 3129 3130 /// The first instruction of the scheduling region. 3131 Instruction *ScheduleStart = nullptr; 3132 3133 /// The first instruction _after_ the scheduling region. 3134 Instruction *ScheduleEnd = nullptr; 3135 3136 /// The first memory accessing instruction in the scheduling region 3137 /// (can be null). 3138 ScheduleData *FirstLoadStoreInRegion = nullptr; 3139 3140 /// The last memory accessing instruction in the scheduling region 3141 /// (can be null). 3142 ScheduleData *LastLoadStoreInRegion = nullptr; 3143 3144 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3145 /// region? Used to optimize the dependence calculation for the 3146 /// common case where there isn't. 3147 bool RegionHasStackSave = false; 3148 3149 /// The current size of the scheduling region. 3150 int ScheduleRegionSize = 0; 3151 3152 /// The maximum size allowed for the scheduling region. 3153 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3154 3155 /// The ID of the scheduling region. For a new vectorization iteration this 3156 /// is incremented which "removes" all ScheduleData from the region. 3157 /// Make sure that the initial SchedulingRegionID is greater than the 3158 /// initial SchedulingRegionID in ScheduleData (which is 0). 3159 int SchedulingRegionID = 1; 3160 }; 3161 3162 /// Attaches the BlockScheduling structures to basic blocks. 3163 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3164 3165 /// Performs the "real" scheduling. Done before vectorization is actually 3166 /// performed in a basic block. 3167 void scheduleBlock(BlockScheduling *BS); 3168 3169 /// List of users to ignore during scheduling and that don't need extracting. 3170 ArrayRef<Value *> UserIgnoreList; 3171 3172 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3173 /// sorted SmallVectors of unsigned. 3174 struct OrdersTypeDenseMapInfo { 3175 static OrdersType getEmptyKey() { 3176 OrdersType V; 3177 V.push_back(~1U); 3178 return V; 3179 } 3180 3181 static OrdersType getTombstoneKey() { 3182 OrdersType V; 3183 V.push_back(~2U); 3184 return V; 3185 } 3186 3187 static unsigned getHashValue(const OrdersType &V) { 3188 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3189 } 3190 3191 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3192 return LHS == RHS; 3193 } 3194 }; 3195 3196 // Analysis and block reference. 3197 Function *F; 3198 ScalarEvolution *SE; 3199 TargetTransformInfo *TTI; 3200 TargetLibraryInfo *TLI; 3201 LoopInfo *LI; 3202 DominatorTree *DT; 3203 AssumptionCache *AC; 3204 DemandedBits *DB; 3205 const DataLayout *DL; 3206 OptimizationRemarkEmitter *ORE; 3207 3208 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3209 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3210 3211 /// Instruction builder to construct the vectorized tree. 3212 IRBuilder<> Builder; 3213 3214 /// A map of scalar integer values to the smallest bit width with which they 3215 /// can legally be represented. The values map to (width, signed) pairs, 3216 /// where "width" indicates the minimum bit width and "signed" is True if the 3217 /// value must be signed-extended, rather than zero-extended, back to its 3218 /// original width. 3219 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3220 }; 3221 3222 } // end namespace slpvectorizer 3223 3224 template <> struct GraphTraits<BoUpSLP *> { 3225 using TreeEntry = BoUpSLP::TreeEntry; 3226 3227 /// NodeRef has to be a pointer per the GraphWriter. 3228 using NodeRef = TreeEntry *; 3229 3230 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3231 3232 /// Add the VectorizableTree to the index iterator to be able to return 3233 /// TreeEntry pointers. 3234 struct ChildIteratorType 3235 : public iterator_adaptor_base< 3236 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3237 ContainerTy &VectorizableTree; 3238 3239 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3240 ContainerTy &VT) 3241 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3242 3243 NodeRef operator*() { return I->UserTE; } 3244 }; 3245 3246 static NodeRef getEntryNode(BoUpSLP &R) { 3247 return R.VectorizableTree[0].get(); 3248 } 3249 3250 static ChildIteratorType child_begin(NodeRef N) { 3251 return {N->UserTreeIndices.begin(), N->Container}; 3252 } 3253 3254 static ChildIteratorType child_end(NodeRef N) { 3255 return {N->UserTreeIndices.end(), N->Container}; 3256 } 3257 3258 /// For the node iterator we just need to turn the TreeEntry iterator into a 3259 /// TreeEntry* iterator so that it dereferences to NodeRef. 3260 class nodes_iterator { 3261 using ItTy = ContainerTy::iterator; 3262 ItTy It; 3263 3264 public: 3265 nodes_iterator(const ItTy &It2) : It(It2) {} 3266 NodeRef operator*() { return It->get(); } 3267 nodes_iterator operator++() { 3268 ++It; 3269 return *this; 3270 } 3271 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3272 }; 3273 3274 static nodes_iterator nodes_begin(BoUpSLP *R) { 3275 return nodes_iterator(R->VectorizableTree.begin()); 3276 } 3277 3278 static nodes_iterator nodes_end(BoUpSLP *R) { 3279 return nodes_iterator(R->VectorizableTree.end()); 3280 } 3281 3282 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3283 }; 3284 3285 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3286 using TreeEntry = BoUpSLP::TreeEntry; 3287 3288 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3289 3290 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3291 std::string Str; 3292 raw_string_ostream OS(Str); 3293 if (isSplat(Entry->Scalars)) 3294 OS << "<splat> "; 3295 for (auto V : Entry->Scalars) { 3296 OS << *V; 3297 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3298 return EU.Scalar == V; 3299 })) 3300 OS << " <extract>"; 3301 OS << "\n"; 3302 } 3303 return Str; 3304 } 3305 3306 static std::string getNodeAttributes(const TreeEntry *Entry, 3307 const BoUpSLP *) { 3308 if (Entry->State == TreeEntry::NeedToGather) 3309 return "color=red"; 3310 return ""; 3311 } 3312 }; 3313 3314 } // end namespace llvm 3315 3316 BoUpSLP::~BoUpSLP() { 3317 SmallVector<WeakTrackingVH> DeadInsts; 3318 for (auto *I : DeletedInstructions) { 3319 for (Use &U : I->operands()) { 3320 auto *Op = dyn_cast<Instruction>(U.get()); 3321 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3322 wouldInstructionBeTriviallyDead(Op, TLI)) 3323 DeadInsts.emplace_back(Op); 3324 } 3325 I->dropAllReferences(); 3326 } 3327 for (auto *I : DeletedInstructions) { 3328 assert(I->use_empty() && 3329 "trying to erase instruction with users."); 3330 I->eraseFromParent(); 3331 } 3332 3333 // Cleanup any dead scalar code feeding the vectorized instructions 3334 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3335 3336 #ifdef EXPENSIVE_CHECKS 3337 // If we could guarantee that this call is not extremely slow, we could 3338 // remove the ifdef limitation (see PR47712). 3339 assert(!verifyFunction(*F, &dbgs())); 3340 #endif 3341 } 3342 3343 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3344 /// contains original mask for the scalars reused in the node. Procedure 3345 /// transform this mask in accordance with the given \p Mask. 3346 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3347 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3348 "Expected non-empty mask."); 3349 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3350 Prev.swap(Reuses); 3351 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3352 if (Mask[I] != UndefMaskElem) 3353 Reuses[Mask[I]] = Prev[I]; 3354 } 3355 3356 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3357 /// the original order of the scalars. Procedure transforms the provided order 3358 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3359 /// identity order, \p Order is cleared. 3360 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3361 assert(!Mask.empty() && "Expected non-empty mask."); 3362 SmallVector<int> MaskOrder; 3363 if (Order.empty()) { 3364 MaskOrder.resize(Mask.size()); 3365 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3366 } else { 3367 inversePermutation(Order, MaskOrder); 3368 } 3369 reorderReuses(MaskOrder, Mask); 3370 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3371 Order.clear(); 3372 return; 3373 } 3374 Order.assign(Mask.size(), Mask.size()); 3375 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3376 if (MaskOrder[I] != UndefMaskElem) 3377 Order[MaskOrder[I]] = I; 3378 fixupOrderingIndices(Order); 3379 } 3380 3381 Optional<BoUpSLP::OrdersType> 3382 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3383 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3384 unsigned NumScalars = TE.Scalars.size(); 3385 OrdersType CurrentOrder(NumScalars, NumScalars); 3386 SmallVector<int> Positions; 3387 SmallBitVector UsedPositions(NumScalars); 3388 const TreeEntry *STE = nullptr; 3389 // Try to find all gathered scalars that are gets vectorized in other 3390 // vectorize node. Here we can have only one single tree vector node to 3391 // correctly identify order of the gathered scalars. 3392 for (unsigned I = 0; I < NumScalars; ++I) { 3393 Value *V = TE.Scalars[I]; 3394 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3395 continue; 3396 if (const auto *LocalSTE = getTreeEntry(V)) { 3397 if (!STE) 3398 STE = LocalSTE; 3399 else if (STE != LocalSTE) 3400 // Take the order only from the single vector node. 3401 return None; 3402 unsigned Lane = 3403 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3404 if (Lane >= NumScalars) 3405 return None; 3406 if (CurrentOrder[Lane] != NumScalars) { 3407 if (Lane != I) 3408 continue; 3409 UsedPositions.reset(CurrentOrder[Lane]); 3410 } 3411 // The partial identity (where only some elements of the gather node are 3412 // in the identity order) is good. 3413 CurrentOrder[Lane] = I; 3414 UsedPositions.set(I); 3415 } 3416 } 3417 // Need to keep the order if we have a vector entry and at least 2 scalars or 3418 // the vectorized entry has just 2 scalars. 3419 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3420 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3421 for (unsigned I = 0; I < NumScalars; ++I) 3422 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3423 return false; 3424 return true; 3425 }; 3426 if (IsIdentityOrder(CurrentOrder)) { 3427 CurrentOrder.clear(); 3428 return CurrentOrder; 3429 } 3430 auto *It = CurrentOrder.begin(); 3431 for (unsigned I = 0; I < NumScalars;) { 3432 if (UsedPositions.test(I)) { 3433 ++I; 3434 continue; 3435 } 3436 if (*It == NumScalars) { 3437 *It = I; 3438 ++I; 3439 } 3440 ++It; 3441 } 3442 return CurrentOrder; 3443 } 3444 return None; 3445 } 3446 3447 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3448 const DataLayout &DL, ScalarEvolution &SE, 3449 SmallVectorImpl<unsigned> &SortedIndices) { 3450 assert(llvm::all_of( 3451 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3452 "Expected list of pointer operands."); 3453 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3454 // Ptr into, sort and return the sorted indices with values next to one 3455 // another. 3456 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3457 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3458 3459 unsigned Cnt = 1; 3460 for (Value *Ptr : VL.drop_front()) { 3461 bool Found = any_of(Bases, [&](auto &Base) { 3462 Optional<int> Diff = 3463 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3464 /*StrictCheck=*/true); 3465 if (!Diff) 3466 return false; 3467 3468 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3469 return true; 3470 }); 3471 3472 if (!Found) { 3473 // If we haven't found enough to usefully cluster, return early. 3474 if (Bases.size() > VL.size() / 2 - 1) 3475 return false; 3476 3477 // Not found already - add a new Base 3478 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3479 } 3480 } 3481 3482 // For each of the bases sort the pointers by Offset and check if any of the 3483 // base become consecutively allocated. 3484 bool AnyConsecutive = false; 3485 for (auto &Base : Bases) { 3486 auto &Vec = Base.second; 3487 if (Vec.size() > 1) { 3488 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3489 const std::tuple<Value *, int, unsigned> &Y) { 3490 return std::get<1>(X) < std::get<1>(Y); 3491 }); 3492 int InitialOffset = std::get<1>(Vec[0]); 3493 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3494 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3495 }); 3496 } 3497 } 3498 3499 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3500 SortedIndices.clear(); 3501 if (!AnyConsecutive) 3502 return false; 3503 3504 for (auto &Base : Bases) { 3505 for (auto &T : Base.second) 3506 SortedIndices.push_back(std::get<2>(T)); 3507 } 3508 3509 assert(SortedIndices.size() == VL.size() && 3510 "Expected SortedIndices to be the size of VL"); 3511 return true; 3512 } 3513 3514 Optional<BoUpSLP::OrdersType> 3515 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3516 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3517 Type *ScalarTy = TE.Scalars[0]->getType(); 3518 3519 SmallVector<Value *> Ptrs; 3520 Ptrs.reserve(TE.Scalars.size()); 3521 for (Value *V : TE.Scalars) { 3522 auto *L = dyn_cast<LoadInst>(V); 3523 if (!L || !L->isSimple()) 3524 return None; 3525 Ptrs.push_back(L->getPointerOperand()); 3526 } 3527 3528 BoUpSLP::OrdersType Order; 3529 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3530 return Order; 3531 return None; 3532 } 3533 3534 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3535 bool TopToBottom) { 3536 // No need to reorder if need to shuffle reuses, still need to shuffle the 3537 // node. 3538 if (!TE.ReuseShuffleIndices.empty()) 3539 return None; 3540 if (TE.State == TreeEntry::Vectorize && 3541 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3542 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3543 !TE.isAltShuffle()) 3544 return TE.ReorderIndices; 3545 if (TE.State == TreeEntry::NeedToGather) { 3546 // TODO: add analysis of other gather nodes with extractelement 3547 // instructions and other values/instructions, not only undefs. 3548 if (((TE.getOpcode() == Instruction::ExtractElement && 3549 !TE.isAltShuffle()) || 3550 (all_of(TE.Scalars, 3551 [](Value *V) { 3552 return isa<UndefValue, ExtractElementInst>(V); 3553 }) && 3554 any_of(TE.Scalars, 3555 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3556 all_of(TE.Scalars, 3557 [](Value *V) { 3558 auto *EE = dyn_cast<ExtractElementInst>(V); 3559 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3560 }) && 3561 allSameType(TE.Scalars)) { 3562 // Check that gather of extractelements can be represented as 3563 // just a shuffle of a single vector. 3564 OrdersType CurrentOrder; 3565 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3566 if (Reuse || !CurrentOrder.empty()) { 3567 if (!CurrentOrder.empty()) 3568 fixupOrderingIndices(CurrentOrder); 3569 return CurrentOrder; 3570 } 3571 } 3572 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3573 return CurrentOrder; 3574 if (TE.Scalars.size() >= 4) 3575 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3576 return Order; 3577 } 3578 return None; 3579 } 3580 3581 void BoUpSLP::reorderTopToBottom() { 3582 // Maps VF to the graph nodes. 3583 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3584 // ExtractElement gather nodes which can be vectorized and need to handle 3585 // their ordering. 3586 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3587 // Find all reorderable nodes with the given VF. 3588 // Currently the are vectorized stores,loads,extracts + some gathering of 3589 // extracts. 3590 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3591 const std::unique_ptr<TreeEntry> &TE) { 3592 if (Optional<OrdersType> CurrentOrder = 3593 getReorderingData(*TE, /*TopToBottom=*/true)) { 3594 // Do not include ordering for nodes used in the alt opcode vectorization, 3595 // better to reorder them during bottom-to-top stage. If follow the order 3596 // here, it causes reordering of the whole graph though actually it is 3597 // profitable just to reorder the subgraph that starts from the alternate 3598 // opcode vectorization node. Such nodes already end-up with the shuffle 3599 // instruction and it is just enough to change this shuffle rather than 3600 // rotate the scalars for the whole graph. 3601 unsigned Cnt = 0; 3602 const TreeEntry *UserTE = TE.get(); 3603 while (UserTE && Cnt < RecursionMaxDepth) { 3604 if (UserTE->UserTreeIndices.size() != 1) 3605 break; 3606 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3607 return EI.UserTE->State == TreeEntry::Vectorize && 3608 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3609 })) 3610 return; 3611 if (UserTE->UserTreeIndices.empty()) 3612 UserTE = nullptr; 3613 else 3614 UserTE = UserTE->UserTreeIndices.back().UserTE; 3615 ++Cnt; 3616 } 3617 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3618 if (TE->State != TreeEntry::Vectorize) 3619 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3620 } 3621 }); 3622 3623 // Reorder the graph nodes according to their vectorization factor. 3624 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3625 VF /= 2) { 3626 auto It = VFToOrderedEntries.find(VF); 3627 if (It == VFToOrderedEntries.end()) 3628 continue; 3629 // Try to find the most profitable order. We just are looking for the most 3630 // used order and reorder scalar elements in the nodes according to this 3631 // mostly used order. 3632 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3633 // All operands are reordered and used only in this node - propagate the 3634 // most used order to the user node. 3635 MapVector<OrdersType, unsigned, 3636 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3637 OrdersUses; 3638 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3639 for (const TreeEntry *OpTE : OrderedEntries) { 3640 // No need to reorder this nodes, still need to extend and to use shuffle, 3641 // just need to merge reordering shuffle and the reuse shuffle. 3642 if (!OpTE->ReuseShuffleIndices.empty()) 3643 continue; 3644 // Count number of orders uses. 3645 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3646 if (OpTE->State == TreeEntry::NeedToGather) 3647 return GathersToOrders.find(OpTE)->second; 3648 return OpTE->ReorderIndices; 3649 }(); 3650 // Stores actually store the mask, not the order, need to invert. 3651 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3652 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3653 SmallVector<int> Mask; 3654 inversePermutation(Order, Mask); 3655 unsigned E = Order.size(); 3656 OrdersType CurrentOrder(E, E); 3657 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3658 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3659 }); 3660 fixupOrderingIndices(CurrentOrder); 3661 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3662 } else { 3663 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3664 } 3665 } 3666 // Set order of the user node. 3667 if (OrdersUses.empty()) 3668 continue; 3669 // Choose the most used order. 3670 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3671 unsigned Cnt = OrdersUses.front().second; 3672 for (const auto &Pair : drop_begin(OrdersUses)) { 3673 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3674 BestOrder = Pair.first; 3675 Cnt = Pair.second; 3676 } 3677 } 3678 // Set order of the user node. 3679 if (BestOrder.empty()) 3680 continue; 3681 SmallVector<int> Mask; 3682 inversePermutation(BestOrder, Mask); 3683 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3684 unsigned E = BestOrder.size(); 3685 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3686 return I < E ? static_cast<int>(I) : UndefMaskElem; 3687 }); 3688 // Do an actual reordering, if profitable. 3689 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3690 // Just do the reordering for the nodes with the given VF. 3691 if (TE->Scalars.size() != VF) { 3692 if (TE->ReuseShuffleIndices.size() == VF) { 3693 // Need to reorder the reuses masks of the operands with smaller VF to 3694 // be able to find the match between the graph nodes and scalar 3695 // operands of the given node during vectorization/cost estimation. 3696 assert(all_of(TE->UserTreeIndices, 3697 [VF, &TE](const EdgeInfo &EI) { 3698 return EI.UserTE->Scalars.size() == VF || 3699 EI.UserTE->Scalars.size() == 3700 TE->Scalars.size(); 3701 }) && 3702 "All users must be of VF size."); 3703 // Update ordering of the operands with the smaller VF than the given 3704 // one. 3705 reorderReuses(TE->ReuseShuffleIndices, Mask); 3706 } 3707 continue; 3708 } 3709 if (TE->State == TreeEntry::Vectorize && 3710 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3711 InsertElementInst>(TE->getMainOp()) && 3712 !TE->isAltShuffle()) { 3713 // Build correct orders for extract{element,value}, loads and 3714 // stores. 3715 reorderOrder(TE->ReorderIndices, Mask); 3716 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3717 TE->reorderOperands(Mask); 3718 } else { 3719 // Reorder the node and its operands. 3720 TE->reorderOperands(Mask); 3721 assert(TE->ReorderIndices.empty() && 3722 "Expected empty reorder sequence."); 3723 reorderScalars(TE->Scalars, Mask); 3724 } 3725 if (!TE->ReuseShuffleIndices.empty()) { 3726 // Apply reversed order to keep the original ordering of the reused 3727 // elements to avoid extra reorder indices shuffling. 3728 OrdersType CurrentOrder; 3729 reorderOrder(CurrentOrder, MaskOrder); 3730 SmallVector<int> NewReuses; 3731 inversePermutation(CurrentOrder, NewReuses); 3732 addMask(NewReuses, TE->ReuseShuffleIndices); 3733 TE->ReuseShuffleIndices.swap(NewReuses); 3734 } 3735 } 3736 } 3737 } 3738 3739 bool BoUpSLP::canReorderOperands( 3740 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3741 ArrayRef<TreeEntry *> ReorderableGathers, 3742 SmallVectorImpl<TreeEntry *> &GatherOps) { 3743 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3744 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3745 return OpData.first == I && 3746 OpData.second->State == TreeEntry::Vectorize; 3747 })) 3748 continue; 3749 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3750 // Do not reorder if operand node is used by many user nodes. 3751 if (any_of(TE->UserTreeIndices, 3752 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3753 return false; 3754 // Add the node to the list of the ordered nodes with the identity 3755 // order. 3756 Edges.emplace_back(I, TE); 3757 continue; 3758 } 3759 ArrayRef<Value *> VL = UserTE->getOperand(I); 3760 TreeEntry *Gather = nullptr; 3761 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3762 assert(TE->State != TreeEntry::Vectorize && 3763 "Only non-vectorized nodes are expected."); 3764 if (TE->isSame(VL)) { 3765 Gather = TE; 3766 return true; 3767 } 3768 return false; 3769 }) > 1) 3770 return false; 3771 if (Gather) 3772 GatherOps.push_back(Gather); 3773 } 3774 return true; 3775 } 3776 3777 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3778 SetVector<TreeEntry *> OrderedEntries; 3779 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3780 // Find all reorderable leaf nodes with the given VF. 3781 // Currently the are vectorized loads,extracts without alternate operands + 3782 // some gathering of extracts. 3783 SmallVector<TreeEntry *> NonVectorized; 3784 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3785 &NonVectorized]( 3786 const std::unique_ptr<TreeEntry> &TE) { 3787 if (TE->State != TreeEntry::Vectorize) 3788 NonVectorized.push_back(TE.get()); 3789 if (Optional<OrdersType> CurrentOrder = 3790 getReorderingData(*TE, /*TopToBottom=*/false)) { 3791 OrderedEntries.insert(TE.get()); 3792 if (TE->State != TreeEntry::Vectorize) 3793 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3794 } 3795 }); 3796 3797 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3798 // I.e., if the node has operands, that are reordered, try to make at least 3799 // one operand order in the natural order and reorder others + reorder the 3800 // user node itself. 3801 SmallPtrSet<const TreeEntry *, 4> Visited; 3802 while (!OrderedEntries.empty()) { 3803 // 1. Filter out only reordered nodes. 3804 // 2. If the entry has multiple uses - skip it and jump to the next node. 3805 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3806 SmallVector<TreeEntry *> Filtered; 3807 for (TreeEntry *TE : OrderedEntries) { 3808 if (!(TE->State == TreeEntry::Vectorize || 3809 (TE->State == TreeEntry::NeedToGather && 3810 GathersToOrders.count(TE))) || 3811 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3812 !all_of(drop_begin(TE->UserTreeIndices), 3813 [TE](const EdgeInfo &EI) { 3814 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3815 }) || 3816 !Visited.insert(TE).second) { 3817 Filtered.push_back(TE); 3818 continue; 3819 } 3820 // Build a map between user nodes and their operands order to speedup 3821 // search. The graph currently does not provide this dependency directly. 3822 for (EdgeInfo &EI : TE->UserTreeIndices) { 3823 TreeEntry *UserTE = EI.UserTE; 3824 auto It = Users.find(UserTE); 3825 if (It == Users.end()) 3826 It = Users.insert({UserTE, {}}).first; 3827 It->second.emplace_back(EI.EdgeIdx, TE); 3828 } 3829 } 3830 // Erase filtered entries. 3831 for_each(Filtered, 3832 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3833 for (auto &Data : Users) { 3834 // Check that operands are used only in the User node. 3835 SmallVector<TreeEntry *> GatherOps; 3836 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3837 GatherOps)) { 3838 for_each(Data.second, 3839 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3840 OrderedEntries.remove(Op.second); 3841 }); 3842 continue; 3843 } 3844 // All operands are reordered and used only in this node - propagate the 3845 // most used order to the user node. 3846 MapVector<OrdersType, unsigned, 3847 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3848 OrdersUses; 3849 // Do the analysis for each tree entry only once, otherwise the order of 3850 // the same node my be considered several times, though might be not 3851 // profitable. 3852 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3853 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3854 for (const auto &Op : Data.second) { 3855 TreeEntry *OpTE = Op.second; 3856 if (!VisitedOps.insert(OpTE).second) 3857 continue; 3858 if (!OpTE->ReuseShuffleIndices.empty() || 3859 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3860 continue; 3861 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3862 if (OpTE->State == TreeEntry::NeedToGather) 3863 return GathersToOrders.find(OpTE)->second; 3864 return OpTE->ReorderIndices; 3865 }(); 3866 unsigned NumOps = count_if( 3867 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3868 return P.second == OpTE; 3869 }); 3870 // Stores actually store the mask, not the order, need to invert. 3871 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3872 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3873 SmallVector<int> Mask; 3874 inversePermutation(Order, Mask); 3875 unsigned E = Order.size(); 3876 OrdersType CurrentOrder(E, E); 3877 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3878 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3879 }); 3880 fixupOrderingIndices(CurrentOrder); 3881 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3882 NumOps; 3883 } else { 3884 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3885 } 3886 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3887 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3888 const TreeEntry *TE) { 3889 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3890 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3891 (IgnoreReorder && TE->Idx == 0)) 3892 return true; 3893 if (TE->State == TreeEntry::NeedToGather) { 3894 auto It = GathersToOrders.find(TE); 3895 if (It != GathersToOrders.end()) 3896 return !It->second.empty(); 3897 return true; 3898 } 3899 return false; 3900 }; 3901 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3902 TreeEntry *UserTE = EI.UserTE; 3903 if (!VisitedUsers.insert(UserTE).second) 3904 continue; 3905 // May reorder user node if it requires reordering, has reused 3906 // scalars, is an alternate op vectorize node or its op nodes require 3907 // reordering. 3908 if (AllowsReordering(UserTE)) 3909 continue; 3910 // Check if users allow reordering. 3911 // Currently look up just 1 level of operands to avoid increase of 3912 // the compile time. 3913 // Profitable to reorder if definitely more operands allow 3914 // reordering rather than those with natural order. 3915 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3916 if (static_cast<unsigned>(count_if( 3917 Ops, [UserTE, &AllowsReordering]( 3918 const std::pair<unsigned, TreeEntry *> &Op) { 3919 return AllowsReordering(Op.second) && 3920 all_of(Op.second->UserTreeIndices, 3921 [UserTE](const EdgeInfo &EI) { 3922 return EI.UserTE == UserTE; 3923 }); 3924 })) <= Ops.size() / 2) 3925 ++Res.first->second; 3926 } 3927 } 3928 // If no orders - skip current nodes and jump to the next one, if any. 3929 if (OrdersUses.empty()) { 3930 for_each(Data.second, 3931 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3932 OrderedEntries.remove(Op.second); 3933 }); 3934 continue; 3935 } 3936 // Choose the best order. 3937 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3938 unsigned Cnt = OrdersUses.front().second; 3939 for (const auto &Pair : drop_begin(OrdersUses)) { 3940 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3941 BestOrder = Pair.first; 3942 Cnt = Pair.second; 3943 } 3944 } 3945 // Set order of the user node (reordering of operands and user nodes). 3946 if (BestOrder.empty()) { 3947 for_each(Data.second, 3948 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3949 OrderedEntries.remove(Op.second); 3950 }); 3951 continue; 3952 } 3953 // Erase operands from OrderedEntries list and adjust their orders. 3954 VisitedOps.clear(); 3955 SmallVector<int> Mask; 3956 inversePermutation(BestOrder, Mask); 3957 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3958 unsigned E = BestOrder.size(); 3959 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3960 return I < E ? static_cast<int>(I) : UndefMaskElem; 3961 }); 3962 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3963 TreeEntry *TE = Op.second; 3964 OrderedEntries.remove(TE); 3965 if (!VisitedOps.insert(TE).second) 3966 continue; 3967 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3968 // Just reorder reuses indices. 3969 reorderReuses(TE->ReuseShuffleIndices, Mask); 3970 continue; 3971 } 3972 // Gathers are processed separately. 3973 if (TE->State != TreeEntry::Vectorize) 3974 continue; 3975 assert((BestOrder.size() == TE->ReorderIndices.size() || 3976 TE->ReorderIndices.empty()) && 3977 "Non-matching sizes of user/operand entries."); 3978 reorderOrder(TE->ReorderIndices, Mask); 3979 } 3980 // For gathers just need to reorder its scalars. 3981 for (TreeEntry *Gather : GatherOps) { 3982 assert(Gather->ReorderIndices.empty() && 3983 "Unexpected reordering of gathers."); 3984 if (!Gather->ReuseShuffleIndices.empty()) { 3985 // Just reorder reuses indices. 3986 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3987 continue; 3988 } 3989 reorderScalars(Gather->Scalars, Mask); 3990 OrderedEntries.remove(Gather); 3991 } 3992 // Reorder operands of the user node and set the ordering for the user 3993 // node itself. 3994 if (Data.first->State != TreeEntry::Vectorize || 3995 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3996 Data.first->getMainOp()) || 3997 Data.first->isAltShuffle()) 3998 Data.first->reorderOperands(Mask); 3999 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4000 Data.first->isAltShuffle()) { 4001 reorderScalars(Data.first->Scalars, Mask); 4002 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4003 if (Data.first->ReuseShuffleIndices.empty() && 4004 !Data.first->ReorderIndices.empty() && 4005 !Data.first->isAltShuffle()) { 4006 // Insert user node to the list to try to sink reordering deeper in 4007 // the graph. 4008 OrderedEntries.insert(Data.first); 4009 } 4010 } else { 4011 reorderOrder(Data.first->ReorderIndices, Mask); 4012 } 4013 } 4014 } 4015 // If the reordering is unnecessary, just remove the reorder. 4016 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4017 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4018 VectorizableTree.front()->ReorderIndices.clear(); 4019 } 4020 4021 void BoUpSLP::buildExternalUses( 4022 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4023 // Collect the values that we need to extract from the tree. 4024 for (auto &TEPtr : VectorizableTree) { 4025 TreeEntry *Entry = TEPtr.get(); 4026 4027 // No need to handle users of gathered values. 4028 if (Entry->State == TreeEntry::NeedToGather) 4029 continue; 4030 4031 // For each lane: 4032 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4033 Value *Scalar = Entry->Scalars[Lane]; 4034 int FoundLane = Entry->findLaneForValue(Scalar); 4035 4036 // Check if the scalar is externally used as an extra arg. 4037 auto ExtI = ExternallyUsedValues.find(Scalar); 4038 if (ExtI != ExternallyUsedValues.end()) { 4039 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4040 << Lane << " from " << *Scalar << ".\n"); 4041 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4042 } 4043 for (User *U : Scalar->users()) { 4044 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4045 4046 Instruction *UserInst = dyn_cast<Instruction>(U); 4047 if (!UserInst) 4048 continue; 4049 4050 if (isDeleted(UserInst)) 4051 continue; 4052 4053 // Skip in-tree scalars that become vectors 4054 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4055 Value *UseScalar = UseEntry->Scalars[0]; 4056 // Some in-tree scalars will remain as scalar in vectorized 4057 // instructions. If that is the case, the one in Lane 0 will 4058 // be used. 4059 if (UseScalar != U || 4060 UseEntry->State == TreeEntry::ScatterVectorize || 4061 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4062 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4063 << ".\n"); 4064 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4065 continue; 4066 } 4067 } 4068 4069 // Ignore users in the user ignore list. 4070 if (is_contained(UserIgnoreList, UserInst)) 4071 continue; 4072 4073 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4074 << Lane << " from " << *Scalar << ".\n"); 4075 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4076 } 4077 } 4078 } 4079 } 4080 4081 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4082 ArrayRef<Value *> UserIgnoreLst) { 4083 deleteTree(); 4084 UserIgnoreList = UserIgnoreLst; 4085 if (!allSameType(Roots)) 4086 return; 4087 buildTree_rec(Roots, 0, EdgeInfo()); 4088 } 4089 4090 namespace { 4091 /// Tracks the state we can represent the loads in the given sequence. 4092 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 4093 } // anonymous namespace 4094 4095 /// Checks if the given array of loads can be represented as a vectorized, 4096 /// scatter or just simple gather. 4097 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 4098 const TargetTransformInfo &TTI, 4099 const DataLayout &DL, ScalarEvolution &SE, 4100 SmallVectorImpl<unsigned> &Order, 4101 SmallVectorImpl<Value *> &PointerOps) { 4102 // Check that a vectorized load would load the same memory as a scalar 4103 // load. For example, we don't want to vectorize loads that are smaller 4104 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4105 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4106 // from such a struct, we read/write packed bits disagreeing with the 4107 // unvectorized version. 4108 Type *ScalarTy = VL0->getType(); 4109 4110 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 4111 return LoadsState::Gather; 4112 4113 // Make sure all loads in the bundle are simple - we can't vectorize 4114 // atomic or volatile loads. 4115 PointerOps.clear(); 4116 PointerOps.resize(VL.size()); 4117 auto *POIter = PointerOps.begin(); 4118 for (Value *V : VL) { 4119 auto *L = cast<LoadInst>(V); 4120 if (!L->isSimple()) 4121 return LoadsState::Gather; 4122 *POIter = L->getPointerOperand(); 4123 ++POIter; 4124 } 4125 4126 Order.clear(); 4127 // Check the order of pointer operands. 4128 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4129 Value *Ptr0; 4130 Value *PtrN; 4131 if (Order.empty()) { 4132 Ptr0 = PointerOps.front(); 4133 PtrN = PointerOps.back(); 4134 } else { 4135 Ptr0 = PointerOps[Order.front()]; 4136 PtrN = PointerOps[Order.back()]; 4137 } 4138 Optional<int> Diff = 4139 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4140 // Check that the sorted loads are consecutive. 4141 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4142 return LoadsState::Vectorize; 4143 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4144 for (Value *V : VL) 4145 CommonAlignment = 4146 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4147 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 4148 CommonAlignment)) 4149 return LoadsState::ScatterVectorize; 4150 } 4151 4152 return LoadsState::Gather; 4153 } 4154 4155 /// \return true if the specified list of values has only one instruction that 4156 /// requires scheduling, false otherwise. 4157 #ifndef NDEBUG 4158 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4159 Value *NeedsScheduling = nullptr; 4160 for (Value *V : VL) { 4161 if (doesNotNeedToBeScheduled(V)) 4162 continue; 4163 if (!NeedsScheduling) { 4164 NeedsScheduling = V; 4165 continue; 4166 } 4167 return false; 4168 } 4169 return NeedsScheduling; 4170 } 4171 #endif 4172 4173 /// Generates key/subkey pair for the given value to provide effective sorting 4174 /// of the values and better detection of the vectorizable values sequences. The 4175 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4176 /// and in values subgroups (subkeys). 4177 static std::pair<size_t, size_t> generateKeySubkey( 4178 Value *V, const TargetLibraryInfo *TLI, 4179 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4180 bool AllowAlternate) { 4181 hash_code Key = hash_value(V->getValueID() + 2); 4182 hash_code SubKey = hash_value(0); 4183 // Sort the loads by the distance between the pointers. 4184 if (auto *LI = dyn_cast<LoadInst>(V)) { 4185 Key = hash_combine(hash_value(Instruction::Load), Key); 4186 if (LI->isSimple()) 4187 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4188 else 4189 SubKey = hash_value(LI); 4190 } else if (isVectorLikeInstWithConstOps(V)) { 4191 // Sort extracts by the vector operands. 4192 if (isa<ExtractElementInst, UndefValue>(V)) 4193 Key = hash_value(Value::UndefValueVal + 1); 4194 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4195 if (!isUndefVector(EI->getVectorOperand()) && 4196 !isa<UndefValue>(EI->getIndexOperand())) 4197 SubKey = hash_value(EI->getVectorOperand()); 4198 } 4199 } else if (auto *I = dyn_cast<Instruction>(V)) { 4200 // Sort other instructions just by the opcodes except for CMPInst. 4201 // For CMP also sort by the predicate kind. 4202 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4203 isValidForAlternation(I->getOpcode())) { 4204 if (AllowAlternate) 4205 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4206 else 4207 Key = hash_combine(hash_value(I->getOpcode()), Key); 4208 SubKey = hash_combine( 4209 hash_value(I->getOpcode()), hash_value(I->getType()), 4210 hash_value(isa<BinaryOperator>(I) 4211 ? I->getType() 4212 : cast<CastInst>(I)->getOperand(0)->getType())); 4213 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4214 CmpInst::Predicate Pred = CI->getPredicate(); 4215 if (CI->isCommutative()) 4216 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4217 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4218 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4219 hash_value(SwapPred), 4220 hash_value(CI->getOperand(0)->getType())); 4221 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4222 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4223 if (isTriviallyVectorizable(ID)) 4224 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4225 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4226 SubKey = hash_combine(hash_value(I->getOpcode()), 4227 hash_value(Call->getCalledFunction())); 4228 else 4229 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4230 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4231 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4232 hash_value(Op.Tag), SubKey); 4233 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4234 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4235 SubKey = hash_value(Gep->getPointerOperand()); 4236 else 4237 SubKey = hash_value(Gep); 4238 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4239 !isa<ConstantInt>(I->getOperand(1))) { 4240 // Do not try to vectorize instructions with potentially high cost. 4241 SubKey = hash_value(I); 4242 } else { 4243 SubKey = hash_value(I->getOpcode()); 4244 } 4245 Key = hash_combine(hash_value(I->getParent()), Key); 4246 } 4247 return std::make_pair(Key, SubKey); 4248 } 4249 4250 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4251 const EdgeInfo &UserTreeIdx) { 4252 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4253 4254 SmallVector<int> ReuseShuffleIndicies; 4255 SmallVector<Value *> UniqueValues; 4256 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4257 &UserTreeIdx, 4258 this](const InstructionsState &S) { 4259 // Check that every instruction appears once in this bundle. 4260 DenseMap<Value *, unsigned> UniquePositions; 4261 for (Value *V : VL) { 4262 if (isConstant(V)) { 4263 ReuseShuffleIndicies.emplace_back( 4264 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4265 UniqueValues.emplace_back(V); 4266 continue; 4267 } 4268 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4269 ReuseShuffleIndicies.emplace_back(Res.first->second); 4270 if (Res.second) 4271 UniqueValues.emplace_back(V); 4272 } 4273 size_t NumUniqueScalarValues = UniqueValues.size(); 4274 if (NumUniqueScalarValues == VL.size()) { 4275 ReuseShuffleIndicies.clear(); 4276 } else { 4277 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4278 if (NumUniqueScalarValues <= 1 || 4279 (UniquePositions.size() == 1 && all_of(UniqueValues, 4280 [](Value *V) { 4281 return isa<UndefValue>(V) || 4282 !isConstant(V); 4283 })) || 4284 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4285 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4286 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4287 return false; 4288 } 4289 VL = UniqueValues; 4290 } 4291 return true; 4292 }; 4293 4294 InstructionsState S = getSameOpcode(VL); 4295 if (Depth == RecursionMaxDepth) { 4296 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4297 if (TryToFindDuplicates(S)) 4298 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4299 ReuseShuffleIndicies); 4300 return; 4301 } 4302 4303 // Don't handle scalable vectors 4304 if (S.getOpcode() == Instruction::ExtractElement && 4305 isa<ScalableVectorType>( 4306 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4307 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4308 if (TryToFindDuplicates(S)) 4309 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4310 ReuseShuffleIndicies); 4311 return; 4312 } 4313 4314 // Don't handle vectors. 4315 if (S.OpValue->getType()->isVectorTy() && 4316 !isa<InsertElementInst>(S.OpValue)) { 4317 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4318 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4319 return; 4320 } 4321 4322 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4323 if (SI->getValueOperand()->getType()->isVectorTy()) { 4324 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4325 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4326 return; 4327 } 4328 4329 // If all of the operands are identical or constant we have a simple solution. 4330 // If we deal with insert/extract instructions, they all must have constant 4331 // indices, otherwise we should gather them, not try to vectorize. 4332 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4333 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4334 !all_of(VL, isVectorLikeInstWithConstOps))) { 4335 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4336 if (TryToFindDuplicates(S)) 4337 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4338 ReuseShuffleIndicies); 4339 return; 4340 } 4341 4342 // We now know that this is a vector of instructions of the same type from 4343 // the same block. 4344 4345 // Don't vectorize ephemeral values. 4346 for (Value *V : VL) { 4347 if (EphValues.count(V)) { 4348 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4349 << ") is ephemeral.\n"); 4350 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4351 return; 4352 } 4353 } 4354 4355 // Check if this is a duplicate of another entry. 4356 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4357 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4358 if (!E->isSame(VL)) { 4359 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4360 if (TryToFindDuplicates(S)) 4361 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4362 ReuseShuffleIndicies); 4363 return; 4364 } 4365 // Record the reuse of the tree node. FIXME, currently this is only used to 4366 // properly draw the graph rather than for the actual vectorization. 4367 E->UserTreeIndices.push_back(UserTreeIdx); 4368 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4369 << ".\n"); 4370 return; 4371 } 4372 4373 // Check that none of the instructions in the bundle are already in the tree. 4374 for (Value *V : VL) { 4375 auto *I = dyn_cast<Instruction>(V); 4376 if (!I) 4377 continue; 4378 if (getTreeEntry(I)) { 4379 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4380 << ") is already in tree.\n"); 4381 if (TryToFindDuplicates(S)) 4382 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4383 ReuseShuffleIndicies); 4384 return; 4385 } 4386 } 4387 4388 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4389 for (Value *V : VL) { 4390 if (is_contained(UserIgnoreList, V)) { 4391 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4392 if (TryToFindDuplicates(S)) 4393 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4394 ReuseShuffleIndicies); 4395 return; 4396 } 4397 } 4398 4399 // Check that all of the users of the scalars that we want to vectorize are 4400 // schedulable. 4401 auto *VL0 = cast<Instruction>(S.OpValue); 4402 BasicBlock *BB = VL0->getParent(); 4403 4404 if (!DT->isReachableFromEntry(BB)) { 4405 // Don't go into unreachable blocks. They may contain instructions with 4406 // dependency cycles which confuse the final scheduling. 4407 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4408 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4409 return; 4410 } 4411 4412 // Check that every instruction appears once in this bundle. 4413 if (!TryToFindDuplicates(S)) 4414 return; 4415 4416 auto &BSRef = BlocksSchedules[BB]; 4417 if (!BSRef) 4418 BSRef = std::make_unique<BlockScheduling>(BB); 4419 4420 BlockScheduling &BS = *BSRef; 4421 4422 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4423 #ifdef EXPENSIVE_CHECKS 4424 // Make sure we didn't break any internal invariants 4425 BS.verify(); 4426 #endif 4427 if (!Bundle) { 4428 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4429 assert((!BS.getScheduleData(VL0) || 4430 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4431 "tryScheduleBundle should cancelScheduling on failure"); 4432 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4433 ReuseShuffleIndicies); 4434 return; 4435 } 4436 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4437 4438 unsigned ShuffleOrOp = S.isAltShuffle() ? 4439 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4440 switch (ShuffleOrOp) { 4441 case Instruction::PHI: { 4442 auto *PH = cast<PHINode>(VL0); 4443 4444 // Check for terminator values (e.g. invoke). 4445 for (Value *V : VL) 4446 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4447 Instruction *Term = dyn_cast<Instruction>(Incoming); 4448 if (Term && Term->isTerminator()) { 4449 LLVM_DEBUG(dbgs() 4450 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4451 BS.cancelScheduling(VL, VL0); 4452 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4453 ReuseShuffleIndicies); 4454 return; 4455 } 4456 } 4457 4458 TreeEntry *TE = 4459 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4460 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4461 4462 // Keeps the reordered operands to avoid code duplication. 4463 SmallVector<ValueList, 2> OperandsVec; 4464 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4465 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4466 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4467 TE->setOperand(I, Operands); 4468 OperandsVec.push_back(Operands); 4469 continue; 4470 } 4471 ValueList Operands; 4472 // Prepare the operand vector. 4473 for (Value *V : VL) 4474 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4475 PH->getIncomingBlock(I))); 4476 TE->setOperand(I, Operands); 4477 OperandsVec.push_back(Operands); 4478 } 4479 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4480 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4481 return; 4482 } 4483 case Instruction::ExtractValue: 4484 case Instruction::ExtractElement: { 4485 OrdersType CurrentOrder; 4486 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4487 if (Reuse) { 4488 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4489 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4490 ReuseShuffleIndicies); 4491 // This is a special case, as it does not gather, but at the same time 4492 // we are not extending buildTree_rec() towards the operands. 4493 ValueList Op0; 4494 Op0.assign(VL.size(), VL0->getOperand(0)); 4495 VectorizableTree.back()->setOperand(0, Op0); 4496 return; 4497 } 4498 if (!CurrentOrder.empty()) { 4499 LLVM_DEBUG({ 4500 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4501 "with order"; 4502 for (unsigned Idx : CurrentOrder) 4503 dbgs() << " " << Idx; 4504 dbgs() << "\n"; 4505 }); 4506 fixupOrderingIndices(CurrentOrder); 4507 // Insert new order with initial value 0, if it does not exist, 4508 // otherwise return the iterator to the existing one. 4509 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4510 ReuseShuffleIndicies, CurrentOrder); 4511 // This is a special case, as it does not gather, but at the same time 4512 // we are not extending buildTree_rec() towards the operands. 4513 ValueList Op0; 4514 Op0.assign(VL.size(), VL0->getOperand(0)); 4515 VectorizableTree.back()->setOperand(0, Op0); 4516 return; 4517 } 4518 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4519 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4520 ReuseShuffleIndicies); 4521 BS.cancelScheduling(VL, VL0); 4522 return; 4523 } 4524 case Instruction::InsertElement: { 4525 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4526 4527 // Check that we have a buildvector and not a shuffle of 2 or more 4528 // different vectors. 4529 ValueSet SourceVectors; 4530 for (Value *V : VL) { 4531 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4532 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4533 } 4534 4535 if (count_if(VL, [&SourceVectors](Value *V) { 4536 return !SourceVectors.contains(V); 4537 }) >= 2) { 4538 // Found 2nd source vector - cancel. 4539 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4540 "different source vectors.\n"); 4541 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4542 BS.cancelScheduling(VL, VL0); 4543 return; 4544 } 4545 4546 auto OrdCompare = [](const std::pair<int, int> &P1, 4547 const std::pair<int, int> &P2) { 4548 return P1.first > P2.first; 4549 }; 4550 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4551 decltype(OrdCompare)> 4552 Indices(OrdCompare); 4553 for (int I = 0, E = VL.size(); I < E; ++I) { 4554 unsigned Idx = *getInsertIndex(VL[I]); 4555 Indices.emplace(Idx, I); 4556 } 4557 OrdersType CurrentOrder(VL.size(), VL.size()); 4558 bool IsIdentity = true; 4559 for (int I = 0, E = VL.size(); I < E; ++I) { 4560 CurrentOrder[Indices.top().second] = I; 4561 IsIdentity &= Indices.top().second == I; 4562 Indices.pop(); 4563 } 4564 if (IsIdentity) 4565 CurrentOrder.clear(); 4566 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4567 None, CurrentOrder); 4568 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4569 4570 constexpr int NumOps = 2; 4571 ValueList VectorOperands[NumOps]; 4572 for (int I = 0; I < NumOps; ++I) { 4573 for (Value *V : VL) 4574 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4575 4576 TE->setOperand(I, VectorOperands[I]); 4577 } 4578 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4579 return; 4580 } 4581 case Instruction::Load: { 4582 // Check that a vectorized load would load the same memory as a scalar 4583 // load. For example, we don't want to vectorize loads that are smaller 4584 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4585 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4586 // from such a struct, we read/write packed bits disagreeing with the 4587 // unvectorized version. 4588 SmallVector<Value *> PointerOps; 4589 OrdersType CurrentOrder; 4590 TreeEntry *TE = nullptr; 4591 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4592 PointerOps)) { 4593 case LoadsState::Vectorize: 4594 if (CurrentOrder.empty()) { 4595 // Original loads are consecutive and does not require reordering. 4596 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4597 ReuseShuffleIndicies); 4598 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4599 } else { 4600 fixupOrderingIndices(CurrentOrder); 4601 // Need to reorder. 4602 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4603 ReuseShuffleIndicies, CurrentOrder); 4604 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4605 } 4606 TE->setOperandsInOrder(); 4607 break; 4608 case LoadsState::ScatterVectorize: 4609 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4610 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4611 UserTreeIdx, ReuseShuffleIndicies); 4612 TE->setOperandsInOrder(); 4613 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4614 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4615 break; 4616 case LoadsState::Gather: 4617 BS.cancelScheduling(VL, VL0); 4618 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4619 ReuseShuffleIndicies); 4620 #ifndef NDEBUG 4621 Type *ScalarTy = VL0->getType(); 4622 if (DL->getTypeSizeInBits(ScalarTy) != 4623 DL->getTypeAllocSizeInBits(ScalarTy)) 4624 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4625 else if (any_of(VL, [](Value *V) { 4626 return !cast<LoadInst>(V)->isSimple(); 4627 })) 4628 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4629 else 4630 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4631 #endif // NDEBUG 4632 break; 4633 } 4634 return; 4635 } 4636 case Instruction::ZExt: 4637 case Instruction::SExt: 4638 case Instruction::FPToUI: 4639 case Instruction::FPToSI: 4640 case Instruction::FPExt: 4641 case Instruction::PtrToInt: 4642 case Instruction::IntToPtr: 4643 case Instruction::SIToFP: 4644 case Instruction::UIToFP: 4645 case Instruction::Trunc: 4646 case Instruction::FPTrunc: 4647 case Instruction::BitCast: { 4648 Type *SrcTy = VL0->getOperand(0)->getType(); 4649 for (Value *V : VL) { 4650 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4651 if (Ty != SrcTy || !isValidElementType(Ty)) { 4652 BS.cancelScheduling(VL, VL0); 4653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4654 ReuseShuffleIndicies); 4655 LLVM_DEBUG(dbgs() 4656 << "SLP: Gathering casts with different src types.\n"); 4657 return; 4658 } 4659 } 4660 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4661 ReuseShuffleIndicies); 4662 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4663 4664 TE->setOperandsInOrder(); 4665 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4666 ValueList Operands; 4667 // Prepare the operand vector. 4668 for (Value *V : VL) 4669 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4670 4671 buildTree_rec(Operands, Depth + 1, {TE, i}); 4672 } 4673 return; 4674 } 4675 case Instruction::ICmp: 4676 case Instruction::FCmp: { 4677 // Check that all of the compares have the same predicate. 4678 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4679 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4680 Type *ComparedTy = VL0->getOperand(0)->getType(); 4681 for (Value *V : VL) { 4682 CmpInst *Cmp = cast<CmpInst>(V); 4683 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4684 Cmp->getOperand(0)->getType() != ComparedTy) { 4685 BS.cancelScheduling(VL, VL0); 4686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4687 ReuseShuffleIndicies); 4688 LLVM_DEBUG(dbgs() 4689 << "SLP: Gathering cmp with different predicate.\n"); 4690 return; 4691 } 4692 } 4693 4694 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4695 ReuseShuffleIndicies); 4696 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4697 4698 ValueList Left, Right; 4699 if (cast<CmpInst>(VL0)->isCommutative()) { 4700 // Commutative predicate - collect + sort operands of the instructions 4701 // so that each side is more likely to have the same opcode. 4702 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4703 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4704 } else { 4705 // Collect operands - commute if it uses the swapped predicate. 4706 for (Value *V : VL) { 4707 auto *Cmp = cast<CmpInst>(V); 4708 Value *LHS = Cmp->getOperand(0); 4709 Value *RHS = Cmp->getOperand(1); 4710 if (Cmp->getPredicate() != P0) 4711 std::swap(LHS, RHS); 4712 Left.push_back(LHS); 4713 Right.push_back(RHS); 4714 } 4715 } 4716 TE->setOperand(0, Left); 4717 TE->setOperand(1, Right); 4718 buildTree_rec(Left, Depth + 1, {TE, 0}); 4719 buildTree_rec(Right, Depth + 1, {TE, 1}); 4720 return; 4721 } 4722 case Instruction::Select: 4723 case Instruction::FNeg: 4724 case Instruction::Add: 4725 case Instruction::FAdd: 4726 case Instruction::Sub: 4727 case Instruction::FSub: 4728 case Instruction::Mul: 4729 case Instruction::FMul: 4730 case Instruction::UDiv: 4731 case Instruction::SDiv: 4732 case Instruction::FDiv: 4733 case Instruction::URem: 4734 case Instruction::SRem: 4735 case Instruction::FRem: 4736 case Instruction::Shl: 4737 case Instruction::LShr: 4738 case Instruction::AShr: 4739 case Instruction::And: 4740 case Instruction::Or: 4741 case Instruction::Xor: { 4742 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4743 ReuseShuffleIndicies); 4744 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4745 4746 // Sort operands of the instructions so that each side is more likely to 4747 // have the same opcode. 4748 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4749 ValueList Left, Right; 4750 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4751 TE->setOperand(0, Left); 4752 TE->setOperand(1, Right); 4753 buildTree_rec(Left, Depth + 1, {TE, 0}); 4754 buildTree_rec(Right, Depth + 1, {TE, 1}); 4755 return; 4756 } 4757 4758 TE->setOperandsInOrder(); 4759 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4760 ValueList Operands; 4761 // Prepare the operand vector. 4762 for (Value *V : VL) 4763 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4764 4765 buildTree_rec(Operands, Depth + 1, {TE, i}); 4766 } 4767 return; 4768 } 4769 case Instruction::GetElementPtr: { 4770 // We don't combine GEPs with complicated (nested) indexing. 4771 for (Value *V : VL) { 4772 if (cast<Instruction>(V)->getNumOperands() != 2) { 4773 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4774 BS.cancelScheduling(VL, VL0); 4775 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4776 ReuseShuffleIndicies); 4777 return; 4778 } 4779 } 4780 4781 // We can't combine several GEPs into one vector if they operate on 4782 // different types. 4783 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4784 for (Value *V : VL) { 4785 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4786 if (Ty0 != CurTy) { 4787 LLVM_DEBUG(dbgs() 4788 << "SLP: not-vectorizable GEP (different types).\n"); 4789 BS.cancelScheduling(VL, VL0); 4790 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4791 ReuseShuffleIndicies); 4792 return; 4793 } 4794 } 4795 4796 // We don't combine GEPs with non-constant indexes. 4797 Type *Ty1 = VL0->getOperand(1)->getType(); 4798 for (Value *V : VL) { 4799 auto Op = cast<Instruction>(V)->getOperand(1); 4800 if (!isa<ConstantInt>(Op) || 4801 (Op->getType() != Ty1 && 4802 Op->getType()->getScalarSizeInBits() > 4803 DL->getIndexSizeInBits( 4804 V->getType()->getPointerAddressSpace()))) { 4805 LLVM_DEBUG(dbgs() 4806 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4807 BS.cancelScheduling(VL, VL0); 4808 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4809 ReuseShuffleIndicies); 4810 return; 4811 } 4812 } 4813 4814 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4815 ReuseShuffleIndicies); 4816 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4817 SmallVector<ValueList, 2> Operands(2); 4818 // Prepare the operand vector for pointer operands. 4819 for (Value *V : VL) 4820 Operands.front().push_back( 4821 cast<GetElementPtrInst>(V)->getPointerOperand()); 4822 TE->setOperand(0, Operands.front()); 4823 // Need to cast all indices to the same type before vectorization to 4824 // avoid crash. 4825 // Required to be able to find correct matches between different gather 4826 // nodes and reuse the vectorized values rather than trying to gather them 4827 // again. 4828 int IndexIdx = 1; 4829 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4830 Type *Ty = all_of(VL, 4831 [VL0Ty, IndexIdx](Value *V) { 4832 return VL0Ty == cast<GetElementPtrInst>(V) 4833 ->getOperand(IndexIdx) 4834 ->getType(); 4835 }) 4836 ? VL0Ty 4837 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4838 ->getPointerOperandType() 4839 ->getScalarType()); 4840 // Prepare the operand vector. 4841 for (Value *V : VL) { 4842 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4843 auto *CI = cast<ConstantInt>(Op); 4844 Operands.back().push_back(ConstantExpr::getIntegerCast( 4845 CI, Ty, CI->getValue().isSignBitSet())); 4846 } 4847 TE->setOperand(IndexIdx, Operands.back()); 4848 4849 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4850 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4851 return; 4852 } 4853 case Instruction::Store: { 4854 // Check if the stores are consecutive or if we need to swizzle them. 4855 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4856 // Avoid types that are padded when being allocated as scalars, while 4857 // being packed together in a vector (such as i1). 4858 if (DL->getTypeSizeInBits(ScalarTy) != 4859 DL->getTypeAllocSizeInBits(ScalarTy)) { 4860 BS.cancelScheduling(VL, VL0); 4861 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4862 ReuseShuffleIndicies); 4863 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4864 return; 4865 } 4866 // Make sure all stores in the bundle are simple - we can't vectorize 4867 // atomic or volatile stores. 4868 SmallVector<Value *, 4> PointerOps(VL.size()); 4869 ValueList Operands(VL.size()); 4870 auto POIter = PointerOps.begin(); 4871 auto OIter = Operands.begin(); 4872 for (Value *V : VL) { 4873 auto *SI = cast<StoreInst>(V); 4874 if (!SI->isSimple()) { 4875 BS.cancelScheduling(VL, VL0); 4876 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4877 ReuseShuffleIndicies); 4878 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4879 return; 4880 } 4881 *POIter = SI->getPointerOperand(); 4882 *OIter = SI->getValueOperand(); 4883 ++POIter; 4884 ++OIter; 4885 } 4886 4887 OrdersType CurrentOrder; 4888 // Check the order of pointer operands. 4889 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4890 Value *Ptr0; 4891 Value *PtrN; 4892 if (CurrentOrder.empty()) { 4893 Ptr0 = PointerOps.front(); 4894 PtrN = PointerOps.back(); 4895 } else { 4896 Ptr0 = PointerOps[CurrentOrder.front()]; 4897 PtrN = PointerOps[CurrentOrder.back()]; 4898 } 4899 Optional<int> Dist = 4900 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4901 // Check that the sorted pointer operands are consecutive. 4902 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4903 if (CurrentOrder.empty()) { 4904 // Original stores are consecutive and does not require reordering. 4905 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4906 UserTreeIdx, ReuseShuffleIndicies); 4907 TE->setOperandsInOrder(); 4908 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4909 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4910 } else { 4911 fixupOrderingIndices(CurrentOrder); 4912 TreeEntry *TE = 4913 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4914 ReuseShuffleIndicies, CurrentOrder); 4915 TE->setOperandsInOrder(); 4916 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4917 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4918 } 4919 return; 4920 } 4921 } 4922 4923 BS.cancelScheduling(VL, VL0); 4924 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4925 ReuseShuffleIndicies); 4926 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4927 return; 4928 } 4929 case Instruction::Call: { 4930 // Check if the calls are all to the same vectorizable intrinsic or 4931 // library function. 4932 CallInst *CI = cast<CallInst>(VL0); 4933 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4934 4935 VFShape Shape = VFShape::get( 4936 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4937 false /*HasGlobalPred*/); 4938 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4939 4940 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4941 BS.cancelScheduling(VL, VL0); 4942 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4943 ReuseShuffleIndicies); 4944 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4945 return; 4946 } 4947 Function *F = CI->getCalledFunction(); 4948 unsigned NumArgs = CI->arg_size(); 4949 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4950 for (unsigned j = 0; j != NumArgs; ++j) 4951 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 4952 ScalarArgs[j] = CI->getArgOperand(j); 4953 for (Value *V : VL) { 4954 CallInst *CI2 = dyn_cast<CallInst>(V); 4955 if (!CI2 || CI2->getCalledFunction() != F || 4956 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4957 (VecFunc && 4958 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4959 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4960 BS.cancelScheduling(VL, VL0); 4961 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4962 ReuseShuffleIndicies); 4963 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4964 << "\n"); 4965 return; 4966 } 4967 // Some intrinsics have scalar arguments and should be same in order for 4968 // them to be vectorized. 4969 for (unsigned j = 0; j != NumArgs; ++j) { 4970 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 4971 Value *A1J = CI2->getArgOperand(j); 4972 if (ScalarArgs[j] != A1J) { 4973 BS.cancelScheduling(VL, VL0); 4974 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4975 ReuseShuffleIndicies); 4976 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4977 << " argument " << ScalarArgs[j] << "!=" << A1J 4978 << "\n"); 4979 return; 4980 } 4981 } 4982 } 4983 // Verify that the bundle operands are identical between the two calls. 4984 if (CI->hasOperandBundles() && 4985 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4986 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4987 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4988 BS.cancelScheduling(VL, VL0); 4989 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4990 ReuseShuffleIndicies); 4991 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4992 << *CI << "!=" << *V << '\n'); 4993 return; 4994 } 4995 } 4996 4997 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4998 ReuseShuffleIndicies); 4999 TE->setOperandsInOrder(); 5000 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5001 // For scalar operands no need to to create an entry since no need to 5002 // vectorize it. 5003 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5004 continue; 5005 ValueList Operands; 5006 // Prepare the operand vector. 5007 for (Value *V : VL) { 5008 auto *CI2 = cast<CallInst>(V); 5009 Operands.push_back(CI2->getArgOperand(i)); 5010 } 5011 buildTree_rec(Operands, Depth + 1, {TE, i}); 5012 } 5013 return; 5014 } 5015 case Instruction::ShuffleVector: { 5016 // If this is not an alternate sequence of opcode like add-sub 5017 // then do not vectorize this instruction. 5018 if (!S.isAltShuffle()) { 5019 BS.cancelScheduling(VL, VL0); 5020 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5021 ReuseShuffleIndicies); 5022 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5023 return; 5024 } 5025 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5026 ReuseShuffleIndicies); 5027 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5028 5029 // Reorder operands if reordering would enable vectorization. 5030 auto *CI = dyn_cast<CmpInst>(VL0); 5031 if (isa<BinaryOperator>(VL0) || CI) { 5032 ValueList Left, Right; 5033 if (!CI || all_of(VL, [](Value *V) { 5034 return cast<CmpInst>(V)->isCommutative(); 5035 })) { 5036 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5037 } else { 5038 CmpInst::Predicate P0 = CI->getPredicate(); 5039 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5040 assert(P0 != AltP0 && 5041 "Expected different main/alternate predicates."); 5042 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5043 Value *BaseOp0 = VL0->getOperand(0); 5044 Value *BaseOp1 = VL0->getOperand(1); 5045 // Collect operands - commute if it uses the swapped predicate or 5046 // alternate operation. 5047 for (Value *V : VL) { 5048 auto *Cmp = cast<CmpInst>(V); 5049 Value *LHS = Cmp->getOperand(0); 5050 Value *RHS = Cmp->getOperand(1); 5051 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5052 if (P0 == AltP0Swapped) { 5053 if (CI != Cmp && S.AltOp != Cmp && 5054 ((P0 == CurrentPred && 5055 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5056 (AltP0 == CurrentPred && 5057 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5058 std::swap(LHS, RHS); 5059 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5060 std::swap(LHS, RHS); 5061 } 5062 Left.push_back(LHS); 5063 Right.push_back(RHS); 5064 } 5065 } 5066 TE->setOperand(0, Left); 5067 TE->setOperand(1, Right); 5068 buildTree_rec(Left, Depth + 1, {TE, 0}); 5069 buildTree_rec(Right, Depth + 1, {TE, 1}); 5070 return; 5071 } 5072 5073 TE->setOperandsInOrder(); 5074 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5075 ValueList Operands; 5076 // Prepare the operand vector. 5077 for (Value *V : VL) 5078 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5079 5080 buildTree_rec(Operands, Depth + 1, {TE, i}); 5081 } 5082 return; 5083 } 5084 default: 5085 BS.cancelScheduling(VL, VL0); 5086 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5087 ReuseShuffleIndicies); 5088 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5089 return; 5090 } 5091 } 5092 5093 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5094 unsigned N = 1; 5095 Type *EltTy = T; 5096 5097 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5098 isa<VectorType>(EltTy)) { 5099 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5100 // Check that struct is homogeneous. 5101 for (const auto *Ty : ST->elements()) 5102 if (Ty != *ST->element_begin()) 5103 return 0; 5104 N *= ST->getNumElements(); 5105 EltTy = *ST->element_begin(); 5106 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5107 N *= AT->getNumElements(); 5108 EltTy = AT->getElementType(); 5109 } else { 5110 auto *VT = cast<FixedVectorType>(EltTy); 5111 N *= VT->getNumElements(); 5112 EltTy = VT->getElementType(); 5113 } 5114 } 5115 5116 if (!isValidElementType(EltTy)) 5117 return 0; 5118 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5119 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5120 return 0; 5121 return N; 5122 } 5123 5124 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5125 SmallVectorImpl<unsigned> &CurrentOrder) const { 5126 const auto *It = find_if(VL, [](Value *V) { 5127 return isa<ExtractElementInst, ExtractValueInst>(V); 5128 }); 5129 assert(It != VL.end() && "Expected at least one extract instruction."); 5130 auto *E0 = cast<Instruction>(*It); 5131 assert(all_of(VL, 5132 [](Value *V) { 5133 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5134 V); 5135 }) && 5136 "Invalid opcode"); 5137 // Check if all of the extracts come from the same vector and from the 5138 // correct offset. 5139 Value *Vec = E0->getOperand(0); 5140 5141 CurrentOrder.clear(); 5142 5143 // We have to extract from a vector/aggregate with the same number of elements. 5144 unsigned NElts; 5145 if (E0->getOpcode() == Instruction::ExtractValue) { 5146 const DataLayout &DL = E0->getModule()->getDataLayout(); 5147 NElts = canMapToVector(Vec->getType(), DL); 5148 if (!NElts) 5149 return false; 5150 // Check if load can be rewritten as load of vector. 5151 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5152 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5153 return false; 5154 } else { 5155 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5156 } 5157 5158 if (NElts != VL.size()) 5159 return false; 5160 5161 // Check that all of the indices extract from the correct offset. 5162 bool ShouldKeepOrder = true; 5163 unsigned E = VL.size(); 5164 // Assign to all items the initial value E + 1 so we can check if the extract 5165 // instruction index was used already. 5166 // Also, later we can check that all the indices are used and we have a 5167 // consecutive access in the extract instructions, by checking that no 5168 // element of CurrentOrder still has value E + 1. 5169 CurrentOrder.assign(E, E); 5170 unsigned I = 0; 5171 for (; I < E; ++I) { 5172 auto *Inst = dyn_cast<Instruction>(VL[I]); 5173 if (!Inst) 5174 continue; 5175 if (Inst->getOperand(0) != Vec) 5176 break; 5177 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5178 if (isa<UndefValue>(EE->getIndexOperand())) 5179 continue; 5180 Optional<unsigned> Idx = getExtractIndex(Inst); 5181 if (!Idx) 5182 break; 5183 const unsigned ExtIdx = *Idx; 5184 if (ExtIdx != I) { 5185 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5186 break; 5187 ShouldKeepOrder = false; 5188 CurrentOrder[ExtIdx] = I; 5189 } else { 5190 if (CurrentOrder[I] != E) 5191 break; 5192 CurrentOrder[I] = I; 5193 } 5194 } 5195 if (I < E) { 5196 CurrentOrder.clear(); 5197 return false; 5198 } 5199 if (ShouldKeepOrder) 5200 CurrentOrder.clear(); 5201 5202 return ShouldKeepOrder; 5203 } 5204 5205 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5206 ArrayRef<Value *> VectorizedVals) const { 5207 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5208 all_of(I->users(), [this](User *U) { 5209 return ScalarToTreeEntry.count(U) > 0 || 5210 isVectorLikeInstWithConstOps(U) || 5211 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5212 }); 5213 } 5214 5215 static std::pair<InstructionCost, InstructionCost> 5216 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5217 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5218 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5219 5220 // Calculate the cost of the scalar and vector calls. 5221 SmallVector<Type *, 4> VecTys; 5222 for (Use &Arg : CI->args()) 5223 VecTys.push_back( 5224 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5225 FastMathFlags FMF; 5226 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5227 FMF = FPCI->getFastMathFlags(); 5228 SmallVector<const Value *> Arguments(CI->args()); 5229 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5230 dyn_cast<IntrinsicInst>(CI)); 5231 auto IntrinsicCost = 5232 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5233 5234 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5235 VecTy->getNumElements())), 5236 false /*HasGlobalPred*/); 5237 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5238 auto LibCost = IntrinsicCost; 5239 if (!CI->isNoBuiltin() && VecFunc) { 5240 // Calculate the cost of the vector library call. 5241 // If the corresponding vector call is cheaper, return its cost. 5242 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5243 TTI::TCK_RecipThroughput); 5244 } 5245 return {IntrinsicCost, LibCost}; 5246 } 5247 5248 /// Compute the cost of creating a vector of type \p VecTy containing the 5249 /// extracted values from \p VL. 5250 static InstructionCost 5251 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5252 TargetTransformInfo::ShuffleKind ShuffleKind, 5253 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5254 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5255 5256 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5257 VecTy->getNumElements() < NumOfParts) 5258 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5259 5260 bool AllConsecutive = true; 5261 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5262 unsigned Idx = -1; 5263 InstructionCost Cost = 0; 5264 5265 // Process extracts in blocks of EltsPerVector to check if the source vector 5266 // operand can be re-used directly. If not, add the cost of creating a shuffle 5267 // to extract the values into a vector register. 5268 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5269 for (auto *V : VL) { 5270 ++Idx; 5271 5272 // Need to exclude undefs from analysis. 5273 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5274 continue; 5275 5276 // Reached the start of a new vector registers. 5277 if (Idx % EltsPerVector == 0) { 5278 RegMask.assign(EltsPerVector, UndefMaskElem); 5279 AllConsecutive = true; 5280 continue; 5281 } 5282 5283 // Check all extracts for a vector register on the target directly 5284 // extract values in order. 5285 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5286 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5287 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5288 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5289 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5290 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5291 } 5292 5293 if (AllConsecutive) 5294 continue; 5295 5296 // Skip all indices, except for the last index per vector block. 5297 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5298 continue; 5299 5300 // If we have a series of extracts which are not consecutive and hence 5301 // cannot re-use the source vector register directly, compute the shuffle 5302 // cost to extract the vector with EltsPerVector elements. 5303 Cost += TTI.getShuffleCost( 5304 TargetTransformInfo::SK_PermuteSingleSrc, 5305 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5306 } 5307 return Cost; 5308 } 5309 5310 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5311 /// operations operands. 5312 static void 5313 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5314 ArrayRef<int> ReusesIndices, 5315 const function_ref<bool(Instruction *)> IsAltOp, 5316 SmallVectorImpl<int> &Mask, 5317 SmallVectorImpl<Value *> *OpScalars = nullptr, 5318 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5319 unsigned Sz = VL.size(); 5320 Mask.assign(Sz, UndefMaskElem); 5321 SmallVector<int> OrderMask; 5322 if (!ReorderIndices.empty()) 5323 inversePermutation(ReorderIndices, OrderMask); 5324 for (unsigned I = 0; I < Sz; ++I) { 5325 unsigned Idx = I; 5326 if (!ReorderIndices.empty()) 5327 Idx = OrderMask[I]; 5328 auto *OpInst = cast<Instruction>(VL[Idx]); 5329 if (IsAltOp(OpInst)) { 5330 Mask[I] = Sz + Idx; 5331 if (AltScalars) 5332 AltScalars->push_back(OpInst); 5333 } else { 5334 Mask[I] = Idx; 5335 if (OpScalars) 5336 OpScalars->push_back(OpInst); 5337 } 5338 } 5339 if (!ReusesIndices.empty()) { 5340 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5341 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5342 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5343 }); 5344 Mask.swap(NewMask); 5345 } 5346 } 5347 5348 /// Checks if the specified instruction \p I is an alternate operation for the 5349 /// given \p MainOp and \p AltOp instructions. 5350 static bool isAlternateInstruction(const Instruction *I, 5351 const Instruction *MainOp, 5352 const Instruction *AltOp) { 5353 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5354 auto *AltCI0 = cast<CmpInst>(AltOp); 5355 auto *CI = cast<CmpInst>(I); 5356 CmpInst::Predicate P0 = CI0->getPredicate(); 5357 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5358 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5359 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5360 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5361 if (P0 == AltP0Swapped) 5362 return I == AltCI0 || 5363 (I != MainOp && 5364 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5365 CI->getOperand(0), CI->getOperand(1))); 5366 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5367 } 5368 return I->getOpcode() == AltOp->getOpcode(); 5369 } 5370 5371 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5372 ArrayRef<Value *> VectorizedVals) { 5373 ArrayRef<Value*> VL = E->Scalars; 5374 5375 Type *ScalarTy = VL[0]->getType(); 5376 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5377 ScalarTy = SI->getValueOperand()->getType(); 5378 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5379 ScalarTy = CI->getOperand(0)->getType(); 5380 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5381 ScalarTy = IE->getOperand(1)->getType(); 5382 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5383 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5384 5385 // If we have computed a smaller type for the expression, update VecTy so 5386 // that the costs will be accurate. 5387 if (MinBWs.count(VL[0])) 5388 VecTy = FixedVectorType::get( 5389 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5390 unsigned EntryVF = E->getVectorFactor(); 5391 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5392 5393 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5394 // FIXME: it tries to fix a problem with MSVC buildbots. 5395 TargetTransformInfo &TTIRef = *TTI; 5396 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5397 VectorizedVals, E](InstructionCost &Cost) { 5398 DenseMap<Value *, int> ExtractVectorsTys; 5399 SmallPtrSet<Value *, 4> CheckedExtracts; 5400 for (auto *V : VL) { 5401 if (isa<UndefValue>(V)) 5402 continue; 5403 // If all users of instruction are going to be vectorized and this 5404 // instruction itself is not going to be vectorized, consider this 5405 // instruction as dead and remove its cost from the final cost of the 5406 // vectorized tree. 5407 // Also, avoid adjusting the cost for extractelements with multiple uses 5408 // in different graph entries. 5409 const TreeEntry *VE = getTreeEntry(V); 5410 if (!CheckedExtracts.insert(V).second || 5411 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5412 (VE && VE != E)) 5413 continue; 5414 auto *EE = cast<ExtractElementInst>(V); 5415 Optional<unsigned> EEIdx = getExtractIndex(EE); 5416 if (!EEIdx) 5417 continue; 5418 unsigned Idx = *EEIdx; 5419 if (TTIRef.getNumberOfParts(VecTy) != 5420 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5421 auto It = 5422 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5423 It->getSecond() = std::min<int>(It->second, Idx); 5424 } 5425 // Take credit for instruction that will become dead. 5426 if (EE->hasOneUse()) { 5427 Instruction *Ext = EE->user_back(); 5428 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5429 all_of(Ext->users(), 5430 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5431 // Use getExtractWithExtendCost() to calculate the cost of 5432 // extractelement/ext pair. 5433 Cost -= 5434 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5435 EE->getVectorOperandType(), Idx); 5436 // Add back the cost of s|zext which is subtracted separately. 5437 Cost += TTIRef.getCastInstrCost( 5438 Ext->getOpcode(), Ext->getType(), EE->getType(), 5439 TTI::getCastContextHint(Ext), CostKind, Ext); 5440 continue; 5441 } 5442 } 5443 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5444 EE->getVectorOperandType(), Idx); 5445 } 5446 // Add a cost for subvector extracts/inserts if required. 5447 for (const auto &Data : ExtractVectorsTys) { 5448 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5449 unsigned NumElts = VecTy->getNumElements(); 5450 if (Data.second % NumElts == 0) 5451 continue; 5452 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5453 unsigned Idx = (Data.second / NumElts) * NumElts; 5454 unsigned EENumElts = EEVTy->getNumElements(); 5455 if (Idx + NumElts <= EENumElts) { 5456 Cost += 5457 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5458 EEVTy, None, Idx, VecTy); 5459 } else { 5460 // Need to round up the subvector type vectorization factor to avoid a 5461 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5462 // <= EENumElts. 5463 auto *SubVT = 5464 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5465 Cost += 5466 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5467 EEVTy, None, Idx, SubVT); 5468 } 5469 } else { 5470 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5471 VecTy, None, 0, EEVTy); 5472 } 5473 } 5474 }; 5475 if (E->State == TreeEntry::NeedToGather) { 5476 if (allConstant(VL)) 5477 return 0; 5478 if (isa<InsertElementInst>(VL[0])) 5479 return InstructionCost::getInvalid(); 5480 SmallVector<int> Mask; 5481 SmallVector<const TreeEntry *> Entries; 5482 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5483 isGatherShuffledEntry(E, Mask, Entries); 5484 if (Shuffle.hasValue()) { 5485 InstructionCost GatherCost = 0; 5486 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5487 // Perfect match in the graph, will reuse the previously vectorized 5488 // node. Cost is 0. 5489 LLVM_DEBUG( 5490 dbgs() 5491 << "SLP: perfect diamond match for gather bundle that starts with " 5492 << *VL.front() << ".\n"); 5493 if (NeedToShuffleReuses) 5494 GatherCost = 5495 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5496 FinalVecTy, E->ReuseShuffleIndices); 5497 } else { 5498 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5499 << " entries for bundle that starts with " 5500 << *VL.front() << ".\n"); 5501 // Detected that instead of gather we can emit a shuffle of single/two 5502 // previously vectorized nodes. Add the cost of the permutation rather 5503 // than gather. 5504 ::addMask(Mask, E->ReuseShuffleIndices); 5505 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5506 } 5507 return GatherCost; 5508 } 5509 if ((E->getOpcode() == Instruction::ExtractElement || 5510 all_of(E->Scalars, 5511 [](Value *V) { 5512 return isa<ExtractElementInst, UndefValue>(V); 5513 })) && 5514 allSameType(VL)) { 5515 // Check that gather of extractelements can be represented as just a 5516 // shuffle of a single/two vectors the scalars are extracted from. 5517 SmallVector<int> Mask; 5518 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5519 isFixedVectorShuffle(VL, Mask); 5520 if (ShuffleKind.hasValue()) { 5521 // Found the bunch of extractelement instructions that must be gathered 5522 // into a vector and can be represented as a permutation elements in a 5523 // single input vector or of 2 input vectors. 5524 InstructionCost Cost = 5525 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5526 AdjustExtractsCost(Cost); 5527 if (NeedToShuffleReuses) 5528 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5529 FinalVecTy, E->ReuseShuffleIndices); 5530 return Cost; 5531 } 5532 } 5533 if (isSplat(VL)) { 5534 // Found the broadcasting of the single scalar, calculate the cost as the 5535 // broadcast. 5536 assert(VecTy == FinalVecTy && 5537 "No reused scalars expected for broadcast."); 5538 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5539 /*Mask=*/None, /*Index=*/0, 5540 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5541 } 5542 InstructionCost ReuseShuffleCost = 0; 5543 if (NeedToShuffleReuses) 5544 ReuseShuffleCost = TTI->getShuffleCost( 5545 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5546 // Improve gather cost for gather of loads, if we can group some of the 5547 // loads into vector loads. 5548 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5549 !E->isAltShuffle()) { 5550 BoUpSLP::ValueSet VectorizedLoads; 5551 unsigned StartIdx = 0; 5552 unsigned VF = VL.size() / 2; 5553 unsigned VectorizedCnt = 0; 5554 unsigned ScatterVectorizeCnt = 0; 5555 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5556 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5557 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5558 Cnt += VF) { 5559 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5560 if (!VectorizedLoads.count(Slice.front()) && 5561 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5562 SmallVector<Value *> PointerOps; 5563 OrdersType CurrentOrder; 5564 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5565 *SE, CurrentOrder, PointerOps); 5566 switch (LS) { 5567 case LoadsState::Vectorize: 5568 case LoadsState::ScatterVectorize: 5569 // Mark the vectorized loads so that we don't vectorize them 5570 // again. 5571 if (LS == LoadsState::Vectorize) 5572 ++VectorizedCnt; 5573 else 5574 ++ScatterVectorizeCnt; 5575 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5576 // If we vectorized initial block, no need to try to vectorize it 5577 // again. 5578 if (Cnt == StartIdx) 5579 StartIdx += VF; 5580 break; 5581 case LoadsState::Gather: 5582 break; 5583 } 5584 } 5585 } 5586 // Check if the whole array was vectorized already - exit. 5587 if (StartIdx >= VL.size()) 5588 break; 5589 // Found vectorizable parts - exit. 5590 if (!VectorizedLoads.empty()) 5591 break; 5592 } 5593 if (!VectorizedLoads.empty()) { 5594 InstructionCost GatherCost = 0; 5595 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5596 bool NeedInsertSubvectorAnalysis = 5597 !NumParts || (VL.size() / VF) > NumParts; 5598 // Get the cost for gathered loads. 5599 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5600 if (VectorizedLoads.contains(VL[I])) 5601 continue; 5602 GatherCost += getGatherCost(VL.slice(I, VF)); 5603 } 5604 // The cost for vectorized loads. 5605 InstructionCost ScalarsCost = 0; 5606 for (Value *V : VectorizedLoads) { 5607 auto *LI = cast<LoadInst>(V); 5608 ScalarsCost += TTI->getMemoryOpCost( 5609 Instruction::Load, LI->getType(), LI->getAlign(), 5610 LI->getPointerAddressSpace(), CostKind, LI); 5611 } 5612 auto *LI = cast<LoadInst>(E->getMainOp()); 5613 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5614 Align Alignment = LI->getAlign(); 5615 GatherCost += 5616 VectorizedCnt * 5617 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5618 LI->getPointerAddressSpace(), CostKind, LI); 5619 GatherCost += ScatterVectorizeCnt * 5620 TTI->getGatherScatterOpCost( 5621 Instruction::Load, LoadTy, LI->getPointerOperand(), 5622 /*VariableMask=*/false, Alignment, CostKind, LI); 5623 if (NeedInsertSubvectorAnalysis) { 5624 // Add the cost for the subvectors insert. 5625 for (int I = VF, E = VL.size(); I < E; I += VF) 5626 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5627 None, I, LoadTy); 5628 } 5629 return ReuseShuffleCost + GatherCost - ScalarsCost; 5630 } 5631 } 5632 return ReuseShuffleCost + getGatherCost(VL); 5633 } 5634 InstructionCost CommonCost = 0; 5635 SmallVector<int> Mask; 5636 if (!E->ReorderIndices.empty()) { 5637 SmallVector<int> NewMask; 5638 if (E->getOpcode() == Instruction::Store) { 5639 // For stores the order is actually a mask. 5640 NewMask.resize(E->ReorderIndices.size()); 5641 copy(E->ReorderIndices, NewMask.begin()); 5642 } else { 5643 inversePermutation(E->ReorderIndices, NewMask); 5644 } 5645 ::addMask(Mask, NewMask); 5646 } 5647 if (NeedToShuffleReuses) 5648 ::addMask(Mask, E->ReuseShuffleIndices); 5649 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5650 CommonCost = 5651 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5652 assert((E->State == TreeEntry::Vectorize || 5653 E->State == TreeEntry::ScatterVectorize) && 5654 "Unhandled state"); 5655 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5656 Instruction *VL0 = E->getMainOp(); 5657 unsigned ShuffleOrOp = 5658 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5659 switch (ShuffleOrOp) { 5660 case Instruction::PHI: 5661 return 0; 5662 5663 case Instruction::ExtractValue: 5664 case Instruction::ExtractElement: { 5665 // The common cost of removal ExtractElement/ExtractValue instructions + 5666 // the cost of shuffles, if required to resuffle the original vector. 5667 if (NeedToShuffleReuses) { 5668 unsigned Idx = 0; 5669 for (unsigned I : E->ReuseShuffleIndices) { 5670 if (ShuffleOrOp == Instruction::ExtractElement) { 5671 auto *EE = cast<ExtractElementInst>(VL[I]); 5672 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5673 EE->getVectorOperandType(), 5674 *getExtractIndex(EE)); 5675 } else { 5676 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5677 VecTy, Idx); 5678 ++Idx; 5679 } 5680 } 5681 Idx = EntryVF; 5682 for (Value *V : VL) { 5683 if (ShuffleOrOp == Instruction::ExtractElement) { 5684 auto *EE = cast<ExtractElementInst>(V); 5685 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5686 EE->getVectorOperandType(), 5687 *getExtractIndex(EE)); 5688 } else { 5689 --Idx; 5690 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5691 VecTy, Idx); 5692 } 5693 } 5694 } 5695 if (ShuffleOrOp == Instruction::ExtractValue) { 5696 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5697 auto *EI = cast<Instruction>(VL[I]); 5698 // Take credit for instruction that will become dead. 5699 if (EI->hasOneUse()) { 5700 Instruction *Ext = EI->user_back(); 5701 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5702 all_of(Ext->users(), 5703 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5704 // Use getExtractWithExtendCost() to calculate the cost of 5705 // extractelement/ext pair. 5706 CommonCost -= TTI->getExtractWithExtendCost( 5707 Ext->getOpcode(), Ext->getType(), VecTy, I); 5708 // Add back the cost of s|zext which is subtracted separately. 5709 CommonCost += TTI->getCastInstrCost( 5710 Ext->getOpcode(), Ext->getType(), EI->getType(), 5711 TTI::getCastContextHint(Ext), CostKind, Ext); 5712 continue; 5713 } 5714 } 5715 CommonCost -= 5716 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5717 } 5718 } else { 5719 AdjustExtractsCost(CommonCost); 5720 } 5721 return CommonCost; 5722 } 5723 case Instruction::InsertElement: { 5724 assert(E->ReuseShuffleIndices.empty() && 5725 "Unique insertelements only are expected."); 5726 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5727 5728 unsigned const NumElts = SrcVecTy->getNumElements(); 5729 unsigned const NumScalars = VL.size(); 5730 APInt DemandedElts = APInt::getZero(NumElts); 5731 // TODO: Add support for Instruction::InsertValue. 5732 SmallVector<int> Mask; 5733 if (!E->ReorderIndices.empty()) { 5734 inversePermutation(E->ReorderIndices, Mask); 5735 Mask.append(NumElts - NumScalars, UndefMaskElem); 5736 } else { 5737 Mask.assign(NumElts, UndefMaskElem); 5738 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5739 } 5740 unsigned Offset = *getInsertIndex(VL0); 5741 bool IsIdentity = true; 5742 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5743 Mask.swap(PrevMask); 5744 for (unsigned I = 0; I < NumScalars; ++I) { 5745 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5746 DemandedElts.setBit(InsertIdx); 5747 IsIdentity &= InsertIdx - Offset == I; 5748 Mask[InsertIdx - Offset] = I; 5749 } 5750 assert(Offset < NumElts && "Failed to find vector index offset"); 5751 5752 InstructionCost Cost = 0; 5753 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5754 /*Insert*/ true, /*Extract*/ false); 5755 5756 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5757 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5758 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5759 Cost += TTI->getShuffleCost( 5760 TargetTransformInfo::SK_PermuteSingleSrc, 5761 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5762 } else if (!IsIdentity) { 5763 auto *FirstInsert = 5764 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5765 return !is_contained(E->Scalars, 5766 cast<Instruction>(V)->getOperand(0)); 5767 })); 5768 if (isUndefVector(FirstInsert->getOperand(0))) { 5769 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5770 } else { 5771 SmallVector<int> InsertMask(NumElts); 5772 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5773 for (unsigned I = 0; I < NumElts; I++) { 5774 if (Mask[I] != UndefMaskElem) 5775 InsertMask[Offset + I] = NumElts + I; 5776 } 5777 Cost += 5778 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5779 } 5780 } 5781 5782 return Cost; 5783 } 5784 case Instruction::ZExt: 5785 case Instruction::SExt: 5786 case Instruction::FPToUI: 5787 case Instruction::FPToSI: 5788 case Instruction::FPExt: 5789 case Instruction::PtrToInt: 5790 case Instruction::IntToPtr: 5791 case Instruction::SIToFP: 5792 case Instruction::UIToFP: 5793 case Instruction::Trunc: 5794 case Instruction::FPTrunc: 5795 case Instruction::BitCast: { 5796 Type *SrcTy = VL0->getOperand(0)->getType(); 5797 InstructionCost ScalarEltCost = 5798 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5799 TTI::getCastContextHint(VL0), CostKind, VL0); 5800 if (NeedToShuffleReuses) { 5801 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5802 } 5803 5804 // Calculate the cost of this instruction. 5805 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5806 5807 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5808 InstructionCost VecCost = 0; 5809 // Check if the values are candidates to demote. 5810 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5811 VecCost = CommonCost + TTI->getCastInstrCost( 5812 E->getOpcode(), VecTy, SrcVecTy, 5813 TTI::getCastContextHint(VL0), CostKind, VL0); 5814 } 5815 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5816 return VecCost - ScalarCost; 5817 } 5818 case Instruction::FCmp: 5819 case Instruction::ICmp: 5820 case Instruction::Select: { 5821 // Calculate the cost of this instruction. 5822 InstructionCost ScalarEltCost = 5823 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5824 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5825 if (NeedToShuffleReuses) { 5826 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5827 } 5828 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5829 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5830 5831 // Check if all entries in VL are either compares or selects with compares 5832 // as condition that have the same predicates. 5833 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5834 bool First = true; 5835 for (auto *V : VL) { 5836 CmpInst::Predicate CurrentPred; 5837 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5838 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5839 !match(V, MatchCmp)) || 5840 (!First && VecPred != CurrentPred)) { 5841 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5842 break; 5843 } 5844 First = false; 5845 VecPred = CurrentPred; 5846 } 5847 5848 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5849 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5850 // Check if it is possible and profitable to use min/max for selects in 5851 // VL. 5852 // 5853 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5854 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5855 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5856 {VecTy, VecTy}); 5857 InstructionCost IntrinsicCost = 5858 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5859 // If the selects are the only uses of the compares, they will be dead 5860 // and we can adjust the cost by removing their cost. 5861 if (IntrinsicAndUse.second) 5862 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5863 MaskTy, VecPred, CostKind); 5864 VecCost = std::min(VecCost, IntrinsicCost); 5865 } 5866 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5867 return CommonCost + VecCost - ScalarCost; 5868 } 5869 case Instruction::FNeg: 5870 case Instruction::Add: 5871 case Instruction::FAdd: 5872 case Instruction::Sub: 5873 case Instruction::FSub: 5874 case Instruction::Mul: 5875 case Instruction::FMul: 5876 case Instruction::UDiv: 5877 case Instruction::SDiv: 5878 case Instruction::FDiv: 5879 case Instruction::URem: 5880 case Instruction::SRem: 5881 case Instruction::FRem: 5882 case Instruction::Shl: 5883 case Instruction::LShr: 5884 case Instruction::AShr: 5885 case Instruction::And: 5886 case Instruction::Or: 5887 case Instruction::Xor: { 5888 // Certain instructions can be cheaper to vectorize if they have a 5889 // constant second vector operand. 5890 TargetTransformInfo::OperandValueKind Op1VK = 5891 TargetTransformInfo::OK_AnyValue; 5892 TargetTransformInfo::OperandValueKind Op2VK = 5893 TargetTransformInfo::OK_UniformConstantValue; 5894 TargetTransformInfo::OperandValueProperties Op1VP = 5895 TargetTransformInfo::OP_None; 5896 TargetTransformInfo::OperandValueProperties Op2VP = 5897 TargetTransformInfo::OP_PowerOf2; 5898 5899 // If all operands are exactly the same ConstantInt then set the 5900 // operand kind to OK_UniformConstantValue. 5901 // If instead not all operands are constants, then set the operand kind 5902 // to OK_AnyValue. If all operands are constants but not the same, 5903 // then set the operand kind to OK_NonUniformConstantValue. 5904 ConstantInt *CInt0 = nullptr; 5905 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5906 const Instruction *I = cast<Instruction>(VL[i]); 5907 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5908 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5909 if (!CInt) { 5910 Op2VK = TargetTransformInfo::OK_AnyValue; 5911 Op2VP = TargetTransformInfo::OP_None; 5912 break; 5913 } 5914 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5915 !CInt->getValue().isPowerOf2()) 5916 Op2VP = TargetTransformInfo::OP_None; 5917 if (i == 0) { 5918 CInt0 = CInt; 5919 continue; 5920 } 5921 if (CInt0 != CInt) 5922 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5923 } 5924 5925 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5926 InstructionCost ScalarEltCost = 5927 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5928 Op2VK, Op1VP, Op2VP, Operands, VL0); 5929 if (NeedToShuffleReuses) { 5930 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5931 } 5932 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5933 InstructionCost VecCost = 5934 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5935 Op2VK, Op1VP, Op2VP, Operands, VL0); 5936 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5937 return CommonCost + VecCost - ScalarCost; 5938 } 5939 case Instruction::GetElementPtr: { 5940 TargetTransformInfo::OperandValueKind Op1VK = 5941 TargetTransformInfo::OK_AnyValue; 5942 TargetTransformInfo::OperandValueKind Op2VK = 5943 TargetTransformInfo::OK_UniformConstantValue; 5944 5945 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5946 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5947 if (NeedToShuffleReuses) { 5948 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5949 } 5950 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5951 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5952 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5953 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5954 return CommonCost + VecCost - ScalarCost; 5955 } 5956 case Instruction::Load: { 5957 // Cost of wide load - cost of scalar loads. 5958 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5959 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5960 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5961 if (NeedToShuffleReuses) { 5962 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5963 } 5964 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5965 InstructionCost VecLdCost; 5966 if (E->State == TreeEntry::Vectorize) { 5967 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5968 CostKind, VL0); 5969 } else { 5970 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5971 Align CommonAlignment = Alignment; 5972 for (Value *V : VL) 5973 CommonAlignment = 5974 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5975 VecLdCost = TTI->getGatherScatterOpCost( 5976 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5977 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5978 } 5979 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5980 return CommonCost + VecLdCost - ScalarLdCost; 5981 } 5982 case Instruction::Store: { 5983 // We know that we can merge the stores. Calculate the cost. 5984 bool IsReorder = !E->ReorderIndices.empty(); 5985 auto *SI = 5986 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5987 Align Alignment = SI->getAlign(); 5988 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5989 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5990 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5991 InstructionCost VecStCost = TTI->getMemoryOpCost( 5992 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5993 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5994 return CommonCost + VecStCost - ScalarStCost; 5995 } 5996 case Instruction::Call: { 5997 CallInst *CI = cast<CallInst>(VL0); 5998 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5999 6000 // Calculate the cost of the scalar and vector calls. 6001 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6002 InstructionCost ScalarEltCost = 6003 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6004 if (NeedToShuffleReuses) { 6005 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6006 } 6007 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6008 6009 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6010 InstructionCost VecCallCost = 6011 std::min(VecCallCosts.first, VecCallCosts.second); 6012 6013 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6014 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6015 << " for " << *CI << "\n"); 6016 6017 return CommonCost + VecCallCost - ScalarCallCost; 6018 } 6019 case Instruction::ShuffleVector: { 6020 assert(E->isAltShuffle() && 6021 ((Instruction::isBinaryOp(E->getOpcode()) && 6022 Instruction::isBinaryOp(E->getAltOpcode())) || 6023 (Instruction::isCast(E->getOpcode()) && 6024 Instruction::isCast(E->getAltOpcode())) || 6025 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6026 "Invalid Shuffle Vector Operand"); 6027 InstructionCost ScalarCost = 0; 6028 if (NeedToShuffleReuses) { 6029 for (unsigned Idx : E->ReuseShuffleIndices) { 6030 Instruction *I = cast<Instruction>(VL[Idx]); 6031 CommonCost -= TTI->getInstructionCost(I, CostKind); 6032 } 6033 for (Value *V : VL) { 6034 Instruction *I = cast<Instruction>(V); 6035 CommonCost += TTI->getInstructionCost(I, CostKind); 6036 } 6037 } 6038 for (Value *V : VL) { 6039 Instruction *I = cast<Instruction>(V); 6040 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6041 ScalarCost += TTI->getInstructionCost(I, CostKind); 6042 } 6043 // VecCost is equal to sum of the cost of creating 2 vectors 6044 // and the cost of creating shuffle. 6045 InstructionCost VecCost = 0; 6046 // Try to find the previous shuffle node with the same operands and same 6047 // main/alternate ops. 6048 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6049 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6050 if (TE.get() == E) 6051 break; 6052 if (TE->isAltShuffle() && 6053 ((TE->getOpcode() == E->getOpcode() && 6054 TE->getAltOpcode() == E->getAltOpcode()) || 6055 (TE->getOpcode() == E->getAltOpcode() && 6056 TE->getAltOpcode() == E->getOpcode())) && 6057 TE->hasEqualOperands(*E)) 6058 return true; 6059 } 6060 return false; 6061 }; 6062 if (TryFindNodeWithEqualOperands()) { 6063 LLVM_DEBUG({ 6064 dbgs() << "SLP: diamond match for alternate node found.\n"; 6065 E->dump(); 6066 }); 6067 // No need to add new vector costs here since we're going to reuse 6068 // same main/alternate vector ops, just do different shuffling. 6069 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6070 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6071 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6072 CostKind); 6073 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6074 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6075 Builder.getInt1Ty(), 6076 CI0->getPredicate(), CostKind, VL0); 6077 VecCost += TTI->getCmpSelInstrCost( 6078 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6079 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6080 E->getAltOp()); 6081 } else { 6082 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6083 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6084 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6085 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6086 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6087 TTI::CastContextHint::None, CostKind); 6088 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6089 TTI::CastContextHint::None, CostKind); 6090 } 6091 6092 if (E->ReuseShuffleIndices.empty()) { 6093 CommonCost = 6094 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6095 } else { 6096 SmallVector<int> Mask; 6097 buildShuffleEntryMask( 6098 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6099 [E](Instruction *I) { 6100 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6101 return I->getOpcode() == E->getAltOpcode(); 6102 }, 6103 Mask); 6104 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6105 FinalVecTy, Mask); 6106 } 6107 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6108 return CommonCost + VecCost - ScalarCost; 6109 } 6110 default: 6111 llvm_unreachable("Unknown instruction"); 6112 } 6113 } 6114 6115 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6116 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6117 << VectorizableTree.size() << " is fully vectorizable .\n"); 6118 6119 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6120 SmallVector<int> Mask; 6121 return TE->State == TreeEntry::NeedToGather && 6122 !any_of(TE->Scalars, 6123 [this](Value *V) { return EphValues.contains(V); }) && 6124 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6125 TE->Scalars.size() < Limit || 6126 ((TE->getOpcode() == Instruction::ExtractElement || 6127 all_of(TE->Scalars, 6128 [](Value *V) { 6129 return isa<ExtractElementInst, UndefValue>(V); 6130 })) && 6131 isFixedVectorShuffle(TE->Scalars, Mask)) || 6132 (TE->State == TreeEntry::NeedToGather && 6133 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6134 }; 6135 6136 // We only handle trees of heights 1 and 2. 6137 if (VectorizableTree.size() == 1 && 6138 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6139 (ForReduction && 6140 AreVectorizableGathers(VectorizableTree[0].get(), 6141 VectorizableTree[0]->Scalars.size()) && 6142 VectorizableTree[0]->getVectorFactor() > 2))) 6143 return true; 6144 6145 if (VectorizableTree.size() != 2) 6146 return false; 6147 6148 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6149 // with the second gather nodes if they have less scalar operands rather than 6150 // the initial tree element (may be profitable to shuffle the second gather) 6151 // or they are extractelements, which form shuffle. 6152 SmallVector<int> Mask; 6153 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6154 AreVectorizableGathers(VectorizableTree[1].get(), 6155 VectorizableTree[0]->Scalars.size())) 6156 return true; 6157 6158 // Gathering cost would be too much for tiny trees. 6159 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6160 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6161 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6162 return false; 6163 6164 return true; 6165 } 6166 6167 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6168 TargetTransformInfo *TTI, 6169 bool MustMatchOrInst) { 6170 // Look past the root to find a source value. Arbitrarily follow the 6171 // path through operand 0 of any 'or'. Also, peek through optional 6172 // shift-left-by-multiple-of-8-bits. 6173 Value *ZextLoad = Root; 6174 const APInt *ShAmtC; 6175 bool FoundOr = false; 6176 while (!isa<ConstantExpr>(ZextLoad) && 6177 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6178 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6179 ShAmtC->urem(8) == 0))) { 6180 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6181 ZextLoad = BinOp->getOperand(0); 6182 if (BinOp->getOpcode() == Instruction::Or) 6183 FoundOr = true; 6184 } 6185 // Check if the input is an extended load of the required or/shift expression. 6186 Value *Load; 6187 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6188 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6189 return false; 6190 6191 // Require that the total load bit width is a legal integer type. 6192 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6193 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6194 Type *SrcTy = Load->getType(); 6195 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6196 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6197 return false; 6198 6199 // Everything matched - assume that we can fold the whole sequence using 6200 // load combining. 6201 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6202 << *(cast<Instruction>(Root)) << "\n"); 6203 6204 return true; 6205 } 6206 6207 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6208 if (RdxKind != RecurKind::Or) 6209 return false; 6210 6211 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6212 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6213 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6214 /* MatchOr */ false); 6215 } 6216 6217 bool BoUpSLP::isLoadCombineCandidate() const { 6218 // Peek through a final sequence of stores and check if all operations are 6219 // likely to be load-combined. 6220 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6221 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6222 Value *X; 6223 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6224 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6225 return false; 6226 } 6227 return true; 6228 } 6229 6230 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6231 // No need to vectorize inserts of gathered values. 6232 if (VectorizableTree.size() == 2 && 6233 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6234 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6235 return true; 6236 6237 // We can vectorize the tree if its size is greater than or equal to the 6238 // minimum size specified by the MinTreeSize command line option. 6239 if (VectorizableTree.size() >= MinTreeSize) 6240 return false; 6241 6242 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6243 // can vectorize it if we can prove it fully vectorizable. 6244 if (isFullyVectorizableTinyTree(ForReduction)) 6245 return false; 6246 6247 assert(VectorizableTree.empty() 6248 ? ExternalUses.empty() 6249 : true && "We shouldn't have any external users"); 6250 6251 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6252 // vectorizable. 6253 return true; 6254 } 6255 6256 InstructionCost BoUpSLP::getSpillCost() const { 6257 // Walk from the bottom of the tree to the top, tracking which values are 6258 // live. When we see a call instruction that is not part of our tree, 6259 // query TTI to see if there is a cost to keeping values live over it 6260 // (for example, if spills and fills are required). 6261 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6262 InstructionCost Cost = 0; 6263 6264 SmallPtrSet<Instruction*, 4> LiveValues; 6265 Instruction *PrevInst = nullptr; 6266 6267 // The entries in VectorizableTree are not necessarily ordered by their 6268 // position in basic blocks. Collect them and order them by dominance so later 6269 // instructions are guaranteed to be visited first. For instructions in 6270 // different basic blocks, we only scan to the beginning of the block, so 6271 // their order does not matter, as long as all instructions in a basic block 6272 // are grouped together. Using dominance ensures a deterministic order. 6273 SmallVector<Instruction *, 16> OrderedScalars; 6274 for (const auto &TEPtr : VectorizableTree) { 6275 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6276 if (!Inst) 6277 continue; 6278 OrderedScalars.push_back(Inst); 6279 } 6280 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6281 auto *NodeA = DT->getNode(A->getParent()); 6282 auto *NodeB = DT->getNode(B->getParent()); 6283 assert(NodeA && "Should only process reachable instructions"); 6284 assert(NodeB && "Should only process reachable instructions"); 6285 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6286 "Different nodes should have different DFS numbers"); 6287 if (NodeA != NodeB) 6288 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6289 return B->comesBefore(A); 6290 }); 6291 6292 for (Instruction *Inst : OrderedScalars) { 6293 if (!PrevInst) { 6294 PrevInst = Inst; 6295 continue; 6296 } 6297 6298 // Update LiveValues. 6299 LiveValues.erase(PrevInst); 6300 for (auto &J : PrevInst->operands()) { 6301 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6302 LiveValues.insert(cast<Instruction>(&*J)); 6303 } 6304 6305 LLVM_DEBUG({ 6306 dbgs() << "SLP: #LV: " << LiveValues.size(); 6307 for (auto *X : LiveValues) 6308 dbgs() << " " << X->getName(); 6309 dbgs() << ", Looking at "; 6310 Inst->dump(); 6311 }); 6312 6313 // Now find the sequence of instructions between PrevInst and Inst. 6314 unsigned NumCalls = 0; 6315 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6316 PrevInstIt = 6317 PrevInst->getIterator().getReverse(); 6318 while (InstIt != PrevInstIt) { 6319 if (PrevInstIt == PrevInst->getParent()->rend()) { 6320 PrevInstIt = Inst->getParent()->rbegin(); 6321 continue; 6322 } 6323 6324 // Debug information does not impact spill cost. 6325 if ((isa<CallInst>(&*PrevInstIt) && 6326 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6327 &*PrevInstIt != PrevInst) 6328 NumCalls++; 6329 6330 ++PrevInstIt; 6331 } 6332 6333 if (NumCalls) { 6334 SmallVector<Type*, 4> V; 6335 for (auto *II : LiveValues) { 6336 auto *ScalarTy = II->getType(); 6337 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6338 ScalarTy = VectorTy->getElementType(); 6339 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6340 } 6341 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6342 } 6343 6344 PrevInst = Inst; 6345 } 6346 6347 return Cost; 6348 } 6349 6350 /// Check if two insertelement instructions are from the same buildvector. 6351 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6352 InsertElementInst *V) { 6353 // Instructions must be from the same basic blocks. 6354 if (VU->getParent() != V->getParent()) 6355 return false; 6356 // Checks if 2 insertelements are from the same buildvector. 6357 if (VU->getType() != V->getType()) 6358 return false; 6359 // Multiple used inserts are separate nodes. 6360 if (!VU->hasOneUse() && !V->hasOneUse()) 6361 return false; 6362 auto *IE1 = VU; 6363 auto *IE2 = V; 6364 // Go through the vector operand of insertelement instructions trying to find 6365 // either VU as the original vector for IE2 or V as the original vector for 6366 // IE1. 6367 do { 6368 if (IE2 == VU || IE1 == V) 6369 return true; 6370 if (IE1) { 6371 if (IE1 != VU && !IE1->hasOneUse()) 6372 IE1 = nullptr; 6373 else 6374 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6375 } 6376 if (IE2) { 6377 if (IE2 != V && !IE2->hasOneUse()) 6378 IE2 = nullptr; 6379 else 6380 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6381 } 6382 } while (IE1 || IE2); 6383 return false; 6384 } 6385 6386 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6387 /// buildvector sequence. 6388 static bool isFirstInsertElement(const InsertElementInst *IE1, 6389 const InsertElementInst *IE2) { 6390 const auto *I1 = IE1; 6391 const auto *I2 = IE2; 6392 do { 6393 if (I2 == IE1) 6394 return true; 6395 if (I1 == IE2) 6396 return false; 6397 if (I1) 6398 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6399 if (I2) 6400 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6401 } while (I1 || I2); 6402 llvm_unreachable("Two different buildvectors not expected."); 6403 } 6404 6405 /// Does the analysis of the provided shuffle masks and performs the requested 6406 /// actions on the vectors with the given shuffle masks. It tries to do it in 6407 /// several steps. 6408 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6409 /// have common VF and perform action for 2 input vectors (including non-undef 6410 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6411 /// and processed as a shuffle of 2 elements. 6412 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6413 /// action only for 1 vector with the given mask, if it is not the identity 6414 /// mask. 6415 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6416 /// vectors, combing the masks properly between the steps. 6417 template <typename T> 6418 static T *performExtractsShuffleAction( 6419 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6420 function_ref<unsigned(T *)> GetVF, 6421 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6422 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6423 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6424 SmallVector<int> Mask(ShuffleMask.begin()->second); 6425 auto VMIt = std::next(ShuffleMask.begin()); 6426 T *Prev = nullptr; 6427 bool IsBaseNotUndef = !isUndefVector(Base); 6428 if (IsBaseNotUndef) { 6429 // Base is not undef, need to combine it with the next subvectors. 6430 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6431 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6432 if (Mask[Idx] == UndefMaskElem) 6433 Mask[Idx] = Idx; 6434 else 6435 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6436 } 6437 Prev = Action(Mask, {nullptr, Res.first}); 6438 } else if (ShuffleMask.size() == 1) { 6439 // Base is undef and only 1 vector is shuffled - perform the action only for 6440 // single vector, if the mask is not the identity mask. 6441 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6442 if (Res.second) 6443 // Identity mask is found. 6444 Prev = Res.first; 6445 else 6446 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6447 } else { 6448 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6449 // shuffles step by step, combining shuffle between the steps. 6450 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6451 unsigned Vec2VF = GetVF(VMIt->first); 6452 if (Vec1VF == Vec2VF) { 6453 // No need to resize the input vectors since they are of the same size, we 6454 // can shuffle them directly. 6455 ArrayRef<int> SecMask = VMIt->second; 6456 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6457 if (SecMask[I] != UndefMaskElem) { 6458 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6459 Mask[I] = SecMask[I] + Vec1VF; 6460 } 6461 } 6462 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6463 } else { 6464 // Vectors of different sizes - resize and reshuffle. 6465 std::pair<T *, bool> Res1 = 6466 ResizeAction(ShuffleMask.begin()->first, Mask); 6467 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6468 ArrayRef<int> SecMask = VMIt->second; 6469 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6470 if (Mask[I] != UndefMaskElem) { 6471 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6472 if (Res1.second) 6473 Mask[I] = I; 6474 } else if (SecMask[I] != UndefMaskElem) { 6475 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6476 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6477 } 6478 } 6479 Prev = Action(Mask, {Res1.first, Res2.first}); 6480 } 6481 VMIt = std::next(VMIt); 6482 } 6483 // Perform requested actions for the remaining masks/vectors. 6484 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6485 // Shuffle other input vectors, if any. 6486 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 6487 ArrayRef<int> SecMask = VMIt->second; 6488 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6489 if (SecMask[I] != UndefMaskElem) { 6490 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 6491 "Multiple uses of scalars."); 6492 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 6493 } else if (Mask[I] != UndefMaskElem) { 6494 Mask[I] = I; 6495 } 6496 } 6497 Prev = Action(Mask, {Prev, Res.first}); 6498 } 6499 return Prev; 6500 } 6501 6502 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6503 InstructionCost Cost = 0; 6504 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6505 << VectorizableTree.size() << ".\n"); 6506 6507 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6508 6509 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6510 TreeEntry &TE = *VectorizableTree[I]; 6511 6512 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6513 Cost += C; 6514 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6515 << " for bundle that starts with " << *TE.Scalars[0] 6516 << ".\n" 6517 << "SLP: Current total cost = " << Cost << "\n"); 6518 } 6519 6520 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6521 InstructionCost ExtractCost = 0; 6522 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 6523 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 6524 SmallVector<APInt> DemandedElts; 6525 for (ExternalUser &EU : ExternalUses) { 6526 // We only add extract cost once for the same scalar. 6527 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6528 !ExtractCostCalculated.insert(EU.Scalar).second) 6529 continue; 6530 6531 // Uses by ephemeral values are free (because the ephemeral value will be 6532 // removed prior to code generation, and so the extraction will be 6533 // removed as well). 6534 if (EphValues.count(EU.User)) 6535 continue; 6536 6537 // No extract cost for vector "scalar" 6538 if (isa<FixedVectorType>(EU.Scalar->getType())) 6539 continue; 6540 6541 // Already counted the cost for external uses when tried to adjust the cost 6542 // for extractelements, no need to add it again. 6543 if (isa<ExtractElementInst>(EU.Scalar)) 6544 continue; 6545 6546 // If found user is an insertelement, do not calculate extract cost but try 6547 // to detect it as a final shuffled/identity match. 6548 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6549 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6550 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6551 if (InsertIdx) { 6552 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 6553 auto *It = 6554 find_if(FirstUsers, 6555 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 6556 return areTwoInsertFromSameBuildVector( 6557 VU, cast<InsertElementInst>(Pair.first)); 6558 }); 6559 int VecId = -1; 6560 if (It == FirstUsers.end()) { 6561 (void)ShuffleMasks.emplace_back(); 6562 // Find the insertvector, vectorized in tree, if any. 6563 Value *Base = VU; 6564 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6565 // Build the mask for the vectorized insertelement instructions. 6566 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6567 VU = IEBase; 6568 do { 6569 int Idx = E->findLaneForValue(Base); 6570 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 6571 if (Mask.empty()) 6572 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6573 Mask[Idx] = Idx; 6574 Base = cast<InsertElementInst>(Base)->getOperand(0); 6575 } while (E == getTreeEntry(Base)); 6576 break; 6577 } 6578 Base = cast<InsertElementInst>(Base)->getOperand(0); 6579 } 6580 FirstUsers.emplace_back(VU, ScalarTE); 6581 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 6582 VecId = FirstUsers.size() - 1; 6583 } else { 6584 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 6585 It->first = VU; 6586 VecId = std::distance(FirstUsers.begin(), It); 6587 } 6588 int InIdx = *InsertIdx; 6589 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 6590 if (Mask.empty()) 6591 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6592 assert(Mask[InIdx] == UndefMaskElem && 6593 "InsertElementInstruction used already."); 6594 Mask[InIdx] = EU.Lane; 6595 DemandedElts[VecId].setBit(InIdx); 6596 continue; 6597 } 6598 } 6599 } 6600 6601 // If we plan to rewrite the tree in a smaller type, we will need to sign 6602 // extend the extracted value back to the original type. Here, we account 6603 // for the extract and the added cost of the sign extend if needed. 6604 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6605 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6606 if (MinBWs.count(ScalarRoot)) { 6607 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6608 auto Extend = 6609 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6610 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6611 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6612 VecTy, EU.Lane); 6613 } else { 6614 ExtractCost += 6615 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6616 } 6617 } 6618 6619 InstructionCost SpillCost = getSpillCost(); 6620 Cost += SpillCost + ExtractCost; 6621 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 6622 InstructionCost C = 0; 6623 unsigned VF = Mask.size(); 6624 unsigned VecVF = TE->getVectorFactor(); 6625 if (VF != VecVF && 6626 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 6627 (all_of(Mask, 6628 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 6629 !ShuffleVectorInst::isIdentityMask(Mask)))) { 6630 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 6631 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 6632 OrigMask.begin()); 6633 C = TTI->getShuffleCost( 6634 TTI::SK_PermuteSingleSrc, 6635 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 6636 LLVM_DEBUG( 6637 dbgs() << "SLP: Adding cost " << C 6638 << " for final shuffle of insertelement external users.\n"; 6639 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6640 Cost += C; 6641 return std::make_pair(TE, true); 6642 } 6643 return std::make_pair(TE, false); 6644 }; 6645 // Calculate the cost of the reshuffled vectors, if any. 6646 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 6647 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 6648 unsigned VF = ShuffleMasks[I].begin()->second.size(); 6649 auto *FTy = FixedVectorType::get( 6650 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 6651 auto Vector = ShuffleMasks[I].takeVector(); 6652 auto &&EstimateShufflesCost = [this, FTy, 6653 &Cost](ArrayRef<int> Mask, 6654 ArrayRef<const TreeEntry *> TEs) { 6655 assert((TEs.size() == 1 || TEs.size() == 2) && 6656 "Expected exactly 1 or 2 tree entries."); 6657 if (TEs.size() == 1) { 6658 int Limit = 2 * Mask.size(); 6659 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 6660 !ShuffleVectorInst::isIdentityMask(Mask)) { 6661 InstructionCost C = 6662 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 6663 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6664 << " for final shuffle of insertelement " 6665 "external users.\n"; 6666 TEs.front()->dump(); 6667 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6668 Cost += C; 6669 } 6670 } else { 6671 InstructionCost C = 6672 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 6673 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6674 << " for final shuffle of vector node and external " 6675 "insertelement users.\n"; 6676 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 6677 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6678 Cost += C; 6679 } 6680 return TEs.back(); 6681 }; 6682 (void)performExtractsShuffleAction<const TreeEntry>( 6683 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 6684 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 6685 EstimateShufflesCost); 6686 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6687 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 6688 /*Insert*/ true, /*Extract*/ false); 6689 Cost -= InsertCost; 6690 } 6691 6692 #ifndef NDEBUG 6693 SmallString<256> Str; 6694 { 6695 raw_svector_ostream OS(Str); 6696 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6697 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6698 << "SLP: Total Cost = " << Cost << ".\n"; 6699 } 6700 LLVM_DEBUG(dbgs() << Str); 6701 if (ViewSLPTree) 6702 ViewGraph(this, "SLP" + F->getName(), false, Str); 6703 #endif 6704 6705 return Cost; 6706 } 6707 6708 Optional<TargetTransformInfo::ShuffleKind> 6709 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6710 SmallVectorImpl<const TreeEntry *> &Entries) { 6711 // TODO: currently checking only for Scalars in the tree entry, need to count 6712 // reused elements too for better cost estimation. 6713 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6714 Entries.clear(); 6715 // Build a lists of values to tree entries. 6716 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6717 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6718 if (EntryPtr.get() == TE) 6719 break; 6720 if (EntryPtr->State != TreeEntry::NeedToGather) 6721 continue; 6722 for (Value *V : EntryPtr->Scalars) 6723 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6724 } 6725 // Find all tree entries used by the gathered values. If no common entries 6726 // found - not a shuffle. 6727 // Here we build a set of tree nodes for each gathered value and trying to 6728 // find the intersection between these sets. If we have at least one common 6729 // tree node for each gathered value - we have just a permutation of the 6730 // single vector. If we have 2 different sets, we're in situation where we 6731 // have a permutation of 2 input vectors. 6732 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6733 DenseMap<Value *, int> UsedValuesEntry; 6734 for (Value *V : TE->Scalars) { 6735 if (isa<UndefValue>(V)) 6736 continue; 6737 // Build a list of tree entries where V is used. 6738 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6739 auto It = ValueToTEs.find(V); 6740 if (It != ValueToTEs.end()) 6741 VToTEs = It->second; 6742 if (const TreeEntry *VTE = getTreeEntry(V)) 6743 VToTEs.insert(VTE); 6744 if (VToTEs.empty()) 6745 return None; 6746 if (UsedTEs.empty()) { 6747 // The first iteration, just insert the list of nodes to vector. 6748 UsedTEs.push_back(VToTEs); 6749 } else { 6750 // Need to check if there are any previously used tree nodes which use V. 6751 // If there are no such nodes, consider that we have another one input 6752 // vector. 6753 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6754 unsigned Idx = 0; 6755 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6756 // Do we have a non-empty intersection of previously listed tree entries 6757 // and tree entries using current V? 6758 set_intersect(VToTEs, Set); 6759 if (!VToTEs.empty()) { 6760 // Yes, write the new subset and continue analysis for the next 6761 // scalar. 6762 Set.swap(VToTEs); 6763 break; 6764 } 6765 VToTEs = SavedVToTEs; 6766 ++Idx; 6767 } 6768 // No non-empty intersection found - need to add a second set of possible 6769 // source vectors. 6770 if (Idx == UsedTEs.size()) { 6771 // If the number of input vectors is greater than 2 - not a permutation, 6772 // fallback to the regular gather. 6773 if (UsedTEs.size() == 2) 6774 return None; 6775 UsedTEs.push_back(SavedVToTEs); 6776 Idx = UsedTEs.size() - 1; 6777 } 6778 UsedValuesEntry.try_emplace(V, Idx); 6779 } 6780 } 6781 6782 if (UsedTEs.empty()) { 6783 assert(all_of(TE->Scalars, UndefValue::classof) && 6784 "Expected vector of undefs only."); 6785 return None; 6786 } 6787 6788 unsigned VF = 0; 6789 if (UsedTEs.size() == 1) { 6790 // Try to find the perfect match in another gather node at first. 6791 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6792 return EntryPtr->isSame(TE->Scalars); 6793 }); 6794 if (It != UsedTEs.front().end()) { 6795 Entries.push_back(*It); 6796 std::iota(Mask.begin(), Mask.end(), 0); 6797 return TargetTransformInfo::SK_PermuteSingleSrc; 6798 } 6799 // No perfect match, just shuffle, so choose the first tree node. 6800 Entries.push_back(*UsedTEs.front().begin()); 6801 } else { 6802 // Try to find nodes with the same vector factor. 6803 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6804 DenseMap<int, const TreeEntry *> VFToTE; 6805 for (const TreeEntry *TE : UsedTEs.front()) 6806 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6807 for (const TreeEntry *TE : UsedTEs.back()) { 6808 auto It = VFToTE.find(TE->getVectorFactor()); 6809 if (It != VFToTE.end()) { 6810 VF = It->first; 6811 Entries.push_back(It->second); 6812 Entries.push_back(TE); 6813 break; 6814 } 6815 } 6816 // No 2 source vectors with the same vector factor - give up and do regular 6817 // gather. 6818 if (Entries.empty()) 6819 return None; 6820 } 6821 6822 // Build a shuffle mask for better cost estimation and vector emission. 6823 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6824 Value *V = TE->Scalars[I]; 6825 if (isa<UndefValue>(V)) 6826 continue; 6827 unsigned Idx = UsedValuesEntry.lookup(V); 6828 const TreeEntry *VTE = Entries[Idx]; 6829 int FoundLane = VTE->findLaneForValue(V); 6830 Mask[I] = Idx * VF + FoundLane; 6831 // Extra check required by isSingleSourceMaskImpl function (called by 6832 // ShuffleVectorInst::isSingleSourceMask). 6833 if (Mask[I] >= 2 * E) 6834 return None; 6835 } 6836 switch (Entries.size()) { 6837 case 1: 6838 return TargetTransformInfo::SK_PermuteSingleSrc; 6839 case 2: 6840 return TargetTransformInfo::SK_PermuteTwoSrc; 6841 default: 6842 break; 6843 } 6844 return None; 6845 } 6846 6847 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6848 const APInt &ShuffledIndices, 6849 bool NeedToShuffle) const { 6850 InstructionCost Cost = 6851 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6852 /*Extract*/ false); 6853 if (NeedToShuffle) 6854 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6855 return Cost; 6856 } 6857 6858 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6859 // Find the type of the operands in VL. 6860 Type *ScalarTy = VL[0]->getType(); 6861 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6862 ScalarTy = SI->getValueOperand()->getType(); 6863 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6864 bool DuplicateNonConst = false; 6865 // Find the cost of inserting/extracting values from the vector. 6866 // Check if the same elements are inserted several times and count them as 6867 // shuffle candidates. 6868 APInt ShuffledElements = APInt::getZero(VL.size()); 6869 DenseSet<Value *> UniqueElements; 6870 // Iterate in reverse order to consider insert elements with the high cost. 6871 for (unsigned I = VL.size(); I > 0; --I) { 6872 unsigned Idx = I - 1; 6873 // No need to shuffle duplicates for constants. 6874 if (isConstant(VL[Idx])) { 6875 ShuffledElements.setBit(Idx); 6876 continue; 6877 } 6878 if (!UniqueElements.insert(VL[Idx]).second) { 6879 DuplicateNonConst = true; 6880 ShuffledElements.setBit(Idx); 6881 } 6882 } 6883 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6884 } 6885 6886 // Perform operand reordering on the instructions in VL and return the reordered 6887 // operands in Left and Right. 6888 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6889 SmallVectorImpl<Value *> &Left, 6890 SmallVectorImpl<Value *> &Right, 6891 const DataLayout &DL, 6892 ScalarEvolution &SE, 6893 const BoUpSLP &R) { 6894 if (VL.empty()) 6895 return; 6896 VLOperands Ops(VL, DL, SE, R); 6897 // Reorder the operands in place. 6898 Ops.reorder(); 6899 Left = Ops.getVL(0); 6900 Right = Ops.getVL(1); 6901 } 6902 6903 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6904 // Get the basic block this bundle is in. All instructions in the bundle 6905 // should be in this block. 6906 auto *Front = E->getMainOp(); 6907 auto *BB = Front->getParent(); 6908 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6909 auto *I = cast<Instruction>(V); 6910 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6911 })); 6912 6913 auto &&FindLastInst = [E, Front]() { 6914 Instruction *LastInst = Front; 6915 for (Value *V : E->Scalars) { 6916 auto *I = dyn_cast<Instruction>(V); 6917 if (!I) 6918 continue; 6919 if (LastInst->comesBefore(I)) 6920 LastInst = I; 6921 } 6922 return LastInst; 6923 }; 6924 6925 auto &&FindFirstInst = [E, Front]() { 6926 Instruction *FirstInst = Front; 6927 for (Value *V : E->Scalars) { 6928 auto *I = dyn_cast<Instruction>(V); 6929 if (!I) 6930 continue; 6931 if (I->comesBefore(FirstInst)) 6932 FirstInst = I; 6933 } 6934 return FirstInst; 6935 }; 6936 6937 // Set the insert point to the beginning of the basic block if the entry 6938 // should not be scheduled. 6939 if (E->State != TreeEntry::NeedToGather && 6940 doesNotNeedToSchedule(E->Scalars)) { 6941 Instruction *InsertInst; 6942 if (all_of(E->Scalars, isUsedOutsideBlock)) 6943 InsertInst = FindLastInst(); 6944 else 6945 InsertInst = FindFirstInst(); 6946 // If the instruction is PHI, set the insert point after all the PHIs. 6947 if (isa<PHINode>(InsertInst)) 6948 InsertInst = BB->getFirstNonPHI(); 6949 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 6950 Builder.SetInsertPoint(BB, InsertPt); 6951 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6952 return; 6953 } 6954 6955 // The last instruction in the bundle in program order. 6956 Instruction *LastInst = nullptr; 6957 6958 // Find the last instruction. The common case should be that BB has been 6959 // scheduled, and the last instruction is VL.back(). So we start with 6960 // VL.back() and iterate over schedule data until we reach the end of the 6961 // bundle. The end of the bundle is marked by null ScheduleData. 6962 if (BlocksSchedules.count(BB)) { 6963 Value *V = E->isOneOf(E->Scalars.back()); 6964 if (doesNotNeedToBeScheduled(V)) 6965 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6966 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6967 if (Bundle && Bundle->isPartOfBundle()) 6968 for (; Bundle; Bundle = Bundle->NextInBundle) 6969 if (Bundle->OpValue == Bundle->Inst) 6970 LastInst = Bundle->Inst; 6971 } 6972 6973 // LastInst can still be null at this point if there's either not an entry 6974 // for BB in BlocksSchedules or there's no ScheduleData available for 6975 // VL.back(). This can be the case if buildTree_rec aborts for various 6976 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6977 // size is reached, etc.). ScheduleData is initialized in the scheduling 6978 // "dry-run". 6979 // 6980 // If this happens, we can still find the last instruction by brute force. We 6981 // iterate forwards from Front (inclusive) until we either see all 6982 // instructions in the bundle or reach the end of the block. If Front is the 6983 // last instruction in program order, LastInst will be set to Front, and we 6984 // will visit all the remaining instructions in the block. 6985 // 6986 // One of the reasons we exit early from buildTree_rec is to place an upper 6987 // bound on compile-time. Thus, taking an additional compile-time hit here is 6988 // not ideal. However, this should be exceedingly rare since it requires that 6989 // we both exit early from buildTree_rec and that the bundle be out-of-order 6990 // (causing us to iterate all the way to the end of the block). 6991 if (!LastInst) { 6992 LastInst = FindLastInst(); 6993 // If the instruction is PHI, set the insert point after all the PHIs. 6994 if (isa<PHINode>(LastInst)) 6995 LastInst = BB->getFirstNonPHI()->getPrevNode(); 6996 } 6997 assert(LastInst && "Failed to find last instruction in bundle"); 6998 6999 // Set the insertion point after the last instruction in the bundle. Set the 7000 // debug location to Front. 7001 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7002 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7003 } 7004 7005 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7006 // List of instructions/lanes from current block and/or the blocks which are 7007 // part of the current loop. These instructions will be inserted at the end to 7008 // make it possible to optimize loops and hoist invariant instructions out of 7009 // the loops body with better chances for success. 7010 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7011 SmallSet<int, 4> PostponedIndices; 7012 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7013 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7014 SmallPtrSet<BasicBlock *, 4> Visited; 7015 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7016 InsertBB = InsertBB->getSinglePredecessor(); 7017 return InsertBB && InsertBB == InstBB; 7018 }; 7019 for (int I = 0, E = VL.size(); I < E; ++I) { 7020 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7021 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7022 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7023 PostponedIndices.insert(I).second) 7024 PostponedInsts.emplace_back(Inst, I); 7025 } 7026 7027 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7028 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7029 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7030 if (!InsElt) 7031 return Vec; 7032 GatherShuffleSeq.insert(InsElt); 7033 CSEBlocks.insert(InsElt->getParent()); 7034 // Add to our 'need-to-extract' list. 7035 if (TreeEntry *Entry = getTreeEntry(V)) { 7036 // Find which lane we need to extract. 7037 unsigned FoundLane = Entry->findLaneForValue(V); 7038 ExternalUses.emplace_back(V, InsElt, FoundLane); 7039 } 7040 return Vec; 7041 }; 7042 Value *Val0 = 7043 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7044 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7045 Value *Vec = PoisonValue::get(VecTy); 7046 SmallVector<int> NonConsts; 7047 // Insert constant values at first. 7048 for (int I = 0, E = VL.size(); I < E; ++I) { 7049 if (PostponedIndices.contains(I)) 7050 continue; 7051 if (!isConstant(VL[I])) { 7052 NonConsts.push_back(I); 7053 continue; 7054 } 7055 Vec = CreateInsertElement(Vec, VL[I], I); 7056 } 7057 // Insert non-constant values. 7058 for (int I : NonConsts) 7059 Vec = CreateInsertElement(Vec, VL[I], I); 7060 // Append instructions, which are/may be part of the loop, in the end to make 7061 // it possible to hoist non-loop-based instructions. 7062 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7063 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7064 7065 return Vec; 7066 } 7067 7068 namespace { 7069 /// Merges shuffle masks and emits final shuffle instruction, if required. 7070 class ShuffleInstructionBuilder { 7071 IRBuilderBase &Builder; 7072 const unsigned VF = 0; 7073 bool IsFinalized = false; 7074 SmallVector<int, 4> Mask; 7075 /// Holds all of the instructions that we gathered. 7076 SetVector<Instruction *> &GatherShuffleSeq; 7077 /// A list of blocks that we are going to CSE. 7078 SetVector<BasicBlock *> &CSEBlocks; 7079 7080 public: 7081 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7082 SetVector<Instruction *> &GatherShuffleSeq, 7083 SetVector<BasicBlock *> &CSEBlocks) 7084 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7085 CSEBlocks(CSEBlocks) {} 7086 7087 /// Adds a mask, inverting it before applying. 7088 void addInversedMask(ArrayRef<unsigned> SubMask) { 7089 if (SubMask.empty()) 7090 return; 7091 SmallVector<int, 4> NewMask; 7092 inversePermutation(SubMask, NewMask); 7093 addMask(NewMask); 7094 } 7095 7096 /// Functions adds masks, merging them into single one. 7097 void addMask(ArrayRef<unsigned> SubMask) { 7098 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7099 addMask(NewMask); 7100 } 7101 7102 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7103 7104 Value *finalize(Value *V) { 7105 IsFinalized = true; 7106 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7107 if (VF == ValueVF && Mask.empty()) 7108 return V; 7109 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7110 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7111 addMask(NormalizedMask); 7112 7113 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7114 return V; 7115 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7116 if (auto *I = dyn_cast<Instruction>(Vec)) { 7117 GatherShuffleSeq.insert(I); 7118 CSEBlocks.insert(I->getParent()); 7119 } 7120 return Vec; 7121 } 7122 7123 ~ShuffleInstructionBuilder() { 7124 assert((IsFinalized || Mask.empty()) && 7125 "Shuffle construction must be finalized."); 7126 } 7127 }; 7128 } // namespace 7129 7130 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7131 const unsigned VF = VL.size(); 7132 InstructionsState S = getSameOpcode(VL); 7133 if (S.getOpcode()) { 7134 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7135 if (E->isSame(VL)) { 7136 Value *V = vectorizeTree(E); 7137 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7138 if (!E->ReuseShuffleIndices.empty()) { 7139 // Reshuffle to get only unique values. 7140 // If some of the scalars are duplicated in the vectorization tree 7141 // entry, we do not vectorize them but instead generate a mask for 7142 // the reuses. But if there are several users of the same entry, 7143 // they may have different vectorization factors. This is especially 7144 // important for PHI nodes. In this case, we need to adapt the 7145 // resulting instruction for the user vectorization factor and have 7146 // to reshuffle it again to take only unique elements of the vector. 7147 // Without this code the function incorrectly returns reduced vector 7148 // instruction with the same elements, not with the unique ones. 7149 7150 // block: 7151 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7152 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7153 // ... (use %2) 7154 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7155 // br %block 7156 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7157 SmallSet<int, 4> UsedIdxs; 7158 int Pos = 0; 7159 int Sz = VL.size(); 7160 for (int Idx : E->ReuseShuffleIndices) { 7161 if (Idx != Sz && Idx != UndefMaskElem && 7162 UsedIdxs.insert(Idx).second) 7163 UniqueIdxs[Idx] = Pos; 7164 ++Pos; 7165 } 7166 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7167 "less than original vector size."); 7168 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7169 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7170 } else { 7171 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7172 "Expected vectorization factor less " 7173 "than original vector size."); 7174 SmallVector<int> UniformMask(VF, 0); 7175 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7176 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7177 } 7178 if (auto *I = dyn_cast<Instruction>(V)) { 7179 GatherShuffleSeq.insert(I); 7180 CSEBlocks.insert(I->getParent()); 7181 } 7182 } 7183 return V; 7184 } 7185 } 7186 7187 // Can't vectorize this, so simply build a new vector with each lane 7188 // corresponding to the requested value. 7189 return createBuildVector(VL); 7190 } 7191 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7192 unsigned VF = VL.size(); 7193 // Exploit possible reuse of values across lanes. 7194 SmallVector<int> ReuseShuffleIndicies; 7195 SmallVector<Value *> UniqueValues; 7196 if (VL.size() > 2) { 7197 DenseMap<Value *, unsigned> UniquePositions; 7198 unsigned NumValues = 7199 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7200 return !isa<UndefValue>(V); 7201 }).base()); 7202 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7203 int UniqueVals = 0; 7204 for (Value *V : VL.drop_back(VL.size() - VF)) { 7205 if (isa<UndefValue>(V)) { 7206 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7207 continue; 7208 } 7209 if (isConstant(V)) { 7210 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7211 UniqueValues.emplace_back(V); 7212 continue; 7213 } 7214 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7215 ReuseShuffleIndicies.emplace_back(Res.first->second); 7216 if (Res.second) { 7217 UniqueValues.emplace_back(V); 7218 ++UniqueVals; 7219 } 7220 } 7221 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7222 // Emit pure splat vector. 7223 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7224 UndefMaskElem); 7225 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7226 ReuseShuffleIndicies.clear(); 7227 UniqueValues.clear(); 7228 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7229 } 7230 UniqueValues.append(VF - UniqueValues.size(), 7231 PoisonValue::get(VL[0]->getType())); 7232 VL = UniqueValues; 7233 } 7234 7235 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7236 CSEBlocks); 7237 Value *Vec = gather(VL); 7238 if (!ReuseShuffleIndicies.empty()) { 7239 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7240 Vec = ShuffleBuilder.finalize(Vec); 7241 } 7242 return Vec; 7243 } 7244 7245 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7246 IRBuilder<>::InsertPointGuard Guard(Builder); 7247 7248 if (E->VectorizedValue) { 7249 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7250 return E->VectorizedValue; 7251 } 7252 7253 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7254 unsigned VF = E->getVectorFactor(); 7255 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7256 CSEBlocks); 7257 if (E->State == TreeEntry::NeedToGather) { 7258 if (E->getMainOp()) 7259 setInsertPointAfterBundle(E); 7260 Value *Vec; 7261 SmallVector<int> Mask; 7262 SmallVector<const TreeEntry *> Entries; 7263 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7264 isGatherShuffledEntry(E, Mask, Entries); 7265 if (Shuffle.hasValue()) { 7266 assert((Entries.size() == 1 || Entries.size() == 2) && 7267 "Expected shuffle of 1 or 2 entries."); 7268 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7269 Entries.back()->VectorizedValue, Mask); 7270 if (auto *I = dyn_cast<Instruction>(Vec)) { 7271 GatherShuffleSeq.insert(I); 7272 CSEBlocks.insert(I->getParent()); 7273 } 7274 } else { 7275 Vec = gather(E->Scalars); 7276 } 7277 if (NeedToShuffleReuses) { 7278 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7279 Vec = ShuffleBuilder.finalize(Vec); 7280 } 7281 E->VectorizedValue = Vec; 7282 return Vec; 7283 } 7284 7285 assert((E->State == TreeEntry::Vectorize || 7286 E->State == TreeEntry::ScatterVectorize) && 7287 "Unhandled state"); 7288 unsigned ShuffleOrOp = 7289 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7290 Instruction *VL0 = E->getMainOp(); 7291 Type *ScalarTy = VL0->getType(); 7292 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7293 ScalarTy = Store->getValueOperand()->getType(); 7294 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7295 ScalarTy = IE->getOperand(1)->getType(); 7296 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7297 switch (ShuffleOrOp) { 7298 case Instruction::PHI: { 7299 assert( 7300 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7301 "PHI reordering is free."); 7302 auto *PH = cast<PHINode>(VL0); 7303 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7304 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7305 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7306 Value *V = NewPhi; 7307 7308 // Adjust insertion point once all PHI's have been generated. 7309 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7310 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7311 7312 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7313 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7314 V = ShuffleBuilder.finalize(V); 7315 7316 E->VectorizedValue = V; 7317 7318 // PHINodes may have multiple entries from the same block. We want to 7319 // visit every block once. 7320 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7321 7322 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7323 ValueList Operands; 7324 BasicBlock *IBB = PH->getIncomingBlock(i); 7325 7326 if (!VisitedBBs.insert(IBB).second) { 7327 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7328 continue; 7329 } 7330 7331 Builder.SetInsertPoint(IBB->getTerminator()); 7332 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7333 Value *Vec = vectorizeTree(E->getOperand(i)); 7334 NewPhi->addIncoming(Vec, IBB); 7335 } 7336 7337 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7338 "Invalid number of incoming values"); 7339 return V; 7340 } 7341 7342 case Instruction::ExtractElement: { 7343 Value *V = E->getSingleOperand(0); 7344 Builder.SetInsertPoint(VL0); 7345 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7346 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7347 V = ShuffleBuilder.finalize(V); 7348 E->VectorizedValue = V; 7349 return V; 7350 } 7351 case Instruction::ExtractValue: { 7352 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7353 Builder.SetInsertPoint(LI); 7354 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7355 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7356 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7357 Value *NewV = propagateMetadata(V, E->Scalars); 7358 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7359 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7360 NewV = ShuffleBuilder.finalize(NewV); 7361 E->VectorizedValue = NewV; 7362 return NewV; 7363 } 7364 case Instruction::InsertElement: { 7365 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7366 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7367 Value *V = vectorizeTree(E->getOperand(1)); 7368 7369 // Create InsertVector shuffle if necessary 7370 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7371 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7372 })); 7373 const unsigned NumElts = 7374 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7375 const unsigned NumScalars = E->Scalars.size(); 7376 7377 unsigned Offset = *getInsertIndex(VL0); 7378 assert(Offset < NumElts && "Failed to find vector index offset"); 7379 7380 // Create shuffle to resize vector 7381 SmallVector<int> Mask; 7382 if (!E->ReorderIndices.empty()) { 7383 inversePermutation(E->ReorderIndices, Mask); 7384 Mask.append(NumElts - NumScalars, UndefMaskElem); 7385 } else { 7386 Mask.assign(NumElts, UndefMaskElem); 7387 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7388 } 7389 // Create InsertVector shuffle if necessary 7390 bool IsIdentity = true; 7391 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7392 Mask.swap(PrevMask); 7393 for (unsigned I = 0; I < NumScalars; ++I) { 7394 Value *Scalar = E->Scalars[PrevMask[I]]; 7395 unsigned InsertIdx = *getInsertIndex(Scalar); 7396 IsIdentity &= InsertIdx - Offset == I; 7397 Mask[InsertIdx - Offset] = I; 7398 } 7399 if (!IsIdentity || NumElts != NumScalars) { 7400 V = Builder.CreateShuffleVector(V, Mask); 7401 if (auto *I = dyn_cast<Instruction>(V)) { 7402 GatherShuffleSeq.insert(I); 7403 CSEBlocks.insert(I->getParent()); 7404 } 7405 } 7406 7407 if ((!IsIdentity || Offset != 0 || 7408 !isUndefVector(FirstInsert->getOperand(0))) && 7409 NumElts != NumScalars) { 7410 SmallVector<int> InsertMask(NumElts); 7411 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7412 for (unsigned I = 0; I < NumElts; I++) { 7413 if (Mask[I] != UndefMaskElem) 7414 InsertMask[Offset + I] = NumElts + I; 7415 } 7416 7417 V = Builder.CreateShuffleVector( 7418 FirstInsert->getOperand(0), V, InsertMask, 7419 cast<Instruction>(E->Scalars.back())->getName()); 7420 if (auto *I = dyn_cast<Instruction>(V)) { 7421 GatherShuffleSeq.insert(I); 7422 CSEBlocks.insert(I->getParent()); 7423 } 7424 } 7425 7426 ++NumVectorInstructions; 7427 E->VectorizedValue = V; 7428 return V; 7429 } 7430 case Instruction::ZExt: 7431 case Instruction::SExt: 7432 case Instruction::FPToUI: 7433 case Instruction::FPToSI: 7434 case Instruction::FPExt: 7435 case Instruction::PtrToInt: 7436 case Instruction::IntToPtr: 7437 case Instruction::SIToFP: 7438 case Instruction::UIToFP: 7439 case Instruction::Trunc: 7440 case Instruction::FPTrunc: 7441 case Instruction::BitCast: { 7442 setInsertPointAfterBundle(E); 7443 7444 Value *InVec = vectorizeTree(E->getOperand(0)); 7445 7446 if (E->VectorizedValue) { 7447 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7448 return E->VectorizedValue; 7449 } 7450 7451 auto *CI = cast<CastInst>(VL0); 7452 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7453 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7454 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7455 V = ShuffleBuilder.finalize(V); 7456 7457 E->VectorizedValue = V; 7458 ++NumVectorInstructions; 7459 return V; 7460 } 7461 case Instruction::FCmp: 7462 case Instruction::ICmp: { 7463 setInsertPointAfterBundle(E); 7464 7465 Value *L = vectorizeTree(E->getOperand(0)); 7466 Value *R = vectorizeTree(E->getOperand(1)); 7467 7468 if (E->VectorizedValue) { 7469 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7470 return E->VectorizedValue; 7471 } 7472 7473 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7474 Value *V = Builder.CreateCmp(P0, L, R); 7475 propagateIRFlags(V, E->Scalars, VL0); 7476 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7477 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7478 V = ShuffleBuilder.finalize(V); 7479 7480 E->VectorizedValue = V; 7481 ++NumVectorInstructions; 7482 return V; 7483 } 7484 case Instruction::Select: { 7485 setInsertPointAfterBundle(E); 7486 7487 Value *Cond = vectorizeTree(E->getOperand(0)); 7488 Value *True = vectorizeTree(E->getOperand(1)); 7489 Value *False = vectorizeTree(E->getOperand(2)); 7490 7491 if (E->VectorizedValue) { 7492 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7493 return E->VectorizedValue; 7494 } 7495 7496 Value *V = Builder.CreateSelect(Cond, True, False); 7497 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7498 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7499 V = ShuffleBuilder.finalize(V); 7500 7501 E->VectorizedValue = V; 7502 ++NumVectorInstructions; 7503 return V; 7504 } 7505 case Instruction::FNeg: { 7506 setInsertPointAfterBundle(E); 7507 7508 Value *Op = vectorizeTree(E->getOperand(0)); 7509 7510 if (E->VectorizedValue) { 7511 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7512 return E->VectorizedValue; 7513 } 7514 7515 Value *V = Builder.CreateUnOp( 7516 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7517 propagateIRFlags(V, E->Scalars, VL0); 7518 if (auto *I = dyn_cast<Instruction>(V)) 7519 V = propagateMetadata(I, E->Scalars); 7520 7521 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7522 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7523 V = ShuffleBuilder.finalize(V); 7524 7525 E->VectorizedValue = V; 7526 ++NumVectorInstructions; 7527 7528 return V; 7529 } 7530 case Instruction::Add: 7531 case Instruction::FAdd: 7532 case Instruction::Sub: 7533 case Instruction::FSub: 7534 case Instruction::Mul: 7535 case Instruction::FMul: 7536 case Instruction::UDiv: 7537 case Instruction::SDiv: 7538 case Instruction::FDiv: 7539 case Instruction::URem: 7540 case Instruction::SRem: 7541 case Instruction::FRem: 7542 case Instruction::Shl: 7543 case Instruction::LShr: 7544 case Instruction::AShr: 7545 case Instruction::And: 7546 case Instruction::Or: 7547 case Instruction::Xor: { 7548 setInsertPointAfterBundle(E); 7549 7550 Value *LHS = vectorizeTree(E->getOperand(0)); 7551 Value *RHS = vectorizeTree(E->getOperand(1)); 7552 7553 if (E->VectorizedValue) { 7554 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7555 return E->VectorizedValue; 7556 } 7557 7558 Value *V = Builder.CreateBinOp( 7559 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7560 RHS); 7561 propagateIRFlags(V, E->Scalars, VL0); 7562 if (auto *I = dyn_cast<Instruction>(V)) 7563 V = propagateMetadata(I, E->Scalars); 7564 7565 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7566 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7567 V = ShuffleBuilder.finalize(V); 7568 7569 E->VectorizedValue = V; 7570 ++NumVectorInstructions; 7571 7572 return V; 7573 } 7574 case Instruction::Load: { 7575 // Loads are inserted at the head of the tree because we don't want to 7576 // sink them all the way down past store instructions. 7577 setInsertPointAfterBundle(E); 7578 7579 LoadInst *LI = cast<LoadInst>(VL0); 7580 Instruction *NewLI; 7581 unsigned AS = LI->getPointerAddressSpace(); 7582 Value *PO = LI->getPointerOperand(); 7583 if (E->State == TreeEntry::Vectorize) { 7584 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7585 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7586 7587 // The pointer operand uses an in-tree scalar so we add the new BitCast 7588 // or LoadInst to ExternalUses list to make sure that an extract will 7589 // be generated in the future. 7590 if (TreeEntry *Entry = getTreeEntry(PO)) { 7591 // Find which lane we need to extract. 7592 unsigned FoundLane = Entry->findLaneForValue(PO); 7593 ExternalUses.emplace_back( 7594 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7595 } 7596 } else { 7597 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7598 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7599 // Use the minimum alignment of the gathered loads. 7600 Align CommonAlignment = LI->getAlign(); 7601 for (Value *V : E->Scalars) 7602 CommonAlignment = 7603 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7604 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7605 } 7606 Value *V = propagateMetadata(NewLI, E->Scalars); 7607 7608 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7609 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7610 V = ShuffleBuilder.finalize(V); 7611 E->VectorizedValue = V; 7612 ++NumVectorInstructions; 7613 return V; 7614 } 7615 case Instruction::Store: { 7616 auto *SI = cast<StoreInst>(VL0); 7617 unsigned AS = SI->getPointerAddressSpace(); 7618 7619 setInsertPointAfterBundle(E); 7620 7621 Value *VecValue = vectorizeTree(E->getOperand(0)); 7622 ShuffleBuilder.addMask(E->ReorderIndices); 7623 VecValue = ShuffleBuilder.finalize(VecValue); 7624 7625 Value *ScalarPtr = SI->getPointerOperand(); 7626 Value *VecPtr = Builder.CreateBitCast( 7627 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7628 StoreInst *ST = 7629 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7630 7631 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7632 // StoreInst to ExternalUses to make sure that an extract will be 7633 // generated in the future. 7634 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7635 // Find which lane we need to extract. 7636 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7637 ExternalUses.push_back(ExternalUser( 7638 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7639 FoundLane)); 7640 } 7641 7642 Value *V = propagateMetadata(ST, E->Scalars); 7643 7644 E->VectorizedValue = V; 7645 ++NumVectorInstructions; 7646 return V; 7647 } 7648 case Instruction::GetElementPtr: { 7649 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7650 setInsertPointAfterBundle(E); 7651 7652 Value *Op0 = vectorizeTree(E->getOperand(0)); 7653 7654 SmallVector<Value *> OpVecs; 7655 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7656 Value *OpVec = vectorizeTree(E->getOperand(J)); 7657 OpVecs.push_back(OpVec); 7658 } 7659 7660 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7661 if (Instruction *I = dyn_cast<Instruction>(V)) 7662 V = propagateMetadata(I, E->Scalars); 7663 7664 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7665 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7666 V = ShuffleBuilder.finalize(V); 7667 7668 E->VectorizedValue = V; 7669 ++NumVectorInstructions; 7670 7671 return V; 7672 } 7673 case Instruction::Call: { 7674 CallInst *CI = cast<CallInst>(VL0); 7675 setInsertPointAfterBundle(E); 7676 7677 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7678 if (Function *FI = CI->getCalledFunction()) 7679 IID = FI->getIntrinsicID(); 7680 7681 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7682 7683 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7684 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7685 VecCallCosts.first <= VecCallCosts.second; 7686 7687 Value *ScalarArg = nullptr; 7688 std::vector<Value *> OpVecs; 7689 SmallVector<Type *, 2> TysForDecl = 7690 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7691 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7692 ValueList OpVL; 7693 // Some intrinsics have scalar arguments. This argument should not be 7694 // vectorized. 7695 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 7696 CallInst *CEI = cast<CallInst>(VL0); 7697 ScalarArg = CEI->getArgOperand(j); 7698 OpVecs.push_back(CEI->getArgOperand(j)); 7699 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7700 TysForDecl.push_back(ScalarArg->getType()); 7701 continue; 7702 } 7703 7704 Value *OpVec = vectorizeTree(E->getOperand(j)); 7705 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7706 OpVecs.push_back(OpVec); 7707 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7708 TysForDecl.push_back(OpVec->getType()); 7709 } 7710 7711 Function *CF; 7712 if (!UseIntrinsic) { 7713 VFShape Shape = 7714 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7715 VecTy->getNumElements())), 7716 false /*HasGlobalPred*/); 7717 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7718 } else { 7719 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7720 } 7721 7722 SmallVector<OperandBundleDef, 1> OpBundles; 7723 CI->getOperandBundlesAsDefs(OpBundles); 7724 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7725 7726 // The scalar argument uses an in-tree scalar so we add the new vectorized 7727 // call to ExternalUses list to make sure that an extract will be 7728 // generated in the future. 7729 if (ScalarArg) { 7730 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7731 // Find which lane we need to extract. 7732 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7733 ExternalUses.push_back( 7734 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7735 } 7736 } 7737 7738 propagateIRFlags(V, E->Scalars, VL0); 7739 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7740 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7741 V = ShuffleBuilder.finalize(V); 7742 7743 E->VectorizedValue = V; 7744 ++NumVectorInstructions; 7745 return V; 7746 } 7747 case Instruction::ShuffleVector: { 7748 assert(E->isAltShuffle() && 7749 ((Instruction::isBinaryOp(E->getOpcode()) && 7750 Instruction::isBinaryOp(E->getAltOpcode())) || 7751 (Instruction::isCast(E->getOpcode()) && 7752 Instruction::isCast(E->getAltOpcode())) || 7753 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7754 "Invalid Shuffle Vector Operand"); 7755 7756 Value *LHS = nullptr, *RHS = nullptr; 7757 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7758 setInsertPointAfterBundle(E); 7759 LHS = vectorizeTree(E->getOperand(0)); 7760 RHS = vectorizeTree(E->getOperand(1)); 7761 } else { 7762 setInsertPointAfterBundle(E); 7763 LHS = vectorizeTree(E->getOperand(0)); 7764 } 7765 7766 if (E->VectorizedValue) { 7767 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7768 return E->VectorizedValue; 7769 } 7770 7771 Value *V0, *V1; 7772 if (Instruction::isBinaryOp(E->getOpcode())) { 7773 V0 = Builder.CreateBinOp( 7774 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7775 V1 = Builder.CreateBinOp( 7776 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7777 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7778 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7779 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7780 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7781 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7782 } else { 7783 V0 = Builder.CreateCast( 7784 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7785 V1 = Builder.CreateCast( 7786 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7787 } 7788 // Add V0 and V1 to later analysis to try to find and remove matching 7789 // instruction, if any. 7790 for (Value *V : {V0, V1}) { 7791 if (auto *I = dyn_cast<Instruction>(V)) { 7792 GatherShuffleSeq.insert(I); 7793 CSEBlocks.insert(I->getParent()); 7794 } 7795 } 7796 7797 // Create shuffle to take alternate operations from the vector. 7798 // Also, gather up main and alt scalar ops to propagate IR flags to 7799 // each vector operation. 7800 ValueList OpScalars, AltScalars; 7801 SmallVector<int> Mask; 7802 buildShuffleEntryMask( 7803 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7804 [E](Instruction *I) { 7805 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7806 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7807 }, 7808 Mask, &OpScalars, &AltScalars); 7809 7810 propagateIRFlags(V0, OpScalars); 7811 propagateIRFlags(V1, AltScalars); 7812 7813 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7814 if (auto *I = dyn_cast<Instruction>(V)) { 7815 V = propagateMetadata(I, E->Scalars); 7816 GatherShuffleSeq.insert(I); 7817 CSEBlocks.insert(I->getParent()); 7818 } 7819 V = ShuffleBuilder.finalize(V); 7820 7821 E->VectorizedValue = V; 7822 ++NumVectorInstructions; 7823 7824 return V; 7825 } 7826 default: 7827 llvm_unreachable("unknown inst"); 7828 } 7829 return nullptr; 7830 } 7831 7832 Value *BoUpSLP::vectorizeTree() { 7833 ExtraValueToDebugLocsMap ExternallyUsedValues; 7834 return vectorizeTree(ExternallyUsedValues); 7835 } 7836 7837 Value * 7838 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7839 // All blocks must be scheduled before any instructions are inserted. 7840 for (auto &BSIter : BlocksSchedules) { 7841 scheduleBlock(BSIter.second.get()); 7842 } 7843 7844 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7845 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7846 7847 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7848 // vectorized root. InstCombine will then rewrite the entire expression. We 7849 // sign extend the extracted values below. 7850 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7851 if (MinBWs.count(ScalarRoot)) { 7852 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7853 // If current instr is a phi and not the last phi, insert it after the 7854 // last phi node. 7855 if (isa<PHINode>(I)) 7856 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7857 else 7858 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7859 } 7860 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7861 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7862 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7863 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7864 VectorizableTree[0]->VectorizedValue = Trunc; 7865 } 7866 7867 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7868 << " values .\n"); 7869 7870 // Extract all of the elements with the external uses. 7871 for (const auto &ExternalUse : ExternalUses) { 7872 Value *Scalar = ExternalUse.Scalar; 7873 llvm::User *User = ExternalUse.User; 7874 7875 // Skip users that we already RAUW. This happens when one instruction 7876 // has multiple uses of the same value. 7877 if (User && !is_contained(Scalar->users(), User)) 7878 continue; 7879 TreeEntry *E = getTreeEntry(Scalar); 7880 assert(E && "Invalid scalar"); 7881 assert(E->State != TreeEntry::NeedToGather && 7882 "Extracting from a gather list"); 7883 7884 Value *Vec = E->VectorizedValue; 7885 assert(Vec && "Can't find vectorizable value"); 7886 7887 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7888 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7889 if (Scalar->getType() != Vec->getType()) { 7890 Value *Ex; 7891 // "Reuse" the existing extract to improve final codegen. 7892 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7893 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7894 ES->getOperand(1)); 7895 } else { 7896 Ex = Builder.CreateExtractElement(Vec, Lane); 7897 } 7898 // If necessary, sign-extend or zero-extend ScalarRoot 7899 // to the larger type. 7900 if (!MinBWs.count(ScalarRoot)) 7901 return Ex; 7902 if (MinBWs[ScalarRoot].second) 7903 return Builder.CreateSExt(Ex, Scalar->getType()); 7904 return Builder.CreateZExt(Ex, Scalar->getType()); 7905 } 7906 assert(isa<FixedVectorType>(Scalar->getType()) && 7907 isa<InsertElementInst>(Scalar) && 7908 "In-tree scalar of vector type is not insertelement?"); 7909 return Vec; 7910 }; 7911 // If User == nullptr, the Scalar is used as extra arg. Generate 7912 // ExtractElement instruction and update the record for this scalar in 7913 // ExternallyUsedValues. 7914 if (!User) { 7915 assert(ExternallyUsedValues.count(Scalar) && 7916 "Scalar with nullptr as an external user must be registered in " 7917 "ExternallyUsedValues map"); 7918 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7919 Builder.SetInsertPoint(VecI->getParent(), 7920 std::next(VecI->getIterator())); 7921 } else { 7922 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7923 } 7924 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7925 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7926 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7927 auto It = ExternallyUsedValues.find(Scalar); 7928 assert(It != ExternallyUsedValues.end() && 7929 "Externally used scalar is not found in ExternallyUsedValues"); 7930 NewInstLocs.append(It->second); 7931 ExternallyUsedValues.erase(Scalar); 7932 // Required to update internally referenced instructions. 7933 Scalar->replaceAllUsesWith(NewInst); 7934 continue; 7935 } 7936 7937 // Generate extracts for out-of-tree users. 7938 // Find the insertion point for the extractelement lane. 7939 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7940 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7941 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7942 if (PH->getIncomingValue(i) == Scalar) { 7943 Instruction *IncomingTerminator = 7944 PH->getIncomingBlock(i)->getTerminator(); 7945 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7946 Builder.SetInsertPoint(VecI->getParent(), 7947 std::next(VecI->getIterator())); 7948 } else { 7949 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7950 } 7951 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7952 CSEBlocks.insert(PH->getIncomingBlock(i)); 7953 PH->setOperand(i, NewInst); 7954 } 7955 } 7956 } else { 7957 Builder.SetInsertPoint(cast<Instruction>(User)); 7958 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7959 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7960 User->replaceUsesOfWith(Scalar, NewInst); 7961 } 7962 } else { 7963 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7964 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7965 CSEBlocks.insert(&F->getEntryBlock()); 7966 User->replaceUsesOfWith(Scalar, NewInst); 7967 } 7968 7969 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7970 } 7971 7972 // For each vectorized value: 7973 for (auto &TEPtr : VectorizableTree) { 7974 TreeEntry *Entry = TEPtr.get(); 7975 7976 // No need to handle users of gathered values. 7977 if (Entry->State == TreeEntry::NeedToGather) 7978 continue; 7979 7980 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7981 7982 // For each lane: 7983 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7984 Value *Scalar = Entry->Scalars[Lane]; 7985 7986 #ifndef NDEBUG 7987 Type *Ty = Scalar->getType(); 7988 if (!Ty->isVoidTy()) { 7989 for (User *U : Scalar->users()) { 7990 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7991 7992 // It is legal to delete users in the ignorelist. 7993 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7994 (isa_and_nonnull<Instruction>(U) && 7995 isDeleted(cast<Instruction>(U)))) && 7996 "Deleting out-of-tree value"); 7997 } 7998 } 7999 #endif 8000 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8001 eraseInstruction(cast<Instruction>(Scalar)); 8002 } 8003 } 8004 8005 Builder.ClearInsertionPoint(); 8006 InstrElementSize.clear(); 8007 8008 return VectorizableTree[0]->VectorizedValue; 8009 } 8010 8011 void BoUpSLP::optimizeGatherSequence() { 8012 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8013 << " gather sequences instructions.\n"); 8014 // LICM InsertElementInst sequences. 8015 for (Instruction *I : GatherShuffleSeq) { 8016 if (isDeleted(I)) 8017 continue; 8018 8019 // Check if this block is inside a loop. 8020 Loop *L = LI->getLoopFor(I->getParent()); 8021 if (!L) 8022 continue; 8023 8024 // Check if it has a preheader. 8025 BasicBlock *PreHeader = L->getLoopPreheader(); 8026 if (!PreHeader) 8027 continue; 8028 8029 // If the vector or the element that we insert into it are 8030 // instructions that are defined in this basic block then we can't 8031 // hoist this instruction. 8032 if (any_of(I->operands(), [L](Value *V) { 8033 auto *OpI = dyn_cast<Instruction>(V); 8034 return OpI && L->contains(OpI); 8035 })) 8036 continue; 8037 8038 // We can hoist this instruction. Move it to the pre-header. 8039 I->moveBefore(PreHeader->getTerminator()); 8040 } 8041 8042 // Make a list of all reachable blocks in our CSE queue. 8043 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8044 CSEWorkList.reserve(CSEBlocks.size()); 8045 for (BasicBlock *BB : CSEBlocks) 8046 if (DomTreeNode *N = DT->getNode(BB)) { 8047 assert(DT->isReachableFromEntry(N)); 8048 CSEWorkList.push_back(N); 8049 } 8050 8051 // Sort blocks by domination. This ensures we visit a block after all blocks 8052 // dominating it are visited. 8053 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8054 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8055 "Different nodes should have different DFS numbers"); 8056 return A->getDFSNumIn() < B->getDFSNumIn(); 8057 }); 8058 8059 // Less defined shuffles can be replaced by the more defined copies. 8060 // Between two shuffles one is less defined if it has the same vector operands 8061 // and its mask indeces are the same as in the first one or undefs. E.g. 8062 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8063 // poison, <0, 0, 0, 0>. 8064 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8065 SmallVectorImpl<int> &NewMask) { 8066 if (I1->getType() != I2->getType()) 8067 return false; 8068 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8069 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8070 if (!SI1 || !SI2) 8071 return I1->isIdenticalTo(I2); 8072 if (SI1->isIdenticalTo(SI2)) 8073 return true; 8074 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8075 if (SI1->getOperand(I) != SI2->getOperand(I)) 8076 return false; 8077 // Check if the second instruction is more defined than the first one. 8078 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8079 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8080 // Count trailing undefs in the mask to check the final number of used 8081 // registers. 8082 unsigned LastUndefsCnt = 0; 8083 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8084 if (SM1[I] == UndefMaskElem) 8085 ++LastUndefsCnt; 8086 else 8087 LastUndefsCnt = 0; 8088 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8089 NewMask[I] != SM1[I]) 8090 return false; 8091 if (NewMask[I] == UndefMaskElem) 8092 NewMask[I] = SM1[I]; 8093 } 8094 // Check if the last undefs actually change the final number of used vector 8095 // registers. 8096 return SM1.size() - LastUndefsCnt > 1 && 8097 TTI->getNumberOfParts(SI1->getType()) == 8098 TTI->getNumberOfParts( 8099 FixedVectorType::get(SI1->getType()->getElementType(), 8100 SM1.size() - LastUndefsCnt)); 8101 }; 8102 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8103 // instructions. TODO: We can further optimize this scan if we split the 8104 // instructions into different buckets based on the insert lane. 8105 SmallVector<Instruction *, 16> Visited; 8106 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8107 assert(*I && 8108 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8109 "Worklist not sorted properly!"); 8110 BasicBlock *BB = (*I)->getBlock(); 8111 // For all instructions in blocks containing gather sequences: 8112 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8113 if (isDeleted(&In)) 8114 continue; 8115 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8116 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8117 continue; 8118 8119 // Check if we can replace this instruction with any of the 8120 // visited instructions. 8121 bool Replaced = false; 8122 for (Instruction *&V : Visited) { 8123 SmallVector<int> NewMask; 8124 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8125 DT->dominates(V->getParent(), In.getParent())) { 8126 In.replaceAllUsesWith(V); 8127 eraseInstruction(&In); 8128 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 8129 if (!NewMask.empty()) 8130 SI->setShuffleMask(NewMask); 8131 Replaced = true; 8132 break; 8133 } 8134 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 8135 GatherShuffleSeq.contains(V) && 8136 IsIdenticalOrLessDefined(V, &In, NewMask) && 8137 DT->dominates(In.getParent(), V->getParent())) { 8138 In.moveAfter(V); 8139 V->replaceAllUsesWith(&In); 8140 eraseInstruction(V); 8141 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 8142 if (!NewMask.empty()) 8143 SI->setShuffleMask(NewMask); 8144 V = &In; 8145 Replaced = true; 8146 break; 8147 } 8148 } 8149 if (!Replaced) { 8150 assert(!is_contained(Visited, &In)); 8151 Visited.push_back(&In); 8152 } 8153 } 8154 } 8155 CSEBlocks.clear(); 8156 GatherShuffleSeq.clear(); 8157 } 8158 8159 BoUpSLP::ScheduleData * 8160 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 8161 ScheduleData *Bundle = nullptr; 8162 ScheduleData *PrevInBundle = nullptr; 8163 for (Value *V : VL) { 8164 if (doesNotNeedToBeScheduled(V)) 8165 continue; 8166 ScheduleData *BundleMember = getScheduleData(V); 8167 assert(BundleMember && 8168 "no ScheduleData for bundle member " 8169 "(maybe not in same basic block)"); 8170 assert(BundleMember->isSchedulingEntity() && 8171 "bundle member already part of other bundle"); 8172 if (PrevInBundle) { 8173 PrevInBundle->NextInBundle = BundleMember; 8174 } else { 8175 Bundle = BundleMember; 8176 } 8177 8178 // Group the instructions to a bundle. 8179 BundleMember->FirstInBundle = Bundle; 8180 PrevInBundle = BundleMember; 8181 } 8182 assert(Bundle && "Failed to find schedule bundle"); 8183 return Bundle; 8184 } 8185 8186 // Groups the instructions to a bundle (which is then a single scheduling entity) 8187 // and schedules instructions until the bundle gets ready. 8188 Optional<BoUpSLP::ScheduleData *> 8189 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 8190 const InstructionsState &S) { 8191 // No need to schedule PHIs, insertelement, extractelement and extractvalue 8192 // instructions. 8193 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 8194 doesNotNeedToSchedule(VL)) 8195 return nullptr; 8196 8197 // Initialize the instruction bundle. 8198 Instruction *OldScheduleEnd = ScheduleEnd; 8199 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 8200 8201 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 8202 ScheduleData *Bundle) { 8203 // The scheduling region got new instructions at the lower end (or it is a 8204 // new region for the first bundle). This makes it necessary to 8205 // recalculate all dependencies. 8206 // It is seldom that this needs to be done a second time after adding the 8207 // initial bundle to the region. 8208 if (ScheduleEnd != OldScheduleEnd) { 8209 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8210 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8211 ReSchedule = true; 8212 } 8213 if (Bundle) { 8214 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8215 << " in block " << BB->getName() << "\n"); 8216 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8217 } 8218 8219 if (ReSchedule) { 8220 resetSchedule(); 8221 initialFillReadyList(ReadyInsts); 8222 } 8223 8224 // Now try to schedule the new bundle or (if no bundle) just calculate 8225 // dependencies. As soon as the bundle is "ready" it means that there are no 8226 // cyclic dependencies and we can schedule it. Note that's important that we 8227 // don't "schedule" the bundle yet (see cancelScheduling). 8228 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8229 !ReadyInsts.empty()) { 8230 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8231 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8232 "must be ready to schedule"); 8233 schedule(Picked, ReadyInsts); 8234 } 8235 }; 8236 8237 // Make sure that the scheduling region contains all 8238 // instructions of the bundle. 8239 for (Value *V : VL) { 8240 if (doesNotNeedToBeScheduled(V)) 8241 continue; 8242 if (!extendSchedulingRegion(V, S)) { 8243 // If the scheduling region got new instructions at the lower end (or it 8244 // is a new region for the first bundle). This makes it necessary to 8245 // recalculate all dependencies. 8246 // Otherwise the compiler may crash trying to incorrectly calculate 8247 // dependencies and emit instruction in the wrong order at the actual 8248 // scheduling. 8249 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8250 return None; 8251 } 8252 } 8253 8254 bool ReSchedule = false; 8255 for (Value *V : VL) { 8256 if (doesNotNeedToBeScheduled(V)) 8257 continue; 8258 ScheduleData *BundleMember = getScheduleData(V); 8259 assert(BundleMember && 8260 "no ScheduleData for bundle member (maybe not in same basic block)"); 8261 8262 // Make sure we don't leave the pieces of the bundle in the ready list when 8263 // whole bundle might not be ready. 8264 ReadyInsts.remove(BundleMember); 8265 8266 if (!BundleMember->IsScheduled) 8267 continue; 8268 // A bundle member was scheduled as single instruction before and now 8269 // needs to be scheduled as part of the bundle. We just get rid of the 8270 // existing schedule. 8271 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8272 << " was already scheduled\n"); 8273 ReSchedule = true; 8274 } 8275 8276 auto *Bundle = buildBundle(VL); 8277 TryScheduleBundleImpl(ReSchedule, Bundle); 8278 if (!Bundle->isReady()) { 8279 cancelScheduling(VL, S.OpValue); 8280 return None; 8281 } 8282 return Bundle; 8283 } 8284 8285 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8286 Value *OpValue) { 8287 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8288 doesNotNeedToSchedule(VL)) 8289 return; 8290 8291 if (doesNotNeedToBeScheduled(OpValue)) 8292 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8293 ScheduleData *Bundle = getScheduleData(OpValue); 8294 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8295 assert(!Bundle->IsScheduled && 8296 "Can't cancel bundle which is already scheduled"); 8297 assert(Bundle->isSchedulingEntity() && 8298 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8299 "tried to unbundle something which is not a bundle"); 8300 8301 // Remove the bundle from the ready list. 8302 if (Bundle->isReady()) 8303 ReadyInsts.remove(Bundle); 8304 8305 // Un-bundle: make single instructions out of the bundle. 8306 ScheduleData *BundleMember = Bundle; 8307 while (BundleMember) { 8308 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8309 BundleMember->FirstInBundle = BundleMember; 8310 ScheduleData *Next = BundleMember->NextInBundle; 8311 BundleMember->NextInBundle = nullptr; 8312 BundleMember->TE = nullptr; 8313 if (BundleMember->unscheduledDepsInBundle() == 0) { 8314 ReadyInsts.insert(BundleMember); 8315 } 8316 BundleMember = Next; 8317 } 8318 } 8319 8320 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8321 // Allocate a new ScheduleData for the instruction. 8322 if (ChunkPos >= ChunkSize) { 8323 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8324 ChunkPos = 0; 8325 } 8326 return &(ScheduleDataChunks.back()[ChunkPos++]); 8327 } 8328 8329 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8330 const InstructionsState &S) { 8331 if (getScheduleData(V, isOneOf(S, V))) 8332 return true; 8333 Instruction *I = dyn_cast<Instruction>(V); 8334 assert(I && "bundle member must be an instruction"); 8335 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8336 !doesNotNeedToBeScheduled(I) && 8337 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8338 "be scheduled"); 8339 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8340 ScheduleData *ISD = getScheduleData(I); 8341 if (!ISD) 8342 return false; 8343 assert(isInSchedulingRegion(ISD) && 8344 "ScheduleData not in scheduling region"); 8345 ScheduleData *SD = allocateScheduleDataChunks(); 8346 SD->Inst = I; 8347 SD->init(SchedulingRegionID, S.OpValue); 8348 ExtraScheduleDataMap[I][S.OpValue] = SD; 8349 return true; 8350 }; 8351 if (CheckScheduleForI(I)) 8352 return true; 8353 if (!ScheduleStart) { 8354 // It's the first instruction in the new region. 8355 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8356 ScheduleStart = I; 8357 ScheduleEnd = I->getNextNode(); 8358 if (isOneOf(S, I) != I) 8359 CheckScheduleForI(I); 8360 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8361 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8362 return true; 8363 } 8364 // Search up and down at the same time, because we don't know if the new 8365 // instruction is above or below the existing scheduling region. 8366 BasicBlock::reverse_iterator UpIter = 8367 ++ScheduleStart->getIterator().getReverse(); 8368 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8369 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8370 BasicBlock::iterator LowerEnd = BB->end(); 8371 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8372 &*DownIter != I) { 8373 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8374 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8375 return false; 8376 } 8377 8378 ++UpIter; 8379 ++DownIter; 8380 } 8381 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8382 assert(I->getParent() == ScheduleStart->getParent() && 8383 "Instruction is in wrong basic block."); 8384 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8385 ScheduleStart = I; 8386 if (isOneOf(S, I) != I) 8387 CheckScheduleForI(I); 8388 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8389 << "\n"); 8390 return true; 8391 } 8392 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8393 "Expected to reach top of the basic block or instruction down the " 8394 "lower end."); 8395 assert(I->getParent() == ScheduleEnd->getParent() && 8396 "Instruction is in wrong basic block."); 8397 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8398 nullptr); 8399 ScheduleEnd = I->getNextNode(); 8400 if (isOneOf(S, I) != I) 8401 CheckScheduleForI(I); 8402 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8403 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8404 return true; 8405 } 8406 8407 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8408 Instruction *ToI, 8409 ScheduleData *PrevLoadStore, 8410 ScheduleData *NextLoadStore) { 8411 ScheduleData *CurrentLoadStore = PrevLoadStore; 8412 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8413 // No need to allocate data for non-schedulable instructions. 8414 if (doesNotNeedToBeScheduled(I)) 8415 continue; 8416 ScheduleData *SD = ScheduleDataMap.lookup(I); 8417 if (!SD) { 8418 SD = allocateScheduleDataChunks(); 8419 ScheduleDataMap[I] = SD; 8420 SD->Inst = I; 8421 } 8422 assert(!isInSchedulingRegion(SD) && 8423 "new ScheduleData already in scheduling region"); 8424 SD->init(SchedulingRegionID, I); 8425 8426 if (I->mayReadOrWriteMemory() && 8427 (!isa<IntrinsicInst>(I) || 8428 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8429 cast<IntrinsicInst>(I)->getIntrinsicID() != 8430 Intrinsic::pseudoprobe))) { 8431 // Update the linked list of memory accessing instructions. 8432 if (CurrentLoadStore) { 8433 CurrentLoadStore->NextLoadStore = SD; 8434 } else { 8435 FirstLoadStoreInRegion = SD; 8436 } 8437 CurrentLoadStore = SD; 8438 } 8439 8440 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8441 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8442 RegionHasStackSave = true; 8443 } 8444 if (NextLoadStore) { 8445 if (CurrentLoadStore) 8446 CurrentLoadStore->NextLoadStore = NextLoadStore; 8447 } else { 8448 LastLoadStoreInRegion = CurrentLoadStore; 8449 } 8450 } 8451 8452 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8453 bool InsertInReadyList, 8454 BoUpSLP *SLP) { 8455 assert(SD->isSchedulingEntity()); 8456 8457 SmallVector<ScheduleData *, 10> WorkList; 8458 WorkList.push_back(SD); 8459 8460 while (!WorkList.empty()) { 8461 ScheduleData *SD = WorkList.pop_back_val(); 8462 for (ScheduleData *BundleMember = SD; BundleMember; 8463 BundleMember = BundleMember->NextInBundle) { 8464 assert(isInSchedulingRegion(BundleMember)); 8465 if (BundleMember->hasValidDependencies()) 8466 continue; 8467 8468 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8469 << "\n"); 8470 BundleMember->Dependencies = 0; 8471 BundleMember->resetUnscheduledDeps(); 8472 8473 // Handle def-use chain dependencies. 8474 if (BundleMember->OpValue != BundleMember->Inst) { 8475 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8476 BundleMember->Dependencies++; 8477 ScheduleData *DestBundle = UseSD->FirstInBundle; 8478 if (!DestBundle->IsScheduled) 8479 BundleMember->incrementUnscheduledDeps(1); 8480 if (!DestBundle->hasValidDependencies()) 8481 WorkList.push_back(DestBundle); 8482 } 8483 } else { 8484 for (User *U : BundleMember->Inst->users()) { 8485 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8486 BundleMember->Dependencies++; 8487 ScheduleData *DestBundle = UseSD->FirstInBundle; 8488 if (!DestBundle->IsScheduled) 8489 BundleMember->incrementUnscheduledDeps(1); 8490 if (!DestBundle->hasValidDependencies()) 8491 WorkList.push_back(DestBundle); 8492 } 8493 } 8494 } 8495 8496 auto makeControlDependent = [&](Instruction *I) { 8497 auto *DepDest = getScheduleData(I); 8498 assert(DepDest && "must be in schedule window"); 8499 DepDest->ControlDependencies.push_back(BundleMember); 8500 BundleMember->Dependencies++; 8501 ScheduleData *DestBundle = DepDest->FirstInBundle; 8502 if (!DestBundle->IsScheduled) 8503 BundleMember->incrementUnscheduledDeps(1); 8504 if (!DestBundle->hasValidDependencies()) 8505 WorkList.push_back(DestBundle); 8506 }; 8507 8508 // Any instruction which isn't safe to speculate at the begining of the 8509 // block is control dependend on any early exit or non-willreturn call 8510 // which proceeds it. 8511 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8512 for (Instruction *I = BundleMember->Inst->getNextNode(); 8513 I != ScheduleEnd; I = I->getNextNode()) { 8514 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8515 continue; 8516 8517 // Add the dependency 8518 makeControlDependent(I); 8519 8520 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8521 // Everything past here must be control dependent on I. 8522 break; 8523 } 8524 } 8525 8526 if (RegionHasStackSave) { 8527 // If we have an inalloc alloca instruction, it needs to be scheduled 8528 // after any preceeding stacksave. We also need to prevent any alloca 8529 // from reordering above a preceeding stackrestore. 8530 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8531 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8532 for (Instruction *I = BundleMember->Inst->getNextNode(); 8533 I != ScheduleEnd; I = I->getNextNode()) { 8534 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8535 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8536 // Any allocas past here must be control dependent on I, and I 8537 // must be memory dependend on BundleMember->Inst. 8538 break; 8539 8540 if (!isa<AllocaInst>(I)) 8541 continue; 8542 8543 // Add the dependency 8544 makeControlDependent(I); 8545 } 8546 } 8547 8548 // In addition to the cases handle just above, we need to prevent 8549 // allocas from moving below a stacksave. The stackrestore case 8550 // is currently thought to be conservatism. 8551 if (isa<AllocaInst>(BundleMember->Inst)) { 8552 for (Instruction *I = BundleMember->Inst->getNextNode(); 8553 I != ScheduleEnd; I = I->getNextNode()) { 8554 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8555 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8556 continue; 8557 8558 // Add the dependency 8559 makeControlDependent(I); 8560 break; 8561 } 8562 } 8563 } 8564 8565 // Handle the memory dependencies (if any). 8566 ScheduleData *DepDest = BundleMember->NextLoadStore; 8567 if (!DepDest) 8568 continue; 8569 Instruction *SrcInst = BundleMember->Inst; 8570 assert(SrcInst->mayReadOrWriteMemory() && 8571 "NextLoadStore list for non memory effecting bundle?"); 8572 MemoryLocation SrcLoc = getLocation(SrcInst); 8573 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8574 unsigned numAliased = 0; 8575 unsigned DistToSrc = 1; 8576 8577 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8578 assert(isInSchedulingRegion(DepDest)); 8579 8580 // We have two limits to reduce the complexity: 8581 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8582 // SLP->isAliased (which is the expensive part in this loop). 8583 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8584 // the whole loop (even if the loop is fast, it's quadratic). 8585 // It's important for the loop break condition (see below) to 8586 // check this limit even between two read-only instructions. 8587 if (DistToSrc >= MaxMemDepDistance || 8588 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8589 (numAliased >= AliasedCheckLimit || 8590 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8591 8592 // We increment the counter only if the locations are aliased 8593 // (instead of counting all alias checks). This gives a better 8594 // balance between reduced runtime and accurate dependencies. 8595 numAliased++; 8596 8597 DepDest->MemoryDependencies.push_back(BundleMember); 8598 BundleMember->Dependencies++; 8599 ScheduleData *DestBundle = DepDest->FirstInBundle; 8600 if (!DestBundle->IsScheduled) { 8601 BundleMember->incrementUnscheduledDeps(1); 8602 } 8603 if (!DestBundle->hasValidDependencies()) { 8604 WorkList.push_back(DestBundle); 8605 } 8606 } 8607 8608 // Example, explaining the loop break condition: Let's assume our 8609 // starting instruction is i0 and MaxMemDepDistance = 3. 8610 // 8611 // +--------v--v--v 8612 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8613 // +--------^--^--^ 8614 // 8615 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8616 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8617 // Previously we already added dependencies from i3 to i6,i7,i8 8618 // (because of MaxMemDepDistance). As we added a dependency from 8619 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8620 // and we can abort this loop at i6. 8621 if (DistToSrc >= 2 * MaxMemDepDistance) 8622 break; 8623 DistToSrc++; 8624 } 8625 } 8626 if (InsertInReadyList && SD->isReady()) { 8627 ReadyInsts.insert(SD); 8628 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8629 << "\n"); 8630 } 8631 } 8632 } 8633 8634 void BoUpSLP::BlockScheduling::resetSchedule() { 8635 assert(ScheduleStart && 8636 "tried to reset schedule on block which has not been scheduled"); 8637 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8638 doForAllOpcodes(I, [&](ScheduleData *SD) { 8639 assert(isInSchedulingRegion(SD) && 8640 "ScheduleData not in scheduling region"); 8641 SD->IsScheduled = false; 8642 SD->resetUnscheduledDeps(); 8643 }); 8644 } 8645 ReadyInsts.clear(); 8646 } 8647 8648 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8649 if (!BS->ScheduleStart) 8650 return; 8651 8652 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8653 8654 // A key point - if we got here, pre-scheduling was able to find a valid 8655 // scheduling of the sub-graph of the scheduling window which consists 8656 // of all vector bundles and their transitive users. As such, we do not 8657 // need to reschedule anything *outside of* that subgraph. 8658 8659 BS->resetSchedule(); 8660 8661 // For the real scheduling we use a more sophisticated ready-list: it is 8662 // sorted by the original instruction location. This lets the final schedule 8663 // be as close as possible to the original instruction order. 8664 // WARNING: If changing this order causes a correctness issue, that means 8665 // there is some missing dependence edge in the schedule data graph. 8666 struct ScheduleDataCompare { 8667 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8668 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8669 } 8670 }; 8671 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8672 8673 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8674 // and fill the ready-list with initial instructions. 8675 int Idx = 0; 8676 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8677 I = I->getNextNode()) { 8678 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8679 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8680 (void)SDTE; 8681 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8682 SD->isPartOfBundle() == 8683 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8684 "scheduler and vectorizer bundle mismatch"); 8685 SD->FirstInBundle->SchedulingPriority = Idx++; 8686 8687 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8688 BS->calculateDependencies(SD, false, this); 8689 }); 8690 } 8691 BS->initialFillReadyList(ReadyInsts); 8692 8693 Instruction *LastScheduledInst = BS->ScheduleEnd; 8694 8695 // Do the "real" scheduling. 8696 while (!ReadyInsts.empty()) { 8697 ScheduleData *picked = *ReadyInsts.begin(); 8698 ReadyInsts.erase(ReadyInsts.begin()); 8699 8700 // Move the scheduled instruction(s) to their dedicated places, if not 8701 // there yet. 8702 for (ScheduleData *BundleMember = picked; BundleMember; 8703 BundleMember = BundleMember->NextInBundle) { 8704 Instruction *pickedInst = BundleMember->Inst; 8705 if (pickedInst->getNextNode() != LastScheduledInst) 8706 pickedInst->moveBefore(LastScheduledInst); 8707 LastScheduledInst = pickedInst; 8708 } 8709 8710 BS->schedule(picked, ReadyInsts); 8711 } 8712 8713 // Check that we didn't break any of our invariants. 8714 #ifdef EXPENSIVE_CHECKS 8715 BS->verify(); 8716 #endif 8717 8718 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8719 // Check that all schedulable entities got scheduled 8720 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8721 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8722 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8723 assert(SD->IsScheduled && "must be scheduled at this point"); 8724 } 8725 }); 8726 } 8727 #endif 8728 8729 // Avoid duplicate scheduling of the block. 8730 BS->ScheduleStart = nullptr; 8731 } 8732 8733 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8734 // If V is a store, just return the width of the stored value (or value 8735 // truncated just before storing) without traversing the expression tree. 8736 // This is the common case. 8737 if (auto *Store = dyn_cast<StoreInst>(V)) { 8738 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8739 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8740 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8741 } 8742 8743 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8744 return getVectorElementSize(IEI->getOperand(1)); 8745 8746 auto E = InstrElementSize.find(V); 8747 if (E != InstrElementSize.end()) 8748 return E->second; 8749 8750 // If V is not a store, we can traverse the expression tree to find loads 8751 // that feed it. The type of the loaded value may indicate a more suitable 8752 // width than V's type. We want to base the vector element size on the width 8753 // of memory operations where possible. 8754 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8755 SmallPtrSet<Instruction *, 16> Visited; 8756 if (auto *I = dyn_cast<Instruction>(V)) { 8757 Worklist.emplace_back(I, I->getParent()); 8758 Visited.insert(I); 8759 } 8760 8761 // Traverse the expression tree in bottom-up order looking for loads. If we 8762 // encounter an instruction we don't yet handle, we give up. 8763 auto Width = 0u; 8764 while (!Worklist.empty()) { 8765 Instruction *I; 8766 BasicBlock *Parent; 8767 std::tie(I, Parent) = Worklist.pop_back_val(); 8768 8769 // We should only be looking at scalar instructions here. If the current 8770 // instruction has a vector type, skip. 8771 auto *Ty = I->getType(); 8772 if (isa<VectorType>(Ty)) 8773 continue; 8774 8775 // If the current instruction is a load, update MaxWidth to reflect the 8776 // width of the loaded value. 8777 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8778 isa<ExtractValueInst>(I)) 8779 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8780 8781 // Otherwise, we need to visit the operands of the instruction. We only 8782 // handle the interesting cases from buildTree here. If an operand is an 8783 // instruction we haven't yet visited and from the same basic block as the 8784 // user or the use is a PHI node, we add it to the worklist. 8785 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8786 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8787 isa<UnaryOperator>(I)) { 8788 for (Use &U : I->operands()) 8789 if (auto *J = dyn_cast<Instruction>(U.get())) 8790 if (Visited.insert(J).second && 8791 (isa<PHINode>(I) || J->getParent() == Parent)) 8792 Worklist.emplace_back(J, J->getParent()); 8793 } else { 8794 break; 8795 } 8796 } 8797 8798 // If we didn't encounter a memory access in the expression tree, or if we 8799 // gave up for some reason, just return the width of V. Otherwise, return the 8800 // maximum width we found. 8801 if (!Width) { 8802 if (auto *CI = dyn_cast<CmpInst>(V)) 8803 V = CI->getOperand(0); 8804 Width = DL->getTypeSizeInBits(V->getType()); 8805 } 8806 8807 for (Instruction *I : Visited) 8808 InstrElementSize[I] = Width; 8809 8810 return Width; 8811 } 8812 8813 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8814 // smaller type with a truncation. We collect the values that will be demoted 8815 // in ToDemote and additional roots that require investigating in Roots. 8816 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8817 SmallVectorImpl<Value *> &ToDemote, 8818 SmallVectorImpl<Value *> &Roots) { 8819 // We can always demote constants. 8820 if (isa<Constant>(V)) { 8821 ToDemote.push_back(V); 8822 return true; 8823 } 8824 8825 // If the value is not an instruction in the expression with only one use, it 8826 // cannot be demoted. 8827 auto *I = dyn_cast<Instruction>(V); 8828 if (!I || !I->hasOneUse() || !Expr.count(I)) 8829 return false; 8830 8831 switch (I->getOpcode()) { 8832 8833 // We can always demote truncations and extensions. Since truncations can 8834 // seed additional demotion, we save the truncated value. 8835 case Instruction::Trunc: 8836 Roots.push_back(I->getOperand(0)); 8837 break; 8838 case Instruction::ZExt: 8839 case Instruction::SExt: 8840 if (isa<ExtractElementInst>(I->getOperand(0)) || 8841 isa<InsertElementInst>(I->getOperand(0))) 8842 return false; 8843 break; 8844 8845 // We can demote certain binary operations if we can demote both of their 8846 // operands. 8847 case Instruction::Add: 8848 case Instruction::Sub: 8849 case Instruction::Mul: 8850 case Instruction::And: 8851 case Instruction::Or: 8852 case Instruction::Xor: 8853 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8854 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8855 return false; 8856 break; 8857 8858 // We can demote selects if we can demote their true and false values. 8859 case Instruction::Select: { 8860 SelectInst *SI = cast<SelectInst>(I); 8861 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8862 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8863 return false; 8864 break; 8865 } 8866 8867 // We can demote phis if we can demote all their incoming operands. Note that 8868 // we don't need to worry about cycles since we ensure single use above. 8869 case Instruction::PHI: { 8870 PHINode *PN = cast<PHINode>(I); 8871 for (Value *IncValue : PN->incoming_values()) 8872 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8873 return false; 8874 break; 8875 } 8876 8877 // Otherwise, conservatively give up. 8878 default: 8879 return false; 8880 } 8881 8882 // Record the value that we can demote. 8883 ToDemote.push_back(V); 8884 return true; 8885 } 8886 8887 void BoUpSLP::computeMinimumValueSizes() { 8888 // If there are no external uses, the expression tree must be rooted by a 8889 // store. We can't demote in-memory values, so there is nothing to do here. 8890 if (ExternalUses.empty()) 8891 return; 8892 8893 // We only attempt to truncate integer expressions. 8894 auto &TreeRoot = VectorizableTree[0]->Scalars; 8895 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8896 if (!TreeRootIT) 8897 return; 8898 8899 // If the expression is not rooted by a store, these roots should have 8900 // external uses. We will rely on InstCombine to rewrite the expression in 8901 // the narrower type. However, InstCombine only rewrites single-use values. 8902 // This means that if a tree entry other than a root is used externally, it 8903 // must have multiple uses and InstCombine will not rewrite it. The code 8904 // below ensures that only the roots are used externally. 8905 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8906 for (auto &EU : ExternalUses) 8907 if (!Expr.erase(EU.Scalar)) 8908 return; 8909 if (!Expr.empty()) 8910 return; 8911 8912 // Collect the scalar values of the vectorizable expression. We will use this 8913 // context to determine which values can be demoted. If we see a truncation, 8914 // we mark it as seeding another demotion. 8915 for (auto &EntryPtr : VectorizableTree) 8916 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8917 8918 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8919 // have a single external user that is not in the vectorizable tree. 8920 for (auto *Root : TreeRoot) 8921 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8922 return; 8923 8924 // Conservatively determine if we can actually truncate the roots of the 8925 // expression. Collect the values that can be demoted in ToDemote and 8926 // additional roots that require investigating in Roots. 8927 SmallVector<Value *, 32> ToDemote; 8928 SmallVector<Value *, 4> Roots; 8929 for (auto *Root : TreeRoot) 8930 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8931 return; 8932 8933 // The maximum bit width required to represent all the values that can be 8934 // demoted without loss of precision. It would be safe to truncate the roots 8935 // of the expression to this width. 8936 auto MaxBitWidth = 8u; 8937 8938 // We first check if all the bits of the roots are demanded. If they're not, 8939 // we can truncate the roots to this narrower type. 8940 for (auto *Root : TreeRoot) { 8941 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8942 MaxBitWidth = std::max<unsigned>( 8943 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8944 } 8945 8946 // True if the roots can be zero-extended back to their original type, rather 8947 // than sign-extended. We know that if the leading bits are not demanded, we 8948 // can safely zero-extend. So we initialize IsKnownPositive to True. 8949 bool IsKnownPositive = true; 8950 8951 // If all the bits of the roots are demanded, we can try a little harder to 8952 // compute a narrower type. This can happen, for example, if the roots are 8953 // getelementptr indices. InstCombine promotes these indices to the pointer 8954 // width. Thus, all their bits are technically demanded even though the 8955 // address computation might be vectorized in a smaller type. 8956 // 8957 // We start by looking at each entry that can be demoted. We compute the 8958 // maximum bit width required to store the scalar by using ValueTracking to 8959 // compute the number of high-order bits we can truncate. 8960 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8961 llvm::all_of(TreeRoot, [](Value *R) { 8962 assert(R->hasOneUse() && "Root should have only one use!"); 8963 return isa<GetElementPtrInst>(R->user_back()); 8964 })) { 8965 MaxBitWidth = 8u; 8966 8967 // Determine if the sign bit of all the roots is known to be zero. If not, 8968 // IsKnownPositive is set to False. 8969 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8970 KnownBits Known = computeKnownBits(R, *DL); 8971 return Known.isNonNegative(); 8972 }); 8973 8974 // Determine the maximum number of bits required to store the scalar 8975 // values. 8976 for (auto *Scalar : ToDemote) { 8977 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8978 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8979 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8980 } 8981 8982 // If we can't prove that the sign bit is zero, we must add one to the 8983 // maximum bit width to account for the unknown sign bit. This preserves 8984 // the existing sign bit so we can safely sign-extend the root back to the 8985 // original type. Otherwise, if we know the sign bit is zero, we will 8986 // zero-extend the root instead. 8987 // 8988 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8989 // one to the maximum bit width will yield a larger-than-necessary 8990 // type. In general, we need to add an extra bit only if we can't 8991 // prove that the upper bit of the original type is equal to the 8992 // upper bit of the proposed smaller type. If these two bits are the 8993 // same (either zero or one) we know that sign-extending from the 8994 // smaller type will result in the same value. Here, since we can't 8995 // yet prove this, we are just making the proposed smaller type 8996 // larger to ensure correctness. 8997 if (!IsKnownPositive) 8998 ++MaxBitWidth; 8999 } 9000 9001 // Round MaxBitWidth up to the next power-of-two. 9002 if (!isPowerOf2_64(MaxBitWidth)) 9003 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9004 9005 // If the maximum bit width we compute is less than the with of the roots' 9006 // type, we can proceed with the narrowing. Otherwise, do nothing. 9007 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9008 return; 9009 9010 // If we can truncate the root, we must collect additional values that might 9011 // be demoted as a result. That is, those seeded by truncations we will 9012 // modify. 9013 while (!Roots.empty()) 9014 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9015 9016 // Finally, map the values we can demote to the maximum bit with we computed. 9017 for (auto *Scalar : ToDemote) 9018 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9019 } 9020 9021 namespace { 9022 9023 /// The SLPVectorizer Pass. 9024 struct SLPVectorizer : public FunctionPass { 9025 SLPVectorizerPass Impl; 9026 9027 /// Pass identification, replacement for typeid 9028 static char ID; 9029 9030 explicit SLPVectorizer() : FunctionPass(ID) { 9031 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9032 } 9033 9034 bool doInitialization(Module &M) override { return false; } 9035 9036 bool runOnFunction(Function &F) override { 9037 if (skipFunction(F)) 9038 return false; 9039 9040 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9041 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9042 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9043 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9044 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9045 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9046 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9047 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9048 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9049 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9050 9051 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9052 } 9053 9054 void getAnalysisUsage(AnalysisUsage &AU) const override { 9055 FunctionPass::getAnalysisUsage(AU); 9056 AU.addRequired<AssumptionCacheTracker>(); 9057 AU.addRequired<ScalarEvolutionWrapperPass>(); 9058 AU.addRequired<AAResultsWrapperPass>(); 9059 AU.addRequired<TargetTransformInfoWrapperPass>(); 9060 AU.addRequired<LoopInfoWrapperPass>(); 9061 AU.addRequired<DominatorTreeWrapperPass>(); 9062 AU.addRequired<DemandedBitsWrapperPass>(); 9063 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9064 AU.addRequired<InjectTLIMappingsLegacy>(); 9065 AU.addPreserved<LoopInfoWrapperPass>(); 9066 AU.addPreserved<DominatorTreeWrapperPass>(); 9067 AU.addPreserved<AAResultsWrapperPass>(); 9068 AU.addPreserved<GlobalsAAWrapperPass>(); 9069 AU.setPreservesCFG(); 9070 } 9071 }; 9072 9073 } // end anonymous namespace 9074 9075 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9076 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9077 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9078 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9079 auto *AA = &AM.getResult<AAManager>(F); 9080 auto *LI = &AM.getResult<LoopAnalysis>(F); 9081 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9082 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9083 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9084 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9085 9086 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9087 if (!Changed) 9088 return PreservedAnalyses::all(); 9089 9090 PreservedAnalyses PA; 9091 PA.preserveSet<CFGAnalyses>(); 9092 return PA; 9093 } 9094 9095 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9096 TargetTransformInfo *TTI_, 9097 TargetLibraryInfo *TLI_, AAResults *AA_, 9098 LoopInfo *LI_, DominatorTree *DT_, 9099 AssumptionCache *AC_, DemandedBits *DB_, 9100 OptimizationRemarkEmitter *ORE_) { 9101 if (!RunSLPVectorization) 9102 return false; 9103 SE = SE_; 9104 TTI = TTI_; 9105 TLI = TLI_; 9106 AA = AA_; 9107 LI = LI_; 9108 DT = DT_; 9109 AC = AC_; 9110 DB = DB_; 9111 DL = &F.getParent()->getDataLayout(); 9112 9113 Stores.clear(); 9114 GEPs.clear(); 9115 bool Changed = false; 9116 9117 // If the target claims to have no vector registers don't attempt 9118 // vectorization. 9119 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9120 LLVM_DEBUG( 9121 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9122 return false; 9123 } 9124 9125 // Don't vectorize when the attribute NoImplicitFloat is used. 9126 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9127 return false; 9128 9129 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9130 9131 // Use the bottom up slp vectorizer to construct chains that start with 9132 // store instructions. 9133 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 9134 9135 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 9136 // delete instructions. 9137 9138 // Update DFS numbers now so that we can use them for ordering. 9139 DT->updateDFSNumbers(); 9140 9141 // Scan the blocks in the function in post order. 9142 for (auto BB : post_order(&F.getEntryBlock())) { 9143 // Start new block - clear the list of reduction roots. 9144 R.clearReductionData(); 9145 collectSeedInstructions(BB); 9146 9147 // Vectorize trees that end at stores. 9148 if (!Stores.empty()) { 9149 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 9150 << " underlying objects.\n"); 9151 Changed |= vectorizeStoreChains(R); 9152 } 9153 9154 // Vectorize trees that end at reductions. 9155 Changed |= vectorizeChainsInBlock(BB, R); 9156 9157 // Vectorize the index computations of getelementptr instructions. This 9158 // is primarily intended to catch gather-like idioms ending at 9159 // non-consecutive loads. 9160 if (!GEPs.empty()) { 9161 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 9162 << " underlying objects.\n"); 9163 Changed |= vectorizeGEPIndices(BB, R); 9164 } 9165 } 9166 9167 if (Changed) { 9168 R.optimizeGatherSequence(); 9169 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 9170 } 9171 return Changed; 9172 } 9173 9174 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 9175 unsigned Idx) { 9176 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 9177 << "\n"); 9178 const unsigned Sz = R.getVectorElementSize(Chain[0]); 9179 const unsigned MinVF = R.getMinVecRegSize() / Sz; 9180 unsigned VF = Chain.size(); 9181 9182 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 9183 return false; 9184 9185 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 9186 << "\n"); 9187 9188 R.buildTree(Chain); 9189 if (R.isTreeTinyAndNotFullyVectorizable()) 9190 return false; 9191 if (R.isLoadCombineCandidate()) 9192 return false; 9193 R.reorderTopToBottom(); 9194 R.reorderBottomToTop(); 9195 R.buildExternalUses(); 9196 9197 R.computeMinimumValueSizes(); 9198 9199 InstructionCost Cost = R.getTreeCost(); 9200 9201 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 9202 if (Cost < -SLPCostThreshold) { 9203 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 9204 9205 using namespace ore; 9206 9207 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9208 cast<StoreInst>(Chain[0])) 9209 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9210 << " and with tree size " 9211 << NV("TreeSize", R.getTreeSize())); 9212 9213 R.vectorizeTree(); 9214 return true; 9215 } 9216 9217 return false; 9218 } 9219 9220 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9221 BoUpSLP &R) { 9222 // We may run into multiple chains that merge into a single chain. We mark the 9223 // stores that we vectorized so that we don't visit the same store twice. 9224 BoUpSLP::ValueSet VectorizedStores; 9225 bool Changed = false; 9226 9227 int E = Stores.size(); 9228 SmallBitVector Tails(E, false); 9229 int MaxIter = MaxStoreLookup.getValue(); 9230 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9231 E, std::make_pair(E, INT_MAX)); 9232 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9233 int IterCnt; 9234 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9235 &CheckedPairs, 9236 &ConsecutiveChain](int K, int Idx) { 9237 if (IterCnt >= MaxIter) 9238 return true; 9239 if (CheckedPairs[Idx].test(K)) 9240 return ConsecutiveChain[K].second == 1 && 9241 ConsecutiveChain[K].first == Idx; 9242 ++IterCnt; 9243 CheckedPairs[Idx].set(K); 9244 CheckedPairs[K].set(Idx); 9245 Optional<int> Diff = getPointersDiff( 9246 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9247 Stores[Idx]->getValueOperand()->getType(), 9248 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9249 if (!Diff || *Diff == 0) 9250 return false; 9251 int Val = *Diff; 9252 if (Val < 0) { 9253 if (ConsecutiveChain[Idx].second > -Val) { 9254 Tails.set(K); 9255 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9256 } 9257 return false; 9258 } 9259 if (ConsecutiveChain[K].second <= Val) 9260 return false; 9261 9262 Tails.set(Idx); 9263 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9264 return Val == 1; 9265 }; 9266 // Do a quadratic search on all of the given stores in reverse order and find 9267 // all of the pairs of stores that follow each other. 9268 for (int Idx = E - 1; Idx >= 0; --Idx) { 9269 // If a store has multiple consecutive store candidates, search according 9270 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9271 // This is because usually pairing with immediate succeeding or preceding 9272 // candidate create the best chance to find slp vectorization opportunity. 9273 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9274 IterCnt = 0; 9275 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9276 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9277 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9278 break; 9279 } 9280 9281 // Tracks if we tried to vectorize stores starting from the given tail 9282 // already. 9283 SmallBitVector TriedTails(E, false); 9284 // For stores that start but don't end a link in the chain: 9285 for (int Cnt = E; Cnt > 0; --Cnt) { 9286 int I = Cnt - 1; 9287 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9288 continue; 9289 // We found a store instr that starts a chain. Now follow the chain and try 9290 // to vectorize it. 9291 BoUpSLP::ValueList Operands; 9292 // Collect the chain into a list. 9293 while (I != E && !VectorizedStores.count(Stores[I])) { 9294 Operands.push_back(Stores[I]); 9295 Tails.set(I); 9296 if (ConsecutiveChain[I].second != 1) { 9297 // Mark the new end in the chain and go back, if required. It might be 9298 // required if the original stores come in reversed order, for example. 9299 if (ConsecutiveChain[I].first != E && 9300 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9301 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9302 TriedTails.set(I); 9303 Tails.reset(ConsecutiveChain[I].first); 9304 if (Cnt < ConsecutiveChain[I].first + 2) 9305 Cnt = ConsecutiveChain[I].first + 2; 9306 } 9307 break; 9308 } 9309 // Move to the next value in the chain. 9310 I = ConsecutiveChain[I].first; 9311 } 9312 assert(!Operands.empty() && "Expected non-empty list of stores."); 9313 9314 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9315 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9316 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9317 9318 unsigned MinVF = R.getMinVF(EltSize); 9319 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9320 MaxElts); 9321 9322 // FIXME: Is division-by-2 the correct step? Should we assert that the 9323 // register size is a power-of-2? 9324 unsigned StartIdx = 0; 9325 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9326 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9327 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9328 if (!VectorizedStores.count(Slice.front()) && 9329 !VectorizedStores.count(Slice.back()) && 9330 vectorizeStoreChain(Slice, R, Cnt)) { 9331 // Mark the vectorized stores so that we don't vectorize them again. 9332 VectorizedStores.insert(Slice.begin(), Slice.end()); 9333 Changed = true; 9334 // If we vectorized initial block, no need to try to vectorize it 9335 // again. 9336 if (Cnt == StartIdx) 9337 StartIdx += Size; 9338 Cnt += Size; 9339 continue; 9340 } 9341 ++Cnt; 9342 } 9343 // Check if the whole array was vectorized already - exit. 9344 if (StartIdx >= Operands.size()) 9345 break; 9346 } 9347 } 9348 9349 return Changed; 9350 } 9351 9352 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9353 // Initialize the collections. We will make a single pass over the block. 9354 Stores.clear(); 9355 GEPs.clear(); 9356 9357 // Visit the store and getelementptr instructions in BB and organize them in 9358 // Stores and GEPs according to the underlying objects of their pointer 9359 // operands. 9360 for (Instruction &I : *BB) { 9361 // Ignore store instructions that are volatile or have a pointer operand 9362 // that doesn't point to a scalar type. 9363 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9364 if (!SI->isSimple()) 9365 continue; 9366 if (!isValidElementType(SI->getValueOperand()->getType())) 9367 continue; 9368 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9369 } 9370 9371 // Ignore getelementptr instructions that have more than one index, a 9372 // constant index, or a pointer operand that doesn't point to a scalar 9373 // type. 9374 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9375 auto Idx = GEP->idx_begin()->get(); 9376 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9377 continue; 9378 if (!isValidElementType(Idx->getType())) 9379 continue; 9380 if (GEP->getType()->isVectorTy()) 9381 continue; 9382 GEPs[GEP->getPointerOperand()].push_back(GEP); 9383 } 9384 } 9385 } 9386 9387 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9388 if (!A || !B) 9389 return false; 9390 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9391 return false; 9392 Value *VL[] = {A, B}; 9393 return tryToVectorizeList(VL, R); 9394 } 9395 9396 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9397 bool LimitForRegisterSize) { 9398 if (VL.size() < 2) 9399 return false; 9400 9401 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9402 << VL.size() << ".\n"); 9403 9404 // Check that all of the parts are instructions of the same type, 9405 // we permit an alternate opcode via InstructionsState. 9406 InstructionsState S = getSameOpcode(VL); 9407 if (!S.getOpcode()) 9408 return false; 9409 9410 Instruction *I0 = cast<Instruction>(S.OpValue); 9411 // Make sure invalid types (including vector type) are rejected before 9412 // determining vectorization factor for scalar instructions. 9413 for (Value *V : VL) { 9414 Type *Ty = V->getType(); 9415 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9416 // NOTE: the following will give user internal llvm type name, which may 9417 // not be useful. 9418 R.getORE()->emit([&]() { 9419 std::string type_str; 9420 llvm::raw_string_ostream rso(type_str); 9421 Ty->print(rso); 9422 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9423 << "Cannot SLP vectorize list: type " 9424 << rso.str() + " is unsupported by vectorizer"; 9425 }); 9426 return false; 9427 } 9428 } 9429 9430 unsigned Sz = R.getVectorElementSize(I0); 9431 unsigned MinVF = R.getMinVF(Sz); 9432 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9433 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9434 if (MaxVF < 2) { 9435 R.getORE()->emit([&]() { 9436 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9437 << "Cannot SLP vectorize list: vectorization factor " 9438 << "less than 2 is not supported"; 9439 }); 9440 return false; 9441 } 9442 9443 bool Changed = false; 9444 bool CandidateFound = false; 9445 InstructionCost MinCost = SLPCostThreshold.getValue(); 9446 Type *ScalarTy = VL[0]->getType(); 9447 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9448 ScalarTy = IE->getOperand(1)->getType(); 9449 9450 unsigned NextInst = 0, MaxInst = VL.size(); 9451 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9452 // No actual vectorization should happen, if number of parts is the same as 9453 // provided vectorization factor (i.e. the scalar type is used for vector 9454 // code during codegen). 9455 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9456 if (TTI->getNumberOfParts(VecTy) == VF) 9457 continue; 9458 for (unsigned I = NextInst; I < MaxInst; ++I) { 9459 unsigned OpsWidth = 0; 9460 9461 if (I + VF > MaxInst) 9462 OpsWidth = MaxInst - I; 9463 else 9464 OpsWidth = VF; 9465 9466 if (!isPowerOf2_32(OpsWidth)) 9467 continue; 9468 9469 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9470 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9471 break; 9472 9473 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9474 // Check that a previous iteration of this loop did not delete the Value. 9475 if (llvm::any_of(Ops, [&R](Value *V) { 9476 auto *I = dyn_cast<Instruction>(V); 9477 return I && R.isDeleted(I); 9478 })) 9479 continue; 9480 9481 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9482 << "\n"); 9483 9484 R.buildTree(Ops); 9485 if (R.isTreeTinyAndNotFullyVectorizable()) 9486 continue; 9487 R.reorderTopToBottom(); 9488 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9489 R.buildExternalUses(); 9490 9491 R.computeMinimumValueSizes(); 9492 InstructionCost Cost = R.getTreeCost(); 9493 CandidateFound = true; 9494 MinCost = std::min(MinCost, Cost); 9495 9496 if (Cost < -SLPCostThreshold) { 9497 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9498 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9499 cast<Instruction>(Ops[0])) 9500 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9501 << " and with tree size " 9502 << ore::NV("TreeSize", R.getTreeSize())); 9503 9504 R.vectorizeTree(); 9505 // Move to the next bundle. 9506 I += VF - 1; 9507 NextInst = I + 1; 9508 Changed = true; 9509 } 9510 } 9511 } 9512 9513 if (!Changed && CandidateFound) { 9514 R.getORE()->emit([&]() { 9515 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9516 << "List vectorization was possible but not beneficial with cost " 9517 << ore::NV("Cost", MinCost) << " >= " 9518 << ore::NV("Treshold", -SLPCostThreshold); 9519 }); 9520 } else if (!Changed) { 9521 R.getORE()->emit([&]() { 9522 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9523 << "Cannot SLP vectorize list: vectorization was impossible" 9524 << " with available vectorization factors"; 9525 }); 9526 } 9527 return Changed; 9528 } 9529 9530 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9531 if (!I) 9532 return false; 9533 9534 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 9535 isa<VectorType>(I->getType())) 9536 return false; 9537 9538 Value *P = I->getParent(); 9539 9540 // Vectorize in current basic block only. 9541 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9542 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9543 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9544 return false; 9545 9546 // First collect all possible candidates 9547 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 9548 Candidates.emplace_back(Op0, Op1); 9549 9550 auto *A = dyn_cast<BinaryOperator>(Op0); 9551 auto *B = dyn_cast<BinaryOperator>(Op1); 9552 // Try to skip B. 9553 if (A && B && B->hasOneUse()) { 9554 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9555 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9556 if (B0 && B0->getParent() == P) 9557 Candidates.emplace_back(A, B0); 9558 if (B1 && B1->getParent() == P) 9559 Candidates.emplace_back(A, B1); 9560 } 9561 // Try to skip A. 9562 if (B && A && A->hasOneUse()) { 9563 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9564 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9565 if (A0 && A0->getParent() == P) 9566 Candidates.emplace_back(A0, B); 9567 if (A1 && A1->getParent() == P) 9568 Candidates.emplace_back(A1, B); 9569 } 9570 9571 if (Candidates.size() == 1) 9572 return tryToVectorizePair(Op0, Op1, R); 9573 9574 // We have multiple options. Try to pick the single best. 9575 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 9576 if (!BestCandidate) 9577 return false; 9578 return tryToVectorizePair(Candidates[*BestCandidate].first, 9579 Candidates[*BestCandidate].second, R); 9580 } 9581 9582 namespace { 9583 9584 /// Model horizontal reductions. 9585 /// 9586 /// A horizontal reduction is a tree of reduction instructions that has values 9587 /// that can be put into a vector as its leaves. For example: 9588 /// 9589 /// mul mul mul mul 9590 /// \ / \ / 9591 /// + + 9592 /// \ / 9593 /// + 9594 /// This tree has "mul" as its leaf values and "+" as its reduction 9595 /// instructions. A reduction can feed into a store or a binary operation 9596 /// feeding a phi. 9597 /// ... 9598 /// \ / 9599 /// + 9600 /// | 9601 /// phi += 9602 /// 9603 /// Or: 9604 /// ... 9605 /// \ / 9606 /// + 9607 /// | 9608 /// *p = 9609 /// 9610 class HorizontalReduction { 9611 using ReductionOpsType = SmallVector<Value *, 16>; 9612 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9613 ReductionOpsListType ReductionOps; 9614 /// List of possibly reduced values. 9615 SmallVector<SmallVector<Value *>> ReducedVals; 9616 /// Maps reduced value to the corresponding reduction operation. 9617 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 9618 // Use map vector to make stable output. 9619 MapVector<Instruction *, Value *> ExtraArgs; 9620 WeakTrackingVH ReductionRoot; 9621 /// The type of reduction operation. 9622 RecurKind RdxKind; 9623 9624 static bool isCmpSelMinMax(Instruction *I) { 9625 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9626 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9627 } 9628 9629 // And/or are potentially poison-safe logical patterns like: 9630 // select x, y, false 9631 // select x, true, y 9632 static bool isBoolLogicOp(Instruction *I) { 9633 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9634 match(I, m_LogicalOr(m_Value(), m_Value())); 9635 } 9636 9637 /// Checks if instruction is associative and can be vectorized. 9638 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9639 if (Kind == RecurKind::None) 9640 return false; 9641 9642 // Integer ops that map to select instructions or intrinsics are fine. 9643 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9644 isBoolLogicOp(I)) 9645 return true; 9646 9647 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9648 // FP min/max are associative except for NaN and -0.0. We do not 9649 // have to rule out -0.0 here because the intrinsic semantics do not 9650 // specify a fixed result for it. 9651 return I->getFastMathFlags().noNaNs(); 9652 } 9653 9654 return I->isAssociative(); 9655 } 9656 9657 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9658 // Poison-safe 'or' takes the form: select X, true, Y 9659 // To make that work with the normal operand processing, we skip the 9660 // true value operand. 9661 // TODO: Change the code and data structures to handle this without a hack. 9662 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9663 return I->getOperand(2); 9664 return I->getOperand(Index); 9665 } 9666 9667 /// Creates reduction operation with the current opcode. 9668 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9669 Value *RHS, const Twine &Name, bool UseSelect) { 9670 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9671 switch (Kind) { 9672 case RecurKind::Or: 9673 if (UseSelect && 9674 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9675 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9676 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9677 Name); 9678 case RecurKind::And: 9679 if (UseSelect && 9680 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9681 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9682 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9683 Name); 9684 case RecurKind::Add: 9685 case RecurKind::Mul: 9686 case RecurKind::Xor: 9687 case RecurKind::FAdd: 9688 case RecurKind::FMul: 9689 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9690 Name); 9691 case RecurKind::FMax: 9692 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9693 case RecurKind::FMin: 9694 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9695 case RecurKind::SMax: 9696 if (UseSelect) { 9697 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9698 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9699 } 9700 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9701 case RecurKind::SMin: 9702 if (UseSelect) { 9703 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9704 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9705 } 9706 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9707 case RecurKind::UMax: 9708 if (UseSelect) { 9709 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9710 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9711 } 9712 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9713 case RecurKind::UMin: 9714 if (UseSelect) { 9715 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9716 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9717 } 9718 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9719 default: 9720 llvm_unreachable("Unknown reduction operation."); 9721 } 9722 } 9723 9724 /// Creates reduction operation with the current opcode with the IR flags 9725 /// from \p ReductionOps. 9726 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9727 Value *RHS, const Twine &Name, 9728 const ReductionOpsListType &ReductionOps) { 9729 bool UseSelect = ReductionOps.size() == 2 || 9730 // Logical or/and. 9731 (ReductionOps.size() == 1 && 9732 isa<SelectInst>(ReductionOps.front().front())); 9733 assert((!UseSelect || ReductionOps.size() != 2 || 9734 isa<SelectInst>(ReductionOps[1][0])) && 9735 "Expected cmp + select pairs for reduction"); 9736 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9737 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9738 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9739 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9740 propagateIRFlags(Op, ReductionOps[1]); 9741 return Op; 9742 } 9743 } 9744 propagateIRFlags(Op, ReductionOps[0]); 9745 return Op; 9746 } 9747 9748 /// Creates reduction operation with the current opcode with the IR flags 9749 /// from \p I. 9750 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9751 Value *RHS, const Twine &Name, Value *I) { 9752 auto *SelI = dyn_cast<SelectInst>(I); 9753 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9754 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9755 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9756 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9757 } 9758 propagateIRFlags(Op, I); 9759 return Op; 9760 } 9761 9762 static RecurKind getRdxKind(Value *V) { 9763 auto *I = dyn_cast<Instruction>(V); 9764 if (!I) 9765 return RecurKind::None; 9766 if (match(I, m_Add(m_Value(), m_Value()))) 9767 return RecurKind::Add; 9768 if (match(I, m_Mul(m_Value(), m_Value()))) 9769 return RecurKind::Mul; 9770 if (match(I, m_And(m_Value(), m_Value())) || 9771 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9772 return RecurKind::And; 9773 if (match(I, m_Or(m_Value(), m_Value())) || 9774 match(I, m_LogicalOr(m_Value(), m_Value()))) 9775 return RecurKind::Or; 9776 if (match(I, m_Xor(m_Value(), m_Value()))) 9777 return RecurKind::Xor; 9778 if (match(I, m_FAdd(m_Value(), m_Value()))) 9779 return RecurKind::FAdd; 9780 if (match(I, m_FMul(m_Value(), m_Value()))) 9781 return RecurKind::FMul; 9782 9783 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9784 return RecurKind::FMax; 9785 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9786 return RecurKind::FMin; 9787 9788 // This matches either cmp+select or intrinsics. SLP is expected to handle 9789 // either form. 9790 // TODO: If we are canonicalizing to intrinsics, we can remove several 9791 // special-case paths that deal with selects. 9792 if (match(I, m_SMax(m_Value(), m_Value()))) 9793 return RecurKind::SMax; 9794 if (match(I, m_SMin(m_Value(), m_Value()))) 9795 return RecurKind::SMin; 9796 if (match(I, m_UMax(m_Value(), m_Value()))) 9797 return RecurKind::UMax; 9798 if (match(I, m_UMin(m_Value(), m_Value()))) 9799 return RecurKind::UMin; 9800 9801 if (auto *Select = dyn_cast<SelectInst>(I)) { 9802 // Try harder: look for min/max pattern based on instructions producing 9803 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9804 // During the intermediate stages of SLP, it's very common to have 9805 // pattern like this (since optimizeGatherSequence is run only once 9806 // at the end): 9807 // %1 = extractelement <2 x i32> %a, i32 0 9808 // %2 = extractelement <2 x i32> %a, i32 1 9809 // %cond = icmp sgt i32 %1, %2 9810 // %3 = extractelement <2 x i32> %a, i32 0 9811 // %4 = extractelement <2 x i32> %a, i32 1 9812 // %select = select i1 %cond, i32 %3, i32 %4 9813 CmpInst::Predicate Pred; 9814 Instruction *L1; 9815 Instruction *L2; 9816 9817 Value *LHS = Select->getTrueValue(); 9818 Value *RHS = Select->getFalseValue(); 9819 Value *Cond = Select->getCondition(); 9820 9821 // TODO: Support inverse predicates. 9822 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9823 if (!isa<ExtractElementInst>(RHS) || 9824 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9825 return RecurKind::None; 9826 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9827 if (!isa<ExtractElementInst>(LHS) || 9828 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9829 return RecurKind::None; 9830 } else { 9831 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9832 return RecurKind::None; 9833 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9834 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9835 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9836 return RecurKind::None; 9837 } 9838 9839 switch (Pred) { 9840 default: 9841 return RecurKind::None; 9842 case CmpInst::ICMP_SGT: 9843 case CmpInst::ICMP_SGE: 9844 return RecurKind::SMax; 9845 case CmpInst::ICMP_SLT: 9846 case CmpInst::ICMP_SLE: 9847 return RecurKind::SMin; 9848 case CmpInst::ICMP_UGT: 9849 case CmpInst::ICMP_UGE: 9850 return RecurKind::UMax; 9851 case CmpInst::ICMP_ULT: 9852 case CmpInst::ICMP_ULE: 9853 return RecurKind::UMin; 9854 } 9855 } 9856 return RecurKind::None; 9857 } 9858 9859 /// Get the index of the first operand. 9860 static unsigned getFirstOperandIndex(Instruction *I) { 9861 return isCmpSelMinMax(I) ? 1 : 0; 9862 } 9863 9864 /// Total number of operands in the reduction operation. 9865 static unsigned getNumberOfOperands(Instruction *I) { 9866 return isCmpSelMinMax(I) ? 3 : 2; 9867 } 9868 9869 /// Checks if the instruction is in basic block \p BB. 9870 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9871 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9872 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9873 auto *Sel = cast<SelectInst>(I); 9874 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9875 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9876 } 9877 return I->getParent() == BB; 9878 } 9879 9880 /// Expected number of uses for reduction operations/reduced values. 9881 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9882 if (IsCmpSelMinMax) { 9883 // SelectInst must be used twice while the condition op must have single 9884 // use only. 9885 if (auto *Sel = dyn_cast<SelectInst>(I)) 9886 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9887 return I->hasNUses(2); 9888 } 9889 9890 // Arithmetic reduction operation must be used once only. 9891 return I->hasOneUse(); 9892 } 9893 9894 /// Initializes the list of reduction operations. 9895 void initReductionOps(Instruction *I) { 9896 if (isCmpSelMinMax(I)) 9897 ReductionOps.assign(2, ReductionOpsType()); 9898 else 9899 ReductionOps.assign(1, ReductionOpsType()); 9900 } 9901 9902 /// Add all reduction operations for the reduction instruction \p I. 9903 void addReductionOps(Instruction *I) { 9904 if (isCmpSelMinMax(I)) { 9905 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9906 ReductionOps[1].emplace_back(I); 9907 } else { 9908 ReductionOps[0].emplace_back(I); 9909 } 9910 } 9911 9912 static Value *getLHS(RecurKind Kind, Instruction *I) { 9913 if (Kind == RecurKind::None) 9914 return nullptr; 9915 return I->getOperand(getFirstOperandIndex(I)); 9916 } 9917 static Value *getRHS(RecurKind Kind, Instruction *I) { 9918 if (Kind == RecurKind::None) 9919 return nullptr; 9920 return I->getOperand(getFirstOperandIndex(I) + 1); 9921 } 9922 9923 public: 9924 HorizontalReduction() = default; 9925 9926 /// Try to find a reduction tree. 9927 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 9928 ScalarEvolution &SE, const DataLayout &DL, 9929 const TargetLibraryInfo &TLI) { 9930 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9931 "Phi needs to use the binary operator"); 9932 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9933 isa<IntrinsicInst>(Inst)) && 9934 "Expected binop, select, or intrinsic for reduction matching"); 9935 RdxKind = getRdxKind(Inst); 9936 9937 // We could have a initial reductions that is not an add. 9938 // r *= v1 + v2 + v3 + v4 9939 // In such a case start looking for a tree rooted in the first '+'. 9940 if (Phi) { 9941 if (getLHS(RdxKind, Inst) == Phi) { 9942 Phi = nullptr; 9943 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9944 if (!Inst) 9945 return false; 9946 RdxKind = getRdxKind(Inst); 9947 } else if (getRHS(RdxKind, Inst) == Phi) { 9948 Phi = nullptr; 9949 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9950 if (!Inst) 9951 return false; 9952 RdxKind = getRdxKind(Inst); 9953 } 9954 } 9955 9956 if (!isVectorizable(RdxKind, Inst)) 9957 return false; 9958 9959 // Analyze "regular" integer/FP types for reductions - no target-specific 9960 // types or pointers. 9961 Type *Ty = Inst->getType(); 9962 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9963 return false; 9964 9965 // Though the ultimate reduction may have multiple uses, its condition must 9966 // have only single use. 9967 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9968 if (!Sel->getCondition()->hasOneUse()) 9969 return false; 9970 9971 ReductionRoot = Inst; 9972 9973 // Iterate through all the operands of the possible reduction tree and 9974 // gather all the reduced values, sorting them by their value id. 9975 BasicBlock *BB = Inst->getParent(); 9976 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 9977 SmallVector<Instruction *> Worklist(1, Inst); 9978 // Checks if the operands of the \p TreeN instruction are also reduction 9979 // operations or should be treated as reduced values or an extra argument, 9980 // which is not part of the reduction. 9981 auto &&CheckOperands = [this, IsCmpSelMinMax, 9982 BB](Instruction *TreeN, 9983 SmallVectorImpl<Value *> &ExtraArgs, 9984 SmallVectorImpl<Value *> &PossibleReducedVals, 9985 SmallVectorImpl<Instruction *> &ReductionOps) { 9986 for (int I = getFirstOperandIndex(TreeN), 9987 End = getNumberOfOperands(TreeN); 9988 I < End; ++I) { 9989 Value *EdgeVal = getRdxOperand(TreeN, I); 9990 ReducedValsToOps[EdgeVal].push_back(TreeN); 9991 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9992 // Edge has wrong parent - mark as an extra argument. 9993 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 9994 !hasSameParent(EdgeInst, BB)) { 9995 ExtraArgs.push_back(EdgeVal); 9996 continue; 9997 } 9998 // If the edge is not an instruction, or it is different from the main 9999 // reduction opcode or has too many uses - possible reduced value. 10000 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10001 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10002 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10003 PossibleReducedVals.push_back(EdgeVal); 10004 continue; 10005 } 10006 ReductionOps.push_back(EdgeInst); 10007 } 10008 }; 10009 // Try to regroup reduced values so that it gets more profitable to try to 10010 // reduce them. Values are grouped by their value ids, instructions - by 10011 // instruction op id and/or alternate op id, plus do extra analysis for 10012 // loads (grouping them by the distabce between pointers) and cmp 10013 // instructions (grouping them by the predicate). 10014 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10015 PossibleReducedVals; 10016 initReductionOps(Inst); 10017 while (!Worklist.empty()) { 10018 Instruction *TreeN = Worklist.pop_back_val(); 10019 SmallVector<Value *> Args; 10020 SmallVector<Value *> PossibleRedVals; 10021 SmallVector<Instruction *> PossibleReductionOps; 10022 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10023 // If too many extra args - mark the instruction itself as a reduction 10024 // value, not a reduction operation. 10025 if (Args.size() < 2) { 10026 addReductionOps(TreeN); 10027 // Add extra args. 10028 if (!Args.empty()) { 10029 assert(Args.size() == 1 && "Expected only single argument."); 10030 ExtraArgs[TreeN] = Args.front(); 10031 } 10032 // Add reduction values. The values are sorted for better vectorization 10033 // results. 10034 for (Value *V : PossibleRedVals) { 10035 size_t Key, Idx; 10036 std::tie(Key, Idx) = generateKeySubkey( 10037 V, &TLI, 10038 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10039 for (const auto &LoadData : PossibleReducedVals[Key]) { 10040 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10041 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10042 LI->getType(), LI->getPointerOperand(), 10043 DL, SE, /*StrictCheck=*/true)) 10044 return hash_value(RLI->getPointerOperand()); 10045 } 10046 return hash_value(LI->getPointerOperand()); 10047 }, 10048 /*AllowAlternate=*/false); 10049 ++PossibleReducedVals[Key][Idx] 10050 .insert(std::make_pair(V, 0)) 10051 .first->second; 10052 } 10053 Worklist.append(PossibleReductionOps.rbegin(), 10054 PossibleReductionOps.rend()); 10055 } else { 10056 size_t Key, Idx; 10057 std::tie(Key, Idx) = generateKeySubkey( 10058 TreeN, &TLI, 10059 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10060 for (const auto &LoadData : PossibleReducedVals[Key]) { 10061 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10062 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10063 LI->getType(), LI->getPointerOperand(), DL, 10064 SE, /*StrictCheck=*/true)) 10065 return hash_value(RLI->getPointerOperand()); 10066 } 10067 return hash_value(LI->getPointerOperand()); 10068 }, 10069 /*AllowAlternate=*/false); 10070 ++PossibleReducedVals[Key][Idx] 10071 .insert(std::make_pair(TreeN, 0)) 10072 .first->second; 10073 } 10074 } 10075 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10076 // Sort values by the total number of values kinds to start the reduction 10077 // from the longest possible reduced values sequences. 10078 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10079 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10080 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10081 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10082 It != E; ++It) { 10083 PossibleRedValsVect.emplace_back(); 10084 auto RedValsVect = It->second.takeVector(); 10085 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10086 return P1.second < P2.second; 10087 }); 10088 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10089 PossibleRedValsVect.back().append(Data.second, Data.first); 10090 } 10091 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10092 return P1.size() > P2.size(); 10093 }); 10094 ReducedVals.emplace_back(); 10095 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10096 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10097 } 10098 // Sort the reduced values by number of same/alternate opcode and/or pointer 10099 // operand. 10100 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10101 return P1.size() > P2.size(); 10102 }); 10103 return true; 10104 } 10105 10106 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10107 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10108 constexpr int ReductionLimit = 4; 10109 // If there are a sufficient number of reduction values, reduce 10110 // to a nearby power-of-2. We can safely generate oversized 10111 // vectors and rely on the backend to split them to legal sizes. 10112 unsigned NumReducedVals = std::accumulate( 10113 ReducedVals.begin(), ReducedVals.end(), 0, 10114 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10115 if (NumReducedVals < ReductionLimit) 10116 return nullptr; 10117 10118 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10119 10120 // Track the reduced values in case if they are replaced by extractelement 10121 // because of the vectorization. 10122 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10123 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10124 // The same extra argument may be used several times, so log each attempt 10125 // to use it. 10126 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10127 assert(Pair.first && "DebugLoc must be set."); 10128 ExternallyUsedValues[Pair.second].push_back(Pair.first); 10129 TrackedVals.try_emplace(Pair.second, Pair.second); 10130 } 10131 10132 // The compare instruction of a min/max is the insertion point for new 10133 // instructions and may be replaced with a new compare instruction. 10134 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 10135 assert(isa<SelectInst>(RdxRootInst) && 10136 "Expected min/max reduction to have select root instruction"); 10137 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 10138 assert(isa<Instruction>(ScalarCond) && 10139 "Expected min/max reduction to have compare condition"); 10140 return cast<Instruction>(ScalarCond); 10141 }; 10142 10143 // The reduction root is used as the insertion point for new instructions, 10144 // so set it as externally used to prevent it from being deleted. 10145 ExternallyUsedValues[ReductionRoot]; 10146 SmallVector<Value *> IgnoreList; 10147 for (ReductionOpsType &RdxOps : ReductionOps) 10148 for (Value *RdxOp : RdxOps) { 10149 if (!RdxOp) 10150 continue; 10151 IgnoreList.push_back(RdxOp); 10152 } 10153 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 10154 10155 // Need to track reduced vals, they may be changed during vectorization of 10156 // subvectors. 10157 for (ArrayRef<Value *> Candidates : ReducedVals) 10158 for (Value *V : Candidates) 10159 TrackedVals.try_emplace(V, V); 10160 10161 DenseMap<Value *, unsigned> VectorizedVals; 10162 Value *VectorizedTree = nullptr; 10163 bool CheckForReusedReductionOps = false; 10164 // Try to vectorize elements based on their type. 10165 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10166 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 10167 InstructionsState S = getSameOpcode(OrigReducedVals); 10168 SmallVector<Value *> Candidates; 10169 DenseMap<Value *, Value *> TrackedToOrig; 10170 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 10171 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 10172 // Check if the reduction value was not overriden by the extractelement 10173 // instruction because of the vectorization and exclude it, if it is not 10174 // compatible with other values. 10175 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10176 if (isVectorLikeInstWithConstOps(Inst) && 10177 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 10178 continue; 10179 Candidates.push_back(RdxVal); 10180 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 10181 } 10182 bool ShuffledExtracts = false; 10183 // Try to handle shuffled extractelements. 10184 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 10185 I + 1 < E) { 10186 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 10187 if (NextS.getOpcode() == Instruction::ExtractElement && 10188 !NextS.isAltShuffle()) { 10189 SmallVector<Value *> CommonCandidates(Candidates); 10190 for (Value *RV : ReducedVals[I + 1]) { 10191 Value *RdxVal = TrackedVals.find(RV)->second; 10192 // Check if the reduction value was not overriden by the 10193 // extractelement instruction because of the vectorization and 10194 // exclude it, if it is not compatible with other values. 10195 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10196 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 10197 continue; 10198 CommonCandidates.push_back(RdxVal); 10199 TrackedToOrig.try_emplace(RdxVal, RV); 10200 } 10201 SmallVector<int> Mask; 10202 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 10203 ++I; 10204 Candidates.swap(CommonCandidates); 10205 ShuffledExtracts = true; 10206 } 10207 } 10208 } 10209 unsigned NumReducedVals = Candidates.size(); 10210 if (NumReducedVals < ReductionLimit) 10211 continue; 10212 10213 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 10214 unsigned Start = 0; 10215 unsigned Pos = Start; 10216 // Restarts vectorization attempt with lower vector factor. 10217 unsigned PrevReduxWidth = ReduxWidth; 10218 bool CheckForReusedReductionOpsLocal = false; 10219 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10220 &CheckForReusedReductionOpsLocal, 10221 &PrevReduxWidth, &V, 10222 &IgnoreList](bool IgnoreVL = false) { 10223 bool IsAnyRedOpGathered = 10224 !IgnoreVL && any_of(IgnoreList, [&V](Value *RedOp) { 10225 return V.isGathered(RedOp); 10226 }); 10227 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10228 // Check if any of the reduction ops are gathered. If so, worth 10229 // trying again with less number of reduction ops. 10230 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10231 } 10232 ++Pos; 10233 if (Pos < NumReducedVals - ReduxWidth + 1) 10234 return IsAnyRedOpGathered; 10235 Pos = Start; 10236 ReduxWidth /= 2; 10237 return IsAnyRedOpGathered; 10238 }; 10239 while (Pos < NumReducedVals - ReduxWidth + 1 && 10240 ReduxWidth >= ReductionLimit) { 10241 // Dependency in tree of the reduction ops - drop this attempt, try 10242 // later. 10243 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10244 Start == 0) { 10245 CheckForReusedReductionOps = true; 10246 break; 10247 } 10248 PrevReduxWidth = ReduxWidth; 10249 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10250 // Beeing analyzed already - skip. 10251 if (V.areAnalyzedReductionVals(VL)) { 10252 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10253 continue; 10254 } 10255 // Early exit if any of the reduction values were deleted during 10256 // previous vectorization attempts. 10257 if (any_of(VL, [&V](Value *RedVal) { 10258 auto *RedValI = dyn_cast<Instruction>(RedVal); 10259 if (!RedValI) 10260 return false; 10261 return V.isDeleted(RedValI); 10262 })) 10263 break; 10264 V.buildTree(VL, IgnoreList); 10265 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10266 if (!AdjustReducedVals()) 10267 V.analyzedReductionVals(VL); 10268 continue; 10269 } 10270 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10271 if (!AdjustReducedVals()) 10272 V.analyzedReductionVals(VL); 10273 continue; 10274 } 10275 V.reorderTopToBottom(); 10276 // No need to reorder the root node at all. 10277 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10278 // Keep extracted other reduction values, if they are used in the 10279 // vectorization trees. 10280 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10281 ExternallyUsedValues); 10282 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10283 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10284 continue; 10285 for_each(ReducedVals[Cnt], 10286 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10287 if (isa<Instruction>(V)) 10288 LocalExternallyUsedValues[TrackedVals[V]]; 10289 }); 10290 } 10291 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 10292 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 10293 continue; 10294 if (VectorizedVals.count(Candidates[Cnt])) 10295 continue; 10296 LocalExternallyUsedValues[Candidates[Cnt]]; 10297 } 10298 V.buildExternalUses(LocalExternallyUsedValues); 10299 10300 V.computeMinimumValueSizes(); 10301 10302 // Intersect the fast-math-flags from all reduction operations. 10303 FastMathFlags RdxFMF; 10304 RdxFMF.set(); 10305 for (Value *U : IgnoreList) 10306 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10307 RdxFMF &= FPMO->getFastMathFlags(); 10308 // Estimate cost. 10309 InstructionCost TreeCost = V.getTreeCost(VL); 10310 InstructionCost ReductionCost = 10311 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 10312 InstructionCost Cost = TreeCost + ReductionCost; 10313 if (!Cost.isValid()) { 10314 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10315 return nullptr; 10316 } 10317 if (Cost >= -SLPCostThreshold) { 10318 V.getORE()->emit([&]() { 10319 return OptimizationRemarkMissed( 10320 SV_NAME, "HorSLPNotBeneficial", 10321 ReducedValsToOps.find(VL[0])->second.front()) 10322 << "Vectorizing horizontal reduction is possible" 10323 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10324 << " and threshold " 10325 << ore::NV("Threshold", -SLPCostThreshold); 10326 }); 10327 if (!AdjustReducedVals()) 10328 V.analyzedReductionVals(VL); 10329 continue; 10330 } 10331 10332 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10333 << Cost << ". (HorRdx)\n"); 10334 V.getORE()->emit([&]() { 10335 return OptimizationRemark( 10336 SV_NAME, "VectorizedHorizontalReduction", 10337 ReducedValsToOps.find(VL[0])->second.front()) 10338 << "Vectorized horizontal reduction with cost " 10339 << ore::NV("Cost", Cost) << " and with tree size " 10340 << ore::NV("TreeSize", V.getTreeSize()); 10341 }); 10342 10343 Builder.setFastMathFlags(RdxFMF); 10344 10345 // Vectorize a tree. 10346 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10347 10348 // Emit a reduction. If the root is a select (min/max idiom), the insert 10349 // point is the compare condition of that select. 10350 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 10351 if (IsCmpSelMinMax) 10352 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 10353 else 10354 Builder.SetInsertPoint(RdxRootInst); 10355 10356 // To prevent poison from leaking across what used to be sequential, 10357 // safe, scalar boolean logic operations, the reduction operand must be 10358 // frozen. 10359 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 10360 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 10361 10362 Value *ReducedSubTree = 10363 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 10364 10365 if (!VectorizedTree) { 10366 // Initialize the final value in the reduction. 10367 VectorizedTree = ReducedSubTree; 10368 } else { 10369 // Update the final value in the reduction. 10370 Builder.SetCurrentDebugLocation( 10371 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 10372 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10373 ReducedSubTree, "op.rdx", ReductionOps); 10374 } 10375 // Count vectorized reduced values to exclude them from final reduction. 10376 for (Value *V : VL) 10377 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 10378 .first->getSecond(); 10379 Pos += ReduxWidth; 10380 Start = Pos; 10381 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 10382 } 10383 } 10384 if (VectorizedTree) { 10385 // Finish the reduction. 10386 // Need to add extra arguments and not vectorized possible reduction 10387 // values. 10388 SmallPtrSet<Value *, 8> Visited; 10389 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10390 ArrayRef<Value *> Candidates = ReducedVals[I]; 10391 for (Value *RdxVal : Candidates) { 10392 if (!Visited.insert(RdxVal).second) 10393 continue; 10394 Value *StableRdxVal = RdxVal; 10395 auto TVIt = TrackedVals.find(RdxVal); 10396 if (TVIt != TrackedVals.end()) 10397 StableRdxVal = TVIt->second; 10398 unsigned NumOps = 0; 10399 auto It = VectorizedVals.find(RdxVal); 10400 if (It != VectorizedVals.end()) 10401 NumOps = It->second; 10402 for (Instruction *RedOp : 10403 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 10404 .drop_back(NumOps)) { 10405 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10406 ReductionOpsListType Ops; 10407 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10408 Ops.emplace_back().push_back(Sel->getCondition()); 10409 Ops.emplace_back().push_back(RedOp); 10410 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10411 StableRdxVal, "op.rdx", Ops); 10412 } 10413 } 10414 } 10415 for (auto &Pair : ExternallyUsedValues) { 10416 // Add each externally used value to the final reduction. 10417 for (auto *I : Pair.second) { 10418 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10419 ReductionOpsListType Ops; 10420 if (auto *Sel = dyn_cast<SelectInst>(I)) 10421 Ops.emplace_back().push_back(Sel->getCondition()); 10422 Ops.emplace_back().push_back(I); 10423 Value *StableRdxVal = Pair.first; 10424 auto TVIt = TrackedVals.find(Pair.first); 10425 if (TVIt != TrackedVals.end()) 10426 StableRdxVal = TVIt->second; 10427 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10428 StableRdxVal, "op.rdx", Ops); 10429 } 10430 } 10431 10432 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10433 10434 // The original scalar reduction is expected to have no remaining 10435 // uses outside the reduction tree itself. Assert that we got this 10436 // correct, replace internal uses with undef, and mark for eventual 10437 // deletion. 10438 #ifndef NDEBUG 10439 SmallSet<Value *, 4> IgnoreSet; 10440 for (ArrayRef<Value *> RdxOps : ReductionOps) 10441 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 10442 #endif 10443 for (ArrayRef<Value *> RdxOps : ReductionOps) { 10444 for (Value *Ignore : RdxOps) { 10445 if (!Ignore) 10446 continue; 10447 #ifndef NDEBUG 10448 for (auto *U : Ignore->users()) { 10449 assert(IgnoreSet.count(U) && 10450 "All users must be either in the reduction ops list."); 10451 } 10452 #endif 10453 if (!Ignore->use_empty()) { 10454 Value *Undef = UndefValue::get(Ignore->getType()); 10455 Ignore->replaceAllUsesWith(Undef); 10456 } 10457 V.eraseInstruction(cast<Instruction>(Ignore)); 10458 } 10459 } 10460 } else if (!CheckForReusedReductionOps) { 10461 for (ReductionOpsType &RdxOps : ReductionOps) 10462 for (Value *RdxOp : RdxOps) 10463 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 10464 } 10465 return VectorizedTree; 10466 } 10467 10468 unsigned numReductionValues() const { return ReducedVals.size(); } 10469 10470 private: 10471 /// Calculate the cost of a reduction. 10472 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10473 Value *FirstReducedVal, unsigned ReduxWidth, 10474 FastMathFlags FMF) { 10475 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10476 Type *ScalarTy = FirstReducedVal->getType(); 10477 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10478 InstructionCost VectorCost, ScalarCost; 10479 switch (RdxKind) { 10480 case RecurKind::Add: 10481 case RecurKind::Mul: 10482 case RecurKind::Or: 10483 case RecurKind::And: 10484 case RecurKind::Xor: 10485 case RecurKind::FAdd: 10486 case RecurKind::FMul: { 10487 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10488 VectorCost = 10489 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10490 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10491 break; 10492 } 10493 case RecurKind::FMax: 10494 case RecurKind::FMin: { 10495 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10496 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10497 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10498 /*IsUnsigned=*/false, CostKind); 10499 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10500 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10501 SclCondTy, RdxPred, CostKind) + 10502 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10503 SclCondTy, RdxPred, CostKind); 10504 break; 10505 } 10506 case RecurKind::SMax: 10507 case RecurKind::SMin: 10508 case RecurKind::UMax: 10509 case RecurKind::UMin: { 10510 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10511 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10512 bool IsUnsigned = 10513 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10514 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10515 CostKind); 10516 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10517 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10518 SclCondTy, RdxPred, CostKind) + 10519 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10520 SclCondTy, RdxPred, CostKind); 10521 break; 10522 } 10523 default: 10524 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10525 } 10526 10527 // Scalar cost is repeated for N-1 elements. 10528 ScalarCost *= (ReduxWidth - 1); 10529 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10530 << " for reduction that starts with " << *FirstReducedVal 10531 << " (It is a splitting reduction)\n"); 10532 return VectorCost - ScalarCost; 10533 } 10534 10535 /// Emit a horizontal reduction of the vectorized value. 10536 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10537 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10538 assert(VectorizedValue && "Need to have a vectorized tree node"); 10539 assert(isPowerOf2_32(ReduxWidth) && 10540 "We only handle power-of-two reductions for now"); 10541 assert(RdxKind != RecurKind::FMulAdd && 10542 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10543 10544 ++NumVectorInstructions; 10545 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10546 } 10547 }; 10548 10549 } // end anonymous namespace 10550 10551 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10552 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10553 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10554 10555 unsigned AggregateSize = 1; 10556 auto *IV = cast<InsertValueInst>(InsertInst); 10557 Type *CurrentType = IV->getType(); 10558 do { 10559 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10560 for (auto *Elt : ST->elements()) 10561 if (Elt != ST->getElementType(0)) // check homogeneity 10562 return None; 10563 AggregateSize *= ST->getNumElements(); 10564 CurrentType = ST->getElementType(0); 10565 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10566 AggregateSize *= AT->getNumElements(); 10567 CurrentType = AT->getElementType(); 10568 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10569 AggregateSize *= VT->getNumElements(); 10570 return AggregateSize; 10571 } else if (CurrentType->isSingleValueType()) { 10572 return AggregateSize; 10573 } else { 10574 return None; 10575 } 10576 } while (true); 10577 } 10578 10579 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10580 TargetTransformInfo *TTI, 10581 SmallVectorImpl<Value *> &BuildVectorOpds, 10582 SmallVectorImpl<Value *> &InsertElts, 10583 unsigned OperandOffset) { 10584 do { 10585 Value *InsertedOperand = LastInsertInst->getOperand(1); 10586 Optional<unsigned> OperandIndex = 10587 getInsertIndex(LastInsertInst, OperandOffset); 10588 if (!OperandIndex) 10589 return; 10590 if (isa<InsertElementInst>(InsertedOperand) || 10591 isa<InsertValueInst>(InsertedOperand)) { 10592 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10593 BuildVectorOpds, InsertElts, *OperandIndex); 10594 10595 } else { 10596 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10597 InsertElts[*OperandIndex] = LastInsertInst; 10598 } 10599 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10600 } while (LastInsertInst != nullptr && 10601 (isa<InsertValueInst>(LastInsertInst) || 10602 isa<InsertElementInst>(LastInsertInst)) && 10603 LastInsertInst->hasOneUse()); 10604 } 10605 10606 /// Recognize construction of vectors like 10607 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10608 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10609 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10610 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10611 /// starting from the last insertelement or insertvalue instruction. 10612 /// 10613 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10614 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10615 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10616 /// 10617 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10618 /// 10619 /// \return true if it matches. 10620 static bool findBuildAggregate(Instruction *LastInsertInst, 10621 TargetTransformInfo *TTI, 10622 SmallVectorImpl<Value *> &BuildVectorOpds, 10623 SmallVectorImpl<Value *> &InsertElts) { 10624 10625 assert((isa<InsertElementInst>(LastInsertInst) || 10626 isa<InsertValueInst>(LastInsertInst)) && 10627 "Expected insertelement or insertvalue instruction!"); 10628 10629 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10630 "Expected empty result vectors!"); 10631 10632 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10633 if (!AggregateSize) 10634 return false; 10635 BuildVectorOpds.resize(*AggregateSize); 10636 InsertElts.resize(*AggregateSize); 10637 10638 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10639 llvm::erase_value(BuildVectorOpds, nullptr); 10640 llvm::erase_value(InsertElts, nullptr); 10641 if (BuildVectorOpds.size() >= 2) 10642 return true; 10643 10644 return false; 10645 } 10646 10647 /// Try and get a reduction value from a phi node. 10648 /// 10649 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10650 /// if they come from either \p ParentBB or a containing loop latch. 10651 /// 10652 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10653 /// if not possible. 10654 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10655 BasicBlock *ParentBB, LoopInfo *LI) { 10656 // There are situations where the reduction value is not dominated by the 10657 // reduction phi. Vectorizing such cases has been reported to cause 10658 // miscompiles. See PR25787. 10659 auto DominatedReduxValue = [&](Value *R) { 10660 return isa<Instruction>(R) && 10661 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10662 }; 10663 10664 Value *Rdx = nullptr; 10665 10666 // Return the incoming value if it comes from the same BB as the phi node. 10667 if (P->getIncomingBlock(0) == ParentBB) { 10668 Rdx = P->getIncomingValue(0); 10669 } else if (P->getIncomingBlock(1) == ParentBB) { 10670 Rdx = P->getIncomingValue(1); 10671 } 10672 10673 if (Rdx && DominatedReduxValue(Rdx)) 10674 return Rdx; 10675 10676 // Otherwise, check whether we have a loop latch to look at. 10677 Loop *BBL = LI->getLoopFor(ParentBB); 10678 if (!BBL) 10679 return nullptr; 10680 BasicBlock *BBLatch = BBL->getLoopLatch(); 10681 if (!BBLatch) 10682 return nullptr; 10683 10684 // There is a loop latch, return the incoming value if it comes from 10685 // that. This reduction pattern occasionally turns up. 10686 if (P->getIncomingBlock(0) == BBLatch) { 10687 Rdx = P->getIncomingValue(0); 10688 } else if (P->getIncomingBlock(1) == BBLatch) { 10689 Rdx = P->getIncomingValue(1); 10690 } 10691 10692 if (Rdx && DominatedReduxValue(Rdx)) 10693 return Rdx; 10694 10695 return nullptr; 10696 } 10697 10698 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10699 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10700 return true; 10701 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10702 return true; 10703 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10704 return true; 10705 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10706 return true; 10707 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10708 return true; 10709 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10710 return true; 10711 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10712 return true; 10713 return false; 10714 } 10715 10716 /// Attempt to reduce a horizontal reduction. 10717 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10718 /// with reduction operators \a Root (or one of its operands) in a basic block 10719 /// \a BB, then check if it can be done. If horizontal reduction is not found 10720 /// and root instruction is a binary operation, vectorization of the operands is 10721 /// attempted. 10722 /// \returns true if a horizontal reduction was matched and reduced or operands 10723 /// of one of the binary instruction were vectorized. 10724 /// \returns false if a horizontal reduction was not matched (or not possible) 10725 /// or no vectorization of any binary operation feeding \a Root instruction was 10726 /// performed. 10727 static bool tryToVectorizeHorReductionOrInstOperands( 10728 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10729 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10730 const TargetLibraryInfo &TLI, 10731 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10732 if (!ShouldVectorizeHor) 10733 return false; 10734 10735 if (!Root) 10736 return false; 10737 10738 if (Root->getParent() != BB || isa<PHINode>(Root)) 10739 return false; 10740 // Start analysis starting from Root instruction. If horizontal reduction is 10741 // found, try to vectorize it. If it is not a horizontal reduction or 10742 // vectorization is not possible or not effective, and currently analyzed 10743 // instruction is a binary operation, try to vectorize the operands, using 10744 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10745 // the same procedure considering each operand as a possible root of the 10746 // horizontal reduction. 10747 // Interrupt the process if the Root instruction itself was vectorized or all 10748 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10749 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 10750 // CmpInsts so we can skip extra attempts in 10751 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10752 std::queue<std::pair<Instruction *, unsigned>> Stack; 10753 Stack.emplace(Root, 0); 10754 SmallPtrSet<Value *, 8> VisitedInstrs; 10755 SmallVector<WeakTrackingVH> PostponedInsts; 10756 bool Res = false; 10757 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10758 Value *&B0, 10759 Value *&B1) -> Value * { 10760 if (R.isAnalizedReductionRoot(Inst)) 10761 return nullptr; 10762 bool IsBinop = matchRdxBop(Inst, B0, B1); 10763 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10764 if (IsBinop || IsSelect) { 10765 HorizontalReduction HorRdx; 10766 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10767 return HorRdx.tryToReduce(R, TTI); 10768 } 10769 return nullptr; 10770 }; 10771 while (!Stack.empty()) { 10772 Instruction *Inst; 10773 unsigned Level; 10774 std::tie(Inst, Level) = Stack.front(); 10775 Stack.pop(); 10776 // Do not try to analyze instruction that has already been vectorized. 10777 // This may happen when we vectorize instruction operands on a previous 10778 // iteration while stack was populated before that happened. 10779 if (R.isDeleted(Inst)) 10780 continue; 10781 Value *B0 = nullptr, *B1 = nullptr; 10782 if (Value *V = TryToReduce(Inst, B0, B1)) { 10783 Res = true; 10784 // Set P to nullptr to avoid re-analysis of phi node in 10785 // matchAssociativeReduction function unless this is the root node. 10786 P = nullptr; 10787 if (auto *I = dyn_cast<Instruction>(V)) { 10788 // Try to find another reduction. 10789 Stack.emplace(I, Level); 10790 continue; 10791 } 10792 } else { 10793 bool IsBinop = B0 && B1; 10794 if (P && IsBinop) { 10795 Inst = dyn_cast<Instruction>(B0); 10796 if (Inst == P) 10797 Inst = dyn_cast<Instruction>(B1); 10798 if (!Inst) { 10799 // Set P to nullptr to avoid re-analysis of phi node in 10800 // matchAssociativeReduction function unless this is the root node. 10801 P = nullptr; 10802 continue; 10803 } 10804 } 10805 // Set P to nullptr to avoid re-analysis of phi node in 10806 // matchAssociativeReduction function unless this is the root node. 10807 P = nullptr; 10808 // Do not try to vectorize CmpInst operands, this is done separately. 10809 // Final attempt for binop args vectorization should happen after the loop 10810 // to try to find reductions. 10811 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 10812 PostponedInsts.push_back(Inst); 10813 } 10814 10815 // Try to vectorize operands. 10816 // Continue analysis for the instruction from the same basic block only to 10817 // save compile time. 10818 if (++Level < RecursionMaxDepth) 10819 for (auto *Op : Inst->operand_values()) 10820 if (VisitedInstrs.insert(Op).second) 10821 if (auto *I = dyn_cast<Instruction>(Op)) 10822 // Do not try to vectorize CmpInst operands, this is done 10823 // separately. 10824 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 10825 !R.isDeleted(I) && I->getParent() == BB) 10826 Stack.emplace(I, Level); 10827 } 10828 // Try to vectorized binops where reductions were not found. 10829 for (Value *V : PostponedInsts) 10830 if (auto *Inst = dyn_cast<Instruction>(V)) 10831 if (!R.isDeleted(Inst)) 10832 Res |= Vectorize(Inst, R); 10833 return Res; 10834 } 10835 10836 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10837 BasicBlock *BB, BoUpSLP &R, 10838 TargetTransformInfo *TTI) { 10839 auto *I = dyn_cast_or_null<Instruction>(V); 10840 if (!I) 10841 return false; 10842 10843 if (!isa<BinaryOperator>(I)) 10844 P = nullptr; 10845 // Try to match and vectorize a horizontal reduction. 10846 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10847 return tryToVectorize(I, R); 10848 }; 10849 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 10850 *TLI, ExtraVectorization); 10851 } 10852 10853 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10854 BasicBlock *BB, BoUpSLP &R) { 10855 const DataLayout &DL = BB->getModule()->getDataLayout(); 10856 if (!R.canMapToVector(IVI->getType(), DL)) 10857 return false; 10858 10859 SmallVector<Value *, 16> BuildVectorOpds; 10860 SmallVector<Value *, 16> BuildVectorInsts; 10861 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10862 return false; 10863 10864 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10865 // Aggregate value is unlikely to be processed in vector register. 10866 return tryToVectorizeList(BuildVectorOpds, R); 10867 } 10868 10869 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10870 BasicBlock *BB, BoUpSLP &R) { 10871 SmallVector<Value *, 16> BuildVectorInsts; 10872 SmallVector<Value *, 16> BuildVectorOpds; 10873 SmallVector<int> Mask; 10874 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10875 (llvm::all_of( 10876 BuildVectorOpds, 10877 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10878 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10879 return false; 10880 10881 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10882 return tryToVectorizeList(BuildVectorInsts, R); 10883 } 10884 10885 template <typename T> 10886 static bool 10887 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10888 function_ref<unsigned(T *)> Limit, 10889 function_ref<bool(T *, T *)> Comparator, 10890 function_ref<bool(T *, T *)> AreCompatible, 10891 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10892 bool LimitForRegisterSize) { 10893 bool Changed = false; 10894 // Sort by type, parent, operands. 10895 stable_sort(Incoming, Comparator); 10896 10897 // Try to vectorize elements base on their type. 10898 SmallVector<T *> Candidates; 10899 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10900 // Look for the next elements with the same type, parent and operand 10901 // kinds. 10902 auto *SameTypeIt = IncIt; 10903 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10904 ++SameTypeIt; 10905 10906 // Try to vectorize them. 10907 unsigned NumElts = (SameTypeIt - IncIt); 10908 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10909 << NumElts << ")\n"); 10910 // The vectorization is a 3-state attempt: 10911 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10912 // size of maximal register at first. 10913 // 2. Try to vectorize remaining instructions with the same type, if 10914 // possible. This may result in the better vectorization results rather than 10915 // if we try just to vectorize instructions with the same/alternate opcodes. 10916 // 3. Final attempt to try to vectorize all instructions with the 10917 // same/alternate ops only, this may result in some extra final 10918 // vectorization. 10919 if (NumElts > 1 && 10920 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10921 // Success start over because instructions might have been changed. 10922 Changed = true; 10923 } else if (NumElts < Limit(*IncIt) && 10924 (Candidates.empty() || 10925 Candidates.front()->getType() == (*IncIt)->getType())) { 10926 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10927 } 10928 // Final attempt to vectorize instructions with the same types. 10929 if (Candidates.size() > 1 && 10930 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10931 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10932 // Success start over because instructions might have been changed. 10933 Changed = true; 10934 } else if (LimitForRegisterSize) { 10935 // Try to vectorize using small vectors. 10936 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10937 It != End;) { 10938 auto *SameTypeIt = It; 10939 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10940 ++SameTypeIt; 10941 unsigned NumElts = (SameTypeIt - It); 10942 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10943 /*LimitForRegisterSize=*/false)) 10944 Changed = true; 10945 It = SameTypeIt; 10946 } 10947 } 10948 Candidates.clear(); 10949 } 10950 10951 // Start over at the next instruction of a different type (or the end). 10952 IncIt = SameTypeIt; 10953 } 10954 return Changed; 10955 } 10956 10957 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10958 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10959 /// operands. If IsCompatibility is false, function implements strict weak 10960 /// ordering relation between two cmp instructions, returning true if the first 10961 /// instruction is "less" than the second, i.e. its predicate is less than the 10962 /// predicate of the second or the operands IDs are less than the operands IDs 10963 /// of the second cmp instruction. 10964 template <bool IsCompatibility> 10965 static bool compareCmp(Value *V, Value *V2, 10966 function_ref<bool(Instruction *)> IsDeleted) { 10967 auto *CI1 = cast<CmpInst>(V); 10968 auto *CI2 = cast<CmpInst>(V2); 10969 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10970 return false; 10971 if (CI1->getOperand(0)->getType()->getTypeID() < 10972 CI2->getOperand(0)->getType()->getTypeID()) 10973 return !IsCompatibility; 10974 if (CI1->getOperand(0)->getType()->getTypeID() > 10975 CI2->getOperand(0)->getType()->getTypeID()) 10976 return false; 10977 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10978 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10979 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10980 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10981 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10982 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10983 if (BasePred1 < BasePred2) 10984 return !IsCompatibility; 10985 if (BasePred1 > BasePred2) 10986 return false; 10987 // Compare operands. 10988 bool LEPreds = Pred1 <= Pred2; 10989 bool GEPreds = Pred1 >= Pred2; 10990 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10991 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10992 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10993 if (Op1->getValueID() < Op2->getValueID()) 10994 return !IsCompatibility; 10995 if (Op1->getValueID() > Op2->getValueID()) 10996 return false; 10997 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10998 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10999 if (I1->getParent() != I2->getParent()) 11000 return false; 11001 InstructionsState S = getSameOpcode({I1, I2}); 11002 if (S.getOpcode()) 11003 continue; 11004 return false; 11005 } 11006 } 11007 return IsCompatibility; 11008 } 11009 11010 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11011 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11012 bool AtTerminator) { 11013 bool OpsChanged = false; 11014 SmallVector<Instruction *, 4> PostponedCmps; 11015 for (auto *I : reverse(Instructions)) { 11016 if (R.isDeleted(I)) 11017 continue; 11018 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11019 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11020 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11021 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11022 } else if (isa<CmpInst>(I)) { 11023 PostponedCmps.push_back(I); 11024 continue; 11025 } 11026 // Try to find reductions in buildvector sequnces. 11027 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11028 } 11029 if (AtTerminator) { 11030 // Try to find reductions first. 11031 for (Instruction *I : PostponedCmps) { 11032 if (R.isDeleted(I)) 11033 continue; 11034 for (Value *Op : I->operands()) 11035 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11036 } 11037 // Try to vectorize operands as vector bundles. 11038 for (Instruction *I : PostponedCmps) { 11039 if (R.isDeleted(I)) 11040 continue; 11041 OpsChanged |= tryToVectorize(I, R); 11042 } 11043 // Try to vectorize list of compares. 11044 // Sort by type, compare predicate, etc. 11045 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11046 return compareCmp<false>(V, V2, 11047 [&R](Instruction *I) { return R.isDeleted(I); }); 11048 }; 11049 11050 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11051 if (V1 == V2) 11052 return true; 11053 return compareCmp<true>(V1, V2, 11054 [&R](Instruction *I) { return R.isDeleted(I); }); 11055 }; 11056 auto Limit = [&R](Value *V) { 11057 unsigned EltSize = R.getVectorElementSize(V); 11058 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11059 }; 11060 11061 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11062 OpsChanged |= tryToVectorizeSequence<Value>( 11063 Vals, Limit, CompareSorter, AreCompatibleCompares, 11064 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11065 // Exclude possible reductions from other blocks. 11066 bool ArePossiblyReducedInOtherBlock = 11067 any_of(Candidates, [](Value *V) { 11068 return any_of(V->users(), [V](User *U) { 11069 return isa<SelectInst>(U) && 11070 cast<SelectInst>(U)->getParent() != 11071 cast<Instruction>(V)->getParent(); 11072 }); 11073 }); 11074 if (ArePossiblyReducedInOtherBlock) 11075 return false; 11076 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11077 }, 11078 /*LimitForRegisterSize=*/true); 11079 Instructions.clear(); 11080 } else { 11081 // Insert in reverse order since the PostponedCmps vector was filled in 11082 // reverse order. 11083 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 11084 } 11085 return OpsChanged; 11086 } 11087 11088 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 11089 bool Changed = false; 11090 SmallVector<Value *, 4> Incoming; 11091 SmallPtrSet<Value *, 16> VisitedInstrs; 11092 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 11093 // node. Allows better to identify the chains that can be vectorized in the 11094 // better way. 11095 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 11096 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 11097 assert(isValidElementType(V1->getType()) && 11098 isValidElementType(V2->getType()) && 11099 "Expected vectorizable types only."); 11100 // It is fine to compare type IDs here, since we expect only vectorizable 11101 // types, like ints, floats and pointers, we don't care about other type. 11102 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 11103 return true; 11104 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 11105 return false; 11106 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11107 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11108 if (Opcodes1.size() < Opcodes2.size()) 11109 return true; 11110 if (Opcodes1.size() > Opcodes2.size()) 11111 return false; 11112 Optional<bool> ConstOrder; 11113 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11114 // Undefs are compatible with any other value. 11115 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 11116 if (!ConstOrder) 11117 ConstOrder = 11118 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 11119 continue; 11120 } 11121 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11122 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11123 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 11124 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 11125 if (!NodeI1) 11126 return NodeI2 != nullptr; 11127 if (!NodeI2) 11128 return false; 11129 assert((NodeI1 == NodeI2) == 11130 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11131 "Different nodes should have different DFS numbers"); 11132 if (NodeI1 != NodeI2) 11133 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11134 InstructionsState S = getSameOpcode({I1, I2}); 11135 if (S.getOpcode()) 11136 continue; 11137 return I1->getOpcode() < I2->getOpcode(); 11138 } 11139 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 11140 if (!ConstOrder) 11141 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 11142 continue; 11143 } 11144 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 11145 return true; 11146 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 11147 return false; 11148 } 11149 return ConstOrder && *ConstOrder; 11150 }; 11151 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 11152 if (V1 == V2) 11153 return true; 11154 if (V1->getType() != V2->getType()) 11155 return false; 11156 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11157 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11158 if (Opcodes1.size() != Opcodes2.size()) 11159 return false; 11160 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11161 // Undefs are compatible with any other value. 11162 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 11163 continue; 11164 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11165 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11166 if (I1->getParent() != I2->getParent()) 11167 return false; 11168 InstructionsState S = getSameOpcode({I1, I2}); 11169 if (S.getOpcode()) 11170 continue; 11171 return false; 11172 } 11173 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 11174 continue; 11175 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 11176 return false; 11177 } 11178 return true; 11179 }; 11180 auto Limit = [&R](Value *V) { 11181 unsigned EltSize = R.getVectorElementSize(V); 11182 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11183 }; 11184 11185 bool HaveVectorizedPhiNodes = false; 11186 do { 11187 // Collect the incoming values from the PHIs. 11188 Incoming.clear(); 11189 for (Instruction &I : *BB) { 11190 PHINode *P = dyn_cast<PHINode>(&I); 11191 if (!P) 11192 break; 11193 11194 // No need to analyze deleted, vectorized and non-vectorizable 11195 // instructions. 11196 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 11197 isValidElementType(P->getType())) 11198 Incoming.push_back(P); 11199 } 11200 11201 // Find the corresponding non-phi nodes for better matching when trying to 11202 // build the tree. 11203 for (Value *V : Incoming) { 11204 SmallVectorImpl<Value *> &Opcodes = 11205 PHIToOpcodes.try_emplace(V).first->getSecond(); 11206 if (!Opcodes.empty()) 11207 continue; 11208 SmallVector<Value *, 4> Nodes(1, V); 11209 SmallPtrSet<Value *, 4> Visited; 11210 while (!Nodes.empty()) { 11211 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11212 if (!Visited.insert(PHI).second) 11213 continue; 11214 for (Value *V : PHI->incoming_values()) { 11215 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11216 Nodes.push_back(PHI1); 11217 continue; 11218 } 11219 Opcodes.emplace_back(V); 11220 } 11221 } 11222 } 11223 11224 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11225 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11226 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11227 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11228 }, 11229 /*LimitForRegisterSize=*/true); 11230 Changed |= HaveVectorizedPhiNodes; 11231 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11232 } while (HaveVectorizedPhiNodes); 11233 11234 VisitedInstrs.clear(); 11235 11236 SmallVector<Instruction *, 8> PostProcessInstructions; 11237 SmallDenseSet<Instruction *, 4> KeyNodes; 11238 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11239 // Skip instructions with scalable type. The num of elements is unknown at 11240 // compile-time for scalable type. 11241 if (isa<ScalableVectorType>(it->getType())) 11242 continue; 11243 11244 // Skip instructions marked for the deletion. 11245 if (R.isDeleted(&*it)) 11246 continue; 11247 // We may go through BB multiple times so skip the one we have checked. 11248 if (!VisitedInstrs.insert(&*it).second) { 11249 if (it->use_empty() && KeyNodes.contains(&*it) && 11250 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11251 it->isTerminator())) { 11252 // We would like to start over since some instructions are deleted 11253 // and the iterator may become invalid value. 11254 Changed = true; 11255 it = BB->begin(); 11256 e = BB->end(); 11257 } 11258 continue; 11259 } 11260 11261 if (isa<DbgInfoIntrinsic>(it)) 11262 continue; 11263 11264 // Try to vectorize reductions that use PHINodes. 11265 if (PHINode *P = dyn_cast<PHINode>(it)) { 11266 // Check that the PHI is a reduction PHI. 11267 if (P->getNumIncomingValues() == 2) { 11268 // Try to match and vectorize a horizontal reduction. 11269 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11270 TTI)) { 11271 Changed = true; 11272 it = BB->begin(); 11273 e = BB->end(); 11274 continue; 11275 } 11276 } 11277 // Try to vectorize the incoming values of the PHI, to catch reductions 11278 // that feed into PHIs. 11279 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11280 // Skip if the incoming block is the current BB for now. Also, bypass 11281 // unreachable IR for efficiency and to avoid crashing. 11282 // TODO: Collect the skipped incoming values and try to vectorize them 11283 // after processing BB. 11284 if (BB == P->getIncomingBlock(I) || 11285 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11286 continue; 11287 11288 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11289 P->getIncomingBlock(I), R, TTI); 11290 } 11291 continue; 11292 } 11293 11294 // Ran into an instruction without users, like terminator, or function call 11295 // with ignored return value, store. Ignore unused instructions (basing on 11296 // instruction type, except for CallInst and InvokeInst). 11297 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11298 isa<InvokeInst>(it))) { 11299 KeyNodes.insert(&*it); 11300 bool OpsChanged = false; 11301 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11302 for (auto *V : it->operand_values()) { 11303 // Try to match and vectorize a horizontal reduction. 11304 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11305 } 11306 } 11307 // Start vectorization of post-process list of instructions from the 11308 // top-tree instructions to try to vectorize as many instructions as 11309 // possible. 11310 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11311 it->isTerminator()); 11312 if (OpsChanged) { 11313 // We would like to start over since some instructions are deleted 11314 // and the iterator may become invalid value. 11315 Changed = true; 11316 it = BB->begin(); 11317 e = BB->end(); 11318 continue; 11319 } 11320 } 11321 11322 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 11323 isa<InsertValueInst>(it)) 11324 PostProcessInstructions.push_back(&*it); 11325 } 11326 11327 return Changed; 11328 } 11329 11330 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 11331 auto Changed = false; 11332 for (auto &Entry : GEPs) { 11333 // If the getelementptr list has fewer than two elements, there's nothing 11334 // to do. 11335 if (Entry.second.size() < 2) 11336 continue; 11337 11338 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 11339 << Entry.second.size() << ".\n"); 11340 11341 // Process the GEP list in chunks suitable for the target's supported 11342 // vector size. If a vector register can't hold 1 element, we are done. We 11343 // are trying to vectorize the index computations, so the maximum number of 11344 // elements is based on the size of the index expression, rather than the 11345 // size of the GEP itself (the target's pointer size). 11346 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 11347 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 11348 if (MaxVecRegSize < EltSize) 11349 continue; 11350 11351 unsigned MaxElts = MaxVecRegSize / EltSize; 11352 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 11353 auto Len = std::min<unsigned>(BE - BI, MaxElts); 11354 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 11355 11356 // Initialize a set a candidate getelementptrs. Note that we use a 11357 // SetVector here to preserve program order. If the index computations 11358 // are vectorizable and begin with loads, we want to minimize the chance 11359 // of having to reorder them later. 11360 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 11361 11362 // Some of the candidates may have already been vectorized after we 11363 // initially collected them. If so, they are marked as deleted, so remove 11364 // them from the set of candidates. 11365 Candidates.remove_if( 11366 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 11367 11368 // Remove from the set of candidates all pairs of getelementptrs with 11369 // constant differences. Such getelementptrs are likely not good 11370 // candidates for vectorization in a bottom-up phase since one can be 11371 // computed from the other. We also ensure all candidate getelementptr 11372 // indices are unique. 11373 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 11374 auto *GEPI = GEPList[I]; 11375 if (!Candidates.count(GEPI)) 11376 continue; 11377 auto *SCEVI = SE->getSCEV(GEPList[I]); 11378 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 11379 auto *GEPJ = GEPList[J]; 11380 auto *SCEVJ = SE->getSCEV(GEPList[J]); 11381 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 11382 Candidates.remove(GEPI); 11383 Candidates.remove(GEPJ); 11384 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 11385 Candidates.remove(GEPJ); 11386 } 11387 } 11388 } 11389 11390 // We break out of the above computation as soon as we know there are 11391 // fewer than two candidates remaining. 11392 if (Candidates.size() < 2) 11393 continue; 11394 11395 // Add the single, non-constant index of each candidate to the bundle. We 11396 // ensured the indices met these constraints when we originally collected 11397 // the getelementptrs. 11398 SmallVector<Value *, 16> Bundle(Candidates.size()); 11399 auto BundleIndex = 0u; 11400 for (auto *V : Candidates) { 11401 auto *GEP = cast<GetElementPtrInst>(V); 11402 auto *GEPIdx = GEP->idx_begin()->get(); 11403 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 11404 Bundle[BundleIndex++] = GEPIdx; 11405 } 11406 11407 // Try and vectorize the indices. We are currently only interested in 11408 // gather-like cases of the form: 11409 // 11410 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 11411 // 11412 // where the loads of "a", the loads of "b", and the subtractions can be 11413 // performed in parallel. It's likely that detecting this pattern in a 11414 // bottom-up phase will be simpler and less costly than building a 11415 // full-blown top-down phase beginning at the consecutive loads. 11416 Changed |= tryToVectorizeList(Bundle, R); 11417 } 11418 } 11419 return Changed; 11420 } 11421 11422 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11423 bool Changed = false; 11424 // Sort by type, base pointers and values operand. Value operands must be 11425 // compatible (have the same opcode, same parent), otherwise it is 11426 // definitely not profitable to try to vectorize them. 11427 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11428 if (V->getPointerOperandType()->getTypeID() < 11429 V2->getPointerOperandType()->getTypeID()) 11430 return true; 11431 if (V->getPointerOperandType()->getTypeID() > 11432 V2->getPointerOperandType()->getTypeID()) 11433 return false; 11434 // UndefValues are compatible with all other values. 11435 if (isa<UndefValue>(V->getValueOperand()) || 11436 isa<UndefValue>(V2->getValueOperand())) 11437 return false; 11438 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11439 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11440 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11441 DT->getNode(I1->getParent()); 11442 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11443 DT->getNode(I2->getParent()); 11444 assert(NodeI1 && "Should only process reachable instructions"); 11445 assert(NodeI2 && "Should only process reachable instructions"); 11446 assert((NodeI1 == NodeI2) == 11447 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11448 "Different nodes should have different DFS numbers"); 11449 if (NodeI1 != NodeI2) 11450 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11451 InstructionsState S = getSameOpcode({I1, I2}); 11452 if (S.getOpcode()) 11453 return false; 11454 return I1->getOpcode() < I2->getOpcode(); 11455 } 11456 if (isa<Constant>(V->getValueOperand()) && 11457 isa<Constant>(V2->getValueOperand())) 11458 return false; 11459 return V->getValueOperand()->getValueID() < 11460 V2->getValueOperand()->getValueID(); 11461 }; 11462 11463 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11464 if (V1 == V2) 11465 return true; 11466 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11467 return false; 11468 // Undefs are compatible with any other value. 11469 if (isa<UndefValue>(V1->getValueOperand()) || 11470 isa<UndefValue>(V2->getValueOperand())) 11471 return true; 11472 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11473 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11474 if (I1->getParent() != I2->getParent()) 11475 return false; 11476 InstructionsState S = getSameOpcode({I1, I2}); 11477 return S.getOpcode() > 0; 11478 } 11479 if (isa<Constant>(V1->getValueOperand()) && 11480 isa<Constant>(V2->getValueOperand())) 11481 return true; 11482 return V1->getValueOperand()->getValueID() == 11483 V2->getValueOperand()->getValueID(); 11484 }; 11485 auto Limit = [&R, this](StoreInst *SI) { 11486 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11487 return R.getMinVF(EltSize); 11488 }; 11489 11490 // Attempt to sort and vectorize each of the store-groups. 11491 for (auto &Pair : Stores) { 11492 if (Pair.second.size() < 2) 11493 continue; 11494 11495 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11496 << Pair.second.size() << ".\n"); 11497 11498 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11499 continue; 11500 11501 Changed |= tryToVectorizeSequence<StoreInst>( 11502 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11503 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11504 return vectorizeStores(Candidates, R); 11505 }, 11506 /*LimitForRegisterSize=*/false); 11507 } 11508 return Changed; 11509 } 11510 11511 char SLPVectorizer::ID = 0; 11512 11513 static const char lv_name[] = "SLP Vectorizer"; 11514 11515 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11516 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11517 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11518 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11519 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11520 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11521 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11522 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11523 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11524 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11525 11526 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11527