1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 456 assert(Opcode == Instruction::ExtractElement || 457 Opcode == Instruction::ExtractValue); 458 if (Opcode == Instruction::ExtractElement) { 459 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 460 return CI && CI->getZExtValue() == Idx; 461 } else { 462 ExtractValueInst *EI = cast<ExtractValueInst>(E); 463 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 464 } 465 } 466 467 /// \returns True if in-tree use also needs extract. This refers to 468 /// possible scalar operand in vectorized instruction. 469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 470 TargetLibraryInfo *TLI) { 471 unsigned Opcode = UserInst->getOpcode(); 472 switch (Opcode) { 473 case Instruction::Load: { 474 LoadInst *LI = cast<LoadInst>(UserInst); 475 return (LI->getPointerOperand() == Scalar); 476 } 477 case Instruction::Store: { 478 StoreInst *SI = cast<StoreInst>(UserInst); 479 return (SI->getPointerOperand() == Scalar); 480 } 481 case Instruction::Call: { 482 CallInst *CI = cast<CallInst>(UserInst); 483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 484 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 485 return (CI->getArgOperand(1) == Scalar); 486 } 487 LLVM_FALLTHROUGH; 488 } 489 default: 490 return false; 491 } 492 } 493 494 /// \returns the AA location that is being access by the instruction. 495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 496 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 497 return MemoryLocation::get(SI); 498 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 499 return MemoryLocation::get(LI); 500 return MemoryLocation(); 501 } 502 503 /// \returns True if the instruction is not a volatile or atomic load/store. 504 static bool isSimple(Instruction *I) { 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return LI->isSimple(); 507 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 508 return SI->isSimple(); 509 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 510 return !MI->isVolatile(); 511 return true; 512 } 513 514 namespace llvm { 515 516 namespace slpvectorizer { 517 518 /// Bottom Up SLP Vectorizer. 519 class BoUpSLP { 520 public: 521 using ValueList = SmallVector<Value *, 8>; 522 using InstrList = SmallVector<Instruction *, 16>; 523 using ValueSet = SmallPtrSet<Value *, 16>; 524 using StoreList = SmallVector<StoreInst *, 8>; 525 using ExtraValueToDebugLocsMap = 526 MapVector<Value *, SmallVector<Instruction *, 2>>; 527 528 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 529 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 530 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 531 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 532 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 533 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 534 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 535 // Use the vector register size specified by the target unless overridden 536 // by a command-line option. 537 // TODO: It would be better to limit the vectorization factor based on 538 // data type rather than just register size. For example, x86 AVX has 539 // 256-bit registers, but it does not support integer operations 540 // at that width (that requires AVX2). 541 if (MaxVectorRegSizeOption.getNumOccurrences()) 542 MaxVecRegSize = MaxVectorRegSizeOption; 543 else 544 MaxVecRegSize = TTI->getRegisterBitWidth(true); 545 546 if (MinVectorRegSizeOption.getNumOccurrences()) 547 MinVecRegSize = MinVectorRegSizeOption; 548 else 549 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 550 } 551 552 /// \brief Vectorize the tree that starts with the elements in \p VL. 553 /// Returns the vectorized root. 554 Value *vectorizeTree(); 555 556 /// Vectorize the tree but with the list of externally used values \p 557 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 558 /// generated extractvalue instructions. 559 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 560 561 /// \returns the cost incurred by unwanted spills and fills, caused by 562 /// holding live values over call sites. 563 int getSpillCost(); 564 565 /// \returns the vectorization cost of the subtree that starts at \p VL. 566 /// A negative number means that this is profitable. 567 int getTreeCost(); 568 569 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 570 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 571 void buildTree(ArrayRef<Value *> Roots, 572 ArrayRef<Value *> UserIgnoreLst = None); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 576 /// into account (anf updating it, if required) list of externally used 577 /// values stored in \p ExternallyUsedValues. 578 void buildTree(ArrayRef<Value *> Roots, 579 ExtraValueToDebugLocsMap &ExternallyUsedValues, 580 ArrayRef<Value *> UserIgnoreLst = None); 581 582 /// Clear the internal data structures that are created by 'buildTree'. 583 void deleteTree() { 584 VectorizableTree.clear(); 585 ScalarToTreeEntry.clear(); 586 MustGather.clear(); 587 ExternalUses.clear(); 588 NumOpsWantToKeepOrder.clear(); 589 for (auto &Iter : BlocksSchedules) { 590 BlockScheduling *BS = Iter.second.get(); 591 BS->clear(); 592 } 593 MinBWs.clear(); 594 } 595 596 unsigned getTreeSize() const { return VectorizableTree.size(); } 597 598 /// \brief Perform LICM and CSE on the newly generated gather sequences. 599 void optimizeGatherSequence(); 600 601 /// \returns true if it is beneficial to reverse the vector order. 602 bool shouldReorder() const { 603 return std::accumulate( 604 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 0, 605 [](int Val1, 606 const decltype(NumOpsWantToKeepOrder)::value_type &Val2) { 607 return Val1 + (Val2.second < 0 ? 1 : -1); 608 }) > 0; 609 } 610 611 /// \return The vector element size in bits to use when vectorizing the 612 /// expression tree ending at \p V. If V is a store, the size is the width of 613 /// the stored value. Otherwise, the size is the width of the largest loaded 614 /// value reaching V. This method is used by the vectorizer to calculate 615 /// vectorization factors. 616 unsigned getVectorElementSize(Value *V); 617 618 /// Compute the minimum type sizes required to represent the entries in a 619 /// vectorizable tree. 620 void computeMinimumValueSizes(); 621 622 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 623 unsigned getMaxVecRegSize() const { 624 return MaxVecRegSize; 625 } 626 627 // \returns minimum vector register size as set by cl::opt. 628 unsigned getMinVecRegSize() const { 629 return MinVecRegSize; 630 } 631 632 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 633 /// 634 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 635 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 636 637 /// \returns True if the VectorizableTree is both tiny and not fully 638 /// vectorizable. We do not vectorize such trees. 639 bool isTreeTinyAndNotFullyVectorizable(); 640 641 OptimizationRemarkEmitter *getORE() { return ORE; } 642 643 private: 644 struct TreeEntry; 645 646 /// Checks if all users of \p I are the part of the vectorization tree. 647 bool areAllUsersVectorized(Instruction *I) const; 648 649 /// \returns the cost of the vectorizable entry. 650 int getEntryCost(TreeEntry *E); 651 652 /// This is the recursive part of buildTree. 653 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 654 655 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 656 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 657 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 658 659 /// Vectorize a single entry in the tree. 660 Value *vectorizeTree(TreeEntry *E); 661 662 /// Vectorize a single entry in the tree, starting in \p VL. 663 Value *vectorizeTree(ArrayRef<Value *> VL); 664 665 /// \returns the pointer to the vectorized value if \p VL is already 666 /// vectorized, or NULL. They may happen in cycles. 667 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 668 669 /// \returns the scalarization cost for this type. Scalarization in this 670 /// context means the creation of vectors from a group of scalars. 671 int getGatherCost(Type *Ty); 672 673 /// \returns the scalarization cost for this list of values. Assuming that 674 /// this subtree gets vectorized, we may need to extract the values from the 675 /// roots. This method calculates the cost of extracting the values. 676 int getGatherCost(ArrayRef<Value *> VL); 677 678 /// \brief Set the Builder insert point to one after the last instruction in 679 /// the bundle 680 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 681 682 /// \returns a vector from a collection of scalars in \p VL. 683 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 684 685 /// \returns whether the VectorizableTree is fully vectorizable and will 686 /// be beneficial even the tree height is tiny. 687 bool isFullyVectorizableTinyTree(); 688 689 /// \reorder commutative operands in alt shuffle if they result in 690 /// vectorized code. 691 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 692 SmallVectorImpl<Value *> &Left, 693 SmallVectorImpl<Value *> &Right); 694 695 /// \reorder commutative operands to get better probability of 696 /// generating vectorized code. 697 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 698 SmallVectorImpl<Value *> &Left, 699 SmallVectorImpl<Value *> &Right); 700 struct TreeEntry { 701 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 702 703 /// \returns true if the scalars in VL are equal to this entry. 704 bool isSame(ArrayRef<Value *> VL) const { 705 assert(VL.size() == Scalars.size() && "Invalid size"); 706 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 707 } 708 709 /// A vector of scalars. 710 ValueList Scalars; 711 712 /// The Scalars are vectorized into this value. It is initialized to Null. 713 Value *VectorizedValue = nullptr; 714 715 /// Do we need to gather this sequence ? 716 bool NeedToGather = false; 717 718 /// Points back to the VectorizableTree. 719 /// 720 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 721 /// to be a pointer and needs to be able to initialize the child iterator. 722 /// Thus we need a reference back to the container to translate the indices 723 /// to entries. 724 std::vector<TreeEntry> &Container; 725 726 /// The TreeEntry index containing the user of this entry. We can actually 727 /// have multiple users so the data structure is not truly a tree. 728 SmallVector<int, 1> UserTreeIndices; 729 }; 730 731 /// Create a new VectorizableTree entry. 732 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 733 int &UserTreeIdx) { 734 VectorizableTree.emplace_back(VectorizableTree); 735 int idx = VectorizableTree.size() - 1; 736 TreeEntry *Last = &VectorizableTree[idx]; 737 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 738 Last->NeedToGather = !Vectorized; 739 if (Vectorized) { 740 for (int i = 0, e = VL.size(); i != e; ++i) { 741 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 742 ScalarToTreeEntry[VL[i]] = idx; 743 } 744 } else { 745 MustGather.insert(VL.begin(), VL.end()); 746 } 747 748 if (UserTreeIdx >= 0) 749 Last->UserTreeIndices.push_back(UserTreeIdx); 750 UserTreeIdx = idx; 751 return Last; 752 } 753 754 /// -- Vectorization State -- 755 /// Holds all of the tree entries. 756 std::vector<TreeEntry> VectorizableTree; 757 758 TreeEntry *getTreeEntry(Value *V) { 759 auto I = ScalarToTreeEntry.find(V); 760 if (I != ScalarToTreeEntry.end()) 761 return &VectorizableTree[I->second]; 762 return nullptr; 763 } 764 765 const TreeEntry *getTreeEntry(Value *V) const { 766 auto I = ScalarToTreeEntry.find(V); 767 if (I != ScalarToTreeEntry.end()) 768 return &VectorizableTree[I->second]; 769 return nullptr; 770 } 771 772 /// Maps a specific scalar to its tree entry. 773 SmallDenseMap<Value*, int> ScalarToTreeEntry; 774 775 /// A list of scalars that we found that we need to keep as scalars. 776 ValueSet MustGather; 777 778 /// This POD struct describes one external user in the vectorized tree. 779 struct ExternalUser { 780 ExternalUser(Value *S, llvm::User *U, int L) 781 : Scalar(S), User(U), Lane(L) {} 782 783 // Which scalar in our function. 784 Value *Scalar; 785 786 // Which user that uses the scalar. 787 llvm::User *User; 788 789 // Which lane does the scalar belong to. 790 int Lane; 791 }; 792 using UserList = SmallVector<ExternalUser, 16>; 793 794 /// Checks if two instructions may access the same memory. 795 /// 796 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 797 /// is invariant in the calling loop. 798 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 799 Instruction *Inst2) { 800 // First check if the result is already in the cache. 801 AliasCacheKey key = std::make_pair(Inst1, Inst2); 802 Optional<bool> &result = AliasCache[key]; 803 if (result.hasValue()) { 804 return result.getValue(); 805 } 806 MemoryLocation Loc2 = getLocation(Inst2, AA); 807 bool aliased = true; 808 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 809 // Do the alias check. 810 aliased = AA->alias(Loc1, Loc2); 811 } 812 // Store the result in the cache. 813 result = aliased; 814 return aliased; 815 } 816 817 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 818 819 /// Cache for alias results. 820 /// TODO: consider moving this to the AliasAnalysis itself. 821 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 822 823 /// Removes an instruction from its block and eventually deletes it. 824 /// It's like Instruction::eraseFromParent() except that the actual deletion 825 /// is delayed until BoUpSLP is destructed. 826 /// This is required to ensure that there are no incorrect collisions in the 827 /// AliasCache, which can happen if a new instruction is allocated at the 828 /// same address as a previously deleted instruction. 829 void eraseInstruction(Instruction *I) { 830 I->removeFromParent(); 831 I->dropAllReferences(); 832 DeletedInstructions.emplace_back(I); 833 } 834 835 /// Temporary store for deleted instructions. Instructions will be deleted 836 /// eventually when the BoUpSLP is destructed. 837 SmallVector<unique_value, 8> DeletedInstructions; 838 839 /// A list of values that need to extracted out of the tree. 840 /// This list holds pairs of (Internal Scalar : External User). External User 841 /// can be nullptr, it means that this Internal Scalar will be used later, 842 /// after vectorization. 843 UserList ExternalUses; 844 845 /// Values used only by @llvm.assume calls. 846 SmallPtrSet<const Value *, 32> EphValues; 847 848 /// Holds all of the instructions that we gathered. 849 SetVector<Instruction *> GatherSeq; 850 851 /// A list of blocks that we are going to CSE. 852 SetVector<BasicBlock *> CSEBlocks; 853 854 /// Contains all scheduling relevant data for an instruction. 855 /// A ScheduleData either represents a single instruction or a member of an 856 /// instruction bundle (= a group of instructions which is combined into a 857 /// vector instruction). 858 struct ScheduleData { 859 // The initial value for the dependency counters. It means that the 860 // dependencies are not calculated yet. 861 enum { InvalidDeps = -1 }; 862 863 ScheduleData() = default; 864 865 void init(int BlockSchedulingRegionID, Value *OpVal) { 866 FirstInBundle = this; 867 NextInBundle = nullptr; 868 NextLoadStore = nullptr; 869 IsScheduled = false; 870 SchedulingRegionID = BlockSchedulingRegionID; 871 UnscheduledDepsInBundle = UnscheduledDeps; 872 clearDependencies(); 873 OpValue = OpVal; 874 } 875 876 /// Returns true if the dependency information has been calculated. 877 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 878 879 /// Returns true for single instructions and for bundle representatives 880 /// (= the head of a bundle). 881 bool isSchedulingEntity() const { return FirstInBundle == this; } 882 883 /// Returns true if it represents an instruction bundle and not only a 884 /// single instruction. 885 bool isPartOfBundle() const { 886 return NextInBundle != nullptr || FirstInBundle != this; 887 } 888 889 /// Returns true if it is ready for scheduling, i.e. it has no more 890 /// unscheduled depending instructions/bundles. 891 bool isReady() const { 892 assert(isSchedulingEntity() && 893 "can't consider non-scheduling entity for ready list"); 894 return UnscheduledDepsInBundle == 0 && !IsScheduled; 895 } 896 897 /// Modifies the number of unscheduled dependencies, also updating it for 898 /// the whole bundle. 899 int incrementUnscheduledDeps(int Incr) { 900 UnscheduledDeps += Incr; 901 return FirstInBundle->UnscheduledDepsInBundle += Incr; 902 } 903 904 /// Sets the number of unscheduled dependencies to the number of 905 /// dependencies. 906 void resetUnscheduledDeps() { 907 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 908 } 909 910 /// Clears all dependency information. 911 void clearDependencies() { 912 Dependencies = InvalidDeps; 913 resetUnscheduledDeps(); 914 MemoryDependencies.clear(); 915 } 916 917 void dump(raw_ostream &os) const { 918 if (!isSchedulingEntity()) { 919 os << "/ " << *Inst; 920 } else if (NextInBundle) { 921 os << '[' << *Inst; 922 ScheduleData *SD = NextInBundle; 923 while (SD) { 924 os << ';' << *SD->Inst; 925 SD = SD->NextInBundle; 926 } 927 os << ']'; 928 } else { 929 os << *Inst; 930 } 931 } 932 933 Instruction *Inst = nullptr; 934 935 /// Points to the head in an instruction bundle (and always to this for 936 /// single instructions). 937 ScheduleData *FirstInBundle = nullptr; 938 939 /// Single linked list of all instructions in a bundle. Null if it is a 940 /// single instruction. 941 ScheduleData *NextInBundle = nullptr; 942 943 /// Single linked list of all memory instructions (e.g. load, store, call) 944 /// in the block - until the end of the scheduling region. 945 ScheduleData *NextLoadStore = nullptr; 946 947 /// The dependent memory instructions. 948 /// This list is derived on demand in calculateDependencies(). 949 SmallVector<ScheduleData *, 4> MemoryDependencies; 950 951 /// This ScheduleData is in the current scheduling region if this matches 952 /// the current SchedulingRegionID of BlockScheduling. 953 int SchedulingRegionID = 0; 954 955 /// Used for getting a "good" final ordering of instructions. 956 int SchedulingPriority = 0; 957 958 /// The number of dependencies. Constitutes of the number of users of the 959 /// instruction plus the number of dependent memory instructions (if any). 960 /// This value is calculated on demand. 961 /// If InvalidDeps, the number of dependencies is not calculated yet. 962 int Dependencies = InvalidDeps; 963 964 /// The number of dependencies minus the number of dependencies of scheduled 965 /// instructions. As soon as this is zero, the instruction/bundle gets ready 966 /// for scheduling. 967 /// Note that this is negative as long as Dependencies is not calculated. 968 int UnscheduledDeps = InvalidDeps; 969 970 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 971 /// single instructions. 972 int UnscheduledDepsInBundle = InvalidDeps; 973 974 /// True if this instruction is scheduled (or considered as scheduled in the 975 /// dry-run). 976 bool IsScheduled = false; 977 978 /// Opcode of the current instruction in the schedule data. 979 Value *OpValue = nullptr; 980 }; 981 982 #ifndef NDEBUG 983 friend inline raw_ostream &operator<<(raw_ostream &os, 984 const BoUpSLP::ScheduleData &SD) { 985 SD.dump(os); 986 return os; 987 } 988 #endif 989 990 friend struct GraphTraits<BoUpSLP *>; 991 friend struct DOTGraphTraits<BoUpSLP *>; 992 993 /// Contains all scheduling data for a basic block. 994 struct BlockScheduling { 995 BlockScheduling(BasicBlock *BB) 996 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 997 998 void clear() { 999 ReadyInsts.clear(); 1000 ScheduleStart = nullptr; 1001 ScheduleEnd = nullptr; 1002 FirstLoadStoreInRegion = nullptr; 1003 LastLoadStoreInRegion = nullptr; 1004 1005 // Reduce the maximum schedule region size by the size of the 1006 // previous scheduling run. 1007 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1008 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1009 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1010 ScheduleRegionSize = 0; 1011 1012 // Make a new scheduling region, i.e. all existing ScheduleData is not 1013 // in the new region yet. 1014 ++SchedulingRegionID; 1015 } 1016 1017 ScheduleData *getScheduleData(Value *V) { 1018 ScheduleData *SD = ScheduleDataMap[V]; 1019 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1020 return SD; 1021 return nullptr; 1022 } 1023 1024 ScheduleData *getScheduleData(Value *V, Value *Key) { 1025 if (V == Key) 1026 return getScheduleData(V); 1027 auto I = ExtraScheduleDataMap.find(V); 1028 if (I != ExtraScheduleDataMap.end()) { 1029 ScheduleData *SD = I->second[Key]; 1030 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1031 return SD; 1032 } 1033 return nullptr; 1034 } 1035 1036 bool isInSchedulingRegion(ScheduleData *SD) { 1037 return SD->SchedulingRegionID == SchedulingRegionID; 1038 } 1039 1040 /// Marks an instruction as scheduled and puts all dependent ready 1041 /// instructions into the ready-list. 1042 template <typename ReadyListType> 1043 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1044 SD->IsScheduled = true; 1045 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1046 1047 ScheduleData *BundleMember = SD; 1048 while (BundleMember) { 1049 if (BundleMember->Inst != BundleMember->OpValue) { 1050 BundleMember = BundleMember->NextInBundle; 1051 continue; 1052 } 1053 // Handle the def-use chain dependencies. 1054 for (Use &U : BundleMember->Inst->operands()) { 1055 auto *I = dyn_cast<Instruction>(U.get()); 1056 if (!I) 1057 continue; 1058 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1059 if (OpDef && OpDef->hasValidDependencies() && 1060 OpDef->incrementUnscheduledDeps(-1) == 0) { 1061 // There are no more unscheduled dependencies after 1062 // decrementing, so we can put the dependent instruction 1063 // into the ready list. 1064 ScheduleData *DepBundle = OpDef->FirstInBundle; 1065 assert(!DepBundle->IsScheduled && 1066 "already scheduled bundle gets ready"); 1067 ReadyList.insert(DepBundle); 1068 DEBUG(dbgs() 1069 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1070 } 1071 }); 1072 } 1073 // Handle the memory dependencies. 1074 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1075 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1076 // There are no more unscheduled dependencies after decrementing, 1077 // so we can put the dependent instruction into the ready list. 1078 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1079 assert(!DepBundle->IsScheduled && 1080 "already scheduled bundle gets ready"); 1081 ReadyList.insert(DepBundle); 1082 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1083 << "\n"); 1084 } 1085 } 1086 BundleMember = BundleMember->NextInBundle; 1087 } 1088 } 1089 1090 void doForAllOpcodes(Value *V, 1091 function_ref<void(ScheduleData *SD)> Action) { 1092 if (ScheduleData *SD = getScheduleData(V)) 1093 Action(SD); 1094 auto I = ExtraScheduleDataMap.find(V); 1095 if (I != ExtraScheduleDataMap.end()) 1096 for (auto &P : I->second) 1097 if (P.second->SchedulingRegionID == SchedulingRegionID) 1098 Action(P.second); 1099 } 1100 1101 /// Put all instructions into the ReadyList which are ready for scheduling. 1102 template <typename ReadyListType> 1103 void initialFillReadyList(ReadyListType &ReadyList) { 1104 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1105 doForAllOpcodes(I, [&](ScheduleData *SD) { 1106 if (SD->isSchedulingEntity() && SD->isReady()) { 1107 ReadyList.insert(SD); 1108 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1109 } 1110 }); 1111 } 1112 } 1113 1114 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1115 /// cyclic dependencies. This is only a dry-run, no instructions are 1116 /// actually moved at this stage. 1117 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1118 1119 /// Un-bundles a group of instructions. 1120 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1121 1122 /// Allocates schedule data chunk. 1123 ScheduleData *allocateScheduleDataChunks(); 1124 1125 /// Extends the scheduling region so that V is inside the region. 1126 /// \returns true if the region size is within the limit. 1127 bool extendSchedulingRegion(Value *V, Value *OpValue); 1128 1129 /// Initialize the ScheduleData structures for new instructions in the 1130 /// scheduling region. 1131 void initScheduleData(Instruction *FromI, Instruction *ToI, 1132 ScheduleData *PrevLoadStore, 1133 ScheduleData *NextLoadStore); 1134 1135 /// Updates the dependency information of a bundle and of all instructions/ 1136 /// bundles which depend on the original bundle. 1137 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1138 BoUpSLP *SLP); 1139 1140 /// Sets all instruction in the scheduling region to un-scheduled. 1141 void resetSchedule(); 1142 1143 BasicBlock *BB; 1144 1145 /// Simple memory allocation for ScheduleData. 1146 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1147 1148 /// The size of a ScheduleData array in ScheduleDataChunks. 1149 int ChunkSize; 1150 1151 /// The allocator position in the current chunk, which is the last entry 1152 /// of ScheduleDataChunks. 1153 int ChunkPos; 1154 1155 /// Attaches ScheduleData to Instruction. 1156 /// Note that the mapping survives during all vectorization iterations, i.e. 1157 /// ScheduleData structures are recycled. 1158 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1159 1160 /// Attaches ScheduleData to Instruction with the leading key. 1161 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1162 ExtraScheduleDataMap; 1163 1164 struct ReadyList : SmallVector<ScheduleData *, 8> { 1165 void insert(ScheduleData *SD) { push_back(SD); } 1166 }; 1167 1168 /// The ready-list for scheduling (only used for the dry-run). 1169 ReadyList ReadyInsts; 1170 1171 /// The first instruction of the scheduling region. 1172 Instruction *ScheduleStart = nullptr; 1173 1174 /// The first instruction _after_ the scheduling region. 1175 Instruction *ScheduleEnd = nullptr; 1176 1177 /// The first memory accessing instruction in the scheduling region 1178 /// (can be null). 1179 ScheduleData *FirstLoadStoreInRegion = nullptr; 1180 1181 /// The last memory accessing instruction in the scheduling region 1182 /// (can be null). 1183 ScheduleData *LastLoadStoreInRegion = nullptr; 1184 1185 /// The current size of the scheduling region. 1186 int ScheduleRegionSize = 0; 1187 1188 /// The maximum size allowed for the scheduling region. 1189 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1190 1191 /// The ID of the scheduling region. For a new vectorization iteration this 1192 /// is incremented which "removes" all ScheduleData from the region. 1193 // Make sure that the initial SchedulingRegionID is greater than the 1194 // initial SchedulingRegionID in ScheduleData (which is 0). 1195 int SchedulingRegionID = 1; 1196 }; 1197 1198 /// Attaches the BlockScheduling structures to basic blocks. 1199 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1200 1201 /// Performs the "real" scheduling. Done before vectorization is actually 1202 /// performed in a basic block. 1203 void scheduleBlock(BlockScheduling *BS); 1204 1205 /// List of users to ignore during scheduling and that don't need extracting. 1206 ArrayRef<Value *> UserIgnoreList; 1207 1208 /// Number of operation bundles that contain consecutive operations - number 1209 /// of operation bundles that contain consecutive operations in reversed 1210 /// order. 1211 DenseMap<unsigned, int> NumOpsWantToKeepOrder; 1212 1213 // Analysis and block reference. 1214 Function *F; 1215 ScalarEvolution *SE; 1216 TargetTransformInfo *TTI; 1217 TargetLibraryInfo *TLI; 1218 AliasAnalysis *AA; 1219 LoopInfo *LI; 1220 DominatorTree *DT; 1221 AssumptionCache *AC; 1222 DemandedBits *DB; 1223 const DataLayout *DL; 1224 OptimizationRemarkEmitter *ORE; 1225 1226 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1227 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1228 1229 /// Instruction builder to construct the vectorized tree. 1230 IRBuilder<> Builder; 1231 1232 /// A map of scalar integer values to the smallest bit width with which they 1233 /// can legally be represented. The values map to (width, signed) pairs, 1234 /// where "width" indicates the minimum bit width and "signed" is True if the 1235 /// value must be signed-extended, rather than zero-extended, back to its 1236 /// original width. 1237 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1238 }; 1239 1240 } // end namespace slpvectorizer 1241 1242 template <> struct GraphTraits<BoUpSLP *> { 1243 using TreeEntry = BoUpSLP::TreeEntry; 1244 1245 /// NodeRef has to be a pointer per the GraphWriter. 1246 using NodeRef = TreeEntry *; 1247 1248 /// \brief Add the VectorizableTree to the index iterator to be able to return 1249 /// TreeEntry pointers. 1250 struct ChildIteratorType 1251 : public iterator_adaptor_base<ChildIteratorType, 1252 SmallVector<int, 1>::iterator> { 1253 std::vector<TreeEntry> &VectorizableTree; 1254 1255 ChildIteratorType(SmallVector<int, 1>::iterator W, 1256 std::vector<TreeEntry> &VT) 1257 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1258 1259 NodeRef operator*() { return &VectorizableTree[*I]; } 1260 }; 1261 1262 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1263 1264 static ChildIteratorType child_begin(NodeRef N) { 1265 return {N->UserTreeIndices.begin(), N->Container}; 1266 } 1267 1268 static ChildIteratorType child_end(NodeRef N) { 1269 return {N->UserTreeIndices.end(), N->Container}; 1270 } 1271 1272 /// For the node iterator we just need to turn the TreeEntry iterator into a 1273 /// TreeEntry* iterator so that it dereferences to NodeRef. 1274 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1275 1276 static nodes_iterator nodes_begin(BoUpSLP *R) { 1277 return nodes_iterator(R->VectorizableTree.begin()); 1278 } 1279 1280 static nodes_iterator nodes_end(BoUpSLP *R) { 1281 return nodes_iterator(R->VectorizableTree.end()); 1282 } 1283 1284 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1285 }; 1286 1287 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1288 using TreeEntry = BoUpSLP::TreeEntry; 1289 1290 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1291 1292 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1293 std::string Str; 1294 raw_string_ostream OS(Str); 1295 if (isSplat(Entry->Scalars)) { 1296 OS << "<splat> " << *Entry->Scalars[0]; 1297 return Str; 1298 } 1299 for (auto V : Entry->Scalars) { 1300 OS << *V; 1301 if (std::any_of( 1302 R->ExternalUses.begin(), R->ExternalUses.end(), 1303 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1304 OS << " <extract>"; 1305 OS << "\n"; 1306 } 1307 return Str; 1308 } 1309 1310 static std::string getNodeAttributes(const TreeEntry *Entry, 1311 const BoUpSLP *) { 1312 if (Entry->NeedToGather) 1313 return "color=red"; 1314 return ""; 1315 } 1316 }; 1317 1318 } // end namespace llvm 1319 1320 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1321 ArrayRef<Value *> UserIgnoreLst) { 1322 ExtraValueToDebugLocsMap ExternallyUsedValues; 1323 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1324 } 1325 1326 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1327 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1328 ArrayRef<Value *> UserIgnoreLst) { 1329 deleteTree(); 1330 UserIgnoreList = UserIgnoreLst; 1331 if (!allSameType(Roots)) 1332 return; 1333 buildTree_rec(Roots, 0, -1); 1334 1335 // Collect the values that we need to extract from the tree. 1336 for (TreeEntry &EIdx : VectorizableTree) { 1337 TreeEntry *Entry = &EIdx; 1338 1339 // No need to handle users of gathered values. 1340 if (Entry->NeedToGather) 1341 continue; 1342 1343 // For each lane: 1344 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1345 Value *Scalar = Entry->Scalars[Lane]; 1346 1347 // Check if the scalar is externally used as an extra arg. 1348 auto ExtI = ExternallyUsedValues.find(Scalar); 1349 if (ExtI != ExternallyUsedValues.end()) { 1350 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1351 Lane << " from " << *Scalar << ".\n"); 1352 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1353 } 1354 for (User *U : Scalar->users()) { 1355 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1356 1357 Instruction *UserInst = dyn_cast<Instruction>(U); 1358 if (!UserInst) 1359 continue; 1360 1361 // Skip in-tree scalars that become vectors 1362 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1363 Value *UseScalar = UseEntry->Scalars[0]; 1364 // Some in-tree scalars will remain as scalar in vectorized 1365 // instructions. If that is the case, the one in Lane 0 will 1366 // be used. 1367 if (UseScalar != U || 1368 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1369 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1370 << ".\n"); 1371 assert(!UseEntry->NeedToGather && "Bad state"); 1372 continue; 1373 } 1374 } 1375 1376 // Ignore users in the user ignore list. 1377 if (is_contained(UserIgnoreList, UserInst)) 1378 continue; 1379 1380 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1381 Lane << " from " << *Scalar << ".\n"); 1382 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1383 } 1384 } 1385 } 1386 } 1387 1388 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1389 int UserTreeIdx) { 1390 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1391 1392 InstructionsState S = getSameOpcode(VL); 1393 if (Depth == RecursionMaxDepth) { 1394 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1395 newTreeEntry(VL, false, UserTreeIdx); 1396 return; 1397 } 1398 1399 // Don't handle vectors. 1400 if (S.OpValue->getType()->isVectorTy()) { 1401 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1402 newTreeEntry(VL, false, UserTreeIdx); 1403 return; 1404 } 1405 1406 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1407 if (SI->getValueOperand()->getType()->isVectorTy()) { 1408 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1409 newTreeEntry(VL, false, UserTreeIdx); 1410 return; 1411 } 1412 1413 // If all of the operands are identical or constant we have a simple solution. 1414 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1415 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1416 newTreeEntry(VL, false, UserTreeIdx); 1417 return; 1418 } 1419 1420 // We now know that this is a vector of instructions of the same type from 1421 // the same block. 1422 1423 // Don't vectorize ephemeral values. 1424 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1425 if (EphValues.count(VL[i])) { 1426 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1427 ") is ephemeral.\n"); 1428 newTreeEntry(VL, false, UserTreeIdx); 1429 return; 1430 } 1431 } 1432 1433 // Check if this is a duplicate of another entry. 1434 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1435 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1436 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1437 if (E->Scalars[i] != VL[i]) { 1438 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1439 newTreeEntry(VL, false, UserTreeIdx); 1440 return; 1441 } 1442 } 1443 // Record the reuse of the tree node. FIXME, currently this is only used to 1444 // properly draw the graph rather than for the actual vectorization. 1445 E->UserTreeIndices.push_back(UserTreeIdx); 1446 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1447 return; 1448 } 1449 1450 // Check that none of the instructions in the bundle are already in the tree. 1451 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1452 auto *I = dyn_cast<Instruction>(VL[i]); 1453 if (!I) 1454 continue; 1455 if (getTreeEntry(I)) { 1456 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1457 ") is already in tree.\n"); 1458 newTreeEntry(VL, false, UserTreeIdx); 1459 return; 1460 } 1461 } 1462 1463 // If any of the scalars is marked as a value that needs to stay scalar, then 1464 // we need to gather the scalars. 1465 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1466 if (MustGather.count(VL[i])) { 1467 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1468 newTreeEntry(VL, false, UserTreeIdx); 1469 return; 1470 } 1471 } 1472 1473 // Check that all of the users of the scalars that we want to vectorize are 1474 // schedulable. 1475 auto *VL0 = cast<Instruction>(S.OpValue); 1476 BasicBlock *BB = VL0->getParent(); 1477 1478 if (!DT->isReachableFromEntry(BB)) { 1479 // Don't go into unreachable blocks. They may contain instructions with 1480 // dependency cycles which confuse the final scheduling. 1481 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1482 newTreeEntry(VL, false, UserTreeIdx); 1483 return; 1484 } 1485 1486 // Check that every instruction appears once in this bundle. 1487 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1488 for (unsigned j = i + 1; j < e; ++j) 1489 if (VL[i] == VL[j]) { 1490 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1491 newTreeEntry(VL, false, UserTreeIdx); 1492 return; 1493 } 1494 1495 auto &BSRef = BlocksSchedules[BB]; 1496 if (!BSRef) 1497 BSRef = llvm::make_unique<BlockScheduling>(BB); 1498 1499 BlockScheduling &BS = *BSRef.get(); 1500 1501 if (!BS.tryScheduleBundle(VL, this, S.OpValue)) { 1502 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1503 assert((!BS.getScheduleData(VL0) || 1504 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1505 "tryScheduleBundle should cancelScheduling on failure"); 1506 newTreeEntry(VL, false, UserTreeIdx); 1507 return; 1508 } 1509 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1510 1511 unsigned ShuffleOrOp = S.IsAltShuffle ? 1512 (unsigned) Instruction::ShuffleVector : S.Opcode; 1513 switch (ShuffleOrOp) { 1514 case Instruction::PHI: { 1515 PHINode *PH = dyn_cast<PHINode>(VL0); 1516 1517 // Check for terminator values (e.g. invoke). 1518 for (unsigned j = 0; j < VL.size(); ++j) 1519 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1520 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1521 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1522 if (Term) { 1523 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1524 BS.cancelScheduling(VL, VL0); 1525 newTreeEntry(VL, false, UserTreeIdx); 1526 return; 1527 } 1528 } 1529 1530 newTreeEntry(VL, true, UserTreeIdx); 1531 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1532 1533 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1534 ValueList Operands; 1535 // Prepare the operand vector. 1536 for (Value *j : VL) 1537 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1538 PH->getIncomingBlock(i))); 1539 1540 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1541 } 1542 return; 1543 } 1544 case Instruction::ExtractValue: 1545 case Instruction::ExtractElement: { 1546 bool Reuse = canReuseExtract(VL, VL0); 1547 if (Reuse) { 1548 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1549 ++NumOpsWantToKeepOrder[S.Opcode]; 1550 } else { 1551 SmallVector<Value *, 4> ReverseVL(VL.rbegin(), VL.rend()); 1552 if (canReuseExtract(ReverseVL, VL0)) 1553 --NumOpsWantToKeepOrder[S.Opcode]; 1554 BS.cancelScheduling(VL, VL0); 1555 } 1556 newTreeEntry(VL, Reuse, UserTreeIdx); 1557 return; 1558 } 1559 case Instruction::Load: { 1560 // Check that a vectorized load would load the same memory as a scalar 1561 // load. For example, we don't want to vectorize loads that are smaller 1562 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1563 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1564 // from such a struct, we read/write packed bits disagreeing with the 1565 // unvectorized version. 1566 Type *ScalarTy = VL0->getType(); 1567 1568 if (DL->getTypeSizeInBits(ScalarTy) != 1569 DL->getTypeAllocSizeInBits(ScalarTy)) { 1570 BS.cancelScheduling(VL, VL0); 1571 newTreeEntry(VL, false, UserTreeIdx); 1572 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1573 return; 1574 } 1575 1576 // Make sure all loads in the bundle are simple - we can't vectorize 1577 // atomic or volatile loads. 1578 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1579 LoadInst *L = cast<LoadInst>(VL[i]); 1580 if (!L->isSimple()) { 1581 BS.cancelScheduling(VL, VL0); 1582 newTreeEntry(VL, false, UserTreeIdx); 1583 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1584 return; 1585 } 1586 } 1587 1588 // Check if the loads are consecutive, reversed, or neither. 1589 // TODO: What we really want is to sort the loads, but for now, check 1590 // the two likely directions. 1591 bool Consecutive = true; 1592 bool ReverseConsecutive = true; 1593 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1594 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1595 Consecutive = false; 1596 break; 1597 } else { 1598 ReverseConsecutive = false; 1599 } 1600 } 1601 1602 if (Consecutive) { 1603 ++NumOpsWantToKeepOrder[S.Opcode]; 1604 newTreeEntry(VL, true, UserTreeIdx); 1605 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1606 return; 1607 } 1608 1609 // If none of the load pairs were consecutive when checked in order, 1610 // check the reverse order. 1611 if (ReverseConsecutive) 1612 for (unsigned i = VL.size() - 1; i > 0; --i) 1613 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1614 ReverseConsecutive = false; 1615 break; 1616 } 1617 1618 BS.cancelScheduling(VL, VL0); 1619 newTreeEntry(VL, false, UserTreeIdx); 1620 1621 if (ReverseConsecutive) { 1622 --NumOpsWantToKeepOrder[S.Opcode]; 1623 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1624 } else { 1625 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1626 } 1627 return; 1628 } 1629 case Instruction::ZExt: 1630 case Instruction::SExt: 1631 case Instruction::FPToUI: 1632 case Instruction::FPToSI: 1633 case Instruction::FPExt: 1634 case Instruction::PtrToInt: 1635 case Instruction::IntToPtr: 1636 case Instruction::SIToFP: 1637 case Instruction::UIToFP: 1638 case Instruction::Trunc: 1639 case Instruction::FPTrunc: 1640 case Instruction::BitCast: { 1641 Type *SrcTy = VL0->getOperand(0)->getType(); 1642 for (unsigned i = 0; i < VL.size(); ++i) { 1643 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1644 if (Ty != SrcTy || !isValidElementType(Ty)) { 1645 BS.cancelScheduling(VL, VL0); 1646 newTreeEntry(VL, false, UserTreeIdx); 1647 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1648 return; 1649 } 1650 } 1651 newTreeEntry(VL, true, UserTreeIdx); 1652 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1653 1654 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1655 ValueList Operands; 1656 // Prepare the operand vector. 1657 for (Value *j : VL) 1658 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1659 1660 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1661 } 1662 return; 1663 } 1664 case Instruction::ICmp: 1665 case Instruction::FCmp: { 1666 // Check that all of the compares have the same predicate. 1667 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1668 Type *ComparedTy = VL0->getOperand(0)->getType(); 1669 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1670 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1671 if (Cmp->getPredicate() != P0 || 1672 Cmp->getOperand(0)->getType() != ComparedTy) { 1673 BS.cancelScheduling(VL, VL0); 1674 newTreeEntry(VL, false, UserTreeIdx); 1675 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1676 return; 1677 } 1678 } 1679 1680 newTreeEntry(VL, true, UserTreeIdx); 1681 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1682 1683 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1684 ValueList Operands; 1685 // Prepare the operand vector. 1686 for (Value *j : VL) 1687 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1688 1689 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1690 } 1691 return; 1692 } 1693 case Instruction::Select: 1694 case Instruction::Add: 1695 case Instruction::FAdd: 1696 case Instruction::Sub: 1697 case Instruction::FSub: 1698 case Instruction::Mul: 1699 case Instruction::FMul: 1700 case Instruction::UDiv: 1701 case Instruction::SDiv: 1702 case Instruction::FDiv: 1703 case Instruction::URem: 1704 case Instruction::SRem: 1705 case Instruction::FRem: 1706 case Instruction::Shl: 1707 case Instruction::LShr: 1708 case Instruction::AShr: 1709 case Instruction::And: 1710 case Instruction::Or: 1711 case Instruction::Xor: 1712 newTreeEntry(VL, true, UserTreeIdx); 1713 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1714 1715 // Sort operands of the instructions so that each side is more likely to 1716 // have the same opcode. 1717 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1718 ValueList Left, Right; 1719 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1720 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1721 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1722 return; 1723 } 1724 1725 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1726 ValueList Operands; 1727 // Prepare the operand vector. 1728 for (Value *j : VL) 1729 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1730 1731 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1732 } 1733 return; 1734 1735 case Instruction::GetElementPtr: { 1736 // We don't combine GEPs with complicated (nested) indexing. 1737 for (unsigned j = 0; j < VL.size(); ++j) { 1738 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1739 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1740 BS.cancelScheduling(VL, VL0); 1741 newTreeEntry(VL, false, UserTreeIdx); 1742 return; 1743 } 1744 } 1745 1746 // We can't combine several GEPs into one vector if they operate on 1747 // different types. 1748 Type *Ty0 = VL0->getOperand(0)->getType(); 1749 for (unsigned j = 0; j < VL.size(); ++j) { 1750 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1751 if (Ty0 != CurTy) { 1752 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1753 BS.cancelScheduling(VL, VL0); 1754 newTreeEntry(VL, false, UserTreeIdx); 1755 return; 1756 } 1757 } 1758 1759 // We don't combine GEPs with non-constant indexes. 1760 for (unsigned j = 0; j < VL.size(); ++j) { 1761 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1762 if (!isa<ConstantInt>(Op)) { 1763 DEBUG( 1764 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1765 BS.cancelScheduling(VL, VL0); 1766 newTreeEntry(VL, false, UserTreeIdx); 1767 return; 1768 } 1769 } 1770 1771 newTreeEntry(VL, true, UserTreeIdx); 1772 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1773 for (unsigned i = 0, e = 2; i < e; ++i) { 1774 ValueList Operands; 1775 // Prepare the operand vector. 1776 for (Value *j : VL) 1777 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1778 1779 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1780 } 1781 return; 1782 } 1783 case Instruction::Store: { 1784 // Check if the stores are consecutive or of we need to swizzle them. 1785 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1786 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1787 BS.cancelScheduling(VL, VL0); 1788 newTreeEntry(VL, false, UserTreeIdx); 1789 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1790 return; 1791 } 1792 1793 newTreeEntry(VL, true, UserTreeIdx); 1794 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1795 1796 ValueList Operands; 1797 for (Value *j : VL) 1798 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1799 1800 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1801 return; 1802 } 1803 case Instruction::Call: { 1804 // Check if the calls are all to the same vectorizable intrinsic. 1805 CallInst *CI = cast<CallInst>(VL0); 1806 // Check if this is an Intrinsic call or something that can be 1807 // represented by an intrinsic call 1808 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1809 if (!isTriviallyVectorizable(ID)) { 1810 BS.cancelScheduling(VL, VL0); 1811 newTreeEntry(VL, false, UserTreeIdx); 1812 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1813 return; 1814 } 1815 Function *Int = CI->getCalledFunction(); 1816 Value *A1I = nullptr; 1817 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1818 A1I = CI->getArgOperand(1); 1819 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1820 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1821 if (!CI2 || CI2->getCalledFunction() != Int || 1822 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1823 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1824 BS.cancelScheduling(VL, VL0); 1825 newTreeEntry(VL, false, UserTreeIdx); 1826 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1827 << "\n"); 1828 return; 1829 } 1830 // ctlz,cttz and powi are special intrinsics whose second argument 1831 // should be same in order for them to be vectorized. 1832 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1833 Value *A1J = CI2->getArgOperand(1); 1834 if (A1I != A1J) { 1835 BS.cancelScheduling(VL, VL0); 1836 newTreeEntry(VL, false, UserTreeIdx); 1837 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1838 << " argument "<< A1I<<"!=" << A1J 1839 << "\n"); 1840 return; 1841 } 1842 } 1843 // Verify that the bundle operands are identical between the two calls. 1844 if (CI->hasOperandBundles() && 1845 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1846 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1847 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1848 BS.cancelScheduling(VL, VL0); 1849 newTreeEntry(VL, false, UserTreeIdx); 1850 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1851 << *VL[i] << '\n'); 1852 return; 1853 } 1854 } 1855 1856 newTreeEntry(VL, true, UserTreeIdx); 1857 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1858 ValueList Operands; 1859 // Prepare the operand vector. 1860 for (Value *j : VL) { 1861 CallInst *CI2 = dyn_cast<CallInst>(j); 1862 Operands.push_back(CI2->getArgOperand(i)); 1863 } 1864 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1865 } 1866 return; 1867 } 1868 case Instruction::ShuffleVector: 1869 // If this is not an alternate sequence of opcode like add-sub 1870 // then do not vectorize this instruction. 1871 if (!S.IsAltShuffle) { 1872 BS.cancelScheduling(VL, VL0); 1873 newTreeEntry(VL, false, UserTreeIdx); 1874 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1875 return; 1876 } 1877 newTreeEntry(VL, true, UserTreeIdx); 1878 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1879 1880 // Reorder operands if reordering would enable vectorization. 1881 if (isa<BinaryOperator>(VL0)) { 1882 ValueList Left, Right; 1883 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1884 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1885 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1886 return; 1887 } 1888 1889 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1890 ValueList Operands; 1891 // Prepare the operand vector. 1892 for (Value *j : VL) 1893 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1894 1895 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1896 } 1897 return; 1898 1899 default: 1900 BS.cancelScheduling(VL, VL0); 1901 newTreeEntry(VL, false, UserTreeIdx); 1902 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1903 return; 1904 } 1905 } 1906 1907 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1908 unsigned N; 1909 Type *EltTy; 1910 auto *ST = dyn_cast<StructType>(T); 1911 if (ST) { 1912 N = ST->getNumElements(); 1913 EltTy = *ST->element_begin(); 1914 } else { 1915 N = cast<ArrayType>(T)->getNumElements(); 1916 EltTy = cast<ArrayType>(T)->getElementType(); 1917 } 1918 if (!isValidElementType(EltTy)) 1919 return 0; 1920 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1921 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1922 return 0; 1923 if (ST) { 1924 // Check that struct is homogeneous. 1925 for (const auto *Ty : ST->elements()) 1926 if (Ty != EltTy) 1927 return 0; 1928 } 1929 return N; 1930 } 1931 1932 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1933 Instruction *E0 = cast<Instruction>(OpValue); 1934 assert(E0->getOpcode() == Instruction::ExtractElement || 1935 E0->getOpcode() == Instruction::ExtractValue); 1936 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1937 // Check if all of the extracts come from the same vector and from the 1938 // correct offset. 1939 Value *Vec = E0->getOperand(0); 1940 1941 // We have to extract from a vector/aggregate with the same number of elements. 1942 unsigned NElts; 1943 if (E0->getOpcode() == Instruction::ExtractValue) { 1944 const DataLayout &DL = E0->getModule()->getDataLayout(); 1945 NElts = canMapToVector(Vec->getType(), DL); 1946 if (!NElts) 1947 return false; 1948 // Check if load can be rewritten as load of vector. 1949 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1950 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1951 return false; 1952 } else { 1953 NElts = Vec->getType()->getVectorNumElements(); 1954 } 1955 1956 if (NElts != VL.size()) 1957 return false; 1958 1959 // Check that all of the indices extract from the correct offset. 1960 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1961 Instruction *Inst = cast<Instruction>(VL[I]); 1962 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1963 return false; 1964 if (Inst->getOperand(0) != Vec) 1965 return false; 1966 } 1967 1968 return true; 1969 } 1970 1971 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1972 return I->hasOneUse() || 1973 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1974 return ScalarToTreeEntry.count(U) > 0; 1975 }); 1976 } 1977 1978 int BoUpSLP::getEntryCost(TreeEntry *E) { 1979 ArrayRef<Value*> VL = E->Scalars; 1980 1981 Type *ScalarTy = VL[0]->getType(); 1982 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1983 ScalarTy = SI->getValueOperand()->getType(); 1984 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1985 ScalarTy = CI->getOperand(0)->getType(); 1986 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1987 1988 // If we have computed a smaller type for the expression, update VecTy so 1989 // that the costs will be accurate. 1990 if (MinBWs.count(VL[0])) 1991 VecTy = VectorType::get( 1992 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1993 1994 if (E->NeedToGather) { 1995 if (allConstant(VL)) 1996 return 0; 1997 if (isSplat(VL)) { 1998 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1999 } 2000 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) { 2001 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2002 if (ShuffleKind.hasValue()) { 2003 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2004 for (auto *V : VL) { 2005 // If all users of instruction are going to be vectorized and this 2006 // instruction itself is not going to be vectorized, consider this 2007 // instruction as dead and remove its cost from the final cost of the 2008 // vectorized tree. 2009 if (areAllUsersVectorized(cast<Instruction>(V)) && 2010 !ScalarToTreeEntry.count(V)) { 2011 auto *IO = cast<ConstantInt>( 2012 cast<ExtractElementInst>(V)->getIndexOperand()); 2013 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2014 IO->getZExtValue()); 2015 } 2016 } 2017 return Cost; 2018 } 2019 } 2020 return getGatherCost(E->Scalars); 2021 } 2022 InstructionsState S = getSameOpcode(VL); 2023 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2024 Instruction *VL0 = cast<Instruction>(S.OpValue); 2025 unsigned ShuffleOrOp = S.IsAltShuffle ? 2026 (unsigned) Instruction::ShuffleVector : S.Opcode; 2027 switch (ShuffleOrOp) { 2028 case Instruction::PHI: 2029 return 0; 2030 2031 case Instruction::ExtractValue: 2032 case Instruction::ExtractElement: 2033 if (canReuseExtract(VL, S.OpValue)) { 2034 int DeadCost = 0; 2035 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2036 Instruction *E = cast<Instruction>(VL[i]); 2037 // If all users are going to be vectorized, instruction can be 2038 // considered as dead. 2039 // The same, if have only one user, it will be vectorized for sure. 2040 if (areAllUsersVectorized(E)) 2041 // Take credit for instruction that will become dead. 2042 DeadCost += 2043 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2044 } 2045 return -DeadCost; 2046 } 2047 return getGatherCost(VecTy); 2048 2049 case Instruction::ZExt: 2050 case Instruction::SExt: 2051 case Instruction::FPToUI: 2052 case Instruction::FPToSI: 2053 case Instruction::FPExt: 2054 case Instruction::PtrToInt: 2055 case Instruction::IntToPtr: 2056 case Instruction::SIToFP: 2057 case Instruction::UIToFP: 2058 case Instruction::Trunc: 2059 case Instruction::FPTrunc: 2060 case Instruction::BitCast: { 2061 Type *SrcTy = VL0->getOperand(0)->getType(); 2062 2063 // Calculate the cost of this instruction. 2064 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2065 VL0->getType(), SrcTy, VL0); 2066 2067 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2068 int VecCost = 0; 2069 // Check if the values are candidates to demote. 2070 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) 2071 VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2072 return VecCost - ScalarCost; 2073 } 2074 case Instruction::FCmp: 2075 case Instruction::ICmp: 2076 case Instruction::Select: { 2077 // Calculate the cost of this instruction. 2078 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2079 int ScalarCost = VecTy->getNumElements() * 2080 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2081 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2082 return VecCost - ScalarCost; 2083 } 2084 case Instruction::Add: 2085 case Instruction::FAdd: 2086 case Instruction::Sub: 2087 case Instruction::FSub: 2088 case Instruction::Mul: 2089 case Instruction::FMul: 2090 case Instruction::UDiv: 2091 case Instruction::SDiv: 2092 case Instruction::FDiv: 2093 case Instruction::URem: 2094 case Instruction::SRem: 2095 case Instruction::FRem: 2096 case Instruction::Shl: 2097 case Instruction::LShr: 2098 case Instruction::AShr: 2099 case Instruction::And: 2100 case Instruction::Or: 2101 case Instruction::Xor: { 2102 // Certain instructions can be cheaper to vectorize if they have a 2103 // constant second vector operand. 2104 TargetTransformInfo::OperandValueKind Op1VK = 2105 TargetTransformInfo::OK_AnyValue; 2106 TargetTransformInfo::OperandValueKind Op2VK = 2107 TargetTransformInfo::OK_UniformConstantValue; 2108 TargetTransformInfo::OperandValueProperties Op1VP = 2109 TargetTransformInfo::OP_None; 2110 TargetTransformInfo::OperandValueProperties Op2VP = 2111 TargetTransformInfo::OP_None; 2112 2113 // If all operands are exactly the same ConstantInt then set the 2114 // operand kind to OK_UniformConstantValue. 2115 // If instead not all operands are constants, then set the operand kind 2116 // to OK_AnyValue. If all operands are constants but not the same, 2117 // then set the operand kind to OK_NonUniformConstantValue. 2118 ConstantInt *CInt = nullptr; 2119 for (unsigned i = 0; i < VL.size(); ++i) { 2120 const Instruction *I = cast<Instruction>(VL[i]); 2121 if (!isa<ConstantInt>(I->getOperand(1))) { 2122 Op2VK = TargetTransformInfo::OK_AnyValue; 2123 break; 2124 } 2125 if (i == 0) { 2126 CInt = cast<ConstantInt>(I->getOperand(1)); 2127 continue; 2128 } 2129 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2130 CInt != cast<ConstantInt>(I->getOperand(1))) 2131 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2132 } 2133 // FIXME: Currently cost of model modification for division by power of 2134 // 2 is handled for X86 and AArch64. Add support for other targets. 2135 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2136 CInt->getValue().isPowerOf2()) 2137 Op2VP = TargetTransformInfo::OP_PowerOf2; 2138 2139 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2140 int ScalarCost = 2141 VecTy->getNumElements() * 2142 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2143 Op2VP, Operands); 2144 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2145 Op1VP, Op2VP, Operands); 2146 return VecCost - ScalarCost; 2147 } 2148 case Instruction::GetElementPtr: { 2149 TargetTransformInfo::OperandValueKind Op1VK = 2150 TargetTransformInfo::OK_AnyValue; 2151 TargetTransformInfo::OperandValueKind Op2VK = 2152 TargetTransformInfo::OK_UniformConstantValue; 2153 2154 int ScalarCost = 2155 VecTy->getNumElements() * 2156 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2157 int VecCost = 2158 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2159 2160 return VecCost - ScalarCost; 2161 } 2162 case Instruction::Load: { 2163 // Cost of wide load - cost of scalar loads. 2164 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2165 int ScalarLdCost = VecTy->getNumElements() * 2166 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2167 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2168 VecTy, alignment, 0, VL0); 2169 return VecLdCost - ScalarLdCost; 2170 } 2171 case Instruction::Store: { 2172 // We know that we can merge the stores. Calculate the cost. 2173 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2174 int ScalarStCost = VecTy->getNumElements() * 2175 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2176 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2177 VecTy, alignment, 0, VL0); 2178 return VecStCost - ScalarStCost; 2179 } 2180 case Instruction::Call: { 2181 CallInst *CI = cast<CallInst>(VL0); 2182 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2183 2184 // Calculate the cost of the scalar and vector calls. 2185 SmallVector<Type*, 4> ScalarTys; 2186 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2187 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2188 2189 FastMathFlags FMF; 2190 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2191 FMF = FPMO->getFastMathFlags(); 2192 2193 int ScalarCallCost = VecTy->getNumElements() * 2194 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2195 2196 SmallVector<Value *, 4> Args(CI->arg_operands()); 2197 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2198 VecTy->getNumElements()); 2199 2200 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2201 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2202 << " for " << *CI << "\n"); 2203 2204 return VecCallCost - ScalarCallCost; 2205 } 2206 case Instruction::ShuffleVector: { 2207 TargetTransformInfo::OperandValueKind Op1VK = 2208 TargetTransformInfo::OK_AnyValue; 2209 TargetTransformInfo::OperandValueKind Op2VK = 2210 TargetTransformInfo::OK_AnyValue; 2211 int ScalarCost = 0; 2212 int VecCost = 0; 2213 for (Value *i : VL) { 2214 Instruction *I = cast<Instruction>(i); 2215 if (!I) 2216 break; 2217 ScalarCost += 2218 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2219 } 2220 // VecCost is equal to sum of the cost of creating 2 vectors 2221 // and the cost of creating shuffle. 2222 Instruction *I0 = cast<Instruction>(VL[0]); 2223 VecCost = 2224 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2225 Instruction *I1 = cast<Instruction>(VL[1]); 2226 VecCost += 2227 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2228 VecCost += 2229 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2230 return VecCost - ScalarCost; 2231 } 2232 default: 2233 llvm_unreachable("Unknown instruction"); 2234 } 2235 } 2236 2237 bool BoUpSLP::isFullyVectorizableTinyTree() { 2238 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2239 VectorizableTree.size() << " is fully vectorizable .\n"); 2240 2241 // We only handle trees of heights 1 and 2. 2242 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2243 return true; 2244 2245 if (VectorizableTree.size() != 2) 2246 return false; 2247 2248 // Handle splat and all-constants stores. 2249 if (!VectorizableTree[0].NeedToGather && 2250 (allConstant(VectorizableTree[1].Scalars) || 2251 isSplat(VectorizableTree[1].Scalars))) 2252 return true; 2253 2254 // Gathering cost would be too much for tiny trees. 2255 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2256 return false; 2257 2258 return true; 2259 } 2260 2261 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2262 // We can vectorize the tree if its size is greater than or equal to the 2263 // minimum size specified by the MinTreeSize command line option. 2264 if (VectorizableTree.size() >= MinTreeSize) 2265 return false; 2266 2267 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2268 // can vectorize it if we can prove it fully vectorizable. 2269 if (isFullyVectorizableTinyTree()) 2270 return false; 2271 2272 assert(VectorizableTree.empty() 2273 ? ExternalUses.empty() 2274 : true && "We shouldn't have any external users"); 2275 2276 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2277 // vectorizable. 2278 return true; 2279 } 2280 2281 int BoUpSLP::getSpillCost() { 2282 // Walk from the bottom of the tree to the top, tracking which values are 2283 // live. When we see a call instruction that is not part of our tree, 2284 // query TTI to see if there is a cost to keeping values live over it 2285 // (for example, if spills and fills are required). 2286 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2287 int Cost = 0; 2288 2289 SmallPtrSet<Instruction*, 4> LiveValues; 2290 Instruction *PrevInst = nullptr; 2291 2292 for (const auto &N : VectorizableTree) { 2293 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2294 if (!Inst) 2295 continue; 2296 2297 if (!PrevInst) { 2298 PrevInst = Inst; 2299 continue; 2300 } 2301 2302 // Update LiveValues. 2303 LiveValues.erase(PrevInst); 2304 for (auto &J : PrevInst->operands()) { 2305 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2306 LiveValues.insert(cast<Instruction>(&*J)); 2307 } 2308 2309 DEBUG( 2310 dbgs() << "SLP: #LV: " << LiveValues.size(); 2311 for (auto *X : LiveValues) 2312 dbgs() << " " << X->getName(); 2313 dbgs() << ", Looking at "; 2314 Inst->dump(); 2315 ); 2316 2317 // Now find the sequence of instructions between PrevInst and Inst. 2318 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2319 PrevInstIt = 2320 PrevInst->getIterator().getReverse(); 2321 while (InstIt != PrevInstIt) { 2322 if (PrevInstIt == PrevInst->getParent()->rend()) { 2323 PrevInstIt = Inst->getParent()->rbegin(); 2324 continue; 2325 } 2326 2327 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2328 SmallVector<Type*, 4> V; 2329 for (auto *II : LiveValues) 2330 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2331 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2332 } 2333 2334 ++PrevInstIt; 2335 } 2336 2337 PrevInst = Inst; 2338 } 2339 2340 return Cost; 2341 } 2342 2343 int BoUpSLP::getTreeCost() { 2344 int Cost = 0; 2345 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2346 VectorizableTree.size() << ".\n"); 2347 2348 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2349 2350 for (TreeEntry &TE : VectorizableTree) { 2351 int C = getEntryCost(&TE); 2352 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2353 << *TE.Scalars[0] << ".\n"); 2354 Cost += C; 2355 } 2356 2357 SmallSet<Value *, 16> ExtractCostCalculated; 2358 int ExtractCost = 0; 2359 for (ExternalUser &EU : ExternalUses) { 2360 // We only add extract cost once for the same scalar. 2361 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2362 continue; 2363 2364 // Uses by ephemeral values are free (because the ephemeral value will be 2365 // removed prior to code generation, and so the extraction will be 2366 // removed as well). 2367 if (EphValues.count(EU.User)) 2368 continue; 2369 2370 // If we plan to rewrite the tree in a smaller type, we will need to sign 2371 // extend the extracted value back to the original type. Here, we account 2372 // for the extract and the added cost of the sign extend if needed. 2373 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2374 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2375 if (MinBWs.count(ScalarRoot)) { 2376 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2377 auto Extend = 2378 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2379 VecTy = VectorType::get(MinTy, BundleWidth); 2380 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2381 VecTy, EU.Lane); 2382 } else { 2383 ExtractCost += 2384 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2385 } 2386 } 2387 2388 int SpillCost = getSpillCost(); 2389 Cost += SpillCost + ExtractCost; 2390 2391 std::string Str; 2392 { 2393 raw_string_ostream OS(Str); 2394 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2395 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2396 << "SLP: Total Cost = " << Cost << ".\n"; 2397 } 2398 DEBUG(dbgs() << Str); 2399 2400 if (ViewSLPTree) 2401 ViewGraph(this, "SLP" + F->getName(), false, Str); 2402 2403 return Cost; 2404 } 2405 2406 int BoUpSLP::getGatherCost(Type *Ty) { 2407 int Cost = 0; 2408 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2409 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2410 return Cost; 2411 } 2412 2413 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2414 // Find the type of the operands in VL. 2415 Type *ScalarTy = VL[0]->getType(); 2416 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2417 ScalarTy = SI->getValueOperand()->getType(); 2418 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2419 // Find the cost of inserting/extracting values from the vector. 2420 return getGatherCost(VecTy); 2421 } 2422 2423 // Reorder commutative operations in alternate shuffle if the resulting vectors 2424 // are consecutive loads. This would allow us to vectorize the tree. 2425 // If we have something like- 2426 // load a[0] - load b[0] 2427 // load b[1] + load a[1] 2428 // load a[2] - load b[2] 2429 // load a[3] + load b[3] 2430 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2431 // code. 2432 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2433 SmallVectorImpl<Value *> &Left, 2434 SmallVectorImpl<Value *> &Right) { 2435 // Push left and right operands of binary operation into Left and Right 2436 unsigned AltOpcode = getAltOpcode(Opcode); 2437 (void)AltOpcode; 2438 for (Value *V : VL) { 2439 auto *I = cast<Instruction>(V); 2440 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2441 "Incorrect instruction in vector"); 2442 Left.push_back(I->getOperand(0)); 2443 Right.push_back(I->getOperand(1)); 2444 } 2445 2446 // Reorder if we have a commutative operation and consecutive access 2447 // are on either side of the alternate instructions. 2448 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2449 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2450 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2451 Instruction *VL1 = cast<Instruction>(VL[j]); 2452 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2453 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2454 std::swap(Left[j], Right[j]); 2455 continue; 2456 } else if (VL2->isCommutative() && 2457 isConsecutiveAccess(L, L1, *DL, *SE)) { 2458 std::swap(Left[j + 1], Right[j + 1]); 2459 continue; 2460 } 2461 // else unchanged 2462 } 2463 } 2464 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2465 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2466 Instruction *VL1 = cast<Instruction>(VL[j]); 2467 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2468 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2469 std::swap(Left[j], Right[j]); 2470 continue; 2471 } else if (VL2->isCommutative() && 2472 isConsecutiveAccess(L, L1, *DL, *SE)) { 2473 std::swap(Left[j + 1], Right[j + 1]); 2474 continue; 2475 } 2476 // else unchanged 2477 } 2478 } 2479 } 2480 } 2481 2482 // Return true if I should be commuted before adding it's left and right 2483 // operands to the arrays Left and Right. 2484 // 2485 // The vectorizer is trying to either have all elements one side being 2486 // instruction with the same opcode to enable further vectorization, or having 2487 // a splat to lower the vectorizing cost. 2488 static bool shouldReorderOperands( 2489 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2490 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2491 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2492 VLeft = I.getOperand(0); 2493 VRight = I.getOperand(1); 2494 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2495 if (SplatRight) { 2496 if (VRight == Right[i - 1]) 2497 // Preserve SplatRight 2498 return false; 2499 if (VLeft == Right[i - 1]) { 2500 // Commuting would preserve SplatRight, but we don't want to break 2501 // SplatLeft either, i.e. preserve the original order if possible. 2502 // (FIXME: why do we care?) 2503 if (SplatLeft && VLeft == Left[i - 1]) 2504 return false; 2505 return true; 2506 } 2507 } 2508 // Symmetrically handle Right side. 2509 if (SplatLeft) { 2510 if (VLeft == Left[i - 1]) 2511 // Preserve SplatLeft 2512 return false; 2513 if (VRight == Left[i - 1]) 2514 return true; 2515 } 2516 2517 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2518 Instruction *IRight = dyn_cast<Instruction>(VRight); 2519 2520 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2521 // it and not the right, in this case we want to commute. 2522 if (AllSameOpcodeRight) { 2523 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2524 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2525 // Do not commute, a match on the right preserves AllSameOpcodeRight 2526 return false; 2527 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2528 // We have a match and may want to commute, but first check if there is 2529 // not also a match on the existing operands on the Left to preserve 2530 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2531 // (FIXME: why do we care?) 2532 if (AllSameOpcodeLeft && ILeft && 2533 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2534 return false; 2535 return true; 2536 } 2537 } 2538 // Symmetrically handle Left side. 2539 if (AllSameOpcodeLeft) { 2540 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2541 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2542 return false; 2543 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2544 return true; 2545 } 2546 return false; 2547 } 2548 2549 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2550 ArrayRef<Value *> VL, 2551 SmallVectorImpl<Value *> &Left, 2552 SmallVectorImpl<Value *> &Right) { 2553 if (!VL.empty()) { 2554 // Peel the first iteration out of the loop since there's nothing 2555 // interesting to do anyway and it simplifies the checks in the loop. 2556 auto *I = cast<Instruction>(VL[0]); 2557 Value *VLeft = I->getOperand(0); 2558 Value *VRight = I->getOperand(1); 2559 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2560 // Favor having instruction to the right. FIXME: why? 2561 std::swap(VLeft, VRight); 2562 Left.push_back(VLeft); 2563 Right.push_back(VRight); 2564 } 2565 2566 // Keep track if we have instructions with all the same opcode on one side. 2567 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2568 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2569 // Keep track if we have one side with all the same value (broadcast). 2570 bool SplatLeft = true; 2571 bool SplatRight = true; 2572 2573 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2574 Instruction *I = cast<Instruction>(VL[i]); 2575 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2576 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2577 "Can only process commutative instruction"); 2578 // Commute to favor either a splat or maximizing having the same opcodes on 2579 // one side. 2580 Value *VLeft; 2581 Value *VRight; 2582 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2583 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2584 VRight)) { 2585 Left.push_back(VRight); 2586 Right.push_back(VLeft); 2587 } else { 2588 Left.push_back(VLeft); 2589 Right.push_back(VRight); 2590 } 2591 // Update Splat* and AllSameOpcode* after the insertion. 2592 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2593 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2594 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2595 (cast<Instruction>(Left[i - 1])->getOpcode() == 2596 cast<Instruction>(Left[i])->getOpcode()); 2597 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2598 (cast<Instruction>(Right[i - 1])->getOpcode() == 2599 cast<Instruction>(Right[i])->getOpcode()); 2600 } 2601 2602 // If one operand end up being broadcast, return this operand order. 2603 if (SplatRight || SplatLeft) 2604 return; 2605 2606 // Finally check if we can get longer vectorizable chain by reordering 2607 // without breaking the good operand order detected above. 2608 // E.g. If we have something like- 2609 // load a[0] load b[0] 2610 // load b[1] load a[1] 2611 // load a[2] load b[2] 2612 // load a[3] load b[3] 2613 // Reordering the second load b[1] load a[1] would allow us to vectorize 2614 // this code and we still retain AllSameOpcode property. 2615 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2616 // such as- 2617 // add a[0],c[0] load b[0] 2618 // add a[1],c[2] load b[1] 2619 // b[2] load b[2] 2620 // add a[3],c[3] load b[3] 2621 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2622 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2623 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2624 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2625 std::swap(Left[j + 1], Right[j + 1]); 2626 continue; 2627 } 2628 } 2629 } 2630 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2631 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2632 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2633 std::swap(Left[j + 1], Right[j + 1]); 2634 continue; 2635 } 2636 } 2637 } 2638 // else unchanged 2639 } 2640 } 2641 2642 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2643 // Get the basic block this bundle is in. All instructions in the bundle 2644 // should be in this block. 2645 auto *Front = cast<Instruction>(OpValue); 2646 auto *BB = Front->getParent(); 2647 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2648 const unsigned AltOpcode = getAltOpcode(Opcode); 2649 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2650 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2651 cast<Instruction>(V)->getOpcode()) || 2652 cast<Instruction>(V)->getParent() == BB; 2653 })); 2654 2655 // The last instruction in the bundle in program order. 2656 Instruction *LastInst = nullptr; 2657 2658 // Find the last instruction. The common case should be that BB has been 2659 // scheduled, and the last instruction is VL.back(). So we start with 2660 // VL.back() and iterate over schedule data until we reach the end of the 2661 // bundle. The end of the bundle is marked by null ScheduleData. 2662 if (BlocksSchedules.count(BB)) { 2663 auto *Bundle = 2664 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2665 if (Bundle && Bundle->isPartOfBundle()) 2666 for (; Bundle; Bundle = Bundle->NextInBundle) 2667 if (Bundle->OpValue == Bundle->Inst) 2668 LastInst = Bundle->Inst; 2669 } 2670 2671 // LastInst can still be null at this point if there's either not an entry 2672 // for BB in BlocksSchedules or there's no ScheduleData available for 2673 // VL.back(). This can be the case if buildTree_rec aborts for various 2674 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2675 // size is reached, etc.). ScheduleData is initialized in the scheduling 2676 // "dry-run". 2677 // 2678 // If this happens, we can still find the last instruction by brute force. We 2679 // iterate forwards from Front (inclusive) until we either see all 2680 // instructions in the bundle or reach the end of the block. If Front is the 2681 // last instruction in program order, LastInst will be set to Front, and we 2682 // will visit all the remaining instructions in the block. 2683 // 2684 // One of the reasons we exit early from buildTree_rec is to place an upper 2685 // bound on compile-time. Thus, taking an additional compile-time hit here is 2686 // not ideal. However, this should be exceedingly rare since it requires that 2687 // we both exit early from buildTree_rec and that the bundle be out-of-order 2688 // (causing us to iterate all the way to the end of the block). 2689 if (!LastInst) { 2690 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2691 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2692 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2693 LastInst = &I; 2694 if (Bundle.empty()) 2695 break; 2696 } 2697 } 2698 2699 // Set the insertion point after the last instruction in the bundle. Set the 2700 // debug location to Front. 2701 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2702 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2703 } 2704 2705 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2706 Value *Vec = UndefValue::get(Ty); 2707 // Generate the 'InsertElement' instruction. 2708 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2709 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2710 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2711 GatherSeq.insert(Insrt); 2712 CSEBlocks.insert(Insrt->getParent()); 2713 2714 // Add to our 'need-to-extract' list. 2715 if (TreeEntry *E = getTreeEntry(VL[i])) { 2716 // Find which lane we need to extract. 2717 int FoundLane = -1; 2718 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2719 // Is this the lane of the scalar that we are looking for ? 2720 if (E->Scalars[Lane] == VL[i]) { 2721 FoundLane = Lane; 2722 break; 2723 } 2724 } 2725 assert(FoundLane >= 0 && "Could not find the correct lane"); 2726 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2727 } 2728 } 2729 } 2730 2731 return Vec; 2732 } 2733 2734 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2735 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2736 if (En->isSame(VL) && En->VectorizedValue) 2737 return En->VectorizedValue; 2738 } 2739 return nullptr; 2740 } 2741 2742 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2743 InstructionsState S = getSameOpcode(VL); 2744 if (S.Opcode) { 2745 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2746 if (E->isSame(VL)) 2747 return vectorizeTree(E); 2748 } 2749 } 2750 2751 Type *ScalarTy = S.OpValue->getType(); 2752 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2753 ScalarTy = SI->getValueOperand()->getType(); 2754 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2755 2756 return Gather(VL, VecTy); 2757 } 2758 2759 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2760 IRBuilder<>::InsertPointGuard Guard(Builder); 2761 2762 if (E->VectorizedValue) { 2763 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2764 return E->VectorizedValue; 2765 } 2766 2767 InstructionsState S = getSameOpcode(E->Scalars); 2768 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2769 Type *ScalarTy = VL0->getType(); 2770 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2771 ScalarTy = SI->getValueOperand()->getType(); 2772 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2773 2774 if (E->NeedToGather) { 2775 setInsertPointAfterBundle(E->Scalars, VL0); 2776 auto *V = Gather(E->Scalars, VecTy); 2777 E->VectorizedValue = V; 2778 return V; 2779 } 2780 2781 unsigned ShuffleOrOp = S.IsAltShuffle ? 2782 (unsigned) Instruction::ShuffleVector : S.Opcode; 2783 switch (ShuffleOrOp) { 2784 case Instruction::PHI: { 2785 PHINode *PH = dyn_cast<PHINode>(VL0); 2786 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2787 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2788 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2789 E->VectorizedValue = NewPhi; 2790 2791 // PHINodes may have multiple entries from the same block. We want to 2792 // visit every block once. 2793 SmallSet<BasicBlock*, 4> VisitedBBs; 2794 2795 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2796 ValueList Operands; 2797 BasicBlock *IBB = PH->getIncomingBlock(i); 2798 2799 if (!VisitedBBs.insert(IBB).second) { 2800 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2801 continue; 2802 } 2803 2804 // Prepare the operand vector. 2805 for (Value *V : E->Scalars) 2806 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2807 2808 Builder.SetInsertPoint(IBB->getTerminator()); 2809 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2810 Value *Vec = vectorizeTree(Operands); 2811 NewPhi->addIncoming(Vec, IBB); 2812 } 2813 2814 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2815 "Invalid number of incoming values"); 2816 return NewPhi; 2817 } 2818 2819 case Instruction::ExtractElement: { 2820 if (canReuseExtract(E->Scalars, VL0)) { 2821 Value *V = VL0->getOperand(0); 2822 E->VectorizedValue = V; 2823 return V; 2824 } 2825 setInsertPointAfterBundle(E->Scalars, VL0); 2826 auto *V = Gather(E->Scalars, VecTy); 2827 E->VectorizedValue = V; 2828 return V; 2829 } 2830 case Instruction::ExtractValue: { 2831 if (canReuseExtract(E->Scalars, VL0)) { 2832 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2833 Builder.SetInsertPoint(LI); 2834 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2835 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2836 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2837 E->VectorizedValue = V; 2838 return propagateMetadata(V, E->Scalars); 2839 } 2840 setInsertPointAfterBundle(E->Scalars, VL0); 2841 auto *V = Gather(E->Scalars, VecTy); 2842 E->VectorizedValue = V; 2843 return V; 2844 } 2845 case Instruction::ZExt: 2846 case Instruction::SExt: 2847 case Instruction::FPToUI: 2848 case Instruction::FPToSI: 2849 case Instruction::FPExt: 2850 case Instruction::PtrToInt: 2851 case Instruction::IntToPtr: 2852 case Instruction::SIToFP: 2853 case Instruction::UIToFP: 2854 case Instruction::Trunc: 2855 case Instruction::FPTrunc: 2856 case Instruction::BitCast: { 2857 ValueList INVL; 2858 for (Value *V : E->Scalars) 2859 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2860 2861 setInsertPointAfterBundle(E->Scalars, VL0); 2862 2863 Value *InVec = vectorizeTree(INVL); 2864 2865 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2866 return V; 2867 2868 CastInst *CI = dyn_cast<CastInst>(VL0); 2869 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2870 E->VectorizedValue = V; 2871 ++NumVectorInstructions; 2872 return V; 2873 } 2874 case Instruction::FCmp: 2875 case Instruction::ICmp: { 2876 ValueList LHSV, RHSV; 2877 for (Value *V : E->Scalars) { 2878 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2879 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2880 } 2881 2882 setInsertPointAfterBundle(E->Scalars, VL0); 2883 2884 Value *L = vectorizeTree(LHSV); 2885 Value *R = vectorizeTree(RHSV); 2886 2887 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2888 return V; 2889 2890 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2891 Value *V; 2892 if (S.Opcode == Instruction::FCmp) 2893 V = Builder.CreateFCmp(P0, L, R); 2894 else 2895 V = Builder.CreateICmp(P0, L, R); 2896 2897 E->VectorizedValue = V; 2898 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2899 ++NumVectorInstructions; 2900 return V; 2901 } 2902 case Instruction::Select: { 2903 ValueList TrueVec, FalseVec, CondVec; 2904 for (Value *V : E->Scalars) { 2905 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2906 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2907 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2908 } 2909 2910 setInsertPointAfterBundle(E->Scalars, VL0); 2911 2912 Value *Cond = vectorizeTree(CondVec); 2913 Value *True = vectorizeTree(TrueVec); 2914 Value *False = vectorizeTree(FalseVec); 2915 2916 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2917 return V; 2918 2919 Value *V = Builder.CreateSelect(Cond, True, False); 2920 E->VectorizedValue = V; 2921 ++NumVectorInstructions; 2922 return V; 2923 } 2924 case Instruction::Add: 2925 case Instruction::FAdd: 2926 case Instruction::Sub: 2927 case Instruction::FSub: 2928 case Instruction::Mul: 2929 case Instruction::FMul: 2930 case Instruction::UDiv: 2931 case Instruction::SDiv: 2932 case Instruction::FDiv: 2933 case Instruction::URem: 2934 case Instruction::SRem: 2935 case Instruction::FRem: 2936 case Instruction::Shl: 2937 case Instruction::LShr: 2938 case Instruction::AShr: 2939 case Instruction::And: 2940 case Instruction::Or: 2941 case Instruction::Xor: { 2942 ValueList LHSVL, RHSVL; 2943 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2944 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 2945 RHSVL); 2946 else 2947 for (Value *V : E->Scalars) { 2948 auto *I = cast<Instruction>(V); 2949 LHSVL.push_back(I->getOperand(0)); 2950 RHSVL.push_back(I->getOperand(1)); 2951 } 2952 2953 setInsertPointAfterBundle(E->Scalars, VL0); 2954 2955 Value *LHS = vectorizeTree(LHSVL); 2956 Value *RHS = vectorizeTree(RHSVL); 2957 2958 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2959 return V; 2960 2961 Value *V = Builder.CreateBinOp( 2962 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 2963 E->VectorizedValue = V; 2964 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2965 ++NumVectorInstructions; 2966 2967 if (Instruction *I = dyn_cast<Instruction>(V)) 2968 return propagateMetadata(I, E->Scalars); 2969 2970 return V; 2971 } 2972 case Instruction::Load: { 2973 // Loads are inserted at the head of the tree because we don't want to 2974 // sink them all the way down past store instructions. 2975 setInsertPointAfterBundle(E->Scalars, VL0); 2976 2977 LoadInst *LI = cast<LoadInst>(VL0); 2978 Type *ScalarLoadTy = LI->getType(); 2979 unsigned AS = LI->getPointerAddressSpace(); 2980 2981 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2982 VecTy->getPointerTo(AS)); 2983 2984 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2985 // ExternalUses list to make sure that an extract will be generated in the 2986 // future. 2987 Value *PO = LI->getPointerOperand(); 2988 if (getTreeEntry(PO)) 2989 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2990 2991 unsigned Alignment = LI->getAlignment(); 2992 LI = Builder.CreateLoad(VecPtr); 2993 if (!Alignment) { 2994 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2995 } 2996 LI->setAlignment(Alignment); 2997 E->VectorizedValue = LI; 2998 ++NumVectorInstructions; 2999 return propagateMetadata(LI, E->Scalars); 3000 } 3001 case Instruction::Store: { 3002 StoreInst *SI = cast<StoreInst>(VL0); 3003 unsigned Alignment = SI->getAlignment(); 3004 unsigned AS = SI->getPointerAddressSpace(); 3005 3006 ValueList ScalarStoreValues; 3007 for (Value *V : E->Scalars) 3008 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3009 3010 setInsertPointAfterBundle(E->Scalars, VL0); 3011 3012 Value *VecValue = vectorizeTree(ScalarStoreValues); 3013 Value *ScalarPtr = SI->getPointerOperand(); 3014 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3015 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3016 3017 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3018 // ExternalUses to make sure that an extract will be generated in the 3019 // future. 3020 if (getTreeEntry(ScalarPtr)) 3021 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3022 3023 if (!Alignment) 3024 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3025 3026 S->setAlignment(Alignment); 3027 E->VectorizedValue = S; 3028 ++NumVectorInstructions; 3029 return propagateMetadata(S, E->Scalars); 3030 } 3031 case Instruction::GetElementPtr: { 3032 setInsertPointAfterBundle(E->Scalars, VL0); 3033 3034 ValueList Op0VL; 3035 for (Value *V : E->Scalars) 3036 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3037 3038 Value *Op0 = vectorizeTree(Op0VL); 3039 3040 std::vector<Value *> OpVecs; 3041 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3042 ++j) { 3043 ValueList OpVL; 3044 for (Value *V : E->Scalars) 3045 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3046 3047 Value *OpVec = vectorizeTree(OpVL); 3048 OpVecs.push_back(OpVec); 3049 } 3050 3051 Value *V = Builder.CreateGEP( 3052 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3053 E->VectorizedValue = V; 3054 ++NumVectorInstructions; 3055 3056 if (Instruction *I = dyn_cast<Instruction>(V)) 3057 return propagateMetadata(I, E->Scalars); 3058 3059 return V; 3060 } 3061 case Instruction::Call: { 3062 CallInst *CI = cast<CallInst>(VL0); 3063 setInsertPointAfterBundle(E->Scalars, VL0); 3064 Function *FI; 3065 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3066 Value *ScalarArg = nullptr; 3067 if (CI && (FI = CI->getCalledFunction())) { 3068 IID = FI->getIntrinsicID(); 3069 } 3070 std::vector<Value *> OpVecs; 3071 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3072 ValueList OpVL; 3073 // ctlz,cttz and powi are special intrinsics whose second argument is 3074 // a scalar. This argument should not be vectorized. 3075 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3076 CallInst *CEI = cast<CallInst>(VL0); 3077 ScalarArg = CEI->getArgOperand(j); 3078 OpVecs.push_back(CEI->getArgOperand(j)); 3079 continue; 3080 } 3081 for (Value *V : E->Scalars) { 3082 CallInst *CEI = cast<CallInst>(V); 3083 OpVL.push_back(CEI->getArgOperand(j)); 3084 } 3085 3086 Value *OpVec = vectorizeTree(OpVL); 3087 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3088 OpVecs.push_back(OpVec); 3089 } 3090 3091 Module *M = F->getParent(); 3092 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3093 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3094 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3095 SmallVector<OperandBundleDef, 1> OpBundles; 3096 CI->getOperandBundlesAsDefs(OpBundles); 3097 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3098 3099 // The scalar argument uses an in-tree scalar so we add the new vectorized 3100 // call to ExternalUses list to make sure that an extract will be 3101 // generated in the future. 3102 if (ScalarArg && getTreeEntry(ScalarArg)) 3103 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3104 3105 E->VectorizedValue = V; 3106 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3107 ++NumVectorInstructions; 3108 return V; 3109 } 3110 case Instruction::ShuffleVector: { 3111 ValueList LHSVL, RHSVL; 3112 assert(Instruction::isBinaryOp(S.Opcode) && 3113 "Invalid Shuffle Vector Operand"); 3114 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3115 setInsertPointAfterBundle(E->Scalars, VL0); 3116 3117 Value *LHS = vectorizeTree(LHSVL); 3118 Value *RHS = vectorizeTree(RHSVL); 3119 3120 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3121 return V; 3122 3123 // Create a vector of LHS op1 RHS 3124 Value *V0 = Builder.CreateBinOp( 3125 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3126 3127 unsigned AltOpcode = getAltOpcode(S.Opcode); 3128 // Create a vector of LHS op2 RHS 3129 Value *V1 = Builder.CreateBinOp( 3130 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3131 3132 // Create shuffle to take alternate operations from the vector. 3133 // Also, gather up odd and even scalar ops to propagate IR flags to 3134 // each vector operation. 3135 ValueList OddScalars, EvenScalars; 3136 unsigned e = E->Scalars.size(); 3137 SmallVector<Constant *, 8> Mask(e); 3138 for (unsigned i = 0; i < e; ++i) { 3139 if (isOdd(i)) { 3140 Mask[i] = Builder.getInt32(e + i); 3141 OddScalars.push_back(E->Scalars[i]); 3142 } else { 3143 Mask[i] = Builder.getInt32(i); 3144 EvenScalars.push_back(E->Scalars[i]); 3145 } 3146 } 3147 3148 Value *ShuffleMask = ConstantVector::get(Mask); 3149 propagateIRFlags(V0, EvenScalars); 3150 propagateIRFlags(V1, OddScalars); 3151 3152 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3153 E->VectorizedValue = V; 3154 ++NumVectorInstructions; 3155 if (Instruction *I = dyn_cast<Instruction>(V)) 3156 return propagateMetadata(I, E->Scalars); 3157 3158 return V; 3159 } 3160 default: 3161 llvm_unreachable("unknown inst"); 3162 } 3163 return nullptr; 3164 } 3165 3166 Value *BoUpSLP::vectorizeTree() { 3167 ExtraValueToDebugLocsMap ExternallyUsedValues; 3168 return vectorizeTree(ExternallyUsedValues); 3169 } 3170 3171 Value * 3172 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3173 // All blocks must be scheduled before any instructions are inserted. 3174 for (auto &BSIter : BlocksSchedules) { 3175 scheduleBlock(BSIter.second.get()); 3176 } 3177 3178 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3179 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3180 3181 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3182 // vectorized root. InstCombine will then rewrite the entire expression. We 3183 // sign extend the extracted values below. 3184 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3185 if (MinBWs.count(ScalarRoot)) { 3186 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3187 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3188 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3189 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3190 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3191 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3192 VectorizableTree[0].VectorizedValue = Trunc; 3193 } 3194 3195 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3196 3197 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3198 // specified by ScalarType. 3199 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3200 if (!MinBWs.count(ScalarRoot)) 3201 return Ex; 3202 if (MinBWs[ScalarRoot].second) 3203 return Builder.CreateSExt(Ex, ScalarType); 3204 return Builder.CreateZExt(Ex, ScalarType); 3205 }; 3206 3207 // Extract all of the elements with the external uses. 3208 for (const auto &ExternalUse : ExternalUses) { 3209 Value *Scalar = ExternalUse.Scalar; 3210 llvm::User *User = ExternalUse.User; 3211 3212 // Skip users that we already RAUW. This happens when one instruction 3213 // has multiple uses of the same value. 3214 if (User && !is_contained(Scalar->users(), User)) 3215 continue; 3216 TreeEntry *E = getTreeEntry(Scalar); 3217 assert(E && "Invalid scalar"); 3218 assert(!E->NeedToGather && "Extracting from a gather list"); 3219 3220 Value *Vec = E->VectorizedValue; 3221 assert(Vec && "Can't find vectorizable value"); 3222 3223 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3224 // If User == nullptr, the Scalar is used as extra arg. Generate 3225 // ExtractElement instruction and update the record for this scalar in 3226 // ExternallyUsedValues. 3227 if (!User) { 3228 assert(ExternallyUsedValues.count(Scalar) && 3229 "Scalar with nullptr as an external user must be registered in " 3230 "ExternallyUsedValues map"); 3231 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3232 Builder.SetInsertPoint(VecI->getParent(), 3233 std::next(VecI->getIterator())); 3234 } else { 3235 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3236 } 3237 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3238 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3239 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3240 auto &Locs = ExternallyUsedValues[Scalar]; 3241 ExternallyUsedValues.insert({Ex, Locs}); 3242 ExternallyUsedValues.erase(Scalar); 3243 continue; 3244 } 3245 3246 // Generate extracts for out-of-tree users. 3247 // Find the insertion point for the extractelement lane. 3248 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3249 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3250 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3251 if (PH->getIncomingValue(i) == Scalar) { 3252 TerminatorInst *IncomingTerminator = 3253 PH->getIncomingBlock(i)->getTerminator(); 3254 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3255 Builder.SetInsertPoint(VecI->getParent(), 3256 std::next(VecI->getIterator())); 3257 } else { 3258 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3259 } 3260 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3261 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3262 CSEBlocks.insert(PH->getIncomingBlock(i)); 3263 PH->setOperand(i, Ex); 3264 } 3265 } 3266 } else { 3267 Builder.SetInsertPoint(cast<Instruction>(User)); 3268 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3269 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3270 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3271 User->replaceUsesOfWith(Scalar, Ex); 3272 } 3273 } else { 3274 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3275 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3276 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3277 CSEBlocks.insert(&F->getEntryBlock()); 3278 User->replaceUsesOfWith(Scalar, Ex); 3279 } 3280 3281 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3282 } 3283 3284 // For each vectorized value: 3285 for (TreeEntry &EIdx : VectorizableTree) { 3286 TreeEntry *Entry = &EIdx; 3287 3288 // No need to handle users of gathered values. 3289 if (Entry->NeedToGather) 3290 continue; 3291 3292 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3293 3294 // For each lane: 3295 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3296 Value *Scalar = Entry->Scalars[Lane]; 3297 3298 Type *Ty = Scalar->getType(); 3299 if (!Ty->isVoidTy()) { 3300 #ifndef NDEBUG 3301 for (User *U : Scalar->users()) { 3302 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3303 3304 // It is legal to replace users in the ignorelist by undef. 3305 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3306 "Replacing out-of-tree value with undef"); 3307 } 3308 #endif 3309 Value *Undef = UndefValue::get(Ty); 3310 Scalar->replaceAllUsesWith(Undef); 3311 } 3312 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3313 eraseInstruction(cast<Instruction>(Scalar)); 3314 } 3315 } 3316 3317 Builder.ClearInsertionPoint(); 3318 3319 return VectorizableTree[0].VectorizedValue; 3320 } 3321 3322 void BoUpSLP::optimizeGatherSequence() { 3323 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3324 << " gather sequences instructions.\n"); 3325 // LICM InsertElementInst sequences. 3326 for (Instruction *it : GatherSeq) { 3327 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3328 3329 if (!Insert) 3330 continue; 3331 3332 // Check if this block is inside a loop. 3333 Loop *L = LI->getLoopFor(Insert->getParent()); 3334 if (!L) 3335 continue; 3336 3337 // Check if it has a preheader. 3338 BasicBlock *PreHeader = L->getLoopPreheader(); 3339 if (!PreHeader) 3340 continue; 3341 3342 // If the vector or the element that we insert into it are 3343 // instructions that are defined in this basic block then we can't 3344 // hoist this instruction. 3345 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3346 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3347 if (CurrVec && L->contains(CurrVec)) 3348 continue; 3349 if (NewElem && L->contains(NewElem)) 3350 continue; 3351 3352 // We can hoist this instruction. Move it to the pre-header. 3353 Insert->moveBefore(PreHeader->getTerminator()); 3354 } 3355 3356 // Make a list of all reachable blocks in our CSE queue. 3357 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3358 CSEWorkList.reserve(CSEBlocks.size()); 3359 for (BasicBlock *BB : CSEBlocks) 3360 if (DomTreeNode *N = DT->getNode(BB)) { 3361 assert(DT->isReachableFromEntry(N)); 3362 CSEWorkList.push_back(N); 3363 } 3364 3365 // Sort blocks by domination. This ensures we visit a block after all blocks 3366 // dominating it are visited. 3367 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3368 [this](const DomTreeNode *A, const DomTreeNode *B) { 3369 return DT->properlyDominates(A, B); 3370 }); 3371 3372 // Perform O(N^2) search over the gather sequences and merge identical 3373 // instructions. TODO: We can further optimize this scan if we split the 3374 // instructions into different buckets based on the insert lane. 3375 SmallVector<Instruction *, 16> Visited; 3376 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3377 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3378 "Worklist not sorted properly!"); 3379 BasicBlock *BB = (*I)->getBlock(); 3380 // For all instructions in blocks containing gather sequences: 3381 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3382 Instruction *In = &*it++; 3383 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3384 continue; 3385 3386 // Check if we can replace this instruction with any of the 3387 // visited instructions. 3388 for (Instruction *v : Visited) { 3389 if (In->isIdenticalTo(v) && 3390 DT->dominates(v->getParent(), In->getParent())) { 3391 In->replaceAllUsesWith(v); 3392 eraseInstruction(In); 3393 In = nullptr; 3394 break; 3395 } 3396 } 3397 if (In) { 3398 assert(!is_contained(Visited, In)); 3399 Visited.push_back(In); 3400 } 3401 } 3402 } 3403 CSEBlocks.clear(); 3404 GatherSeq.clear(); 3405 } 3406 3407 // Groups the instructions to a bundle (which is then a single scheduling entity) 3408 // and schedules instructions until the bundle gets ready. 3409 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3410 BoUpSLP *SLP, Value *OpValue) { 3411 if (isa<PHINode>(OpValue)) 3412 return true; 3413 3414 // Initialize the instruction bundle. 3415 Instruction *OldScheduleEnd = ScheduleEnd; 3416 ScheduleData *PrevInBundle = nullptr; 3417 ScheduleData *Bundle = nullptr; 3418 bool ReSchedule = false; 3419 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3420 3421 // Make sure that the scheduling region contains all 3422 // instructions of the bundle. 3423 for (Value *V : VL) { 3424 if (!extendSchedulingRegion(V, OpValue)) 3425 return false; 3426 } 3427 3428 for (Value *V : VL) { 3429 ScheduleData *BundleMember = getScheduleData(V); 3430 assert(BundleMember && 3431 "no ScheduleData for bundle member (maybe not in same basic block)"); 3432 if (BundleMember->IsScheduled) { 3433 // A bundle member was scheduled as single instruction before and now 3434 // needs to be scheduled as part of the bundle. We just get rid of the 3435 // existing schedule. 3436 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3437 << " was already scheduled\n"); 3438 ReSchedule = true; 3439 } 3440 assert(BundleMember->isSchedulingEntity() && 3441 "bundle member already part of other bundle"); 3442 if (PrevInBundle) { 3443 PrevInBundle->NextInBundle = BundleMember; 3444 } else { 3445 Bundle = BundleMember; 3446 } 3447 BundleMember->UnscheduledDepsInBundle = 0; 3448 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3449 3450 // Group the instructions to a bundle. 3451 BundleMember->FirstInBundle = Bundle; 3452 PrevInBundle = BundleMember; 3453 } 3454 if (ScheduleEnd != OldScheduleEnd) { 3455 // The scheduling region got new instructions at the lower end (or it is a 3456 // new region for the first bundle). This makes it necessary to 3457 // recalculate all dependencies. 3458 // It is seldom that this needs to be done a second time after adding the 3459 // initial bundle to the region. 3460 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3461 doForAllOpcodes(I, [](ScheduleData *SD) { 3462 SD->clearDependencies(); 3463 }); 3464 } 3465 ReSchedule = true; 3466 } 3467 if (ReSchedule) { 3468 resetSchedule(); 3469 initialFillReadyList(ReadyInsts); 3470 } 3471 3472 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3473 << BB->getName() << "\n"); 3474 3475 calculateDependencies(Bundle, true, SLP); 3476 3477 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3478 // means that there are no cyclic dependencies and we can schedule it. 3479 // Note that's important that we don't "schedule" the bundle yet (see 3480 // cancelScheduling). 3481 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3482 3483 ScheduleData *pickedSD = ReadyInsts.back(); 3484 ReadyInsts.pop_back(); 3485 3486 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3487 schedule(pickedSD, ReadyInsts); 3488 } 3489 } 3490 if (!Bundle->isReady()) { 3491 cancelScheduling(VL, OpValue); 3492 return false; 3493 } 3494 return true; 3495 } 3496 3497 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3498 Value *OpValue) { 3499 if (isa<PHINode>(OpValue)) 3500 return; 3501 3502 ScheduleData *Bundle = getScheduleData(OpValue); 3503 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3504 assert(!Bundle->IsScheduled && 3505 "Can't cancel bundle which is already scheduled"); 3506 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3507 "tried to unbundle something which is not a bundle"); 3508 3509 // Un-bundle: make single instructions out of the bundle. 3510 ScheduleData *BundleMember = Bundle; 3511 while (BundleMember) { 3512 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3513 BundleMember->FirstInBundle = BundleMember; 3514 ScheduleData *Next = BundleMember->NextInBundle; 3515 BundleMember->NextInBundle = nullptr; 3516 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3517 if (BundleMember->UnscheduledDepsInBundle == 0) { 3518 ReadyInsts.insert(BundleMember); 3519 } 3520 BundleMember = Next; 3521 } 3522 } 3523 3524 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3525 // Allocate a new ScheduleData for the instruction. 3526 if (ChunkPos >= ChunkSize) { 3527 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3528 ChunkPos = 0; 3529 } 3530 return &(ScheduleDataChunks.back()[ChunkPos++]); 3531 } 3532 3533 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3534 Value *OpValue) { 3535 if (getScheduleData(V, isOneOf(OpValue, V))) 3536 return true; 3537 Instruction *I = dyn_cast<Instruction>(V); 3538 assert(I && "bundle member must be an instruction"); 3539 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3540 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3541 ScheduleData *ISD = getScheduleData(I); 3542 if (!ISD) 3543 return false; 3544 assert(isInSchedulingRegion(ISD) && 3545 "ScheduleData not in scheduling region"); 3546 ScheduleData *SD = allocateScheduleDataChunks(); 3547 SD->Inst = I; 3548 SD->init(SchedulingRegionID, OpValue); 3549 ExtraScheduleDataMap[I][OpValue] = SD; 3550 return true; 3551 }; 3552 if (CheckSheduleForI(I)) 3553 return true; 3554 if (!ScheduleStart) { 3555 // It's the first instruction in the new region. 3556 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3557 ScheduleStart = I; 3558 ScheduleEnd = I->getNextNode(); 3559 if (isOneOf(OpValue, I) != I) 3560 CheckSheduleForI(I); 3561 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3562 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3563 return true; 3564 } 3565 // Search up and down at the same time, because we don't know if the new 3566 // instruction is above or below the existing scheduling region. 3567 BasicBlock::reverse_iterator UpIter = 3568 ++ScheduleStart->getIterator().getReverse(); 3569 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3570 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3571 BasicBlock::iterator LowerEnd = BB->end(); 3572 while (true) { 3573 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3574 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3575 return false; 3576 } 3577 3578 if (UpIter != UpperEnd) { 3579 if (&*UpIter == I) { 3580 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3581 ScheduleStart = I; 3582 if (isOneOf(OpValue, I) != I) 3583 CheckSheduleForI(I); 3584 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3585 return true; 3586 } 3587 UpIter++; 3588 } 3589 if (DownIter != LowerEnd) { 3590 if (&*DownIter == I) { 3591 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3592 nullptr); 3593 ScheduleEnd = I->getNextNode(); 3594 if (isOneOf(OpValue, I) != I) 3595 CheckSheduleForI(I); 3596 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3597 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3598 return true; 3599 } 3600 DownIter++; 3601 } 3602 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3603 "instruction not found in block"); 3604 } 3605 return true; 3606 } 3607 3608 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3609 Instruction *ToI, 3610 ScheduleData *PrevLoadStore, 3611 ScheduleData *NextLoadStore) { 3612 ScheduleData *CurrentLoadStore = PrevLoadStore; 3613 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3614 ScheduleData *SD = ScheduleDataMap[I]; 3615 if (!SD) { 3616 SD = allocateScheduleDataChunks(); 3617 ScheduleDataMap[I] = SD; 3618 SD->Inst = I; 3619 } 3620 assert(!isInSchedulingRegion(SD) && 3621 "new ScheduleData already in scheduling region"); 3622 SD->init(SchedulingRegionID, I); 3623 3624 if (I->mayReadOrWriteMemory() && 3625 (!isa<IntrinsicInst>(I) || 3626 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3627 // Update the linked list of memory accessing instructions. 3628 if (CurrentLoadStore) { 3629 CurrentLoadStore->NextLoadStore = SD; 3630 } else { 3631 FirstLoadStoreInRegion = SD; 3632 } 3633 CurrentLoadStore = SD; 3634 } 3635 } 3636 if (NextLoadStore) { 3637 if (CurrentLoadStore) 3638 CurrentLoadStore->NextLoadStore = NextLoadStore; 3639 } else { 3640 LastLoadStoreInRegion = CurrentLoadStore; 3641 } 3642 } 3643 3644 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3645 bool InsertInReadyList, 3646 BoUpSLP *SLP) { 3647 assert(SD->isSchedulingEntity()); 3648 3649 SmallVector<ScheduleData *, 10> WorkList; 3650 WorkList.push_back(SD); 3651 3652 while (!WorkList.empty()) { 3653 ScheduleData *SD = WorkList.back(); 3654 WorkList.pop_back(); 3655 3656 ScheduleData *BundleMember = SD; 3657 while (BundleMember) { 3658 assert(isInSchedulingRegion(BundleMember)); 3659 if (!BundleMember->hasValidDependencies()) { 3660 3661 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3662 BundleMember->Dependencies = 0; 3663 BundleMember->resetUnscheduledDeps(); 3664 3665 // Handle def-use chain dependencies. 3666 if (BundleMember->OpValue != BundleMember->Inst) { 3667 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3668 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3669 BundleMember->Dependencies++; 3670 ScheduleData *DestBundle = UseSD->FirstInBundle; 3671 if (!DestBundle->IsScheduled) 3672 BundleMember->incrementUnscheduledDeps(1); 3673 if (!DestBundle->hasValidDependencies()) 3674 WorkList.push_back(DestBundle); 3675 } 3676 } else { 3677 for (User *U : BundleMember->Inst->users()) { 3678 if (isa<Instruction>(U)) { 3679 ScheduleData *UseSD = getScheduleData(U); 3680 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3681 BundleMember->Dependencies++; 3682 ScheduleData *DestBundle = UseSD->FirstInBundle; 3683 if (!DestBundle->IsScheduled) 3684 BundleMember->incrementUnscheduledDeps(1); 3685 if (!DestBundle->hasValidDependencies()) 3686 WorkList.push_back(DestBundle); 3687 } 3688 } else { 3689 // I'm not sure if this can ever happen. But we need to be safe. 3690 // This lets the instruction/bundle never be scheduled and 3691 // eventually disable vectorization. 3692 BundleMember->Dependencies++; 3693 BundleMember->incrementUnscheduledDeps(1); 3694 } 3695 } 3696 } 3697 3698 // Handle the memory dependencies. 3699 ScheduleData *DepDest = BundleMember->NextLoadStore; 3700 if (DepDest) { 3701 Instruction *SrcInst = BundleMember->Inst; 3702 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3703 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3704 unsigned numAliased = 0; 3705 unsigned DistToSrc = 1; 3706 3707 while (DepDest) { 3708 assert(isInSchedulingRegion(DepDest)); 3709 3710 // We have two limits to reduce the complexity: 3711 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3712 // SLP->isAliased (which is the expensive part in this loop). 3713 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3714 // the whole loop (even if the loop is fast, it's quadratic). 3715 // It's important for the loop break condition (see below) to 3716 // check this limit even between two read-only instructions. 3717 if (DistToSrc >= MaxMemDepDistance || 3718 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3719 (numAliased >= AliasedCheckLimit || 3720 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3721 3722 // We increment the counter only if the locations are aliased 3723 // (instead of counting all alias checks). This gives a better 3724 // balance between reduced runtime and accurate dependencies. 3725 numAliased++; 3726 3727 DepDest->MemoryDependencies.push_back(BundleMember); 3728 BundleMember->Dependencies++; 3729 ScheduleData *DestBundle = DepDest->FirstInBundle; 3730 if (!DestBundle->IsScheduled) { 3731 BundleMember->incrementUnscheduledDeps(1); 3732 } 3733 if (!DestBundle->hasValidDependencies()) { 3734 WorkList.push_back(DestBundle); 3735 } 3736 } 3737 DepDest = DepDest->NextLoadStore; 3738 3739 // Example, explaining the loop break condition: Let's assume our 3740 // starting instruction is i0 and MaxMemDepDistance = 3. 3741 // 3742 // +--------v--v--v 3743 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3744 // +--------^--^--^ 3745 // 3746 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3747 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3748 // Previously we already added dependencies from i3 to i6,i7,i8 3749 // (because of MaxMemDepDistance). As we added a dependency from 3750 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3751 // and we can abort this loop at i6. 3752 if (DistToSrc >= 2 * MaxMemDepDistance) 3753 break; 3754 DistToSrc++; 3755 } 3756 } 3757 } 3758 BundleMember = BundleMember->NextInBundle; 3759 } 3760 if (InsertInReadyList && SD->isReady()) { 3761 ReadyInsts.push_back(SD); 3762 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3763 } 3764 } 3765 } 3766 3767 void BoUpSLP::BlockScheduling::resetSchedule() { 3768 assert(ScheduleStart && 3769 "tried to reset schedule on block which has not been scheduled"); 3770 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3771 doForAllOpcodes(I, [&](ScheduleData *SD) { 3772 assert(isInSchedulingRegion(SD) && 3773 "ScheduleData not in scheduling region"); 3774 SD->IsScheduled = false; 3775 SD->resetUnscheduledDeps(); 3776 }); 3777 } 3778 ReadyInsts.clear(); 3779 } 3780 3781 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3782 if (!BS->ScheduleStart) 3783 return; 3784 3785 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3786 3787 BS->resetSchedule(); 3788 3789 // For the real scheduling we use a more sophisticated ready-list: it is 3790 // sorted by the original instruction location. This lets the final schedule 3791 // be as close as possible to the original instruction order. 3792 struct ScheduleDataCompare { 3793 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3794 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3795 } 3796 }; 3797 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3798 3799 // Ensure that all dependency data is updated and fill the ready-list with 3800 // initial instructions. 3801 int Idx = 0; 3802 int NumToSchedule = 0; 3803 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3804 I = I->getNextNode()) { 3805 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 3806 assert(SD->isPartOfBundle() == 3807 (getTreeEntry(SD->Inst) != nullptr) && 3808 "scheduler and vectorizer bundle mismatch"); 3809 SD->FirstInBundle->SchedulingPriority = Idx++; 3810 if (SD->isSchedulingEntity()) { 3811 BS->calculateDependencies(SD, false, this); 3812 NumToSchedule++; 3813 } 3814 }); 3815 } 3816 BS->initialFillReadyList(ReadyInsts); 3817 3818 Instruction *LastScheduledInst = BS->ScheduleEnd; 3819 3820 // Do the "real" scheduling. 3821 while (!ReadyInsts.empty()) { 3822 ScheduleData *picked = *ReadyInsts.begin(); 3823 ReadyInsts.erase(ReadyInsts.begin()); 3824 3825 // Move the scheduled instruction(s) to their dedicated places, if not 3826 // there yet. 3827 ScheduleData *BundleMember = picked; 3828 while (BundleMember) { 3829 Instruction *pickedInst = BundleMember->Inst; 3830 if (LastScheduledInst->getNextNode() != pickedInst) { 3831 BS->BB->getInstList().remove(pickedInst); 3832 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3833 pickedInst); 3834 } 3835 LastScheduledInst = pickedInst; 3836 BundleMember = BundleMember->NextInBundle; 3837 } 3838 3839 BS->schedule(picked, ReadyInsts); 3840 NumToSchedule--; 3841 } 3842 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3843 3844 // Avoid duplicate scheduling of the block. 3845 BS->ScheduleStart = nullptr; 3846 } 3847 3848 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3849 // If V is a store, just return the width of the stored value without 3850 // traversing the expression tree. This is the common case. 3851 if (auto *Store = dyn_cast<StoreInst>(V)) 3852 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3853 3854 // If V is not a store, we can traverse the expression tree to find loads 3855 // that feed it. The type of the loaded value may indicate a more suitable 3856 // width than V's type. We want to base the vector element size on the width 3857 // of memory operations where possible. 3858 SmallVector<Instruction *, 16> Worklist; 3859 SmallPtrSet<Instruction *, 16> Visited; 3860 if (auto *I = dyn_cast<Instruction>(V)) 3861 Worklist.push_back(I); 3862 3863 // Traverse the expression tree in bottom-up order looking for loads. If we 3864 // encounter an instruciton we don't yet handle, we give up. 3865 auto MaxWidth = 0u; 3866 auto FoundUnknownInst = false; 3867 while (!Worklist.empty() && !FoundUnknownInst) { 3868 auto *I = Worklist.pop_back_val(); 3869 Visited.insert(I); 3870 3871 // We should only be looking at scalar instructions here. If the current 3872 // instruction has a vector type, give up. 3873 auto *Ty = I->getType(); 3874 if (isa<VectorType>(Ty)) 3875 FoundUnknownInst = true; 3876 3877 // If the current instruction is a load, update MaxWidth to reflect the 3878 // width of the loaded value. 3879 else if (isa<LoadInst>(I)) 3880 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3881 3882 // Otherwise, we need to visit the operands of the instruction. We only 3883 // handle the interesting cases from buildTree here. If an operand is an 3884 // instruction we haven't yet visited, we add it to the worklist. 3885 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3886 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3887 for (Use &U : I->operands()) 3888 if (auto *J = dyn_cast<Instruction>(U.get())) 3889 if (!Visited.count(J)) 3890 Worklist.push_back(J); 3891 } 3892 3893 // If we don't yet handle the instruction, give up. 3894 else 3895 FoundUnknownInst = true; 3896 } 3897 3898 // If we didn't encounter a memory access in the expression tree, or if we 3899 // gave up for some reason, just return the width of V. 3900 if (!MaxWidth || FoundUnknownInst) 3901 return DL->getTypeSizeInBits(V->getType()); 3902 3903 // Otherwise, return the maximum width we found. 3904 return MaxWidth; 3905 } 3906 3907 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3908 // smaller type with a truncation. We collect the values that will be demoted 3909 // in ToDemote and additional roots that require investigating in Roots. 3910 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3911 SmallVectorImpl<Value *> &ToDemote, 3912 SmallVectorImpl<Value *> &Roots) { 3913 // We can always demote constants. 3914 if (isa<Constant>(V)) { 3915 ToDemote.push_back(V); 3916 return true; 3917 } 3918 3919 // If the value is not an instruction in the expression with only one use, it 3920 // cannot be demoted. 3921 auto *I = dyn_cast<Instruction>(V); 3922 if (!I || !I->hasOneUse() || !Expr.count(I)) 3923 return false; 3924 3925 switch (I->getOpcode()) { 3926 3927 // We can always demote truncations and extensions. Since truncations can 3928 // seed additional demotion, we save the truncated value. 3929 case Instruction::Trunc: 3930 Roots.push_back(I->getOperand(0)); 3931 break; 3932 case Instruction::ZExt: 3933 case Instruction::SExt: 3934 break; 3935 3936 // We can demote certain binary operations if we can demote both of their 3937 // operands. 3938 case Instruction::Add: 3939 case Instruction::Sub: 3940 case Instruction::Mul: 3941 case Instruction::And: 3942 case Instruction::Or: 3943 case Instruction::Xor: 3944 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3945 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3946 return false; 3947 break; 3948 3949 // We can demote selects if we can demote their true and false values. 3950 case Instruction::Select: { 3951 SelectInst *SI = cast<SelectInst>(I); 3952 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3953 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3954 return false; 3955 break; 3956 } 3957 3958 // We can demote phis if we can demote all their incoming operands. Note that 3959 // we don't need to worry about cycles since we ensure single use above. 3960 case Instruction::PHI: { 3961 PHINode *PN = cast<PHINode>(I); 3962 for (Value *IncValue : PN->incoming_values()) 3963 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3964 return false; 3965 break; 3966 } 3967 3968 // Otherwise, conservatively give up. 3969 default: 3970 return false; 3971 } 3972 3973 // Record the value that we can demote. 3974 ToDemote.push_back(V); 3975 return true; 3976 } 3977 3978 void BoUpSLP::computeMinimumValueSizes() { 3979 // If there are no external uses, the expression tree must be rooted by a 3980 // store. We can't demote in-memory values, so there is nothing to do here. 3981 if (ExternalUses.empty()) 3982 return; 3983 3984 // We only attempt to truncate integer expressions. 3985 auto &TreeRoot = VectorizableTree[0].Scalars; 3986 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3987 if (!TreeRootIT) 3988 return; 3989 3990 // If the expression is not rooted by a store, these roots should have 3991 // external uses. We will rely on InstCombine to rewrite the expression in 3992 // the narrower type. However, InstCombine only rewrites single-use values. 3993 // This means that if a tree entry other than a root is used externally, it 3994 // must have multiple uses and InstCombine will not rewrite it. The code 3995 // below ensures that only the roots are used externally. 3996 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3997 for (auto &EU : ExternalUses) 3998 if (!Expr.erase(EU.Scalar)) 3999 return; 4000 if (!Expr.empty()) 4001 return; 4002 4003 // Collect the scalar values of the vectorizable expression. We will use this 4004 // context to determine which values can be demoted. If we see a truncation, 4005 // we mark it as seeding another demotion. 4006 for (auto &Entry : VectorizableTree) 4007 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4008 4009 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4010 // have a single external user that is not in the vectorizable tree. 4011 for (auto *Root : TreeRoot) 4012 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4013 return; 4014 4015 // Conservatively determine if we can actually truncate the roots of the 4016 // expression. Collect the values that can be demoted in ToDemote and 4017 // additional roots that require investigating in Roots. 4018 SmallVector<Value *, 32> ToDemote; 4019 SmallVector<Value *, 4> Roots; 4020 for (auto *Root : TreeRoot) { 4021 // Do not include top zext/sext/trunc operations to those to be demoted, it 4022 // produces noise cast<vect>, trunc <vect>, exctract <vect>, cast <extract> 4023 // sequence. 4024 if (isa<Constant>(Root)) 4025 continue; 4026 auto *I = dyn_cast<Instruction>(Root); 4027 if (!I || !I->hasOneUse() || !Expr.count(I)) 4028 return; 4029 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) 4030 continue; 4031 if (auto *TI = dyn_cast<TruncInst>(I)) { 4032 Roots.push_back(TI->getOperand(0)); 4033 continue; 4034 } 4035 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4036 return; 4037 } 4038 4039 // The maximum bit width required to represent all the values that can be 4040 // demoted without loss of precision. It would be safe to truncate the roots 4041 // of the expression to this width. 4042 auto MaxBitWidth = 8u; 4043 4044 // We first check if all the bits of the roots are demanded. If they're not, 4045 // we can truncate the roots to this narrower type. 4046 for (auto *Root : TreeRoot) { 4047 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4048 MaxBitWidth = std::max<unsigned>( 4049 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4050 } 4051 4052 // True if the roots can be zero-extended back to their original type, rather 4053 // than sign-extended. We know that if the leading bits are not demanded, we 4054 // can safely zero-extend. So we initialize IsKnownPositive to True. 4055 bool IsKnownPositive = true; 4056 4057 // If all the bits of the roots are demanded, we can try a little harder to 4058 // compute a narrower type. This can happen, for example, if the roots are 4059 // getelementptr indices. InstCombine promotes these indices to the pointer 4060 // width. Thus, all their bits are technically demanded even though the 4061 // address computation might be vectorized in a smaller type. 4062 // 4063 // We start by looking at each entry that can be demoted. We compute the 4064 // maximum bit width required to store the scalar by using ValueTracking to 4065 // compute the number of high-order bits we can truncate. 4066 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4067 MaxBitWidth = 8u; 4068 4069 // Determine if the sign bit of all the roots is known to be zero. If not, 4070 // IsKnownPositive is set to False. 4071 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4072 KnownBits Known = computeKnownBits(R, *DL); 4073 return Known.isNonNegative(); 4074 }); 4075 4076 // Determine the maximum number of bits required to store the scalar 4077 // values. 4078 for (auto *Scalar : ToDemote) { 4079 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4080 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4081 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4082 } 4083 4084 // If we can't prove that the sign bit is zero, we must add one to the 4085 // maximum bit width to account for the unknown sign bit. This preserves 4086 // the existing sign bit so we can safely sign-extend the root back to the 4087 // original type. Otherwise, if we know the sign bit is zero, we will 4088 // zero-extend the root instead. 4089 // 4090 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4091 // one to the maximum bit width will yield a larger-than-necessary 4092 // type. In general, we need to add an extra bit only if we can't 4093 // prove that the upper bit of the original type is equal to the 4094 // upper bit of the proposed smaller type. If these two bits are the 4095 // same (either zero or one) we know that sign-extending from the 4096 // smaller type will result in the same value. Here, since we can't 4097 // yet prove this, we are just making the proposed smaller type 4098 // larger to ensure correctness. 4099 if (!IsKnownPositive) 4100 ++MaxBitWidth; 4101 } 4102 4103 // Round MaxBitWidth up to the next power-of-two. 4104 if (!isPowerOf2_64(MaxBitWidth)) 4105 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4106 4107 // If the maximum bit width we compute is less than the with of the roots' 4108 // type, we can proceed with the narrowing. Otherwise, do nothing. 4109 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4110 return; 4111 4112 // If we can truncate the root, we must collect additional values that might 4113 // be demoted as a result. That is, those seeded by truncations we will 4114 // modify. 4115 while (!Roots.empty()) 4116 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4117 4118 // Finally, map the values we can demote to the maximum bit with we computed. 4119 for (auto *Scalar : ToDemote) 4120 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4121 } 4122 4123 namespace { 4124 4125 /// The SLPVectorizer Pass. 4126 struct SLPVectorizer : public FunctionPass { 4127 SLPVectorizerPass Impl; 4128 4129 /// Pass identification, replacement for typeid 4130 static char ID; 4131 4132 explicit SLPVectorizer() : FunctionPass(ID) { 4133 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4134 } 4135 4136 bool doInitialization(Module &M) override { 4137 return false; 4138 } 4139 4140 bool runOnFunction(Function &F) override { 4141 if (skipFunction(F)) 4142 return false; 4143 4144 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4145 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4146 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4147 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4148 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4149 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4150 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4151 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4152 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4153 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4154 4155 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4156 } 4157 4158 void getAnalysisUsage(AnalysisUsage &AU) const override { 4159 FunctionPass::getAnalysisUsage(AU); 4160 AU.addRequired<AssumptionCacheTracker>(); 4161 AU.addRequired<ScalarEvolutionWrapperPass>(); 4162 AU.addRequired<AAResultsWrapperPass>(); 4163 AU.addRequired<TargetTransformInfoWrapperPass>(); 4164 AU.addRequired<LoopInfoWrapperPass>(); 4165 AU.addRequired<DominatorTreeWrapperPass>(); 4166 AU.addRequired<DemandedBitsWrapperPass>(); 4167 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4168 AU.addPreserved<LoopInfoWrapperPass>(); 4169 AU.addPreserved<DominatorTreeWrapperPass>(); 4170 AU.addPreserved<AAResultsWrapperPass>(); 4171 AU.addPreserved<GlobalsAAWrapperPass>(); 4172 AU.setPreservesCFG(); 4173 } 4174 }; 4175 4176 } // end anonymous namespace 4177 4178 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4179 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4180 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4181 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4182 auto *AA = &AM.getResult<AAManager>(F); 4183 auto *LI = &AM.getResult<LoopAnalysis>(F); 4184 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4185 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4186 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4187 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4188 4189 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4190 if (!Changed) 4191 return PreservedAnalyses::all(); 4192 4193 PreservedAnalyses PA; 4194 PA.preserveSet<CFGAnalyses>(); 4195 PA.preserve<AAManager>(); 4196 PA.preserve<GlobalsAA>(); 4197 return PA; 4198 } 4199 4200 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4201 TargetTransformInfo *TTI_, 4202 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4203 LoopInfo *LI_, DominatorTree *DT_, 4204 AssumptionCache *AC_, DemandedBits *DB_, 4205 OptimizationRemarkEmitter *ORE_) { 4206 SE = SE_; 4207 TTI = TTI_; 4208 TLI = TLI_; 4209 AA = AA_; 4210 LI = LI_; 4211 DT = DT_; 4212 AC = AC_; 4213 DB = DB_; 4214 DL = &F.getParent()->getDataLayout(); 4215 4216 Stores.clear(); 4217 GEPs.clear(); 4218 bool Changed = false; 4219 4220 // If the target claims to have no vector registers don't attempt 4221 // vectorization. 4222 if (!TTI->getNumberOfRegisters(true)) 4223 return false; 4224 4225 // Don't vectorize when the attribute NoImplicitFloat is used. 4226 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4227 return false; 4228 4229 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4230 4231 // Use the bottom up slp vectorizer to construct chains that start with 4232 // store instructions. 4233 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4234 4235 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4236 // delete instructions. 4237 4238 // Scan the blocks in the function in post order. 4239 for (auto BB : post_order(&F.getEntryBlock())) { 4240 collectSeedInstructions(BB); 4241 4242 // Vectorize trees that end at stores. 4243 if (!Stores.empty()) { 4244 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4245 << " underlying objects.\n"); 4246 Changed |= vectorizeStoreChains(R); 4247 } 4248 4249 // Vectorize trees that end at reductions. 4250 Changed |= vectorizeChainsInBlock(BB, R); 4251 4252 // Vectorize the index computations of getelementptr instructions. This 4253 // is primarily intended to catch gather-like idioms ending at 4254 // non-consecutive loads. 4255 if (!GEPs.empty()) { 4256 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4257 << " underlying objects.\n"); 4258 Changed |= vectorizeGEPIndices(BB, R); 4259 } 4260 } 4261 4262 if (Changed) { 4263 R.optimizeGatherSequence(); 4264 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4265 DEBUG(verifyFunction(F)); 4266 } 4267 return Changed; 4268 } 4269 4270 /// \brief Check that the Values in the slice in VL array are still existent in 4271 /// the WeakTrackingVH array. 4272 /// Vectorization of part of the VL array may cause later values in the VL array 4273 /// to become invalid. We track when this has happened in the WeakTrackingVH 4274 /// array. 4275 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4276 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4277 unsigned SliceSize) { 4278 VL = VL.slice(SliceBegin, SliceSize); 4279 VH = VH.slice(SliceBegin, SliceSize); 4280 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4281 } 4282 4283 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4284 unsigned VecRegSize) { 4285 unsigned ChainLen = Chain.size(); 4286 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4287 << "\n"); 4288 unsigned Sz = R.getVectorElementSize(Chain[0]); 4289 unsigned VF = VecRegSize / Sz; 4290 4291 if (!isPowerOf2_32(Sz) || VF < 2) 4292 return false; 4293 4294 // Keep track of values that were deleted by vectorizing in the loop below. 4295 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4296 4297 bool Changed = false; 4298 // Look for profitable vectorizable trees at all offsets, starting at zero. 4299 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4300 if (i + VF > e) 4301 break; 4302 4303 // Check that a previous iteration of this loop did not delete the Value. 4304 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4305 continue; 4306 4307 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4308 << "\n"); 4309 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4310 4311 R.buildTree(Operands); 4312 if (R.isTreeTinyAndNotFullyVectorizable()) 4313 continue; 4314 4315 R.computeMinimumValueSizes(); 4316 4317 int Cost = R.getTreeCost(); 4318 4319 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4320 if (Cost < -SLPCostThreshold) { 4321 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4322 4323 using namespace ore; 4324 4325 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4326 cast<StoreInst>(Chain[i])) 4327 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4328 << " and with tree size " 4329 << NV("TreeSize", R.getTreeSize())); 4330 4331 R.vectorizeTree(); 4332 4333 // Move to the next bundle. 4334 i += VF - 1; 4335 Changed = true; 4336 } 4337 } 4338 4339 return Changed; 4340 } 4341 4342 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4343 BoUpSLP &R) { 4344 SetVector<StoreInst *> Heads; 4345 SmallDenseSet<StoreInst *> Tails; 4346 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4347 4348 // We may run into multiple chains that merge into a single chain. We mark the 4349 // stores that we vectorized so that we don't visit the same store twice. 4350 BoUpSLP::ValueSet VectorizedStores; 4351 bool Changed = false; 4352 4353 // Do a quadratic search on all of the given stores in reverse order and find 4354 // all of the pairs of stores that follow each other. 4355 SmallVector<unsigned, 16> IndexQueue; 4356 unsigned E = Stores.size(); 4357 IndexQueue.resize(E - 1); 4358 for (unsigned I = E; I > 0; --I) { 4359 unsigned Idx = I - 1; 4360 // If a store has multiple consecutive store candidates, search Stores 4361 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4362 // This is because usually pairing with immediate succeeding or preceding 4363 // candidate create the best chance to find slp vectorization opportunity. 4364 unsigned Offset = 1; 4365 unsigned Cnt = 0; 4366 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4367 if (Idx >= Offset) { 4368 IndexQueue[Cnt] = Idx - Offset; 4369 ++Cnt; 4370 } 4371 if (Idx + Offset < E) { 4372 IndexQueue[Cnt] = Idx + Offset; 4373 ++Cnt; 4374 } 4375 } 4376 4377 for (auto K : IndexQueue) { 4378 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4379 Tails.insert(Stores[Idx]); 4380 Heads.insert(Stores[K]); 4381 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4382 break; 4383 } 4384 } 4385 } 4386 4387 // For stores that start but don't end a link in the chain: 4388 for (auto *SI : llvm::reverse(Heads)) { 4389 if (Tails.count(SI)) 4390 continue; 4391 4392 // We found a store instr that starts a chain. Now follow the chain and try 4393 // to vectorize it. 4394 BoUpSLP::ValueList Operands; 4395 StoreInst *I = SI; 4396 // Collect the chain into a list. 4397 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4398 Operands.push_back(I); 4399 // Move to the next value in the chain. 4400 I = ConsecutiveChain[I]; 4401 } 4402 4403 // FIXME: Is division-by-2 the correct step? Should we assert that the 4404 // register size is a power-of-2? 4405 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4406 Size /= 2) { 4407 if (vectorizeStoreChain(Operands, R, Size)) { 4408 // Mark the vectorized stores so that we don't vectorize them again. 4409 VectorizedStores.insert(Operands.begin(), Operands.end()); 4410 Changed = true; 4411 break; 4412 } 4413 } 4414 } 4415 4416 return Changed; 4417 } 4418 4419 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4420 // Initialize the collections. We will make a single pass over the block. 4421 Stores.clear(); 4422 GEPs.clear(); 4423 4424 // Visit the store and getelementptr instructions in BB and organize them in 4425 // Stores and GEPs according to the underlying objects of their pointer 4426 // operands. 4427 for (Instruction &I : *BB) { 4428 // Ignore store instructions that are volatile or have a pointer operand 4429 // that doesn't point to a scalar type. 4430 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4431 if (!SI->isSimple()) 4432 continue; 4433 if (!isValidElementType(SI->getValueOperand()->getType())) 4434 continue; 4435 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4436 } 4437 4438 // Ignore getelementptr instructions that have more than one index, a 4439 // constant index, or a pointer operand that doesn't point to a scalar 4440 // type. 4441 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4442 auto Idx = GEP->idx_begin()->get(); 4443 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4444 continue; 4445 if (!isValidElementType(Idx->getType())) 4446 continue; 4447 if (GEP->getType()->isVectorTy()) 4448 continue; 4449 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4450 } 4451 } 4452 } 4453 4454 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4455 if (!A || !B) 4456 return false; 4457 Value *VL[] = { A, B }; 4458 return tryToVectorizeList(VL, R, true); 4459 } 4460 4461 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4462 bool AllowReorder) { 4463 if (VL.size() < 2) 4464 return false; 4465 4466 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4467 << ".\n"); 4468 4469 // Check that all of the parts are scalar instructions of the same type. 4470 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4471 if (!I0) 4472 return false; 4473 4474 unsigned Opcode0 = I0->getOpcode(); 4475 4476 unsigned Sz = R.getVectorElementSize(I0); 4477 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4478 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4479 if (MaxVF < 2) { 4480 R.getORE()->emit([&]() { 4481 return OptimizationRemarkMissed( 4482 SV_NAME, "SmallVF", I0) 4483 << "Cannot SLP vectorize list: vectorization factor " 4484 << "less than 2 is not supported"; 4485 }); 4486 return false; 4487 } 4488 4489 for (Value *V : VL) { 4490 Type *Ty = V->getType(); 4491 if (!isValidElementType(Ty)) { 4492 // NOTE: the following will give user internal llvm type name, which may not be useful 4493 R.getORE()->emit([&]() { 4494 std::string type_str; 4495 llvm::raw_string_ostream rso(type_str); 4496 Ty->print(rso); 4497 return OptimizationRemarkMissed( 4498 SV_NAME, "UnsupportedType", I0) 4499 << "Cannot SLP vectorize list: type " 4500 << rso.str() + " is unsupported by vectorizer"; 4501 }); 4502 return false; 4503 } 4504 Instruction *Inst = dyn_cast<Instruction>(V); 4505 4506 if (!Inst) 4507 return false; 4508 if (Inst->getOpcode() != Opcode0) { 4509 R.getORE()->emit([&]() { 4510 return OptimizationRemarkMissed( 4511 SV_NAME, "InequableTypes", I0) 4512 << "Cannot SLP vectorize list: not all of the " 4513 << "parts of scalar instructions are of the same type: " 4514 << ore::NV("Instruction1Opcode", I0) << " and " 4515 << ore::NV("Instruction2Opcode", Inst); 4516 }); 4517 return false; 4518 } 4519 } 4520 4521 bool Changed = false; 4522 bool CandidateFound = false; 4523 int MinCost = SLPCostThreshold; 4524 4525 // Keep track of values that were deleted by vectorizing in the loop below. 4526 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4527 4528 unsigned NextInst = 0, MaxInst = VL.size(); 4529 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4530 VF /= 2) { 4531 // No actual vectorization should happen, if number of parts is the same as 4532 // provided vectorization factor (i.e. the scalar type is used for vector 4533 // code during codegen). 4534 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4535 if (TTI->getNumberOfParts(VecTy) == VF) 4536 continue; 4537 for (unsigned I = NextInst; I < MaxInst; ++I) { 4538 unsigned OpsWidth = 0; 4539 4540 if (I + VF > MaxInst) 4541 OpsWidth = MaxInst - I; 4542 else 4543 OpsWidth = VF; 4544 4545 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4546 break; 4547 4548 // Check that a previous iteration of this loop did not delete the Value. 4549 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4550 continue; 4551 4552 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4553 << "\n"); 4554 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4555 4556 R.buildTree(Ops); 4557 // TODO: check if we can allow reordering for more cases. 4558 if (AllowReorder && R.shouldReorder()) { 4559 // Conceptually, there is nothing actually preventing us from trying to 4560 // reorder a larger list. In fact, we do exactly this when vectorizing 4561 // reductions. However, at this point, we only expect to get here when 4562 // there are exactly two operations. 4563 assert(Ops.size() == 2); 4564 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4565 R.buildTree(ReorderedOps, None); 4566 } 4567 if (R.isTreeTinyAndNotFullyVectorizable()) 4568 continue; 4569 4570 R.computeMinimumValueSizes(); 4571 int Cost = R.getTreeCost(); 4572 CandidateFound = true; 4573 MinCost = std::min(MinCost, Cost); 4574 4575 if (Cost < -SLPCostThreshold) { 4576 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4577 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4578 cast<Instruction>(Ops[0])) 4579 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4580 << " and with tree size " 4581 << ore::NV("TreeSize", R.getTreeSize())); 4582 4583 R.vectorizeTree(); 4584 // Move to the next bundle. 4585 I += VF - 1; 4586 NextInst = I + 1; 4587 Changed = true; 4588 } 4589 } 4590 } 4591 4592 if (!Changed && CandidateFound) { 4593 R.getORE()->emit([&]() { 4594 return OptimizationRemarkMissed( 4595 SV_NAME, "NotBeneficial", I0) 4596 << "List vectorization was possible but not beneficial with cost " 4597 << ore::NV("Cost", MinCost) << " >= " 4598 << ore::NV("Treshold", -SLPCostThreshold); 4599 }); 4600 } else if (!Changed) { 4601 R.getORE()->emit([&]() { 4602 return OptimizationRemarkMissed( 4603 SV_NAME, "NotPossible", I0) 4604 << "Cannot SLP vectorize list: vectorization was impossible" 4605 << " with available vectorization factors"; 4606 }); 4607 } 4608 return Changed; 4609 } 4610 4611 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4612 if (!I) 4613 return false; 4614 4615 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4616 return false; 4617 4618 Value *P = I->getParent(); 4619 4620 // Vectorize in current basic block only. 4621 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4622 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4623 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4624 return false; 4625 4626 // Try to vectorize V. 4627 if (tryToVectorizePair(Op0, Op1, R)) 4628 return true; 4629 4630 auto *A = dyn_cast<BinaryOperator>(Op0); 4631 auto *B = dyn_cast<BinaryOperator>(Op1); 4632 // Try to skip B. 4633 if (B && B->hasOneUse()) { 4634 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4635 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4636 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4637 return true; 4638 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4639 return true; 4640 } 4641 4642 // Try to skip A. 4643 if (A && A->hasOneUse()) { 4644 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4645 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4646 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4647 return true; 4648 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4649 return true; 4650 } 4651 return false; 4652 } 4653 4654 /// \brief Generate a shuffle mask to be used in a reduction tree. 4655 /// 4656 /// \param VecLen The length of the vector to be reduced. 4657 /// \param NumEltsToRdx The number of elements that should be reduced in the 4658 /// vector. 4659 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4660 /// reduction. A pairwise reduction will generate a mask of 4661 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4662 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4663 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4664 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4665 bool IsPairwise, bool IsLeft, 4666 IRBuilder<> &Builder) { 4667 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4668 4669 SmallVector<Constant *, 32> ShuffleMask( 4670 VecLen, UndefValue::get(Builder.getInt32Ty())); 4671 4672 if (IsPairwise) 4673 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4674 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4675 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4676 else 4677 // Move the upper half of the vector to the lower half. 4678 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4679 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4680 4681 return ConstantVector::get(ShuffleMask); 4682 } 4683 4684 namespace { 4685 4686 /// Model horizontal reductions. 4687 /// 4688 /// A horizontal reduction is a tree of reduction operations (currently add and 4689 /// fadd) that has operations that can be put into a vector as its leaf. 4690 /// For example, this tree: 4691 /// 4692 /// mul mul mul mul 4693 /// \ / \ / 4694 /// + + 4695 /// \ / 4696 /// + 4697 /// This tree has "mul" as its reduced values and "+" as its reduction 4698 /// operations. A reduction might be feeding into a store or a binary operation 4699 /// feeding a phi. 4700 /// ... 4701 /// \ / 4702 /// + 4703 /// | 4704 /// phi += 4705 /// 4706 /// Or: 4707 /// ... 4708 /// \ / 4709 /// + 4710 /// | 4711 /// *p = 4712 /// 4713 class HorizontalReduction { 4714 using ReductionOpsType = SmallVector<Value *, 16>; 4715 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 4716 ReductionOpsListType ReductionOps; 4717 SmallVector<Value *, 32> ReducedVals; 4718 // Use map vector to make stable output. 4719 MapVector<Instruction *, Value *> ExtraArgs; 4720 4721 /// Kind of the reduction data. 4722 enum ReductionKind { 4723 RK_None, /// Not a reduction. 4724 RK_Arithmetic, /// Binary reduction data. 4725 RK_Min, /// Minimum reduction data. 4726 RK_UMin, /// Unsigned minimum reduction data. 4727 RK_Max, /// Maximum reduction data. 4728 RK_UMax, /// Unsigned maximum reduction data. 4729 }; 4730 4731 /// Contains info about operation, like its opcode, left and right operands. 4732 class OperationData { 4733 /// Opcode of the instruction. 4734 unsigned Opcode = 0; 4735 4736 /// Left operand of the reduction operation. 4737 Value *LHS = nullptr; 4738 4739 /// Right operand of the reduction operation. 4740 Value *RHS = nullptr; 4741 4742 /// Kind of the reduction operation. 4743 ReductionKind Kind = RK_None; 4744 4745 /// True if float point min/max reduction has no NaNs. 4746 bool NoNaN = false; 4747 4748 /// Checks if the reduction operation can be vectorized. 4749 bool isVectorizable() const { 4750 return LHS && RHS && 4751 // We currently only support adds && min/max reductions. 4752 ((Kind == RK_Arithmetic && 4753 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 4754 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 4755 (Kind == RK_Min || Kind == RK_Max)) || 4756 (Opcode == Instruction::ICmp && 4757 (Kind == RK_UMin || Kind == RK_UMax))); 4758 } 4759 4760 /// Creates reduction operation with the current opcode. 4761 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 4762 assert(isVectorizable() && 4763 "Expected add|fadd or min/max reduction operation."); 4764 Value *Cmp; 4765 switch (Kind) { 4766 case RK_Arithmetic: 4767 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4768 Name); 4769 case RK_Min: 4770 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 4771 : Builder.CreateFCmpOLT(LHS, RHS); 4772 break; 4773 case RK_Max: 4774 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 4775 : Builder.CreateFCmpOGT(LHS, RHS); 4776 break; 4777 case RK_UMin: 4778 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4779 Cmp = Builder.CreateICmpULT(LHS, RHS); 4780 break; 4781 case RK_UMax: 4782 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4783 Cmp = Builder.CreateICmpUGT(LHS, RHS); 4784 break; 4785 case RK_None: 4786 llvm_unreachable("Unknown reduction operation."); 4787 } 4788 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 4789 } 4790 4791 public: 4792 explicit OperationData() = default; 4793 4794 /// Construction for reduced values. They are identified by opcode only and 4795 /// don't have associated LHS/RHS values. 4796 explicit OperationData(Value *V) { 4797 if (auto *I = dyn_cast<Instruction>(V)) 4798 Opcode = I->getOpcode(); 4799 } 4800 4801 /// Constructor for reduction operations with opcode and its left and 4802 /// right operands. 4803 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 4804 bool NoNaN = false) 4805 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 4806 assert(Kind != RK_None && "One of the reduction operations is expected."); 4807 } 4808 4809 explicit operator bool() const { return Opcode; } 4810 4811 /// Get the index of the first operand. 4812 unsigned getFirstOperandIndex() const { 4813 assert(!!*this && "The opcode is not set."); 4814 switch (Kind) { 4815 case RK_Min: 4816 case RK_UMin: 4817 case RK_Max: 4818 case RK_UMax: 4819 return 1; 4820 case RK_Arithmetic: 4821 case RK_None: 4822 break; 4823 } 4824 return 0; 4825 } 4826 4827 /// Total number of operands in the reduction operation. 4828 unsigned getNumberOfOperands() const { 4829 assert(Kind != RK_None && !!*this && LHS && RHS && 4830 "Expected reduction operation."); 4831 switch (Kind) { 4832 case RK_Arithmetic: 4833 return 2; 4834 case RK_Min: 4835 case RK_UMin: 4836 case RK_Max: 4837 case RK_UMax: 4838 return 3; 4839 case RK_None: 4840 break; 4841 } 4842 llvm_unreachable("Reduction kind is not set"); 4843 } 4844 4845 /// Checks if the operation has the same parent as \p P. 4846 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 4847 assert(Kind != RK_None && !!*this && LHS && RHS && 4848 "Expected reduction operation."); 4849 if (!IsRedOp) 4850 return I->getParent() == P; 4851 switch (Kind) { 4852 case RK_Arithmetic: 4853 // Arithmetic reduction operation must be used once only. 4854 return I->getParent() == P; 4855 case RK_Min: 4856 case RK_UMin: 4857 case RK_Max: 4858 case RK_UMax: { 4859 // SelectInst must be used twice while the condition op must have single 4860 // use only. 4861 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 4862 return I->getParent() == P && Cmp && Cmp->getParent() == P; 4863 } 4864 case RK_None: 4865 break; 4866 } 4867 llvm_unreachable("Reduction kind is not set"); 4868 } 4869 /// Expected number of uses for reduction operations/reduced values. 4870 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 4871 assert(Kind != RK_None && !!*this && LHS && RHS && 4872 "Expected reduction operation."); 4873 switch (Kind) { 4874 case RK_Arithmetic: 4875 return I->hasOneUse(); 4876 case RK_Min: 4877 case RK_UMin: 4878 case RK_Max: 4879 case RK_UMax: 4880 return I->hasNUses(2) && 4881 (!IsReductionOp || 4882 cast<SelectInst>(I)->getCondition()->hasOneUse()); 4883 case RK_None: 4884 break; 4885 } 4886 llvm_unreachable("Reduction kind is not set"); 4887 } 4888 4889 /// Initializes the list of reduction operations. 4890 void initReductionOps(ReductionOpsListType &ReductionOps) { 4891 assert(Kind != RK_None && !!*this && LHS && RHS && 4892 "Expected reduction operation."); 4893 switch (Kind) { 4894 case RK_Arithmetic: 4895 ReductionOps.assign(1, ReductionOpsType()); 4896 break; 4897 case RK_Min: 4898 case RK_UMin: 4899 case RK_Max: 4900 case RK_UMax: 4901 ReductionOps.assign(2, ReductionOpsType()); 4902 break; 4903 case RK_None: 4904 llvm_unreachable("Reduction kind is not set"); 4905 } 4906 } 4907 /// Add all reduction operations for the reduction instruction \p I. 4908 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 4909 assert(Kind != RK_None && !!*this && LHS && RHS && 4910 "Expected reduction operation."); 4911 switch (Kind) { 4912 case RK_Arithmetic: 4913 ReductionOps[0].emplace_back(I); 4914 break; 4915 case RK_Min: 4916 case RK_UMin: 4917 case RK_Max: 4918 case RK_UMax: 4919 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 4920 ReductionOps[1].emplace_back(I); 4921 break; 4922 case RK_None: 4923 llvm_unreachable("Reduction kind is not set"); 4924 } 4925 } 4926 4927 /// Checks if instruction is associative and can be vectorized. 4928 bool isAssociative(Instruction *I) const { 4929 assert(Kind != RK_None && *this && LHS && RHS && 4930 "Expected reduction operation."); 4931 switch (Kind) { 4932 case RK_Arithmetic: 4933 return I->isAssociative(); 4934 case RK_Min: 4935 case RK_Max: 4936 return Opcode == Instruction::ICmp || 4937 cast<Instruction>(I->getOperand(0))->isFast(); 4938 case RK_UMin: 4939 case RK_UMax: 4940 assert(Opcode == Instruction::ICmp && 4941 "Only integer compare operation is expected."); 4942 return true; 4943 case RK_None: 4944 break; 4945 } 4946 llvm_unreachable("Reduction kind is not set"); 4947 } 4948 4949 /// Checks if the reduction operation can be vectorized. 4950 bool isVectorizable(Instruction *I) const { 4951 return isVectorizable() && isAssociative(I); 4952 } 4953 4954 /// Checks if two operation data are both a reduction op or both a reduced 4955 /// value. 4956 bool operator==(const OperationData &OD) { 4957 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 4958 "One of the comparing operations is incorrect."); 4959 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 4960 } 4961 bool operator!=(const OperationData &OD) { return !(*this == OD); } 4962 void clear() { 4963 Opcode = 0; 4964 LHS = nullptr; 4965 RHS = nullptr; 4966 Kind = RK_None; 4967 NoNaN = false; 4968 } 4969 4970 /// Get the opcode of the reduction operation. 4971 unsigned getOpcode() const { 4972 assert(isVectorizable() && "Expected vectorizable operation."); 4973 return Opcode; 4974 } 4975 4976 /// Get kind of reduction data. 4977 ReductionKind getKind() const { return Kind; } 4978 Value *getLHS() const { return LHS; } 4979 Value *getRHS() const { return RHS; } 4980 Type *getConditionType() const { 4981 switch (Kind) { 4982 case RK_Arithmetic: 4983 return nullptr; 4984 case RK_Min: 4985 case RK_Max: 4986 case RK_UMin: 4987 case RK_UMax: 4988 return CmpInst::makeCmpResultType(LHS->getType()); 4989 case RK_None: 4990 break; 4991 } 4992 llvm_unreachable("Reduction kind is not set"); 4993 } 4994 4995 /// Creates reduction operation with the current opcode with the IR flags 4996 /// from \p ReductionOps. 4997 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 4998 const ReductionOpsListType &ReductionOps) const { 4999 assert(isVectorizable() && 5000 "Expected add|fadd or min/max reduction operation."); 5001 auto *Op = createOp(Builder, Name); 5002 switch (Kind) { 5003 case RK_Arithmetic: 5004 propagateIRFlags(Op, ReductionOps[0]); 5005 return Op; 5006 case RK_Min: 5007 case RK_Max: 5008 case RK_UMin: 5009 case RK_UMax: 5010 if (auto *SI = dyn_cast<SelectInst>(Op)) 5011 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5012 propagateIRFlags(Op, ReductionOps[1]); 5013 return Op; 5014 case RK_None: 5015 break; 5016 } 5017 llvm_unreachable("Unknown reduction operation."); 5018 } 5019 /// Creates reduction operation with the current opcode with the IR flags 5020 /// from \p I. 5021 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5022 Instruction *I) const { 5023 assert(isVectorizable() && 5024 "Expected add|fadd or min/max reduction operation."); 5025 auto *Op = createOp(Builder, Name); 5026 switch (Kind) { 5027 case RK_Arithmetic: 5028 propagateIRFlags(Op, I); 5029 return Op; 5030 case RK_Min: 5031 case RK_Max: 5032 case RK_UMin: 5033 case RK_UMax: 5034 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5035 propagateIRFlags(SI->getCondition(), 5036 cast<SelectInst>(I)->getCondition()); 5037 } 5038 propagateIRFlags(Op, I); 5039 return Op; 5040 case RK_None: 5041 break; 5042 } 5043 llvm_unreachable("Unknown reduction operation."); 5044 } 5045 5046 TargetTransformInfo::ReductionFlags getFlags() const { 5047 TargetTransformInfo::ReductionFlags Flags; 5048 Flags.NoNaN = NoNaN; 5049 switch (Kind) { 5050 case RK_Arithmetic: 5051 break; 5052 case RK_Min: 5053 Flags.IsSigned = Opcode == Instruction::ICmp; 5054 Flags.IsMaxOp = false; 5055 break; 5056 case RK_Max: 5057 Flags.IsSigned = Opcode == Instruction::ICmp; 5058 Flags.IsMaxOp = true; 5059 break; 5060 case RK_UMin: 5061 Flags.IsSigned = false; 5062 Flags.IsMaxOp = false; 5063 break; 5064 case RK_UMax: 5065 Flags.IsSigned = false; 5066 Flags.IsMaxOp = true; 5067 break; 5068 case RK_None: 5069 llvm_unreachable("Reduction kind is not set"); 5070 } 5071 return Flags; 5072 } 5073 }; 5074 5075 Instruction *ReductionRoot = nullptr; 5076 5077 /// The operation data of the reduction operation. 5078 OperationData ReductionData; 5079 5080 /// The operation data of the values we perform a reduction on. 5081 OperationData ReducedValueData; 5082 5083 /// Should we model this reduction as a pairwise reduction tree or a tree that 5084 /// splits the vector in halves and adds those halves. 5085 bool IsPairwiseReduction = false; 5086 5087 /// Checks if the ParentStackElem.first should be marked as a reduction 5088 /// operation with an extra argument or as extra argument itself. 5089 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5090 Value *ExtraArg) { 5091 if (ExtraArgs.count(ParentStackElem.first)) { 5092 ExtraArgs[ParentStackElem.first] = nullptr; 5093 // We ran into something like: 5094 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5095 // The whole ParentStackElem.first should be considered as an extra value 5096 // in this case. 5097 // Do not perform analysis of remaining operands of ParentStackElem.first 5098 // instruction, this whole instruction is an extra argument. 5099 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5100 } else { 5101 // We ran into something like: 5102 // ParentStackElem.first += ... + ExtraArg + ... 5103 ExtraArgs[ParentStackElem.first] = ExtraArg; 5104 } 5105 } 5106 5107 static OperationData getOperationData(Value *V) { 5108 if (!V) 5109 return OperationData(); 5110 5111 Value *LHS; 5112 Value *RHS; 5113 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5114 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5115 RK_Arithmetic); 5116 } 5117 if (auto *Select = dyn_cast<SelectInst>(V)) { 5118 // Look for a min/max pattern. 5119 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5120 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5121 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5122 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5123 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5124 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5125 return OperationData( 5126 Instruction::FCmp, LHS, RHS, RK_Min, 5127 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5128 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5129 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5130 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5131 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5132 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5133 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5134 return OperationData( 5135 Instruction::FCmp, LHS, RHS, RK_Max, 5136 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5137 } 5138 } 5139 return OperationData(V); 5140 } 5141 5142 public: 5143 HorizontalReduction() = default; 5144 5145 /// \brief Try to find a reduction tree. 5146 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5147 assert((!Phi || is_contained(Phi->operands(), B)) && 5148 "Thi phi needs to use the binary operator"); 5149 5150 ReductionData = getOperationData(B); 5151 5152 // We could have a initial reductions that is not an add. 5153 // r *= v1 + v2 + v3 + v4 5154 // In such a case start looking for a tree rooted in the first '+'. 5155 if (Phi) { 5156 if (ReductionData.getLHS() == Phi) { 5157 Phi = nullptr; 5158 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5159 ReductionData = getOperationData(B); 5160 } else if (ReductionData.getRHS() == Phi) { 5161 Phi = nullptr; 5162 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5163 ReductionData = getOperationData(B); 5164 } 5165 } 5166 5167 if (!ReductionData.isVectorizable(B)) 5168 return false; 5169 5170 Type *Ty = B->getType(); 5171 if (!isValidElementType(Ty)) 5172 return false; 5173 5174 ReducedValueData.clear(); 5175 ReductionRoot = B; 5176 5177 // Post order traverse the reduction tree starting at B. We only handle true 5178 // trees containing only binary operators. 5179 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5180 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5181 ReductionData.initReductionOps(ReductionOps); 5182 while (!Stack.empty()) { 5183 Instruction *TreeN = Stack.back().first; 5184 unsigned EdgeToVist = Stack.back().second++; 5185 OperationData OpData = getOperationData(TreeN); 5186 bool IsReducedValue = OpData != ReductionData; 5187 5188 // Postorder vist. 5189 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5190 if (IsReducedValue) 5191 ReducedVals.push_back(TreeN); 5192 else { 5193 auto I = ExtraArgs.find(TreeN); 5194 if (I != ExtraArgs.end() && !I->second) { 5195 // Check if TreeN is an extra argument of its parent operation. 5196 if (Stack.size() <= 1) { 5197 // TreeN can't be an extra argument as it is a root reduction 5198 // operation. 5199 return false; 5200 } 5201 // Yes, TreeN is an extra argument, do not add it to a list of 5202 // reduction operations. 5203 // Stack[Stack.size() - 2] always points to the parent operation. 5204 markExtraArg(Stack[Stack.size() - 2], TreeN); 5205 ExtraArgs.erase(TreeN); 5206 } else 5207 ReductionData.addReductionOps(TreeN, ReductionOps); 5208 } 5209 // Retract. 5210 Stack.pop_back(); 5211 continue; 5212 } 5213 5214 // Visit left or right. 5215 Value *NextV = TreeN->getOperand(EdgeToVist); 5216 if (NextV != Phi) { 5217 auto *I = dyn_cast<Instruction>(NextV); 5218 OpData = getOperationData(I); 5219 // Continue analysis if the next operand is a reduction operation or 5220 // (possibly) a reduced value. If the reduced value opcode is not set, 5221 // the first met operation != reduction operation is considered as the 5222 // reduced value class. 5223 if (I && (!ReducedValueData || OpData == ReducedValueData || 5224 OpData == ReductionData)) { 5225 const bool IsReductionOperation = OpData == ReductionData; 5226 // Only handle trees in the current basic block. 5227 if (!ReductionData.hasSameParent(I, B->getParent(), 5228 IsReductionOperation)) { 5229 // I is an extra argument for TreeN (its parent operation). 5230 markExtraArg(Stack.back(), I); 5231 continue; 5232 } 5233 5234 // Each tree node needs to have minimal number of users except for the 5235 // ultimate reduction. 5236 if (!ReductionData.hasRequiredNumberOfUses(I, 5237 OpData == ReductionData) && 5238 I != B) { 5239 // I is an extra argument for TreeN (its parent operation). 5240 markExtraArg(Stack.back(), I); 5241 continue; 5242 } 5243 5244 if (IsReductionOperation) { 5245 // We need to be able to reassociate the reduction operations. 5246 if (!OpData.isAssociative(I)) { 5247 // I is an extra argument for TreeN (its parent operation). 5248 markExtraArg(Stack.back(), I); 5249 continue; 5250 } 5251 } else if (ReducedValueData && 5252 ReducedValueData != OpData) { 5253 // Make sure that the opcodes of the operations that we are going to 5254 // reduce match. 5255 // I is an extra argument for TreeN (its parent operation). 5256 markExtraArg(Stack.back(), I); 5257 continue; 5258 } else if (!ReducedValueData) 5259 ReducedValueData = OpData; 5260 5261 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5262 continue; 5263 } 5264 } 5265 // NextV is an extra argument for TreeN (its parent operation). 5266 markExtraArg(Stack.back(), NextV); 5267 } 5268 return true; 5269 } 5270 5271 /// \brief Attempt to vectorize the tree found by 5272 /// matchAssociativeReduction. 5273 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5274 if (ReducedVals.empty()) 5275 return false; 5276 5277 // If there is a sufficient number of reduction values, reduce 5278 // to a nearby power-of-2. Can safely generate oversized 5279 // vectors and rely on the backend to split them to legal sizes. 5280 unsigned NumReducedVals = ReducedVals.size(); 5281 if (NumReducedVals < 4) 5282 return false; 5283 5284 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5285 5286 Value *VectorizedTree = nullptr; 5287 IRBuilder<> Builder(ReductionRoot); 5288 FastMathFlags Unsafe; 5289 Unsafe.setFast(); 5290 Builder.setFastMathFlags(Unsafe); 5291 unsigned i = 0; 5292 5293 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5294 // The same extra argument may be used several time, so log each attempt 5295 // to use it. 5296 for (auto &Pair : ExtraArgs) 5297 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5298 SmallVector<Value *, 16> IgnoreList; 5299 for (auto &V : ReductionOps) 5300 IgnoreList.append(V.begin(), V.end()); 5301 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5302 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5303 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5304 if (V.shouldReorder()) { 5305 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5306 V.buildTree(Reversed, ExternallyUsedValues, IgnoreList); 5307 } 5308 if (V.isTreeTinyAndNotFullyVectorizable()) 5309 break; 5310 5311 V.computeMinimumValueSizes(); 5312 5313 // Estimate cost. 5314 int Cost = 5315 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5316 if (Cost >= -SLPCostThreshold) { 5317 V.getORE()->emit([&]() { 5318 return OptimizationRemarkMissed( 5319 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5320 << "Vectorizing horizontal reduction is possible" 5321 << "but not beneficial with cost " 5322 << ore::NV("Cost", Cost) << " and threshold " 5323 << ore::NV("Threshold", -SLPCostThreshold); 5324 }); 5325 break; 5326 } 5327 5328 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5329 << ". (HorRdx)\n"); 5330 V.getORE()->emit([&]() { 5331 return OptimizationRemark( 5332 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5333 << "Vectorized horizontal reduction with cost " 5334 << ore::NV("Cost", Cost) << " and with tree size " 5335 << ore::NV("TreeSize", V.getTreeSize()); 5336 }); 5337 5338 // Vectorize a tree. 5339 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5340 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5341 5342 // Emit a reduction. 5343 Value *ReducedSubTree = 5344 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5345 if (VectorizedTree) { 5346 Builder.SetCurrentDebugLocation(Loc); 5347 OperationData VectReductionData(ReductionData.getOpcode(), 5348 VectorizedTree, ReducedSubTree, 5349 ReductionData.getKind()); 5350 VectorizedTree = 5351 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5352 } else 5353 VectorizedTree = ReducedSubTree; 5354 i += ReduxWidth; 5355 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5356 } 5357 5358 if (VectorizedTree) { 5359 // Finish the reduction. 5360 for (; i < NumReducedVals; ++i) { 5361 auto *I = cast<Instruction>(ReducedVals[i]); 5362 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5363 OperationData VectReductionData(ReductionData.getOpcode(), 5364 VectorizedTree, I, 5365 ReductionData.getKind()); 5366 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5367 } 5368 for (auto &Pair : ExternallyUsedValues) { 5369 assert(!Pair.second.empty() && 5370 "At least one DebugLoc must be inserted"); 5371 // Add each externally used value to the final reduction. 5372 for (auto *I : Pair.second) { 5373 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5374 OperationData VectReductionData(ReductionData.getOpcode(), 5375 VectorizedTree, Pair.first, 5376 ReductionData.getKind()); 5377 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5378 } 5379 } 5380 // Update users. 5381 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5382 } 5383 return VectorizedTree != nullptr; 5384 } 5385 5386 unsigned numReductionValues() const { 5387 return ReducedVals.size(); 5388 } 5389 5390 private: 5391 /// \brief Calculate the cost of a reduction. 5392 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5393 unsigned ReduxWidth) { 5394 Type *ScalarTy = FirstReducedVal->getType(); 5395 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5396 5397 int PairwiseRdxCost; 5398 int SplittingRdxCost; 5399 switch (ReductionData.getKind()) { 5400 case RK_Arithmetic: 5401 PairwiseRdxCost = 5402 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5403 /*IsPairwiseForm=*/true); 5404 SplittingRdxCost = 5405 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5406 /*IsPairwiseForm=*/false); 5407 break; 5408 case RK_Min: 5409 case RK_Max: 5410 case RK_UMin: 5411 case RK_UMax: { 5412 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5413 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5414 ReductionData.getKind() == RK_UMax; 5415 PairwiseRdxCost = 5416 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5417 /*IsPairwiseForm=*/true, IsUnsigned); 5418 SplittingRdxCost = 5419 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5420 /*IsPairwiseForm=*/false, IsUnsigned); 5421 break; 5422 } 5423 case RK_None: 5424 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5425 } 5426 5427 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5428 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5429 5430 int ScalarReduxCost; 5431 switch (ReductionData.getKind()) { 5432 case RK_Arithmetic: 5433 ScalarReduxCost = 5434 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5435 break; 5436 case RK_Min: 5437 case RK_Max: 5438 case RK_UMin: 5439 case RK_UMax: 5440 ScalarReduxCost = 5441 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5442 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5443 CmpInst::makeCmpResultType(ScalarTy)); 5444 break; 5445 case RK_None: 5446 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5447 } 5448 ScalarReduxCost *= (ReduxWidth - 1); 5449 5450 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5451 << " for reduction that starts with " << *FirstReducedVal 5452 << " (It is a " 5453 << (IsPairwiseReduction ? "pairwise" : "splitting") 5454 << " reduction)\n"); 5455 5456 return VecReduxCost - ScalarReduxCost; 5457 } 5458 5459 /// \brief Emit a horizontal reduction of the vectorized value. 5460 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5461 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5462 assert(VectorizedValue && "Need to have a vectorized tree node"); 5463 assert(isPowerOf2_32(ReduxWidth) && 5464 "We only handle power-of-two reductions for now"); 5465 5466 if (!IsPairwiseReduction) 5467 return createSimpleTargetReduction( 5468 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5469 ReductionData.getFlags(), ReductionOps.back()); 5470 5471 Value *TmpVec = VectorizedValue; 5472 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5473 Value *LeftMask = 5474 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5475 Value *RightMask = 5476 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5477 5478 Value *LeftShuf = Builder.CreateShuffleVector( 5479 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5480 Value *RightShuf = Builder.CreateShuffleVector( 5481 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5482 "rdx.shuf.r"); 5483 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5484 RightShuf, ReductionData.getKind()); 5485 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5486 } 5487 5488 // The result is in the first element of the vector. 5489 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5490 } 5491 }; 5492 5493 } // end anonymous namespace 5494 5495 /// \brief Recognize construction of vectors like 5496 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5497 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5498 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5499 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5500 /// starting from the last insertelement instruction. 5501 /// 5502 /// Returns true if it matches 5503 static bool findBuildVector(InsertElementInst *LastInsertElem, 5504 SmallVectorImpl<Value *> &BuildVectorOpds) { 5505 Value *V = nullptr; 5506 do { 5507 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5508 V = LastInsertElem->getOperand(0); 5509 if (isa<UndefValue>(V)) 5510 break; 5511 LastInsertElem = dyn_cast<InsertElementInst>(V); 5512 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5513 return false; 5514 } while (true); 5515 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5516 return true; 5517 } 5518 5519 /// \brief Like findBuildVector, but looks for construction of aggregate. 5520 /// 5521 /// \return true if it matches. 5522 static bool findBuildAggregate(InsertValueInst *IV, 5523 SmallVectorImpl<Value *> &BuildVectorOpds) { 5524 Value *V; 5525 do { 5526 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5527 V = IV->getAggregateOperand(); 5528 if (isa<UndefValue>(V)) 5529 break; 5530 IV = dyn_cast<InsertValueInst>(V); 5531 if (!IV || !IV->hasOneUse()) 5532 return false; 5533 } while (true); 5534 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5535 return true; 5536 } 5537 5538 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5539 return V->getType() < V2->getType(); 5540 } 5541 5542 /// \brief Try and get a reduction value from a phi node. 5543 /// 5544 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5545 /// if they come from either \p ParentBB or a containing loop latch. 5546 /// 5547 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5548 /// if not possible. 5549 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5550 BasicBlock *ParentBB, LoopInfo *LI) { 5551 // There are situations where the reduction value is not dominated by the 5552 // reduction phi. Vectorizing such cases has been reported to cause 5553 // miscompiles. See PR25787. 5554 auto DominatedReduxValue = [&](Value *R) { 5555 return ( 5556 dyn_cast<Instruction>(R) && 5557 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5558 }; 5559 5560 Value *Rdx = nullptr; 5561 5562 // Return the incoming value if it comes from the same BB as the phi node. 5563 if (P->getIncomingBlock(0) == ParentBB) { 5564 Rdx = P->getIncomingValue(0); 5565 } else if (P->getIncomingBlock(1) == ParentBB) { 5566 Rdx = P->getIncomingValue(1); 5567 } 5568 5569 if (Rdx && DominatedReduxValue(Rdx)) 5570 return Rdx; 5571 5572 // Otherwise, check whether we have a loop latch to look at. 5573 Loop *BBL = LI->getLoopFor(ParentBB); 5574 if (!BBL) 5575 return nullptr; 5576 BasicBlock *BBLatch = BBL->getLoopLatch(); 5577 if (!BBLatch) 5578 return nullptr; 5579 5580 // There is a loop latch, return the incoming value if it comes from 5581 // that. This reduction pattern occasionally turns up. 5582 if (P->getIncomingBlock(0) == BBLatch) { 5583 Rdx = P->getIncomingValue(0); 5584 } else if (P->getIncomingBlock(1) == BBLatch) { 5585 Rdx = P->getIncomingValue(1); 5586 } 5587 5588 if (Rdx && DominatedReduxValue(Rdx)) 5589 return Rdx; 5590 5591 return nullptr; 5592 } 5593 5594 /// Attempt to reduce a horizontal reduction. 5595 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5596 /// with reduction operators \a Root (or one of its operands) in a basic block 5597 /// \a BB, then check if it can be done. If horizontal reduction is not found 5598 /// and root instruction is a binary operation, vectorization of the operands is 5599 /// attempted. 5600 /// \returns true if a horizontal reduction was matched and reduced or operands 5601 /// of one of the binary instruction were vectorized. 5602 /// \returns false if a horizontal reduction was not matched (or not possible) 5603 /// or no vectorization of any binary operation feeding \a Root instruction was 5604 /// performed. 5605 static bool tryToVectorizeHorReductionOrInstOperands( 5606 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5607 TargetTransformInfo *TTI, 5608 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5609 if (!ShouldVectorizeHor) 5610 return false; 5611 5612 if (!Root) 5613 return false; 5614 5615 if (Root->getParent() != BB || isa<PHINode>(Root)) 5616 return false; 5617 // Start analysis starting from Root instruction. If horizontal reduction is 5618 // found, try to vectorize it. If it is not a horizontal reduction or 5619 // vectorization is not possible or not effective, and currently analyzed 5620 // instruction is a binary operation, try to vectorize the operands, using 5621 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5622 // the same procedure considering each operand as a possible root of the 5623 // horizontal reduction. 5624 // Interrupt the process if the Root instruction itself was vectorized or all 5625 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5626 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5627 SmallSet<Value *, 8> VisitedInstrs; 5628 bool Res = false; 5629 while (!Stack.empty()) { 5630 Value *V; 5631 unsigned Level; 5632 std::tie(V, Level) = Stack.pop_back_val(); 5633 if (!V) 5634 continue; 5635 auto *Inst = dyn_cast<Instruction>(V); 5636 if (!Inst) 5637 continue; 5638 auto *BI = dyn_cast<BinaryOperator>(Inst); 5639 auto *SI = dyn_cast<SelectInst>(Inst); 5640 if (BI || SI) { 5641 HorizontalReduction HorRdx; 5642 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5643 if (HorRdx.tryToReduce(R, TTI)) { 5644 Res = true; 5645 // Set P to nullptr to avoid re-analysis of phi node in 5646 // matchAssociativeReduction function unless this is the root node. 5647 P = nullptr; 5648 continue; 5649 } 5650 } 5651 if (P && BI) { 5652 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5653 if (Inst == P) 5654 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5655 if (!Inst) { 5656 // Set P to nullptr to avoid re-analysis of phi node in 5657 // matchAssociativeReduction function unless this is the root node. 5658 P = nullptr; 5659 continue; 5660 } 5661 } 5662 } 5663 // Set P to nullptr to avoid re-analysis of phi node in 5664 // matchAssociativeReduction function unless this is the root node. 5665 P = nullptr; 5666 if (Vectorize(Inst, R)) { 5667 Res = true; 5668 continue; 5669 } 5670 5671 // Try to vectorize operands. 5672 // Continue analysis for the instruction from the same basic block only to 5673 // save compile time. 5674 if (++Level < RecursionMaxDepth) 5675 for (auto *Op : Inst->operand_values()) 5676 if (VisitedInstrs.insert(Op).second) 5677 if (auto *I = dyn_cast<Instruction>(Op)) 5678 if (!isa<PHINode>(I) && I->getParent() == BB) 5679 Stack.emplace_back(Op, Level); 5680 } 5681 return Res; 5682 } 5683 5684 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5685 BasicBlock *BB, BoUpSLP &R, 5686 TargetTransformInfo *TTI) { 5687 if (!V) 5688 return false; 5689 auto *I = dyn_cast<Instruction>(V); 5690 if (!I) 5691 return false; 5692 5693 if (!isa<BinaryOperator>(I)) 5694 P = nullptr; 5695 // Try to match and vectorize a horizontal reduction. 5696 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5697 return tryToVectorize(I, R); 5698 }; 5699 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5700 ExtraVectorization); 5701 } 5702 5703 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5704 BasicBlock *BB, BoUpSLP &R) { 5705 const DataLayout &DL = BB->getModule()->getDataLayout(); 5706 if (!R.canMapToVector(IVI->getType(), DL)) 5707 return false; 5708 5709 SmallVector<Value *, 16> BuildVectorOpds; 5710 if (!findBuildAggregate(IVI, BuildVectorOpds)) 5711 return false; 5712 5713 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5714 // Aggregate value is unlikely to be processed in vector register, we need to 5715 // extract scalars into scalar registers, so NeedExtraction is set true. 5716 return tryToVectorizeList(BuildVectorOpds, R); 5717 } 5718 5719 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5720 BasicBlock *BB, BoUpSLP &R) { 5721 SmallVector<Value *, 16> BuildVectorOpds; 5722 if (!findBuildVector(IEI, BuildVectorOpds)) 5723 return false; 5724 5725 // Vectorize starting with the build vector operands ignoring the BuildVector 5726 // instructions for the purpose of scheduling and user extraction. 5727 return tryToVectorizeList(BuildVectorOpds, R); 5728 } 5729 5730 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5731 BoUpSLP &R) { 5732 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5733 return true; 5734 5735 bool OpsChanged = false; 5736 for (int Idx = 0; Idx < 2; ++Idx) { 5737 OpsChanged |= 5738 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5739 } 5740 return OpsChanged; 5741 } 5742 5743 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5744 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5745 bool OpsChanged = false; 5746 for (auto &VH : reverse(Instructions)) { 5747 auto *I = dyn_cast_or_null<Instruction>(VH); 5748 if (!I) 5749 continue; 5750 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5751 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5752 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5753 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5754 else if (auto *CI = dyn_cast<CmpInst>(I)) 5755 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5756 } 5757 Instructions.clear(); 5758 return OpsChanged; 5759 } 5760 5761 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5762 bool Changed = false; 5763 SmallVector<Value *, 4> Incoming; 5764 SmallSet<Value *, 16> VisitedInstrs; 5765 5766 bool HaveVectorizedPhiNodes = true; 5767 while (HaveVectorizedPhiNodes) { 5768 HaveVectorizedPhiNodes = false; 5769 5770 // Collect the incoming values from the PHIs. 5771 Incoming.clear(); 5772 for (Instruction &I : *BB) { 5773 PHINode *P = dyn_cast<PHINode>(&I); 5774 if (!P) 5775 break; 5776 5777 if (!VisitedInstrs.count(P)) 5778 Incoming.push_back(P); 5779 } 5780 5781 // Sort by type. 5782 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5783 5784 // Try to vectorize elements base on their type. 5785 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5786 E = Incoming.end(); 5787 IncIt != E;) { 5788 5789 // Look for the next elements with the same type. 5790 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5791 while (SameTypeIt != E && 5792 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5793 VisitedInstrs.insert(*SameTypeIt); 5794 ++SameTypeIt; 5795 } 5796 5797 // Try to vectorize them. 5798 unsigned NumElts = (SameTypeIt - IncIt); 5799 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5800 // The order in which the phi nodes appear in the program does not matter. 5801 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5802 // is done when there are exactly two elements since tryToVectorizeList 5803 // asserts that there are only two values when AllowReorder is true. 5804 bool AllowReorder = NumElts == 2; 5805 if (NumElts > 1 && 5806 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 5807 // Success start over because instructions might have been changed. 5808 HaveVectorizedPhiNodes = true; 5809 Changed = true; 5810 break; 5811 } 5812 5813 // Start over at the next instruction of a different type (or the end). 5814 IncIt = SameTypeIt; 5815 } 5816 } 5817 5818 VisitedInstrs.clear(); 5819 5820 SmallVector<WeakVH, 8> PostProcessInstructions; 5821 SmallDenseSet<Instruction *, 4> KeyNodes; 5822 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5823 // We may go through BB multiple times so skip the one we have checked. 5824 if (!VisitedInstrs.insert(&*it).second) { 5825 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5826 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5827 // We would like to start over since some instructions are deleted 5828 // and the iterator may become invalid value. 5829 Changed = true; 5830 it = BB->begin(); 5831 e = BB->end(); 5832 } 5833 continue; 5834 } 5835 5836 if (isa<DbgInfoIntrinsic>(it)) 5837 continue; 5838 5839 // Try to vectorize reductions that use PHINodes. 5840 if (PHINode *P = dyn_cast<PHINode>(it)) { 5841 // Check that the PHI is a reduction PHI. 5842 if (P->getNumIncomingValues() != 2) 5843 return Changed; 5844 5845 // Try to match and vectorize a horizontal reduction. 5846 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5847 TTI)) { 5848 Changed = true; 5849 it = BB->begin(); 5850 e = BB->end(); 5851 continue; 5852 } 5853 continue; 5854 } 5855 5856 // Ran into an instruction without users, like terminator, or function call 5857 // with ignored return value, store. Ignore unused instructions (basing on 5858 // instruction type, except for CallInst and InvokeInst). 5859 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5860 isa<InvokeInst>(it))) { 5861 KeyNodes.insert(&*it); 5862 bool OpsChanged = false; 5863 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5864 for (auto *V : it->operand_values()) { 5865 // Try to match and vectorize a horizontal reduction. 5866 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5867 } 5868 } 5869 // Start vectorization of post-process list of instructions from the 5870 // top-tree instructions to try to vectorize as many instructions as 5871 // possible. 5872 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5873 if (OpsChanged) { 5874 // We would like to start over since some instructions are deleted 5875 // and the iterator may become invalid value. 5876 Changed = true; 5877 it = BB->begin(); 5878 e = BB->end(); 5879 continue; 5880 } 5881 } 5882 5883 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5884 isa<InsertValueInst>(it)) 5885 PostProcessInstructions.push_back(&*it); 5886 5887 } 5888 5889 return Changed; 5890 } 5891 5892 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5893 auto Changed = false; 5894 for (auto &Entry : GEPs) { 5895 // If the getelementptr list has fewer than two elements, there's nothing 5896 // to do. 5897 if (Entry.second.size() < 2) 5898 continue; 5899 5900 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5901 << Entry.second.size() << ".\n"); 5902 5903 // We process the getelementptr list in chunks of 16 (like we do for 5904 // stores) to minimize compile-time. 5905 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5906 auto Len = std::min<unsigned>(BE - BI, 16); 5907 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5908 5909 // Initialize a set a candidate getelementptrs. Note that we use a 5910 // SetVector here to preserve program order. If the index computations 5911 // are vectorizable and begin with loads, we want to minimize the chance 5912 // of having to reorder them later. 5913 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5914 5915 // Some of the candidates may have already been vectorized after we 5916 // initially collected them. If so, the WeakTrackingVHs will have 5917 // nullified the 5918 // values, so remove them from the set of candidates. 5919 Candidates.remove(nullptr); 5920 5921 // Remove from the set of candidates all pairs of getelementptrs with 5922 // constant differences. Such getelementptrs are likely not good 5923 // candidates for vectorization in a bottom-up phase since one can be 5924 // computed from the other. We also ensure all candidate getelementptr 5925 // indices are unique. 5926 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5927 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5928 if (!Candidates.count(GEPI)) 5929 continue; 5930 auto *SCEVI = SE->getSCEV(GEPList[I]); 5931 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5932 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5933 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5934 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5935 Candidates.remove(GEPList[I]); 5936 Candidates.remove(GEPList[J]); 5937 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5938 Candidates.remove(GEPList[J]); 5939 } 5940 } 5941 } 5942 5943 // We break out of the above computation as soon as we know there are 5944 // fewer than two candidates remaining. 5945 if (Candidates.size() < 2) 5946 continue; 5947 5948 // Add the single, non-constant index of each candidate to the bundle. We 5949 // ensured the indices met these constraints when we originally collected 5950 // the getelementptrs. 5951 SmallVector<Value *, 16> Bundle(Candidates.size()); 5952 auto BundleIndex = 0u; 5953 for (auto *V : Candidates) { 5954 auto *GEP = cast<GetElementPtrInst>(V); 5955 auto *GEPIdx = GEP->idx_begin()->get(); 5956 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5957 Bundle[BundleIndex++] = GEPIdx; 5958 } 5959 5960 // Try and vectorize the indices. We are currently only interested in 5961 // gather-like cases of the form: 5962 // 5963 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5964 // 5965 // where the loads of "a", the loads of "b", and the subtractions can be 5966 // performed in parallel. It's likely that detecting this pattern in a 5967 // bottom-up phase will be simpler and less costly than building a 5968 // full-blown top-down phase beginning at the consecutive loads. 5969 Changed |= tryToVectorizeList(Bundle, R); 5970 } 5971 } 5972 return Changed; 5973 } 5974 5975 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5976 bool Changed = false; 5977 // Attempt to sort and vectorize each of the store-groups. 5978 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5979 ++it) { 5980 if (it->second.size() < 2) 5981 continue; 5982 5983 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5984 << it->second.size() << ".\n"); 5985 5986 // Process the stores in chunks of 16. 5987 // TODO: The limit of 16 inhibits greater vectorization factors. 5988 // For example, AVX2 supports v32i8. Increasing this limit, however, 5989 // may cause a significant compile-time increase. 5990 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5991 unsigned Len = std::min<unsigned>(CE - CI, 16); 5992 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5993 } 5994 } 5995 return Changed; 5996 } 5997 5998 char SLPVectorizer::ID = 0; 5999 6000 static const char lv_name[] = "SLP Vectorizer"; 6001 6002 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6003 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6004 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6005 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6006 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6007 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6008 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6009 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6010 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6011 6012 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6013