1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #ifdef EXPENSIVE_CHECKS 75 #include "llvm/IR/Verifier.h" 76 #endif 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1169 /// MainAltOps. 1170 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1171 ScalarEvolution &SE, int NumLanes, 1172 ArrayRef<Value *> MainAltOps, 1173 const TargetTransformInfo *TTI) { 1174 if (V1 == V2) { 1175 if (isa<LoadInst>(V1)) { 1176 // A broadcast of a load can be cheaper on some targets. 1177 // TODO: For now accept a broadcast load with no other internal uses. 1178 if (TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1179 (int)V1->getNumUses() == NumLanes) 1180 return VLOperands::ScoreSplatLoads; 1181 } 1182 return VLOperands::ScoreSplat; 1183 } 1184 1185 auto *LI1 = dyn_cast<LoadInst>(V1); 1186 auto *LI2 = dyn_cast<LoadInst>(V2); 1187 if (LI1 && LI2) { 1188 if (LI1->getParent() != LI2->getParent()) 1189 return VLOperands::ScoreFail; 1190 1191 Optional<int> Dist = getPointersDiff( 1192 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1193 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1194 if (!Dist || *Dist == 0) 1195 return VLOperands::ScoreFail; 1196 // The distance is too large - still may be profitable to use masked 1197 // loads/gathers. 1198 if (std::abs(*Dist) > NumLanes / 2) 1199 return VLOperands::ScoreAltOpcodes; 1200 // This still will detect consecutive loads, but we might have "holes" 1201 // in some cases. It is ok for non-power-2 vectorization and may produce 1202 // better results. It should not affect current vectorization. 1203 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1204 : VLOperands::ScoreReversedLoads; 1205 } 1206 1207 auto *C1 = dyn_cast<Constant>(V1); 1208 auto *C2 = dyn_cast<Constant>(V2); 1209 if (C1 && C2) 1210 return VLOperands::ScoreConstants; 1211 1212 // Extracts from consecutive indexes of the same vector better score as 1213 // the extracts could be optimized away. 1214 Value *EV1; 1215 ConstantInt *Ex1Idx; 1216 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1217 // Undefs are always profitable for extractelements. 1218 if (isa<UndefValue>(V2)) 1219 return VLOperands::ScoreConsecutiveExtracts; 1220 Value *EV2 = nullptr; 1221 ConstantInt *Ex2Idx = nullptr; 1222 if (match(V2, 1223 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1224 m_Undef())))) { 1225 // Undefs are always profitable for extractelements. 1226 if (!Ex2Idx) 1227 return VLOperands::ScoreConsecutiveExtracts; 1228 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1229 return VLOperands::ScoreConsecutiveExtracts; 1230 if (EV2 == EV1) { 1231 int Idx1 = Ex1Idx->getZExtValue(); 1232 int Idx2 = Ex2Idx->getZExtValue(); 1233 int Dist = Idx2 - Idx1; 1234 // The distance is too large - still may be profitable to use 1235 // shuffles. 1236 if (std::abs(Dist) == 0) 1237 return VLOperands::ScoreSplat; 1238 if (std::abs(Dist) > NumLanes / 2) 1239 return VLOperands::ScoreSameOpcode; 1240 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1241 : VLOperands::ScoreReversedExtracts; 1242 } 1243 return VLOperands::ScoreAltOpcodes; 1244 } 1245 return VLOperands::ScoreFail; 1246 } 1247 1248 auto *I1 = dyn_cast<Instruction>(V1); 1249 auto *I2 = dyn_cast<Instruction>(V2); 1250 if (I1 && I2) { 1251 if (I1->getParent() != I2->getParent()) 1252 return VLOperands::ScoreFail; 1253 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1254 Ops.push_back(I1); 1255 Ops.push_back(I2); 1256 InstructionsState S = getSameOpcode(Ops); 1257 // Note: Only consider instructions with <= 2 operands to avoid 1258 // complexity explosion. 1259 if (S.getOpcode() && 1260 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1261 !S.isAltShuffle()) && 1262 all_of(Ops, [&S](Value *V) { 1263 return cast<Instruction>(V)->getNumOperands() == 1264 S.MainOp->getNumOperands(); 1265 })) 1266 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1267 : VLOperands::ScoreSameOpcode; 1268 } 1269 1270 if (isa<UndefValue>(V2)) 1271 return VLOperands::ScoreUndef; 1272 1273 return VLOperands::ScoreFail; 1274 } 1275 1276 /// \param Lane lane of the operands under analysis. 1277 /// \param OpIdx operand index in \p Lane lane we're looking the best 1278 /// candidate for. 1279 /// \param Idx operand index of the current candidate value. 1280 /// \returns The additional score due to possible broadcasting of the 1281 /// elements in the lane. It is more profitable to have power-of-2 unique 1282 /// elements in the lane, it will be vectorized with higher probability 1283 /// after removing duplicates. Currently the SLP vectorizer supports only 1284 /// vectorization of the power-of-2 number of unique scalars. 1285 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1286 Value *IdxLaneV = getData(Idx, Lane).V; 1287 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1288 return 0; 1289 SmallPtrSet<Value *, 4> Uniques; 1290 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1294 if (!isa<Instruction>(OpIdxLnV)) 1295 return 0; 1296 Uniques.insert(OpIdxLnV); 1297 } 1298 int UniquesCount = Uniques.size(); 1299 int UniquesCntWithIdxLaneV = 1300 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1301 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1302 int UniquesCntWithOpIdxLaneV = 1303 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1304 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1305 return 0; 1306 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1307 UniquesCntWithOpIdxLaneV) - 1308 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1309 } 1310 1311 /// \param Lane lane of the operands under analysis. 1312 /// \param OpIdx operand index in \p Lane lane we're looking the best 1313 /// candidate for. 1314 /// \param Idx operand index of the current candidate value. 1315 /// \returns The additional score for the scalar which users are all 1316 /// vectorized. 1317 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1318 Value *IdxLaneV = getData(Idx, Lane).V; 1319 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1320 // Do not care about number of uses for vector-like instructions 1321 // (extractelement/extractvalue with constant indices), they are extracts 1322 // themselves and already externally used. Vectorization of such 1323 // instructions does not add extra extractelement instruction, just may 1324 // remove it. 1325 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1326 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1327 return VLOperands::ScoreAllUserVectorized; 1328 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1329 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1330 return 0; 1331 return R.areAllUsersVectorized(IdxLaneI, None) 1332 ? VLOperands::ScoreAllUserVectorized 1333 : 0; 1334 } 1335 1336 /// Go through the operands of \p LHS and \p RHS recursively until \p 1337 /// MaxLevel, and return the cummulative score. For example: 1338 /// \verbatim 1339 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1340 /// \ / \ / \ / \ / 1341 /// + + + + 1342 /// G1 G2 G3 G4 1343 /// \endverbatim 1344 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1345 /// each level recursively, accumulating the score. It starts from matching 1346 /// the additions at level 0, then moves on to the loads (level 1). The 1347 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1348 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1349 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1350 /// Please note that the order of the operands does not matter, as we 1351 /// evaluate the score of all profitable combinations of operands. In 1352 /// other words the score of G1 and G4 is the same as G1 and G2. This 1353 /// heuristic is based on ideas described in: 1354 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1355 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1356 /// Luís F. W. Góes 1357 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1358 ArrayRef<Value *> MainAltOps) { 1359 1360 // Get the shallow score of V1 and V2. 1361 int ShallowScoreAtThisLevel = 1362 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps, R.TTI); 1363 1364 // If reached MaxLevel, 1365 // or if V1 and V2 are not instructions, 1366 // or if they are SPLAT, 1367 // or if they are not consecutive, 1368 // or if profitable to vectorize loads or extractelements, early return 1369 // the current cost. 1370 auto *I1 = dyn_cast<Instruction>(LHS); 1371 auto *I2 = dyn_cast<Instruction>(RHS); 1372 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1373 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1374 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1375 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1376 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1377 ShallowScoreAtThisLevel)) 1378 return ShallowScoreAtThisLevel; 1379 assert(I1 && I2 && "Should have early exited."); 1380 1381 // Contains the I2 operand indexes that got matched with I1 operands. 1382 SmallSet<unsigned, 4> Op2Used; 1383 1384 // Recursion towards the operands of I1 and I2. We are trying all possible 1385 // operand pairs, and keeping track of the best score. 1386 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1387 OpIdx1 != NumOperands1; ++OpIdx1) { 1388 // Try to pair op1I with the best operand of I2. 1389 int MaxTmpScore = 0; 1390 unsigned MaxOpIdx2 = 0; 1391 bool FoundBest = false; 1392 // If I2 is commutative try all combinations. 1393 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1394 unsigned ToIdx = isCommutative(I2) 1395 ? I2->getNumOperands() 1396 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1397 assert(FromIdx <= ToIdx && "Bad index"); 1398 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1399 // Skip operands already paired with OpIdx1. 1400 if (Op2Used.count(OpIdx2)) 1401 continue; 1402 // Recursively calculate the cost at each level 1403 int TmpScore = 1404 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1405 CurrLevel + 1, MaxLevel, None); 1406 // Look for the best score. 1407 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1408 MaxTmpScore = TmpScore; 1409 MaxOpIdx2 = OpIdx2; 1410 FoundBest = true; 1411 } 1412 } 1413 if (FoundBest) { 1414 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1415 Op2Used.insert(MaxOpIdx2); 1416 ShallowScoreAtThisLevel += MaxTmpScore; 1417 } 1418 } 1419 return ShallowScoreAtThisLevel; 1420 } 1421 1422 /// Score scaling factor for fully compatible instructions but with 1423 /// different number of external uses. Allows better selection of the 1424 /// instructions with less external uses. 1425 static const int ScoreScaleFactor = 10; 1426 1427 /// \Returns the look-ahead score, which tells us how much the sub-trees 1428 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1429 /// score. This helps break ties in an informed way when we cannot decide on 1430 /// the order of the operands by just considering the immediate 1431 /// predecessors. 1432 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1433 int Lane, unsigned OpIdx, unsigned Idx, 1434 bool &IsUsed) { 1435 int Score = 1436 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1437 if (Score) { 1438 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1439 if (Score <= -SplatScore) { 1440 // Set the minimum score for splat-like sequence to avoid setting 1441 // failed state. 1442 Score = 1; 1443 } else { 1444 Score += SplatScore; 1445 // Scale score to see the difference between different operands 1446 // and similar operands but all vectorized/not all vectorized 1447 // uses. It does not affect actual selection of the best 1448 // compatible operand in general, just allows to select the 1449 // operand with all vectorized uses. 1450 Score *= ScoreScaleFactor; 1451 Score += getExternalUseScore(Lane, OpIdx, Idx); 1452 IsUsed = true; 1453 } 1454 } 1455 return Score; 1456 } 1457 1458 /// Best defined scores per lanes between the passes. Used to choose the 1459 /// best operand (with the highest score) between the passes. 1460 /// The key - {Operand Index, Lane}. 1461 /// The value - the best score between the passes for the lane and the 1462 /// operand. 1463 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1464 BestScoresPerLanes; 1465 1466 // Search all operands in Ops[*][Lane] for the one that matches best 1467 // Ops[OpIdx][LastLane] and return its opreand index. 1468 // If no good match can be found, return None. 1469 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1470 ArrayRef<ReorderingMode> ReorderingModes, 1471 ArrayRef<Value *> MainAltOps) { 1472 unsigned NumOperands = getNumOperands(); 1473 1474 // The operand of the previous lane at OpIdx. 1475 Value *OpLastLane = getData(OpIdx, LastLane).V; 1476 1477 // Our strategy mode for OpIdx. 1478 ReorderingMode RMode = ReorderingModes[OpIdx]; 1479 if (RMode == ReorderingMode::Failed) 1480 return None; 1481 1482 // The linearized opcode of the operand at OpIdx, Lane. 1483 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1484 1485 // The best operand index and its score. 1486 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1487 // are using the score to differentiate between the two. 1488 struct BestOpData { 1489 Optional<unsigned> Idx = None; 1490 unsigned Score = 0; 1491 } BestOp; 1492 BestOp.Score = 1493 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1494 .first->second; 1495 1496 // Track if the operand must be marked as used. If the operand is set to 1497 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1498 // want to reestimate the operands again on the following iterations). 1499 bool IsUsed = 1500 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1501 // Iterate through all unused operands and look for the best. 1502 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1503 // Get the operand at Idx and Lane. 1504 OperandData &OpData = getData(Idx, Lane); 1505 Value *Op = OpData.V; 1506 bool OpAPO = OpData.APO; 1507 1508 // Skip already selected operands. 1509 if (OpData.IsUsed) 1510 continue; 1511 1512 // Skip if we are trying to move the operand to a position with a 1513 // different opcode in the linearized tree form. This would break the 1514 // semantics. 1515 if (OpAPO != OpIdxAPO) 1516 continue; 1517 1518 // Look for an operand that matches the current mode. 1519 switch (RMode) { 1520 case ReorderingMode::Load: 1521 case ReorderingMode::Constant: 1522 case ReorderingMode::Opcode: { 1523 bool LeftToRight = Lane > LastLane; 1524 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1525 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1526 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1527 OpIdx, Idx, IsUsed); 1528 if (Score > static_cast<int>(BestOp.Score)) { 1529 BestOp.Idx = Idx; 1530 BestOp.Score = Score; 1531 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1532 } 1533 break; 1534 } 1535 case ReorderingMode::Splat: 1536 if (Op == OpLastLane) 1537 BestOp.Idx = Idx; 1538 break; 1539 case ReorderingMode::Failed: 1540 llvm_unreachable("Not expected Failed reordering mode."); 1541 } 1542 } 1543 1544 if (BestOp.Idx) { 1545 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1546 return BestOp.Idx; 1547 } 1548 // If we could not find a good match return None. 1549 return None; 1550 } 1551 1552 /// Helper for reorderOperandVecs. 1553 /// \returns the lane that we should start reordering from. This is the one 1554 /// which has the least number of operands that can freely move about or 1555 /// less profitable because it already has the most optimal set of operands. 1556 unsigned getBestLaneToStartReordering() const { 1557 unsigned Min = UINT_MAX; 1558 unsigned SameOpNumber = 0; 1559 // std::pair<unsigned, unsigned> is used to implement a simple voting 1560 // algorithm and choose the lane with the least number of operands that 1561 // can freely move about or less profitable because it already has the 1562 // most optimal set of operands. The first unsigned is a counter for 1563 // voting, the second unsigned is the counter of lanes with instructions 1564 // with same/alternate opcodes and same parent basic block. 1565 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1566 // Try to be closer to the original results, if we have multiple lanes 1567 // with same cost. If 2 lanes have the same cost, use the one with the 1568 // lowest index. 1569 for (int I = getNumLanes(); I > 0; --I) { 1570 unsigned Lane = I - 1; 1571 OperandsOrderData NumFreeOpsHash = 1572 getMaxNumOperandsThatCanBeReordered(Lane); 1573 // Compare the number of operands that can move and choose the one with 1574 // the least number. 1575 if (NumFreeOpsHash.NumOfAPOs < Min) { 1576 Min = NumFreeOpsHash.NumOfAPOs; 1577 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1578 HashMap.clear(); 1579 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1580 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1581 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1582 // Select the most optimal lane in terms of number of operands that 1583 // should be moved around. 1584 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1585 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1586 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1587 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1588 auto It = HashMap.find(NumFreeOpsHash.Hash); 1589 if (It == HashMap.end()) 1590 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1591 else 1592 ++It->second.first; 1593 } 1594 } 1595 // Select the lane with the minimum counter. 1596 unsigned BestLane = 0; 1597 unsigned CntMin = UINT_MAX; 1598 for (const auto &Data : reverse(HashMap)) { 1599 if (Data.second.first < CntMin) { 1600 CntMin = Data.second.first; 1601 BestLane = Data.second.second; 1602 } 1603 } 1604 return BestLane; 1605 } 1606 1607 /// Data structure that helps to reorder operands. 1608 struct OperandsOrderData { 1609 /// The best number of operands with the same APOs, which can be 1610 /// reordered. 1611 unsigned NumOfAPOs = UINT_MAX; 1612 /// Number of operands with the same/alternate instruction opcode and 1613 /// parent. 1614 unsigned NumOpsWithSameOpcodeParent = 0; 1615 /// Hash for the actual operands ordering. 1616 /// Used to count operands, actually their position id and opcode 1617 /// value. It is used in the voting mechanism to find the lane with the 1618 /// least number of operands that can freely move about or less profitable 1619 /// because it already has the most optimal set of operands. Can be 1620 /// replaced with SmallVector<unsigned> instead but hash code is faster 1621 /// and requires less memory. 1622 unsigned Hash = 0; 1623 }; 1624 /// \returns the maximum number of operands that are allowed to be reordered 1625 /// for \p Lane and the number of compatible instructions(with the same 1626 /// parent/opcode). This is used as a heuristic for selecting the first lane 1627 /// to start operand reordering. 1628 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1629 unsigned CntTrue = 0; 1630 unsigned NumOperands = getNumOperands(); 1631 // Operands with the same APO can be reordered. We therefore need to count 1632 // how many of them we have for each APO, like this: Cnt[APO] = x. 1633 // Since we only have two APOs, namely true and false, we can avoid using 1634 // a map. Instead we can simply count the number of operands that 1635 // correspond to one of them (in this case the 'true' APO), and calculate 1636 // the other by subtracting it from the total number of operands. 1637 // Operands with the same instruction opcode and parent are more 1638 // profitable since we don't need to move them in many cases, with a high 1639 // probability such lane already can be vectorized effectively. 1640 bool AllUndefs = true; 1641 unsigned NumOpsWithSameOpcodeParent = 0; 1642 Instruction *OpcodeI = nullptr; 1643 BasicBlock *Parent = nullptr; 1644 unsigned Hash = 0; 1645 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1646 const OperandData &OpData = getData(OpIdx, Lane); 1647 if (OpData.APO) 1648 ++CntTrue; 1649 // Use Boyer-Moore majority voting for finding the majority opcode and 1650 // the number of times it occurs. 1651 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1652 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1653 I->getParent() != Parent) { 1654 if (NumOpsWithSameOpcodeParent == 0) { 1655 NumOpsWithSameOpcodeParent = 1; 1656 OpcodeI = I; 1657 Parent = I->getParent(); 1658 } else { 1659 --NumOpsWithSameOpcodeParent; 1660 } 1661 } else { 1662 ++NumOpsWithSameOpcodeParent; 1663 } 1664 } 1665 Hash = hash_combine( 1666 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1667 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1668 } 1669 if (AllUndefs) 1670 return {}; 1671 OperandsOrderData Data; 1672 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1673 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1674 Data.Hash = Hash; 1675 return Data; 1676 } 1677 1678 /// Go through the instructions in VL and append their operands. 1679 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1680 assert(!VL.empty() && "Bad VL"); 1681 assert((empty() || VL.size() == getNumLanes()) && 1682 "Expected same number of lanes"); 1683 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1684 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1685 OpsVec.resize(NumOperands); 1686 unsigned NumLanes = VL.size(); 1687 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1688 OpsVec[OpIdx].resize(NumLanes); 1689 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1690 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1691 // Our tree has just 3 nodes: the root and two operands. 1692 // It is therefore trivial to get the APO. We only need to check the 1693 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1694 // RHS operand. The LHS operand of both add and sub is never attached 1695 // to an inversese operation in the linearized form, therefore its APO 1696 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1697 1698 // Since operand reordering is performed on groups of commutative 1699 // operations or alternating sequences (e.g., +, -), we can safely 1700 // tell the inverse operations by checking commutativity. 1701 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1702 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1703 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1704 APO, false}; 1705 } 1706 } 1707 } 1708 1709 /// \returns the number of operands. 1710 unsigned getNumOperands() const { return OpsVec.size(); } 1711 1712 /// \returns the number of lanes. 1713 unsigned getNumLanes() const { return OpsVec[0].size(); } 1714 1715 /// \returns the operand value at \p OpIdx and \p Lane. 1716 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1717 return getData(OpIdx, Lane).V; 1718 } 1719 1720 /// \returns true if the data structure is empty. 1721 bool empty() const { return OpsVec.empty(); } 1722 1723 /// Clears the data. 1724 void clear() { OpsVec.clear(); } 1725 1726 /// \Returns true if there are enough operands identical to \p Op to fill 1727 /// the whole vector. 1728 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1729 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1730 bool OpAPO = getData(OpIdx, Lane).APO; 1731 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1732 if (Ln == Lane) 1733 continue; 1734 // This is set to true if we found a candidate for broadcast at Lane. 1735 bool FoundCandidate = false; 1736 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1737 OperandData &Data = getData(OpI, Ln); 1738 if (Data.APO != OpAPO || Data.IsUsed) 1739 continue; 1740 if (Data.V == Op) { 1741 FoundCandidate = true; 1742 Data.IsUsed = true; 1743 break; 1744 } 1745 } 1746 if (!FoundCandidate) 1747 return false; 1748 } 1749 return true; 1750 } 1751 1752 public: 1753 /// Initialize with all the operands of the instruction vector \p RootVL. 1754 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1755 ScalarEvolution &SE, const BoUpSLP &R) 1756 : DL(DL), SE(SE), R(R) { 1757 // Append all the operands of RootVL. 1758 appendOperandsOfVL(RootVL); 1759 } 1760 1761 /// \Returns a value vector with the operands across all lanes for the 1762 /// opearnd at \p OpIdx. 1763 ValueList getVL(unsigned OpIdx) const { 1764 ValueList OpVL(OpsVec[OpIdx].size()); 1765 assert(OpsVec[OpIdx].size() == getNumLanes() && 1766 "Expected same num of lanes across all operands"); 1767 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1768 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1769 return OpVL; 1770 } 1771 1772 // Performs operand reordering for 2 or more operands. 1773 // The original operands are in OrigOps[OpIdx][Lane]. 1774 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1775 void reorder() { 1776 unsigned NumOperands = getNumOperands(); 1777 unsigned NumLanes = getNumLanes(); 1778 // Each operand has its own mode. We are using this mode to help us select 1779 // the instructions for each lane, so that they match best with the ones 1780 // we have selected so far. 1781 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1782 1783 // This is a greedy single-pass algorithm. We are going over each lane 1784 // once and deciding on the best order right away with no back-tracking. 1785 // However, in order to increase its effectiveness, we start with the lane 1786 // that has operands that can move the least. For example, given the 1787 // following lanes: 1788 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1789 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1790 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1791 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1792 // we will start at Lane 1, since the operands of the subtraction cannot 1793 // be reordered. Then we will visit the rest of the lanes in a circular 1794 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1795 1796 // Find the first lane that we will start our search from. 1797 unsigned FirstLane = getBestLaneToStartReordering(); 1798 1799 // Initialize the modes. 1800 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1801 Value *OpLane0 = getValue(OpIdx, FirstLane); 1802 // Keep track if we have instructions with all the same opcode on one 1803 // side. 1804 if (isa<LoadInst>(OpLane0)) 1805 ReorderingModes[OpIdx] = ReorderingMode::Load; 1806 else if (isa<Instruction>(OpLane0)) { 1807 // Check if OpLane0 should be broadcast. 1808 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1809 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1810 else 1811 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1812 } 1813 else if (isa<Constant>(OpLane0)) 1814 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1815 else if (isa<Argument>(OpLane0)) 1816 // Our best hope is a Splat. It may save some cost in some cases. 1817 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1818 else 1819 // NOTE: This should be unreachable. 1820 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1821 } 1822 1823 // Check that we don't have same operands. No need to reorder if operands 1824 // are just perfect diamond or shuffled diamond match. Do not do it only 1825 // for possible broadcasts or non-power of 2 number of scalars (just for 1826 // now). 1827 auto &&SkipReordering = [this]() { 1828 SmallPtrSet<Value *, 4> UniqueValues; 1829 ArrayRef<OperandData> Op0 = OpsVec.front(); 1830 for (const OperandData &Data : Op0) 1831 UniqueValues.insert(Data.V); 1832 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1833 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1834 return !UniqueValues.contains(Data.V); 1835 })) 1836 return false; 1837 } 1838 // TODO: Check if we can remove a check for non-power-2 number of 1839 // scalars after full support of non-power-2 vectorization. 1840 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1841 }; 1842 1843 // If the initial strategy fails for any of the operand indexes, then we 1844 // perform reordering again in a second pass. This helps avoid assigning 1845 // high priority to the failed strategy, and should improve reordering for 1846 // the non-failed operand indexes. 1847 for (int Pass = 0; Pass != 2; ++Pass) { 1848 // Check if no need to reorder operands since they're are perfect or 1849 // shuffled diamond match. 1850 // Need to to do it to avoid extra external use cost counting for 1851 // shuffled matches, which may cause regressions. 1852 if (SkipReordering()) 1853 break; 1854 // Skip the second pass if the first pass did not fail. 1855 bool StrategyFailed = false; 1856 // Mark all operand data as free to use. 1857 clearUsed(); 1858 // We keep the original operand order for the FirstLane, so reorder the 1859 // rest of the lanes. We are visiting the nodes in a circular fashion, 1860 // using FirstLane as the center point and increasing the radius 1861 // distance. 1862 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1863 for (unsigned I = 0; I < NumOperands; ++I) 1864 MainAltOps[I].push_back(getData(I, FirstLane).V); 1865 1866 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1867 // Visit the lane on the right and then the lane on the left. 1868 for (int Direction : {+1, -1}) { 1869 int Lane = FirstLane + Direction * Distance; 1870 if (Lane < 0 || Lane >= (int)NumLanes) 1871 continue; 1872 int LastLane = Lane - Direction; 1873 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1874 "Out of bounds"); 1875 // Look for a good match for each operand. 1876 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1877 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1878 Optional<unsigned> BestIdx = getBestOperand( 1879 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1880 // By not selecting a value, we allow the operands that follow to 1881 // select a better matching value. We will get a non-null value in 1882 // the next run of getBestOperand(). 1883 if (BestIdx) { 1884 // Swap the current operand with the one returned by 1885 // getBestOperand(). 1886 swap(OpIdx, BestIdx.getValue(), Lane); 1887 } else { 1888 // We failed to find a best operand, set mode to 'Failed'. 1889 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1890 // Enable the second pass. 1891 StrategyFailed = true; 1892 } 1893 // Try to get the alternate opcode and follow it during analysis. 1894 if (MainAltOps[OpIdx].size() != 2) { 1895 OperandData &AltOp = getData(OpIdx, Lane); 1896 InstructionsState OpS = 1897 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1898 if (OpS.getOpcode() && OpS.isAltShuffle()) 1899 MainAltOps[OpIdx].push_back(AltOp.V); 1900 } 1901 } 1902 } 1903 } 1904 // Skip second pass if the strategy did not fail. 1905 if (!StrategyFailed) 1906 break; 1907 } 1908 } 1909 1910 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1911 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1912 switch (RMode) { 1913 case ReorderingMode::Load: 1914 return "Load"; 1915 case ReorderingMode::Opcode: 1916 return "Opcode"; 1917 case ReorderingMode::Constant: 1918 return "Constant"; 1919 case ReorderingMode::Splat: 1920 return "Splat"; 1921 case ReorderingMode::Failed: 1922 return "Failed"; 1923 } 1924 llvm_unreachable("Unimplemented Reordering Type"); 1925 } 1926 1927 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1928 raw_ostream &OS) { 1929 return OS << getModeStr(RMode); 1930 } 1931 1932 /// Debug print. 1933 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1934 printMode(RMode, dbgs()); 1935 } 1936 1937 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1938 return printMode(RMode, OS); 1939 } 1940 1941 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1942 const unsigned Indent = 2; 1943 unsigned Cnt = 0; 1944 for (const OperandDataVec &OpDataVec : OpsVec) { 1945 OS << "Operand " << Cnt++ << "\n"; 1946 for (const OperandData &OpData : OpDataVec) { 1947 OS.indent(Indent) << "{"; 1948 if (Value *V = OpData.V) 1949 OS << *V; 1950 else 1951 OS << "null"; 1952 OS << ", APO:" << OpData.APO << "}\n"; 1953 } 1954 OS << "\n"; 1955 } 1956 return OS; 1957 } 1958 1959 /// Debug print. 1960 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1961 #endif 1962 }; 1963 1964 /// Checks if the instruction is marked for deletion. 1965 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1966 1967 /// Removes an instruction from its block and eventually deletes it. 1968 /// It's like Instruction::eraseFromParent() except that the actual deletion 1969 /// is delayed until BoUpSLP is destructed. 1970 void eraseInstruction(Instruction *I) { 1971 DeletedInstructions.insert(I); 1972 } 1973 1974 ~BoUpSLP(); 1975 1976 private: 1977 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1978 /// reordering (i.e. the operands can be reordered because they have only one 1979 /// user and reordarable). 1980 /// \param ReorderableGathers List of all gather nodes that require reordering 1981 /// (e.g., gather of extractlements or partially vectorizable loads). 1982 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1983 /// reordering, subset of \p NonVectorized. 1984 bool 1985 canReorderOperands(TreeEntry *UserTE, 1986 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1987 ArrayRef<TreeEntry *> ReorderableGathers, 1988 SmallVectorImpl<TreeEntry *> &GatherOps); 1989 1990 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1991 /// if any. If it is not vectorized (gather node), returns nullptr. 1992 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1993 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1994 TreeEntry *TE = nullptr; 1995 const auto *It = find_if(VL, [this, &TE](Value *V) { 1996 TE = getTreeEntry(V); 1997 return TE; 1998 }); 1999 if (It != VL.end() && TE->isSame(VL)) 2000 return TE; 2001 return nullptr; 2002 } 2003 2004 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2005 /// if any. If it is not vectorized (gather node), returns nullptr. 2006 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2007 unsigned OpIdx) const { 2008 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2009 const_cast<TreeEntry *>(UserTE), OpIdx); 2010 } 2011 2012 /// Checks if all users of \p I are the part of the vectorization tree. 2013 bool areAllUsersVectorized(Instruction *I, 2014 ArrayRef<Value *> VectorizedVals) const; 2015 2016 /// \returns the cost of the vectorizable entry. 2017 InstructionCost getEntryCost(const TreeEntry *E, 2018 ArrayRef<Value *> VectorizedVals); 2019 2020 /// This is the recursive part of buildTree. 2021 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2022 const EdgeInfo &EI); 2023 2024 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2025 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2026 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2027 /// returns false, setting \p CurrentOrder to either an empty vector or a 2028 /// non-identity permutation that allows to reuse extract instructions. 2029 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2030 SmallVectorImpl<unsigned> &CurrentOrder) const; 2031 2032 /// Vectorize a single entry in the tree. 2033 Value *vectorizeTree(TreeEntry *E); 2034 2035 /// Vectorize a single entry in the tree, starting in \p VL. 2036 Value *vectorizeTree(ArrayRef<Value *> VL); 2037 2038 /// Create a new vector from a list of scalar values. Produces a sequence 2039 /// which exploits values reused across lanes, and arranges the inserts 2040 /// for ease of later optimization. 2041 Value *createBuildVector(ArrayRef<Value *> VL); 2042 2043 /// \returns the scalarization cost for this type. Scalarization in this 2044 /// context means the creation of vectors from a group of scalars. If \p 2045 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2046 /// vector elements. 2047 InstructionCost getGatherCost(FixedVectorType *Ty, 2048 const APInt &ShuffledIndices, 2049 bool NeedToShuffle) const; 2050 2051 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2052 /// tree entries. 2053 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2054 /// previous tree entries. \p Mask is filled with the shuffle mask. 2055 Optional<TargetTransformInfo::ShuffleKind> 2056 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2057 SmallVectorImpl<const TreeEntry *> &Entries); 2058 2059 /// \returns the scalarization cost for this list of values. Assuming that 2060 /// this subtree gets vectorized, we may need to extract the values from the 2061 /// roots. This method calculates the cost of extracting the values. 2062 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2063 2064 /// Set the Builder insert point to one after the last instruction in 2065 /// the bundle 2066 void setInsertPointAfterBundle(const TreeEntry *E); 2067 2068 /// \returns a vector from a collection of scalars in \p VL. 2069 Value *gather(ArrayRef<Value *> VL); 2070 2071 /// \returns whether the VectorizableTree is fully vectorizable and will 2072 /// be beneficial even the tree height is tiny. 2073 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2074 2075 /// Reorder commutative or alt operands to get better probability of 2076 /// generating vectorized code. 2077 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2078 SmallVectorImpl<Value *> &Left, 2079 SmallVectorImpl<Value *> &Right, 2080 const DataLayout &DL, 2081 ScalarEvolution &SE, 2082 const BoUpSLP &R); 2083 struct TreeEntry { 2084 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2085 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2086 2087 /// \returns true if the scalars in VL are equal to this entry. 2088 bool isSame(ArrayRef<Value *> VL) const { 2089 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2090 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2091 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2092 return VL.size() == Mask.size() && 2093 std::equal(VL.begin(), VL.end(), Mask.begin(), 2094 [Scalars](Value *V, int Idx) { 2095 return (isa<UndefValue>(V) && 2096 Idx == UndefMaskElem) || 2097 (Idx != UndefMaskElem && V == Scalars[Idx]); 2098 }); 2099 }; 2100 if (!ReorderIndices.empty()) { 2101 // TODO: implement matching if the nodes are just reordered, still can 2102 // treat the vector as the same if the list of scalars matches VL 2103 // directly, without reordering. 2104 SmallVector<int> Mask; 2105 inversePermutation(ReorderIndices, Mask); 2106 if (VL.size() == Scalars.size()) 2107 return IsSame(Scalars, Mask); 2108 if (VL.size() == ReuseShuffleIndices.size()) { 2109 ::addMask(Mask, ReuseShuffleIndices); 2110 return IsSame(Scalars, Mask); 2111 } 2112 return false; 2113 } 2114 return IsSame(Scalars, ReuseShuffleIndices); 2115 } 2116 2117 /// \returns true if current entry has same operands as \p TE. 2118 bool hasEqualOperands(const TreeEntry &TE) const { 2119 if (TE.getNumOperands() != getNumOperands()) 2120 return false; 2121 SmallBitVector Used(getNumOperands()); 2122 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2123 unsigned PrevCount = Used.count(); 2124 for (unsigned K = 0; K < E; ++K) { 2125 if (Used.test(K)) 2126 continue; 2127 if (getOperand(K) == TE.getOperand(I)) { 2128 Used.set(K); 2129 break; 2130 } 2131 } 2132 // Check if we actually found the matching operand. 2133 if (PrevCount == Used.count()) 2134 return false; 2135 } 2136 return true; 2137 } 2138 2139 /// \return Final vectorization factor for the node. Defined by the total 2140 /// number of vectorized scalars, including those, used several times in the 2141 /// entry and counted in the \a ReuseShuffleIndices, if any. 2142 unsigned getVectorFactor() const { 2143 if (!ReuseShuffleIndices.empty()) 2144 return ReuseShuffleIndices.size(); 2145 return Scalars.size(); 2146 }; 2147 2148 /// A vector of scalars. 2149 ValueList Scalars; 2150 2151 /// The Scalars are vectorized into this value. It is initialized to Null. 2152 Value *VectorizedValue = nullptr; 2153 2154 /// Do we need to gather this sequence or vectorize it 2155 /// (either with vector instruction or with scatter/gather 2156 /// intrinsics for store/load)? 2157 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2158 EntryState State; 2159 2160 /// Does this sequence require some shuffling? 2161 SmallVector<int, 4> ReuseShuffleIndices; 2162 2163 /// Does this entry require reordering? 2164 SmallVector<unsigned, 4> ReorderIndices; 2165 2166 /// Points back to the VectorizableTree. 2167 /// 2168 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2169 /// to be a pointer and needs to be able to initialize the child iterator. 2170 /// Thus we need a reference back to the container to translate the indices 2171 /// to entries. 2172 VecTreeTy &Container; 2173 2174 /// The TreeEntry index containing the user of this entry. We can actually 2175 /// have multiple users so the data structure is not truly a tree. 2176 SmallVector<EdgeInfo, 1> UserTreeIndices; 2177 2178 /// The index of this treeEntry in VectorizableTree. 2179 int Idx = -1; 2180 2181 private: 2182 /// The operands of each instruction in each lane Operands[op_index][lane]. 2183 /// Note: This helps avoid the replication of the code that performs the 2184 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2185 SmallVector<ValueList, 2> Operands; 2186 2187 /// The main/alternate instruction. 2188 Instruction *MainOp = nullptr; 2189 Instruction *AltOp = nullptr; 2190 2191 public: 2192 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2193 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2194 if (Operands.size() < OpIdx + 1) 2195 Operands.resize(OpIdx + 1); 2196 assert(Operands[OpIdx].empty() && "Already resized?"); 2197 assert(OpVL.size() <= Scalars.size() && 2198 "Number of operands is greater than the number of scalars."); 2199 Operands[OpIdx].resize(OpVL.size()); 2200 copy(OpVL, Operands[OpIdx].begin()); 2201 } 2202 2203 /// Set the operands of this bundle in their original order. 2204 void setOperandsInOrder() { 2205 assert(Operands.empty() && "Already initialized?"); 2206 auto *I0 = cast<Instruction>(Scalars[0]); 2207 Operands.resize(I0->getNumOperands()); 2208 unsigned NumLanes = Scalars.size(); 2209 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2210 OpIdx != NumOperands; ++OpIdx) { 2211 Operands[OpIdx].resize(NumLanes); 2212 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2213 auto *I = cast<Instruction>(Scalars[Lane]); 2214 assert(I->getNumOperands() == NumOperands && 2215 "Expected same number of operands"); 2216 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2217 } 2218 } 2219 } 2220 2221 /// Reorders operands of the node to the given mask \p Mask. 2222 void reorderOperands(ArrayRef<int> Mask) { 2223 for (ValueList &Operand : Operands) 2224 reorderScalars(Operand, Mask); 2225 } 2226 2227 /// \returns the \p OpIdx operand of this TreeEntry. 2228 ValueList &getOperand(unsigned OpIdx) { 2229 assert(OpIdx < Operands.size() && "Off bounds"); 2230 return Operands[OpIdx]; 2231 } 2232 2233 /// \returns the \p OpIdx operand of this TreeEntry. 2234 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2235 assert(OpIdx < Operands.size() && "Off bounds"); 2236 return Operands[OpIdx]; 2237 } 2238 2239 /// \returns the number of operands. 2240 unsigned getNumOperands() const { return Operands.size(); } 2241 2242 /// \return the single \p OpIdx operand. 2243 Value *getSingleOperand(unsigned OpIdx) const { 2244 assert(OpIdx < Operands.size() && "Off bounds"); 2245 assert(!Operands[OpIdx].empty() && "No operand available"); 2246 return Operands[OpIdx][0]; 2247 } 2248 2249 /// Some of the instructions in the list have alternate opcodes. 2250 bool isAltShuffle() const { return MainOp != AltOp; } 2251 2252 bool isOpcodeOrAlt(Instruction *I) const { 2253 unsigned CheckedOpcode = I->getOpcode(); 2254 return (getOpcode() == CheckedOpcode || 2255 getAltOpcode() == CheckedOpcode); 2256 } 2257 2258 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2259 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2260 /// \p OpValue. 2261 Value *isOneOf(Value *Op) const { 2262 auto *I = dyn_cast<Instruction>(Op); 2263 if (I && isOpcodeOrAlt(I)) 2264 return Op; 2265 return MainOp; 2266 } 2267 2268 void setOperations(const InstructionsState &S) { 2269 MainOp = S.MainOp; 2270 AltOp = S.AltOp; 2271 } 2272 2273 Instruction *getMainOp() const { 2274 return MainOp; 2275 } 2276 2277 Instruction *getAltOp() const { 2278 return AltOp; 2279 } 2280 2281 /// The main/alternate opcodes for the list of instructions. 2282 unsigned getOpcode() const { 2283 return MainOp ? MainOp->getOpcode() : 0; 2284 } 2285 2286 unsigned getAltOpcode() const { 2287 return AltOp ? AltOp->getOpcode() : 0; 2288 } 2289 2290 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2291 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2292 int findLaneForValue(Value *V) const { 2293 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2294 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2295 if (!ReorderIndices.empty()) 2296 FoundLane = ReorderIndices[FoundLane]; 2297 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2298 if (!ReuseShuffleIndices.empty()) { 2299 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2300 find(ReuseShuffleIndices, FoundLane)); 2301 } 2302 return FoundLane; 2303 } 2304 2305 #ifndef NDEBUG 2306 /// Debug printer. 2307 LLVM_DUMP_METHOD void dump() const { 2308 dbgs() << Idx << ".\n"; 2309 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2310 dbgs() << "Operand " << OpI << ":\n"; 2311 for (const Value *V : Operands[OpI]) 2312 dbgs().indent(2) << *V << "\n"; 2313 } 2314 dbgs() << "Scalars: \n"; 2315 for (Value *V : Scalars) 2316 dbgs().indent(2) << *V << "\n"; 2317 dbgs() << "State: "; 2318 switch (State) { 2319 case Vectorize: 2320 dbgs() << "Vectorize\n"; 2321 break; 2322 case ScatterVectorize: 2323 dbgs() << "ScatterVectorize\n"; 2324 break; 2325 case NeedToGather: 2326 dbgs() << "NeedToGather\n"; 2327 break; 2328 } 2329 dbgs() << "MainOp: "; 2330 if (MainOp) 2331 dbgs() << *MainOp << "\n"; 2332 else 2333 dbgs() << "NULL\n"; 2334 dbgs() << "AltOp: "; 2335 if (AltOp) 2336 dbgs() << *AltOp << "\n"; 2337 else 2338 dbgs() << "NULL\n"; 2339 dbgs() << "VectorizedValue: "; 2340 if (VectorizedValue) 2341 dbgs() << *VectorizedValue << "\n"; 2342 else 2343 dbgs() << "NULL\n"; 2344 dbgs() << "ReuseShuffleIndices: "; 2345 if (ReuseShuffleIndices.empty()) 2346 dbgs() << "Empty"; 2347 else 2348 for (int ReuseIdx : ReuseShuffleIndices) 2349 dbgs() << ReuseIdx << ", "; 2350 dbgs() << "\n"; 2351 dbgs() << "ReorderIndices: "; 2352 for (unsigned ReorderIdx : ReorderIndices) 2353 dbgs() << ReorderIdx << ", "; 2354 dbgs() << "\n"; 2355 dbgs() << "UserTreeIndices: "; 2356 for (const auto &EInfo : UserTreeIndices) 2357 dbgs() << EInfo << ", "; 2358 dbgs() << "\n"; 2359 } 2360 #endif 2361 }; 2362 2363 #ifndef NDEBUG 2364 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2365 InstructionCost VecCost, 2366 InstructionCost ScalarCost) const { 2367 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2368 dbgs() << "SLP: Costs:\n"; 2369 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2370 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2371 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2372 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2373 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2374 } 2375 #endif 2376 2377 /// Create a new VectorizableTree entry. 2378 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2379 const InstructionsState &S, 2380 const EdgeInfo &UserTreeIdx, 2381 ArrayRef<int> ReuseShuffleIndices = None, 2382 ArrayRef<unsigned> ReorderIndices = None) { 2383 TreeEntry::EntryState EntryState = 2384 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2385 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2386 ReuseShuffleIndices, ReorderIndices); 2387 } 2388 2389 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2390 TreeEntry::EntryState EntryState, 2391 Optional<ScheduleData *> Bundle, 2392 const InstructionsState &S, 2393 const EdgeInfo &UserTreeIdx, 2394 ArrayRef<int> ReuseShuffleIndices = None, 2395 ArrayRef<unsigned> ReorderIndices = None) { 2396 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2397 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2398 "Need to vectorize gather entry?"); 2399 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2400 TreeEntry *Last = VectorizableTree.back().get(); 2401 Last->Idx = VectorizableTree.size() - 1; 2402 Last->State = EntryState; 2403 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2404 ReuseShuffleIndices.end()); 2405 if (ReorderIndices.empty()) { 2406 Last->Scalars.assign(VL.begin(), VL.end()); 2407 Last->setOperations(S); 2408 } else { 2409 // Reorder scalars and build final mask. 2410 Last->Scalars.assign(VL.size(), nullptr); 2411 transform(ReorderIndices, Last->Scalars.begin(), 2412 [VL](unsigned Idx) -> Value * { 2413 if (Idx >= VL.size()) 2414 return UndefValue::get(VL.front()->getType()); 2415 return VL[Idx]; 2416 }); 2417 InstructionsState S = getSameOpcode(Last->Scalars); 2418 Last->setOperations(S); 2419 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2420 } 2421 if (Last->State != TreeEntry::NeedToGather) { 2422 for (Value *V : VL) { 2423 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2424 ScalarToTreeEntry[V] = Last; 2425 } 2426 // Update the scheduler bundle to point to this TreeEntry. 2427 ScheduleData *BundleMember = Bundle.getValue(); 2428 assert((BundleMember || isa<PHINode>(S.MainOp) || 2429 isVectorLikeInstWithConstOps(S.MainOp) || 2430 doesNotNeedToSchedule(VL)) && 2431 "Bundle and VL out of sync"); 2432 if (BundleMember) { 2433 for (Value *V : VL) { 2434 if (doesNotNeedToBeScheduled(V)) 2435 continue; 2436 assert(BundleMember && "Unexpected end of bundle."); 2437 BundleMember->TE = Last; 2438 BundleMember = BundleMember->NextInBundle; 2439 } 2440 } 2441 assert(!BundleMember && "Bundle and VL out of sync"); 2442 } else { 2443 MustGather.insert(VL.begin(), VL.end()); 2444 } 2445 2446 if (UserTreeIdx.UserTE) 2447 Last->UserTreeIndices.push_back(UserTreeIdx); 2448 2449 return Last; 2450 } 2451 2452 /// -- Vectorization State -- 2453 /// Holds all of the tree entries. 2454 TreeEntry::VecTreeTy VectorizableTree; 2455 2456 #ifndef NDEBUG 2457 /// Debug printer. 2458 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2459 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2460 VectorizableTree[Id]->dump(); 2461 dbgs() << "\n"; 2462 } 2463 } 2464 #endif 2465 2466 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2467 2468 const TreeEntry *getTreeEntry(Value *V) const { 2469 return ScalarToTreeEntry.lookup(V); 2470 } 2471 2472 /// Maps a specific scalar to its tree entry. 2473 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2474 2475 /// Maps a value to the proposed vectorizable size. 2476 SmallDenseMap<Value *, unsigned> InstrElementSize; 2477 2478 /// A list of scalars that we found that we need to keep as scalars. 2479 ValueSet MustGather; 2480 2481 /// This POD struct describes one external user in the vectorized tree. 2482 struct ExternalUser { 2483 ExternalUser(Value *S, llvm::User *U, int L) 2484 : Scalar(S), User(U), Lane(L) {} 2485 2486 // Which scalar in our function. 2487 Value *Scalar; 2488 2489 // Which user that uses the scalar. 2490 llvm::User *User; 2491 2492 // Which lane does the scalar belong to. 2493 int Lane; 2494 }; 2495 using UserList = SmallVector<ExternalUser, 16>; 2496 2497 /// Checks if two instructions may access the same memory. 2498 /// 2499 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2500 /// is invariant in the calling loop. 2501 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2502 Instruction *Inst2) { 2503 // First check if the result is already in the cache. 2504 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2505 Optional<bool> &result = AliasCache[key]; 2506 if (result.hasValue()) { 2507 return result.getValue(); 2508 } 2509 bool aliased = true; 2510 if (Loc1.Ptr && isSimple(Inst1)) 2511 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2512 // Store the result in the cache. 2513 result = aliased; 2514 return aliased; 2515 } 2516 2517 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2518 2519 /// Cache for alias results. 2520 /// TODO: consider moving this to the AliasAnalysis itself. 2521 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2522 2523 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2524 // globally through SLP because we don't perform any action which 2525 // invalidates capture results. 2526 BatchAAResults BatchAA; 2527 2528 /// Temporary store for deleted instructions. Instructions will be deleted 2529 /// eventually when the BoUpSLP is destructed. The deferral is required to 2530 /// ensure that there are no incorrect collisions in the AliasCache, which 2531 /// can happen if a new instruction is allocated at the same address as a 2532 /// previously deleted instruction. 2533 DenseSet<Instruction *> DeletedInstructions; 2534 2535 /// A list of values that need to extracted out of the tree. 2536 /// This list holds pairs of (Internal Scalar : External User). External User 2537 /// can be nullptr, it means that this Internal Scalar will be used later, 2538 /// after vectorization. 2539 UserList ExternalUses; 2540 2541 /// Values used only by @llvm.assume calls. 2542 SmallPtrSet<const Value *, 32> EphValues; 2543 2544 /// Holds all of the instructions that we gathered. 2545 SetVector<Instruction *> GatherShuffleSeq; 2546 2547 /// A list of blocks that we are going to CSE. 2548 SetVector<BasicBlock *> CSEBlocks; 2549 2550 /// Contains all scheduling relevant data for an instruction. 2551 /// A ScheduleData either represents a single instruction or a member of an 2552 /// instruction bundle (= a group of instructions which is combined into a 2553 /// vector instruction). 2554 struct ScheduleData { 2555 // The initial value for the dependency counters. It means that the 2556 // dependencies are not calculated yet. 2557 enum { InvalidDeps = -1 }; 2558 2559 ScheduleData() = default; 2560 2561 void init(int BlockSchedulingRegionID, Value *OpVal) { 2562 FirstInBundle = this; 2563 NextInBundle = nullptr; 2564 NextLoadStore = nullptr; 2565 IsScheduled = false; 2566 SchedulingRegionID = BlockSchedulingRegionID; 2567 clearDependencies(); 2568 OpValue = OpVal; 2569 TE = nullptr; 2570 } 2571 2572 /// Verify basic self consistency properties 2573 void verify() { 2574 if (hasValidDependencies()) { 2575 assert(UnscheduledDeps <= Dependencies && "invariant"); 2576 } else { 2577 assert(UnscheduledDeps == Dependencies && "invariant"); 2578 } 2579 2580 if (IsScheduled) { 2581 assert(isSchedulingEntity() && 2582 "unexpected scheduled state"); 2583 for (const ScheduleData *BundleMember = this; BundleMember; 2584 BundleMember = BundleMember->NextInBundle) { 2585 assert(BundleMember->hasValidDependencies() && 2586 BundleMember->UnscheduledDeps == 0 && 2587 "unexpected scheduled state"); 2588 assert((BundleMember == this || !BundleMember->IsScheduled) && 2589 "only bundle is marked scheduled"); 2590 } 2591 } 2592 2593 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2594 "all bundle members must be in same basic block"); 2595 } 2596 2597 /// Returns true if the dependency information has been calculated. 2598 /// Note that depenendency validity can vary between instructions within 2599 /// a single bundle. 2600 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2601 2602 /// Returns true for single instructions and for bundle representatives 2603 /// (= the head of a bundle). 2604 bool isSchedulingEntity() const { return FirstInBundle == this; } 2605 2606 /// Returns true if it represents an instruction bundle and not only a 2607 /// single instruction. 2608 bool isPartOfBundle() const { 2609 return NextInBundle != nullptr || FirstInBundle != this || TE; 2610 } 2611 2612 /// Returns true if it is ready for scheduling, i.e. it has no more 2613 /// unscheduled depending instructions/bundles. 2614 bool isReady() const { 2615 assert(isSchedulingEntity() && 2616 "can't consider non-scheduling entity for ready list"); 2617 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2618 } 2619 2620 /// Modifies the number of unscheduled dependencies for this instruction, 2621 /// and returns the number of remaining dependencies for the containing 2622 /// bundle. 2623 int incrementUnscheduledDeps(int Incr) { 2624 assert(hasValidDependencies() && 2625 "increment of unscheduled deps would be meaningless"); 2626 UnscheduledDeps += Incr; 2627 return FirstInBundle->unscheduledDepsInBundle(); 2628 } 2629 2630 /// Sets the number of unscheduled dependencies to the number of 2631 /// dependencies. 2632 void resetUnscheduledDeps() { 2633 UnscheduledDeps = Dependencies; 2634 } 2635 2636 /// Clears all dependency information. 2637 void clearDependencies() { 2638 Dependencies = InvalidDeps; 2639 resetUnscheduledDeps(); 2640 MemoryDependencies.clear(); 2641 ControlDependencies.clear(); 2642 } 2643 2644 int unscheduledDepsInBundle() const { 2645 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2646 int Sum = 0; 2647 for (const ScheduleData *BundleMember = this; BundleMember; 2648 BundleMember = BundleMember->NextInBundle) { 2649 if (BundleMember->UnscheduledDeps == InvalidDeps) 2650 return InvalidDeps; 2651 Sum += BundleMember->UnscheduledDeps; 2652 } 2653 return Sum; 2654 } 2655 2656 void dump(raw_ostream &os) const { 2657 if (!isSchedulingEntity()) { 2658 os << "/ " << *Inst; 2659 } else if (NextInBundle) { 2660 os << '[' << *Inst; 2661 ScheduleData *SD = NextInBundle; 2662 while (SD) { 2663 os << ';' << *SD->Inst; 2664 SD = SD->NextInBundle; 2665 } 2666 os << ']'; 2667 } else { 2668 os << *Inst; 2669 } 2670 } 2671 2672 Instruction *Inst = nullptr; 2673 2674 /// Opcode of the current instruction in the schedule data. 2675 Value *OpValue = nullptr; 2676 2677 /// The TreeEntry that this instruction corresponds to. 2678 TreeEntry *TE = nullptr; 2679 2680 /// Points to the head in an instruction bundle (and always to this for 2681 /// single instructions). 2682 ScheduleData *FirstInBundle = nullptr; 2683 2684 /// Single linked list of all instructions in a bundle. Null if it is a 2685 /// single instruction. 2686 ScheduleData *NextInBundle = nullptr; 2687 2688 /// Single linked list of all memory instructions (e.g. load, store, call) 2689 /// in the block - until the end of the scheduling region. 2690 ScheduleData *NextLoadStore = nullptr; 2691 2692 /// The dependent memory instructions. 2693 /// This list is derived on demand in calculateDependencies(). 2694 SmallVector<ScheduleData *, 4> MemoryDependencies; 2695 2696 /// List of instructions which this instruction could be control dependent 2697 /// on. Allowing such nodes to be scheduled below this one could introduce 2698 /// a runtime fault which didn't exist in the original program. 2699 /// ex: this is a load or udiv following a readonly call which inf loops 2700 SmallVector<ScheduleData *, 4> ControlDependencies; 2701 2702 /// This ScheduleData is in the current scheduling region if this matches 2703 /// the current SchedulingRegionID of BlockScheduling. 2704 int SchedulingRegionID = 0; 2705 2706 /// Used for getting a "good" final ordering of instructions. 2707 int SchedulingPriority = 0; 2708 2709 /// The number of dependencies. Constitutes of the number of users of the 2710 /// instruction plus the number of dependent memory instructions (if any). 2711 /// This value is calculated on demand. 2712 /// If InvalidDeps, the number of dependencies is not calculated yet. 2713 int Dependencies = InvalidDeps; 2714 2715 /// The number of dependencies minus the number of dependencies of scheduled 2716 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2717 /// for scheduling. 2718 /// Note that this is negative as long as Dependencies is not calculated. 2719 int UnscheduledDeps = InvalidDeps; 2720 2721 /// True if this instruction is scheduled (or considered as scheduled in the 2722 /// dry-run). 2723 bool IsScheduled = false; 2724 }; 2725 2726 #ifndef NDEBUG 2727 friend inline raw_ostream &operator<<(raw_ostream &os, 2728 const BoUpSLP::ScheduleData &SD) { 2729 SD.dump(os); 2730 return os; 2731 } 2732 #endif 2733 2734 friend struct GraphTraits<BoUpSLP *>; 2735 friend struct DOTGraphTraits<BoUpSLP *>; 2736 2737 /// Contains all scheduling data for a basic block. 2738 /// It does not schedules instructions, which are not memory read/write 2739 /// instructions and their operands are either constants, or arguments, or 2740 /// phis, or instructions from others blocks, or their users are phis or from 2741 /// the other blocks. The resulting vector instructions can be placed at the 2742 /// beginning of the basic block without scheduling (if operands does not need 2743 /// to be scheduled) or at the end of the block (if users are outside of the 2744 /// block). It allows to save some compile time and memory used by the 2745 /// compiler. 2746 /// ScheduleData is assigned for each instruction in between the boundaries of 2747 /// the tree entry, even for those, which are not part of the graph. It is 2748 /// required to correctly follow the dependencies between the instructions and 2749 /// their correct scheduling. The ScheduleData is not allocated for the 2750 /// instructions, which do not require scheduling, like phis, nodes with 2751 /// extractelements/insertelements only or nodes with instructions, with 2752 /// uses/operands outside of the block. 2753 struct BlockScheduling { 2754 BlockScheduling(BasicBlock *BB) 2755 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2756 2757 void clear() { 2758 ReadyInsts.clear(); 2759 ScheduleStart = nullptr; 2760 ScheduleEnd = nullptr; 2761 FirstLoadStoreInRegion = nullptr; 2762 LastLoadStoreInRegion = nullptr; 2763 RegionHasStackSave = false; 2764 2765 // Reduce the maximum schedule region size by the size of the 2766 // previous scheduling run. 2767 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2768 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2769 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2770 ScheduleRegionSize = 0; 2771 2772 // Make a new scheduling region, i.e. all existing ScheduleData is not 2773 // in the new region yet. 2774 ++SchedulingRegionID; 2775 } 2776 2777 ScheduleData *getScheduleData(Instruction *I) { 2778 if (BB != I->getParent()) 2779 // Avoid lookup if can't possibly be in map. 2780 return nullptr; 2781 ScheduleData *SD = ScheduleDataMap.lookup(I); 2782 if (SD && isInSchedulingRegion(SD)) 2783 return SD; 2784 return nullptr; 2785 } 2786 2787 ScheduleData *getScheduleData(Value *V) { 2788 if (auto *I = dyn_cast<Instruction>(V)) 2789 return getScheduleData(I); 2790 return nullptr; 2791 } 2792 2793 ScheduleData *getScheduleData(Value *V, Value *Key) { 2794 if (V == Key) 2795 return getScheduleData(V); 2796 auto I = ExtraScheduleDataMap.find(V); 2797 if (I != ExtraScheduleDataMap.end()) { 2798 ScheduleData *SD = I->second.lookup(Key); 2799 if (SD && isInSchedulingRegion(SD)) 2800 return SD; 2801 } 2802 return nullptr; 2803 } 2804 2805 bool isInSchedulingRegion(ScheduleData *SD) const { 2806 return SD->SchedulingRegionID == SchedulingRegionID; 2807 } 2808 2809 /// Marks an instruction as scheduled and puts all dependent ready 2810 /// instructions into the ready-list. 2811 template <typename ReadyListType> 2812 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2813 SD->IsScheduled = true; 2814 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2815 2816 for (ScheduleData *BundleMember = SD; BundleMember; 2817 BundleMember = BundleMember->NextInBundle) { 2818 if (BundleMember->Inst != BundleMember->OpValue) 2819 continue; 2820 2821 // Handle the def-use chain dependencies. 2822 2823 // Decrement the unscheduled counter and insert to ready list if ready. 2824 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2825 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2826 if (OpDef && OpDef->hasValidDependencies() && 2827 OpDef->incrementUnscheduledDeps(-1) == 0) { 2828 // There are no more unscheduled dependencies after 2829 // decrementing, so we can put the dependent instruction 2830 // into the ready list. 2831 ScheduleData *DepBundle = OpDef->FirstInBundle; 2832 assert(!DepBundle->IsScheduled && 2833 "already scheduled bundle gets ready"); 2834 ReadyList.insert(DepBundle); 2835 LLVM_DEBUG(dbgs() 2836 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2837 } 2838 }); 2839 }; 2840 2841 // If BundleMember is a vector bundle, its operands may have been 2842 // reordered during buildTree(). We therefore need to get its operands 2843 // through the TreeEntry. 2844 if (TreeEntry *TE = BundleMember->TE) { 2845 // Need to search for the lane since the tree entry can be reordered. 2846 int Lane = std::distance(TE->Scalars.begin(), 2847 find(TE->Scalars, BundleMember->Inst)); 2848 assert(Lane >= 0 && "Lane not set"); 2849 2850 // Since vectorization tree is being built recursively this assertion 2851 // ensures that the tree entry has all operands set before reaching 2852 // this code. Couple of exceptions known at the moment are extracts 2853 // where their second (immediate) operand is not added. Since 2854 // immediates do not affect scheduler behavior this is considered 2855 // okay. 2856 auto *In = BundleMember->Inst; 2857 assert(In && 2858 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2859 In->getNumOperands() == TE->getNumOperands()) && 2860 "Missed TreeEntry operands?"); 2861 (void)In; // fake use to avoid build failure when assertions disabled 2862 2863 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2864 OpIdx != NumOperands; ++OpIdx) 2865 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2866 DecrUnsched(I); 2867 } else { 2868 // If BundleMember is a stand-alone instruction, no operand reordering 2869 // has taken place, so we directly access its operands. 2870 for (Use &U : BundleMember->Inst->operands()) 2871 if (auto *I = dyn_cast<Instruction>(U.get())) 2872 DecrUnsched(I); 2873 } 2874 // Handle the memory dependencies. 2875 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2876 if (MemoryDepSD->hasValidDependencies() && 2877 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2878 // There are no more unscheduled dependencies after decrementing, 2879 // so we can put the dependent instruction into the ready list. 2880 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2881 assert(!DepBundle->IsScheduled && 2882 "already scheduled bundle gets ready"); 2883 ReadyList.insert(DepBundle); 2884 LLVM_DEBUG(dbgs() 2885 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2886 } 2887 } 2888 // Handle the control dependencies. 2889 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2890 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2891 // There are no more unscheduled dependencies after decrementing, 2892 // so we can put the dependent instruction into the ready list. 2893 ScheduleData *DepBundle = DepSD->FirstInBundle; 2894 assert(!DepBundle->IsScheduled && 2895 "already scheduled bundle gets ready"); 2896 ReadyList.insert(DepBundle); 2897 LLVM_DEBUG(dbgs() 2898 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2899 } 2900 } 2901 2902 } 2903 } 2904 2905 /// Verify basic self consistency properties of the data structure. 2906 void verify() { 2907 if (!ScheduleStart) 2908 return; 2909 2910 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2911 ScheduleStart->comesBefore(ScheduleEnd) && 2912 "Not a valid scheduling region?"); 2913 2914 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2915 auto *SD = getScheduleData(I); 2916 if (!SD) 2917 continue; 2918 assert(isInSchedulingRegion(SD) && 2919 "primary schedule data not in window?"); 2920 assert(isInSchedulingRegion(SD->FirstInBundle) && 2921 "entire bundle in window!"); 2922 (void)SD; 2923 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2924 } 2925 2926 for (auto *SD : ReadyInsts) { 2927 assert(SD->isSchedulingEntity() && SD->isReady() && 2928 "item in ready list not ready?"); 2929 (void)SD; 2930 } 2931 } 2932 2933 void doForAllOpcodes(Value *V, 2934 function_ref<void(ScheduleData *SD)> Action) { 2935 if (ScheduleData *SD = getScheduleData(V)) 2936 Action(SD); 2937 auto I = ExtraScheduleDataMap.find(V); 2938 if (I != ExtraScheduleDataMap.end()) 2939 for (auto &P : I->second) 2940 if (isInSchedulingRegion(P.second)) 2941 Action(P.second); 2942 } 2943 2944 /// Put all instructions into the ReadyList which are ready for scheduling. 2945 template <typename ReadyListType> 2946 void initialFillReadyList(ReadyListType &ReadyList) { 2947 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2948 doForAllOpcodes(I, [&](ScheduleData *SD) { 2949 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2950 SD->isReady()) { 2951 ReadyList.insert(SD); 2952 LLVM_DEBUG(dbgs() 2953 << "SLP: initially in ready list: " << *SD << "\n"); 2954 } 2955 }); 2956 } 2957 } 2958 2959 /// Build a bundle from the ScheduleData nodes corresponding to the 2960 /// scalar instruction for each lane. 2961 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2962 2963 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2964 /// cyclic dependencies. This is only a dry-run, no instructions are 2965 /// actually moved at this stage. 2966 /// \returns the scheduling bundle. The returned Optional value is non-None 2967 /// if \p VL is allowed to be scheduled. 2968 Optional<ScheduleData *> 2969 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2970 const InstructionsState &S); 2971 2972 /// Un-bundles a group of instructions. 2973 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2974 2975 /// Allocates schedule data chunk. 2976 ScheduleData *allocateScheduleDataChunks(); 2977 2978 /// Extends the scheduling region so that V is inside the region. 2979 /// \returns true if the region size is within the limit. 2980 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2981 2982 /// Initialize the ScheduleData structures for new instructions in the 2983 /// scheduling region. 2984 void initScheduleData(Instruction *FromI, Instruction *ToI, 2985 ScheduleData *PrevLoadStore, 2986 ScheduleData *NextLoadStore); 2987 2988 /// Updates the dependency information of a bundle and of all instructions/ 2989 /// bundles which depend on the original bundle. 2990 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2991 BoUpSLP *SLP); 2992 2993 /// Sets all instruction in the scheduling region to un-scheduled. 2994 void resetSchedule(); 2995 2996 BasicBlock *BB; 2997 2998 /// Simple memory allocation for ScheduleData. 2999 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3000 3001 /// The size of a ScheduleData array in ScheduleDataChunks. 3002 int ChunkSize; 3003 3004 /// The allocator position in the current chunk, which is the last entry 3005 /// of ScheduleDataChunks. 3006 int ChunkPos; 3007 3008 /// Attaches ScheduleData to Instruction. 3009 /// Note that the mapping survives during all vectorization iterations, i.e. 3010 /// ScheduleData structures are recycled. 3011 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3012 3013 /// Attaches ScheduleData to Instruction with the leading key. 3014 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3015 ExtraScheduleDataMap; 3016 3017 /// The ready-list for scheduling (only used for the dry-run). 3018 SetVector<ScheduleData *> ReadyInsts; 3019 3020 /// The first instruction of the scheduling region. 3021 Instruction *ScheduleStart = nullptr; 3022 3023 /// The first instruction _after_ the scheduling region. 3024 Instruction *ScheduleEnd = nullptr; 3025 3026 /// The first memory accessing instruction in the scheduling region 3027 /// (can be null). 3028 ScheduleData *FirstLoadStoreInRegion = nullptr; 3029 3030 /// The last memory accessing instruction in the scheduling region 3031 /// (can be null). 3032 ScheduleData *LastLoadStoreInRegion = nullptr; 3033 3034 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3035 /// region? Used to optimize the dependence calculation for the 3036 /// common case where there isn't. 3037 bool RegionHasStackSave = false; 3038 3039 /// The current size of the scheduling region. 3040 int ScheduleRegionSize = 0; 3041 3042 /// The maximum size allowed for the scheduling region. 3043 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3044 3045 /// The ID of the scheduling region. For a new vectorization iteration this 3046 /// is incremented which "removes" all ScheduleData from the region. 3047 /// Make sure that the initial SchedulingRegionID is greater than the 3048 /// initial SchedulingRegionID in ScheduleData (which is 0). 3049 int SchedulingRegionID = 1; 3050 }; 3051 3052 /// Attaches the BlockScheduling structures to basic blocks. 3053 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3054 3055 /// Performs the "real" scheduling. Done before vectorization is actually 3056 /// performed in a basic block. 3057 void scheduleBlock(BlockScheduling *BS); 3058 3059 /// List of users to ignore during scheduling and that don't need extracting. 3060 ArrayRef<Value *> UserIgnoreList; 3061 3062 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3063 /// sorted SmallVectors of unsigned. 3064 struct OrdersTypeDenseMapInfo { 3065 static OrdersType getEmptyKey() { 3066 OrdersType V; 3067 V.push_back(~1U); 3068 return V; 3069 } 3070 3071 static OrdersType getTombstoneKey() { 3072 OrdersType V; 3073 V.push_back(~2U); 3074 return V; 3075 } 3076 3077 static unsigned getHashValue(const OrdersType &V) { 3078 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3079 } 3080 3081 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3082 return LHS == RHS; 3083 } 3084 }; 3085 3086 // Analysis and block reference. 3087 Function *F; 3088 ScalarEvolution *SE; 3089 TargetTransformInfo *TTI; 3090 TargetLibraryInfo *TLI; 3091 LoopInfo *LI; 3092 DominatorTree *DT; 3093 AssumptionCache *AC; 3094 DemandedBits *DB; 3095 const DataLayout *DL; 3096 OptimizationRemarkEmitter *ORE; 3097 3098 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3099 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3100 3101 /// Instruction builder to construct the vectorized tree. 3102 IRBuilder<> Builder; 3103 3104 /// A map of scalar integer values to the smallest bit width with which they 3105 /// can legally be represented. The values map to (width, signed) pairs, 3106 /// where "width" indicates the minimum bit width and "signed" is True if the 3107 /// value must be signed-extended, rather than zero-extended, back to its 3108 /// original width. 3109 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3110 }; 3111 3112 } // end namespace slpvectorizer 3113 3114 template <> struct GraphTraits<BoUpSLP *> { 3115 using TreeEntry = BoUpSLP::TreeEntry; 3116 3117 /// NodeRef has to be a pointer per the GraphWriter. 3118 using NodeRef = TreeEntry *; 3119 3120 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3121 3122 /// Add the VectorizableTree to the index iterator to be able to return 3123 /// TreeEntry pointers. 3124 struct ChildIteratorType 3125 : public iterator_adaptor_base< 3126 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3127 ContainerTy &VectorizableTree; 3128 3129 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3130 ContainerTy &VT) 3131 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3132 3133 NodeRef operator*() { return I->UserTE; } 3134 }; 3135 3136 static NodeRef getEntryNode(BoUpSLP &R) { 3137 return R.VectorizableTree[0].get(); 3138 } 3139 3140 static ChildIteratorType child_begin(NodeRef N) { 3141 return {N->UserTreeIndices.begin(), N->Container}; 3142 } 3143 3144 static ChildIteratorType child_end(NodeRef N) { 3145 return {N->UserTreeIndices.end(), N->Container}; 3146 } 3147 3148 /// For the node iterator we just need to turn the TreeEntry iterator into a 3149 /// TreeEntry* iterator so that it dereferences to NodeRef. 3150 class nodes_iterator { 3151 using ItTy = ContainerTy::iterator; 3152 ItTy It; 3153 3154 public: 3155 nodes_iterator(const ItTy &It2) : It(It2) {} 3156 NodeRef operator*() { return It->get(); } 3157 nodes_iterator operator++() { 3158 ++It; 3159 return *this; 3160 } 3161 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3162 }; 3163 3164 static nodes_iterator nodes_begin(BoUpSLP *R) { 3165 return nodes_iterator(R->VectorizableTree.begin()); 3166 } 3167 3168 static nodes_iterator nodes_end(BoUpSLP *R) { 3169 return nodes_iterator(R->VectorizableTree.end()); 3170 } 3171 3172 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3173 }; 3174 3175 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3176 using TreeEntry = BoUpSLP::TreeEntry; 3177 3178 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3179 3180 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3181 std::string Str; 3182 raw_string_ostream OS(Str); 3183 if (isSplat(Entry->Scalars)) 3184 OS << "<splat> "; 3185 for (auto V : Entry->Scalars) { 3186 OS << *V; 3187 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3188 return EU.Scalar == V; 3189 })) 3190 OS << " <extract>"; 3191 OS << "\n"; 3192 } 3193 return Str; 3194 } 3195 3196 static std::string getNodeAttributes(const TreeEntry *Entry, 3197 const BoUpSLP *) { 3198 if (Entry->State == TreeEntry::NeedToGather) 3199 return "color=red"; 3200 return ""; 3201 } 3202 }; 3203 3204 } // end namespace llvm 3205 3206 BoUpSLP::~BoUpSLP() { 3207 for (auto *I : DeletedInstructions) 3208 I->dropAllReferences(); 3209 for (auto *I : DeletedInstructions) { 3210 assert(I->use_empty() && 3211 "trying to erase instruction with users."); 3212 I->eraseFromParent(); 3213 } 3214 #ifdef EXPENSIVE_CHECKS 3215 // If we could guarantee that this call is not extremely slow, we could 3216 // remove the ifdef limitation (see PR47712). 3217 assert(!verifyFunction(*F, &dbgs())); 3218 #endif 3219 } 3220 3221 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3222 /// contains original mask for the scalars reused in the node. Procedure 3223 /// transform this mask in accordance with the given \p Mask. 3224 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3225 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3226 "Expected non-empty mask."); 3227 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3228 Prev.swap(Reuses); 3229 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3230 if (Mask[I] != UndefMaskElem) 3231 Reuses[Mask[I]] = Prev[I]; 3232 } 3233 3234 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3235 /// the original order of the scalars. Procedure transforms the provided order 3236 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3237 /// identity order, \p Order is cleared. 3238 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3239 assert(!Mask.empty() && "Expected non-empty mask."); 3240 SmallVector<int> MaskOrder; 3241 if (Order.empty()) { 3242 MaskOrder.resize(Mask.size()); 3243 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3244 } else { 3245 inversePermutation(Order, MaskOrder); 3246 } 3247 reorderReuses(MaskOrder, Mask); 3248 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3249 Order.clear(); 3250 return; 3251 } 3252 Order.assign(Mask.size(), Mask.size()); 3253 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3254 if (MaskOrder[I] != UndefMaskElem) 3255 Order[MaskOrder[I]] = I; 3256 fixupOrderingIndices(Order); 3257 } 3258 3259 Optional<BoUpSLP::OrdersType> 3260 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3261 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3262 unsigned NumScalars = TE.Scalars.size(); 3263 OrdersType CurrentOrder(NumScalars, NumScalars); 3264 SmallVector<int> Positions; 3265 SmallBitVector UsedPositions(NumScalars); 3266 const TreeEntry *STE = nullptr; 3267 // Try to find all gathered scalars that are gets vectorized in other 3268 // vectorize node. Here we can have only one single tree vector node to 3269 // correctly identify order of the gathered scalars. 3270 for (unsigned I = 0; I < NumScalars; ++I) { 3271 Value *V = TE.Scalars[I]; 3272 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3273 continue; 3274 if (const auto *LocalSTE = getTreeEntry(V)) { 3275 if (!STE) 3276 STE = LocalSTE; 3277 else if (STE != LocalSTE) 3278 // Take the order only from the single vector node. 3279 return None; 3280 unsigned Lane = 3281 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3282 if (Lane >= NumScalars) 3283 return None; 3284 if (CurrentOrder[Lane] != NumScalars) { 3285 if (Lane != I) 3286 continue; 3287 UsedPositions.reset(CurrentOrder[Lane]); 3288 } 3289 // The partial identity (where only some elements of the gather node are 3290 // in the identity order) is good. 3291 CurrentOrder[Lane] = I; 3292 UsedPositions.set(I); 3293 } 3294 } 3295 // Need to keep the order if we have a vector entry and at least 2 scalars or 3296 // the vectorized entry has just 2 scalars. 3297 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3298 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3299 for (unsigned I = 0; I < NumScalars; ++I) 3300 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3301 return false; 3302 return true; 3303 }; 3304 if (IsIdentityOrder(CurrentOrder)) { 3305 CurrentOrder.clear(); 3306 return CurrentOrder; 3307 } 3308 auto *It = CurrentOrder.begin(); 3309 for (unsigned I = 0; I < NumScalars;) { 3310 if (UsedPositions.test(I)) { 3311 ++I; 3312 continue; 3313 } 3314 if (*It == NumScalars) { 3315 *It = I; 3316 ++I; 3317 } 3318 ++It; 3319 } 3320 return CurrentOrder; 3321 } 3322 return None; 3323 } 3324 3325 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3326 bool TopToBottom) { 3327 // No need to reorder if need to shuffle reuses, still need to shuffle the 3328 // node. 3329 if (!TE.ReuseShuffleIndices.empty()) 3330 return None; 3331 if (TE.State == TreeEntry::Vectorize && 3332 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3333 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3334 !TE.isAltShuffle()) 3335 return TE.ReorderIndices; 3336 if (TE.State == TreeEntry::NeedToGather) { 3337 // TODO: add analysis of other gather nodes with extractelement 3338 // instructions and other values/instructions, not only undefs. 3339 if (((TE.getOpcode() == Instruction::ExtractElement && 3340 !TE.isAltShuffle()) || 3341 (all_of(TE.Scalars, 3342 [](Value *V) { 3343 return isa<UndefValue, ExtractElementInst>(V); 3344 }) && 3345 any_of(TE.Scalars, 3346 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3347 all_of(TE.Scalars, 3348 [](Value *V) { 3349 auto *EE = dyn_cast<ExtractElementInst>(V); 3350 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3351 }) && 3352 allSameType(TE.Scalars)) { 3353 // Check that gather of extractelements can be represented as 3354 // just a shuffle of a single vector. 3355 OrdersType CurrentOrder; 3356 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3357 if (Reuse || !CurrentOrder.empty()) { 3358 if (!CurrentOrder.empty()) 3359 fixupOrderingIndices(CurrentOrder); 3360 return CurrentOrder; 3361 } 3362 } 3363 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3364 return CurrentOrder; 3365 } 3366 return None; 3367 } 3368 3369 void BoUpSLP::reorderTopToBottom() { 3370 // Maps VF to the graph nodes. 3371 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3372 // ExtractElement gather nodes which can be vectorized and need to handle 3373 // their ordering. 3374 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3375 // Find all reorderable nodes with the given VF. 3376 // Currently the are vectorized stores,loads,extracts + some gathering of 3377 // extracts. 3378 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3379 const std::unique_ptr<TreeEntry> &TE) { 3380 if (Optional<OrdersType> CurrentOrder = 3381 getReorderingData(*TE, /*TopToBottom=*/true)) { 3382 // Do not include ordering for nodes used in the alt opcode vectorization, 3383 // better to reorder them during bottom-to-top stage. If follow the order 3384 // here, it causes reordering of the whole graph though actually it is 3385 // profitable just to reorder the subgraph that starts from the alternate 3386 // opcode vectorization node. Such nodes already end-up with the shuffle 3387 // instruction and it is just enough to change this shuffle rather than 3388 // rotate the scalars for the whole graph. 3389 unsigned Cnt = 0; 3390 const TreeEntry *UserTE = TE.get(); 3391 while (UserTE && Cnt < RecursionMaxDepth) { 3392 if (UserTE->UserTreeIndices.size() != 1) 3393 break; 3394 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3395 return EI.UserTE->State == TreeEntry::Vectorize && 3396 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3397 })) 3398 return; 3399 if (UserTE->UserTreeIndices.empty()) 3400 UserTE = nullptr; 3401 else 3402 UserTE = UserTE->UserTreeIndices.back().UserTE; 3403 ++Cnt; 3404 } 3405 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3406 if (TE->State != TreeEntry::Vectorize) 3407 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3408 } 3409 }); 3410 3411 // Reorder the graph nodes according to their vectorization factor. 3412 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3413 VF /= 2) { 3414 auto It = VFToOrderedEntries.find(VF); 3415 if (It == VFToOrderedEntries.end()) 3416 continue; 3417 // Try to find the most profitable order. We just are looking for the most 3418 // used order and reorder scalar elements in the nodes according to this 3419 // mostly used order. 3420 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3421 // All operands are reordered and used only in this node - propagate the 3422 // most used order to the user node. 3423 MapVector<OrdersType, unsigned, 3424 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3425 OrdersUses; 3426 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3427 for (const TreeEntry *OpTE : OrderedEntries) { 3428 // No need to reorder this nodes, still need to extend and to use shuffle, 3429 // just need to merge reordering shuffle and the reuse shuffle. 3430 if (!OpTE->ReuseShuffleIndices.empty()) 3431 continue; 3432 // Count number of orders uses. 3433 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3434 if (OpTE->State == TreeEntry::NeedToGather) 3435 return GathersToOrders.find(OpTE)->second; 3436 return OpTE->ReorderIndices; 3437 }(); 3438 // Stores actually store the mask, not the order, need to invert. 3439 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3440 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3441 SmallVector<int> Mask; 3442 inversePermutation(Order, Mask); 3443 unsigned E = Order.size(); 3444 OrdersType CurrentOrder(E, E); 3445 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3446 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3447 }); 3448 fixupOrderingIndices(CurrentOrder); 3449 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3450 } else { 3451 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3452 } 3453 } 3454 // Set order of the user node. 3455 if (OrdersUses.empty()) 3456 continue; 3457 // Choose the most used order. 3458 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3459 unsigned Cnt = OrdersUses.front().second; 3460 for (const auto &Pair : drop_begin(OrdersUses)) { 3461 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3462 BestOrder = Pair.first; 3463 Cnt = Pair.second; 3464 } 3465 } 3466 // Set order of the user node. 3467 if (BestOrder.empty()) 3468 continue; 3469 SmallVector<int> Mask; 3470 inversePermutation(BestOrder, Mask); 3471 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3472 unsigned E = BestOrder.size(); 3473 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3474 return I < E ? static_cast<int>(I) : UndefMaskElem; 3475 }); 3476 // Do an actual reordering, if profitable. 3477 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3478 // Just do the reordering for the nodes with the given VF. 3479 if (TE->Scalars.size() != VF) { 3480 if (TE->ReuseShuffleIndices.size() == VF) { 3481 // Need to reorder the reuses masks of the operands with smaller VF to 3482 // be able to find the match between the graph nodes and scalar 3483 // operands of the given node during vectorization/cost estimation. 3484 assert(all_of(TE->UserTreeIndices, 3485 [VF, &TE](const EdgeInfo &EI) { 3486 return EI.UserTE->Scalars.size() == VF || 3487 EI.UserTE->Scalars.size() == 3488 TE->Scalars.size(); 3489 }) && 3490 "All users must be of VF size."); 3491 // Update ordering of the operands with the smaller VF than the given 3492 // one. 3493 reorderReuses(TE->ReuseShuffleIndices, Mask); 3494 } 3495 continue; 3496 } 3497 if (TE->State == TreeEntry::Vectorize && 3498 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3499 InsertElementInst>(TE->getMainOp()) && 3500 !TE->isAltShuffle()) { 3501 // Build correct orders for extract{element,value}, loads and 3502 // stores. 3503 reorderOrder(TE->ReorderIndices, Mask); 3504 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3505 TE->reorderOperands(Mask); 3506 } else { 3507 // Reorder the node and its operands. 3508 TE->reorderOperands(Mask); 3509 assert(TE->ReorderIndices.empty() && 3510 "Expected empty reorder sequence."); 3511 reorderScalars(TE->Scalars, Mask); 3512 } 3513 if (!TE->ReuseShuffleIndices.empty()) { 3514 // Apply reversed order to keep the original ordering of the reused 3515 // elements to avoid extra reorder indices shuffling. 3516 OrdersType CurrentOrder; 3517 reorderOrder(CurrentOrder, MaskOrder); 3518 SmallVector<int> NewReuses; 3519 inversePermutation(CurrentOrder, NewReuses); 3520 addMask(NewReuses, TE->ReuseShuffleIndices); 3521 TE->ReuseShuffleIndices.swap(NewReuses); 3522 } 3523 } 3524 } 3525 } 3526 3527 bool BoUpSLP::canReorderOperands( 3528 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3529 ArrayRef<TreeEntry *> ReorderableGathers, 3530 SmallVectorImpl<TreeEntry *> &GatherOps) { 3531 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3532 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3533 return OpData.first == I && 3534 OpData.second->State == TreeEntry::Vectorize; 3535 })) 3536 continue; 3537 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3538 // Do not reorder if operand node is used by many user nodes. 3539 if (any_of(TE->UserTreeIndices, 3540 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3541 return false; 3542 // Add the node to the list of the ordered nodes with the identity 3543 // order. 3544 Edges.emplace_back(I, TE); 3545 continue; 3546 } 3547 ArrayRef<Value *> VL = UserTE->getOperand(I); 3548 TreeEntry *Gather = nullptr; 3549 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3550 assert(TE->State != TreeEntry::Vectorize && 3551 "Only non-vectorized nodes are expected."); 3552 if (TE->isSame(VL)) { 3553 Gather = TE; 3554 return true; 3555 } 3556 return false; 3557 }) > 1) 3558 return false; 3559 if (Gather) 3560 GatherOps.push_back(Gather); 3561 } 3562 return true; 3563 } 3564 3565 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3566 SetVector<TreeEntry *> OrderedEntries; 3567 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3568 // Find all reorderable leaf nodes with the given VF. 3569 // Currently the are vectorized loads,extracts without alternate operands + 3570 // some gathering of extracts. 3571 SmallVector<TreeEntry *> NonVectorized; 3572 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3573 &NonVectorized]( 3574 const std::unique_ptr<TreeEntry> &TE) { 3575 if (TE->State != TreeEntry::Vectorize) 3576 NonVectorized.push_back(TE.get()); 3577 if (Optional<OrdersType> CurrentOrder = 3578 getReorderingData(*TE, /*TopToBottom=*/false)) { 3579 OrderedEntries.insert(TE.get()); 3580 if (TE->State != TreeEntry::Vectorize) 3581 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3582 } 3583 }); 3584 3585 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3586 // I.e., if the node has operands, that are reordered, try to make at least 3587 // one operand order in the natural order and reorder others + reorder the 3588 // user node itself. 3589 SmallPtrSet<const TreeEntry *, 4> Visited; 3590 while (!OrderedEntries.empty()) { 3591 // 1. Filter out only reordered nodes. 3592 // 2. If the entry has multiple uses - skip it and jump to the next node. 3593 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3594 SmallVector<TreeEntry *> Filtered; 3595 for (TreeEntry *TE : OrderedEntries) { 3596 if (!(TE->State == TreeEntry::Vectorize || 3597 (TE->State == TreeEntry::NeedToGather && 3598 GathersToOrders.count(TE))) || 3599 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3600 !all_of(drop_begin(TE->UserTreeIndices), 3601 [TE](const EdgeInfo &EI) { 3602 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3603 }) || 3604 !Visited.insert(TE).second) { 3605 Filtered.push_back(TE); 3606 continue; 3607 } 3608 // Build a map between user nodes and their operands order to speedup 3609 // search. The graph currently does not provide this dependency directly. 3610 for (EdgeInfo &EI : TE->UserTreeIndices) { 3611 TreeEntry *UserTE = EI.UserTE; 3612 auto It = Users.find(UserTE); 3613 if (It == Users.end()) 3614 It = Users.insert({UserTE, {}}).first; 3615 It->second.emplace_back(EI.EdgeIdx, TE); 3616 } 3617 } 3618 // Erase filtered entries. 3619 for_each(Filtered, 3620 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3621 for (auto &Data : Users) { 3622 // Check that operands are used only in the User node. 3623 SmallVector<TreeEntry *> GatherOps; 3624 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3625 GatherOps)) { 3626 for_each(Data.second, 3627 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3628 OrderedEntries.remove(Op.second); 3629 }); 3630 continue; 3631 } 3632 // All operands are reordered and used only in this node - propagate the 3633 // most used order to the user node. 3634 MapVector<OrdersType, unsigned, 3635 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3636 OrdersUses; 3637 // Do the analysis for each tree entry only once, otherwise the order of 3638 // the same node my be considered several times, though might be not 3639 // profitable. 3640 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3641 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3642 for (const auto &Op : Data.second) { 3643 TreeEntry *OpTE = Op.second; 3644 if (!VisitedOps.insert(OpTE).second) 3645 continue; 3646 if (!OpTE->ReuseShuffleIndices.empty() || 3647 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3648 continue; 3649 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3650 if (OpTE->State == TreeEntry::NeedToGather) 3651 return GathersToOrders.find(OpTE)->second; 3652 return OpTE->ReorderIndices; 3653 }(); 3654 unsigned NumOps = count_if( 3655 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3656 return P.second == OpTE; 3657 }); 3658 // Stores actually store the mask, not the order, need to invert. 3659 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3660 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3661 SmallVector<int> Mask; 3662 inversePermutation(Order, Mask); 3663 unsigned E = Order.size(); 3664 OrdersType CurrentOrder(E, E); 3665 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3666 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3667 }); 3668 fixupOrderingIndices(CurrentOrder); 3669 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3670 NumOps; 3671 } else { 3672 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3673 } 3674 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3675 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3676 const TreeEntry *TE) { 3677 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3678 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3679 (IgnoreReorder && TE->Idx == 0)) 3680 return true; 3681 if (TE->State == TreeEntry::NeedToGather) { 3682 auto It = GathersToOrders.find(TE); 3683 if (It != GathersToOrders.end()) 3684 return !It->second.empty(); 3685 return true; 3686 } 3687 return false; 3688 }; 3689 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3690 TreeEntry *UserTE = EI.UserTE; 3691 if (!VisitedUsers.insert(UserTE).second) 3692 continue; 3693 // May reorder user node if it requires reordering, has reused 3694 // scalars, is an alternate op vectorize node or its op nodes require 3695 // reordering. 3696 if (AllowsReordering(UserTE)) 3697 continue; 3698 // Check if users allow reordering. 3699 // Currently look up just 1 level of operands to avoid increase of 3700 // the compile time. 3701 // Profitable to reorder if definitely more operands allow 3702 // reordering rather than those with natural order. 3703 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3704 if (static_cast<unsigned>(count_if( 3705 Ops, [UserTE, &AllowsReordering]( 3706 const std::pair<unsigned, TreeEntry *> &Op) { 3707 return AllowsReordering(Op.second) && 3708 all_of(Op.second->UserTreeIndices, 3709 [UserTE](const EdgeInfo &EI) { 3710 return EI.UserTE == UserTE; 3711 }); 3712 })) <= Ops.size() / 2) 3713 ++Res.first->second; 3714 } 3715 } 3716 // If no orders - skip current nodes and jump to the next one, if any. 3717 if (OrdersUses.empty()) { 3718 for_each(Data.second, 3719 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3720 OrderedEntries.remove(Op.second); 3721 }); 3722 continue; 3723 } 3724 // Choose the best order. 3725 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3726 unsigned Cnt = OrdersUses.front().second; 3727 for (const auto &Pair : drop_begin(OrdersUses)) { 3728 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3729 BestOrder = Pair.first; 3730 Cnt = Pair.second; 3731 } 3732 } 3733 // Set order of the user node (reordering of operands and user nodes). 3734 if (BestOrder.empty()) { 3735 for_each(Data.second, 3736 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3737 OrderedEntries.remove(Op.second); 3738 }); 3739 continue; 3740 } 3741 // Erase operands from OrderedEntries list and adjust their orders. 3742 VisitedOps.clear(); 3743 SmallVector<int> Mask; 3744 inversePermutation(BestOrder, Mask); 3745 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3746 unsigned E = BestOrder.size(); 3747 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3748 return I < E ? static_cast<int>(I) : UndefMaskElem; 3749 }); 3750 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3751 TreeEntry *TE = Op.second; 3752 OrderedEntries.remove(TE); 3753 if (!VisitedOps.insert(TE).second) 3754 continue; 3755 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3756 // Just reorder reuses indices. 3757 reorderReuses(TE->ReuseShuffleIndices, Mask); 3758 continue; 3759 } 3760 // Gathers are processed separately. 3761 if (TE->State != TreeEntry::Vectorize) 3762 continue; 3763 assert((BestOrder.size() == TE->ReorderIndices.size() || 3764 TE->ReorderIndices.empty()) && 3765 "Non-matching sizes of user/operand entries."); 3766 reorderOrder(TE->ReorderIndices, Mask); 3767 } 3768 // For gathers just need to reorder its scalars. 3769 for (TreeEntry *Gather : GatherOps) { 3770 assert(Gather->ReorderIndices.empty() && 3771 "Unexpected reordering of gathers."); 3772 if (!Gather->ReuseShuffleIndices.empty()) { 3773 // Just reorder reuses indices. 3774 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3775 continue; 3776 } 3777 reorderScalars(Gather->Scalars, Mask); 3778 OrderedEntries.remove(Gather); 3779 } 3780 // Reorder operands of the user node and set the ordering for the user 3781 // node itself. 3782 if (Data.first->State != TreeEntry::Vectorize || 3783 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3784 Data.first->getMainOp()) || 3785 Data.first->isAltShuffle()) 3786 Data.first->reorderOperands(Mask); 3787 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3788 Data.first->isAltShuffle()) { 3789 reorderScalars(Data.first->Scalars, Mask); 3790 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3791 if (Data.first->ReuseShuffleIndices.empty() && 3792 !Data.first->ReorderIndices.empty() && 3793 !Data.first->isAltShuffle()) { 3794 // Insert user node to the list to try to sink reordering deeper in 3795 // the graph. 3796 OrderedEntries.insert(Data.first); 3797 } 3798 } else { 3799 reorderOrder(Data.first->ReorderIndices, Mask); 3800 } 3801 } 3802 } 3803 // If the reordering is unnecessary, just remove the reorder. 3804 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3805 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3806 VectorizableTree.front()->ReorderIndices.clear(); 3807 } 3808 3809 void BoUpSLP::buildExternalUses( 3810 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3811 // Collect the values that we need to extract from the tree. 3812 for (auto &TEPtr : VectorizableTree) { 3813 TreeEntry *Entry = TEPtr.get(); 3814 3815 // No need to handle users of gathered values. 3816 if (Entry->State == TreeEntry::NeedToGather) 3817 continue; 3818 3819 // For each lane: 3820 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3821 Value *Scalar = Entry->Scalars[Lane]; 3822 int FoundLane = Entry->findLaneForValue(Scalar); 3823 3824 // Check if the scalar is externally used as an extra arg. 3825 auto ExtI = ExternallyUsedValues.find(Scalar); 3826 if (ExtI != ExternallyUsedValues.end()) { 3827 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3828 << Lane << " from " << *Scalar << ".\n"); 3829 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3830 } 3831 for (User *U : Scalar->users()) { 3832 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3833 3834 Instruction *UserInst = dyn_cast<Instruction>(U); 3835 if (!UserInst) 3836 continue; 3837 3838 if (isDeleted(UserInst)) 3839 continue; 3840 3841 // Skip in-tree scalars that become vectors 3842 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3843 Value *UseScalar = UseEntry->Scalars[0]; 3844 // Some in-tree scalars will remain as scalar in vectorized 3845 // instructions. If that is the case, the one in Lane 0 will 3846 // be used. 3847 if (UseScalar != U || 3848 UseEntry->State == TreeEntry::ScatterVectorize || 3849 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3850 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3851 << ".\n"); 3852 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3853 continue; 3854 } 3855 } 3856 3857 // Ignore users in the user ignore list. 3858 if (is_contained(UserIgnoreList, UserInst)) 3859 continue; 3860 3861 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3862 << Lane << " from " << *Scalar << ".\n"); 3863 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3864 } 3865 } 3866 } 3867 } 3868 3869 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3870 ArrayRef<Value *> UserIgnoreLst) { 3871 deleteTree(); 3872 UserIgnoreList = UserIgnoreLst; 3873 if (!allSameType(Roots)) 3874 return; 3875 buildTree_rec(Roots, 0, EdgeInfo()); 3876 } 3877 3878 namespace { 3879 /// Tracks the state we can represent the loads in the given sequence. 3880 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3881 } // anonymous namespace 3882 3883 /// Checks if the given array of loads can be represented as a vectorized, 3884 /// scatter or just simple gather. 3885 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3886 const TargetTransformInfo &TTI, 3887 const DataLayout &DL, ScalarEvolution &SE, 3888 SmallVectorImpl<unsigned> &Order, 3889 SmallVectorImpl<Value *> &PointerOps) { 3890 // Check that a vectorized load would load the same memory as a scalar 3891 // load. For example, we don't want to vectorize loads that are smaller 3892 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3893 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3894 // from such a struct, we read/write packed bits disagreeing with the 3895 // unvectorized version. 3896 Type *ScalarTy = VL0->getType(); 3897 3898 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3899 return LoadsState::Gather; 3900 3901 // Make sure all loads in the bundle are simple - we can't vectorize 3902 // atomic or volatile loads. 3903 PointerOps.clear(); 3904 PointerOps.resize(VL.size()); 3905 auto *POIter = PointerOps.begin(); 3906 for (Value *V : VL) { 3907 auto *L = cast<LoadInst>(V); 3908 if (!L->isSimple()) 3909 return LoadsState::Gather; 3910 *POIter = L->getPointerOperand(); 3911 ++POIter; 3912 } 3913 3914 Order.clear(); 3915 // Check the order of pointer operands. 3916 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3917 Value *Ptr0; 3918 Value *PtrN; 3919 if (Order.empty()) { 3920 Ptr0 = PointerOps.front(); 3921 PtrN = PointerOps.back(); 3922 } else { 3923 Ptr0 = PointerOps[Order.front()]; 3924 PtrN = PointerOps[Order.back()]; 3925 } 3926 Optional<int> Diff = 3927 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3928 // Check that the sorted loads are consecutive. 3929 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3930 return LoadsState::Vectorize; 3931 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3932 for (Value *V : VL) 3933 CommonAlignment = 3934 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3935 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3936 CommonAlignment)) 3937 return LoadsState::ScatterVectorize; 3938 } 3939 3940 return LoadsState::Gather; 3941 } 3942 3943 /// \return true if the specified list of values has only one instruction that 3944 /// requires scheduling, false otherwise. 3945 #ifndef NDEBUG 3946 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3947 Value *NeedsScheduling = nullptr; 3948 for (Value *V : VL) { 3949 if (doesNotNeedToBeScheduled(V)) 3950 continue; 3951 if (!NeedsScheduling) { 3952 NeedsScheduling = V; 3953 continue; 3954 } 3955 return false; 3956 } 3957 return NeedsScheduling; 3958 } 3959 #endif 3960 3961 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3962 const EdgeInfo &UserTreeIdx) { 3963 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3964 3965 SmallVector<int> ReuseShuffleIndicies; 3966 SmallVector<Value *> UniqueValues; 3967 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3968 &UserTreeIdx, 3969 this](const InstructionsState &S) { 3970 // Check that every instruction appears once in this bundle. 3971 DenseMap<Value *, unsigned> UniquePositions; 3972 for (Value *V : VL) { 3973 if (isConstant(V)) { 3974 ReuseShuffleIndicies.emplace_back( 3975 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3976 UniqueValues.emplace_back(V); 3977 continue; 3978 } 3979 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3980 ReuseShuffleIndicies.emplace_back(Res.first->second); 3981 if (Res.second) 3982 UniqueValues.emplace_back(V); 3983 } 3984 size_t NumUniqueScalarValues = UniqueValues.size(); 3985 if (NumUniqueScalarValues == VL.size()) { 3986 ReuseShuffleIndicies.clear(); 3987 } else { 3988 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3989 if (NumUniqueScalarValues <= 1 || 3990 (UniquePositions.size() == 1 && all_of(UniqueValues, 3991 [](Value *V) { 3992 return isa<UndefValue>(V) || 3993 !isConstant(V); 3994 })) || 3995 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3996 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3997 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3998 return false; 3999 } 4000 VL = UniqueValues; 4001 } 4002 return true; 4003 }; 4004 4005 InstructionsState S = getSameOpcode(VL); 4006 if (Depth == RecursionMaxDepth) { 4007 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4008 if (TryToFindDuplicates(S)) 4009 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4010 ReuseShuffleIndicies); 4011 return; 4012 } 4013 4014 // Don't handle scalable vectors 4015 if (S.getOpcode() == Instruction::ExtractElement && 4016 isa<ScalableVectorType>( 4017 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4018 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4019 if (TryToFindDuplicates(S)) 4020 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4021 ReuseShuffleIndicies); 4022 return; 4023 } 4024 4025 // Don't handle vectors. 4026 if (S.OpValue->getType()->isVectorTy() && 4027 !isa<InsertElementInst>(S.OpValue)) { 4028 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4029 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4030 return; 4031 } 4032 4033 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4034 if (SI->getValueOperand()->getType()->isVectorTy()) { 4035 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4036 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4037 return; 4038 } 4039 4040 // If all of the operands are identical or constant we have a simple solution. 4041 // If we deal with insert/extract instructions, they all must have constant 4042 // indices, otherwise we should gather them, not try to vectorize. 4043 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4044 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4045 !all_of(VL, isVectorLikeInstWithConstOps))) { 4046 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4047 if (TryToFindDuplicates(S)) 4048 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4049 ReuseShuffleIndicies); 4050 return; 4051 } 4052 4053 // We now know that this is a vector of instructions of the same type from 4054 // the same block. 4055 4056 // Don't vectorize ephemeral values. 4057 for (Value *V : VL) { 4058 if (EphValues.count(V)) { 4059 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4060 << ") is ephemeral.\n"); 4061 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4062 return; 4063 } 4064 } 4065 4066 // Check if this is a duplicate of another entry. 4067 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4068 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4069 if (!E->isSame(VL)) { 4070 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4071 if (TryToFindDuplicates(S)) 4072 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4073 ReuseShuffleIndicies); 4074 return; 4075 } 4076 // Record the reuse of the tree node. FIXME, currently this is only used to 4077 // properly draw the graph rather than for the actual vectorization. 4078 E->UserTreeIndices.push_back(UserTreeIdx); 4079 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4080 << ".\n"); 4081 return; 4082 } 4083 4084 // Check that none of the instructions in the bundle are already in the tree. 4085 for (Value *V : VL) { 4086 auto *I = dyn_cast<Instruction>(V); 4087 if (!I) 4088 continue; 4089 if (getTreeEntry(I)) { 4090 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4091 << ") is already in tree.\n"); 4092 if (TryToFindDuplicates(S)) 4093 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4094 ReuseShuffleIndicies); 4095 return; 4096 } 4097 } 4098 4099 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4100 for (Value *V : VL) { 4101 if (is_contained(UserIgnoreList, V)) { 4102 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4103 if (TryToFindDuplicates(S)) 4104 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4105 ReuseShuffleIndicies); 4106 return; 4107 } 4108 } 4109 4110 // Check that all of the users of the scalars that we want to vectorize are 4111 // schedulable. 4112 auto *VL0 = cast<Instruction>(S.OpValue); 4113 BasicBlock *BB = VL0->getParent(); 4114 4115 if (!DT->isReachableFromEntry(BB)) { 4116 // Don't go into unreachable blocks. They may contain instructions with 4117 // dependency cycles which confuse the final scheduling. 4118 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4119 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4120 return; 4121 } 4122 4123 // Check that every instruction appears once in this bundle. 4124 if (!TryToFindDuplicates(S)) 4125 return; 4126 4127 auto &BSRef = BlocksSchedules[BB]; 4128 if (!BSRef) 4129 BSRef = std::make_unique<BlockScheduling>(BB); 4130 4131 BlockScheduling &BS = *BSRef; 4132 4133 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4134 #ifdef EXPENSIVE_CHECKS 4135 // Make sure we didn't break any internal invariants 4136 BS.verify(); 4137 #endif 4138 if (!Bundle) { 4139 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4140 assert((!BS.getScheduleData(VL0) || 4141 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4142 "tryScheduleBundle should cancelScheduling on failure"); 4143 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4144 ReuseShuffleIndicies); 4145 return; 4146 } 4147 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4148 4149 unsigned ShuffleOrOp = S.isAltShuffle() ? 4150 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4151 switch (ShuffleOrOp) { 4152 case Instruction::PHI: { 4153 auto *PH = cast<PHINode>(VL0); 4154 4155 // Check for terminator values (e.g. invoke). 4156 for (Value *V : VL) 4157 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4158 Instruction *Term = dyn_cast<Instruction>(Incoming); 4159 if (Term && Term->isTerminator()) { 4160 LLVM_DEBUG(dbgs() 4161 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4162 BS.cancelScheduling(VL, VL0); 4163 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4164 ReuseShuffleIndicies); 4165 return; 4166 } 4167 } 4168 4169 TreeEntry *TE = 4170 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4171 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4172 4173 // Keeps the reordered operands to avoid code duplication. 4174 SmallVector<ValueList, 2> OperandsVec; 4175 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4176 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4177 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4178 TE->setOperand(I, Operands); 4179 OperandsVec.push_back(Operands); 4180 continue; 4181 } 4182 ValueList Operands; 4183 // Prepare the operand vector. 4184 for (Value *V : VL) 4185 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4186 PH->getIncomingBlock(I))); 4187 TE->setOperand(I, Operands); 4188 OperandsVec.push_back(Operands); 4189 } 4190 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4191 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4192 return; 4193 } 4194 case Instruction::ExtractValue: 4195 case Instruction::ExtractElement: { 4196 OrdersType CurrentOrder; 4197 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4198 if (Reuse) { 4199 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4200 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4201 ReuseShuffleIndicies); 4202 // This is a special case, as it does not gather, but at the same time 4203 // we are not extending buildTree_rec() towards the operands. 4204 ValueList Op0; 4205 Op0.assign(VL.size(), VL0->getOperand(0)); 4206 VectorizableTree.back()->setOperand(0, Op0); 4207 return; 4208 } 4209 if (!CurrentOrder.empty()) { 4210 LLVM_DEBUG({ 4211 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4212 "with order"; 4213 for (unsigned Idx : CurrentOrder) 4214 dbgs() << " " << Idx; 4215 dbgs() << "\n"; 4216 }); 4217 fixupOrderingIndices(CurrentOrder); 4218 // Insert new order with initial value 0, if it does not exist, 4219 // otherwise return the iterator to the existing one. 4220 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4221 ReuseShuffleIndicies, CurrentOrder); 4222 // This is a special case, as it does not gather, but at the same time 4223 // we are not extending buildTree_rec() towards the operands. 4224 ValueList Op0; 4225 Op0.assign(VL.size(), VL0->getOperand(0)); 4226 VectorizableTree.back()->setOperand(0, Op0); 4227 return; 4228 } 4229 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4230 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4231 ReuseShuffleIndicies); 4232 BS.cancelScheduling(VL, VL0); 4233 return; 4234 } 4235 case Instruction::InsertElement: { 4236 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4237 4238 // Check that we have a buildvector and not a shuffle of 2 or more 4239 // different vectors. 4240 ValueSet SourceVectors; 4241 for (Value *V : VL) { 4242 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4243 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4244 } 4245 4246 if (count_if(VL, [&SourceVectors](Value *V) { 4247 return !SourceVectors.contains(V); 4248 }) >= 2) { 4249 // Found 2nd source vector - cancel. 4250 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4251 "different source vectors.\n"); 4252 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4253 BS.cancelScheduling(VL, VL0); 4254 return; 4255 } 4256 4257 auto OrdCompare = [](const std::pair<int, int> &P1, 4258 const std::pair<int, int> &P2) { 4259 return P1.first > P2.first; 4260 }; 4261 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4262 decltype(OrdCompare)> 4263 Indices(OrdCompare); 4264 for (int I = 0, E = VL.size(); I < E; ++I) { 4265 unsigned Idx = *getInsertIndex(VL[I]); 4266 Indices.emplace(Idx, I); 4267 } 4268 OrdersType CurrentOrder(VL.size(), VL.size()); 4269 bool IsIdentity = true; 4270 for (int I = 0, E = VL.size(); I < E; ++I) { 4271 CurrentOrder[Indices.top().second] = I; 4272 IsIdentity &= Indices.top().second == I; 4273 Indices.pop(); 4274 } 4275 if (IsIdentity) 4276 CurrentOrder.clear(); 4277 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4278 None, CurrentOrder); 4279 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4280 4281 constexpr int NumOps = 2; 4282 ValueList VectorOperands[NumOps]; 4283 for (int I = 0; I < NumOps; ++I) { 4284 for (Value *V : VL) 4285 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4286 4287 TE->setOperand(I, VectorOperands[I]); 4288 } 4289 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4290 return; 4291 } 4292 case Instruction::Load: { 4293 // Check that a vectorized load would load the same memory as a scalar 4294 // load. For example, we don't want to vectorize loads that are smaller 4295 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4296 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4297 // from such a struct, we read/write packed bits disagreeing with the 4298 // unvectorized version. 4299 SmallVector<Value *> PointerOps; 4300 OrdersType CurrentOrder; 4301 TreeEntry *TE = nullptr; 4302 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4303 PointerOps)) { 4304 case LoadsState::Vectorize: 4305 if (CurrentOrder.empty()) { 4306 // Original loads are consecutive and does not require reordering. 4307 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4308 ReuseShuffleIndicies); 4309 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4310 } else { 4311 fixupOrderingIndices(CurrentOrder); 4312 // Need to reorder. 4313 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4314 ReuseShuffleIndicies, CurrentOrder); 4315 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4316 } 4317 TE->setOperandsInOrder(); 4318 break; 4319 case LoadsState::ScatterVectorize: 4320 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4321 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4322 UserTreeIdx, ReuseShuffleIndicies); 4323 TE->setOperandsInOrder(); 4324 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4325 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4326 break; 4327 case LoadsState::Gather: 4328 BS.cancelScheduling(VL, VL0); 4329 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4330 ReuseShuffleIndicies); 4331 #ifndef NDEBUG 4332 Type *ScalarTy = VL0->getType(); 4333 if (DL->getTypeSizeInBits(ScalarTy) != 4334 DL->getTypeAllocSizeInBits(ScalarTy)) 4335 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4336 else if (any_of(VL, [](Value *V) { 4337 return !cast<LoadInst>(V)->isSimple(); 4338 })) 4339 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4340 else 4341 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4342 #endif // NDEBUG 4343 break; 4344 } 4345 return; 4346 } 4347 case Instruction::ZExt: 4348 case Instruction::SExt: 4349 case Instruction::FPToUI: 4350 case Instruction::FPToSI: 4351 case Instruction::FPExt: 4352 case Instruction::PtrToInt: 4353 case Instruction::IntToPtr: 4354 case Instruction::SIToFP: 4355 case Instruction::UIToFP: 4356 case Instruction::Trunc: 4357 case Instruction::FPTrunc: 4358 case Instruction::BitCast: { 4359 Type *SrcTy = VL0->getOperand(0)->getType(); 4360 for (Value *V : VL) { 4361 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4362 if (Ty != SrcTy || !isValidElementType(Ty)) { 4363 BS.cancelScheduling(VL, VL0); 4364 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4365 ReuseShuffleIndicies); 4366 LLVM_DEBUG(dbgs() 4367 << "SLP: Gathering casts with different src types.\n"); 4368 return; 4369 } 4370 } 4371 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4372 ReuseShuffleIndicies); 4373 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4374 4375 TE->setOperandsInOrder(); 4376 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4377 ValueList Operands; 4378 // Prepare the operand vector. 4379 for (Value *V : VL) 4380 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4381 4382 buildTree_rec(Operands, Depth + 1, {TE, i}); 4383 } 4384 return; 4385 } 4386 case Instruction::ICmp: 4387 case Instruction::FCmp: { 4388 // Check that all of the compares have the same predicate. 4389 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4390 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4391 Type *ComparedTy = VL0->getOperand(0)->getType(); 4392 for (Value *V : VL) { 4393 CmpInst *Cmp = cast<CmpInst>(V); 4394 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4395 Cmp->getOperand(0)->getType() != ComparedTy) { 4396 BS.cancelScheduling(VL, VL0); 4397 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4398 ReuseShuffleIndicies); 4399 LLVM_DEBUG(dbgs() 4400 << "SLP: Gathering cmp with different predicate.\n"); 4401 return; 4402 } 4403 } 4404 4405 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4406 ReuseShuffleIndicies); 4407 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4408 4409 ValueList Left, Right; 4410 if (cast<CmpInst>(VL0)->isCommutative()) { 4411 // Commutative predicate - collect + sort operands of the instructions 4412 // so that each side is more likely to have the same opcode. 4413 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4414 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4415 } else { 4416 // Collect operands - commute if it uses the swapped predicate. 4417 for (Value *V : VL) { 4418 auto *Cmp = cast<CmpInst>(V); 4419 Value *LHS = Cmp->getOperand(0); 4420 Value *RHS = Cmp->getOperand(1); 4421 if (Cmp->getPredicate() != P0) 4422 std::swap(LHS, RHS); 4423 Left.push_back(LHS); 4424 Right.push_back(RHS); 4425 } 4426 } 4427 TE->setOperand(0, Left); 4428 TE->setOperand(1, Right); 4429 buildTree_rec(Left, Depth + 1, {TE, 0}); 4430 buildTree_rec(Right, Depth + 1, {TE, 1}); 4431 return; 4432 } 4433 case Instruction::Select: 4434 case Instruction::FNeg: 4435 case Instruction::Add: 4436 case Instruction::FAdd: 4437 case Instruction::Sub: 4438 case Instruction::FSub: 4439 case Instruction::Mul: 4440 case Instruction::FMul: 4441 case Instruction::UDiv: 4442 case Instruction::SDiv: 4443 case Instruction::FDiv: 4444 case Instruction::URem: 4445 case Instruction::SRem: 4446 case Instruction::FRem: 4447 case Instruction::Shl: 4448 case Instruction::LShr: 4449 case Instruction::AShr: 4450 case Instruction::And: 4451 case Instruction::Or: 4452 case Instruction::Xor: { 4453 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4454 ReuseShuffleIndicies); 4455 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4456 4457 // Sort operands of the instructions so that each side is more likely to 4458 // have the same opcode. 4459 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4460 ValueList Left, Right; 4461 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4462 TE->setOperand(0, Left); 4463 TE->setOperand(1, Right); 4464 buildTree_rec(Left, Depth + 1, {TE, 0}); 4465 buildTree_rec(Right, Depth + 1, {TE, 1}); 4466 return; 4467 } 4468 4469 TE->setOperandsInOrder(); 4470 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4471 ValueList Operands; 4472 // Prepare the operand vector. 4473 for (Value *V : VL) 4474 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4475 4476 buildTree_rec(Operands, Depth + 1, {TE, i}); 4477 } 4478 return; 4479 } 4480 case Instruction::GetElementPtr: { 4481 // We don't combine GEPs with complicated (nested) indexing. 4482 for (Value *V : VL) { 4483 if (cast<Instruction>(V)->getNumOperands() != 2) { 4484 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4485 BS.cancelScheduling(VL, VL0); 4486 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4487 ReuseShuffleIndicies); 4488 return; 4489 } 4490 } 4491 4492 // We can't combine several GEPs into one vector if they operate on 4493 // different types. 4494 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4495 for (Value *V : VL) { 4496 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4497 if (Ty0 != CurTy) { 4498 LLVM_DEBUG(dbgs() 4499 << "SLP: not-vectorizable GEP (different types).\n"); 4500 BS.cancelScheduling(VL, VL0); 4501 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4502 ReuseShuffleIndicies); 4503 return; 4504 } 4505 } 4506 4507 // We don't combine GEPs with non-constant indexes. 4508 Type *Ty1 = VL0->getOperand(1)->getType(); 4509 for (Value *V : VL) { 4510 auto Op = cast<Instruction>(V)->getOperand(1); 4511 if (!isa<ConstantInt>(Op) || 4512 (Op->getType() != Ty1 && 4513 Op->getType()->getScalarSizeInBits() > 4514 DL->getIndexSizeInBits( 4515 V->getType()->getPointerAddressSpace()))) { 4516 LLVM_DEBUG(dbgs() 4517 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4518 BS.cancelScheduling(VL, VL0); 4519 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4520 ReuseShuffleIndicies); 4521 return; 4522 } 4523 } 4524 4525 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4526 ReuseShuffleIndicies); 4527 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4528 SmallVector<ValueList, 2> Operands(2); 4529 // Prepare the operand vector for pointer operands. 4530 for (Value *V : VL) 4531 Operands.front().push_back( 4532 cast<GetElementPtrInst>(V)->getPointerOperand()); 4533 TE->setOperand(0, Operands.front()); 4534 // Need to cast all indices to the same type before vectorization to 4535 // avoid crash. 4536 // Required to be able to find correct matches between different gather 4537 // nodes and reuse the vectorized values rather than trying to gather them 4538 // again. 4539 int IndexIdx = 1; 4540 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4541 Type *Ty = all_of(VL, 4542 [VL0Ty, IndexIdx](Value *V) { 4543 return VL0Ty == cast<GetElementPtrInst>(V) 4544 ->getOperand(IndexIdx) 4545 ->getType(); 4546 }) 4547 ? VL0Ty 4548 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4549 ->getPointerOperandType() 4550 ->getScalarType()); 4551 // Prepare the operand vector. 4552 for (Value *V : VL) { 4553 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4554 auto *CI = cast<ConstantInt>(Op); 4555 Operands.back().push_back(ConstantExpr::getIntegerCast( 4556 CI, Ty, CI->getValue().isSignBitSet())); 4557 } 4558 TE->setOperand(IndexIdx, Operands.back()); 4559 4560 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4561 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4562 return; 4563 } 4564 case Instruction::Store: { 4565 // Check if the stores are consecutive or if we need to swizzle them. 4566 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4567 // Avoid types that are padded when being allocated as scalars, while 4568 // being packed together in a vector (such as i1). 4569 if (DL->getTypeSizeInBits(ScalarTy) != 4570 DL->getTypeAllocSizeInBits(ScalarTy)) { 4571 BS.cancelScheduling(VL, VL0); 4572 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4573 ReuseShuffleIndicies); 4574 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4575 return; 4576 } 4577 // Make sure all stores in the bundle are simple - we can't vectorize 4578 // atomic or volatile stores. 4579 SmallVector<Value *, 4> PointerOps(VL.size()); 4580 ValueList Operands(VL.size()); 4581 auto POIter = PointerOps.begin(); 4582 auto OIter = Operands.begin(); 4583 for (Value *V : VL) { 4584 auto *SI = cast<StoreInst>(V); 4585 if (!SI->isSimple()) { 4586 BS.cancelScheduling(VL, VL0); 4587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4588 ReuseShuffleIndicies); 4589 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4590 return; 4591 } 4592 *POIter = SI->getPointerOperand(); 4593 *OIter = SI->getValueOperand(); 4594 ++POIter; 4595 ++OIter; 4596 } 4597 4598 OrdersType CurrentOrder; 4599 // Check the order of pointer operands. 4600 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4601 Value *Ptr0; 4602 Value *PtrN; 4603 if (CurrentOrder.empty()) { 4604 Ptr0 = PointerOps.front(); 4605 PtrN = PointerOps.back(); 4606 } else { 4607 Ptr0 = PointerOps[CurrentOrder.front()]; 4608 PtrN = PointerOps[CurrentOrder.back()]; 4609 } 4610 Optional<int> Dist = 4611 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4612 // Check that the sorted pointer operands are consecutive. 4613 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4614 if (CurrentOrder.empty()) { 4615 // Original stores are consecutive and does not require reordering. 4616 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4617 UserTreeIdx, ReuseShuffleIndicies); 4618 TE->setOperandsInOrder(); 4619 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4620 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4621 } else { 4622 fixupOrderingIndices(CurrentOrder); 4623 TreeEntry *TE = 4624 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4625 ReuseShuffleIndicies, CurrentOrder); 4626 TE->setOperandsInOrder(); 4627 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4628 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4629 } 4630 return; 4631 } 4632 } 4633 4634 BS.cancelScheduling(VL, VL0); 4635 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4636 ReuseShuffleIndicies); 4637 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4638 return; 4639 } 4640 case Instruction::Call: { 4641 // Check if the calls are all to the same vectorizable intrinsic or 4642 // library function. 4643 CallInst *CI = cast<CallInst>(VL0); 4644 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4645 4646 VFShape Shape = VFShape::get( 4647 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4648 false /*HasGlobalPred*/); 4649 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4650 4651 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4652 BS.cancelScheduling(VL, VL0); 4653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4654 ReuseShuffleIndicies); 4655 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4656 return; 4657 } 4658 Function *F = CI->getCalledFunction(); 4659 unsigned NumArgs = CI->arg_size(); 4660 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4661 for (unsigned j = 0; j != NumArgs; ++j) 4662 if (hasVectorInstrinsicScalarOpd(ID, j)) 4663 ScalarArgs[j] = CI->getArgOperand(j); 4664 for (Value *V : VL) { 4665 CallInst *CI2 = dyn_cast<CallInst>(V); 4666 if (!CI2 || CI2->getCalledFunction() != F || 4667 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4668 (VecFunc && 4669 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4670 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4671 BS.cancelScheduling(VL, VL0); 4672 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4673 ReuseShuffleIndicies); 4674 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4675 << "\n"); 4676 return; 4677 } 4678 // Some intrinsics have scalar arguments and should be same in order for 4679 // them to be vectorized. 4680 for (unsigned j = 0; j != NumArgs; ++j) { 4681 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4682 Value *A1J = CI2->getArgOperand(j); 4683 if (ScalarArgs[j] != A1J) { 4684 BS.cancelScheduling(VL, VL0); 4685 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4686 ReuseShuffleIndicies); 4687 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4688 << " argument " << ScalarArgs[j] << "!=" << A1J 4689 << "\n"); 4690 return; 4691 } 4692 } 4693 } 4694 // Verify that the bundle operands are identical between the two calls. 4695 if (CI->hasOperandBundles() && 4696 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4697 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4698 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4699 BS.cancelScheduling(VL, VL0); 4700 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4701 ReuseShuffleIndicies); 4702 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4703 << *CI << "!=" << *V << '\n'); 4704 return; 4705 } 4706 } 4707 4708 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4709 ReuseShuffleIndicies); 4710 TE->setOperandsInOrder(); 4711 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4712 // For scalar operands no need to to create an entry since no need to 4713 // vectorize it. 4714 if (hasVectorInstrinsicScalarOpd(ID, i)) 4715 continue; 4716 ValueList Operands; 4717 // Prepare the operand vector. 4718 for (Value *V : VL) { 4719 auto *CI2 = cast<CallInst>(V); 4720 Operands.push_back(CI2->getArgOperand(i)); 4721 } 4722 buildTree_rec(Operands, Depth + 1, {TE, i}); 4723 } 4724 return; 4725 } 4726 case Instruction::ShuffleVector: { 4727 // If this is not an alternate sequence of opcode like add-sub 4728 // then do not vectorize this instruction. 4729 if (!S.isAltShuffle()) { 4730 BS.cancelScheduling(VL, VL0); 4731 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4732 ReuseShuffleIndicies); 4733 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4734 return; 4735 } 4736 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4737 ReuseShuffleIndicies); 4738 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4739 4740 // Reorder operands if reordering would enable vectorization. 4741 auto *CI = dyn_cast<CmpInst>(VL0); 4742 if (isa<BinaryOperator>(VL0) || CI) { 4743 ValueList Left, Right; 4744 if (!CI || all_of(VL, [](Value *V) { 4745 return cast<CmpInst>(V)->isCommutative(); 4746 })) { 4747 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4748 } else { 4749 CmpInst::Predicate P0 = CI->getPredicate(); 4750 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4751 assert(P0 != AltP0 && 4752 "Expected different main/alternate predicates."); 4753 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4754 Value *BaseOp0 = VL0->getOperand(0); 4755 Value *BaseOp1 = VL0->getOperand(1); 4756 // Collect operands - commute if it uses the swapped predicate or 4757 // alternate operation. 4758 for (Value *V : VL) { 4759 auto *Cmp = cast<CmpInst>(V); 4760 Value *LHS = Cmp->getOperand(0); 4761 Value *RHS = Cmp->getOperand(1); 4762 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4763 if (P0 == AltP0Swapped) { 4764 if (CI != Cmp && S.AltOp != Cmp && 4765 ((P0 == CurrentPred && 4766 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4767 (AltP0 == CurrentPred && 4768 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4769 std::swap(LHS, RHS); 4770 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4771 std::swap(LHS, RHS); 4772 } 4773 Left.push_back(LHS); 4774 Right.push_back(RHS); 4775 } 4776 } 4777 TE->setOperand(0, Left); 4778 TE->setOperand(1, Right); 4779 buildTree_rec(Left, Depth + 1, {TE, 0}); 4780 buildTree_rec(Right, Depth + 1, {TE, 1}); 4781 return; 4782 } 4783 4784 TE->setOperandsInOrder(); 4785 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4786 ValueList Operands; 4787 // Prepare the operand vector. 4788 for (Value *V : VL) 4789 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4790 4791 buildTree_rec(Operands, Depth + 1, {TE, i}); 4792 } 4793 return; 4794 } 4795 default: 4796 BS.cancelScheduling(VL, VL0); 4797 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4798 ReuseShuffleIndicies); 4799 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4800 return; 4801 } 4802 } 4803 4804 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4805 unsigned N = 1; 4806 Type *EltTy = T; 4807 4808 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4809 isa<VectorType>(EltTy)) { 4810 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4811 // Check that struct is homogeneous. 4812 for (const auto *Ty : ST->elements()) 4813 if (Ty != *ST->element_begin()) 4814 return 0; 4815 N *= ST->getNumElements(); 4816 EltTy = *ST->element_begin(); 4817 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4818 N *= AT->getNumElements(); 4819 EltTy = AT->getElementType(); 4820 } else { 4821 auto *VT = cast<FixedVectorType>(EltTy); 4822 N *= VT->getNumElements(); 4823 EltTy = VT->getElementType(); 4824 } 4825 } 4826 4827 if (!isValidElementType(EltTy)) 4828 return 0; 4829 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4830 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4831 return 0; 4832 return N; 4833 } 4834 4835 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4836 SmallVectorImpl<unsigned> &CurrentOrder) const { 4837 const auto *It = find_if(VL, [](Value *V) { 4838 return isa<ExtractElementInst, ExtractValueInst>(V); 4839 }); 4840 assert(It != VL.end() && "Expected at least one extract instruction."); 4841 auto *E0 = cast<Instruction>(*It); 4842 assert(all_of(VL, 4843 [](Value *V) { 4844 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4845 V); 4846 }) && 4847 "Invalid opcode"); 4848 // Check if all of the extracts come from the same vector and from the 4849 // correct offset. 4850 Value *Vec = E0->getOperand(0); 4851 4852 CurrentOrder.clear(); 4853 4854 // We have to extract from a vector/aggregate with the same number of elements. 4855 unsigned NElts; 4856 if (E0->getOpcode() == Instruction::ExtractValue) { 4857 const DataLayout &DL = E0->getModule()->getDataLayout(); 4858 NElts = canMapToVector(Vec->getType(), DL); 4859 if (!NElts) 4860 return false; 4861 // Check if load can be rewritten as load of vector. 4862 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4863 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4864 return false; 4865 } else { 4866 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4867 } 4868 4869 if (NElts != VL.size()) 4870 return false; 4871 4872 // Check that all of the indices extract from the correct offset. 4873 bool ShouldKeepOrder = true; 4874 unsigned E = VL.size(); 4875 // Assign to all items the initial value E + 1 so we can check if the extract 4876 // instruction index was used already. 4877 // Also, later we can check that all the indices are used and we have a 4878 // consecutive access in the extract instructions, by checking that no 4879 // element of CurrentOrder still has value E + 1. 4880 CurrentOrder.assign(E, E); 4881 unsigned I = 0; 4882 for (; I < E; ++I) { 4883 auto *Inst = dyn_cast<Instruction>(VL[I]); 4884 if (!Inst) 4885 continue; 4886 if (Inst->getOperand(0) != Vec) 4887 break; 4888 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4889 if (isa<UndefValue>(EE->getIndexOperand())) 4890 continue; 4891 Optional<unsigned> Idx = getExtractIndex(Inst); 4892 if (!Idx) 4893 break; 4894 const unsigned ExtIdx = *Idx; 4895 if (ExtIdx != I) { 4896 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4897 break; 4898 ShouldKeepOrder = false; 4899 CurrentOrder[ExtIdx] = I; 4900 } else { 4901 if (CurrentOrder[I] != E) 4902 break; 4903 CurrentOrder[I] = I; 4904 } 4905 } 4906 if (I < E) { 4907 CurrentOrder.clear(); 4908 return false; 4909 } 4910 if (ShouldKeepOrder) 4911 CurrentOrder.clear(); 4912 4913 return ShouldKeepOrder; 4914 } 4915 4916 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4917 ArrayRef<Value *> VectorizedVals) const { 4918 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4919 all_of(I->users(), [this](User *U) { 4920 return ScalarToTreeEntry.count(U) > 0 || 4921 isVectorLikeInstWithConstOps(U) || 4922 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4923 }); 4924 } 4925 4926 static std::pair<InstructionCost, InstructionCost> 4927 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4928 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4929 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4930 4931 // Calculate the cost of the scalar and vector calls. 4932 SmallVector<Type *, 4> VecTys; 4933 for (Use &Arg : CI->args()) 4934 VecTys.push_back( 4935 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4936 FastMathFlags FMF; 4937 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4938 FMF = FPCI->getFastMathFlags(); 4939 SmallVector<const Value *> Arguments(CI->args()); 4940 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4941 dyn_cast<IntrinsicInst>(CI)); 4942 auto IntrinsicCost = 4943 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4944 4945 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4946 VecTy->getNumElements())), 4947 false /*HasGlobalPred*/); 4948 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4949 auto LibCost = IntrinsicCost; 4950 if (!CI->isNoBuiltin() && VecFunc) { 4951 // Calculate the cost of the vector library call. 4952 // If the corresponding vector call is cheaper, return its cost. 4953 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4954 TTI::TCK_RecipThroughput); 4955 } 4956 return {IntrinsicCost, LibCost}; 4957 } 4958 4959 /// Compute the cost of creating a vector of type \p VecTy containing the 4960 /// extracted values from \p VL. 4961 static InstructionCost 4962 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4963 TargetTransformInfo::ShuffleKind ShuffleKind, 4964 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4965 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4966 4967 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4968 VecTy->getNumElements() < NumOfParts) 4969 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4970 4971 bool AllConsecutive = true; 4972 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4973 unsigned Idx = -1; 4974 InstructionCost Cost = 0; 4975 4976 // Process extracts in blocks of EltsPerVector to check if the source vector 4977 // operand can be re-used directly. If not, add the cost of creating a shuffle 4978 // to extract the values into a vector register. 4979 for (auto *V : VL) { 4980 ++Idx; 4981 4982 // Need to exclude undefs from analysis. 4983 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4984 continue; 4985 4986 // Reached the start of a new vector registers. 4987 if (Idx % EltsPerVector == 0) { 4988 AllConsecutive = true; 4989 continue; 4990 } 4991 4992 // Check all extracts for a vector register on the target directly 4993 // extract values in order. 4994 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4995 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4996 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4997 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4998 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4999 } 5000 5001 if (AllConsecutive) 5002 continue; 5003 5004 // Skip all indices, except for the last index per vector block. 5005 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5006 continue; 5007 5008 // If we have a series of extracts which are not consecutive and hence 5009 // cannot re-use the source vector register directly, compute the shuffle 5010 // cost to extract the a vector with EltsPerVector elements. 5011 Cost += TTI.getShuffleCost( 5012 TargetTransformInfo::SK_PermuteSingleSrc, 5013 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5014 } 5015 return Cost; 5016 } 5017 5018 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5019 /// operations operands. 5020 static void 5021 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5022 ArrayRef<int> ReusesIndices, 5023 const function_ref<bool(Instruction *)> IsAltOp, 5024 SmallVectorImpl<int> &Mask, 5025 SmallVectorImpl<Value *> *OpScalars = nullptr, 5026 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5027 unsigned Sz = VL.size(); 5028 Mask.assign(Sz, UndefMaskElem); 5029 SmallVector<int> OrderMask; 5030 if (!ReorderIndices.empty()) 5031 inversePermutation(ReorderIndices, OrderMask); 5032 for (unsigned I = 0; I < Sz; ++I) { 5033 unsigned Idx = I; 5034 if (!ReorderIndices.empty()) 5035 Idx = OrderMask[I]; 5036 auto *OpInst = cast<Instruction>(VL[Idx]); 5037 if (IsAltOp(OpInst)) { 5038 Mask[I] = Sz + Idx; 5039 if (AltScalars) 5040 AltScalars->push_back(OpInst); 5041 } else { 5042 Mask[I] = Idx; 5043 if (OpScalars) 5044 OpScalars->push_back(OpInst); 5045 } 5046 } 5047 if (!ReusesIndices.empty()) { 5048 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5049 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5050 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5051 }); 5052 Mask.swap(NewMask); 5053 } 5054 } 5055 5056 /// Checks if the specified instruction \p I is an alternate operation for the 5057 /// given \p MainOp and \p AltOp instructions. 5058 static bool isAlternateInstruction(const Instruction *I, 5059 const Instruction *MainOp, 5060 const Instruction *AltOp) { 5061 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5062 auto *AltCI0 = cast<CmpInst>(AltOp); 5063 auto *CI = cast<CmpInst>(I); 5064 CmpInst::Predicate P0 = CI0->getPredicate(); 5065 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5066 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5067 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5068 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5069 if (P0 == AltP0Swapped) 5070 return I == AltCI0 || 5071 (I != MainOp && 5072 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5073 CI->getOperand(0), CI->getOperand(1))); 5074 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5075 } 5076 return I->getOpcode() == AltOp->getOpcode(); 5077 } 5078 5079 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5080 ArrayRef<Value *> VectorizedVals) { 5081 ArrayRef<Value*> VL = E->Scalars; 5082 5083 Type *ScalarTy = VL[0]->getType(); 5084 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5085 ScalarTy = SI->getValueOperand()->getType(); 5086 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5087 ScalarTy = CI->getOperand(0)->getType(); 5088 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5089 ScalarTy = IE->getOperand(1)->getType(); 5090 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5091 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5092 5093 // If we have computed a smaller type for the expression, update VecTy so 5094 // that the costs will be accurate. 5095 if (MinBWs.count(VL[0])) 5096 VecTy = FixedVectorType::get( 5097 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5098 unsigned EntryVF = E->getVectorFactor(); 5099 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5100 5101 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5102 // FIXME: it tries to fix a problem with MSVC buildbots. 5103 TargetTransformInfo &TTIRef = *TTI; 5104 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5105 VectorizedVals, E](InstructionCost &Cost) { 5106 DenseMap<Value *, int> ExtractVectorsTys; 5107 SmallPtrSet<Value *, 4> CheckedExtracts; 5108 for (auto *V : VL) { 5109 if (isa<UndefValue>(V)) 5110 continue; 5111 // If all users of instruction are going to be vectorized and this 5112 // instruction itself is not going to be vectorized, consider this 5113 // instruction as dead and remove its cost from the final cost of the 5114 // vectorized tree. 5115 // Also, avoid adjusting the cost for extractelements with multiple uses 5116 // in different graph entries. 5117 const TreeEntry *VE = getTreeEntry(V); 5118 if (!CheckedExtracts.insert(V).second || 5119 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5120 (VE && VE != E)) 5121 continue; 5122 auto *EE = cast<ExtractElementInst>(V); 5123 Optional<unsigned> EEIdx = getExtractIndex(EE); 5124 if (!EEIdx) 5125 continue; 5126 unsigned Idx = *EEIdx; 5127 if (TTIRef.getNumberOfParts(VecTy) != 5128 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5129 auto It = 5130 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5131 It->getSecond() = std::min<int>(It->second, Idx); 5132 } 5133 // Take credit for instruction that will become dead. 5134 if (EE->hasOneUse()) { 5135 Instruction *Ext = EE->user_back(); 5136 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5137 all_of(Ext->users(), 5138 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5139 // Use getExtractWithExtendCost() to calculate the cost of 5140 // extractelement/ext pair. 5141 Cost -= 5142 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5143 EE->getVectorOperandType(), Idx); 5144 // Add back the cost of s|zext which is subtracted separately. 5145 Cost += TTIRef.getCastInstrCost( 5146 Ext->getOpcode(), Ext->getType(), EE->getType(), 5147 TTI::getCastContextHint(Ext), CostKind, Ext); 5148 continue; 5149 } 5150 } 5151 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5152 EE->getVectorOperandType(), Idx); 5153 } 5154 // Add a cost for subvector extracts/inserts if required. 5155 for (const auto &Data : ExtractVectorsTys) { 5156 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5157 unsigned NumElts = VecTy->getNumElements(); 5158 if (Data.second % NumElts == 0) 5159 continue; 5160 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5161 unsigned Idx = (Data.second / NumElts) * NumElts; 5162 unsigned EENumElts = EEVTy->getNumElements(); 5163 if (Idx + NumElts <= EENumElts) { 5164 Cost += 5165 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5166 EEVTy, None, Idx, VecTy); 5167 } else { 5168 // Need to round up the subvector type vectorization factor to avoid a 5169 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5170 // <= EENumElts. 5171 auto *SubVT = 5172 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5173 Cost += 5174 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5175 EEVTy, None, Idx, SubVT); 5176 } 5177 } else { 5178 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5179 VecTy, None, 0, EEVTy); 5180 } 5181 } 5182 }; 5183 if (E->State == TreeEntry::NeedToGather) { 5184 if (allConstant(VL)) 5185 return 0; 5186 if (isa<InsertElementInst>(VL[0])) 5187 return InstructionCost::getInvalid(); 5188 SmallVector<int> Mask; 5189 SmallVector<const TreeEntry *> Entries; 5190 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5191 isGatherShuffledEntry(E, Mask, Entries); 5192 if (Shuffle.hasValue()) { 5193 InstructionCost GatherCost = 0; 5194 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5195 // Perfect match in the graph, will reuse the previously vectorized 5196 // node. Cost is 0. 5197 LLVM_DEBUG( 5198 dbgs() 5199 << "SLP: perfect diamond match for gather bundle that starts with " 5200 << *VL.front() << ".\n"); 5201 if (NeedToShuffleReuses) 5202 GatherCost = 5203 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5204 FinalVecTy, E->ReuseShuffleIndices); 5205 } else { 5206 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5207 << " entries for bundle that starts with " 5208 << *VL.front() << ".\n"); 5209 // Detected that instead of gather we can emit a shuffle of single/two 5210 // previously vectorized nodes. Add the cost of the permutation rather 5211 // than gather. 5212 ::addMask(Mask, E->ReuseShuffleIndices); 5213 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5214 } 5215 return GatherCost; 5216 } 5217 if ((E->getOpcode() == Instruction::ExtractElement || 5218 all_of(E->Scalars, 5219 [](Value *V) { 5220 return isa<ExtractElementInst, UndefValue>(V); 5221 })) && 5222 allSameType(VL)) { 5223 // Check that gather of extractelements can be represented as just a 5224 // shuffle of a single/two vectors the scalars are extracted from. 5225 SmallVector<int> Mask; 5226 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5227 isFixedVectorShuffle(VL, Mask); 5228 if (ShuffleKind.hasValue()) { 5229 // Found the bunch of extractelement instructions that must be gathered 5230 // into a vector and can be represented as a permutation elements in a 5231 // single input vector or of 2 input vectors. 5232 InstructionCost Cost = 5233 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5234 AdjustExtractsCost(Cost); 5235 if (NeedToShuffleReuses) 5236 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5237 FinalVecTy, E->ReuseShuffleIndices); 5238 return Cost; 5239 } 5240 } 5241 if (isSplat(VL)) { 5242 // Found the broadcasting of the single scalar, calculate the cost as the 5243 // broadcast. 5244 assert(VecTy == FinalVecTy && 5245 "No reused scalars expected for broadcast."); 5246 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5247 /*Mask=*/None, /*Index=*/0, 5248 /*SubTp=*/nullptr, /*Args=*/VL); 5249 } 5250 InstructionCost ReuseShuffleCost = 0; 5251 if (NeedToShuffleReuses) 5252 ReuseShuffleCost = TTI->getShuffleCost( 5253 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5254 // Improve gather cost for gather of loads, if we can group some of the 5255 // loads into vector loads. 5256 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5257 !E->isAltShuffle()) { 5258 BoUpSLP::ValueSet VectorizedLoads; 5259 unsigned StartIdx = 0; 5260 unsigned VF = VL.size() / 2; 5261 unsigned VectorizedCnt = 0; 5262 unsigned ScatterVectorizeCnt = 0; 5263 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5264 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5265 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5266 Cnt += VF) { 5267 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5268 if (!VectorizedLoads.count(Slice.front()) && 5269 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5270 SmallVector<Value *> PointerOps; 5271 OrdersType CurrentOrder; 5272 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5273 *SE, CurrentOrder, PointerOps); 5274 switch (LS) { 5275 case LoadsState::Vectorize: 5276 case LoadsState::ScatterVectorize: 5277 // Mark the vectorized loads so that we don't vectorize them 5278 // again. 5279 if (LS == LoadsState::Vectorize) 5280 ++VectorizedCnt; 5281 else 5282 ++ScatterVectorizeCnt; 5283 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5284 // If we vectorized initial block, no need to try to vectorize it 5285 // again. 5286 if (Cnt == StartIdx) 5287 StartIdx += VF; 5288 break; 5289 case LoadsState::Gather: 5290 break; 5291 } 5292 } 5293 } 5294 // Check if the whole array was vectorized already - exit. 5295 if (StartIdx >= VL.size()) 5296 break; 5297 // Found vectorizable parts - exit. 5298 if (!VectorizedLoads.empty()) 5299 break; 5300 } 5301 if (!VectorizedLoads.empty()) { 5302 InstructionCost GatherCost = 0; 5303 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5304 bool NeedInsertSubvectorAnalysis = 5305 !NumParts || (VL.size() / VF) > NumParts; 5306 // Get the cost for gathered loads. 5307 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5308 if (VectorizedLoads.contains(VL[I])) 5309 continue; 5310 GatherCost += getGatherCost(VL.slice(I, VF)); 5311 } 5312 // The cost for vectorized loads. 5313 InstructionCost ScalarsCost = 0; 5314 for (Value *V : VectorizedLoads) { 5315 auto *LI = cast<LoadInst>(V); 5316 ScalarsCost += TTI->getMemoryOpCost( 5317 Instruction::Load, LI->getType(), LI->getAlign(), 5318 LI->getPointerAddressSpace(), CostKind, LI); 5319 } 5320 auto *LI = cast<LoadInst>(E->getMainOp()); 5321 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5322 Align Alignment = LI->getAlign(); 5323 GatherCost += 5324 VectorizedCnt * 5325 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5326 LI->getPointerAddressSpace(), CostKind, LI); 5327 GatherCost += ScatterVectorizeCnt * 5328 TTI->getGatherScatterOpCost( 5329 Instruction::Load, LoadTy, LI->getPointerOperand(), 5330 /*VariableMask=*/false, Alignment, CostKind, LI); 5331 if (NeedInsertSubvectorAnalysis) { 5332 // Add the cost for the subvectors insert. 5333 for (int I = VF, E = VL.size(); I < E; I += VF) 5334 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5335 None, I, LoadTy); 5336 } 5337 return ReuseShuffleCost + GatherCost - ScalarsCost; 5338 } 5339 } 5340 return ReuseShuffleCost + getGatherCost(VL); 5341 } 5342 InstructionCost CommonCost = 0; 5343 SmallVector<int> Mask; 5344 if (!E->ReorderIndices.empty()) { 5345 SmallVector<int> NewMask; 5346 if (E->getOpcode() == Instruction::Store) { 5347 // For stores the order is actually a mask. 5348 NewMask.resize(E->ReorderIndices.size()); 5349 copy(E->ReorderIndices, NewMask.begin()); 5350 } else { 5351 inversePermutation(E->ReorderIndices, NewMask); 5352 } 5353 ::addMask(Mask, NewMask); 5354 } 5355 if (NeedToShuffleReuses) 5356 ::addMask(Mask, E->ReuseShuffleIndices); 5357 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5358 CommonCost = 5359 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5360 assert((E->State == TreeEntry::Vectorize || 5361 E->State == TreeEntry::ScatterVectorize) && 5362 "Unhandled state"); 5363 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5364 Instruction *VL0 = E->getMainOp(); 5365 unsigned ShuffleOrOp = 5366 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5367 switch (ShuffleOrOp) { 5368 case Instruction::PHI: 5369 return 0; 5370 5371 case Instruction::ExtractValue: 5372 case Instruction::ExtractElement: { 5373 // The common cost of removal ExtractElement/ExtractValue instructions + 5374 // the cost of shuffles, if required to resuffle the original vector. 5375 if (NeedToShuffleReuses) { 5376 unsigned Idx = 0; 5377 for (unsigned I : E->ReuseShuffleIndices) { 5378 if (ShuffleOrOp == Instruction::ExtractElement) { 5379 auto *EE = cast<ExtractElementInst>(VL[I]); 5380 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5381 EE->getVectorOperandType(), 5382 *getExtractIndex(EE)); 5383 } else { 5384 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5385 VecTy, Idx); 5386 ++Idx; 5387 } 5388 } 5389 Idx = EntryVF; 5390 for (Value *V : VL) { 5391 if (ShuffleOrOp == Instruction::ExtractElement) { 5392 auto *EE = cast<ExtractElementInst>(V); 5393 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5394 EE->getVectorOperandType(), 5395 *getExtractIndex(EE)); 5396 } else { 5397 --Idx; 5398 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5399 VecTy, Idx); 5400 } 5401 } 5402 } 5403 if (ShuffleOrOp == Instruction::ExtractValue) { 5404 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5405 auto *EI = cast<Instruction>(VL[I]); 5406 // Take credit for instruction that will become dead. 5407 if (EI->hasOneUse()) { 5408 Instruction *Ext = EI->user_back(); 5409 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5410 all_of(Ext->users(), 5411 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5412 // Use getExtractWithExtendCost() to calculate the cost of 5413 // extractelement/ext pair. 5414 CommonCost -= TTI->getExtractWithExtendCost( 5415 Ext->getOpcode(), Ext->getType(), VecTy, I); 5416 // Add back the cost of s|zext which is subtracted separately. 5417 CommonCost += TTI->getCastInstrCost( 5418 Ext->getOpcode(), Ext->getType(), EI->getType(), 5419 TTI::getCastContextHint(Ext), CostKind, Ext); 5420 continue; 5421 } 5422 } 5423 CommonCost -= 5424 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5425 } 5426 } else { 5427 AdjustExtractsCost(CommonCost); 5428 } 5429 return CommonCost; 5430 } 5431 case Instruction::InsertElement: { 5432 assert(E->ReuseShuffleIndices.empty() && 5433 "Unique insertelements only are expected."); 5434 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5435 5436 unsigned const NumElts = SrcVecTy->getNumElements(); 5437 unsigned const NumScalars = VL.size(); 5438 APInt DemandedElts = APInt::getZero(NumElts); 5439 // TODO: Add support for Instruction::InsertValue. 5440 SmallVector<int> Mask; 5441 if (!E->ReorderIndices.empty()) { 5442 inversePermutation(E->ReorderIndices, Mask); 5443 Mask.append(NumElts - NumScalars, UndefMaskElem); 5444 } else { 5445 Mask.assign(NumElts, UndefMaskElem); 5446 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5447 } 5448 unsigned Offset = *getInsertIndex(VL0); 5449 bool IsIdentity = true; 5450 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5451 Mask.swap(PrevMask); 5452 for (unsigned I = 0; I < NumScalars; ++I) { 5453 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5454 DemandedElts.setBit(InsertIdx); 5455 IsIdentity &= InsertIdx - Offset == I; 5456 Mask[InsertIdx - Offset] = I; 5457 } 5458 assert(Offset < NumElts && "Failed to find vector index offset"); 5459 5460 InstructionCost Cost = 0; 5461 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5462 /*Insert*/ true, /*Extract*/ false); 5463 5464 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5465 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5466 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5467 Cost += TTI->getShuffleCost( 5468 TargetTransformInfo::SK_PermuteSingleSrc, 5469 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5470 } else if (!IsIdentity) { 5471 auto *FirstInsert = 5472 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5473 return !is_contained(E->Scalars, 5474 cast<Instruction>(V)->getOperand(0)); 5475 })); 5476 if (isUndefVector(FirstInsert->getOperand(0))) { 5477 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5478 } else { 5479 SmallVector<int> InsertMask(NumElts); 5480 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5481 for (unsigned I = 0; I < NumElts; I++) { 5482 if (Mask[I] != UndefMaskElem) 5483 InsertMask[Offset + I] = NumElts + I; 5484 } 5485 Cost += 5486 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5487 } 5488 } 5489 5490 return Cost; 5491 } 5492 case Instruction::ZExt: 5493 case Instruction::SExt: 5494 case Instruction::FPToUI: 5495 case Instruction::FPToSI: 5496 case Instruction::FPExt: 5497 case Instruction::PtrToInt: 5498 case Instruction::IntToPtr: 5499 case Instruction::SIToFP: 5500 case Instruction::UIToFP: 5501 case Instruction::Trunc: 5502 case Instruction::FPTrunc: 5503 case Instruction::BitCast: { 5504 Type *SrcTy = VL0->getOperand(0)->getType(); 5505 InstructionCost ScalarEltCost = 5506 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5507 TTI::getCastContextHint(VL0), CostKind, VL0); 5508 if (NeedToShuffleReuses) { 5509 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5510 } 5511 5512 // Calculate the cost of this instruction. 5513 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5514 5515 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5516 InstructionCost VecCost = 0; 5517 // Check if the values are candidates to demote. 5518 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5519 VecCost = CommonCost + TTI->getCastInstrCost( 5520 E->getOpcode(), VecTy, SrcVecTy, 5521 TTI::getCastContextHint(VL0), CostKind, VL0); 5522 } 5523 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5524 return VecCost - ScalarCost; 5525 } 5526 case Instruction::FCmp: 5527 case Instruction::ICmp: 5528 case Instruction::Select: { 5529 // Calculate the cost of this instruction. 5530 InstructionCost ScalarEltCost = 5531 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5532 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5533 if (NeedToShuffleReuses) { 5534 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5535 } 5536 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5537 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5538 5539 // Check if all entries in VL are either compares or selects with compares 5540 // as condition that have the same predicates. 5541 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5542 bool First = true; 5543 for (auto *V : VL) { 5544 CmpInst::Predicate CurrentPred; 5545 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5546 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5547 !match(V, MatchCmp)) || 5548 (!First && VecPred != CurrentPred)) { 5549 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5550 break; 5551 } 5552 First = false; 5553 VecPred = CurrentPred; 5554 } 5555 5556 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5557 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5558 // Check if it is possible and profitable to use min/max for selects in 5559 // VL. 5560 // 5561 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5562 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5563 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5564 {VecTy, VecTy}); 5565 InstructionCost IntrinsicCost = 5566 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5567 // If the selects are the only uses of the compares, they will be dead 5568 // and we can adjust the cost by removing their cost. 5569 if (IntrinsicAndUse.second) 5570 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5571 MaskTy, VecPred, CostKind); 5572 VecCost = std::min(VecCost, IntrinsicCost); 5573 } 5574 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5575 return CommonCost + VecCost - ScalarCost; 5576 } 5577 case Instruction::FNeg: 5578 case Instruction::Add: 5579 case Instruction::FAdd: 5580 case Instruction::Sub: 5581 case Instruction::FSub: 5582 case Instruction::Mul: 5583 case Instruction::FMul: 5584 case Instruction::UDiv: 5585 case Instruction::SDiv: 5586 case Instruction::FDiv: 5587 case Instruction::URem: 5588 case Instruction::SRem: 5589 case Instruction::FRem: 5590 case Instruction::Shl: 5591 case Instruction::LShr: 5592 case Instruction::AShr: 5593 case Instruction::And: 5594 case Instruction::Or: 5595 case Instruction::Xor: { 5596 // Certain instructions can be cheaper to vectorize if they have a 5597 // constant second vector operand. 5598 TargetTransformInfo::OperandValueKind Op1VK = 5599 TargetTransformInfo::OK_AnyValue; 5600 TargetTransformInfo::OperandValueKind Op2VK = 5601 TargetTransformInfo::OK_UniformConstantValue; 5602 TargetTransformInfo::OperandValueProperties Op1VP = 5603 TargetTransformInfo::OP_None; 5604 TargetTransformInfo::OperandValueProperties Op2VP = 5605 TargetTransformInfo::OP_PowerOf2; 5606 5607 // If all operands are exactly the same ConstantInt then set the 5608 // operand kind to OK_UniformConstantValue. 5609 // If instead not all operands are constants, then set the operand kind 5610 // to OK_AnyValue. If all operands are constants but not the same, 5611 // then set the operand kind to OK_NonUniformConstantValue. 5612 ConstantInt *CInt0 = nullptr; 5613 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5614 const Instruction *I = cast<Instruction>(VL[i]); 5615 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5616 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5617 if (!CInt) { 5618 Op2VK = TargetTransformInfo::OK_AnyValue; 5619 Op2VP = TargetTransformInfo::OP_None; 5620 break; 5621 } 5622 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5623 !CInt->getValue().isPowerOf2()) 5624 Op2VP = TargetTransformInfo::OP_None; 5625 if (i == 0) { 5626 CInt0 = CInt; 5627 continue; 5628 } 5629 if (CInt0 != CInt) 5630 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5631 } 5632 5633 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5634 InstructionCost ScalarEltCost = 5635 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5636 Op2VK, Op1VP, Op2VP, Operands, VL0); 5637 if (NeedToShuffleReuses) { 5638 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5639 } 5640 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5641 InstructionCost VecCost = 5642 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5643 Op2VK, Op1VP, Op2VP, Operands, VL0); 5644 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5645 return CommonCost + VecCost - ScalarCost; 5646 } 5647 case Instruction::GetElementPtr: { 5648 TargetTransformInfo::OperandValueKind Op1VK = 5649 TargetTransformInfo::OK_AnyValue; 5650 TargetTransformInfo::OperandValueKind Op2VK = 5651 TargetTransformInfo::OK_UniformConstantValue; 5652 5653 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5654 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5655 if (NeedToShuffleReuses) { 5656 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5657 } 5658 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5659 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5660 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5661 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5662 return CommonCost + VecCost - ScalarCost; 5663 } 5664 case Instruction::Load: { 5665 // Cost of wide load - cost of scalar loads. 5666 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5667 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5668 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5669 if (NeedToShuffleReuses) { 5670 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5671 } 5672 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5673 InstructionCost VecLdCost; 5674 if (E->State == TreeEntry::Vectorize) { 5675 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5676 CostKind, VL0); 5677 } else { 5678 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5679 Align CommonAlignment = Alignment; 5680 for (Value *V : VL) 5681 CommonAlignment = 5682 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5683 VecLdCost = TTI->getGatherScatterOpCost( 5684 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5685 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5686 } 5687 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5688 return CommonCost + VecLdCost - ScalarLdCost; 5689 } 5690 case Instruction::Store: { 5691 // We know that we can merge the stores. Calculate the cost. 5692 bool IsReorder = !E->ReorderIndices.empty(); 5693 auto *SI = 5694 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5695 Align Alignment = SI->getAlign(); 5696 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5697 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5698 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5699 InstructionCost VecStCost = TTI->getMemoryOpCost( 5700 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5701 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5702 return CommonCost + VecStCost - ScalarStCost; 5703 } 5704 case Instruction::Call: { 5705 CallInst *CI = cast<CallInst>(VL0); 5706 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5707 5708 // Calculate the cost of the scalar and vector calls. 5709 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5710 InstructionCost ScalarEltCost = 5711 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5712 if (NeedToShuffleReuses) { 5713 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5714 } 5715 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5716 5717 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5718 InstructionCost VecCallCost = 5719 std::min(VecCallCosts.first, VecCallCosts.second); 5720 5721 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5722 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5723 << " for " << *CI << "\n"); 5724 5725 return CommonCost + VecCallCost - ScalarCallCost; 5726 } 5727 case Instruction::ShuffleVector: { 5728 assert(E->isAltShuffle() && 5729 ((Instruction::isBinaryOp(E->getOpcode()) && 5730 Instruction::isBinaryOp(E->getAltOpcode())) || 5731 (Instruction::isCast(E->getOpcode()) && 5732 Instruction::isCast(E->getAltOpcode())) || 5733 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5734 "Invalid Shuffle Vector Operand"); 5735 InstructionCost ScalarCost = 0; 5736 if (NeedToShuffleReuses) { 5737 for (unsigned Idx : E->ReuseShuffleIndices) { 5738 Instruction *I = cast<Instruction>(VL[Idx]); 5739 CommonCost -= TTI->getInstructionCost(I, CostKind); 5740 } 5741 for (Value *V : VL) { 5742 Instruction *I = cast<Instruction>(V); 5743 CommonCost += TTI->getInstructionCost(I, CostKind); 5744 } 5745 } 5746 for (Value *V : VL) { 5747 Instruction *I = cast<Instruction>(V); 5748 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5749 ScalarCost += TTI->getInstructionCost(I, CostKind); 5750 } 5751 // VecCost is equal to sum of the cost of creating 2 vectors 5752 // and the cost of creating shuffle. 5753 InstructionCost VecCost = 0; 5754 // Try to find the previous shuffle node with the same operands and same 5755 // main/alternate ops. 5756 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5757 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5758 if (TE.get() == E) 5759 break; 5760 if (TE->isAltShuffle() && 5761 ((TE->getOpcode() == E->getOpcode() && 5762 TE->getAltOpcode() == E->getAltOpcode()) || 5763 (TE->getOpcode() == E->getAltOpcode() && 5764 TE->getAltOpcode() == E->getOpcode())) && 5765 TE->hasEqualOperands(*E)) 5766 return true; 5767 } 5768 return false; 5769 }; 5770 if (TryFindNodeWithEqualOperands()) { 5771 LLVM_DEBUG({ 5772 dbgs() << "SLP: diamond match for alternate node found.\n"; 5773 E->dump(); 5774 }); 5775 // No need to add new vector costs here since we're going to reuse 5776 // same main/alternate vector ops, just do different shuffling. 5777 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5778 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5779 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5780 CostKind); 5781 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5782 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5783 Builder.getInt1Ty(), 5784 CI0->getPredicate(), CostKind, VL0); 5785 VecCost += TTI->getCmpSelInstrCost( 5786 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5787 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5788 E->getAltOp()); 5789 } else { 5790 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5791 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5792 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5793 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5794 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5795 TTI::CastContextHint::None, CostKind); 5796 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5797 TTI::CastContextHint::None, CostKind); 5798 } 5799 5800 SmallVector<int> Mask; 5801 buildShuffleEntryMask( 5802 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5803 [E](Instruction *I) { 5804 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5805 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5806 }, 5807 Mask); 5808 CommonCost = 5809 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5810 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5811 return CommonCost + VecCost - ScalarCost; 5812 } 5813 default: 5814 llvm_unreachable("Unknown instruction"); 5815 } 5816 } 5817 5818 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5819 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5820 << VectorizableTree.size() << " is fully vectorizable .\n"); 5821 5822 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5823 SmallVector<int> Mask; 5824 return TE->State == TreeEntry::NeedToGather && 5825 !any_of(TE->Scalars, 5826 [this](Value *V) { return EphValues.contains(V); }) && 5827 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5828 TE->Scalars.size() < Limit || 5829 ((TE->getOpcode() == Instruction::ExtractElement || 5830 all_of(TE->Scalars, 5831 [](Value *V) { 5832 return isa<ExtractElementInst, UndefValue>(V); 5833 })) && 5834 isFixedVectorShuffle(TE->Scalars, Mask)) || 5835 (TE->State == TreeEntry::NeedToGather && 5836 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5837 }; 5838 5839 // We only handle trees of heights 1 and 2. 5840 if (VectorizableTree.size() == 1 && 5841 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5842 (ForReduction && 5843 AreVectorizableGathers(VectorizableTree[0].get(), 5844 VectorizableTree[0]->Scalars.size()) && 5845 VectorizableTree[0]->getVectorFactor() > 2))) 5846 return true; 5847 5848 if (VectorizableTree.size() != 2) 5849 return false; 5850 5851 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5852 // with the second gather nodes if they have less scalar operands rather than 5853 // the initial tree element (may be profitable to shuffle the second gather) 5854 // or they are extractelements, which form shuffle. 5855 SmallVector<int> Mask; 5856 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5857 AreVectorizableGathers(VectorizableTree[1].get(), 5858 VectorizableTree[0]->Scalars.size())) 5859 return true; 5860 5861 // Gathering cost would be too much for tiny trees. 5862 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5863 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5864 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5865 return false; 5866 5867 return true; 5868 } 5869 5870 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5871 TargetTransformInfo *TTI, 5872 bool MustMatchOrInst) { 5873 // Look past the root to find a source value. Arbitrarily follow the 5874 // path through operand 0 of any 'or'. Also, peek through optional 5875 // shift-left-by-multiple-of-8-bits. 5876 Value *ZextLoad = Root; 5877 const APInt *ShAmtC; 5878 bool FoundOr = false; 5879 while (!isa<ConstantExpr>(ZextLoad) && 5880 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5881 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5882 ShAmtC->urem(8) == 0))) { 5883 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5884 ZextLoad = BinOp->getOperand(0); 5885 if (BinOp->getOpcode() == Instruction::Or) 5886 FoundOr = true; 5887 } 5888 // Check if the input is an extended load of the required or/shift expression. 5889 Value *Load; 5890 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5891 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5892 return false; 5893 5894 // Require that the total load bit width is a legal integer type. 5895 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5896 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5897 Type *SrcTy = Load->getType(); 5898 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5899 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5900 return false; 5901 5902 // Everything matched - assume that we can fold the whole sequence using 5903 // load combining. 5904 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5905 << *(cast<Instruction>(Root)) << "\n"); 5906 5907 return true; 5908 } 5909 5910 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5911 if (RdxKind != RecurKind::Or) 5912 return false; 5913 5914 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5915 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5916 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5917 /* MatchOr */ false); 5918 } 5919 5920 bool BoUpSLP::isLoadCombineCandidate() const { 5921 // Peek through a final sequence of stores and check if all operations are 5922 // likely to be load-combined. 5923 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5924 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5925 Value *X; 5926 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5927 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5928 return false; 5929 } 5930 return true; 5931 } 5932 5933 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5934 // No need to vectorize inserts of gathered values. 5935 if (VectorizableTree.size() == 2 && 5936 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5937 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5938 return true; 5939 5940 // We can vectorize the tree if its size is greater than or equal to the 5941 // minimum size specified by the MinTreeSize command line option. 5942 if (VectorizableTree.size() >= MinTreeSize) 5943 return false; 5944 5945 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5946 // can vectorize it if we can prove it fully vectorizable. 5947 if (isFullyVectorizableTinyTree(ForReduction)) 5948 return false; 5949 5950 assert(VectorizableTree.empty() 5951 ? ExternalUses.empty() 5952 : true && "We shouldn't have any external users"); 5953 5954 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5955 // vectorizable. 5956 return true; 5957 } 5958 5959 InstructionCost BoUpSLP::getSpillCost() const { 5960 // Walk from the bottom of the tree to the top, tracking which values are 5961 // live. When we see a call instruction that is not part of our tree, 5962 // query TTI to see if there is a cost to keeping values live over it 5963 // (for example, if spills and fills are required). 5964 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5965 InstructionCost Cost = 0; 5966 5967 SmallPtrSet<Instruction*, 4> LiveValues; 5968 Instruction *PrevInst = nullptr; 5969 5970 // The entries in VectorizableTree are not necessarily ordered by their 5971 // position in basic blocks. Collect them and order them by dominance so later 5972 // instructions are guaranteed to be visited first. For instructions in 5973 // different basic blocks, we only scan to the beginning of the block, so 5974 // their order does not matter, as long as all instructions in a basic block 5975 // are grouped together. Using dominance ensures a deterministic order. 5976 SmallVector<Instruction *, 16> OrderedScalars; 5977 for (const auto &TEPtr : VectorizableTree) { 5978 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5979 if (!Inst) 5980 continue; 5981 OrderedScalars.push_back(Inst); 5982 } 5983 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5984 auto *NodeA = DT->getNode(A->getParent()); 5985 auto *NodeB = DT->getNode(B->getParent()); 5986 assert(NodeA && "Should only process reachable instructions"); 5987 assert(NodeB && "Should only process reachable instructions"); 5988 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5989 "Different nodes should have different DFS numbers"); 5990 if (NodeA != NodeB) 5991 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5992 return B->comesBefore(A); 5993 }); 5994 5995 for (Instruction *Inst : OrderedScalars) { 5996 if (!PrevInst) { 5997 PrevInst = Inst; 5998 continue; 5999 } 6000 6001 // Update LiveValues. 6002 LiveValues.erase(PrevInst); 6003 for (auto &J : PrevInst->operands()) { 6004 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6005 LiveValues.insert(cast<Instruction>(&*J)); 6006 } 6007 6008 LLVM_DEBUG({ 6009 dbgs() << "SLP: #LV: " << LiveValues.size(); 6010 for (auto *X : LiveValues) 6011 dbgs() << " " << X->getName(); 6012 dbgs() << ", Looking at "; 6013 Inst->dump(); 6014 }); 6015 6016 // Now find the sequence of instructions between PrevInst and Inst. 6017 unsigned NumCalls = 0; 6018 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6019 PrevInstIt = 6020 PrevInst->getIterator().getReverse(); 6021 while (InstIt != PrevInstIt) { 6022 if (PrevInstIt == PrevInst->getParent()->rend()) { 6023 PrevInstIt = Inst->getParent()->rbegin(); 6024 continue; 6025 } 6026 6027 // Debug information does not impact spill cost. 6028 if ((isa<CallInst>(&*PrevInstIt) && 6029 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6030 &*PrevInstIt != PrevInst) 6031 NumCalls++; 6032 6033 ++PrevInstIt; 6034 } 6035 6036 if (NumCalls) { 6037 SmallVector<Type*, 4> V; 6038 for (auto *II : LiveValues) { 6039 auto *ScalarTy = II->getType(); 6040 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6041 ScalarTy = VectorTy->getElementType(); 6042 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6043 } 6044 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6045 } 6046 6047 PrevInst = Inst; 6048 } 6049 6050 return Cost; 6051 } 6052 6053 /// Check if two insertelement instructions are from the same buildvector. 6054 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6055 InsertElementInst *V) { 6056 // Instructions must be from the same basic blocks. 6057 if (VU->getParent() != V->getParent()) 6058 return false; 6059 // Checks if 2 insertelements are from the same buildvector. 6060 if (VU->getType() != V->getType()) 6061 return false; 6062 // Multiple used inserts are separate nodes. 6063 if (!VU->hasOneUse() && !V->hasOneUse()) 6064 return false; 6065 auto *IE1 = VU; 6066 auto *IE2 = V; 6067 // Go through the vector operand of insertelement instructions trying to find 6068 // either VU as the original vector for IE2 or V as the original vector for 6069 // IE1. 6070 do { 6071 if (IE2 == VU || IE1 == V) 6072 return true; 6073 if (IE1) { 6074 if (IE1 != VU && !IE1->hasOneUse()) 6075 IE1 = nullptr; 6076 else 6077 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6078 } 6079 if (IE2) { 6080 if (IE2 != V && !IE2->hasOneUse()) 6081 IE2 = nullptr; 6082 else 6083 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6084 } 6085 } while (IE1 || IE2); 6086 return false; 6087 } 6088 6089 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6090 InstructionCost Cost = 0; 6091 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6092 << VectorizableTree.size() << ".\n"); 6093 6094 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6095 6096 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6097 TreeEntry &TE = *VectorizableTree[I]; 6098 6099 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6100 Cost += C; 6101 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6102 << " for bundle that starts with " << *TE.Scalars[0] 6103 << ".\n" 6104 << "SLP: Current total cost = " << Cost << "\n"); 6105 } 6106 6107 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6108 InstructionCost ExtractCost = 0; 6109 SmallVector<unsigned> VF; 6110 SmallVector<SmallVector<int>> ShuffleMask; 6111 SmallVector<Value *> FirstUsers; 6112 SmallVector<APInt> DemandedElts; 6113 for (ExternalUser &EU : ExternalUses) { 6114 // We only add extract cost once for the same scalar. 6115 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6116 !ExtractCostCalculated.insert(EU.Scalar).second) 6117 continue; 6118 6119 // Uses by ephemeral values are free (because the ephemeral value will be 6120 // removed prior to code generation, and so the extraction will be 6121 // removed as well). 6122 if (EphValues.count(EU.User)) 6123 continue; 6124 6125 // No extract cost for vector "scalar" 6126 if (isa<FixedVectorType>(EU.Scalar->getType())) 6127 continue; 6128 6129 // Already counted the cost for external uses when tried to adjust the cost 6130 // for extractelements, no need to add it again. 6131 if (isa<ExtractElementInst>(EU.Scalar)) 6132 continue; 6133 6134 // If found user is an insertelement, do not calculate extract cost but try 6135 // to detect it as a final shuffled/identity match. 6136 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6137 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6138 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6139 if (InsertIdx) { 6140 auto *It = find_if(FirstUsers, [VU](Value *V) { 6141 return areTwoInsertFromSameBuildVector(VU, 6142 cast<InsertElementInst>(V)); 6143 }); 6144 int VecId = -1; 6145 if (It == FirstUsers.end()) { 6146 VF.push_back(FTy->getNumElements()); 6147 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6148 // Find the insertvector, vectorized in tree, if any. 6149 Value *Base = VU; 6150 while (isa<InsertElementInst>(Base)) { 6151 // Build the mask for the vectorized insertelement instructions. 6152 if (const TreeEntry *E = getTreeEntry(Base)) { 6153 VU = cast<InsertElementInst>(Base); 6154 do { 6155 int Idx = E->findLaneForValue(Base); 6156 ShuffleMask.back()[Idx] = Idx; 6157 Base = cast<InsertElementInst>(Base)->getOperand(0); 6158 } while (E == getTreeEntry(Base)); 6159 break; 6160 } 6161 Base = cast<InsertElementInst>(Base)->getOperand(0); 6162 } 6163 FirstUsers.push_back(VU); 6164 DemandedElts.push_back(APInt::getZero(VF.back())); 6165 VecId = FirstUsers.size() - 1; 6166 } else { 6167 VecId = std::distance(FirstUsers.begin(), It); 6168 } 6169 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6170 DemandedElts[VecId].setBit(*InsertIdx); 6171 continue; 6172 } 6173 } 6174 } 6175 6176 // If we plan to rewrite the tree in a smaller type, we will need to sign 6177 // extend the extracted value back to the original type. Here, we account 6178 // for the extract and the added cost of the sign extend if needed. 6179 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6180 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6181 if (MinBWs.count(ScalarRoot)) { 6182 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6183 auto Extend = 6184 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6185 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6186 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6187 VecTy, EU.Lane); 6188 } else { 6189 ExtractCost += 6190 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6191 } 6192 } 6193 6194 InstructionCost SpillCost = getSpillCost(); 6195 Cost += SpillCost + ExtractCost; 6196 if (FirstUsers.size() == 1) { 6197 int Limit = ShuffleMask.front().size() * 2; 6198 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6199 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6200 InstructionCost C = TTI->getShuffleCost( 6201 TTI::SK_PermuteSingleSrc, 6202 cast<FixedVectorType>(FirstUsers.front()->getType()), 6203 ShuffleMask.front()); 6204 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6205 << " for final shuffle of insertelement external users " 6206 << *VectorizableTree.front()->Scalars.front() << ".\n" 6207 << "SLP: Current total cost = " << Cost << "\n"); 6208 Cost += C; 6209 } 6210 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6211 cast<FixedVectorType>(FirstUsers.front()->getType()), 6212 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6213 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6214 << " for insertelements gather.\n" 6215 << "SLP: Current total cost = " << Cost << "\n"); 6216 Cost -= InsertCost; 6217 } else if (FirstUsers.size() >= 2) { 6218 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6219 // Combined masks of the first 2 vectors. 6220 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6221 copy(ShuffleMask.front(), CombinedMask.begin()); 6222 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6223 auto *VecTy = FixedVectorType::get( 6224 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6225 MaxVF); 6226 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6227 if (ShuffleMask[1][I] != UndefMaskElem) { 6228 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6229 CombinedDemandedElts.setBit(I); 6230 } 6231 } 6232 InstructionCost C = 6233 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6234 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6235 << " for final shuffle of vector node and external " 6236 "insertelement users " 6237 << *VectorizableTree.front()->Scalars.front() << ".\n" 6238 << "SLP: Current total cost = " << Cost << "\n"); 6239 Cost += C; 6240 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6241 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6242 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6243 << " for insertelements gather.\n" 6244 << "SLP: Current total cost = " << Cost << "\n"); 6245 Cost -= InsertCost; 6246 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6247 // Other elements - permutation of 2 vectors (the initial one and the 6248 // next Ith incoming vector). 6249 unsigned VF = ShuffleMask[I].size(); 6250 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6251 int Mask = ShuffleMask[I][Idx]; 6252 if (Mask != UndefMaskElem) 6253 CombinedMask[Idx] = MaxVF + Mask; 6254 else if (CombinedMask[Idx] != UndefMaskElem) 6255 CombinedMask[Idx] = Idx; 6256 } 6257 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6258 if (CombinedMask[Idx] != UndefMaskElem) 6259 CombinedMask[Idx] = Idx; 6260 InstructionCost C = 6261 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6262 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6263 << " for final shuffle of vector node and external " 6264 "insertelement users " 6265 << *VectorizableTree.front()->Scalars.front() << ".\n" 6266 << "SLP: Current total cost = " << Cost << "\n"); 6267 Cost += C; 6268 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6269 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6270 /*Insert*/ true, /*Extract*/ false); 6271 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6272 << " for insertelements gather.\n" 6273 << "SLP: Current total cost = " << Cost << "\n"); 6274 Cost -= InsertCost; 6275 } 6276 } 6277 6278 #ifndef NDEBUG 6279 SmallString<256> Str; 6280 { 6281 raw_svector_ostream OS(Str); 6282 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6283 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6284 << "SLP: Total Cost = " << Cost << ".\n"; 6285 } 6286 LLVM_DEBUG(dbgs() << Str); 6287 if (ViewSLPTree) 6288 ViewGraph(this, "SLP" + F->getName(), false, Str); 6289 #endif 6290 6291 return Cost; 6292 } 6293 6294 Optional<TargetTransformInfo::ShuffleKind> 6295 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6296 SmallVectorImpl<const TreeEntry *> &Entries) { 6297 // TODO: currently checking only for Scalars in the tree entry, need to count 6298 // reused elements too for better cost estimation. 6299 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6300 Entries.clear(); 6301 // Build a lists of values to tree entries. 6302 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6303 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6304 if (EntryPtr.get() == TE) 6305 break; 6306 if (EntryPtr->State != TreeEntry::NeedToGather) 6307 continue; 6308 for (Value *V : EntryPtr->Scalars) 6309 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6310 } 6311 // Find all tree entries used by the gathered values. If no common entries 6312 // found - not a shuffle. 6313 // Here we build a set of tree nodes for each gathered value and trying to 6314 // find the intersection between these sets. If we have at least one common 6315 // tree node for each gathered value - we have just a permutation of the 6316 // single vector. If we have 2 different sets, we're in situation where we 6317 // have a permutation of 2 input vectors. 6318 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6319 DenseMap<Value *, int> UsedValuesEntry; 6320 for (Value *V : TE->Scalars) { 6321 if (isa<UndefValue>(V)) 6322 continue; 6323 // Build a list of tree entries where V is used. 6324 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6325 auto It = ValueToTEs.find(V); 6326 if (It != ValueToTEs.end()) 6327 VToTEs = It->second; 6328 if (const TreeEntry *VTE = getTreeEntry(V)) 6329 VToTEs.insert(VTE); 6330 if (VToTEs.empty()) 6331 return None; 6332 if (UsedTEs.empty()) { 6333 // The first iteration, just insert the list of nodes to vector. 6334 UsedTEs.push_back(VToTEs); 6335 } else { 6336 // Need to check if there are any previously used tree nodes which use V. 6337 // If there are no such nodes, consider that we have another one input 6338 // vector. 6339 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6340 unsigned Idx = 0; 6341 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6342 // Do we have a non-empty intersection of previously listed tree entries 6343 // and tree entries using current V? 6344 set_intersect(VToTEs, Set); 6345 if (!VToTEs.empty()) { 6346 // Yes, write the new subset and continue analysis for the next 6347 // scalar. 6348 Set.swap(VToTEs); 6349 break; 6350 } 6351 VToTEs = SavedVToTEs; 6352 ++Idx; 6353 } 6354 // No non-empty intersection found - need to add a second set of possible 6355 // source vectors. 6356 if (Idx == UsedTEs.size()) { 6357 // If the number of input vectors is greater than 2 - not a permutation, 6358 // fallback to the regular gather. 6359 if (UsedTEs.size() == 2) 6360 return None; 6361 UsedTEs.push_back(SavedVToTEs); 6362 Idx = UsedTEs.size() - 1; 6363 } 6364 UsedValuesEntry.try_emplace(V, Idx); 6365 } 6366 } 6367 6368 unsigned VF = 0; 6369 if (UsedTEs.size() == 1) { 6370 // Try to find the perfect match in another gather node at first. 6371 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6372 return EntryPtr->isSame(TE->Scalars); 6373 }); 6374 if (It != UsedTEs.front().end()) { 6375 Entries.push_back(*It); 6376 std::iota(Mask.begin(), Mask.end(), 0); 6377 return TargetTransformInfo::SK_PermuteSingleSrc; 6378 } 6379 // No perfect match, just shuffle, so choose the first tree node. 6380 Entries.push_back(*UsedTEs.front().begin()); 6381 } else { 6382 // Try to find nodes with the same vector factor. 6383 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6384 DenseMap<int, const TreeEntry *> VFToTE; 6385 for (const TreeEntry *TE : UsedTEs.front()) 6386 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6387 for (const TreeEntry *TE : UsedTEs.back()) { 6388 auto It = VFToTE.find(TE->getVectorFactor()); 6389 if (It != VFToTE.end()) { 6390 VF = It->first; 6391 Entries.push_back(It->second); 6392 Entries.push_back(TE); 6393 break; 6394 } 6395 } 6396 // No 2 source vectors with the same vector factor - give up and do regular 6397 // gather. 6398 if (Entries.empty()) 6399 return None; 6400 } 6401 6402 // Build a shuffle mask for better cost estimation and vector emission. 6403 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6404 Value *V = TE->Scalars[I]; 6405 if (isa<UndefValue>(V)) 6406 continue; 6407 unsigned Idx = UsedValuesEntry.lookup(V); 6408 const TreeEntry *VTE = Entries[Idx]; 6409 int FoundLane = VTE->findLaneForValue(V); 6410 Mask[I] = Idx * VF + FoundLane; 6411 // Extra check required by isSingleSourceMaskImpl function (called by 6412 // ShuffleVectorInst::isSingleSourceMask). 6413 if (Mask[I] >= 2 * E) 6414 return None; 6415 } 6416 switch (Entries.size()) { 6417 case 1: 6418 return TargetTransformInfo::SK_PermuteSingleSrc; 6419 case 2: 6420 return TargetTransformInfo::SK_PermuteTwoSrc; 6421 default: 6422 break; 6423 } 6424 return None; 6425 } 6426 6427 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6428 const APInt &ShuffledIndices, 6429 bool NeedToShuffle) const { 6430 InstructionCost Cost = 6431 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6432 /*Extract*/ false); 6433 if (NeedToShuffle) 6434 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6435 return Cost; 6436 } 6437 6438 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6439 // Find the type of the operands in VL. 6440 Type *ScalarTy = VL[0]->getType(); 6441 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6442 ScalarTy = SI->getValueOperand()->getType(); 6443 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6444 bool DuplicateNonConst = false; 6445 // Find the cost of inserting/extracting values from the vector. 6446 // Check if the same elements are inserted several times and count them as 6447 // shuffle candidates. 6448 APInt ShuffledElements = APInt::getZero(VL.size()); 6449 DenseSet<Value *> UniqueElements; 6450 // Iterate in reverse order to consider insert elements with the high cost. 6451 for (unsigned I = VL.size(); I > 0; --I) { 6452 unsigned Idx = I - 1; 6453 // No need to shuffle duplicates for constants. 6454 if (isConstant(VL[Idx])) { 6455 ShuffledElements.setBit(Idx); 6456 continue; 6457 } 6458 if (!UniqueElements.insert(VL[Idx]).second) { 6459 DuplicateNonConst = true; 6460 ShuffledElements.setBit(Idx); 6461 } 6462 } 6463 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6464 } 6465 6466 // Perform operand reordering on the instructions in VL and return the reordered 6467 // operands in Left and Right. 6468 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6469 SmallVectorImpl<Value *> &Left, 6470 SmallVectorImpl<Value *> &Right, 6471 const DataLayout &DL, 6472 ScalarEvolution &SE, 6473 const BoUpSLP &R) { 6474 if (VL.empty()) 6475 return; 6476 VLOperands Ops(VL, DL, SE, R); 6477 // Reorder the operands in place. 6478 Ops.reorder(); 6479 Left = Ops.getVL(0); 6480 Right = Ops.getVL(1); 6481 } 6482 6483 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6484 // Get the basic block this bundle is in. All instructions in the bundle 6485 // should be in this block. 6486 auto *Front = E->getMainOp(); 6487 auto *BB = Front->getParent(); 6488 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6489 auto *I = cast<Instruction>(V); 6490 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6491 })); 6492 6493 auto &&FindLastInst = [E, Front]() { 6494 Instruction *LastInst = Front; 6495 for (Value *V : E->Scalars) { 6496 auto *I = dyn_cast<Instruction>(V); 6497 if (!I) 6498 continue; 6499 if (LastInst->comesBefore(I)) 6500 LastInst = I; 6501 } 6502 return LastInst; 6503 }; 6504 6505 auto &&FindFirstInst = [E, Front]() { 6506 Instruction *FirstInst = Front; 6507 for (Value *V : E->Scalars) { 6508 auto *I = dyn_cast<Instruction>(V); 6509 if (!I) 6510 continue; 6511 if (I->comesBefore(FirstInst)) 6512 FirstInst = I; 6513 } 6514 return FirstInst; 6515 }; 6516 6517 // Set the insert point to the beginning of the basic block if the entry 6518 // should not be scheduled. 6519 if (E->State != TreeEntry::NeedToGather && 6520 doesNotNeedToSchedule(E->Scalars)) { 6521 BasicBlock::iterator InsertPt; 6522 if (all_of(E->Scalars, isUsedOutsideBlock)) 6523 InsertPt = FindLastInst()->getIterator(); 6524 else 6525 InsertPt = FindFirstInst()->getIterator(); 6526 Builder.SetInsertPoint(BB, InsertPt); 6527 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6528 return; 6529 } 6530 6531 // The last instruction in the bundle in program order. 6532 Instruction *LastInst = nullptr; 6533 6534 // Find the last instruction. The common case should be that BB has been 6535 // scheduled, and the last instruction is VL.back(). So we start with 6536 // VL.back() and iterate over schedule data until we reach the end of the 6537 // bundle. The end of the bundle is marked by null ScheduleData. 6538 if (BlocksSchedules.count(BB)) { 6539 Value *V = E->isOneOf(E->Scalars.back()); 6540 if (doesNotNeedToBeScheduled(V)) 6541 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6542 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6543 if (Bundle && Bundle->isPartOfBundle()) 6544 for (; Bundle; Bundle = Bundle->NextInBundle) 6545 if (Bundle->OpValue == Bundle->Inst) 6546 LastInst = Bundle->Inst; 6547 } 6548 6549 // LastInst can still be null at this point if there's either not an entry 6550 // for BB in BlocksSchedules or there's no ScheduleData available for 6551 // VL.back(). This can be the case if buildTree_rec aborts for various 6552 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6553 // size is reached, etc.). ScheduleData is initialized in the scheduling 6554 // "dry-run". 6555 // 6556 // If this happens, we can still find the last instruction by brute force. We 6557 // iterate forwards from Front (inclusive) until we either see all 6558 // instructions in the bundle or reach the end of the block. If Front is the 6559 // last instruction in program order, LastInst will be set to Front, and we 6560 // will visit all the remaining instructions in the block. 6561 // 6562 // One of the reasons we exit early from buildTree_rec is to place an upper 6563 // bound on compile-time. Thus, taking an additional compile-time hit here is 6564 // not ideal. However, this should be exceedingly rare since it requires that 6565 // we both exit early from buildTree_rec and that the bundle be out-of-order 6566 // (causing us to iterate all the way to the end of the block). 6567 if (!LastInst) 6568 LastInst = FindLastInst(); 6569 assert(LastInst && "Failed to find last instruction in bundle"); 6570 6571 // Set the insertion point after the last instruction in the bundle. Set the 6572 // debug location to Front. 6573 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6574 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6575 } 6576 6577 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6578 // List of instructions/lanes from current block and/or the blocks which are 6579 // part of the current loop. These instructions will be inserted at the end to 6580 // make it possible to optimize loops and hoist invariant instructions out of 6581 // the loops body with better chances for success. 6582 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6583 SmallSet<int, 4> PostponedIndices; 6584 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6585 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6586 SmallPtrSet<BasicBlock *, 4> Visited; 6587 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6588 InsertBB = InsertBB->getSinglePredecessor(); 6589 return InsertBB && InsertBB == InstBB; 6590 }; 6591 for (int I = 0, E = VL.size(); I < E; ++I) { 6592 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6593 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6594 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6595 PostponedIndices.insert(I).second) 6596 PostponedInsts.emplace_back(Inst, I); 6597 } 6598 6599 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6600 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6601 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6602 if (!InsElt) 6603 return Vec; 6604 GatherShuffleSeq.insert(InsElt); 6605 CSEBlocks.insert(InsElt->getParent()); 6606 // Add to our 'need-to-extract' list. 6607 if (TreeEntry *Entry = getTreeEntry(V)) { 6608 // Find which lane we need to extract. 6609 unsigned FoundLane = Entry->findLaneForValue(V); 6610 ExternalUses.emplace_back(V, InsElt, FoundLane); 6611 } 6612 return Vec; 6613 }; 6614 Value *Val0 = 6615 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6616 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6617 Value *Vec = PoisonValue::get(VecTy); 6618 SmallVector<int> NonConsts; 6619 // Insert constant values at first. 6620 for (int I = 0, E = VL.size(); I < E; ++I) { 6621 if (PostponedIndices.contains(I)) 6622 continue; 6623 if (!isConstant(VL[I])) { 6624 NonConsts.push_back(I); 6625 continue; 6626 } 6627 Vec = CreateInsertElement(Vec, VL[I], I); 6628 } 6629 // Insert non-constant values. 6630 for (int I : NonConsts) 6631 Vec = CreateInsertElement(Vec, VL[I], I); 6632 // Append instructions, which are/may be part of the loop, in the end to make 6633 // it possible to hoist non-loop-based instructions. 6634 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6635 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6636 6637 return Vec; 6638 } 6639 6640 namespace { 6641 /// Merges shuffle masks and emits final shuffle instruction, if required. 6642 class ShuffleInstructionBuilder { 6643 IRBuilderBase &Builder; 6644 const unsigned VF = 0; 6645 bool IsFinalized = false; 6646 SmallVector<int, 4> Mask; 6647 /// Holds all of the instructions that we gathered. 6648 SetVector<Instruction *> &GatherShuffleSeq; 6649 /// A list of blocks that we are going to CSE. 6650 SetVector<BasicBlock *> &CSEBlocks; 6651 6652 public: 6653 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6654 SetVector<Instruction *> &GatherShuffleSeq, 6655 SetVector<BasicBlock *> &CSEBlocks) 6656 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6657 CSEBlocks(CSEBlocks) {} 6658 6659 /// Adds a mask, inverting it before applying. 6660 void addInversedMask(ArrayRef<unsigned> SubMask) { 6661 if (SubMask.empty()) 6662 return; 6663 SmallVector<int, 4> NewMask; 6664 inversePermutation(SubMask, NewMask); 6665 addMask(NewMask); 6666 } 6667 6668 /// Functions adds masks, merging them into single one. 6669 void addMask(ArrayRef<unsigned> SubMask) { 6670 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6671 addMask(NewMask); 6672 } 6673 6674 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6675 6676 Value *finalize(Value *V) { 6677 IsFinalized = true; 6678 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6679 if (VF == ValueVF && Mask.empty()) 6680 return V; 6681 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6682 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6683 addMask(NormalizedMask); 6684 6685 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6686 return V; 6687 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6688 if (auto *I = dyn_cast<Instruction>(Vec)) { 6689 GatherShuffleSeq.insert(I); 6690 CSEBlocks.insert(I->getParent()); 6691 } 6692 return Vec; 6693 } 6694 6695 ~ShuffleInstructionBuilder() { 6696 assert((IsFinalized || Mask.empty()) && 6697 "Shuffle construction must be finalized."); 6698 } 6699 }; 6700 } // namespace 6701 6702 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6703 const unsigned VF = VL.size(); 6704 InstructionsState S = getSameOpcode(VL); 6705 if (S.getOpcode()) { 6706 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6707 if (E->isSame(VL)) { 6708 Value *V = vectorizeTree(E); 6709 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6710 if (!E->ReuseShuffleIndices.empty()) { 6711 // Reshuffle to get only unique values. 6712 // If some of the scalars are duplicated in the vectorization tree 6713 // entry, we do not vectorize them but instead generate a mask for 6714 // the reuses. But if there are several users of the same entry, 6715 // they may have different vectorization factors. This is especially 6716 // important for PHI nodes. In this case, we need to adapt the 6717 // resulting instruction for the user vectorization factor and have 6718 // to reshuffle it again to take only unique elements of the vector. 6719 // Without this code the function incorrectly returns reduced vector 6720 // instruction with the same elements, not with the unique ones. 6721 6722 // block: 6723 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6724 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6725 // ... (use %2) 6726 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6727 // br %block 6728 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6729 SmallSet<int, 4> UsedIdxs; 6730 int Pos = 0; 6731 int Sz = VL.size(); 6732 for (int Idx : E->ReuseShuffleIndices) { 6733 if (Idx != Sz && Idx != UndefMaskElem && 6734 UsedIdxs.insert(Idx).second) 6735 UniqueIdxs[Idx] = Pos; 6736 ++Pos; 6737 } 6738 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6739 "less than original vector size."); 6740 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6741 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6742 } else { 6743 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6744 "Expected vectorization factor less " 6745 "than original vector size."); 6746 SmallVector<int> UniformMask(VF, 0); 6747 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6748 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6749 } 6750 if (auto *I = dyn_cast<Instruction>(V)) { 6751 GatherShuffleSeq.insert(I); 6752 CSEBlocks.insert(I->getParent()); 6753 } 6754 } 6755 return V; 6756 } 6757 } 6758 6759 // Can't vectorize this, so simply build a new vector with each lane 6760 // corresponding to the requested value. 6761 return createBuildVector(VL); 6762 } 6763 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6764 unsigned VF = VL.size(); 6765 // Exploit possible reuse of values across lanes. 6766 SmallVector<int> ReuseShuffleIndicies; 6767 SmallVector<Value *> UniqueValues; 6768 if (VL.size() > 2) { 6769 DenseMap<Value *, unsigned> UniquePositions; 6770 unsigned NumValues = 6771 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6772 return !isa<UndefValue>(V); 6773 }).base()); 6774 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6775 int UniqueVals = 0; 6776 for (Value *V : VL.drop_back(VL.size() - VF)) { 6777 if (isa<UndefValue>(V)) { 6778 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6779 continue; 6780 } 6781 if (isConstant(V)) { 6782 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6783 UniqueValues.emplace_back(V); 6784 continue; 6785 } 6786 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6787 ReuseShuffleIndicies.emplace_back(Res.first->second); 6788 if (Res.second) { 6789 UniqueValues.emplace_back(V); 6790 ++UniqueVals; 6791 } 6792 } 6793 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6794 // Emit pure splat vector. 6795 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6796 UndefMaskElem); 6797 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6798 ReuseShuffleIndicies.clear(); 6799 UniqueValues.clear(); 6800 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6801 } 6802 UniqueValues.append(VF - UniqueValues.size(), 6803 PoisonValue::get(VL[0]->getType())); 6804 VL = UniqueValues; 6805 } 6806 6807 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6808 CSEBlocks); 6809 Value *Vec = gather(VL); 6810 if (!ReuseShuffleIndicies.empty()) { 6811 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6812 Vec = ShuffleBuilder.finalize(Vec); 6813 } 6814 return Vec; 6815 } 6816 6817 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6818 IRBuilder<>::InsertPointGuard Guard(Builder); 6819 6820 if (E->VectorizedValue) { 6821 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6822 return E->VectorizedValue; 6823 } 6824 6825 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6826 unsigned VF = E->getVectorFactor(); 6827 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6828 CSEBlocks); 6829 if (E->State == TreeEntry::NeedToGather) { 6830 if (E->getMainOp()) 6831 setInsertPointAfterBundle(E); 6832 Value *Vec; 6833 SmallVector<int> Mask; 6834 SmallVector<const TreeEntry *> Entries; 6835 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6836 isGatherShuffledEntry(E, Mask, Entries); 6837 if (Shuffle.hasValue()) { 6838 assert((Entries.size() == 1 || Entries.size() == 2) && 6839 "Expected shuffle of 1 or 2 entries."); 6840 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6841 Entries.back()->VectorizedValue, Mask); 6842 if (auto *I = dyn_cast<Instruction>(Vec)) { 6843 GatherShuffleSeq.insert(I); 6844 CSEBlocks.insert(I->getParent()); 6845 } 6846 } else { 6847 Vec = gather(E->Scalars); 6848 } 6849 if (NeedToShuffleReuses) { 6850 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6851 Vec = ShuffleBuilder.finalize(Vec); 6852 } 6853 E->VectorizedValue = Vec; 6854 return Vec; 6855 } 6856 6857 assert((E->State == TreeEntry::Vectorize || 6858 E->State == TreeEntry::ScatterVectorize) && 6859 "Unhandled state"); 6860 unsigned ShuffleOrOp = 6861 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6862 Instruction *VL0 = E->getMainOp(); 6863 Type *ScalarTy = VL0->getType(); 6864 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6865 ScalarTy = Store->getValueOperand()->getType(); 6866 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6867 ScalarTy = IE->getOperand(1)->getType(); 6868 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6869 switch (ShuffleOrOp) { 6870 case Instruction::PHI: { 6871 assert( 6872 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6873 "PHI reordering is free."); 6874 auto *PH = cast<PHINode>(VL0); 6875 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6876 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6877 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6878 Value *V = NewPhi; 6879 6880 // Adjust insertion point once all PHI's have been generated. 6881 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6882 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6883 6884 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6885 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6886 V = ShuffleBuilder.finalize(V); 6887 6888 E->VectorizedValue = V; 6889 6890 // PHINodes may have multiple entries from the same block. We want to 6891 // visit every block once. 6892 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6893 6894 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6895 ValueList Operands; 6896 BasicBlock *IBB = PH->getIncomingBlock(i); 6897 6898 if (!VisitedBBs.insert(IBB).second) { 6899 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6900 continue; 6901 } 6902 6903 Builder.SetInsertPoint(IBB->getTerminator()); 6904 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6905 Value *Vec = vectorizeTree(E->getOperand(i)); 6906 NewPhi->addIncoming(Vec, IBB); 6907 } 6908 6909 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6910 "Invalid number of incoming values"); 6911 return V; 6912 } 6913 6914 case Instruction::ExtractElement: { 6915 Value *V = E->getSingleOperand(0); 6916 Builder.SetInsertPoint(VL0); 6917 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6918 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6919 V = ShuffleBuilder.finalize(V); 6920 E->VectorizedValue = V; 6921 return V; 6922 } 6923 case Instruction::ExtractValue: { 6924 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6925 Builder.SetInsertPoint(LI); 6926 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6927 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6928 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6929 Value *NewV = propagateMetadata(V, E->Scalars); 6930 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6931 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6932 NewV = ShuffleBuilder.finalize(NewV); 6933 E->VectorizedValue = NewV; 6934 return NewV; 6935 } 6936 case Instruction::InsertElement: { 6937 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6938 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6939 Value *V = vectorizeTree(E->getOperand(1)); 6940 6941 // Create InsertVector shuffle if necessary 6942 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6943 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6944 })); 6945 const unsigned NumElts = 6946 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6947 const unsigned NumScalars = E->Scalars.size(); 6948 6949 unsigned Offset = *getInsertIndex(VL0); 6950 assert(Offset < NumElts && "Failed to find vector index offset"); 6951 6952 // Create shuffle to resize vector 6953 SmallVector<int> Mask; 6954 if (!E->ReorderIndices.empty()) { 6955 inversePermutation(E->ReorderIndices, Mask); 6956 Mask.append(NumElts - NumScalars, UndefMaskElem); 6957 } else { 6958 Mask.assign(NumElts, UndefMaskElem); 6959 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6960 } 6961 // Create InsertVector shuffle if necessary 6962 bool IsIdentity = true; 6963 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6964 Mask.swap(PrevMask); 6965 for (unsigned I = 0; I < NumScalars; ++I) { 6966 Value *Scalar = E->Scalars[PrevMask[I]]; 6967 unsigned InsertIdx = *getInsertIndex(Scalar); 6968 IsIdentity &= InsertIdx - Offset == I; 6969 Mask[InsertIdx - Offset] = I; 6970 } 6971 if (!IsIdentity || NumElts != NumScalars) { 6972 V = Builder.CreateShuffleVector(V, Mask); 6973 if (auto *I = dyn_cast<Instruction>(V)) { 6974 GatherShuffleSeq.insert(I); 6975 CSEBlocks.insert(I->getParent()); 6976 } 6977 } 6978 6979 if ((!IsIdentity || Offset != 0 || 6980 !isUndefVector(FirstInsert->getOperand(0))) && 6981 NumElts != NumScalars) { 6982 SmallVector<int> InsertMask(NumElts); 6983 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6984 for (unsigned I = 0; I < NumElts; I++) { 6985 if (Mask[I] != UndefMaskElem) 6986 InsertMask[Offset + I] = NumElts + I; 6987 } 6988 6989 V = Builder.CreateShuffleVector( 6990 FirstInsert->getOperand(0), V, InsertMask, 6991 cast<Instruction>(E->Scalars.back())->getName()); 6992 if (auto *I = dyn_cast<Instruction>(V)) { 6993 GatherShuffleSeq.insert(I); 6994 CSEBlocks.insert(I->getParent()); 6995 } 6996 } 6997 6998 ++NumVectorInstructions; 6999 E->VectorizedValue = V; 7000 return V; 7001 } 7002 case Instruction::ZExt: 7003 case Instruction::SExt: 7004 case Instruction::FPToUI: 7005 case Instruction::FPToSI: 7006 case Instruction::FPExt: 7007 case Instruction::PtrToInt: 7008 case Instruction::IntToPtr: 7009 case Instruction::SIToFP: 7010 case Instruction::UIToFP: 7011 case Instruction::Trunc: 7012 case Instruction::FPTrunc: 7013 case Instruction::BitCast: { 7014 setInsertPointAfterBundle(E); 7015 7016 Value *InVec = vectorizeTree(E->getOperand(0)); 7017 7018 if (E->VectorizedValue) { 7019 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7020 return E->VectorizedValue; 7021 } 7022 7023 auto *CI = cast<CastInst>(VL0); 7024 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7025 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7026 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7027 V = ShuffleBuilder.finalize(V); 7028 7029 E->VectorizedValue = V; 7030 ++NumVectorInstructions; 7031 return V; 7032 } 7033 case Instruction::FCmp: 7034 case Instruction::ICmp: { 7035 setInsertPointAfterBundle(E); 7036 7037 Value *L = vectorizeTree(E->getOperand(0)); 7038 Value *R = vectorizeTree(E->getOperand(1)); 7039 7040 if (E->VectorizedValue) { 7041 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7042 return E->VectorizedValue; 7043 } 7044 7045 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7046 Value *V = Builder.CreateCmp(P0, L, R); 7047 propagateIRFlags(V, E->Scalars, VL0); 7048 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7049 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7050 V = ShuffleBuilder.finalize(V); 7051 7052 E->VectorizedValue = V; 7053 ++NumVectorInstructions; 7054 return V; 7055 } 7056 case Instruction::Select: { 7057 setInsertPointAfterBundle(E); 7058 7059 Value *Cond = vectorizeTree(E->getOperand(0)); 7060 Value *True = vectorizeTree(E->getOperand(1)); 7061 Value *False = vectorizeTree(E->getOperand(2)); 7062 7063 if (E->VectorizedValue) { 7064 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7065 return E->VectorizedValue; 7066 } 7067 7068 Value *V = Builder.CreateSelect(Cond, True, False); 7069 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7070 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7071 V = ShuffleBuilder.finalize(V); 7072 7073 E->VectorizedValue = V; 7074 ++NumVectorInstructions; 7075 return V; 7076 } 7077 case Instruction::FNeg: { 7078 setInsertPointAfterBundle(E); 7079 7080 Value *Op = vectorizeTree(E->getOperand(0)); 7081 7082 if (E->VectorizedValue) { 7083 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7084 return E->VectorizedValue; 7085 } 7086 7087 Value *V = Builder.CreateUnOp( 7088 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7089 propagateIRFlags(V, E->Scalars, VL0); 7090 if (auto *I = dyn_cast<Instruction>(V)) 7091 V = propagateMetadata(I, E->Scalars); 7092 7093 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7094 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7095 V = ShuffleBuilder.finalize(V); 7096 7097 E->VectorizedValue = V; 7098 ++NumVectorInstructions; 7099 7100 return V; 7101 } 7102 case Instruction::Add: 7103 case Instruction::FAdd: 7104 case Instruction::Sub: 7105 case Instruction::FSub: 7106 case Instruction::Mul: 7107 case Instruction::FMul: 7108 case Instruction::UDiv: 7109 case Instruction::SDiv: 7110 case Instruction::FDiv: 7111 case Instruction::URem: 7112 case Instruction::SRem: 7113 case Instruction::FRem: 7114 case Instruction::Shl: 7115 case Instruction::LShr: 7116 case Instruction::AShr: 7117 case Instruction::And: 7118 case Instruction::Or: 7119 case Instruction::Xor: { 7120 setInsertPointAfterBundle(E); 7121 7122 Value *LHS = vectorizeTree(E->getOperand(0)); 7123 Value *RHS = vectorizeTree(E->getOperand(1)); 7124 7125 if (E->VectorizedValue) { 7126 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7127 return E->VectorizedValue; 7128 } 7129 7130 Value *V = Builder.CreateBinOp( 7131 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7132 RHS); 7133 propagateIRFlags(V, E->Scalars, VL0); 7134 if (auto *I = dyn_cast<Instruction>(V)) 7135 V = propagateMetadata(I, E->Scalars); 7136 7137 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7138 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7139 V = ShuffleBuilder.finalize(V); 7140 7141 E->VectorizedValue = V; 7142 ++NumVectorInstructions; 7143 7144 return V; 7145 } 7146 case Instruction::Load: { 7147 // Loads are inserted at the head of the tree because we don't want to 7148 // sink them all the way down past store instructions. 7149 setInsertPointAfterBundle(E); 7150 7151 LoadInst *LI = cast<LoadInst>(VL0); 7152 Instruction *NewLI; 7153 unsigned AS = LI->getPointerAddressSpace(); 7154 Value *PO = LI->getPointerOperand(); 7155 if (E->State == TreeEntry::Vectorize) { 7156 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7157 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7158 7159 // The pointer operand uses an in-tree scalar so we add the new BitCast 7160 // or LoadInst to ExternalUses list to make sure that an extract will 7161 // be generated in the future. 7162 if (TreeEntry *Entry = getTreeEntry(PO)) { 7163 // Find which lane we need to extract. 7164 unsigned FoundLane = Entry->findLaneForValue(PO); 7165 ExternalUses.emplace_back( 7166 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7167 } 7168 } else { 7169 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7170 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7171 // Use the minimum alignment of the gathered loads. 7172 Align CommonAlignment = LI->getAlign(); 7173 for (Value *V : E->Scalars) 7174 CommonAlignment = 7175 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7176 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7177 } 7178 Value *V = propagateMetadata(NewLI, E->Scalars); 7179 7180 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7181 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7182 V = ShuffleBuilder.finalize(V); 7183 E->VectorizedValue = V; 7184 ++NumVectorInstructions; 7185 return V; 7186 } 7187 case Instruction::Store: { 7188 auto *SI = cast<StoreInst>(VL0); 7189 unsigned AS = SI->getPointerAddressSpace(); 7190 7191 setInsertPointAfterBundle(E); 7192 7193 Value *VecValue = vectorizeTree(E->getOperand(0)); 7194 ShuffleBuilder.addMask(E->ReorderIndices); 7195 VecValue = ShuffleBuilder.finalize(VecValue); 7196 7197 Value *ScalarPtr = SI->getPointerOperand(); 7198 Value *VecPtr = Builder.CreateBitCast( 7199 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7200 StoreInst *ST = 7201 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7202 7203 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7204 // StoreInst to ExternalUses to make sure that an extract will be 7205 // generated in the future. 7206 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7207 // Find which lane we need to extract. 7208 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7209 ExternalUses.push_back(ExternalUser( 7210 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7211 FoundLane)); 7212 } 7213 7214 Value *V = propagateMetadata(ST, E->Scalars); 7215 7216 E->VectorizedValue = V; 7217 ++NumVectorInstructions; 7218 return V; 7219 } 7220 case Instruction::GetElementPtr: { 7221 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7222 setInsertPointAfterBundle(E); 7223 7224 Value *Op0 = vectorizeTree(E->getOperand(0)); 7225 7226 SmallVector<Value *> OpVecs; 7227 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7228 Value *OpVec = vectorizeTree(E->getOperand(J)); 7229 OpVecs.push_back(OpVec); 7230 } 7231 7232 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7233 if (Instruction *I = dyn_cast<Instruction>(V)) 7234 V = propagateMetadata(I, E->Scalars); 7235 7236 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7237 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7238 V = ShuffleBuilder.finalize(V); 7239 7240 E->VectorizedValue = V; 7241 ++NumVectorInstructions; 7242 7243 return V; 7244 } 7245 case Instruction::Call: { 7246 CallInst *CI = cast<CallInst>(VL0); 7247 setInsertPointAfterBundle(E); 7248 7249 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7250 if (Function *FI = CI->getCalledFunction()) 7251 IID = FI->getIntrinsicID(); 7252 7253 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7254 7255 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7256 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7257 VecCallCosts.first <= VecCallCosts.second; 7258 7259 Value *ScalarArg = nullptr; 7260 std::vector<Value *> OpVecs; 7261 SmallVector<Type *, 2> TysForDecl = 7262 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7263 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7264 ValueList OpVL; 7265 // Some intrinsics have scalar arguments. This argument should not be 7266 // vectorized. 7267 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7268 CallInst *CEI = cast<CallInst>(VL0); 7269 ScalarArg = CEI->getArgOperand(j); 7270 OpVecs.push_back(CEI->getArgOperand(j)); 7271 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7272 TysForDecl.push_back(ScalarArg->getType()); 7273 continue; 7274 } 7275 7276 Value *OpVec = vectorizeTree(E->getOperand(j)); 7277 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7278 OpVecs.push_back(OpVec); 7279 } 7280 7281 Function *CF; 7282 if (!UseIntrinsic) { 7283 VFShape Shape = 7284 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7285 VecTy->getNumElements())), 7286 false /*HasGlobalPred*/); 7287 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7288 } else { 7289 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7290 } 7291 7292 SmallVector<OperandBundleDef, 1> OpBundles; 7293 CI->getOperandBundlesAsDefs(OpBundles); 7294 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7295 7296 // The scalar argument uses an in-tree scalar so we add the new vectorized 7297 // call to ExternalUses list to make sure that an extract will be 7298 // generated in the future. 7299 if (ScalarArg) { 7300 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7301 // Find which lane we need to extract. 7302 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7303 ExternalUses.push_back( 7304 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7305 } 7306 } 7307 7308 propagateIRFlags(V, E->Scalars, VL0); 7309 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7310 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7311 V = ShuffleBuilder.finalize(V); 7312 7313 E->VectorizedValue = V; 7314 ++NumVectorInstructions; 7315 return V; 7316 } 7317 case Instruction::ShuffleVector: { 7318 assert(E->isAltShuffle() && 7319 ((Instruction::isBinaryOp(E->getOpcode()) && 7320 Instruction::isBinaryOp(E->getAltOpcode())) || 7321 (Instruction::isCast(E->getOpcode()) && 7322 Instruction::isCast(E->getAltOpcode())) || 7323 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7324 "Invalid Shuffle Vector Operand"); 7325 7326 Value *LHS = nullptr, *RHS = nullptr; 7327 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7328 setInsertPointAfterBundle(E); 7329 LHS = vectorizeTree(E->getOperand(0)); 7330 RHS = vectorizeTree(E->getOperand(1)); 7331 } else { 7332 setInsertPointAfterBundle(E); 7333 LHS = vectorizeTree(E->getOperand(0)); 7334 } 7335 7336 if (E->VectorizedValue) { 7337 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7338 return E->VectorizedValue; 7339 } 7340 7341 Value *V0, *V1; 7342 if (Instruction::isBinaryOp(E->getOpcode())) { 7343 V0 = Builder.CreateBinOp( 7344 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7345 V1 = Builder.CreateBinOp( 7346 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7347 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7348 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7349 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7350 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7351 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7352 } else { 7353 V0 = Builder.CreateCast( 7354 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7355 V1 = Builder.CreateCast( 7356 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7357 } 7358 // Add V0 and V1 to later analysis to try to find and remove matching 7359 // instruction, if any. 7360 for (Value *V : {V0, V1}) { 7361 if (auto *I = dyn_cast<Instruction>(V)) { 7362 GatherShuffleSeq.insert(I); 7363 CSEBlocks.insert(I->getParent()); 7364 } 7365 } 7366 7367 // Create shuffle to take alternate operations from the vector. 7368 // Also, gather up main and alt scalar ops to propagate IR flags to 7369 // each vector operation. 7370 ValueList OpScalars, AltScalars; 7371 SmallVector<int> Mask; 7372 buildShuffleEntryMask( 7373 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7374 [E](Instruction *I) { 7375 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7376 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7377 }, 7378 Mask, &OpScalars, &AltScalars); 7379 7380 propagateIRFlags(V0, OpScalars); 7381 propagateIRFlags(V1, AltScalars); 7382 7383 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7384 if (auto *I = dyn_cast<Instruction>(V)) { 7385 V = propagateMetadata(I, E->Scalars); 7386 GatherShuffleSeq.insert(I); 7387 CSEBlocks.insert(I->getParent()); 7388 } 7389 V = ShuffleBuilder.finalize(V); 7390 7391 E->VectorizedValue = V; 7392 ++NumVectorInstructions; 7393 7394 return V; 7395 } 7396 default: 7397 llvm_unreachable("unknown inst"); 7398 } 7399 return nullptr; 7400 } 7401 7402 Value *BoUpSLP::vectorizeTree() { 7403 ExtraValueToDebugLocsMap ExternallyUsedValues; 7404 return vectorizeTree(ExternallyUsedValues); 7405 } 7406 7407 Value * 7408 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7409 // All blocks must be scheduled before any instructions are inserted. 7410 for (auto &BSIter : BlocksSchedules) { 7411 scheduleBlock(BSIter.second.get()); 7412 } 7413 7414 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7415 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7416 7417 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7418 // vectorized root. InstCombine will then rewrite the entire expression. We 7419 // sign extend the extracted values below. 7420 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7421 if (MinBWs.count(ScalarRoot)) { 7422 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7423 // If current instr is a phi and not the last phi, insert it after the 7424 // last phi node. 7425 if (isa<PHINode>(I)) 7426 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7427 else 7428 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7429 } 7430 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7431 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7432 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7433 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7434 VectorizableTree[0]->VectorizedValue = Trunc; 7435 } 7436 7437 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7438 << " values .\n"); 7439 7440 // Extract all of the elements with the external uses. 7441 for (const auto &ExternalUse : ExternalUses) { 7442 Value *Scalar = ExternalUse.Scalar; 7443 llvm::User *User = ExternalUse.User; 7444 7445 // Skip users that we already RAUW. This happens when one instruction 7446 // has multiple uses of the same value. 7447 if (User && !is_contained(Scalar->users(), User)) 7448 continue; 7449 TreeEntry *E = getTreeEntry(Scalar); 7450 assert(E && "Invalid scalar"); 7451 assert(E->State != TreeEntry::NeedToGather && 7452 "Extracting from a gather list"); 7453 7454 Value *Vec = E->VectorizedValue; 7455 assert(Vec && "Can't find vectorizable value"); 7456 7457 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7458 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7459 if (Scalar->getType() != Vec->getType()) { 7460 Value *Ex; 7461 // "Reuse" the existing extract to improve final codegen. 7462 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7463 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7464 ES->getOperand(1)); 7465 } else { 7466 Ex = Builder.CreateExtractElement(Vec, Lane); 7467 } 7468 // If necessary, sign-extend or zero-extend ScalarRoot 7469 // to the larger type. 7470 if (!MinBWs.count(ScalarRoot)) 7471 return Ex; 7472 if (MinBWs[ScalarRoot].second) 7473 return Builder.CreateSExt(Ex, Scalar->getType()); 7474 return Builder.CreateZExt(Ex, Scalar->getType()); 7475 } 7476 assert(isa<FixedVectorType>(Scalar->getType()) && 7477 isa<InsertElementInst>(Scalar) && 7478 "In-tree scalar of vector type is not insertelement?"); 7479 return Vec; 7480 }; 7481 // If User == nullptr, the Scalar is used as extra arg. Generate 7482 // ExtractElement instruction and update the record for this scalar in 7483 // ExternallyUsedValues. 7484 if (!User) { 7485 assert(ExternallyUsedValues.count(Scalar) && 7486 "Scalar with nullptr as an external user must be registered in " 7487 "ExternallyUsedValues map"); 7488 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7489 Builder.SetInsertPoint(VecI->getParent(), 7490 std::next(VecI->getIterator())); 7491 } else { 7492 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7493 } 7494 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7495 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7496 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7497 auto It = ExternallyUsedValues.find(Scalar); 7498 assert(It != ExternallyUsedValues.end() && 7499 "Externally used scalar is not found in ExternallyUsedValues"); 7500 NewInstLocs.append(It->second); 7501 ExternallyUsedValues.erase(Scalar); 7502 // Required to update internally referenced instructions. 7503 Scalar->replaceAllUsesWith(NewInst); 7504 continue; 7505 } 7506 7507 // Generate extracts for out-of-tree users. 7508 // Find the insertion point for the extractelement lane. 7509 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7510 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7511 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7512 if (PH->getIncomingValue(i) == Scalar) { 7513 Instruction *IncomingTerminator = 7514 PH->getIncomingBlock(i)->getTerminator(); 7515 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7516 Builder.SetInsertPoint(VecI->getParent(), 7517 std::next(VecI->getIterator())); 7518 } else { 7519 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7520 } 7521 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7522 CSEBlocks.insert(PH->getIncomingBlock(i)); 7523 PH->setOperand(i, NewInst); 7524 } 7525 } 7526 } else { 7527 Builder.SetInsertPoint(cast<Instruction>(User)); 7528 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7529 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7530 User->replaceUsesOfWith(Scalar, NewInst); 7531 } 7532 } else { 7533 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7534 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7535 CSEBlocks.insert(&F->getEntryBlock()); 7536 User->replaceUsesOfWith(Scalar, NewInst); 7537 } 7538 7539 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7540 } 7541 7542 // For each vectorized value: 7543 for (auto &TEPtr : VectorizableTree) { 7544 TreeEntry *Entry = TEPtr.get(); 7545 7546 // No need to handle users of gathered values. 7547 if (Entry->State == TreeEntry::NeedToGather) 7548 continue; 7549 7550 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7551 7552 // For each lane: 7553 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7554 Value *Scalar = Entry->Scalars[Lane]; 7555 7556 #ifndef NDEBUG 7557 Type *Ty = Scalar->getType(); 7558 if (!Ty->isVoidTy()) { 7559 for (User *U : Scalar->users()) { 7560 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7561 7562 // It is legal to delete users in the ignorelist. 7563 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7564 (isa_and_nonnull<Instruction>(U) && 7565 isDeleted(cast<Instruction>(U)))) && 7566 "Deleting out-of-tree value"); 7567 } 7568 } 7569 #endif 7570 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7571 eraseInstruction(cast<Instruction>(Scalar)); 7572 } 7573 } 7574 7575 Builder.ClearInsertionPoint(); 7576 InstrElementSize.clear(); 7577 7578 return VectorizableTree[0]->VectorizedValue; 7579 } 7580 7581 void BoUpSLP::optimizeGatherSequence() { 7582 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7583 << " gather sequences instructions.\n"); 7584 // LICM InsertElementInst sequences. 7585 for (Instruction *I : GatherShuffleSeq) { 7586 if (isDeleted(I)) 7587 continue; 7588 7589 // Check if this block is inside a loop. 7590 Loop *L = LI->getLoopFor(I->getParent()); 7591 if (!L) 7592 continue; 7593 7594 // Check if it has a preheader. 7595 BasicBlock *PreHeader = L->getLoopPreheader(); 7596 if (!PreHeader) 7597 continue; 7598 7599 // If the vector or the element that we insert into it are 7600 // instructions that are defined in this basic block then we can't 7601 // hoist this instruction. 7602 if (any_of(I->operands(), [L](Value *V) { 7603 auto *OpI = dyn_cast<Instruction>(V); 7604 return OpI && L->contains(OpI); 7605 })) 7606 continue; 7607 7608 // We can hoist this instruction. Move it to the pre-header. 7609 I->moveBefore(PreHeader->getTerminator()); 7610 } 7611 7612 // Make a list of all reachable blocks in our CSE queue. 7613 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7614 CSEWorkList.reserve(CSEBlocks.size()); 7615 for (BasicBlock *BB : CSEBlocks) 7616 if (DomTreeNode *N = DT->getNode(BB)) { 7617 assert(DT->isReachableFromEntry(N)); 7618 CSEWorkList.push_back(N); 7619 } 7620 7621 // Sort blocks by domination. This ensures we visit a block after all blocks 7622 // dominating it are visited. 7623 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7624 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7625 "Different nodes should have different DFS numbers"); 7626 return A->getDFSNumIn() < B->getDFSNumIn(); 7627 }); 7628 7629 // Less defined shuffles can be replaced by the more defined copies. 7630 // Between two shuffles one is less defined if it has the same vector operands 7631 // and its mask indeces are the same as in the first one or undefs. E.g. 7632 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7633 // poison, <0, 0, 0, 0>. 7634 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7635 SmallVectorImpl<int> &NewMask) { 7636 if (I1->getType() != I2->getType()) 7637 return false; 7638 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7639 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7640 if (!SI1 || !SI2) 7641 return I1->isIdenticalTo(I2); 7642 if (SI1->isIdenticalTo(SI2)) 7643 return true; 7644 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7645 if (SI1->getOperand(I) != SI2->getOperand(I)) 7646 return false; 7647 // Check if the second instruction is more defined than the first one. 7648 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7649 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7650 // Count trailing undefs in the mask to check the final number of used 7651 // registers. 7652 unsigned LastUndefsCnt = 0; 7653 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7654 if (SM1[I] == UndefMaskElem) 7655 ++LastUndefsCnt; 7656 else 7657 LastUndefsCnt = 0; 7658 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7659 NewMask[I] != SM1[I]) 7660 return false; 7661 if (NewMask[I] == UndefMaskElem) 7662 NewMask[I] = SM1[I]; 7663 } 7664 // Check if the last undefs actually change the final number of used vector 7665 // registers. 7666 return SM1.size() - LastUndefsCnt > 1 && 7667 TTI->getNumberOfParts(SI1->getType()) == 7668 TTI->getNumberOfParts( 7669 FixedVectorType::get(SI1->getType()->getElementType(), 7670 SM1.size() - LastUndefsCnt)); 7671 }; 7672 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7673 // instructions. TODO: We can further optimize this scan if we split the 7674 // instructions into different buckets based on the insert lane. 7675 SmallVector<Instruction *, 16> Visited; 7676 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7677 assert(*I && 7678 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7679 "Worklist not sorted properly!"); 7680 BasicBlock *BB = (*I)->getBlock(); 7681 // For all instructions in blocks containing gather sequences: 7682 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7683 if (isDeleted(&In)) 7684 continue; 7685 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7686 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7687 continue; 7688 7689 // Check if we can replace this instruction with any of the 7690 // visited instructions. 7691 bool Replaced = false; 7692 for (Instruction *&V : Visited) { 7693 SmallVector<int> NewMask; 7694 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7695 DT->dominates(V->getParent(), In.getParent())) { 7696 In.replaceAllUsesWith(V); 7697 eraseInstruction(&In); 7698 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7699 if (!NewMask.empty()) 7700 SI->setShuffleMask(NewMask); 7701 Replaced = true; 7702 break; 7703 } 7704 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7705 GatherShuffleSeq.contains(V) && 7706 IsIdenticalOrLessDefined(V, &In, NewMask) && 7707 DT->dominates(In.getParent(), V->getParent())) { 7708 In.moveAfter(V); 7709 V->replaceAllUsesWith(&In); 7710 eraseInstruction(V); 7711 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7712 if (!NewMask.empty()) 7713 SI->setShuffleMask(NewMask); 7714 V = &In; 7715 Replaced = true; 7716 break; 7717 } 7718 } 7719 if (!Replaced) { 7720 assert(!is_contained(Visited, &In)); 7721 Visited.push_back(&In); 7722 } 7723 } 7724 } 7725 CSEBlocks.clear(); 7726 GatherShuffleSeq.clear(); 7727 } 7728 7729 BoUpSLP::ScheduleData * 7730 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7731 ScheduleData *Bundle = nullptr; 7732 ScheduleData *PrevInBundle = nullptr; 7733 for (Value *V : VL) { 7734 if (doesNotNeedToBeScheduled(V)) 7735 continue; 7736 ScheduleData *BundleMember = getScheduleData(V); 7737 assert(BundleMember && 7738 "no ScheduleData for bundle member " 7739 "(maybe not in same basic block)"); 7740 assert(BundleMember->isSchedulingEntity() && 7741 "bundle member already part of other bundle"); 7742 if (PrevInBundle) { 7743 PrevInBundle->NextInBundle = BundleMember; 7744 } else { 7745 Bundle = BundleMember; 7746 } 7747 7748 // Group the instructions to a bundle. 7749 BundleMember->FirstInBundle = Bundle; 7750 PrevInBundle = BundleMember; 7751 } 7752 assert(Bundle && "Failed to find schedule bundle"); 7753 return Bundle; 7754 } 7755 7756 // Groups the instructions to a bundle (which is then a single scheduling entity) 7757 // and schedules instructions until the bundle gets ready. 7758 Optional<BoUpSLP::ScheduleData *> 7759 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7760 const InstructionsState &S) { 7761 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7762 // instructions. 7763 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7764 doesNotNeedToSchedule(VL)) 7765 return nullptr; 7766 7767 // Initialize the instruction bundle. 7768 Instruction *OldScheduleEnd = ScheduleEnd; 7769 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7770 7771 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7772 ScheduleData *Bundle) { 7773 // The scheduling region got new instructions at the lower end (or it is a 7774 // new region for the first bundle). This makes it necessary to 7775 // recalculate all dependencies. 7776 // It is seldom that this needs to be done a second time after adding the 7777 // initial bundle to the region. 7778 if (ScheduleEnd != OldScheduleEnd) { 7779 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7780 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7781 ReSchedule = true; 7782 } 7783 if (Bundle) { 7784 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7785 << " in block " << BB->getName() << "\n"); 7786 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7787 } 7788 7789 if (ReSchedule) { 7790 resetSchedule(); 7791 initialFillReadyList(ReadyInsts); 7792 } 7793 7794 // Now try to schedule the new bundle or (if no bundle) just calculate 7795 // dependencies. As soon as the bundle is "ready" it means that there are no 7796 // cyclic dependencies and we can schedule it. Note that's important that we 7797 // don't "schedule" the bundle yet (see cancelScheduling). 7798 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7799 !ReadyInsts.empty()) { 7800 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7801 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7802 "must be ready to schedule"); 7803 schedule(Picked, ReadyInsts); 7804 } 7805 }; 7806 7807 // Make sure that the scheduling region contains all 7808 // instructions of the bundle. 7809 for (Value *V : VL) { 7810 if (doesNotNeedToBeScheduled(V)) 7811 continue; 7812 if (!extendSchedulingRegion(V, S)) { 7813 // If the scheduling region got new instructions at the lower end (or it 7814 // is a new region for the first bundle). This makes it necessary to 7815 // recalculate all dependencies. 7816 // Otherwise the compiler may crash trying to incorrectly calculate 7817 // dependencies and emit instruction in the wrong order at the actual 7818 // scheduling. 7819 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7820 return None; 7821 } 7822 } 7823 7824 bool ReSchedule = false; 7825 for (Value *V : VL) { 7826 if (doesNotNeedToBeScheduled(V)) 7827 continue; 7828 ScheduleData *BundleMember = getScheduleData(V); 7829 assert(BundleMember && 7830 "no ScheduleData for bundle member (maybe not in same basic block)"); 7831 7832 // Make sure we don't leave the pieces of the bundle in the ready list when 7833 // whole bundle might not be ready. 7834 ReadyInsts.remove(BundleMember); 7835 7836 if (!BundleMember->IsScheduled) 7837 continue; 7838 // A bundle member was scheduled as single instruction before and now 7839 // needs to be scheduled as part of the bundle. We just get rid of the 7840 // existing schedule. 7841 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7842 << " was already scheduled\n"); 7843 ReSchedule = true; 7844 } 7845 7846 auto *Bundle = buildBundle(VL); 7847 TryScheduleBundleImpl(ReSchedule, Bundle); 7848 if (!Bundle->isReady()) { 7849 cancelScheduling(VL, S.OpValue); 7850 return None; 7851 } 7852 return Bundle; 7853 } 7854 7855 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7856 Value *OpValue) { 7857 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7858 doesNotNeedToSchedule(VL)) 7859 return; 7860 7861 if (doesNotNeedToBeScheduled(OpValue)) 7862 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7863 ScheduleData *Bundle = getScheduleData(OpValue); 7864 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7865 assert(!Bundle->IsScheduled && 7866 "Can't cancel bundle which is already scheduled"); 7867 assert(Bundle->isSchedulingEntity() && 7868 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7869 "tried to unbundle something which is not a bundle"); 7870 7871 // Remove the bundle from the ready list. 7872 if (Bundle->isReady()) 7873 ReadyInsts.remove(Bundle); 7874 7875 // Un-bundle: make single instructions out of the bundle. 7876 ScheduleData *BundleMember = Bundle; 7877 while (BundleMember) { 7878 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7879 BundleMember->FirstInBundle = BundleMember; 7880 ScheduleData *Next = BundleMember->NextInBundle; 7881 BundleMember->NextInBundle = nullptr; 7882 BundleMember->TE = nullptr; 7883 if (BundleMember->unscheduledDepsInBundle() == 0) { 7884 ReadyInsts.insert(BundleMember); 7885 } 7886 BundleMember = Next; 7887 } 7888 } 7889 7890 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7891 // Allocate a new ScheduleData for the instruction. 7892 if (ChunkPos >= ChunkSize) { 7893 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7894 ChunkPos = 0; 7895 } 7896 return &(ScheduleDataChunks.back()[ChunkPos++]); 7897 } 7898 7899 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7900 const InstructionsState &S) { 7901 if (getScheduleData(V, isOneOf(S, V))) 7902 return true; 7903 Instruction *I = dyn_cast<Instruction>(V); 7904 assert(I && "bundle member must be an instruction"); 7905 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7906 !doesNotNeedToBeScheduled(I) && 7907 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7908 "be scheduled"); 7909 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7910 ScheduleData *ISD = getScheduleData(I); 7911 if (!ISD) 7912 return false; 7913 assert(isInSchedulingRegion(ISD) && 7914 "ScheduleData not in scheduling region"); 7915 ScheduleData *SD = allocateScheduleDataChunks(); 7916 SD->Inst = I; 7917 SD->init(SchedulingRegionID, S.OpValue); 7918 ExtraScheduleDataMap[I][S.OpValue] = SD; 7919 return true; 7920 }; 7921 if (CheckScheduleForI(I)) 7922 return true; 7923 if (!ScheduleStart) { 7924 // It's the first instruction in the new region. 7925 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7926 ScheduleStart = I; 7927 ScheduleEnd = I->getNextNode(); 7928 if (isOneOf(S, I) != I) 7929 CheckScheduleForI(I); 7930 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7931 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7932 return true; 7933 } 7934 // Search up and down at the same time, because we don't know if the new 7935 // instruction is above or below the existing scheduling region. 7936 BasicBlock::reverse_iterator UpIter = 7937 ++ScheduleStart->getIterator().getReverse(); 7938 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7939 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7940 BasicBlock::iterator LowerEnd = BB->end(); 7941 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7942 &*DownIter != I) { 7943 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7944 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7945 return false; 7946 } 7947 7948 ++UpIter; 7949 ++DownIter; 7950 } 7951 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7952 assert(I->getParent() == ScheduleStart->getParent() && 7953 "Instruction is in wrong basic block."); 7954 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7955 ScheduleStart = I; 7956 if (isOneOf(S, I) != I) 7957 CheckScheduleForI(I); 7958 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7959 << "\n"); 7960 return true; 7961 } 7962 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7963 "Expected to reach top of the basic block or instruction down the " 7964 "lower end."); 7965 assert(I->getParent() == ScheduleEnd->getParent() && 7966 "Instruction is in wrong basic block."); 7967 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7968 nullptr); 7969 ScheduleEnd = I->getNextNode(); 7970 if (isOneOf(S, I) != I) 7971 CheckScheduleForI(I); 7972 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7973 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7974 return true; 7975 } 7976 7977 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7978 Instruction *ToI, 7979 ScheduleData *PrevLoadStore, 7980 ScheduleData *NextLoadStore) { 7981 ScheduleData *CurrentLoadStore = PrevLoadStore; 7982 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7983 // No need to allocate data for non-schedulable instructions. 7984 if (doesNotNeedToBeScheduled(I)) 7985 continue; 7986 ScheduleData *SD = ScheduleDataMap.lookup(I); 7987 if (!SD) { 7988 SD = allocateScheduleDataChunks(); 7989 ScheduleDataMap[I] = SD; 7990 SD->Inst = I; 7991 } 7992 assert(!isInSchedulingRegion(SD) && 7993 "new ScheduleData already in scheduling region"); 7994 SD->init(SchedulingRegionID, I); 7995 7996 if (I->mayReadOrWriteMemory() && 7997 (!isa<IntrinsicInst>(I) || 7998 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7999 cast<IntrinsicInst>(I)->getIntrinsicID() != 8000 Intrinsic::pseudoprobe))) { 8001 // Update the linked list of memory accessing instructions. 8002 if (CurrentLoadStore) { 8003 CurrentLoadStore->NextLoadStore = SD; 8004 } else { 8005 FirstLoadStoreInRegion = SD; 8006 } 8007 CurrentLoadStore = SD; 8008 } 8009 8010 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8011 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8012 RegionHasStackSave = true; 8013 } 8014 if (NextLoadStore) { 8015 if (CurrentLoadStore) 8016 CurrentLoadStore->NextLoadStore = NextLoadStore; 8017 } else { 8018 LastLoadStoreInRegion = CurrentLoadStore; 8019 } 8020 } 8021 8022 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8023 bool InsertInReadyList, 8024 BoUpSLP *SLP) { 8025 assert(SD->isSchedulingEntity()); 8026 8027 SmallVector<ScheduleData *, 10> WorkList; 8028 WorkList.push_back(SD); 8029 8030 while (!WorkList.empty()) { 8031 ScheduleData *SD = WorkList.pop_back_val(); 8032 for (ScheduleData *BundleMember = SD; BundleMember; 8033 BundleMember = BundleMember->NextInBundle) { 8034 assert(isInSchedulingRegion(BundleMember)); 8035 if (BundleMember->hasValidDependencies()) 8036 continue; 8037 8038 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8039 << "\n"); 8040 BundleMember->Dependencies = 0; 8041 BundleMember->resetUnscheduledDeps(); 8042 8043 // Handle def-use chain dependencies. 8044 if (BundleMember->OpValue != BundleMember->Inst) { 8045 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8046 BundleMember->Dependencies++; 8047 ScheduleData *DestBundle = UseSD->FirstInBundle; 8048 if (!DestBundle->IsScheduled) 8049 BundleMember->incrementUnscheduledDeps(1); 8050 if (!DestBundle->hasValidDependencies()) 8051 WorkList.push_back(DestBundle); 8052 } 8053 } else { 8054 for (User *U : BundleMember->Inst->users()) { 8055 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8056 BundleMember->Dependencies++; 8057 ScheduleData *DestBundle = UseSD->FirstInBundle; 8058 if (!DestBundle->IsScheduled) 8059 BundleMember->incrementUnscheduledDeps(1); 8060 if (!DestBundle->hasValidDependencies()) 8061 WorkList.push_back(DestBundle); 8062 } 8063 } 8064 } 8065 8066 auto makeControlDependent = [&](Instruction *I) { 8067 auto *DepDest = getScheduleData(I); 8068 assert(DepDest && "must be in schedule window"); 8069 DepDest->ControlDependencies.push_back(BundleMember); 8070 BundleMember->Dependencies++; 8071 ScheduleData *DestBundle = DepDest->FirstInBundle; 8072 if (!DestBundle->IsScheduled) 8073 BundleMember->incrementUnscheduledDeps(1); 8074 if (!DestBundle->hasValidDependencies()) 8075 WorkList.push_back(DestBundle); 8076 }; 8077 8078 // Any instruction which isn't safe to speculate at the begining of the 8079 // block is control dependend on any early exit or non-willreturn call 8080 // which proceeds it. 8081 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8082 for (Instruction *I = BundleMember->Inst->getNextNode(); 8083 I != ScheduleEnd; I = I->getNextNode()) { 8084 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8085 continue; 8086 8087 // Add the dependency 8088 makeControlDependent(I); 8089 8090 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8091 // Everything past here must be control dependent on I. 8092 break; 8093 } 8094 } 8095 8096 if (RegionHasStackSave) { 8097 // If we have an inalloc alloca instruction, it needs to be scheduled 8098 // after any preceeding stacksave. We also need to prevent any alloca 8099 // from reordering above a preceeding stackrestore. 8100 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8101 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8102 for (Instruction *I = BundleMember->Inst->getNextNode(); 8103 I != ScheduleEnd; I = I->getNextNode()) { 8104 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8105 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8106 // Any allocas past here must be control dependent on I, and I 8107 // must be memory dependend on BundleMember->Inst. 8108 break; 8109 8110 if (!isa<AllocaInst>(I)) 8111 continue; 8112 8113 // Add the dependency 8114 makeControlDependent(I); 8115 } 8116 } 8117 8118 // In addition to the cases handle just above, we need to prevent 8119 // allocas from moving below a stacksave. The stackrestore case 8120 // is currently thought to be conservatism. 8121 if (isa<AllocaInst>(BundleMember->Inst)) { 8122 for (Instruction *I = BundleMember->Inst->getNextNode(); 8123 I != ScheduleEnd; I = I->getNextNode()) { 8124 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8125 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8126 continue; 8127 8128 // Add the dependency 8129 makeControlDependent(I); 8130 break; 8131 } 8132 } 8133 } 8134 8135 // Handle the memory dependencies (if any). 8136 ScheduleData *DepDest = BundleMember->NextLoadStore; 8137 if (!DepDest) 8138 continue; 8139 Instruction *SrcInst = BundleMember->Inst; 8140 assert(SrcInst->mayReadOrWriteMemory() && 8141 "NextLoadStore list for non memory effecting bundle?"); 8142 MemoryLocation SrcLoc = getLocation(SrcInst); 8143 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8144 unsigned numAliased = 0; 8145 unsigned DistToSrc = 1; 8146 8147 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8148 assert(isInSchedulingRegion(DepDest)); 8149 8150 // We have two limits to reduce the complexity: 8151 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8152 // SLP->isAliased (which is the expensive part in this loop). 8153 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8154 // the whole loop (even if the loop is fast, it's quadratic). 8155 // It's important for the loop break condition (see below) to 8156 // check this limit even between two read-only instructions. 8157 if (DistToSrc >= MaxMemDepDistance || 8158 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8159 (numAliased >= AliasedCheckLimit || 8160 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8161 8162 // We increment the counter only if the locations are aliased 8163 // (instead of counting all alias checks). This gives a better 8164 // balance between reduced runtime and accurate dependencies. 8165 numAliased++; 8166 8167 DepDest->MemoryDependencies.push_back(BundleMember); 8168 BundleMember->Dependencies++; 8169 ScheduleData *DestBundle = DepDest->FirstInBundle; 8170 if (!DestBundle->IsScheduled) { 8171 BundleMember->incrementUnscheduledDeps(1); 8172 } 8173 if (!DestBundle->hasValidDependencies()) { 8174 WorkList.push_back(DestBundle); 8175 } 8176 } 8177 8178 // Example, explaining the loop break condition: Let's assume our 8179 // starting instruction is i0 and MaxMemDepDistance = 3. 8180 // 8181 // +--------v--v--v 8182 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8183 // +--------^--^--^ 8184 // 8185 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8186 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8187 // Previously we already added dependencies from i3 to i6,i7,i8 8188 // (because of MaxMemDepDistance). As we added a dependency from 8189 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8190 // and we can abort this loop at i6. 8191 if (DistToSrc >= 2 * MaxMemDepDistance) 8192 break; 8193 DistToSrc++; 8194 } 8195 } 8196 if (InsertInReadyList && SD->isReady()) { 8197 ReadyInsts.insert(SD); 8198 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8199 << "\n"); 8200 } 8201 } 8202 } 8203 8204 void BoUpSLP::BlockScheduling::resetSchedule() { 8205 assert(ScheduleStart && 8206 "tried to reset schedule on block which has not been scheduled"); 8207 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8208 doForAllOpcodes(I, [&](ScheduleData *SD) { 8209 assert(isInSchedulingRegion(SD) && 8210 "ScheduleData not in scheduling region"); 8211 SD->IsScheduled = false; 8212 SD->resetUnscheduledDeps(); 8213 }); 8214 } 8215 ReadyInsts.clear(); 8216 } 8217 8218 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8219 if (!BS->ScheduleStart) 8220 return; 8221 8222 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8223 8224 // A key point - if we got here, pre-scheduling was able to find a valid 8225 // scheduling of the sub-graph of the scheduling window which consists 8226 // of all vector bundles and their transitive users. As such, we do not 8227 // need to reschedule anything *outside of* that subgraph. 8228 8229 BS->resetSchedule(); 8230 8231 // For the real scheduling we use a more sophisticated ready-list: it is 8232 // sorted by the original instruction location. This lets the final schedule 8233 // be as close as possible to the original instruction order. 8234 // WARNING: If changing this order causes a correctness issue, that means 8235 // there is some missing dependence edge in the schedule data graph. 8236 struct ScheduleDataCompare { 8237 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8238 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8239 } 8240 }; 8241 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8242 8243 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8244 // and fill the ready-list with initial instructions. 8245 int Idx = 0; 8246 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8247 I = I->getNextNode()) { 8248 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8249 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8250 (void)SDTE; 8251 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8252 SD->isPartOfBundle() == 8253 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8254 "scheduler and vectorizer bundle mismatch"); 8255 SD->FirstInBundle->SchedulingPriority = Idx++; 8256 8257 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8258 BS->calculateDependencies(SD, false, this); 8259 }); 8260 } 8261 BS->initialFillReadyList(ReadyInsts); 8262 8263 Instruction *LastScheduledInst = BS->ScheduleEnd; 8264 8265 // Do the "real" scheduling. 8266 while (!ReadyInsts.empty()) { 8267 ScheduleData *picked = *ReadyInsts.begin(); 8268 ReadyInsts.erase(ReadyInsts.begin()); 8269 8270 // Move the scheduled instruction(s) to their dedicated places, if not 8271 // there yet. 8272 for (ScheduleData *BundleMember = picked; BundleMember; 8273 BundleMember = BundleMember->NextInBundle) { 8274 Instruction *pickedInst = BundleMember->Inst; 8275 if (pickedInst->getNextNode() != LastScheduledInst) 8276 pickedInst->moveBefore(LastScheduledInst); 8277 LastScheduledInst = pickedInst; 8278 } 8279 8280 BS->schedule(picked, ReadyInsts); 8281 } 8282 8283 // Check that we didn't break any of our invariants. 8284 #ifdef EXPENSIVE_CHECKS 8285 BS->verify(); 8286 #endif 8287 8288 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8289 // Check that all schedulable entities got scheduled 8290 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8291 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8292 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8293 assert(SD->IsScheduled && "must be scheduled at this point"); 8294 } 8295 }); 8296 } 8297 #endif 8298 8299 // Avoid duplicate scheduling of the block. 8300 BS->ScheduleStart = nullptr; 8301 } 8302 8303 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8304 // If V is a store, just return the width of the stored value (or value 8305 // truncated just before storing) without traversing the expression tree. 8306 // This is the common case. 8307 if (auto *Store = dyn_cast<StoreInst>(V)) { 8308 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8309 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8310 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8311 } 8312 8313 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8314 return getVectorElementSize(IEI->getOperand(1)); 8315 8316 auto E = InstrElementSize.find(V); 8317 if (E != InstrElementSize.end()) 8318 return E->second; 8319 8320 // If V is not a store, we can traverse the expression tree to find loads 8321 // that feed it. The type of the loaded value may indicate a more suitable 8322 // width than V's type. We want to base the vector element size on the width 8323 // of memory operations where possible. 8324 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8325 SmallPtrSet<Instruction *, 16> Visited; 8326 if (auto *I = dyn_cast<Instruction>(V)) { 8327 Worklist.emplace_back(I, I->getParent()); 8328 Visited.insert(I); 8329 } 8330 8331 // Traverse the expression tree in bottom-up order looking for loads. If we 8332 // encounter an instruction we don't yet handle, we give up. 8333 auto Width = 0u; 8334 while (!Worklist.empty()) { 8335 Instruction *I; 8336 BasicBlock *Parent; 8337 std::tie(I, Parent) = Worklist.pop_back_val(); 8338 8339 // We should only be looking at scalar instructions here. If the current 8340 // instruction has a vector type, skip. 8341 auto *Ty = I->getType(); 8342 if (isa<VectorType>(Ty)) 8343 continue; 8344 8345 // If the current instruction is a load, update MaxWidth to reflect the 8346 // width of the loaded value. 8347 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8348 isa<ExtractValueInst>(I)) 8349 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8350 8351 // Otherwise, we need to visit the operands of the instruction. We only 8352 // handle the interesting cases from buildTree here. If an operand is an 8353 // instruction we haven't yet visited and from the same basic block as the 8354 // user or the use is a PHI node, we add it to the worklist. 8355 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8356 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8357 isa<UnaryOperator>(I)) { 8358 for (Use &U : I->operands()) 8359 if (auto *J = dyn_cast<Instruction>(U.get())) 8360 if (Visited.insert(J).second && 8361 (isa<PHINode>(I) || J->getParent() == Parent)) 8362 Worklist.emplace_back(J, J->getParent()); 8363 } else { 8364 break; 8365 } 8366 } 8367 8368 // If we didn't encounter a memory access in the expression tree, or if we 8369 // gave up for some reason, just return the width of V. Otherwise, return the 8370 // maximum width we found. 8371 if (!Width) { 8372 if (auto *CI = dyn_cast<CmpInst>(V)) 8373 V = CI->getOperand(0); 8374 Width = DL->getTypeSizeInBits(V->getType()); 8375 } 8376 8377 for (Instruction *I : Visited) 8378 InstrElementSize[I] = Width; 8379 8380 return Width; 8381 } 8382 8383 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8384 // smaller type with a truncation. We collect the values that will be demoted 8385 // in ToDemote and additional roots that require investigating in Roots. 8386 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8387 SmallVectorImpl<Value *> &ToDemote, 8388 SmallVectorImpl<Value *> &Roots) { 8389 // We can always demote constants. 8390 if (isa<Constant>(V)) { 8391 ToDemote.push_back(V); 8392 return true; 8393 } 8394 8395 // If the value is not an instruction in the expression with only one use, it 8396 // cannot be demoted. 8397 auto *I = dyn_cast<Instruction>(V); 8398 if (!I || !I->hasOneUse() || !Expr.count(I)) 8399 return false; 8400 8401 switch (I->getOpcode()) { 8402 8403 // We can always demote truncations and extensions. Since truncations can 8404 // seed additional demotion, we save the truncated value. 8405 case Instruction::Trunc: 8406 Roots.push_back(I->getOperand(0)); 8407 break; 8408 case Instruction::ZExt: 8409 case Instruction::SExt: 8410 if (isa<ExtractElementInst>(I->getOperand(0)) || 8411 isa<InsertElementInst>(I->getOperand(0))) 8412 return false; 8413 break; 8414 8415 // We can demote certain binary operations if we can demote both of their 8416 // operands. 8417 case Instruction::Add: 8418 case Instruction::Sub: 8419 case Instruction::Mul: 8420 case Instruction::And: 8421 case Instruction::Or: 8422 case Instruction::Xor: 8423 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8424 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8425 return false; 8426 break; 8427 8428 // We can demote selects if we can demote their true and false values. 8429 case Instruction::Select: { 8430 SelectInst *SI = cast<SelectInst>(I); 8431 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8432 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8433 return false; 8434 break; 8435 } 8436 8437 // We can demote phis if we can demote all their incoming operands. Note that 8438 // we don't need to worry about cycles since we ensure single use above. 8439 case Instruction::PHI: { 8440 PHINode *PN = cast<PHINode>(I); 8441 for (Value *IncValue : PN->incoming_values()) 8442 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8443 return false; 8444 break; 8445 } 8446 8447 // Otherwise, conservatively give up. 8448 default: 8449 return false; 8450 } 8451 8452 // Record the value that we can demote. 8453 ToDemote.push_back(V); 8454 return true; 8455 } 8456 8457 void BoUpSLP::computeMinimumValueSizes() { 8458 // If there are no external uses, the expression tree must be rooted by a 8459 // store. We can't demote in-memory values, so there is nothing to do here. 8460 if (ExternalUses.empty()) 8461 return; 8462 8463 // We only attempt to truncate integer expressions. 8464 auto &TreeRoot = VectorizableTree[0]->Scalars; 8465 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8466 if (!TreeRootIT) 8467 return; 8468 8469 // If the expression is not rooted by a store, these roots should have 8470 // external uses. We will rely on InstCombine to rewrite the expression in 8471 // the narrower type. However, InstCombine only rewrites single-use values. 8472 // This means that if a tree entry other than a root is used externally, it 8473 // must have multiple uses and InstCombine will not rewrite it. The code 8474 // below ensures that only the roots are used externally. 8475 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8476 for (auto &EU : ExternalUses) 8477 if (!Expr.erase(EU.Scalar)) 8478 return; 8479 if (!Expr.empty()) 8480 return; 8481 8482 // Collect the scalar values of the vectorizable expression. We will use this 8483 // context to determine which values can be demoted. If we see a truncation, 8484 // we mark it as seeding another demotion. 8485 for (auto &EntryPtr : VectorizableTree) 8486 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8487 8488 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8489 // have a single external user that is not in the vectorizable tree. 8490 for (auto *Root : TreeRoot) 8491 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8492 return; 8493 8494 // Conservatively determine if we can actually truncate the roots of the 8495 // expression. Collect the values that can be demoted in ToDemote and 8496 // additional roots that require investigating in Roots. 8497 SmallVector<Value *, 32> ToDemote; 8498 SmallVector<Value *, 4> Roots; 8499 for (auto *Root : TreeRoot) 8500 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8501 return; 8502 8503 // The maximum bit width required to represent all the values that can be 8504 // demoted without loss of precision. It would be safe to truncate the roots 8505 // of the expression to this width. 8506 auto MaxBitWidth = 8u; 8507 8508 // We first check if all the bits of the roots are demanded. If they're not, 8509 // we can truncate the roots to this narrower type. 8510 for (auto *Root : TreeRoot) { 8511 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8512 MaxBitWidth = std::max<unsigned>( 8513 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8514 } 8515 8516 // True if the roots can be zero-extended back to their original type, rather 8517 // than sign-extended. We know that if the leading bits are not demanded, we 8518 // can safely zero-extend. So we initialize IsKnownPositive to True. 8519 bool IsKnownPositive = true; 8520 8521 // If all the bits of the roots are demanded, we can try a little harder to 8522 // compute a narrower type. This can happen, for example, if the roots are 8523 // getelementptr indices. InstCombine promotes these indices to the pointer 8524 // width. Thus, all their bits are technically demanded even though the 8525 // address computation might be vectorized in a smaller type. 8526 // 8527 // We start by looking at each entry that can be demoted. We compute the 8528 // maximum bit width required to store the scalar by using ValueTracking to 8529 // compute the number of high-order bits we can truncate. 8530 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8531 llvm::all_of(TreeRoot, [](Value *R) { 8532 assert(R->hasOneUse() && "Root should have only one use!"); 8533 return isa<GetElementPtrInst>(R->user_back()); 8534 })) { 8535 MaxBitWidth = 8u; 8536 8537 // Determine if the sign bit of all the roots is known to be zero. If not, 8538 // IsKnownPositive is set to False. 8539 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8540 KnownBits Known = computeKnownBits(R, *DL); 8541 return Known.isNonNegative(); 8542 }); 8543 8544 // Determine the maximum number of bits required to store the scalar 8545 // values. 8546 for (auto *Scalar : ToDemote) { 8547 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8548 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8549 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8550 } 8551 8552 // If we can't prove that the sign bit is zero, we must add one to the 8553 // maximum bit width to account for the unknown sign bit. This preserves 8554 // the existing sign bit so we can safely sign-extend the root back to the 8555 // original type. Otherwise, if we know the sign bit is zero, we will 8556 // zero-extend the root instead. 8557 // 8558 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8559 // one to the maximum bit width will yield a larger-than-necessary 8560 // type. In general, we need to add an extra bit only if we can't 8561 // prove that the upper bit of the original type is equal to the 8562 // upper bit of the proposed smaller type. If these two bits are the 8563 // same (either zero or one) we know that sign-extending from the 8564 // smaller type will result in the same value. Here, since we can't 8565 // yet prove this, we are just making the proposed smaller type 8566 // larger to ensure correctness. 8567 if (!IsKnownPositive) 8568 ++MaxBitWidth; 8569 } 8570 8571 // Round MaxBitWidth up to the next power-of-two. 8572 if (!isPowerOf2_64(MaxBitWidth)) 8573 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8574 8575 // If the maximum bit width we compute is less than the with of the roots' 8576 // type, we can proceed with the narrowing. Otherwise, do nothing. 8577 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8578 return; 8579 8580 // If we can truncate the root, we must collect additional values that might 8581 // be demoted as a result. That is, those seeded by truncations we will 8582 // modify. 8583 while (!Roots.empty()) 8584 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8585 8586 // Finally, map the values we can demote to the maximum bit with we computed. 8587 for (auto *Scalar : ToDemote) 8588 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8589 } 8590 8591 namespace { 8592 8593 /// The SLPVectorizer Pass. 8594 struct SLPVectorizer : public FunctionPass { 8595 SLPVectorizerPass Impl; 8596 8597 /// Pass identification, replacement for typeid 8598 static char ID; 8599 8600 explicit SLPVectorizer() : FunctionPass(ID) { 8601 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8602 } 8603 8604 bool doInitialization(Module &M) override { return false; } 8605 8606 bool runOnFunction(Function &F) override { 8607 if (skipFunction(F)) 8608 return false; 8609 8610 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8611 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8612 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8613 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8614 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8615 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8616 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8617 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8618 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8619 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8620 8621 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8622 } 8623 8624 void getAnalysisUsage(AnalysisUsage &AU) const override { 8625 FunctionPass::getAnalysisUsage(AU); 8626 AU.addRequired<AssumptionCacheTracker>(); 8627 AU.addRequired<ScalarEvolutionWrapperPass>(); 8628 AU.addRequired<AAResultsWrapperPass>(); 8629 AU.addRequired<TargetTransformInfoWrapperPass>(); 8630 AU.addRequired<LoopInfoWrapperPass>(); 8631 AU.addRequired<DominatorTreeWrapperPass>(); 8632 AU.addRequired<DemandedBitsWrapperPass>(); 8633 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8634 AU.addRequired<InjectTLIMappingsLegacy>(); 8635 AU.addPreserved<LoopInfoWrapperPass>(); 8636 AU.addPreserved<DominatorTreeWrapperPass>(); 8637 AU.addPreserved<AAResultsWrapperPass>(); 8638 AU.addPreserved<GlobalsAAWrapperPass>(); 8639 AU.setPreservesCFG(); 8640 } 8641 }; 8642 8643 } // end anonymous namespace 8644 8645 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8646 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8647 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8648 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8649 auto *AA = &AM.getResult<AAManager>(F); 8650 auto *LI = &AM.getResult<LoopAnalysis>(F); 8651 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8652 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8653 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8654 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8655 8656 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8657 if (!Changed) 8658 return PreservedAnalyses::all(); 8659 8660 PreservedAnalyses PA; 8661 PA.preserveSet<CFGAnalyses>(); 8662 return PA; 8663 } 8664 8665 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8666 TargetTransformInfo *TTI_, 8667 TargetLibraryInfo *TLI_, AAResults *AA_, 8668 LoopInfo *LI_, DominatorTree *DT_, 8669 AssumptionCache *AC_, DemandedBits *DB_, 8670 OptimizationRemarkEmitter *ORE_) { 8671 if (!RunSLPVectorization) 8672 return false; 8673 SE = SE_; 8674 TTI = TTI_; 8675 TLI = TLI_; 8676 AA = AA_; 8677 LI = LI_; 8678 DT = DT_; 8679 AC = AC_; 8680 DB = DB_; 8681 DL = &F.getParent()->getDataLayout(); 8682 8683 Stores.clear(); 8684 GEPs.clear(); 8685 bool Changed = false; 8686 8687 // If the target claims to have no vector registers don't attempt 8688 // vectorization. 8689 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8690 LLVM_DEBUG( 8691 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8692 return false; 8693 } 8694 8695 // Don't vectorize when the attribute NoImplicitFloat is used. 8696 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8697 return false; 8698 8699 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8700 8701 // Use the bottom up slp vectorizer to construct chains that start with 8702 // store instructions. 8703 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8704 8705 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8706 // delete instructions. 8707 8708 // Update DFS numbers now so that we can use them for ordering. 8709 DT->updateDFSNumbers(); 8710 8711 // Scan the blocks in the function in post order. 8712 for (auto BB : post_order(&F.getEntryBlock())) { 8713 collectSeedInstructions(BB); 8714 8715 // Vectorize trees that end at stores. 8716 if (!Stores.empty()) { 8717 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8718 << " underlying objects.\n"); 8719 Changed |= vectorizeStoreChains(R); 8720 } 8721 8722 // Vectorize trees that end at reductions. 8723 Changed |= vectorizeChainsInBlock(BB, R); 8724 8725 // Vectorize the index computations of getelementptr instructions. This 8726 // is primarily intended to catch gather-like idioms ending at 8727 // non-consecutive loads. 8728 if (!GEPs.empty()) { 8729 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8730 << " underlying objects.\n"); 8731 Changed |= vectorizeGEPIndices(BB, R); 8732 } 8733 } 8734 8735 if (Changed) { 8736 R.optimizeGatherSequence(); 8737 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8738 } 8739 return Changed; 8740 } 8741 8742 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8743 unsigned Idx) { 8744 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8745 << "\n"); 8746 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8747 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8748 unsigned VF = Chain.size(); 8749 8750 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8751 return false; 8752 8753 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8754 << "\n"); 8755 8756 R.buildTree(Chain); 8757 if (R.isTreeTinyAndNotFullyVectorizable()) 8758 return false; 8759 if (R.isLoadCombineCandidate()) 8760 return false; 8761 R.reorderTopToBottom(); 8762 R.reorderBottomToTop(); 8763 R.buildExternalUses(); 8764 8765 R.computeMinimumValueSizes(); 8766 8767 InstructionCost Cost = R.getTreeCost(); 8768 8769 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8770 if (Cost < -SLPCostThreshold) { 8771 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8772 8773 using namespace ore; 8774 8775 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8776 cast<StoreInst>(Chain[0])) 8777 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8778 << " and with tree size " 8779 << NV("TreeSize", R.getTreeSize())); 8780 8781 R.vectorizeTree(); 8782 return true; 8783 } 8784 8785 return false; 8786 } 8787 8788 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8789 BoUpSLP &R) { 8790 // We may run into multiple chains that merge into a single chain. We mark the 8791 // stores that we vectorized so that we don't visit the same store twice. 8792 BoUpSLP::ValueSet VectorizedStores; 8793 bool Changed = false; 8794 8795 int E = Stores.size(); 8796 SmallBitVector Tails(E, false); 8797 int MaxIter = MaxStoreLookup.getValue(); 8798 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8799 E, std::make_pair(E, INT_MAX)); 8800 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8801 int IterCnt; 8802 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8803 &CheckedPairs, 8804 &ConsecutiveChain](int K, int Idx) { 8805 if (IterCnt >= MaxIter) 8806 return true; 8807 if (CheckedPairs[Idx].test(K)) 8808 return ConsecutiveChain[K].second == 1 && 8809 ConsecutiveChain[K].first == Idx; 8810 ++IterCnt; 8811 CheckedPairs[Idx].set(K); 8812 CheckedPairs[K].set(Idx); 8813 Optional<int> Diff = getPointersDiff( 8814 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8815 Stores[Idx]->getValueOperand()->getType(), 8816 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8817 if (!Diff || *Diff == 0) 8818 return false; 8819 int Val = *Diff; 8820 if (Val < 0) { 8821 if (ConsecutiveChain[Idx].second > -Val) { 8822 Tails.set(K); 8823 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8824 } 8825 return false; 8826 } 8827 if (ConsecutiveChain[K].second <= Val) 8828 return false; 8829 8830 Tails.set(Idx); 8831 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8832 return Val == 1; 8833 }; 8834 // Do a quadratic search on all of the given stores in reverse order and find 8835 // all of the pairs of stores that follow each other. 8836 for (int Idx = E - 1; Idx >= 0; --Idx) { 8837 // If a store has multiple consecutive store candidates, search according 8838 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8839 // This is because usually pairing with immediate succeeding or preceding 8840 // candidate create the best chance to find slp vectorization opportunity. 8841 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8842 IterCnt = 0; 8843 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8844 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8845 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8846 break; 8847 } 8848 8849 // Tracks if we tried to vectorize stores starting from the given tail 8850 // already. 8851 SmallBitVector TriedTails(E, false); 8852 // For stores that start but don't end a link in the chain: 8853 for (int Cnt = E; Cnt > 0; --Cnt) { 8854 int I = Cnt - 1; 8855 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8856 continue; 8857 // We found a store instr that starts a chain. Now follow the chain and try 8858 // to vectorize it. 8859 BoUpSLP::ValueList Operands; 8860 // Collect the chain into a list. 8861 while (I != E && !VectorizedStores.count(Stores[I])) { 8862 Operands.push_back(Stores[I]); 8863 Tails.set(I); 8864 if (ConsecutiveChain[I].second != 1) { 8865 // Mark the new end in the chain and go back, if required. It might be 8866 // required if the original stores come in reversed order, for example. 8867 if (ConsecutiveChain[I].first != E && 8868 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8869 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8870 TriedTails.set(I); 8871 Tails.reset(ConsecutiveChain[I].first); 8872 if (Cnt < ConsecutiveChain[I].first + 2) 8873 Cnt = ConsecutiveChain[I].first + 2; 8874 } 8875 break; 8876 } 8877 // Move to the next value in the chain. 8878 I = ConsecutiveChain[I].first; 8879 } 8880 assert(!Operands.empty() && "Expected non-empty list of stores."); 8881 8882 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8883 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8884 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8885 8886 unsigned MinVF = R.getMinVF(EltSize); 8887 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8888 MaxElts); 8889 8890 // FIXME: Is division-by-2 the correct step? Should we assert that the 8891 // register size is a power-of-2? 8892 unsigned StartIdx = 0; 8893 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8894 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8895 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8896 if (!VectorizedStores.count(Slice.front()) && 8897 !VectorizedStores.count(Slice.back()) && 8898 vectorizeStoreChain(Slice, R, Cnt)) { 8899 // Mark the vectorized stores so that we don't vectorize them again. 8900 VectorizedStores.insert(Slice.begin(), Slice.end()); 8901 Changed = true; 8902 // If we vectorized initial block, no need to try to vectorize it 8903 // again. 8904 if (Cnt == StartIdx) 8905 StartIdx += Size; 8906 Cnt += Size; 8907 continue; 8908 } 8909 ++Cnt; 8910 } 8911 // Check if the whole array was vectorized already - exit. 8912 if (StartIdx >= Operands.size()) 8913 break; 8914 } 8915 } 8916 8917 return Changed; 8918 } 8919 8920 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8921 // Initialize the collections. We will make a single pass over the block. 8922 Stores.clear(); 8923 GEPs.clear(); 8924 8925 // Visit the store and getelementptr instructions in BB and organize them in 8926 // Stores and GEPs according to the underlying objects of their pointer 8927 // operands. 8928 for (Instruction &I : *BB) { 8929 // Ignore store instructions that are volatile or have a pointer operand 8930 // that doesn't point to a scalar type. 8931 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8932 if (!SI->isSimple()) 8933 continue; 8934 if (!isValidElementType(SI->getValueOperand()->getType())) 8935 continue; 8936 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8937 } 8938 8939 // Ignore getelementptr instructions that have more than one index, a 8940 // constant index, or a pointer operand that doesn't point to a scalar 8941 // type. 8942 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8943 auto Idx = GEP->idx_begin()->get(); 8944 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8945 continue; 8946 if (!isValidElementType(Idx->getType())) 8947 continue; 8948 if (GEP->getType()->isVectorTy()) 8949 continue; 8950 GEPs[GEP->getPointerOperand()].push_back(GEP); 8951 } 8952 } 8953 } 8954 8955 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8956 if (!A || !B) 8957 return false; 8958 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8959 return false; 8960 Value *VL[] = {A, B}; 8961 return tryToVectorizeList(VL, R); 8962 } 8963 8964 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8965 bool LimitForRegisterSize) { 8966 if (VL.size() < 2) 8967 return false; 8968 8969 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8970 << VL.size() << ".\n"); 8971 8972 // Check that all of the parts are instructions of the same type, 8973 // we permit an alternate opcode via InstructionsState. 8974 InstructionsState S = getSameOpcode(VL); 8975 if (!S.getOpcode()) 8976 return false; 8977 8978 Instruction *I0 = cast<Instruction>(S.OpValue); 8979 // Make sure invalid types (including vector type) are rejected before 8980 // determining vectorization factor for scalar instructions. 8981 for (Value *V : VL) { 8982 Type *Ty = V->getType(); 8983 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8984 // NOTE: the following will give user internal llvm type name, which may 8985 // not be useful. 8986 R.getORE()->emit([&]() { 8987 std::string type_str; 8988 llvm::raw_string_ostream rso(type_str); 8989 Ty->print(rso); 8990 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8991 << "Cannot SLP vectorize list: type " 8992 << rso.str() + " is unsupported by vectorizer"; 8993 }); 8994 return false; 8995 } 8996 } 8997 8998 unsigned Sz = R.getVectorElementSize(I0); 8999 unsigned MinVF = R.getMinVF(Sz); 9000 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9001 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9002 if (MaxVF < 2) { 9003 R.getORE()->emit([&]() { 9004 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9005 << "Cannot SLP vectorize list: vectorization factor " 9006 << "less than 2 is not supported"; 9007 }); 9008 return false; 9009 } 9010 9011 bool Changed = false; 9012 bool CandidateFound = false; 9013 InstructionCost MinCost = SLPCostThreshold.getValue(); 9014 Type *ScalarTy = VL[0]->getType(); 9015 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9016 ScalarTy = IE->getOperand(1)->getType(); 9017 9018 unsigned NextInst = 0, MaxInst = VL.size(); 9019 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9020 // No actual vectorization should happen, if number of parts is the same as 9021 // provided vectorization factor (i.e. the scalar type is used for vector 9022 // code during codegen). 9023 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9024 if (TTI->getNumberOfParts(VecTy) == VF) 9025 continue; 9026 for (unsigned I = NextInst; I < MaxInst; ++I) { 9027 unsigned OpsWidth = 0; 9028 9029 if (I + VF > MaxInst) 9030 OpsWidth = MaxInst - I; 9031 else 9032 OpsWidth = VF; 9033 9034 if (!isPowerOf2_32(OpsWidth)) 9035 continue; 9036 9037 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9038 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9039 break; 9040 9041 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9042 // Check that a previous iteration of this loop did not delete the Value. 9043 if (llvm::any_of(Ops, [&R](Value *V) { 9044 auto *I = dyn_cast<Instruction>(V); 9045 return I && R.isDeleted(I); 9046 })) 9047 continue; 9048 9049 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9050 << "\n"); 9051 9052 R.buildTree(Ops); 9053 if (R.isTreeTinyAndNotFullyVectorizable()) 9054 continue; 9055 R.reorderTopToBottom(); 9056 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9057 R.buildExternalUses(); 9058 9059 R.computeMinimumValueSizes(); 9060 InstructionCost Cost = R.getTreeCost(); 9061 CandidateFound = true; 9062 MinCost = std::min(MinCost, Cost); 9063 9064 if (Cost < -SLPCostThreshold) { 9065 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9066 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9067 cast<Instruction>(Ops[0])) 9068 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9069 << " and with tree size " 9070 << ore::NV("TreeSize", R.getTreeSize())); 9071 9072 R.vectorizeTree(); 9073 // Move to the next bundle. 9074 I += VF - 1; 9075 NextInst = I + 1; 9076 Changed = true; 9077 } 9078 } 9079 } 9080 9081 if (!Changed && CandidateFound) { 9082 R.getORE()->emit([&]() { 9083 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9084 << "List vectorization was possible but not beneficial with cost " 9085 << ore::NV("Cost", MinCost) << " >= " 9086 << ore::NV("Treshold", -SLPCostThreshold); 9087 }); 9088 } else if (!Changed) { 9089 R.getORE()->emit([&]() { 9090 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9091 << "Cannot SLP vectorize list: vectorization was impossible" 9092 << " with available vectorization factors"; 9093 }); 9094 } 9095 return Changed; 9096 } 9097 9098 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9099 if (!I) 9100 return false; 9101 9102 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9103 return false; 9104 9105 Value *P = I->getParent(); 9106 9107 // Vectorize in current basic block only. 9108 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9109 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9110 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9111 return false; 9112 9113 // Try to vectorize V. 9114 if (tryToVectorizePair(Op0, Op1, R)) 9115 return true; 9116 9117 auto *A = dyn_cast<BinaryOperator>(Op0); 9118 auto *B = dyn_cast<BinaryOperator>(Op1); 9119 // Try to skip B. 9120 if (B && B->hasOneUse()) { 9121 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9122 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9123 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9124 return true; 9125 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9126 return true; 9127 } 9128 9129 // Try to skip A. 9130 if (A && A->hasOneUse()) { 9131 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9132 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9133 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9134 return true; 9135 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9136 return true; 9137 } 9138 return false; 9139 } 9140 9141 namespace { 9142 9143 /// Model horizontal reductions. 9144 /// 9145 /// A horizontal reduction is a tree of reduction instructions that has values 9146 /// that can be put into a vector as its leaves. For example: 9147 /// 9148 /// mul mul mul mul 9149 /// \ / \ / 9150 /// + + 9151 /// \ / 9152 /// + 9153 /// This tree has "mul" as its leaf values and "+" as its reduction 9154 /// instructions. A reduction can feed into a store or a binary operation 9155 /// feeding a phi. 9156 /// ... 9157 /// \ / 9158 /// + 9159 /// | 9160 /// phi += 9161 /// 9162 /// Or: 9163 /// ... 9164 /// \ / 9165 /// + 9166 /// | 9167 /// *p = 9168 /// 9169 class HorizontalReduction { 9170 using ReductionOpsType = SmallVector<Value *, 16>; 9171 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9172 ReductionOpsListType ReductionOps; 9173 SmallVector<Value *, 32> ReducedVals; 9174 // Use map vector to make stable output. 9175 MapVector<Instruction *, Value *> ExtraArgs; 9176 WeakTrackingVH ReductionRoot; 9177 /// The type of reduction operation. 9178 RecurKind RdxKind; 9179 9180 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9181 9182 static bool isCmpSelMinMax(Instruction *I) { 9183 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9184 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9185 } 9186 9187 // And/or are potentially poison-safe logical patterns like: 9188 // select x, y, false 9189 // select x, true, y 9190 static bool isBoolLogicOp(Instruction *I) { 9191 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9192 match(I, m_LogicalOr(m_Value(), m_Value())); 9193 } 9194 9195 /// Checks if instruction is associative and can be vectorized. 9196 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9197 if (Kind == RecurKind::None) 9198 return false; 9199 9200 // Integer ops that map to select instructions or intrinsics are fine. 9201 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9202 isBoolLogicOp(I)) 9203 return true; 9204 9205 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9206 // FP min/max are associative except for NaN and -0.0. We do not 9207 // have to rule out -0.0 here because the intrinsic semantics do not 9208 // specify a fixed result for it. 9209 return I->getFastMathFlags().noNaNs(); 9210 } 9211 9212 return I->isAssociative(); 9213 } 9214 9215 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9216 // Poison-safe 'or' takes the form: select X, true, Y 9217 // To make that work with the normal operand processing, we skip the 9218 // true value operand. 9219 // TODO: Change the code and data structures to handle this without a hack. 9220 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9221 return I->getOperand(2); 9222 return I->getOperand(Index); 9223 } 9224 9225 /// Checks if the ParentStackElem.first should be marked as a reduction 9226 /// operation with an extra argument or as extra argument itself. 9227 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9228 Value *ExtraArg) { 9229 if (ExtraArgs.count(ParentStackElem.first)) { 9230 ExtraArgs[ParentStackElem.first] = nullptr; 9231 // We ran into something like: 9232 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9233 // The whole ParentStackElem.first should be considered as an extra value 9234 // in this case. 9235 // Do not perform analysis of remaining operands of ParentStackElem.first 9236 // instruction, this whole instruction is an extra argument. 9237 ParentStackElem.second = INVALID_OPERAND_INDEX; 9238 } else { 9239 // We ran into something like: 9240 // ParentStackElem.first += ... + ExtraArg + ... 9241 ExtraArgs[ParentStackElem.first] = ExtraArg; 9242 } 9243 } 9244 9245 /// Creates reduction operation with the current opcode. 9246 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9247 Value *RHS, const Twine &Name, bool UseSelect) { 9248 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9249 switch (Kind) { 9250 case RecurKind::Or: 9251 if (UseSelect && 9252 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9253 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9254 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9255 Name); 9256 case RecurKind::And: 9257 if (UseSelect && 9258 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9259 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9260 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9261 Name); 9262 case RecurKind::Add: 9263 case RecurKind::Mul: 9264 case RecurKind::Xor: 9265 case RecurKind::FAdd: 9266 case RecurKind::FMul: 9267 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9268 Name); 9269 case RecurKind::FMax: 9270 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9271 case RecurKind::FMin: 9272 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9273 case RecurKind::SMax: 9274 if (UseSelect) { 9275 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9276 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9277 } 9278 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9279 case RecurKind::SMin: 9280 if (UseSelect) { 9281 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9282 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9283 } 9284 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9285 case RecurKind::UMax: 9286 if (UseSelect) { 9287 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9288 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9289 } 9290 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9291 case RecurKind::UMin: 9292 if (UseSelect) { 9293 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9294 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9295 } 9296 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9297 default: 9298 llvm_unreachable("Unknown reduction operation."); 9299 } 9300 } 9301 9302 /// Creates reduction operation with the current opcode with the IR flags 9303 /// from \p ReductionOps. 9304 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9305 Value *RHS, const Twine &Name, 9306 const ReductionOpsListType &ReductionOps) { 9307 bool UseSelect = ReductionOps.size() == 2 || 9308 // Logical or/and. 9309 (ReductionOps.size() == 1 && 9310 isa<SelectInst>(ReductionOps.front().front())); 9311 assert((!UseSelect || ReductionOps.size() != 2 || 9312 isa<SelectInst>(ReductionOps[1][0])) && 9313 "Expected cmp + select pairs for reduction"); 9314 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9315 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9316 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9317 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9318 propagateIRFlags(Op, ReductionOps[1]); 9319 return Op; 9320 } 9321 } 9322 propagateIRFlags(Op, ReductionOps[0]); 9323 return Op; 9324 } 9325 9326 /// Creates reduction operation with the current opcode with the IR flags 9327 /// from \p I. 9328 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9329 Value *RHS, const Twine &Name, Instruction *I) { 9330 auto *SelI = dyn_cast<SelectInst>(I); 9331 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9332 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9333 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9334 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9335 } 9336 propagateIRFlags(Op, I); 9337 return Op; 9338 } 9339 9340 static RecurKind getRdxKind(Instruction *I) { 9341 assert(I && "Expected instruction for reduction matching"); 9342 if (match(I, m_Add(m_Value(), m_Value()))) 9343 return RecurKind::Add; 9344 if (match(I, m_Mul(m_Value(), m_Value()))) 9345 return RecurKind::Mul; 9346 if (match(I, m_And(m_Value(), m_Value())) || 9347 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9348 return RecurKind::And; 9349 if (match(I, m_Or(m_Value(), m_Value())) || 9350 match(I, m_LogicalOr(m_Value(), m_Value()))) 9351 return RecurKind::Or; 9352 if (match(I, m_Xor(m_Value(), m_Value()))) 9353 return RecurKind::Xor; 9354 if (match(I, m_FAdd(m_Value(), m_Value()))) 9355 return RecurKind::FAdd; 9356 if (match(I, m_FMul(m_Value(), m_Value()))) 9357 return RecurKind::FMul; 9358 9359 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9360 return RecurKind::FMax; 9361 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9362 return RecurKind::FMin; 9363 9364 // This matches either cmp+select or intrinsics. SLP is expected to handle 9365 // either form. 9366 // TODO: If we are canonicalizing to intrinsics, we can remove several 9367 // special-case paths that deal with selects. 9368 if (match(I, m_SMax(m_Value(), m_Value()))) 9369 return RecurKind::SMax; 9370 if (match(I, m_SMin(m_Value(), m_Value()))) 9371 return RecurKind::SMin; 9372 if (match(I, m_UMax(m_Value(), m_Value()))) 9373 return RecurKind::UMax; 9374 if (match(I, m_UMin(m_Value(), m_Value()))) 9375 return RecurKind::UMin; 9376 9377 if (auto *Select = dyn_cast<SelectInst>(I)) { 9378 // Try harder: look for min/max pattern based on instructions producing 9379 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9380 // During the intermediate stages of SLP, it's very common to have 9381 // pattern like this (since optimizeGatherSequence is run only once 9382 // at the end): 9383 // %1 = extractelement <2 x i32> %a, i32 0 9384 // %2 = extractelement <2 x i32> %a, i32 1 9385 // %cond = icmp sgt i32 %1, %2 9386 // %3 = extractelement <2 x i32> %a, i32 0 9387 // %4 = extractelement <2 x i32> %a, i32 1 9388 // %select = select i1 %cond, i32 %3, i32 %4 9389 CmpInst::Predicate Pred; 9390 Instruction *L1; 9391 Instruction *L2; 9392 9393 Value *LHS = Select->getTrueValue(); 9394 Value *RHS = Select->getFalseValue(); 9395 Value *Cond = Select->getCondition(); 9396 9397 // TODO: Support inverse predicates. 9398 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9399 if (!isa<ExtractElementInst>(RHS) || 9400 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9401 return RecurKind::None; 9402 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9403 if (!isa<ExtractElementInst>(LHS) || 9404 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9405 return RecurKind::None; 9406 } else { 9407 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9408 return RecurKind::None; 9409 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9410 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9411 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9412 return RecurKind::None; 9413 } 9414 9415 switch (Pred) { 9416 default: 9417 return RecurKind::None; 9418 case CmpInst::ICMP_SGT: 9419 case CmpInst::ICMP_SGE: 9420 return RecurKind::SMax; 9421 case CmpInst::ICMP_SLT: 9422 case CmpInst::ICMP_SLE: 9423 return RecurKind::SMin; 9424 case CmpInst::ICMP_UGT: 9425 case CmpInst::ICMP_UGE: 9426 return RecurKind::UMax; 9427 case CmpInst::ICMP_ULT: 9428 case CmpInst::ICMP_ULE: 9429 return RecurKind::UMin; 9430 } 9431 } 9432 return RecurKind::None; 9433 } 9434 9435 /// Get the index of the first operand. 9436 static unsigned getFirstOperandIndex(Instruction *I) { 9437 return isCmpSelMinMax(I) ? 1 : 0; 9438 } 9439 9440 /// Total number of operands in the reduction operation. 9441 static unsigned getNumberOfOperands(Instruction *I) { 9442 return isCmpSelMinMax(I) ? 3 : 2; 9443 } 9444 9445 /// Checks if the instruction is in basic block \p BB. 9446 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9447 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9448 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9449 auto *Sel = cast<SelectInst>(I); 9450 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9451 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9452 } 9453 return I->getParent() == BB; 9454 } 9455 9456 /// Expected number of uses for reduction operations/reduced values. 9457 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9458 if (IsCmpSelMinMax) { 9459 // SelectInst must be used twice while the condition op must have single 9460 // use only. 9461 if (auto *Sel = dyn_cast<SelectInst>(I)) 9462 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9463 return I->hasNUses(2); 9464 } 9465 9466 // Arithmetic reduction operation must be used once only. 9467 return I->hasOneUse(); 9468 } 9469 9470 /// Initializes the list of reduction operations. 9471 void initReductionOps(Instruction *I) { 9472 if (isCmpSelMinMax(I)) 9473 ReductionOps.assign(2, ReductionOpsType()); 9474 else 9475 ReductionOps.assign(1, ReductionOpsType()); 9476 } 9477 9478 /// Add all reduction operations for the reduction instruction \p I. 9479 void addReductionOps(Instruction *I) { 9480 if (isCmpSelMinMax(I)) { 9481 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9482 ReductionOps[1].emplace_back(I); 9483 } else { 9484 ReductionOps[0].emplace_back(I); 9485 } 9486 } 9487 9488 static Value *getLHS(RecurKind Kind, Instruction *I) { 9489 if (Kind == RecurKind::None) 9490 return nullptr; 9491 return I->getOperand(getFirstOperandIndex(I)); 9492 } 9493 static Value *getRHS(RecurKind Kind, Instruction *I) { 9494 if (Kind == RecurKind::None) 9495 return nullptr; 9496 return I->getOperand(getFirstOperandIndex(I) + 1); 9497 } 9498 9499 public: 9500 HorizontalReduction() = default; 9501 9502 /// Try to find a reduction tree. 9503 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9504 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9505 "Phi needs to use the binary operator"); 9506 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9507 isa<IntrinsicInst>(Inst)) && 9508 "Expected binop, select, or intrinsic for reduction matching"); 9509 RdxKind = getRdxKind(Inst); 9510 9511 // We could have a initial reductions that is not an add. 9512 // r *= v1 + v2 + v3 + v4 9513 // In such a case start looking for a tree rooted in the first '+'. 9514 if (Phi) { 9515 if (getLHS(RdxKind, Inst) == Phi) { 9516 Phi = nullptr; 9517 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9518 if (!Inst) 9519 return false; 9520 RdxKind = getRdxKind(Inst); 9521 } else if (getRHS(RdxKind, Inst) == Phi) { 9522 Phi = nullptr; 9523 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9524 if (!Inst) 9525 return false; 9526 RdxKind = getRdxKind(Inst); 9527 } 9528 } 9529 9530 if (!isVectorizable(RdxKind, Inst)) 9531 return false; 9532 9533 // Analyze "regular" integer/FP types for reductions - no target-specific 9534 // types or pointers. 9535 Type *Ty = Inst->getType(); 9536 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9537 return false; 9538 9539 // Though the ultimate reduction may have multiple uses, its condition must 9540 // have only single use. 9541 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9542 if (!Sel->getCondition()->hasOneUse()) 9543 return false; 9544 9545 ReductionRoot = Inst; 9546 9547 // The opcode for leaf values that we perform a reduction on. 9548 // For example: load(x) + load(y) + load(z) + fptoui(w) 9549 // The leaf opcode for 'w' does not match, so we don't include it as a 9550 // potential candidate for the reduction. 9551 unsigned LeafOpcode = 0; 9552 9553 // Post-order traverse the reduction tree starting at Inst. We only handle 9554 // true trees containing binary operators or selects. 9555 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9556 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9557 initReductionOps(Inst); 9558 while (!Stack.empty()) { 9559 Instruction *TreeN = Stack.back().first; 9560 unsigned EdgeToVisit = Stack.back().second++; 9561 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9562 bool IsReducedValue = TreeRdxKind != RdxKind; 9563 9564 // Postorder visit. 9565 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9566 if (IsReducedValue) 9567 ReducedVals.push_back(TreeN); 9568 else { 9569 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9570 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9571 // Check if TreeN is an extra argument of its parent operation. 9572 if (Stack.size() <= 1) { 9573 // TreeN can't be an extra argument as it is a root reduction 9574 // operation. 9575 return false; 9576 } 9577 // Yes, TreeN is an extra argument, do not add it to a list of 9578 // reduction operations. 9579 // Stack[Stack.size() - 2] always points to the parent operation. 9580 markExtraArg(Stack[Stack.size() - 2], TreeN); 9581 ExtraArgs.erase(TreeN); 9582 } else 9583 addReductionOps(TreeN); 9584 } 9585 // Retract. 9586 Stack.pop_back(); 9587 continue; 9588 } 9589 9590 // Visit operands. 9591 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9592 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9593 if (!EdgeInst) { 9594 // Edge value is not a reduction instruction or a leaf instruction. 9595 // (It may be a constant, function argument, or something else.) 9596 markExtraArg(Stack.back(), EdgeVal); 9597 continue; 9598 } 9599 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9600 // Continue analysis if the next operand is a reduction operation or 9601 // (possibly) a leaf value. If the leaf value opcode is not set, 9602 // the first met operation != reduction operation is considered as the 9603 // leaf opcode. 9604 // Only handle trees in the current basic block. 9605 // Each tree node needs to have minimal number of users except for the 9606 // ultimate reduction. 9607 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9608 if (EdgeInst != Phi && EdgeInst != Inst && 9609 hasSameParent(EdgeInst, Inst->getParent()) && 9610 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9611 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9612 if (IsRdxInst) { 9613 // We need to be able to reassociate the reduction operations. 9614 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9615 // I is an extra argument for TreeN (its parent operation). 9616 markExtraArg(Stack.back(), EdgeInst); 9617 continue; 9618 } 9619 } else if (!LeafOpcode) { 9620 LeafOpcode = EdgeInst->getOpcode(); 9621 } 9622 Stack.push_back( 9623 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9624 continue; 9625 } 9626 // I is an extra argument for TreeN (its parent operation). 9627 markExtraArg(Stack.back(), EdgeInst); 9628 } 9629 return true; 9630 } 9631 9632 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9633 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9634 // If there are a sufficient number of reduction values, reduce 9635 // to a nearby power-of-2. We can safely generate oversized 9636 // vectors and rely on the backend to split them to legal sizes. 9637 unsigned NumReducedVals = ReducedVals.size(); 9638 if (NumReducedVals < 4) 9639 return nullptr; 9640 9641 // Intersect the fast-math-flags from all reduction operations. 9642 FastMathFlags RdxFMF; 9643 RdxFMF.set(); 9644 for (ReductionOpsType &RdxOp : ReductionOps) { 9645 for (Value *RdxVal : RdxOp) { 9646 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9647 RdxFMF &= FPMO->getFastMathFlags(); 9648 } 9649 } 9650 9651 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9652 Builder.setFastMathFlags(RdxFMF); 9653 9654 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9655 // The same extra argument may be used several times, so log each attempt 9656 // to use it. 9657 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9658 assert(Pair.first && "DebugLoc must be set."); 9659 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9660 } 9661 9662 // The compare instruction of a min/max is the insertion point for new 9663 // instructions and may be replaced with a new compare instruction. 9664 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9665 assert(isa<SelectInst>(RdxRootInst) && 9666 "Expected min/max reduction to have select root instruction"); 9667 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9668 assert(isa<Instruction>(ScalarCond) && 9669 "Expected min/max reduction to have compare condition"); 9670 return cast<Instruction>(ScalarCond); 9671 }; 9672 9673 // The reduction root is used as the insertion point for new instructions, 9674 // so set it as externally used to prevent it from being deleted. 9675 ExternallyUsedValues[ReductionRoot]; 9676 SmallVector<Value *, 16> IgnoreList; 9677 for (ReductionOpsType &RdxOp : ReductionOps) 9678 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9679 9680 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9681 if (NumReducedVals > ReduxWidth) { 9682 // In the loop below, we are building a tree based on a window of 9683 // 'ReduxWidth' values. 9684 // If the operands of those values have common traits (compare predicate, 9685 // constant operand, etc), then we want to group those together to 9686 // minimize the cost of the reduction. 9687 9688 // TODO: This should be extended to count common operands for 9689 // compares and binops. 9690 9691 // Step 1: Count the number of times each compare predicate occurs. 9692 SmallDenseMap<unsigned, unsigned> PredCountMap; 9693 for (Value *RdxVal : ReducedVals) { 9694 CmpInst::Predicate Pred; 9695 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9696 ++PredCountMap[Pred]; 9697 } 9698 // Step 2: Sort the values so the most common predicates come first. 9699 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9700 CmpInst::Predicate PredA, PredB; 9701 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9702 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9703 return PredCountMap[PredA] > PredCountMap[PredB]; 9704 } 9705 return false; 9706 }); 9707 } 9708 9709 Value *VectorizedTree = nullptr; 9710 unsigned i = 0; 9711 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9712 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9713 V.buildTree(VL, IgnoreList); 9714 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9715 break; 9716 if (V.isLoadCombineReductionCandidate(RdxKind)) 9717 break; 9718 V.reorderTopToBottom(); 9719 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9720 V.buildExternalUses(ExternallyUsedValues); 9721 9722 // For a poison-safe boolean logic reduction, do not replace select 9723 // instructions with logic ops. All reduced values will be frozen (see 9724 // below) to prevent leaking poison. 9725 if (isa<SelectInst>(ReductionRoot) && 9726 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9727 NumReducedVals != ReduxWidth) 9728 break; 9729 9730 V.computeMinimumValueSizes(); 9731 9732 // Estimate cost. 9733 InstructionCost TreeCost = 9734 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9735 InstructionCost ReductionCost = 9736 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9737 InstructionCost Cost = TreeCost + ReductionCost; 9738 if (!Cost.isValid()) { 9739 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9740 return nullptr; 9741 } 9742 if (Cost >= -SLPCostThreshold) { 9743 V.getORE()->emit([&]() { 9744 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9745 cast<Instruction>(VL[0])) 9746 << "Vectorizing horizontal reduction is possible" 9747 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9748 << " and threshold " 9749 << ore::NV("Threshold", -SLPCostThreshold); 9750 }); 9751 break; 9752 } 9753 9754 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9755 << Cost << ". (HorRdx)\n"); 9756 V.getORE()->emit([&]() { 9757 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9758 cast<Instruction>(VL[0])) 9759 << "Vectorized horizontal reduction with cost " 9760 << ore::NV("Cost", Cost) << " and with tree size " 9761 << ore::NV("TreeSize", V.getTreeSize()); 9762 }); 9763 9764 // Vectorize a tree. 9765 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9766 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9767 9768 // Emit a reduction. If the root is a select (min/max idiom), the insert 9769 // point is the compare condition of that select. 9770 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9771 if (isCmpSelMinMax(RdxRootInst)) 9772 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9773 else 9774 Builder.SetInsertPoint(RdxRootInst); 9775 9776 // To prevent poison from leaking across what used to be sequential, safe, 9777 // scalar boolean logic operations, the reduction operand must be frozen. 9778 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9779 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9780 9781 Value *ReducedSubTree = 9782 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9783 9784 if (!VectorizedTree) { 9785 // Initialize the final value in the reduction. 9786 VectorizedTree = ReducedSubTree; 9787 } else { 9788 // Update the final value in the reduction. 9789 Builder.SetCurrentDebugLocation(Loc); 9790 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9791 ReducedSubTree, "op.rdx", ReductionOps); 9792 } 9793 i += ReduxWidth; 9794 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9795 } 9796 9797 if (VectorizedTree) { 9798 // Finish the reduction. 9799 for (; i < NumReducedVals; ++i) { 9800 auto *I = cast<Instruction>(ReducedVals[i]); 9801 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9802 VectorizedTree = 9803 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9804 } 9805 for (auto &Pair : ExternallyUsedValues) { 9806 // Add each externally used value to the final reduction. 9807 for (auto *I : Pair.second) { 9808 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9809 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9810 Pair.first, "op.extra", I); 9811 } 9812 } 9813 9814 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9815 9816 // The original scalar reduction is expected to have no remaining 9817 // uses outside the reduction tree itself. Assert that we got this 9818 // correct, replace internal uses with undef, and mark for eventual 9819 // deletion. 9820 #ifndef NDEBUG 9821 SmallSet<Value *, 4> IgnoreSet; 9822 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 9823 #endif 9824 for (auto *Ignore : IgnoreList) { 9825 #ifndef NDEBUG 9826 for (auto *U : Ignore->users()) { 9827 assert(IgnoreSet.count(U)); 9828 } 9829 #endif 9830 if (!Ignore->use_empty()) { 9831 Value *Undef = UndefValue::get(Ignore->getType()); 9832 Ignore->replaceAllUsesWith(Undef); 9833 } 9834 V.eraseInstruction(cast<Instruction>(Ignore)); 9835 } 9836 } 9837 return VectorizedTree; 9838 } 9839 9840 unsigned numReductionValues() const { return ReducedVals.size(); } 9841 9842 private: 9843 /// Calculate the cost of a reduction. 9844 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9845 Value *FirstReducedVal, unsigned ReduxWidth, 9846 FastMathFlags FMF) { 9847 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9848 Type *ScalarTy = FirstReducedVal->getType(); 9849 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9850 InstructionCost VectorCost, ScalarCost; 9851 switch (RdxKind) { 9852 case RecurKind::Add: 9853 case RecurKind::Mul: 9854 case RecurKind::Or: 9855 case RecurKind::And: 9856 case RecurKind::Xor: 9857 case RecurKind::FAdd: 9858 case RecurKind::FMul: { 9859 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9860 VectorCost = 9861 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9862 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9863 break; 9864 } 9865 case RecurKind::FMax: 9866 case RecurKind::FMin: { 9867 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9868 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9869 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9870 /*IsUnsigned=*/false, CostKind); 9871 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9872 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9873 SclCondTy, RdxPred, CostKind) + 9874 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9875 SclCondTy, RdxPred, CostKind); 9876 break; 9877 } 9878 case RecurKind::SMax: 9879 case RecurKind::SMin: 9880 case RecurKind::UMax: 9881 case RecurKind::UMin: { 9882 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9883 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9884 bool IsUnsigned = 9885 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9886 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9887 CostKind); 9888 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9889 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9890 SclCondTy, RdxPred, CostKind) + 9891 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9892 SclCondTy, RdxPred, CostKind); 9893 break; 9894 } 9895 default: 9896 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9897 } 9898 9899 // Scalar cost is repeated for N-1 elements. 9900 ScalarCost *= (ReduxWidth - 1); 9901 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9902 << " for reduction that starts with " << *FirstReducedVal 9903 << " (It is a splitting reduction)\n"); 9904 return VectorCost - ScalarCost; 9905 } 9906 9907 /// Emit a horizontal reduction of the vectorized value. 9908 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9909 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9910 assert(VectorizedValue && "Need to have a vectorized tree node"); 9911 assert(isPowerOf2_32(ReduxWidth) && 9912 "We only handle power-of-two reductions for now"); 9913 assert(RdxKind != RecurKind::FMulAdd && 9914 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9915 9916 ++NumVectorInstructions; 9917 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9918 } 9919 }; 9920 9921 } // end anonymous namespace 9922 9923 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9924 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9925 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9926 9927 unsigned AggregateSize = 1; 9928 auto *IV = cast<InsertValueInst>(InsertInst); 9929 Type *CurrentType = IV->getType(); 9930 do { 9931 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9932 for (auto *Elt : ST->elements()) 9933 if (Elt != ST->getElementType(0)) // check homogeneity 9934 return None; 9935 AggregateSize *= ST->getNumElements(); 9936 CurrentType = ST->getElementType(0); 9937 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9938 AggregateSize *= AT->getNumElements(); 9939 CurrentType = AT->getElementType(); 9940 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9941 AggregateSize *= VT->getNumElements(); 9942 return AggregateSize; 9943 } else if (CurrentType->isSingleValueType()) { 9944 return AggregateSize; 9945 } else { 9946 return None; 9947 } 9948 } while (true); 9949 } 9950 9951 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9952 TargetTransformInfo *TTI, 9953 SmallVectorImpl<Value *> &BuildVectorOpds, 9954 SmallVectorImpl<Value *> &InsertElts, 9955 unsigned OperandOffset) { 9956 do { 9957 Value *InsertedOperand = LastInsertInst->getOperand(1); 9958 Optional<unsigned> OperandIndex = 9959 getInsertIndex(LastInsertInst, OperandOffset); 9960 if (!OperandIndex) 9961 return; 9962 if (isa<InsertElementInst>(InsertedOperand) || 9963 isa<InsertValueInst>(InsertedOperand)) { 9964 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9965 BuildVectorOpds, InsertElts, *OperandIndex); 9966 9967 } else { 9968 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9969 InsertElts[*OperandIndex] = LastInsertInst; 9970 } 9971 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9972 } while (LastInsertInst != nullptr && 9973 (isa<InsertValueInst>(LastInsertInst) || 9974 isa<InsertElementInst>(LastInsertInst)) && 9975 LastInsertInst->hasOneUse()); 9976 } 9977 9978 /// Recognize construction of vectors like 9979 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9980 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9981 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9982 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9983 /// starting from the last insertelement or insertvalue instruction. 9984 /// 9985 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9986 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9987 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9988 /// 9989 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9990 /// 9991 /// \return true if it matches. 9992 static bool findBuildAggregate(Instruction *LastInsertInst, 9993 TargetTransformInfo *TTI, 9994 SmallVectorImpl<Value *> &BuildVectorOpds, 9995 SmallVectorImpl<Value *> &InsertElts) { 9996 9997 assert((isa<InsertElementInst>(LastInsertInst) || 9998 isa<InsertValueInst>(LastInsertInst)) && 9999 "Expected insertelement or insertvalue instruction!"); 10000 10001 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10002 "Expected empty result vectors!"); 10003 10004 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10005 if (!AggregateSize) 10006 return false; 10007 BuildVectorOpds.resize(*AggregateSize); 10008 InsertElts.resize(*AggregateSize); 10009 10010 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10011 llvm::erase_value(BuildVectorOpds, nullptr); 10012 llvm::erase_value(InsertElts, nullptr); 10013 if (BuildVectorOpds.size() >= 2) 10014 return true; 10015 10016 return false; 10017 } 10018 10019 /// Try and get a reduction value from a phi node. 10020 /// 10021 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10022 /// if they come from either \p ParentBB or a containing loop latch. 10023 /// 10024 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10025 /// if not possible. 10026 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10027 BasicBlock *ParentBB, LoopInfo *LI) { 10028 // There are situations where the reduction value is not dominated by the 10029 // reduction phi. Vectorizing such cases has been reported to cause 10030 // miscompiles. See PR25787. 10031 auto DominatedReduxValue = [&](Value *R) { 10032 return isa<Instruction>(R) && 10033 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10034 }; 10035 10036 Value *Rdx = nullptr; 10037 10038 // Return the incoming value if it comes from the same BB as the phi node. 10039 if (P->getIncomingBlock(0) == ParentBB) { 10040 Rdx = P->getIncomingValue(0); 10041 } else if (P->getIncomingBlock(1) == ParentBB) { 10042 Rdx = P->getIncomingValue(1); 10043 } 10044 10045 if (Rdx && DominatedReduxValue(Rdx)) 10046 return Rdx; 10047 10048 // Otherwise, check whether we have a loop latch to look at. 10049 Loop *BBL = LI->getLoopFor(ParentBB); 10050 if (!BBL) 10051 return nullptr; 10052 BasicBlock *BBLatch = BBL->getLoopLatch(); 10053 if (!BBLatch) 10054 return nullptr; 10055 10056 // There is a loop latch, return the incoming value if it comes from 10057 // that. This reduction pattern occasionally turns up. 10058 if (P->getIncomingBlock(0) == BBLatch) { 10059 Rdx = P->getIncomingValue(0); 10060 } else if (P->getIncomingBlock(1) == BBLatch) { 10061 Rdx = P->getIncomingValue(1); 10062 } 10063 10064 if (Rdx && DominatedReduxValue(Rdx)) 10065 return Rdx; 10066 10067 return nullptr; 10068 } 10069 10070 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10071 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10072 return true; 10073 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10074 return true; 10075 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10076 return true; 10077 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10078 return true; 10079 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10080 return true; 10081 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10082 return true; 10083 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10084 return true; 10085 return false; 10086 } 10087 10088 /// Attempt to reduce a horizontal reduction. 10089 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10090 /// with reduction operators \a Root (or one of its operands) in a basic block 10091 /// \a BB, then check if it can be done. If horizontal reduction is not found 10092 /// and root instruction is a binary operation, vectorization of the operands is 10093 /// attempted. 10094 /// \returns true if a horizontal reduction was matched and reduced or operands 10095 /// of one of the binary instruction were vectorized. 10096 /// \returns false if a horizontal reduction was not matched (or not possible) 10097 /// or no vectorization of any binary operation feeding \a Root instruction was 10098 /// performed. 10099 static bool tryToVectorizeHorReductionOrInstOperands( 10100 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10101 TargetTransformInfo *TTI, 10102 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10103 if (!ShouldVectorizeHor) 10104 return false; 10105 10106 if (!Root) 10107 return false; 10108 10109 if (Root->getParent() != BB || isa<PHINode>(Root)) 10110 return false; 10111 // Start analysis starting from Root instruction. If horizontal reduction is 10112 // found, try to vectorize it. If it is not a horizontal reduction or 10113 // vectorization is not possible or not effective, and currently analyzed 10114 // instruction is a binary operation, try to vectorize the operands, using 10115 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10116 // the same procedure considering each operand as a possible root of the 10117 // horizontal reduction. 10118 // Interrupt the process if the Root instruction itself was vectorized or all 10119 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10120 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10121 // CmpInsts so we can skip extra attempts in 10122 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10123 std::queue<std::pair<Instruction *, unsigned>> Stack; 10124 Stack.emplace(Root, 0); 10125 SmallPtrSet<Value *, 8> VisitedInstrs; 10126 SmallVector<WeakTrackingVH> PostponedInsts; 10127 bool Res = false; 10128 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10129 Value *&B1) -> Value * { 10130 bool IsBinop = matchRdxBop(Inst, B0, B1); 10131 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10132 if (IsBinop || IsSelect) { 10133 HorizontalReduction HorRdx; 10134 if (HorRdx.matchAssociativeReduction(P, Inst)) 10135 return HorRdx.tryToReduce(R, TTI); 10136 } 10137 return nullptr; 10138 }; 10139 while (!Stack.empty()) { 10140 Instruction *Inst; 10141 unsigned Level; 10142 std::tie(Inst, Level) = Stack.front(); 10143 Stack.pop(); 10144 // Do not try to analyze instruction that has already been vectorized. 10145 // This may happen when we vectorize instruction operands on a previous 10146 // iteration while stack was populated before that happened. 10147 if (R.isDeleted(Inst)) 10148 continue; 10149 Value *B0 = nullptr, *B1 = nullptr; 10150 if (Value *V = TryToReduce(Inst, B0, B1)) { 10151 Res = true; 10152 // Set P to nullptr to avoid re-analysis of phi node in 10153 // matchAssociativeReduction function unless this is the root node. 10154 P = nullptr; 10155 if (auto *I = dyn_cast<Instruction>(V)) { 10156 // Try to find another reduction. 10157 Stack.emplace(I, Level); 10158 continue; 10159 } 10160 } else { 10161 bool IsBinop = B0 && B1; 10162 if (P && IsBinop) { 10163 Inst = dyn_cast<Instruction>(B0); 10164 if (Inst == P) 10165 Inst = dyn_cast<Instruction>(B1); 10166 if (!Inst) { 10167 // Set P to nullptr to avoid re-analysis of phi node in 10168 // matchAssociativeReduction function unless this is the root node. 10169 P = nullptr; 10170 continue; 10171 } 10172 } 10173 // Set P to nullptr to avoid re-analysis of phi node in 10174 // matchAssociativeReduction function unless this is the root node. 10175 P = nullptr; 10176 // Do not try to vectorize CmpInst operands, this is done separately. 10177 // Final attempt for binop args vectorization should happen after the loop 10178 // to try to find reductions. 10179 if (!isa<CmpInst>(Inst)) 10180 PostponedInsts.push_back(Inst); 10181 } 10182 10183 // Try to vectorize operands. 10184 // Continue analysis for the instruction from the same basic block only to 10185 // save compile time. 10186 if (++Level < RecursionMaxDepth) 10187 for (auto *Op : Inst->operand_values()) 10188 if (VisitedInstrs.insert(Op).second) 10189 if (auto *I = dyn_cast<Instruction>(Op)) 10190 // Do not try to vectorize CmpInst operands, this is done 10191 // separately. 10192 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10193 I->getParent() == BB) 10194 Stack.emplace(I, Level); 10195 } 10196 // Try to vectorized binops where reductions were not found. 10197 for (Value *V : PostponedInsts) 10198 if (auto *Inst = dyn_cast<Instruction>(V)) 10199 if (!R.isDeleted(Inst)) 10200 Res |= Vectorize(Inst, R); 10201 return Res; 10202 } 10203 10204 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10205 BasicBlock *BB, BoUpSLP &R, 10206 TargetTransformInfo *TTI) { 10207 auto *I = dyn_cast_or_null<Instruction>(V); 10208 if (!I) 10209 return false; 10210 10211 if (!isa<BinaryOperator>(I)) 10212 P = nullptr; 10213 // Try to match and vectorize a horizontal reduction. 10214 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10215 return tryToVectorize(I, R); 10216 }; 10217 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10218 ExtraVectorization); 10219 } 10220 10221 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10222 BasicBlock *BB, BoUpSLP &R) { 10223 const DataLayout &DL = BB->getModule()->getDataLayout(); 10224 if (!R.canMapToVector(IVI->getType(), DL)) 10225 return false; 10226 10227 SmallVector<Value *, 16> BuildVectorOpds; 10228 SmallVector<Value *, 16> BuildVectorInsts; 10229 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10230 return false; 10231 10232 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10233 // Aggregate value is unlikely to be processed in vector register. 10234 return tryToVectorizeList(BuildVectorOpds, R); 10235 } 10236 10237 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10238 BasicBlock *BB, BoUpSLP &R) { 10239 SmallVector<Value *, 16> BuildVectorInsts; 10240 SmallVector<Value *, 16> BuildVectorOpds; 10241 SmallVector<int> Mask; 10242 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10243 (llvm::all_of( 10244 BuildVectorOpds, 10245 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10246 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10247 return false; 10248 10249 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10250 return tryToVectorizeList(BuildVectorInsts, R); 10251 } 10252 10253 template <typename T> 10254 static bool 10255 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10256 function_ref<unsigned(T *)> Limit, 10257 function_ref<bool(T *, T *)> Comparator, 10258 function_ref<bool(T *, T *)> AreCompatible, 10259 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10260 bool LimitForRegisterSize) { 10261 bool Changed = false; 10262 // Sort by type, parent, operands. 10263 stable_sort(Incoming, Comparator); 10264 10265 // Try to vectorize elements base on their type. 10266 SmallVector<T *> Candidates; 10267 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10268 // Look for the next elements with the same type, parent and operand 10269 // kinds. 10270 auto *SameTypeIt = IncIt; 10271 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10272 ++SameTypeIt; 10273 10274 // Try to vectorize them. 10275 unsigned NumElts = (SameTypeIt - IncIt); 10276 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10277 << NumElts << ")\n"); 10278 // The vectorization is a 3-state attempt: 10279 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10280 // size of maximal register at first. 10281 // 2. Try to vectorize remaining instructions with the same type, if 10282 // possible. This may result in the better vectorization results rather than 10283 // if we try just to vectorize instructions with the same/alternate opcodes. 10284 // 3. Final attempt to try to vectorize all instructions with the 10285 // same/alternate ops only, this may result in some extra final 10286 // vectorization. 10287 if (NumElts > 1 && 10288 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10289 // Success start over because instructions might have been changed. 10290 Changed = true; 10291 } else if (NumElts < Limit(*IncIt) && 10292 (Candidates.empty() || 10293 Candidates.front()->getType() == (*IncIt)->getType())) { 10294 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10295 } 10296 // Final attempt to vectorize instructions with the same types. 10297 if (Candidates.size() > 1 && 10298 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10299 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10300 // Success start over because instructions might have been changed. 10301 Changed = true; 10302 } else if (LimitForRegisterSize) { 10303 // Try to vectorize using small vectors. 10304 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10305 It != End;) { 10306 auto *SameTypeIt = It; 10307 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10308 ++SameTypeIt; 10309 unsigned NumElts = (SameTypeIt - It); 10310 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10311 /*LimitForRegisterSize=*/false)) 10312 Changed = true; 10313 It = SameTypeIt; 10314 } 10315 } 10316 Candidates.clear(); 10317 } 10318 10319 // Start over at the next instruction of a different type (or the end). 10320 IncIt = SameTypeIt; 10321 } 10322 return Changed; 10323 } 10324 10325 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10326 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10327 /// operands. If IsCompatibility is false, function implements strict weak 10328 /// ordering relation between two cmp instructions, returning true if the first 10329 /// instruction is "less" than the second, i.e. its predicate is less than the 10330 /// predicate of the second or the operands IDs are less than the operands IDs 10331 /// of the second cmp instruction. 10332 template <bool IsCompatibility> 10333 static bool compareCmp(Value *V, Value *V2, 10334 function_ref<bool(Instruction *)> IsDeleted) { 10335 auto *CI1 = cast<CmpInst>(V); 10336 auto *CI2 = cast<CmpInst>(V2); 10337 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10338 return false; 10339 if (CI1->getOperand(0)->getType()->getTypeID() < 10340 CI2->getOperand(0)->getType()->getTypeID()) 10341 return !IsCompatibility; 10342 if (CI1->getOperand(0)->getType()->getTypeID() > 10343 CI2->getOperand(0)->getType()->getTypeID()) 10344 return false; 10345 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10346 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10347 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10348 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10349 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10350 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10351 if (BasePred1 < BasePred2) 10352 return !IsCompatibility; 10353 if (BasePred1 > BasePred2) 10354 return false; 10355 // Compare operands. 10356 bool LEPreds = Pred1 <= Pred2; 10357 bool GEPreds = Pred1 >= Pred2; 10358 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10359 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10360 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10361 if (Op1->getValueID() < Op2->getValueID()) 10362 return !IsCompatibility; 10363 if (Op1->getValueID() > Op2->getValueID()) 10364 return false; 10365 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10366 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10367 if (I1->getParent() != I2->getParent()) 10368 return false; 10369 InstructionsState S = getSameOpcode({I1, I2}); 10370 if (S.getOpcode()) 10371 continue; 10372 return false; 10373 } 10374 } 10375 return IsCompatibility; 10376 } 10377 10378 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10379 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10380 bool AtTerminator) { 10381 bool OpsChanged = false; 10382 SmallVector<Instruction *, 4> PostponedCmps; 10383 for (auto *I : reverse(Instructions)) { 10384 if (R.isDeleted(I)) 10385 continue; 10386 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10387 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10388 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10389 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10390 else if (isa<CmpInst>(I)) 10391 PostponedCmps.push_back(I); 10392 } 10393 if (AtTerminator) { 10394 // Try to find reductions first. 10395 for (Instruction *I : PostponedCmps) { 10396 if (R.isDeleted(I)) 10397 continue; 10398 for (Value *Op : I->operands()) 10399 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10400 } 10401 // Try to vectorize operands as vector bundles. 10402 for (Instruction *I : PostponedCmps) { 10403 if (R.isDeleted(I)) 10404 continue; 10405 OpsChanged |= tryToVectorize(I, R); 10406 } 10407 // Try to vectorize list of compares. 10408 // Sort by type, compare predicate, etc. 10409 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10410 return compareCmp<false>(V, V2, 10411 [&R](Instruction *I) { return R.isDeleted(I); }); 10412 }; 10413 10414 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10415 if (V1 == V2) 10416 return true; 10417 return compareCmp<true>(V1, V2, 10418 [&R](Instruction *I) { return R.isDeleted(I); }); 10419 }; 10420 auto Limit = [&R](Value *V) { 10421 unsigned EltSize = R.getVectorElementSize(V); 10422 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10423 }; 10424 10425 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10426 OpsChanged |= tryToVectorizeSequence<Value>( 10427 Vals, Limit, CompareSorter, AreCompatibleCompares, 10428 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10429 // Exclude possible reductions from other blocks. 10430 bool ArePossiblyReducedInOtherBlock = 10431 any_of(Candidates, [](Value *V) { 10432 return any_of(V->users(), [V](User *U) { 10433 return isa<SelectInst>(U) && 10434 cast<SelectInst>(U)->getParent() != 10435 cast<Instruction>(V)->getParent(); 10436 }); 10437 }); 10438 if (ArePossiblyReducedInOtherBlock) 10439 return false; 10440 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10441 }, 10442 /*LimitForRegisterSize=*/true); 10443 Instructions.clear(); 10444 } else { 10445 // Insert in reverse order since the PostponedCmps vector was filled in 10446 // reverse order. 10447 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10448 } 10449 return OpsChanged; 10450 } 10451 10452 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10453 bool Changed = false; 10454 SmallVector<Value *, 4> Incoming; 10455 SmallPtrSet<Value *, 16> VisitedInstrs; 10456 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10457 // node. Allows better to identify the chains that can be vectorized in the 10458 // better way. 10459 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10460 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10461 assert(isValidElementType(V1->getType()) && 10462 isValidElementType(V2->getType()) && 10463 "Expected vectorizable types only."); 10464 // It is fine to compare type IDs here, since we expect only vectorizable 10465 // types, like ints, floats and pointers, we don't care about other type. 10466 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10467 return true; 10468 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10469 return false; 10470 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10471 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10472 if (Opcodes1.size() < Opcodes2.size()) 10473 return true; 10474 if (Opcodes1.size() > Opcodes2.size()) 10475 return false; 10476 Optional<bool> ConstOrder; 10477 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10478 // Undefs are compatible with any other value. 10479 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10480 if (!ConstOrder) 10481 ConstOrder = 10482 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10483 continue; 10484 } 10485 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10486 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10487 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10488 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10489 if (!NodeI1) 10490 return NodeI2 != nullptr; 10491 if (!NodeI2) 10492 return false; 10493 assert((NodeI1 == NodeI2) == 10494 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10495 "Different nodes should have different DFS numbers"); 10496 if (NodeI1 != NodeI2) 10497 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10498 InstructionsState S = getSameOpcode({I1, I2}); 10499 if (S.getOpcode()) 10500 continue; 10501 return I1->getOpcode() < I2->getOpcode(); 10502 } 10503 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10504 if (!ConstOrder) 10505 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10506 continue; 10507 } 10508 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10509 return true; 10510 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10511 return false; 10512 } 10513 return ConstOrder && *ConstOrder; 10514 }; 10515 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10516 if (V1 == V2) 10517 return true; 10518 if (V1->getType() != V2->getType()) 10519 return false; 10520 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10521 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10522 if (Opcodes1.size() != Opcodes2.size()) 10523 return false; 10524 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10525 // Undefs are compatible with any other value. 10526 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10527 continue; 10528 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10529 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10530 if (I1->getParent() != I2->getParent()) 10531 return false; 10532 InstructionsState S = getSameOpcode({I1, I2}); 10533 if (S.getOpcode()) 10534 continue; 10535 return false; 10536 } 10537 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10538 continue; 10539 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10540 return false; 10541 } 10542 return true; 10543 }; 10544 auto Limit = [&R](Value *V) { 10545 unsigned EltSize = R.getVectorElementSize(V); 10546 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10547 }; 10548 10549 bool HaveVectorizedPhiNodes = false; 10550 do { 10551 // Collect the incoming values from the PHIs. 10552 Incoming.clear(); 10553 for (Instruction &I : *BB) { 10554 PHINode *P = dyn_cast<PHINode>(&I); 10555 if (!P) 10556 break; 10557 10558 // No need to analyze deleted, vectorized and non-vectorizable 10559 // instructions. 10560 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10561 isValidElementType(P->getType())) 10562 Incoming.push_back(P); 10563 } 10564 10565 // Find the corresponding non-phi nodes for better matching when trying to 10566 // build the tree. 10567 for (Value *V : Incoming) { 10568 SmallVectorImpl<Value *> &Opcodes = 10569 PHIToOpcodes.try_emplace(V).first->getSecond(); 10570 if (!Opcodes.empty()) 10571 continue; 10572 SmallVector<Value *, 4> Nodes(1, V); 10573 SmallPtrSet<Value *, 4> Visited; 10574 while (!Nodes.empty()) { 10575 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10576 if (!Visited.insert(PHI).second) 10577 continue; 10578 for (Value *V : PHI->incoming_values()) { 10579 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10580 Nodes.push_back(PHI1); 10581 continue; 10582 } 10583 Opcodes.emplace_back(V); 10584 } 10585 } 10586 } 10587 10588 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10589 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10590 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10591 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10592 }, 10593 /*LimitForRegisterSize=*/true); 10594 Changed |= HaveVectorizedPhiNodes; 10595 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10596 } while (HaveVectorizedPhiNodes); 10597 10598 VisitedInstrs.clear(); 10599 10600 SmallVector<Instruction *, 8> PostProcessInstructions; 10601 SmallDenseSet<Instruction *, 4> KeyNodes; 10602 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10603 // Skip instructions with scalable type. The num of elements is unknown at 10604 // compile-time for scalable type. 10605 if (isa<ScalableVectorType>(it->getType())) 10606 continue; 10607 10608 // Skip instructions marked for the deletion. 10609 if (R.isDeleted(&*it)) 10610 continue; 10611 // We may go through BB multiple times so skip the one we have checked. 10612 if (!VisitedInstrs.insert(&*it).second) { 10613 if (it->use_empty() && KeyNodes.contains(&*it) && 10614 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10615 it->isTerminator())) { 10616 // We would like to start over since some instructions are deleted 10617 // and the iterator may become invalid value. 10618 Changed = true; 10619 it = BB->begin(); 10620 e = BB->end(); 10621 } 10622 continue; 10623 } 10624 10625 if (isa<DbgInfoIntrinsic>(it)) 10626 continue; 10627 10628 // Try to vectorize reductions that use PHINodes. 10629 if (PHINode *P = dyn_cast<PHINode>(it)) { 10630 // Check that the PHI is a reduction PHI. 10631 if (P->getNumIncomingValues() == 2) { 10632 // Try to match and vectorize a horizontal reduction. 10633 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10634 TTI)) { 10635 Changed = true; 10636 it = BB->begin(); 10637 e = BB->end(); 10638 continue; 10639 } 10640 } 10641 // Try to vectorize the incoming values of the PHI, to catch reductions 10642 // that feed into PHIs. 10643 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10644 // Skip if the incoming block is the current BB for now. Also, bypass 10645 // unreachable IR for efficiency and to avoid crashing. 10646 // TODO: Collect the skipped incoming values and try to vectorize them 10647 // after processing BB. 10648 if (BB == P->getIncomingBlock(I) || 10649 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10650 continue; 10651 10652 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10653 P->getIncomingBlock(I), R, TTI); 10654 } 10655 continue; 10656 } 10657 10658 // Ran into an instruction without users, like terminator, or function call 10659 // with ignored return value, store. Ignore unused instructions (basing on 10660 // instruction type, except for CallInst and InvokeInst). 10661 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10662 isa<InvokeInst>(it))) { 10663 KeyNodes.insert(&*it); 10664 bool OpsChanged = false; 10665 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10666 for (auto *V : it->operand_values()) { 10667 // Try to match and vectorize a horizontal reduction. 10668 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10669 } 10670 } 10671 // Start vectorization of post-process list of instructions from the 10672 // top-tree instructions to try to vectorize as many instructions as 10673 // possible. 10674 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10675 it->isTerminator()); 10676 if (OpsChanged) { 10677 // We would like to start over since some instructions are deleted 10678 // and the iterator may become invalid value. 10679 Changed = true; 10680 it = BB->begin(); 10681 e = BB->end(); 10682 continue; 10683 } 10684 } 10685 10686 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10687 isa<InsertValueInst>(it)) 10688 PostProcessInstructions.push_back(&*it); 10689 } 10690 10691 return Changed; 10692 } 10693 10694 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10695 auto Changed = false; 10696 for (auto &Entry : GEPs) { 10697 // If the getelementptr list has fewer than two elements, there's nothing 10698 // to do. 10699 if (Entry.second.size() < 2) 10700 continue; 10701 10702 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10703 << Entry.second.size() << ".\n"); 10704 10705 // Process the GEP list in chunks suitable for the target's supported 10706 // vector size. If a vector register can't hold 1 element, we are done. We 10707 // are trying to vectorize the index computations, so the maximum number of 10708 // elements is based on the size of the index expression, rather than the 10709 // size of the GEP itself (the target's pointer size). 10710 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10711 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10712 if (MaxVecRegSize < EltSize) 10713 continue; 10714 10715 unsigned MaxElts = MaxVecRegSize / EltSize; 10716 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10717 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10718 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10719 10720 // Initialize a set a candidate getelementptrs. Note that we use a 10721 // SetVector here to preserve program order. If the index computations 10722 // are vectorizable and begin with loads, we want to minimize the chance 10723 // of having to reorder them later. 10724 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10725 10726 // Some of the candidates may have already been vectorized after we 10727 // initially collected them. If so, they are marked as deleted, so remove 10728 // them from the set of candidates. 10729 Candidates.remove_if( 10730 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10731 10732 // Remove from the set of candidates all pairs of getelementptrs with 10733 // constant differences. Such getelementptrs are likely not good 10734 // candidates for vectorization in a bottom-up phase since one can be 10735 // computed from the other. We also ensure all candidate getelementptr 10736 // indices are unique. 10737 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10738 auto *GEPI = GEPList[I]; 10739 if (!Candidates.count(GEPI)) 10740 continue; 10741 auto *SCEVI = SE->getSCEV(GEPList[I]); 10742 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10743 auto *GEPJ = GEPList[J]; 10744 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10745 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10746 Candidates.remove(GEPI); 10747 Candidates.remove(GEPJ); 10748 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10749 Candidates.remove(GEPJ); 10750 } 10751 } 10752 } 10753 10754 // We break out of the above computation as soon as we know there are 10755 // fewer than two candidates remaining. 10756 if (Candidates.size() < 2) 10757 continue; 10758 10759 // Add the single, non-constant index of each candidate to the bundle. We 10760 // ensured the indices met these constraints when we originally collected 10761 // the getelementptrs. 10762 SmallVector<Value *, 16> Bundle(Candidates.size()); 10763 auto BundleIndex = 0u; 10764 for (auto *V : Candidates) { 10765 auto *GEP = cast<GetElementPtrInst>(V); 10766 auto *GEPIdx = GEP->idx_begin()->get(); 10767 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10768 Bundle[BundleIndex++] = GEPIdx; 10769 } 10770 10771 // Try and vectorize the indices. We are currently only interested in 10772 // gather-like cases of the form: 10773 // 10774 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10775 // 10776 // where the loads of "a", the loads of "b", and the subtractions can be 10777 // performed in parallel. It's likely that detecting this pattern in a 10778 // bottom-up phase will be simpler and less costly than building a 10779 // full-blown top-down phase beginning at the consecutive loads. 10780 Changed |= tryToVectorizeList(Bundle, R); 10781 } 10782 } 10783 return Changed; 10784 } 10785 10786 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10787 bool Changed = false; 10788 // Sort by type, base pointers and values operand. Value operands must be 10789 // compatible (have the same opcode, same parent), otherwise it is 10790 // definitely not profitable to try to vectorize them. 10791 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10792 if (V->getPointerOperandType()->getTypeID() < 10793 V2->getPointerOperandType()->getTypeID()) 10794 return true; 10795 if (V->getPointerOperandType()->getTypeID() > 10796 V2->getPointerOperandType()->getTypeID()) 10797 return false; 10798 // UndefValues are compatible with all other values. 10799 if (isa<UndefValue>(V->getValueOperand()) || 10800 isa<UndefValue>(V2->getValueOperand())) 10801 return false; 10802 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10803 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10804 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10805 DT->getNode(I1->getParent()); 10806 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10807 DT->getNode(I2->getParent()); 10808 assert(NodeI1 && "Should only process reachable instructions"); 10809 assert(NodeI1 && "Should only process reachable instructions"); 10810 assert((NodeI1 == NodeI2) == 10811 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10812 "Different nodes should have different DFS numbers"); 10813 if (NodeI1 != NodeI2) 10814 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10815 InstructionsState S = getSameOpcode({I1, I2}); 10816 if (S.getOpcode()) 10817 return false; 10818 return I1->getOpcode() < I2->getOpcode(); 10819 } 10820 if (isa<Constant>(V->getValueOperand()) && 10821 isa<Constant>(V2->getValueOperand())) 10822 return false; 10823 return V->getValueOperand()->getValueID() < 10824 V2->getValueOperand()->getValueID(); 10825 }; 10826 10827 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10828 if (V1 == V2) 10829 return true; 10830 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10831 return false; 10832 // Undefs are compatible with any other value. 10833 if (isa<UndefValue>(V1->getValueOperand()) || 10834 isa<UndefValue>(V2->getValueOperand())) 10835 return true; 10836 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10837 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10838 if (I1->getParent() != I2->getParent()) 10839 return false; 10840 InstructionsState S = getSameOpcode({I1, I2}); 10841 return S.getOpcode() > 0; 10842 } 10843 if (isa<Constant>(V1->getValueOperand()) && 10844 isa<Constant>(V2->getValueOperand())) 10845 return true; 10846 return V1->getValueOperand()->getValueID() == 10847 V2->getValueOperand()->getValueID(); 10848 }; 10849 auto Limit = [&R, this](StoreInst *SI) { 10850 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10851 return R.getMinVF(EltSize); 10852 }; 10853 10854 // Attempt to sort and vectorize each of the store-groups. 10855 for (auto &Pair : Stores) { 10856 if (Pair.second.size() < 2) 10857 continue; 10858 10859 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10860 << Pair.second.size() << ".\n"); 10861 10862 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10863 continue; 10864 10865 Changed |= tryToVectorizeSequence<StoreInst>( 10866 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10867 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10868 return vectorizeStores(Candidates, R); 10869 }, 10870 /*LimitForRegisterSize=*/false); 10871 } 10872 return Changed; 10873 } 10874 10875 char SLPVectorizer::ID = 0; 10876 10877 static const char lv_name[] = "SLP Vectorizer"; 10878 10879 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10880 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10881 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10882 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10883 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10884 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10885 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10886 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10887 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10888 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10889 10890 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10891