1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #ifdef EXPENSIVE_CHECKS 75 #include "llvm/IR/Verifier.h" 76 #endif 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1169 /// MainAltOps. 1170 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1171 ScalarEvolution &SE, int NumLanes, 1172 ArrayRef<Value *> MainAltOps, 1173 const TargetTransformInfo *TTI) { 1174 if (V1 == V2) { 1175 if (isa<LoadInst>(V1)) { 1176 // A broadcast of a load can be cheaper on some targets. 1177 // TODO: For now accept a broadcast load with no other internal uses. 1178 if (TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1179 (int)V1->getNumUses() == NumLanes) 1180 return VLOperands::ScoreSplatLoads; 1181 } 1182 return VLOperands::ScoreSplat; 1183 } 1184 1185 auto *LI1 = dyn_cast<LoadInst>(V1); 1186 auto *LI2 = dyn_cast<LoadInst>(V2); 1187 if (LI1 && LI2) { 1188 if (LI1->getParent() != LI2->getParent()) 1189 return VLOperands::ScoreFail; 1190 1191 Optional<int> Dist = getPointersDiff( 1192 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1193 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1194 if (!Dist || *Dist == 0) 1195 return VLOperands::ScoreFail; 1196 // The distance is too large - still may be profitable to use masked 1197 // loads/gathers. 1198 if (std::abs(*Dist) > NumLanes / 2) 1199 return VLOperands::ScoreAltOpcodes; 1200 // This still will detect consecutive loads, but we might have "holes" 1201 // in some cases. It is ok for non-power-2 vectorization and may produce 1202 // better results. It should not affect current vectorization. 1203 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1204 : VLOperands::ScoreReversedLoads; 1205 } 1206 1207 auto *C1 = dyn_cast<Constant>(V1); 1208 auto *C2 = dyn_cast<Constant>(V2); 1209 if (C1 && C2) 1210 return VLOperands::ScoreConstants; 1211 1212 // Extracts from consecutive indexes of the same vector better score as 1213 // the extracts could be optimized away. 1214 Value *EV1; 1215 ConstantInt *Ex1Idx; 1216 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1217 // Undefs are always profitable for extractelements. 1218 if (isa<UndefValue>(V2)) 1219 return VLOperands::ScoreConsecutiveExtracts; 1220 Value *EV2 = nullptr; 1221 ConstantInt *Ex2Idx = nullptr; 1222 if (match(V2, 1223 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1224 m_Undef())))) { 1225 // Undefs are always profitable for extractelements. 1226 if (!Ex2Idx) 1227 return VLOperands::ScoreConsecutiveExtracts; 1228 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1229 return VLOperands::ScoreConsecutiveExtracts; 1230 if (EV2 == EV1) { 1231 int Idx1 = Ex1Idx->getZExtValue(); 1232 int Idx2 = Ex2Idx->getZExtValue(); 1233 int Dist = Idx2 - Idx1; 1234 // The distance is too large - still may be profitable to use 1235 // shuffles. 1236 if (std::abs(Dist) == 0) 1237 return VLOperands::ScoreSplat; 1238 if (std::abs(Dist) > NumLanes / 2) 1239 return VLOperands::ScoreSameOpcode; 1240 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1241 : VLOperands::ScoreReversedExtracts; 1242 } 1243 return VLOperands::ScoreAltOpcodes; 1244 } 1245 return VLOperands::ScoreFail; 1246 } 1247 1248 auto *I1 = dyn_cast<Instruction>(V1); 1249 auto *I2 = dyn_cast<Instruction>(V2); 1250 if (I1 && I2) { 1251 if (I1->getParent() != I2->getParent()) 1252 return VLOperands::ScoreFail; 1253 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1254 Ops.push_back(I1); 1255 Ops.push_back(I2); 1256 InstructionsState S = getSameOpcode(Ops); 1257 // Note: Only consider instructions with <= 2 operands to avoid 1258 // complexity explosion. 1259 if (S.getOpcode() && 1260 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1261 !S.isAltShuffle()) && 1262 all_of(Ops, [&S](Value *V) { 1263 return cast<Instruction>(V)->getNumOperands() == 1264 S.MainOp->getNumOperands(); 1265 })) 1266 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1267 : VLOperands::ScoreSameOpcode; 1268 } 1269 1270 if (isa<UndefValue>(V2)) 1271 return VLOperands::ScoreUndef; 1272 1273 return VLOperands::ScoreFail; 1274 } 1275 1276 /// \param Lane lane of the operands under analysis. 1277 /// \param OpIdx operand index in \p Lane lane we're looking the best 1278 /// candidate for. 1279 /// \param Idx operand index of the current candidate value. 1280 /// \returns The additional score due to possible broadcasting of the 1281 /// elements in the lane. It is more profitable to have power-of-2 unique 1282 /// elements in the lane, it will be vectorized with higher probability 1283 /// after removing duplicates. Currently the SLP vectorizer supports only 1284 /// vectorization of the power-of-2 number of unique scalars. 1285 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1286 Value *IdxLaneV = getData(Idx, Lane).V; 1287 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1288 return 0; 1289 SmallPtrSet<Value *, 4> Uniques; 1290 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1294 if (!isa<Instruction>(OpIdxLnV)) 1295 return 0; 1296 Uniques.insert(OpIdxLnV); 1297 } 1298 int UniquesCount = Uniques.size(); 1299 int UniquesCntWithIdxLaneV = 1300 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1301 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1302 int UniquesCntWithOpIdxLaneV = 1303 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1304 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1305 return 0; 1306 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1307 UniquesCntWithOpIdxLaneV) - 1308 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1309 } 1310 1311 /// \param Lane lane of the operands under analysis. 1312 /// \param OpIdx operand index in \p Lane lane we're looking the best 1313 /// candidate for. 1314 /// \param Idx operand index of the current candidate value. 1315 /// \returns The additional score for the scalar which users are all 1316 /// vectorized. 1317 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1318 Value *IdxLaneV = getData(Idx, Lane).V; 1319 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1320 // Do not care about number of uses for vector-like instructions 1321 // (extractelement/extractvalue with constant indices), they are extracts 1322 // themselves and already externally used. Vectorization of such 1323 // instructions does not add extra extractelement instruction, just may 1324 // remove it. 1325 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1326 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1327 return VLOperands::ScoreAllUserVectorized; 1328 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1329 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1330 return 0; 1331 return R.areAllUsersVectorized(IdxLaneI, None) 1332 ? VLOperands::ScoreAllUserVectorized 1333 : 0; 1334 } 1335 1336 /// Go through the operands of \p LHS and \p RHS recursively until \p 1337 /// MaxLevel, and return the cummulative score. For example: 1338 /// \verbatim 1339 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1340 /// \ / \ / \ / \ / 1341 /// + + + + 1342 /// G1 G2 G3 G4 1343 /// \endverbatim 1344 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1345 /// each level recursively, accumulating the score. It starts from matching 1346 /// the additions at level 0, then moves on to the loads (level 1). The 1347 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1348 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1349 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1350 /// Please note that the order of the operands does not matter, as we 1351 /// evaluate the score of all profitable combinations of operands. In 1352 /// other words the score of G1 and G4 is the same as G1 and G2. This 1353 /// heuristic is based on ideas described in: 1354 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1355 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1356 /// Luís F. W. Góes 1357 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1358 ArrayRef<Value *> MainAltOps) { 1359 1360 // Get the shallow score of V1 and V2. 1361 int ShallowScoreAtThisLevel = 1362 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps, R.TTI); 1363 1364 // If reached MaxLevel, 1365 // or if V1 and V2 are not instructions, 1366 // or if they are SPLAT, 1367 // or if they are not consecutive, 1368 // or if profitable to vectorize loads or extractelements, early return 1369 // the current cost. 1370 auto *I1 = dyn_cast<Instruction>(LHS); 1371 auto *I2 = dyn_cast<Instruction>(RHS); 1372 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1373 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1374 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1375 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1376 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1377 ShallowScoreAtThisLevel)) 1378 return ShallowScoreAtThisLevel; 1379 assert(I1 && I2 && "Should have early exited."); 1380 1381 // Contains the I2 operand indexes that got matched with I1 operands. 1382 SmallSet<unsigned, 4> Op2Used; 1383 1384 // Recursion towards the operands of I1 and I2. We are trying all possible 1385 // operand pairs, and keeping track of the best score. 1386 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1387 OpIdx1 != NumOperands1; ++OpIdx1) { 1388 // Try to pair op1I with the best operand of I2. 1389 int MaxTmpScore = 0; 1390 unsigned MaxOpIdx2 = 0; 1391 bool FoundBest = false; 1392 // If I2 is commutative try all combinations. 1393 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1394 unsigned ToIdx = isCommutative(I2) 1395 ? I2->getNumOperands() 1396 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1397 assert(FromIdx <= ToIdx && "Bad index"); 1398 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1399 // Skip operands already paired with OpIdx1. 1400 if (Op2Used.count(OpIdx2)) 1401 continue; 1402 // Recursively calculate the cost at each level 1403 int TmpScore = 1404 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1405 CurrLevel + 1, MaxLevel, None); 1406 // Look for the best score. 1407 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1408 MaxTmpScore = TmpScore; 1409 MaxOpIdx2 = OpIdx2; 1410 FoundBest = true; 1411 } 1412 } 1413 if (FoundBest) { 1414 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1415 Op2Used.insert(MaxOpIdx2); 1416 ShallowScoreAtThisLevel += MaxTmpScore; 1417 } 1418 } 1419 return ShallowScoreAtThisLevel; 1420 } 1421 1422 /// Score scaling factor for fully compatible instructions but with 1423 /// different number of external uses. Allows better selection of the 1424 /// instructions with less external uses. 1425 static const int ScoreScaleFactor = 10; 1426 1427 /// \Returns the look-ahead score, which tells us how much the sub-trees 1428 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1429 /// score. This helps break ties in an informed way when we cannot decide on 1430 /// the order of the operands by just considering the immediate 1431 /// predecessors. 1432 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1433 int Lane, unsigned OpIdx, unsigned Idx, 1434 bool &IsUsed) { 1435 int Score = 1436 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1437 if (Score) { 1438 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1439 if (Score <= -SplatScore) { 1440 // Set the minimum score for splat-like sequence to avoid setting 1441 // failed state. 1442 Score = 1; 1443 } else { 1444 Score += SplatScore; 1445 // Scale score to see the difference between different operands 1446 // and similar operands but all vectorized/not all vectorized 1447 // uses. It does not affect actual selection of the best 1448 // compatible operand in general, just allows to select the 1449 // operand with all vectorized uses. 1450 Score *= ScoreScaleFactor; 1451 Score += getExternalUseScore(Lane, OpIdx, Idx); 1452 IsUsed = true; 1453 } 1454 } 1455 return Score; 1456 } 1457 1458 /// Best defined scores per lanes between the passes. Used to choose the 1459 /// best operand (with the highest score) between the passes. 1460 /// The key - {Operand Index, Lane}. 1461 /// The value - the best score between the passes for the lane and the 1462 /// operand. 1463 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1464 BestScoresPerLanes; 1465 1466 // Search all operands in Ops[*][Lane] for the one that matches best 1467 // Ops[OpIdx][LastLane] and return its opreand index. 1468 // If no good match can be found, return None. 1469 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1470 ArrayRef<ReorderingMode> ReorderingModes, 1471 ArrayRef<Value *> MainAltOps) { 1472 unsigned NumOperands = getNumOperands(); 1473 1474 // The operand of the previous lane at OpIdx. 1475 Value *OpLastLane = getData(OpIdx, LastLane).V; 1476 1477 // Our strategy mode for OpIdx. 1478 ReorderingMode RMode = ReorderingModes[OpIdx]; 1479 if (RMode == ReorderingMode::Failed) 1480 return None; 1481 1482 // The linearized opcode of the operand at OpIdx, Lane. 1483 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1484 1485 // The best operand index and its score. 1486 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1487 // are using the score to differentiate between the two. 1488 struct BestOpData { 1489 Optional<unsigned> Idx = None; 1490 unsigned Score = 0; 1491 } BestOp; 1492 BestOp.Score = 1493 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1494 .first->second; 1495 1496 // Track if the operand must be marked as used. If the operand is set to 1497 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1498 // want to reestimate the operands again on the following iterations). 1499 bool IsUsed = 1500 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1501 // Iterate through all unused operands and look for the best. 1502 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1503 // Get the operand at Idx and Lane. 1504 OperandData &OpData = getData(Idx, Lane); 1505 Value *Op = OpData.V; 1506 bool OpAPO = OpData.APO; 1507 1508 // Skip already selected operands. 1509 if (OpData.IsUsed) 1510 continue; 1511 1512 // Skip if we are trying to move the operand to a position with a 1513 // different opcode in the linearized tree form. This would break the 1514 // semantics. 1515 if (OpAPO != OpIdxAPO) 1516 continue; 1517 1518 // Look for an operand that matches the current mode. 1519 switch (RMode) { 1520 case ReorderingMode::Load: 1521 case ReorderingMode::Constant: 1522 case ReorderingMode::Opcode: { 1523 bool LeftToRight = Lane > LastLane; 1524 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1525 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1526 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1527 OpIdx, Idx, IsUsed); 1528 if (Score > static_cast<int>(BestOp.Score)) { 1529 BestOp.Idx = Idx; 1530 BestOp.Score = Score; 1531 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1532 } 1533 break; 1534 } 1535 case ReorderingMode::Splat: 1536 if (Op == OpLastLane) 1537 BestOp.Idx = Idx; 1538 break; 1539 case ReorderingMode::Failed: 1540 llvm_unreachable("Not expected Failed reordering mode."); 1541 } 1542 } 1543 1544 if (BestOp.Idx) { 1545 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1546 return BestOp.Idx; 1547 } 1548 // If we could not find a good match return None. 1549 return None; 1550 } 1551 1552 /// Helper for reorderOperandVecs. 1553 /// \returns the lane that we should start reordering from. This is the one 1554 /// which has the least number of operands that can freely move about or 1555 /// less profitable because it already has the most optimal set of operands. 1556 unsigned getBestLaneToStartReordering() const { 1557 unsigned Min = UINT_MAX; 1558 unsigned SameOpNumber = 0; 1559 // std::pair<unsigned, unsigned> is used to implement a simple voting 1560 // algorithm and choose the lane with the least number of operands that 1561 // can freely move about or less profitable because it already has the 1562 // most optimal set of operands. The first unsigned is a counter for 1563 // voting, the second unsigned is the counter of lanes with instructions 1564 // with same/alternate opcodes and same parent basic block. 1565 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1566 // Try to be closer to the original results, if we have multiple lanes 1567 // with same cost. If 2 lanes have the same cost, use the one with the 1568 // lowest index. 1569 for (int I = getNumLanes(); I > 0; --I) { 1570 unsigned Lane = I - 1; 1571 OperandsOrderData NumFreeOpsHash = 1572 getMaxNumOperandsThatCanBeReordered(Lane); 1573 // Compare the number of operands that can move and choose the one with 1574 // the least number. 1575 if (NumFreeOpsHash.NumOfAPOs < Min) { 1576 Min = NumFreeOpsHash.NumOfAPOs; 1577 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1578 HashMap.clear(); 1579 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1580 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1581 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1582 // Select the most optimal lane in terms of number of operands that 1583 // should be moved around. 1584 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1585 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1586 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1587 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1588 auto It = HashMap.find(NumFreeOpsHash.Hash); 1589 if (It == HashMap.end()) 1590 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1591 else 1592 ++It->second.first; 1593 } 1594 } 1595 // Select the lane with the minimum counter. 1596 unsigned BestLane = 0; 1597 unsigned CntMin = UINT_MAX; 1598 for (const auto &Data : reverse(HashMap)) { 1599 if (Data.second.first < CntMin) { 1600 CntMin = Data.second.first; 1601 BestLane = Data.second.second; 1602 } 1603 } 1604 return BestLane; 1605 } 1606 1607 /// Data structure that helps to reorder operands. 1608 struct OperandsOrderData { 1609 /// The best number of operands with the same APOs, which can be 1610 /// reordered. 1611 unsigned NumOfAPOs = UINT_MAX; 1612 /// Number of operands with the same/alternate instruction opcode and 1613 /// parent. 1614 unsigned NumOpsWithSameOpcodeParent = 0; 1615 /// Hash for the actual operands ordering. 1616 /// Used to count operands, actually their position id and opcode 1617 /// value. It is used in the voting mechanism to find the lane with the 1618 /// least number of operands that can freely move about or less profitable 1619 /// because it already has the most optimal set of operands. Can be 1620 /// replaced with SmallVector<unsigned> instead but hash code is faster 1621 /// and requires less memory. 1622 unsigned Hash = 0; 1623 }; 1624 /// \returns the maximum number of operands that are allowed to be reordered 1625 /// for \p Lane and the number of compatible instructions(with the same 1626 /// parent/opcode). This is used as a heuristic for selecting the first lane 1627 /// to start operand reordering. 1628 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1629 unsigned CntTrue = 0; 1630 unsigned NumOperands = getNumOperands(); 1631 // Operands with the same APO can be reordered. We therefore need to count 1632 // how many of them we have for each APO, like this: Cnt[APO] = x. 1633 // Since we only have two APOs, namely true and false, we can avoid using 1634 // a map. Instead we can simply count the number of operands that 1635 // correspond to one of them (in this case the 'true' APO), and calculate 1636 // the other by subtracting it from the total number of operands. 1637 // Operands with the same instruction opcode and parent are more 1638 // profitable since we don't need to move them in many cases, with a high 1639 // probability such lane already can be vectorized effectively. 1640 bool AllUndefs = true; 1641 unsigned NumOpsWithSameOpcodeParent = 0; 1642 Instruction *OpcodeI = nullptr; 1643 BasicBlock *Parent = nullptr; 1644 unsigned Hash = 0; 1645 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1646 const OperandData &OpData = getData(OpIdx, Lane); 1647 if (OpData.APO) 1648 ++CntTrue; 1649 // Use Boyer-Moore majority voting for finding the majority opcode and 1650 // the number of times it occurs. 1651 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1652 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1653 I->getParent() != Parent) { 1654 if (NumOpsWithSameOpcodeParent == 0) { 1655 NumOpsWithSameOpcodeParent = 1; 1656 OpcodeI = I; 1657 Parent = I->getParent(); 1658 } else { 1659 --NumOpsWithSameOpcodeParent; 1660 } 1661 } else { 1662 ++NumOpsWithSameOpcodeParent; 1663 } 1664 } 1665 Hash = hash_combine( 1666 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1667 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1668 } 1669 if (AllUndefs) 1670 return {}; 1671 OperandsOrderData Data; 1672 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1673 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1674 Data.Hash = Hash; 1675 return Data; 1676 } 1677 1678 /// Go through the instructions in VL and append their operands. 1679 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1680 assert(!VL.empty() && "Bad VL"); 1681 assert((empty() || VL.size() == getNumLanes()) && 1682 "Expected same number of lanes"); 1683 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1684 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1685 OpsVec.resize(NumOperands); 1686 unsigned NumLanes = VL.size(); 1687 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1688 OpsVec[OpIdx].resize(NumLanes); 1689 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1690 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1691 // Our tree has just 3 nodes: the root and two operands. 1692 // It is therefore trivial to get the APO. We only need to check the 1693 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1694 // RHS operand. The LHS operand of both add and sub is never attached 1695 // to an inversese operation in the linearized form, therefore its APO 1696 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1697 1698 // Since operand reordering is performed on groups of commutative 1699 // operations or alternating sequences (e.g., +, -), we can safely 1700 // tell the inverse operations by checking commutativity. 1701 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1702 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1703 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1704 APO, false}; 1705 } 1706 } 1707 } 1708 1709 /// \returns the number of operands. 1710 unsigned getNumOperands() const { return OpsVec.size(); } 1711 1712 /// \returns the number of lanes. 1713 unsigned getNumLanes() const { return OpsVec[0].size(); } 1714 1715 /// \returns the operand value at \p OpIdx and \p Lane. 1716 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1717 return getData(OpIdx, Lane).V; 1718 } 1719 1720 /// \returns true if the data structure is empty. 1721 bool empty() const { return OpsVec.empty(); } 1722 1723 /// Clears the data. 1724 void clear() { OpsVec.clear(); } 1725 1726 /// \Returns true if there are enough operands identical to \p Op to fill 1727 /// the whole vector. 1728 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1729 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1730 bool OpAPO = getData(OpIdx, Lane).APO; 1731 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1732 if (Ln == Lane) 1733 continue; 1734 // This is set to true if we found a candidate for broadcast at Lane. 1735 bool FoundCandidate = false; 1736 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1737 OperandData &Data = getData(OpI, Ln); 1738 if (Data.APO != OpAPO || Data.IsUsed) 1739 continue; 1740 if (Data.V == Op) { 1741 FoundCandidate = true; 1742 Data.IsUsed = true; 1743 break; 1744 } 1745 } 1746 if (!FoundCandidate) 1747 return false; 1748 } 1749 return true; 1750 } 1751 1752 public: 1753 /// Initialize with all the operands of the instruction vector \p RootVL. 1754 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1755 ScalarEvolution &SE, const BoUpSLP &R) 1756 : DL(DL), SE(SE), R(R) { 1757 // Append all the operands of RootVL. 1758 appendOperandsOfVL(RootVL); 1759 } 1760 1761 /// \Returns a value vector with the operands across all lanes for the 1762 /// opearnd at \p OpIdx. 1763 ValueList getVL(unsigned OpIdx) const { 1764 ValueList OpVL(OpsVec[OpIdx].size()); 1765 assert(OpsVec[OpIdx].size() == getNumLanes() && 1766 "Expected same num of lanes across all operands"); 1767 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1768 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1769 return OpVL; 1770 } 1771 1772 // Performs operand reordering for 2 or more operands. 1773 // The original operands are in OrigOps[OpIdx][Lane]. 1774 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1775 void reorder() { 1776 unsigned NumOperands = getNumOperands(); 1777 unsigned NumLanes = getNumLanes(); 1778 // Each operand has its own mode. We are using this mode to help us select 1779 // the instructions for each lane, so that they match best with the ones 1780 // we have selected so far. 1781 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1782 1783 // This is a greedy single-pass algorithm. We are going over each lane 1784 // once and deciding on the best order right away with no back-tracking. 1785 // However, in order to increase its effectiveness, we start with the lane 1786 // that has operands that can move the least. For example, given the 1787 // following lanes: 1788 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1789 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1790 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1791 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1792 // we will start at Lane 1, since the operands of the subtraction cannot 1793 // be reordered. Then we will visit the rest of the lanes in a circular 1794 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1795 1796 // Find the first lane that we will start our search from. 1797 unsigned FirstLane = getBestLaneToStartReordering(); 1798 1799 // Initialize the modes. 1800 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1801 Value *OpLane0 = getValue(OpIdx, FirstLane); 1802 // Keep track if we have instructions with all the same opcode on one 1803 // side. 1804 if (isa<LoadInst>(OpLane0)) 1805 ReorderingModes[OpIdx] = ReorderingMode::Load; 1806 else if (isa<Instruction>(OpLane0)) { 1807 // Check if OpLane0 should be broadcast. 1808 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1809 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1810 else 1811 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1812 } 1813 else if (isa<Constant>(OpLane0)) 1814 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1815 else if (isa<Argument>(OpLane0)) 1816 // Our best hope is a Splat. It may save some cost in some cases. 1817 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1818 else 1819 // NOTE: This should be unreachable. 1820 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1821 } 1822 1823 // Check that we don't have same operands. No need to reorder if operands 1824 // are just perfect diamond or shuffled diamond match. Do not do it only 1825 // for possible broadcasts or non-power of 2 number of scalars (just for 1826 // now). 1827 auto &&SkipReordering = [this]() { 1828 SmallPtrSet<Value *, 4> UniqueValues; 1829 ArrayRef<OperandData> Op0 = OpsVec.front(); 1830 for (const OperandData &Data : Op0) 1831 UniqueValues.insert(Data.V); 1832 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1833 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1834 return !UniqueValues.contains(Data.V); 1835 })) 1836 return false; 1837 } 1838 // TODO: Check if we can remove a check for non-power-2 number of 1839 // scalars after full support of non-power-2 vectorization. 1840 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1841 }; 1842 1843 // If the initial strategy fails for any of the operand indexes, then we 1844 // perform reordering again in a second pass. This helps avoid assigning 1845 // high priority to the failed strategy, and should improve reordering for 1846 // the non-failed operand indexes. 1847 for (int Pass = 0; Pass != 2; ++Pass) { 1848 // Check if no need to reorder operands since they're are perfect or 1849 // shuffled diamond match. 1850 // Need to to do it to avoid extra external use cost counting for 1851 // shuffled matches, which may cause regressions. 1852 if (SkipReordering()) 1853 break; 1854 // Skip the second pass if the first pass did not fail. 1855 bool StrategyFailed = false; 1856 // Mark all operand data as free to use. 1857 clearUsed(); 1858 // We keep the original operand order for the FirstLane, so reorder the 1859 // rest of the lanes. We are visiting the nodes in a circular fashion, 1860 // using FirstLane as the center point and increasing the radius 1861 // distance. 1862 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1863 for (unsigned I = 0; I < NumOperands; ++I) 1864 MainAltOps[I].push_back(getData(I, FirstLane).V); 1865 1866 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1867 // Visit the lane on the right and then the lane on the left. 1868 for (int Direction : {+1, -1}) { 1869 int Lane = FirstLane + Direction * Distance; 1870 if (Lane < 0 || Lane >= (int)NumLanes) 1871 continue; 1872 int LastLane = Lane - Direction; 1873 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1874 "Out of bounds"); 1875 // Look for a good match for each operand. 1876 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1877 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1878 Optional<unsigned> BestIdx = getBestOperand( 1879 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1880 // By not selecting a value, we allow the operands that follow to 1881 // select a better matching value. We will get a non-null value in 1882 // the next run of getBestOperand(). 1883 if (BestIdx) { 1884 // Swap the current operand with the one returned by 1885 // getBestOperand(). 1886 swap(OpIdx, BestIdx.getValue(), Lane); 1887 } else { 1888 // We failed to find a best operand, set mode to 'Failed'. 1889 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1890 // Enable the second pass. 1891 StrategyFailed = true; 1892 } 1893 // Try to get the alternate opcode and follow it during analysis. 1894 if (MainAltOps[OpIdx].size() != 2) { 1895 OperandData &AltOp = getData(OpIdx, Lane); 1896 InstructionsState OpS = 1897 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1898 if (OpS.getOpcode() && OpS.isAltShuffle()) 1899 MainAltOps[OpIdx].push_back(AltOp.V); 1900 } 1901 } 1902 } 1903 } 1904 // Skip second pass if the strategy did not fail. 1905 if (!StrategyFailed) 1906 break; 1907 } 1908 } 1909 1910 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1911 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1912 switch (RMode) { 1913 case ReorderingMode::Load: 1914 return "Load"; 1915 case ReorderingMode::Opcode: 1916 return "Opcode"; 1917 case ReorderingMode::Constant: 1918 return "Constant"; 1919 case ReorderingMode::Splat: 1920 return "Splat"; 1921 case ReorderingMode::Failed: 1922 return "Failed"; 1923 } 1924 llvm_unreachable("Unimplemented Reordering Type"); 1925 } 1926 1927 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1928 raw_ostream &OS) { 1929 return OS << getModeStr(RMode); 1930 } 1931 1932 /// Debug print. 1933 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1934 printMode(RMode, dbgs()); 1935 } 1936 1937 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1938 return printMode(RMode, OS); 1939 } 1940 1941 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1942 const unsigned Indent = 2; 1943 unsigned Cnt = 0; 1944 for (const OperandDataVec &OpDataVec : OpsVec) { 1945 OS << "Operand " << Cnt++ << "\n"; 1946 for (const OperandData &OpData : OpDataVec) { 1947 OS.indent(Indent) << "{"; 1948 if (Value *V = OpData.V) 1949 OS << *V; 1950 else 1951 OS << "null"; 1952 OS << ", APO:" << OpData.APO << "}\n"; 1953 } 1954 OS << "\n"; 1955 } 1956 return OS; 1957 } 1958 1959 /// Debug print. 1960 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1961 #endif 1962 }; 1963 1964 /// Checks if the instruction is marked for deletion. 1965 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1966 1967 /// Marks values operands for later deletion by replacing them with Undefs. 1968 void eraseInstructions(ArrayRef<Value *> AV); 1969 1970 ~BoUpSLP(); 1971 1972 private: 1973 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1974 /// reordering (i.e. the operands can be reordered because they have only one 1975 /// user and reordarable). 1976 /// \param NonVectorized List of all gather nodes that require reordering 1977 /// (e.g., gather of extractlements or partially vectorizable loads). 1978 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1979 /// reordering, subset of \p NonVectorized. 1980 bool 1981 canReorderOperands(TreeEntry *UserTE, 1982 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1983 ArrayRef<TreeEntry *> ReorderableGathers, 1984 SmallVectorImpl<TreeEntry *> &GatherOps); 1985 1986 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1987 /// if any. If it is not vectorized (gather node), returns nullptr. 1988 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1989 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1990 TreeEntry *TE = nullptr; 1991 const auto *It = find_if(VL, [this, &TE](Value *V) { 1992 TE = getTreeEntry(V); 1993 return TE; 1994 }); 1995 if (It != VL.end() && TE->isSame(VL)) 1996 return TE; 1997 return nullptr; 1998 } 1999 2000 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2001 /// if any. If it is not vectorized (gather node), returns nullptr. 2002 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2003 unsigned OpIdx) const { 2004 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2005 const_cast<TreeEntry *>(UserTE), OpIdx); 2006 } 2007 2008 /// Checks if all users of \p I are the part of the vectorization tree. 2009 bool areAllUsersVectorized(Instruction *I, 2010 ArrayRef<Value *> VectorizedVals) const; 2011 2012 /// \returns the cost of the vectorizable entry. 2013 InstructionCost getEntryCost(const TreeEntry *E, 2014 ArrayRef<Value *> VectorizedVals); 2015 2016 /// This is the recursive part of buildTree. 2017 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2018 const EdgeInfo &EI); 2019 2020 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2021 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2022 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2023 /// returns false, setting \p CurrentOrder to either an empty vector or a 2024 /// non-identity permutation that allows to reuse extract instructions. 2025 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2026 SmallVectorImpl<unsigned> &CurrentOrder) const; 2027 2028 /// Vectorize a single entry in the tree. 2029 Value *vectorizeTree(TreeEntry *E); 2030 2031 /// Vectorize a single entry in the tree, starting in \p VL. 2032 Value *vectorizeTree(ArrayRef<Value *> VL); 2033 2034 /// Create a new vector from a list of scalar values. Produces a sequence 2035 /// which exploits values reused across lanes, and arranges the inserts 2036 /// for ease of later optimization. 2037 Value *createBuildVector(ArrayRef<Value *> VL); 2038 2039 /// \returns the scalarization cost for this type. Scalarization in this 2040 /// context means the creation of vectors from a group of scalars. If \p 2041 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2042 /// vector elements. 2043 InstructionCost getGatherCost(FixedVectorType *Ty, 2044 const APInt &ShuffledIndices, 2045 bool NeedToShuffle) const; 2046 2047 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2048 /// tree entries. 2049 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2050 /// previous tree entries. \p Mask is filled with the shuffle mask. 2051 Optional<TargetTransformInfo::ShuffleKind> 2052 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2053 SmallVectorImpl<const TreeEntry *> &Entries); 2054 2055 /// \returns the scalarization cost for this list of values. Assuming that 2056 /// this subtree gets vectorized, we may need to extract the values from the 2057 /// roots. This method calculates the cost of extracting the values. 2058 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2059 2060 /// Set the Builder insert point to one after the last instruction in 2061 /// the bundle 2062 void setInsertPointAfterBundle(const TreeEntry *E); 2063 2064 /// \returns a vector from a collection of scalars in \p VL. 2065 Value *gather(ArrayRef<Value *> VL); 2066 2067 /// \returns whether the VectorizableTree is fully vectorizable and will 2068 /// be beneficial even the tree height is tiny. 2069 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2070 2071 /// Reorder commutative or alt operands to get better probability of 2072 /// generating vectorized code. 2073 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2074 SmallVectorImpl<Value *> &Left, 2075 SmallVectorImpl<Value *> &Right, 2076 const DataLayout &DL, 2077 ScalarEvolution &SE, 2078 const BoUpSLP &R); 2079 struct TreeEntry { 2080 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2081 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2082 2083 /// \returns true if the scalars in VL are equal to this entry. 2084 bool isSame(ArrayRef<Value *> VL) const { 2085 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2086 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2087 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2088 return VL.size() == Mask.size() && 2089 std::equal(VL.begin(), VL.end(), Mask.begin(), 2090 [Scalars](Value *V, int Idx) { 2091 return (isa<UndefValue>(V) && 2092 Idx == UndefMaskElem) || 2093 (Idx != UndefMaskElem && V == Scalars[Idx]); 2094 }); 2095 }; 2096 if (!ReorderIndices.empty()) { 2097 // TODO: implement matching if the nodes are just reordered, still can 2098 // treat the vector as the same if the list of scalars matches VL 2099 // directly, without reordering. 2100 SmallVector<int> Mask; 2101 inversePermutation(ReorderIndices, Mask); 2102 if (VL.size() == Scalars.size()) 2103 return IsSame(Scalars, Mask); 2104 if (VL.size() == ReuseShuffleIndices.size()) { 2105 ::addMask(Mask, ReuseShuffleIndices); 2106 return IsSame(Scalars, Mask); 2107 } 2108 return false; 2109 } 2110 return IsSame(Scalars, ReuseShuffleIndices); 2111 } 2112 2113 /// \returns true if current entry has same operands as \p TE. 2114 bool hasEqualOperands(const TreeEntry &TE) const { 2115 if (TE.getNumOperands() != getNumOperands()) 2116 return false; 2117 SmallBitVector Used(getNumOperands()); 2118 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2119 unsigned PrevCount = Used.count(); 2120 for (unsigned K = 0; K < E; ++K) { 2121 if (Used.test(K)) 2122 continue; 2123 if (getOperand(K) == TE.getOperand(I)) { 2124 Used.set(K); 2125 break; 2126 } 2127 } 2128 // Check if we actually found the matching operand. 2129 if (PrevCount == Used.count()) 2130 return false; 2131 } 2132 return true; 2133 } 2134 2135 /// \return Final vectorization factor for the node. Defined by the total 2136 /// number of vectorized scalars, including those, used several times in the 2137 /// entry and counted in the \a ReuseShuffleIndices, if any. 2138 unsigned getVectorFactor() const { 2139 if (!ReuseShuffleIndices.empty()) 2140 return ReuseShuffleIndices.size(); 2141 return Scalars.size(); 2142 }; 2143 2144 /// A vector of scalars. 2145 ValueList Scalars; 2146 2147 /// The Scalars are vectorized into this value. It is initialized to Null. 2148 Value *VectorizedValue = nullptr; 2149 2150 /// Do we need to gather this sequence or vectorize it 2151 /// (either with vector instruction or with scatter/gather 2152 /// intrinsics for store/load)? 2153 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2154 EntryState State; 2155 2156 /// Does this sequence require some shuffling? 2157 SmallVector<int, 4> ReuseShuffleIndices; 2158 2159 /// Does this entry require reordering? 2160 SmallVector<unsigned, 4> ReorderIndices; 2161 2162 /// Points back to the VectorizableTree. 2163 /// 2164 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2165 /// to be a pointer and needs to be able to initialize the child iterator. 2166 /// Thus we need a reference back to the container to translate the indices 2167 /// to entries. 2168 VecTreeTy &Container; 2169 2170 /// The TreeEntry index containing the user of this entry. We can actually 2171 /// have multiple users so the data structure is not truly a tree. 2172 SmallVector<EdgeInfo, 1> UserTreeIndices; 2173 2174 /// The index of this treeEntry in VectorizableTree. 2175 int Idx = -1; 2176 2177 private: 2178 /// The operands of each instruction in each lane Operands[op_index][lane]. 2179 /// Note: This helps avoid the replication of the code that performs the 2180 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2181 SmallVector<ValueList, 2> Operands; 2182 2183 /// The main/alternate instruction. 2184 Instruction *MainOp = nullptr; 2185 Instruction *AltOp = nullptr; 2186 2187 public: 2188 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2189 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2190 if (Operands.size() < OpIdx + 1) 2191 Operands.resize(OpIdx + 1); 2192 assert(Operands[OpIdx].empty() && "Already resized?"); 2193 assert(OpVL.size() <= Scalars.size() && 2194 "Number of operands is greater than the number of scalars."); 2195 Operands[OpIdx].resize(OpVL.size()); 2196 copy(OpVL, Operands[OpIdx].begin()); 2197 } 2198 2199 /// Set the operands of this bundle in their original order. 2200 void setOperandsInOrder() { 2201 assert(Operands.empty() && "Already initialized?"); 2202 auto *I0 = cast<Instruction>(Scalars[0]); 2203 Operands.resize(I0->getNumOperands()); 2204 unsigned NumLanes = Scalars.size(); 2205 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2206 OpIdx != NumOperands; ++OpIdx) { 2207 Operands[OpIdx].resize(NumLanes); 2208 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2209 auto *I = cast<Instruction>(Scalars[Lane]); 2210 assert(I->getNumOperands() == NumOperands && 2211 "Expected same number of operands"); 2212 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2213 } 2214 } 2215 } 2216 2217 /// Reorders operands of the node to the given mask \p Mask. 2218 void reorderOperands(ArrayRef<int> Mask) { 2219 for (ValueList &Operand : Operands) 2220 reorderScalars(Operand, Mask); 2221 } 2222 2223 /// \returns the \p OpIdx operand of this TreeEntry. 2224 ValueList &getOperand(unsigned OpIdx) { 2225 assert(OpIdx < Operands.size() && "Off bounds"); 2226 return Operands[OpIdx]; 2227 } 2228 2229 /// \returns the \p OpIdx operand of this TreeEntry. 2230 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2231 assert(OpIdx < Operands.size() && "Off bounds"); 2232 return Operands[OpIdx]; 2233 } 2234 2235 /// \returns the number of operands. 2236 unsigned getNumOperands() const { return Operands.size(); } 2237 2238 /// \return the single \p OpIdx operand. 2239 Value *getSingleOperand(unsigned OpIdx) const { 2240 assert(OpIdx < Operands.size() && "Off bounds"); 2241 assert(!Operands[OpIdx].empty() && "No operand available"); 2242 return Operands[OpIdx][0]; 2243 } 2244 2245 /// Some of the instructions in the list have alternate opcodes. 2246 bool isAltShuffle() const { return MainOp != AltOp; } 2247 2248 bool isOpcodeOrAlt(Instruction *I) const { 2249 unsigned CheckedOpcode = I->getOpcode(); 2250 return (getOpcode() == CheckedOpcode || 2251 getAltOpcode() == CheckedOpcode); 2252 } 2253 2254 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2255 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2256 /// \p OpValue. 2257 Value *isOneOf(Value *Op) const { 2258 auto *I = dyn_cast<Instruction>(Op); 2259 if (I && isOpcodeOrAlt(I)) 2260 return Op; 2261 return MainOp; 2262 } 2263 2264 void setOperations(const InstructionsState &S) { 2265 MainOp = S.MainOp; 2266 AltOp = S.AltOp; 2267 } 2268 2269 Instruction *getMainOp() const { 2270 return MainOp; 2271 } 2272 2273 Instruction *getAltOp() const { 2274 return AltOp; 2275 } 2276 2277 /// The main/alternate opcodes for the list of instructions. 2278 unsigned getOpcode() const { 2279 return MainOp ? MainOp->getOpcode() : 0; 2280 } 2281 2282 unsigned getAltOpcode() const { 2283 return AltOp ? AltOp->getOpcode() : 0; 2284 } 2285 2286 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2287 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2288 int findLaneForValue(Value *V) const { 2289 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2290 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2291 if (!ReorderIndices.empty()) 2292 FoundLane = ReorderIndices[FoundLane]; 2293 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2294 if (!ReuseShuffleIndices.empty()) { 2295 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2296 find(ReuseShuffleIndices, FoundLane)); 2297 } 2298 return FoundLane; 2299 } 2300 2301 #ifndef NDEBUG 2302 /// Debug printer. 2303 LLVM_DUMP_METHOD void dump() const { 2304 dbgs() << Idx << ".\n"; 2305 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2306 dbgs() << "Operand " << OpI << ":\n"; 2307 for (const Value *V : Operands[OpI]) 2308 dbgs().indent(2) << *V << "\n"; 2309 } 2310 dbgs() << "Scalars: \n"; 2311 for (Value *V : Scalars) 2312 dbgs().indent(2) << *V << "\n"; 2313 dbgs() << "State: "; 2314 switch (State) { 2315 case Vectorize: 2316 dbgs() << "Vectorize\n"; 2317 break; 2318 case ScatterVectorize: 2319 dbgs() << "ScatterVectorize\n"; 2320 break; 2321 case NeedToGather: 2322 dbgs() << "NeedToGather\n"; 2323 break; 2324 } 2325 dbgs() << "MainOp: "; 2326 if (MainOp) 2327 dbgs() << *MainOp << "\n"; 2328 else 2329 dbgs() << "NULL\n"; 2330 dbgs() << "AltOp: "; 2331 if (AltOp) 2332 dbgs() << *AltOp << "\n"; 2333 else 2334 dbgs() << "NULL\n"; 2335 dbgs() << "VectorizedValue: "; 2336 if (VectorizedValue) 2337 dbgs() << *VectorizedValue << "\n"; 2338 else 2339 dbgs() << "NULL\n"; 2340 dbgs() << "ReuseShuffleIndices: "; 2341 if (ReuseShuffleIndices.empty()) 2342 dbgs() << "Empty"; 2343 else 2344 for (int ReuseIdx : ReuseShuffleIndices) 2345 dbgs() << ReuseIdx << ", "; 2346 dbgs() << "\n"; 2347 dbgs() << "ReorderIndices: "; 2348 for (unsigned ReorderIdx : ReorderIndices) 2349 dbgs() << ReorderIdx << ", "; 2350 dbgs() << "\n"; 2351 dbgs() << "UserTreeIndices: "; 2352 for (const auto &EInfo : UserTreeIndices) 2353 dbgs() << EInfo << ", "; 2354 dbgs() << "\n"; 2355 } 2356 #endif 2357 }; 2358 2359 #ifndef NDEBUG 2360 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2361 InstructionCost VecCost, 2362 InstructionCost ScalarCost) const { 2363 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2364 dbgs() << "SLP: Costs:\n"; 2365 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2366 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2367 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2368 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2369 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2370 } 2371 #endif 2372 2373 /// Create a new VectorizableTree entry. 2374 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2375 const InstructionsState &S, 2376 const EdgeInfo &UserTreeIdx, 2377 ArrayRef<int> ReuseShuffleIndices = None, 2378 ArrayRef<unsigned> ReorderIndices = None) { 2379 TreeEntry::EntryState EntryState = 2380 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2381 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2382 ReuseShuffleIndices, ReorderIndices); 2383 } 2384 2385 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2386 TreeEntry::EntryState EntryState, 2387 Optional<ScheduleData *> Bundle, 2388 const InstructionsState &S, 2389 const EdgeInfo &UserTreeIdx, 2390 ArrayRef<int> ReuseShuffleIndices = None, 2391 ArrayRef<unsigned> ReorderIndices = None) { 2392 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2393 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2394 "Need to vectorize gather entry?"); 2395 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2396 TreeEntry *Last = VectorizableTree.back().get(); 2397 Last->Idx = VectorizableTree.size() - 1; 2398 Last->State = EntryState; 2399 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2400 ReuseShuffleIndices.end()); 2401 if (ReorderIndices.empty()) { 2402 Last->Scalars.assign(VL.begin(), VL.end()); 2403 Last->setOperations(S); 2404 } else { 2405 // Reorder scalars and build final mask. 2406 Last->Scalars.assign(VL.size(), nullptr); 2407 transform(ReorderIndices, Last->Scalars.begin(), 2408 [VL](unsigned Idx) -> Value * { 2409 if (Idx >= VL.size()) 2410 return UndefValue::get(VL.front()->getType()); 2411 return VL[Idx]; 2412 }); 2413 InstructionsState S = getSameOpcode(Last->Scalars); 2414 Last->setOperations(S); 2415 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2416 } 2417 if (Last->State != TreeEntry::NeedToGather) { 2418 for (Value *V : VL) { 2419 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2420 ScalarToTreeEntry[V] = Last; 2421 } 2422 // Update the scheduler bundle to point to this TreeEntry. 2423 ScheduleData *BundleMember = Bundle.getValue(); 2424 assert((BundleMember || isa<PHINode>(S.MainOp) || 2425 isVectorLikeInstWithConstOps(S.MainOp) || 2426 doesNotNeedToSchedule(VL)) && 2427 "Bundle and VL out of sync"); 2428 if (BundleMember) { 2429 for (Value *V : VL) { 2430 if (doesNotNeedToBeScheduled(V)) 2431 continue; 2432 assert(BundleMember && "Unexpected end of bundle."); 2433 BundleMember->TE = Last; 2434 BundleMember = BundleMember->NextInBundle; 2435 } 2436 } 2437 assert(!BundleMember && "Bundle and VL out of sync"); 2438 } else { 2439 MustGather.insert(VL.begin(), VL.end()); 2440 } 2441 2442 if (UserTreeIdx.UserTE) 2443 Last->UserTreeIndices.push_back(UserTreeIdx); 2444 2445 return Last; 2446 } 2447 2448 /// -- Vectorization State -- 2449 /// Holds all of the tree entries. 2450 TreeEntry::VecTreeTy VectorizableTree; 2451 2452 #ifndef NDEBUG 2453 /// Debug printer. 2454 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2455 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2456 VectorizableTree[Id]->dump(); 2457 dbgs() << "\n"; 2458 } 2459 } 2460 #endif 2461 2462 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2463 2464 const TreeEntry *getTreeEntry(Value *V) const { 2465 return ScalarToTreeEntry.lookup(V); 2466 } 2467 2468 /// Maps a specific scalar to its tree entry. 2469 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2470 2471 /// Maps a value to the proposed vectorizable size. 2472 SmallDenseMap<Value *, unsigned> InstrElementSize; 2473 2474 /// A list of scalars that we found that we need to keep as scalars. 2475 ValueSet MustGather; 2476 2477 /// This POD struct describes one external user in the vectorized tree. 2478 struct ExternalUser { 2479 ExternalUser(Value *S, llvm::User *U, int L) 2480 : Scalar(S), User(U), Lane(L) {} 2481 2482 // Which scalar in our function. 2483 Value *Scalar; 2484 2485 // Which user that uses the scalar. 2486 llvm::User *User; 2487 2488 // Which lane does the scalar belong to. 2489 int Lane; 2490 }; 2491 using UserList = SmallVector<ExternalUser, 16>; 2492 2493 /// Checks if two instructions may access the same memory. 2494 /// 2495 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2496 /// is invariant in the calling loop. 2497 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2498 Instruction *Inst2) { 2499 // First check if the result is already in the cache. 2500 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2501 Optional<bool> &result = AliasCache[key]; 2502 if (result.hasValue()) { 2503 return result.getValue(); 2504 } 2505 bool aliased = true; 2506 if (Loc1.Ptr && isSimple(Inst1)) 2507 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2508 // Store the result in the cache. 2509 result = aliased; 2510 return aliased; 2511 } 2512 2513 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2514 2515 /// Cache for alias results. 2516 /// TODO: consider moving this to the AliasAnalysis itself. 2517 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2518 2519 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2520 // globally through SLP because we don't perform any action which 2521 // invalidates capture results. 2522 BatchAAResults BatchAA; 2523 2524 /// Removes an instruction from its block and eventually deletes it. 2525 /// It's like Instruction::eraseFromParent() except that the actual deletion 2526 /// is delayed until BoUpSLP is destructed. 2527 /// This is required to ensure that there are no incorrect collisions in the 2528 /// AliasCache, which can happen if a new instruction is allocated at the 2529 /// same address as a previously deleted instruction. 2530 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2531 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2532 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2533 } 2534 2535 /// Temporary store for deleted instructions. Instructions will be deleted 2536 /// eventually when the BoUpSLP is destructed. 2537 DenseMap<Instruction *, bool> DeletedInstructions; 2538 2539 /// A list of values that need to extracted out of the tree. 2540 /// This list holds pairs of (Internal Scalar : External User). External User 2541 /// can be nullptr, it means that this Internal Scalar will be used later, 2542 /// after vectorization. 2543 UserList ExternalUses; 2544 2545 /// Values used only by @llvm.assume calls. 2546 SmallPtrSet<const Value *, 32> EphValues; 2547 2548 /// Holds all of the instructions that we gathered. 2549 SetVector<Instruction *> GatherShuffleSeq; 2550 2551 /// A list of blocks that we are going to CSE. 2552 SetVector<BasicBlock *> CSEBlocks; 2553 2554 /// Contains all scheduling relevant data for an instruction. 2555 /// A ScheduleData either represents a single instruction or a member of an 2556 /// instruction bundle (= a group of instructions which is combined into a 2557 /// vector instruction). 2558 struct ScheduleData { 2559 // The initial value for the dependency counters. It means that the 2560 // dependencies are not calculated yet. 2561 enum { InvalidDeps = -1 }; 2562 2563 ScheduleData() = default; 2564 2565 void init(int BlockSchedulingRegionID, Value *OpVal) { 2566 FirstInBundle = this; 2567 NextInBundle = nullptr; 2568 NextLoadStore = nullptr; 2569 IsScheduled = false; 2570 SchedulingRegionID = BlockSchedulingRegionID; 2571 clearDependencies(); 2572 OpValue = OpVal; 2573 TE = nullptr; 2574 } 2575 2576 /// Verify basic self consistency properties 2577 void verify() { 2578 if (hasValidDependencies()) { 2579 assert(UnscheduledDeps <= Dependencies && "invariant"); 2580 } else { 2581 assert(UnscheduledDeps == Dependencies && "invariant"); 2582 } 2583 2584 if (IsScheduled) { 2585 assert(isSchedulingEntity() && 2586 "unexpected scheduled state"); 2587 for (const ScheduleData *BundleMember = this; BundleMember; 2588 BundleMember = BundleMember->NextInBundle) { 2589 assert(BundleMember->hasValidDependencies() && 2590 BundleMember->UnscheduledDeps == 0 && 2591 "unexpected scheduled state"); 2592 assert((BundleMember == this || !BundleMember->IsScheduled) && 2593 "only bundle is marked scheduled"); 2594 } 2595 } 2596 2597 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2598 "all bundle members must be in same basic block"); 2599 } 2600 2601 /// Returns true if the dependency information has been calculated. 2602 /// Note that depenendency validity can vary between instructions within 2603 /// a single bundle. 2604 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2605 2606 /// Returns true for single instructions and for bundle representatives 2607 /// (= the head of a bundle). 2608 bool isSchedulingEntity() const { return FirstInBundle == this; } 2609 2610 /// Returns true if it represents an instruction bundle and not only a 2611 /// single instruction. 2612 bool isPartOfBundle() const { 2613 return NextInBundle != nullptr || FirstInBundle != this || TE; 2614 } 2615 2616 /// Returns true if it is ready for scheduling, i.e. it has no more 2617 /// unscheduled depending instructions/bundles. 2618 bool isReady() const { 2619 assert(isSchedulingEntity() && 2620 "can't consider non-scheduling entity for ready list"); 2621 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2622 } 2623 2624 /// Modifies the number of unscheduled dependencies for this instruction, 2625 /// and returns the number of remaining dependencies for the containing 2626 /// bundle. 2627 int incrementUnscheduledDeps(int Incr) { 2628 assert(hasValidDependencies() && 2629 "increment of unscheduled deps would be meaningless"); 2630 UnscheduledDeps += Incr; 2631 return FirstInBundle->unscheduledDepsInBundle(); 2632 } 2633 2634 /// Sets the number of unscheduled dependencies to the number of 2635 /// dependencies. 2636 void resetUnscheduledDeps() { 2637 UnscheduledDeps = Dependencies; 2638 } 2639 2640 /// Clears all dependency information. 2641 void clearDependencies() { 2642 Dependencies = InvalidDeps; 2643 resetUnscheduledDeps(); 2644 MemoryDependencies.clear(); 2645 ControlDependencies.clear(); 2646 } 2647 2648 int unscheduledDepsInBundle() const { 2649 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2650 int Sum = 0; 2651 for (const ScheduleData *BundleMember = this; BundleMember; 2652 BundleMember = BundleMember->NextInBundle) { 2653 if (BundleMember->UnscheduledDeps == InvalidDeps) 2654 return InvalidDeps; 2655 Sum += BundleMember->UnscheduledDeps; 2656 } 2657 return Sum; 2658 } 2659 2660 void dump(raw_ostream &os) const { 2661 if (!isSchedulingEntity()) { 2662 os << "/ " << *Inst; 2663 } else if (NextInBundle) { 2664 os << '[' << *Inst; 2665 ScheduleData *SD = NextInBundle; 2666 while (SD) { 2667 os << ';' << *SD->Inst; 2668 SD = SD->NextInBundle; 2669 } 2670 os << ']'; 2671 } else { 2672 os << *Inst; 2673 } 2674 } 2675 2676 Instruction *Inst = nullptr; 2677 2678 /// Opcode of the current instruction in the schedule data. 2679 Value *OpValue = nullptr; 2680 2681 /// The TreeEntry that this instruction corresponds to. 2682 TreeEntry *TE = nullptr; 2683 2684 /// Points to the head in an instruction bundle (and always to this for 2685 /// single instructions). 2686 ScheduleData *FirstInBundle = nullptr; 2687 2688 /// Single linked list of all instructions in a bundle. Null if it is a 2689 /// single instruction. 2690 ScheduleData *NextInBundle = nullptr; 2691 2692 /// Single linked list of all memory instructions (e.g. load, store, call) 2693 /// in the block - until the end of the scheduling region. 2694 ScheduleData *NextLoadStore = nullptr; 2695 2696 /// The dependent memory instructions. 2697 /// This list is derived on demand in calculateDependencies(). 2698 SmallVector<ScheduleData *, 4> MemoryDependencies; 2699 2700 /// List of instructions which this instruction could be control dependent 2701 /// on. Allowing such nodes to be scheduled below this one could introduce 2702 /// a runtime fault which didn't exist in the original program. 2703 /// ex: this is a load or udiv following a readonly call which inf loops 2704 SmallVector<ScheduleData *, 4> ControlDependencies; 2705 2706 /// This ScheduleData is in the current scheduling region if this matches 2707 /// the current SchedulingRegionID of BlockScheduling. 2708 int SchedulingRegionID = 0; 2709 2710 /// Used for getting a "good" final ordering of instructions. 2711 int SchedulingPriority = 0; 2712 2713 /// The number of dependencies. Constitutes of the number of users of the 2714 /// instruction plus the number of dependent memory instructions (if any). 2715 /// This value is calculated on demand. 2716 /// If InvalidDeps, the number of dependencies is not calculated yet. 2717 int Dependencies = InvalidDeps; 2718 2719 /// The number of dependencies minus the number of dependencies of scheduled 2720 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2721 /// for scheduling. 2722 /// Note that this is negative as long as Dependencies is not calculated. 2723 int UnscheduledDeps = InvalidDeps; 2724 2725 /// True if this instruction is scheduled (or considered as scheduled in the 2726 /// dry-run). 2727 bool IsScheduled = false; 2728 }; 2729 2730 #ifndef NDEBUG 2731 friend inline raw_ostream &operator<<(raw_ostream &os, 2732 const BoUpSLP::ScheduleData &SD) { 2733 SD.dump(os); 2734 return os; 2735 } 2736 #endif 2737 2738 friend struct GraphTraits<BoUpSLP *>; 2739 friend struct DOTGraphTraits<BoUpSLP *>; 2740 2741 /// Contains all scheduling data for a basic block. 2742 /// It does not schedules instructions, which are not memory read/write 2743 /// instructions and their operands are either constants, or arguments, or 2744 /// phis, or instructions from others blocks, or their users are phis or from 2745 /// the other blocks. The resulting vector instructions can be placed at the 2746 /// beginning of the basic block without scheduling (if operands does not need 2747 /// to be scheduled) or at the end of the block (if users are outside of the 2748 /// block). It allows to save some compile time and memory used by the 2749 /// compiler. 2750 /// ScheduleData is assigned for each instruction in between the boundaries of 2751 /// the tree entry, even for those, which are not part of the graph. It is 2752 /// required to correctly follow the dependencies between the instructions and 2753 /// their correct scheduling. The ScheduleData is not allocated for the 2754 /// instructions, which do not require scheduling, like phis, nodes with 2755 /// extractelements/insertelements only or nodes with instructions, with 2756 /// uses/operands outside of the block. 2757 struct BlockScheduling { 2758 BlockScheduling(BasicBlock *BB) 2759 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2760 2761 void clear() { 2762 ReadyInsts.clear(); 2763 ScheduleStart = nullptr; 2764 ScheduleEnd = nullptr; 2765 FirstLoadStoreInRegion = nullptr; 2766 LastLoadStoreInRegion = nullptr; 2767 2768 // Reduce the maximum schedule region size by the size of the 2769 // previous scheduling run. 2770 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2771 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2772 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2773 ScheduleRegionSize = 0; 2774 2775 // Make a new scheduling region, i.e. all existing ScheduleData is not 2776 // in the new region yet. 2777 ++SchedulingRegionID; 2778 } 2779 2780 ScheduleData *getScheduleData(Instruction *I) { 2781 if (BB != I->getParent()) 2782 // Avoid lookup if can't possibly be in map. 2783 return nullptr; 2784 ScheduleData *SD = ScheduleDataMap.lookup(I); 2785 if (SD && isInSchedulingRegion(SD)) 2786 return SD; 2787 return nullptr; 2788 } 2789 2790 ScheduleData *getScheduleData(Value *V) { 2791 if (auto *I = dyn_cast<Instruction>(V)) 2792 return getScheduleData(I); 2793 return nullptr; 2794 } 2795 2796 ScheduleData *getScheduleData(Value *V, Value *Key) { 2797 if (V == Key) 2798 return getScheduleData(V); 2799 auto I = ExtraScheduleDataMap.find(V); 2800 if (I != ExtraScheduleDataMap.end()) { 2801 ScheduleData *SD = I->second.lookup(Key); 2802 if (SD && isInSchedulingRegion(SD)) 2803 return SD; 2804 } 2805 return nullptr; 2806 } 2807 2808 bool isInSchedulingRegion(ScheduleData *SD) const { 2809 return SD->SchedulingRegionID == SchedulingRegionID; 2810 } 2811 2812 /// Marks an instruction as scheduled and puts all dependent ready 2813 /// instructions into the ready-list. 2814 template <typename ReadyListType> 2815 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2816 SD->IsScheduled = true; 2817 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2818 2819 for (ScheduleData *BundleMember = SD; BundleMember; 2820 BundleMember = BundleMember->NextInBundle) { 2821 if (BundleMember->Inst != BundleMember->OpValue) 2822 continue; 2823 2824 // Handle the def-use chain dependencies. 2825 2826 // Decrement the unscheduled counter and insert to ready list if ready. 2827 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2828 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2829 if (OpDef && OpDef->hasValidDependencies() && 2830 OpDef->incrementUnscheduledDeps(-1) == 0) { 2831 // There are no more unscheduled dependencies after 2832 // decrementing, so we can put the dependent instruction 2833 // into the ready list. 2834 ScheduleData *DepBundle = OpDef->FirstInBundle; 2835 assert(!DepBundle->IsScheduled && 2836 "already scheduled bundle gets ready"); 2837 ReadyList.insert(DepBundle); 2838 LLVM_DEBUG(dbgs() 2839 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2840 } 2841 }); 2842 }; 2843 2844 // If BundleMember is a vector bundle, its operands may have been 2845 // reordered during buildTree(). We therefore need to get its operands 2846 // through the TreeEntry. 2847 if (TreeEntry *TE = BundleMember->TE) { 2848 // Need to search for the lane since the tree entry can be reordered. 2849 int Lane = std::distance(TE->Scalars.begin(), 2850 find(TE->Scalars, BundleMember->Inst)); 2851 assert(Lane >= 0 && "Lane not set"); 2852 2853 // Since vectorization tree is being built recursively this assertion 2854 // ensures that the tree entry has all operands set before reaching 2855 // this code. Couple of exceptions known at the moment are extracts 2856 // where their second (immediate) operand is not added. Since 2857 // immediates do not affect scheduler behavior this is considered 2858 // okay. 2859 auto *In = BundleMember->Inst; 2860 assert(In && 2861 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2862 In->getNumOperands() == TE->getNumOperands()) && 2863 "Missed TreeEntry operands?"); 2864 (void)In; // fake use to avoid build failure when assertions disabled 2865 2866 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2867 OpIdx != NumOperands; ++OpIdx) 2868 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2869 DecrUnsched(I); 2870 } else { 2871 // If BundleMember is a stand-alone instruction, no operand reordering 2872 // has taken place, so we directly access its operands. 2873 for (Use &U : BundleMember->Inst->operands()) 2874 if (auto *I = dyn_cast<Instruction>(U.get())) 2875 DecrUnsched(I); 2876 } 2877 // Handle the memory dependencies. 2878 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2879 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2880 // There are no more unscheduled dependencies after decrementing, 2881 // so we can put the dependent instruction into the ready list. 2882 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2883 assert(!DepBundle->IsScheduled && 2884 "already scheduled bundle gets ready"); 2885 ReadyList.insert(DepBundle); 2886 LLVM_DEBUG(dbgs() 2887 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2888 } 2889 } 2890 // Handle the control dependencies. 2891 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2892 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2893 // There are no more unscheduled dependencies after decrementing, 2894 // so we can put the dependent instruction into the ready list. 2895 ScheduleData *DepBundle = DepSD->FirstInBundle; 2896 assert(!DepBundle->IsScheduled && 2897 "already scheduled bundle gets ready"); 2898 ReadyList.insert(DepBundle); 2899 LLVM_DEBUG(dbgs() 2900 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2901 } 2902 } 2903 2904 } 2905 } 2906 2907 /// Verify basic self consistency properties of the data structure. 2908 void verify() { 2909 if (!ScheduleStart) 2910 return; 2911 2912 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2913 ScheduleStart->comesBefore(ScheduleEnd) && 2914 "Not a valid scheduling region?"); 2915 2916 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2917 auto *SD = getScheduleData(I); 2918 if (!SD) 2919 continue; 2920 assert(isInSchedulingRegion(SD) && 2921 "primary schedule data not in window?"); 2922 assert(isInSchedulingRegion(SD->FirstInBundle) && 2923 "entire bundle in window!"); 2924 (void)SD; 2925 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2926 } 2927 2928 for (auto *SD : ReadyInsts) { 2929 assert(SD->isSchedulingEntity() && SD->isReady() && 2930 "item in ready list not ready?"); 2931 (void)SD; 2932 } 2933 } 2934 2935 void doForAllOpcodes(Value *V, 2936 function_ref<void(ScheduleData *SD)> Action) { 2937 if (ScheduleData *SD = getScheduleData(V)) 2938 Action(SD); 2939 auto I = ExtraScheduleDataMap.find(V); 2940 if (I != ExtraScheduleDataMap.end()) 2941 for (auto &P : I->second) 2942 if (isInSchedulingRegion(P.second)) 2943 Action(P.second); 2944 } 2945 2946 /// Put all instructions into the ReadyList which are ready for scheduling. 2947 template <typename ReadyListType> 2948 void initialFillReadyList(ReadyListType &ReadyList) { 2949 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2950 doForAllOpcodes(I, [&](ScheduleData *SD) { 2951 if (SD->isSchedulingEntity() && SD->isReady()) { 2952 ReadyList.insert(SD); 2953 LLVM_DEBUG(dbgs() 2954 << "SLP: initially in ready list: " << *SD << "\n"); 2955 } 2956 }); 2957 } 2958 } 2959 2960 /// Build a bundle from the ScheduleData nodes corresponding to the 2961 /// scalar instruction for each lane. 2962 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2963 2964 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2965 /// cyclic dependencies. This is only a dry-run, no instructions are 2966 /// actually moved at this stage. 2967 /// \returns the scheduling bundle. The returned Optional value is non-None 2968 /// if \p VL is allowed to be scheduled. 2969 Optional<ScheduleData *> 2970 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2971 const InstructionsState &S); 2972 2973 /// Un-bundles a group of instructions. 2974 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2975 2976 /// Allocates schedule data chunk. 2977 ScheduleData *allocateScheduleDataChunks(); 2978 2979 /// Extends the scheduling region so that V is inside the region. 2980 /// \returns true if the region size is within the limit. 2981 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2982 2983 /// Initialize the ScheduleData structures for new instructions in the 2984 /// scheduling region. 2985 void initScheduleData(Instruction *FromI, Instruction *ToI, 2986 ScheduleData *PrevLoadStore, 2987 ScheduleData *NextLoadStore); 2988 2989 /// Updates the dependency information of a bundle and of all instructions/ 2990 /// bundles which depend on the original bundle. 2991 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2992 BoUpSLP *SLP); 2993 2994 /// Sets all instruction in the scheduling region to un-scheduled. 2995 void resetSchedule(); 2996 2997 BasicBlock *BB; 2998 2999 /// Simple memory allocation for ScheduleData. 3000 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3001 3002 /// The size of a ScheduleData array in ScheduleDataChunks. 3003 int ChunkSize; 3004 3005 /// The allocator position in the current chunk, which is the last entry 3006 /// of ScheduleDataChunks. 3007 int ChunkPos; 3008 3009 /// Attaches ScheduleData to Instruction. 3010 /// Note that the mapping survives during all vectorization iterations, i.e. 3011 /// ScheduleData structures are recycled. 3012 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3013 3014 /// Attaches ScheduleData to Instruction with the leading key. 3015 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3016 ExtraScheduleDataMap; 3017 3018 /// The ready-list for scheduling (only used for the dry-run). 3019 SetVector<ScheduleData *> ReadyInsts; 3020 3021 /// The first instruction of the scheduling region. 3022 Instruction *ScheduleStart = nullptr; 3023 3024 /// The first instruction _after_ the scheduling region. 3025 Instruction *ScheduleEnd = nullptr; 3026 3027 /// The first memory accessing instruction in the scheduling region 3028 /// (can be null). 3029 ScheduleData *FirstLoadStoreInRegion = nullptr; 3030 3031 /// The last memory accessing instruction in the scheduling region 3032 /// (can be null). 3033 ScheduleData *LastLoadStoreInRegion = nullptr; 3034 3035 /// The current size of the scheduling region. 3036 int ScheduleRegionSize = 0; 3037 3038 /// The maximum size allowed for the scheduling region. 3039 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3040 3041 /// The ID of the scheduling region. For a new vectorization iteration this 3042 /// is incremented which "removes" all ScheduleData from the region. 3043 /// Make sure that the initial SchedulingRegionID is greater than the 3044 /// initial SchedulingRegionID in ScheduleData (which is 0). 3045 int SchedulingRegionID = 1; 3046 }; 3047 3048 /// Attaches the BlockScheduling structures to basic blocks. 3049 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3050 3051 /// Performs the "real" scheduling. Done before vectorization is actually 3052 /// performed in a basic block. 3053 void scheduleBlock(BlockScheduling *BS); 3054 3055 /// List of users to ignore during scheduling and that don't need extracting. 3056 ArrayRef<Value *> UserIgnoreList; 3057 3058 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3059 /// sorted SmallVectors of unsigned. 3060 struct OrdersTypeDenseMapInfo { 3061 static OrdersType getEmptyKey() { 3062 OrdersType V; 3063 V.push_back(~1U); 3064 return V; 3065 } 3066 3067 static OrdersType getTombstoneKey() { 3068 OrdersType V; 3069 V.push_back(~2U); 3070 return V; 3071 } 3072 3073 static unsigned getHashValue(const OrdersType &V) { 3074 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3075 } 3076 3077 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3078 return LHS == RHS; 3079 } 3080 }; 3081 3082 // Analysis and block reference. 3083 Function *F; 3084 ScalarEvolution *SE; 3085 TargetTransformInfo *TTI; 3086 TargetLibraryInfo *TLI; 3087 LoopInfo *LI; 3088 DominatorTree *DT; 3089 AssumptionCache *AC; 3090 DemandedBits *DB; 3091 const DataLayout *DL; 3092 OptimizationRemarkEmitter *ORE; 3093 3094 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3095 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3096 3097 /// Instruction builder to construct the vectorized tree. 3098 IRBuilder<> Builder; 3099 3100 /// A map of scalar integer values to the smallest bit width with which they 3101 /// can legally be represented. The values map to (width, signed) pairs, 3102 /// where "width" indicates the minimum bit width and "signed" is True if the 3103 /// value must be signed-extended, rather than zero-extended, back to its 3104 /// original width. 3105 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3106 }; 3107 3108 } // end namespace slpvectorizer 3109 3110 template <> struct GraphTraits<BoUpSLP *> { 3111 using TreeEntry = BoUpSLP::TreeEntry; 3112 3113 /// NodeRef has to be a pointer per the GraphWriter. 3114 using NodeRef = TreeEntry *; 3115 3116 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3117 3118 /// Add the VectorizableTree to the index iterator to be able to return 3119 /// TreeEntry pointers. 3120 struct ChildIteratorType 3121 : public iterator_adaptor_base< 3122 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3123 ContainerTy &VectorizableTree; 3124 3125 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3126 ContainerTy &VT) 3127 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3128 3129 NodeRef operator*() { return I->UserTE; } 3130 }; 3131 3132 static NodeRef getEntryNode(BoUpSLP &R) { 3133 return R.VectorizableTree[0].get(); 3134 } 3135 3136 static ChildIteratorType child_begin(NodeRef N) { 3137 return {N->UserTreeIndices.begin(), N->Container}; 3138 } 3139 3140 static ChildIteratorType child_end(NodeRef N) { 3141 return {N->UserTreeIndices.end(), N->Container}; 3142 } 3143 3144 /// For the node iterator we just need to turn the TreeEntry iterator into a 3145 /// TreeEntry* iterator so that it dereferences to NodeRef. 3146 class nodes_iterator { 3147 using ItTy = ContainerTy::iterator; 3148 ItTy It; 3149 3150 public: 3151 nodes_iterator(const ItTy &It2) : It(It2) {} 3152 NodeRef operator*() { return It->get(); } 3153 nodes_iterator operator++() { 3154 ++It; 3155 return *this; 3156 } 3157 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3158 }; 3159 3160 static nodes_iterator nodes_begin(BoUpSLP *R) { 3161 return nodes_iterator(R->VectorizableTree.begin()); 3162 } 3163 3164 static nodes_iterator nodes_end(BoUpSLP *R) { 3165 return nodes_iterator(R->VectorizableTree.end()); 3166 } 3167 3168 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3169 }; 3170 3171 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3172 using TreeEntry = BoUpSLP::TreeEntry; 3173 3174 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3175 3176 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3177 std::string Str; 3178 raw_string_ostream OS(Str); 3179 if (isSplat(Entry->Scalars)) 3180 OS << "<splat> "; 3181 for (auto V : Entry->Scalars) { 3182 OS << *V; 3183 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3184 return EU.Scalar == V; 3185 })) 3186 OS << " <extract>"; 3187 OS << "\n"; 3188 } 3189 return Str; 3190 } 3191 3192 static std::string getNodeAttributes(const TreeEntry *Entry, 3193 const BoUpSLP *) { 3194 if (Entry->State == TreeEntry::NeedToGather) 3195 return "color=red"; 3196 return ""; 3197 } 3198 }; 3199 3200 } // end namespace llvm 3201 3202 BoUpSLP::~BoUpSLP() { 3203 for (const auto &Pair : DeletedInstructions) { 3204 // Replace operands of ignored instructions with Undefs in case if they were 3205 // marked for deletion. 3206 if (Pair.getSecond()) { 3207 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3208 Pair.getFirst()->replaceAllUsesWith(Undef); 3209 } 3210 Pair.getFirst()->dropAllReferences(); 3211 } 3212 for (const auto &Pair : DeletedInstructions) { 3213 assert(Pair.getFirst()->use_empty() && 3214 "trying to erase instruction with users."); 3215 Pair.getFirst()->eraseFromParent(); 3216 } 3217 #ifdef EXPENSIVE_CHECKS 3218 // If we could guarantee that this call is not extremely slow, we could 3219 // remove the ifdef limitation (see PR47712). 3220 assert(!verifyFunction(*F, &dbgs())); 3221 #endif 3222 } 3223 3224 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3225 for (auto *V : AV) { 3226 if (auto *I = dyn_cast<Instruction>(V)) 3227 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3228 }; 3229 } 3230 3231 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3232 /// contains original mask for the scalars reused in the node. Procedure 3233 /// transform this mask in accordance with the given \p Mask. 3234 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3235 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3236 "Expected non-empty mask."); 3237 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3238 Prev.swap(Reuses); 3239 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3240 if (Mask[I] != UndefMaskElem) 3241 Reuses[Mask[I]] = Prev[I]; 3242 } 3243 3244 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3245 /// the original order of the scalars. Procedure transforms the provided order 3246 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3247 /// identity order, \p Order is cleared. 3248 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3249 assert(!Mask.empty() && "Expected non-empty mask."); 3250 SmallVector<int> MaskOrder; 3251 if (Order.empty()) { 3252 MaskOrder.resize(Mask.size()); 3253 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3254 } else { 3255 inversePermutation(Order, MaskOrder); 3256 } 3257 reorderReuses(MaskOrder, Mask); 3258 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3259 Order.clear(); 3260 return; 3261 } 3262 Order.assign(Mask.size(), Mask.size()); 3263 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3264 if (MaskOrder[I] != UndefMaskElem) 3265 Order[MaskOrder[I]] = I; 3266 fixupOrderingIndices(Order); 3267 } 3268 3269 Optional<BoUpSLP::OrdersType> 3270 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3271 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3272 unsigned NumScalars = TE.Scalars.size(); 3273 OrdersType CurrentOrder(NumScalars, NumScalars); 3274 SmallVector<int> Positions; 3275 SmallBitVector UsedPositions(NumScalars); 3276 const TreeEntry *STE = nullptr; 3277 // Try to find all gathered scalars that are gets vectorized in other 3278 // vectorize node. Here we can have only one single tree vector node to 3279 // correctly identify order of the gathered scalars. 3280 for (unsigned I = 0; I < NumScalars; ++I) { 3281 Value *V = TE.Scalars[I]; 3282 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3283 continue; 3284 if (const auto *LocalSTE = getTreeEntry(V)) { 3285 if (!STE) 3286 STE = LocalSTE; 3287 else if (STE != LocalSTE) 3288 // Take the order only from the single vector node. 3289 return None; 3290 unsigned Lane = 3291 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3292 if (Lane >= NumScalars) 3293 return None; 3294 if (CurrentOrder[Lane] != NumScalars) { 3295 if (Lane != I) 3296 continue; 3297 UsedPositions.reset(CurrentOrder[Lane]); 3298 } 3299 // The partial identity (where only some elements of the gather node are 3300 // in the identity order) is good. 3301 CurrentOrder[Lane] = I; 3302 UsedPositions.set(I); 3303 } 3304 } 3305 // Need to keep the order if we have a vector entry and at least 2 scalars or 3306 // the vectorized entry has just 2 scalars. 3307 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3308 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3309 for (unsigned I = 0; I < NumScalars; ++I) 3310 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3311 return false; 3312 return true; 3313 }; 3314 if (IsIdentityOrder(CurrentOrder)) { 3315 CurrentOrder.clear(); 3316 return CurrentOrder; 3317 } 3318 auto *It = CurrentOrder.begin(); 3319 for (unsigned I = 0; I < NumScalars;) { 3320 if (UsedPositions.test(I)) { 3321 ++I; 3322 continue; 3323 } 3324 if (*It == NumScalars) { 3325 *It = I; 3326 ++I; 3327 } 3328 ++It; 3329 } 3330 return CurrentOrder; 3331 } 3332 return None; 3333 } 3334 3335 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3336 bool TopToBottom) { 3337 // No need to reorder if need to shuffle reuses, still need to shuffle the 3338 // node. 3339 if (!TE.ReuseShuffleIndices.empty()) 3340 return None; 3341 if (TE.State == TreeEntry::Vectorize && 3342 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3343 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3344 !TE.isAltShuffle()) 3345 return TE.ReorderIndices; 3346 if (TE.State == TreeEntry::NeedToGather) { 3347 // TODO: add analysis of other gather nodes with extractelement 3348 // instructions and other values/instructions, not only undefs. 3349 if (((TE.getOpcode() == Instruction::ExtractElement && 3350 !TE.isAltShuffle()) || 3351 (all_of(TE.Scalars, 3352 [](Value *V) { 3353 return isa<UndefValue, ExtractElementInst>(V); 3354 }) && 3355 any_of(TE.Scalars, 3356 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3357 all_of(TE.Scalars, 3358 [](Value *V) { 3359 auto *EE = dyn_cast<ExtractElementInst>(V); 3360 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3361 }) && 3362 allSameType(TE.Scalars)) { 3363 // Check that gather of extractelements can be represented as 3364 // just a shuffle of a single vector. 3365 OrdersType CurrentOrder; 3366 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3367 if (Reuse || !CurrentOrder.empty()) { 3368 if (!CurrentOrder.empty()) 3369 fixupOrderingIndices(CurrentOrder); 3370 return CurrentOrder; 3371 } 3372 } 3373 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3374 return CurrentOrder; 3375 } 3376 return None; 3377 } 3378 3379 void BoUpSLP::reorderTopToBottom() { 3380 // Maps VF to the graph nodes. 3381 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3382 // ExtractElement gather nodes which can be vectorized and need to handle 3383 // their ordering. 3384 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3385 // Find all reorderable nodes with the given VF. 3386 // Currently the are vectorized stores,loads,extracts + some gathering of 3387 // extracts. 3388 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3389 const std::unique_ptr<TreeEntry> &TE) { 3390 if (Optional<OrdersType> CurrentOrder = 3391 getReorderingData(*TE, /*TopToBottom=*/true)) { 3392 // Do not include ordering for nodes used in the alt opcode vectorization, 3393 // better to reorder them during bottom-to-top stage. If follow the order 3394 // here, it causes reordering of the whole graph though actually it is 3395 // profitable just to reorder the subgraph that starts from the alternate 3396 // opcode vectorization node. Such nodes already end-up with the shuffle 3397 // instruction and it is just enough to change this shuffle rather than 3398 // rotate the scalars for the whole graph. 3399 unsigned Cnt = 0; 3400 const TreeEntry *UserTE = TE.get(); 3401 while (UserTE && Cnt < RecursionMaxDepth) { 3402 if (UserTE->UserTreeIndices.size() != 1) 3403 break; 3404 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3405 return EI.UserTE->State == TreeEntry::Vectorize && 3406 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3407 })) 3408 return; 3409 if (UserTE->UserTreeIndices.empty()) 3410 UserTE = nullptr; 3411 else 3412 UserTE = UserTE->UserTreeIndices.back().UserTE; 3413 ++Cnt; 3414 } 3415 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3416 if (TE->State != TreeEntry::Vectorize) 3417 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3418 } 3419 }); 3420 3421 // Reorder the graph nodes according to their vectorization factor. 3422 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3423 VF /= 2) { 3424 auto It = VFToOrderedEntries.find(VF); 3425 if (It == VFToOrderedEntries.end()) 3426 continue; 3427 // Try to find the most profitable order. We just are looking for the most 3428 // used order and reorder scalar elements in the nodes according to this 3429 // mostly used order. 3430 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3431 // All operands are reordered and used only in this node - propagate the 3432 // most used order to the user node. 3433 MapVector<OrdersType, unsigned, 3434 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3435 OrdersUses; 3436 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3437 for (const TreeEntry *OpTE : OrderedEntries) { 3438 // No need to reorder this nodes, still need to extend and to use shuffle, 3439 // just need to merge reordering shuffle and the reuse shuffle. 3440 if (!OpTE->ReuseShuffleIndices.empty()) 3441 continue; 3442 // Count number of orders uses. 3443 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3444 if (OpTE->State == TreeEntry::NeedToGather) 3445 return GathersToOrders.find(OpTE)->second; 3446 return OpTE->ReorderIndices; 3447 }(); 3448 // Stores actually store the mask, not the order, need to invert. 3449 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3450 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3451 SmallVector<int> Mask; 3452 inversePermutation(Order, Mask); 3453 unsigned E = Order.size(); 3454 OrdersType CurrentOrder(E, E); 3455 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3456 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3457 }); 3458 fixupOrderingIndices(CurrentOrder); 3459 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3460 } else { 3461 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3462 } 3463 } 3464 // Set order of the user node. 3465 if (OrdersUses.empty()) 3466 continue; 3467 // Choose the most used order. 3468 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3469 unsigned Cnt = OrdersUses.front().second; 3470 for (const auto &Pair : drop_begin(OrdersUses)) { 3471 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3472 BestOrder = Pair.first; 3473 Cnt = Pair.second; 3474 } 3475 } 3476 // Set order of the user node. 3477 if (BestOrder.empty()) 3478 continue; 3479 SmallVector<int> Mask; 3480 inversePermutation(BestOrder, Mask); 3481 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3482 unsigned E = BestOrder.size(); 3483 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3484 return I < E ? static_cast<int>(I) : UndefMaskElem; 3485 }); 3486 // Do an actual reordering, if profitable. 3487 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3488 // Just do the reordering for the nodes with the given VF. 3489 if (TE->Scalars.size() != VF) { 3490 if (TE->ReuseShuffleIndices.size() == VF) { 3491 // Need to reorder the reuses masks of the operands with smaller VF to 3492 // be able to find the match between the graph nodes and scalar 3493 // operands of the given node during vectorization/cost estimation. 3494 assert(all_of(TE->UserTreeIndices, 3495 [VF, &TE](const EdgeInfo &EI) { 3496 return EI.UserTE->Scalars.size() == VF || 3497 EI.UserTE->Scalars.size() == 3498 TE->Scalars.size(); 3499 }) && 3500 "All users must be of VF size."); 3501 // Update ordering of the operands with the smaller VF than the given 3502 // one. 3503 reorderReuses(TE->ReuseShuffleIndices, Mask); 3504 } 3505 continue; 3506 } 3507 if (TE->State == TreeEntry::Vectorize && 3508 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3509 InsertElementInst>(TE->getMainOp()) && 3510 !TE->isAltShuffle()) { 3511 // Build correct orders for extract{element,value}, loads and 3512 // stores. 3513 reorderOrder(TE->ReorderIndices, Mask); 3514 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3515 TE->reorderOperands(Mask); 3516 } else { 3517 // Reorder the node and its operands. 3518 TE->reorderOperands(Mask); 3519 assert(TE->ReorderIndices.empty() && 3520 "Expected empty reorder sequence."); 3521 reorderScalars(TE->Scalars, Mask); 3522 } 3523 if (!TE->ReuseShuffleIndices.empty()) { 3524 // Apply reversed order to keep the original ordering of the reused 3525 // elements to avoid extra reorder indices shuffling. 3526 OrdersType CurrentOrder; 3527 reorderOrder(CurrentOrder, MaskOrder); 3528 SmallVector<int> NewReuses; 3529 inversePermutation(CurrentOrder, NewReuses); 3530 addMask(NewReuses, TE->ReuseShuffleIndices); 3531 TE->ReuseShuffleIndices.swap(NewReuses); 3532 } 3533 } 3534 } 3535 } 3536 3537 bool BoUpSLP::canReorderOperands( 3538 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3539 ArrayRef<TreeEntry *> ReorderableGathers, 3540 SmallVectorImpl<TreeEntry *> &GatherOps) { 3541 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3542 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3543 return OpData.first == I && 3544 OpData.second->State == TreeEntry::Vectorize; 3545 })) 3546 continue; 3547 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3548 // Do not reorder if operand node is used by many user nodes. 3549 if (any_of(TE->UserTreeIndices, 3550 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3551 return false; 3552 // Add the node to the list of the ordered nodes with the identity 3553 // order. 3554 Edges.emplace_back(I, TE); 3555 continue; 3556 } 3557 ArrayRef<Value *> VL = UserTE->getOperand(I); 3558 TreeEntry *Gather = nullptr; 3559 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3560 assert(TE->State != TreeEntry::Vectorize && 3561 "Only non-vectorized nodes are expected."); 3562 if (TE->isSame(VL)) { 3563 Gather = TE; 3564 return true; 3565 } 3566 return false; 3567 }) > 1) 3568 return false; 3569 if (Gather) 3570 GatherOps.push_back(Gather); 3571 } 3572 return true; 3573 } 3574 3575 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3576 SetVector<TreeEntry *> OrderedEntries; 3577 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3578 // Find all reorderable leaf nodes with the given VF. 3579 // Currently the are vectorized loads,extracts without alternate operands + 3580 // some gathering of extracts. 3581 SmallVector<TreeEntry *> NonVectorized; 3582 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3583 &NonVectorized]( 3584 const std::unique_ptr<TreeEntry> &TE) { 3585 if (TE->State != TreeEntry::Vectorize) 3586 NonVectorized.push_back(TE.get()); 3587 if (Optional<OrdersType> CurrentOrder = 3588 getReorderingData(*TE, /*TopToBottom=*/false)) { 3589 OrderedEntries.insert(TE.get()); 3590 if (TE->State != TreeEntry::Vectorize) 3591 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3592 } 3593 }); 3594 3595 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3596 // I.e., if the node has operands, that are reordered, try to make at least 3597 // one operand order in the natural order and reorder others + reorder the 3598 // user node itself. 3599 SmallPtrSet<const TreeEntry *, 4> Visited; 3600 while (!OrderedEntries.empty()) { 3601 // 1. Filter out only reordered nodes. 3602 // 2. If the entry has multiple uses - skip it and jump to the next node. 3603 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3604 SmallVector<TreeEntry *> Filtered; 3605 for (TreeEntry *TE : OrderedEntries) { 3606 if (!(TE->State == TreeEntry::Vectorize || 3607 (TE->State == TreeEntry::NeedToGather && 3608 GathersToOrders.count(TE))) || 3609 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3610 !all_of(drop_begin(TE->UserTreeIndices), 3611 [TE](const EdgeInfo &EI) { 3612 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3613 }) || 3614 !Visited.insert(TE).second) { 3615 Filtered.push_back(TE); 3616 continue; 3617 } 3618 // Build a map between user nodes and their operands order to speedup 3619 // search. The graph currently does not provide this dependency directly. 3620 for (EdgeInfo &EI : TE->UserTreeIndices) { 3621 TreeEntry *UserTE = EI.UserTE; 3622 auto It = Users.find(UserTE); 3623 if (It == Users.end()) 3624 It = Users.insert({UserTE, {}}).first; 3625 It->second.emplace_back(EI.EdgeIdx, TE); 3626 } 3627 } 3628 // Erase filtered entries. 3629 for_each(Filtered, 3630 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3631 for (auto &Data : Users) { 3632 // Check that operands are used only in the User node. 3633 SmallVector<TreeEntry *> GatherOps; 3634 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3635 GatherOps)) { 3636 for_each(Data.second, 3637 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3638 OrderedEntries.remove(Op.second); 3639 }); 3640 continue; 3641 } 3642 // All operands are reordered and used only in this node - propagate the 3643 // most used order to the user node. 3644 MapVector<OrdersType, unsigned, 3645 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3646 OrdersUses; 3647 // Do the analysis for each tree entry only once, otherwise the order of 3648 // the same node my be considered several times, though might be not 3649 // profitable. 3650 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3651 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3652 for (const auto &Op : Data.second) { 3653 TreeEntry *OpTE = Op.second; 3654 if (!VisitedOps.insert(OpTE).second) 3655 continue; 3656 if (!OpTE->ReuseShuffleIndices.empty() || 3657 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3658 continue; 3659 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3660 if (OpTE->State == TreeEntry::NeedToGather) 3661 return GathersToOrders.find(OpTE)->second; 3662 return OpTE->ReorderIndices; 3663 }(); 3664 unsigned NumOps = count_if( 3665 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3666 return P.second == OpTE; 3667 }); 3668 // Stores actually store the mask, not the order, need to invert. 3669 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3670 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3671 SmallVector<int> Mask; 3672 inversePermutation(Order, Mask); 3673 unsigned E = Order.size(); 3674 OrdersType CurrentOrder(E, E); 3675 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3676 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3677 }); 3678 fixupOrderingIndices(CurrentOrder); 3679 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3680 NumOps; 3681 } else { 3682 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3683 } 3684 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3685 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3686 const TreeEntry *TE) { 3687 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3688 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3689 (IgnoreReorder && TE->Idx == 0)) 3690 return true; 3691 if (TE->State == TreeEntry::NeedToGather) { 3692 auto It = GathersToOrders.find(TE); 3693 if (It != GathersToOrders.end()) 3694 return !It->second.empty(); 3695 return true; 3696 } 3697 return false; 3698 }; 3699 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3700 TreeEntry *UserTE = EI.UserTE; 3701 if (!VisitedUsers.insert(UserTE).second) 3702 continue; 3703 // May reorder user node if it requires reordering, has reused 3704 // scalars, is an alternate op vectorize node or its op nodes require 3705 // reordering. 3706 if (AllowsReordering(UserTE)) 3707 continue; 3708 // Check if users allow reordering. 3709 // Currently look up just 1 level of operands to avoid increase of 3710 // the compile time. 3711 // Profitable to reorder if definitely more operands allow 3712 // reordering rather than those with natural order. 3713 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3714 if (static_cast<unsigned>(count_if( 3715 Ops, [UserTE, &AllowsReordering]( 3716 const std::pair<unsigned, TreeEntry *> &Op) { 3717 return AllowsReordering(Op.second) && 3718 all_of(Op.second->UserTreeIndices, 3719 [UserTE](const EdgeInfo &EI) { 3720 return EI.UserTE == UserTE; 3721 }); 3722 })) <= Ops.size() / 2) 3723 ++Res.first->second; 3724 } 3725 } 3726 // If no orders - skip current nodes and jump to the next one, if any. 3727 if (OrdersUses.empty()) { 3728 for_each(Data.second, 3729 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3730 OrderedEntries.remove(Op.second); 3731 }); 3732 continue; 3733 } 3734 // Choose the best order. 3735 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3736 unsigned Cnt = OrdersUses.front().second; 3737 for (const auto &Pair : drop_begin(OrdersUses)) { 3738 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3739 BestOrder = Pair.first; 3740 Cnt = Pair.second; 3741 } 3742 } 3743 // Set order of the user node (reordering of operands and user nodes). 3744 if (BestOrder.empty()) { 3745 for_each(Data.second, 3746 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3747 OrderedEntries.remove(Op.second); 3748 }); 3749 continue; 3750 } 3751 // Erase operands from OrderedEntries list and adjust their orders. 3752 VisitedOps.clear(); 3753 SmallVector<int> Mask; 3754 inversePermutation(BestOrder, Mask); 3755 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3756 unsigned E = BestOrder.size(); 3757 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3758 return I < E ? static_cast<int>(I) : UndefMaskElem; 3759 }); 3760 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3761 TreeEntry *TE = Op.second; 3762 OrderedEntries.remove(TE); 3763 if (!VisitedOps.insert(TE).second) 3764 continue; 3765 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3766 // Just reorder reuses indices. 3767 reorderReuses(TE->ReuseShuffleIndices, Mask); 3768 continue; 3769 } 3770 // Gathers are processed separately. 3771 if (TE->State != TreeEntry::Vectorize) 3772 continue; 3773 assert((BestOrder.size() == TE->ReorderIndices.size() || 3774 TE->ReorderIndices.empty()) && 3775 "Non-matching sizes of user/operand entries."); 3776 reorderOrder(TE->ReorderIndices, Mask); 3777 } 3778 // For gathers just need to reorder its scalars. 3779 for (TreeEntry *Gather : GatherOps) { 3780 assert(Gather->ReorderIndices.empty() && 3781 "Unexpected reordering of gathers."); 3782 if (!Gather->ReuseShuffleIndices.empty()) { 3783 // Just reorder reuses indices. 3784 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3785 continue; 3786 } 3787 reorderScalars(Gather->Scalars, Mask); 3788 OrderedEntries.remove(Gather); 3789 } 3790 // Reorder operands of the user node and set the ordering for the user 3791 // node itself. 3792 if (Data.first->State != TreeEntry::Vectorize || 3793 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3794 Data.first->getMainOp()) || 3795 Data.first->isAltShuffle()) 3796 Data.first->reorderOperands(Mask); 3797 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3798 Data.first->isAltShuffle()) { 3799 reorderScalars(Data.first->Scalars, Mask); 3800 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3801 if (Data.first->ReuseShuffleIndices.empty() && 3802 !Data.first->ReorderIndices.empty() && 3803 !Data.first->isAltShuffle()) { 3804 // Insert user node to the list to try to sink reordering deeper in 3805 // the graph. 3806 OrderedEntries.insert(Data.first); 3807 } 3808 } else { 3809 reorderOrder(Data.first->ReorderIndices, Mask); 3810 } 3811 } 3812 } 3813 // If the reordering is unnecessary, just remove the reorder. 3814 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3815 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3816 VectorizableTree.front()->ReorderIndices.clear(); 3817 } 3818 3819 void BoUpSLP::buildExternalUses( 3820 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3821 // Collect the values that we need to extract from the tree. 3822 for (auto &TEPtr : VectorizableTree) { 3823 TreeEntry *Entry = TEPtr.get(); 3824 3825 // No need to handle users of gathered values. 3826 if (Entry->State == TreeEntry::NeedToGather) 3827 continue; 3828 3829 // For each lane: 3830 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3831 Value *Scalar = Entry->Scalars[Lane]; 3832 int FoundLane = Entry->findLaneForValue(Scalar); 3833 3834 // Check if the scalar is externally used as an extra arg. 3835 auto ExtI = ExternallyUsedValues.find(Scalar); 3836 if (ExtI != ExternallyUsedValues.end()) { 3837 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3838 << Lane << " from " << *Scalar << ".\n"); 3839 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3840 } 3841 for (User *U : Scalar->users()) { 3842 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3843 3844 Instruction *UserInst = dyn_cast<Instruction>(U); 3845 if (!UserInst) 3846 continue; 3847 3848 if (isDeleted(UserInst)) 3849 continue; 3850 3851 // Skip in-tree scalars that become vectors 3852 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3853 Value *UseScalar = UseEntry->Scalars[0]; 3854 // Some in-tree scalars will remain as scalar in vectorized 3855 // instructions. If that is the case, the one in Lane 0 will 3856 // be used. 3857 if (UseScalar != U || 3858 UseEntry->State == TreeEntry::ScatterVectorize || 3859 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3860 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3861 << ".\n"); 3862 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3863 continue; 3864 } 3865 } 3866 3867 // Ignore users in the user ignore list. 3868 if (is_contained(UserIgnoreList, UserInst)) 3869 continue; 3870 3871 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3872 << Lane << " from " << *Scalar << ".\n"); 3873 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3874 } 3875 } 3876 } 3877 } 3878 3879 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3880 ArrayRef<Value *> UserIgnoreLst) { 3881 deleteTree(); 3882 UserIgnoreList = UserIgnoreLst; 3883 if (!allSameType(Roots)) 3884 return; 3885 buildTree_rec(Roots, 0, EdgeInfo()); 3886 } 3887 3888 namespace { 3889 /// Tracks the state we can represent the loads in the given sequence. 3890 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3891 } // anonymous namespace 3892 3893 /// Checks if the given array of loads can be represented as a vectorized, 3894 /// scatter or just simple gather. 3895 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3896 const TargetTransformInfo &TTI, 3897 const DataLayout &DL, ScalarEvolution &SE, 3898 SmallVectorImpl<unsigned> &Order, 3899 SmallVectorImpl<Value *> &PointerOps) { 3900 // Check that a vectorized load would load the same memory as a scalar 3901 // load. For example, we don't want to vectorize loads that are smaller 3902 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3903 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3904 // from such a struct, we read/write packed bits disagreeing with the 3905 // unvectorized version. 3906 Type *ScalarTy = VL0->getType(); 3907 3908 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3909 return LoadsState::Gather; 3910 3911 // Make sure all loads in the bundle are simple - we can't vectorize 3912 // atomic or volatile loads. 3913 PointerOps.clear(); 3914 PointerOps.resize(VL.size()); 3915 auto *POIter = PointerOps.begin(); 3916 for (Value *V : VL) { 3917 auto *L = cast<LoadInst>(V); 3918 if (!L->isSimple()) 3919 return LoadsState::Gather; 3920 *POIter = L->getPointerOperand(); 3921 ++POIter; 3922 } 3923 3924 Order.clear(); 3925 // Check the order of pointer operands. 3926 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3927 Value *Ptr0; 3928 Value *PtrN; 3929 if (Order.empty()) { 3930 Ptr0 = PointerOps.front(); 3931 PtrN = PointerOps.back(); 3932 } else { 3933 Ptr0 = PointerOps[Order.front()]; 3934 PtrN = PointerOps[Order.back()]; 3935 } 3936 Optional<int> Diff = 3937 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3938 // Check that the sorted loads are consecutive. 3939 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3940 return LoadsState::Vectorize; 3941 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3942 for (Value *V : VL) 3943 CommonAlignment = 3944 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3945 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3946 CommonAlignment)) 3947 return LoadsState::ScatterVectorize; 3948 } 3949 3950 return LoadsState::Gather; 3951 } 3952 3953 /// \return true if the specified list of values has only one instruction that 3954 /// requires scheduling, false otherwise. 3955 #ifndef NDEBUG 3956 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3957 Value *NeedsScheduling = nullptr; 3958 for (Value *V : VL) { 3959 if (doesNotNeedToBeScheduled(V)) 3960 continue; 3961 if (!NeedsScheduling) { 3962 NeedsScheduling = V; 3963 continue; 3964 } 3965 return false; 3966 } 3967 return NeedsScheduling; 3968 } 3969 #endif 3970 3971 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3972 const EdgeInfo &UserTreeIdx) { 3973 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3974 3975 SmallVector<int> ReuseShuffleIndicies; 3976 SmallVector<Value *> UniqueValues; 3977 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3978 &UserTreeIdx, 3979 this](const InstructionsState &S) { 3980 // Check that every instruction appears once in this bundle. 3981 DenseMap<Value *, unsigned> UniquePositions; 3982 for (Value *V : VL) { 3983 if (isConstant(V)) { 3984 ReuseShuffleIndicies.emplace_back( 3985 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3986 UniqueValues.emplace_back(V); 3987 continue; 3988 } 3989 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3990 ReuseShuffleIndicies.emplace_back(Res.first->second); 3991 if (Res.second) 3992 UniqueValues.emplace_back(V); 3993 } 3994 size_t NumUniqueScalarValues = UniqueValues.size(); 3995 if (NumUniqueScalarValues == VL.size()) { 3996 ReuseShuffleIndicies.clear(); 3997 } else { 3998 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3999 if (NumUniqueScalarValues <= 1 || 4000 (UniquePositions.size() == 1 && all_of(UniqueValues, 4001 [](Value *V) { 4002 return isa<UndefValue>(V) || 4003 !isConstant(V); 4004 })) || 4005 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4006 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4007 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4008 return false; 4009 } 4010 VL = UniqueValues; 4011 } 4012 return true; 4013 }; 4014 4015 InstructionsState S = getSameOpcode(VL); 4016 if (Depth == RecursionMaxDepth) { 4017 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4018 if (TryToFindDuplicates(S)) 4019 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4020 ReuseShuffleIndicies); 4021 return; 4022 } 4023 4024 // Don't handle scalable vectors 4025 if (S.getOpcode() == Instruction::ExtractElement && 4026 isa<ScalableVectorType>( 4027 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4028 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4029 if (TryToFindDuplicates(S)) 4030 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4031 ReuseShuffleIndicies); 4032 return; 4033 } 4034 4035 // Don't handle vectors. 4036 if (S.OpValue->getType()->isVectorTy() && 4037 !isa<InsertElementInst>(S.OpValue)) { 4038 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4039 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4040 return; 4041 } 4042 4043 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4044 if (SI->getValueOperand()->getType()->isVectorTy()) { 4045 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4046 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4047 return; 4048 } 4049 4050 // If all of the operands are identical or constant we have a simple solution. 4051 // If we deal with insert/extract instructions, they all must have constant 4052 // indices, otherwise we should gather them, not try to vectorize. 4053 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4054 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4055 !all_of(VL, isVectorLikeInstWithConstOps))) { 4056 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4057 if (TryToFindDuplicates(S)) 4058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4059 ReuseShuffleIndicies); 4060 return; 4061 } 4062 4063 // We now know that this is a vector of instructions of the same type from 4064 // the same block. 4065 4066 // Don't vectorize ephemeral values. 4067 for (Value *V : VL) { 4068 if (EphValues.count(V)) { 4069 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4070 << ") is ephemeral.\n"); 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4072 return; 4073 } 4074 } 4075 4076 // Check if this is a duplicate of another entry. 4077 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4078 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4079 if (!E->isSame(VL)) { 4080 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4081 if (TryToFindDuplicates(S)) 4082 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4083 ReuseShuffleIndicies); 4084 return; 4085 } 4086 // Record the reuse of the tree node. FIXME, currently this is only used to 4087 // properly draw the graph rather than for the actual vectorization. 4088 E->UserTreeIndices.push_back(UserTreeIdx); 4089 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4090 << ".\n"); 4091 return; 4092 } 4093 4094 // Check that none of the instructions in the bundle are already in the tree. 4095 for (Value *V : VL) { 4096 auto *I = dyn_cast<Instruction>(V); 4097 if (!I) 4098 continue; 4099 if (getTreeEntry(I)) { 4100 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4101 << ") is already in tree.\n"); 4102 if (TryToFindDuplicates(S)) 4103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4104 ReuseShuffleIndicies); 4105 return; 4106 } 4107 } 4108 4109 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4110 for (Value *V : VL) { 4111 if (is_contained(UserIgnoreList, V)) { 4112 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4113 if (TryToFindDuplicates(S)) 4114 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4115 ReuseShuffleIndicies); 4116 return; 4117 } 4118 } 4119 4120 // Check that all of the users of the scalars that we want to vectorize are 4121 // schedulable. 4122 auto *VL0 = cast<Instruction>(S.OpValue); 4123 BasicBlock *BB = VL0->getParent(); 4124 4125 if (!DT->isReachableFromEntry(BB)) { 4126 // Don't go into unreachable blocks. They may contain instructions with 4127 // dependency cycles which confuse the final scheduling. 4128 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4129 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4130 return; 4131 } 4132 4133 // Check that every instruction appears once in this bundle. 4134 if (!TryToFindDuplicates(S)) 4135 return; 4136 4137 auto &BSRef = BlocksSchedules[BB]; 4138 if (!BSRef) 4139 BSRef = std::make_unique<BlockScheduling>(BB); 4140 4141 BlockScheduling &BS = *BSRef; 4142 4143 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4144 #ifdef EXPENSIVE_CHECKS 4145 // Make sure we didn't break any internal invariants 4146 BS.verify(); 4147 #endif 4148 if (!Bundle) { 4149 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4150 assert((!BS.getScheduleData(VL0) || 4151 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4152 "tryScheduleBundle should cancelScheduling on failure"); 4153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4154 ReuseShuffleIndicies); 4155 return; 4156 } 4157 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4158 4159 unsigned ShuffleOrOp = S.isAltShuffle() ? 4160 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4161 switch (ShuffleOrOp) { 4162 case Instruction::PHI: { 4163 auto *PH = cast<PHINode>(VL0); 4164 4165 // Check for terminator values (e.g. invoke). 4166 for (Value *V : VL) 4167 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4168 Instruction *Term = dyn_cast<Instruction>(Incoming); 4169 if (Term && Term->isTerminator()) { 4170 LLVM_DEBUG(dbgs() 4171 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4172 BS.cancelScheduling(VL, VL0); 4173 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4174 ReuseShuffleIndicies); 4175 return; 4176 } 4177 } 4178 4179 TreeEntry *TE = 4180 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4181 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4182 4183 // Keeps the reordered operands to avoid code duplication. 4184 SmallVector<ValueList, 2> OperandsVec; 4185 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4186 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4187 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4188 TE->setOperand(I, Operands); 4189 OperandsVec.push_back(Operands); 4190 continue; 4191 } 4192 ValueList Operands; 4193 // Prepare the operand vector. 4194 for (Value *V : VL) 4195 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4196 PH->getIncomingBlock(I))); 4197 TE->setOperand(I, Operands); 4198 OperandsVec.push_back(Operands); 4199 } 4200 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4201 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4202 return; 4203 } 4204 case Instruction::ExtractValue: 4205 case Instruction::ExtractElement: { 4206 OrdersType CurrentOrder; 4207 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4208 if (Reuse) { 4209 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4210 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4211 ReuseShuffleIndicies); 4212 // This is a special case, as it does not gather, but at the same time 4213 // we are not extending buildTree_rec() towards the operands. 4214 ValueList Op0; 4215 Op0.assign(VL.size(), VL0->getOperand(0)); 4216 VectorizableTree.back()->setOperand(0, Op0); 4217 return; 4218 } 4219 if (!CurrentOrder.empty()) { 4220 LLVM_DEBUG({ 4221 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4222 "with order"; 4223 for (unsigned Idx : CurrentOrder) 4224 dbgs() << " " << Idx; 4225 dbgs() << "\n"; 4226 }); 4227 fixupOrderingIndices(CurrentOrder); 4228 // Insert new order with initial value 0, if it does not exist, 4229 // otherwise return the iterator to the existing one. 4230 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4231 ReuseShuffleIndicies, CurrentOrder); 4232 // This is a special case, as it does not gather, but at the same time 4233 // we are not extending buildTree_rec() towards the operands. 4234 ValueList Op0; 4235 Op0.assign(VL.size(), VL0->getOperand(0)); 4236 VectorizableTree.back()->setOperand(0, Op0); 4237 return; 4238 } 4239 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4240 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4241 ReuseShuffleIndicies); 4242 BS.cancelScheduling(VL, VL0); 4243 return; 4244 } 4245 case Instruction::InsertElement: { 4246 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4247 4248 // Check that we have a buildvector and not a shuffle of 2 or more 4249 // different vectors. 4250 ValueSet SourceVectors; 4251 for (Value *V : VL) { 4252 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4253 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4254 } 4255 4256 if (count_if(VL, [&SourceVectors](Value *V) { 4257 return !SourceVectors.contains(V); 4258 }) >= 2) { 4259 // Found 2nd source vector - cancel. 4260 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4261 "different source vectors.\n"); 4262 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4263 BS.cancelScheduling(VL, VL0); 4264 return; 4265 } 4266 4267 auto OrdCompare = [](const std::pair<int, int> &P1, 4268 const std::pair<int, int> &P2) { 4269 return P1.first > P2.first; 4270 }; 4271 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4272 decltype(OrdCompare)> 4273 Indices(OrdCompare); 4274 for (int I = 0, E = VL.size(); I < E; ++I) { 4275 unsigned Idx = *getInsertIndex(VL[I]); 4276 Indices.emplace(Idx, I); 4277 } 4278 OrdersType CurrentOrder(VL.size(), VL.size()); 4279 bool IsIdentity = true; 4280 for (int I = 0, E = VL.size(); I < E; ++I) { 4281 CurrentOrder[Indices.top().second] = I; 4282 IsIdentity &= Indices.top().second == I; 4283 Indices.pop(); 4284 } 4285 if (IsIdentity) 4286 CurrentOrder.clear(); 4287 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4288 None, CurrentOrder); 4289 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4290 4291 constexpr int NumOps = 2; 4292 ValueList VectorOperands[NumOps]; 4293 for (int I = 0; I < NumOps; ++I) { 4294 for (Value *V : VL) 4295 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4296 4297 TE->setOperand(I, VectorOperands[I]); 4298 } 4299 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4300 return; 4301 } 4302 case Instruction::Load: { 4303 // Check that a vectorized load would load the same memory as a scalar 4304 // load. For example, we don't want to vectorize loads that are smaller 4305 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4306 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4307 // from such a struct, we read/write packed bits disagreeing with the 4308 // unvectorized version. 4309 SmallVector<Value *> PointerOps; 4310 OrdersType CurrentOrder; 4311 TreeEntry *TE = nullptr; 4312 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4313 PointerOps)) { 4314 case LoadsState::Vectorize: 4315 if (CurrentOrder.empty()) { 4316 // Original loads are consecutive and does not require reordering. 4317 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4318 ReuseShuffleIndicies); 4319 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4320 } else { 4321 fixupOrderingIndices(CurrentOrder); 4322 // Need to reorder. 4323 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4324 ReuseShuffleIndicies, CurrentOrder); 4325 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4326 } 4327 TE->setOperandsInOrder(); 4328 break; 4329 case LoadsState::ScatterVectorize: 4330 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4331 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4332 UserTreeIdx, ReuseShuffleIndicies); 4333 TE->setOperandsInOrder(); 4334 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4335 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4336 break; 4337 case LoadsState::Gather: 4338 BS.cancelScheduling(VL, VL0); 4339 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4340 ReuseShuffleIndicies); 4341 #ifndef NDEBUG 4342 Type *ScalarTy = VL0->getType(); 4343 if (DL->getTypeSizeInBits(ScalarTy) != 4344 DL->getTypeAllocSizeInBits(ScalarTy)) 4345 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4346 else if (any_of(VL, [](Value *V) { 4347 return !cast<LoadInst>(V)->isSimple(); 4348 })) 4349 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4350 else 4351 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4352 #endif // NDEBUG 4353 break; 4354 } 4355 return; 4356 } 4357 case Instruction::ZExt: 4358 case Instruction::SExt: 4359 case Instruction::FPToUI: 4360 case Instruction::FPToSI: 4361 case Instruction::FPExt: 4362 case Instruction::PtrToInt: 4363 case Instruction::IntToPtr: 4364 case Instruction::SIToFP: 4365 case Instruction::UIToFP: 4366 case Instruction::Trunc: 4367 case Instruction::FPTrunc: 4368 case Instruction::BitCast: { 4369 Type *SrcTy = VL0->getOperand(0)->getType(); 4370 for (Value *V : VL) { 4371 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4372 if (Ty != SrcTy || !isValidElementType(Ty)) { 4373 BS.cancelScheduling(VL, VL0); 4374 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4375 ReuseShuffleIndicies); 4376 LLVM_DEBUG(dbgs() 4377 << "SLP: Gathering casts with different src types.\n"); 4378 return; 4379 } 4380 } 4381 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4382 ReuseShuffleIndicies); 4383 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4384 4385 TE->setOperandsInOrder(); 4386 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4387 ValueList Operands; 4388 // Prepare the operand vector. 4389 for (Value *V : VL) 4390 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4391 4392 buildTree_rec(Operands, Depth + 1, {TE, i}); 4393 } 4394 return; 4395 } 4396 case Instruction::ICmp: 4397 case Instruction::FCmp: { 4398 // Check that all of the compares have the same predicate. 4399 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4400 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4401 Type *ComparedTy = VL0->getOperand(0)->getType(); 4402 for (Value *V : VL) { 4403 CmpInst *Cmp = cast<CmpInst>(V); 4404 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4405 Cmp->getOperand(0)->getType() != ComparedTy) { 4406 BS.cancelScheduling(VL, VL0); 4407 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4408 ReuseShuffleIndicies); 4409 LLVM_DEBUG(dbgs() 4410 << "SLP: Gathering cmp with different predicate.\n"); 4411 return; 4412 } 4413 } 4414 4415 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4416 ReuseShuffleIndicies); 4417 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4418 4419 ValueList Left, Right; 4420 if (cast<CmpInst>(VL0)->isCommutative()) { 4421 // Commutative predicate - collect + sort operands of the instructions 4422 // so that each side is more likely to have the same opcode. 4423 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4424 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4425 } else { 4426 // Collect operands - commute if it uses the swapped predicate. 4427 for (Value *V : VL) { 4428 auto *Cmp = cast<CmpInst>(V); 4429 Value *LHS = Cmp->getOperand(0); 4430 Value *RHS = Cmp->getOperand(1); 4431 if (Cmp->getPredicate() != P0) 4432 std::swap(LHS, RHS); 4433 Left.push_back(LHS); 4434 Right.push_back(RHS); 4435 } 4436 } 4437 TE->setOperand(0, Left); 4438 TE->setOperand(1, Right); 4439 buildTree_rec(Left, Depth + 1, {TE, 0}); 4440 buildTree_rec(Right, Depth + 1, {TE, 1}); 4441 return; 4442 } 4443 case Instruction::Select: 4444 case Instruction::FNeg: 4445 case Instruction::Add: 4446 case Instruction::FAdd: 4447 case Instruction::Sub: 4448 case Instruction::FSub: 4449 case Instruction::Mul: 4450 case Instruction::FMul: 4451 case Instruction::UDiv: 4452 case Instruction::SDiv: 4453 case Instruction::FDiv: 4454 case Instruction::URem: 4455 case Instruction::SRem: 4456 case Instruction::FRem: 4457 case Instruction::Shl: 4458 case Instruction::LShr: 4459 case Instruction::AShr: 4460 case Instruction::And: 4461 case Instruction::Or: 4462 case Instruction::Xor: { 4463 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4464 ReuseShuffleIndicies); 4465 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4466 4467 // Sort operands of the instructions so that each side is more likely to 4468 // have the same opcode. 4469 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4470 ValueList Left, Right; 4471 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4472 TE->setOperand(0, Left); 4473 TE->setOperand(1, Right); 4474 buildTree_rec(Left, Depth + 1, {TE, 0}); 4475 buildTree_rec(Right, Depth + 1, {TE, 1}); 4476 return; 4477 } 4478 4479 TE->setOperandsInOrder(); 4480 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4481 ValueList Operands; 4482 // Prepare the operand vector. 4483 for (Value *V : VL) 4484 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4485 4486 buildTree_rec(Operands, Depth + 1, {TE, i}); 4487 } 4488 return; 4489 } 4490 case Instruction::GetElementPtr: { 4491 // We don't combine GEPs with complicated (nested) indexing. 4492 for (Value *V : VL) { 4493 if (cast<Instruction>(V)->getNumOperands() != 2) { 4494 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4495 BS.cancelScheduling(VL, VL0); 4496 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4497 ReuseShuffleIndicies); 4498 return; 4499 } 4500 } 4501 4502 // We can't combine several GEPs into one vector if they operate on 4503 // different types. 4504 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4505 for (Value *V : VL) { 4506 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4507 if (Ty0 != CurTy) { 4508 LLVM_DEBUG(dbgs() 4509 << "SLP: not-vectorizable GEP (different types).\n"); 4510 BS.cancelScheduling(VL, VL0); 4511 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4512 ReuseShuffleIndicies); 4513 return; 4514 } 4515 } 4516 4517 // We don't combine GEPs with non-constant indexes. 4518 Type *Ty1 = VL0->getOperand(1)->getType(); 4519 for (Value *V : VL) { 4520 auto Op = cast<Instruction>(V)->getOperand(1); 4521 if (!isa<ConstantInt>(Op) || 4522 (Op->getType() != Ty1 && 4523 Op->getType()->getScalarSizeInBits() > 4524 DL->getIndexSizeInBits( 4525 V->getType()->getPointerAddressSpace()))) { 4526 LLVM_DEBUG(dbgs() 4527 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4528 BS.cancelScheduling(VL, VL0); 4529 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4530 ReuseShuffleIndicies); 4531 return; 4532 } 4533 } 4534 4535 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4536 ReuseShuffleIndicies); 4537 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4538 SmallVector<ValueList, 2> Operands(2); 4539 // Prepare the operand vector for pointer operands. 4540 for (Value *V : VL) 4541 Operands.front().push_back( 4542 cast<GetElementPtrInst>(V)->getPointerOperand()); 4543 TE->setOperand(0, Operands.front()); 4544 // Need to cast all indices to the same type before vectorization to 4545 // avoid crash. 4546 // Required to be able to find correct matches between different gather 4547 // nodes and reuse the vectorized values rather than trying to gather them 4548 // again. 4549 int IndexIdx = 1; 4550 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4551 Type *Ty = all_of(VL, 4552 [VL0Ty, IndexIdx](Value *V) { 4553 return VL0Ty == cast<GetElementPtrInst>(V) 4554 ->getOperand(IndexIdx) 4555 ->getType(); 4556 }) 4557 ? VL0Ty 4558 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4559 ->getPointerOperandType() 4560 ->getScalarType()); 4561 // Prepare the operand vector. 4562 for (Value *V : VL) { 4563 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4564 auto *CI = cast<ConstantInt>(Op); 4565 Operands.back().push_back(ConstantExpr::getIntegerCast( 4566 CI, Ty, CI->getValue().isSignBitSet())); 4567 } 4568 TE->setOperand(IndexIdx, Operands.back()); 4569 4570 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4571 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4572 return; 4573 } 4574 case Instruction::Store: { 4575 // Check if the stores are consecutive or if we need to swizzle them. 4576 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4577 // Avoid types that are padded when being allocated as scalars, while 4578 // being packed together in a vector (such as i1). 4579 if (DL->getTypeSizeInBits(ScalarTy) != 4580 DL->getTypeAllocSizeInBits(ScalarTy)) { 4581 BS.cancelScheduling(VL, VL0); 4582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4583 ReuseShuffleIndicies); 4584 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4585 return; 4586 } 4587 // Make sure all stores in the bundle are simple - we can't vectorize 4588 // atomic or volatile stores. 4589 SmallVector<Value *, 4> PointerOps(VL.size()); 4590 ValueList Operands(VL.size()); 4591 auto POIter = PointerOps.begin(); 4592 auto OIter = Operands.begin(); 4593 for (Value *V : VL) { 4594 auto *SI = cast<StoreInst>(V); 4595 if (!SI->isSimple()) { 4596 BS.cancelScheduling(VL, VL0); 4597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4598 ReuseShuffleIndicies); 4599 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4600 return; 4601 } 4602 *POIter = SI->getPointerOperand(); 4603 *OIter = SI->getValueOperand(); 4604 ++POIter; 4605 ++OIter; 4606 } 4607 4608 OrdersType CurrentOrder; 4609 // Check the order of pointer operands. 4610 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4611 Value *Ptr0; 4612 Value *PtrN; 4613 if (CurrentOrder.empty()) { 4614 Ptr0 = PointerOps.front(); 4615 PtrN = PointerOps.back(); 4616 } else { 4617 Ptr0 = PointerOps[CurrentOrder.front()]; 4618 PtrN = PointerOps[CurrentOrder.back()]; 4619 } 4620 Optional<int> Dist = 4621 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4622 // Check that the sorted pointer operands are consecutive. 4623 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4624 if (CurrentOrder.empty()) { 4625 // Original stores are consecutive and does not require reordering. 4626 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4627 UserTreeIdx, ReuseShuffleIndicies); 4628 TE->setOperandsInOrder(); 4629 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4630 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4631 } else { 4632 fixupOrderingIndices(CurrentOrder); 4633 TreeEntry *TE = 4634 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4635 ReuseShuffleIndicies, CurrentOrder); 4636 TE->setOperandsInOrder(); 4637 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4638 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4639 } 4640 return; 4641 } 4642 } 4643 4644 BS.cancelScheduling(VL, VL0); 4645 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4646 ReuseShuffleIndicies); 4647 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4648 return; 4649 } 4650 case Instruction::Call: { 4651 // Check if the calls are all to the same vectorizable intrinsic or 4652 // library function. 4653 CallInst *CI = cast<CallInst>(VL0); 4654 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4655 4656 VFShape Shape = VFShape::get( 4657 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4658 false /*HasGlobalPred*/); 4659 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4660 4661 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4662 BS.cancelScheduling(VL, VL0); 4663 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4664 ReuseShuffleIndicies); 4665 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4666 return; 4667 } 4668 Function *F = CI->getCalledFunction(); 4669 unsigned NumArgs = CI->arg_size(); 4670 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4671 for (unsigned j = 0; j != NumArgs; ++j) 4672 if (hasVectorInstrinsicScalarOpd(ID, j)) 4673 ScalarArgs[j] = CI->getArgOperand(j); 4674 for (Value *V : VL) { 4675 CallInst *CI2 = dyn_cast<CallInst>(V); 4676 if (!CI2 || CI2->getCalledFunction() != F || 4677 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4678 (VecFunc && 4679 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4680 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4681 BS.cancelScheduling(VL, VL0); 4682 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4683 ReuseShuffleIndicies); 4684 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4685 << "\n"); 4686 return; 4687 } 4688 // Some intrinsics have scalar arguments and should be same in order for 4689 // them to be vectorized. 4690 for (unsigned j = 0; j != NumArgs; ++j) { 4691 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4692 Value *A1J = CI2->getArgOperand(j); 4693 if (ScalarArgs[j] != A1J) { 4694 BS.cancelScheduling(VL, VL0); 4695 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4696 ReuseShuffleIndicies); 4697 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4698 << " argument " << ScalarArgs[j] << "!=" << A1J 4699 << "\n"); 4700 return; 4701 } 4702 } 4703 } 4704 // Verify that the bundle operands are identical between the two calls. 4705 if (CI->hasOperandBundles() && 4706 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4707 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4708 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4709 BS.cancelScheduling(VL, VL0); 4710 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4711 ReuseShuffleIndicies); 4712 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4713 << *CI << "!=" << *V << '\n'); 4714 return; 4715 } 4716 } 4717 4718 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4719 ReuseShuffleIndicies); 4720 TE->setOperandsInOrder(); 4721 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4722 // For scalar operands no need to to create an entry since no need to 4723 // vectorize it. 4724 if (hasVectorInstrinsicScalarOpd(ID, i)) 4725 continue; 4726 ValueList Operands; 4727 // Prepare the operand vector. 4728 for (Value *V : VL) { 4729 auto *CI2 = cast<CallInst>(V); 4730 Operands.push_back(CI2->getArgOperand(i)); 4731 } 4732 buildTree_rec(Operands, Depth + 1, {TE, i}); 4733 } 4734 return; 4735 } 4736 case Instruction::ShuffleVector: { 4737 // If this is not an alternate sequence of opcode like add-sub 4738 // then do not vectorize this instruction. 4739 if (!S.isAltShuffle()) { 4740 BS.cancelScheduling(VL, VL0); 4741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4742 ReuseShuffleIndicies); 4743 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4744 return; 4745 } 4746 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4747 ReuseShuffleIndicies); 4748 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4749 4750 // Reorder operands if reordering would enable vectorization. 4751 auto *CI = dyn_cast<CmpInst>(VL0); 4752 if (isa<BinaryOperator>(VL0) || CI) { 4753 ValueList Left, Right; 4754 if (!CI || all_of(VL, [](Value *V) { 4755 return cast<CmpInst>(V)->isCommutative(); 4756 })) { 4757 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4758 } else { 4759 CmpInst::Predicate P0 = CI->getPredicate(); 4760 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4761 assert(P0 != AltP0 && 4762 "Expected different main/alternate predicates."); 4763 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4764 Value *BaseOp0 = VL0->getOperand(0); 4765 Value *BaseOp1 = VL0->getOperand(1); 4766 // Collect operands - commute if it uses the swapped predicate or 4767 // alternate operation. 4768 for (Value *V : VL) { 4769 auto *Cmp = cast<CmpInst>(V); 4770 Value *LHS = Cmp->getOperand(0); 4771 Value *RHS = Cmp->getOperand(1); 4772 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4773 if (P0 == AltP0Swapped) { 4774 if (CI != Cmp && S.AltOp != Cmp && 4775 ((P0 == CurrentPred && 4776 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4777 (AltP0 == CurrentPred && 4778 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4779 std::swap(LHS, RHS); 4780 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4781 std::swap(LHS, RHS); 4782 } 4783 Left.push_back(LHS); 4784 Right.push_back(RHS); 4785 } 4786 } 4787 TE->setOperand(0, Left); 4788 TE->setOperand(1, Right); 4789 buildTree_rec(Left, Depth + 1, {TE, 0}); 4790 buildTree_rec(Right, Depth + 1, {TE, 1}); 4791 return; 4792 } 4793 4794 TE->setOperandsInOrder(); 4795 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4796 ValueList Operands; 4797 // Prepare the operand vector. 4798 for (Value *V : VL) 4799 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4800 4801 buildTree_rec(Operands, Depth + 1, {TE, i}); 4802 } 4803 return; 4804 } 4805 default: 4806 BS.cancelScheduling(VL, VL0); 4807 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4808 ReuseShuffleIndicies); 4809 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4810 return; 4811 } 4812 } 4813 4814 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4815 unsigned N = 1; 4816 Type *EltTy = T; 4817 4818 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4819 isa<VectorType>(EltTy)) { 4820 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4821 // Check that struct is homogeneous. 4822 for (const auto *Ty : ST->elements()) 4823 if (Ty != *ST->element_begin()) 4824 return 0; 4825 N *= ST->getNumElements(); 4826 EltTy = *ST->element_begin(); 4827 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4828 N *= AT->getNumElements(); 4829 EltTy = AT->getElementType(); 4830 } else { 4831 auto *VT = cast<FixedVectorType>(EltTy); 4832 N *= VT->getNumElements(); 4833 EltTy = VT->getElementType(); 4834 } 4835 } 4836 4837 if (!isValidElementType(EltTy)) 4838 return 0; 4839 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4840 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4841 return 0; 4842 return N; 4843 } 4844 4845 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4846 SmallVectorImpl<unsigned> &CurrentOrder) const { 4847 const auto *It = find_if(VL, [](Value *V) { 4848 return isa<ExtractElementInst, ExtractValueInst>(V); 4849 }); 4850 assert(It != VL.end() && "Expected at least one extract instruction."); 4851 auto *E0 = cast<Instruction>(*It); 4852 assert(all_of(VL, 4853 [](Value *V) { 4854 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4855 V); 4856 }) && 4857 "Invalid opcode"); 4858 // Check if all of the extracts come from the same vector and from the 4859 // correct offset. 4860 Value *Vec = E0->getOperand(0); 4861 4862 CurrentOrder.clear(); 4863 4864 // We have to extract from a vector/aggregate with the same number of elements. 4865 unsigned NElts; 4866 if (E0->getOpcode() == Instruction::ExtractValue) { 4867 const DataLayout &DL = E0->getModule()->getDataLayout(); 4868 NElts = canMapToVector(Vec->getType(), DL); 4869 if (!NElts) 4870 return false; 4871 // Check if load can be rewritten as load of vector. 4872 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4873 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4874 return false; 4875 } else { 4876 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4877 } 4878 4879 if (NElts != VL.size()) 4880 return false; 4881 4882 // Check that all of the indices extract from the correct offset. 4883 bool ShouldKeepOrder = true; 4884 unsigned E = VL.size(); 4885 // Assign to all items the initial value E + 1 so we can check if the extract 4886 // instruction index was used already. 4887 // Also, later we can check that all the indices are used and we have a 4888 // consecutive access in the extract instructions, by checking that no 4889 // element of CurrentOrder still has value E + 1. 4890 CurrentOrder.assign(E, E); 4891 unsigned I = 0; 4892 for (; I < E; ++I) { 4893 auto *Inst = dyn_cast<Instruction>(VL[I]); 4894 if (!Inst) 4895 continue; 4896 if (Inst->getOperand(0) != Vec) 4897 break; 4898 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4899 if (isa<UndefValue>(EE->getIndexOperand())) 4900 continue; 4901 Optional<unsigned> Idx = getExtractIndex(Inst); 4902 if (!Idx) 4903 break; 4904 const unsigned ExtIdx = *Idx; 4905 if (ExtIdx != I) { 4906 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4907 break; 4908 ShouldKeepOrder = false; 4909 CurrentOrder[ExtIdx] = I; 4910 } else { 4911 if (CurrentOrder[I] != E) 4912 break; 4913 CurrentOrder[I] = I; 4914 } 4915 } 4916 if (I < E) { 4917 CurrentOrder.clear(); 4918 return false; 4919 } 4920 if (ShouldKeepOrder) 4921 CurrentOrder.clear(); 4922 4923 return ShouldKeepOrder; 4924 } 4925 4926 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4927 ArrayRef<Value *> VectorizedVals) const { 4928 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4929 all_of(I->users(), [this](User *U) { 4930 return ScalarToTreeEntry.count(U) > 0 || 4931 isVectorLikeInstWithConstOps(U) || 4932 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4933 }); 4934 } 4935 4936 static std::pair<InstructionCost, InstructionCost> 4937 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4938 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4939 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4940 4941 // Calculate the cost of the scalar and vector calls. 4942 SmallVector<Type *, 4> VecTys; 4943 for (Use &Arg : CI->args()) 4944 VecTys.push_back( 4945 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4946 FastMathFlags FMF; 4947 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4948 FMF = FPCI->getFastMathFlags(); 4949 SmallVector<const Value *> Arguments(CI->args()); 4950 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4951 dyn_cast<IntrinsicInst>(CI)); 4952 auto IntrinsicCost = 4953 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4954 4955 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4956 VecTy->getNumElements())), 4957 false /*HasGlobalPred*/); 4958 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4959 auto LibCost = IntrinsicCost; 4960 if (!CI->isNoBuiltin() && VecFunc) { 4961 // Calculate the cost of the vector library call. 4962 // If the corresponding vector call is cheaper, return its cost. 4963 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4964 TTI::TCK_RecipThroughput); 4965 } 4966 return {IntrinsicCost, LibCost}; 4967 } 4968 4969 /// Compute the cost of creating a vector of type \p VecTy containing the 4970 /// extracted values from \p VL. 4971 static InstructionCost 4972 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4973 TargetTransformInfo::ShuffleKind ShuffleKind, 4974 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4975 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4976 4977 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4978 VecTy->getNumElements() < NumOfParts) 4979 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4980 4981 bool AllConsecutive = true; 4982 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4983 unsigned Idx = -1; 4984 InstructionCost Cost = 0; 4985 4986 // Process extracts in blocks of EltsPerVector to check if the source vector 4987 // operand can be re-used directly. If not, add the cost of creating a shuffle 4988 // to extract the values into a vector register. 4989 for (auto *V : VL) { 4990 ++Idx; 4991 4992 // Need to exclude undefs from analysis. 4993 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4994 continue; 4995 4996 // Reached the start of a new vector registers. 4997 if (Idx % EltsPerVector == 0) { 4998 AllConsecutive = true; 4999 continue; 5000 } 5001 5002 // Check all extracts for a vector register on the target directly 5003 // extract values in order. 5004 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5005 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5006 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5007 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5008 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5009 } 5010 5011 if (AllConsecutive) 5012 continue; 5013 5014 // Skip all indices, except for the last index per vector block. 5015 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5016 continue; 5017 5018 // If we have a series of extracts which are not consecutive and hence 5019 // cannot re-use the source vector register directly, compute the shuffle 5020 // cost to extract the a vector with EltsPerVector elements. 5021 Cost += TTI.getShuffleCost( 5022 TargetTransformInfo::SK_PermuteSingleSrc, 5023 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5024 } 5025 return Cost; 5026 } 5027 5028 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5029 /// operations operands. 5030 static void 5031 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5032 ArrayRef<int> ReusesIndices, 5033 const function_ref<bool(Instruction *)> IsAltOp, 5034 SmallVectorImpl<int> &Mask, 5035 SmallVectorImpl<Value *> *OpScalars = nullptr, 5036 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5037 unsigned Sz = VL.size(); 5038 Mask.assign(Sz, UndefMaskElem); 5039 SmallVector<int> OrderMask; 5040 if (!ReorderIndices.empty()) 5041 inversePermutation(ReorderIndices, OrderMask); 5042 for (unsigned I = 0; I < Sz; ++I) { 5043 unsigned Idx = I; 5044 if (!ReorderIndices.empty()) 5045 Idx = OrderMask[I]; 5046 auto *OpInst = cast<Instruction>(VL[Idx]); 5047 if (IsAltOp(OpInst)) { 5048 Mask[I] = Sz + Idx; 5049 if (AltScalars) 5050 AltScalars->push_back(OpInst); 5051 } else { 5052 Mask[I] = Idx; 5053 if (OpScalars) 5054 OpScalars->push_back(OpInst); 5055 } 5056 } 5057 if (!ReusesIndices.empty()) { 5058 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5059 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5060 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5061 }); 5062 Mask.swap(NewMask); 5063 } 5064 } 5065 5066 /// Checks if the specified instruction \p I is an alternate operation for the 5067 /// given \p MainOp and \p AltOp instructions. 5068 static bool isAlternateInstruction(const Instruction *I, 5069 const Instruction *MainOp, 5070 const Instruction *AltOp) { 5071 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5072 auto *AltCI0 = cast<CmpInst>(AltOp); 5073 auto *CI = cast<CmpInst>(I); 5074 CmpInst::Predicate P0 = CI0->getPredicate(); 5075 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5076 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5077 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5078 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5079 if (P0 == AltP0Swapped) 5080 return I == AltCI0 || 5081 (I != MainOp && 5082 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5083 CI->getOperand(0), CI->getOperand(1))); 5084 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5085 } 5086 return I->getOpcode() == AltOp->getOpcode(); 5087 } 5088 5089 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5090 ArrayRef<Value *> VectorizedVals) { 5091 ArrayRef<Value*> VL = E->Scalars; 5092 5093 Type *ScalarTy = VL[0]->getType(); 5094 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5095 ScalarTy = SI->getValueOperand()->getType(); 5096 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5097 ScalarTy = CI->getOperand(0)->getType(); 5098 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5099 ScalarTy = IE->getOperand(1)->getType(); 5100 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5101 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5102 5103 // If we have computed a smaller type for the expression, update VecTy so 5104 // that the costs will be accurate. 5105 if (MinBWs.count(VL[0])) 5106 VecTy = FixedVectorType::get( 5107 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5108 unsigned EntryVF = E->getVectorFactor(); 5109 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5110 5111 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5112 // FIXME: it tries to fix a problem with MSVC buildbots. 5113 TargetTransformInfo &TTIRef = *TTI; 5114 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5115 VectorizedVals, E](InstructionCost &Cost) { 5116 DenseMap<Value *, int> ExtractVectorsTys; 5117 SmallPtrSet<Value *, 4> CheckedExtracts; 5118 for (auto *V : VL) { 5119 if (isa<UndefValue>(V)) 5120 continue; 5121 // If all users of instruction are going to be vectorized and this 5122 // instruction itself is not going to be vectorized, consider this 5123 // instruction as dead and remove its cost from the final cost of the 5124 // vectorized tree. 5125 // Also, avoid adjusting the cost for extractelements with multiple uses 5126 // in different graph entries. 5127 const TreeEntry *VE = getTreeEntry(V); 5128 if (!CheckedExtracts.insert(V).second || 5129 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5130 (VE && VE != E)) 5131 continue; 5132 auto *EE = cast<ExtractElementInst>(V); 5133 Optional<unsigned> EEIdx = getExtractIndex(EE); 5134 if (!EEIdx) 5135 continue; 5136 unsigned Idx = *EEIdx; 5137 if (TTIRef.getNumberOfParts(VecTy) != 5138 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5139 auto It = 5140 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5141 It->getSecond() = std::min<int>(It->second, Idx); 5142 } 5143 // Take credit for instruction that will become dead. 5144 if (EE->hasOneUse()) { 5145 Instruction *Ext = EE->user_back(); 5146 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5147 all_of(Ext->users(), 5148 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5149 // Use getExtractWithExtendCost() to calculate the cost of 5150 // extractelement/ext pair. 5151 Cost -= 5152 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5153 EE->getVectorOperandType(), Idx); 5154 // Add back the cost of s|zext which is subtracted separately. 5155 Cost += TTIRef.getCastInstrCost( 5156 Ext->getOpcode(), Ext->getType(), EE->getType(), 5157 TTI::getCastContextHint(Ext), CostKind, Ext); 5158 continue; 5159 } 5160 } 5161 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5162 EE->getVectorOperandType(), Idx); 5163 } 5164 // Add a cost for subvector extracts/inserts if required. 5165 for (const auto &Data : ExtractVectorsTys) { 5166 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5167 unsigned NumElts = VecTy->getNumElements(); 5168 if (Data.second % NumElts == 0) 5169 continue; 5170 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5171 unsigned Idx = (Data.second / NumElts) * NumElts; 5172 unsigned EENumElts = EEVTy->getNumElements(); 5173 if (Idx + NumElts <= EENumElts) { 5174 Cost += 5175 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5176 EEVTy, None, Idx, VecTy); 5177 } else { 5178 // Need to round up the subvector type vectorization factor to avoid a 5179 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5180 // <= EENumElts. 5181 auto *SubVT = 5182 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5183 Cost += 5184 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5185 EEVTy, None, Idx, SubVT); 5186 } 5187 } else { 5188 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5189 VecTy, None, 0, EEVTy); 5190 } 5191 } 5192 }; 5193 if (E->State == TreeEntry::NeedToGather) { 5194 if (allConstant(VL)) 5195 return 0; 5196 if (isa<InsertElementInst>(VL[0])) 5197 return InstructionCost::getInvalid(); 5198 SmallVector<int> Mask; 5199 SmallVector<const TreeEntry *> Entries; 5200 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5201 isGatherShuffledEntry(E, Mask, Entries); 5202 if (Shuffle.hasValue()) { 5203 InstructionCost GatherCost = 0; 5204 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5205 // Perfect match in the graph, will reuse the previously vectorized 5206 // node. Cost is 0. 5207 LLVM_DEBUG( 5208 dbgs() 5209 << "SLP: perfect diamond match for gather bundle that starts with " 5210 << *VL.front() << ".\n"); 5211 if (NeedToShuffleReuses) 5212 GatherCost = 5213 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5214 FinalVecTy, E->ReuseShuffleIndices); 5215 } else { 5216 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5217 << " entries for bundle that starts with " 5218 << *VL.front() << ".\n"); 5219 // Detected that instead of gather we can emit a shuffle of single/two 5220 // previously vectorized nodes. Add the cost of the permutation rather 5221 // than gather. 5222 ::addMask(Mask, E->ReuseShuffleIndices); 5223 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5224 } 5225 return GatherCost; 5226 } 5227 if ((E->getOpcode() == Instruction::ExtractElement || 5228 all_of(E->Scalars, 5229 [](Value *V) { 5230 return isa<ExtractElementInst, UndefValue>(V); 5231 })) && 5232 allSameType(VL)) { 5233 // Check that gather of extractelements can be represented as just a 5234 // shuffle of a single/two vectors the scalars are extracted from. 5235 SmallVector<int> Mask; 5236 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5237 isFixedVectorShuffle(VL, Mask); 5238 if (ShuffleKind.hasValue()) { 5239 // Found the bunch of extractelement instructions that must be gathered 5240 // into a vector and can be represented as a permutation elements in a 5241 // single input vector or of 2 input vectors. 5242 InstructionCost Cost = 5243 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5244 AdjustExtractsCost(Cost); 5245 if (NeedToShuffleReuses) 5246 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5247 FinalVecTy, E->ReuseShuffleIndices); 5248 return Cost; 5249 } 5250 } 5251 if (isSplat(VL)) { 5252 // Found the broadcasting of the single scalar, calculate the cost as the 5253 // broadcast. 5254 assert(VecTy == FinalVecTy && 5255 "No reused scalars expected for broadcast."); 5256 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5257 /*Mask=*/None, /*Index=*/0, 5258 /*SubTp=*/nullptr, /*Args=*/VL); 5259 } 5260 InstructionCost ReuseShuffleCost = 0; 5261 if (NeedToShuffleReuses) 5262 ReuseShuffleCost = TTI->getShuffleCost( 5263 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5264 // Improve gather cost for gather of loads, if we can group some of the 5265 // loads into vector loads. 5266 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5267 !E->isAltShuffle()) { 5268 BoUpSLP::ValueSet VectorizedLoads; 5269 unsigned StartIdx = 0; 5270 unsigned VF = VL.size() / 2; 5271 unsigned VectorizedCnt = 0; 5272 unsigned ScatterVectorizeCnt = 0; 5273 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5274 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5275 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5276 Cnt += VF) { 5277 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5278 if (!VectorizedLoads.count(Slice.front()) && 5279 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5280 SmallVector<Value *> PointerOps; 5281 OrdersType CurrentOrder; 5282 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5283 *SE, CurrentOrder, PointerOps); 5284 switch (LS) { 5285 case LoadsState::Vectorize: 5286 case LoadsState::ScatterVectorize: 5287 // Mark the vectorized loads so that we don't vectorize them 5288 // again. 5289 if (LS == LoadsState::Vectorize) 5290 ++VectorizedCnt; 5291 else 5292 ++ScatterVectorizeCnt; 5293 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5294 // If we vectorized initial block, no need to try to vectorize it 5295 // again. 5296 if (Cnt == StartIdx) 5297 StartIdx += VF; 5298 break; 5299 case LoadsState::Gather: 5300 break; 5301 } 5302 } 5303 } 5304 // Check if the whole array was vectorized already - exit. 5305 if (StartIdx >= VL.size()) 5306 break; 5307 // Found vectorizable parts - exit. 5308 if (!VectorizedLoads.empty()) 5309 break; 5310 } 5311 if (!VectorizedLoads.empty()) { 5312 InstructionCost GatherCost = 0; 5313 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5314 bool NeedInsertSubvectorAnalysis = 5315 !NumParts || (VL.size() / VF) > NumParts; 5316 // Get the cost for gathered loads. 5317 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5318 if (VectorizedLoads.contains(VL[I])) 5319 continue; 5320 GatherCost += getGatherCost(VL.slice(I, VF)); 5321 } 5322 // The cost for vectorized loads. 5323 InstructionCost ScalarsCost = 0; 5324 for (Value *V : VectorizedLoads) { 5325 auto *LI = cast<LoadInst>(V); 5326 ScalarsCost += TTI->getMemoryOpCost( 5327 Instruction::Load, LI->getType(), LI->getAlign(), 5328 LI->getPointerAddressSpace(), CostKind, LI); 5329 } 5330 auto *LI = cast<LoadInst>(E->getMainOp()); 5331 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5332 Align Alignment = LI->getAlign(); 5333 GatherCost += 5334 VectorizedCnt * 5335 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5336 LI->getPointerAddressSpace(), CostKind, LI); 5337 GatherCost += ScatterVectorizeCnt * 5338 TTI->getGatherScatterOpCost( 5339 Instruction::Load, LoadTy, LI->getPointerOperand(), 5340 /*VariableMask=*/false, Alignment, CostKind, LI); 5341 if (NeedInsertSubvectorAnalysis) { 5342 // Add the cost for the subvectors insert. 5343 for (int I = VF, E = VL.size(); I < E; I += VF) 5344 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5345 None, I, LoadTy); 5346 } 5347 return ReuseShuffleCost + GatherCost - ScalarsCost; 5348 } 5349 } 5350 return ReuseShuffleCost + getGatherCost(VL); 5351 } 5352 InstructionCost CommonCost = 0; 5353 SmallVector<int> Mask; 5354 if (!E->ReorderIndices.empty()) { 5355 SmallVector<int> NewMask; 5356 if (E->getOpcode() == Instruction::Store) { 5357 // For stores the order is actually a mask. 5358 NewMask.resize(E->ReorderIndices.size()); 5359 copy(E->ReorderIndices, NewMask.begin()); 5360 } else { 5361 inversePermutation(E->ReorderIndices, NewMask); 5362 } 5363 ::addMask(Mask, NewMask); 5364 } 5365 if (NeedToShuffleReuses) 5366 ::addMask(Mask, E->ReuseShuffleIndices); 5367 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5368 CommonCost = 5369 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5370 assert((E->State == TreeEntry::Vectorize || 5371 E->State == TreeEntry::ScatterVectorize) && 5372 "Unhandled state"); 5373 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5374 Instruction *VL0 = E->getMainOp(); 5375 unsigned ShuffleOrOp = 5376 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5377 switch (ShuffleOrOp) { 5378 case Instruction::PHI: 5379 return 0; 5380 5381 case Instruction::ExtractValue: 5382 case Instruction::ExtractElement: { 5383 // The common cost of removal ExtractElement/ExtractValue instructions + 5384 // the cost of shuffles, if required to resuffle the original vector. 5385 if (NeedToShuffleReuses) { 5386 unsigned Idx = 0; 5387 for (unsigned I : E->ReuseShuffleIndices) { 5388 if (ShuffleOrOp == Instruction::ExtractElement) { 5389 auto *EE = cast<ExtractElementInst>(VL[I]); 5390 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5391 EE->getVectorOperandType(), 5392 *getExtractIndex(EE)); 5393 } else { 5394 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5395 VecTy, Idx); 5396 ++Idx; 5397 } 5398 } 5399 Idx = EntryVF; 5400 for (Value *V : VL) { 5401 if (ShuffleOrOp == Instruction::ExtractElement) { 5402 auto *EE = cast<ExtractElementInst>(V); 5403 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5404 EE->getVectorOperandType(), 5405 *getExtractIndex(EE)); 5406 } else { 5407 --Idx; 5408 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5409 VecTy, Idx); 5410 } 5411 } 5412 } 5413 if (ShuffleOrOp == Instruction::ExtractValue) { 5414 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5415 auto *EI = cast<Instruction>(VL[I]); 5416 // Take credit for instruction that will become dead. 5417 if (EI->hasOneUse()) { 5418 Instruction *Ext = EI->user_back(); 5419 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5420 all_of(Ext->users(), 5421 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5422 // Use getExtractWithExtendCost() to calculate the cost of 5423 // extractelement/ext pair. 5424 CommonCost -= TTI->getExtractWithExtendCost( 5425 Ext->getOpcode(), Ext->getType(), VecTy, I); 5426 // Add back the cost of s|zext which is subtracted separately. 5427 CommonCost += TTI->getCastInstrCost( 5428 Ext->getOpcode(), Ext->getType(), EI->getType(), 5429 TTI::getCastContextHint(Ext), CostKind, Ext); 5430 continue; 5431 } 5432 } 5433 CommonCost -= 5434 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5435 } 5436 } else { 5437 AdjustExtractsCost(CommonCost); 5438 } 5439 return CommonCost; 5440 } 5441 case Instruction::InsertElement: { 5442 assert(E->ReuseShuffleIndices.empty() && 5443 "Unique insertelements only are expected."); 5444 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5445 5446 unsigned const NumElts = SrcVecTy->getNumElements(); 5447 unsigned const NumScalars = VL.size(); 5448 APInt DemandedElts = APInt::getZero(NumElts); 5449 // TODO: Add support for Instruction::InsertValue. 5450 SmallVector<int> Mask; 5451 if (!E->ReorderIndices.empty()) { 5452 inversePermutation(E->ReorderIndices, Mask); 5453 Mask.append(NumElts - NumScalars, UndefMaskElem); 5454 } else { 5455 Mask.assign(NumElts, UndefMaskElem); 5456 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5457 } 5458 unsigned Offset = *getInsertIndex(VL0); 5459 bool IsIdentity = true; 5460 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5461 Mask.swap(PrevMask); 5462 for (unsigned I = 0; I < NumScalars; ++I) { 5463 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5464 DemandedElts.setBit(InsertIdx); 5465 IsIdentity &= InsertIdx - Offset == I; 5466 Mask[InsertIdx - Offset] = I; 5467 } 5468 assert(Offset < NumElts && "Failed to find vector index offset"); 5469 5470 InstructionCost Cost = 0; 5471 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5472 /*Insert*/ true, /*Extract*/ false); 5473 5474 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5475 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5476 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5477 Cost += TTI->getShuffleCost( 5478 TargetTransformInfo::SK_PermuteSingleSrc, 5479 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5480 } else if (!IsIdentity) { 5481 auto *FirstInsert = 5482 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5483 return !is_contained(E->Scalars, 5484 cast<Instruction>(V)->getOperand(0)); 5485 })); 5486 if (isUndefVector(FirstInsert->getOperand(0))) { 5487 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5488 } else { 5489 SmallVector<int> InsertMask(NumElts); 5490 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5491 for (unsigned I = 0; I < NumElts; I++) { 5492 if (Mask[I] != UndefMaskElem) 5493 InsertMask[Offset + I] = NumElts + I; 5494 } 5495 Cost += 5496 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5497 } 5498 } 5499 5500 return Cost; 5501 } 5502 case Instruction::ZExt: 5503 case Instruction::SExt: 5504 case Instruction::FPToUI: 5505 case Instruction::FPToSI: 5506 case Instruction::FPExt: 5507 case Instruction::PtrToInt: 5508 case Instruction::IntToPtr: 5509 case Instruction::SIToFP: 5510 case Instruction::UIToFP: 5511 case Instruction::Trunc: 5512 case Instruction::FPTrunc: 5513 case Instruction::BitCast: { 5514 Type *SrcTy = VL0->getOperand(0)->getType(); 5515 InstructionCost ScalarEltCost = 5516 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5517 TTI::getCastContextHint(VL0), CostKind, VL0); 5518 if (NeedToShuffleReuses) { 5519 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5520 } 5521 5522 // Calculate the cost of this instruction. 5523 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5524 5525 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5526 InstructionCost VecCost = 0; 5527 // Check if the values are candidates to demote. 5528 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5529 VecCost = CommonCost + TTI->getCastInstrCost( 5530 E->getOpcode(), VecTy, SrcVecTy, 5531 TTI::getCastContextHint(VL0), CostKind, VL0); 5532 } 5533 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5534 return VecCost - ScalarCost; 5535 } 5536 case Instruction::FCmp: 5537 case Instruction::ICmp: 5538 case Instruction::Select: { 5539 // Calculate the cost of this instruction. 5540 InstructionCost ScalarEltCost = 5541 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5542 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5543 if (NeedToShuffleReuses) { 5544 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5545 } 5546 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5547 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5548 5549 // Check if all entries in VL are either compares or selects with compares 5550 // as condition that have the same predicates. 5551 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5552 bool First = true; 5553 for (auto *V : VL) { 5554 CmpInst::Predicate CurrentPred; 5555 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5556 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5557 !match(V, MatchCmp)) || 5558 (!First && VecPred != CurrentPred)) { 5559 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5560 break; 5561 } 5562 First = false; 5563 VecPred = CurrentPred; 5564 } 5565 5566 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5567 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5568 // Check if it is possible and profitable to use min/max for selects in 5569 // VL. 5570 // 5571 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5572 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5573 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5574 {VecTy, VecTy}); 5575 InstructionCost IntrinsicCost = 5576 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5577 // If the selects are the only uses of the compares, they will be dead 5578 // and we can adjust the cost by removing their cost. 5579 if (IntrinsicAndUse.second) 5580 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5581 MaskTy, VecPred, CostKind); 5582 VecCost = std::min(VecCost, IntrinsicCost); 5583 } 5584 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5585 return CommonCost + VecCost - ScalarCost; 5586 } 5587 case Instruction::FNeg: 5588 case Instruction::Add: 5589 case Instruction::FAdd: 5590 case Instruction::Sub: 5591 case Instruction::FSub: 5592 case Instruction::Mul: 5593 case Instruction::FMul: 5594 case Instruction::UDiv: 5595 case Instruction::SDiv: 5596 case Instruction::FDiv: 5597 case Instruction::URem: 5598 case Instruction::SRem: 5599 case Instruction::FRem: 5600 case Instruction::Shl: 5601 case Instruction::LShr: 5602 case Instruction::AShr: 5603 case Instruction::And: 5604 case Instruction::Or: 5605 case Instruction::Xor: { 5606 // Certain instructions can be cheaper to vectorize if they have a 5607 // constant second vector operand. 5608 TargetTransformInfo::OperandValueKind Op1VK = 5609 TargetTransformInfo::OK_AnyValue; 5610 TargetTransformInfo::OperandValueKind Op2VK = 5611 TargetTransformInfo::OK_UniformConstantValue; 5612 TargetTransformInfo::OperandValueProperties Op1VP = 5613 TargetTransformInfo::OP_None; 5614 TargetTransformInfo::OperandValueProperties Op2VP = 5615 TargetTransformInfo::OP_PowerOf2; 5616 5617 // If all operands are exactly the same ConstantInt then set the 5618 // operand kind to OK_UniformConstantValue. 5619 // If instead not all operands are constants, then set the operand kind 5620 // to OK_AnyValue. If all operands are constants but not the same, 5621 // then set the operand kind to OK_NonUniformConstantValue. 5622 ConstantInt *CInt0 = nullptr; 5623 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5624 const Instruction *I = cast<Instruction>(VL[i]); 5625 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5626 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5627 if (!CInt) { 5628 Op2VK = TargetTransformInfo::OK_AnyValue; 5629 Op2VP = TargetTransformInfo::OP_None; 5630 break; 5631 } 5632 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5633 !CInt->getValue().isPowerOf2()) 5634 Op2VP = TargetTransformInfo::OP_None; 5635 if (i == 0) { 5636 CInt0 = CInt; 5637 continue; 5638 } 5639 if (CInt0 != CInt) 5640 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5641 } 5642 5643 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5644 InstructionCost ScalarEltCost = 5645 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5646 Op2VK, Op1VP, Op2VP, Operands, VL0); 5647 if (NeedToShuffleReuses) { 5648 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5649 } 5650 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5651 InstructionCost VecCost = 5652 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5653 Op2VK, Op1VP, Op2VP, Operands, VL0); 5654 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5655 return CommonCost + VecCost - ScalarCost; 5656 } 5657 case Instruction::GetElementPtr: { 5658 TargetTransformInfo::OperandValueKind Op1VK = 5659 TargetTransformInfo::OK_AnyValue; 5660 TargetTransformInfo::OperandValueKind Op2VK = 5661 TargetTransformInfo::OK_UniformConstantValue; 5662 5663 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5664 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5665 if (NeedToShuffleReuses) { 5666 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5667 } 5668 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5669 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5670 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5671 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5672 return CommonCost + VecCost - ScalarCost; 5673 } 5674 case Instruction::Load: { 5675 // Cost of wide load - cost of scalar loads. 5676 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5677 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5678 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5679 if (NeedToShuffleReuses) { 5680 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5681 } 5682 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5683 InstructionCost VecLdCost; 5684 if (E->State == TreeEntry::Vectorize) { 5685 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5686 CostKind, VL0); 5687 } else { 5688 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5689 Align CommonAlignment = Alignment; 5690 for (Value *V : VL) 5691 CommonAlignment = 5692 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5693 VecLdCost = TTI->getGatherScatterOpCost( 5694 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5695 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5696 } 5697 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5698 return CommonCost + VecLdCost - ScalarLdCost; 5699 } 5700 case Instruction::Store: { 5701 // We know that we can merge the stores. Calculate the cost. 5702 bool IsReorder = !E->ReorderIndices.empty(); 5703 auto *SI = 5704 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5705 Align Alignment = SI->getAlign(); 5706 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5707 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5708 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5709 InstructionCost VecStCost = TTI->getMemoryOpCost( 5710 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5711 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5712 return CommonCost + VecStCost - ScalarStCost; 5713 } 5714 case Instruction::Call: { 5715 CallInst *CI = cast<CallInst>(VL0); 5716 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5717 5718 // Calculate the cost of the scalar and vector calls. 5719 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5720 InstructionCost ScalarEltCost = 5721 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5722 if (NeedToShuffleReuses) { 5723 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5724 } 5725 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5726 5727 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5728 InstructionCost VecCallCost = 5729 std::min(VecCallCosts.first, VecCallCosts.second); 5730 5731 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5732 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5733 << " for " << *CI << "\n"); 5734 5735 return CommonCost + VecCallCost - ScalarCallCost; 5736 } 5737 case Instruction::ShuffleVector: { 5738 assert(E->isAltShuffle() && 5739 ((Instruction::isBinaryOp(E->getOpcode()) && 5740 Instruction::isBinaryOp(E->getAltOpcode())) || 5741 (Instruction::isCast(E->getOpcode()) && 5742 Instruction::isCast(E->getAltOpcode())) || 5743 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5744 "Invalid Shuffle Vector Operand"); 5745 InstructionCost ScalarCost = 0; 5746 if (NeedToShuffleReuses) { 5747 for (unsigned Idx : E->ReuseShuffleIndices) { 5748 Instruction *I = cast<Instruction>(VL[Idx]); 5749 CommonCost -= TTI->getInstructionCost(I, CostKind); 5750 } 5751 for (Value *V : VL) { 5752 Instruction *I = cast<Instruction>(V); 5753 CommonCost += TTI->getInstructionCost(I, CostKind); 5754 } 5755 } 5756 for (Value *V : VL) { 5757 Instruction *I = cast<Instruction>(V); 5758 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5759 ScalarCost += TTI->getInstructionCost(I, CostKind); 5760 } 5761 // VecCost is equal to sum of the cost of creating 2 vectors 5762 // and the cost of creating shuffle. 5763 InstructionCost VecCost = 0; 5764 // Try to find the previous shuffle node with the same operands and same 5765 // main/alternate ops. 5766 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5767 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5768 if (TE.get() == E) 5769 break; 5770 if (TE->isAltShuffle() && 5771 ((TE->getOpcode() == E->getOpcode() && 5772 TE->getAltOpcode() == E->getAltOpcode()) || 5773 (TE->getOpcode() == E->getAltOpcode() && 5774 TE->getAltOpcode() == E->getOpcode())) && 5775 TE->hasEqualOperands(*E)) 5776 return true; 5777 } 5778 return false; 5779 }; 5780 if (TryFindNodeWithEqualOperands()) { 5781 LLVM_DEBUG({ 5782 dbgs() << "SLP: diamond match for alternate node found.\n"; 5783 E->dump(); 5784 }); 5785 // No need to add new vector costs here since we're going to reuse 5786 // same main/alternate vector ops, just do different shuffling. 5787 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5788 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5789 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5790 CostKind); 5791 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5792 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5793 Builder.getInt1Ty(), 5794 CI0->getPredicate(), CostKind, VL0); 5795 VecCost += TTI->getCmpSelInstrCost( 5796 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5797 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5798 E->getAltOp()); 5799 } else { 5800 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5801 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5802 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5803 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5804 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5805 TTI::CastContextHint::None, CostKind); 5806 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5807 TTI::CastContextHint::None, CostKind); 5808 } 5809 5810 SmallVector<int> Mask; 5811 buildShuffleEntryMask( 5812 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5813 [E](Instruction *I) { 5814 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5815 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5816 }, 5817 Mask); 5818 CommonCost = 5819 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5820 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5821 return CommonCost + VecCost - ScalarCost; 5822 } 5823 default: 5824 llvm_unreachable("Unknown instruction"); 5825 } 5826 } 5827 5828 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5829 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5830 << VectorizableTree.size() << " is fully vectorizable .\n"); 5831 5832 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5833 SmallVector<int> Mask; 5834 return TE->State == TreeEntry::NeedToGather && 5835 !any_of(TE->Scalars, 5836 [this](Value *V) { return EphValues.contains(V); }) && 5837 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5838 TE->Scalars.size() < Limit || 5839 ((TE->getOpcode() == Instruction::ExtractElement || 5840 all_of(TE->Scalars, 5841 [](Value *V) { 5842 return isa<ExtractElementInst, UndefValue>(V); 5843 })) && 5844 isFixedVectorShuffle(TE->Scalars, Mask)) || 5845 (TE->State == TreeEntry::NeedToGather && 5846 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5847 }; 5848 5849 // We only handle trees of heights 1 and 2. 5850 if (VectorizableTree.size() == 1 && 5851 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5852 (ForReduction && 5853 AreVectorizableGathers(VectorizableTree[0].get(), 5854 VectorizableTree[0]->Scalars.size()) && 5855 VectorizableTree[0]->getVectorFactor() > 2))) 5856 return true; 5857 5858 if (VectorizableTree.size() != 2) 5859 return false; 5860 5861 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5862 // with the second gather nodes if they have less scalar operands rather than 5863 // the initial tree element (may be profitable to shuffle the second gather) 5864 // or they are extractelements, which form shuffle. 5865 SmallVector<int> Mask; 5866 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5867 AreVectorizableGathers(VectorizableTree[1].get(), 5868 VectorizableTree[0]->Scalars.size())) 5869 return true; 5870 5871 // Gathering cost would be too much for tiny trees. 5872 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5873 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5874 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5875 return false; 5876 5877 return true; 5878 } 5879 5880 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5881 TargetTransformInfo *TTI, 5882 bool MustMatchOrInst) { 5883 // Look past the root to find a source value. Arbitrarily follow the 5884 // path through operand 0 of any 'or'. Also, peek through optional 5885 // shift-left-by-multiple-of-8-bits. 5886 Value *ZextLoad = Root; 5887 const APInt *ShAmtC; 5888 bool FoundOr = false; 5889 while (!isa<ConstantExpr>(ZextLoad) && 5890 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5891 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5892 ShAmtC->urem(8) == 0))) { 5893 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5894 ZextLoad = BinOp->getOperand(0); 5895 if (BinOp->getOpcode() == Instruction::Or) 5896 FoundOr = true; 5897 } 5898 // Check if the input is an extended load of the required or/shift expression. 5899 Value *Load; 5900 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5901 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5902 return false; 5903 5904 // Require that the total load bit width is a legal integer type. 5905 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5906 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5907 Type *SrcTy = Load->getType(); 5908 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5909 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5910 return false; 5911 5912 // Everything matched - assume that we can fold the whole sequence using 5913 // load combining. 5914 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5915 << *(cast<Instruction>(Root)) << "\n"); 5916 5917 return true; 5918 } 5919 5920 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5921 if (RdxKind != RecurKind::Or) 5922 return false; 5923 5924 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5925 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5926 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5927 /* MatchOr */ false); 5928 } 5929 5930 bool BoUpSLP::isLoadCombineCandidate() const { 5931 // Peek through a final sequence of stores and check if all operations are 5932 // likely to be load-combined. 5933 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5934 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5935 Value *X; 5936 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5937 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5938 return false; 5939 } 5940 return true; 5941 } 5942 5943 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5944 // No need to vectorize inserts of gathered values. 5945 if (VectorizableTree.size() == 2 && 5946 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5947 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5948 return true; 5949 5950 // We can vectorize the tree if its size is greater than or equal to the 5951 // minimum size specified by the MinTreeSize command line option. 5952 if (VectorizableTree.size() >= MinTreeSize) 5953 return false; 5954 5955 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5956 // can vectorize it if we can prove it fully vectorizable. 5957 if (isFullyVectorizableTinyTree(ForReduction)) 5958 return false; 5959 5960 assert(VectorizableTree.empty() 5961 ? ExternalUses.empty() 5962 : true && "We shouldn't have any external users"); 5963 5964 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5965 // vectorizable. 5966 return true; 5967 } 5968 5969 InstructionCost BoUpSLP::getSpillCost() const { 5970 // Walk from the bottom of the tree to the top, tracking which values are 5971 // live. When we see a call instruction that is not part of our tree, 5972 // query TTI to see if there is a cost to keeping values live over it 5973 // (for example, if spills and fills are required). 5974 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5975 InstructionCost Cost = 0; 5976 5977 SmallPtrSet<Instruction*, 4> LiveValues; 5978 Instruction *PrevInst = nullptr; 5979 5980 // The entries in VectorizableTree are not necessarily ordered by their 5981 // position in basic blocks. Collect them and order them by dominance so later 5982 // instructions are guaranteed to be visited first. For instructions in 5983 // different basic blocks, we only scan to the beginning of the block, so 5984 // their order does not matter, as long as all instructions in a basic block 5985 // are grouped together. Using dominance ensures a deterministic order. 5986 SmallVector<Instruction *, 16> OrderedScalars; 5987 for (const auto &TEPtr : VectorizableTree) { 5988 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5989 if (!Inst) 5990 continue; 5991 OrderedScalars.push_back(Inst); 5992 } 5993 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5994 auto *NodeA = DT->getNode(A->getParent()); 5995 auto *NodeB = DT->getNode(B->getParent()); 5996 assert(NodeA && "Should only process reachable instructions"); 5997 assert(NodeB && "Should only process reachable instructions"); 5998 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5999 "Different nodes should have different DFS numbers"); 6000 if (NodeA != NodeB) 6001 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6002 return B->comesBefore(A); 6003 }); 6004 6005 for (Instruction *Inst : OrderedScalars) { 6006 if (!PrevInst) { 6007 PrevInst = Inst; 6008 continue; 6009 } 6010 6011 // Update LiveValues. 6012 LiveValues.erase(PrevInst); 6013 for (auto &J : PrevInst->operands()) { 6014 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6015 LiveValues.insert(cast<Instruction>(&*J)); 6016 } 6017 6018 LLVM_DEBUG({ 6019 dbgs() << "SLP: #LV: " << LiveValues.size(); 6020 for (auto *X : LiveValues) 6021 dbgs() << " " << X->getName(); 6022 dbgs() << ", Looking at "; 6023 Inst->dump(); 6024 }); 6025 6026 // Now find the sequence of instructions between PrevInst and Inst. 6027 unsigned NumCalls = 0; 6028 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6029 PrevInstIt = 6030 PrevInst->getIterator().getReverse(); 6031 while (InstIt != PrevInstIt) { 6032 if (PrevInstIt == PrevInst->getParent()->rend()) { 6033 PrevInstIt = Inst->getParent()->rbegin(); 6034 continue; 6035 } 6036 6037 // Debug information does not impact spill cost. 6038 if ((isa<CallInst>(&*PrevInstIt) && 6039 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6040 &*PrevInstIt != PrevInst) 6041 NumCalls++; 6042 6043 ++PrevInstIt; 6044 } 6045 6046 if (NumCalls) { 6047 SmallVector<Type*, 4> V; 6048 for (auto *II : LiveValues) { 6049 auto *ScalarTy = II->getType(); 6050 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6051 ScalarTy = VectorTy->getElementType(); 6052 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6053 } 6054 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6055 } 6056 6057 PrevInst = Inst; 6058 } 6059 6060 return Cost; 6061 } 6062 6063 /// Check if two insertelement instructions are from the same buildvector. 6064 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6065 InsertElementInst *V) { 6066 // Instructions must be from the same basic blocks. 6067 if (VU->getParent() != V->getParent()) 6068 return false; 6069 // Checks if 2 insertelements are from the same buildvector. 6070 if (VU->getType() != V->getType()) 6071 return false; 6072 // Multiple used inserts are separate nodes. 6073 if (!VU->hasOneUse() && !V->hasOneUse()) 6074 return false; 6075 auto *IE1 = VU; 6076 auto *IE2 = V; 6077 // Go through the vector operand of insertelement instructions trying to find 6078 // either VU as the original vector for IE2 or V as the original vector for 6079 // IE1. 6080 do { 6081 if (IE2 == VU || IE1 == V) 6082 return true; 6083 if (IE1) { 6084 if (IE1 != VU && !IE1->hasOneUse()) 6085 IE1 = nullptr; 6086 else 6087 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6088 } 6089 if (IE2) { 6090 if (IE2 != V && !IE2->hasOneUse()) 6091 IE2 = nullptr; 6092 else 6093 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6094 } 6095 } while (IE1 || IE2); 6096 return false; 6097 } 6098 6099 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6100 InstructionCost Cost = 0; 6101 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6102 << VectorizableTree.size() << ".\n"); 6103 6104 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6105 6106 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6107 TreeEntry &TE = *VectorizableTree[I]; 6108 6109 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6110 Cost += C; 6111 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6112 << " for bundle that starts with " << *TE.Scalars[0] 6113 << ".\n" 6114 << "SLP: Current total cost = " << Cost << "\n"); 6115 } 6116 6117 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6118 InstructionCost ExtractCost = 0; 6119 SmallVector<unsigned> VF; 6120 SmallVector<SmallVector<int>> ShuffleMask; 6121 SmallVector<Value *> FirstUsers; 6122 SmallVector<APInt> DemandedElts; 6123 for (ExternalUser &EU : ExternalUses) { 6124 // We only add extract cost once for the same scalar. 6125 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6126 !ExtractCostCalculated.insert(EU.Scalar).second) 6127 continue; 6128 6129 // Uses by ephemeral values are free (because the ephemeral value will be 6130 // removed prior to code generation, and so the extraction will be 6131 // removed as well). 6132 if (EphValues.count(EU.User)) 6133 continue; 6134 6135 // No extract cost for vector "scalar" 6136 if (isa<FixedVectorType>(EU.Scalar->getType())) 6137 continue; 6138 6139 // Already counted the cost for external uses when tried to adjust the cost 6140 // for extractelements, no need to add it again. 6141 if (isa<ExtractElementInst>(EU.Scalar)) 6142 continue; 6143 6144 // If found user is an insertelement, do not calculate extract cost but try 6145 // to detect it as a final shuffled/identity match. 6146 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6147 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6148 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6149 if (InsertIdx) { 6150 auto *It = find_if(FirstUsers, [VU](Value *V) { 6151 return areTwoInsertFromSameBuildVector(VU, 6152 cast<InsertElementInst>(V)); 6153 }); 6154 int VecId = -1; 6155 if (It == FirstUsers.end()) { 6156 VF.push_back(FTy->getNumElements()); 6157 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6158 // Find the insertvector, vectorized in tree, if any. 6159 Value *Base = VU; 6160 while (isa<InsertElementInst>(Base)) { 6161 // Build the mask for the vectorized insertelement instructions. 6162 if (const TreeEntry *E = getTreeEntry(Base)) { 6163 VU = cast<InsertElementInst>(Base); 6164 do { 6165 int Idx = E->findLaneForValue(Base); 6166 ShuffleMask.back()[Idx] = Idx; 6167 Base = cast<InsertElementInst>(Base)->getOperand(0); 6168 } while (E == getTreeEntry(Base)); 6169 break; 6170 } 6171 Base = cast<InsertElementInst>(Base)->getOperand(0); 6172 } 6173 FirstUsers.push_back(VU); 6174 DemandedElts.push_back(APInt::getZero(VF.back())); 6175 VecId = FirstUsers.size() - 1; 6176 } else { 6177 VecId = std::distance(FirstUsers.begin(), It); 6178 } 6179 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6180 DemandedElts[VecId].setBit(*InsertIdx); 6181 continue; 6182 } 6183 } 6184 } 6185 6186 // If we plan to rewrite the tree in a smaller type, we will need to sign 6187 // extend the extracted value back to the original type. Here, we account 6188 // for the extract and the added cost of the sign extend if needed. 6189 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6190 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6191 if (MinBWs.count(ScalarRoot)) { 6192 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6193 auto Extend = 6194 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6195 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6196 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6197 VecTy, EU.Lane); 6198 } else { 6199 ExtractCost += 6200 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6201 } 6202 } 6203 6204 InstructionCost SpillCost = getSpillCost(); 6205 Cost += SpillCost + ExtractCost; 6206 if (FirstUsers.size() == 1) { 6207 int Limit = ShuffleMask.front().size() * 2; 6208 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6209 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6210 InstructionCost C = TTI->getShuffleCost( 6211 TTI::SK_PermuteSingleSrc, 6212 cast<FixedVectorType>(FirstUsers.front()->getType()), 6213 ShuffleMask.front()); 6214 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6215 << " for final shuffle of insertelement external users " 6216 << *VectorizableTree.front()->Scalars.front() << ".\n" 6217 << "SLP: Current total cost = " << Cost << "\n"); 6218 Cost += C; 6219 } 6220 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6221 cast<FixedVectorType>(FirstUsers.front()->getType()), 6222 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6223 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6224 << " for insertelements gather.\n" 6225 << "SLP: Current total cost = " << Cost << "\n"); 6226 Cost -= InsertCost; 6227 } else if (FirstUsers.size() >= 2) { 6228 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6229 // Combined masks of the first 2 vectors. 6230 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6231 copy(ShuffleMask.front(), CombinedMask.begin()); 6232 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6233 auto *VecTy = FixedVectorType::get( 6234 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6235 MaxVF); 6236 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6237 if (ShuffleMask[1][I] != UndefMaskElem) { 6238 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6239 CombinedDemandedElts.setBit(I); 6240 } 6241 } 6242 InstructionCost C = 6243 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6244 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6245 << " for final shuffle of vector node and external " 6246 "insertelement users " 6247 << *VectorizableTree.front()->Scalars.front() << ".\n" 6248 << "SLP: Current total cost = " << Cost << "\n"); 6249 Cost += C; 6250 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6251 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6252 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6253 << " for insertelements gather.\n" 6254 << "SLP: Current total cost = " << Cost << "\n"); 6255 Cost -= InsertCost; 6256 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6257 // Other elements - permutation of 2 vectors (the initial one and the 6258 // next Ith incoming vector). 6259 unsigned VF = ShuffleMask[I].size(); 6260 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6261 int Mask = ShuffleMask[I][Idx]; 6262 if (Mask != UndefMaskElem) 6263 CombinedMask[Idx] = MaxVF + Mask; 6264 else if (CombinedMask[Idx] != UndefMaskElem) 6265 CombinedMask[Idx] = Idx; 6266 } 6267 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6268 if (CombinedMask[Idx] != UndefMaskElem) 6269 CombinedMask[Idx] = Idx; 6270 InstructionCost C = 6271 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6272 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6273 << " for final shuffle of vector node and external " 6274 "insertelement users " 6275 << *VectorizableTree.front()->Scalars.front() << ".\n" 6276 << "SLP: Current total cost = " << Cost << "\n"); 6277 Cost += C; 6278 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6279 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6280 /*Insert*/ true, /*Extract*/ false); 6281 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6282 << " for insertelements gather.\n" 6283 << "SLP: Current total cost = " << Cost << "\n"); 6284 Cost -= InsertCost; 6285 } 6286 } 6287 6288 #ifndef NDEBUG 6289 SmallString<256> Str; 6290 { 6291 raw_svector_ostream OS(Str); 6292 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6293 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6294 << "SLP: Total Cost = " << Cost << ".\n"; 6295 } 6296 LLVM_DEBUG(dbgs() << Str); 6297 if (ViewSLPTree) 6298 ViewGraph(this, "SLP" + F->getName(), false, Str); 6299 #endif 6300 6301 return Cost; 6302 } 6303 6304 Optional<TargetTransformInfo::ShuffleKind> 6305 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6306 SmallVectorImpl<const TreeEntry *> &Entries) { 6307 // TODO: currently checking only for Scalars in the tree entry, need to count 6308 // reused elements too for better cost estimation. 6309 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6310 Entries.clear(); 6311 // Build a lists of values to tree entries. 6312 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6313 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6314 if (EntryPtr.get() == TE) 6315 break; 6316 if (EntryPtr->State != TreeEntry::NeedToGather) 6317 continue; 6318 for (Value *V : EntryPtr->Scalars) 6319 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6320 } 6321 // Find all tree entries used by the gathered values. If no common entries 6322 // found - not a shuffle. 6323 // Here we build a set of tree nodes for each gathered value and trying to 6324 // find the intersection between these sets. If we have at least one common 6325 // tree node for each gathered value - we have just a permutation of the 6326 // single vector. If we have 2 different sets, we're in situation where we 6327 // have a permutation of 2 input vectors. 6328 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6329 DenseMap<Value *, int> UsedValuesEntry; 6330 for (Value *V : TE->Scalars) { 6331 if (isa<UndefValue>(V)) 6332 continue; 6333 // Build a list of tree entries where V is used. 6334 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6335 auto It = ValueToTEs.find(V); 6336 if (It != ValueToTEs.end()) 6337 VToTEs = It->second; 6338 if (const TreeEntry *VTE = getTreeEntry(V)) 6339 VToTEs.insert(VTE); 6340 if (VToTEs.empty()) 6341 return None; 6342 if (UsedTEs.empty()) { 6343 // The first iteration, just insert the list of nodes to vector. 6344 UsedTEs.push_back(VToTEs); 6345 } else { 6346 // Need to check if there are any previously used tree nodes which use V. 6347 // If there are no such nodes, consider that we have another one input 6348 // vector. 6349 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6350 unsigned Idx = 0; 6351 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6352 // Do we have a non-empty intersection of previously listed tree entries 6353 // and tree entries using current V? 6354 set_intersect(VToTEs, Set); 6355 if (!VToTEs.empty()) { 6356 // Yes, write the new subset and continue analysis for the next 6357 // scalar. 6358 Set.swap(VToTEs); 6359 break; 6360 } 6361 VToTEs = SavedVToTEs; 6362 ++Idx; 6363 } 6364 // No non-empty intersection found - need to add a second set of possible 6365 // source vectors. 6366 if (Idx == UsedTEs.size()) { 6367 // If the number of input vectors is greater than 2 - not a permutation, 6368 // fallback to the regular gather. 6369 if (UsedTEs.size() == 2) 6370 return None; 6371 UsedTEs.push_back(SavedVToTEs); 6372 Idx = UsedTEs.size() - 1; 6373 } 6374 UsedValuesEntry.try_emplace(V, Idx); 6375 } 6376 } 6377 6378 unsigned VF = 0; 6379 if (UsedTEs.size() == 1) { 6380 // Try to find the perfect match in another gather node at first. 6381 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6382 return EntryPtr->isSame(TE->Scalars); 6383 }); 6384 if (It != UsedTEs.front().end()) { 6385 Entries.push_back(*It); 6386 std::iota(Mask.begin(), Mask.end(), 0); 6387 return TargetTransformInfo::SK_PermuteSingleSrc; 6388 } 6389 // No perfect match, just shuffle, so choose the first tree node. 6390 Entries.push_back(*UsedTEs.front().begin()); 6391 } else { 6392 // Try to find nodes with the same vector factor. 6393 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6394 DenseMap<int, const TreeEntry *> VFToTE; 6395 for (const TreeEntry *TE : UsedTEs.front()) 6396 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6397 for (const TreeEntry *TE : UsedTEs.back()) { 6398 auto It = VFToTE.find(TE->getVectorFactor()); 6399 if (It != VFToTE.end()) { 6400 VF = It->first; 6401 Entries.push_back(It->second); 6402 Entries.push_back(TE); 6403 break; 6404 } 6405 } 6406 // No 2 source vectors with the same vector factor - give up and do regular 6407 // gather. 6408 if (Entries.empty()) 6409 return None; 6410 } 6411 6412 // Build a shuffle mask for better cost estimation and vector emission. 6413 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6414 Value *V = TE->Scalars[I]; 6415 if (isa<UndefValue>(V)) 6416 continue; 6417 unsigned Idx = UsedValuesEntry.lookup(V); 6418 const TreeEntry *VTE = Entries[Idx]; 6419 int FoundLane = VTE->findLaneForValue(V); 6420 Mask[I] = Idx * VF + FoundLane; 6421 // Extra check required by isSingleSourceMaskImpl function (called by 6422 // ShuffleVectorInst::isSingleSourceMask). 6423 if (Mask[I] >= 2 * E) 6424 return None; 6425 } 6426 switch (Entries.size()) { 6427 case 1: 6428 return TargetTransformInfo::SK_PermuteSingleSrc; 6429 case 2: 6430 return TargetTransformInfo::SK_PermuteTwoSrc; 6431 default: 6432 break; 6433 } 6434 return None; 6435 } 6436 6437 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6438 const APInt &ShuffledIndices, 6439 bool NeedToShuffle) const { 6440 InstructionCost Cost = 6441 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6442 /*Extract*/ false); 6443 if (NeedToShuffle) 6444 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6445 return Cost; 6446 } 6447 6448 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6449 // Find the type of the operands in VL. 6450 Type *ScalarTy = VL[0]->getType(); 6451 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6452 ScalarTy = SI->getValueOperand()->getType(); 6453 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6454 bool DuplicateNonConst = false; 6455 // Find the cost of inserting/extracting values from the vector. 6456 // Check if the same elements are inserted several times and count them as 6457 // shuffle candidates. 6458 APInt ShuffledElements = APInt::getZero(VL.size()); 6459 DenseSet<Value *> UniqueElements; 6460 // Iterate in reverse order to consider insert elements with the high cost. 6461 for (unsigned I = VL.size(); I > 0; --I) { 6462 unsigned Idx = I - 1; 6463 // No need to shuffle duplicates for constants. 6464 if (isConstant(VL[Idx])) { 6465 ShuffledElements.setBit(Idx); 6466 continue; 6467 } 6468 if (!UniqueElements.insert(VL[Idx]).second) { 6469 DuplicateNonConst = true; 6470 ShuffledElements.setBit(Idx); 6471 } 6472 } 6473 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6474 } 6475 6476 // Perform operand reordering on the instructions in VL and return the reordered 6477 // operands in Left and Right. 6478 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6479 SmallVectorImpl<Value *> &Left, 6480 SmallVectorImpl<Value *> &Right, 6481 const DataLayout &DL, 6482 ScalarEvolution &SE, 6483 const BoUpSLP &R) { 6484 if (VL.empty()) 6485 return; 6486 VLOperands Ops(VL, DL, SE, R); 6487 // Reorder the operands in place. 6488 Ops.reorder(); 6489 Left = Ops.getVL(0); 6490 Right = Ops.getVL(1); 6491 } 6492 6493 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6494 // Get the basic block this bundle is in. All instructions in the bundle 6495 // should be in this block. 6496 auto *Front = E->getMainOp(); 6497 auto *BB = Front->getParent(); 6498 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6499 auto *I = cast<Instruction>(V); 6500 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6501 })); 6502 6503 auto &&FindLastInst = [E, Front]() { 6504 Instruction *LastInst = Front; 6505 for (Value *V : E->Scalars) { 6506 auto *I = dyn_cast<Instruction>(V); 6507 if (!I) 6508 continue; 6509 if (LastInst->comesBefore(I)) 6510 LastInst = I; 6511 } 6512 return LastInst; 6513 }; 6514 6515 auto &&FindFirstInst = [E, Front]() { 6516 Instruction *FirstInst = Front; 6517 for (Value *V : E->Scalars) { 6518 auto *I = dyn_cast<Instruction>(V); 6519 if (!I) 6520 continue; 6521 if (I->comesBefore(FirstInst)) 6522 FirstInst = I; 6523 } 6524 return FirstInst; 6525 }; 6526 6527 // Set the insert point to the beginning of the basic block if the entry 6528 // should not be scheduled. 6529 if (E->State != TreeEntry::NeedToGather && 6530 doesNotNeedToSchedule(E->Scalars)) { 6531 BasicBlock::iterator InsertPt; 6532 if (all_of(E->Scalars, isUsedOutsideBlock)) 6533 InsertPt = FindLastInst()->getIterator(); 6534 else 6535 InsertPt = FindFirstInst()->getIterator(); 6536 Builder.SetInsertPoint(BB, InsertPt); 6537 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6538 return; 6539 } 6540 6541 // The last instruction in the bundle in program order. 6542 Instruction *LastInst = nullptr; 6543 6544 // Find the last instruction. The common case should be that BB has been 6545 // scheduled, and the last instruction is VL.back(). So we start with 6546 // VL.back() and iterate over schedule data until we reach the end of the 6547 // bundle. The end of the bundle is marked by null ScheduleData. 6548 if (BlocksSchedules.count(BB)) { 6549 Value *V = E->isOneOf(E->Scalars.back()); 6550 if (doesNotNeedToBeScheduled(V)) 6551 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6552 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6553 if (Bundle && Bundle->isPartOfBundle()) 6554 for (; Bundle; Bundle = Bundle->NextInBundle) 6555 if (Bundle->OpValue == Bundle->Inst) 6556 LastInst = Bundle->Inst; 6557 } 6558 6559 // LastInst can still be null at this point if there's either not an entry 6560 // for BB in BlocksSchedules or there's no ScheduleData available for 6561 // VL.back(). This can be the case if buildTree_rec aborts for various 6562 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6563 // size is reached, etc.). ScheduleData is initialized in the scheduling 6564 // "dry-run". 6565 // 6566 // If this happens, we can still find the last instruction by brute force. We 6567 // iterate forwards from Front (inclusive) until we either see all 6568 // instructions in the bundle or reach the end of the block. If Front is the 6569 // last instruction in program order, LastInst will be set to Front, and we 6570 // will visit all the remaining instructions in the block. 6571 // 6572 // One of the reasons we exit early from buildTree_rec is to place an upper 6573 // bound on compile-time. Thus, taking an additional compile-time hit here is 6574 // not ideal. However, this should be exceedingly rare since it requires that 6575 // we both exit early from buildTree_rec and that the bundle be out-of-order 6576 // (causing us to iterate all the way to the end of the block). 6577 if (!LastInst) 6578 LastInst = FindLastInst(); 6579 assert(LastInst && "Failed to find last instruction in bundle"); 6580 6581 // Set the insertion point after the last instruction in the bundle. Set the 6582 // debug location to Front. 6583 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6584 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6585 } 6586 6587 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6588 // List of instructions/lanes from current block and/or the blocks which are 6589 // part of the current loop. These instructions will be inserted at the end to 6590 // make it possible to optimize loops and hoist invariant instructions out of 6591 // the loops body with better chances for success. 6592 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6593 SmallSet<int, 4> PostponedIndices; 6594 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6595 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6596 SmallPtrSet<BasicBlock *, 4> Visited; 6597 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6598 InsertBB = InsertBB->getSinglePredecessor(); 6599 return InsertBB && InsertBB == InstBB; 6600 }; 6601 for (int I = 0, E = VL.size(); I < E; ++I) { 6602 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6603 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6604 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6605 PostponedIndices.insert(I).second) 6606 PostponedInsts.emplace_back(Inst, I); 6607 } 6608 6609 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6610 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6611 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6612 if (!InsElt) 6613 return Vec; 6614 GatherShuffleSeq.insert(InsElt); 6615 CSEBlocks.insert(InsElt->getParent()); 6616 // Add to our 'need-to-extract' list. 6617 if (TreeEntry *Entry = getTreeEntry(V)) { 6618 // Find which lane we need to extract. 6619 unsigned FoundLane = Entry->findLaneForValue(V); 6620 ExternalUses.emplace_back(V, InsElt, FoundLane); 6621 } 6622 return Vec; 6623 }; 6624 Value *Val0 = 6625 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6626 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6627 Value *Vec = PoisonValue::get(VecTy); 6628 SmallVector<int> NonConsts; 6629 // Insert constant values at first. 6630 for (int I = 0, E = VL.size(); I < E; ++I) { 6631 if (PostponedIndices.contains(I)) 6632 continue; 6633 if (!isConstant(VL[I])) { 6634 NonConsts.push_back(I); 6635 continue; 6636 } 6637 Vec = CreateInsertElement(Vec, VL[I], I); 6638 } 6639 // Insert non-constant values. 6640 for (int I : NonConsts) 6641 Vec = CreateInsertElement(Vec, VL[I], I); 6642 // Append instructions, which are/may be part of the loop, in the end to make 6643 // it possible to hoist non-loop-based instructions. 6644 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6645 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6646 6647 return Vec; 6648 } 6649 6650 namespace { 6651 /// Merges shuffle masks and emits final shuffle instruction, if required. 6652 class ShuffleInstructionBuilder { 6653 IRBuilderBase &Builder; 6654 const unsigned VF = 0; 6655 bool IsFinalized = false; 6656 SmallVector<int, 4> Mask; 6657 /// Holds all of the instructions that we gathered. 6658 SetVector<Instruction *> &GatherShuffleSeq; 6659 /// A list of blocks that we are going to CSE. 6660 SetVector<BasicBlock *> &CSEBlocks; 6661 6662 public: 6663 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6664 SetVector<Instruction *> &GatherShuffleSeq, 6665 SetVector<BasicBlock *> &CSEBlocks) 6666 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6667 CSEBlocks(CSEBlocks) {} 6668 6669 /// Adds a mask, inverting it before applying. 6670 void addInversedMask(ArrayRef<unsigned> SubMask) { 6671 if (SubMask.empty()) 6672 return; 6673 SmallVector<int, 4> NewMask; 6674 inversePermutation(SubMask, NewMask); 6675 addMask(NewMask); 6676 } 6677 6678 /// Functions adds masks, merging them into single one. 6679 void addMask(ArrayRef<unsigned> SubMask) { 6680 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6681 addMask(NewMask); 6682 } 6683 6684 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6685 6686 Value *finalize(Value *V) { 6687 IsFinalized = true; 6688 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6689 if (VF == ValueVF && Mask.empty()) 6690 return V; 6691 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6692 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6693 addMask(NormalizedMask); 6694 6695 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6696 return V; 6697 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6698 if (auto *I = dyn_cast<Instruction>(Vec)) { 6699 GatherShuffleSeq.insert(I); 6700 CSEBlocks.insert(I->getParent()); 6701 } 6702 return Vec; 6703 } 6704 6705 ~ShuffleInstructionBuilder() { 6706 assert((IsFinalized || Mask.empty()) && 6707 "Shuffle construction must be finalized."); 6708 } 6709 }; 6710 } // namespace 6711 6712 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6713 const unsigned VF = VL.size(); 6714 InstructionsState S = getSameOpcode(VL); 6715 if (S.getOpcode()) { 6716 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6717 if (E->isSame(VL)) { 6718 Value *V = vectorizeTree(E); 6719 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6720 if (!E->ReuseShuffleIndices.empty()) { 6721 // Reshuffle to get only unique values. 6722 // If some of the scalars are duplicated in the vectorization tree 6723 // entry, we do not vectorize them but instead generate a mask for 6724 // the reuses. But if there are several users of the same entry, 6725 // they may have different vectorization factors. This is especially 6726 // important for PHI nodes. In this case, we need to adapt the 6727 // resulting instruction for the user vectorization factor and have 6728 // to reshuffle it again to take only unique elements of the vector. 6729 // Without this code the function incorrectly returns reduced vector 6730 // instruction with the same elements, not with the unique ones. 6731 6732 // block: 6733 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6734 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6735 // ... (use %2) 6736 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6737 // br %block 6738 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6739 SmallSet<int, 4> UsedIdxs; 6740 int Pos = 0; 6741 int Sz = VL.size(); 6742 for (int Idx : E->ReuseShuffleIndices) { 6743 if (Idx != Sz && Idx != UndefMaskElem && 6744 UsedIdxs.insert(Idx).second) 6745 UniqueIdxs[Idx] = Pos; 6746 ++Pos; 6747 } 6748 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6749 "less than original vector size."); 6750 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6751 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6752 } else { 6753 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6754 "Expected vectorization factor less " 6755 "than original vector size."); 6756 SmallVector<int> UniformMask(VF, 0); 6757 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6758 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6759 } 6760 if (auto *I = dyn_cast<Instruction>(V)) { 6761 GatherShuffleSeq.insert(I); 6762 CSEBlocks.insert(I->getParent()); 6763 } 6764 } 6765 return V; 6766 } 6767 } 6768 6769 // Can't vectorize this, so simply build a new vector with each lane 6770 // corresponding to the requested value. 6771 return createBuildVector(VL); 6772 } 6773 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6774 unsigned VF = VL.size(); 6775 // Exploit possible reuse of values across lanes. 6776 SmallVector<int> ReuseShuffleIndicies; 6777 SmallVector<Value *> UniqueValues; 6778 if (VL.size() > 2) { 6779 DenseMap<Value *, unsigned> UniquePositions; 6780 unsigned NumValues = 6781 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6782 return !isa<UndefValue>(V); 6783 }).base()); 6784 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6785 int UniqueVals = 0; 6786 for (Value *V : VL.drop_back(VL.size() - VF)) { 6787 if (isa<UndefValue>(V)) { 6788 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6789 continue; 6790 } 6791 if (isConstant(V)) { 6792 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6793 UniqueValues.emplace_back(V); 6794 continue; 6795 } 6796 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6797 ReuseShuffleIndicies.emplace_back(Res.first->second); 6798 if (Res.second) { 6799 UniqueValues.emplace_back(V); 6800 ++UniqueVals; 6801 } 6802 } 6803 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6804 // Emit pure splat vector. 6805 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6806 UndefMaskElem); 6807 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6808 ReuseShuffleIndicies.clear(); 6809 UniqueValues.clear(); 6810 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6811 } 6812 UniqueValues.append(VF - UniqueValues.size(), 6813 PoisonValue::get(VL[0]->getType())); 6814 VL = UniqueValues; 6815 } 6816 6817 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6818 CSEBlocks); 6819 Value *Vec = gather(VL); 6820 if (!ReuseShuffleIndicies.empty()) { 6821 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6822 Vec = ShuffleBuilder.finalize(Vec); 6823 } 6824 return Vec; 6825 } 6826 6827 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6828 IRBuilder<>::InsertPointGuard Guard(Builder); 6829 6830 if (E->VectorizedValue) { 6831 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6832 return E->VectorizedValue; 6833 } 6834 6835 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6836 unsigned VF = E->getVectorFactor(); 6837 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6838 CSEBlocks); 6839 if (E->State == TreeEntry::NeedToGather) { 6840 if (E->getMainOp()) 6841 setInsertPointAfterBundle(E); 6842 Value *Vec; 6843 SmallVector<int> Mask; 6844 SmallVector<const TreeEntry *> Entries; 6845 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6846 isGatherShuffledEntry(E, Mask, Entries); 6847 if (Shuffle.hasValue()) { 6848 assert((Entries.size() == 1 || Entries.size() == 2) && 6849 "Expected shuffle of 1 or 2 entries."); 6850 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6851 Entries.back()->VectorizedValue, Mask); 6852 if (auto *I = dyn_cast<Instruction>(Vec)) { 6853 GatherShuffleSeq.insert(I); 6854 CSEBlocks.insert(I->getParent()); 6855 } 6856 } else { 6857 Vec = gather(E->Scalars); 6858 } 6859 if (NeedToShuffleReuses) { 6860 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6861 Vec = ShuffleBuilder.finalize(Vec); 6862 } 6863 E->VectorizedValue = Vec; 6864 return Vec; 6865 } 6866 6867 assert((E->State == TreeEntry::Vectorize || 6868 E->State == TreeEntry::ScatterVectorize) && 6869 "Unhandled state"); 6870 unsigned ShuffleOrOp = 6871 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6872 Instruction *VL0 = E->getMainOp(); 6873 Type *ScalarTy = VL0->getType(); 6874 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6875 ScalarTy = Store->getValueOperand()->getType(); 6876 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6877 ScalarTy = IE->getOperand(1)->getType(); 6878 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6879 switch (ShuffleOrOp) { 6880 case Instruction::PHI: { 6881 assert( 6882 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6883 "PHI reordering is free."); 6884 auto *PH = cast<PHINode>(VL0); 6885 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6886 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6887 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6888 Value *V = NewPhi; 6889 6890 // Adjust insertion point once all PHI's have been generated. 6891 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6892 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6893 6894 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6895 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6896 V = ShuffleBuilder.finalize(V); 6897 6898 E->VectorizedValue = V; 6899 6900 // PHINodes may have multiple entries from the same block. We want to 6901 // visit every block once. 6902 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6903 6904 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6905 ValueList Operands; 6906 BasicBlock *IBB = PH->getIncomingBlock(i); 6907 6908 if (!VisitedBBs.insert(IBB).second) { 6909 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6910 continue; 6911 } 6912 6913 Builder.SetInsertPoint(IBB->getTerminator()); 6914 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6915 Value *Vec = vectorizeTree(E->getOperand(i)); 6916 NewPhi->addIncoming(Vec, IBB); 6917 } 6918 6919 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6920 "Invalid number of incoming values"); 6921 return V; 6922 } 6923 6924 case Instruction::ExtractElement: { 6925 Value *V = E->getSingleOperand(0); 6926 Builder.SetInsertPoint(VL0); 6927 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6928 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6929 V = ShuffleBuilder.finalize(V); 6930 E->VectorizedValue = V; 6931 return V; 6932 } 6933 case Instruction::ExtractValue: { 6934 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6935 Builder.SetInsertPoint(LI); 6936 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6937 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6938 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6939 Value *NewV = propagateMetadata(V, E->Scalars); 6940 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6941 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6942 NewV = ShuffleBuilder.finalize(NewV); 6943 E->VectorizedValue = NewV; 6944 return NewV; 6945 } 6946 case Instruction::InsertElement: { 6947 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6948 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6949 Value *V = vectorizeTree(E->getOperand(1)); 6950 6951 // Create InsertVector shuffle if necessary 6952 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6953 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6954 })); 6955 const unsigned NumElts = 6956 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6957 const unsigned NumScalars = E->Scalars.size(); 6958 6959 unsigned Offset = *getInsertIndex(VL0); 6960 assert(Offset < NumElts && "Failed to find vector index offset"); 6961 6962 // Create shuffle to resize vector 6963 SmallVector<int> Mask; 6964 if (!E->ReorderIndices.empty()) { 6965 inversePermutation(E->ReorderIndices, Mask); 6966 Mask.append(NumElts - NumScalars, UndefMaskElem); 6967 } else { 6968 Mask.assign(NumElts, UndefMaskElem); 6969 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6970 } 6971 // Create InsertVector shuffle if necessary 6972 bool IsIdentity = true; 6973 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6974 Mask.swap(PrevMask); 6975 for (unsigned I = 0; I < NumScalars; ++I) { 6976 Value *Scalar = E->Scalars[PrevMask[I]]; 6977 unsigned InsertIdx = *getInsertIndex(Scalar); 6978 IsIdentity &= InsertIdx - Offset == I; 6979 Mask[InsertIdx - Offset] = I; 6980 } 6981 if (!IsIdentity || NumElts != NumScalars) { 6982 V = Builder.CreateShuffleVector(V, Mask); 6983 if (auto *I = dyn_cast<Instruction>(V)) { 6984 GatherShuffleSeq.insert(I); 6985 CSEBlocks.insert(I->getParent()); 6986 } 6987 } 6988 6989 if ((!IsIdentity || Offset != 0 || 6990 !isUndefVector(FirstInsert->getOperand(0))) && 6991 NumElts != NumScalars) { 6992 SmallVector<int> InsertMask(NumElts); 6993 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6994 for (unsigned I = 0; I < NumElts; I++) { 6995 if (Mask[I] != UndefMaskElem) 6996 InsertMask[Offset + I] = NumElts + I; 6997 } 6998 6999 V = Builder.CreateShuffleVector( 7000 FirstInsert->getOperand(0), V, InsertMask, 7001 cast<Instruction>(E->Scalars.back())->getName()); 7002 if (auto *I = dyn_cast<Instruction>(V)) { 7003 GatherShuffleSeq.insert(I); 7004 CSEBlocks.insert(I->getParent()); 7005 } 7006 } 7007 7008 ++NumVectorInstructions; 7009 E->VectorizedValue = V; 7010 return V; 7011 } 7012 case Instruction::ZExt: 7013 case Instruction::SExt: 7014 case Instruction::FPToUI: 7015 case Instruction::FPToSI: 7016 case Instruction::FPExt: 7017 case Instruction::PtrToInt: 7018 case Instruction::IntToPtr: 7019 case Instruction::SIToFP: 7020 case Instruction::UIToFP: 7021 case Instruction::Trunc: 7022 case Instruction::FPTrunc: 7023 case Instruction::BitCast: { 7024 setInsertPointAfterBundle(E); 7025 7026 Value *InVec = vectorizeTree(E->getOperand(0)); 7027 7028 if (E->VectorizedValue) { 7029 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7030 return E->VectorizedValue; 7031 } 7032 7033 auto *CI = cast<CastInst>(VL0); 7034 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7035 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7036 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7037 V = ShuffleBuilder.finalize(V); 7038 7039 E->VectorizedValue = V; 7040 ++NumVectorInstructions; 7041 return V; 7042 } 7043 case Instruction::FCmp: 7044 case Instruction::ICmp: { 7045 setInsertPointAfterBundle(E); 7046 7047 Value *L = vectorizeTree(E->getOperand(0)); 7048 Value *R = vectorizeTree(E->getOperand(1)); 7049 7050 if (E->VectorizedValue) { 7051 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7052 return E->VectorizedValue; 7053 } 7054 7055 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7056 Value *V = Builder.CreateCmp(P0, L, R); 7057 propagateIRFlags(V, E->Scalars, VL0); 7058 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7059 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7060 V = ShuffleBuilder.finalize(V); 7061 7062 E->VectorizedValue = V; 7063 ++NumVectorInstructions; 7064 return V; 7065 } 7066 case Instruction::Select: { 7067 setInsertPointAfterBundle(E); 7068 7069 Value *Cond = vectorizeTree(E->getOperand(0)); 7070 Value *True = vectorizeTree(E->getOperand(1)); 7071 Value *False = vectorizeTree(E->getOperand(2)); 7072 7073 if (E->VectorizedValue) { 7074 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7075 return E->VectorizedValue; 7076 } 7077 7078 Value *V = Builder.CreateSelect(Cond, True, False); 7079 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7080 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7081 V = ShuffleBuilder.finalize(V); 7082 7083 E->VectorizedValue = V; 7084 ++NumVectorInstructions; 7085 return V; 7086 } 7087 case Instruction::FNeg: { 7088 setInsertPointAfterBundle(E); 7089 7090 Value *Op = vectorizeTree(E->getOperand(0)); 7091 7092 if (E->VectorizedValue) { 7093 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7094 return E->VectorizedValue; 7095 } 7096 7097 Value *V = Builder.CreateUnOp( 7098 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7099 propagateIRFlags(V, E->Scalars, VL0); 7100 if (auto *I = dyn_cast<Instruction>(V)) 7101 V = propagateMetadata(I, E->Scalars); 7102 7103 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7104 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7105 V = ShuffleBuilder.finalize(V); 7106 7107 E->VectorizedValue = V; 7108 ++NumVectorInstructions; 7109 7110 return V; 7111 } 7112 case Instruction::Add: 7113 case Instruction::FAdd: 7114 case Instruction::Sub: 7115 case Instruction::FSub: 7116 case Instruction::Mul: 7117 case Instruction::FMul: 7118 case Instruction::UDiv: 7119 case Instruction::SDiv: 7120 case Instruction::FDiv: 7121 case Instruction::URem: 7122 case Instruction::SRem: 7123 case Instruction::FRem: 7124 case Instruction::Shl: 7125 case Instruction::LShr: 7126 case Instruction::AShr: 7127 case Instruction::And: 7128 case Instruction::Or: 7129 case Instruction::Xor: { 7130 setInsertPointAfterBundle(E); 7131 7132 Value *LHS = vectorizeTree(E->getOperand(0)); 7133 Value *RHS = vectorizeTree(E->getOperand(1)); 7134 7135 if (E->VectorizedValue) { 7136 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7137 return E->VectorizedValue; 7138 } 7139 7140 Value *V = Builder.CreateBinOp( 7141 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7142 RHS); 7143 propagateIRFlags(V, E->Scalars, VL0); 7144 if (auto *I = dyn_cast<Instruction>(V)) 7145 V = propagateMetadata(I, E->Scalars); 7146 7147 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7148 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7149 V = ShuffleBuilder.finalize(V); 7150 7151 E->VectorizedValue = V; 7152 ++NumVectorInstructions; 7153 7154 return V; 7155 } 7156 case Instruction::Load: { 7157 // Loads are inserted at the head of the tree because we don't want to 7158 // sink them all the way down past store instructions. 7159 setInsertPointAfterBundle(E); 7160 7161 LoadInst *LI = cast<LoadInst>(VL0); 7162 Instruction *NewLI; 7163 unsigned AS = LI->getPointerAddressSpace(); 7164 Value *PO = LI->getPointerOperand(); 7165 if (E->State == TreeEntry::Vectorize) { 7166 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7167 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7168 7169 // The pointer operand uses an in-tree scalar so we add the new BitCast 7170 // or LoadInst to ExternalUses list to make sure that an extract will 7171 // be generated in the future. 7172 if (TreeEntry *Entry = getTreeEntry(PO)) { 7173 // Find which lane we need to extract. 7174 unsigned FoundLane = Entry->findLaneForValue(PO); 7175 ExternalUses.emplace_back( 7176 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7177 } 7178 } else { 7179 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7180 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7181 // Use the minimum alignment of the gathered loads. 7182 Align CommonAlignment = LI->getAlign(); 7183 for (Value *V : E->Scalars) 7184 CommonAlignment = 7185 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7186 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7187 } 7188 Value *V = propagateMetadata(NewLI, E->Scalars); 7189 7190 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7191 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7192 V = ShuffleBuilder.finalize(V); 7193 E->VectorizedValue = V; 7194 ++NumVectorInstructions; 7195 return V; 7196 } 7197 case Instruction::Store: { 7198 auto *SI = cast<StoreInst>(VL0); 7199 unsigned AS = SI->getPointerAddressSpace(); 7200 7201 setInsertPointAfterBundle(E); 7202 7203 Value *VecValue = vectorizeTree(E->getOperand(0)); 7204 ShuffleBuilder.addMask(E->ReorderIndices); 7205 VecValue = ShuffleBuilder.finalize(VecValue); 7206 7207 Value *ScalarPtr = SI->getPointerOperand(); 7208 Value *VecPtr = Builder.CreateBitCast( 7209 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7210 StoreInst *ST = 7211 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7212 7213 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7214 // StoreInst to ExternalUses to make sure that an extract will be 7215 // generated in the future. 7216 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7217 // Find which lane we need to extract. 7218 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7219 ExternalUses.push_back(ExternalUser( 7220 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7221 FoundLane)); 7222 } 7223 7224 Value *V = propagateMetadata(ST, E->Scalars); 7225 7226 E->VectorizedValue = V; 7227 ++NumVectorInstructions; 7228 return V; 7229 } 7230 case Instruction::GetElementPtr: { 7231 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7232 setInsertPointAfterBundle(E); 7233 7234 Value *Op0 = vectorizeTree(E->getOperand(0)); 7235 7236 SmallVector<Value *> OpVecs; 7237 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7238 Value *OpVec = vectorizeTree(E->getOperand(J)); 7239 OpVecs.push_back(OpVec); 7240 } 7241 7242 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7243 if (Instruction *I = dyn_cast<Instruction>(V)) 7244 V = propagateMetadata(I, E->Scalars); 7245 7246 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7247 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7248 V = ShuffleBuilder.finalize(V); 7249 7250 E->VectorizedValue = V; 7251 ++NumVectorInstructions; 7252 7253 return V; 7254 } 7255 case Instruction::Call: { 7256 CallInst *CI = cast<CallInst>(VL0); 7257 setInsertPointAfterBundle(E); 7258 7259 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7260 if (Function *FI = CI->getCalledFunction()) 7261 IID = FI->getIntrinsicID(); 7262 7263 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7264 7265 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7266 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7267 VecCallCosts.first <= VecCallCosts.second; 7268 7269 Value *ScalarArg = nullptr; 7270 std::vector<Value *> OpVecs; 7271 SmallVector<Type *, 2> TysForDecl = 7272 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7273 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7274 ValueList OpVL; 7275 // Some intrinsics have scalar arguments. This argument should not be 7276 // vectorized. 7277 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7278 CallInst *CEI = cast<CallInst>(VL0); 7279 ScalarArg = CEI->getArgOperand(j); 7280 OpVecs.push_back(CEI->getArgOperand(j)); 7281 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7282 TysForDecl.push_back(ScalarArg->getType()); 7283 continue; 7284 } 7285 7286 Value *OpVec = vectorizeTree(E->getOperand(j)); 7287 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7288 OpVecs.push_back(OpVec); 7289 } 7290 7291 Function *CF; 7292 if (!UseIntrinsic) { 7293 VFShape Shape = 7294 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7295 VecTy->getNumElements())), 7296 false /*HasGlobalPred*/); 7297 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7298 } else { 7299 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7300 } 7301 7302 SmallVector<OperandBundleDef, 1> OpBundles; 7303 CI->getOperandBundlesAsDefs(OpBundles); 7304 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7305 7306 // The scalar argument uses an in-tree scalar so we add the new vectorized 7307 // call to ExternalUses list to make sure that an extract will be 7308 // generated in the future. 7309 if (ScalarArg) { 7310 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7311 // Find which lane we need to extract. 7312 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7313 ExternalUses.push_back( 7314 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7315 } 7316 } 7317 7318 propagateIRFlags(V, E->Scalars, VL0); 7319 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7320 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7321 V = ShuffleBuilder.finalize(V); 7322 7323 E->VectorizedValue = V; 7324 ++NumVectorInstructions; 7325 return V; 7326 } 7327 case Instruction::ShuffleVector: { 7328 assert(E->isAltShuffle() && 7329 ((Instruction::isBinaryOp(E->getOpcode()) && 7330 Instruction::isBinaryOp(E->getAltOpcode())) || 7331 (Instruction::isCast(E->getOpcode()) && 7332 Instruction::isCast(E->getAltOpcode())) || 7333 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7334 "Invalid Shuffle Vector Operand"); 7335 7336 Value *LHS = nullptr, *RHS = nullptr; 7337 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7338 setInsertPointAfterBundle(E); 7339 LHS = vectorizeTree(E->getOperand(0)); 7340 RHS = vectorizeTree(E->getOperand(1)); 7341 } else { 7342 setInsertPointAfterBundle(E); 7343 LHS = vectorizeTree(E->getOperand(0)); 7344 } 7345 7346 if (E->VectorizedValue) { 7347 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7348 return E->VectorizedValue; 7349 } 7350 7351 Value *V0, *V1; 7352 if (Instruction::isBinaryOp(E->getOpcode())) { 7353 V0 = Builder.CreateBinOp( 7354 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7355 V1 = Builder.CreateBinOp( 7356 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7357 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7358 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7359 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7360 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7361 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7362 } else { 7363 V0 = Builder.CreateCast( 7364 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7365 V1 = Builder.CreateCast( 7366 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7367 } 7368 // Add V0 and V1 to later analysis to try to find and remove matching 7369 // instruction, if any. 7370 for (Value *V : {V0, V1}) { 7371 if (auto *I = dyn_cast<Instruction>(V)) { 7372 GatherShuffleSeq.insert(I); 7373 CSEBlocks.insert(I->getParent()); 7374 } 7375 } 7376 7377 // Create shuffle to take alternate operations from the vector. 7378 // Also, gather up main and alt scalar ops to propagate IR flags to 7379 // each vector operation. 7380 ValueList OpScalars, AltScalars; 7381 SmallVector<int> Mask; 7382 buildShuffleEntryMask( 7383 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7384 [E](Instruction *I) { 7385 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7386 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7387 }, 7388 Mask, &OpScalars, &AltScalars); 7389 7390 propagateIRFlags(V0, OpScalars); 7391 propagateIRFlags(V1, AltScalars); 7392 7393 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7394 if (auto *I = dyn_cast<Instruction>(V)) { 7395 V = propagateMetadata(I, E->Scalars); 7396 GatherShuffleSeq.insert(I); 7397 CSEBlocks.insert(I->getParent()); 7398 } 7399 V = ShuffleBuilder.finalize(V); 7400 7401 E->VectorizedValue = V; 7402 ++NumVectorInstructions; 7403 7404 return V; 7405 } 7406 default: 7407 llvm_unreachable("unknown inst"); 7408 } 7409 return nullptr; 7410 } 7411 7412 Value *BoUpSLP::vectorizeTree() { 7413 ExtraValueToDebugLocsMap ExternallyUsedValues; 7414 return vectorizeTree(ExternallyUsedValues); 7415 } 7416 7417 Value * 7418 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7419 // All blocks must be scheduled before any instructions are inserted. 7420 for (auto &BSIter : BlocksSchedules) { 7421 scheduleBlock(BSIter.second.get()); 7422 } 7423 7424 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7425 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7426 7427 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7428 // vectorized root. InstCombine will then rewrite the entire expression. We 7429 // sign extend the extracted values below. 7430 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7431 if (MinBWs.count(ScalarRoot)) { 7432 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7433 // If current instr is a phi and not the last phi, insert it after the 7434 // last phi node. 7435 if (isa<PHINode>(I)) 7436 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7437 else 7438 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7439 } 7440 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7441 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7442 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7443 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7444 VectorizableTree[0]->VectorizedValue = Trunc; 7445 } 7446 7447 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7448 << " values .\n"); 7449 7450 // Extract all of the elements with the external uses. 7451 for (const auto &ExternalUse : ExternalUses) { 7452 Value *Scalar = ExternalUse.Scalar; 7453 llvm::User *User = ExternalUse.User; 7454 7455 // Skip users that we already RAUW. This happens when one instruction 7456 // has multiple uses of the same value. 7457 if (User && !is_contained(Scalar->users(), User)) 7458 continue; 7459 TreeEntry *E = getTreeEntry(Scalar); 7460 assert(E && "Invalid scalar"); 7461 assert(E->State != TreeEntry::NeedToGather && 7462 "Extracting from a gather list"); 7463 7464 Value *Vec = E->VectorizedValue; 7465 assert(Vec && "Can't find vectorizable value"); 7466 7467 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7468 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7469 if (Scalar->getType() != Vec->getType()) { 7470 Value *Ex; 7471 // "Reuse" the existing extract to improve final codegen. 7472 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7473 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7474 ES->getOperand(1)); 7475 } else { 7476 Ex = Builder.CreateExtractElement(Vec, Lane); 7477 } 7478 // If necessary, sign-extend or zero-extend ScalarRoot 7479 // to the larger type. 7480 if (!MinBWs.count(ScalarRoot)) 7481 return Ex; 7482 if (MinBWs[ScalarRoot].second) 7483 return Builder.CreateSExt(Ex, Scalar->getType()); 7484 return Builder.CreateZExt(Ex, Scalar->getType()); 7485 } 7486 assert(isa<FixedVectorType>(Scalar->getType()) && 7487 isa<InsertElementInst>(Scalar) && 7488 "In-tree scalar of vector type is not insertelement?"); 7489 return Vec; 7490 }; 7491 // If User == nullptr, the Scalar is used as extra arg. Generate 7492 // ExtractElement instruction and update the record for this scalar in 7493 // ExternallyUsedValues. 7494 if (!User) { 7495 assert(ExternallyUsedValues.count(Scalar) && 7496 "Scalar with nullptr as an external user must be registered in " 7497 "ExternallyUsedValues map"); 7498 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7499 Builder.SetInsertPoint(VecI->getParent(), 7500 std::next(VecI->getIterator())); 7501 } else { 7502 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7503 } 7504 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7505 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7506 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7507 auto It = ExternallyUsedValues.find(Scalar); 7508 assert(It != ExternallyUsedValues.end() && 7509 "Externally used scalar is not found in ExternallyUsedValues"); 7510 NewInstLocs.append(It->second); 7511 ExternallyUsedValues.erase(Scalar); 7512 // Required to update internally referenced instructions. 7513 Scalar->replaceAllUsesWith(NewInst); 7514 continue; 7515 } 7516 7517 // Generate extracts for out-of-tree users. 7518 // Find the insertion point for the extractelement lane. 7519 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7520 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7521 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7522 if (PH->getIncomingValue(i) == Scalar) { 7523 Instruction *IncomingTerminator = 7524 PH->getIncomingBlock(i)->getTerminator(); 7525 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7526 Builder.SetInsertPoint(VecI->getParent(), 7527 std::next(VecI->getIterator())); 7528 } else { 7529 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7530 } 7531 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7532 CSEBlocks.insert(PH->getIncomingBlock(i)); 7533 PH->setOperand(i, NewInst); 7534 } 7535 } 7536 } else { 7537 Builder.SetInsertPoint(cast<Instruction>(User)); 7538 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7539 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7540 User->replaceUsesOfWith(Scalar, NewInst); 7541 } 7542 } else { 7543 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7544 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7545 CSEBlocks.insert(&F->getEntryBlock()); 7546 User->replaceUsesOfWith(Scalar, NewInst); 7547 } 7548 7549 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7550 } 7551 7552 // For each vectorized value: 7553 for (auto &TEPtr : VectorizableTree) { 7554 TreeEntry *Entry = TEPtr.get(); 7555 7556 // No need to handle users of gathered values. 7557 if (Entry->State == TreeEntry::NeedToGather) 7558 continue; 7559 7560 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7561 7562 // For each lane: 7563 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7564 Value *Scalar = Entry->Scalars[Lane]; 7565 7566 #ifndef NDEBUG 7567 Type *Ty = Scalar->getType(); 7568 if (!Ty->isVoidTy()) { 7569 for (User *U : Scalar->users()) { 7570 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7571 7572 // It is legal to delete users in the ignorelist. 7573 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7574 (isa_and_nonnull<Instruction>(U) && 7575 isDeleted(cast<Instruction>(U)))) && 7576 "Deleting out-of-tree value"); 7577 } 7578 } 7579 #endif 7580 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7581 eraseInstruction(cast<Instruction>(Scalar)); 7582 } 7583 } 7584 7585 Builder.ClearInsertionPoint(); 7586 InstrElementSize.clear(); 7587 7588 return VectorizableTree[0]->VectorizedValue; 7589 } 7590 7591 void BoUpSLP::optimizeGatherSequence() { 7592 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7593 << " gather sequences instructions.\n"); 7594 // LICM InsertElementInst sequences. 7595 for (Instruction *I : GatherShuffleSeq) { 7596 if (isDeleted(I)) 7597 continue; 7598 7599 // Check if this block is inside a loop. 7600 Loop *L = LI->getLoopFor(I->getParent()); 7601 if (!L) 7602 continue; 7603 7604 // Check if it has a preheader. 7605 BasicBlock *PreHeader = L->getLoopPreheader(); 7606 if (!PreHeader) 7607 continue; 7608 7609 // If the vector or the element that we insert into it are 7610 // instructions that are defined in this basic block then we can't 7611 // hoist this instruction. 7612 if (any_of(I->operands(), [L](Value *V) { 7613 auto *OpI = dyn_cast<Instruction>(V); 7614 return OpI && L->contains(OpI); 7615 })) 7616 continue; 7617 7618 // We can hoist this instruction. Move it to the pre-header. 7619 I->moveBefore(PreHeader->getTerminator()); 7620 } 7621 7622 // Make a list of all reachable blocks in our CSE queue. 7623 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7624 CSEWorkList.reserve(CSEBlocks.size()); 7625 for (BasicBlock *BB : CSEBlocks) 7626 if (DomTreeNode *N = DT->getNode(BB)) { 7627 assert(DT->isReachableFromEntry(N)); 7628 CSEWorkList.push_back(N); 7629 } 7630 7631 // Sort blocks by domination. This ensures we visit a block after all blocks 7632 // dominating it are visited. 7633 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7634 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7635 "Different nodes should have different DFS numbers"); 7636 return A->getDFSNumIn() < B->getDFSNumIn(); 7637 }); 7638 7639 // Less defined shuffles can be replaced by the more defined copies. 7640 // Between two shuffles one is less defined if it has the same vector operands 7641 // and its mask indeces are the same as in the first one or undefs. E.g. 7642 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7643 // poison, <0, 0, 0, 0>. 7644 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7645 SmallVectorImpl<int> &NewMask) { 7646 if (I1->getType() != I2->getType()) 7647 return false; 7648 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7649 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7650 if (!SI1 || !SI2) 7651 return I1->isIdenticalTo(I2); 7652 if (SI1->isIdenticalTo(SI2)) 7653 return true; 7654 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7655 if (SI1->getOperand(I) != SI2->getOperand(I)) 7656 return false; 7657 // Check if the second instruction is more defined than the first one. 7658 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7659 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7660 // Count trailing undefs in the mask to check the final number of used 7661 // registers. 7662 unsigned LastUndefsCnt = 0; 7663 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7664 if (SM1[I] == UndefMaskElem) 7665 ++LastUndefsCnt; 7666 else 7667 LastUndefsCnt = 0; 7668 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7669 NewMask[I] != SM1[I]) 7670 return false; 7671 if (NewMask[I] == UndefMaskElem) 7672 NewMask[I] = SM1[I]; 7673 } 7674 // Check if the last undefs actually change the final number of used vector 7675 // registers. 7676 return SM1.size() - LastUndefsCnt > 1 && 7677 TTI->getNumberOfParts(SI1->getType()) == 7678 TTI->getNumberOfParts( 7679 FixedVectorType::get(SI1->getType()->getElementType(), 7680 SM1.size() - LastUndefsCnt)); 7681 }; 7682 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7683 // instructions. TODO: We can further optimize this scan if we split the 7684 // instructions into different buckets based on the insert lane. 7685 SmallVector<Instruction *, 16> Visited; 7686 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7687 assert(*I && 7688 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7689 "Worklist not sorted properly!"); 7690 BasicBlock *BB = (*I)->getBlock(); 7691 // For all instructions in blocks containing gather sequences: 7692 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7693 if (isDeleted(&In)) 7694 continue; 7695 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7696 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7697 continue; 7698 7699 // Check if we can replace this instruction with any of the 7700 // visited instructions. 7701 bool Replaced = false; 7702 for (Instruction *&V : Visited) { 7703 SmallVector<int> NewMask; 7704 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7705 DT->dominates(V->getParent(), In.getParent())) { 7706 In.replaceAllUsesWith(V); 7707 eraseInstruction(&In); 7708 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7709 if (!NewMask.empty()) 7710 SI->setShuffleMask(NewMask); 7711 Replaced = true; 7712 break; 7713 } 7714 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7715 GatherShuffleSeq.contains(V) && 7716 IsIdenticalOrLessDefined(V, &In, NewMask) && 7717 DT->dominates(In.getParent(), V->getParent())) { 7718 In.moveAfter(V); 7719 V->replaceAllUsesWith(&In); 7720 eraseInstruction(V); 7721 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7722 if (!NewMask.empty()) 7723 SI->setShuffleMask(NewMask); 7724 V = &In; 7725 Replaced = true; 7726 break; 7727 } 7728 } 7729 if (!Replaced) { 7730 assert(!is_contained(Visited, &In)); 7731 Visited.push_back(&In); 7732 } 7733 } 7734 } 7735 CSEBlocks.clear(); 7736 GatherShuffleSeq.clear(); 7737 } 7738 7739 BoUpSLP::ScheduleData * 7740 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7741 ScheduleData *Bundle = nullptr; 7742 ScheduleData *PrevInBundle = nullptr; 7743 for (Value *V : VL) { 7744 if (doesNotNeedToBeScheduled(V)) 7745 continue; 7746 ScheduleData *BundleMember = getScheduleData(V); 7747 assert(BundleMember && 7748 "no ScheduleData for bundle member " 7749 "(maybe not in same basic block)"); 7750 assert(BundleMember->isSchedulingEntity() && 7751 "bundle member already part of other bundle"); 7752 if (PrevInBundle) { 7753 PrevInBundle->NextInBundle = BundleMember; 7754 } else { 7755 Bundle = BundleMember; 7756 } 7757 7758 // Group the instructions to a bundle. 7759 BundleMember->FirstInBundle = Bundle; 7760 PrevInBundle = BundleMember; 7761 } 7762 assert(Bundle && "Failed to find schedule bundle"); 7763 return Bundle; 7764 } 7765 7766 // Groups the instructions to a bundle (which is then a single scheduling entity) 7767 // and schedules instructions until the bundle gets ready. 7768 Optional<BoUpSLP::ScheduleData *> 7769 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7770 const InstructionsState &S) { 7771 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7772 // instructions. 7773 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7774 doesNotNeedToSchedule(VL)) 7775 return nullptr; 7776 7777 // Initialize the instruction bundle. 7778 Instruction *OldScheduleEnd = ScheduleEnd; 7779 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7780 7781 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7782 ScheduleData *Bundle) { 7783 // The scheduling region got new instructions at the lower end (or it is a 7784 // new region for the first bundle). This makes it necessary to 7785 // recalculate all dependencies. 7786 // It is seldom that this needs to be done a second time after adding the 7787 // initial bundle to the region. 7788 if (ScheduleEnd != OldScheduleEnd) { 7789 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7790 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7791 ReSchedule = true; 7792 } 7793 if (Bundle) { 7794 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7795 << " in block " << BB->getName() << "\n"); 7796 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7797 } 7798 7799 if (ReSchedule) { 7800 resetSchedule(); 7801 initialFillReadyList(ReadyInsts); 7802 } 7803 7804 // Now try to schedule the new bundle or (if no bundle) just calculate 7805 // dependencies. As soon as the bundle is "ready" it means that there are no 7806 // cyclic dependencies and we can schedule it. Note that's important that we 7807 // don't "schedule" the bundle yet (see cancelScheduling). 7808 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7809 !ReadyInsts.empty()) { 7810 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7811 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7812 "must be ready to schedule"); 7813 schedule(Picked, ReadyInsts); 7814 } 7815 }; 7816 7817 // Make sure that the scheduling region contains all 7818 // instructions of the bundle. 7819 for (Value *V : VL) { 7820 if (doesNotNeedToBeScheduled(V)) 7821 continue; 7822 if (!extendSchedulingRegion(V, S)) { 7823 // If the scheduling region got new instructions at the lower end (or it 7824 // is a new region for the first bundle). This makes it necessary to 7825 // recalculate all dependencies. 7826 // Otherwise the compiler may crash trying to incorrectly calculate 7827 // dependencies and emit instruction in the wrong order at the actual 7828 // scheduling. 7829 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7830 return None; 7831 } 7832 } 7833 7834 bool ReSchedule = false; 7835 for (Value *V : VL) { 7836 if (doesNotNeedToBeScheduled(V)) 7837 continue; 7838 ScheduleData *BundleMember = getScheduleData(V); 7839 assert(BundleMember && 7840 "no ScheduleData for bundle member (maybe not in same basic block)"); 7841 7842 // Make sure we don't leave the pieces of the bundle in the ready list when 7843 // whole bundle might not be ready. 7844 ReadyInsts.remove(BundleMember); 7845 7846 if (!BundleMember->IsScheduled) 7847 continue; 7848 // A bundle member was scheduled as single instruction before and now 7849 // needs to be scheduled as part of the bundle. We just get rid of the 7850 // existing schedule. 7851 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7852 << " was already scheduled\n"); 7853 ReSchedule = true; 7854 } 7855 7856 auto *Bundle = buildBundle(VL); 7857 TryScheduleBundleImpl(ReSchedule, Bundle); 7858 if (!Bundle->isReady()) { 7859 cancelScheduling(VL, S.OpValue); 7860 return None; 7861 } 7862 return Bundle; 7863 } 7864 7865 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7866 Value *OpValue) { 7867 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7868 doesNotNeedToSchedule(VL)) 7869 return; 7870 7871 if (doesNotNeedToBeScheduled(OpValue)) 7872 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7873 ScheduleData *Bundle = getScheduleData(OpValue); 7874 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7875 assert(!Bundle->IsScheduled && 7876 "Can't cancel bundle which is already scheduled"); 7877 assert(Bundle->isSchedulingEntity() && 7878 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7879 "tried to unbundle something which is not a bundle"); 7880 7881 // Remove the bundle from the ready list. 7882 if (Bundle->isReady()) 7883 ReadyInsts.remove(Bundle); 7884 7885 // Un-bundle: make single instructions out of the bundle. 7886 ScheduleData *BundleMember = Bundle; 7887 while (BundleMember) { 7888 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7889 BundleMember->FirstInBundle = BundleMember; 7890 ScheduleData *Next = BundleMember->NextInBundle; 7891 BundleMember->NextInBundle = nullptr; 7892 BundleMember->TE = nullptr; 7893 if (BundleMember->unscheduledDepsInBundle() == 0) { 7894 ReadyInsts.insert(BundleMember); 7895 } 7896 BundleMember = Next; 7897 } 7898 } 7899 7900 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7901 // Allocate a new ScheduleData for the instruction. 7902 if (ChunkPos >= ChunkSize) { 7903 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7904 ChunkPos = 0; 7905 } 7906 return &(ScheduleDataChunks.back()[ChunkPos++]); 7907 } 7908 7909 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7910 const InstructionsState &S) { 7911 if (getScheduleData(V, isOneOf(S, V))) 7912 return true; 7913 Instruction *I = dyn_cast<Instruction>(V); 7914 assert(I && "bundle member must be an instruction"); 7915 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7916 !doesNotNeedToBeScheduled(I) && 7917 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7918 "be scheduled"); 7919 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7920 ScheduleData *ISD = getScheduleData(I); 7921 if (!ISD) 7922 return false; 7923 assert(isInSchedulingRegion(ISD) && 7924 "ScheduleData not in scheduling region"); 7925 ScheduleData *SD = allocateScheduleDataChunks(); 7926 SD->Inst = I; 7927 SD->init(SchedulingRegionID, S.OpValue); 7928 ExtraScheduleDataMap[I][S.OpValue] = SD; 7929 return true; 7930 }; 7931 if (CheckScheduleForI(I)) 7932 return true; 7933 if (!ScheduleStart) { 7934 // It's the first instruction in the new region. 7935 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7936 ScheduleStart = I; 7937 ScheduleEnd = I->getNextNode(); 7938 if (isOneOf(S, I) != I) 7939 CheckScheduleForI(I); 7940 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7941 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7942 return true; 7943 } 7944 // Search up and down at the same time, because we don't know if the new 7945 // instruction is above or below the existing scheduling region. 7946 BasicBlock::reverse_iterator UpIter = 7947 ++ScheduleStart->getIterator().getReverse(); 7948 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7949 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7950 BasicBlock::iterator LowerEnd = BB->end(); 7951 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7952 &*DownIter != I) { 7953 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7954 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7955 return false; 7956 } 7957 7958 ++UpIter; 7959 ++DownIter; 7960 } 7961 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7962 assert(I->getParent() == ScheduleStart->getParent() && 7963 "Instruction is in wrong basic block."); 7964 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7965 ScheduleStart = I; 7966 if (isOneOf(S, I) != I) 7967 CheckScheduleForI(I); 7968 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7969 << "\n"); 7970 return true; 7971 } 7972 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7973 "Expected to reach top of the basic block or instruction down the " 7974 "lower end."); 7975 assert(I->getParent() == ScheduleEnd->getParent() && 7976 "Instruction is in wrong basic block."); 7977 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7978 nullptr); 7979 ScheduleEnd = I->getNextNode(); 7980 if (isOneOf(S, I) != I) 7981 CheckScheduleForI(I); 7982 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7983 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7984 return true; 7985 } 7986 7987 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7988 Instruction *ToI, 7989 ScheduleData *PrevLoadStore, 7990 ScheduleData *NextLoadStore) { 7991 ScheduleData *CurrentLoadStore = PrevLoadStore; 7992 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7993 // No need to allocate data for non-schedulable instructions. 7994 if (doesNotNeedToBeScheduled(I)) 7995 continue; 7996 ScheduleData *SD = ScheduleDataMap.lookup(I); 7997 if (!SD) { 7998 SD = allocateScheduleDataChunks(); 7999 ScheduleDataMap[I] = SD; 8000 SD->Inst = I; 8001 } 8002 assert(!isInSchedulingRegion(SD) && 8003 "new ScheduleData already in scheduling region"); 8004 SD->init(SchedulingRegionID, I); 8005 8006 if (I->mayReadOrWriteMemory() && 8007 (!isa<IntrinsicInst>(I) || 8008 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8009 cast<IntrinsicInst>(I)->getIntrinsicID() != 8010 Intrinsic::pseudoprobe))) { 8011 // Update the linked list of memory accessing instructions. 8012 if (CurrentLoadStore) { 8013 CurrentLoadStore->NextLoadStore = SD; 8014 } else { 8015 FirstLoadStoreInRegion = SD; 8016 } 8017 CurrentLoadStore = SD; 8018 } 8019 } 8020 if (NextLoadStore) { 8021 if (CurrentLoadStore) 8022 CurrentLoadStore->NextLoadStore = NextLoadStore; 8023 } else { 8024 LastLoadStoreInRegion = CurrentLoadStore; 8025 } 8026 } 8027 8028 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8029 bool InsertInReadyList, 8030 BoUpSLP *SLP) { 8031 assert(SD->isSchedulingEntity()); 8032 8033 SmallVector<ScheduleData *, 10> WorkList; 8034 WorkList.push_back(SD); 8035 8036 while (!WorkList.empty()) { 8037 ScheduleData *SD = WorkList.pop_back_val(); 8038 for (ScheduleData *BundleMember = SD; BundleMember; 8039 BundleMember = BundleMember->NextInBundle) { 8040 assert(isInSchedulingRegion(BundleMember)); 8041 if (BundleMember->hasValidDependencies()) 8042 continue; 8043 8044 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8045 << "\n"); 8046 BundleMember->Dependencies = 0; 8047 BundleMember->resetUnscheduledDeps(); 8048 8049 // Handle def-use chain dependencies. 8050 if (BundleMember->OpValue != BundleMember->Inst) { 8051 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8052 BundleMember->Dependencies++; 8053 ScheduleData *DestBundle = UseSD->FirstInBundle; 8054 if (!DestBundle->IsScheduled) 8055 BundleMember->incrementUnscheduledDeps(1); 8056 if (!DestBundle->hasValidDependencies()) 8057 WorkList.push_back(DestBundle); 8058 } 8059 } else { 8060 for (User *U : BundleMember->Inst->users()) { 8061 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8062 BundleMember->Dependencies++; 8063 ScheduleData *DestBundle = UseSD->FirstInBundle; 8064 if (!DestBundle->IsScheduled) 8065 BundleMember->incrementUnscheduledDeps(1); 8066 if (!DestBundle->hasValidDependencies()) 8067 WorkList.push_back(DestBundle); 8068 } 8069 } 8070 } 8071 8072 // Any instruction which isn't safe to speculate at the begining of the 8073 // block is control dependend on any early exit or non-willreturn call 8074 // which proceeds it. 8075 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8076 for (Instruction *I = BundleMember->Inst->getNextNode(); 8077 I != ScheduleEnd; I = I->getNextNode()) { 8078 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8079 continue; 8080 8081 // Add the dependency 8082 auto *DepDest = getScheduleData(I); 8083 assert(DepDest && "must be in schedule window"); 8084 DepDest->ControlDependencies.push_back(BundleMember); 8085 BundleMember->Dependencies++; 8086 ScheduleData *DestBundle = DepDest->FirstInBundle; 8087 if (!DestBundle->IsScheduled) 8088 BundleMember->incrementUnscheduledDeps(1); 8089 if (!DestBundle->hasValidDependencies()) 8090 WorkList.push_back(DestBundle); 8091 8092 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8093 // Everything past here must be control dependent on I. 8094 break; 8095 } 8096 } 8097 8098 // If we have an inalloc alloca instruction, it needs to be scheduled 8099 // after any preceeding stacksave. 8100 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>())) { 8101 for (Instruction *I = BundleMember->Inst->getNextNode(); 8102 I != ScheduleEnd; I = I->getNextNode()) { 8103 if (match(I, m_Intrinsic<Intrinsic::stacksave>())) 8104 // Any allocas past here must be control dependent on I, and I 8105 // must be memory dependend on BundleMember->Inst. 8106 break; 8107 8108 if (!isa<AllocaInst>(I)) 8109 continue; 8110 8111 // Add the dependency 8112 auto *DepDest = getScheduleData(I); 8113 assert(DepDest && "must be in schedule window"); 8114 DepDest->ControlDependencies.push_back(BundleMember); 8115 BundleMember->Dependencies++; 8116 ScheduleData *DestBundle = DepDest->FirstInBundle; 8117 if (!DestBundle->IsScheduled) 8118 BundleMember->incrementUnscheduledDeps(1); 8119 if (!DestBundle->hasValidDependencies()) 8120 WorkList.push_back(DestBundle); 8121 } 8122 } 8123 8124 8125 // Handle the memory dependencies (if any). 8126 ScheduleData *DepDest = BundleMember->NextLoadStore; 8127 if (!DepDest) 8128 continue; 8129 Instruction *SrcInst = BundleMember->Inst; 8130 assert(SrcInst->mayReadOrWriteMemory() && 8131 "NextLoadStore list for non memory effecting bundle?"); 8132 MemoryLocation SrcLoc = getLocation(SrcInst); 8133 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8134 unsigned numAliased = 0; 8135 unsigned DistToSrc = 1; 8136 8137 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8138 assert(isInSchedulingRegion(DepDest)); 8139 8140 // We have two limits to reduce the complexity: 8141 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8142 // SLP->isAliased (which is the expensive part in this loop). 8143 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8144 // the whole loop (even if the loop is fast, it's quadratic). 8145 // It's important for the loop break condition (see below) to 8146 // check this limit even between two read-only instructions. 8147 if (DistToSrc >= MaxMemDepDistance || 8148 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8149 (numAliased >= AliasedCheckLimit || 8150 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8151 8152 // We increment the counter only if the locations are aliased 8153 // (instead of counting all alias checks). This gives a better 8154 // balance between reduced runtime and accurate dependencies. 8155 numAliased++; 8156 8157 DepDest->MemoryDependencies.push_back(BundleMember); 8158 BundleMember->Dependencies++; 8159 ScheduleData *DestBundle = DepDest->FirstInBundle; 8160 if (!DestBundle->IsScheduled) { 8161 BundleMember->incrementUnscheduledDeps(1); 8162 } 8163 if (!DestBundle->hasValidDependencies()) { 8164 WorkList.push_back(DestBundle); 8165 } 8166 } 8167 8168 // Example, explaining the loop break condition: Let's assume our 8169 // starting instruction is i0 and MaxMemDepDistance = 3. 8170 // 8171 // +--------v--v--v 8172 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8173 // +--------^--^--^ 8174 // 8175 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8176 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8177 // Previously we already added dependencies from i3 to i6,i7,i8 8178 // (because of MaxMemDepDistance). As we added a dependency from 8179 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8180 // and we can abort this loop at i6. 8181 if (DistToSrc >= 2 * MaxMemDepDistance) 8182 break; 8183 DistToSrc++; 8184 } 8185 } 8186 if (InsertInReadyList && SD->isReady()) { 8187 ReadyInsts.insert(SD); 8188 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8189 << "\n"); 8190 } 8191 } 8192 } 8193 8194 void BoUpSLP::BlockScheduling::resetSchedule() { 8195 assert(ScheduleStart && 8196 "tried to reset schedule on block which has not been scheduled"); 8197 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8198 doForAllOpcodes(I, [&](ScheduleData *SD) { 8199 assert(isInSchedulingRegion(SD) && 8200 "ScheduleData not in scheduling region"); 8201 SD->IsScheduled = false; 8202 SD->resetUnscheduledDeps(); 8203 }); 8204 } 8205 ReadyInsts.clear(); 8206 } 8207 8208 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8209 if (!BS->ScheduleStart) 8210 return; 8211 8212 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8213 8214 BS->resetSchedule(); 8215 8216 // For the real scheduling we use a more sophisticated ready-list: it is 8217 // sorted by the original instruction location. This lets the final schedule 8218 // be as close as possible to the original instruction order. 8219 // WARNING: If changing this order causes a correctness issue, that means 8220 // there is some missing dependence edge in the schedule data graph. 8221 struct ScheduleDataCompare { 8222 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8223 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8224 } 8225 }; 8226 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8227 8228 // Ensure that all dependency data is updated and fill the ready-list with 8229 // initial instructions. 8230 int Idx = 0; 8231 int NumToSchedule = 0; 8232 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8233 I = I->getNextNode()) { 8234 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8235 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8236 (void)SDTE; 8237 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8238 SD->isPartOfBundle() == 8239 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8240 "scheduler and vectorizer bundle mismatch"); 8241 SD->FirstInBundle->SchedulingPriority = Idx++; 8242 if (SD->isSchedulingEntity()) { 8243 BS->calculateDependencies(SD, false, this); 8244 NumToSchedule++; 8245 } 8246 }); 8247 } 8248 BS->initialFillReadyList(ReadyInsts); 8249 8250 Instruction *LastScheduledInst = BS->ScheduleEnd; 8251 8252 // Do the "real" scheduling. 8253 while (!ReadyInsts.empty()) { 8254 ScheduleData *picked = *ReadyInsts.begin(); 8255 ReadyInsts.erase(ReadyInsts.begin()); 8256 8257 // Move the scheduled instruction(s) to their dedicated places, if not 8258 // there yet. 8259 for (ScheduleData *BundleMember = picked; BundleMember; 8260 BundleMember = BundleMember->NextInBundle) { 8261 Instruction *pickedInst = BundleMember->Inst; 8262 if (pickedInst->getNextNode() != LastScheduledInst) 8263 pickedInst->moveBefore(LastScheduledInst); 8264 LastScheduledInst = pickedInst; 8265 } 8266 8267 BS->schedule(picked, ReadyInsts); 8268 NumToSchedule--; 8269 } 8270 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8271 8272 // Check that we didn't break any of our invariants. 8273 #ifdef EXPENSIVE_CHECKS 8274 BS->verify(); 8275 #endif 8276 8277 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8278 // Check that all schedulable entities got scheduled 8279 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8280 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8281 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8282 assert(SD->IsScheduled && "must be scheduled at this point"); 8283 } 8284 }); 8285 } 8286 #endif 8287 8288 // Avoid duplicate scheduling of the block. 8289 BS->ScheduleStart = nullptr; 8290 } 8291 8292 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8293 // If V is a store, just return the width of the stored value (or value 8294 // truncated just before storing) without traversing the expression tree. 8295 // This is the common case. 8296 if (auto *Store = dyn_cast<StoreInst>(V)) { 8297 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8298 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8299 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8300 } 8301 8302 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8303 return getVectorElementSize(IEI->getOperand(1)); 8304 8305 auto E = InstrElementSize.find(V); 8306 if (E != InstrElementSize.end()) 8307 return E->second; 8308 8309 // If V is not a store, we can traverse the expression tree to find loads 8310 // that feed it. The type of the loaded value may indicate a more suitable 8311 // width than V's type. We want to base the vector element size on the width 8312 // of memory operations where possible. 8313 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8314 SmallPtrSet<Instruction *, 16> Visited; 8315 if (auto *I = dyn_cast<Instruction>(V)) { 8316 Worklist.emplace_back(I, I->getParent()); 8317 Visited.insert(I); 8318 } 8319 8320 // Traverse the expression tree in bottom-up order looking for loads. If we 8321 // encounter an instruction we don't yet handle, we give up. 8322 auto Width = 0u; 8323 while (!Worklist.empty()) { 8324 Instruction *I; 8325 BasicBlock *Parent; 8326 std::tie(I, Parent) = Worklist.pop_back_val(); 8327 8328 // We should only be looking at scalar instructions here. If the current 8329 // instruction has a vector type, skip. 8330 auto *Ty = I->getType(); 8331 if (isa<VectorType>(Ty)) 8332 continue; 8333 8334 // If the current instruction is a load, update MaxWidth to reflect the 8335 // width of the loaded value. 8336 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8337 isa<ExtractValueInst>(I)) 8338 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8339 8340 // Otherwise, we need to visit the operands of the instruction. We only 8341 // handle the interesting cases from buildTree here. If an operand is an 8342 // instruction we haven't yet visited and from the same basic block as the 8343 // user or the use is a PHI node, we add it to the worklist. 8344 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8345 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8346 isa<UnaryOperator>(I)) { 8347 for (Use &U : I->operands()) 8348 if (auto *J = dyn_cast<Instruction>(U.get())) 8349 if (Visited.insert(J).second && 8350 (isa<PHINode>(I) || J->getParent() == Parent)) 8351 Worklist.emplace_back(J, J->getParent()); 8352 } else { 8353 break; 8354 } 8355 } 8356 8357 // If we didn't encounter a memory access in the expression tree, or if we 8358 // gave up for some reason, just return the width of V. Otherwise, return the 8359 // maximum width we found. 8360 if (!Width) { 8361 if (auto *CI = dyn_cast<CmpInst>(V)) 8362 V = CI->getOperand(0); 8363 Width = DL->getTypeSizeInBits(V->getType()); 8364 } 8365 8366 for (Instruction *I : Visited) 8367 InstrElementSize[I] = Width; 8368 8369 return Width; 8370 } 8371 8372 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8373 // smaller type with a truncation. We collect the values that will be demoted 8374 // in ToDemote and additional roots that require investigating in Roots. 8375 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8376 SmallVectorImpl<Value *> &ToDemote, 8377 SmallVectorImpl<Value *> &Roots) { 8378 // We can always demote constants. 8379 if (isa<Constant>(V)) { 8380 ToDemote.push_back(V); 8381 return true; 8382 } 8383 8384 // If the value is not an instruction in the expression with only one use, it 8385 // cannot be demoted. 8386 auto *I = dyn_cast<Instruction>(V); 8387 if (!I || !I->hasOneUse() || !Expr.count(I)) 8388 return false; 8389 8390 switch (I->getOpcode()) { 8391 8392 // We can always demote truncations and extensions. Since truncations can 8393 // seed additional demotion, we save the truncated value. 8394 case Instruction::Trunc: 8395 Roots.push_back(I->getOperand(0)); 8396 break; 8397 case Instruction::ZExt: 8398 case Instruction::SExt: 8399 if (isa<ExtractElementInst>(I->getOperand(0)) || 8400 isa<InsertElementInst>(I->getOperand(0))) 8401 return false; 8402 break; 8403 8404 // We can demote certain binary operations if we can demote both of their 8405 // operands. 8406 case Instruction::Add: 8407 case Instruction::Sub: 8408 case Instruction::Mul: 8409 case Instruction::And: 8410 case Instruction::Or: 8411 case Instruction::Xor: 8412 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8413 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8414 return false; 8415 break; 8416 8417 // We can demote selects if we can demote their true and false values. 8418 case Instruction::Select: { 8419 SelectInst *SI = cast<SelectInst>(I); 8420 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8421 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8422 return false; 8423 break; 8424 } 8425 8426 // We can demote phis if we can demote all their incoming operands. Note that 8427 // we don't need to worry about cycles since we ensure single use above. 8428 case Instruction::PHI: { 8429 PHINode *PN = cast<PHINode>(I); 8430 for (Value *IncValue : PN->incoming_values()) 8431 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8432 return false; 8433 break; 8434 } 8435 8436 // Otherwise, conservatively give up. 8437 default: 8438 return false; 8439 } 8440 8441 // Record the value that we can demote. 8442 ToDemote.push_back(V); 8443 return true; 8444 } 8445 8446 void BoUpSLP::computeMinimumValueSizes() { 8447 // If there are no external uses, the expression tree must be rooted by a 8448 // store. We can't demote in-memory values, so there is nothing to do here. 8449 if (ExternalUses.empty()) 8450 return; 8451 8452 // We only attempt to truncate integer expressions. 8453 auto &TreeRoot = VectorizableTree[0]->Scalars; 8454 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8455 if (!TreeRootIT) 8456 return; 8457 8458 // If the expression is not rooted by a store, these roots should have 8459 // external uses. We will rely on InstCombine to rewrite the expression in 8460 // the narrower type. However, InstCombine only rewrites single-use values. 8461 // This means that if a tree entry other than a root is used externally, it 8462 // must have multiple uses and InstCombine will not rewrite it. The code 8463 // below ensures that only the roots are used externally. 8464 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8465 for (auto &EU : ExternalUses) 8466 if (!Expr.erase(EU.Scalar)) 8467 return; 8468 if (!Expr.empty()) 8469 return; 8470 8471 // Collect the scalar values of the vectorizable expression. We will use this 8472 // context to determine which values can be demoted. If we see a truncation, 8473 // we mark it as seeding another demotion. 8474 for (auto &EntryPtr : VectorizableTree) 8475 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8476 8477 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8478 // have a single external user that is not in the vectorizable tree. 8479 for (auto *Root : TreeRoot) 8480 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8481 return; 8482 8483 // Conservatively determine if we can actually truncate the roots of the 8484 // expression. Collect the values that can be demoted in ToDemote and 8485 // additional roots that require investigating in Roots. 8486 SmallVector<Value *, 32> ToDemote; 8487 SmallVector<Value *, 4> Roots; 8488 for (auto *Root : TreeRoot) 8489 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8490 return; 8491 8492 // The maximum bit width required to represent all the values that can be 8493 // demoted without loss of precision. It would be safe to truncate the roots 8494 // of the expression to this width. 8495 auto MaxBitWidth = 8u; 8496 8497 // We first check if all the bits of the roots are demanded. If they're not, 8498 // we can truncate the roots to this narrower type. 8499 for (auto *Root : TreeRoot) { 8500 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8501 MaxBitWidth = std::max<unsigned>( 8502 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8503 } 8504 8505 // True if the roots can be zero-extended back to their original type, rather 8506 // than sign-extended. We know that if the leading bits are not demanded, we 8507 // can safely zero-extend. So we initialize IsKnownPositive to True. 8508 bool IsKnownPositive = true; 8509 8510 // If all the bits of the roots are demanded, we can try a little harder to 8511 // compute a narrower type. This can happen, for example, if the roots are 8512 // getelementptr indices. InstCombine promotes these indices to the pointer 8513 // width. Thus, all their bits are technically demanded even though the 8514 // address computation might be vectorized in a smaller type. 8515 // 8516 // We start by looking at each entry that can be demoted. We compute the 8517 // maximum bit width required to store the scalar by using ValueTracking to 8518 // compute the number of high-order bits we can truncate. 8519 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8520 llvm::all_of(TreeRoot, [](Value *R) { 8521 assert(R->hasOneUse() && "Root should have only one use!"); 8522 return isa<GetElementPtrInst>(R->user_back()); 8523 })) { 8524 MaxBitWidth = 8u; 8525 8526 // Determine if the sign bit of all the roots is known to be zero. If not, 8527 // IsKnownPositive is set to False. 8528 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8529 KnownBits Known = computeKnownBits(R, *DL); 8530 return Known.isNonNegative(); 8531 }); 8532 8533 // Determine the maximum number of bits required to store the scalar 8534 // values. 8535 for (auto *Scalar : ToDemote) { 8536 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8537 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8538 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8539 } 8540 8541 // If we can't prove that the sign bit is zero, we must add one to the 8542 // maximum bit width to account for the unknown sign bit. This preserves 8543 // the existing sign bit so we can safely sign-extend the root back to the 8544 // original type. Otherwise, if we know the sign bit is zero, we will 8545 // zero-extend the root instead. 8546 // 8547 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8548 // one to the maximum bit width will yield a larger-than-necessary 8549 // type. In general, we need to add an extra bit only if we can't 8550 // prove that the upper bit of the original type is equal to the 8551 // upper bit of the proposed smaller type. If these two bits are the 8552 // same (either zero or one) we know that sign-extending from the 8553 // smaller type will result in the same value. Here, since we can't 8554 // yet prove this, we are just making the proposed smaller type 8555 // larger to ensure correctness. 8556 if (!IsKnownPositive) 8557 ++MaxBitWidth; 8558 } 8559 8560 // Round MaxBitWidth up to the next power-of-two. 8561 if (!isPowerOf2_64(MaxBitWidth)) 8562 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8563 8564 // If the maximum bit width we compute is less than the with of the roots' 8565 // type, we can proceed with the narrowing. Otherwise, do nothing. 8566 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8567 return; 8568 8569 // If we can truncate the root, we must collect additional values that might 8570 // be demoted as a result. That is, those seeded by truncations we will 8571 // modify. 8572 while (!Roots.empty()) 8573 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8574 8575 // Finally, map the values we can demote to the maximum bit with we computed. 8576 for (auto *Scalar : ToDemote) 8577 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8578 } 8579 8580 namespace { 8581 8582 /// The SLPVectorizer Pass. 8583 struct SLPVectorizer : public FunctionPass { 8584 SLPVectorizerPass Impl; 8585 8586 /// Pass identification, replacement for typeid 8587 static char ID; 8588 8589 explicit SLPVectorizer() : FunctionPass(ID) { 8590 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8591 } 8592 8593 bool doInitialization(Module &M) override { return false; } 8594 8595 bool runOnFunction(Function &F) override { 8596 if (skipFunction(F)) 8597 return false; 8598 8599 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8600 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8601 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8602 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8603 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8604 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8605 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8606 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8607 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8608 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8609 8610 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8611 } 8612 8613 void getAnalysisUsage(AnalysisUsage &AU) const override { 8614 FunctionPass::getAnalysisUsage(AU); 8615 AU.addRequired<AssumptionCacheTracker>(); 8616 AU.addRequired<ScalarEvolutionWrapperPass>(); 8617 AU.addRequired<AAResultsWrapperPass>(); 8618 AU.addRequired<TargetTransformInfoWrapperPass>(); 8619 AU.addRequired<LoopInfoWrapperPass>(); 8620 AU.addRequired<DominatorTreeWrapperPass>(); 8621 AU.addRequired<DemandedBitsWrapperPass>(); 8622 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8623 AU.addRequired<InjectTLIMappingsLegacy>(); 8624 AU.addPreserved<LoopInfoWrapperPass>(); 8625 AU.addPreserved<DominatorTreeWrapperPass>(); 8626 AU.addPreserved<AAResultsWrapperPass>(); 8627 AU.addPreserved<GlobalsAAWrapperPass>(); 8628 AU.setPreservesCFG(); 8629 } 8630 }; 8631 8632 } // end anonymous namespace 8633 8634 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8635 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8636 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8637 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8638 auto *AA = &AM.getResult<AAManager>(F); 8639 auto *LI = &AM.getResult<LoopAnalysis>(F); 8640 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8641 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8642 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8643 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8644 8645 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8646 if (!Changed) 8647 return PreservedAnalyses::all(); 8648 8649 PreservedAnalyses PA; 8650 PA.preserveSet<CFGAnalyses>(); 8651 return PA; 8652 } 8653 8654 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8655 TargetTransformInfo *TTI_, 8656 TargetLibraryInfo *TLI_, AAResults *AA_, 8657 LoopInfo *LI_, DominatorTree *DT_, 8658 AssumptionCache *AC_, DemandedBits *DB_, 8659 OptimizationRemarkEmitter *ORE_) { 8660 if (!RunSLPVectorization) 8661 return false; 8662 SE = SE_; 8663 TTI = TTI_; 8664 TLI = TLI_; 8665 AA = AA_; 8666 LI = LI_; 8667 DT = DT_; 8668 AC = AC_; 8669 DB = DB_; 8670 DL = &F.getParent()->getDataLayout(); 8671 8672 Stores.clear(); 8673 GEPs.clear(); 8674 bool Changed = false; 8675 8676 // If the target claims to have no vector registers don't attempt 8677 // vectorization. 8678 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8679 LLVM_DEBUG( 8680 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8681 return false; 8682 } 8683 8684 // Don't vectorize when the attribute NoImplicitFloat is used. 8685 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8686 return false; 8687 8688 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8689 8690 // Use the bottom up slp vectorizer to construct chains that start with 8691 // store instructions. 8692 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8693 8694 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8695 // delete instructions. 8696 8697 // Update DFS numbers now so that we can use them for ordering. 8698 DT->updateDFSNumbers(); 8699 8700 // Scan the blocks in the function in post order. 8701 for (auto BB : post_order(&F.getEntryBlock())) { 8702 collectSeedInstructions(BB); 8703 8704 // Vectorize trees that end at stores. 8705 if (!Stores.empty()) { 8706 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8707 << " underlying objects.\n"); 8708 Changed |= vectorizeStoreChains(R); 8709 } 8710 8711 // Vectorize trees that end at reductions. 8712 Changed |= vectorizeChainsInBlock(BB, R); 8713 8714 // Vectorize the index computations of getelementptr instructions. This 8715 // is primarily intended to catch gather-like idioms ending at 8716 // non-consecutive loads. 8717 if (!GEPs.empty()) { 8718 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8719 << " underlying objects.\n"); 8720 Changed |= vectorizeGEPIndices(BB, R); 8721 } 8722 } 8723 8724 if (Changed) { 8725 R.optimizeGatherSequence(); 8726 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8727 } 8728 return Changed; 8729 } 8730 8731 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8732 unsigned Idx) { 8733 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8734 << "\n"); 8735 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8736 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8737 unsigned VF = Chain.size(); 8738 8739 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8740 return false; 8741 8742 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8743 << "\n"); 8744 8745 R.buildTree(Chain); 8746 if (R.isTreeTinyAndNotFullyVectorizable()) 8747 return false; 8748 if (R.isLoadCombineCandidate()) 8749 return false; 8750 R.reorderTopToBottom(); 8751 R.reorderBottomToTop(); 8752 R.buildExternalUses(); 8753 8754 R.computeMinimumValueSizes(); 8755 8756 InstructionCost Cost = R.getTreeCost(); 8757 8758 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8759 if (Cost < -SLPCostThreshold) { 8760 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8761 8762 using namespace ore; 8763 8764 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8765 cast<StoreInst>(Chain[0])) 8766 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8767 << " and with tree size " 8768 << NV("TreeSize", R.getTreeSize())); 8769 8770 R.vectorizeTree(); 8771 return true; 8772 } 8773 8774 return false; 8775 } 8776 8777 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8778 BoUpSLP &R) { 8779 // We may run into multiple chains that merge into a single chain. We mark the 8780 // stores that we vectorized so that we don't visit the same store twice. 8781 BoUpSLP::ValueSet VectorizedStores; 8782 bool Changed = false; 8783 8784 int E = Stores.size(); 8785 SmallBitVector Tails(E, false); 8786 int MaxIter = MaxStoreLookup.getValue(); 8787 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8788 E, std::make_pair(E, INT_MAX)); 8789 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8790 int IterCnt; 8791 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8792 &CheckedPairs, 8793 &ConsecutiveChain](int K, int Idx) { 8794 if (IterCnt >= MaxIter) 8795 return true; 8796 if (CheckedPairs[Idx].test(K)) 8797 return ConsecutiveChain[K].second == 1 && 8798 ConsecutiveChain[K].first == Idx; 8799 ++IterCnt; 8800 CheckedPairs[Idx].set(K); 8801 CheckedPairs[K].set(Idx); 8802 Optional<int> Diff = getPointersDiff( 8803 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8804 Stores[Idx]->getValueOperand()->getType(), 8805 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8806 if (!Diff || *Diff == 0) 8807 return false; 8808 int Val = *Diff; 8809 if (Val < 0) { 8810 if (ConsecutiveChain[Idx].second > -Val) { 8811 Tails.set(K); 8812 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8813 } 8814 return false; 8815 } 8816 if (ConsecutiveChain[K].second <= Val) 8817 return false; 8818 8819 Tails.set(Idx); 8820 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8821 return Val == 1; 8822 }; 8823 // Do a quadratic search on all of the given stores in reverse order and find 8824 // all of the pairs of stores that follow each other. 8825 for (int Idx = E - 1; Idx >= 0; --Idx) { 8826 // If a store has multiple consecutive store candidates, search according 8827 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8828 // This is because usually pairing with immediate succeeding or preceding 8829 // candidate create the best chance to find slp vectorization opportunity. 8830 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8831 IterCnt = 0; 8832 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8833 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8834 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8835 break; 8836 } 8837 8838 // Tracks if we tried to vectorize stores starting from the given tail 8839 // already. 8840 SmallBitVector TriedTails(E, false); 8841 // For stores that start but don't end a link in the chain: 8842 for (int Cnt = E; Cnt > 0; --Cnt) { 8843 int I = Cnt - 1; 8844 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8845 continue; 8846 // We found a store instr that starts a chain. Now follow the chain and try 8847 // to vectorize it. 8848 BoUpSLP::ValueList Operands; 8849 // Collect the chain into a list. 8850 while (I != E && !VectorizedStores.count(Stores[I])) { 8851 Operands.push_back(Stores[I]); 8852 Tails.set(I); 8853 if (ConsecutiveChain[I].second != 1) { 8854 // Mark the new end in the chain and go back, if required. It might be 8855 // required if the original stores come in reversed order, for example. 8856 if (ConsecutiveChain[I].first != E && 8857 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8858 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8859 TriedTails.set(I); 8860 Tails.reset(ConsecutiveChain[I].first); 8861 if (Cnt < ConsecutiveChain[I].first + 2) 8862 Cnt = ConsecutiveChain[I].first + 2; 8863 } 8864 break; 8865 } 8866 // Move to the next value in the chain. 8867 I = ConsecutiveChain[I].first; 8868 } 8869 assert(!Operands.empty() && "Expected non-empty list of stores."); 8870 8871 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8872 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8873 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8874 8875 unsigned MinVF = R.getMinVF(EltSize); 8876 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8877 MaxElts); 8878 8879 // FIXME: Is division-by-2 the correct step? Should we assert that the 8880 // register size is a power-of-2? 8881 unsigned StartIdx = 0; 8882 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8883 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8884 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8885 if (!VectorizedStores.count(Slice.front()) && 8886 !VectorizedStores.count(Slice.back()) && 8887 vectorizeStoreChain(Slice, R, Cnt)) { 8888 // Mark the vectorized stores so that we don't vectorize them again. 8889 VectorizedStores.insert(Slice.begin(), Slice.end()); 8890 Changed = true; 8891 // If we vectorized initial block, no need to try to vectorize it 8892 // again. 8893 if (Cnt == StartIdx) 8894 StartIdx += Size; 8895 Cnt += Size; 8896 continue; 8897 } 8898 ++Cnt; 8899 } 8900 // Check if the whole array was vectorized already - exit. 8901 if (StartIdx >= Operands.size()) 8902 break; 8903 } 8904 } 8905 8906 return Changed; 8907 } 8908 8909 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8910 // Initialize the collections. We will make a single pass over the block. 8911 Stores.clear(); 8912 GEPs.clear(); 8913 8914 // Visit the store and getelementptr instructions in BB and organize them in 8915 // Stores and GEPs according to the underlying objects of their pointer 8916 // operands. 8917 for (Instruction &I : *BB) { 8918 // Ignore store instructions that are volatile or have a pointer operand 8919 // that doesn't point to a scalar type. 8920 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8921 if (!SI->isSimple()) 8922 continue; 8923 if (!isValidElementType(SI->getValueOperand()->getType())) 8924 continue; 8925 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8926 } 8927 8928 // Ignore getelementptr instructions that have more than one index, a 8929 // constant index, or a pointer operand that doesn't point to a scalar 8930 // type. 8931 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8932 auto Idx = GEP->idx_begin()->get(); 8933 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8934 continue; 8935 if (!isValidElementType(Idx->getType())) 8936 continue; 8937 if (GEP->getType()->isVectorTy()) 8938 continue; 8939 GEPs[GEP->getPointerOperand()].push_back(GEP); 8940 } 8941 } 8942 } 8943 8944 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8945 if (!A || !B) 8946 return false; 8947 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8948 return false; 8949 Value *VL[] = {A, B}; 8950 return tryToVectorizeList(VL, R); 8951 } 8952 8953 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8954 bool LimitForRegisterSize) { 8955 if (VL.size() < 2) 8956 return false; 8957 8958 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8959 << VL.size() << ".\n"); 8960 8961 // Check that all of the parts are instructions of the same type, 8962 // we permit an alternate opcode via InstructionsState. 8963 InstructionsState S = getSameOpcode(VL); 8964 if (!S.getOpcode()) 8965 return false; 8966 8967 Instruction *I0 = cast<Instruction>(S.OpValue); 8968 // Make sure invalid types (including vector type) are rejected before 8969 // determining vectorization factor for scalar instructions. 8970 for (Value *V : VL) { 8971 Type *Ty = V->getType(); 8972 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8973 // NOTE: the following will give user internal llvm type name, which may 8974 // not be useful. 8975 R.getORE()->emit([&]() { 8976 std::string type_str; 8977 llvm::raw_string_ostream rso(type_str); 8978 Ty->print(rso); 8979 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8980 << "Cannot SLP vectorize list: type " 8981 << rso.str() + " is unsupported by vectorizer"; 8982 }); 8983 return false; 8984 } 8985 } 8986 8987 unsigned Sz = R.getVectorElementSize(I0); 8988 unsigned MinVF = R.getMinVF(Sz); 8989 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8990 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8991 if (MaxVF < 2) { 8992 R.getORE()->emit([&]() { 8993 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8994 << "Cannot SLP vectorize list: vectorization factor " 8995 << "less than 2 is not supported"; 8996 }); 8997 return false; 8998 } 8999 9000 bool Changed = false; 9001 bool CandidateFound = false; 9002 InstructionCost MinCost = SLPCostThreshold.getValue(); 9003 Type *ScalarTy = VL[0]->getType(); 9004 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9005 ScalarTy = IE->getOperand(1)->getType(); 9006 9007 unsigned NextInst = 0, MaxInst = VL.size(); 9008 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9009 // No actual vectorization should happen, if number of parts is the same as 9010 // provided vectorization factor (i.e. the scalar type is used for vector 9011 // code during codegen). 9012 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9013 if (TTI->getNumberOfParts(VecTy) == VF) 9014 continue; 9015 for (unsigned I = NextInst; I < MaxInst; ++I) { 9016 unsigned OpsWidth = 0; 9017 9018 if (I + VF > MaxInst) 9019 OpsWidth = MaxInst - I; 9020 else 9021 OpsWidth = VF; 9022 9023 if (!isPowerOf2_32(OpsWidth)) 9024 continue; 9025 9026 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9027 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9028 break; 9029 9030 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9031 // Check that a previous iteration of this loop did not delete the Value. 9032 if (llvm::any_of(Ops, [&R](Value *V) { 9033 auto *I = dyn_cast<Instruction>(V); 9034 return I && R.isDeleted(I); 9035 })) 9036 continue; 9037 9038 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9039 << "\n"); 9040 9041 R.buildTree(Ops); 9042 if (R.isTreeTinyAndNotFullyVectorizable()) 9043 continue; 9044 R.reorderTopToBottom(); 9045 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9046 R.buildExternalUses(); 9047 9048 R.computeMinimumValueSizes(); 9049 InstructionCost Cost = R.getTreeCost(); 9050 CandidateFound = true; 9051 MinCost = std::min(MinCost, Cost); 9052 9053 if (Cost < -SLPCostThreshold) { 9054 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9055 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9056 cast<Instruction>(Ops[0])) 9057 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9058 << " and with tree size " 9059 << ore::NV("TreeSize", R.getTreeSize())); 9060 9061 R.vectorizeTree(); 9062 // Move to the next bundle. 9063 I += VF - 1; 9064 NextInst = I + 1; 9065 Changed = true; 9066 } 9067 } 9068 } 9069 9070 if (!Changed && CandidateFound) { 9071 R.getORE()->emit([&]() { 9072 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9073 << "List vectorization was possible but not beneficial with cost " 9074 << ore::NV("Cost", MinCost) << " >= " 9075 << ore::NV("Treshold", -SLPCostThreshold); 9076 }); 9077 } else if (!Changed) { 9078 R.getORE()->emit([&]() { 9079 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9080 << "Cannot SLP vectorize list: vectorization was impossible" 9081 << " with available vectorization factors"; 9082 }); 9083 } 9084 return Changed; 9085 } 9086 9087 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9088 if (!I) 9089 return false; 9090 9091 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9092 return false; 9093 9094 Value *P = I->getParent(); 9095 9096 // Vectorize in current basic block only. 9097 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9098 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9099 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9100 return false; 9101 9102 // Try to vectorize V. 9103 if (tryToVectorizePair(Op0, Op1, R)) 9104 return true; 9105 9106 auto *A = dyn_cast<BinaryOperator>(Op0); 9107 auto *B = dyn_cast<BinaryOperator>(Op1); 9108 // Try to skip B. 9109 if (B && B->hasOneUse()) { 9110 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9111 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9112 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9113 return true; 9114 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9115 return true; 9116 } 9117 9118 // Try to skip A. 9119 if (A && A->hasOneUse()) { 9120 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9121 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9122 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9123 return true; 9124 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9125 return true; 9126 } 9127 return false; 9128 } 9129 9130 namespace { 9131 9132 /// Model horizontal reductions. 9133 /// 9134 /// A horizontal reduction is a tree of reduction instructions that has values 9135 /// that can be put into a vector as its leaves. For example: 9136 /// 9137 /// mul mul mul mul 9138 /// \ / \ / 9139 /// + + 9140 /// \ / 9141 /// + 9142 /// This tree has "mul" as its leaf values and "+" as its reduction 9143 /// instructions. A reduction can feed into a store or a binary operation 9144 /// feeding a phi. 9145 /// ... 9146 /// \ / 9147 /// + 9148 /// | 9149 /// phi += 9150 /// 9151 /// Or: 9152 /// ... 9153 /// \ / 9154 /// + 9155 /// | 9156 /// *p = 9157 /// 9158 class HorizontalReduction { 9159 using ReductionOpsType = SmallVector<Value *, 16>; 9160 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9161 ReductionOpsListType ReductionOps; 9162 SmallVector<Value *, 32> ReducedVals; 9163 // Use map vector to make stable output. 9164 MapVector<Instruction *, Value *> ExtraArgs; 9165 WeakTrackingVH ReductionRoot; 9166 /// The type of reduction operation. 9167 RecurKind RdxKind; 9168 9169 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9170 9171 static bool isCmpSelMinMax(Instruction *I) { 9172 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9173 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9174 } 9175 9176 // And/or are potentially poison-safe logical patterns like: 9177 // select x, y, false 9178 // select x, true, y 9179 static bool isBoolLogicOp(Instruction *I) { 9180 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9181 match(I, m_LogicalOr(m_Value(), m_Value())); 9182 } 9183 9184 /// Checks if instruction is associative and can be vectorized. 9185 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9186 if (Kind == RecurKind::None) 9187 return false; 9188 9189 // Integer ops that map to select instructions or intrinsics are fine. 9190 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9191 isBoolLogicOp(I)) 9192 return true; 9193 9194 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9195 // FP min/max are associative except for NaN and -0.0. We do not 9196 // have to rule out -0.0 here because the intrinsic semantics do not 9197 // specify a fixed result for it. 9198 return I->getFastMathFlags().noNaNs(); 9199 } 9200 9201 return I->isAssociative(); 9202 } 9203 9204 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9205 // Poison-safe 'or' takes the form: select X, true, Y 9206 // To make that work with the normal operand processing, we skip the 9207 // true value operand. 9208 // TODO: Change the code and data structures to handle this without a hack. 9209 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9210 return I->getOperand(2); 9211 return I->getOperand(Index); 9212 } 9213 9214 /// Checks if the ParentStackElem.first should be marked as a reduction 9215 /// operation with an extra argument or as extra argument itself. 9216 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9217 Value *ExtraArg) { 9218 if (ExtraArgs.count(ParentStackElem.first)) { 9219 ExtraArgs[ParentStackElem.first] = nullptr; 9220 // We ran into something like: 9221 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9222 // The whole ParentStackElem.first should be considered as an extra value 9223 // in this case. 9224 // Do not perform analysis of remaining operands of ParentStackElem.first 9225 // instruction, this whole instruction is an extra argument. 9226 ParentStackElem.second = INVALID_OPERAND_INDEX; 9227 } else { 9228 // We ran into something like: 9229 // ParentStackElem.first += ... + ExtraArg + ... 9230 ExtraArgs[ParentStackElem.first] = ExtraArg; 9231 } 9232 } 9233 9234 /// Creates reduction operation with the current opcode. 9235 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9236 Value *RHS, const Twine &Name, bool UseSelect) { 9237 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9238 switch (Kind) { 9239 case RecurKind::Or: 9240 if (UseSelect && 9241 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9242 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9243 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9244 Name); 9245 case RecurKind::And: 9246 if (UseSelect && 9247 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9248 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9249 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9250 Name); 9251 case RecurKind::Add: 9252 case RecurKind::Mul: 9253 case RecurKind::Xor: 9254 case RecurKind::FAdd: 9255 case RecurKind::FMul: 9256 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9257 Name); 9258 case RecurKind::FMax: 9259 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9260 case RecurKind::FMin: 9261 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9262 case RecurKind::SMax: 9263 if (UseSelect) { 9264 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9265 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9266 } 9267 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9268 case RecurKind::SMin: 9269 if (UseSelect) { 9270 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9271 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9272 } 9273 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9274 case RecurKind::UMax: 9275 if (UseSelect) { 9276 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9277 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9278 } 9279 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9280 case RecurKind::UMin: 9281 if (UseSelect) { 9282 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9283 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9284 } 9285 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9286 default: 9287 llvm_unreachable("Unknown reduction operation."); 9288 } 9289 } 9290 9291 /// Creates reduction operation with the current opcode with the IR flags 9292 /// from \p ReductionOps. 9293 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9294 Value *RHS, const Twine &Name, 9295 const ReductionOpsListType &ReductionOps) { 9296 bool UseSelect = ReductionOps.size() == 2 || 9297 // Logical or/and. 9298 (ReductionOps.size() == 1 && 9299 isa<SelectInst>(ReductionOps.front().front())); 9300 assert((!UseSelect || ReductionOps.size() != 2 || 9301 isa<SelectInst>(ReductionOps[1][0])) && 9302 "Expected cmp + select pairs for reduction"); 9303 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9304 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9305 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9306 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9307 propagateIRFlags(Op, ReductionOps[1]); 9308 return Op; 9309 } 9310 } 9311 propagateIRFlags(Op, ReductionOps[0]); 9312 return Op; 9313 } 9314 9315 /// Creates reduction operation with the current opcode with the IR flags 9316 /// from \p I. 9317 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9318 Value *RHS, const Twine &Name, Instruction *I) { 9319 auto *SelI = dyn_cast<SelectInst>(I); 9320 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9321 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9322 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9323 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9324 } 9325 propagateIRFlags(Op, I); 9326 return Op; 9327 } 9328 9329 static RecurKind getRdxKind(Instruction *I) { 9330 assert(I && "Expected instruction for reduction matching"); 9331 if (match(I, m_Add(m_Value(), m_Value()))) 9332 return RecurKind::Add; 9333 if (match(I, m_Mul(m_Value(), m_Value()))) 9334 return RecurKind::Mul; 9335 if (match(I, m_And(m_Value(), m_Value())) || 9336 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9337 return RecurKind::And; 9338 if (match(I, m_Or(m_Value(), m_Value())) || 9339 match(I, m_LogicalOr(m_Value(), m_Value()))) 9340 return RecurKind::Or; 9341 if (match(I, m_Xor(m_Value(), m_Value()))) 9342 return RecurKind::Xor; 9343 if (match(I, m_FAdd(m_Value(), m_Value()))) 9344 return RecurKind::FAdd; 9345 if (match(I, m_FMul(m_Value(), m_Value()))) 9346 return RecurKind::FMul; 9347 9348 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9349 return RecurKind::FMax; 9350 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9351 return RecurKind::FMin; 9352 9353 // This matches either cmp+select or intrinsics. SLP is expected to handle 9354 // either form. 9355 // TODO: If we are canonicalizing to intrinsics, we can remove several 9356 // special-case paths that deal with selects. 9357 if (match(I, m_SMax(m_Value(), m_Value()))) 9358 return RecurKind::SMax; 9359 if (match(I, m_SMin(m_Value(), m_Value()))) 9360 return RecurKind::SMin; 9361 if (match(I, m_UMax(m_Value(), m_Value()))) 9362 return RecurKind::UMax; 9363 if (match(I, m_UMin(m_Value(), m_Value()))) 9364 return RecurKind::UMin; 9365 9366 if (auto *Select = dyn_cast<SelectInst>(I)) { 9367 // Try harder: look for min/max pattern based on instructions producing 9368 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9369 // During the intermediate stages of SLP, it's very common to have 9370 // pattern like this (since optimizeGatherSequence is run only once 9371 // at the end): 9372 // %1 = extractelement <2 x i32> %a, i32 0 9373 // %2 = extractelement <2 x i32> %a, i32 1 9374 // %cond = icmp sgt i32 %1, %2 9375 // %3 = extractelement <2 x i32> %a, i32 0 9376 // %4 = extractelement <2 x i32> %a, i32 1 9377 // %select = select i1 %cond, i32 %3, i32 %4 9378 CmpInst::Predicate Pred; 9379 Instruction *L1; 9380 Instruction *L2; 9381 9382 Value *LHS = Select->getTrueValue(); 9383 Value *RHS = Select->getFalseValue(); 9384 Value *Cond = Select->getCondition(); 9385 9386 // TODO: Support inverse predicates. 9387 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9388 if (!isa<ExtractElementInst>(RHS) || 9389 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9390 return RecurKind::None; 9391 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9392 if (!isa<ExtractElementInst>(LHS) || 9393 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9394 return RecurKind::None; 9395 } else { 9396 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9397 return RecurKind::None; 9398 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9399 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9400 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9401 return RecurKind::None; 9402 } 9403 9404 switch (Pred) { 9405 default: 9406 return RecurKind::None; 9407 case CmpInst::ICMP_SGT: 9408 case CmpInst::ICMP_SGE: 9409 return RecurKind::SMax; 9410 case CmpInst::ICMP_SLT: 9411 case CmpInst::ICMP_SLE: 9412 return RecurKind::SMin; 9413 case CmpInst::ICMP_UGT: 9414 case CmpInst::ICMP_UGE: 9415 return RecurKind::UMax; 9416 case CmpInst::ICMP_ULT: 9417 case CmpInst::ICMP_ULE: 9418 return RecurKind::UMin; 9419 } 9420 } 9421 return RecurKind::None; 9422 } 9423 9424 /// Get the index of the first operand. 9425 static unsigned getFirstOperandIndex(Instruction *I) { 9426 return isCmpSelMinMax(I) ? 1 : 0; 9427 } 9428 9429 /// Total number of operands in the reduction operation. 9430 static unsigned getNumberOfOperands(Instruction *I) { 9431 return isCmpSelMinMax(I) ? 3 : 2; 9432 } 9433 9434 /// Checks if the instruction is in basic block \p BB. 9435 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9436 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9437 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9438 auto *Sel = cast<SelectInst>(I); 9439 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9440 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9441 } 9442 return I->getParent() == BB; 9443 } 9444 9445 /// Expected number of uses for reduction operations/reduced values. 9446 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9447 if (IsCmpSelMinMax) { 9448 // SelectInst must be used twice while the condition op must have single 9449 // use only. 9450 if (auto *Sel = dyn_cast<SelectInst>(I)) 9451 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9452 return I->hasNUses(2); 9453 } 9454 9455 // Arithmetic reduction operation must be used once only. 9456 return I->hasOneUse(); 9457 } 9458 9459 /// Initializes the list of reduction operations. 9460 void initReductionOps(Instruction *I) { 9461 if (isCmpSelMinMax(I)) 9462 ReductionOps.assign(2, ReductionOpsType()); 9463 else 9464 ReductionOps.assign(1, ReductionOpsType()); 9465 } 9466 9467 /// Add all reduction operations for the reduction instruction \p I. 9468 void addReductionOps(Instruction *I) { 9469 if (isCmpSelMinMax(I)) { 9470 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9471 ReductionOps[1].emplace_back(I); 9472 } else { 9473 ReductionOps[0].emplace_back(I); 9474 } 9475 } 9476 9477 static Value *getLHS(RecurKind Kind, Instruction *I) { 9478 if (Kind == RecurKind::None) 9479 return nullptr; 9480 return I->getOperand(getFirstOperandIndex(I)); 9481 } 9482 static Value *getRHS(RecurKind Kind, Instruction *I) { 9483 if (Kind == RecurKind::None) 9484 return nullptr; 9485 return I->getOperand(getFirstOperandIndex(I) + 1); 9486 } 9487 9488 public: 9489 HorizontalReduction() = default; 9490 9491 /// Try to find a reduction tree. 9492 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9493 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9494 "Phi needs to use the binary operator"); 9495 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9496 isa<IntrinsicInst>(Inst)) && 9497 "Expected binop, select, or intrinsic for reduction matching"); 9498 RdxKind = getRdxKind(Inst); 9499 9500 // We could have a initial reductions that is not an add. 9501 // r *= v1 + v2 + v3 + v4 9502 // In such a case start looking for a tree rooted in the first '+'. 9503 if (Phi) { 9504 if (getLHS(RdxKind, Inst) == Phi) { 9505 Phi = nullptr; 9506 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9507 if (!Inst) 9508 return false; 9509 RdxKind = getRdxKind(Inst); 9510 } else if (getRHS(RdxKind, Inst) == Phi) { 9511 Phi = nullptr; 9512 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9513 if (!Inst) 9514 return false; 9515 RdxKind = getRdxKind(Inst); 9516 } 9517 } 9518 9519 if (!isVectorizable(RdxKind, Inst)) 9520 return false; 9521 9522 // Analyze "regular" integer/FP types for reductions - no target-specific 9523 // types or pointers. 9524 Type *Ty = Inst->getType(); 9525 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9526 return false; 9527 9528 // Though the ultimate reduction may have multiple uses, its condition must 9529 // have only single use. 9530 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9531 if (!Sel->getCondition()->hasOneUse()) 9532 return false; 9533 9534 ReductionRoot = Inst; 9535 9536 // The opcode for leaf values that we perform a reduction on. 9537 // For example: load(x) + load(y) + load(z) + fptoui(w) 9538 // The leaf opcode for 'w' does not match, so we don't include it as a 9539 // potential candidate for the reduction. 9540 unsigned LeafOpcode = 0; 9541 9542 // Post-order traverse the reduction tree starting at Inst. We only handle 9543 // true trees containing binary operators or selects. 9544 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9545 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9546 initReductionOps(Inst); 9547 while (!Stack.empty()) { 9548 Instruction *TreeN = Stack.back().first; 9549 unsigned EdgeToVisit = Stack.back().second++; 9550 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9551 bool IsReducedValue = TreeRdxKind != RdxKind; 9552 9553 // Postorder visit. 9554 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9555 if (IsReducedValue) 9556 ReducedVals.push_back(TreeN); 9557 else { 9558 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9559 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9560 // Check if TreeN is an extra argument of its parent operation. 9561 if (Stack.size() <= 1) { 9562 // TreeN can't be an extra argument as it is a root reduction 9563 // operation. 9564 return false; 9565 } 9566 // Yes, TreeN is an extra argument, do not add it to a list of 9567 // reduction operations. 9568 // Stack[Stack.size() - 2] always points to the parent operation. 9569 markExtraArg(Stack[Stack.size() - 2], TreeN); 9570 ExtraArgs.erase(TreeN); 9571 } else 9572 addReductionOps(TreeN); 9573 } 9574 // Retract. 9575 Stack.pop_back(); 9576 continue; 9577 } 9578 9579 // Visit operands. 9580 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9581 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9582 if (!EdgeInst) { 9583 // Edge value is not a reduction instruction or a leaf instruction. 9584 // (It may be a constant, function argument, or something else.) 9585 markExtraArg(Stack.back(), EdgeVal); 9586 continue; 9587 } 9588 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9589 // Continue analysis if the next operand is a reduction operation or 9590 // (possibly) a leaf value. If the leaf value opcode is not set, 9591 // the first met operation != reduction operation is considered as the 9592 // leaf opcode. 9593 // Only handle trees in the current basic block. 9594 // Each tree node needs to have minimal number of users except for the 9595 // ultimate reduction. 9596 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9597 if (EdgeInst != Phi && EdgeInst != Inst && 9598 hasSameParent(EdgeInst, Inst->getParent()) && 9599 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9600 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9601 if (IsRdxInst) { 9602 // We need to be able to reassociate the reduction operations. 9603 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9604 // I is an extra argument for TreeN (its parent operation). 9605 markExtraArg(Stack.back(), EdgeInst); 9606 continue; 9607 } 9608 } else if (!LeafOpcode) { 9609 LeafOpcode = EdgeInst->getOpcode(); 9610 } 9611 Stack.push_back( 9612 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9613 continue; 9614 } 9615 // I is an extra argument for TreeN (its parent operation). 9616 markExtraArg(Stack.back(), EdgeInst); 9617 } 9618 return true; 9619 } 9620 9621 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9622 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9623 // If there are a sufficient number of reduction values, reduce 9624 // to a nearby power-of-2. We can safely generate oversized 9625 // vectors and rely on the backend to split them to legal sizes. 9626 unsigned NumReducedVals = ReducedVals.size(); 9627 if (NumReducedVals < 4) 9628 return nullptr; 9629 9630 // Intersect the fast-math-flags from all reduction operations. 9631 FastMathFlags RdxFMF; 9632 RdxFMF.set(); 9633 for (ReductionOpsType &RdxOp : ReductionOps) { 9634 for (Value *RdxVal : RdxOp) { 9635 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9636 RdxFMF &= FPMO->getFastMathFlags(); 9637 } 9638 } 9639 9640 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9641 Builder.setFastMathFlags(RdxFMF); 9642 9643 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9644 // The same extra argument may be used several times, so log each attempt 9645 // to use it. 9646 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9647 assert(Pair.first && "DebugLoc must be set."); 9648 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9649 } 9650 9651 // The compare instruction of a min/max is the insertion point for new 9652 // instructions and may be replaced with a new compare instruction. 9653 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9654 assert(isa<SelectInst>(RdxRootInst) && 9655 "Expected min/max reduction to have select root instruction"); 9656 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9657 assert(isa<Instruction>(ScalarCond) && 9658 "Expected min/max reduction to have compare condition"); 9659 return cast<Instruction>(ScalarCond); 9660 }; 9661 9662 // The reduction root is used as the insertion point for new instructions, 9663 // so set it as externally used to prevent it from being deleted. 9664 ExternallyUsedValues[ReductionRoot]; 9665 SmallVector<Value *, 16> IgnoreList; 9666 for (ReductionOpsType &RdxOp : ReductionOps) 9667 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9668 9669 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9670 if (NumReducedVals > ReduxWidth) { 9671 // In the loop below, we are building a tree based on a window of 9672 // 'ReduxWidth' values. 9673 // If the operands of those values have common traits (compare predicate, 9674 // constant operand, etc), then we want to group those together to 9675 // minimize the cost of the reduction. 9676 9677 // TODO: This should be extended to count common operands for 9678 // compares and binops. 9679 9680 // Step 1: Count the number of times each compare predicate occurs. 9681 SmallDenseMap<unsigned, unsigned> PredCountMap; 9682 for (Value *RdxVal : ReducedVals) { 9683 CmpInst::Predicate Pred; 9684 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9685 ++PredCountMap[Pred]; 9686 } 9687 // Step 2: Sort the values so the most common predicates come first. 9688 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9689 CmpInst::Predicate PredA, PredB; 9690 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9691 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9692 return PredCountMap[PredA] > PredCountMap[PredB]; 9693 } 9694 return false; 9695 }); 9696 } 9697 9698 Value *VectorizedTree = nullptr; 9699 unsigned i = 0; 9700 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9701 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9702 V.buildTree(VL, IgnoreList); 9703 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9704 break; 9705 if (V.isLoadCombineReductionCandidate(RdxKind)) 9706 break; 9707 V.reorderTopToBottom(); 9708 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9709 V.buildExternalUses(ExternallyUsedValues); 9710 9711 // For a poison-safe boolean logic reduction, do not replace select 9712 // instructions with logic ops. All reduced values will be frozen (see 9713 // below) to prevent leaking poison. 9714 if (isa<SelectInst>(ReductionRoot) && 9715 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9716 NumReducedVals != ReduxWidth) 9717 break; 9718 9719 V.computeMinimumValueSizes(); 9720 9721 // Estimate cost. 9722 InstructionCost TreeCost = 9723 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9724 InstructionCost ReductionCost = 9725 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9726 InstructionCost Cost = TreeCost + ReductionCost; 9727 if (!Cost.isValid()) { 9728 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9729 return nullptr; 9730 } 9731 if (Cost >= -SLPCostThreshold) { 9732 V.getORE()->emit([&]() { 9733 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9734 cast<Instruction>(VL[0])) 9735 << "Vectorizing horizontal reduction is possible" 9736 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9737 << " and threshold " 9738 << ore::NV("Threshold", -SLPCostThreshold); 9739 }); 9740 break; 9741 } 9742 9743 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9744 << Cost << ". (HorRdx)\n"); 9745 V.getORE()->emit([&]() { 9746 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9747 cast<Instruction>(VL[0])) 9748 << "Vectorized horizontal reduction with cost " 9749 << ore::NV("Cost", Cost) << " and with tree size " 9750 << ore::NV("TreeSize", V.getTreeSize()); 9751 }); 9752 9753 // Vectorize a tree. 9754 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9755 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9756 9757 // Emit a reduction. If the root is a select (min/max idiom), the insert 9758 // point is the compare condition of that select. 9759 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9760 if (isCmpSelMinMax(RdxRootInst)) 9761 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9762 else 9763 Builder.SetInsertPoint(RdxRootInst); 9764 9765 // To prevent poison from leaking across what used to be sequential, safe, 9766 // scalar boolean logic operations, the reduction operand must be frozen. 9767 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9768 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9769 9770 Value *ReducedSubTree = 9771 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9772 9773 if (!VectorizedTree) { 9774 // Initialize the final value in the reduction. 9775 VectorizedTree = ReducedSubTree; 9776 } else { 9777 // Update the final value in the reduction. 9778 Builder.SetCurrentDebugLocation(Loc); 9779 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9780 ReducedSubTree, "op.rdx", ReductionOps); 9781 } 9782 i += ReduxWidth; 9783 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9784 } 9785 9786 if (VectorizedTree) { 9787 // Finish the reduction. 9788 for (; i < NumReducedVals; ++i) { 9789 auto *I = cast<Instruction>(ReducedVals[i]); 9790 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9791 VectorizedTree = 9792 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9793 } 9794 for (auto &Pair : ExternallyUsedValues) { 9795 // Add each externally used value to the final reduction. 9796 for (auto *I : Pair.second) { 9797 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9798 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9799 Pair.first, "op.extra", I); 9800 } 9801 } 9802 9803 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9804 9805 // Mark all scalar reduction ops for deletion, they are replaced by the 9806 // vector reductions. 9807 V.eraseInstructions(IgnoreList); 9808 } 9809 return VectorizedTree; 9810 } 9811 9812 unsigned numReductionValues() const { return ReducedVals.size(); } 9813 9814 private: 9815 /// Calculate the cost of a reduction. 9816 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9817 Value *FirstReducedVal, unsigned ReduxWidth, 9818 FastMathFlags FMF) { 9819 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9820 Type *ScalarTy = FirstReducedVal->getType(); 9821 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9822 InstructionCost VectorCost, ScalarCost; 9823 switch (RdxKind) { 9824 case RecurKind::Add: 9825 case RecurKind::Mul: 9826 case RecurKind::Or: 9827 case RecurKind::And: 9828 case RecurKind::Xor: 9829 case RecurKind::FAdd: 9830 case RecurKind::FMul: { 9831 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9832 VectorCost = 9833 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9834 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9835 break; 9836 } 9837 case RecurKind::FMax: 9838 case RecurKind::FMin: { 9839 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9840 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9841 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9842 /*IsUnsigned=*/false, CostKind); 9843 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9844 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9845 SclCondTy, RdxPred, CostKind) + 9846 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9847 SclCondTy, RdxPred, CostKind); 9848 break; 9849 } 9850 case RecurKind::SMax: 9851 case RecurKind::SMin: 9852 case RecurKind::UMax: 9853 case RecurKind::UMin: { 9854 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9855 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9856 bool IsUnsigned = 9857 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9858 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9859 CostKind); 9860 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9861 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9862 SclCondTy, RdxPred, CostKind) + 9863 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9864 SclCondTy, RdxPred, CostKind); 9865 break; 9866 } 9867 default: 9868 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9869 } 9870 9871 // Scalar cost is repeated for N-1 elements. 9872 ScalarCost *= (ReduxWidth - 1); 9873 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9874 << " for reduction that starts with " << *FirstReducedVal 9875 << " (It is a splitting reduction)\n"); 9876 return VectorCost - ScalarCost; 9877 } 9878 9879 /// Emit a horizontal reduction of the vectorized value. 9880 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9881 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9882 assert(VectorizedValue && "Need to have a vectorized tree node"); 9883 assert(isPowerOf2_32(ReduxWidth) && 9884 "We only handle power-of-two reductions for now"); 9885 assert(RdxKind != RecurKind::FMulAdd && 9886 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9887 9888 ++NumVectorInstructions; 9889 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9890 } 9891 }; 9892 9893 } // end anonymous namespace 9894 9895 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9896 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9897 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9898 9899 unsigned AggregateSize = 1; 9900 auto *IV = cast<InsertValueInst>(InsertInst); 9901 Type *CurrentType = IV->getType(); 9902 do { 9903 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9904 for (auto *Elt : ST->elements()) 9905 if (Elt != ST->getElementType(0)) // check homogeneity 9906 return None; 9907 AggregateSize *= ST->getNumElements(); 9908 CurrentType = ST->getElementType(0); 9909 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9910 AggregateSize *= AT->getNumElements(); 9911 CurrentType = AT->getElementType(); 9912 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9913 AggregateSize *= VT->getNumElements(); 9914 return AggregateSize; 9915 } else if (CurrentType->isSingleValueType()) { 9916 return AggregateSize; 9917 } else { 9918 return None; 9919 } 9920 } while (true); 9921 } 9922 9923 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9924 TargetTransformInfo *TTI, 9925 SmallVectorImpl<Value *> &BuildVectorOpds, 9926 SmallVectorImpl<Value *> &InsertElts, 9927 unsigned OperandOffset) { 9928 do { 9929 Value *InsertedOperand = LastInsertInst->getOperand(1); 9930 Optional<unsigned> OperandIndex = 9931 getInsertIndex(LastInsertInst, OperandOffset); 9932 if (!OperandIndex) 9933 return; 9934 if (isa<InsertElementInst>(InsertedOperand) || 9935 isa<InsertValueInst>(InsertedOperand)) { 9936 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9937 BuildVectorOpds, InsertElts, *OperandIndex); 9938 9939 } else { 9940 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9941 InsertElts[*OperandIndex] = LastInsertInst; 9942 } 9943 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9944 } while (LastInsertInst != nullptr && 9945 (isa<InsertValueInst>(LastInsertInst) || 9946 isa<InsertElementInst>(LastInsertInst)) && 9947 LastInsertInst->hasOneUse()); 9948 } 9949 9950 /// Recognize construction of vectors like 9951 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9952 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9953 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9954 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9955 /// starting from the last insertelement or insertvalue instruction. 9956 /// 9957 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9958 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9959 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9960 /// 9961 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9962 /// 9963 /// \return true if it matches. 9964 static bool findBuildAggregate(Instruction *LastInsertInst, 9965 TargetTransformInfo *TTI, 9966 SmallVectorImpl<Value *> &BuildVectorOpds, 9967 SmallVectorImpl<Value *> &InsertElts) { 9968 9969 assert((isa<InsertElementInst>(LastInsertInst) || 9970 isa<InsertValueInst>(LastInsertInst)) && 9971 "Expected insertelement or insertvalue instruction!"); 9972 9973 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9974 "Expected empty result vectors!"); 9975 9976 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9977 if (!AggregateSize) 9978 return false; 9979 BuildVectorOpds.resize(*AggregateSize); 9980 InsertElts.resize(*AggregateSize); 9981 9982 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9983 llvm::erase_value(BuildVectorOpds, nullptr); 9984 llvm::erase_value(InsertElts, nullptr); 9985 if (BuildVectorOpds.size() >= 2) 9986 return true; 9987 9988 return false; 9989 } 9990 9991 /// Try and get a reduction value from a phi node. 9992 /// 9993 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9994 /// if they come from either \p ParentBB or a containing loop latch. 9995 /// 9996 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9997 /// if not possible. 9998 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9999 BasicBlock *ParentBB, LoopInfo *LI) { 10000 // There are situations where the reduction value is not dominated by the 10001 // reduction phi. Vectorizing such cases has been reported to cause 10002 // miscompiles. See PR25787. 10003 auto DominatedReduxValue = [&](Value *R) { 10004 return isa<Instruction>(R) && 10005 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10006 }; 10007 10008 Value *Rdx = nullptr; 10009 10010 // Return the incoming value if it comes from the same BB as the phi node. 10011 if (P->getIncomingBlock(0) == ParentBB) { 10012 Rdx = P->getIncomingValue(0); 10013 } else if (P->getIncomingBlock(1) == ParentBB) { 10014 Rdx = P->getIncomingValue(1); 10015 } 10016 10017 if (Rdx && DominatedReduxValue(Rdx)) 10018 return Rdx; 10019 10020 // Otherwise, check whether we have a loop latch to look at. 10021 Loop *BBL = LI->getLoopFor(ParentBB); 10022 if (!BBL) 10023 return nullptr; 10024 BasicBlock *BBLatch = BBL->getLoopLatch(); 10025 if (!BBLatch) 10026 return nullptr; 10027 10028 // There is a loop latch, return the incoming value if it comes from 10029 // that. This reduction pattern occasionally turns up. 10030 if (P->getIncomingBlock(0) == BBLatch) { 10031 Rdx = P->getIncomingValue(0); 10032 } else if (P->getIncomingBlock(1) == BBLatch) { 10033 Rdx = P->getIncomingValue(1); 10034 } 10035 10036 if (Rdx && DominatedReduxValue(Rdx)) 10037 return Rdx; 10038 10039 return nullptr; 10040 } 10041 10042 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10043 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10044 return true; 10045 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10046 return true; 10047 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10048 return true; 10049 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10050 return true; 10051 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10052 return true; 10053 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10054 return true; 10055 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10056 return true; 10057 return false; 10058 } 10059 10060 /// Attempt to reduce a horizontal reduction. 10061 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10062 /// with reduction operators \a Root (or one of its operands) in a basic block 10063 /// \a BB, then check if it can be done. If horizontal reduction is not found 10064 /// and root instruction is a binary operation, vectorization of the operands is 10065 /// attempted. 10066 /// \returns true if a horizontal reduction was matched and reduced or operands 10067 /// of one of the binary instruction were vectorized. 10068 /// \returns false if a horizontal reduction was not matched (or not possible) 10069 /// or no vectorization of any binary operation feeding \a Root instruction was 10070 /// performed. 10071 static bool tryToVectorizeHorReductionOrInstOperands( 10072 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10073 TargetTransformInfo *TTI, 10074 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10075 if (!ShouldVectorizeHor) 10076 return false; 10077 10078 if (!Root) 10079 return false; 10080 10081 if (Root->getParent() != BB || isa<PHINode>(Root)) 10082 return false; 10083 // Start analysis starting from Root instruction. If horizontal reduction is 10084 // found, try to vectorize it. If it is not a horizontal reduction or 10085 // vectorization is not possible or not effective, and currently analyzed 10086 // instruction is a binary operation, try to vectorize the operands, using 10087 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10088 // the same procedure considering each operand as a possible root of the 10089 // horizontal reduction. 10090 // Interrupt the process if the Root instruction itself was vectorized or all 10091 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10092 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10093 // CmpInsts so we can skip extra attempts in 10094 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10095 std::queue<std::pair<Instruction *, unsigned>> Stack; 10096 Stack.emplace(Root, 0); 10097 SmallPtrSet<Value *, 8> VisitedInstrs; 10098 SmallVector<WeakTrackingVH> PostponedInsts; 10099 bool Res = false; 10100 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10101 Value *&B1) -> Value * { 10102 bool IsBinop = matchRdxBop(Inst, B0, B1); 10103 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10104 if (IsBinop || IsSelect) { 10105 HorizontalReduction HorRdx; 10106 if (HorRdx.matchAssociativeReduction(P, Inst)) 10107 return HorRdx.tryToReduce(R, TTI); 10108 } 10109 return nullptr; 10110 }; 10111 while (!Stack.empty()) { 10112 Instruction *Inst; 10113 unsigned Level; 10114 std::tie(Inst, Level) = Stack.front(); 10115 Stack.pop(); 10116 // Do not try to analyze instruction that has already been vectorized. 10117 // This may happen when we vectorize instruction operands on a previous 10118 // iteration while stack was populated before that happened. 10119 if (R.isDeleted(Inst)) 10120 continue; 10121 Value *B0 = nullptr, *B1 = nullptr; 10122 if (Value *V = TryToReduce(Inst, B0, B1)) { 10123 Res = true; 10124 // Set P to nullptr to avoid re-analysis of phi node in 10125 // matchAssociativeReduction function unless this is the root node. 10126 P = nullptr; 10127 if (auto *I = dyn_cast<Instruction>(V)) { 10128 // Try to find another reduction. 10129 Stack.emplace(I, Level); 10130 continue; 10131 } 10132 } else { 10133 bool IsBinop = B0 && B1; 10134 if (P && IsBinop) { 10135 Inst = dyn_cast<Instruction>(B0); 10136 if (Inst == P) 10137 Inst = dyn_cast<Instruction>(B1); 10138 if (!Inst) { 10139 // Set P to nullptr to avoid re-analysis of phi node in 10140 // matchAssociativeReduction function unless this is the root node. 10141 P = nullptr; 10142 continue; 10143 } 10144 } 10145 // Set P to nullptr to avoid re-analysis of phi node in 10146 // matchAssociativeReduction function unless this is the root node. 10147 P = nullptr; 10148 // Do not try to vectorize CmpInst operands, this is done separately. 10149 // Final attempt for binop args vectorization should happen after the loop 10150 // to try to find reductions. 10151 if (!isa<CmpInst>(Inst)) 10152 PostponedInsts.push_back(Inst); 10153 } 10154 10155 // Try to vectorize operands. 10156 // Continue analysis for the instruction from the same basic block only to 10157 // save compile time. 10158 if (++Level < RecursionMaxDepth) 10159 for (auto *Op : Inst->operand_values()) 10160 if (VisitedInstrs.insert(Op).second) 10161 if (auto *I = dyn_cast<Instruction>(Op)) 10162 // Do not try to vectorize CmpInst operands, this is done 10163 // separately. 10164 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10165 I->getParent() == BB) 10166 Stack.emplace(I, Level); 10167 } 10168 // Try to vectorized binops where reductions were not found. 10169 for (Value *V : PostponedInsts) 10170 if (auto *Inst = dyn_cast<Instruction>(V)) 10171 if (!R.isDeleted(Inst)) 10172 Res |= Vectorize(Inst, R); 10173 return Res; 10174 } 10175 10176 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10177 BasicBlock *BB, BoUpSLP &R, 10178 TargetTransformInfo *TTI) { 10179 auto *I = dyn_cast_or_null<Instruction>(V); 10180 if (!I) 10181 return false; 10182 10183 if (!isa<BinaryOperator>(I)) 10184 P = nullptr; 10185 // Try to match and vectorize a horizontal reduction. 10186 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10187 return tryToVectorize(I, R); 10188 }; 10189 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10190 ExtraVectorization); 10191 } 10192 10193 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10194 BasicBlock *BB, BoUpSLP &R) { 10195 const DataLayout &DL = BB->getModule()->getDataLayout(); 10196 if (!R.canMapToVector(IVI->getType(), DL)) 10197 return false; 10198 10199 SmallVector<Value *, 16> BuildVectorOpds; 10200 SmallVector<Value *, 16> BuildVectorInsts; 10201 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10202 return false; 10203 10204 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10205 // Aggregate value is unlikely to be processed in vector register. 10206 return tryToVectorizeList(BuildVectorOpds, R); 10207 } 10208 10209 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10210 BasicBlock *BB, BoUpSLP &R) { 10211 SmallVector<Value *, 16> BuildVectorInsts; 10212 SmallVector<Value *, 16> BuildVectorOpds; 10213 SmallVector<int> Mask; 10214 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10215 (llvm::all_of( 10216 BuildVectorOpds, 10217 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10218 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10219 return false; 10220 10221 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10222 return tryToVectorizeList(BuildVectorInsts, R); 10223 } 10224 10225 template <typename T> 10226 static bool 10227 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10228 function_ref<unsigned(T *)> Limit, 10229 function_ref<bool(T *, T *)> Comparator, 10230 function_ref<bool(T *, T *)> AreCompatible, 10231 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10232 bool LimitForRegisterSize) { 10233 bool Changed = false; 10234 // Sort by type, parent, operands. 10235 stable_sort(Incoming, Comparator); 10236 10237 // Try to vectorize elements base on their type. 10238 SmallVector<T *> Candidates; 10239 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10240 // Look for the next elements with the same type, parent and operand 10241 // kinds. 10242 auto *SameTypeIt = IncIt; 10243 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10244 ++SameTypeIt; 10245 10246 // Try to vectorize them. 10247 unsigned NumElts = (SameTypeIt - IncIt); 10248 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10249 << NumElts << ")\n"); 10250 // The vectorization is a 3-state attempt: 10251 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10252 // size of maximal register at first. 10253 // 2. Try to vectorize remaining instructions with the same type, if 10254 // possible. This may result in the better vectorization results rather than 10255 // if we try just to vectorize instructions with the same/alternate opcodes. 10256 // 3. Final attempt to try to vectorize all instructions with the 10257 // same/alternate ops only, this may result in some extra final 10258 // vectorization. 10259 if (NumElts > 1 && 10260 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10261 // Success start over because instructions might have been changed. 10262 Changed = true; 10263 } else if (NumElts < Limit(*IncIt) && 10264 (Candidates.empty() || 10265 Candidates.front()->getType() == (*IncIt)->getType())) { 10266 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10267 } 10268 // Final attempt to vectorize instructions with the same types. 10269 if (Candidates.size() > 1 && 10270 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10271 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10272 // Success start over because instructions might have been changed. 10273 Changed = true; 10274 } else if (LimitForRegisterSize) { 10275 // Try to vectorize using small vectors. 10276 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10277 It != End;) { 10278 auto *SameTypeIt = It; 10279 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10280 ++SameTypeIt; 10281 unsigned NumElts = (SameTypeIt - It); 10282 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10283 /*LimitForRegisterSize=*/false)) 10284 Changed = true; 10285 It = SameTypeIt; 10286 } 10287 } 10288 Candidates.clear(); 10289 } 10290 10291 // Start over at the next instruction of a different type (or the end). 10292 IncIt = SameTypeIt; 10293 } 10294 return Changed; 10295 } 10296 10297 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10298 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10299 /// operands. If IsCompatibility is false, function implements strict weak 10300 /// ordering relation between two cmp instructions, returning true if the first 10301 /// instruction is "less" than the second, i.e. its predicate is less than the 10302 /// predicate of the second or the operands IDs are less than the operands IDs 10303 /// of the second cmp instruction. 10304 template <bool IsCompatibility> 10305 static bool compareCmp(Value *V, Value *V2, 10306 function_ref<bool(Instruction *)> IsDeleted) { 10307 auto *CI1 = cast<CmpInst>(V); 10308 auto *CI2 = cast<CmpInst>(V2); 10309 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10310 return false; 10311 if (CI1->getOperand(0)->getType()->getTypeID() < 10312 CI2->getOperand(0)->getType()->getTypeID()) 10313 return !IsCompatibility; 10314 if (CI1->getOperand(0)->getType()->getTypeID() > 10315 CI2->getOperand(0)->getType()->getTypeID()) 10316 return false; 10317 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10318 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10319 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10320 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10321 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10322 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10323 if (BasePred1 < BasePred2) 10324 return !IsCompatibility; 10325 if (BasePred1 > BasePred2) 10326 return false; 10327 // Compare operands. 10328 bool LEPreds = Pred1 <= Pred2; 10329 bool GEPreds = Pred1 >= Pred2; 10330 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10331 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10332 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10333 if (Op1->getValueID() < Op2->getValueID()) 10334 return !IsCompatibility; 10335 if (Op1->getValueID() > Op2->getValueID()) 10336 return false; 10337 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10338 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10339 if (I1->getParent() != I2->getParent()) 10340 return false; 10341 InstructionsState S = getSameOpcode({I1, I2}); 10342 if (S.getOpcode()) 10343 continue; 10344 return false; 10345 } 10346 } 10347 return IsCompatibility; 10348 } 10349 10350 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10351 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10352 bool AtTerminator) { 10353 bool OpsChanged = false; 10354 SmallVector<Instruction *, 4> PostponedCmps; 10355 for (auto *I : reverse(Instructions)) { 10356 if (R.isDeleted(I)) 10357 continue; 10358 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10359 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10360 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10361 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10362 else if (isa<CmpInst>(I)) 10363 PostponedCmps.push_back(I); 10364 } 10365 if (AtTerminator) { 10366 // Try to find reductions first. 10367 for (Instruction *I : PostponedCmps) { 10368 if (R.isDeleted(I)) 10369 continue; 10370 for (Value *Op : I->operands()) 10371 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10372 } 10373 // Try to vectorize operands as vector bundles. 10374 for (Instruction *I : PostponedCmps) { 10375 if (R.isDeleted(I)) 10376 continue; 10377 OpsChanged |= tryToVectorize(I, R); 10378 } 10379 // Try to vectorize list of compares. 10380 // Sort by type, compare predicate, etc. 10381 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10382 return compareCmp<false>(V, V2, 10383 [&R](Instruction *I) { return R.isDeleted(I); }); 10384 }; 10385 10386 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10387 if (V1 == V2) 10388 return true; 10389 return compareCmp<true>(V1, V2, 10390 [&R](Instruction *I) { return R.isDeleted(I); }); 10391 }; 10392 auto Limit = [&R](Value *V) { 10393 unsigned EltSize = R.getVectorElementSize(V); 10394 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10395 }; 10396 10397 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10398 OpsChanged |= tryToVectorizeSequence<Value>( 10399 Vals, Limit, CompareSorter, AreCompatibleCompares, 10400 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10401 // Exclude possible reductions from other blocks. 10402 bool ArePossiblyReducedInOtherBlock = 10403 any_of(Candidates, [](Value *V) { 10404 return any_of(V->users(), [V](User *U) { 10405 return isa<SelectInst>(U) && 10406 cast<SelectInst>(U)->getParent() != 10407 cast<Instruction>(V)->getParent(); 10408 }); 10409 }); 10410 if (ArePossiblyReducedInOtherBlock) 10411 return false; 10412 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10413 }, 10414 /*LimitForRegisterSize=*/true); 10415 Instructions.clear(); 10416 } else { 10417 // Insert in reverse order since the PostponedCmps vector was filled in 10418 // reverse order. 10419 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10420 } 10421 return OpsChanged; 10422 } 10423 10424 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10425 bool Changed = false; 10426 SmallVector<Value *, 4> Incoming; 10427 SmallPtrSet<Value *, 16> VisitedInstrs; 10428 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10429 // node. Allows better to identify the chains that can be vectorized in the 10430 // better way. 10431 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10432 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10433 assert(isValidElementType(V1->getType()) && 10434 isValidElementType(V2->getType()) && 10435 "Expected vectorizable types only."); 10436 // It is fine to compare type IDs here, since we expect only vectorizable 10437 // types, like ints, floats and pointers, we don't care about other type. 10438 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10439 return true; 10440 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10441 return false; 10442 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10443 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10444 if (Opcodes1.size() < Opcodes2.size()) 10445 return true; 10446 if (Opcodes1.size() > Opcodes2.size()) 10447 return false; 10448 Optional<bool> ConstOrder; 10449 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10450 // Undefs are compatible with any other value. 10451 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10452 if (!ConstOrder) 10453 ConstOrder = 10454 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10455 continue; 10456 } 10457 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10458 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10459 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10460 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10461 if (!NodeI1) 10462 return NodeI2 != nullptr; 10463 if (!NodeI2) 10464 return false; 10465 assert((NodeI1 == NodeI2) == 10466 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10467 "Different nodes should have different DFS numbers"); 10468 if (NodeI1 != NodeI2) 10469 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10470 InstructionsState S = getSameOpcode({I1, I2}); 10471 if (S.getOpcode()) 10472 continue; 10473 return I1->getOpcode() < I2->getOpcode(); 10474 } 10475 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10476 if (!ConstOrder) 10477 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10478 continue; 10479 } 10480 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10481 return true; 10482 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10483 return false; 10484 } 10485 return ConstOrder && *ConstOrder; 10486 }; 10487 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10488 if (V1 == V2) 10489 return true; 10490 if (V1->getType() != V2->getType()) 10491 return false; 10492 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10493 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10494 if (Opcodes1.size() != Opcodes2.size()) 10495 return false; 10496 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10497 // Undefs are compatible with any other value. 10498 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10499 continue; 10500 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10501 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10502 if (I1->getParent() != I2->getParent()) 10503 return false; 10504 InstructionsState S = getSameOpcode({I1, I2}); 10505 if (S.getOpcode()) 10506 continue; 10507 return false; 10508 } 10509 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10510 continue; 10511 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10512 return false; 10513 } 10514 return true; 10515 }; 10516 auto Limit = [&R](Value *V) { 10517 unsigned EltSize = R.getVectorElementSize(V); 10518 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10519 }; 10520 10521 bool HaveVectorizedPhiNodes = false; 10522 do { 10523 // Collect the incoming values from the PHIs. 10524 Incoming.clear(); 10525 for (Instruction &I : *BB) { 10526 PHINode *P = dyn_cast<PHINode>(&I); 10527 if (!P) 10528 break; 10529 10530 // No need to analyze deleted, vectorized and non-vectorizable 10531 // instructions. 10532 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10533 isValidElementType(P->getType())) 10534 Incoming.push_back(P); 10535 } 10536 10537 // Find the corresponding non-phi nodes for better matching when trying to 10538 // build the tree. 10539 for (Value *V : Incoming) { 10540 SmallVectorImpl<Value *> &Opcodes = 10541 PHIToOpcodes.try_emplace(V).first->getSecond(); 10542 if (!Opcodes.empty()) 10543 continue; 10544 SmallVector<Value *, 4> Nodes(1, V); 10545 SmallPtrSet<Value *, 4> Visited; 10546 while (!Nodes.empty()) { 10547 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10548 if (!Visited.insert(PHI).second) 10549 continue; 10550 for (Value *V : PHI->incoming_values()) { 10551 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10552 Nodes.push_back(PHI1); 10553 continue; 10554 } 10555 Opcodes.emplace_back(V); 10556 } 10557 } 10558 } 10559 10560 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10561 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10562 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10563 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10564 }, 10565 /*LimitForRegisterSize=*/true); 10566 Changed |= HaveVectorizedPhiNodes; 10567 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10568 } while (HaveVectorizedPhiNodes); 10569 10570 VisitedInstrs.clear(); 10571 10572 SmallVector<Instruction *, 8> PostProcessInstructions; 10573 SmallDenseSet<Instruction *, 4> KeyNodes; 10574 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10575 // Skip instructions with scalable type. The num of elements is unknown at 10576 // compile-time for scalable type. 10577 if (isa<ScalableVectorType>(it->getType())) 10578 continue; 10579 10580 // Skip instructions marked for the deletion. 10581 if (R.isDeleted(&*it)) 10582 continue; 10583 // We may go through BB multiple times so skip the one we have checked. 10584 if (!VisitedInstrs.insert(&*it).second) { 10585 if (it->use_empty() && KeyNodes.contains(&*it) && 10586 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10587 it->isTerminator())) { 10588 // We would like to start over since some instructions are deleted 10589 // and the iterator may become invalid value. 10590 Changed = true; 10591 it = BB->begin(); 10592 e = BB->end(); 10593 } 10594 continue; 10595 } 10596 10597 if (isa<DbgInfoIntrinsic>(it)) 10598 continue; 10599 10600 // Try to vectorize reductions that use PHINodes. 10601 if (PHINode *P = dyn_cast<PHINode>(it)) { 10602 // Check that the PHI is a reduction PHI. 10603 if (P->getNumIncomingValues() == 2) { 10604 // Try to match and vectorize a horizontal reduction. 10605 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10606 TTI)) { 10607 Changed = true; 10608 it = BB->begin(); 10609 e = BB->end(); 10610 continue; 10611 } 10612 } 10613 // Try to vectorize the incoming values of the PHI, to catch reductions 10614 // that feed into PHIs. 10615 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10616 // Skip if the incoming block is the current BB for now. Also, bypass 10617 // unreachable IR for efficiency and to avoid crashing. 10618 // TODO: Collect the skipped incoming values and try to vectorize them 10619 // after processing BB. 10620 if (BB == P->getIncomingBlock(I) || 10621 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10622 continue; 10623 10624 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10625 P->getIncomingBlock(I), R, TTI); 10626 } 10627 continue; 10628 } 10629 10630 // Ran into an instruction without users, like terminator, or function call 10631 // with ignored return value, store. Ignore unused instructions (basing on 10632 // instruction type, except for CallInst and InvokeInst). 10633 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10634 isa<InvokeInst>(it))) { 10635 KeyNodes.insert(&*it); 10636 bool OpsChanged = false; 10637 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10638 for (auto *V : it->operand_values()) { 10639 // Try to match and vectorize a horizontal reduction. 10640 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10641 } 10642 } 10643 // Start vectorization of post-process list of instructions from the 10644 // top-tree instructions to try to vectorize as many instructions as 10645 // possible. 10646 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10647 it->isTerminator()); 10648 if (OpsChanged) { 10649 // We would like to start over since some instructions are deleted 10650 // and the iterator may become invalid value. 10651 Changed = true; 10652 it = BB->begin(); 10653 e = BB->end(); 10654 continue; 10655 } 10656 } 10657 10658 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10659 isa<InsertValueInst>(it)) 10660 PostProcessInstructions.push_back(&*it); 10661 } 10662 10663 return Changed; 10664 } 10665 10666 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10667 auto Changed = false; 10668 for (auto &Entry : GEPs) { 10669 // If the getelementptr list has fewer than two elements, there's nothing 10670 // to do. 10671 if (Entry.second.size() < 2) 10672 continue; 10673 10674 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10675 << Entry.second.size() << ".\n"); 10676 10677 // Process the GEP list in chunks suitable for the target's supported 10678 // vector size. If a vector register can't hold 1 element, we are done. We 10679 // are trying to vectorize the index computations, so the maximum number of 10680 // elements is based on the size of the index expression, rather than the 10681 // size of the GEP itself (the target's pointer size). 10682 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10683 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10684 if (MaxVecRegSize < EltSize) 10685 continue; 10686 10687 unsigned MaxElts = MaxVecRegSize / EltSize; 10688 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10689 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10690 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10691 10692 // Initialize a set a candidate getelementptrs. Note that we use a 10693 // SetVector here to preserve program order. If the index computations 10694 // are vectorizable and begin with loads, we want to minimize the chance 10695 // of having to reorder them later. 10696 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10697 10698 // Some of the candidates may have already been vectorized after we 10699 // initially collected them. If so, they are marked as deleted, so remove 10700 // them from the set of candidates. 10701 Candidates.remove_if( 10702 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10703 10704 // Remove from the set of candidates all pairs of getelementptrs with 10705 // constant differences. Such getelementptrs are likely not good 10706 // candidates for vectorization in a bottom-up phase since one can be 10707 // computed from the other. We also ensure all candidate getelementptr 10708 // indices are unique. 10709 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10710 auto *GEPI = GEPList[I]; 10711 if (!Candidates.count(GEPI)) 10712 continue; 10713 auto *SCEVI = SE->getSCEV(GEPList[I]); 10714 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10715 auto *GEPJ = GEPList[J]; 10716 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10717 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10718 Candidates.remove(GEPI); 10719 Candidates.remove(GEPJ); 10720 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10721 Candidates.remove(GEPJ); 10722 } 10723 } 10724 } 10725 10726 // We break out of the above computation as soon as we know there are 10727 // fewer than two candidates remaining. 10728 if (Candidates.size() < 2) 10729 continue; 10730 10731 // Add the single, non-constant index of each candidate to the bundle. We 10732 // ensured the indices met these constraints when we originally collected 10733 // the getelementptrs. 10734 SmallVector<Value *, 16> Bundle(Candidates.size()); 10735 auto BundleIndex = 0u; 10736 for (auto *V : Candidates) { 10737 auto *GEP = cast<GetElementPtrInst>(V); 10738 auto *GEPIdx = GEP->idx_begin()->get(); 10739 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10740 Bundle[BundleIndex++] = GEPIdx; 10741 } 10742 10743 // Try and vectorize the indices. We are currently only interested in 10744 // gather-like cases of the form: 10745 // 10746 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10747 // 10748 // where the loads of "a", the loads of "b", and the subtractions can be 10749 // performed in parallel. It's likely that detecting this pattern in a 10750 // bottom-up phase will be simpler and less costly than building a 10751 // full-blown top-down phase beginning at the consecutive loads. 10752 Changed |= tryToVectorizeList(Bundle, R); 10753 } 10754 } 10755 return Changed; 10756 } 10757 10758 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10759 bool Changed = false; 10760 // Sort by type, base pointers and values operand. Value operands must be 10761 // compatible (have the same opcode, same parent), otherwise it is 10762 // definitely not profitable to try to vectorize them. 10763 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10764 if (V->getPointerOperandType()->getTypeID() < 10765 V2->getPointerOperandType()->getTypeID()) 10766 return true; 10767 if (V->getPointerOperandType()->getTypeID() > 10768 V2->getPointerOperandType()->getTypeID()) 10769 return false; 10770 // UndefValues are compatible with all other values. 10771 if (isa<UndefValue>(V->getValueOperand()) || 10772 isa<UndefValue>(V2->getValueOperand())) 10773 return false; 10774 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10775 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10776 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10777 DT->getNode(I1->getParent()); 10778 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10779 DT->getNode(I2->getParent()); 10780 assert(NodeI1 && "Should only process reachable instructions"); 10781 assert(NodeI1 && "Should only process reachable instructions"); 10782 assert((NodeI1 == NodeI2) == 10783 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10784 "Different nodes should have different DFS numbers"); 10785 if (NodeI1 != NodeI2) 10786 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10787 InstructionsState S = getSameOpcode({I1, I2}); 10788 if (S.getOpcode()) 10789 return false; 10790 return I1->getOpcode() < I2->getOpcode(); 10791 } 10792 if (isa<Constant>(V->getValueOperand()) && 10793 isa<Constant>(V2->getValueOperand())) 10794 return false; 10795 return V->getValueOperand()->getValueID() < 10796 V2->getValueOperand()->getValueID(); 10797 }; 10798 10799 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10800 if (V1 == V2) 10801 return true; 10802 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10803 return false; 10804 // Undefs are compatible with any other value. 10805 if (isa<UndefValue>(V1->getValueOperand()) || 10806 isa<UndefValue>(V2->getValueOperand())) 10807 return true; 10808 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10809 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10810 if (I1->getParent() != I2->getParent()) 10811 return false; 10812 InstructionsState S = getSameOpcode({I1, I2}); 10813 return S.getOpcode() > 0; 10814 } 10815 if (isa<Constant>(V1->getValueOperand()) && 10816 isa<Constant>(V2->getValueOperand())) 10817 return true; 10818 return V1->getValueOperand()->getValueID() == 10819 V2->getValueOperand()->getValueID(); 10820 }; 10821 auto Limit = [&R, this](StoreInst *SI) { 10822 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10823 return R.getMinVF(EltSize); 10824 }; 10825 10826 // Attempt to sort and vectorize each of the store-groups. 10827 for (auto &Pair : Stores) { 10828 if (Pair.second.size() < 2) 10829 continue; 10830 10831 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10832 << Pair.second.size() << ".\n"); 10833 10834 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10835 continue; 10836 10837 Changed |= tryToVectorizeSequence<StoreInst>( 10838 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10839 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10840 return vectorizeStores(Candidates, R); 10841 }, 10842 /*LimitForRegisterSize=*/false); 10843 } 10844 return Changed; 10845 } 10846 10847 char SLPVectorizer::ID = 0; 10848 10849 static const char lv_name[] = "SLP Vectorizer"; 10850 10851 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10852 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10853 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10854 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10855 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10856 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10857 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10858 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10859 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10860 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10861 10862 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10863