1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (hasVectorIntrinsicScalarOpd(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 ArrayRef<Value *> UserIgnoreLst = None); 899 900 /// Builds external uses of the vectorized scalars, i.e. the list of 901 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 902 /// ExternallyUsedValues contains additional list of external uses to handle 903 /// vectorization of reductions. 904 void 905 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 906 907 /// Clear the internal data structures that are created by 'buildTree'. 908 void deleteTree() { 909 VectorizableTree.clear(); 910 ScalarToTreeEntry.clear(); 911 MustGather.clear(); 912 ExternalUses.clear(); 913 for (auto &Iter : BlocksSchedules) { 914 BlockScheduling *BS = Iter.second.get(); 915 BS->clear(); 916 } 917 MinBWs.clear(); 918 InstrElementSize.clear(); 919 } 920 921 unsigned getTreeSize() const { return VectorizableTree.size(); } 922 923 /// Perform LICM and CSE on the newly generated gather sequences. 924 void optimizeGatherSequence(); 925 926 /// Checks if the specified gather tree entry \p TE can be represented as a 927 /// shuffled vector entry + (possibly) permutation with other gathers. It 928 /// implements the checks only for possibly ordered scalars (Loads, 929 /// ExtractElement, ExtractValue), which can be part of the graph. 930 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 931 932 /// Gets reordering data for the given tree entry. If the entry is vectorized 933 /// - just return ReorderIndices, otherwise check if the scalars can be 934 /// reordered and return the most optimal order. 935 /// \param TopToBottom If true, include the order of vectorized stores and 936 /// insertelement nodes, otherwise skip them. 937 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 938 939 /// Reorders the current graph to the most profitable order starting from the 940 /// root node to the leaf nodes. The best order is chosen only from the nodes 941 /// of the same size (vectorization factor). Smaller nodes are considered 942 /// parts of subgraph with smaller VF and they are reordered independently. We 943 /// can make it because we still need to extend smaller nodes to the wider VF 944 /// and we can merge reordering shuffles with the widening shuffles. 945 void reorderTopToBottom(); 946 947 /// Reorders the current graph to the most profitable order starting from 948 /// leaves to the root. It allows to rotate small subgraphs and reduce the 949 /// number of reshuffles if the leaf nodes use the same order. In this case we 950 /// can merge the orders and just shuffle user node instead of shuffling its 951 /// operands. Plus, even the leaf nodes have different orders, it allows to 952 /// sink reordering in the graph closer to the root node and merge it later 953 /// during analysis. 954 void reorderBottomToTop(bool IgnoreReorder = false); 955 956 /// \return The vector element size in bits to use when vectorizing the 957 /// expression tree ending at \p V. If V is a store, the size is the width of 958 /// the stored value. Otherwise, the size is the width of the largest loaded 959 /// value reaching V. This method is used by the vectorizer to calculate 960 /// vectorization factors. 961 unsigned getVectorElementSize(Value *V); 962 963 /// Compute the minimum type sizes required to represent the entries in a 964 /// vectorizable tree. 965 void computeMinimumValueSizes(); 966 967 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 968 unsigned getMaxVecRegSize() const { 969 return MaxVecRegSize; 970 } 971 972 // \returns minimum vector register size as set by cl::opt. 973 unsigned getMinVecRegSize() const { 974 return MinVecRegSize; 975 } 976 977 unsigned getMinVF(unsigned Sz) const { 978 return std::max(2U, getMinVecRegSize() / Sz); 979 } 980 981 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 982 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 983 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 984 return MaxVF ? MaxVF : UINT_MAX; 985 } 986 987 /// Check if homogeneous aggregate is isomorphic to some VectorType. 988 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 989 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 990 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 991 /// 992 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 993 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 994 995 /// \returns True if the VectorizableTree is both tiny and not fully 996 /// vectorizable. We do not vectorize such trees. 997 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 998 999 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1007 1008 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1009 /// can be load combined in the backend. Load combining may not be allowed in 1010 /// the IR optimizer, so we do not want to alter the pattern. For example, 1011 /// partially transforming a scalar bswap() pattern into vector code is 1012 /// effectively impossible for the backend to undo. 1013 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1014 /// may not be necessary. 1015 bool isLoadCombineCandidate() const; 1016 1017 OptimizationRemarkEmitter *getORE() { return ORE; } 1018 1019 /// This structure holds any data we need about the edges being traversed 1020 /// during buildTree_rec(). We keep track of: 1021 /// (i) the user TreeEntry index, and 1022 /// (ii) the index of the edge. 1023 struct EdgeInfo { 1024 EdgeInfo() = default; 1025 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1026 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1027 /// The user TreeEntry. 1028 TreeEntry *UserTE = nullptr; 1029 /// The operand index of the use. 1030 unsigned EdgeIdx = UINT_MAX; 1031 #ifndef NDEBUG 1032 friend inline raw_ostream &operator<<(raw_ostream &OS, 1033 const BoUpSLP::EdgeInfo &EI) { 1034 EI.dump(OS); 1035 return OS; 1036 } 1037 /// Debug print. 1038 void dump(raw_ostream &OS) const { 1039 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1040 << " EdgeIdx:" << EdgeIdx << "}"; 1041 } 1042 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1043 #endif 1044 }; 1045 1046 /// A helper class used for scoring candidates for two consecutive lanes. 1047 class LookAheadHeuristics { 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 int NumLanes; // Total number of lanes (aka vectorization factor). 1052 int MaxLevel; // The maximum recursion depth for accumulating score. 1053 1054 public: 1055 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1056 const BoUpSLP &R, int NumLanes, int MaxLevel) 1057 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1058 1059 // The hard-coded scores listed here are not very important, though it shall 1060 // be higher for better matches to improve the resulting cost. When 1061 // computing the scores of matching one sub-tree with another, we are 1062 // basically counting the number of values that are matching. So even if all 1063 // scores are set to 1, we would still get a decent matching result. 1064 // However, sometimes we have to break ties. For example we may have to 1065 // choose between matching loads vs matching opcodes. This is what these 1066 // scores are helping us with: they provide the order of preference. Also, 1067 // this is important if the scalar is externally used or used in another 1068 // tree entry node in the different lane. 1069 1070 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1071 static const int ScoreConsecutiveLoads = 4; 1072 /// The same load multiple times. This should have a better score than 1073 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1074 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1075 /// a vector load and 1.0 for a broadcast. 1076 static const int ScoreSplatLoads = 3; 1077 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1078 static const int ScoreReversedLoads = 3; 1079 /// ExtractElementInst from same vector and consecutive indexes. 1080 static const int ScoreConsecutiveExtracts = 4; 1081 /// ExtractElementInst from same vector and reversed indices. 1082 static const int ScoreReversedExtracts = 3; 1083 /// Constants. 1084 static const int ScoreConstants = 2; 1085 /// Instructions with the same opcode. 1086 static const int ScoreSameOpcode = 2; 1087 /// Instructions with alt opcodes (e.g, add + sub). 1088 static const int ScoreAltOpcodes = 1; 1089 /// Identical instructions (a.k.a. splat or broadcast). 1090 static const int ScoreSplat = 1; 1091 /// Matching with an undef is preferable to failing. 1092 static const int ScoreUndef = 1; 1093 /// Score for failing to find a decent match. 1094 static const int ScoreFail = 0; 1095 /// Score if all users are vectorized. 1096 static const int ScoreAllUserVectorized = 1; 1097 1098 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1099 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1100 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1101 /// MainAltOps. 1102 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1103 ArrayRef<Value *> MainAltOps) const { 1104 if (V1 == V2) { 1105 if (isa<LoadInst>(V1)) { 1106 // Retruns true if the users of V1 and V2 won't need to be extracted. 1107 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1108 // Bail out if we have too many uses to save compilation time. 1109 static constexpr unsigned Limit = 8; 1110 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1111 return false; 1112 1113 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1114 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1115 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1116 }); 1117 }; 1118 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1119 }; 1120 // A broadcast of a load can be cheaper on some targets. 1121 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1122 ElementCount::getFixed(NumLanes)) && 1123 ((int)V1->getNumUses() == NumLanes || 1124 AllUsersAreInternal(V1, V2))) 1125 return LookAheadHeuristics::ScoreSplatLoads; 1126 } 1127 return LookAheadHeuristics::ScoreSplat; 1128 } 1129 1130 auto *LI1 = dyn_cast<LoadInst>(V1); 1131 auto *LI2 = dyn_cast<LoadInst>(V2); 1132 if (LI1 && LI2) { 1133 if (LI1->getParent() != LI2->getParent()) 1134 return LookAheadHeuristics::ScoreFail; 1135 1136 Optional<int> Dist = getPointersDiff( 1137 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1138 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1139 if (!Dist || *Dist == 0) 1140 return LookAheadHeuristics::ScoreFail; 1141 // The distance is too large - still may be profitable to use masked 1142 // loads/gathers. 1143 if (std::abs(*Dist) > NumLanes / 2) 1144 return LookAheadHeuristics::ScoreAltOpcodes; 1145 // This still will detect consecutive loads, but we might have "holes" 1146 // in some cases. It is ok for non-power-2 vectorization and may produce 1147 // better results. It should not affect current vectorization. 1148 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1149 : LookAheadHeuristics::ScoreReversedLoads; 1150 } 1151 1152 auto *C1 = dyn_cast<Constant>(V1); 1153 auto *C2 = dyn_cast<Constant>(V2); 1154 if (C1 && C2) 1155 return LookAheadHeuristics::ScoreConstants; 1156 1157 // Extracts from consecutive indexes of the same vector better score as 1158 // the extracts could be optimized away. 1159 Value *EV1; 1160 ConstantInt *Ex1Idx; 1161 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1162 // Undefs are always profitable for extractelements. 1163 if (isa<UndefValue>(V2)) 1164 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1165 Value *EV2 = nullptr; 1166 ConstantInt *Ex2Idx = nullptr; 1167 if (match(V2, 1168 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1169 m_Undef())))) { 1170 // Undefs are always profitable for extractelements. 1171 if (!Ex2Idx) 1172 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1173 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1174 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1175 if (EV2 == EV1) { 1176 int Idx1 = Ex1Idx->getZExtValue(); 1177 int Idx2 = Ex2Idx->getZExtValue(); 1178 int Dist = Idx2 - Idx1; 1179 // The distance is too large - still may be profitable to use 1180 // shuffles. 1181 if (std::abs(Dist) == 0) 1182 return LookAheadHeuristics::ScoreSplat; 1183 if (std::abs(Dist) > NumLanes / 2) 1184 return LookAheadHeuristics::ScoreSameOpcode; 1185 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1186 : LookAheadHeuristics::ScoreReversedExtracts; 1187 } 1188 return LookAheadHeuristics::ScoreAltOpcodes; 1189 } 1190 return LookAheadHeuristics::ScoreFail; 1191 } 1192 1193 auto *I1 = dyn_cast<Instruction>(V1); 1194 auto *I2 = dyn_cast<Instruction>(V2); 1195 if (I1 && I2) { 1196 if (I1->getParent() != I2->getParent()) 1197 return LookAheadHeuristics::ScoreFail; 1198 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1199 Ops.push_back(I1); 1200 Ops.push_back(I2); 1201 InstructionsState S = getSameOpcode(Ops); 1202 // Note: Only consider instructions with <= 2 operands to avoid 1203 // complexity explosion. 1204 if (S.getOpcode() && 1205 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1206 !S.isAltShuffle()) && 1207 all_of(Ops, [&S](Value *V) { 1208 return cast<Instruction>(V)->getNumOperands() == 1209 S.MainOp->getNumOperands(); 1210 })) 1211 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1212 : LookAheadHeuristics::ScoreSameOpcode; 1213 } 1214 1215 if (isa<UndefValue>(V2)) 1216 return LookAheadHeuristics::ScoreUndef; 1217 1218 return LookAheadHeuristics::ScoreFail; 1219 } 1220 1221 /// Go through the operands of \p LHS and \p RHS recursively until 1222 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1223 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1224 /// of \p U1 and \p U2), except at the beginning of the recursion where 1225 /// these are set to nullptr. 1226 /// 1227 /// For example: 1228 /// \verbatim 1229 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1230 /// \ / \ / \ / \ / 1231 /// + + + + 1232 /// G1 G2 G3 G4 1233 /// \endverbatim 1234 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1235 /// each level recursively, accumulating the score. It starts from matching 1236 /// the additions at level 0, then moves on to the loads (level 1). The 1237 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1238 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1239 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1240 /// Please note that the order of the operands does not matter, as we 1241 /// evaluate the score of all profitable combinations of operands. In 1242 /// other words the score of G1 and G4 is the same as G1 and G2. This 1243 /// heuristic is based on ideas described in: 1244 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1245 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1246 /// Luís F. W. Góes 1247 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1248 Instruction *U2, int CurrLevel, 1249 ArrayRef<Value *> MainAltOps) const { 1250 1251 // Get the shallow score of V1 and V2. 1252 int ShallowScoreAtThisLevel = 1253 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1254 1255 // If reached MaxLevel, 1256 // or if V1 and V2 are not instructions, 1257 // or if they are SPLAT, 1258 // or if they are not consecutive, 1259 // or if profitable to vectorize loads or extractelements, early return 1260 // the current cost. 1261 auto *I1 = dyn_cast<Instruction>(LHS); 1262 auto *I2 = dyn_cast<Instruction>(RHS); 1263 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1264 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1265 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1266 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1267 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1268 ShallowScoreAtThisLevel)) 1269 return ShallowScoreAtThisLevel; 1270 assert(I1 && I2 && "Should have early exited."); 1271 1272 // Contains the I2 operand indexes that got matched with I1 operands. 1273 SmallSet<unsigned, 4> Op2Used; 1274 1275 // Recursion towards the operands of I1 and I2. We are trying all possible 1276 // operand pairs, and keeping track of the best score. 1277 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1278 OpIdx1 != NumOperands1; ++OpIdx1) { 1279 // Try to pair op1I with the best operand of I2. 1280 int MaxTmpScore = 0; 1281 unsigned MaxOpIdx2 = 0; 1282 bool FoundBest = false; 1283 // If I2 is commutative try all combinations. 1284 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1285 unsigned ToIdx = isCommutative(I2) 1286 ? I2->getNumOperands() 1287 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1288 assert(FromIdx <= ToIdx && "Bad index"); 1289 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1290 // Skip operands already paired with OpIdx1. 1291 if (Op2Used.count(OpIdx2)) 1292 continue; 1293 // Recursively calculate the cost at each level 1294 int TmpScore = 1295 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1296 I1, I2, CurrLevel + 1, None); 1297 // Look for the best score. 1298 if (TmpScore > LookAheadHeuristics::ScoreFail && 1299 TmpScore > MaxTmpScore) { 1300 MaxTmpScore = TmpScore; 1301 MaxOpIdx2 = OpIdx2; 1302 FoundBest = true; 1303 } 1304 } 1305 if (FoundBest) { 1306 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1307 Op2Used.insert(MaxOpIdx2); 1308 ShallowScoreAtThisLevel += MaxTmpScore; 1309 } 1310 } 1311 return ShallowScoreAtThisLevel; 1312 } 1313 }; 1314 /// A helper data structure to hold the operands of a vector of instructions. 1315 /// This supports a fixed vector length for all operand vectors. 1316 class VLOperands { 1317 /// For each operand we need (i) the value, and (ii) the opcode that it 1318 /// would be attached to if the expression was in a left-linearized form. 1319 /// This is required to avoid illegal operand reordering. 1320 /// For example: 1321 /// \verbatim 1322 /// 0 Op1 1323 /// |/ 1324 /// Op1 Op2 Linearized + Op2 1325 /// \ / ----------> |/ 1326 /// - - 1327 /// 1328 /// Op1 - Op2 (0 + Op1) - Op2 1329 /// \endverbatim 1330 /// 1331 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1332 /// 1333 /// Another way to think of this is to track all the operations across the 1334 /// path from the operand all the way to the root of the tree and to 1335 /// calculate the operation that corresponds to this path. For example, the 1336 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1337 /// corresponding operation is a '-' (which matches the one in the 1338 /// linearized tree, as shown above). 1339 /// 1340 /// For lack of a better term, we refer to this operation as Accumulated 1341 /// Path Operation (APO). 1342 struct OperandData { 1343 OperandData() = default; 1344 OperandData(Value *V, bool APO, bool IsUsed) 1345 : V(V), APO(APO), IsUsed(IsUsed) {} 1346 /// The operand value. 1347 Value *V = nullptr; 1348 /// TreeEntries only allow a single opcode, or an alternate sequence of 1349 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1350 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1351 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1352 /// (e.g., Add/Mul) 1353 bool APO = false; 1354 /// Helper data for the reordering function. 1355 bool IsUsed = false; 1356 }; 1357 1358 /// During operand reordering, we are trying to select the operand at lane 1359 /// that matches best with the operand at the neighboring lane. Our 1360 /// selection is based on the type of value we are looking for. For example, 1361 /// if the neighboring lane has a load, we need to look for a load that is 1362 /// accessing a consecutive address. These strategies are summarized in the 1363 /// 'ReorderingMode' enumerator. 1364 enum class ReorderingMode { 1365 Load, ///< Matching loads to consecutive memory addresses 1366 Opcode, ///< Matching instructions based on opcode (same or alternate) 1367 Constant, ///< Matching constants 1368 Splat, ///< Matching the same instruction multiple times (broadcast) 1369 Failed, ///< We failed to create a vectorizable group 1370 }; 1371 1372 using OperandDataVec = SmallVector<OperandData, 2>; 1373 1374 /// A vector of operand vectors. 1375 SmallVector<OperandDataVec, 4> OpsVec; 1376 1377 const DataLayout &DL; 1378 ScalarEvolution &SE; 1379 const BoUpSLP &R; 1380 1381 /// \returns the operand data at \p OpIdx and \p Lane. 1382 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1383 return OpsVec[OpIdx][Lane]; 1384 } 1385 1386 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1387 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1388 return OpsVec[OpIdx][Lane]; 1389 } 1390 1391 /// Clears the used flag for all entries. 1392 void clearUsed() { 1393 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1394 OpIdx != NumOperands; ++OpIdx) 1395 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1396 ++Lane) 1397 OpsVec[OpIdx][Lane].IsUsed = false; 1398 } 1399 1400 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1401 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1402 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1403 } 1404 1405 /// \param Lane lane of the operands under analysis. 1406 /// \param OpIdx operand index in \p Lane lane we're looking the best 1407 /// candidate for. 1408 /// \param Idx operand index of the current candidate value. 1409 /// \returns The additional score due to possible broadcasting of the 1410 /// elements in the lane. It is more profitable to have power-of-2 unique 1411 /// elements in the lane, it will be vectorized with higher probability 1412 /// after removing duplicates. Currently the SLP vectorizer supports only 1413 /// vectorization of the power-of-2 number of unique scalars. 1414 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1415 Value *IdxLaneV = getData(Idx, Lane).V; 1416 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1417 return 0; 1418 SmallPtrSet<Value *, 4> Uniques; 1419 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1420 if (Ln == Lane) 1421 continue; 1422 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1423 if (!isa<Instruction>(OpIdxLnV)) 1424 return 0; 1425 Uniques.insert(OpIdxLnV); 1426 } 1427 int UniquesCount = Uniques.size(); 1428 int UniquesCntWithIdxLaneV = 1429 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1430 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1431 int UniquesCntWithOpIdxLaneV = 1432 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1433 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1434 return 0; 1435 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1436 UniquesCntWithOpIdxLaneV) - 1437 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1438 } 1439 1440 /// \param Lane lane of the operands under analysis. 1441 /// \param OpIdx operand index in \p Lane lane we're looking the best 1442 /// candidate for. 1443 /// \param Idx operand index of the current candidate value. 1444 /// \returns The additional score for the scalar which users are all 1445 /// vectorized. 1446 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1447 Value *IdxLaneV = getData(Idx, Lane).V; 1448 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1449 // Do not care about number of uses for vector-like instructions 1450 // (extractelement/extractvalue with constant indices), they are extracts 1451 // themselves and already externally used. Vectorization of such 1452 // instructions does not add extra extractelement instruction, just may 1453 // remove it. 1454 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1455 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1456 return LookAheadHeuristics::ScoreAllUserVectorized; 1457 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1458 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1459 return 0; 1460 return R.areAllUsersVectorized(IdxLaneI, None) 1461 ? LookAheadHeuristics::ScoreAllUserVectorized 1462 : 0; 1463 } 1464 1465 /// Score scaling factor for fully compatible instructions but with 1466 /// different number of external uses. Allows better selection of the 1467 /// instructions with less external uses. 1468 static const int ScoreScaleFactor = 10; 1469 1470 /// \Returns the look-ahead score, which tells us how much the sub-trees 1471 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1472 /// score. This helps break ties in an informed way when we cannot decide on 1473 /// the order of the operands by just considering the immediate 1474 /// predecessors. 1475 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1476 int Lane, unsigned OpIdx, unsigned Idx, 1477 bool &IsUsed) { 1478 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1479 LookAheadMaxDepth); 1480 // Keep track of the instruction stack as we recurse into the operands 1481 // during the look-ahead score exploration. 1482 int Score = 1483 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1484 /*CurrLevel=*/1, MainAltOps); 1485 if (Score) { 1486 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1487 if (Score <= -SplatScore) { 1488 // Set the minimum score for splat-like sequence to avoid setting 1489 // failed state. 1490 Score = 1; 1491 } else { 1492 Score += SplatScore; 1493 // Scale score to see the difference between different operands 1494 // and similar operands but all vectorized/not all vectorized 1495 // uses. It does not affect actual selection of the best 1496 // compatible operand in general, just allows to select the 1497 // operand with all vectorized uses. 1498 Score *= ScoreScaleFactor; 1499 Score += getExternalUseScore(Lane, OpIdx, Idx); 1500 IsUsed = true; 1501 } 1502 } 1503 return Score; 1504 } 1505 1506 /// Best defined scores per lanes between the passes. Used to choose the 1507 /// best operand (with the highest score) between the passes. 1508 /// The key - {Operand Index, Lane}. 1509 /// The value - the best score between the passes for the lane and the 1510 /// operand. 1511 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1512 BestScoresPerLanes; 1513 1514 // Search all operands in Ops[*][Lane] for the one that matches best 1515 // Ops[OpIdx][LastLane] and return its opreand index. 1516 // If no good match can be found, return None. 1517 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1518 ArrayRef<ReorderingMode> ReorderingModes, 1519 ArrayRef<Value *> MainAltOps) { 1520 unsigned NumOperands = getNumOperands(); 1521 1522 // The operand of the previous lane at OpIdx. 1523 Value *OpLastLane = getData(OpIdx, LastLane).V; 1524 1525 // Our strategy mode for OpIdx. 1526 ReorderingMode RMode = ReorderingModes[OpIdx]; 1527 if (RMode == ReorderingMode::Failed) 1528 return None; 1529 1530 // The linearized opcode of the operand at OpIdx, Lane. 1531 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1532 1533 // The best operand index and its score. 1534 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1535 // are using the score to differentiate between the two. 1536 struct BestOpData { 1537 Optional<unsigned> Idx = None; 1538 unsigned Score = 0; 1539 } BestOp; 1540 BestOp.Score = 1541 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1542 .first->second; 1543 1544 // Track if the operand must be marked as used. If the operand is set to 1545 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1546 // want to reestimate the operands again on the following iterations). 1547 bool IsUsed = 1548 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1549 // Iterate through all unused operands and look for the best. 1550 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1551 // Get the operand at Idx and Lane. 1552 OperandData &OpData = getData(Idx, Lane); 1553 Value *Op = OpData.V; 1554 bool OpAPO = OpData.APO; 1555 1556 // Skip already selected operands. 1557 if (OpData.IsUsed) 1558 continue; 1559 1560 // Skip if we are trying to move the operand to a position with a 1561 // different opcode in the linearized tree form. This would break the 1562 // semantics. 1563 if (OpAPO != OpIdxAPO) 1564 continue; 1565 1566 // Look for an operand that matches the current mode. 1567 switch (RMode) { 1568 case ReorderingMode::Load: 1569 case ReorderingMode::Constant: 1570 case ReorderingMode::Opcode: { 1571 bool LeftToRight = Lane > LastLane; 1572 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1573 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1574 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1575 OpIdx, Idx, IsUsed); 1576 if (Score > static_cast<int>(BestOp.Score)) { 1577 BestOp.Idx = Idx; 1578 BestOp.Score = Score; 1579 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1580 } 1581 break; 1582 } 1583 case ReorderingMode::Splat: 1584 if (Op == OpLastLane) 1585 BestOp.Idx = Idx; 1586 break; 1587 case ReorderingMode::Failed: 1588 llvm_unreachable("Not expected Failed reordering mode."); 1589 } 1590 } 1591 1592 if (BestOp.Idx) { 1593 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1594 return BestOp.Idx; 1595 } 1596 // If we could not find a good match return None. 1597 return None; 1598 } 1599 1600 /// Helper for reorderOperandVecs. 1601 /// \returns the lane that we should start reordering from. This is the one 1602 /// which has the least number of operands that can freely move about or 1603 /// less profitable because it already has the most optimal set of operands. 1604 unsigned getBestLaneToStartReordering() const { 1605 unsigned Min = UINT_MAX; 1606 unsigned SameOpNumber = 0; 1607 // std::pair<unsigned, unsigned> is used to implement a simple voting 1608 // algorithm and choose the lane with the least number of operands that 1609 // can freely move about or less profitable because it already has the 1610 // most optimal set of operands. The first unsigned is a counter for 1611 // voting, the second unsigned is the counter of lanes with instructions 1612 // with same/alternate opcodes and same parent basic block. 1613 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1614 // Try to be closer to the original results, if we have multiple lanes 1615 // with same cost. If 2 lanes have the same cost, use the one with the 1616 // lowest index. 1617 for (int I = getNumLanes(); I > 0; --I) { 1618 unsigned Lane = I - 1; 1619 OperandsOrderData NumFreeOpsHash = 1620 getMaxNumOperandsThatCanBeReordered(Lane); 1621 // Compare the number of operands that can move and choose the one with 1622 // the least number. 1623 if (NumFreeOpsHash.NumOfAPOs < Min) { 1624 Min = NumFreeOpsHash.NumOfAPOs; 1625 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1626 HashMap.clear(); 1627 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1628 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1629 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1630 // Select the most optimal lane in terms of number of operands that 1631 // should be moved around. 1632 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1633 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1634 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1635 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1636 auto It = HashMap.find(NumFreeOpsHash.Hash); 1637 if (It == HashMap.end()) 1638 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1639 else 1640 ++It->second.first; 1641 } 1642 } 1643 // Select the lane with the minimum counter. 1644 unsigned BestLane = 0; 1645 unsigned CntMin = UINT_MAX; 1646 for (const auto &Data : reverse(HashMap)) { 1647 if (Data.second.first < CntMin) { 1648 CntMin = Data.second.first; 1649 BestLane = Data.second.second; 1650 } 1651 } 1652 return BestLane; 1653 } 1654 1655 /// Data structure that helps to reorder operands. 1656 struct OperandsOrderData { 1657 /// The best number of operands with the same APOs, which can be 1658 /// reordered. 1659 unsigned NumOfAPOs = UINT_MAX; 1660 /// Number of operands with the same/alternate instruction opcode and 1661 /// parent. 1662 unsigned NumOpsWithSameOpcodeParent = 0; 1663 /// Hash for the actual operands ordering. 1664 /// Used to count operands, actually their position id and opcode 1665 /// value. It is used in the voting mechanism to find the lane with the 1666 /// least number of operands that can freely move about or less profitable 1667 /// because it already has the most optimal set of operands. Can be 1668 /// replaced with SmallVector<unsigned> instead but hash code is faster 1669 /// and requires less memory. 1670 unsigned Hash = 0; 1671 }; 1672 /// \returns the maximum number of operands that are allowed to be reordered 1673 /// for \p Lane and the number of compatible instructions(with the same 1674 /// parent/opcode). This is used as a heuristic for selecting the first lane 1675 /// to start operand reordering. 1676 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1677 unsigned CntTrue = 0; 1678 unsigned NumOperands = getNumOperands(); 1679 // Operands with the same APO can be reordered. We therefore need to count 1680 // how many of them we have for each APO, like this: Cnt[APO] = x. 1681 // Since we only have two APOs, namely true and false, we can avoid using 1682 // a map. Instead we can simply count the number of operands that 1683 // correspond to one of them (in this case the 'true' APO), and calculate 1684 // the other by subtracting it from the total number of operands. 1685 // Operands with the same instruction opcode and parent are more 1686 // profitable since we don't need to move them in many cases, with a high 1687 // probability such lane already can be vectorized effectively. 1688 bool AllUndefs = true; 1689 unsigned NumOpsWithSameOpcodeParent = 0; 1690 Instruction *OpcodeI = nullptr; 1691 BasicBlock *Parent = nullptr; 1692 unsigned Hash = 0; 1693 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1694 const OperandData &OpData = getData(OpIdx, Lane); 1695 if (OpData.APO) 1696 ++CntTrue; 1697 // Use Boyer-Moore majority voting for finding the majority opcode and 1698 // the number of times it occurs. 1699 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1700 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1701 I->getParent() != Parent) { 1702 if (NumOpsWithSameOpcodeParent == 0) { 1703 NumOpsWithSameOpcodeParent = 1; 1704 OpcodeI = I; 1705 Parent = I->getParent(); 1706 } else { 1707 --NumOpsWithSameOpcodeParent; 1708 } 1709 } else { 1710 ++NumOpsWithSameOpcodeParent; 1711 } 1712 } 1713 Hash = hash_combine( 1714 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1715 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1716 } 1717 if (AllUndefs) 1718 return {}; 1719 OperandsOrderData Data; 1720 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1721 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1722 Data.Hash = Hash; 1723 return Data; 1724 } 1725 1726 /// Go through the instructions in VL and append their operands. 1727 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1728 assert(!VL.empty() && "Bad VL"); 1729 assert((empty() || VL.size() == getNumLanes()) && 1730 "Expected same number of lanes"); 1731 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1732 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1733 OpsVec.resize(NumOperands); 1734 unsigned NumLanes = VL.size(); 1735 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1736 OpsVec[OpIdx].resize(NumLanes); 1737 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1738 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1739 // Our tree has just 3 nodes: the root and two operands. 1740 // It is therefore trivial to get the APO. We only need to check the 1741 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1742 // RHS operand. The LHS operand of both add and sub is never attached 1743 // to an inversese operation in the linearized form, therefore its APO 1744 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1745 1746 // Since operand reordering is performed on groups of commutative 1747 // operations or alternating sequences (e.g., +, -), we can safely 1748 // tell the inverse operations by checking commutativity. 1749 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1750 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1751 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1752 APO, false}; 1753 } 1754 } 1755 } 1756 1757 /// \returns the number of operands. 1758 unsigned getNumOperands() const { return OpsVec.size(); } 1759 1760 /// \returns the number of lanes. 1761 unsigned getNumLanes() const { return OpsVec[0].size(); } 1762 1763 /// \returns the operand value at \p OpIdx and \p Lane. 1764 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1765 return getData(OpIdx, Lane).V; 1766 } 1767 1768 /// \returns true if the data structure is empty. 1769 bool empty() const { return OpsVec.empty(); } 1770 1771 /// Clears the data. 1772 void clear() { OpsVec.clear(); } 1773 1774 /// \Returns true if there are enough operands identical to \p Op to fill 1775 /// the whole vector. 1776 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1777 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1778 bool OpAPO = getData(OpIdx, Lane).APO; 1779 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1780 if (Ln == Lane) 1781 continue; 1782 // This is set to true if we found a candidate for broadcast at Lane. 1783 bool FoundCandidate = false; 1784 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1785 OperandData &Data = getData(OpI, Ln); 1786 if (Data.APO != OpAPO || Data.IsUsed) 1787 continue; 1788 if (Data.V == Op) { 1789 FoundCandidate = true; 1790 Data.IsUsed = true; 1791 break; 1792 } 1793 } 1794 if (!FoundCandidate) 1795 return false; 1796 } 1797 return true; 1798 } 1799 1800 public: 1801 /// Initialize with all the operands of the instruction vector \p RootVL. 1802 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1803 ScalarEvolution &SE, const BoUpSLP &R) 1804 : DL(DL), SE(SE), R(R) { 1805 // Append all the operands of RootVL. 1806 appendOperandsOfVL(RootVL); 1807 } 1808 1809 /// \Returns a value vector with the operands across all lanes for the 1810 /// opearnd at \p OpIdx. 1811 ValueList getVL(unsigned OpIdx) const { 1812 ValueList OpVL(OpsVec[OpIdx].size()); 1813 assert(OpsVec[OpIdx].size() == getNumLanes() && 1814 "Expected same num of lanes across all operands"); 1815 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1816 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1817 return OpVL; 1818 } 1819 1820 // Performs operand reordering for 2 or more operands. 1821 // The original operands are in OrigOps[OpIdx][Lane]. 1822 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1823 void reorder() { 1824 unsigned NumOperands = getNumOperands(); 1825 unsigned NumLanes = getNumLanes(); 1826 // Each operand has its own mode. We are using this mode to help us select 1827 // the instructions for each lane, so that they match best with the ones 1828 // we have selected so far. 1829 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1830 1831 // This is a greedy single-pass algorithm. We are going over each lane 1832 // once and deciding on the best order right away with no back-tracking. 1833 // However, in order to increase its effectiveness, we start with the lane 1834 // that has operands that can move the least. For example, given the 1835 // following lanes: 1836 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1837 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1838 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1839 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1840 // we will start at Lane 1, since the operands of the subtraction cannot 1841 // be reordered. Then we will visit the rest of the lanes in a circular 1842 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1843 1844 // Find the first lane that we will start our search from. 1845 unsigned FirstLane = getBestLaneToStartReordering(); 1846 1847 // Initialize the modes. 1848 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1849 Value *OpLane0 = getValue(OpIdx, FirstLane); 1850 // Keep track if we have instructions with all the same opcode on one 1851 // side. 1852 if (isa<LoadInst>(OpLane0)) 1853 ReorderingModes[OpIdx] = ReorderingMode::Load; 1854 else if (isa<Instruction>(OpLane0)) { 1855 // Check if OpLane0 should be broadcast. 1856 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1857 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1858 else 1859 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1860 } 1861 else if (isa<Constant>(OpLane0)) 1862 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1863 else if (isa<Argument>(OpLane0)) 1864 // Our best hope is a Splat. It may save some cost in some cases. 1865 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1866 else 1867 // NOTE: This should be unreachable. 1868 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1869 } 1870 1871 // Check that we don't have same operands. No need to reorder if operands 1872 // are just perfect diamond or shuffled diamond match. Do not do it only 1873 // for possible broadcasts or non-power of 2 number of scalars (just for 1874 // now). 1875 auto &&SkipReordering = [this]() { 1876 SmallPtrSet<Value *, 4> UniqueValues; 1877 ArrayRef<OperandData> Op0 = OpsVec.front(); 1878 for (const OperandData &Data : Op0) 1879 UniqueValues.insert(Data.V); 1880 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1881 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1882 return !UniqueValues.contains(Data.V); 1883 })) 1884 return false; 1885 } 1886 // TODO: Check if we can remove a check for non-power-2 number of 1887 // scalars after full support of non-power-2 vectorization. 1888 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1889 }; 1890 1891 // If the initial strategy fails for any of the operand indexes, then we 1892 // perform reordering again in a second pass. This helps avoid assigning 1893 // high priority to the failed strategy, and should improve reordering for 1894 // the non-failed operand indexes. 1895 for (int Pass = 0; Pass != 2; ++Pass) { 1896 // Check if no need to reorder operands since they're are perfect or 1897 // shuffled diamond match. 1898 // Need to to do it to avoid extra external use cost counting for 1899 // shuffled matches, which may cause regressions. 1900 if (SkipReordering()) 1901 break; 1902 // Skip the second pass if the first pass did not fail. 1903 bool StrategyFailed = false; 1904 // Mark all operand data as free to use. 1905 clearUsed(); 1906 // We keep the original operand order for the FirstLane, so reorder the 1907 // rest of the lanes. We are visiting the nodes in a circular fashion, 1908 // using FirstLane as the center point and increasing the radius 1909 // distance. 1910 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1911 for (unsigned I = 0; I < NumOperands; ++I) 1912 MainAltOps[I].push_back(getData(I, FirstLane).V); 1913 1914 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1915 // Visit the lane on the right and then the lane on the left. 1916 for (int Direction : {+1, -1}) { 1917 int Lane = FirstLane + Direction * Distance; 1918 if (Lane < 0 || Lane >= (int)NumLanes) 1919 continue; 1920 int LastLane = Lane - Direction; 1921 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1922 "Out of bounds"); 1923 // Look for a good match for each operand. 1924 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1925 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1926 Optional<unsigned> BestIdx = getBestOperand( 1927 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1928 // By not selecting a value, we allow the operands that follow to 1929 // select a better matching value. We will get a non-null value in 1930 // the next run of getBestOperand(). 1931 if (BestIdx) { 1932 // Swap the current operand with the one returned by 1933 // getBestOperand(). 1934 swap(OpIdx, BestIdx.getValue(), Lane); 1935 } else { 1936 // We failed to find a best operand, set mode to 'Failed'. 1937 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1938 // Enable the second pass. 1939 StrategyFailed = true; 1940 } 1941 // Try to get the alternate opcode and follow it during analysis. 1942 if (MainAltOps[OpIdx].size() != 2) { 1943 OperandData &AltOp = getData(OpIdx, Lane); 1944 InstructionsState OpS = 1945 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1946 if (OpS.getOpcode() && OpS.isAltShuffle()) 1947 MainAltOps[OpIdx].push_back(AltOp.V); 1948 } 1949 } 1950 } 1951 } 1952 // Skip second pass if the strategy did not fail. 1953 if (!StrategyFailed) 1954 break; 1955 } 1956 } 1957 1958 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1959 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1960 switch (RMode) { 1961 case ReorderingMode::Load: 1962 return "Load"; 1963 case ReorderingMode::Opcode: 1964 return "Opcode"; 1965 case ReorderingMode::Constant: 1966 return "Constant"; 1967 case ReorderingMode::Splat: 1968 return "Splat"; 1969 case ReorderingMode::Failed: 1970 return "Failed"; 1971 } 1972 llvm_unreachable("Unimplemented Reordering Type"); 1973 } 1974 1975 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1976 raw_ostream &OS) { 1977 return OS << getModeStr(RMode); 1978 } 1979 1980 /// Debug print. 1981 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1982 printMode(RMode, dbgs()); 1983 } 1984 1985 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1986 return printMode(RMode, OS); 1987 } 1988 1989 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1990 const unsigned Indent = 2; 1991 unsigned Cnt = 0; 1992 for (const OperandDataVec &OpDataVec : OpsVec) { 1993 OS << "Operand " << Cnt++ << "\n"; 1994 for (const OperandData &OpData : OpDataVec) { 1995 OS.indent(Indent) << "{"; 1996 if (Value *V = OpData.V) 1997 OS << *V; 1998 else 1999 OS << "null"; 2000 OS << ", APO:" << OpData.APO << "}\n"; 2001 } 2002 OS << "\n"; 2003 } 2004 return OS; 2005 } 2006 2007 /// Debug print. 2008 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2009 #endif 2010 }; 2011 2012 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2013 /// for a pair which have highest score deemed to have best chance to form 2014 /// root of profitable tree to vectorize. Return None if no candidate scored 2015 /// above the LookAheadHeuristics::ScoreFail. 2016 Optional<int> 2017 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates) { 2018 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2019 RootLookAheadMaxDepth); 2020 int BestScore = LookAheadHeuristics::ScoreFail; 2021 Optional<int> Index = None; 2022 for (int I : seq<int>(0, Candidates.size())) { 2023 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2024 Candidates[I].second, 2025 /*U1=*/nullptr, /*U2=*/nullptr, 2026 /*Level=*/1, None); 2027 if (Score > BestScore) { 2028 BestScore = Score; 2029 Index = I; 2030 } 2031 } 2032 return Index; 2033 } 2034 2035 /// Checks if the instruction is marked for deletion. 2036 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2037 2038 /// Removes an instruction from its block and eventually deletes it. 2039 /// It's like Instruction::eraseFromParent() except that the actual deletion 2040 /// is delayed until BoUpSLP is destructed. 2041 void eraseInstruction(Instruction *I) { 2042 DeletedInstructions.insert(I); 2043 } 2044 2045 ~BoUpSLP(); 2046 2047 private: 2048 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2049 /// reordering (i.e. the operands can be reordered because they have only one 2050 /// user and reordarable). 2051 /// \param ReorderableGathers List of all gather nodes that require reordering 2052 /// (e.g., gather of extractlements or partially vectorizable loads). 2053 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2054 /// reordering, subset of \p NonVectorized. 2055 bool 2056 canReorderOperands(TreeEntry *UserTE, 2057 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2058 ArrayRef<TreeEntry *> ReorderableGathers, 2059 SmallVectorImpl<TreeEntry *> &GatherOps); 2060 2061 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2062 /// if any. If it is not vectorized (gather node), returns nullptr. 2063 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2064 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2065 TreeEntry *TE = nullptr; 2066 const auto *It = find_if(VL, [this, &TE](Value *V) { 2067 TE = getTreeEntry(V); 2068 return TE; 2069 }); 2070 if (It != VL.end() && TE->isSame(VL)) 2071 return TE; 2072 return nullptr; 2073 } 2074 2075 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2076 /// if any. If it is not vectorized (gather node), returns nullptr. 2077 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2078 unsigned OpIdx) const { 2079 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2080 const_cast<TreeEntry *>(UserTE), OpIdx); 2081 } 2082 2083 /// Checks if all users of \p I are the part of the vectorization tree. 2084 bool areAllUsersVectorized(Instruction *I, 2085 ArrayRef<Value *> VectorizedVals) const; 2086 2087 /// \returns the cost of the vectorizable entry. 2088 InstructionCost getEntryCost(const TreeEntry *E, 2089 ArrayRef<Value *> VectorizedVals); 2090 2091 /// This is the recursive part of buildTree. 2092 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2093 const EdgeInfo &EI); 2094 2095 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2096 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2097 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2098 /// returns false, setting \p CurrentOrder to either an empty vector or a 2099 /// non-identity permutation that allows to reuse extract instructions. 2100 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2101 SmallVectorImpl<unsigned> &CurrentOrder) const; 2102 2103 /// Vectorize a single entry in the tree. 2104 Value *vectorizeTree(TreeEntry *E); 2105 2106 /// Vectorize a single entry in the tree, starting in \p VL. 2107 Value *vectorizeTree(ArrayRef<Value *> VL); 2108 2109 /// Create a new vector from a list of scalar values. Produces a sequence 2110 /// which exploits values reused across lanes, and arranges the inserts 2111 /// for ease of later optimization. 2112 Value *createBuildVector(ArrayRef<Value *> VL); 2113 2114 /// \returns the scalarization cost for this type. Scalarization in this 2115 /// context means the creation of vectors from a group of scalars. If \p 2116 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2117 /// vector elements. 2118 InstructionCost getGatherCost(FixedVectorType *Ty, 2119 const APInt &ShuffledIndices, 2120 bool NeedToShuffle) const; 2121 2122 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2123 /// tree entries. 2124 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2125 /// previous tree entries. \p Mask is filled with the shuffle mask. 2126 Optional<TargetTransformInfo::ShuffleKind> 2127 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2128 SmallVectorImpl<const TreeEntry *> &Entries); 2129 2130 /// \returns the scalarization cost for this list of values. Assuming that 2131 /// this subtree gets vectorized, we may need to extract the values from the 2132 /// roots. This method calculates the cost of extracting the values. 2133 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2134 2135 /// Set the Builder insert point to one after the last instruction in 2136 /// the bundle 2137 void setInsertPointAfterBundle(const TreeEntry *E); 2138 2139 /// \returns a vector from a collection of scalars in \p VL. 2140 Value *gather(ArrayRef<Value *> VL); 2141 2142 /// \returns whether the VectorizableTree is fully vectorizable and will 2143 /// be beneficial even the tree height is tiny. 2144 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2145 2146 /// Reorder commutative or alt operands to get better probability of 2147 /// generating vectorized code. 2148 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2149 SmallVectorImpl<Value *> &Left, 2150 SmallVectorImpl<Value *> &Right, 2151 const DataLayout &DL, 2152 ScalarEvolution &SE, 2153 const BoUpSLP &R); 2154 struct TreeEntry { 2155 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2156 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2157 2158 /// \returns true if the scalars in VL are equal to this entry. 2159 bool isSame(ArrayRef<Value *> VL) const { 2160 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2161 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2162 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2163 return VL.size() == Mask.size() && 2164 std::equal(VL.begin(), VL.end(), Mask.begin(), 2165 [Scalars](Value *V, int Idx) { 2166 return (isa<UndefValue>(V) && 2167 Idx == UndefMaskElem) || 2168 (Idx != UndefMaskElem && V == Scalars[Idx]); 2169 }); 2170 }; 2171 if (!ReorderIndices.empty()) { 2172 // TODO: implement matching if the nodes are just reordered, still can 2173 // treat the vector as the same if the list of scalars matches VL 2174 // directly, without reordering. 2175 SmallVector<int> Mask; 2176 inversePermutation(ReorderIndices, Mask); 2177 if (VL.size() == Scalars.size()) 2178 return IsSame(Scalars, Mask); 2179 if (VL.size() == ReuseShuffleIndices.size()) { 2180 ::addMask(Mask, ReuseShuffleIndices); 2181 return IsSame(Scalars, Mask); 2182 } 2183 return false; 2184 } 2185 return IsSame(Scalars, ReuseShuffleIndices); 2186 } 2187 2188 /// \returns true if current entry has same operands as \p TE. 2189 bool hasEqualOperands(const TreeEntry &TE) const { 2190 if (TE.getNumOperands() != getNumOperands()) 2191 return false; 2192 SmallBitVector Used(getNumOperands()); 2193 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2194 unsigned PrevCount = Used.count(); 2195 for (unsigned K = 0; K < E; ++K) { 2196 if (Used.test(K)) 2197 continue; 2198 if (getOperand(K) == TE.getOperand(I)) { 2199 Used.set(K); 2200 break; 2201 } 2202 } 2203 // Check if we actually found the matching operand. 2204 if (PrevCount == Used.count()) 2205 return false; 2206 } 2207 return true; 2208 } 2209 2210 /// \return Final vectorization factor for the node. Defined by the total 2211 /// number of vectorized scalars, including those, used several times in the 2212 /// entry and counted in the \a ReuseShuffleIndices, if any. 2213 unsigned getVectorFactor() const { 2214 if (!ReuseShuffleIndices.empty()) 2215 return ReuseShuffleIndices.size(); 2216 return Scalars.size(); 2217 }; 2218 2219 /// A vector of scalars. 2220 ValueList Scalars; 2221 2222 /// The Scalars are vectorized into this value. It is initialized to Null. 2223 Value *VectorizedValue = nullptr; 2224 2225 /// Do we need to gather this sequence or vectorize it 2226 /// (either with vector instruction or with scatter/gather 2227 /// intrinsics for store/load)? 2228 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2229 EntryState State; 2230 2231 /// Does this sequence require some shuffling? 2232 SmallVector<int, 4> ReuseShuffleIndices; 2233 2234 /// Does this entry require reordering? 2235 SmallVector<unsigned, 4> ReorderIndices; 2236 2237 /// Points back to the VectorizableTree. 2238 /// 2239 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2240 /// to be a pointer and needs to be able to initialize the child iterator. 2241 /// Thus we need a reference back to the container to translate the indices 2242 /// to entries. 2243 VecTreeTy &Container; 2244 2245 /// The TreeEntry index containing the user of this entry. We can actually 2246 /// have multiple users so the data structure is not truly a tree. 2247 SmallVector<EdgeInfo, 1> UserTreeIndices; 2248 2249 /// The index of this treeEntry in VectorizableTree. 2250 int Idx = -1; 2251 2252 private: 2253 /// The operands of each instruction in each lane Operands[op_index][lane]. 2254 /// Note: This helps avoid the replication of the code that performs the 2255 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2256 SmallVector<ValueList, 2> Operands; 2257 2258 /// The main/alternate instruction. 2259 Instruction *MainOp = nullptr; 2260 Instruction *AltOp = nullptr; 2261 2262 public: 2263 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2264 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2265 if (Operands.size() < OpIdx + 1) 2266 Operands.resize(OpIdx + 1); 2267 assert(Operands[OpIdx].empty() && "Already resized?"); 2268 assert(OpVL.size() <= Scalars.size() && 2269 "Number of operands is greater than the number of scalars."); 2270 Operands[OpIdx].resize(OpVL.size()); 2271 copy(OpVL, Operands[OpIdx].begin()); 2272 } 2273 2274 /// Set the operands of this bundle in their original order. 2275 void setOperandsInOrder() { 2276 assert(Operands.empty() && "Already initialized?"); 2277 auto *I0 = cast<Instruction>(Scalars[0]); 2278 Operands.resize(I0->getNumOperands()); 2279 unsigned NumLanes = Scalars.size(); 2280 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2281 OpIdx != NumOperands; ++OpIdx) { 2282 Operands[OpIdx].resize(NumLanes); 2283 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2284 auto *I = cast<Instruction>(Scalars[Lane]); 2285 assert(I->getNumOperands() == NumOperands && 2286 "Expected same number of operands"); 2287 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2288 } 2289 } 2290 } 2291 2292 /// Reorders operands of the node to the given mask \p Mask. 2293 void reorderOperands(ArrayRef<int> Mask) { 2294 for (ValueList &Operand : Operands) 2295 reorderScalars(Operand, Mask); 2296 } 2297 2298 /// \returns the \p OpIdx operand of this TreeEntry. 2299 ValueList &getOperand(unsigned OpIdx) { 2300 assert(OpIdx < Operands.size() && "Off bounds"); 2301 return Operands[OpIdx]; 2302 } 2303 2304 /// \returns the \p OpIdx operand of this TreeEntry. 2305 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2306 assert(OpIdx < Operands.size() && "Off bounds"); 2307 return Operands[OpIdx]; 2308 } 2309 2310 /// \returns the number of operands. 2311 unsigned getNumOperands() const { return Operands.size(); } 2312 2313 /// \return the single \p OpIdx operand. 2314 Value *getSingleOperand(unsigned OpIdx) const { 2315 assert(OpIdx < Operands.size() && "Off bounds"); 2316 assert(!Operands[OpIdx].empty() && "No operand available"); 2317 return Operands[OpIdx][0]; 2318 } 2319 2320 /// Some of the instructions in the list have alternate opcodes. 2321 bool isAltShuffle() const { return MainOp != AltOp; } 2322 2323 bool isOpcodeOrAlt(Instruction *I) const { 2324 unsigned CheckedOpcode = I->getOpcode(); 2325 return (getOpcode() == CheckedOpcode || 2326 getAltOpcode() == CheckedOpcode); 2327 } 2328 2329 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2330 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2331 /// \p OpValue. 2332 Value *isOneOf(Value *Op) const { 2333 auto *I = dyn_cast<Instruction>(Op); 2334 if (I && isOpcodeOrAlt(I)) 2335 return Op; 2336 return MainOp; 2337 } 2338 2339 void setOperations(const InstructionsState &S) { 2340 MainOp = S.MainOp; 2341 AltOp = S.AltOp; 2342 } 2343 2344 Instruction *getMainOp() const { 2345 return MainOp; 2346 } 2347 2348 Instruction *getAltOp() const { 2349 return AltOp; 2350 } 2351 2352 /// The main/alternate opcodes for the list of instructions. 2353 unsigned getOpcode() const { 2354 return MainOp ? MainOp->getOpcode() : 0; 2355 } 2356 2357 unsigned getAltOpcode() const { 2358 return AltOp ? AltOp->getOpcode() : 0; 2359 } 2360 2361 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2362 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2363 int findLaneForValue(Value *V) const { 2364 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2365 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2366 if (!ReorderIndices.empty()) 2367 FoundLane = ReorderIndices[FoundLane]; 2368 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2369 if (!ReuseShuffleIndices.empty()) { 2370 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2371 find(ReuseShuffleIndices, FoundLane)); 2372 } 2373 return FoundLane; 2374 } 2375 2376 #ifndef NDEBUG 2377 /// Debug printer. 2378 LLVM_DUMP_METHOD void dump() const { 2379 dbgs() << Idx << ".\n"; 2380 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2381 dbgs() << "Operand " << OpI << ":\n"; 2382 for (const Value *V : Operands[OpI]) 2383 dbgs().indent(2) << *V << "\n"; 2384 } 2385 dbgs() << "Scalars: \n"; 2386 for (Value *V : Scalars) 2387 dbgs().indent(2) << *V << "\n"; 2388 dbgs() << "State: "; 2389 switch (State) { 2390 case Vectorize: 2391 dbgs() << "Vectorize\n"; 2392 break; 2393 case ScatterVectorize: 2394 dbgs() << "ScatterVectorize\n"; 2395 break; 2396 case NeedToGather: 2397 dbgs() << "NeedToGather\n"; 2398 break; 2399 } 2400 dbgs() << "MainOp: "; 2401 if (MainOp) 2402 dbgs() << *MainOp << "\n"; 2403 else 2404 dbgs() << "NULL\n"; 2405 dbgs() << "AltOp: "; 2406 if (AltOp) 2407 dbgs() << *AltOp << "\n"; 2408 else 2409 dbgs() << "NULL\n"; 2410 dbgs() << "VectorizedValue: "; 2411 if (VectorizedValue) 2412 dbgs() << *VectorizedValue << "\n"; 2413 else 2414 dbgs() << "NULL\n"; 2415 dbgs() << "ReuseShuffleIndices: "; 2416 if (ReuseShuffleIndices.empty()) 2417 dbgs() << "Empty"; 2418 else 2419 for (int ReuseIdx : ReuseShuffleIndices) 2420 dbgs() << ReuseIdx << ", "; 2421 dbgs() << "\n"; 2422 dbgs() << "ReorderIndices: "; 2423 for (unsigned ReorderIdx : ReorderIndices) 2424 dbgs() << ReorderIdx << ", "; 2425 dbgs() << "\n"; 2426 dbgs() << "UserTreeIndices: "; 2427 for (const auto &EInfo : UserTreeIndices) 2428 dbgs() << EInfo << ", "; 2429 dbgs() << "\n"; 2430 } 2431 #endif 2432 }; 2433 2434 #ifndef NDEBUG 2435 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2436 InstructionCost VecCost, 2437 InstructionCost ScalarCost) const { 2438 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2439 dbgs() << "SLP: Costs:\n"; 2440 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2441 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2442 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2443 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2444 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2445 } 2446 #endif 2447 2448 /// Create a new VectorizableTree entry. 2449 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2450 const InstructionsState &S, 2451 const EdgeInfo &UserTreeIdx, 2452 ArrayRef<int> ReuseShuffleIndices = None, 2453 ArrayRef<unsigned> ReorderIndices = None) { 2454 TreeEntry::EntryState EntryState = 2455 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2456 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2457 ReuseShuffleIndices, ReorderIndices); 2458 } 2459 2460 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2461 TreeEntry::EntryState EntryState, 2462 Optional<ScheduleData *> Bundle, 2463 const InstructionsState &S, 2464 const EdgeInfo &UserTreeIdx, 2465 ArrayRef<int> ReuseShuffleIndices = None, 2466 ArrayRef<unsigned> ReorderIndices = None) { 2467 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2468 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2469 "Need to vectorize gather entry?"); 2470 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2471 TreeEntry *Last = VectorizableTree.back().get(); 2472 Last->Idx = VectorizableTree.size() - 1; 2473 Last->State = EntryState; 2474 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2475 ReuseShuffleIndices.end()); 2476 if (ReorderIndices.empty()) { 2477 Last->Scalars.assign(VL.begin(), VL.end()); 2478 Last->setOperations(S); 2479 } else { 2480 // Reorder scalars and build final mask. 2481 Last->Scalars.assign(VL.size(), nullptr); 2482 transform(ReorderIndices, Last->Scalars.begin(), 2483 [VL](unsigned Idx) -> Value * { 2484 if (Idx >= VL.size()) 2485 return UndefValue::get(VL.front()->getType()); 2486 return VL[Idx]; 2487 }); 2488 InstructionsState S = getSameOpcode(Last->Scalars); 2489 Last->setOperations(S); 2490 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2491 } 2492 if (Last->State != TreeEntry::NeedToGather) { 2493 for (Value *V : VL) { 2494 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2495 ScalarToTreeEntry[V] = Last; 2496 } 2497 // Update the scheduler bundle to point to this TreeEntry. 2498 ScheduleData *BundleMember = Bundle.getValue(); 2499 assert((BundleMember || isa<PHINode>(S.MainOp) || 2500 isVectorLikeInstWithConstOps(S.MainOp) || 2501 doesNotNeedToSchedule(VL)) && 2502 "Bundle and VL out of sync"); 2503 if (BundleMember) { 2504 for (Value *V : VL) { 2505 if (doesNotNeedToBeScheduled(V)) 2506 continue; 2507 assert(BundleMember && "Unexpected end of bundle."); 2508 BundleMember->TE = Last; 2509 BundleMember = BundleMember->NextInBundle; 2510 } 2511 } 2512 assert(!BundleMember && "Bundle and VL out of sync"); 2513 } else { 2514 MustGather.insert(VL.begin(), VL.end()); 2515 } 2516 2517 if (UserTreeIdx.UserTE) 2518 Last->UserTreeIndices.push_back(UserTreeIdx); 2519 2520 return Last; 2521 } 2522 2523 /// -- Vectorization State -- 2524 /// Holds all of the tree entries. 2525 TreeEntry::VecTreeTy VectorizableTree; 2526 2527 #ifndef NDEBUG 2528 /// Debug printer. 2529 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2530 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2531 VectorizableTree[Id]->dump(); 2532 dbgs() << "\n"; 2533 } 2534 } 2535 #endif 2536 2537 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2538 2539 const TreeEntry *getTreeEntry(Value *V) const { 2540 return ScalarToTreeEntry.lookup(V); 2541 } 2542 2543 /// Maps a specific scalar to its tree entry. 2544 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2545 2546 /// Maps a value to the proposed vectorizable size. 2547 SmallDenseMap<Value *, unsigned> InstrElementSize; 2548 2549 /// A list of scalars that we found that we need to keep as scalars. 2550 ValueSet MustGather; 2551 2552 /// This POD struct describes one external user in the vectorized tree. 2553 struct ExternalUser { 2554 ExternalUser(Value *S, llvm::User *U, int L) 2555 : Scalar(S), User(U), Lane(L) {} 2556 2557 // Which scalar in our function. 2558 Value *Scalar; 2559 2560 // Which user that uses the scalar. 2561 llvm::User *User; 2562 2563 // Which lane does the scalar belong to. 2564 int Lane; 2565 }; 2566 using UserList = SmallVector<ExternalUser, 16>; 2567 2568 /// Checks if two instructions may access the same memory. 2569 /// 2570 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2571 /// is invariant in the calling loop. 2572 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2573 Instruction *Inst2) { 2574 // First check if the result is already in the cache. 2575 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2576 Optional<bool> &result = AliasCache[key]; 2577 if (result.hasValue()) { 2578 return result.getValue(); 2579 } 2580 bool aliased = true; 2581 if (Loc1.Ptr && isSimple(Inst1)) 2582 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2583 // Store the result in the cache. 2584 result = aliased; 2585 return aliased; 2586 } 2587 2588 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2589 2590 /// Cache for alias results. 2591 /// TODO: consider moving this to the AliasAnalysis itself. 2592 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2593 2594 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2595 // globally through SLP because we don't perform any action which 2596 // invalidates capture results. 2597 BatchAAResults BatchAA; 2598 2599 /// Temporary store for deleted instructions. Instructions will be deleted 2600 /// eventually when the BoUpSLP is destructed. The deferral is required to 2601 /// ensure that there are no incorrect collisions in the AliasCache, which 2602 /// can happen if a new instruction is allocated at the same address as a 2603 /// previously deleted instruction. 2604 DenseSet<Instruction *> DeletedInstructions; 2605 2606 /// A list of values that need to extracted out of the tree. 2607 /// This list holds pairs of (Internal Scalar : External User). External User 2608 /// can be nullptr, it means that this Internal Scalar will be used later, 2609 /// after vectorization. 2610 UserList ExternalUses; 2611 2612 /// Values used only by @llvm.assume calls. 2613 SmallPtrSet<const Value *, 32> EphValues; 2614 2615 /// Holds all of the instructions that we gathered. 2616 SetVector<Instruction *> GatherShuffleSeq; 2617 2618 /// A list of blocks that we are going to CSE. 2619 SetVector<BasicBlock *> CSEBlocks; 2620 2621 /// Contains all scheduling relevant data for an instruction. 2622 /// A ScheduleData either represents a single instruction or a member of an 2623 /// instruction bundle (= a group of instructions which is combined into a 2624 /// vector instruction). 2625 struct ScheduleData { 2626 // The initial value for the dependency counters. It means that the 2627 // dependencies are not calculated yet. 2628 enum { InvalidDeps = -1 }; 2629 2630 ScheduleData() = default; 2631 2632 void init(int BlockSchedulingRegionID, Value *OpVal) { 2633 FirstInBundle = this; 2634 NextInBundle = nullptr; 2635 NextLoadStore = nullptr; 2636 IsScheduled = false; 2637 SchedulingRegionID = BlockSchedulingRegionID; 2638 clearDependencies(); 2639 OpValue = OpVal; 2640 TE = nullptr; 2641 } 2642 2643 /// Verify basic self consistency properties 2644 void verify() { 2645 if (hasValidDependencies()) { 2646 assert(UnscheduledDeps <= Dependencies && "invariant"); 2647 } else { 2648 assert(UnscheduledDeps == Dependencies && "invariant"); 2649 } 2650 2651 if (IsScheduled) { 2652 assert(isSchedulingEntity() && 2653 "unexpected scheduled state"); 2654 for (const ScheduleData *BundleMember = this; BundleMember; 2655 BundleMember = BundleMember->NextInBundle) { 2656 assert(BundleMember->hasValidDependencies() && 2657 BundleMember->UnscheduledDeps == 0 && 2658 "unexpected scheduled state"); 2659 assert((BundleMember == this || !BundleMember->IsScheduled) && 2660 "only bundle is marked scheduled"); 2661 } 2662 } 2663 2664 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2665 "all bundle members must be in same basic block"); 2666 } 2667 2668 /// Returns true if the dependency information has been calculated. 2669 /// Note that depenendency validity can vary between instructions within 2670 /// a single bundle. 2671 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2672 2673 /// Returns true for single instructions and for bundle representatives 2674 /// (= the head of a bundle). 2675 bool isSchedulingEntity() const { return FirstInBundle == this; } 2676 2677 /// Returns true if it represents an instruction bundle and not only a 2678 /// single instruction. 2679 bool isPartOfBundle() const { 2680 return NextInBundle != nullptr || FirstInBundle != this || TE; 2681 } 2682 2683 /// Returns true if it is ready for scheduling, i.e. it has no more 2684 /// unscheduled depending instructions/bundles. 2685 bool isReady() const { 2686 assert(isSchedulingEntity() && 2687 "can't consider non-scheduling entity for ready list"); 2688 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2689 } 2690 2691 /// Modifies the number of unscheduled dependencies for this instruction, 2692 /// and returns the number of remaining dependencies for the containing 2693 /// bundle. 2694 int incrementUnscheduledDeps(int Incr) { 2695 assert(hasValidDependencies() && 2696 "increment of unscheduled deps would be meaningless"); 2697 UnscheduledDeps += Incr; 2698 return FirstInBundle->unscheduledDepsInBundle(); 2699 } 2700 2701 /// Sets the number of unscheduled dependencies to the number of 2702 /// dependencies. 2703 void resetUnscheduledDeps() { 2704 UnscheduledDeps = Dependencies; 2705 } 2706 2707 /// Clears all dependency information. 2708 void clearDependencies() { 2709 Dependencies = InvalidDeps; 2710 resetUnscheduledDeps(); 2711 MemoryDependencies.clear(); 2712 ControlDependencies.clear(); 2713 } 2714 2715 int unscheduledDepsInBundle() const { 2716 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2717 int Sum = 0; 2718 for (const ScheduleData *BundleMember = this; BundleMember; 2719 BundleMember = BundleMember->NextInBundle) { 2720 if (BundleMember->UnscheduledDeps == InvalidDeps) 2721 return InvalidDeps; 2722 Sum += BundleMember->UnscheduledDeps; 2723 } 2724 return Sum; 2725 } 2726 2727 void dump(raw_ostream &os) const { 2728 if (!isSchedulingEntity()) { 2729 os << "/ " << *Inst; 2730 } else if (NextInBundle) { 2731 os << '[' << *Inst; 2732 ScheduleData *SD = NextInBundle; 2733 while (SD) { 2734 os << ';' << *SD->Inst; 2735 SD = SD->NextInBundle; 2736 } 2737 os << ']'; 2738 } else { 2739 os << *Inst; 2740 } 2741 } 2742 2743 Instruction *Inst = nullptr; 2744 2745 /// Opcode of the current instruction in the schedule data. 2746 Value *OpValue = nullptr; 2747 2748 /// The TreeEntry that this instruction corresponds to. 2749 TreeEntry *TE = nullptr; 2750 2751 /// Points to the head in an instruction bundle (and always to this for 2752 /// single instructions). 2753 ScheduleData *FirstInBundle = nullptr; 2754 2755 /// Single linked list of all instructions in a bundle. Null if it is a 2756 /// single instruction. 2757 ScheduleData *NextInBundle = nullptr; 2758 2759 /// Single linked list of all memory instructions (e.g. load, store, call) 2760 /// in the block - until the end of the scheduling region. 2761 ScheduleData *NextLoadStore = nullptr; 2762 2763 /// The dependent memory instructions. 2764 /// This list is derived on demand in calculateDependencies(). 2765 SmallVector<ScheduleData *, 4> MemoryDependencies; 2766 2767 /// List of instructions which this instruction could be control dependent 2768 /// on. Allowing such nodes to be scheduled below this one could introduce 2769 /// a runtime fault which didn't exist in the original program. 2770 /// ex: this is a load or udiv following a readonly call which inf loops 2771 SmallVector<ScheduleData *, 4> ControlDependencies; 2772 2773 /// This ScheduleData is in the current scheduling region if this matches 2774 /// the current SchedulingRegionID of BlockScheduling. 2775 int SchedulingRegionID = 0; 2776 2777 /// Used for getting a "good" final ordering of instructions. 2778 int SchedulingPriority = 0; 2779 2780 /// The number of dependencies. Constitutes of the number of users of the 2781 /// instruction plus the number of dependent memory instructions (if any). 2782 /// This value is calculated on demand. 2783 /// If InvalidDeps, the number of dependencies is not calculated yet. 2784 int Dependencies = InvalidDeps; 2785 2786 /// The number of dependencies minus the number of dependencies of scheduled 2787 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2788 /// for scheduling. 2789 /// Note that this is negative as long as Dependencies is not calculated. 2790 int UnscheduledDeps = InvalidDeps; 2791 2792 /// True if this instruction is scheduled (or considered as scheduled in the 2793 /// dry-run). 2794 bool IsScheduled = false; 2795 }; 2796 2797 #ifndef NDEBUG 2798 friend inline raw_ostream &operator<<(raw_ostream &os, 2799 const BoUpSLP::ScheduleData &SD) { 2800 SD.dump(os); 2801 return os; 2802 } 2803 #endif 2804 2805 friend struct GraphTraits<BoUpSLP *>; 2806 friend struct DOTGraphTraits<BoUpSLP *>; 2807 2808 /// Contains all scheduling data for a basic block. 2809 /// It does not schedules instructions, which are not memory read/write 2810 /// instructions and their operands are either constants, or arguments, or 2811 /// phis, or instructions from others blocks, or their users are phis or from 2812 /// the other blocks. The resulting vector instructions can be placed at the 2813 /// beginning of the basic block without scheduling (if operands does not need 2814 /// to be scheduled) or at the end of the block (if users are outside of the 2815 /// block). It allows to save some compile time and memory used by the 2816 /// compiler. 2817 /// ScheduleData is assigned for each instruction in between the boundaries of 2818 /// the tree entry, even for those, which are not part of the graph. It is 2819 /// required to correctly follow the dependencies between the instructions and 2820 /// their correct scheduling. The ScheduleData is not allocated for the 2821 /// instructions, which do not require scheduling, like phis, nodes with 2822 /// extractelements/insertelements only or nodes with instructions, with 2823 /// uses/operands outside of the block. 2824 struct BlockScheduling { 2825 BlockScheduling(BasicBlock *BB) 2826 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2827 2828 void clear() { 2829 ReadyInsts.clear(); 2830 ScheduleStart = nullptr; 2831 ScheduleEnd = nullptr; 2832 FirstLoadStoreInRegion = nullptr; 2833 LastLoadStoreInRegion = nullptr; 2834 RegionHasStackSave = false; 2835 2836 // Reduce the maximum schedule region size by the size of the 2837 // previous scheduling run. 2838 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2839 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2840 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2841 ScheduleRegionSize = 0; 2842 2843 // Make a new scheduling region, i.e. all existing ScheduleData is not 2844 // in the new region yet. 2845 ++SchedulingRegionID; 2846 } 2847 2848 ScheduleData *getScheduleData(Instruction *I) { 2849 if (BB != I->getParent()) 2850 // Avoid lookup if can't possibly be in map. 2851 return nullptr; 2852 ScheduleData *SD = ScheduleDataMap.lookup(I); 2853 if (SD && isInSchedulingRegion(SD)) 2854 return SD; 2855 return nullptr; 2856 } 2857 2858 ScheduleData *getScheduleData(Value *V) { 2859 if (auto *I = dyn_cast<Instruction>(V)) 2860 return getScheduleData(I); 2861 return nullptr; 2862 } 2863 2864 ScheduleData *getScheduleData(Value *V, Value *Key) { 2865 if (V == Key) 2866 return getScheduleData(V); 2867 auto I = ExtraScheduleDataMap.find(V); 2868 if (I != ExtraScheduleDataMap.end()) { 2869 ScheduleData *SD = I->second.lookup(Key); 2870 if (SD && isInSchedulingRegion(SD)) 2871 return SD; 2872 } 2873 return nullptr; 2874 } 2875 2876 bool isInSchedulingRegion(ScheduleData *SD) const { 2877 return SD->SchedulingRegionID == SchedulingRegionID; 2878 } 2879 2880 /// Marks an instruction as scheduled and puts all dependent ready 2881 /// instructions into the ready-list. 2882 template <typename ReadyListType> 2883 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2884 SD->IsScheduled = true; 2885 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2886 2887 for (ScheduleData *BundleMember = SD; BundleMember; 2888 BundleMember = BundleMember->NextInBundle) { 2889 if (BundleMember->Inst != BundleMember->OpValue) 2890 continue; 2891 2892 // Handle the def-use chain dependencies. 2893 2894 // Decrement the unscheduled counter and insert to ready list if ready. 2895 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2896 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2897 if (OpDef && OpDef->hasValidDependencies() && 2898 OpDef->incrementUnscheduledDeps(-1) == 0) { 2899 // There are no more unscheduled dependencies after 2900 // decrementing, so we can put the dependent instruction 2901 // into the ready list. 2902 ScheduleData *DepBundle = OpDef->FirstInBundle; 2903 assert(!DepBundle->IsScheduled && 2904 "already scheduled bundle gets ready"); 2905 ReadyList.insert(DepBundle); 2906 LLVM_DEBUG(dbgs() 2907 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2908 } 2909 }); 2910 }; 2911 2912 // If BundleMember is a vector bundle, its operands may have been 2913 // reordered during buildTree(). We therefore need to get its operands 2914 // through the TreeEntry. 2915 if (TreeEntry *TE = BundleMember->TE) { 2916 // Need to search for the lane since the tree entry can be reordered. 2917 int Lane = std::distance(TE->Scalars.begin(), 2918 find(TE->Scalars, BundleMember->Inst)); 2919 assert(Lane >= 0 && "Lane not set"); 2920 2921 // Since vectorization tree is being built recursively this assertion 2922 // ensures that the tree entry has all operands set before reaching 2923 // this code. Couple of exceptions known at the moment are extracts 2924 // where their second (immediate) operand is not added. Since 2925 // immediates do not affect scheduler behavior this is considered 2926 // okay. 2927 auto *In = BundleMember->Inst; 2928 assert(In && 2929 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2930 In->getNumOperands() == TE->getNumOperands()) && 2931 "Missed TreeEntry operands?"); 2932 (void)In; // fake use to avoid build failure when assertions disabled 2933 2934 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2935 OpIdx != NumOperands; ++OpIdx) 2936 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2937 DecrUnsched(I); 2938 } else { 2939 // If BundleMember is a stand-alone instruction, no operand reordering 2940 // has taken place, so we directly access its operands. 2941 for (Use &U : BundleMember->Inst->operands()) 2942 if (auto *I = dyn_cast<Instruction>(U.get())) 2943 DecrUnsched(I); 2944 } 2945 // Handle the memory dependencies. 2946 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2947 if (MemoryDepSD->hasValidDependencies() && 2948 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2949 // There are no more unscheduled dependencies after decrementing, 2950 // so we can put the dependent instruction into the ready list. 2951 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2952 assert(!DepBundle->IsScheduled && 2953 "already scheduled bundle gets ready"); 2954 ReadyList.insert(DepBundle); 2955 LLVM_DEBUG(dbgs() 2956 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2957 } 2958 } 2959 // Handle the control dependencies. 2960 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2961 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2962 // There are no more unscheduled dependencies after decrementing, 2963 // so we can put the dependent instruction into the ready list. 2964 ScheduleData *DepBundle = DepSD->FirstInBundle; 2965 assert(!DepBundle->IsScheduled && 2966 "already scheduled bundle gets ready"); 2967 ReadyList.insert(DepBundle); 2968 LLVM_DEBUG(dbgs() 2969 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2970 } 2971 } 2972 2973 } 2974 } 2975 2976 /// Verify basic self consistency properties of the data structure. 2977 void verify() { 2978 if (!ScheduleStart) 2979 return; 2980 2981 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2982 ScheduleStart->comesBefore(ScheduleEnd) && 2983 "Not a valid scheduling region?"); 2984 2985 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2986 auto *SD = getScheduleData(I); 2987 if (!SD) 2988 continue; 2989 assert(isInSchedulingRegion(SD) && 2990 "primary schedule data not in window?"); 2991 assert(isInSchedulingRegion(SD->FirstInBundle) && 2992 "entire bundle in window!"); 2993 (void)SD; 2994 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2995 } 2996 2997 for (auto *SD : ReadyInsts) { 2998 assert(SD->isSchedulingEntity() && SD->isReady() && 2999 "item in ready list not ready?"); 3000 (void)SD; 3001 } 3002 } 3003 3004 void doForAllOpcodes(Value *V, 3005 function_ref<void(ScheduleData *SD)> Action) { 3006 if (ScheduleData *SD = getScheduleData(V)) 3007 Action(SD); 3008 auto I = ExtraScheduleDataMap.find(V); 3009 if (I != ExtraScheduleDataMap.end()) 3010 for (auto &P : I->second) 3011 if (isInSchedulingRegion(P.second)) 3012 Action(P.second); 3013 } 3014 3015 /// Put all instructions into the ReadyList which are ready for scheduling. 3016 template <typename ReadyListType> 3017 void initialFillReadyList(ReadyListType &ReadyList) { 3018 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3019 doForAllOpcodes(I, [&](ScheduleData *SD) { 3020 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3021 SD->isReady()) { 3022 ReadyList.insert(SD); 3023 LLVM_DEBUG(dbgs() 3024 << "SLP: initially in ready list: " << *SD << "\n"); 3025 } 3026 }); 3027 } 3028 } 3029 3030 /// Build a bundle from the ScheduleData nodes corresponding to the 3031 /// scalar instruction for each lane. 3032 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3033 3034 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3035 /// cyclic dependencies. This is only a dry-run, no instructions are 3036 /// actually moved at this stage. 3037 /// \returns the scheduling bundle. The returned Optional value is non-None 3038 /// if \p VL is allowed to be scheduled. 3039 Optional<ScheduleData *> 3040 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3041 const InstructionsState &S); 3042 3043 /// Un-bundles a group of instructions. 3044 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3045 3046 /// Allocates schedule data chunk. 3047 ScheduleData *allocateScheduleDataChunks(); 3048 3049 /// Extends the scheduling region so that V is inside the region. 3050 /// \returns true if the region size is within the limit. 3051 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3052 3053 /// Initialize the ScheduleData structures for new instructions in the 3054 /// scheduling region. 3055 void initScheduleData(Instruction *FromI, Instruction *ToI, 3056 ScheduleData *PrevLoadStore, 3057 ScheduleData *NextLoadStore); 3058 3059 /// Updates the dependency information of a bundle and of all instructions/ 3060 /// bundles which depend on the original bundle. 3061 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3062 BoUpSLP *SLP); 3063 3064 /// Sets all instruction in the scheduling region to un-scheduled. 3065 void resetSchedule(); 3066 3067 BasicBlock *BB; 3068 3069 /// Simple memory allocation for ScheduleData. 3070 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3071 3072 /// The size of a ScheduleData array in ScheduleDataChunks. 3073 int ChunkSize; 3074 3075 /// The allocator position in the current chunk, which is the last entry 3076 /// of ScheduleDataChunks. 3077 int ChunkPos; 3078 3079 /// Attaches ScheduleData to Instruction. 3080 /// Note that the mapping survives during all vectorization iterations, i.e. 3081 /// ScheduleData structures are recycled. 3082 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3083 3084 /// Attaches ScheduleData to Instruction with the leading key. 3085 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3086 ExtraScheduleDataMap; 3087 3088 /// The ready-list for scheduling (only used for the dry-run). 3089 SetVector<ScheduleData *> ReadyInsts; 3090 3091 /// The first instruction of the scheduling region. 3092 Instruction *ScheduleStart = nullptr; 3093 3094 /// The first instruction _after_ the scheduling region. 3095 Instruction *ScheduleEnd = nullptr; 3096 3097 /// The first memory accessing instruction in the scheduling region 3098 /// (can be null). 3099 ScheduleData *FirstLoadStoreInRegion = nullptr; 3100 3101 /// The last memory accessing instruction in the scheduling region 3102 /// (can be null). 3103 ScheduleData *LastLoadStoreInRegion = nullptr; 3104 3105 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3106 /// region? Used to optimize the dependence calculation for the 3107 /// common case where there isn't. 3108 bool RegionHasStackSave = false; 3109 3110 /// The current size of the scheduling region. 3111 int ScheduleRegionSize = 0; 3112 3113 /// The maximum size allowed for the scheduling region. 3114 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3115 3116 /// The ID of the scheduling region. For a new vectorization iteration this 3117 /// is incremented which "removes" all ScheduleData from the region. 3118 /// Make sure that the initial SchedulingRegionID is greater than the 3119 /// initial SchedulingRegionID in ScheduleData (which is 0). 3120 int SchedulingRegionID = 1; 3121 }; 3122 3123 /// Attaches the BlockScheduling structures to basic blocks. 3124 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3125 3126 /// Performs the "real" scheduling. Done before vectorization is actually 3127 /// performed in a basic block. 3128 void scheduleBlock(BlockScheduling *BS); 3129 3130 /// List of users to ignore during scheduling and that don't need extracting. 3131 ArrayRef<Value *> UserIgnoreList; 3132 3133 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3134 /// sorted SmallVectors of unsigned. 3135 struct OrdersTypeDenseMapInfo { 3136 static OrdersType getEmptyKey() { 3137 OrdersType V; 3138 V.push_back(~1U); 3139 return V; 3140 } 3141 3142 static OrdersType getTombstoneKey() { 3143 OrdersType V; 3144 V.push_back(~2U); 3145 return V; 3146 } 3147 3148 static unsigned getHashValue(const OrdersType &V) { 3149 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3150 } 3151 3152 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3153 return LHS == RHS; 3154 } 3155 }; 3156 3157 // Analysis and block reference. 3158 Function *F; 3159 ScalarEvolution *SE; 3160 TargetTransformInfo *TTI; 3161 TargetLibraryInfo *TLI; 3162 LoopInfo *LI; 3163 DominatorTree *DT; 3164 AssumptionCache *AC; 3165 DemandedBits *DB; 3166 const DataLayout *DL; 3167 OptimizationRemarkEmitter *ORE; 3168 3169 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3170 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3171 3172 /// Instruction builder to construct the vectorized tree. 3173 IRBuilder<> Builder; 3174 3175 /// A map of scalar integer values to the smallest bit width with which they 3176 /// can legally be represented. The values map to (width, signed) pairs, 3177 /// where "width" indicates the minimum bit width and "signed" is True if the 3178 /// value must be signed-extended, rather than zero-extended, back to its 3179 /// original width. 3180 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3181 }; 3182 3183 } // end namespace slpvectorizer 3184 3185 template <> struct GraphTraits<BoUpSLP *> { 3186 using TreeEntry = BoUpSLP::TreeEntry; 3187 3188 /// NodeRef has to be a pointer per the GraphWriter. 3189 using NodeRef = TreeEntry *; 3190 3191 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3192 3193 /// Add the VectorizableTree to the index iterator to be able to return 3194 /// TreeEntry pointers. 3195 struct ChildIteratorType 3196 : public iterator_adaptor_base< 3197 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3198 ContainerTy &VectorizableTree; 3199 3200 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3201 ContainerTy &VT) 3202 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3203 3204 NodeRef operator*() { return I->UserTE; } 3205 }; 3206 3207 static NodeRef getEntryNode(BoUpSLP &R) { 3208 return R.VectorizableTree[0].get(); 3209 } 3210 3211 static ChildIteratorType child_begin(NodeRef N) { 3212 return {N->UserTreeIndices.begin(), N->Container}; 3213 } 3214 3215 static ChildIteratorType child_end(NodeRef N) { 3216 return {N->UserTreeIndices.end(), N->Container}; 3217 } 3218 3219 /// For the node iterator we just need to turn the TreeEntry iterator into a 3220 /// TreeEntry* iterator so that it dereferences to NodeRef. 3221 class nodes_iterator { 3222 using ItTy = ContainerTy::iterator; 3223 ItTy It; 3224 3225 public: 3226 nodes_iterator(const ItTy &It2) : It(It2) {} 3227 NodeRef operator*() { return It->get(); } 3228 nodes_iterator operator++() { 3229 ++It; 3230 return *this; 3231 } 3232 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3233 }; 3234 3235 static nodes_iterator nodes_begin(BoUpSLP *R) { 3236 return nodes_iterator(R->VectorizableTree.begin()); 3237 } 3238 3239 static nodes_iterator nodes_end(BoUpSLP *R) { 3240 return nodes_iterator(R->VectorizableTree.end()); 3241 } 3242 3243 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3244 }; 3245 3246 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3247 using TreeEntry = BoUpSLP::TreeEntry; 3248 3249 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3250 3251 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3252 std::string Str; 3253 raw_string_ostream OS(Str); 3254 if (isSplat(Entry->Scalars)) 3255 OS << "<splat> "; 3256 for (auto V : Entry->Scalars) { 3257 OS << *V; 3258 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3259 return EU.Scalar == V; 3260 })) 3261 OS << " <extract>"; 3262 OS << "\n"; 3263 } 3264 return Str; 3265 } 3266 3267 static std::string getNodeAttributes(const TreeEntry *Entry, 3268 const BoUpSLP *) { 3269 if (Entry->State == TreeEntry::NeedToGather) 3270 return "color=red"; 3271 return ""; 3272 } 3273 }; 3274 3275 } // end namespace llvm 3276 3277 BoUpSLP::~BoUpSLP() { 3278 SmallVector<WeakTrackingVH> DeadInsts; 3279 for (auto *I : DeletedInstructions) { 3280 for (Use &U : I->operands()) { 3281 auto *Op = dyn_cast<Instruction>(U.get()); 3282 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3283 wouldInstructionBeTriviallyDead(Op, TLI)) 3284 DeadInsts.emplace_back(Op); 3285 } 3286 I->dropAllReferences(); 3287 } 3288 for (auto *I : DeletedInstructions) { 3289 assert(I->use_empty() && 3290 "trying to erase instruction with users."); 3291 I->eraseFromParent(); 3292 } 3293 3294 // Cleanup any dead scalar code feeding the vectorized instructions 3295 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3296 3297 #ifdef EXPENSIVE_CHECKS 3298 // If we could guarantee that this call is not extremely slow, we could 3299 // remove the ifdef limitation (see PR47712). 3300 assert(!verifyFunction(*F, &dbgs())); 3301 #endif 3302 } 3303 3304 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3305 /// contains original mask for the scalars reused in the node. Procedure 3306 /// transform this mask in accordance with the given \p Mask. 3307 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3308 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3309 "Expected non-empty mask."); 3310 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3311 Prev.swap(Reuses); 3312 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3313 if (Mask[I] != UndefMaskElem) 3314 Reuses[Mask[I]] = Prev[I]; 3315 } 3316 3317 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3318 /// the original order of the scalars. Procedure transforms the provided order 3319 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3320 /// identity order, \p Order is cleared. 3321 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3322 assert(!Mask.empty() && "Expected non-empty mask."); 3323 SmallVector<int> MaskOrder; 3324 if (Order.empty()) { 3325 MaskOrder.resize(Mask.size()); 3326 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3327 } else { 3328 inversePermutation(Order, MaskOrder); 3329 } 3330 reorderReuses(MaskOrder, Mask); 3331 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3332 Order.clear(); 3333 return; 3334 } 3335 Order.assign(Mask.size(), Mask.size()); 3336 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3337 if (MaskOrder[I] != UndefMaskElem) 3338 Order[MaskOrder[I]] = I; 3339 fixupOrderingIndices(Order); 3340 } 3341 3342 Optional<BoUpSLP::OrdersType> 3343 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3344 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3345 unsigned NumScalars = TE.Scalars.size(); 3346 OrdersType CurrentOrder(NumScalars, NumScalars); 3347 SmallVector<int> Positions; 3348 SmallBitVector UsedPositions(NumScalars); 3349 const TreeEntry *STE = nullptr; 3350 // Try to find all gathered scalars that are gets vectorized in other 3351 // vectorize node. Here we can have only one single tree vector node to 3352 // correctly identify order of the gathered scalars. 3353 for (unsigned I = 0; I < NumScalars; ++I) { 3354 Value *V = TE.Scalars[I]; 3355 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3356 continue; 3357 if (const auto *LocalSTE = getTreeEntry(V)) { 3358 if (!STE) 3359 STE = LocalSTE; 3360 else if (STE != LocalSTE) 3361 // Take the order only from the single vector node. 3362 return None; 3363 unsigned Lane = 3364 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3365 if (Lane >= NumScalars) 3366 return None; 3367 if (CurrentOrder[Lane] != NumScalars) { 3368 if (Lane != I) 3369 continue; 3370 UsedPositions.reset(CurrentOrder[Lane]); 3371 } 3372 // The partial identity (where only some elements of the gather node are 3373 // in the identity order) is good. 3374 CurrentOrder[Lane] = I; 3375 UsedPositions.set(I); 3376 } 3377 } 3378 // Need to keep the order if we have a vector entry and at least 2 scalars or 3379 // the vectorized entry has just 2 scalars. 3380 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3381 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3382 for (unsigned I = 0; I < NumScalars; ++I) 3383 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3384 return false; 3385 return true; 3386 }; 3387 if (IsIdentityOrder(CurrentOrder)) { 3388 CurrentOrder.clear(); 3389 return CurrentOrder; 3390 } 3391 auto *It = CurrentOrder.begin(); 3392 for (unsigned I = 0; I < NumScalars;) { 3393 if (UsedPositions.test(I)) { 3394 ++I; 3395 continue; 3396 } 3397 if (*It == NumScalars) { 3398 *It = I; 3399 ++I; 3400 } 3401 ++It; 3402 } 3403 return CurrentOrder; 3404 } 3405 return None; 3406 } 3407 3408 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3409 bool TopToBottom) { 3410 // No need to reorder if need to shuffle reuses, still need to shuffle the 3411 // node. 3412 if (!TE.ReuseShuffleIndices.empty()) 3413 return None; 3414 if (TE.State == TreeEntry::Vectorize && 3415 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3416 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3417 !TE.isAltShuffle()) 3418 return TE.ReorderIndices; 3419 if (TE.State == TreeEntry::NeedToGather) { 3420 // TODO: add analysis of other gather nodes with extractelement 3421 // instructions and other values/instructions, not only undefs. 3422 if (((TE.getOpcode() == Instruction::ExtractElement && 3423 !TE.isAltShuffle()) || 3424 (all_of(TE.Scalars, 3425 [](Value *V) { 3426 return isa<UndefValue, ExtractElementInst>(V); 3427 }) && 3428 any_of(TE.Scalars, 3429 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3430 all_of(TE.Scalars, 3431 [](Value *V) { 3432 auto *EE = dyn_cast<ExtractElementInst>(V); 3433 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3434 }) && 3435 allSameType(TE.Scalars)) { 3436 // Check that gather of extractelements can be represented as 3437 // just a shuffle of a single vector. 3438 OrdersType CurrentOrder; 3439 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3440 if (Reuse || !CurrentOrder.empty()) { 3441 if (!CurrentOrder.empty()) 3442 fixupOrderingIndices(CurrentOrder); 3443 return CurrentOrder; 3444 } 3445 } 3446 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3447 return CurrentOrder; 3448 } 3449 return None; 3450 } 3451 3452 void BoUpSLP::reorderTopToBottom() { 3453 // Maps VF to the graph nodes. 3454 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3455 // ExtractElement gather nodes which can be vectorized and need to handle 3456 // their ordering. 3457 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3458 // Find all reorderable nodes with the given VF. 3459 // Currently the are vectorized stores,loads,extracts + some gathering of 3460 // extracts. 3461 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3462 const std::unique_ptr<TreeEntry> &TE) { 3463 if (Optional<OrdersType> CurrentOrder = 3464 getReorderingData(*TE, /*TopToBottom=*/true)) { 3465 // Do not include ordering for nodes used in the alt opcode vectorization, 3466 // better to reorder them during bottom-to-top stage. If follow the order 3467 // here, it causes reordering of the whole graph though actually it is 3468 // profitable just to reorder the subgraph that starts from the alternate 3469 // opcode vectorization node. Such nodes already end-up with the shuffle 3470 // instruction and it is just enough to change this shuffle rather than 3471 // rotate the scalars for the whole graph. 3472 unsigned Cnt = 0; 3473 const TreeEntry *UserTE = TE.get(); 3474 while (UserTE && Cnt < RecursionMaxDepth) { 3475 if (UserTE->UserTreeIndices.size() != 1) 3476 break; 3477 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3478 return EI.UserTE->State == TreeEntry::Vectorize && 3479 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3480 })) 3481 return; 3482 if (UserTE->UserTreeIndices.empty()) 3483 UserTE = nullptr; 3484 else 3485 UserTE = UserTE->UserTreeIndices.back().UserTE; 3486 ++Cnt; 3487 } 3488 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3489 if (TE->State != TreeEntry::Vectorize) 3490 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3491 } 3492 }); 3493 3494 // Reorder the graph nodes according to their vectorization factor. 3495 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3496 VF /= 2) { 3497 auto It = VFToOrderedEntries.find(VF); 3498 if (It == VFToOrderedEntries.end()) 3499 continue; 3500 // Try to find the most profitable order. We just are looking for the most 3501 // used order and reorder scalar elements in the nodes according to this 3502 // mostly used order. 3503 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3504 // All operands are reordered and used only in this node - propagate the 3505 // most used order to the user node. 3506 MapVector<OrdersType, unsigned, 3507 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3508 OrdersUses; 3509 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3510 for (const TreeEntry *OpTE : OrderedEntries) { 3511 // No need to reorder this nodes, still need to extend and to use shuffle, 3512 // just need to merge reordering shuffle and the reuse shuffle. 3513 if (!OpTE->ReuseShuffleIndices.empty()) 3514 continue; 3515 // Count number of orders uses. 3516 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3517 if (OpTE->State == TreeEntry::NeedToGather) 3518 return GathersToOrders.find(OpTE)->second; 3519 return OpTE->ReorderIndices; 3520 }(); 3521 // Stores actually store the mask, not the order, need to invert. 3522 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3523 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3524 SmallVector<int> Mask; 3525 inversePermutation(Order, Mask); 3526 unsigned E = Order.size(); 3527 OrdersType CurrentOrder(E, E); 3528 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3529 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3530 }); 3531 fixupOrderingIndices(CurrentOrder); 3532 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3533 } else { 3534 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3535 } 3536 } 3537 // Set order of the user node. 3538 if (OrdersUses.empty()) 3539 continue; 3540 // Choose the most used order. 3541 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3542 unsigned Cnt = OrdersUses.front().second; 3543 for (const auto &Pair : drop_begin(OrdersUses)) { 3544 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3545 BestOrder = Pair.first; 3546 Cnt = Pair.second; 3547 } 3548 } 3549 // Set order of the user node. 3550 if (BestOrder.empty()) 3551 continue; 3552 SmallVector<int> Mask; 3553 inversePermutation(BestOrder, Mask); 3554 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3555 unsigned E = BestOrder.size(); 3556 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3557 return I < E ? static_cast<int>(I) : UndefMaskElem; 3558 }); 3559 // Do an actual reordering, if profitable. 3560 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3561 // Just do the reordering for the nodes with the given VF. 3562 if (TE->Scalars.size() != VF) { 3563 if (TE->ReuseShuffleIndices.size() == VF) { 3564 // Need to reorder the reuses masks of the operands with smaller VF to 3565 // be able to find the match between the graph nodes and scalar 3566 // operands of the given node during vectorization/cost estimation. 3567 assert(all_of(TE->UserTreeIndices, 3568 [VF, &TE](const EdgeInfo &EI) { 3569 return EI.UserTE->Scalars.size() == VF || 3570 EI.UserTE->Scalars.size() == 3571 TE->Scalars.size(); 3572 }) && 3573 "All users must be of VF size."); 3574 // Update ordering of the operands with the smaller VF than the given 3575 // one. 3576 reorderReuses(TE->ReuseShuffleIndices, Mask); 3577 } 3578 continue; 3579 } 3580 if (TE->State == TreeEntry::Vectorize && 3581 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3582 InsertElementInst>(TE->getMainOp()) && 3583 !TE->isAltShuffle()) { 3584 // Build correct orders for extract{element,value}, loads and 3585 // stores. 3586 reorderOrder(TE->ReorderIndices, Mask); 3587 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3588 TE->reorderOperands(Mask); 3589 } else { 3590 // Reorder the node and its operands. 3591 TE->reorderOperands(Mask); 3592 assert(TE->ReorderIndices.empty() && 3593 "Expected empty reorder sequence."); 3594 reorderScalars(TE->Scalars, Mask); 3595 } 3596 if (!TE->ReuseShuffleIndices.empty()) { 3597 // Apply reversed order to keep the original ordering of the reused 3598 // elements to avoid extra reorder indices shuffling. 3599 OrdersType CurrentOrder; 3600 reorderOrder(CurrentOrder, MaskOrder); 3601 SmallVector<int> NewReuses; 3602 inversePermutation(CurrentOrder, NewReuses); 3603 addMask(NewReuses, TE->ReuseShuffleIndices); 3604 TE->ReuseShuffleIndices.swap(NewReuses); 3605 } 3606 } 3607 } 3608 } 3609 3610 bool BoUpSLP::canReorderOperands( 3611 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3612 ArrayRef<TreeEntry *> ReorderableGathers, 3613 SmallVectorImpl<TreeEntry *> &GatherOps) { 3614 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3615 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3616 return OpData.first == I && 3617 OpData.second->State == TreeEntry::Vectorize; 3618 })) 3619 continue; 3620 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3621 // Do not reorder if operand node is used by many user nodes. 3622 if (any_of(TE->UserTreeIndices, 3623 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3624 return false; 3625 // Add the node to the list of the ordered nodes with the identity 3626 // order. 3627 Edges.emplace_back(I, TE); 3628 continue; 3629 } 3630 ArrayRef<Value *> VL = UserTE->getOperand(I); 3631 TreeEntry *Gather = nullptr; 3632 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3633 assert(TE->State != TreeEntry::Vectorize && 3634 "Only non-vectorized nodes are expected."); 3635 if (TE->isSame(VL)) { 3636 Gather = TE; 3637 return true; 3638 } 3639 return false; 3640 }) > 1) 3641 return false; 3642 if (Gather) 3643 GatherOps.push_back(Gather); 3644 } 3645 return true; 3646 } 3647 3648 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3649 SetVector<TreeEntry *> OrderedEntries; 3650 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3651 // Find all reorderable leaf nodes with the given VF. 3652 // Currently the are vectorized loads,extracts without alternate operands + 3653 // some gathering of extracts. 3654 SmallVector<TreeEntry *> NonVectorized; 3655 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3656 &NonVectorized]( 3657 const std::unique_ptr<TreeEntry> &TE) { 3658 if (TE->State != TreeEntry::Vectorize) 3659 NonVectorized.push_back(TE.get()); 3660 if (Optional<OrdersType> CurrentOrder = 3661 getReorderingData(*TE, /*TopToBottom=*/false)) { 3662 OrderedEntries.insert(TE.get()); 3663 if (TE->State != TreeEntry::Vectorize) 3664 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3665 } 3666 }); 3667 3668 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3669 // I.e., if the node has operands, that are reordered, try to make at least 3670 // one operand order in the natural order and reorder others + reorder the 3671 // user node itself. 3672 SmallPtrSet<const TreeEntry *, 4> Visited; 3673 while (!OrderedEntries.empty()) { 3674 // 1. Filter out only reordered nodes. 3675 // 2. If the entry has multiple uses - skip it and jump to the next node. 3676 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3677 SmallVector<TreeEntry *> Filtered; 3678 for (TreeEntry *TE : OrderedEntries) { 3679 if (!(TE->State == TreeEntry::Vectorize || 3680 (TE->State == TreeEntry::NeedToGather && 3681 GathersToOrders.count(TE))) || 3682 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3683 !all_of(drop_begin(TE->UserTreeIndices), 3684 [TE](const EdgeInfo &EI) { 3685 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3686 }) || 3687 !Visited.insert(TE).second) { 3688 Filtered.push_back(TE); 3689 continue; 3690 } 3691 // Build a map between user nodes and their operands order to speedup 3692 // search. The graph currently does not provide this dependency directly. 3693 for (EdgeInfo &EI : TE->UserTreeIndices) { 3694 TreeEntry *UserTE = EI.UserTE; 3695 auto It = Users.find(UserTE); 3696 if (It == Users.end()) 3697 It = Users.insert({UserTE, {}}).first; 3698 It->second.emplace_back(EI.EdgeIdx, TE); 3699 } 3700 } 3701 // Erase filtered entries. 3702 for_each(Filtered, 3703 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3704 for (auto &Data : Users) { 3705 // Check that operands are used only in the User node. 3706 SmallVector<TreeEntry *> GatherOps; 3707 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3708 GatherOps)) { 3709 for_each(Data.second, 3710 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3711 OrderedEntries.remove(Op.second); 3712 }); 3713 continue; 3714 } 3715 // All operands are reordered and used only in this node - propagate the 3716 // most used order to the user node. 3717 MapVector<OrdersType, unsigned, 3718 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3719 OrdersUses; 3720 // Do the analysis for each tree entry only once, otherwise the order of 3721 // the same node my be considered several times, though might be not 3722 // profitable. 3723 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3724 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3725 for (const auto &Op : Data.second) { 3726 TreeEntry *OpTE = Op.second; 3727 if (!VisitedOps.insert(OpTE).second) 3728 continue; 3729 if (!OpTE->ReuseShuffleIndices.empty() || 3730 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3731 continue; 3732 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3733 if (OpTE->State == TreeEntry::NeedToGather) 3734 return GathersToOrders.find(OpTE)->second; 3735 return OpTE->ReorderIndices; 3736 }(); 3737 unsigned NumOps = count_if( 3738 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3739 return P.second == OpTE; 3740 }); 3741 // Stores actually store the mask, not the order, need to invert. 3742 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3743 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3744 SmallVector<int> Mask; 3745 inversePermutation(Order, Mask); 3746 unsigned E = Order.size(); 3747 OrdersType CurrentOrder(E, E); 3748 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3749 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3750 }); 3751 fixupOrderingIndices(CurrentOrder); 3752 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3753 NumOps; 3754 } else { 3755 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3756 } 3757 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3758 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3759 const TreeEntry *TE) { 3760 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3761 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3762 (IgnoreReorder && TE->Idx == 0)) 3763 return true; 3764 if (TE->State == TreeEntry::NeedToGather) { 3765 auto It = GathersToOrders.find(TE); 3766 if (It != GathersToOrders.end()) 3767 return !It->second.empty(); 3768 return true; 3769 } 3770 return false; 3771 }; 3772 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3773 TreeEntry *UserTE = EI.UserTE; 3774 if (!VisitedUsers.insert(UserTE).second) 3775 continue; 3776 // May reorder user node if it requires reordering, has reused 3777 // scalars, is an alternate op vectorize node or its op nodes require 3778 // reordering. 3779 if (AllowsReordering(UserTE)) 3780 continue; 3781 // Check if users allow reordering. 3782 // Currently look up just 1 level of operands to avoid increase of 3783 // the compile time. 3784 // Profitable to reorder if definitely more operands allow 3785 // reordering rather than those with natural order. 3786 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3787 if (static_cast<unsigned>(count_if( 3788 Ops, [UserTE, &AllowsReordering]( 3789 const std::pair<unsigned, TreeEntry *> &Op) { 3790 return AllowsReordering(Op.second) && 3791 all_of(Op.second->UserTreeIndices, 3792 [UserTE](const EdgeInfo &EI) { 3793 return EI.UserTE == UserTE; 3794 }); 3795 })) <= Ops.size() / 2) 3796 ++Res.first->second; 3797 } 3798 } 3799 // If no orders - skip current nodes and jump to the next one, if any. 3800 if (OrdersUses.empty()) { 3801 for_each(Data.second, 3802 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3803 OrderedEntries.remove(Op.second); 3804 }); 3805 continue; 3806 } 3807 // Choose the best order. 3808 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3809 unsigned Cnt = OrdersUses.front().second; 3810 for (const auto &Pair : drop_begin(OrdersUses)) { 3811 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3812 BestOrder = Pair.first; 3813 Cnt = Pair.second; 3814 } 3815 } 3816 // Set order of the user node (reordering of operands and user nodes). 3817 if (BestOrder.empty()) { 3818 for_each(Data.second, 3819 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3820 OrderedEntries.remove(Op.second); 3821 }); 3822 continue; 3823 } 3824 // Erase operands from OrderedEntries list and adjust their orders. 3825 VisitedOps.clear(); 3826 SmallVector<int> Mask; 3827 inversePermutation(BestOrder, Mask); 3828 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3829 unsigned E = BestOrder.size(); 3830 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3831 return I < E ? static_cast<int>(I) : UndefMaskElem; 3832 }); 3833 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3834 TreeEntry *TE = Op.second; 3835 OrderedEntries.remove(TE); 3836 if (!VisitedOps.insert(TE).second) 3837 continue; 3838 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3839 // Just reorder reuses indices. 3840 reorderReuses(TE->ReuseShuffleIndices, Mask); 3841 continue; 3842 } 3843 // Gathers are processed separately. 3844 if (TE->State != TreeEntry::Vectorize) 3845 continue; 3846 assert((BestOrder.size() == TE->ReorderIndices.size() || 3847 TE->ReorderIndices.empty()) && 3848 "Non-matching sizes of user/operand entries."); 3849 reorderOrder(TE->ReorderIndices, Mask); 3850 } 3851 // For gathers just need to reorder its scalars. 3852 for (TreeEntry *Gather : GatherOps) { 3853 assert(Gather->ReorderIndices.empty() && 3854 "Unexpected reordering of gathers."); 3855 if (!Gather->ReuseShuffleIndices.empty()) { 3856 // Just reorder reuses indices. 3857 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3858 continue; 3859 } 3860 reorderScalars(Gather->Scalars, Mask); 3861 OrderedEntries.remove(Gather); 3862 } 3863 // Reorder operands of the user node and set the ordering for the user 3864 // node itself. 3865 if (Data.first->State != TreeEntry::Vectorize || 3866 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3867 Data.first->getMainOp()) || 3868 Data.first->isAltShuffle()) 3869 Data.first->reorderOperands(Mask); 3870 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3871 Data.first->isAltShuffle()) { 3872 reorderScalars(Data.first->Scalars, Mask); 3873 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3874 if (Data.first->ReuseShuffleIndices.empty() && 3875 !Data.first->ReorderIndices.empty() && 3876 !Data.first->isAltShuffle()) { 3877 // Insert user node to the list to try to sink reordering deeper in 3878 // the graph. 3879 OrderedEntries.insert(Data.first); 3880 } 3881 } else { 3882 reorderOrder(Data.first->ReorderIndices, Mask); 3883 } 3884 } 3885 } 3886 // If the reordering is unnecessary, just remove the reorder. 3887 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3888 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3889 VectorizableTree.front()->ReorderIndices.clear(); 3890 } 3891 3892 void BoUpSLP::buildExternalUses( 3893 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3894 // Collect the values that we need to extract from the tree. 3895 for (auto &TEPtr : VectorizableTree) { 3896 TreeEntry *Entry = TEPtr.get(); 3897 3898 // No need to handle users of gathered values. 3899 if (Entry->State == TreeEntry::NeedToGather) 3900 continue; 3901 3902 // For each lane: 3903 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3904 Value *Scalar = Entry->Scalars[Lane]; 3905 int FoundLane = Entry->findLaneForValue(Scalar); 3906 3907 // Check if the scalar is externally used as an extra arg. 3908 auto ExtI = ExternallyUsedValues.find(Scalar); 3909 if (ExtI != ExternallyUsedValues.end()) { 3910 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3911 << Lane << " from " << *Scalar << ".\n"); 3912 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3913 } 3914 for (User *U : Scalar->users()) { 3915 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3916 3917 Instruction *UserInst = dyn_cast<Instruction>(U); 3918 if (!UserInst) 3919 continue; 3920 3921 if (isDeleted(UserInst)) 3922 continue; 3923 3924 // Skip in-tree scalars that become vectors 3925 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3926 Value *UseScalar = UseEntry->Scalars[0]; 3927 // Some in-tree scalars will remain as scalar in vectorized 3928 // instructions. If that is the case, the one in Lane 0 will 3929 // be used. 3930 if (UseScalar != U || 3931 UseEntry->State == TreeEntry::ScatterVectorize || 3932 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3933 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3934 << ".\n"); 3935 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3936 continue; 3937 } 3938 } 3939 3940 // Ignore users in the user ignore list. 3941 if (is_contained(UserIgnoreList, UserInst)) 3942 continue; 3943 3944 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3945 << Lane << " from " << *Scalar << ".\n"); 3946 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3947 } 3948 } 3949 } 3950 } 3951 3952 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3953 ArrayRef<Value *> UserIgnoreLst) { 3954 deleteTree(); 3955 UserIgnoreList = UserIgnoreLst; 3956 if (!allSameType(Roots)) 3957 return; 3958 buildTree_rec(Roots, 0, EdgeInfo()); 3959 } 3960 3961 namespace { 3962 /// Tracks the state we can represent the loads in the given sequence. 3963 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3964 } // anonymous namespace 3965 3966 /// Checks if the given array of loads can be represented as a vectorized, 3967 /// scatter or just simple gather. 3968 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3969 const TargetTransformInfo &TTI, 3970 const DataLayout &DL, ScalarEvolution &SE, 3971 SmallVectorImpl<unsigned> &Order, 3972 SmallVectorImpl<Value *> &PointerOps) { 3973 // Check that a vectorized load would load the same memory as a scalar 3974 // load. For example, we don't want to vectorize loads that are smaller 3975 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3976 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3977 // from such a struct, we read/write packed bits disagreeing with the 3978 // unvectorized version. 3979 Type *ScalarTy = VL0->getType(); 3980 3981 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3982 return LoadsState::Gather; 3983 3984 // Make sure all loads in the bundle are simple - we can't vectorize 3985 // atomic or volatile loads. 3986 PointerOps.clear(); 3987 PointerOps.resize(VL.size()); 3988 auto *POIter = PointerOps.begin(); 3989 for (Value *V : VL) { 3990 auto *L = cast<LoadInst>(V); 3991 if (!L->isSimple()) 3992 return LoadsState::Gather; 3993 *POIter = L->getPointerOperand(); 3994 ++POIter; 3995 } 3996 3997 Order.clear(); 3998 // Check the order of pointer operands. 3999 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4000 Value *Ptr0; 4001 Value *PtrN; 4002 if (Order.empty()) { 4003 Ptr0 = PointerOps.front(); 4004 PtrN = PointerOps.back(); 4005 } else { 4006 Ptr0 = PointerOps[Order.front()]; 4007 PtrN = PointerOps[Order.back()]; 4008 } 4009 Optional<int> Diff = 4010 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4011 // Check that the sorted loads are consecutive. 4012 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4013 return LoadsState::Vectorize; 4014 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4015 for (Value *V : VL) 4016 CommonAlignment = 4017 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4018 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 4019 CommonAlignment)) 4020 return LoadsState::ScatterVectorize; 4021 } 4022 4023 return LoadsState::Gather; 4024 } 4025 4026 /// \return true if the specified list of values has only one instruction that 4027 /// requires scheduling, false otherwise. 4028 #ifndef NDEBUG 4029 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4030 Value *NeedsScheduling = nullptr; 4031 for (Value *V : VL) { 4032 if (doesNotNeedToBeScheduled(V)) 4033 continue; 4034 if (!NeedsScheduling) { 4035 NeedsScheduling = V; 4036 continue; 4037 } 4038 return false; 4039 } 4040 return NeedsScheduling; 4041 } 4042 #endif 4043 4044 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4045 const EdgeInfo &UserTreeIdx) { 4046 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4047 4048 SmallVector<int> ReuseShuffleIndicies; 4049 SmallVector<Value *> UniqueValues; 4050 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4051 &UserTreeIdx, 4052 this](const InstructionsState &S) { 4053 // Check that every instruction appears once in this bundle. 4054 DenseMap<Value *, unsigned> UniquePositions; 4055 for (Value *V : VL) { 4056 if (isConstant(V)) { 4057 ReuseShuffleIndicies.emplace_back( 4058 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4059 UniqueValues.emplace_back(V); 4060 continue; 4061 } 4062 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4063 ReuseShuffleIndicies.emplace_back(Res.first->second); 4064 if (Res.second) 4065 UniqueValues.emplace_back(V); 4066 } 4067 size_t NumUniqueScalarValues = UniqueValues.size(); 4068 if (NumUniqueScalarValues == VL.size()) { 4069 ReuseShuffleIndicies.clear(); 4070 } else { 4071 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4072 if (NumUniqueScalarValues <= 1 || 4073 (UniquePositions.size() == 1 && all_of(UniqueValues, 4074 [](Value *V) { 4075 return isa<UndefValue>(V) || 4076 !isConstant(V); 4077 })) || 4078 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4079 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4080 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4081 return false; 4082 } 4083 VL = UniqueValues; 4084 } 4085 return true; 4086 }; 4087 4088 InstructionsState S = getSameOpcode(VL); 4089 if (Depth == RecursionMaxDepth) { 4090 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4091 if (TryToFindDuplicates(S)) 4092 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4093 ReuseShuffleIndicies); 4094 return; 4095 } 4096 4097 // Don't handle scalable vectors 4098 if (S.getOpcode() == Instruction::ExtractElement && 4099 isa<ScalableVectorType>( 4100 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4101 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4102 if (TryToFindDuplicates(S)) 4103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4104 ReuseShuffleIndicies); 4105 return; 4106 } 4107 4108 // Don't handle vectors. 4109 if (S.OpValue->getType()->isVectorTy() && 4110 !isa<InsertElementInst>(S.OpValue)) { 4111 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4113 return; 4114 } 4115 4116 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4117 if (SI->getValueOperand()->getType()->isVectorTy()) { 4118 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4119 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4120 return; 4121 } 4122 4123 // If all of the operands are identical or constant we have a simple solution. 4124 // If we deal with insert/extract instructions, they all must have constant 4125 // indices, otherwise we should gather them, not try to vectorize. 4126 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4127 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4128 !all_of(VL, isVectorLikeInstWithConstOps))) { 4129 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4130 if (TryToFindDuplicates(S)) 4131 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4132 ReuseShuffleIndicies); 4133 return; 4134 } 4135 4136 // We now know that this is a vector of instructions of the same type from 4137 // the same block. 4138 4139 // Don't vectorize ephemeral values. 4140 for (Value *V : VL) { 4141 if (EphValues.count(V)) { 4142 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4143 << ") is ephemeral.\n"); 4144 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4145 return; 4146 } 4147 } 4148 4149 // Check if this is a duplicate of another entry. 4150 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4151 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4152 if (!E->isSame(VL)) { 4153 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4154 if (TryToFindDuplicates(S)) 4155 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4156 ReuseShuffleIndicies); 4157 return; 4158 } 4159 // Record the reuse of the tree node. FIXME, currently this is only used to 4160 // properly draw the graph rather than for the actual vectorization. 4161 E->UserTreeIndices.push_back(UserTreeIdx); 4162 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4163 << ".\n"); 4164 return; 4165 } 4166 4167 // Check that none of the instructions in the bundle are already in the tree. 4168 for (Value *V : VL) { 4169 auto *I = dyn_cast<Instruction>(V); 4170 if (!I) 4171 continue; 4172 if (getTreeEntry(I)) { 4173 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4174 << ") is already in tree.\n"); 4175 if (TryToFindDuplicates(S)) 4176 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4177 ReuseShuffleIndicies); 4178 return; 4179 } 4180 } 4181 4182 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4183 for (Value *V : VL) { 4184 if (is_contained(UserIgnoreList, V)) { 4185 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4186 if (TryToFindDuplicates(S)) 4187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4188 ReuseShuffleIndicies); 4189 return; 4190 } 4191 } 4192 4193 // Check that all of the users of the scalars that we want to vectorize are 4194 // schedulable. 4195 auto *VL0 = cast<Instruction>(S.OpValue); 4196 BasicBlock *BB = VL0->getParent(); 4197 4198 if (!DT->isReachableFromEntry(BB)) { 4199 // Don't go into unreachable blocks. They may contain instructions with 4200 // dependency cycles which confuse the final scheduling. 4201 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4202 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4203 return; 4204 } 4205 4206 // Check that every instruction appears once in this bundle. 4207 if (!TryToFindDuplicates(S)) 4208 return; 4209 4210 auto &BSRef = BlocksSchedules[BB]; 4211 if (!BSRef) 4212 BSRef = std::make_unique<BlockScheduling>(BB); 4213 4214 BlockScheduling &BS = *BSRef; 4215 4216 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4217 #ifdef EXPENSIVE_CHECKS 4218 // Make sure we didn't break any internal invariants 4219 BS.verify(); 4220 #endif 4221 if (!Bundle) { 4222 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4223 assert((!BS.getScheduleData(VL0) || 4224 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4225 "tryScheduleBundle should cancelScheduling on failure"); 4226 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4227 ReuseShuffleIndicies); 4228 return; 4229 } 4230 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4231 4232 unsigned ShuffleOrOp = S.isAltShuffle() ? 4233 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4234 switch (ShuffleOrOp) { 4235 case Instruction::PHI: { 4236 auto *PH = cast<PHINode>(VL0); 4237 4238 // Check for terminator values (e.g. invoke). 4239 for (Value *V : VL) 4240 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4241 Instruction *Term = dyn_cast<Instruction>(Incoming); 4242 if (Term && Term->isTerminator()) { 4243 LLVM_DEBUG(dbgs() 4244 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4245 BS.cancelScheduling(VL, VL0); 4246 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4247 ReuseShuffleIndicies); 4248 return; 4249 } 4250 } 4251 4252 TreeEntry *TE = 4253 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4254 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4255 4256 // Keeps the reordered operands to avoid code duplication. 4257 SmallVector<ValueList, 2> OperandsVec; 4258 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4259 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4260 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4261 TE->setOperand(I, Operands); 4262 OperandsVec.push_back(Operands); 4263 continue; 4264 } 4265 ValueList Operands; 4266 // Prepare the operand vector. 4267 for (Value *V : VL) 4268 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4269 PH->getIncomingBlock(I))); 4270 TE->setOperand(I, Operands); 4271 OperandsVec.push_back(Operands); 4272 } 4273 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4274 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4275 return; 4276 } 4277 case Instruction::ExtractValue: 4278 case Instruction::ExtractElement: { 4279 OrdersType CurrentOrder; 4280 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4281 if (Reuse) { 4282 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4283 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4284 ReuseShuffleIndicies); 4285 // This is a special case, as it does not gather, but at the same time 4286 // we are not extending buildTree_rec() towards the operands. 4287 ValueList Op0; 4288 Op0.assign(VL.size(), VL0->getOperand(0)); 4289 VectorizableTree.back()->setOperand(0, Op0); 4290 return; 4291 } 4292 if (!CurrentOrder.empty()) { 4293 LLVM_DEBUG({ 4294 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4295 "with order"; 4296 for (unsigned Idx : CurrentOrder) 4297 dbgs() << " " << Idx; 4298 dbgs() << "\n"; 4299 }); 4300 fixupOrderingIndices(CurrentOrder); 4301 // Insert new order with initial value 0, if it does not exist, 4302 // otherwise return the iterator to the existing one. 4303 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4304 ReuseShuffleIndicies, CurrentOrder); 4305 // This is a special case, as it does not gather, but at the same time 4306 // we are not extending buildTree_rec() towards the operands. 4307 ValueList Op0; 4308 Op0.assign(VL.size(), VL0->getOperand(0)); 4309 VectorizableTree.back()->setOperand(0, Op0); 4310 return; 4311 } 4312 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4313 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4314 ReuseShuffleIndicies); 4315 BS.cancelScheduling(VL, VL0); 4316 return; 4317 } 4318 case Instruction::InsertElement: { 4319 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4320 4321 // Check that we have a buildvector and not a shuffle of 2 or more 4322 // different vectors. 4323 ValueSet SourceVectors; 4324 for (Value *V : VL) { 4325 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4326 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4327 } 4328 4329 if (count_if(VL, [&SourceVectors](Value *V) { 4330 return !SourceVectors.contains(V); 4331 }) >= 2) { 4332 // Found 2nd source vector - cancel. 4333 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4334 "different source vectors.\n"); 4335 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4336 BS.cancelScheduling(VL, VL0); 4337 return; 4338 } 4339 4340 auto OrdCompare = [](const std::pair<int, int> &P1, 4341 const std::pair<int, int> &P2) { 4342 return P1.first > P2.first; 4343 }; 4344 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4345 decltype(OrdCompare)> 4346 Indices(OrdCompare); 4347 for (int I = 0, E = VL.size(); I < E; ++I) { 4348 unsigned Idx = *getInsertIndex(VL[I]); 4349 Indices.emplace(Idx, I); 4350 } 4351 OrdersType CurrentOrder(VL.size(), VL.size()); 4352 bool IsIdentity = true; 4353 for (int I = 0, E = VL.size(); I < E; ++I) { 4354 CurrentOrder[Indices.top().second] = I; 4355 IsIdentity &= Indices.top().second == I; 4356 Indices.pop(); 4357 } 4358 if (IsIdentity) 4359 CurrentOrder.clear(); 4360 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4361 None, CurrentOrder); 4362 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4363 4364 constexpr int NumOps = 2; 4365 ValueList VectorOperands[NumOps]; 4366 for (int I = 0; I < NumOps; ++I) { 4367 for (Value *V : VL) 4368 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4369 4370 TE->setOperand(I, VectorOperands[I]); 4371 } 4372 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4373 return; 4374 } 4375 case Instruction::Load: { 4376 // Check that a vectorized load would load the same memory as a scalar 4377 // load. For example, we don't want to vectorize loads that are smaller 4378 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4379 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4380 // from such a struct, we read/write packed bits disagreeing with the 4381 // unvectorized version. 4382 SmallVector<Value *> PointerOps; 4383 OrdersType CurrentOrder; 4384 TreeEntry *TE = nullptr; 4385 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4386 PointerOps)) { 4387 case LoadsState::Vectorize: 4388 if (CurrentOrder.empty()) { 4389 // Original loads are consecutive and does not require reordering. 4390 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4391 ReuseShuffleIndicies); 4392 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4393 } else { 4394 fixupOrderingIndices(CurrentOrder); 4395 // Need to reorder. 4396 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4397 ReuseShuffleIndicies, CurrentOrder); 4398 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4399 } 4400 TE->setOperandsInOrder(); 4401 break; 4402 case LoadsState::ScatterVectorize: 4403 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4404 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4405 UserTreeIdx, ReuseShuffleIndicies); 4406 TE->setOperandsInOrder(); 4407 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4408 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4409 break; 4410 case LoadsState::Gather: 4411 BS.cancelScheduling(VL, VL0); 4412 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4413 ReuseShuffleIndicies); 4414 #ifndef NDEBUG 4415 Type *ScalarTy = VL0->getType(); 4416 if (DL->getTypeSizeInBits(ScalarTy) != 4417 DL->getTypeAllocSizeInBits(ScalarTy)) 4418 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4419 else if (any_of(VL, [](Value *V) { 4420 return !cast<LoadInst>(V)->isSimple(); 4421 })) 4422 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4423 else 4424 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4425 #endif // NDEBUG 4426 break; 4427 } 4428 return; 4429 } 4430 case Instruction::ZExt: 4431 case Instruction::SExt: 4432 case Instruction::FPToUI: 4433 case Instruction::FPToSI: 4434 case Instruction::FPExt: 4435 case Instruction::PtrToInt: 4436 case Instruction::IntToPtr: 4437 case Instruction::SIToFP: 4438 case Instruction::UIToFP: 4439 case Instruction::Trunc: 4440 case Instruction::FPTrunc: 4441 case Instruction::BitCast: { 4442 Type *SrcTy = VL0->getOperand(0)->getType(); 4443 for (Value *V : VL) { 4444 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4445 if (Ty != SrcTy || !isValidElementType(Ty)) { 4446 BS.cancelScheduling(VL, VL0); 4447 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4448 ReuseShuffleIndicies); 4449 LLVM_DEBUG(dbgs() 4450 << "SLP: Gathering casts with different src types.\n"); 4451 return; 4452 } 4453 } 4454 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4455 ReuseShuffleIndicies); 4456 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4457 4458 TE->setOperandsInOrder(); 4459 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4460 ValueList Operands; 4461 // Prepare the operand vector. 4462 for (Value *V : VL) 4463 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4464 4465 buildTree_rec(Operands, Depth + 1, {TE, i}); 4466 } 4467 return; 4468 } 4469 case Instruction::ICmp: 4470 case Instruction::FCmp: { 4471 // Check that all of the compares have the same predicate. 4472 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4473 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4474 Type *ComparedTy = VL0->getOperand(0)->getType(); 4475 for (Value *V : VL) { 4476 CmpInst *Cmp = cast<CmpInst>(V); 4477 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4478 Cmp->getOperand(0)->getType() != ComparedTy) { 4479 BS.cancelScheduling(VL, VL0); 4480 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4481 ReuseShuffleIndicies); 4482 LLVM_DEBUG(dbgs() 4483 << "SLP: Gathering cmp with different predicate.\n"); 4484 return; 4485 } 4486 } 4487 4488 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4489 ReuseShuffleIndicies); 4490 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4491 4492 ValueList Left, Right; 4493 if (cast<CmpInst>(VL0)->isCommutative()) { 4494 // Commutative predicate - collect + sort operands of the instructions 4495 // so that each side is more likely to have the same opcode. 4496 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4497 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4498 } else { 4499 // Collect operands - commute if it uses the swapped predicate. 4500 for (Value *V : VL) { 4501 auto *Cmp = cast<CmpInst>(V); 4502 Value *LHS = Cmp->getOperand(0); 4503 Value *RHS = Cmp->getOperand(1); 4504 if (Cmp->getPredicate() != P0) 4505 std::swap(LHS, RHS); 4506 Left.push_back(LHS); 4507 Right.push_back(RHS); 4508 } 4509 } 4510 TE->setOperand(0, Left); 4511 TE->setOperand(1, Right); 4512 buildTree_rec(Left, Depth + 1, {TE, 0}); 4513 buildTree_rec(Right, Depth + 1, {TE, 1}); 4514 return; 4515 } 4516 case Instruction::Select: 4517 case Instruction::FNeg: 4518 case Instruction::Add: 4519 case Instruction::FAdd: 4520 case Instruction::Sub: 4521 case Instruction::FSub: 4522 case Instruction::Mul: 4523 case Instruction::FMul: 4524 case Instruction::UDiv: 4525 case Instruction::SDiv: 4526 case Instruction::FDiv: 4527 case Instruction::URem: 4528 case Instruction::SRem: 4529 case Instruction::FRem: 4530 case Instruction::Shl: 4531 case Instruction::LShr: 4532 case Instruction::AShr: 4533 case Instruction::And: 4534 case Instruction::Or: 4535 case Instruction::Xor: { 4536 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4537 ReuseShuffleIndicies); 4538 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4539 4540 // Sort operands of the instructions so that each side is more likely to 4541 // have the same opcode. 4542 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4543 ValueList Left, Right; 4544 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4545 TE->setOperand(0, Left); 4546 TE->setOperand(1, Right); 4547 buildTree_rec(Left, Depth + 1, {TE, 0}); 4548 buildTree_rec(Right, Depth + 1, {TE, 1}); 4549 return; 4550 } 4551 4552 TE->setOperandsInOrder(); 4553 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4554 ValueList Operands; 4555 // Prepare the operand vector. 4556 for (Value *V : VL) 4557 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4558 4559 buildTree_rec(Operands, Depth + 1, {TE, i}); 4560 } 4561 return; 4562 } 4563 case Instruction::GetElementPtr: { 4564 // We don't combine GEPs with complicated (nested) indexing. 4565 for (Value *V : VL) { 4566 if (cast<Instruction>(V)->getNumOperands() != 2) { 4567 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4568 BS.cancelScheduling(VL, VL0); 4569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4570 ReuseShuffleIndicies); 4571 return; 4572 } 4573 } 4574 4575 // We can't combine several GEPs into one vector if they operate on 4576 // different types. 4577 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4578 for (Value *V : VL) { 4579 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4580 if (Ty0 != CurTy) { 4581 LLVM_DEBUG(dbgs() 4582 << "SLP: not-vectorizable GEP (different types).\n"); 4583 BS.cancelScheduling(VL, VL0); 4584 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4585 ReuseShuffleIndicies); 4586 return; 4587 } 4588 } 4589 4590 // We don't combine GEPs with non-constant indexes. 4591 Type *Ty1 = VL0->getOperand(1)->getType(); 4592 for (Value *V : VL) { 4593 auto Op = cast<Instruction>(V)->getOperand(1); 4594 if (!isa<ConstantInt>(Op) || 4595 (Op->getType() != Ty1 && 4596 Op->getType()->getScalarSizeInBits() > 4597 DL->getIndexSizeInBits( 4598 V->getType()->getPointerAddressSpace()))) { 4599 LLVM_DEBUG(dbgs() 4600 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4601 BS.cancelScheduling(VL, VL0); 4602 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4603 ReuseShuffleIndicies); 4604 return; 4605 } 4606 } 4607 4608 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4609 ReuseShuffleIndicies); 4610 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4611 SmallVector<ValueList, 2> Operands(2); 4612 // Prepare the operand vector for pointer operands. 4613 for (Value *V : VL) 4614 Operands.front().push_back( 4615 cast<GetElementPtrInst>(V)->getPointerOperand()); 4616 TE->setOperand(0, Operands.front()); 4617 // Need to cast all indices to the same type before vectorization to 4618 // avoid crash. 4619 // Required to be able to find correct matches between different gather 4620 // nodes and reuse the vectorized values rather than trying to gather them 4621 // again. 4622 int IndexIdx = 1; 4623 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4624 Type *Ty = all_of(VL, 4625 [VL0Ty, IndexIdx](Value *V) { 4626 return VL0Ty == cast<GetElementPtrInst>(V) 4627 ->getOperand(IndexIdx) 4628 ->getType(); 4629 }) 4630 ? VL0Ty 4631 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4632 ->getPointerOperandType() 4633 ->getScalarType()); 4634 // Prepare the operand vector. 4635 for (Value *V : VL) { 4636 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4637 auto *CI = cast<ConstantInt>(Op); 4638 Operands.back().push_back(ConstantExpr::getIntegerCast( 4639 CI, Ty, CI->getValue().isSignBitSet())); 4640 } 4641 TE->setOperand(IndexIdx, Operands.back()); 4642 4643 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4644 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4645 return; 4646 } 4647 case Instruction::Store: { 4648 // Check if the stores are consecutive or if we need to swizzle them. 4649 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4650 // Avoid types that are padded when being allocated as scalars, while 4651 // being packed together in a vector (such as i1). 4652 if (DL->getTypeSizeInBits(ScalarTy) != 4653 DL->getTypeAllocSizeInBits(ScalarTy)) { 4654 BS.cancelScheduling(VL, VL0); 4655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4656 ReuseShuffleIndicies); 4657 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4658 return; 4659 } 4660 // Make sure all stores in the bundle are simple - we can't vectorize 4661 // atomic or volatile stores. 4662 SmallVector<Value *, 4> PointerOps(VL.size()); 4663 ValueList Operands(VL.size()); 4664 auto POIter = PointerOps.begin(); 4665 auto OIter = Operands.begin(); 4666 for (Value *V : VL) { 4667 auto *SI = cast<StoreInst>(V); 4668 if (!SI->isSimple()) { 4669 BS.cancelScheduling(VL, VL0); 4670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4671 ReuseShuffleIndicies); 4672 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4673 return; 4674 } 4675 *POIter = SI->getPointerOperand(); 4676 *OIter = SI->getValueOperand(); 4677 ++POIter; 4678 ++OIter; 4679 } 4680 4681 OrdersType CurrentOrder; 4682 // Check the order of pointer operands. 4683 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4684 Value *Ptr0; 4685 Value *PtrN; 4686 if (CurrentOrder.empty()) { 4687 Ptr0 = PointerOps.front(); 4688 PtrN = PointerOps.back(); 4689 } else { 4690 Ptr0 = PointerOps[CurrentOrder.front()]; 4691 PtrN = PointerOps[CurrentOrder.back()]; 4692 } 4693 Optional<int> Dist = 4694 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4695 // Check that the sorted pointer operands are consecutive. 4696 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4697 if (CurrentOrder.empty()) { 4698 // Original stores are consecutive and does not require reordering. 4699 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4700 UserTreeIdx, ReuseShuffleIndicies); 4701 TE->setOperandsInOrder(); 4702 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4703 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4704 } else { 4705 fixupOrderingIndices(CurrentOrder); 4706 TreeEntry *TE = 4707 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4708 ReuseShuffleIndicies, CurrentOrder); 4709 TE->setOperandsInOrder(); 4710 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4711 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4712 } 4713 return; 4714 } 4715 } 4716 4717 BS.cancelScheduling(VL, VL0); 4718 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4719 ReuseShuffleIndicies); 4720 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4721 return; 4722 } 4723 case Instruction::Call: { 4724 // Check if the calls are all to the same vectorizable intrinsic or 4725 // library function. 4726 CallInst *CI = cast<CallInst>(VL0); 4727 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4728 4729 VFShape Shape = VFShape::get( 4730 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4731 false /*HasGlobalPred*/); 4732 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4733 4734 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4735 BS.cancelScheduling(VL, VL0); 4736 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4737 ReuseShuffleIndicies); 4738 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4739 return; 4740 } 4741 Function *F = CI->getCalledFunction(); 4742 unsigned NumArgs = CI->arg_size(); 4743 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4744 for (unsigned j = 0; j != NumArgs; ++j) 4745 if (hasVectorIntrinsicScalarOpd(ID, j)) 4746 ScalarArgs[j] = CI->getArgOperand(j); 4747 for (Value *V : VL) { 4748 CallInst *CI2 = dyn_cast<CallInst>(V); 4749 if (!CI2 || CI2->getCalledFunction() != F || 4750 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4751 (VecFunc && 4752 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4753 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4754 BS.cancelScheduling(VL, VL0); 4755 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4756 ReuseShuffleIndicies); 4757 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4758 << "\n"); 4759 return; 4760 } 4761 // Some intrinsics have scalar arguments and should be same in order for 4762 // them to be vectorized. 4763 for (unsigned j = 0; j != NumArgs; ++j) { 4764 if (hasVectorIntrinsicScalarOpd(ID, j)) { 4765 Value *A1J = CI2->getArgOperand(j); 4766 if (ScalarArgs[j] != A1J) { 4767 BS.cancelScheduling(VL, VL0); 4768 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4769 ReuseShuffleIndicies); 4770 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4771 << " argument " << ScalarArgs[j] << "!=" << A1J 4772 << "\n"); 4773 return; 4774 } 4775 } 4776 } 4777 // Verify that the bundle operands are identical between the two calls. 4778 if (CI->hasOperandBundles() && 4779 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4780 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4781 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4782 BS.cancelScheduling(VL, VL0); 4783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4784 ReuseShuffleIndicies); 4785 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4786 << *CI << "!=" << *V << '\n'); 4787 return; 4788 } 4789 } 4790 4791 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4792 ReuseShuffleIndicies); 4793 TE->setOperandsInOrder(); 4794 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4795 // For scalar operands no need to to create an entry since no need to 4796 // vectorize it. 4797 if (hasVectorIntrinsicScalarOpd(ID, i)) 4798 continue; 4799 ValueList Operands; 4800 // Prepare the operand vector. 4801 for (Value *V : VL) { 4802 auto *CI2 = cast<CallInst>(V); 4803 Operands.push_back(CI2->getArgOperand(i)); 4804 } 4805 buildTree_rec(Operands, Depth + 1, {TE, i}); 4806 } 4807 return; 4808 } 4809 case Instruction::ShuffleVector: { 4810 // If this is not an alternate sequence of opcode like add-sub 4811 // then do not vectorize this instruction. 4812 if (!S.isAltShuffle()) { 4813 BS.cancelScheduling(VL, VL0); 4814 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4815 ReuseShuffleIndicies); 4816 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4817 return; 4818 } 4819 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4820 ReuseShuffleIndicies); 4821 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4822 4823 // Reorder operands if reordering would enable vectorization. 4824 auto *CI = dyn_cast<CmpInst>(VL0); 4825 if (isa<BinaryOperator>(VL0) || CI) { 4826 ValueList Left, Right; 4827 if (!CI || all_of(VL, [](Value *V) { 4828 return cast<CmpInst>(V)->isCommutative(); 4829 })) { 4830 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4831 } else { 4832 CmpInst::Predicate P0 = CI->getPredicate(); 4833 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4834 assert(P0 != AltP0 && 4835 "Expected different main/alternate predicates."); 4836 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4837 Value *BaseOp0 = VL0->getOperand(0); 4838 Value *BaseOp1 = VL0->getOperand(1); 4839 // Collect operands - commute if it uses the swapped predicate or 4840 // alternate operation. 4841 for (Value *V : VL) { 4842 auto *Cmp = cast<CmpInst>(V); 4843 Value *LHS = Cmp->getOperand(0); 4844 Value *RHS = Cmp->getOperand(1); 4845 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4846 if (P0 == AltP0Swapped) { 4847 if (CI != Cmp && S.AltOp != Cmp && 4848 ((P0 == CurrentPred && 4849 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4850 (AltP0 == CurrentPred && 4851 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4852 std::swap(LHS, RHS); 4853 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4854 std::swap(LHS, RHS); 4855 } 4856 Left.push_back(LHS); 4857 Right.push_back(RHS); 4858 } 4859 } 4860 TE->setOperand(0, Left); 4861 TE->setOperand(1, Right); 4862 buildTree_rec(Left, Depth + 1, {TE, 0}); 4863 buildTree_rec(Right, Depth + 1, {TE, 1}); 4864 return; 4865 } 4866 4867 TE->setOperandsInOrder(); 4868 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4869 ValueList Operands; 4870 // Prepare the operand vector. 4871 for (Value *V : VL) 4872 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4873 4874 buildTree_rec(Operands, Depth + 1, {TE, i}); 4875 } 4876 return; 4877 } 4878 default: 4879 BS.cancelScheduling(VL, VL0); 4880 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4881 ReuseShuffleIndicies); 4882 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4883 return; 4884 } 4885 } 4886 4887 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4888 unsigned N = 1; 4889 Type *EltTy = T; 4890 4891 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4892 isa<VectorType>(EltTy)) { 4893 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4894 // Check that struct is homogeneous. 4895 for (const auto *Ty : ST->elements()) 4896 if (Ty != *ST->element_begin()) 4897 return 0; 4898 N *= ST->getNumElements(); 4899 EltTy = *ST->element_begin(); 4900 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4901 N *= AT->getNumElements(); 4902 EltTy = AT->getElementType(); 4903 } else { 4904 auto *VT = cast<FixedVectorType>(EltTy); 4905 N *= VT->getNumElements(); 4906 EltTy = VT->getElementType(); 4907 } 4908 } 4909 4910 if (!isValidElementType(EltTy)) 4911 return 0; 4912 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4913 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4914 return 0; 4915 return N; 4916 } 4917 4918 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4919 SmallVectorImpl<unsigned> &CurrentOrder) const { 4920 const auto *It = find_if(VL, [](Value *V) { 4921 return isa<ExtractElementInst, ExtractValueInst>(V); 4922 }); 4923 assert(It != VL.end() && "Expected at least one extract instruction."); 4924 auto *E0 = cast<Instruction>(*It); 4925 assert(all_of(VL, 4926 [](Value *V) { 4927 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4928 V); 4929 }) && 4930 "Invalid opcode"); 4931 // Check if all of the extracts come from the same vector and from the 4932 // correct offset. 4933 Value *Vec = E0->getOperand(0); 4934 4935 CurrentOrder.clear(); 4936 4937 // We have to extract from a vector/aggregate with the same number of elements. 4938 unsigned NElts; 4939 if (E0->getOpcode() == Instruction::ExtractValue) { 4940 const DataLayout &DL = E0->getModule()->getDataLayout(); 4941 NElts = canMapToVector(Vec->getType(), DL); 4942 if (!NElts) 4943 return false; 4944 // Check if load can be rewritten as load of vector. 4945 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4946 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4947 return false; 4948 } else { 4949 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4950 } 4951 4952 if (NElts != VL.size()) 4953 return false; 4954 4955 // Check that all of the indices extract from the correct offset. 4956 bool ShouldKeepOrder = true; 4957 unsigned E = VL.size(); 4958 // Assign to all items the initial value E + 1 so we can check if the extract 4959 // instruction index was used already. 4960 // Also, later we can check that all the indices are used and we have a 4961 // consecutive access in the extract instructions, by checking that no 4962 // element of CurrentOrder still has value E + 1. 4963 CurrentOrder.assign(E, E); 4964 unsigned I = 0; 4965 for (; I < E; ++I) { 4966 auto *Inst = dyn_cast<Instruction>(VL[I]); 4967 if (!Inst) 4968 continue; 4969 if (Inst->getOperand(0) != Vec) 4970 break; 4971 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4972 if (isa<UndefValue>(EE->getIndexOperand())) 4973 continue; 4974 Optional<unsigned> Idx = getExtractIndex(Inst); 4975 if (!Idx) 4976 break; 4977 const unsigned ExtIdx = *Idx; 4978 if (ExtIdx != I) { 4979 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4980 break; 4981 ShouldKeepOrder = false; 4982 CurrentOrder[ExtIdx] = I; 4983 } else { 4984 if (CurrentOrder[I] != E) 4985 break; 4986 CurrentOrder[I] = I; 4987 } 4988 } 4989 if (I < E) { 4990 CurrentOrder.clear(); 4991 return false; 4992 } 4993 if (ShouldKeepOrder) 4994 CurrentOrder.clear(); 4995 4996 return ShouldKeepOrder; 4997 } 4998 4999 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5000 ArrayRef<Value *> VectorizedVals) const { 5001 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5002 all_of(I->users(), [this](User *U) { 5003 return ScalarToTreeEntry.count(U) > 0 || 5004 isVectorLikeInstWithConstOps(U) || 5005 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5006 }); 5007 } 5008 5009 static std::pair<InstructionCost, InstructionCost> 5010 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5011 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5012 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5013 5014 // Calculate the cost of the scalar and vector calls. 5015 SmallVector<Type *, 4> VecTys; 5016 for (Use &Arg : CI->args()) 5017 VecTys.push_back( 5018 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5019 FastMathFlags FMF; 5020 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5021 FMF = FPCI->getFastMathFlags(); 5022 SmallVector<const Value *> Arguments(CI->args()); 5023 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5024 dyn_cast<IntrinsicInst>(CI)); 5025 auto IntrinsicCost = 5026 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5027 5028 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5029 VecTy->getNumElements())), 5030 false /*HasGlobalPred*/); 5031 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5032 auto LibCost = IntrinsicCost; 5033 if (!CI->isNoBuiltin() && VecFunc) { 5034 // Calculate the cost of the vector library call. 5035 // If the corresponding vector call is cheaper, return its cost. 5036 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5037 TTI::TCK_RecipThroughput); 5038 } 5039 return {IntrinsicCost, LibCost}; 5040 } 5041 5042 /// Compute the cost of creating a vector of type \p VecTy containing the 5043 /// extracted values from \p VL. 5044 static InstructionCost 5045 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5046 TargetTransformInfo::ShuffleKind ShuffleKind, 5047 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5048 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5049 5050 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5051 VecTy->getNumElements() < NumOfParts) 5052 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5053 5054 bool AllConsecutive = true; 5055 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5056 unsigned Idx = -1; 5057 InstructionCost Cost = 0; 5058 5059 // Process extracts in blocks of EltsPerVector to check if the source vector 5060 // operand can be re-used directly. If not, add the cost of creating a shuffle 5061 // to extract the values into a vector register. 5062 for (auto *V : VL) { 5063 ++Idx; 5064 5065 // Need to exclude undefs from analysis. 5066 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5067 continue; 5068 5069 // Reached the start of a new vector registers. 5070 if (Idx % EltsPerVector == 0) { 5071 AllConsecutive = true; 5072 continue; 5073 } 5074 5075 // Check all extracts for a vector register on the target directly 5076 // extract values in order. 5077 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5078 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5079 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5080 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5081 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5082 } 5083 5084 if (AllConsecutive) 5085 continue; 5086 5087 // Skip all indices, except for the last index per vector block. 5088 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5089 continue; 5090 5091 // If we have a series of extracts which are not consecutive and hence 5092 // cannot re-use the source vector register directly, compute the shuffle 5093 // cost to extract the a vector with EltsPerVector elements. 5094 Cost += TTI.getShuffleCost( 5095 TargetTransformInfo::SK_PermuteSingleSrc, 5096 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5097 } 5098 return Cost; 5099 } 5100 5101 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5102 /// operations operands. 5103 static void 5104 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5105 ArrayRef<int> ReusesIndices, 5106 const function_ref<bool(Instruction *)> IsAltOp, 5107 SmallVectorImpl<int> &Mask, 5108 SmallVectorImpl<Value *> *OpScalars = nullptr, 5109 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5110 unsigned Sz = VL.size(); 5111 Mask.assign(Sz, UndefMaskElem); 5112 SmallVector<int> OrderMask; 5113 if (!ReorderIndices.empty()) 5114 inversePermutation(ReorderIndices, OrderMask); 5115 for (unsigned I = 0; I < Sz; ++I) { 5116 unsigned Idx = I; 5117 if (!ReorderIndices.empty()) 5118 Idx = OrderMask[I]; 5119 auto *OpInst = cast<Instruction>(VL[Idx]); 5120 if (IsAltOp(OpInst)) { 5121 Mask[I] = Sz + Idx; 5122 if (AltScalars) 5123 AltScalars->push_back(OpInst); 5124 } else { 5125 Mask[I] = Idx; 5126 if (OpScalars) 5127 OpScalars->push_back(OpInst); 5128 } 5129 } 5130 if (!ReusesIndices.empty()) { 5131 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5132 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5133 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5134 }); 5135 Mask.swap(NewMask); 5136 } 5137 } 5138 5139 /// Checks if the specified instruction \p I is an alternate operation for the 5140 /// given \p MainOp and \p AltOp instructions. 5141 static bool isAlternateInstruction(const Instruction *I, 5142 const Instruction *MainOp, 5143 const Instruction *AltOp) { 5144 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5145 auto *AltCI0 = cast<CmpInst>(AltOp); 5146 auto *CI = cast<CmpInst>(I); 5147 CmpInst::Predicate P0 = CI0->getPredicate(); 5148 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5149 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5150 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5151 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5152 if (P0 == AltP0Swapped) 5153 return I == AltCI0 || 5154 (I != MainOp && 5155 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5156 CI->getOperand(0), CI->getOperand(1))); 5157 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5158 } 5159 return I->getOpcode() == AltOp->getOpcode(); 5160 } 5161 5162 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5163 ArrayRef<Value *> VectorizedVals) { 5164 ArrayRef<Value*> VL = E->Scalars; 5165 5166 Type *ScalarTy = VL[0]->getType(); 5167 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5168 ScalarTy = SI->getValueOperand()->getType(); 5169 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5170 ScalarTy = CI->getOperand(0)->getType(); 5171 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5172 ScalarTy = IE->getOperand(1)->getType(); 5173 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5174 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5175 5176 // If we have computed a smaller type for the expression, update VecTy so 5177 // that the costs will be accurate. 5178 if (MinBWs.count(VL[0])) 5179 VecTy = FixedVectorType::get( 5180 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5181 unsigned EntryVF = E->getVectorFactor(); 5182 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5183 5184 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5185 // FIXME: it tries to fix a problem with MSVC buildbots. 5186 TargetTransformInfo &TTIRef = *TTI; 5187 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5188 VectorizedVals, E](InstructionCost &Cost) { 5189 DenseMap<Value *, int> ExtractVectorsTys; 5190 SmallPtrSet<Value *, 4> CheckedExtracts; 5191 for (auto *V : VL) { 5192 if (isa<UndefValue>(V)) 5193 continue; 5194 // If all users of instruction are going to be vectorized and this 5195 // instruction itself is not going to be vectorized, consider this 5196 // instruction as dead and remove its cost from the final cost of the 5197 // vectorized tree. 5198 // Also, avoid adjusting the cost for extractelements with multiple uses 5199 // in different graph entries. 5200 const TreeEntry *VE = getTreeEntry(V); 5201 if (!CheckedExtracts.insert(V).second || 5202 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5203 (VE && VE != E)) 5204 continue; 5205 auto *EE = cast<ExtractElementInst>(V); 5206 Optional<unsigned> EEIdx = getExtractIndex(EE); 5207 if (!EEIdx) 5208 continue; 5209 unsigned Idx = *EEIdx; 5210 if (TTIRef.getNumberOfParts(VecTy) != 5211 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5212 auto It = 5213 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5214 It->getSecond() = std::min<int>(It->second, Idx); 5215 } 5216 // Take credit for instruction that will become dead. 5217 if (EE->hasOneUse()) { 5218 Instruction *Ext = EE->user_back(); 5219 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5220 all_of(Ext->users(), 5221 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5222 // Use getExtractWithExtendCost() to calculate the cost of 5223 // extractelement/ext pair. 5224 Cost -= 5225 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5226 EE->getVectorOperandType(), Idx); 5227 // Add back the cost of s|zext which is subtracted separately. 5228 Cost += TTIRef.getCastInstrCost( 5229 Ext->getOpcode(), Ext->getType(), EE->getType(), 5230 TTI::getCastContextHint(Ext), CostKind, Ext); 5231 continue; 5232 } 5233 } 5234 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5235 EE->getVectorOperandType(), Idx); 5236 } 5237 // Add a cost for subvector extracts/inserts if required. 5238 for (const auto &Data : ExtractVectorsTys) { 5239 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5240 unsigned NumElts = VecTy->getNumElements(); 5241 if (Data.second % NumElts == 0) 5242 continue; 5243 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5244 unsigned Idx = (Data.second / NumElts) * NumElts; 5245 unsigned EENumElts = EEVTy->getNumElements(); 5246 if (Idx + NumElts <= EENumElts) { 5247 Cost += 5248 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5249 EEVTy, None, Idx, VecTy); 5250 } else { 5251 // Need to round up the subvector type vectorization factor to avoid a 5252 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5253 // <= EENumElts. 5254 auto *SubVT = 5255 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5256 Cost += 5257 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5258 EEVTy, None, Idx, SubVT); 5259 } 5260 } else { 5261 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5262 VecTy, None, 0, EEVTy); 5263 } 5264 } 5265 }; 5266 if (E->State == TreeEntry::NeedToGather) { 5267 if (allConstant(VL)) 5268 return 0; 5269 if (isa<InsertElementInst>(VL[0])) 5270 return InstructionCost::getInvalid(); 5271 SmallVector<int> Mask; 5272 SmallVector<const TreeEntry *> Entries; 5273 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5274 isGatherShuffledEntry(E, Mask, Entries); 5275 if (Shuffle.hasValue()) { 5276 InstructionCost GatherCost = 0; 5277 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5278 // Perfect match in the graph, will reuse the previously vectorized 5279 // node. Cost is 0. 5280 LLVM_DEBUG( 5281 dbgs() 5282 << "SLP: perfect diamond match for gather bundle that starts with " 5283 << *VL.front() << ".\n"); 5284 if (NeedToShuffleReuses) 5285 GatherCost = 5286 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5287 FinalVecTy, E->ReuseShuffleIndices); 5288 } else { 5289 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5290 << " entries for bundle that starts with " 5291 << *VL.front() << ".\n"); 5292 // Detected that instead of gather we can emit a shuffle of single/two 5293 // previously vectorized nodes. Add the cost of the permutation rather 5294 // than gather. 5295 ::addMask(Mask, E->ReuseShuffleIndices); 5296 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5297 } 5298 return GatherCost; 5299 } 5300 if ((E->getOpcode() == Instruction::ExtractElement || 5301 all_of(E->Scalars, 5302 [](Value *V) { 5303 return isa<ExtractElementInst, UndefValue>(V); 5304 })) && 5305 allSameType(VL)) { 5306 // Check that gather of extractelements can be represented as just a 5307 // shuffle of a single/two vectors the scalars are extracted from. 5308 SmallVector<int> Mask; 5309 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5310 isFixedVectorShuffle(VL, Mask); 5311 if (ShuffleKind.hasValue()) { 5312 // Found the bunch of extractelement instructions that must be gathered 5313 // into a vector and can be represented as a permutation elements in a 5314 // single input vector or of 2 input vectors. 5315 InstructionCost Cost = 5316 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5317 AdjustExtractsCost(Cost); 5318 if (NeedToShuffleReuses) 5319 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5320 FinalVecTy, E->ReuseShuffleIndices); 5321 return Cost; 5322 } 5323 } 5324 if (isSplat(VL)) { 5325 // Found the broadcasting of the single scalar, calculate the cost as the 5326 // broadcast. 5327 assert(VecTy == FinalVecTy && 5328 "No reused scalars expected for broadcast."); 5329 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5330 /*Mask=*/None, /*Index=*/0, 5331 /*SubTp=*/nullptr, /*Args=*/VL); 5332 } 5333 InstructionCost ReuseShuffleCost = 0; 5334 if (NeedToShuffleReuses) 5335 ReuseShuffleCost = TTI->getShuffleCost( 5336 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5337 // Improve gather cost for gather of loads, if we can group some of the 5338 // loads into vector loads. 5339 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5340 !E->isAltShuffle()) { 5341 BoUpSLP::ValueSet VectorizedLoads; 5342 unsigned StartIdx = 0; 5343 unsigned VF = VL.size() / 2; 5344 unsigned VectorizedCnt = 0; 5345 unsigned ScatterVectorizeCnt = 0; 5346 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5347 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5348 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5349 Cnt += VF) { 5350 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5351 if (!VectorizedLoads.count(Slice.front()) && 5352 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5353 SmallVector<Value *> PointerOps; 5354 OrdersType CurrentOrder; 5355 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5356 *SE, CurrentOrder, PointerOps); 5357 switch (LS) { 5358 case LoadsState::Vectorize: 5359 case LoadsState::ScatterVectorize: 5360 // Mark the vectorized loads so that we don't vectorize them 5361 // again. 5362 if (LS == LoadsState::Vectorize) 5363 ++VectorizedCnt; 5364 else 5365 ++ScatterVectorizeCnt; 5366 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5367 // If we vectorized initial block, no need to try to vectorize it 5368 // again. 5369 if (Cnt == StartIdx) 5370 StartIdx += VF; 5371 break; 5372 case LoadsState::Gather: 5373 break; 5374 } 5375 } 5376 } 5377 // Check if the whole array was vectorized already - exit. 5378 if (StartIdx >= VL.size()) 5379 break; 5380 // Found vectorizable parts - exit. 5381 if (!VectorizedLoads.empty()) 5382 break; 5383 } 5384 if (!VectorizedLoads.empty()) { 5385 InstructionCost GatherCost = 0; 5386 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5387 bool NeedInsertSubvectorAnalysis = 5388 !NumParts || (VL.size() / VF) > NumParts; 5389 // Get the cost for gathered loads. 5390 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5391 if (VectorizedLoads.contains(VL[I])) 5392 continue; 5393 GatherCost += getGatherCost(VL.slice(I, VF)); 5394 } 5395 // The cost for vectorized loads. 5396 InstructionCost ScalarsCost = 0; 5397 for (Value *V : VectorizedLoads) { 5398 auto *LI = cast<LoadInst>(V); 5399 ScalarsCost += TTI->getMemoryOpCost( 5400 Instruction::Load, LI->getType(), LI->getAlign(), 5401 LI->getPointerAddressSpace(), CostKind, LI); 5402 } 5403 auto *LI = cast<LoadInst>(E->getMainOp()); 5404 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5405 Align Alignment = LI->getAlign(); 5406 GatherCost += 5407 VectorizedCnt * 5408 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5409 LI->getPointerAddressSpace(), CostKind, LI); 5410 GatherCost += ScatterVectorizeCnt * 5411 TTI->getGatherScatterOpCost( 5412 Instruction::Load, LoadTy, LI->getPointerOperand(), 5413 /*VariableMask=*/false, Alignment, CostKind, LI); 5414 if (NeedInsertSubvectorAnalysis) { 5415 // Add the cost for the subvectors insert. 5416 for (int I = VF, E = VL.size(); I < E; I += VF) 5417 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5418 None, I, LoadTy); 5419 } 5420 return ReuseShuffleCost + GatherCost - ScalarsCost; 5421 } 5422 } 5423 return ReuseShuffleCost + getGatherCost(VL); 5424 } 5425 InstructionCost CommonCost = 0; 5426 SmallVector<int> Mask; 5427 if (!E->ReorderIndices.empty()) { 5428 SmallVector<int> NewMask; 5429 if (E->getOpcode() == Instruction::Store) { 5430 // For stores the order is actually a mask. 5431 NewMask.resize(E->ReorderIndices.size()); 5432 copy(E->ReorderIndices, NewMask.begin()); 5433 } else { 5434 inversePermutation(E->ReorderIndices, NewMask); 5435 } 5436 ::addMask(Mask, NewMask); 5437 } 5438 if (NeedToShuffleReuses) 5439 ::addMask(Mask, E->ReuseShuffleIndices); 5440 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5441 CommonCost = 5442 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5443 assert((E->State == TreeEntry::Vectorize || 5444 E->State == TreeEntry::ScatterVectorize) && 5445 "Unhandled state"); 5446 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5447 Instruction *VL0 = E->getMainOp(); 5448 unsigned ShuffleOrOp = 5449 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5450 switch (ShuffleOrOp) { 5451 case Instruction::PHI: 5452 return 0; 5453 5454 case Instruction::ExtractValue: 5455 case Instruction::ExtractElement: { 5456 // The common cost of removal ExtractElement/ExtractValue instructions + 5457 // the cost of shuffles, if required to resuffle the original vector. 5458 if (NeedToShuffleReuses) { 5459 unsigned Idx = 0; 5460 for (unsigned I : E->ReuseShuffleIndices) { 5461 if (ShuffleOrOp == Instruction::ExtractElement) { 5462 auto *EE = cast<ExtractElementInst>(VL[I]); 5463 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5464 EE->getVectorOperandType(), 5465 *getExtractIndex(EE)); 5466 } else { 5467 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5468 VecTy, Idx); 5469 ++Idx; 5470 } 5471 } 5472 Idx = EntryVF; 5473 for (Value *V : VL) { 5474 if (ShuffleOrOp == Instruction::ExtractElement) { 5475 auto *EE = cast<ExtractElementInst>(V); 5476 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5477 EE->getVectorOperandType(), 5478 *getExtractIndex(EE)); 5479 } else { 5480 --Idx; 5481 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5482 VecTy, Idx); 5483 } 5484 } 5485 } 5486 if (ShuffleOrOp == Instruction::ExtractValue) { 5487 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5488 auto *EI = cast<Instruction>(VL[I]); 5489 // Take credit for instruction that will become dead. 5490 if (EI->hasOneUse()) { 5491 Instruction *Ext = EI->user_back(); 5492 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5493 all_of(Ext->users(), 5494 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5495 // Use getExtractWithExtendCost() to calculate the cost of 5496 // extractelement/ext pair. 5497 CommonCost -= TTI->getExtractWithExtendCost( 5498 Ext->getOpcode(), Ext->getType(), VecTy, I); 5499 // Add back the cost of s|zext which is subtracted separately. 5500 CommonCost += TTI->getCastInstrCost( 5501 Ext->getOpcode(), Ext->getType(), EI->getType(), 5502 TTI::getCastContextHint(Ext), CostKind, Ext); 5503 continue; 5504 } 5505 } 5506 CommonCost -= 5507 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5508 } 5509 } else { 5510 AdjustExtractsCost(CommonCost); 5511 } 5512 return CommonCost; 5513 } 5514 case Instruction::InsertElement: { 5515 assert(E->ReuseShuffleIndices.empty() && 5516 "Unique insertelements only are expected."); 5517 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5518 5519 unsigned const NumElts = SrcVecTy->getNumElements(); 5520 unsigned const NumScalars = VL.size(); 5521 APInt DemandedElts = APInt::getZero(NumElts); 5522 // TODO: Add support for Instruction::InsertValue. 5523 SmallVector<int> Mask; 5524 if (!E->ReorderIndices.empty()) { 5525 inversePermutation(E->ReorderIndices, Mask); 5526 Mask.append(NumElts - NumScalars, UndefMaskElem); 5527 } else { 5528 Mask.assign(NumElts, UndefMaskElem); 5529 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5530 } 5531 unsigned Offset = *getInsertIndex(VL0); 5532 bool IsIdentity = true; 5533 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5534 Mask.swap(PrevMask); 5535 for (unsigned I = 0; I < NumScalars; ++I) { 5536 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5537 DemandedElts.setBit(InsertIdx); 5538 IsIdentity &= InsertIdx - Offset == I; 5539 Mask[InsertIdx - Offset] = I; 5540 } 5541 assert(Offset < NumElts && "Failed to find vector index offset"); 5542 5543 InstructionCost Cost = 0; 5544 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5545 /*Insert*/ true, /*Extract*/ false); 5546 5547 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5548 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5549 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5550 Cost += TTI->getShuffleCost( 5551 TargetTransformInfo::SK_PermuteSingleSrc, 5552 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5553 } else if (!IsIdentity) { 5554 auto *FirstInsert = 5555 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5556 return !is_contained(E->Scalars, 5557 cast<Instruction>(V)->getOperand(0)); 5558 })); 5559 if (isUndefVector(FirstInsert->getOperand(0))) { 5560 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5561 } else { 5562 SmallVector<int> InsertMask(NumElts); 5563 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5564 for (unsigned I = 0; I < NumElts; I++) { 5565 if (Mask[I] != UndefMaskElem) 5566 InsertMask[Offset + I] = NumElts + I; 5567 } 5568 Cost += 5569 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5570 } 5571 } 5572 5573 return Cost; 5574 } 5575 case Instruction::ZExt: 5576 case Instruction::SExt: 5577 case Instruction::FPToUI: 5578 case Instruction::FPToSI: 5579 case Instruction::FPExt: 5580 case Instruction::PtrToInt: 5581 case Instruction::IntToPtr: 5582 case Instruction::SIToFP: 5583 case Instruction::UIToFP: 5584 case Instruction::Trunc: 5585 case Instruction::FPTrunc: 5586 case Instruction::BitCast: { 5587 Type *SrcTy = VL0->getOperand(0)->getType(); 5588 InstructionCost ScalarEltCost = 5589 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5590 TTI::getCastContextHint(VL0), CostKind, VL0); 5591 if (NeedToShuffleReuses) { 5592 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5593 } 5594 5595 // Calculate the cost of this instruction. 5596 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5597 5598 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5599 InstructionCost VecCost = 0; 5600 // Check if the values are candidates to demote. 5601 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5602 VecCost = CommonCost + TTI->getCastInstrCost( 5603 E->getOpcode(), VecTy, SrcVecTy, 5604 TTI::getCastContextHint(VL0), CostKind, VL0); 5605 } 5606 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5607 return VecCost - ScalarCost; 5608 } 5609 case Instruction::FCmp: 5610 case Instruction::ICmp: 5611 case Instruction::Select: { 5612 // Calculate the cost of this instruction. 5613 InstructionCost ScalarEltCost = 5614 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5615 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5616 if (NeedToShuffleReuses) { 5617 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5618 } 5619 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5620 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5621 5622 // Check if all entries in VL are either compares or selects with compares 5623 // as condition that have the same predicates. 5624 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5625 bool First = true; 5626 for (auto *V : VL) { 5627 CmpInst::Predicate CurrentPred; 5628 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5629 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5630 !match(V, MatchCmp)) || 5631 (!First && VecPred != CurrentPred)) { 5632 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5633 break; 5634 } 5635 First = false; 5636 VecPred = CurrentPred; 5637 } 5638 5639 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5640 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5641 // Check if it is possible and profitable to use min/max for selects in 5642 // VL. 5643 // 5644 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5645 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5646 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5647 {VecTy, VecTy}); 5648 InstructionCost IntrinsicCost = 5649 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5650 // If the selects are the only uses of the compares, they will be dead 5651 // and we can adjust the cost by removing their cost. 5652 if (IntrinsicAndUse.second) 5653 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5654 MaskTy, VecPred, CostKind); 5655 VecCost = std::min(VecCost, IntrinsicCost); 5656 } 5657 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5658 return CommonCost + VecCost - ScalarCost; 5659 } 5660 case Instruction::FNeg: 5661 case Instruction::Add: 5662 case Instruction::FAdd: 5663 case Instruction::Sub: 5664 case Instruction::FSub: 5665 case Instruction::Mul: 5666 case Instruction::FMul: 5667 case Instruction::UDiv: 5668 case Instruction::SDiv: 5669 case Instruction::FDiv: 5670 case Instruction::URem: 5671 case Instruction::SRem: 5672 case Instruction::FRem: 5673 case Instruction::Shl: 5674 case Instruction::LShr: 5675 case Instruction::AShr: 5676 case Instruction::And: 5677 case Instruction::Or: 5678 case Instruction::Xor: { 5679 // Certain instructions can be cheaper to vectorize if they have a 5680 // constant second vector operand. 5681 TargetTransformInfo::OperandValueKind Op1VK = 5682 TargetTransformInfo::OK_AnyValue; 5683 TargetTransformInfo::OperandValueKind Op2VK = 5684 TargetTransformInfo::OK_UniformConstantValue; 5685 TargetTransformInfo::OperandValueProperties Op1VP = 5686 TargetTransformInfo::OP_None; 5687 TargetTransformInfo::OperandValueProperties Op2VP = 5688 TargetTransformInfo::OP_PowerOf2; 5689 5690 // If all operands are exactly the same ConstantInt then set the 5691 // operand kind to OK_UniformConstantValue. 5692 // If instead not all operands are constants, then set the operand kind 5693 // to OK_AnyValue. If all operands are constants but not the same, 5694 // then set the operand kind to OK_NonUniformConstantValue. 5695 ConstantInt *CInt0 = nullptr; 5696 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5697 const Instruction *I = cast<Instruction>(VL[i]); 5698 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5699 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5700 if (!CInt) { 5701 Op2VK = TargetTransformInfo::OK_AnyValue; 5702 Op2VP = TargetTransformInfo::OP_None; 5703 break; 5704 } 5705 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5706 !CInt->getValue().isPowerOf2()) 5707 Op2VP = TargetTransformInfo::OP_None; 5708 if (i == 0) { 5709 CInt0 = CInt; 5710 continue; 5711 } 5712 if (CInt0 != CInt) 5713 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5714 } 5715 5716 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5717 InstructionCost ScalarEltCost = 5718 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5719 Op2VK, Op1VP, Op2VP, Operands, VL0); 5720 if (NeedToShuffleReuses) { 5721 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5722 } 5723 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5724 InstructionCost VecCost = 5725 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5726 Op2VK, Op1VP, Op2VP, Operands, VL0); 5727 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5728 return CommonCost + VecCost - ScalarCost; 5729 } 5730 case Instruction::GetElementPtr: { 5731 TargetTransformInfo::OperandValueKind Op1VK = 5732 TargetTransformInfo::OK_AnyValue; 5733 TargetTransformInfo::OperandValueKind Op2VK = 5734 TargetTransformInfo::OK_UniformConstantValue; 5735 5736 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5737 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5738 if (NeedToShuffleReuses) { 5739 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5740 } 5741 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5742 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5743 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5744 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5745 return CommonCost + VecCost - ScalarCost; 5746 } 5747 case Instruction::Load: { 5748 // Cost of wide load - cost of scalar loads. 5749 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5750 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5751 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5752 if (NeedToShuffleReuses) { 5753 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5754 } 5755 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5756 InstructionCost VecLdCost; 5757 if (E->State == TreeEntry::Vectorize) { 5758 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5759 CostKind, VL0); 5760 } else { 5761 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5762 Align CommonAlignment = Alignment; 5763 for (Value *V : VL) 5764 CommonAlignment = 5765 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5766 VecLdCost = TTI->getGatherScatterOpCost( 5767 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5768 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5769 } 5770 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5771 return CommonCost + VecLdCost - ScalarLdCost; 5772 } 5773 case Instruction::Store: { 5774 // We know that we can merge the stores. Calculate the cost. 5775 bool IsReorder = !E->ReorderIndices.empty(); 5776 auto *SI = 5777 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5778 Align Alignment = SI->getAlign(); 5779 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5780 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5781 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5782 InstructionCost VecStCost = TTI->getMemoryOpCost( 5783 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5784 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5785 return CommonCost + VecStCost - ScalarStCost; 5786 } 5787 case Instruction::Call: { 5788 CallInst *CI = cast<CallInst>(VL0); 5789 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5790 5791 // Calculate the cost of the scalar and vector calls. 5792 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5793 InstructionCost ScalarEltCost = 5794 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5795 if (NeedToShuffleReuses) { 5796 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5797 } 5798 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5799 5800 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5801 InstructionCost VecCallCost = 5802 std::min(VecCallCosts.first, VecCallCosts.second); 5803 5804 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5805 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5806 << " for " << *CI << "\n"); 5807 5808 return CommonCost + VecCallCost - ScalarCallCost; 5809 } 5810 case Instruction::ShuffleVector: { 5811 assert(E->isAltShuffle() && 5812 ((Instruction::isBinaryOp(E->getOpcode()) && 5813 Instruction::isBinaryOp(E->getAltOpcode())) || 5814 (Instruction::isCast(E->getOpcode()) && 5815 Instruction::isCast(E->getAltOpcode())) || 5816 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5817 "Invalid Shuffle Vector Operand"); 5818 InstructionCost ScalarCost = 0; 5819 if (NeedToShuffleReuses) { 5820 for (unsigned Idx : E->ReuseShuffleIndices) { 5821 Instruction *I = cast<Instruction>(VL[Idx]); 5822 CommonCost -= TTI->getInstructionCost(I, CostKind); 5823 } 5824 for (Value *V : VL) { 5825 Instruction *I = cast<Instruction>(V); 5826 CommonCost += TTI->getInstructionCost(I, CostKind); 5827 } 5828 } 5829 for (Value *V : VL) { 5830 Instruction *I = cast<Instruction>(V); 5831 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5832 ScalarCost += TTI->getInstructionCost(I, CostKind); 5833 } 5834 // VecCost is equal to sum of the cost of creating 2 vectors 5835 // and the cost of creating shuffle. 5836 InstructionCost VecCost = 0; 5837 // Try to find the previous shuffle node with the same operands and same 5838 // main/alternate ops. 5839 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5840 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5841 if (TE.get() == E) 5842 break; 5843 if (TE->isAltShuffle() && 5844 ((TE->getOpcode() == E->getOpcode() && 5845 TE->getAltOpcode() == E->getAltOpcode()) || 5846 (TE->getOpcode() == E->getAltOpcode() && 5847 TE->getAltOpcode() == E->getOpcode())) && 5848 TE->hasEqualOperands(*E)) 5849 return true; 5850 } 5851 return false; 5852 }; 5853 if (TryFindNodeWithEqualOperands()) { 5854 LLVM_DEBUG({ 5855 dbgs() << "SLP: diamond match for alternate node found.\n"; 5856 E->dump(); 5857 }); 5858 // No need to add new vector costs here since we're going to reuse 5859 // same main/alternate vector ops, just do different shuffling. 5860 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5861 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5862 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5863 CostKind); 5864 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5865 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5866 Builder.getInt1Ty(), 5867 CI0->getPredicate(), CostKind, VL0); 5868 VecCost += TTI->getCmpSelInstrCost( 5869 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5870 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5871 E->getAltOp()); 5872 } else { 5873 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5874 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5875 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5876 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5877 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5878 TTI::CastContextHint::None, CostKind); 5879 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5880 TTI::CastContextHint::None, CostKind); 5881 } 5882 5883 SmallVector<int> Mask; 5884 buildShuffleEntryMask( 5885 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5886 [E](Instruction *I) { 5887 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5888 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5889 }, 5890 Mask); 5891 CommonCost = 5892 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5893 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5894 return CommonCost + VecCost - ScalarCost; 5895 } 5896 default: 5897 llvm_unreachable("Unknown instruction"); 5898 } 5899 } 5900 5901 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5902 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5903 << VectorizableTree.size() << " is fully vectorizable .\n"); 5904 5905 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5906 SmallVector<int> Mask; 5907 return TE->State == TreeEntry::NeedToGather && 5908 !any_of(TE->Scalars, 5909 [this](Value *V) { return EphValues.contains(V); }) && 5910 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5911 TE->Scalars.size() < Limit || 5912 ((TE->getOpcode() == Instruction::ExtractElement || 5913 all_of(TE->Scalars, 5914 [](Value *V) { 5915 return isa<ExtractElementInst, UndefValue>(V); 5916 })) && 5917 isFixedVectorShuffle(TE->Scalars, Mask)) || 5918 (TE->State == TreeEntry::NeedToGather && 5919 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5920 }; 5921 5922 // We only handle trees of heights 1 and 2. 5923 if (VectorizableTree.size() == 1 && 5924 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5925 (ForReduction && 5926 AreVectorizableGathers(VectorizableTree[0].get(), 5927 VectorizableTree[0]->Scalars.size()) && 5928 VectorizableTree[0]->getVectorFactor() > 2))) 5929 return true; 5930 5931 if (VectorizableTree.size() != 2) 5932 return false; 5933 5934 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5935 // with the second gather nodes if they have less scalar operands rather than 5936 // the initial tree element (may be profitable to shuffle the second gather) 5937 // or they are extractelements, which form shuffle. 5938 SmallVector<int> Mask; 5939 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5940 AreVectorizableGathers(VectorizableTree[1].get(), 5941 VectorizableTree[0]->Scalars.size())) 5942 return true; 5943 5944 // Gathering cost would be too much for tiny trees. 5945 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5946 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5947 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5948 return false; 5949 5950 return true; 5951 } 5952 5953 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5954 TargetTransformInfo *TTI, 5955 bool MustMatchOrInst) { 5956 // Look past the root to find a source value. Arbitrarily follow the 5957 // path through operand 0 of any 'or'. Also, peek through optional 5958 // shift-left-by-multiple-of-8-bits. 5959 Value *ZextLoad = Root; 5960 const APInt *ShAmtC; 5961 bool FoundOr = false; 5962 while (!isa<ConstantExpr>(ZextLoad) && 5963 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5964 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5965 ShAmtC->urem(8) == 0))) { 5966 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5967 ZextLoad = BinOp->getOperand(0); 5968 if (BinOp->getOpcode() == Instruction::Or) 5969 FoundOr = true; 5970 } 5971 // Check if the input is an extended load of the required or/shift expression. 5972 Value *Load; 5973 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5974 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5975 return false; 5976 5977 // Require that the total load bit width is a legal integer type. 5978 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5979 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5980 Type *SrcTy = Load->getType(); 5981 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5982 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5983 return false; 5984 5985 // Everything matched - assume that we can fold the whole sequence using 5986 // load combining. 5987 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5988 << *(cast<Instruction>(Root)) << "\n"); 5989 5990 return true; 5991 } 5992 5993 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5994 if (RdxKind != RecurKind::Or) 5995 return false; 5996 5997 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5998 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5999 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6000 /* MatchOr */ false); 6001 } 6002 6003 bool BoUpSLP::isLoadCombineCandidate() const { 6004 // Peek through a final sequence of stores and check if all operations are 6005 // likely to be load-combined. 6006 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6007 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6008 Value *X; 6009 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6010 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6011 return false; 6012 } 6013 return true; 6014 } 6015 6016 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6017 // No need to vectorize inserts of gathered values. 6018 if (VectorizableTree.size() == 2 && 6019 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6020 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6021 return true; 6022 6023 // We can vectorize the tree if its size is greater than or equal to the 6024 // minimum size specified by the MinTreeSize command line option. 6025 if (VectorizableTree.size() >= MinTreeSize) 6026 return false; 6027 6028 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6029 // can vectorize it if we can prove it fully vectorizable. 6030 if (isFullyVectorizableTinyTree(ForReduction)) 6031 return false; 6032 6033 assert(VectorizableTree.empty() 6034 ? ExternalUses.empty() 6035 : true && "We shouldn't have any external users"); 6036 6037 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6038 // vectorizable. 6039 return true; 6040 } 6041 6042 InstructionCost BoUpSLP::getSpillCost() const { 6043 // Walk from the bottom of the tree to the top, tracking which values are 6044 // live. When we see a call instruction that is not part of our tree, 6045 // query TTI to see if there is a cost to keeping values live over it 6046 // (for example, if spills and fills are required). 6047 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6048 InstructionCost Cost = 0; 6049 6050 SmallPtrSet<Instruction*, 4> LiveValues; 6051 Instruction *PrevInst = nullptr; 6052 6053 // The entries in VectorizableTree are not necessarily ordered by their 6054 // position in basic blocks. Collect them and order them by dominance so later 6055 // instructions are guaranteed to be visited first. For instructions in 6056 // different basic blocks, we only scan to the beginning of the block, so 6057 // their order does not matter, as long as all instructions in a basic block 6058 // are grouped together. Using dominance ensures a deterministic order. 6059 SmallVector<Instruction *, 16> OrderedScalars; 6060 for (const auto &TEPtr : VectorizableTree) { 6061 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6062 if (!Inst) 6063 continue; 6064 OrderedScalars.push_back(Inst); 6065 } 6066 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6067 auto *NodeA = DT->getNode(A->getParent()); 6068 auto *NodeB = DT->getNode(B->getParent()); 6069 assert(NodeA && "Should only process reachable instructions"); 6070 assert(NodeB && "Should only process reachable instructions"); 6071 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6072 "Different nodes should have different DFS numbers"); 6073 if (NodeA != NodeB) 6074 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6075 return B->comesBefore(A); 6076 }); 6077 6078 for (Instruction *Inst : OrderedScalars) { 6079 if (!PrevInst) { 6080 PrevInst = Inst; 6081 continue; 6082 } 6083 6084 // Update LiveValues. 6085 LiveValues.erase(PrevInst); 6086 for (auto &J : PrevInst->operands()) { 6087 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6088 LiveValues.insert(cast<Instruction>(&*J)); 6089 } 6090 6091 LLVM_DEBUG({ 6092 dbgs() << "SLP: #LV: " << LiveValues.size(); 6093 for (auto *X : LiveValues) 6094 dbgs() << " " << X->getName(); 6095 dbgs() << ", Looking at "; 6096 Inst->dump(); 6097 }); 6098 6099 // Now find the sequence of instructions between PrevInst and Inst. 6100 unsigned NumCalls = 0; 6101 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6102 PrevInstIt = 6103 PrevInst->getIterator().getReverse(); 6104 while (InstIt != PrevInstIt) { 6105 if (PrevInstIt == PrevInst->getParent()->rend()) { 6106 PrevInstIt = Inst->getParent()->rbegin(); 6107 continue; 6108 } 6109 6110 // Debug information does not impact spill cost. 6111 if ((isa<CallInst>(&*PrevInstIt) && 6112 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6113 &*PrevInstIt != PrevInst) 6114 NumCalls++; 6115 6116 ++PrevInstIt; 6117 } 6118 6119 if (NumCalls) { 6120 SmallVector<Type*, 4> V; 6121 for (auto *II : LiveValues) { 6122 auto *ScalarTy = II->getType(); 6123 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6124 ScalarTy = VectorTy->getElementType(); 6125 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6126 } 6127 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6128 } 6129 6130 PrevInst = Inst; 6131 } 6132 6133 return Cost; 6134 } 6135 6136 /// Check if two insertelement instructions are from the same buildvector. 6137 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6138 InsertElementInst *V) { 6139 // Instructions must be from the same basic blocks. 6140 if (VU->getParent() != V->getParent()) 6141 return false; 6142 // Checks if 2 insertelements are from the same buildvector. 6143 if (VU->getType() != V->getType()) 6144 return false; 6145 // Multiple used inserts are separate nodes. 6146 if (!VU->hasOneUse() && !V->hasOneUse()) 6147 return false; 6148 auto *IE1 = VU; 6149 auto *IE2 = V; 6150 // Go through the vector operand of insertelement instructions trying to find 6151 // either VU as the original vector for IE2 or V as the original vector for 6152 // IE1. 6153 do { 6154 if (IE2 == VU || IE1 == V) 6155 return true; 6156 if (IE1) { 6157 if (IE1 != VU && !IE1->hasOneUse()) 6158 IE1 = nullptr; 6159 else 6160 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6161 } 6162 if (IE2) { 6163 if (IE2 != V && !IE2->hasOneUse()) 6164 IE2 = nullptr; 6165 else 6166 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6167 } 6168 } while (IE1 || IE2); 6169 return false; 6170 } 6171 6172 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6173 InstructionCost Cost = 0; 6174 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6175 << VectorizableTree.size() << ".\n"); 6176 6177 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6178 6179 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6180 TreeEntry &TE = *VectorizableTree[I]; 6181 6182 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6183 Cost += C; 6184 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6185 << " for bundle that starts with " << *TE.Scalars[0] 6186 << ".\n" 6187 << "SLP: Current total cost = " << Cost << "\n"); 6188 } 6189 6190 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6191 InstructionCost ExtractCost = 0; 6192 SmallVector<unsigned> VF; 6193 SmallVector<SmallVector<int>> ShuffleMask; 6194 SmallVector<Value *> FirstUsers; 6195 SmallVector<APInt> DemandedElts; 6196 for (ExternalUser &EU : ExternalUses) { 6197 // We only add extract cost once for the same scalar. 6198 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6199 !ExtractCostCalculated.insert(EU.Scalar).second) 6200 continue; 6201 6202 // Uses by ephemeral values are free (because the ephemeral value will be 6203 // removed prior to code generation, and so the extraction will be 6204 // removed as well). 6205 if (EphValues.count(EU.User)) 6206 continue; 6207 6208 // No extract cost for vector "scalar" 6209 if (isa<FixedVectorType>(EU.Scalar->getType())) 6210 continue; 6211 6212 // Already counted the cost for external uses when tried to adjust the cost 6213 // for extractelements, no need to add it again. 6214 if (isa<ExtractElementInst>(EU.Scalar)) 6215 continue; 6216 6217 // If found user is an insertelement, do not calculate extract cost but try 6218 // to detect it as a final shuffled/identity match. 6219 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6220 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6221 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6222 if (InsertIdx) { 6223 auto *It = find_if(FirstUsers, [VU](Value *V) { 6224 return areTwoInsertFromSameBuildVector(VU, 6225 cast<InsertElementInst>(V)); 6226 }); 6227 int VecId = -1; 6228 if (It == FirstUsers.end()) { 6229 VF.push_back(FTy->getNumElements()); 6230 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6231 // Find the insertvector, vectorized in tree, if any. 6232 Value *Base = VU; 6233 while (isa<InsertElementInst>(Base)) { 6234 // Build the mask for the vectorized insertelement instructions. 6235 if (const TreeEntry *E = getTreeEntry(Base)) { 6236 VU = cast<InsertElementInst>(Base); 6237 do { 6238 int Idx = E->findLaneForValue(Base); 6239 ShuffleMask.back()[Idx] = Idx; 6240 Base = cast<InsertElementInst>(Base)->getOperand(0); 6241 } while (E == getTreeEntry(Base)); 6242 break; 6243 } 6244 Base = cast<InsertElementInst>(Base)->getOperand(0); 6245 } 6246 FirstUsers.push_back(VU); 6247 DemandedElts.push_back(APInt::getZero(VF.back())); 6248 VecId = FirstUsers.size() - 1; 6249 } else { 6250 VecId = std::distance(FirstUsers.begin(), It); 6251 } 6252 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6253 DemandedElts[VecId].setBit(*InsertIdx); 6254 continue; 6255 } 6256 } 6257 } 6258 6259 // If we plan to rewrite the tree in a smaller type, we will need to sign 6260 // extend the extracted value back to the original type. Here, we account 6261 // for the extract and the added cost of the sign extend if needed. 6262 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6263 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6264 if (MinBWs.count(ScalarRoot)) { 6265 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6266 auto Extend = 6267 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6268 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6269 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6270 VecTy, EU.Lane); 6271 } else { 6272 ExtractCost += 6273 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6274 } 6275 } 6276 6277 InstructionCost SpillCost = getSpillCost(); 6278 Cost += SpillCost + ExtractCost; 6279 if (FirstUsers.size() == 1) { 6280 int Limit = ShuffleMask.front().size() * 2; 6281 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6282 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6283 InstructionCost C = TTI->getShuffleCost( 6284 TTI::SK_PermuteSingleSrc, 6285 cast<FixedVectorType>(FirstUsers.front()->getType()), 6286 ShuffleMask.front()); 6287 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6288 << " for final shuffle of insertelement external users " 6289 << *VectorizableTree.front()->Scalars.front() << ".\n" 6290 << "SLP: Current total cost = " << Cost << "\n"); 6291 Cost += C; 6292 } 6293 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6294 cast<FixedVectorType>(FirstUsers.front()->getType()), 6295 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6296 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6297 << " for insertelements gather.\n" 6298 << "SLP: Current total cost = " << Cost << "\n"); 6299 Cost -= InsertCost; 6300 } else if (FirstUsers.size() >= 2) { 6301 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6302 // Combined masks of the first 2 vectors. 6303 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6304 copy(ShuffleMask.front(), CombinedMask.begin()); 6305 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6306 auto *VecTy = FixedVectorType::get( 6307 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6308 MaxVF); 6309 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6310 if (ShuffleMask[1][I] != UndefMaskElem) { 6311 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6312 CombinedDemandedElts.setBit(I); 6313 } 6314 } 6315 InstructionCost C = 6316 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6317 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6318 << " for final shuffle of vector node and external " 6319 "insertelement users " 6320 << *VectorizableTree.front()->Scalars.front() << ".\n" 6321 << "SLP: Current total cost = " << Cost << "\n"); 6322 Cost += C; 6323 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6324 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6325 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6326 << " for insertelements gather.\n" 6327 << "SLP: Current total cost = " << Cost << "\n"); 6328 Cost -= InsertCost; 6329 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6330 // Other elements - permutation of 2 vectors (the initial one and the 6331 // next Ith incoming vector). 6332 unsigned VF = ShuffleMask[I].size(); 6333 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6334 int Mask = ShuffleMask[I][Idx]; 6335 if (Mask != UndefMaskElem) 6336 CombinedMask[Idx] = MaxVF + Mask; 6337 else if (CombinedMask[Idx] != UndefMaskElem) 6338 CombinedMask[Idx] = Idx; 6339 } 6340 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6341 if (CombinedMask[Idx] != UndefMaskElem) 6342 CombinedMask[Idx] = Idx; 6343 InstructionCost C = 6344 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6345 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6346 << " for final shuffle of vector node and external " 6347 "insertelement users " 6348 << *VectorizableTree.front()->Scalars.front() << ".\n" 6349 << "SLP: Current total cost = " << Cost << "\n"); 6350 Cost += C; 6351 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6352 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6353 /*Insert*/ true, /*Extract*/ false); 6354 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6355 << " for insertelements gather.\n" 6356 << "SLP: Current total cost = " << Cost << "\n"); 6357 Cost -= InsertCost; 6358 } 6359 } 6360 6361 #ifndef NDEBUG 6362 SmallString<256> Str; 6363 { 6364 raw_svector_ostream OS(Str); 6365 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6366 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6367 << "SLP: Total Cost = " << Cost << ".\n"; 6368 } 6369 LLVM_DEBUG(dbgs() << Str); 6370 if (ViewSLPTree) 6371 ViewGraph(this, "SLP" + F->getName(), false, Str); 6372 #endif 6373 6374 return Cost; 6375 } 6376 6377 Optional<TargetTransformInfo::ShuffleKind> 6378 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6379 SmallVectorImpl<const TreeEntry *> &Entries) { 6380 // TODO: currently checking only for Scalars in the tree entry, need to count 6381 // reused elements too for better cost estimation. 6382 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6383 Entries.clear(); 6384 // Build a lists of values to tree entries. 6385 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6386 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6387 if (EntryPtr.get() == TE) 6388 break; 6389 if (EntryPtr->State != TreeEntry::NeedToGather) 6390 continue; 6391 for (Value *V : EntryPtr->Scalars) 6392 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6393 } 6394 // Find all tree entries used by the gathered values. If no common entries 6395 // found - not a shuffle. 6396 // Here we build a set of tree nodes for each gathered value and trying to 6397 // find the intersection between these sets. If we have at least one common 6398 // tree node for each gathered value - we have just a permutation of the 6399 // single vector. If we have 2 different sets, we're in situation where we 6400 // have a permutation of 2 input vectors. 6401 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6402 DenseMap<Value *, int> UsedValuesEntry; 6403 for (Value *V : TE->Scalars) { 6404 if (isa<UndefValue>(V)) 6405 continue; 6406 // Build a list of tree entries where V is used. 6407 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6408 auto It = ValueToTEs.find(V); 6409 if (It != ValueToTEs.end()) 6410 VToTEs = It->second; 6411 if (const TreeEntry *VTE = getTreeEntry(V)) 6412 VToTEs.insert(VTE); 6413 if (VToTEs.empty()) 6414 return None; 6415 if (UsedTEs.empty()) { 6416 // The first iteration, just insert the list of nodes to vector. 6417 UsedTEs.push_back(VToTEs); 6418 } else { 6419 // Need to check if there are any previously used tree nodes which use V. 6420 // If there are no such nodes, consider that we have another one input 6421 // vector. 6422 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6423 unsigned Idx = 0; 6424 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6425 // Do we have a non-empty intersection of previously listed tree entries 6426 // and tree entries using current V? 6427 set_intersect(VToTEs, Set); 6428 if (!VToTEs.empty()) { 6429 // Yes, write the new subset and continue analysis for the next 6430 // scalar. 6431 Set.swap(VToTEs); 6432 break; 6433 } 6434 VToTEs = SavedVToTEs; 6435 ++Idx; 6436 } 6437 // No non-empty intersection found - need to add a second set of possible 6438 // source vectors. 6439 if (Idx == UsedTEs.size()) { 6440 // If the number of input vectors is greater than 2 - not a permutation, 6441 // fallback to the regular gather. 6442 if (UsedTEs.size() == 2) 6443 return None; 6444 UsedTEs.push_back(SavedVToTEs); 6445 Idx = UsedTEs.size() - 1; 6446 } 6447 UsedValuesEntry.try_emplace(V, Idx); 6448 } 6449 } 6450 6451 unsigned VF = 0; 6452 if (UsedTEs.size() == 1) { 6453 // Try to find the perfect match in another gather node at first. 6454 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6455 return EntryPtr->isSame(TE->Scalars); 6456 }); 6457 if (It != UsedTEs.front().end()) { 6458 Entries.push_back(*It); 6459 std::iota(Mask.begin(), Mask.end(), 0); 6460 return TargetTransformInfo::SK_PermuteSingleSrc; 6461 } 6462 // No perfect match, just shuffle, so choose the first tree node. 6463 Entries.push_back(*UsedTEs.front().begin()); 6464 } else { 6465 // Try to find nodes with the same vector factor. 6466 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6467 DenseMap<int, const TreeEntry *> VFToTE; 6468 for (const TreeEntry *TE : UsedTEs.front()) 6469 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6470 for (const TreeEntry *TE : UsedTEs.back()) { 6471 auto It = VFToTE.find(TE->getVectorFactor()); 6472 if (It != VFToTE.end()) { 6473 VF = It->first; 6474 Entries.push_back(It->second); 6475 Entries.push_back(TE); 6476 break; 6477 } 6478 } 6479 // No 2 source vectors with the same vector factor - give up and do regular 6480 // gather. 6481 if (Entries.empty()) 6482 return None; 6483 } 6484 6485 // Build a shuffle mask for better cost estimation and vector emission. 6486 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6487 Value *V = TE->Scalars[I]; 6488 if (isa<UndefValue>(V)) 6489 continue; 6490 unsigned Idx = UsedValuesEntry.lookup(V); 6491 const TreeEntry *VTE = Entries[Idx]; 6492 int FoundLane = VTE->findLaneForValue(V); 6493 Mask[I] = Idx * VF + FoundLane; 6494 // Extra check required by isSingleSourceMaskImpl function (called by 6495 // ShuffleVectorInst::isSingleSourceMask). 6496 if (Mask[I] >= 2 * E) 6497 return None; 6498 } 6499 switch (Entries.size()) { 6500 case 1: 6501 return TargetTransformInfo::SK_PermuteSingleSrc; 6502 case 2: 6503 return TargetTransformInfo::SK_PermuteTwoSrc; 6504 default: 6505 break; 6506 } 6507 return None; 6508 } 6509 6510 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6511 const APInt &ShuffledIndices, 6512 bool NeedToShuffle) const { 6513 InstructionCost Cost = 6514 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6515 /*Extract*/ false); 6516 if (NeedToShuffle) 6517 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6518 return Cost; 6519 } 6520 6521 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6522 // Find the type of the operands in VL. 6523 Type *ScalarTy = VL[0]->getType(); 6524 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6525 ScalarTy = SI->getValueOperand()->getType(); 6526 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6527 bool DuplicateNonConst = false; 6528 // Find the cost of inserting/extracting values from the vector. 6529 // Check if the same elements are inserted several times and count them as 6530 // shuffle candidates. 6531 APInt ShuffledElements = APInt::getZero(VL.size()); 6532 DenseSet<Value *> UniqueElements; 6533 // Iterate in reverse order to consider insert elements with the high cost. 6534 for (unsigned I = VL.size(); I > 0; --I) { 6535 unsigned Idx = I - 1; 6536 // No need to shuffle duplicates for constants. 6537 if (isConstant(VL[Idx])) { 6538 ShuffledElements.setBit(Idx); 6539 continue; 6540 } 6541 if (!UniqueElements.insert(VL[Idx]).second) { 6542 DuplicateNonConst = true; 6543 ShuffledElements.setBit(Idx); 6544 } 6545 } 6546 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6547 } 6548 6549 // Perform operand reordering on the instructions in VL and return the reordered 6550 // operands in Left and Right. 6551 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6552 SmallVectorImpl<Value *> &Left, 6553 SmallVectorImpl<Value *> &Right, 6554 const DataLayout &DL, 6555 ScalarEvolution &SE, 6556 const BoUpSLP &R) { 6557 if (VL.empty()) 6558 return; 6559 VLOperands Ops(VL, DL, SE, R); 6560 // Reorder the operands in place. 6561 Ops.reorder(); 6562 Left = Ops.getVL(0); 6563 Right = Ops.getVL(1); 6564 } 6565 6566 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6567 // Get the basic block this bundle is in. All instructions in the bundle 6568 // should be in this block. 6569 auto *Front = E->getMainOp(); 6570 auto *BB = Front->getParent(); 6571 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6572 auto *I = cast<Instruction>(V); 6573 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6574 })); 6575 6576 auto &&FindLastInst = [E, Front]() { 6577 Instruction *LastInst = Front; 6578 for (Value *V : E->Scalars) { 6579 auto *I = dyn_cast<Instruction>(V); 6580 if (!I) 6581 continue; 6582 if (LastInst->comesBefore(I)) 6583 LastInst = I; 6584 } 6585 return LastInst; 6586 }; 6587 6588 auto &&FindFirstInst = [E, Front]() { 6589 Instruction *FirstInst = Front; 6590 for (Value *V : E->Scalars) { 6591 auto *I = dyn_cast<Instruction>(V); 6592 if (!I) 6593 continue; 6594 if (I->comesBefore(FirstInst)) 6595 FirstInst = I; 6596 } 6597 return FirstInst; 6598 }; 6599 6600 // Set the insert point to the beginning of the basic block if the entry 6601 // should not be scheduled. 6602 if (E->State != TreeEntry::NeedToGather && 6603 doesNotNeedToSchedule(E->Scalars)) { 6604 BasicBlock::iterator InsertPt; 6605 if (all_of(E->Scalars, isUsedOutsideBlock)) 6606 InsertPt = FindLastInst()->getIterator(); 6607 else 6608 InsertPt = FindFirstInst()->getIterator(); 6609 Builder.SetInsertPoint(BB, InsertPt); 6610 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6611 return; 6612 } 6613 6614 // The last instruction in the bundle in program order. 6615 Instruction *LastInst = nullptr; 6616 6617 // Find the last instruction. The common case should be that BB has been 6618 // scheduled, and the last instruction is VL.back(). So we start with 6619 // VL.back() and iterate over schedule data until we reach the end of the 6620 // bundle. The end of the bundle is marked by null ScheduleData. 6621 if (BlocksSchedules.count(BB)) { 6622 Value *V = E->isOneOf(E->Scalars.back()); 6623 if (doesNotNeedToBeScheduled(V)) 6624 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6625 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6626 if (Bundle && Bundle->isPartOfBundle()) 6627 for (; Bundle; Bundle = Bundle->NextInBundle) 6628 if (Bundle->OpValue == Bundle->Inst) 6629 LastInst = Bundle->Inst; 6630 } 6631 6632 // LastInst can still be null at this point if there's either not an entry 6633 // for BB in BlocksSchedules or there's no ScheduleData available for 6634 // VL.back(). This can be the case if buildTree_rec aborts for various 6635 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6636 // size is reached, etc.). ScheduleData is initialized in the scheduling 6637 // "dry-run". 6638 // 6639 // If this happens, we can still find the last instruction by brute force. We 6640 // iterate forwards from Front (inclusive) until we either see all 6641 // instructions in the bundle or reach the end of the block. If Front is the 6642 // last instruction in program order, LastInst will be set to Front, and we 6643 // will visit all the remaining instructions in the block. 6644 // 6645 // One of the reasons we exit early from buildTree_rec is to place an upper 6646 // bound on compile-time. Thus, taking an additional compile-time hit here is 6647 // not ideal. However, this should be exceedingly rare since it requires that 6648 // we both exit early from buildTree_rec and that the bundle be out-of-order 6649 // (causing us to iterate all the way to the end of the block). 6650 if (!LastInst) 6651 LastInst = FindLastInst(); 6652 assert(LastInst && "Failed to find last instruction in bundle"); 6653 6654 // Set the insertion point after the last instruction in the bundle. Set the 6655 // debug location to Front. 6656 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6657 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6658 } 6659 6660 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6661 // List of instructions/lanes from current block and/or the blocks which are 6662 // part of the current loop. These instructions will be inserted at the end to 6663 // make it possible to optimize loops and hoist invariant instructions out of 6664 // the loops body with better chances for success. 6665 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6666 SmallSet<int, 4> PostponedIndices; 6667 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6668 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6669 SmallPtrSet<BasicBlock *, 4> Visited; 6670 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6671 InsertBB = InsertBB->getSinglePredecessor(); 6672 return InsertBB && InsertBB == InstBB; 6673 }; 6674 for (int I = 0, E = VL.size(); I < E; ++I) { 6675 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6676 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6677 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6678 PostponedIndices.insert(I).second) 6679 PostponedInsts.emplace_back(Inst, I); 6680 } 6681 6682 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6683 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6684 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6685 if (!InsElt) 6686 return Vec; 6687 GatherShuffleSeq.insert(InsElt); 6688 CSEBlocks.insert(InsElt->getParent()); 6689 // Add to our 'need-to-extract' list. 6690 if (TreeEntry *Entry = getTreeEntry(V)) { 6691 // Find which lane we need to extract. 6692 unsigned FoundLane = Entry->findLaneForValue(V); 6693 ExternalUses.emplace_back(V, InsElt, FoundLane); 6694 } 6695 return Vec; 6696 }; 6697 Value *Val0 = 6698 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6699 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6700 Value *Vec = PoisonValue::get(VecTy); 6701 SmallVector<int> NonConsts; 6702 // Insert constant values at first. 6703 for (int I = 0, E = VL.size(); I < E; ++I) { 6704 if (PostponedIndices.contains(I)) 6705 continue; 6706 if (!isConstant(VL[I])) { 6707 NonConsts.push_back(I); 6708 continue; 6709 } 6710 Vec = CreateInsertElement(Vec, VL[I], I); 6711 } 6712 // Insert non-constant values. 6713 for (int I : NonConsts) 6714 Vec = CreateInsertElement(Vec, VL[I], I); 6715 // Append instructions, which are/may be part of the loop, in the end to make 6716 // it possible to hoist non-loop-based instructions. 6717 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6718 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6719 6720 return Vec; 6721 } 6722 6723 namespace { 6724 /// Merges shuffle masks and emits final shuffle instruction, if required. 6725 class ShuffleInstructionBuilder { 6726 IRBuilderBase &Builder; 6727 const unsigned VF = 0; 6728 bool IsFinalized = false; 6729 SmallVector<int, 4> Mask; 6730 /// Holds all of the instructions that we gathered. 6731 SetVector<Instruction *> &GatherShuffleSeq; 6732 /// A list of blocks that we are going to CSE. 6733 SetVector<BasicBlock *> &CSEBlocks; 6734 6735 public: 6736 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6737 SetVector<Instruction *> &GatherShuffleSeq, 6738 SetVector<BasicBlock *> &CSEBlocks) 6739 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6740 CSEBlocks(CSEBlocks) {} 6741 6742 /// Adds a mask, inverting it before applying. 6743 void addInversedMask(ArrayRef<unsigned> SubMask) { 6744 if (SubMask.empty()) 6745 return; 6746 SmallVector<int, 4> NewMask; 6747 inversePermutation(SubMask, NewMask); 6748 addMask(NewMask); 6749 } 6750 6751 /// Functions adds masks, merging them into single one. 6752 void addMask(ArrayRef<unsigned> SubMask) { 6753 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6754 addMask(NewMask); 6755 } 6756 6757 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6758 6759 Value *finalize(Value *V) { 6760 IsFinalized = true; 6761 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6762 if (VF == ValueVF && Mask.empty()) 6763 return V; 6764 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6765 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6766 addMask(NormalizedMask); 6767 6768 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6769 return V; 6770 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6771 if (auto *I = dyn_cast<Instruction>(Vec)) { 6772 GatherShuffleSeq.insert(I); 6773 CSEBlocks.insert(I->getParent()); 6774 } 6775 return Vec; 6776 } 6777 6778 ~ShuffleInstructionBuilder() { 6779 assert((IsFinalized || Mask.empty()) && 6780 "Shuffle construction must be finalized."); 6781 } 6782 }; 6783 } // namespace 6784 6785 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6786 const unsigned VF = VL.size(); 6787 InstructionsState S = getSameOpcode(VL); 6788 if (S.getOpcode()) { 6789 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6790 if (E->isSame(VL)) { 6791 Value *V = vectorizeTree(E); 6792 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6793 if (!E->ReuseShuffleIndices.empty()) { 6794 // Reshuffle to get only unique values. 6795 // If some of the scalars are duplicated in the vectorization tree 6796 // entry, we do not vectorize them but instead generate a mask for 6797 // the reuses. But if there are several users of the same entry, 6798 // they may have different vectorization factors. This is especially 6799 // important for PHI nodes. In this case, we need to adapt the 6800 // resulting instruction for the user vectorization factor and have 6801 // to reshuffle it again to take only unique elements of the vector. 6802 // Without this code the function incorrectly returns reduced vector 6803 // instruction with the same elements, not with the unique ones. 6804 6805 // block: 6806 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6807 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6808 // ... (use %2) 6809 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6810 // br %block 6811 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6812 SmallSet<int, 4> UsedIdxs; 6813 int Pos = 0; 6814 int Sz = VL.size(); 6815 for (int Idx : E->ReuseShuffleIndices) { 6816 if (Idx != Sz && Idx != UndefMaskElem && 6817 UsedIdxs.insert(Idx).second) 6818 UniqueIdxs[Idx] = Pos; 6819 ++Pos; 6820 } 6821 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6822 "less than original vector size."); 6823 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6824 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6825 } else { 6826 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6827 "Expected vectorization factor less " 6828 "than original vector size."); 6829 SmallVector<int> UniformMask(VF, 0); 6830 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6831 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6832 } 6833 if (auto *I = dyn_cast<Instruction>(V)) { 6834 GatherShuffleSeq.insert(I); 6835 CSEBlocks.insert(I->getParent()); 6836 } 6837 } 6838 return V; 6839 } 6840 } 6841 6842 // Can't vectorize this, so simply build a new vector with each lane 6843 // corresponding to the requested value. 6844 return createBuildVector(VL); 6845 } 6846 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6847 unsigned VF = VL.size(); 6848 // Exploit possible reuse of values across lanes. 6849 SmallVector<int> ReuseShuffleIndicies; 6850 SmallVector<Value *> UniqueValues; 6851 if (VL.size() > 2) { 6852 DenseMap<Value *, unsigned> UniquePositions; 6853 unsigned NumValues = 6854 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6855 return !isa<UndefValue>(V); 6856 }).base()); 6857 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6858 int UniqueVals = 0; 6859 for (Value *V : VL.drop_back(VL.size() - VF)) { 6860 if (isa<UndefValue>(V)) { 6861 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6862 continue; 6863 } 6864 if (isConstant(V)) { 6865 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6866 UniqueValues.emplace_back(V); 6867 continue; 6868 } 6869 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6870 ReuseShuffleIndicies.emplace_back(Res.first->second); 6871 if (Res.second) { 6872 UniqueValues.emplace_back(V); 6873 ++UniqueVals; 6874 } 6875 } 6876 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6877 // Emit pure splat vector. 6878 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6879 UndefMaskElem); 6880 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6881 ReuseShuffleIndicies.clear(); 6882 UniqueValues.clear(); 6883 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6884 } 6885 UniqueValues.append(VF - UniqueValues.size(), 6886 PoisonValue::get(VL[0]->getType())); 6887 VL = UniqueValues; 6888 } 6889 6890 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6891 CSEBlocks); 6892 Value *Vec = gather(VL); 6893 if (!ReuseShuffleIndicies.empty()) { 6894 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6895 Vec = ShuffleBuilder.finalize(Vec); 6896 } 6897 return Vec; 6898 } 6899 6900 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6901 IRBuilder<>::InsertPointGuard Guard(Builder); 6902 6903 if (E->VectorizedValue) { 6904 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6905 return E->VectorizedValue; 6906 } 6907 6908 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6909 unsigned VF = E->getVectorFactor(); 6910 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6911 CSEBlocks); 6912 if (E->State == TreeEntry::NeedToGather) { 6913 if (E->getMainOp()) 6914 setInsertPointAfterBundle(E); 6915 Value *Vec; 6916 SmallVector<int> Mask; 6917 SmallVector<const TreeEntry *> Entries; 6918 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6919 isGatherShuffledEntry(E, Mask, Entries); 6920 if (Shuffle.hasValue()) { 6921 assert((Entries.size() == 1 || Entries.size() == 2) && 6922 "Expected shuffle of 1 or 2 entries."); 6923 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6924 Entries.back()->VectorizedValue, Mask); 6925 if (auto *I = dyn_cast<Instruction>(Vec)) { 6926 GatherShuffleSeq.insert(I); 6927 CSEBlocks.insert(I->getParent()); 6928 } 6929 } else { 6930 Vec = gather(E->Scalars); 6931 } 6932 if (NeedToShuffleReuses) { 6933 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6934 Vec = ShuffleBuilder.finalize(Vec); 6935 } 6936 E->VectorizedValue = Vec; 6937 return Vec; 6938 } 6939 6940 assert((E->State == TreeEntry::Vectorize || 6941 E->State == TreeEntry::ScatterVectorize) && 6942 "Unhandled state"); 6943 unsigned ShuffleOrOp = 6944 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6945 Instruction *VL0 = E->getMainOp(); 6946 Type *ScalarTy = VL0->getType(); 6947 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6948 ScalarTy = Store->getValueOperand()->getType(); 6949 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6950 ScalarTy = IE->getOperand(1)->getType(); 6951 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6952 switch (ShuffleOrOp) { 6953 case Instruction::PHI: { 6954 assert( 6955 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6956 "PHI reordering is free."); 6957 auto *PH = cast<PHINode>(VL0); 6958 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6959 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6960 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6961 Value *V = NewPhi; 6962 6963 // Adjust insertion point once all PHI's have been generated. 6964 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6965 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6966 6967 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6968 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6969 V = ShuffleBuilder.finalize(V); 6970 6971 E->VectorizedValue = V; 6972 6973 // PHINodes may have multiple entries from the same block. We want to 6974 // visit every block once. 6975 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6976 6977 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6978 ValueList Operands; 6979 BasicBlock *IBB = PH->getIncomingBlock(i); 6980 6981 if (!VisitedBBs.insert(IBB).second) { 6982 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6983 continue; 6984 } 6985 6986 Builder.SetInsertPoint(IBB->getTerminator()); 6987 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6988 Value *Vec = vectorizeTree(E->getOperand(i)); 6989 NewPhi->addIncoming(Vec, IBB); 6990 } 6991 6992 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6993 "Invalid number of incoming values"); 6994 return V; 6995 } 6996 6997 case Instruction::ExtractElement: { 6998 Value *V = E->getSingleOperand(0); 6999 Builder.SetInsertPoint(VL0); 7000 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7001 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7002 V = ShuffleBuilder.finalize(V); 7003 E->VectorizedValue = V; 7004 return V; 7005 } 7006 case Instruction::ExtractValue: { 7007 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7008 Builder.SetInsertPoint(LI); 7009 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7010 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7011 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7012 Value *NewV = propagateMetadata(V, E->Scalars); 7013 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7014 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7015 NewV = ShuffleBuilder.finalize(NewV); 7016 E->VectorizedValue = NewV; 7017 return NewV; 7018 } 7019 case Instruction::InsertElement: { 7020 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7021 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7022 Value *V = vectorizeTree(E->getOperand(1)); 7023 7024 // Create InsertVector shuffle if necessary 7025 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7026 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7027 })); 7028 const unsigned NumElts = 7029 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7030 const unsigned NumScalars = E->Scalars.size(); 7031 7032 unsigned Offset = *getInsertIndex(VL0); 7033 assert(Offset < NumElts && "Failed to find vector index offset"); 7034 7035 // Create shuffle to resize vector 7036 SmallVector<int> Mask; 7037 if (!E->ReorderIndices.empty()) { 7038 inversePermutation(E->ReorderIndices, Mask); 7039 Mask.append(NumElts - NumScalars, UndefMaskElem); 7040 } else { 7041 Mask.assign(NumElts, UndefMaskElem); 7042 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7043 } 7044 // Create InsertVector shuffle if necessary 7045 bool IsIdentity = true; 7046 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7047 Mask.swap(PrevMask); 7048 for (unsigned I = 0; I < NumScalars; ++I) { 7049 Value *Scalar = E->Scalars[PrevMask[I]]; 7050 unsigned InsertIdx = *getInsertIndex(Scalar); 7051 IsIdentity &= InsertIdx - Offset == I; 7052 Mask[InsertIdx - Offset] = I; 7053 } 7054 if (!IsIdentity || NumElts != NumScalars) { 7055 V = Builder.CreateShuffleVector(V, Mask); 7056 if (auto *I = dyn_cast<Instruction>(V)) { 7057 GatherShuffleSeq.insert(I); 7058 CSEBlocks.insert(I->getParent()); 7059 } 7060 } 7061 7062 if ((!IsIdentity || Offset != 0 || 7063 !isUndefVector(FirstInsert->getOperand(0))) && 7064 NumElts != NumScalars) { 7065 SmallVector<int> InsertMask(NumElts); 7066 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7067 for (unsigned I = 0; I < NumElts; I++) { 7068 if (Mask[I] != UndefMaskElem) 7069 InsertMask[Offset + I] = NumElts + I; 7070 } 7071 7072 V = Builder.CreateShuffleVector( 7073 FirstInsert->getOperand(0), V, InsertMask, 7074 cast<Instruction>(E->Scalars.back())->getName()); 7075 if (auto *I = dyn_cast<Instruction>(V)) { 7076 GatherShuffleSeq.insert(I); 7077 CSEBlocks.insert(I->getParent()); 7078 } 7079 } 7080 7081 ++NumVectorInstructions; 7082 E->VectorizedValue = V; 7083 return V; 7084 } 7085 case Instruction::ZExt: 7086 case Instruction::SExt: 7087 case Instruction::FPToUI: 7088 case Instruction::FPToSI: 7089 case Instruction::FPExt: 7090 case Instruction::PtrToInt: 7091 case Instruction::IntToPtr: 7092 case Instruction::SIToFP: 7093 case Instruction::UIToFP: 7094 case Instruction::Trunc: 7095 case Instruction::FPTrunc: 7096 case Instruction::BitCast: { 7097 setInsertPointAfterBundle(E); 7098 7099 Value *InVec = vectorizeTree(E->getOperand(0)); 7100 7101 if (E->VectorizedValue) { 7102 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7103 return E->VectorizedValue; 7104 } 7105 7106 auto *CI = cast<CastInst>(VL0); 7107 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7108 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7109 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7110 V = ShuffleBuilder.finalize(V); 7111 7112 E->VectorizedValue = V; 7113 ++NumVectorInstructions; 7114 return V; 7115 } 7116 case Instruction::FCmp: 7117 case Instruction::ICmp: { 7118 setInsertPointAfterBundle(E); 7119 7120 Value *L = vectorizeTree(E->getOperand(0)); 7121 Value *R = vectorizeTree(E->getOperand(1)); 7122 7123 if (E->VectorizedValue) { 7124 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7125 return E->VectorizedValue; 7126 } 7127 7128 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7129 Value *V = Builder.CreateCmp(P0, L, R); 7130 propagateIRFlags(V, E->Scalars, VL0); 7131 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7132 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7133 V = ShuffleBuilder.finalize(V); 7134 7135 E->VectorizedValue = V; 7136 ++NumVectorInstructions; 7137 return V; 7138 } 7139 case Instruction::Select: { 7140 setInsertPointAfterBundle(E); 7141 7142 Value *Cond = vectorizeTree(E->getOperand(0)); 7143 Value *True = vectorizeTree(E->getOperand(1)); 7144 Value *False = vectorizeTree(E->getOperand(2)); 7145 7146 if (E->VectorizedValue) { 7147 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7148 return E->VectorizedValue; 7149 } 7150 7151 Value *V = Builder.CreateSelect(Cond, True, False); 7152 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7153 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7154 V = ShuffleBuilder.finalize(V); 7155 7156 E->VectorizedValue = V; 7157 ++NumVectorInstructions; 7158 return V; 7159 } 7160 case Instruction::FNeg: { 7161 setInsertPointAfterBundle(E); 7162 7163 Value *Op = vectorizeTree(E->getOperand(0)); 7164 7165 if (E->VectorizedValue) { 7166 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7167 return E->VectorizedValue; 7168 } 7169 7170 Value *V = Builder.CreateUnOp( 7171 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7172 propagateIRFlags(V, E->Scalars, VL0); 7173 if (auto *I = dyn_cast<Instruction>(V)) 7174 V = propagateMetadata(I, E->Scalars); 7175 7176 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7177 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7178 V = ShuffleBuilder.finalize(V); 7179 7180 E->VectorizedValue = V; 7181 ++NumVectorInstructions; 7182 7183 return V; 7184 } 7185 case Instruction::Add: 7186 case Instruction::FAdd: 7187 case Instruction::Sub: 7188 case Instruction::FSub: 7189 case Instruction::Mul: 7190 case Instruction::FMul: 7191 case Instruction::UDiv: 7192 case Instruction::SDiv: 7193 case Instruction::FDiv: 7194 case Instruction::URem: 7195 case Instruction::SRem: 7196 case Instruction::FRem: 7197 case Instruction::Shl: 7198 case Instruction::LShr: 7199 case Instruction::AShr: 7200 case Instruction::And: 7201 case Instruction::Or: 7202 case Instruction::Xor: { 7203 setInsertPointAfterBundle(E); 7204 7205 Value *LHS = vectorizeTree(E->getOperand(0)); 7206 Value *RHS = vectorizeTree(E->getOperand(1)); 7207 7208 if (E->VectorizedValue) { 7209 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7210 return E->VectorizedValue; 7211 } 7212 7213 Value *V = Builder.CreateBinOp( 7214 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7215 RHS); 7216 propagateIRFlags(V, E->Scalars, VL0); 7217 if (auto *I = dyn_cast<Instruction>(V)) 7218 V = propagateMetadata(I, E->Scalars); 7219 7220 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7221 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7222 V = ShuffleBuilder.finalize(V); 7223 7224 E->VectorizedValue = V; 7225 ++NumVectorInstructions; 7226 7227 return V; 7228 } 7229 case Instruction::Load: { 7230 // Loads are inserted at the head of the tree because we don't want to 7231 // sink them all the way down past store instructions. 7232 setInsertPointAfterBundle(E); 7233 7234 LoadInst *LI = cast<LoadInst>(VL0); 7235 Instruction *NewLI; 7236 unsigned AS = LI->getPointerAddressSpace(); 7237 Value *PO = LI->getPointerOperand(); 7238 if (E->State == TreeEntry::Vectorize) { 7239 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7240 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7241 7242 // The pointer operand uses an in-tree scalar so we add the new BitCast 7243 // or LoadInst to ExternalUses list to make sure that an extract will 7244 // be generated in the future. 7245 if (TreeEntry *Entry = getTreeEntry(PO)) { 7246 // Find which lane we need to extract. 7247 unsigned FoundLane = Entry->findLaneForValue(PO); 7248 ExternalUses.emplace_back( 7249 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7250 } 7251 } else { 7252 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7253 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7254 // Use the minimum alignment of the gathered loads. 7255 Align CommonAlignment = LI->getAlign(); 7256 for (Value *V : E->Scalars) 7257 CommonAlignment = 7258 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7259 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7260 } 7261 Value *V = propagateMetadata(NewLI, E->Scalars); 7262 7263 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7264 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7265 V = ShuffleBuilder.finalize(V); 7266 E->VectorizedValue = V; 7267 ++NumVectorInstructions; 7268 return V; 7269 } 7270 case Instruction::Store: { 7271 auto *SI = cast<StoreInst>(VL0); 7272 unsigned AS = SI->getPointerAddressSpace(); 7273 7274 setInsertPointAfterBundle(E); 7275 7276 Value *VecValue = vectorizeTree(E->getOperand(0)); 7277 ShuffleBuilder.addMask(E->ReorderIndices); 7278 VecValue = ShuffleBuilder.finalize(VecValue); 7279 7280 Value *ScalarPtr = SI->getPointerOperand(); 7281 Value *VecPtr = Builder.CreateBitCast( 7282 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7283 StoreInst *ST = 7284 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7285 7286 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7287 // StoreInst to ExternalUses to make sure that an extract will be 7288 // generated in the future. 7289 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7290 // Find which lane we need to extract. 7291 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7292 ExternalUses.push_back(ExternalUser( 7293 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7294 FoundLane)); 7295 } 7296 7297 Value *V = propagateMetadata(ST, E->Scalars); 7298 7299 E->VectorizedValue = V; 7300 ++NumVectorInstructions; 7301 return V; 7302 } 7303 case Instruction::GetElementPtr: { 7304 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7305 setInsertPointAfterBundle(E); 7306 7307 Value *Op0 = vectorizeTree(E->getOperand(0)); 7308 7309 SmallVector<Value *> OpVecs; 7310 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7311 Value *OpVec = vectorizeTree(E->getOperand(J)); 7312 OpVecs.push_back(OpVec); 7313 } 7314 7315 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7316 if (Instruction *I = dyn_cast<Instruction>(V)) 7317 V = propagateMetadata(I, E->Scalars); 7318 7319 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7320 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7321 V = ShuffleBuilder.finalize(V); 7322 7323 E->VectorizedValue = V; 7324 ++NumVectorInstructions; 7325 7326 return V; 7327 } 7328 case Instruction::Call: { 7329 CallInst *CI = cast<CallInst>(VL0); 7330 setInsertPointAfterBundle(E); 7331 7332 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7333 if (Function *FI = CI->getCalledFunction()) 7334 IID = FI->getIntrinsicID(); 7335 7336 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7337 7338 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7339 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7340 VecCallCosts.first <= VecCallCosts.second; 7341 7342 Value *ScalarArg = nullptr; 7343 std::vector<Value *> OpVecs; 7344 SmallVector<Type *, 2> TysForDecl = 7345 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7346 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7347 ValueList OpVL; 7348 // Some intrinsics have scalar arguments. This argument should not be 7349 // vectorized. 7350 if (UseIntrinsic && hasVectorIntrinsicScalarOpd(IID, j)) { 7351 CallInst *CEI = cast<CallInst>(VL0); 7352 ScalarArg = CEI->getArgOperand(j); 7353 OpVecs.push_back(CEI->getArgOperand(j)); 7354 if (hasVectorIntrinsicOverloadedScalarOpd(IID, j)) 7355 TysForDecl.push_back(ScalarArg->getType()); 7356 continue; 7357 } 7358 7359 Value *OpVec = vectorizeTree(E->getOperand(j)); 7360 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7361 OpVecs.push_back(OpVec); 7362 } 7363 7364 Function *CF; 7365 if (!UseIntrinsic) { 7366 VFShape Shape = 7367 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7368 VecTy->getNumElements())), 7369 false /*HasGlobalPred*/); 7370 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7371 } else { 7372 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7373 } 7374 7375 SmallVector<OperandBundleDef, 1> OpBundles; 7376 CI->getOperandBundlesAsDefs(OpBundles); 7377 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7378 7379 // The scalar argument uses an in-tree scalar so we add the new vectorized 7380 // call to ExternalUses list to make sure that an extract will be 7381 // generated in the future. 7382 if (ScalarArg) { 7383 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7384 // Find which lane we need to extract. 7385 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7386 ExternalUses.push_back( 7387 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7388 } 7389 } 7390 7391 propagateIRFlags(V, E->Scalars, VL0); 7392 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7393 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7394 V = ShuffleBuilder.finalize(V); 7395 7396 E->VectorizedValue = V; 7397 ++NumVectorInstructions; 7398 return V; 7399 } 7400 case Instruction::ShuffleVector: { 7401 assert(E->isAltShuffle() && 7402 ((Instruction::isBinaryOp(E->getOpcode()) && 7403 Instruction::isBinaryOp(E->getAltOpcode())) || 7404 (Instruction::isCast(E->getOpcode()) && 7405 Instruction::isCast(E->getAltOpcode())) || 7406 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7407 "Invalid Shuffle Vector Operand"); 7408 7409 Value *LHS = nullptr, *RHS = nullptr; 7410 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7411 setInsertPointAfterBundle(E); 7412 LHS = vectorizeTree(E->getOperand(0)); 7413 RHS = vectorizeTree(E->getOperand(1)); 7414 } else { 7415 setInsertPointAfterBundle(E); 7416 LHS = vectorizeTree(E->getOperand(0)); 7417 } 7418 7419 if (E->VectorizedValue) { 7420 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7421 return E->VectorizedValue; 7422 } 7423 7424 Value *V0, *V1; 7425 if (Instruction::isBinaryOp(E->getOpcode())) { 7426 V0 = Builder.CreateBinOp( 7427 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7428 V1 = Builder.CreateBinOp( 7429 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7430 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7431 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7432 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7433 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7434 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7435 } else { 7436 V0 = Builder.CreateCast( 7437 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7438 V1 = Builder.CreateCast( 7439 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7440 } 7441 // Add V0 and V1 to later analysis to try to find and remove matching 7442 // instruction, if any. 7443 for (Value *V : {V0, V1}) { 7444 if (auto *I = dyn_cast<Instruction>(V)) { 7445 GatherShuffleSeq.insert(I); 7446 CSEBlocks.insert(I->getParent()); 7447 } 7448 } 7449 7450 // Create shuffle to take alternate operations from the vector. 7451 // Also, gather up main and alt scalar ops to propagate IR flags to 7452 // each vector operation. 7453 ValueList OpScalars, AltScalars; 7454 SmallVector<int> Mask; 7455 buildShuffleEntryMask( 7456 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7457 [E](Instruction *I) { 7458 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7459 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7460 }, 7461 Mask, &OpScalars, &AltScalars); 7462 7463 propagateIRFlags(V0, OpScalars); 7464 propagateIRFlags(V1, AltScalars); 7465 7466 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7467 if (auto *I = dyn_cast<Instruction>(V)) { 7468 V = propagateMetadata(I, E->Scalars); 7469 GatherShuffleSeq.insert(I); 7470 CSEBlocks.insert(I->getParent()); 7471 } 7472 V = ShuffleBuilder.finalize(V); 7473 7474 E->VectorizedValue = V; 7475 ++NumVectorInstructions; 7476 7477 return V; 7478 } 7479 default: 7480 llvm_unreachable("unknown inst"); 7481 } 7482 return nullptr; 7483 } 7484 7485 Value *BoUpSLP::vectorizeTree() { 7486 ExtraValueToDebugLocsMap ExternallyUsedValues; 7487 return vectorizeTree(ExternallyUsedValues); 7488 } 7489 7490 Value * 7491 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7492 // All blocks must be scheduled before any instructions are inserted. 7493 for (auto &BSIter : BlocksSchedules) { 7494 scheduleBlock(BSIter.second.get()); 7495 } 7496 7497 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7498 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7499 7500 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7501 // vectorized root. InstCombine will then rewrite the entire expression. We 7502 // sign extend the extracted values below. 7503 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7504 if (MinBWs.count(ScalarRoot)) { 7505 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7506 // If current instr is a phi and not the last phi, insert it after the 7507 // last phi node. 7508 if (isa<PHINode>(I)) 7509 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7510 else 7511 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7512 } 7513 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7514 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7515 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7516 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7517 VectorizableTree[0]->VectorizedValue = Trunc; 7518 } 7519 7520 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7521 << " values .\n"); 7522 7523 // Extract all of the elements with the external uses. 7524 for (const auto &ExternalUse : ExternalUses) { 7525 Value *Scalar = ExternalUse.Scalar; 7526 llvm::User *User = ExternalUse.User; 7527 7528 // Skip users that we already RAUW. This happens when one instruction 7529 // has multiple uses of the same value. 7530 if (User && !is_contained(Scalar->users(), User)) 7531 continue; 7532 TreeEntry *E = getTreeEntry(Scalar); 7533 assert(E && "Invalid scalar"); 7534 assert(E->State != TreeEntry::NeedToGather && 7535 "Extracting from a gather list"); 7536 7537 Value *Vec = E->VectorizedValue; 7538 assert(Vec && "Can't find vectorizable value"); 7539 7540 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7541 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7542 if (Scalar->getType() != Vec->getType()) { 7543 Value *Ex; 7544 // "Reuse" the existing extract to improve final codegen. 7545 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7546 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7547 ES->getOperand(1)); 7548 } else { 7549 Ex = Builder.CreateExtractElement(Vec, Lane); 7550 } 7551 // If necessary, sign-extend or zero-extend ScalarRoot 7552 // to the larger type. 7553 if (!MinBWs.count(ScalarRoot)) 7554 return Ex; 7555 if (MinBWs[ScalarRoot].second) 7556 return Builder.CreateSExt(Ex, Scalar->getType()); 7557 return Builder.CreateZExt(Ex, Scalar->getType()); 7558 } 7559 assert(isa<FixedVectorType>(Scalar->getType()) && 7560 isa<InsertElementInst>(Scalar) && 7561 "In-tree scalar of vector type is not insertelement?"); 7562 return Vec; 7563 }; 7564 // If User == nullptr, the Scalar is used as extra arg. Generate 7565 // ExtractElement instruction and update the record for this scalar in 7566 // ExternallyUsedValues. 7567 if (!User) { 7568 assert(ExternallyUsedValues.count(Scalar) && 7569 "Scalar with nullptr as an external user must be registered in " 7570 "ExternallyUsedValues map"); 7571 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7572 Builder.SetInsertPoint(VecI->getParent(), 7573 std::next(VecI->getIterator())); 7574 } else { 7575 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7576 } 7577 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7578 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7579 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7580 auto It = ExternallyUsedValues.find(Scalar); 7581 assert(It != ExternallyUsedValues.end() && 7582 "Externally used scalar is not found in ExternallyUsedValues"); 7583 NewInstLocs.append(It->second); 7584 ExternallyUsedValues.erase(Scalar); 7585 // Required to update internally referenced instructions. 7586 Scalar->replaceAllUsesWith(NewInst); 7587 continue; 7588 } 7589 7590 // Generate extracts for out-of-tree users. 7591 // Find the insertion point for the extractelement lane. 7592 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7593 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7594 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7595 if (PH->getIncomingValue(i) == Scalar) { 7596 Instruction *IncomingTerminator = 7597 PH->getIncomingBlock(i)->getTerminator(); 7598 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7599 Builder.SetInsertPoint(VecI->getParent(), 7600 std::next(VecI->getIterator())); 7601 } else { 7602 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7603 } 7604 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7605 CSEBlocks.insert(PH->getIncomingBlock(i)); 7606 PH->setOperand(i, NewInst); 7607 } 7608 } 7609 } else { 7610 Builder.SetInsertPoint(cast<Instruction>(User)); 7611 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7612 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7613 User->replaceUsesOfWith(Scalar, NewInst); 7614 } 7615 } else { 7616 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7617 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7618 CSEBlocks.insert(&F->getEntryBlock()); 7619 User->replaceUsesOfWith(Scalar, NewInst); 7620 } 7621 7622 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7623 } 7624 7625 // For each vectorized value: 7626 for (auto &TEPtr : VectorizableTree) { 7627 TreeEntry *Entry = TEPtr.get(); 7628 7629 // No need to handle users of gathered values. 7630 if (Entry->State == TreeEntry::NeedToGather) 7631 continue; 7632 7633 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7634 7635 // For each lane: 7636 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7637 Value *Scalar = Entry->Scalars[Lane]; 7638 7639 #ifndef NDEBUG 7640 Type *Ty = Scalar->getType(); 7641 if (!Ty->isVoidTy()) { 7642 for (User *U : Scalar->users()) { 7643 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7644 7645 // It is legal to delete users in the ignorelist. 7646 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7647 (isa_and_nonnull<Instruction>(U) && 7648 isDeleted(cast<Instruction>(U)))) && 7649 "Deleting out-of-tree value"); 7650 } 7651 } 7652 #endif 7653 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7654 eraseInstruction(cast<Instruction>(Scalar)); 7655 } 7656 } 7657 7658 Builder.ClearInsertionPoint(); 7659 InstrElementSize.clear(); 7660 7661 return VectorizableTree[0]->VectorizedValue; 7662 } 7663 7664 void BoUpSLP::optimizeGatherSequence() { 7665 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7666 << " gather sequences instructions.\n"); 7667 // LICM InsertElementInst sequences. 7668 for (Instruction *I : GatherShuffleSeq) { 7669 if (isDeleted(I)) 7670 continue; 7671 7672 // Check if this block is inside a loop. 7673 Loop *L = LI->getLoopFor(I->getParent()); 7674 if (!L) 7675 continue; 7676 7677 // Check if it has a preheader. 7678 BasicBlock *PreHeader = L->getLoopPreheader(); 7679 if (!PreHeader) 7680 continue; 7681 7682 // If the vector or the element that we insert into it are 7683 // instructions that are defined in this basic block then we can't 7684 // hoist this instruction. 7685 if (any_of(I->operands(), [L](Value *V) { 7686 auto *OpI = dyn_cast<Instruction>(V); 7687 return OpI && L->contains(OpI); 7688 })) 7689 continue; 7690 7691 // We can hoist this instruction. Move it to the pre-header. 7692 I->moveBefore(PreHeader->getTerminator()); 7693 } 7694 7695 // Make a list of all reachable blocks in our CSE queue. 7696 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7697 CSEWorkList.reserve(CSEBlocks.size()); 7698 for (BasicBlock *BB : CSEBlocks) 7699 if (DomTreeNode *N = DT->getNode(BB)) { 7700 assert(DT->isReachableFromEntry(N)); 7701 CSEWorkList.push_back(N); 7702 } 7703 7704 // Sort blocks by domination. This ensures we visit a block after all blocks 7705 // dominating it are visited. 7706 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7707 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7708 "Different nodes should have different DFS numbers"); 7709 return A->getDFSNumIn() < B->getDFSNumIn(); 7710 }); 7711 7712 // Less defined shuffles can be replaced by the more defined copies. 7713 // Between two shuffles one is less defined if it has the same vector operands 7714 // and its mask indeces are the same as in the first one or undefs. E.g. 7715 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7716 // poison, <0, 0, 0, 0>. 7717 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7718 SmallVectorImpl<int> &NewMask) { 7719 if (I1->getType() != I2->getType()) 7720 return false; 7721 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7722 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7723 if (!SI1 || !SI2) 7724 return I1->isIdenticalTo(I2); 7725 if (SI1->isIdenticalTo(SI2)) 7726 return true; 7727 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7728 if (SI1->getOperand(I) != SI2->getOperand(I)) 7729 return false; 7730 // Check if the second instruction is more defined than the first one. 7731 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7732 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7733 // Count trailing undefs in the mask to check the final number of used 7734 // registers. 7735 unsigned LastUndefsCnt = 0; 7736 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7737 if (SM1[I] == UndefMaskElem) 7738 ++LastUndefsCnt; 7739 else 7740 LastUndefsCnt = 0; 7741 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7742 NewMask[I] != SM1[I]) 7743 return false; 7744 if (NewMask[I] == UndefMaskElem) 7745 NewMask[I] = SM1[I]; 7746 } 7747 // Check if the last undefs actually change the final number of used vector 7748 // registers. 7749 return SM1.size() - LastUndefsCnt > 1 && 7750 TTI->getNumberOfParts(SI1->getType()) == 7751 TTI->getNumberOfParts( 7752 FixedVectorType::get(SI1->getType()->getElementType(), 7753 SM1.size() - LastUndefsCnt)); 7754 }; 7755 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7756 // instructions. TODO: We can further optimize this scan if we split the 7757 // instructions into different buckets based on the insert lane. 7758 SmallVector<Instruction *, 16> Visited; 7759 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7760 assert(*I && 7761 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7762 "Worklist not sorted properly!"); 7763 BasicBlock *BB = (*I)->getBlock(); 7764 // For all instructions in blocks containing gather sequences: 7765 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7766 if (isDeleted(&In)) 7767 continue; 7768 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7769 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7770 continue; 7771 7772 // Check if we can replace this instruction with any of the 7773 // visited instructions. 7774 bool Replaced = false; 7775 for (Instruction *&V : Visited) { 7776 SmallVector<int> NewMask; 7777 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7778 DT->dominates(V->getParent(), In.getParent())) { 7779 In.replaceAllUsesWith(V); 7780 eraseInstruction(&In); 7781 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7782 if (!NewMask.empty()) 7783 SI->setShuffleMask(NewMask); 7784 Replaced = true; 7785 break; 7786 } 7787 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7788 GatherShuffleSeq.contains(V) && 7789 IsIdenticalOrLessDefined(V, &In, NewMask) && 7790 DT->dominates(In.getParent(), V->getParent())) { 7791 In.moveAfter(V); 7792 V->replaceAllUsesWith(&In); 7793 eraseInstruction(V); 7794 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7795 if (!NewMask.empty()) 7796 SI->setShuffleMask(NewMask); 7797 V = &In; 7798 Replaced = true; 7799 break; 7800 } 7801 } 7802 if (!Replaced) { 7803 assert(!is_contained(Visited, &In)); 7804 Visited.push_back(&In); 7805 } 7806 } 7807 } 7808 CSEBlocks.clear(); 7809 GatherShuffleSeq.clear(); 7810 } 7811 7812 BoUpSLP::ScheduleData * 7813 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7814 ScheduleData *Bundle = nullptr; 7815 ScheduleData *PrevInBundle = nullptr; 7816 for (Value *V : VL) { 7817 if (doesNotNeedToBeScheduled(V)) 7818 continue; 7819 ScheduleData *BundleMember = getScheduleData(V); 7820 assert(BundleMember && 7821 "no ScheduleData for bundle member " 7822 "(maybe not in same basic block)"); 7823 assert(BundleMember->isSchedulingEntity() && 7824 "bundle member already part of other bundle"); 7825 if (PrevInBundle) { 7826 PrevInBundle->NextInBundle = BundleMember; 7827 } else { 7828 Bundle = BundleMember; 7829 } 7830 7831 // Group the instructions to a bundle. 7832 BundleMember->FirstInBundle = Bundle; 7833 PrevInBundle = BundleMember; 7834 } 7835 assert(Bundle && "Failed to find schedule bundle"); 7836 return Bundle; 7837 } 7838 7839 // Groups the instructions to a bundle (which is then a single scheduling entity) 7840 // and schedules instructions until the bundle gets ready. 7841 Optional<BoUpSLP::ScheduleData *> 7842 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7843 const InstructionsState &S) { 7844 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7845 // instructions. 7846 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7847 doesNotNeedToSchedule(VL)) 7848 return nullptr; 7849 7850 // Initialize the instruction bundle. 7851 Instruction *OldScheduleEnd = ScheduleEnd; 7852 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7853 7854 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7855 ScheduleData *Bundle) { 7856 // The scheduling region got new instructions at the lower end (or it is a 7857 // new region for the first bundle). This makes it necessary to 7858 // recalculate all dependencies. 7859 // It is seldom that this needs to be done a second time after adding the 7860 // initial bundle to the region. 7861 if (ScheduleEnd != OldScheduleEnd) { 7862 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7863 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7864 ReSchedule = true; 7865 } 7866 if (Bundle) { 7867 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7868 << " in block " << BB->getName() << "\n"); 7869 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7870 } 7871 7872 if (ReSchedule) { 7873 resetSchedule(); 7874 initialFillReadyList(ReadyInsts); 7875 } 7876 7877 // Now try to schedule the new bundle or (if no bundle) just calculate 7878 // dependencies. As soon as the bundle is "ready" it means that there are no 7879 // cyclic dependencies and we can schedule it. Note that's important that we 7880 // don't "schedule" the bundle yet (see cancelScheduling). 7881 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7882 !ReadyInsts.empty()) { 7883 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7884 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7885 "must be ready to schedule"); 7886 schedule(Picked, ReadyInsts); 7887 } 7888 }; 7889 7890 // Make sure that the scheduling region contains all 7891 // instructions of the bundle. 7892 for (Value *V : VL) { 7893 if (doesNotNeedToBeScheduled(V)) 7894 continue; 7895 if (!extendSchedulingRegion(V, S)) { 7896 // If the scheduling region got new instructions at the lower end (or it 7897 // is a new region for the first bundle). This makes it necessary to 7898 // recalculate all dependencies. 7899 // Otherwise the compiler may crash trying to incorrectly calculate 7900 // dependencies and emit instruction in the wrong order at the actual 7901 // scheduling. 7902 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7903 return None; 7904 } 7905 } 7906 7907 bool ReSchedule = false; 7908 for (Value *V : VL) { 7909 if (doesNotNeedToBeScheduled(V)) 7910 continue; 7911 ScheduleData *BundleMember = getScheduleData(V); 7912 assert(BundleMember && 7913 "no ScheduleData for bundle member (maybe not in same basic block)"); 7914 7915 // Make sure we don't leave the pieces of the bundle in the ready list when 7916 // whole bundle might not be ready. 7917 ReadyInsts.remove(BundleMember); 7918 7919 if (!BundleMember->IsScheduled) 7920 continue; 7921 // A bundle member was scheduled as single instruction before and now 7922 // needs to be scheduled as part of the bundle. We just get rid of the 7923 // existing schedule. 7924 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7925 << " was already scheduled\n"); 7926 ReSchedule = true; 7927 } 7928 7929 auto *Bundle = buildBundle(VL); 7930 TryScheduleBundleImpl(ReSchedule, Bundle); 7931 if (!Bundle->isReady()) { 7932 cancelScheduling(VL, S.OpValue); 7933 return None; 7934 } 7935 return Bundle; 7936 } 7937 7938 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7939 Value *OpValue) { 7940 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7941 doesNotNeedToSchedule(VL)) 7942 return; 7943 7944 if (doesNotNeedToBeScheduled(OpValue)) 7945 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7946 ScheduleData *Bundle = getScheduleData(OpValue); 7947 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7948 assert(!Bundle->IsScheduled && 7949 "Can't cancel bundle which is already scheduled"); 7950 assert(Bundle->isSchedulingEntity() && 7951 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7952 "tried to unbundle something which is not a bundle"); 7953 7954 // Remove the bundle from the ready list. 7955 if (Bundle->isReady()) 7956 ReadyInsts.remove(Bundle); 7957 7958 // Un-bundle: make single instructions out of the bundle. 7959 ScheduleData *BundleMember = Bundle; 7960 while (BundleMember) { 7961 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7962 BundleMember->FirstInBundle = BundleMember; 7963 ScheduleData *Next = BundleMember->NextInBundle; 7964 BundleMember->NextInBundle = nullptr; 7965 BundleMember->TE = nullptr; 7966 if (BundleMember->unscheduledDepsInBundle() == 0) { 7967 ReadyInsts.insert(BundleMember); 7968 } 7969 BundleMember = Next; 7970 } 7971 } 7972 7973 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7974 // Allocate a new ScheduleData for the instruction. 7975 if (ChunkPos >= ChunkSize) { 7976 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7977 ChunkPos = 0; 7978 } 7979 return &(ScheduleDataChunks.back()[ChunkPos++]); 7980 } 7981 7982 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7983 const InstructionsState &S) { 7984 if (getScheduleData(V, isOneOf(S, V))) 7985 return true; 7986 Instruction *I = dyn_cast<Instruction>(V); 7987 assert(I && "bundle member must be an instruction"); 7988 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7989 !doesNotNeedToBeScheduled(I) && 7990 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7991 "be scheduled"); 7992 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7993 ScheduleData *ISD = getScheduleData(I); 7994 if (!ISD) 7995 return false; 7996 assert(isInSchedulingRegion(ISD) && 7997 "ScheduleData not in scheduling region"); 7998 ScheduleData *SD = allocateScheduleDataChunks(); 7999 SD->Inst = I; 8000 SD->init(SchedulingRegionID, S.OpValue); 8001 ExtraScheduleDataMap[I][S.OpValue] = SD; 8002 return true; 8003 }; 8004 if (CheckScheduleForI(I)) 8005 return true; 8006 if (!ScheduleStart) { 8007 // It's the first instruction in the new region. 8008 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8009 ScheduleStart = I; 8010 ScheduleEnd = I->getNextNode(); 8011 if (isOneOf(S, I) != I) 8012 CheckScheduleForI(I); 8013 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8014 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8015 return true; 8016 } 8017 // Search up and down at the same time, because we don't know if the new 8018 // instruction is above or below the existing scheduling region. 8019 BasicBlock::reverse_iterator UpIter = 8020 ++ScheduleStart->getIterator().getReverse(); 8021 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8022 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8023 BasicBlock::iterator LowerEnd = BB->end(); 8024 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8025 &*DownIter != I) { 8026 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8027 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8028 return false; 8029 } 8030 8031 ++UpIter; 8032 ++DownIter; 8033 } 8034 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8035 assert(I->getParent() == ScheduleStart->getParent() && 8036 "Instruction is in wrong basic block."); 8037 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8038 ScheduleStart = I; 8039 if (isOneOf(S, I) != I) 8040 CheckScheduleForI(I); 8041 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8042 << "\n"); 8043 return true; 8044 } 8045 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8046 "Expected to reach top of the basic block or instruction down the " 8047 "lower end."); 8048 assert(I->getParent() == ScheduleEnd->getParent() && 8049 "Instruction is in wrong basic block."); 8050 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8051 nullptr); 8052 ScheduleEnd = I->getNextNode(); 8053 if (isOneOf(S, I) != I) 8054 CheckScheduleForI(I); 8055 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8056 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8057 return true; 8058 } 8059 8060 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8061 Instruction *ToI, 8062 ScheduleData *PrevLoadStore, 8063 ScheduleData *NextLoadStore) { 8064 ScheduleData *CurrentLoadStore = PrevLoadStore; 8065 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8066 // No need to allocate data for non-schedulable instructions. 8067 if (doesNotNeedToBeScheduled(I)) 8068 continue; 8069 ScheduleData *SD = ScheduleDataMap.lookup(I); 8070 if (!SD) { 8071 SD = allocateScheduleDataChunks(); 8072 ScheduleDataMap[I] = SD; 8073 SD->Inst = I; 8074 } 8075 assert(!isInSchedulingRegion(SD) && 8076 "new ScheduleData already in scheduling region"); 8077 SD->init(SchedulingRegionID, I); 8078 8079 if (I->mayReadOrWriteMemory() && 8080 (!isa<IntrinsicInst>(I) || 8081 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8082 cast<IntrinsicInst>(I)->getIntrinsicID() != 8083 Intrinsic::pseudoprobe))) { 8084 // Update the linked list of memory accessing instructions. 8085 if (CurrentLoadStore) { 8086 CurrentLoadStore->NextLoadStore = SD; 8087 } else { 8088 FirstLoadStoreInRegion = SD; 8089 } 8090 CurrentLoadStore = SD; 8091 } 8092 8093 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8094 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8095 RegionHasStackSave = true; 8096 } 8097 if (NextLoadStore) { 8098 if (CurrentLoadStore) 8099 CurrentLoadStore->NextLoadStore = NextLoadStore; 8100 } else { 8101 LastLoadStoreInRegion = CurrentLoadStore; 8102 } 8103 } 8104 8105 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8106 bool InsertInReadyList, 8107 BoUpSLP *SLP) { 8108 assert(SD->isSchedulingEntity()); 8109 8110 SmallVector<ScheduleData *, 10> WorkList; 8111 WorkList.push_back(SD); 8112 8113 while (!WorkList.empty()) { 8114 ScheduleData *SD = WorkList.pop_back_val(); 8115 for (ScheduleData *BundleMember = SD; BundleMember; 8116 BundleMember = BundleMember->NextInBundle) { 8117 assert(isInSchedulingRegion(BundleMember)); 8118 if (BundleMember->hasValidDependencies()) 8119 continue; 8120 8121 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8122 << "\n"); 8123 BundleMember->Dependencies = 0; 8124 BundleMember->resetUnscheduledDeps(); 8125 8126 // Handle def-use chain dependencies. 8127 if (BundleMember->OpValue != BundleMember->Inst) { 8128 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8129 BundleMember->Dependencies++; 8130 ScheduleData *DestBundle = UseSD->FirstInBundle; 8131 if (!DestBundle->IsScheduled) 8132 BundleMember->incrementUnscheduledDeps(1); 8133 if (!DestBundle->hasValidDependencies()) 8134 WorkList.push_back(DestBundle); 8135 } 8136 } else { 8137 for (User *U : BundleMember->Inst->users()) { 8138 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8139 BundleMember->Dependencies++; 8140 ScheduleData *DestBundle = UseSD->FirstInBundle; 8141 if (!DestBundle->IsScheduled) 8142 BundleMember->incrementUnscheduledDeps(1); 8143 if (!DestBundle->hasValidDependencies()) 8144 WorkList.push_back(DestBundle); 8145 } 8146 } 8147 } 8148 8149 auto makeControlDependent = [&](Instruction *I) { 8150 auto *DepDest = getScheduleData(I); 8151 assert(DepDest && "must be in schedule window"); 8152 DepDest->ControlDependencies.push_back(BundleMember); 8153 BundleMember->Dependencies++; 8154 ScheduleData *DestBundle = DepDest->FirstInBundle; 8155 if (!DestBundle->IsScheduled) 8156 BundleMember->incrementUnscheduledDeps(1); 8157 if (!DestBundle->hasValidDependencies()) 8158 WorkList.push_back(DestBundle); 8159 }; 8160 8161 // Any instruction which isn't safe to speculate at the begining of the 8162 // block is control dependend on any early exit or non-willreturn call 8163 // which proceeds it. 8164 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8165 for (Instruction *I = BundleMember->Inst->getNextNode(); 8166 I != ScheduleEnd; I = I->getNextNode()) { 8167 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8168 continue; 8169 8170 // Add the dependency 8171 makeControlDependent(I); 8172 8173 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8174 // Everything past here must be control dependent on I. 8175 break; 8176 } 8177 } 8178 8179 if (RegionHasStackSave) { 8180 // If we have an inalloc alloca instruction, it needs to be scheduled 8181 // after any preceeding stacksave. We also need to prevent any alloca 8182 // from reordering above a preceeding stackrestore. 8183 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8184 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8185 for (Instruction *I = BundleMember->Inst->getNextNode(); 8186 I != ScheduleEnd; I = I->getNextNode()) { 8187 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8188 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8189 // Any allocas past here must be control dependent on I, and I 8190 // must be memory dependend on BundleMember->Inst. 8191 break; 8192 8193 if (!isa<AllocaInst>(I)) 8194 continue; 8195 8196 // Add the dependency 8197 makeControlDependent(I); 8198 } 8199 } 8200 8201 // In addition to the cases handle just above, we need to prevent 8202 // allocas from moving below a stacksave. The stackrestore case 8203 // is currently thought to be conservatism. 8204 if (isa<AllocaInst>(BundleMember->Inst)) { 8205 for (Instruction *I = BundleMember->Inst->getNextNode(); 8206 I != ScheduleEnd; I = I->getNextNode()) { 8207 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8208 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8209 continue; 8210 8211 // Add the dependency 8212 makeControlDependent(I); 8213 break; 8214 } 8215 } 8216 } 8217 8218 // Handle the memory dependencies (if any). 8219 ScheduleData *DepDest = BundleMember->NextLoadStore; 8220 if (!DepDest) 8221 continue; 8222 Instruction *SrcInst = BundleMember->Inst; 8223 assert(SrcInst->mayReadOrWriteMemory() && 8224 "NextLoadStore list for non memory effecting bundle?"); 8225 MemoryLocation SrcLoc = getLocation(SrcInst); 8226 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8227 unsigned numAliased = 0; 8228 unsigned DistToSrc = 1; 8229 8230 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8231 assert(isInSchedulingRegion(DepDest)); 8232 8233 // We have two limits to reduce the complexity: 8234 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8235 // SLP->isAliased (which is the expensive part in this loop). 8236 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8237 // the whole loop (even if the loop is fast, it's quadratic). 8238 // It's important for the loop break condition (see below) to 8239 // check this limit even between two read-only instructions. 8240 if (DistToSrc >= MaxMemDepDistance || 8241 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8242 (numAliased >= AliasedCheckLimit || 8243 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8244 8245 // We increment the counter only if the locations are aliased 8246 // (instead of counting all alias checks). This gives a better 8247 // balance between reduced runtime and accurate dependencies. 8248 numAliased++; 8249 8250 DepDest->MemoryDependencies.push_back(BundleMember); 8251 BundleMember->Dependencies++; 8252 ScheduleData *DestBundle = DepDest->FirstInBundle; 8253 if (!DestBundle->IsScheduled) { 8254 BundleMember->incrementUnscheduledDeps(1); 8255 } 8256 if (!DestBundle->hasValidDependencies()) { 8257 WorkList.push_back(DestBundle); 8258 } 8259 } 8260 8261 // Example, explaining the loop break condition: Let's assume our 8262 // starting instruction is i0 and MaxMemDepDistance = 3. 8263 // 8264 // +--------v--v--v 8265 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8266 // +--------^--^--^ 8267 // 8268 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8269 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8270 // Previously we already added dependencies from i3 to i6,i7,i8 8271 // (because of MaxMemDepDistance). As we added a dependency from 8272 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8273 // and we can abort this loop at i6. 8274 if (DistToSrc >= 2 * MaxMemDepDistance) 8275 break; 8276 DistToSrc++; 8277 } 8278 } 8279 if (InsertInReadyList && SD->isReady()) { 8280 ReadyInsts.insert(SD); 8281 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8282 << "\n"); 8283 } 8284 } 8285 } 8286 8287 void BoUpSLP::BlockScheduling::resetSchedule() { 8288 assert(ScheduleStart && 8289 "tried to reset schedule on block which has not been scheduled"); 8290 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8291 doForAllOpcodes(I, [&](ScheduleData *SD) { 8292 assert(isInSchedulingRegion(SD) && 8293 "ScheduleData not in scheduling region"); 8294 SD->IsScheduled = false; 8295 SD->resetUnscheduledDeps(); 8296 }); 8297 } 8298 ReadyInsts.clear(); 8299 } 8300 8301 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8302 if (!BS->ScheduleStart) 8303 return; 8304 8305 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8306 8307 // A key point - if we got here, pre-scheduling was able to find a valid 8308 // scheduling of the sub-graph of the scheduling window which consists 8309 // of all vector bundles and their transitive users. As such, we do not 8310 // need to reschedule anything *outside of* that subgraph. 8311 8312 BS->resetSchedule(); 8313 8314 // For the real scheduling we use a more sophisticated ready-list: it is 8315 // sorted by the original instruction location. This lets the final schedule 8316 // be as close as possible to the original instruction order. 8317 // WARNING: If changing this order causes a correctness issue, that means 8318 // there is some missing dependence edge in the schedule data graph. 8319 struct ScheduleDataCompare { 8320 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8321 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8322 } 8323 }; 8324 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8325 8326 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8327 // and fill the ready-list with initial instructions. 8328 int Idx = 0; 8329 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8330 I = I->getNextNode()) { 8331 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8332 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8333 (void)SDTE; 8334 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8335 SD->isPartOfBundle() == 8336 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8337 "scheduler and vectorizer bundle mismatch"); 8338 SD->FirstInBundle->SchedulingPriority = Idx++; 8339 8340 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8341 BS->calculateDependencies(SD, false, this); 8342 }); 8343 } 8344 BS->initialFillReadyList(ReadyInsts); 8345 8346 Instruction *LastScheduledInst = BS->ScheduleEnd; 8347 8348 // Do the "real" scheduling. 8349 while (!ReadyInsts.empty()) { 8350 ScheduleData *picked = *ReadyInsts.begin(); 8351 ReadyInsts.erase(ReadyInsts.begin()); 8352 8353 // Move the scheduled instruction(s) to their dedicated places, if not 8354 // there yet. 8355 for (ScheduleData *BundleMember = picked; BundleMember; 8356 BundleMember = BundleMember->NextInBundle) { 8357 Instruction *pickedInst = BundleMember->Inst; 8358 if (pickedInst->getNextNode() != LastScheduledInst) 8359 pickedInst->moveBefore(LastScheduledInst); 8360 LastScheduledInst = pickedInst; 8361 } 8362 8363 BS->schedule(picked, ReadyInsts); 8364 } 8365 8366 // Check that we didn't break any of our invariants. 8367 #ifdef EXPENSIVE_CHECKS 8368 BS->verify(); 8369 #endif 8370 8371 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8372 // Check that all schedulable entities got scheduled 8373 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8374 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8375 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8376 assert(SD->IsScheduled && "must be scheduled at this point"); 8377 } 8378 }); 8379 } 8380 #endif 8381 8382 // Avoid duplicate scheduling of the block. 8383 BS->ScheduleStart = nullptr; 8384 } 8385 8386 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8387 // If V is a store, just return the width of the stored value (or value 8388 // truncated just before storing) without traversing the expression tree. 8389 // This is the common case. 8390 if (auto *Store = dyn_cast<StoreInst>(V)) { 8391 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8392 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8393 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8394 } 8395 8396 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8397 return getVectorElementSize(IEI->getOperand(1)); 8398 8399 auto E = InstrElementSize.find(V); 8400 if (E != InstrElementSize.end()) 8401 return E->second; 8402 8403 // If V is not a store, we can traverse the expression tree to find loads 8404 // that feed it. The type of the loaded value may indicate a more suitable 8405 // width than V's type. We want to base the vector element size on the width 8406 // of memory operations where possible. 8407 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8408 SmallPtrSet<Instruction *, 16> Visited; 8409 if (auto *I = dyn_cast<Instruction>(V)) { 8410 Worklist.emplace_back(I, I->getParent()); 8411 Visited.insert(I); 8412 } 8413 8414 // Traverse the expression tree in bottom-up order looking for loads. If we 8415 // encounter an instruction we don't yet handle, we give up. 8416 auto Width = 0u; 8417 while (!Worklist.empty()) { 8418 Instruction *I; 8419 BasicBlock *Parent; 8420 std::tie(I, Parent) = Worklist.pop_back_val(); 8421 8422 // We should only be looking at scalar instructions here. If the current 8423 // instruction has a vector type, skip. 8424 auto *Ty = I->getType(); 8425 if (isa<VectorType>(Ty)) 8426 continue; 8427 8428 // If the current instruction is a load, update MaxWidth to reflect the 8429 // width of the loaded value. 8430 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8431 isa<ExtractValueInst>(I)) 8432 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8433 8434 // Otherwise, we need to visit the operands of the instruction. We only 8435 // handle the interesting cases from buildTree here. If an operand is an 8436 // instruction we haven't yet visited and from the same basic block as the 8437 // user or the use is a PHI node, we add it to the worklist. 8438 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8439 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8440 isa<UnaryOperator>(I)) { 8441 for (Use &U : I->operands()) 8442 if (auto *J = dyn_cast<Instruction>(U.get())) 8443 if (Visited.insert(J).second && 8444 (isa<PHINode>(I) || J->getParent() == Parent)) 8445 Worklist.emplace_back(J, J->getParent()); 8446 } else { 8447 break; 8448 } 8449 } 8450 8451 // If we didn't encounter a memory access in the expression tree, or if we 8452 // gave up for some reason, just return the width of V. Otherwise, return the 8453 // maximum width we found. 8454 if (!Width) { 8455 if (auto *CI = dyn_cast<CmpInst>(V)) 8456 V = CI->getOperand(0); 8457 Width = DL->getTypeSizeInBits(V->getType()); 8458 } 8459 8460 for (Instruction *I : Visited) 8461 InstrElementSize[I] = Width; 8462 8463 return Width; 8464 } 8465 8466 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8467 // smaller type with a truncation. We collect the values that will be demoted 8468 // in ToDemote and additional roots that require investigating in Roots. 8469 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8470 SmallVectorImpl<Value *> &ToDemote, 8471 SmallVectorImpl<Value *> &Roots) { 8472 // We can always demote constants. 8473 if (isa<Constant>(V)) { 8474 ToDemote.push_back(V); 8475 return true; 8476 } 8477 8478 // If the value is not an instruction in the expression with only one use, it 8479 // cannot be demoted. 8480 auto *I = dyn_cast<Instruction>(V); 8481 if (!I || !I->hasOneUse() || !Expr.count(I)) 8482 return false; 8483 8484 switch (I->getOpcode()) { 8485 8486 // We can always demote truncations and extensions. Since truncations can 8487 // seed additional demotion, we save the truncated value. 8488 case Instruction::Trunc: 8489 Roots.push_back(I->getOperand(0)); 8490 break; 8491 case Instruction::ZExt: 8492 case Instruction::SExt: 8493 if (isa<ExtractElementInst>(I->getOperand(0)) || 8494 isa<InsertElementInst>(I->getOperand(0))) 8495 return false; 8496 break; 8497 8498 // We can demote certain binary operations if we can demote both of their 8499 // operands. 8500 case Instruction::Add: 8501 case Instruction::Sub: 8502 case Instruction::Mul: 8503 case Instruction::And: 8504 case Instruction::Or: 8505 case Instruction::Xor: 8506 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8507 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8508 return false; 8509 break; 8510 8511 // We can demote selects if we can demote their true and false values. 8512 case Instruction::Select: { 8513 SelectInst *SI = cast<SelectInst>(I); 8514 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8515 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8516 return false; 8517 break; 8518 } 8519 8520 // We can demote phis if we can demote all their incoming operands. Note that 8521 // we don't need to worry about cycles since we ensure single use above. 8522 case Instruction::PHI: { 8523 PHINode *PN = cast<PHINode>(I); 8524 for (Value *IncValue : PN->incoming_values()) 8525 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8526 return false; 8527 break; 8528 } 8529 8530 // Otherwise, conservatively give up. 8531 default: 8532 return false; 8533 } 8534 8535 // Record the value that we can demote. 8536 ToDemote.push_back(V); 8537 return true; 8538 } 8539 8540 void BoUpSLP::computeMinimumValueSizes() { 8541 // If there are no external uses, the expression tree must be rooted by a 8542 // store. We can't demote in-memory values, so there is nothing to do here. 8543 if (ExternalUses.empty()) 8544 return; 8545 8546 // We only attempt to truncate integer expressions. 8547 auto &TreeRoot = VectorizableTree[0]->Scalars; 8548 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8549 if (!TreeRootIT) 8550 return; 8551 8552 // If the expression is not rooted by a store, these roots should have 8553 // external uses. We will rely on InstCombine to rewrite the expression in 8554 // the narrower type. However, InstCombine only rewrites single-use values. 8555 // This means that if a tree entry other than a root is used externally, it 8556 // must have multiple uses and InstCombine will not rewrite it. The code 8557 // below ensures that only the roots are used externally. 8558 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8559 for (auto &EU : ExternalUses) 8560 if (!Expr.erase(EU.Scalar)) 8561 return; 8562 if (!Expr.empty()) 8563 return; 8564 8565 // Collect the scalar values of the vectorizable expression. We will use this 8566 // context to determine which values can be demoted. If we see a truncation, 8567 // we mark it as seeding another demotion. 8568 for (auto &EntryPtr : VectorizableTree) 8569 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8570 8571 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8572 // have a single external user that is not in the vectorizable tree. 8573 for (auto *Root : TreeRoot) 8574 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8575 return; 8576 8577 // Conservatively determine if we can actually truncate the roots of the 8578 // expression. Collect the values that can be demoted in ToDemote and 8579 // additional roots that require investigating in Roots. 8580 SmallVector<Value *, 32> ToDemote; 8581 SmallVector<Value *, 4> Roots; 8582 for (auto *Root : TreeRoot) 8583 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8584 return; 8585 8586 // The maximum bit width required to represent all the values that can be 8587 // demoted without loss of precision. It would be safe to truncate the roots 8588 // of the expression to this width. 8589 auto MaxBitWidth = 8u; 8590 8591 // We first check if all the bits of the roots are demanded. If they're not, 8592 // we can truncate the roots to this narrower type. 8593 for (auto *Root : TreeRoot) { 8594 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8595 MaxBitWidth = std::max<unsigned>( 8596 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8597 } 8598 8599 // True if the roots can be zero-extended back to their original type, rather 8600 // than sign-extended. We know that if the leading bits are not demanded, we 8601 // can safely zero-extend. So we initialize IsKnownPositive to True. 8602 bool IsKnownPositive = true; 8603 8604 // If all the bits of the roots are demanded, we can try a little harder to 8605 // compute a narrower type. This can happen, for example, if the roots are 8606 // getelementptr indices. InstCombine promotes these indices to the pointer 8607 // width. Thus, all their bits are technically demanded even though the 8608 // address computation might be vectorized in a smaller type. 8609 // 8610 // We start by looking at each entry that can be demoted. We compute the 8611 // maximum bit width required to store the scalar by using ValueTracking to 8612 // compute the number of high-order bits we can truncate. 8613 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8614 llvm::all_of(TreeRoot, [](Value *R) { 8615 assert(R->hasOneUse() && "Root should have only one use!"); 8616 return isa<GetElementPtrInst>(R->user_back()); 8617 })) { 8618 MaxBitWidth = 8u; 8619 8620 // Determine if the sign bit of all the roots is known to be zero. If not, 8621 // IsKnownPositive is set to False. 8622 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8623 KnownBits Known = computeKnownBits(R, *DL); 8624 return Known.isNonNegative(); 8625 }); 8626 8627 // Determine the maximum number of bits required to store the scalar 8628 // values. 8629 for (auto *Scalar : ToDemote) { 8630 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8631 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8632 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8633 } 8634 8635 // If we can't prove that the sign bit is zero, we must add one to the 8636 // maximum bit width to account for the unknown sign bit. This preserves 8637 // the existing sign bit so we can safely sign-extend the root back to the 8638 // original type. Otherwise, if we know the sign bit is zero, we will 8639 // zero-extend the root instead. 8640 // 8641 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8642 // one to the maximum bit width will yield a larger-than-necessary 8643 // type. In general, we need to add an extra bit only if we can't 8644 // prove that the upper bit of the original type is equal to the 8645 // upper bit of the proposed smaller type. If these two bits are the 8646 // same (either zero or one) we know that sign-extending from the 8647 // smaller type will result in the same value. Here, since we can't 8648 // yet prove this, we are just making the proposed smaller type 8649 // larger to ensure correctness. 8650 if (!IsKnownPositive) 8651 ++MaxBitWidth; 8652 } 8653 8654 // Round MaxBitWidth up to the next power-of-two. 8655 if (!isPowerOf2_64(MaxBitWidth)) 8656 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8657 8658 // If the maximum bit width we compute is less than the with of the roots' 8659 // type, we can proceed with the narrowing. Otherwise, do nothing. 8660 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8661 return; 8662 8663 // If we can truncate the root, we must collect additional values that might 8664 // be demoted as a result. That is, those seeded by truncations we will 8665 // modify. 8666 while (!Roots.empty()) 8667 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8668 8669 // Finally, map the values we can demote to the maximum bit with we computed. 8670 for (auto *Scalar : ToDemote) 8671 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8672 } 8673 8674 namespace { 8675 8676 /// The SLPVectorizer Pass. 8677 struct SLPVectorizer : public FunctionPass { 8678 SLPVectorizerPass Impl; 8679 8680 /// Pass identification, replacement for typeid 8681 static char ID; 8682 8683 explicit SLPVectorizer() : FunctionPass(ID) { 8684 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8685 } 8686 8687 bool doInitialization(Module &M) override { return false; } 8688 8689 bool runOnFunction(Function &F) override { 8690 if (skipFunction(F)) 8691 return false; 8692 8693 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8694 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8695 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8696 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8697 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8698 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8699 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8700 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8701 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8702 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8703 8704 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8705 } 8706 8707 void getAnalysisUsage(AnalysisUsage &AU) const override { 8708 FunctionPass::getAnalysisUsage(AU); 8709 AU.addRequired<AssumptionCacheTracker>(); 8710 AU.addRequired<ScalarEvolutionWrapperPass>(); 8711 AU.addRequired<AAResultsWrapperPass>(); 8712 AU.addRequired<TargetTransformInfoWrapperPass>(); 8713 AU.addRequired<LoopInfoWrapperPass>(); 8714 AU.addRequired<DominatorTreeWrapperPass>(); 8715 AU.addRequired<DemandedBitsWrapperPass>(); 8716 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8717 AU.addRequired<InjectTLIMappingsLegacy>(); 8718 AU.addPreserved<LoopInfoWrapperPass>(); 8719 AU.addPreserved<DominatorTreeWrapperPass>(); 8720 AU.addPreserved<AAResultsWrapperPass>(); 8721 AU.addPreserved<GlobalsAAWrapperPass>(); 8722 AU.setPreservesCFG(); 8723 } 8724 }; 8725 8726 } // end anonymous namespace 8727 8728 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8729 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8730 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8731 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8732 auto *AA = &AM.getResult<AAManager>(F); 8733 auto *LI = &AM.getResult<LoopAnalysis>(F); 8734 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8735 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8736 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8737 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8738 8739 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8740 if (!Changed) 8741 return PreservedAnalyses::all(); 8742 8743 PreservedAnalyses PA; 8744 PA.preserveSet<CFGAnalyses>(); 8745 return PA; 8746 } 8747 8748 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8749 TargetTransformInfo *TTI_, 8750 TargetLibraryInfo *TLI_, AAResults *AA_, 8751 LoopInfo *LI_, DominatorTree *DT_, 8752 AssumptionCache *AC_, DemandedBits *DB_, 8753 OptimizationRemarkEmitter *ORE_) { 8754 if (!RunSLPVectorization) 8755 return false; 8756 SE = SE_; 8757 TTI = TTI_; 8758 TLI = TLI_; 8759 AA = AA_; 8760 LI = LI_; 8761 DT = DT_; 8762 AC = AC_; 8763 DB = DB_; 8764 DL = &F.getParent()->getDataLayout(); 8765 8766 Stores.clear(); 8767 GEPs.clear(); 8768 bool Changed = false; 8769 8770 // If the target claims to have no vector registers don't attempt 8771 // vectorization. 8772 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8773 LLVM_DEBUG( 8774 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8775 return false; 8776 } 8777 8778 // Don't vectorize when the attribute NoImplicitFloat is used. 8779 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8780 return false; 8781 8782 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8783 8784 // Use the bottom up slp vectorizer to construct chains that start with 8785 // store instructions. 8786 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8787 8788 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8789 // delete instructions. 8790 8791 // Update DFS numbers now so that we can use them for ordering. 8792 DT->updateDFSNumbers(); 8793 8794 // Scan the blocks in the function in post order. 8795 for (auto BB : post_order(&F.getEntryBlock())) { 8796 collectSeedInstructions(BB); 8797 8798 // Vectorize trees that end at stores. 8799 if (!Stores.empty()) { 8800 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8801 << " underlying objects.\n"); 8802 Changed |= vectorizeStoreChains(R); 8803 } 8804 8805 // Vectorize trees that end at reductions. 8806 Changed |= vectorizeChainsInBlock(BB, R); 8807 8808 // Vectorize the index computations of getelementptr instructions. This 8809 // is primarily intended to catch gather-like idioms ending at 8810 // non-consecutive loads. 8811 if (!GEPs.empty()) { 8812 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8813 << " underlying objects.\n"); 8814 Changed |= vectorizeGEPIndices(BB, R); 8815 } 8816 } 8817 8818 if (Changed) { 8819 R.optimizeGatherSequence(); 8820 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8821 } 8822 return Changed; 8823 } 8824 8825 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8826 unsigned Idx) { 8827 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8828 << "\n"); 8829 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8830 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8831 unsigned VF = Chain.size(); 8832 8833 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8834 return false; 8835 8836 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8837 << "\n"); 8838 8839 R.buildTree(Chain); 8840 if (R.isTreeTinyAndNotFullyVectorizable()) 8841 return false; 8842 if (R.isLoadCombineCandidate()) 8843 return false; 8844 R.reorderTopToBottom(); 8845 R.reorderBottomToTop(); 8846 R.buildExternalUses(); 8847 8848 R.computeMinimumValueSizes(); 8849 8850 InstructionCost Cost = R.getTreeCost(); 8851 8852 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8853 if (Cost < -SLPCostThreshold) { 8854 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8855 8856 using namespace ore; 8857 8858 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8859 cast<StoreInst>(Chain[0])) 8860 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8861 << " and with tree size " 8862 << NV("TreeSize", R.getTreeSize())); 8863 8864 R.vectorizeTree(); 8865 return true; 8866 } 8867 8868 return false; 8869 } 8870 8871 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8872 BoUpSLP &R) { 8873 // We may run into multiple chains that merge into a single chain. We mark the 8874 // stores that we vectorized so that we don't visit the same store twice. 8875 BoUpSLP::ValueSet VectorizedStores; 8876 bool Changed = false; 8877 8878 int E = Stores.size(); 8879 SmallBitVector Tails(E, false); 8880 int MaxIter = MaxStoreLookup.getValue(); 8881 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8882 E, std::make_pair(E, INT_MAX)); 8883 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8884 int IterCnt; 8885 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8886 &CheckedPairs, 8887 &ConsecutiveChain](int K, int Idx) { 8888 if (IterCnt >= MaxIter) 8889 return true; 8890 if (CheckedPairs[Idx].test(K)) 8891 return ConsecutiveChain[K].second == 1 && 8892 ConsecutiveChain[K].first == Idx; 8893 ++IterCnt; 8894 CheckedPairs[Idx].set(K); 8895 CheckedPairs[K].set(Idx); 8896 Optional<int> Diff = getPointersDiff( 8897 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8898 Stores[Idx]->getValueOperand()->getType(), 8899 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8900 if (!Diff || *Diff == 0) 8901 return false; 8902 int Val = *Diff; 8903 if (Val < 0) { 8904 if (ConsecutiveChain[Idx].second > -Val) { 8905 Tails.set(K); 8906 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8907 } 8908 return false; 8909 } 8910 if (ConsecutiveChain[K].second <= Val) 8911 return false; 8912 8913 Tails.set(Idx); 8914 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8915 return Val == 1; 8916 }; 8917 // Do a quadratic search on all of the given stores in reverse order and find 8918 // all of the pairs of stores that follow each other. 8919 for (int Idx = E - 1; Idx >= 0; --Idx) { 8920 // If a store has multiple consecutive store candidates, search according 8921 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8922 // This is because usually pairing with immediate succeeding or preceding 8923 // candidate create the best chance to find slp vectorization opportunity. 8924 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8925 IterCnt = 0; 8926 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8927 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8928 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8929 break; 8930 } 8931 8932 // Tracks if we tried to vectorize stores starting from the given tail 8933 // already. 8934 SmallBitVector TriedTails(E, false); 8935 // For stores that start but don't end a link in the chain: 8936 for (int Cnt = E; Cnt > 0; --Cnt) { 8937 int I = Cnt - 1; 8938 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8939 continue; 8940 // We found a store instr that starts a chain. Now follow the chain and try 8941 // to vectorize it. 8942 BoUpSLP::ValueList Operands; 8943 // Collect the chain into a list. 8944 while (I != E && !VectorizedStores.count(Stores[I])) { 8945 Operands.push_back(Stores[I]); 8946 Tails.set(I); 8947 if (ConsecutiveChain[I].second != 1) { 8948 // Mark the new end in the chain and go back, if required. It might be 8949 // required if the original stores come in reversed order, for example. 8950 if (ConsecutiveChain[I].first != E && 8951 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8952 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8953 TriedTails.set(I); 8954 Tails.reset(ConsecutiveChain[I].first); 8955 if (Cnt < ConsecutiveChain[I].first + 2) 8956 Cnt = ConsecutiveChain[I].first + 2; 8957 } 8958 break; 8959 } 8960 // Move to the next value in the chain. 8961 I = ConsecutiveChain[I].first; 8962 } 8963 assert(!Operands.empty() && "Expected non-empty list of stores."); 8964 8965 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8966 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8967 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8968 8969 unsigned MinVF = R.getMinVF(EltSize); 8970 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8971 MaxElts); 8972 8973 // FIXME: Is division-by-2 the correct step? Should we assert that the 8974 // register size is a power-of-2? 8975 unsigned StartIdx = 0; 8976 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8977 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8978 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8979 if (!VectorizedStores.count(Slice.front()) && 8980 !VectorizedStores.count(Slice.back()) && 8981 vectorizeStoreChain(Slice, R, Cnt)) { 8982 // Mark the vectorized stores so that we don't vectorize them again. 8983 VectorizedStores.insert(Slice.begin(), Slice.end()); 8984 Changed = true; 8985 // If we vectorized initial block, no need to try to vectorize it 8986 // again. 8987 if (Cnt == StartIdx) 8988 StartIdx += Size; 8989 Cnt += Size; 8990 continue; 8991 } 8992 ++Cnt; 8993 } 8994 // Check if the whole array was vectorized already - exit. 8995 if (StartIdx >= Operands.size()) 8996 break; 8997 } 8998 } 8999 9000 return Changed; 9001 } 9002 9003 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9004 // Initialize the collections. We will make a single pass over the block. 9005 Stores.clear(); 9006 GEPs.clear(); 9007 9008 // Visit the store and getelementptr instructions in BB and organize them in 9009 // Stores and GEPs according to the underlying objects of their pointer 9010 // operands. 9011 for (Instruction &I : *BB) { 9012 // Ignore store instructions that are volatile or have a pointer operand 9013 // that doesn't point to a scalar type. 9014 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9015 if (!SI->isSimple()) 9016 continue; 9017 if (!isValidElementType(SI->getValueOperand()->getType())) 9018 continue; 9019 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9020 } 9021 9022 // Ignore getelementptr instructions that have more than one index, a 9023 // constant index, or a pointer operand that doesn't point to a scalar 9024 // type. 9025 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9026 auto Idx = GEP->idx_begin()->get(); 9027 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9028 continue; 9029 if (!isValidElementType(Idx->getType())) 9030 continue; 9031 if (GEP->getType()->isVectorTy()) 9032 continue; 9033 GEPs[GEP->getPointerOperand()].push_back(GEP); 9034 } 9035 } 9036 } 9037 9038 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9039 if (!A || !B) 9040 return false; 9041 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9042 return false; 9043 Value *VL[] = {A, B}; 9044 return tryToVectorizeList(VL, R); 9045 } 9046 9047 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9048 bool LimitForRegisterSize) { 9049 if (VL.size() < 2) 9050 return false; 9051 9052 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9053 << VL.size() << ".\n"); 9054 9055 // Check that all of the parts are instructions of the same type, 9056 // we permit an alternate opcode via InstructionsState. 9057 InstructionsState S = getSameOpcode(VL); 9058 if (!S.getOpcode()) 9059 return false; 9060 9061 Instruction *I0 = cast<Instruction>(S.OpValue); 9062 // Make sure invalid types (including vector type) are rejected before 9063 // determining vectorization factor for scalar instructions. 9064 for (Value *V : VL) { 9065 Type *Ty = V->getType(); 9066 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9067 // NOTE: the following will give user internal llvm type name, which may 9068 // not be useful. 9069 R.getORE()->emit([&]() { 9070 std::string type_str; 9071 llvm::raw_string_ostream rso(type_str); 9072 Ty->print(rso); 9073 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9074 << "Cannot SLP vectorize list: type " 9075 << rso.str() + " is unsupported by vectorizer"; 9076 }); 9077 return false; 9078 } 9079 } 9080 9081 unsigned Sz = R.getVectorElementSize(I0); 9082 unsigned MinVF = R.getMinVF(Sz); 9083 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9084 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9085 if (MaxVF < 2) { 9086 R.getORE()->emit([&]() { 9087 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9088 << "Cannot SLP vectorize list: vectorization factor " 9089 << "less than 2 is not supported"; 9090 }); 9091 return false; 9092 } 9093 9094 bool Changed = false; 9095 bool CandidateFound = false; 9096 InstructionCost MinCost = SLPCostThreshold.getValue(); 9097 Type *ScalarTy = VL[0]->getType(); 9098 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9099 ScalarTy = IE->getOperand(1)->getType(); 9100 9101 unsigned NextInst = 0, MaxInst = VL.size(); 9102 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9103 // No actual vectorization should happen, if number of parts is the same as 9104 // provided vectorization factor (i.e. the scalar type is used for vector 9105 // code during codegen). 9106 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9107 if (TTI->getNumberOfParts(VecTy) == VF) 9108 continue; 9109 for (unsigned I = NextInst; I < MaxInst; ++I) { 9110 unsigned OpsWidth = 0; 9111 9112 if (I + VF > MaxInst) 9113 OpsWidth = MaxInst - I; 9114 else 9115 OpsWidth = VF; 9116 9117 if (!isPowerOf2_32(OpsWidth)) 9118 continue; 9119 9120 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9121 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9122 break; 9123 9124 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9125 // Check that a previous iteration of this loop did not delete the Value. 9126 if (llvm::any_of(Ops, [&R](Value *V) { 9127 auto *I = dyn_cast<Instruction>(V); 9128 return I && R.isDeleted(I); 9129 })) 9130 continue; 9131 9132 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9133 << "\n"); 9134 9135 R.buildTree(Ops); 9136 if (R.isTreeTinyAndNotFullyVectorizable()) 9137 continue; 9138 R.reorderTopToBottom(); 9139 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9140 R.buildExternalUses(); 9141 9142 R.computeMinimumValueSizes(); 9143 InstructionCost Cost = R.getTreeCost(); 9144 CandidateFound = true; 9145 MinCost = std::min(MinCost, Cost); 9146 9147 if (Cost < -SLPCostThreshold) { 9148 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9149 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9150 cast<Instruction>(Ops[0])) 9151 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9152 << " and with tree size " 9153 << ore::NV("TreeSize", R.getTreeSize())); 9154 9155 R.vectorizeTree(); 9156 // Move to the next bundle. 9157 I += VF - 1; 9158 NextInst = I + 1; 9159 Changed = true; 9160 } 9161 } 9162 } 9163 9164 if (!Changed && CandidateFound) { 9165 R.getORE()->emit([&]() { 9166 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9167 << "List vectorization was possible but not beneficial with cost " 9168 << ore::NV("Cost", MinCost) << " >= " 9169 << ore::NV("Treshold", -SLPCostThreshold); 9170 }); 9171 } else if (!Changed) { 9172 R.getORE()->emit([&]() { 9173 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9174 << "Cannot SLP vectorize list: vectorization was impossible" 9175 << " with available vectorization factors"; 9176 }); 9177 } 9178 return Changed; 9179 } 9180 9181 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9182 if (!I) 9183 return false; 9184 9185 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 9186 isa<VectorType>(I->getType())) 9187 return false; 9188 9189 Value *P = I->getParent(); 9190 9191 // Vectorize in current basic block only. 9192 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9193 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9194 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9195 return false; 9196 9197 // First collect all possible candidates 9198 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 9199 Candidates.emplace_back(Op0, Op1); 9200 9201 auto *A = dyn_cast<BinaryOperator>(Op0); 9202 auto *B = dyn_cast<BinaryOperator>(Op1); 9203 // Try to skip B. 9204 if (A && B && B->hasOneUse()) { 9205 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9206 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9207 if (B0 && B0->getParent() == P) 9208 Candidates.emplace_back(A, B0); 9209 if (B1 && B1->getParent() == P) 9210 Candidates.emplace_back(A, B1); 9211 } 9212 // Try to skip A. 9213 if (B && A && A->hasOneUse()) { 9214 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9215 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9216 if (A0 && A0->getParent() == P) 9217 Candidates.emplace_back(A0, B); 9218 if (A1 && A1->getParent() == P) 9219 Candidates.emplace_back(A1, B); 9220 } 9221 9222 if (Candidates.size() == 1) 9223 return tryToVectorizePair(Op0, Op1, R); 9224 9225 // We have multiple options. Try to pick the single best. 9226 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 9227 if (!BestCandidate) 9228 return false; 9229 return tryToVectorizePair(Candidates[*BestCandidate].first, 9230 Candidates[*BestCandidate].second, R); 9231 } 9232 9233 namespace { 9234 9235 /// Model horizontal reductions. 9236 /// 9237 /// A horizontal reduction is a tree of reduction instructions that has values 9238 /// that can be put into a vector as its leaves. For example: 9239 /// 9240 /// mul mul mul mul 9241 /// \ / \ / 9242 /// + + 9243 /// \ / 9244 /// + 9245 /// This tree has "mul" as its leaf values and "+" as its reduction 9246 /// instructions. A reduction can feed into a store or a binary operation 9247 /// feeding a phi. 9248 /// ... 9249 /// \ / 9250 /// + 9251 /// | 9252 /// phi += 9253 /// 9254 /// Or: 9255 /// ... 9256 /// \ / 9257 /// + 9258 /// | 9259 /// *p = 9260 /// 9261 class HorizontalReduction { 9262 using ReductionOpsType = SmallVector<Value *, 16>; 9263 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9264 ReductionOpsListType ReductionOps; 9265 SmallVector<Value *, 32> ReducedVals; 9266 // Use map vector to make stable output. 9267 MapVector<Instruction *, Value *> ExtraArgs; 9268 WeakTrackingVH ReductionRoot; 9269 /// The type of reduction operation. 9270 RecurKind RdxKind; 9271 9272 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9273 9274 static bool isCmpSelMinMax(Instruction *I) { 9275 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9276 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9277 } 9278 9279 // And/or are potentially poison-safe logical patterns like: 9280 // select x, y, false 9281 // select x, true, y 9282 static bool isBoolLogicOp(Instruction *I) { 9283 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9284 match(I, m_LogicalOr(m_Value(), m_Value())); 9285 } 9286 9287 /// Checks if instruction is associative and can be vectorized. 9288 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9289 if (Kind == RecurKind::None) 9290 return false; 9291 9292 // Integer ops that map to select instructions or intrinsics are fine. 9293 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9294 isBoolLogicOp(I)) 9295 return true; 9296 9297 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9298 // FP min/max are associative except for NaN and -0.0. We do not 9299 // have to rule out -0.0 here because the intrinsic semantics do not 9300 // specify a fixed result for it. 9301 return I->getFastMathFlags().noNaNs(); 9302 } 9303 9304 return I->isAssociative(); 9305 } 9306 9307 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9308 // Poison-safe 'or' takes the form: select X, true, Y 9309 // To make that work with the normal operand processing, we skip the 9310 // true value operand. 9311 // TODO: Change the code and data structures to handle this without a hack. 9312 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9313 return I->getOperand(2); 9314 return I->getOperand(Index); 9315 } 9316 9317 /// Checks if the ParentStackElem.first should be marked as a reduction 9318 /// operation with an extra argument or as extra argument itself. 9319 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9320 Value *ExtraArg) { 9321 if (ExtraArgs.count(ParentStackElem.first)) { 9322 ExtraArgs[ParentStackElem.first] = nullptr; 9323 // We ran into something like: 9324 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9325 // The whole ParentStackElem.first should be considered as an extra value 9326 // in this case. 9327 // Do not perform analysis of remaining operands of ParentStackElem.first 9328 // instruction, this whole instruction is an extra argument. 9329 ParentStackElem.second = INVALID_OPERAND_INDEX; 9330 } else { 9331 // We ran into something like: 9332 // ParentStackElem.first += ... + ExtraArg + ... 9333 ExtraArgs[ParentStackElem.first] = ExtraArg; 9334 } 9335 } 9336 9337 /// Creates reduction operation with the current opcode. 9338 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9339 Value *RHS, const Twine &Name, bool UseSelect) { 9340 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9341 switch (Kind) { 9342 case RecurKind::Or: 9343 if (UseSelect && 9344 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9345 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9346 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9347 Name); 9348 case RecurKind::And: 9349 if (UseSelect && 9350 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9351 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9352 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9353 Name); 9354 case RecurKind::Add: 9355 case RecurKind::Mul: 9356 case RecurKind::Xor: 9357 case RecurKind::FAdd: 9358 case RecurKind::FMul: 9359 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9360 Name); 9361 case RecurKind::FMax: 9362 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9363 case RecurKind::FMin: 9364 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9365 case RecurKind::SMax: 9366 if (UseSelect) { 9367 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9368 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9369 } 9370 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9371 case RecurKind::SMin: 9372 if (UseSelect) { 9373 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9374 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9375 } 9376 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9377 case RecurKind::UMax: 9378 if (UseSelect) { 9379 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9380 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9381 } 9382 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9383 case RecurKind::UMin: 9384 if (UseSelect) { 9385 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9386 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9387 } 9388 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9389 default: 9390 llvm_unreachable("Unknown reduction operation."); 9391 } 9392 } 9393 9394 /// Creates reduction operation with the current opcode with the IR flags 9395 /// from \p ReductionOps. 9396 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9397 Value *RHS, const Twine &Name, 9398 const ReductionOpsListType &ReductionOps) { 9399 bool UseSelect = ReductionOps.size() == 2 || 9400 // Logical or/and. 9401 (ReductionOps.size() == 1 && 9402 isa<SelectInst>(ReductionOps.front().front())); 9403 assert((!UseSelect || ReductionOps.size() != 2 || 9404 isa<SelectInst>(ReductionOps[1][0])) && 9405 "Expected cmp + select pairs for reduction"); 9406 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9407 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9408 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9409 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9410 propagateIRFlags(Op, ReductionOps[1]); 9411 return Op; 9412 } 9413 } 9414 propagateIRFlags(Op, ReductionOps[0]); 9415 return Op; 9416 } 9417 9418 /// Creates reduction operation with the current opcode with the IR flags 9419 /// from \p I. 9420 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9421 Value *RHS, const Twine &Name, Instruction *I) { 9422 auto *SelI = dyn_cast<SelectInst>(I); 9423 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9424 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9425 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9426 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9427 } 9428 propagateIRFlags(Op, I); 9429 return Op; 9430 } 9431 9432 static RecurKind getRdxKind(Instruction *I) { 9433 assert(I && "Expected instruction for reduction matching"); 9434 if (match(I, m_Add(m_Value(), m_Value()))) 9435 return RecurKind::Add; 9436 if (match(I, m_Mul(m_Value(), m_Value()))) 9437 return RecurKind::Mul; 9438 if (match(I, m_And(m_Value(), m_Value())) || 9439 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9440 return RecurKind::And; 9441 if (match(I, m_Or(m_Value(), m_Value())) || 9442 match(I, m_LogicalOr(m_Value(), m_Value()))) 9443 return RecurKind::Or; 9444 if (match(I, m_Xor(m_Value(), m_Value()))) 9445 return RecurKind::Xor; 9446 if (match(I, m_FAdd(m_Value(), m_Value()))) 9447 return RecurKind::FAdd; 9448 if (match(I, m_FMul(m_Value(), m_Value()))) 9449 return RecurKind::FMul; 9450 9451 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9452 return RecurKind::FMax; 9453 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9454 return RecurKind::FMin; 9455 9456 // This matches either cmp+select or intrinsics. SLP is expected to handle 9457 // either form. 9458 // TODO: If we are canonicalizing to intrinsics, we can remove several 9459 // special-case paths that deal with selects. 9460 if (match(I, m_SMax(m_Value(), m_Value()))) 9461 return RecurKind::SMax; 9462 if (match(I, m_SMin(m_Value(), m_Value()))) 9463 return RecurKind::SMin; 9464 if (match(I, m_UMax(m_Value(), m_Value()))) 9465 return RecurKind::UMax; 9466 if (match(I, m_UMin(m_Value(), m_Value()))) 9467 return RecurKind::UMin; 9468 9469 if (auto *Select = dyn_cast<SelectInst>(I)) { 9470 // Try harder: look for min/max pattern based on instructions producing 9471 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9472 // During the intermediate stages of SLP, it's very common to have 9473 // pattern like this (since optimizeGatherSequence is run only once 9474 // at the end): 9475 // %1 = extractelement <2 x i32> %a, i32 0 9476 // %2 = extractelement <2 x i32> %a, i32 1 9477 // %cond = icmp sgt i32 %1, %2 9478 // %3 = extractelement <2 x i32> %a, i32 0 9479 // %4 = extractelement <2 x i32> %a, i32 1 9480 // %select = select i1 %cond, i32 %3, i32 %4 9481 CmpInst::Predicate Pred; 9482 Instruction *L1; 9483 Instruction *L2; 9484 9485 Value *LHS = Select->getTrueValue(); 9486 Value *RHS = Select->getFalseValue(); 9487 Value *Cond = Select->getCondition(); 9488 9489 // TODO: Support inverse predicates. 9490 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9491 if (!isa<ExtractElementInst>(RHS) || 9492 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9493 return RecurKind::None; 9494 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9495 if (!isa<ExtractElementInst>(LHS) || 9496 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9497 return RecurKind::None; 9498 } else { 9499 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9500 return RecurKind::None; 9501 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9502 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9503 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9504 return RecurKind::None; 9505 } 9506 9507 switch (Pred) { 9508 default: 9509 return RecurKind::None; 9510 case CmpInst::ICMP_SGT: 9511 case CmpInst::ICMP_SGE: 9512 return RecurKind::SMax; 9513 case CmpInst::ICMP_SLT: 9514 case CmpInst::ICMP_SLE: 9515 return RecurKind::SMin; 9516 case CmpInst::ICMP_UGT: 9517 case CmpInst::ICMP_UGE: 9518 return RecurKind::UMax; 9519 case CmpInst::ICMP_ULT: 9520 case CmpInst::ICMP_ULE: 9521 return RecurKind::UMin; 9522 } 9523 } 9524 return RecurKind::None; 9525 } 9526 9527 /// Get the index of the first operand. 9528 static unsigned getFirstOperandIndex(Instruction *I) { 9529 return isCmpSelMinMax(I) ? 1 : 0; 9530 } 9531 9532 /// Total number of operands in the reduction operation. 9533 static unsigned getNumberOfOperands(Instruction *I) { 9534 return isCmpSelMinMax(I) ? 3 : 2; 9535 } 9536 9537 /// Checks if the instruction is in basic block \p BB. 9538 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9539 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9540 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9541 auto *Sel = cast<SelectInst>(I); 9542 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9543 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9544 } 9545 return I->getParent() == BB; 9546 } 9547 9548 /// Expected number of uses for reduction operations/reduced values. 9549 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9550 if (IsCmpSelMinMax) { 9551 // SelectInst must be used twice while the condition op must have single 9552 // use only. 9553 if (auto *Sel = dyn_cast<SelectInst>(I)) 9554 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9555 return I->hasNUses(2); 9556 } 9557 9558 // Arithmetic reduction operation must be used once only. 9559 return I->hasOneUse(); 9560 } 9561 9562 /// Initializes the list of reduction operations. 9563 void initReductionOps(Instruction *I) { 9564 if (isCmpSelMinMax(I)) 9565 ReductionOps.assign(2, ReductionOpsType()); 9566 else 9567 ReductionOps.assign(1, ReductionOpsType()); 9568 } 9569 9570 /// Add all reduction operations for the reduction instruction \p I. 9571 void addReductionOps(Instruction *I) { 9572 if (isCmpSelMinMax(I)) { 9573 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9574 ReductionOps[1].emplace_back(I); 9575 } else { 9576 ReductionOps[0].emplace_back(I); 9577 } 9578 } 9579 9580 static Value *getLHS(RecurKind Kind, Instruction *I) { 9581 if (Kind == RecurKind::None) 9582 return nullptr; 9583 return I->getOperand(getFirstOperandIndex(I)); 9584 } 9585 static Value *getRHS(RecurKind Kind, Instruction *I) { 9586 if (Kind == RecurKind::None) 9587 return nullptr; 9588 return I->getOperand(getFirstOperandIndex(I) + 1); 9589 } 9590 9591 public: 9592 HorizontalReduction() = default; 9593 9594 /// Try to find a reduction tree. 9595 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9596 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9597 "Phi needs to use the binary operator"); 9598 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9599 isa<IntrinsicInst>(Inst)) && 9600 "Expected binop, select, or intrinsic for reduction matching"); 9601 RdxKind = getRdxKind(Inst); 9602 9603 // We could have a initial reductions that is not an add. 9604 // r *= v1 + v2 + v3 + v4 9605 // In such a case start looking for a tree rooted in the first '+'. 9606 if (Phi) { 9607 if (getLHS(RdxKind, Inst) == Phi) { 9608 Phi = nullptr; 9609 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9610 if (!Inst) 9611 return false; 9612 RdxKind = getRdxKind(Inst); 9613 } else if (getRHS(RdxKind, Inst) == Phi) { 9614 Phi = nullptr; 9615 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9616 if (!Inst) 9617 return false; 9618 RdxKind = getRdxKind(Inst); 9619 } 9620 } 9621 9622 if (!isVectorizable(RdxKind, Inst)) 9623 return false; 9624 9625 // Analyze "regular" integer/FP types for reductions - no target-specific 9626 // types or pointers. 9627 Type *Ty = Inst->getType(); 9628 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9629 return false; 9630 9631 // Though the ultimate reduction may have multiple uses, its condition must 9632 // have only single use. 9633 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9634 if (!Sel->getCondition()->hasOneUse()) 9635 return false; 9636 9637 ReductionRoot = Inst; 9638 9639 // The opcode for leaf values that we perform a reduction on. 9640 // For example: load(x) + load(y) + load(z) + fptoui(w) 9641 // The leaf opcode for 'w' does not match, so we don't include it as a 9642 // potential candidate for the reduction. 9643 unsigned LeafOpcode = 0; 9644 9645 // Post-order traverse the reduction tree starting at Inst. We only handle 9646 // true trees containing binary operators or selects. 9647 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9648 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9649 initReductionOps(Inst); 9650 while (!Stack.empty()) { 9651 Instruction *TreeN = Stack.back().first; 9652 unsigned EdgeToVisit = Stack.back().second++; 9653 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9654 bool IsReducedValue = TreeRdxKind != RdxKind; 9655 9656 // Postorder visit. 9657 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9658 if (IsReducedValue) 9659 ReducedVals.push_back(TreeN); 9660 else { 9661 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9662 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9663 // Check if TreeN is an extra argument of its parent operation. 9664 if (Stack.size() <= 1) { 9665 // TreeN can't be an extra argument as it is a root reduction 9666 // operation. 9667 return false; 9668 } 9669 // Yes, TreeN is an extra argument, do not add it to a list of 9670 // reduction operations. 9671 // Stack[Stack.size() - 2] always points to the parent operation. 9672 markExtraArg(Stack[Stack.size() - 2], TreeN); 9673 ExtraArgs.erase(TreeN); 9674 } else 9675 addReductionOps(TreeN); 9676 } 9677 // Retract. 9678 Stack.pop_back(); 9679 continue; 9680 } 9681 9682 // Visit operands. 9683 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9684 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9685 if (!EdgeInst) { 9686 // Edge value is not a reduction instruction or a leaf instruction. 9687 // (It may be a constant, function argument, or something else.) 9688 markExtraArg(Stack.back(), EdgeVal); 9689 continue; 9690 } 9691 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9692 // Continue analysis if the next operand is a reduction operation or 9693 // (possibly) a leaf value. If the leaf value opcode is not set, 9694 // the first met operation != reduction operation is considered as the 9695 // leaf opcode. 9696 // Only handle trees in the current basic block. 9697 // Each tree node needs to have minimal number of users except for the 9698 // ultimate reduction. 9699 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9700 if (EdgeInst != Phi && EdgeInst != Inst && 9701 hasSameParent(EdgeInst, Inst->getParent()) && 9702 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9703 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9704 if (IsRdxInst) { 9705 // We need to be able to reassociate the reduction operations. 9706 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9707 // I is an extra argument for TreeN (its parent operation). 9708 markExtraArg(Stack.back(), EdgeInst); 9709 continue; 9710 } 9711 } else if (!LeafOpcode) { 9712 LeafOpcode = EdgeInst->getOpcode(); 9713 } 9714 Stack.push_back( 9715 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9716 continue; 9717 } 9718 // I is an extra argument for TreeN (its parent operation). 9719 markExtraArg(Stack.back(), EdgeInst); 9720 } 9721 return true; 9722 } 9723 9724 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9725 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9726 // If there are a sufficient number of reduction values, reduce 9727 // to a nearby power-of-2. We can safely generate oversized 9728 // vectors and rely on the backend to split them to legal sizes. 9729 unsigned NumReducedVals = ReducedVals.size(); 9730 if (NumReducedVals < 4) 9731 return nullptr; 9732 9733 // Intersect the fast-math-flags from all reduction operations. 9734 FastMathFlags RdxFMF; 9735 RdxFMF.set(); 9736 for (ReductionOpsType &RdxOp : ReductionOps) { 9737 for (Value *RdxVal : RdxOp) { 9738 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9739 RdxFMF &= FPMO->getFastMathFlags(); 9740 } 9741 } 9742 9743 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9744 Builder.setFastMathFlags(RdxFMF); 9745 9746 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9747 // The same extra argument may be used several times, so log each attempt 9748 // to use it. 9749 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9750 assert(Pair.first && "DebugLoc must be set."); 9751 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9752 } 9753 9754 // The compare instruction of a min/max is the insertion point for new 9755 // instructions and may be replaced with a new compare instruction. 9756 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9757 assert(isa<SelectInst>(RdxRootInst) && 9758 "Expected min/max reduction to have select root instruction"); 9759 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9760 assert(isa<Instruction>(ScalarCond) && 9761 "Expected min/max reduction to have compare condition"); 9762 return cast<Instruction>(ScalarCond); 9763 }; 9764 9765 // The reduction root is used as the insertion point for new instructions, 9766 // so set it as externally used to prevent it from being deleted. 9767 ExternallyUsedValues[ReductionRoot]; 9768 SmallVector<Value *, 16> IgnoreList; 9769 for (ReductionOpsType &RdxOp : ReductionOps) 9770 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9771 9772 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9773 if (NumReducedVals > ReduxWidth) { 9774 // In the loop below, we are building a tree based on a window of 9775 // 'ReduxWidth' values. 9776 // If the operands of those values have common traits (compare predicate, 9777 // constant operand, etc), then we want to group those together to 9778 // minimize the cost of the reduction. 9779 9780 // TODO: This should be extended to count common operands for 9781 // compares and binops. 9782 9783 // Step 1: Count the number of times each compare predicate occurs. 9784 SmallDenseMap<unsigned, unsigned> PredCountMap; 9785 for (Value *RdxVal : ReducedVals) { 9786 CmpInst::Predicate Pred; 9787 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9788 ++PredCountMap[Pred]; 9789 } 9790 // Step 2: Sort the values so the most common predicates come first. 9791 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9792 CmpInst::Predicate PredA, PredB; 9793 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9794 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9795 return PredCountMap[PredA] > PredCountMap[PredB]; 9796 } 9797 return false; 9798 }); 9799 } 9800 9801 Value *VectorizedTree = nullptr; 9802 unsigned i = 0; 9803 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9804 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9805 V.buildTree(VL, IgnoreList); 9806 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9807 break; 9808 if (V.isLoadCombineReductionCandidate(RdxKind)) 9809 break; 9810 V.reorderTopToBottom(); 9811 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9812 V.buildExternalUses(ExternallyUsedValues); 9813 9814 // For a poison-safe boolean logic reduction, do not replace select 9815 // instructions with logic ops. All reduced values will be frozen (see 9816 // below) to prevent leaking poison. 9817 if (isa<SelectInst>(ReductionRoot) && 9818 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9819 NumReducedVals != ReduxWidth) 9820 break; 9821 9822 V.computeMinimumValueSizes(); 9823 9824 // Estimate cost. 9825 InstructionCost TreeCost = 9826 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9827 InstructionCost ReductionCost = 9828 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9829 InstructionCost Cost = TreeCost + ReductionCost; 9830 if (!Cost.isValid()) { 9831 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9832 return nullptr; 9833 } 9834 if (Cost >= -SLPCostThreshold) { 9835 V.getORE()->emit([&]() { 9836 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9837 cast<Instruction>(VL[0])) 9838 << "Vectorizing horizontal reduction is possible" 9839 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9840 << " and threshold " 9841 << ore::NV("Threshold", -SLPCostThreshold); 9842 }); 9843 break; 9844 } 9845 9846 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9847 << Cost << ". (HorRdx)\n"); 9848 V.getORE()->emit([&]() { 9849 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9850 cast<Instruction>(VL[0])) 9851 << "Vectorized horizontal reduction with cost " 9852 << ore::NV("Cost", Cost) << " and with tree size " 9853 << ore::NV("TreeSize", V.getTreeSize()); 9854 }); 9855 9856 // Vectorize a tree. 9857 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9858 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9859 9860 // Emit a reduction. If the root is a select (min/max idiom), the insert 9861 // point is the compare condition of that select. 9862 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9863 if (isCmpSelMinMax(RdxRootInst)) 9864 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9865 else 9866 Builder.SetInsertPoint(RdxRootInst); 9867 9868 // To prevent poison from leaking across what used to be sequential, safe, 9869 // scalar boolean logic operations, the reduction operand must be frozen. 9870 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9871 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9872 9873 Value *ReducedSubTree = 9874 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9875 9876 if (!VectorizedTree) { 9877 // Initialize the final value in the reduction. 9878 VectorizedTree = ReducedSubTree; 9879 } else { 9880 // Update the final value in the reduction. 9881 Builder.SetCurrentDebugLocation(Loc); 9882 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9883 ReducedSubTree, "op.rdx", ReductionOps); 9884 } 9885 i += ReduxWidth; 9886 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9887 } 9888 9889 if (VectorizedTree) { 9890 // Finish the reduction. 9891 for (; i < NumReducedVals; ++i) { 9892 auto *I = cast<Instruction>(ReducedVals[i]); 9893 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9894 VectorizedTree = 9895 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9896 } 9897 for (auto &Pair : ExternallyUsedValues) { 9898 // Add each externally used value to the final reduction. 9899 for (auto *I : Pair.second) { 9900 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9901 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9902 Pair.first, "op.extra", I); 9903 } 9904 } 9905 9906 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9907 9908 // The original scalar reduction is expected to have no remaining 9909 // uses outside the reduction tree itself. Assert that we got this 9910 // correct, replace internal uses with undef, and mark for eventual 9911 // deletion. 9912 #ifndef NDEBUG 9913 SmallSet<Value *, 4> IgnoreSet; 9914 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 9915 #endif 9916 for (auto *Ignore : IgnoreList) { 9917 #ifndef NDEBUG 9918 for (auto *U : Ignore->users()) { 9919 assert(IgnoreSet.count(U)); 9920 } 9921 #endif 9922 if (!Ignore->use_empty()) { 9923 Value *Undef = UndefValue::get(Ignore->getType()); 9924 Ignore->replaceAllUsesWith(Undef); 9925 } 9926 V.eraseInstruction(cast<Instruction>(Ignore)); 9927 } 9928 } 9929 return VectorizedTree; 9930 } 9931 9932 unsigned numReductionValues() const { return ReducedVals.size(); } 9933 9934 private: 9935 /// Calculate the cost of a reduction. 9936 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9937 Value *FirstReducedVal, unsigned ReduxWidth, 9938 FastMathFlags FMF) { 9939 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9940 Type *ScalarTy = FirstReducedVal->getType(); 9941 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9942 InstructionCost VectorCost, ScalarCost; 9943 switch (RdxKind) { 9944 case RecurKind::Add: 9945 case RecurKind::Mul: 9946 case RecurKind::Or: 9947 case RecurKind::And: 9948 case RecurKind::Xor: 9949 case RecurKind::FAdd: 9950 case RecurKind::FMul: { 9951 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9952 VectorCost = 9953 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9954 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9955 break; 9956 } 9957 case RecurKind::FMax: 9958 case RecurKind::FMin: { 9959 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9960 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9961 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9962 /*IsUnsigned=*/false, CostKind); 9963 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9964 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9965 SclCondTy, RdxPred, CostKind) + 9966 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9967 SclCondTy, RdxPred, CostKind); 9968 break; 9969 } 9970 case RecurKind::SMax: 9971 case RecurKind::SMin: 9972 case RecurKind::UMax: 9973 case RecurKind::UMin: { 9974 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9975 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9976 bool IsUnsigned = 9977 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9978 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9979 CostKind); 9980 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9981 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9982 SclCondTy, RdxPred, CostKind) + 9983 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9984 SclCondTy, RdxPred, CostKind); 9985 break; 9986 } 9987 default: 9988 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9989 } 9990 9991 // Scalar cost is repeated for N-1 elements. 9992 ScalarCost *= (ReduxWidth - 1); 9993 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9994 << " for reduction that starts with " << *FirstReducedVal 9995 << " (It is a splitting reduction)\n"); 9996 return VectorCost - ScalarCost; 9997 } 9998 9999 /// Emit a horizontal reduction of the vectorized value. 10000 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10001 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10002 assert(VectorizedValue && "Need to have a vectorized tree node"); 10003 assert(isPowerOf2_32(ReduxWidth) && 10004 "We only handle power-of-two reductions for now"); 10005 assert(RdxKind != RecurKind::FMulAdd && 10006 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10007 10008 ++NumVectorInstructions; 10009 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10010 } 10011 }; 10012 10013 } // end anonymous namespace 10014 10015 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10016 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10017 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10018 10019 unsigned AggregateSize = 1; 10020 auto *IV = cast<InsertValueInst>(InsertInst); 10021 Type *CurrentType = IV->getType(); 10022 do { 10023 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10024 for (auto *Elt : ST->elements()) 10025 if (Elt != ST->getElementType(0)) // check homogeneity 10026 return None; 10027 AggregateSize *= ST->getNumElements(); 10028 CurrentType = ST->getElementType(0); 10029 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10030 AggregateSize *= AT->getNumElements(); 10031 CurrentType = AT->getElementType(); 10032 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10033 AggregateSize *= VT->getNumElements(); 10034 return AggregateSize; 10035 } else if (CurrentType->isSingleValueType()) { 10036 return AggregateSize; 10037 } else { 10038 return None; 10039 } 10040 } while (true); 10041 } 10042 10043 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10044 TargetTransformInfo *TTI, 10045 SmallVectorImpl<Value *> &BuildVectorOpds, 10046 SmallVectorImpl<Value *> &InsertElts, 10047 unsigned OperandOffset) { 10048 do { 10049 Value *InsertedOperand = LastInsertInst->getOperand(1); 10050 Optional<unsigned> OperandIndex = 10051 getInsertIndex(LastInsertInst, OperandOffset); 10052 if (!OperandIndex) 10053 return; 10054 if (isa<InsertElementInst>(InsertedOperand) || 10055 isa<InsertValueInst>(InsertedOperand)) { 10056 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10057 BuildVectorOpds, InsertElts, *OperandIndex); 10058 10059 } else { 10060 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10061 InsertElts[*OperandIndex] = LastInsertInst; 10062 } 10063 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10064 } while (LastInsertInst != nullptr && 10065 (isa<InsertValueInst>(LastInsertInst) || 10066 isa<InsertElementInst>(LastInsertInst)) && 10067 LastInsertInst->hasOneUse()); 10068 } 10069 10070 /// Recognize construction of vectors like 10071 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10072 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10073 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10074 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10075 /// starting from the last insertelement or insertvalue instruction. 10076 /// 10077 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10078 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10079 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10080 /// 10081 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10082 /// 10083 /// \return true if it matches. 10084 static bool findBuildAggregate(Instruction *LastInsertInst, 10085 TargetTransformInfo *TTI, 10086 SmallVectorImpl<Value *> &BuildVectorOpds, 10087 SmallVectorImpl<Value *> &InsertElts) { 10088 10089 assert((isa<InsertElementInst>(LastInsertInst) || 10090 isa<InsertValueInst>(LastInsertInst)) && 10091 "Expected insertelement or insertvalue instruction!"); 10092 10093 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10094 "Expected empty result vectors!"); 10095 10096 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10097 if (!AggregateSize) 10098 return false; 10099 BuildVectorOpds.resize(*AggregateSize); 10100 InsertElts.resize(*AggregateSize); 10101 10102 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10103 llvm::erase_value(BuildVectorOpds, nullptr); 10104 llvm::erase_value(InsertElts, nullptr); 10105 if (BuildVectorOpds.size() >= 2) 10106 return true; 10107 10108 return false; 10109 } 10110 10111 /// Try and get a reduction value from a phi node. 10112 /// 10113 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10114 /// if they come from either \p ParentBB or a containing loop latch. 10115 /// 10116 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10117 /// if not possible. 10118 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10119 BasicBlock *ParentBB, LoopInfo *LI) { 10120 // There are situations where the reduction value is not dominated by the 10121 // reduction phi. Vectorizing such cases has been reported to cause 10122 // miscompiles. See PR25787. 10123 auto DominatedReduxValue = [&](Value *R) { 10124 return isa<Instruction>(R) && 10125 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10126 }; 10127 10128 Value *Rdx = nullptr; 10129 10130 // Return the incoming value if it comes from the same BB as the phi node. 10131 if (P->getIncomingBlock(0) == ParentBB) { 10132 Rdx = P->getIncomingValue(0); 10133 } else if (P->getIncomingBlock(1) == ParentBB) { 10134 Rdx = P->getIncomingValue(1); 10135 } 10136 10137 if (Rdx && DominatedReduxValue(Rdx)) 10138 return Rdx; 10139 10140 // Otherwise, check whether we have a loop latch to look at. 10141 Loop *BBL = LI->getLoopFor(ParentBB); 10142 if (!BBL) 10143 return nullptr; 10144 BasicBlock *BBLatch = BBL->getLoopLatch(); 10145 if (!BBLatch) 10146 return nullptr; 10147 10148 // There is a loop latch, return the incoming value if it comes from 10149 // that. This reduction pattern occasionally turns up. 10150 if (P->getIncomingBlock(0) == BBLatch) { 10151 Rdx = P->getIncomingValue(0); 10152 } else if (P->getIncomingBlock(1) == BBLatch) { 10153 Rdx = P->getIncomingValue(1); 10154 } 10155 10156 if (Rdx && DominatedReduxValue(Rdx)) 10157 return Rdx; 10158 10159 return nullptr; 10160 } 10161 10162 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10163 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10164 return true; 10165 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10166 return true; 10167 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10168 return true; 10169 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10170 return true; 10171 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10172 return true; 10173 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10174 return true; 10175 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10176 return true; 10177 return false; 10178 } 10179 10180 /// Attempt to reduce a horizontal reduction. 10181 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10182 /// with reduction operators \a Root (or one of its operands) in a basic block 10183 /// \a BB, then check if it can be done. If horizontal reduction is not found 10184 /// and root instruction is a binary operation, vectorization of the operands is 10185 /// attempted. 10186 /// \returns true if a horizontal reduction was matched and reduced or operands 10187 /// of one of the binary instruction were vectorized. 10188 /// \returns false if a horizontal reduction was not matched (or not possible) 10189 /// or no vectorization of any binary operation feeding \a Root instruction was 10190 /// performed. 10191 static bool tryToVectorizeHorReductionOrInstOperands( 10192 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10193 TargetTransformInfo *TTI, 10194 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10195 if (!ShouldVectorizeHor) 10196 return false; 10197 10198 if (!Root) 10199 return false; 10200 10201 if (Root->getParent() != BB || isa<PHINode>(Root)) 10202 return false; 10203 // Start analysis starting from Root instruction. If horizontal reduction is 10204 // found, try to vectorize it. If it is not a horizontal reduction or 10205 // vectorization is not possible or not effective, and currently analyzed 10206 // instruction is a binary operation, try to vectorize the operands, using 10207 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10208 // the same procedure considering each operand as a possible root of the 10209 // horizontal reduction. 10210 // Interrupt the process if the Root instruction itself was vectorized or all 10211 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10212 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10213 // CmpInsts so we can skip extra attempts in 10214 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10215 std::queue<std::pair<Instruction *, unsigned>> Stack; 10216 Stack.emplace(Root, 0); 10217 SmallPtrSet<Value *, 8> VisitedInstrs; 10218 SmallVector<WeakTrackingVH> PostponedInsts; 10219 bool Res = false; 10220 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10221 Value *&B1) -> Value * { 10222 bool IsBinop = matchRdxBop(Inst, B0, B1); 10223 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10224 if (IsBinop || IsSelect) { 10225 HorizontalReduction HorRdx; 10226 if (HorRdx.matchAssociativeReduction(P, Inst)) 10227 return HorRdx.tryToReduce(R, TTI); 10228 } 10229 return nullptr; 10230 }; 10231 while (!Stack.empty()) { 10232 Instruction *Inst; 10233 unsigned Level; 10234 std::tie(Inst, Level) = Stack.front(); 10235 Stack.pop(); 10236 // Do not try to analyze instruction that has already been vectorized. 10237 // This may happen when we vectorize instruction operands on a previous 10238 // iteration while stack was populated before that happened. 10239 if (R.isDeleted(Inst)) 10240 continue; 10241 Value *B0 = nullptr, *B1 = nullptr; 10242 if (Value *V = TryToReduce(Inst, B0, B1)) { 10243 Res = true; 10244 // Set P to nullptr to avoid re-analysis of phi node in 10245 // matchAssociativeReduction function unless this is the root node. 10246 P = nullptr; 10247 if (auto *I = dyn_cast<Instruction>(V)) { 10248 // Try to find another reduction. 10249 Stack.emplace(I, Level); 10250 continue; 10251 } 10252 } else { 10253 bool IsBinop = B0 && B1; 10254 if (P && IsBinop) { 10255 Inst = dyn_cast<Instruction>(B0); 10256 if (Inst == P) 10257 Inst = dyn_cast<Instruction>(B1); 10258 if (!Inst) { 10259 // Set P to nullptr to avoid re-analysis of phi node in 10260 // matchAssociativeReduction function unless this is the root node. 10261 P = nullptr; 10262 continue; 10263 } 10264 } 10265 // Set P to nullptr to avoid re-analysis of phi node in 10266 // matchAssociativeReduction function unless this is the root node. 10267 P = nullptr; 10268 // Do not try to vectorize CmpInst operands, this is done separately. 10269 // Final attempt for binop args vectorization should happen after the loop 10270 // to try to find reductions. 10271 if (!isa<CmpInst>(Inst)) 10272 PostponedInsts.push_back(Inst); 10273 } 10274 10275 // Try to vectorize operands. 10276 // Continue analysis for the instruction from the same basic block only to 10277 // save compile time. 10278 if (++Level < RecursionMaxDepth) 10279 for (auto *Op : Inst->operand_values()) 10280 if (VisitedInstrs.insert(Op).second) 10281 if (auto *I = dyn_cast<Instruction>(Op)) 10282 // Do not try to vectorize CmpInst operands, this is done 10283 // separately. 10284 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10285 I->getParent() == BB) 10286 Stack.emplace(I, Level); 10287 } 10288 // Try to vectorized binops where reductions were not found. 10289 for (Value *V : PostponedInsts) 10290 if (auto *Inst = dyn_cast<Instruction>(V)) 10291 if (!R.isDeleted(Inst)) 10292 Res |= Vectorize(Inst, R); 10293 return Res; 10294 } 10295 10296 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10297 BasicBlock *BB, BoUpSLP &R, 10298 TargetTransformInfo *TTI) { 10299 auto *I = dyn_cast_or_null<Instruction>(V); 10300 if (!I) 10301 return false; 10302 10303 if (!isa<BinaryOperator>(I)) 10304 P = nullptr; 10305 // Try to match and vectorize a horizontal reduction. 10306 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10307 return tryToVectorize(I, R); 10308 }; 10309 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10310 ExtraVectorization); 10311 } 10312 10313 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10314 BasicBlock *BB, BoUpSLP &R) { 10315 const DataLayout &DL = BB->getModule()->getDataLayout(); 10316 if (!R.canMapToVector(IVI->getType(), DL)) 10317 return false; 10318 10319 SmallVector<Value *, 16> BuildVectorOpds; 10320 SmallVector<Value *, 16> BuildVectorInsts; 10321 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10322 return false; 10323 10324 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10325 // Aggregate value is unlikely to be processed in vector register. 10326 return tryToVectorizeList(BuildVectorOpds, R); 10327 } 10328 10329 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10330 BasicBlock *BB, BoUpSLP &R) { 10331 SmallVector<Value *, 16> BuildVectorInsts; 10332 SmallVector<Value *, 16> BuildVectorOpds; 10333 SmallVector<int> Mask; 10334 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10335 (llvm::all_of( 10336 BuildVectorOpds, 10337 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10338 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10339 return false; 10340 10341 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10342 return tryToVectorizeList(BuildVectorInsts, R); 10343 } 10344 10345 template <typename T> 10346 static bool 10347 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10348 function_ref<unsigned(T *)> Limit, 10349 function_ref<bool(T *, T *)> Comparator, 10350 function_ref<bool(T *, T *)> AreCompatible, 10351 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10352 bool LimitForRegisterSize) { 10353 bool Changed = false; 10354 // Sort by type, parent, operands. 10355 stable_sort(Incoming, Comparator); 10356 10357 // Try to vectorize elements base on their type. 10358 SmallVector<T *> Candidates; 10359 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10360 // Look for the next elements with the same type, parent and operand 10361 // kinds. 10362 auto *SameTypeIt = IncIt; 10363 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10364 ++SameTypeIt; 10365 10366 // Try to vectorize them. 10367 unsigned NumElts = (SameTypeIt - IncIt); 10368 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10369 << NumElts << ")\n"); 10370 // The vectorization is a 3-state attempt: 10371 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10372 // size of maximal register at first. 10373 // 2. Try to vectorize remaining instructions with the same type, if 10374 // possible. This may result in the better vectorization results rather than 10375 // if we try just to vectorize instructions with the same/alternate opcodes. 10376 // 3. Final attempt to try to vectorize all instructions with the 10377 // same/alternate ops only, this may result in some extra final 10378 // vectorization. 10379 if (NumElts > 1 && 10380 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10381 // Success start over because instructions might have been changed. 10382 Changed = true; 10383 } else if (NumElts < Limit(*IncIt) && 10384 (Candidates.empty() || 10385 Candidates.front()->getType() == (*IncIt)->getType())) { 10386 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10387 } 10388 // Final attempt to vectorize instructions with the same types. 10389 if (Candidates.size() > 1 && 10390 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10391 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10392 // Success start over because instructions might have been changed. 10393 Changed = true; 10394 } else if (LimitForRegisterSize) { 10395 // Try to vectorize using small vectors. 10396 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10397 It != End;) { 10398 auto *SameTypeIt = It; 10399 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10400 ++SameTypeIt; 10401 unsigned NumElts = (SameTypeIt - It); 10402 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10403 /*LimitForRegisterSize=*/false)) 10404 Changed = true; 10405 It = SameTypeIt; 10406 } 10407 } 10408 Candidates.clear(); 10409 } 10410 10411 // Start over at the next instruction of a different type (or the end). 10412 IncIt = SameTypeIt; 10413 } 10414 return Changed; 10415 } 10416 10417 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10418 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10419 /// operands. If IsCompatibility is false, function implements strict weak 10420 /// ordering relation between two cmp instructions, returning true if the first 10421 /// instruction is "less" than the second, i.e. its predicate is less than the 10422 /// predicate of the second or the operands IDs are less than the operands IDs 10423 /// of the second cmp instruction. 10424 template <bool IsCompatibility> 10425 static bool compareCmp(Value *V, Value *V2, 10426 function_ref<bool(Instruction *)> IsDeleted) { 10427 auto *CI1 = cast<CmpInst>(V); 10428 auto *CI2 = cast<CmpInst>(V2); 10429 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10430 return false; 10431 if (CI1->getOperand(0)->getType()->getTypeID() < 10432 CI2->getOperand(0)->getType()->getTypeID()) 10433 return !IsCompatibility; 10434 if (CI1->getOperand(0)->getType()->getTypeID() > 10435 CI2->getOperand(0)->getType()->getTypeID()) 10436 return false; 10437 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10438 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10439 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10440 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10441 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10442 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10443 if (BasePred1 < BasePred2) 10444 return !IsCompatibility; 10445 if (BasePred1 > BasePred2) 10446 return false; 10447 // Compare operands. 10448 bool LEPreds = Pred1 <= Pred2; 10449 bool GEPreds = Pred1 >= Pred2; 10450 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10451 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10452 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10453 if (Op1->getValueID() < Op2->getValueID()) 10454 return !IsCompatibility; 10455 if (Op1->getValueID() > Op2->getValueID()) 10456 return false; 10457 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10458 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10459 if (I1->getParent() != I2->getParent()) 10460 return false; 10461 InstructionsState S = getSameOpcode({I1, I2}); 10462 if (S.getOpcode()) 10463 continue; 10464 return false; 10465 } 10466 } 10467 return IsCompatibility; 10468 } 10469 10470 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10471 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10472 bool AtTerminator) { 10473 bool OpsChanged = false; 10474 SmallVector<Instruction *, 4> PostponedCmps; 10475 for (auto *I : reverse(Instructions)) { 10476 if (R.isDeleted(I)) 10477 continue; 10478 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10479 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10480 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10481 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10482 else if (isa<CmpInst>(I)) 10483 PostponedCmps.push_back(I); 10484 } 10485 if (AtTerminator) { 10486 // Try to find reductions first. 10487 for (Instruction *I : PostponedCmps) { 10488 if (R.isDeleted(I)) 10489 continue; 10490 for (Value *Op : I->operands()) 10491 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10492 } 10493 // Try to vectorize operands as vector bundles. 10494 for (Instruction *I : PostponedCmps) { 10495 if (R.isDeleted(I)) 10496 continue; 10497 OpsChanged |= tryToVectorize(I, R); 10498 } 10499 // Try to vectorize list of compares. 10500 // Sort by type, compare predicate, etc. 10501 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10502 return compareCmp<false>(V, V2, 10503 [&R](Instruction *I) { return R.isDeleted(I); }); 10504 }; 10505 10506 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10507 if (V1 == V2) 10508 return true; 10509 return compareCmp<true>(V1, V2, 10510 [&R](Instruction *I) { return R.isDeleted(I); }); 10511 }; 10512 auto Limit = [&R](Value *V) { 10513 unsigned EltSize = R.getVectorElementSize(V); 10514 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10515 }; 10516 10517 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10518 OpsChanged |= tryToVectorizeSequence<Value>( 10519 Vals, Limit, CompareSorter, AreCompatibleCompares, 10520 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10521 // Exclude possible reductions from other blocks. 10522 bool ArePossiblyReducedInOtherBlock = 10523 any_of(Candidates, [](Value *V) { 10524 return any_of(V->users(), [V](User *U) { 10525 return isa<SelectInst>(U) && 10526 cast<SelectInst>(U)->getParent() != 10527 cast<Instruction>(V)->getParent(); 10528 }); 10529 }); 10530 if (ArePossiblyReducedInOtherBlock) 10531 return false; 10532 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10533 }, 10534 /*LimitForRegisterSize=*/true); 10535 Instructions.clear(); 10536 } else { 10537 // Insert in reverse order since the PostponedCmps vector was filled in 10538 // reverse order. 10539 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10540 } 10541 return OpsChanged; 10542 } 10543 10544 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10545 bool Changed = false; 10546 SmallVector<Value *, 4> Incoming; 10547 SmallPtrSet<Value *, 16> VisitedInstrs; 10548 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10549 // node. Allows better to identify the chains that can be vectorized in the 10550 // better way. 10551 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10552 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10553 assert(isValidElementType(V1->getType()) && 10554 isValidElementType(V2->getType()) && 10555 "Expected vectorizable types only."); 10556 // It is fine to compare type IDs here, since we expect only vectorizable 10557 // types, like ints, floats and pointers, we don't care about other type. 10558 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10559 return true; 10560 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10561 return false; 10562 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10563 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10564 if (Opcodes1.size() < Opcodes2.size()) 10565 return true; 10566 if (Opcodes1.size() > Opcodes2.size()) 10567 return false; 10568 Optional<bool> ConstOrder; 10569 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10570 // Undefs are compatible with any other value. 10571 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10572 if (!ConstOrder) 10573 ConstOrder = 10574 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10575 continue; 10576 } 10577 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10578 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10579 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10580 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10581 if (!NodeI1) 10582 return NodeI2 != nullptr; 10583 if (!NodeI2) 10584 return false; 10585 assert((NodeI1 == NodeI2) == 10586 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10587 "Different nodes should have different DFS numbers"); 10588 if (NodeI1 != NodeI2) 10589 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10590 InstructionsState S = getSameOpcode({I1, I2}); 10591 if (S.getOpcode()) 10592 continue; 10593 return I1->getOpcode() < I2->getOpcode(); 10594 } 10595 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10596 if (!ConstOrder) 10597 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10598 continue; 10599 } 10600 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10601 return true; 10602 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10603 return false; 10604 } 10605 return ConstOrder && *ConstOrder; 10606 }; 10607 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10608 if (V1 == V2) 10609 return true; 10610 if (V1->getType() != V2->getType()) 10611 return false; 10612 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10613 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10614 if (Opcodes1.size() != Opcodes2.size()) 10615 return false; 10616 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10617 // Undefs are compatible with any other value. 10618 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10619 continue; 10620 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10621 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10622 if (I1->getParent() != I2->getParent()) 10623 return false; 10624 InstructionsState S = getSameOpcode({I1, I2}); 10625 if (S.getOpcode()) 10626 continue; 10627 return false; 10628 } 10629 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10630 continue; 10631 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10632 return false; 10633 } 10634 return true; 10635 }; 10636 auto Limit = [&R](Value *V) { 10637 unsigned EltSize = R.getVectorElementSize(V); 10638 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10639 }; 10640 10641 bool HaveVectorizedPhiNodes = false; 10642 do { 10643 // Collect the incoming values from the PHIs. 10644 Incoming.clear(); 10645 for (Instruction &I : *BB) { 10646 PHINode *P = dyn_cast<PHINode>(&I); 10647 if (!P) 10648 break; 10649 10650 // No need to analyze deleted, vectorized and non-vectorizable 10651 // instructions. 10652 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10653 isValidElementType(P->getType())) 10654 Incoming.push_back(P); 10655 } 10656 10657 // Find the corresponding non-phi nodes for better matching when trying to 10658 // build the tree. 10659 for (Value *V : Incoming) { 10660 SmallVectorImpl<Value *> &Opcodes = 10661 PHIToOpcodes.try_emplace(V).first->getSecond(); 10662 if (!Opcodes.empty()) 10663 continue; 10664 SmallVector<Value *, 4> Nodes(1, V); 10665 SmallPtrSet<Value *, 4> Visited; 10666 while (!Nodes.empty()) { 10667 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10668 if (!Visited.insert(PHI).second) 10669 continue; 10670 for (Value *V : PHI->incoming_values()) { 10671 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10672 Nodes.push_back(PHI1); 10673 continue; 10674 } 10675 Opcodes.emplace_back(V); 10676 } 10677 } 10678 } 10679 10680 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10681 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10682 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10683 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10684 }, 10685 /*LimitForRegisterSize=*/true); 10686 Changed |= HaveVectorizedPhiNodes; 10687 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10688 } while (HaveVectorizedPhiNodes); 10689 10690 VisitedInstrs.clear(); 10691 10692 SmallVector<Instruction *, 8> PostProcessInstructions; 10693 SmallDenseSet<Instruction *, 4> KeyNodes; 10694 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10695 // Skip instructions with scalable type. The num of elements is unknown at 10696 // compile-time for scalable type. 10697 if (isa<ScalableVectorType>(it->getType())) 10698 continue; 10699 10700 // Skip instructions marked for the deletion. 10701 if (R.isDeleted(&*it)) 10702 continue; 10703 // We may go through BB multiple times so skip the one we have checked. 10704 if (!VisitedInstrs.insert(&*it).second) { 10705 if (it->use_empty() && KeyNodes.contains(&*it) && 10706 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10707 it->isTerminator())) { 10708 // We would like to start over since some instructions are deleted 10709 // and the iterator may become invalid value. 10710 Changed = true; 10711 it = BB->begin(); 10712 e = BB->end(); 10713 } 10714 continue; 10715 } 10716 10717 if (isa<DbgInfoIntrinsic>(it)) 10718 continue; 10719 10720 // Try to vectorize reductions that use PHINodes. 10721 if (PHINode *P = dyn_cast<PHINode>(it)) { 10722 // Check that the PHI is a reduction PHI. 10723 if (P->getNumIncomingValues() == 2) { 10724 // Try to match and vectorize a horizontal reduction. 10725 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10726 TTI)) { 10727 Changed = true; 10728 it = BB->begin(); 10729 e = BB->end(); 10730 continue; 10731 } 10732 } 10733 // Try to vectorize the incoming values of the PHI, to catch reductions 10734 // that feed into PHIs. 10735 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10736 // Skip if the incoming block is the current BB for now. Also, bypass 10737 // unreachable IR for efficiency and to avoid crashing. 10738 // TODO: Collect the skipped incoming values and try to vectorize them 10739 // after processing BB. 10740 if (BB == P->getIncomingBlock(I) || 10741 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10742 continue; 10743 10744 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10745 P->getIncomingBlock(I), R, TTI); 10746 } 10747 continue; 10748 } 10749 10750 // Ran into an instruction without users, like terminator, or function call 10751 // with ignored return value, store. Ignore unused instructions (basing on 10752 // instruction type, except for CallInst and InvokeInst). 10753 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10754 isa<InvokeInst>(it))) { 10755 KeyNodes.insert(&*it); 10756 bool OpsChanged = false; 10757 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10758 for (auto *V : it->operand_values()) { 10759 // Try to match and vectorize a horizontal reduction. 10760 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10761 } 10762 } 10763 // Start vectorization of post-process list of instructions from the 10764 // top-tree instructions to try to vectorize as many instructions as 10765 // possible. 10766 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10767 it->isTerminator()); 10768 if (OpsChanged) { 10769 // We would like to start over since some instructions are deleted 10770 // and the iterator may become invalid value. 10771 Changed = true; 10772 it = BB->begin(); 10773 e = BB->end(); 10774 continue; 10775 } 10776 } 10777 10778 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10779 isa<InsertValueInst>(it)) 10780 PostProcessInstructions.push_back(&*it); 10781 } 10782 10783 return Changed; 10784 } 10785 10786 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10787 auto Changed = false; 10788 for (auto &Entry : GEPs) { 10789 // If the getelementptr list has fewer than two elements, there's nothing 10790 // to do. 10791 if (Entry.second.size() < 2) 10792 continue; 10793 10794 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10795 << Entry.second.size() << ".\n"); 10796 10797 // Process the GEP list in chunks suitable for the target's supported 10798 // vector size. If a vector register can't hold 1 element, we are done. We 10799 // are trying to vectorize the index computations, so the maximum number of 10800 // elements is based on the size of the index expression, rather than the 10801 // size of the GEP itself (the target's pointer size). 10802 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10803 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10804 if (MaxVecRegSize < EltSize) 10805 continue; 10806 10807 unsigned MaxElts = MaxVecRegSize / EltSize; 10808 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10809 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10810 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10811 10812 // Initialize a set a candidate getelementptrs. Note that we use a 10813 // SetVector here to preserve program order. If the index computations 10814 // are vectorizable and begin with loads, we want to minimize the chance 10815 // of having to reorder them later. 10816 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10817 10818 // Some of the candidates may have already been vectorized after we 10819 // initially collected them. If so, they are marked as deleted, so remove 10820 // them from the set of candidates. 10821 Candidates.remove_if( 10822 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10823 10824 // Remove from the set of candidates all pairs of getelementptrs with 10825 // constant differences. Such getelementptrs are likely not good 10826 // candidates for vectorization in a bottom-up phase since one can be 10827 // computed from the other. We also ensure all candidate getelementptr 10828 // indices are unique. 10829 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10830 auto *GEPI = GEPList[I]; 10831 if (!Candidates.count(GEPI)) 10832 continue; 10833 auto *SCEVI = SE->getSCEV(GEPList[I]); 10834 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10835 auto *GEPJ = GEPList[J]; 10836 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10837 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10838 Candidates.remove(GEPI); 10839 Candidates.remove(GEPJ); 10840 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10841 Candidates.remove(GEPJ); 10842 } 10843 } 10844 } 10845 10846 // We break out of the above computation as soon as we know there are 10847 // fewer than two candidates remaining. 10848 if (Candidates.size() < 2) 10849 continue; 10850 10851 // Add the single, non-constant index of each candidate to the bundle. We 10852 // ensured the indices met these constraints when we originally collected 10853 // the getelementptrs. 10854 SmallVector<Value *, 16> Bundle(Candidates.size()); 10855 auto BundleIndex = 0u; 10856 for (auto *V : Candidates) { 10857 auto *GEP = cast<GetElementPtrInst>(V); 10858 auto *GEPIdx = GEP->idx_begin()->get(); 10859 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10860 Bundle[BundleIndex++] = GEPIdx; 10861 } 10862 10863 // Try and vectorize the indices. We are currently only interested in 10864 // gather-like cases of the form: 10865 // 10866 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10867 // 10868 // where the loads of "a", the loads of "b", and the subtractions can be 10869 // performed in parallel. It's likely that detecting this pattern in a 10870 // bottom-up phase will be simpler and less costly than building a 10871 // full-blown top-down phase beginning at the consecutive loads. 10872 Changed |= tryToVectorizeList(Bundle, R); 10873 } 10874 } 10875 return Changed; 10876 } 10877 10878 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10879 bool Changed = false; 10880 // Sort by type, base pointers and values operand. Value operands must be 10881 // compatible (have the same opcode, same parent), otherwise it is 10882 // definitely not profitable to try to vectorize them. 10883 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10884 if (V->getPointerOperandType()->getTypeID() < 10885 V2->getPointerOperandType()->getTypeID()) 10886 return true; 10887 if (V->getPointerOperandType()->getTypeID() > 10888 V2->getPointerOperandType()->getTypeID()) 10889 return false; 10890 // UndefValues are compatible with all other values. 10891 if (isa<UndefValue>(V->getValueOperand()) || 10892 isa<UndefValue>(V2->getValueOperand())) 10893 return false; 10894 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10895 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10896 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10897 DT->getNode(I1->getParent()); 10898 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10899 DT->getNode(I2->getParent()); 10900 assert(NodeI1 && "Should only process reachable instructions"); 10901 assert(NodeI1 && "Should only process reachable instructions"); 10902 assert((NodeI1 == NodeI2) == 10903 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10904 "Different nodes should have different DFS numbers"); 10905 if (NodeI1 != NodeI2) 10906 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10907 InstructionsState S = getSameOpcode({I1, I2}); 10908 if (S.getOpcode()) 10909 return false; 10910 return I1->getOpcode() < I2->getOpcode(); 10911 } 10912 if (isa<Constant>(V->getValueOperand()) && 10913 isa<Constant>(V2->getValueOperand())) 10914 return false; 10915 return V->getValueOperand()->getValueID() < 10916 V2->getValueOperand()->getValueID(); 10917 }; 10918 10919 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10920 if (V1 == V2) 10921 return true; 10922 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10923 return false; 10924 // Undefs are compatible with any other value. 10925 if (isa<UndefValue>(V1->getValueOperand()) || 10926 isa<UndefValue>(V2->getValueOperand())) 10927 return true; 10928 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10929 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10930 if (I1->getParent() != I2->getParent()) 10931 return false; 10932 InstructionsState S = getSameOpcode({I1, I2}); 10933 return S.getOpcode() > 0; 10934 } 10935 if (isa<Constant>(V1->getValueOperand()) && 10936 isa<Constant>(V2->getValueOperand())) 10937 return true; 10938 return V1->getValueOperand()->getValueID() == 10939 V2->getValueOperand()->getValueID(); 10940 }; 10941 auto Limit = [&R, this](StoreInst *SI) { 10942 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10943 return R.getMinVF(EltSize); 10944 }; 10945 10946 // Attempt to sort and vectorize each of the store-groups. 10947 for (auto &Pair : Stores) { 10948 if (Pair.second.size() < 2) 10949 continue; 10950 10951 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10952 << Pair.second.size() << ".\n"); 10953 10954 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10955 continue; 10956 10957 Changed |= tryToVectorizeSequence<StoreInst>( 10958 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10959 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10960 return vectorizeStores(Candidates, R); 10961 }, 10962 /*LimitForRegisterSize=*/false); 10963 } 10964 return Changed; 10965 } 10966 10967 char SLPVectorizer::ID = 0; 10968 10969 static const char lv_name[] = "SLP Vectorizer"; 10970 10971 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10972 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10973 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10974 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10975 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10976 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10977 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10978 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10979 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10980 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10981 10982 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10983