1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 215 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 347 /// Clear the internal data structures that are created by 'buildTree'. 348 void deleteTree() { 349 VectorizableTree.clear(); 350 ScalarToTreeEntry.clear(); 351 MustGather.clear(); 352 ExternalUses.clear(); 353 NumLoadsWantToKeepOrder = 0; 354 NumLoadsWantToChangeOrder = 0; 355 for (auto &Iter : BlocksSchedules) { 356 BlockScheduling *BS = Iter.second.get(); 357 BS->clear(); 358 } 359 MinBWs.clear(); 360 } 361 362 /// \brief Perform LICM and CSE on the newly generated gather sequences. 363 void optimizeGatherSequence(); 364 365 /// \returns true if it is beneficial to reverse the vector order. 366 bool shouldReorder() const { 367 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 368 } 369 370 /// \return The vector element size in bits to use when vectorizing the 371 /// expression tree ending at \p V. If V is a store, the size is the width of 372 /// the stored value. Otherwise, the size is the width of the largest loaded 373 /// value reaching V. This method is used by the vectorizer to calculate 374 /// vectorization factors. 375 unsigned getVectorElementSize(Value *V); 376 377 /// Compute the minimum type sizes required to represent the entries in a 378 /// vectorizable tree. 379 void computeMinimumValueSizes(); 380 381 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 382 unsigned getMaxVecRegSize() const { 383 return MaxVecRegSize; 384 } 385 386 // \returns minimum vector register size as set by cl::opt. 387 unsigned getMinVecRegSize() const { 388 return MinVecRegSize; 389 } 390 391 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 392 /// 393 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 394 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 395 396 /// \returns True if the VectorizableTree is both tiny and not fully 397 /// vectorizable. We do not vectorize such trees. 398 bool isTreeTinyAndNotFullyVectorizable(); 399 400 private: 401 struct TreeEntry; 402 403 /// \returns the cost of the vectorizable entry. 404 int getEntryCost(TreeEntry *E); 405 406 /// This is the recursive part of buildTree. 407 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 408 409 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 410 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 411 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 412 413 /// Vectorize a single entry in the tree. 414 Value *vectorizeTree(TreeEntry *E); 415 416 /// Vectorize a single entry in the tree, starting in \p VL. 417 Value *vectorizeTree(ArrayRef<Value *> VL); 418 419 /// \returns the pointer to the vectorized value if \p VL is already 420 /// vectorized, or NULL. They may happen in cycles. 421 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 422 423 /// \returns the scalarization cost for this type. Scalarization in this 424 /// context means the creation of vectors from a group of scalars. 425 int getGatherCost(Type *Ty); 426 427 /// \returns the scalarization cost for this list of values. Assuming that 428 /// this subtree gets vectorized, we may need to extract the values from the 429 /// roots. This method calculates the cost of extracting the values. 430 int getGatherCost(ArrayRef<Value *> VL); 431 432 /// \brief Set the Builder insert point to one after the last instruction in 433 /// the bundle 434 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 435 436 /// \returns a vector from a collection of scalars in \p VL. 437 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 438 439 /// \returns whether the VectorizableTree is fully vectorizable and will 440 /// be beneficial even the tree height is tiny. 441 bool isFullyVectorizableTinyTree(); 442 443 /// \reorder commutative operands in alt shuffle if they result in 444 /// vectorized code. 445 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 446 SmallVectorImpl<Value *> &Left, 447 SmallVectorImpl<Value *> &Right); 448 /// \reorder commutative operands to get better probability of 449 /// generating vectorized code. 450 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 451 SmallVectorImpl<Value *> &Left, 452 SmallVectorImpl<Value *> &Right); 453 struct TreeEntry { 454 TreeEntry() : Scalars(), VectorizedValue(nullptr), 455 NeedToGather(0) {} 456 457 /// \returns true if the scalars in VL are equal to this entry. 458 bool isSame(ArrayRef<Value *> VL) const { 459 assert(VL.size() == Scalars.size() && "Invalid size"); 460 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 461 } 462 463 /// A vector of scalars. 464 ValueList Scalars; 465 466 /// The Scalars are vectorized into this value. It is initialized to Null. 467 Value *VectorizedValue; 468 469 /// Do we need to gather this sequence ? 470 bool NeedToGather; 471 }; 472 473 /// Create a new VectorizableTree entry. 474 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 475 VectorizableTree.emplace_back(); 476 int idx = VectorizableTree.size() - 1; 477 TreeEntry *Last = &VectorizableTree[idx]; 478 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 479 Last->NeedToGather = !Vectorized; 480 if (Vectorized) { 481 for (int i = 0, e = VL.size(); i != e; ++i) { 482 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 483 ScalarToTreeEntry[VL[i]] = idx; 484 } 485 } else { 486 MustGather.insert(VL.begin(), VL.end()); 487 } 488 return Last; 489 } 490 491 /// -- Vectorization State -- 492 /// Holds all of the tree entries. 493 std::vector<TreeEntry> VectorizableTree; 494 495 /// Maps a specific scalar to its tree entry. 496 SmallDenseMap<Value*, int> ScalarToTreeEntry; 497 498 /// A list of scalars that we found that we need to keep as scalars. 499 ValueSet MustGather; 500 501 /// This POD struct describes one external user in the vectorized tree. 502 struct ExternalUser { 503 ExternalUser (Value *S, llvm::User *U, int L) : 504 Scalar(S), User(U), Lane(L){} 505 // Which scalar in our function. 506 Value *Scalar; 507 // Which user that uses the scalar. 508 llvm::User *User; 509 // Which lane does the scalar belong to. 510 int Lane; 511 }; 512 typedef SmallVector<ExternalUser, 16> UserList; 513 514 /// Checks if two instructions may access the same memory. 515 /// 516 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 517 /// is invariant in the calling loop. 518 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 519 Instruction *Inst2) { 520 521 // First check if the result is already in the cache. 522 AliasCacheKey key = std::make_pair(Inst1, Inst2); 523 Optional<bool> &result = AliasCache[key]; 524 if (result.hasValue()) { 525 return result.getValue(); 526 } 527 MemoryLocation Loc2 = getLocation(Inst2, AA); 528 bool aliased = true; 529 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 530 // Do the alias check. 531 aliased = AA->alias(Loc1, Loc2); 532 } 533 // Store the result in the cache. 534 result = aliased; 535 return aliased; 536 } 537 538 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 539 540 /// Cache for alias results. 541 /// TODO: consider moving this to the AliasAnalysis itself. 542 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 543 544 /// Removes an instruction from its block and eventually deletes it. 545 /// It's like Instruction::eraseFromParent() except that the actual deletion 546 /// is delayed until BoUpSLP is destructed. 547 /// This is required to ensure that there are no incorrect collisions in the 548 /// AliasCache, which can happen if a new instruction is allocated at the 549 /// same address as a previously deleted instruction. 550 void eraseInstruction(Instruction *I) { 551 I->removeFromParent(); 552 I->dropAllReferences(); 553 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 554 } 555 556 /// Temporary store for deleted instructions. Instructions will be deleted 557 /// eventually when the BoUpSLP is destructed. 558 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 559 560 /// A list of values that need to extracted out of the tree. 561 /// This list holds pairs of (Internal Scalar : External User). 562 UserList ExternalUses; 563 564 /// Values used only by @llvm.assume calls. 565 SmallPtrSet<const Value *, 32> EphValues; 566 567 /// Holds all of the instructions that we gathered. 568 SetVector<Instruction *> GatherSeq; 569 /// A list of blocks that we are going to CSE. 570 SetVector<BasicBlock *> CSEBlocks; 571 572 /// Contains all scheduling relevant data for an instruction. 573 /// A ScheduleData either represents a single instruction or a member of an 574 /// instruction bundle (= a group of instructions which is combined into a 575 /// vector instruction). 576 struct ScheduleData { 577 578 // The initial value for the dependency counters. It means that the 579 // dependencies are not calculated yet. 580 enum { InvalidDeps = -1 }; 581 582 ScheduleData() 583 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 584 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 585 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 586 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 587 588 void init(int BlockSchedulingRegionID) { 589 FirstInBundle = this; 590 NextInBundle = nullptr; 591 NextLoadStore = nullptr; 592 IsScheduled = false; 593 SchedulingRegionID = BlockSchedulingRegionID; 594 UnscheduledDepsInBundle = UnscheduledDeps; 595 clearDependencies(); 596 } 597 598 /// Returns true if the dependency information has been calculated. 599 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 600 601 /// Returns true for single instructions and for bundle representatives 602 /// (= the head of a bundle). 603 bool isSchedulingEntity() const { return FirstInBundle == this; } 604 605 /// Returns true if it represents an instruction bundle and not only a 606 /// single instruction. 607 bool isPartOfBundle() const { 608 return NextInBundle != nullptr || FirstInBundle != this; 609 } 610 611 /// Returns true if it is ready for scheduling, i.e. it has no more 612 /// unscheduled depending instructions/bundles. 613 bool isReady() const { 614 assert(isSchedulingEntity() && 615 "can't consider non-scheduling entity for ready list"); 616 return UnscheduledDepsInBundle == 0 && !IsScheduled; 617 } 618 619 /// Modifies the number of unscheduled dependencies, also updating it for 620 /// the whole bundle. 621 int incrementUnscheduledDeps(int Incr) { 622 UnscheduledDeps += Incr; 623 return FirstInBundle->UnscheduledDepsInBundle += Incr; 624 } 625 626 /// Sets the number of unscheduled dependencies to the number of 627 /// dependencies. 628 void resetUnscheduledDeps() { 629 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 630 } 631 632 /// Clears all dependency information. 633 void clearDependencies() { 634 Dependencies = InvalidDeps; 635 resetUnscheduledDeps(); 636 MemoryDependencies.clear(); 637 } 638 639 void dump(raw_ostream &os) const { 640 if (!isSchedulingEntity()) { 641 os << "/ " << *Inst; 642 } else if (NextInBundle) { 643 os << '[' << *Inst; 644 ScheduleData *SD = NextInBundle; 645 while (SD) { 646 os << ';' << *SD->Inst; 647 SD = SD->NextInBundle; 648 } 649 os << ']'; 650 } else { 651 os << *Inst; 652 } 653 } 654 655 Instruction *Inst; 656 657 /// Points to the head in an instruction bundle (and always to this for 658 /// single instructions). 659 ScheduleData *FirstInBundle; 660 661 /// Single linked list of all instructions in a bundle. Null if it is a 662 /// single instruction. 663 ScheduleData *NextInBundle; 664 665 /// Single linked list of all memory instructions (e.g. load, store, call) 666 /// in the block - until the end of the scheduling region. 667 ScheduleData *NextLoadStore; 668 669 /// The dependent memory instructions. 670 /// This list is derived on demand in calculateDependencies(). 671 SmallVector<ScheduleData *, 4> MemoryDependencies; 672 673 /// This ScheduleData is in the current scheduling region if this matches 674 /// the current SchedulingRegionID of BlockScheduling. 675 int SchedulingRegionID; 676 677 /// Used for getting a "good" final ordering of instructions. 678 int SchedulingPriority; 679 680 /// The number of dependencies. Constitutes of the number of users of the 681 /// instruction plus the number of dependent memory instructions (if any). 682 /// This value is calculated on demand. 683 /// If InvalidDeps, the number of dependencies is not calculated yet. 684 /// 685 int Dependencies; 686 687 /// The number of dependencies minus the number of dependencies of scheduled 688 /// instructions. As soon as this is zero, the instruction/bundle gets ready 689 /// for scheduling. 690 /// Note that this is negative as long as Dependencies is not calculated. 691 int UnscheduledDeps; 692 693 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 694 /// single instructions. 695 int UnscheduledDepsInBundle; 696 697 /// True if this instruction is scheduled (or considered as scheduled in the 698 /// dry-run). 699 bool IsScheduled; 700 }; 701 702 #ifndef NDEBUG 703 friend inline raw_ostream &operator<<(raw_ostream &os, 704 const BoUpSLP::ScheduleData &SD) { 705 SD.dump(os); 706 return os; 707 } 708 #endif 709 710 /// Contains all scheduling data for a basic block. 711 /// 712 struct BlockScheduling { 713 714 BlockScheduling(BasicBlock *BB) 715 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 716 ScheduleStart(nullptr), ScheduleEnd(nullptr), 717 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 718 ScheduleRegionSize(0), 719 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 720 // Make sure that the initial SchedulingRegionID is greater than the 721 // initial SchedulingRegionID in ScheduleData (which is 0). 722 SchedulingRegionID(1) {} 723 724 void clear() { 725 ReadyInsts.clear(); 726 ScheduleStart = nullptr; 727 ScheduleEnd = nullptr; 728 FirstLoadStoreInRegion = nullptr; 729 LastLoadStoreInRegion = nullptr; 730 731 // Reduce the maximum schedule region size by the size of the 732 // previous scheduling run. 733 ScheduleRegionSizeLimit -= ScheduleRegionSize; 734 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 735 ScheduleRegionSizeLimit = MinScheduleRegionSize; 736 ScheduleRegionSize = 0; 737 738 // Make a new scheduling region, i.e. all existing ScheduleData is not 739 // in the new region yet. 740 ++SchedulingRegionID; 741 } 742 743 ScheduleData *getScheduleData(Value *V) { 744 ScheduleData *SD = ScheduleDataMap[V]; 745 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 746 return SD; 747 return nullptr; 748 } 749 750 bool isInSchedulingRegion(ScheduleData *SD) { 751 return SD->SchedulingRegionID == SchedulingRegionID; 752 } 753 754 /// Marks an instruction as scheduled and puts all dependent ready 755 /// instructions into the ready-list. 756 template <typename ReadyListType> 757 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 758 SD->IsScheduled = true; 759 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 760 761 ScheduleData *BundleMember = SD; 762 while (BundleMember) { 763 // Handle the def-use chain dependencies. 764 for (Use &U : BundleMember->Inst->operands()) { 765 ScheduleData *OpDef = getScheduleData(U.get()); 766 if (OpDef && OpDef->hasValidDependencies() && 767 OpDef->incrementUnscheduledDeps(-1) == 0) { 768 // There are no more unscheduled dependencies after decrementing, 769 // so we can put the dependent instruction into the ready list. 770 ScheduleData *DepBundle = OpDef->FirstInBundle; 771 assert(!DepBundle->IsScheduled && 772 "already scheduled bundle gets ready"); 773 ReadyList.insert(DepBundle); 774 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 775 } 776 } 777 // Handle the memory dependencies. 778 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 779 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 780 // There are no more unscheduled dependencies after decrementing, 781 // so we can put the dependent instruction into the ready list. 782 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 783 assert(!DepBundle->IsScheduled && 784 "already scheduled bundle gets ready"); 785 ReadyList.insert(DepBundle); 786 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 787 } 788 } 789 BundleMember = BundleMember->NextInBundle; 790 } 791 } 792 793 /// Put all instructions into the ReadyList which are ready for scheduling. 794 template <typename ReadyListType> 795 void initialFillReadyList(ReadyListType &ReadyList) { 796 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 797 ScheduleData *SD = getScheduleData(I); 798 if (SD->isSchedulingEntity() && SD->isReady()) { 799 ReadyList.insert(SD); 800 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 801 } 802 } 803 } 804 805 /// Checks if a bundle of instructions can be scheduled, i.e. has no 806 /// cyclic dependencies. This is only a dry-run, no instructions are 807 /// actually moved at this stage. 808 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 809 810 /// Un-bundles a group of instructions. 811 void cancelScheduling(ArrayRef<Value *> VL); 812 813 /// Extends the scheduling region so that V is inside the region. 814 /// \returns true if the region size is within the limit. 815 bool extendSchedulingRegion(Value *V); 816 817 /// Initialize the ScheduleData structures for new instructions in the 818 /// scheduling region. 819 void initScheduleData(Instruction *FromI, Instruction *ToI, 820 ScheduleData *PrevLoadStore, 821 ScheduleData *NextLoadStore); 822 823 /// Updates the dependency information of a bundle and of all instructions/ 824 /// bundles which depend on the original bundle. 825 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 826 BoUpSLP *SLP); 827 828 /// Sets all instruction in the scheduling region to un-scheduled. 829 void resetSchedule(); 830 831 BasicBlock *BB; 832 833 /// Simple memory allocation for ScheduleData. 834 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 835 836 /// The size of a ScheduleData array in ScheduleDataChunks. 837 int ChunkSize; 838 839 /// The allocator position in the current chunk, which is the last entry 840 /// of ScheduleDataChunks. 841 int ChunkPos; 842 843 /// Attaches ScheduleData to Instruction. 844 /// Note that the mapping survives during all vectorization iterations, i.e. 845 /// ScheduleData structures are recycled. 846 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 847 848 struct ReadyList : SmallVector<ScheduleData *, 8> { 849 void insert(ScheduleData *SD) { push_back(SD); } 850 }; 851 852 /// The ready-list for scheduling (only used for the dry-run). 853 ReadyList ReadyInsts; 854 855 /// The first instruction of the scheduling region. 856 Instruction *ScheduleStart; 857 858 /// The first instruction _after_ the scheduling region. 859 Instruction *ScheduleEnd; 860 861 /// The first memory accessing instruction in the scheduling region 862 /// (can be null). 863 ScheduleData *FirstLoadStoreInRegion; 864 865 /// The last memory accessing instruction in the scheduling region 866 /// (can be null). 867 ScheduleData *LastLoadStoreInRegion; 868 869 /// The current size of the scheduling region. 870 int ScheduleRegionSize; 871 872 /// The maximum size allowed for the scheduling region. 873 int ScheduleRegionSizeLimit; 874 875 /// The ID of the scheduling region. For a new vectorization iteration this 876 /// is incremented which "removes" all ScheduleData from the region. 877 int SchedulingRegionID; 878 }; 879 880 /// Attaches the BlockScheduling structures to basic blocks. 881 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 882 883 /// Performs the "real" scheduling. Done before vectorization is actually 884 /// performed in a basic block. 885 void scheduleBlock(BlockScheduling *BS); 886 887 /// List of users to ignore during scheduling and that don't need extracting. 888 ArrayRef<Value *> UserIgnoreList; 889 890 // Number of load bundles that contain consecutive loads. 891 int NumLoadsWantToKeepOrder; 892 893 // Number of load bundles that contain consecutive loads in reversed order. 894 int NumLoadsWantToChangeOrder; 895 896 // Analysis and block reference. 897 Function *F; 898 ScalarEvolution *SE; 899 TargetTransformInfo *TTI; 900 TargetLibraryInfo *TLI; 901 AliasAnalysis *AA; 902 LoopInfo *LI; 903 DominatorTree *DT; 904 AssumptionCache *AC; 905 DemandedBits *DB; 906 const DataLayout *DL; 907 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 908 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 909 /// Instruction builder to construct the vectorized tree. 910 IRBuilder<> Builder; 911 912 /// A map of scalar integer values to the smallest bit width with which they 913 /// can legally be represented. 914 MapVector<Value *, uint64_t> MinBWs; 915 }; 916 917 } // end namespace llvm 918 } // end namespace slpvectorizer 919 920 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 921 ArrayRef<Value *> UserIgnoreLst) { 922 deleteTree(); 923 UserIgnoreList = UserIgnoreLst; 924 if (!allSameType(Roots)) 925 return; 926 buildTree_rec(Roots, 0); 927 928 // Collect the values that we need to extract from the tree. 929 for (TreeEntry &EIdx : VectorizableTree) { 930 TreeEntry *Entry = &EIdx; 931 932 // For each lane: 933 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 934 Value *Scalar = Entry->Scalars[Lane]; 935 936 // No need to handle users of gathered values. 937 if (Entry->NeedToGather) 938 continue; 939 940 for (User *U : Scalar->users()) { 941 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 942 943 Instruction *UserInst = dyn_cast<Instruction>(U); 944 if (!UserInst) 945 continue; 946 947 // Skip in-tree scalars that become vectors 948 if (ScalarToTreeEntry.count(U)) { 949 int Idx = ScalarToTreeEntry[U]; 950 TreeEntry *UseEntry = &VectorizableTree[Idx]; 951 Value *UseScalar = UseEntry->Scalars[0]; 952 // Some in-tree scalars will remain as scalar in vectorized 953 // instructions. If that is the case, the one in Lane 0 will 954 // be used. 955 if (UseScalar != U || 956 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 957 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 958 << ".\n"); 959 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 960 continue; 961 } 962 } 963 964 // Ignore users in the user ignore list. 965 if (is_contained(UserIgnoreList, UserInst)) 966 continue; 967 968 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 969 Lane << " from " << *Scalar << ".\n"); 970 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 971 } 972 } 973 } 974 } 975 976 977 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 978 bool isAltShuffle = false; 979 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 980 981 if (Depth == RecursionMaxDepth) { 982 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 983 newTreeEntry(VL, false); 984 return; 985 } 986 987 // Don't handle vectors. 988 if (VL[0]->getType()->isVectorTy()) { 989 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 990 newTreeEntry(VL, false); 991 return; 992 } 993 994 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 995 if (SI->getValueOperand()->getType()->isVectorTy()) { 996 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 997 newTreeEntry(VL, false); 998 return; 999 } 1000 unsigned Opcode = getSameOpcode(VL); 1001 1002 // Check that this shuffle vector refers to the alternate 1003 // sequence of opcodes. 1004 if (Opcode == Instruction::ShuffleVector) { 1005 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1006 unsigned Op = I0->getOpcode(); 1007 if (Op != Instruction::ShuffleVector) 1008 isAltShuffle = true; 1009 } 1010 1011 // If all of the operands are identical or constant we have a simple solution. 1012 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1013 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1014 newTreeEntry(VL, false); 1015 return; 1016 } 1017 1018 // We now know that this is a vector of instructions of the same type from 1019 // the same block. 1020 1021 // Don't vectorize ephemeral values. 1022 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1023 if (EphValues.count(VL[i])) { 1024 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1025 ") is ephemeral.\n"); 1026 newTreeEntry(VL, false); 1027 return; 1028 } 1029 } 1030 1031 // Check if this is a duplicate of another entry. 1032 if (ScalarToTreeEntry.count(VL[0])) { 1033 int Idx = ScalarToTreeEntry[VL[0]]; 1034 TreeEntry *E = &VectorizableTree[Idx]; 1035 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1036 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1037 if (E->Scalars[i] != VL[i]) { 1038 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1039 newTreeEntry(VL, false); 1040 return; 1041 } 1042 } 1043 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1044 return; 1045 } 1046 1047 // Check that none of the instructions in the bundle are already in the tree. 1048 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1049 if (ScalarToTreeEntry.count(VL[i])) { 1050 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1051 ") is already in tree.\n"); 1052 newTreeEntry(VL, false); 1053 return; 1054 } 1055 } 1056 1057 // If any of the scalars is marked as a value that needs to stay scalar then 1058 // we need to gather the scalars. 1059 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1060 if (MustGather.count(VL[i])) { 1061 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1062 newTreeEntry(VL, false); 1063 return; 1064 } 1065 } 1066 1067 // Check that all of the users of the scalars that we want to vectorize are 1068 // schedulable. 1069 Instruction *VL0 = cast<Instruction>(VL[0]); 1070 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1071 1072 if (!DT->isReachableFromEntry(BB)) { 1073 // Don't go into unreachable blocks. They may contain instructions with 1074 // dependency cycles which confuse the final scheduling. 1075 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1076 newTreeEntry(VL, false); 1077 return; 1078 } 1079 1080 // Check that every instructions appears once in this bundle. 1081 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1082 for (unsigned j = i+1; j < e; ++j) 1083 if (VL[i] == VL[j]) { 1084 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1085 newTreeEntry(VL, false); 1086 return; 1087 } 1088 1089 auto &BSRef = BlocksSchedules[BB]; 1090 if (!BSRef) { 1091 BSRef = llvm::make_unique<BlockScheduling>(BB); 1092 } 1093 BlockScheduling &BS = *BSRef.get(); 1094 1095 if (!BS.tryScheduleBundle(VL, this)) { 1096 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1097 assert((!BS.getScheduleData(VL[0]) || 1098 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1099 "tryScheduleBundle should cancelScheduling on failure"); 1100 newTreeEntry(VL, false); 1101 return; 1102 } 1103 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1104 1105 switch (Opcode) { 1106 case Instruction::PHI: { 1107 PHINode *PH = dyn_cast<PHINode>(VL0); 1108 1109 // Check for terminator values (e.g. invoke). 1110 for (unsigned j = 0; j < VL.size(); ++j) 1111 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1112 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1113 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1114 if (Term) { 1115 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1116 BS.cancelScheduling(VL); 1117 newTreeEntry(VL, false); 1118 return; 1119 } 1120 } 1121 1122 newTreeEntry(VL, true); 1123 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1124 1125 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1126 ValueList Operands; 1127 // Prepare the operand vector. 1128 for (Value *j : VL) 1129 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1130 PH->getIncomingBlock(i))); 1131 1132 buildTree_rec(Operands, Depth + 1); 1133 } 1134 return; 1135 } 1136 case Instruction::ExtractValue: 1137 case Instruction::ExtractElement: { 1138 bool Reuse = canReuseExtract(VL, Opcode); 1139 if (Reuse) { 1140 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1141 } else { 1142 BS.cancelScheduling(VL); 1143 } 1144 newTreeEntry(VL, Reuse); 1145 return; 1146 } 1147 case Instruction::Load: { 1148 // Check that a vectorized load would load the same memory as a scalar 1149 // load. 1150 // For example we don't want vectorize loads that are smaller than 8 bit. 1151 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1152 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1153 // such a struct we read/write packed bits disagreeing with the 1154 // unvectorized version. 1155 Type *ScalarTy = VL[0]->getType(); 1156 1157 if (DL->getTypeSizeInBits(ScalarTy) != 1158 DL->getTypeAllocSizeInBits(ScalarTy)) { 1159 BS.cancelScheduling(VL); 1160 newTreeEntry(VL, false); 1161 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1162 return; 1163 } 1164 1165 // Make sure all loads in the bundle are simple - we can't vectorize 1166 // atomic or volatile loads. 1167 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1168 LoadInst *L = cast<LoadInst>(VL[i]); 1169 if (!L->isSimple()) { 1170 BS.cancelScheduling(VL); 1171 newTreeEntry(VL, false); 1172 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1173 return; 1174 } 1175 } 1176 1177 // Check if the loads are consecutive, reversed, or neither. 1178 // TODO: What we really want is to sort the loads, but for now, check 1179 // the two likely directions. 1180 bool Consecutive = true; 1181 bool ReverseConsecutive = true; 1182 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1183 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1184 Consecutive = false; 1185 break; 1186 } else { 1187 ReverseConsecutive = false; 1188 } 1189 } 1190 1191 if (Consecutive) { 1192 ++NumLoadsWantToKeepOrder; 1193 newTreeEntry(VL, true); 1194 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1195 return; 1196 } 1197 1198 // If none of the load pairs were consecutive when checked in order, 1199 // check the reverse order. 1200 if (ReverseConsecutive) 1201 for (unsigned i = VL.size() - 1; i > 0; --i) 1202 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1203 ReverseConsecutive = false; 1204 break; 1205 } 1206 1207 BS.cancelScheduling(VL); 1208 newTreeEntry(VL, false); 1209 1210 if (ReverseConsecutive) { 1211 ++NumLoadsWantToChangeOrder; 1212 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1213 } else { 1214 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1215 } 1216 return; 1217 } 1218 case Instruction::ZExt: 1219 case Instruction::SExt: 1220 case Instruction::FPToUI: 1221 case Instruction::FPToSI: 1222 case Instruction::FPExt: 1223 case Instruction::PtrToInt: 1224 case Instruction::IntToPtr: 1225 case Instruction::SIToFP: 1226 case Instruction::UIToFP: 1227 case Instruction::Trunc: 1228 case Instruction::FPTrunc: 1229 case Instruction::BitCast: { 1230 Type *SrcTy = VL0->getOperand(0)->getType(); 1231 for (unsigned i = 0; i < VL.size(); ++i) { 1232 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1233 if (Ty != SrcTy || !isValidElementType(Ty)) { 1234 BS.cancelScheduling(VL); 1235 newTreeEntry(VL, false); 1236 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1237 return; 1238 } 1239 } 1240 newTreeEntry(VL, true); 1241 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1242 1243 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1244 ValueList Operands; 1245 // Prepare the operand vector. 1246 for (Value *j : VL) 1247 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1248 1249 buildTree_rec(Operands, Depth+1); 1250 } 1251 return; 1252 } 1253 case Instruction::ICmp: 1254 case Instruction::FCmp: { 1255 // Check that all of the compares have the same predicate. 1256 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1257 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1258 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1259 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1260 if (Cmp->getPredicate() != P0 || 1261 Cmp->getOperand(0)->getType() != ComparedTy) { 1262 BS.cancelScheduling(VL); 1263 newTreeEntry(VL, false); 1264 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1265 return; 1266 } 1267 } 1268 1269 newTreeEntry(VL, true); 1270 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1271 1272 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1273 ValueList Operands; 1274 // Prepare the operand vector. 1275 for (Value *j : VL) 1276 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1277 1278 buildTree_rec(Operands, Depth+1); 1279 } 1280 return; 1281 } 1282 case Instruction::Select: 1283 case Instruction::Add: 1284 case Instruction::FAdd: 1285 case Instruction::Sub: 1286 case Instruction::FSub: 1287 case Instruction::Mul: 1288 case Instruction::FMul: 1289 case Instruction::UDiv: 1290 case Instruction::SDiv: 1291 case Instruction::FDiv: 1292 case Instruction::URem: 1293 case Instruction::SRem: 1294 case Instruction::FRem: 1295 case Instruction::Shl: 1296 case Instruction::LShr: 1297 case Instruction::AShr: 1298 case Instruction::And: 1299 case Instruction::Or: 1300 case Instruction::Xor: { 1301 newTreeEntry(VL, true); 1302 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1303 1304 // Sort operands of the instructions so that each side is more likely to 1305 // have the same opcode. 1306 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1307 ValueList Left, Right; 1308 reorderInputsAccordingToOpcode(VL, Left, Right); 1309 buildTree_rec(Left, Depth + 1); 1310 buildTree_rec(Right, Depth + 1); 1311 return; 1312 } 1313 1314 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1315 ValueList Operands; 1316 // Prepare the operand vector. 1317 for (Value *j : VL) 1318 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1319 1320 buildTree_rec(Operands, Depth+1); 1321 } 1322 return; 1323 } 1324 case Instruction::GetElementPtr: { 1325 // We don't combine GEPs with complicated (nested) indexing. 1326 for (unsigned j = 0; j < VL.size(); ++j) { 1327 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1328 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1329 BS.cancelScheduling(VL); 1330 newTreeEntry(VL, false); 1331 return; 1332 } 1333 } 1334 1335 // We can't combine several GEPs into one vector if they operate on 1336 // different types. 1337 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1338 for (unsigned j = 0; j < VL.size(); ++j) { 1339 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1340 if (Ty0 != CurTy) { 1341 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1342 BS.cancelScheduling(VL); 1343 newTreeEntry(VL, false); 1344 return; 1345 } 1346 } 1347 1348 // We don't combine GEPs with non-constant indexes. 1349 for (unsigned j = 0; j < VL.size(); ++j) { 1350 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1351 if (!isa<ConstantInt>(Op)) { 1352 DEBUG( 1353 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1354 BS.cancelScheduling(VL); 1355 newTreeEntry(VL, false); 1356 return; 1357 } 1358 } 1359 1360 newTreeEntry(VL, true); 1361 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1362 for (unsigned i = 0, e = 2; i < e; ++i) { 1363 ValueList Operands; 1364 // Prepare the operand vector. 1365 for (Value *j : VL) 1366 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1367 1368 buildTree_rec(Operands, Depth + 1); 1369 } 1370 return; 1371 } 1372 case Instruction::Store: { 1373 // Check if the stores are consecutive or of we need to swizzle them. 1374 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1375 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1376 BS.cancelScheduling(VL); 1377 newTreeEntry(VL, false); 1378 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1379 return; 1380 } 1381 1382 newTreeEntry(VL, true); 1383 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1384 1385 ValueList Operands; 1386 for (Value *j : VL) 1387 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1388 1389 buildTree_rec(Operands, Depth + 1); 1390 return; 1391 } 1392 case Instruction::Call: { 1393 // Check if the calls are all to the same vectorizable intrinsic. 1394 CallInst *CI = cast<CallInst>(VL[0]); 1395 // Check if this is an Intrinsic call or something that can be 1396 // represented by an intrinsic call 1397 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1398 if (!isTriviallyVectorizable(ID)) { 1399 BS.cancelScheduling(VL); 1400 newTreeEntry(VL, false); 1401 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1402 return; 1403 } 1404 Function *Int = CI->getCalledFunction(); 1405 Value *A1I = nullptr; 1406 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1407 A1I = CI->getArgOperand(1); 1408 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1409 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1410 if (!CI2 || CI2->getCalledFunction() != Int || 1411 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1412 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1413 BS.cancelScheduling(VL); 1414 newTreeEntry(VL, false); 1415 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1416 << "\n"); 1417 return; 1418 } 1419 // ctlz,cttz and powi are special intrinsics whose second argument 1420 // should be same in order for them to be vectorized. 1421 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1422 Value *A1J = CI2->getArgOperand(1); 1423 if (A1I != A1J) { 1424 BS.cancelScheduling(VL); 1425 newTreeEntry(VL, false); 1426 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1427 << " argument "<< A1I<<"!=" << A1J 1428 << "\n"); 1429 return; 1430 } 1431 } 1432 // Verify that the bundle operands are identical between the two calls. 1433 if (CI->hasOperandBundles() && 1434 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1435 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1436 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1437 BS.cancelScheduling(VL); 1438 newTreeEntry(VL, false); 1439 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1440 << *VL[i] << '\n'); 1441 return; 1442 } 1443 } 1444 1445 newTreeEntry(VL, true); 1446 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1447 ValueList Operands; 1448 // Prepare the operand vector. 1449 for (Value *j : VL) { 1450 CallInst *CI2 = dyn_cast<CallInst>(j); 1451 Operands.push_back(CI2->getArgOperand(i)); 1452 } 1453 buildTree_rec(Operands, Depth + 1); 1454 } 1455 return; 1456 } 1457 case Instruction::ShuffleVector: { 1458 // If this is not an alternate sequence of opcode like add-sub 1459 // then do not vectorize this instruction. 1460 if (!isAltShuffle) { 1461 BS.cancelScheduling(VL); 1462 newTreeEntry(VL, false); 1463 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1464 return; 1465 } 1466 newTreeEntry(VL, true); 1467 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1468 1469 // Reorder operands if reordering would enable vectorization. 1470 if (isa<BinaryOperator>(VL0)) { 1471 ValueList Left, Right; 1472 reorderAltShuffleOperands(VL, Left, Right); 1473 buildTree_rec(Left, Depth + 1); 1474 buildTree_rec(Right, Depth + 1); 1475 return; 1476 } 1477 1478 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1479 ValueList Operands; 1480 // Prepare the operand vector. 1481 for (Value *j : VL) 1482 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1483 1484 buildTree_rec(Operands, Depth + 1); 1485 } 1486 return; 1487 } 1488 default: 1489 BS.cancelScheduling(VL); 1490 newTreeEntry(VL, false); 1491 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1492 return; 1493 } 1494 } 1495 1496 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1497 unsigned N; 1498 Type *EltTy; 1499 auto *ST = dyn_cast<StructType>(T); 1500 if (ST) { 1501 N = ST->getNumElements(); 1502 EltTy = *ST->element_begin(); 1503 } else { 1504 N = cast<ArrayType>(T)->getNumElements(); 1505 EltTy = cast<ArrayType>(T)->getElementType(); 1506 } 1507 if (!isValidElementType(EltTy)) 1508 return 0; 1509 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1510 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1511 return 0; 1512 if (ST) { 1513 // Check that struct is homogeneous. 1514 for (const auto *Ty : ST->elements()) 1515 if (Ty != EltTy) 1516 return 0; 1517 } 1518 return N; 1519 } 1520 1521 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1522 assert(Opcode == Instruction::ExtractElement || 1523 Opcode == Instruction::ExtractValue); 1524 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1525 // Check if all of the extracts come from the same vector and from the 1526 // correct offset. 1527 Value *VL0 = VL[0]; 1528 Instruction *E0 = cast<Instruction>(VL0); 1529 Value *Vec = E0->getOperand(0); 1530 1531 // We have to extract from a vector/aggregate with the same number of elements. 1532 unsigned NElts; 1533 if (Opcode == Instruction::ExtractValue) { 1534 const DataLayout &DL = E0->getModule()->getDataLayout(); 1535 NElts = canMapToVector(Vec->getType(), DL); 1536 if (!NElts) 1537 return false; 1538 // Check if load can be rewritten as load of vector. 1539 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1540 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1541 return false; 1542 } else { 1543 NElts = Vec->getType()->getVectorNumElements(); 1544 } 1545 1546 if (NElts != VL.size()) 1547 return false; 1548 1549 // Check that all of the indices extract from the correct offset. 1550 if (!matchExtractIndex(E0, 0, Opcode)) 1551 return false; 1552 1553 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1554 Instruction *E = cast<Instruction>(VL[i]); 1555 if (!matchExtractIndex(E, i, Opcode)) 1556 return false; 1557 if (E->getOperand(0) != Vec) 1558 return false; 1559 } 1560 1561 return true; 1562 } 1563 1564 int BoUpSLP::getEntryCost(TreeEntry *E) { 1565 ArrayRef<Value*> VL = E->Scalars; 1566 1567 Type *ScalarTy = VL[0]->getType(); 1568 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1569 ScalarTy = SI->getValueOperand()->getType(); 1570 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1571 1572 // If we have computed a smaller type for the expression, update VecTy so 1573 // that the costs will be accurate. 1574 if (MinBWs.count(VL[0])) 1575 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1576 VL.size()); 1577 1578 if (E->NeedToGather) { 1579 if (allConstant(VL)) 1580 return 0; 1581 if (isSplat(VL)) { 1582 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1583 } 1584 return getGatherCost(E->Scalars); 1585 } 1586 unsigned Opcode = getSameOpcode(VL); 1587 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1588 Instruction *VL0 = cast<Instruction>(VL[0]); 1589 switch (Opcode) { 1590 case Instruction::PHI: { 1591 return 0; 1592 } 1593 case Instruction::ExtractValue: 1594 case Instruction::ExtractElement: { 1595 if (canReuseExtract(VL, Opcode)) { 1596 int DeadCost = 0; 1597 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1598 Instruction *E = cast<Instruction>(VL[i]); 1599 if (E->hasOneUse()) 1600 // Take credit for instruction that will become dead. 1601 DeadCost += 1602 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1603 } 1604 return -DeadCost; 1605 } 1606 return getGatherCost(VecTy); 1607 } 1608 case Instruction::ZExt: 1609 case Instruction::SExt: 1610 case Instruction::FPToUI: 1611 case Instruction::FPToSI: 1612 case Instruction::FPExt: 1613 case Instruction::PtrToInt: 1614 case Instruction::IntToPtr: 1615 case Instruction::SIToFP: 1616 case Instruction::UIToFP: 1617 case Instruction::Trunc: 1618 case Instruction::FPTrunc: 1619 case Instruction::BitCast: { 1620 Type *SrcTy = VL0->getOperand(0)->getType(); 1621 1622 // Calculate the cost of this instruction. 1623 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1624 VL0->getType(), SrcTy); 1625 1626 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1627 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1628 return VecCost - ScalarCost; 1629 } 1630 case Instruction::FCmp: 1631 case Instruction::ICmp: 1632 case Instruction::Select: { 1633 // Calculate the cost of this instruction. 1634 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1635 int ScalarCost = VecTy->getNumElements() * 1636 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1637 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1638 return VecCost - ScalarCost; 1639 } 1640 case Instruction::Add: 1641 case Instruction::FAdd: 1642 case Instruction::Sub: 1643 case Instruction::FSub: 1644 case Instruction::Mul: 1645 case Instruction::FMul: 1646 case Instruction::UDiv: 1647 case Instruction::SDiv: 1648 case Instruction::FDiv: 1649 case Instruction::URem: 1650 case Instruction::SRem: 1651 case Instruction::FRem: 1652 case Instruction::Shl: 1653 case Instruction::LShr: 1654 case Instruction::AShr: 1655 case Instruction::And: 1656 case Instruction::Or: 1657 case Instruction::Xor: { 1658 // Certain instructions can be cheaper to vectorize if they have a 1659 // constant second vector operand. 1660 TargetTransformInfo::OperandValueKind Op1VK = 1661 TargetTransformInfo::OK_AnyValue; 1662 TargetTransformInfo::OperandValueKind Op2VK = 1663 TargetTransformInfo::OK_UniformConstantValue; 1664 TargetTransformInfo::OperandValueProperties Op1VP = 1665 TargetTransformInfo::OP_None; 1666 TargetTransformInfo::OperandValueProperties Op2VP = 1667 TargetTransformInfo::OP_None; 1668 1669 // If all operands are exactly the same ConstantInt then set the 1670 // operand kind to OK_UniformConstantValue. 1671 // If instead not all operands are constants, then set the operand kind 1672 // to OK_AnyValue. If all operands are constants but not the same, 1673 // then set the operand kind to OK_NonUniformConstantValue. 1674 ConstantInt *CInt = nullptr; 1675 for (unsigned i = 0; i < VL.size(); ++i) { 1676 const Instruction *I = cast<Instruction>(VL[i]); 1677 if (!isa<ConstantInt>(I->getOperand(1))) { 1678 Op2VK = TargetTransformInfo::OK_AnyValue; 1679 break; 1680 } 1681 if (i == 0) { 1682 CInt = cast<ConstantInt>(I->getOperand(1)); 1683 continue; 1684 } 1685 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1686 CInt != cast<ConstantInt>(I->getOperand(1))) 1687 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1688 } 1689 // FIXME: Currently cost of model modification for division by power of 1690 // 2 is handled for X86 and AArch64. Add support for other targets. 1691 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1692 CInt->getValue().isPowerOf2()) 1693 Op2VP = TargetTransformInfo::OP_PowerOf2; 1694 1695 int ScalarCost = VecTy->getNumElements() * 1696 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1697 Op2VK, Op1VP, Op2VP); 1698 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1699 Op1VP, Op2VP); 1700 return VecCost - ScalarCost; 1701 } 1702 case Instruction::GetElementPtr: { 1703 TargetTransformInfo::OperandValueKind Op1VK = 1704 TargetTransformInfo::OK_AnyValue; 1705 TargetTransformInfo::OperandValueKind Op2VK = 1706 TargetTransformInfo::OK_UniformConstantValue; 1707 1708 int ScalarCost = 1709 VecTy->getNumElements() * 1710 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1711 int VecCost = 1712 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1713 1714 return VecCost - ScalarCost; 1715 } 1716 case Instruction::Load: { 1717 // Cost of wide load - cost of scalar loads. 1718 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1719 int ScalarLdCost = VecTy->getNumElements() * 1720 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1721 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1722 VecTy, alignment, 0); 1723 return VecLdCost - ScalarLdCost; 1724 } 1725 case Instruction::Store: { 1726 // We know that we can merge the stores. Calculate the cost. 1727 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1728 int ScalarStCost = VecTy->getNumElements() * 1729 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1730 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1731 VecTy, alignment, 0); 1732 return VecStCost - ScalarStCost; 1733 } 1734 case Instruction::Call: { 1735 CallInst *CI = cast<CallInst>(VL0); 1736 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1737 1738 // Calculate the cost of the scalar and vector calls. 1739 SmallVector<Type*, 4> ScalarTys, VecTys; 1740 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1741 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1742 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1743 VecTy->getNumElements())); 1744 } 1745 1746 FastMathFlags FMF; 1747 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1748 FMF = FPMO->getFastMathFlags(); 1749 1750 int ScalarCallCost = VecTy->getNumElements() * 1751 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1752 1753 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1754 1755 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1756 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1757 << " for " << *CI << "\n"); 1758 1759 return VecCallCost - ScalarCallCost; 1760 } 1761 case Instruction::ShuffleVector: { 1762 TargetTransformInfo::OperandValueKind Op1VK = 1763 TargetTransformInfo::OK_AnyValue; 1764 TargetTransformInfo::OperandValueKind Op2VK = 1765 TargetTransformInfo::OK_AnyValue; 1766 int ScalarCost = 0; 1767 int VecCost = 0; 1768 for (Value *i : VL) { 1769 Instruction *I = cast<Instruction>(i); 1770 if (!I) 1771 break; 1772 ScalarCost += 1773 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1774 } 1775 // VecCost is equal to sum of the cost of creating 2 vectors 1776 // and the cost of creating shuffle. 1777 Instruction *I0 = cast<Instruction>(VL[0]); 1778 VecCost = 1779 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1780 Instruction *I1 = cast<Instruction>(VL[1]); 1781 VecCost += 1782 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1783 VecCost += 1784 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1785 return VecCost - ScalarCost; 1786 } 1787 default: 1788 llvm_unreachable("Unknown instruction"); 1789 } 1790 } 1791 1792 bool BoUpSLP::isFullyVectorizableTinyTree() { 1793 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1794 VectorizableTree.size() << " is fully vectorizable .\n"); 1795 1796 // We only handle trees of heights 1 and 2. 1797 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1798 return true; 1799 1800 if (VectorizableTree.size() != 2) 1801 return false; 1802 1803 // Handle splat and all-constants stores. 1804 if (!VectorizableTree[0].NeedToGather && 1805 (allConstant(VectorizableTree[1].Scalars) || 1806 isSplat(VectorizableTree[1].Scalars))) 1807 return true; 1808 1809 // Gathering cost would be too much for tiny trees. 1810 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1817 1818 // We can vectorize the tree if its size is greater than or equal to the 1819 // minimum size specified by the MinTreeSize command line option. 1820 if (VectorizableTree.size() >= MinTreeSize) 1821 return false; 1822 1823 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1824 // can vectorize it if we can prove it fully vectorizable. 1825 if (isFullyVectorizableTinyTree()) 1826 return false; 1827 1828 assert(VectorizableTree.empty() 1829 ? ExternalUses.empty() 1830 : true && "We shouldn't have any external users"); 1831 1832 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1833 // vectorizable. 1834 return true; 1835 } 1836 1837 int BoUpSLP::getSpillCost() { 1838 // Walk from the bottom of the tree to the top, tracking which values are 1839 // live. When we see a call instruction that is not part of our tree, 1840 // query TTI to see if there is a cost to keeping values live over it 1841 // (for example, if spills and fills are required). 1842 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1843 int Cost = 0; 1844 1845 SmallPtrSet<Instruction*, 4> LiveValues; 1846 Instruction *PrevInst = nullptr; 1847 1848 for (const auto &N : VectorizableTree) { 1849 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1850 if (!Inst) 1851 continue; 1852 1853 if (!PrevInst) { 1854 PrevInst = Inst; 1855 continue; 1856 } 1857 1858 // Update LiveValues. 1859 LiveValues.erase(PrevInst); 1860 for (auto &J : PrevInst->operands()) { 1861 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1862 LiveValues.insert(cast<Instruction>(&*J)); 1863 } 1864 1865 DEBUG( 1866 dbgs() << "SLP: #LV: " << LiveValues.size(); 1867 for (auto *X : LiveValues) 1868 dbgs() << " " << X->getName(); 1869 dbgs() << ", Looking at "; 1870 Inst->dump(); 1871 ); 1872 1873 // Now find the sequence of instructions between PrevInst and Inst. 1874 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1875 PrevInstIt = 1876 PrevInst->getIterator().getReverse(); 1877 while (InstIt != PrevInstIt) { 1878 if (PrevInstIt == PrevInst->getParent()->rend()) { 1879 PrevInstIt = Inst->getParent()->rbegin(); 1880 continue; 1881 } 1882 1883 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1884 SmallVector<Type*, 4> V; 1885 for (auto *II : LiveValues) 1886 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1887 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1888 } 1889 1890 ++PrevInstIt; 1891 } 1892 1893 PrevInst = Inst; 1894 } 1895 1896 return Cost; 1897 } 1898 1899 int BoUpSLP::getTreeCost() { 1900 int Cost = 0; 1901 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1902 VectorizableTree.size() << ".\n"); 1903 1904 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1905 1906 for (TreeEntry &TE : VectorizableTree) { 1907 int C = getEntryCost(&TE); 1908 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1909 << *TE.Scalars[0] << ".\n"); 1910 Cost += C; 1911 } 1912 1913 SmallSet<Value *, 16> ExtractCostCalculated; 1914 int ExtractCost = 0; 1915 for (ExternalUser &EU : ExternalUses) { 1916 // We only add extract cost once for the same scalar. 1917 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1918 continue; 1919 1920 // Uses by ephemeral values are free (because the ephemeral value will be 1921 // removed prior to code generation, and so the extraction will be 1922 // removed as well). 1923 if (EphValues.count(EU.User)) 1924 continue; 1925 1926 // If we plan to rewrite the tree in a smaller type, we will need to sign 1927 // extend the extracted value back to the original type. Here, we account 1928 // for the extract and the added cost of the sign extend if needed. 1929 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1930 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1931 if (MinBWs.count(ScalarRoot)) { 1932 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1933 VecTy = VectorType::get(MinTy, BundleWidth); 1934 ExtractCost += TTI->getExtractWithExtendCost( 1935 Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); 1936 } else { 1937 ExtractCost += 1938 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1939 } 1940 } 1941 1942 int SpillCost = getSpillCost(); 1943 Cost += SpillCost + ExtractCost; 1944 1945 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1946 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1947 << "SLP: Total Cost = " << Cost << ".\n"); 1948 return Cost; 1949 } 1950 1951 int BoUpSLP::getGatherCost(Type *Ty) { 1952 int Cost = 0; 1953 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1954 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1955 return Cost; 1956 } 1957 1958 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1959 // Find the type of the operands in VL. 1960 Type *ScalarTy = VL[0]->getType(); 1961 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1962 ScalarTy = SI->getValueOperand()->getType(); 1963 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1964 // Find the cost of inserting/extracting values from the vector. 1965 return getGatherCost(VecTy); 1966 } 1967 1968 // Reorder commutative operations in alternate shuffle if the resulting vectors 1969 // are consecutive loads. This would allow us to vectorize the tree. 1970 // If we have something like- 1971 // load a[0] - load b[0] 1972 // load b[1] + load a[1] 1973 // load a[2] - load b[2] 1974 // load a[3] + load b[3] 1975 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1976 // code. 1977 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1978 SmallVectorImpl<Value *> &Left, 1979 SmallVectorImpl<Value *> &Right) { 1980 // Push left and right operands of binary operation into Left and Right 1981 for (Value *i : VL) { 1982 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1983 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1984 } 1985 1986 // Reorder if we have a commutative operation and consecutive access 1987 // are on either side of the alternate instructions. 1988 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1989 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1990 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1991 Instruction *VL1 = cast<Instruction>(VL[j]); 1992 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1993 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1994 std::swap(Left[j], Right[j]); 1995 continue; 1996 } else if (VL2->isCommutative() && 1997 isConsecutiveAccess(L, L1, *DL, *SE)) { 1998 std::swap(Left[j + 1], Right[j + 1]); 1999 continue; 2000 } 2001 // else unchanged 2002 } 2003 } 2004 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2005 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2006 Instruction *VL1 = cast<Instruction>(VL[j]); 2007 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2008 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2009 std::swap(Left[j], Right[j]); 2010 continue; 2011 } else if (VL2->isCommutative() && 2012 isConsecutiveAccess(L, L1, *DL, *SE)) { 2013 std::swap(Left[j + 1], Right[j + 1]); 2014 continue; 2015 } 2016 // else unchanged 2017 } 2018 } 2019 } 2020 } 2021 2022 // Return true if I should be commuted before adding it's left and right 2023 // operands to the arrays Left and Right. 2024 // 2025 // The vectorizer is trying to either have all elements one side being 2026 // instruction with the same opcode to enable further vectorization, or having 2027 // a splat to lower the vectorizing cost. 2028 static bool shouldReorderOperands(int i, Instruction &I, 2029 SmallVectorImpl<Value *> &Left, 2030 SmallVectorImpl<Value *> &Right, 2031 bool AllSameOpcodeLeft, 2032 bool AllSameOpcodeRight, bool SplatLeft, 2033 bool SplatRight) { 2034 Value *VLeft = I.getOperand(0); 2035 Value *VRight = I.getOperand(1); 2036 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2037 if (SplatRight) { 2038 if (VRight == Right[i - 1]) 2039 // Preserve SplatRight 2040 return false; 2041 if (VLeft == Right[i - 1]) { 2042 // Commuting would preserve SplatRight, but we don't want to break 2043 // SplatLeft either, i.e. preserve the original order if possible. 2044 // (FIXME: why do we care?) 2045 if (SplatLeft && VLeft == Left[i - 1]) 2046 return false; 2047 return true; 2048 } 2049 } 2050 // Symmetrically handle Right side. 2051 if (SplatLeft) { 2052 if (VLeft == Left[i - 1]) 2053 // Preserve SplatLeft 2054 return false; 2055 if (VRight == Left[i - 1]) 2056 return true; 2057 } 2058 2059 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2060 Instruction *IRight = dyn_cast<Instruction>(VRight); 2061 2062 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2063 // it and not the right, in this case we want to commute. 2064 if (AllSameOpcodeRight) { 2065 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2066 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2067 // Do not commute, a match on the right preserves AllSameOpcodeRight 2068 return false; 2069 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2070 // We have a match and may want to commute, but first check if there is 2071 // not also a match on the existing operands on the Left to preserve 2072 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2073 // (FIXME: why do we care?) 2074 if (AllSameOpcodeLeft && ILeft && 2075 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2076 return false; 2077 return true; 2078 } 2079 } 2080 // Symmetrically handle Left side. 2081 if (AllSameOpcodeLeft) { 2082 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2083 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2084 return false; 2085 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2086 return true; 2087 } 2088 return false; 2089 } 2090 2091 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2092 SmallVectorImpl<Value *> &Left, 2093 SmallVectorImpl<Value *> &Right) { 2094 2095 if (VL.size()) { 2096 // Peel the first iteration out of the loop since there's nothing 2097 // interesting to do anyway and it simplifies the checks in the loop. 2098 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2099 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2100 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2101 // Favor having instruction to the right. FIXME: why? 2102 std::swap(VLeft, VRight); 2103 Left.push_back(VLeft); 2104 Right.push_back(VRight); 2105 } 2106 2107 // Keep track if we have instructions with all the same opcode on one side. 2108 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2109 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2110 // Keep track if we have one side with all the same value (broadcast). 2111 bool SplatLeft = true; 2112 bool SplatRight = true; 2113 2114 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2115 Instruction *I = cast<Instruction>(VL[i]); 2116 assert(I->isCommutative() && "Can only process commutative instruction"); 2117 // Commute to favor either a splat or maximizing having the same opcodes on 2118 // one side. 2119 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2120 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2121 Left.push_back(I->getOperand(1)); 2122 Right.push_back(I->getOperand(0)); 2123 } else { 2124 Left.push_back(I->getOperand(0)); 2125 Right.push_back(I->getOperand(1)); 2126 } 2127 // Update Splat* and AllSameOpcode* after the insertion. 2128 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2129 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2130 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2131 (cast<Instruction>(Left[i - 1])->getOpcode() == 2132 cast<Instruction>(Left[i])->getOpcode()); 2133 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2134 (cast<Instruction>(Right[i - 1])->getOpcode() == 2135 cast<Instruction>(Right[i])->getOpcode()); 2136 } 2137 2138 // If one operand end up being broadcast, return this operand order. 2139 if (SplatRight || SplatLeft) 2140 return; 2141 2142 // Finally check if we can get longer vectorizable chain by reordering 2143 // without breaking the good operand order detected above. 2144 // E.g. If we have something like- 2145 // load a[0] load b[0] 2146 // load b[1] load a[1] 2147 // load a[2] load b[2] 2148 // load a[3] load b[3] 2149 // Reordering the second load b[1] load a[1] would allow us to vectorize 2150 // this code and we still retain AllSameOpcode property. 2151 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2152 // such as- 2153 // add a[0],c[0] load b[0] 2154 // add a[1],c[2] load b[1] 2155 // b[2] load b[2] 2156 // add a[3],c[3] load b[3] 2157 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2158 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2159 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2160 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2161 std::swap(Left[j + 1], Right[j + 1]); 2162 continue; 2163 } 2164 } 2165 } 2166 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2167 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2168 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2169 std::swap(Left[j + 1], Right[j + 1]); 2170 continue; 2171 } 2172 } 2173 } 2174 // else unchanged 2175 } 2176 } 2177 2178 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2179 2180 // Get the basic block this bundle is in. All instructions in the bundle 2181 // should be in this block. 2182 auto *Front = cast<Instruction>(VL.front()); 2183 auto *BB = Front->getParent(); 2184 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2185 return cast<Instruction>(V)->getParent() == BB; 2186 })); 2187 2188 // The last instruction in the bundle in program order. 2189 Instruction *LastInst = nullptr; 2190 2191 // Find the last instruction. The common case should be that BB has been 2192 // scheduled, and the last instruction is VL.back(). So we start with 2193 // VL.back() and iterate over schedule data until we reach the end of the 2194 // bundle. The end of the bundle is marked by null ScheduleData. 2195 if (BlocksSchedules.count(BB)) { 2196 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2197 if (Bundle && Bundle->isPartOfBundle()) 2198 for (; Bundle; Bundle = Bundle->NextInBundle) 2199 LastInst = Bundle->Inst; 2200 } 2201 2202 // LastInst can still be null at this point if there's either not an entry 2203 // for BB in BlocksSchedules or there's no ScheduleData available for 2204 // VL.back(). This can be the case if buildTree_rec aborts for various 2205 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2206 // size is reached, etc.). ScheduleData is initialized in the scheduling 2207 // "dry-run". 2208 // 2209 // If this happens, we can still find the last instruction by brute force. We 2210 // iterate forwards from Front (inclusive) until we either see all 2211 // instructions in the bundle or reach the end of the block. If Front is the 2212 // last instruction in program order, LastInst will be set to Front, and we 2213 // will visit all the remaining instructions in the block. 2214 // 2215 // One of the reasons we exit early from buildTree_rec is to place an upper 2216 // bound on compile-time. Thus, taking an additional compile-time hit here is 2217 // not ideal. However, this should be exceedingly rare since it requires that 2218 // we both exit early from buildTree_rec and that the bundle be out-of-order 2219 // (causing us to iterate all the way to the end of the block). 2220 if (!LastInst) { 2221 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2222 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2223 if (Bundle.erase(&I)) 2224 LastInst = &I; 2225 if (Bundle.empty()) 2226 break; 2227 } 2228 } 2229 2230 // Set the insertion point after the last instruction in the bundle. Set the 2231 // debug location to Front. 2232 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2233 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2234 } 2235 2236 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2237 Value *Vec = UndefValue::get(Ty); 2238 // Generate the 'InsertElement' instruction. 2239 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2240 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2241 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2242 GatherSeq.insert(Insrt); 2243 CSEBlocks.insert(Insrt->getParent()); 2244 2245 // Add to our 'need-to-extract' list. 2246 if (ScalarToTreeEntry.count(VL[i])) { 2247 int Idx = ScalarToTreeEntry[VL[i]]; 2248 TreeEntry *E = &VectorizableTree[Idx]; 2249 // Find which lane we need to extract. 2250 int FoundLane = -1; 2251 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2252 // Is this the lane of the scalar that we are looking for ? 2253 if (E->Scalars[Lane] == VL[i]) { 2254 FoundLane = Lane; 2255 break; 2256 } 2257 } 2258 assert(FoundLane >= 0 && "Could not find the correct lane"); 2259 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2260 } 2261 } 2262 } 2263 2264 return Vec; 2265 } 2266 2267 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2268 SmallDenseMap<Value*, int>::const_iterator Entry 2269 = ScalarToTreeEntry.find(VL[0]); 2270 if (Entry != ScalarToTreeEntry.end()) { 2271 int Idx = Entry->second; 2272 const TreeEntry *En = &VectorizableTree[Idx]; 2273 if (En->isSame(VL) && En->VectorizedValue) 2274 return En->VectorizedValue; 2275 } 2276 return nullptr; 2277 } 2278 2279 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2280 if (ScalarToTreeEntry.count(VL[0])) { 2281 int Idx = ScalarToTreeEntry[VL[0]]; 2282 TreeEntry *E = &VectorizableTree[Idx]; 2283 if (E->isSame(VL)) 2284 return vectorizeTree(E); 2285 } 2286 2287 Type *ScalarTy = VL[0]->getType(); 2288 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2289 ScalarTy = SI->getValueOperand()->getType(); 2290 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2291 2292 return Gather(VL, VecTy); 2293 } 2294 2295 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2296 IRBuilder<>::InsertPointGuard Guard(Builder); 2297 2298 if (E->VectorizedValue) { 2299 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2300 return E->VectorizedValue; 2301 } 2302 2303 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2304 Type *ScalarTy = VL0->getType(); 2305 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2306 ScalarTy = SI->getValueOperand()->getType(); 2307 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2308 2309 if (E->NeedToGather) { 2310 setInsertPointAfterBundle(E->Scalars); 2311 auto *V = Gather(E->Scalars, VecTy); 2312 E->VectorizedValue = V; 2313 return V; 2314 } 2315 2316 unsigned Opcode = getSameOpcode(E->Scalars); 2317 2318 switch (Opcode) { 2319 case Instruction::PHI: { 2320 PHINode *PH = dyn_cast<PHINode>(VL0); 2321 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2322 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2323 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2324 E->VectorizedValue = NewPhi; 2325 2326 // PHINodes may have multiple entries from the same block. We want to 2327 // visit every block once. 2328 SmallSet<BasicBlock*, 4> VisitedBBs; 2329 2330 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2331 ValueList Operands; 2332 BasicBlock *IBB = PH->getIncomingBlock(i); 2333 2334 if (!VisitedBBs.insert(IBB).second) { 2335 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2336 continue; 2337 } 2338 2339 // Prepare the operand vector. 2340 for (Value *V : E->Scalars) 2341 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2342 2343 Builder.SetInsertPoint(IBB->getTerminator()); 2344 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2345 Value *Vec = vectorizeTree(Operands); 2346 NewPhi->addIncoming(Vec, IBB); 2347 } 2348 2349 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2350 "Invalid number of incoming values"); 2351 return NewPhi; 2352 } 2353 2354 case Instruction::ExtractElement: { 2355 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2356 Value *V = VL0->getOperand(0); 2357 E->VectorizedValue = V; 2358 return V; 2359 } 2360 setInsertPointAfterBundle(E->Scalars); 2361 auto *V = Gather(E->Scalars, VecTy); 2362 E->VectorizedValue = V; 2363 return V; 2364 } 2365 case Instruction::ExtractValue: { 2366 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2367 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2368 Builder.SetInsertPoint(LI); 2369 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2370 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2371 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2372 E->VectorizedValue = V; 2373 return propagateMetadata(V, E->Scalars); 2374 } 2375 setInsertPointAfterBundle(E->Scalars); 2376 auto *V = Gather(E->Scalars, VecTy); 2377 E->VectorizedValue = V; 2378 return V; 2379 } 2380 case Instruction::ZExt: 2381 case Instruction::SExt: 2382 case Instruction::FPToUI: 2383 case Instruction::FPToSI: 2384 case Instruction::FPExt: 2385 case Instruction::PtrToInt: 2386 case Instruction::IntToPtr: 2387 case Instruction::SIToFP: 2388 case Instruction::UIToFP: 2389 case Instruction::Trunc: 2390 case Instruction::FPTrunc: 2391 case Instruction::BitCast: { 2392 ValueList INVL; 2393 for (Value *V : E->Scalars) 2394 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2395 2396 setInsertPointAfterBundle(E->Scalars); 2397 2398 Value *InVec = vectorizeTree(INVL); 2399 2400 if (Value *V = alreadyVectorized(E->Scalars)) 2401 return V; 2402 2403 CastInst *CI = dyn_cast<CastInst>(VL0); 2404 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2405 E->VectorizedValue = V; 2406 ++NumVectorInstructions; 2407 return V; 2408 } 2409 case Instruction::FCmp: 2410 case Instruction::ICmp: { 2411 ValueList LHSV, RHSV; 2412 for (Value *V : E->Scalars) { 2413 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2414 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2415 } 2416 2417 setInsertPointAfterBundle(E->Scalars); 2418 2419 Value *L = vectorizeTree(LHSV); 2420 Value *R = vectorizeTree(RHSV); 2421 2422 if (Value *V = alreadyVectorized(E->Scalars)) 2423 return V; 2424 2425 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2426 Value *V; 2427 if (Opcode == Instruction::FCmp) 2428 V = Builder.CreateFCmp(P0, L, R); 2429 else 2430 V = Builder.CreateICmp(P0, L, R); 2431 2432 E->VectorizedValue = V; 2433 ++NumVectorInstructions; 2434 return V; 2435 } 2436 case Instruction::Select: { 2437 ValueList TrueVec, FalseVec, CondVec; 2438 for (Value *V : E->Scalars) { 2439 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2440 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2441 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2442 } 2443 2444 setInsertPointAfterBundle(E->Scalars); 2445 2446 Value *Cond = vectorizeTree(CondVec); 2447 Value *True = vectorizeTree(TrueVec); 2448 Value *False = vectorizeTree(FalseVec); 2449 2450 if (Value *V = alreadyVectorized(E->Scalars)) 2451 return V; 2452 2453 Value *V = Builder.CreateSelect(Cond, True, False); 2454 E->VectorizedValue = V; 2455 ++NumVectorInstructions; 2456 return V; 2457 } 2458 case Instruction::Add: 2459 case Instruction::FAdd: 2460 case Instruction::Sub: 2461 case Instruction::FSub: 2462 case Instruction::Mul: 2463 case Instruction::FMul: 2464 case Instruction::UDiv: 2465 case Instruction::SDiv: 2466 case Instruction::FDiv: 2467 case Instruction::URem: 2468 case Instruction::SRem: 2469 case Instruction::FRem: 2470 case Instruction::Shl: 2471 case Instruction::LShr: 2472 case Instruction::AShr: 2473 case Instruction::And: 2474 case Instruction::Or: 2475 case Instruction::Xor: { 2476 ValueList LHSVL, RHSVL; 2477 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2478 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2479 else 2480 for (Value *V : E->Scalars) { 2481 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2482 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2483 } 2484 2485 setInsertPointAfterBundle(E->Scalars); 2486 2487 Value *LHS = vectorizeTree(LHSVL); 2488 Value *RHS = vectorizeTree(RHSVL); 2489 2490 if (LHS == RHS && isa<Instruction>(LHS)) { 2491 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2492 } 2493 2494 if (Value *V = alreadyVectorized(E->Scalars)) 2495 return V; 2496 2497 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2498 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2499 E->VectorizedValue = V; 2500 propagateIRFlags(E->VectorizedValue, E->Scalars); 2501 ++NumVectorInstructions; 2502 2503 if (Instruction *I = dyn_cast<Instruction>(V)) 2504 return propagateMetadata(I, E->Scalars); 2505 2506 return V; 2507 } 2508 case Instruction::Load: { 2509 // Loads are inserted at the head of the tree because we don't want to 2510 // sink them all the way down past store instructions. 2511 setInsertPointAfterBundle(E->Scalars); 2512 2513 LoadInst *LI = cast<LoadInst>(VL0); 2514 Type *ScalarLoadTy = LI->getType(); 2515 unsigned AS = LI->getPointerAddressSpace(); 2516 2517 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2518 VecTy->getPointerTo(AS)); 2519 2520 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2521 // ExternalUses list to make sure that an extract will be generated in the 2522 // future. 2523 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2524 ExternalUses.push_back( 2525 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2526 2527 unsigned Alignment = LI->getAlignment(); 2528 LI = Builder.CreateLoad(VecPtr); 2529 if (!Alignment) { 2530 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2531 } 2532 LI->setAlignment(Alignment); 2533 E->VectorizedValue = LI; 2534 ++NumVectorInstructions; 2535 return propagateMetadata(LI, E->Scalars); 2536 } 2537 case Instruction::Store: { 2538 StoreInst *SI = cast<StoreInst>(VL0); 2539 unsigned Alignment = SI->getAlignment(); 2540 unsigned AS = SI->getPointerAddressSpace(); 2541 2542 ValueList ValueOp; 2543 for (Value *V : E->Scalars) 2544 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2545 2546 setInsertPointAfterBundle(E->Scalars); 2547 2548 Value *VecValue = vectorizeTree(ValueOp); 2549 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2550 VecTy->getPointerTo(AS)); 2551 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2552 2553 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2554 // ExternalUses list to make sure that an extract will be generated in the 2555 // future. 2556 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2557 ExternalUses.push_back( 2558 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2559 2560 if (!Alignment) { 2561 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2562 } 2563 S->setAlignment(Alignment); 2564 E->VectorizedValue = S; 2565 ++NumVectorInstructions; 2566 return propagateMetadata(S, E->Scalars); 2567 } 2568 case Instruction::GetElementPtr: { 2569 setInsertPointAfterBundle(E->Scalars); 2570 2571 ValueList Op0VL; 2572 for (Value *V : E->Scalars) 2573 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2574 2575 Value *Op0 = vectorizeTree(Op0VL); 2576 2577 std::vector<Value *> OpVecs; 2578 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2579 ++j) { 2580 ValueList OpVL; 2581 for (Value *V : E->Scalars) 2582 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2583 2584 Value *OpVec = vectorizeTree(OpVL); 2585 OpVecs.push_back(OpVec); 2586 } 2587 2588 Value *V = Builder.CreateGEP( 2589 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2590 E->VectorizedValue = V; 2591 ++NumVectorInstructions; 2592 2593 if (Instruction *I = dyn_cast<Instruction>(V)) 2594 return propagateMetadata(I, E->Scalars); 2595 2596 return V; 2597 } 2598 case Instruction::Call: { 2599 CallInst *CI = cast<CallInst>(VL0); 2600 setInsertPointAfterBundle(E->Scalars); 2601 Function *FI; 2602 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2603 Value *ScalarArg = nullptr; 2604 if (CI && (FI = CI->getCalledFunction())) { 2605 IID = FI->getIntrinsicID(); 2606 } 2607 std::vector<Value *> OpVecs; 2608 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2609 ValueList OpVL; 2610 // ctlz,cttz and powi are special intrinsics whose second argument is 2611 // a scalar. This argument should not be vectorized. 2612 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2613 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2614 ScalarArg = CEI->getArgOperand(j); 2615 OpVecs.push_back(CEI->getArgOperand(j)); 2616 continue; 2617 } 2618 for (Value *V : E->Scalars) { 2619 CallInst *CEI = cast<CallInst>(V); 2620 OpVL.push_back(CEI->getArgOperand(j)); 2621 } 2622 2623 Value *OpVec = vectorizeTree(OpVL); 2624 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2625 OpVecs.push_back(OpVec); 2626 } 2627 2628 Module *M = F->getParent(); 2629 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2630 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2631 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2632 SmallVector<OperandBundleDef, 1> OpBundles; 2633 CI->getOperandBundlesAsDefs(OpBundles); 2634 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2635 2636 // The scalar argument uses an in-tree scalar so we add the new vectorized 2637 // call to ExternalUses list to make sure that an extract will be 2638 // generated in the future. 2639 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2640 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2641 2642 E->VectorizedValue = V; 2643 ++NumVectorInstructions; 2644 return V; 2645 } 2646 case Instruction::ShuffleVector: { 2647 ValueList LHSVL, RHSVL; 2648 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2649 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2650 setInsertPointAfterBundle(E->Scalars); 2651 2652 Value *LHS = vectorizeTree(LHSVL); 2653 Value *RHS = vectorizeTree(RHSVL); 2654 2655 if (Value *V = alreadyVectorized(E->Scalars)) 2656 return V; 2657 2658 // Create a vector of LHS op1 RHS 2659 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2660 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2661 2662 // Create a vector of LHS op2 RHS 2663 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2664 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2665 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2666 2667 // Create shuffle to take alternate operations from the vector. 2668 // Also, gather up odd and even scalar ops to propagate IR flags to 2669 // each vector operation. 2670 ValueList OddScalars, EvenScalars; 2671 unsigned e = E->Scalars.size(); 2672 SmallVector<Constant *, 8> Mask(e); 2673 for (unsigned i = 0; i < e; ++i) { 2674 if (i & 1) { 2675 Mask[i] = Builder.getInt32(e + i); 2676 OddScalars.push_back(E->Scalars[i]); 2677 } else { 2678 Mask[i] = Builder.getInt32(i); 2679 EvenScalars.push_back(E->Scalars[i]); 2680 } 2681 } 2682 2683 Value *ShuffleMask = ConstantVector::get(Mask); 2684 propagateIRFlags(V0, EvenScalars); 2685 propagateIRFlags(V1, OddScalars); 2686 2687 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2688 E->VectorizedValue = V; 2689 ++NumVectorInstructions; 2690 if (Instruction *I = dyn_cast<Instruction>(V)) 2691 return propagateMetadata(I, E->Scalars); 2692 2693 return V; 2694 } 2695 default: 2696 llvm_unreachable("unknown inst"); 2697 } 2698 return nullptr; 2699 } 2700 2701 Value *BoUpSLP::vectorizeTree() { 2702 2703 // All blocks must be scheduled before any instructions are inserted. 2704 for (auto &BSIter : BlocksSchedules) { 2705 scheduleBlock(BSIter.second.get()); 2706 } 2707 2708 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2709 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2710 2711 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2712 // vectorized root. InstCombine will then rewrite the entire expression. We 2713 // sign extend the extracted values below. 2714 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2715 if (MinBWs.count(ScalarRoot)) { 2716 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2717 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2718 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2719 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2720 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2721 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2722 VectorizableTree[0].VectorizedValue = Trunc; 2723 } 2724 2725 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2726 2727 // Extract all of the elements with the external uses. 2728 for (const auto &ExternalUse : ExternalUses) { 2729 Value *Scalar = ExternalUse.Scalar; 2730 llvm::User *User = ExternalUse.User; 2731 2732 // Skip users that we already RAUW. This happens when one instruction 2733 // has multiple uses of the same value. 2734 if (!is_contained(Scalar->users(), User)) 2735 continue; 2736 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2737 2738 int Idx = ScalarToTreeEntry[Scalar]; 2739 TreeEntry *E = &VectorizableTree[Idx]; 2740 assert(!E->NeedToGather && "Extracting from a gather list"); 2741 2742 Value *Vec = E->VectorizedValue; 2743 assert(Vec && "Can't find vectorizable value"); 2744 2745 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2746 // Generate extracts for out-of-tree users. 2747 // Find the insertion point for the extractelement lane. 2748 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2749 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2750 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2751 if (PH->getIncomingValue(i) == Scalar) { 2752 TerminatorInst *IncomingTerminator = 2753 PH->getIncomingBlock(i)->getTerminator(); 2754 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2755 Builder.SetInsertPoint(VecI->getParent(), 2756 std::next(VecI->getIterator())); 2757 } else { 2758 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2759 } 2760 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2761 if (MinBWs.count(ScalarRoot)) 2762 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2763 CSEBlocks.insert(PH->getIncomingBlock(i)); 2764 PH->setOperand(i, Ex); 2765 } 2766 } 2767 } else { 2768 Builder.SetInsertPoint(cast<Instruction>(User)); 2769 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2770 if (MinBWs.count(ScalarRoot)) 2771 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2772 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2773 User->replaceUsesOfWith(Scalar, Ex); 2774 } 2775 } else { 2776 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2777 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2778 if (MinBWs.count(ScalarRoot)) 2779 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2780 CSEBlocks.insert(&F->getEntryBlock()); 2781 User->replaceUsesOfWith(Scalar, Ex); 2782 } 2783 2784 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2785 } 2786 2787 // For each vectorized value: 2788 for (TreeEntry &EIdx : VectorizableTree) { 2789 TreeEntry *Entry = &EIdx; 2790 2791 // For each lane: 2792 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2793 Value *Scalar = Entry->Scalars[Lane]; 2794 // No need to handle users of gathered values. 2795 if (Entry->NeedToGather) 2796 continue; 2797 2798 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2799 2800 Type *Ty = Scalar->getType(); 2801 if (!Ty->isVoidTy()) { 2802 #ifndef NDEBUG 2803 for (User *U : Scalar->users()) { 2804 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2805 2806 assert((ScalarToTreeEntry.count(U) || 2807 // It is legal to replace users in the ignorelist by undef. 2808 is_contained(UserIgnoreList, U)) && 2809 "Replacing out-of-tree value with undef"); 2810 } 2811 #endif 2812 Value *Undef = UndefValue::get(Ty); 2813 Scalar->replaceAllUsesWith(Undef); 2814 } 2815 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2816 eraseInstruction(cast<Instruction>(Scalar)); 2817 } 2818 } 2819 2820 Builder.ClearInsertionPoint(); 2821 2822 return VectorizableTree[0].VectorizedValue; 2823 } 2824 2825 void BoUpSLP::optimizeGatherSequence() { 2826 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2827 << " gather sequences instructions.\n"); 2828 // LICM InsertElementInst sequences. 2829 for (Instruction *it : GatherSeq) { 2830 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2831 2832 if (!Insert) 2833 continue; 2834 2835 // Check if this block is inside a loop. 2836 Loop *L = LI->getLoopFor(Insert->getParent()); 2837 if (!L) 2838 continue; 2839 2840 // Check if it has a preheader. 2841 BasicBlock *PreHeader = L->getLoopPreheader(); 2842 if (!PreHeader) 2843 continue; 2844 2845 // If the vector or the element that we insert into it are 2846 // instructions that are defined in this basic block then we can't 2847 // hoist this instruction. 2848 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2849 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2850 if (CurrVec && L->contains(CurrVec)) 2851 continue; 2852 if (NewElem && L->contains(NewElem)) 2853 continue; 2854 2855 // We can hoist this instruction. Move it to the pre-header. 2856 Insert->moveBefore(PreHeader->getTerminator()); 2857 } 2858 2859 // Make a list of all reachable blocks in our CSE queue. 2860 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2861 CSEWorkList.reserve(CSEBlocks.size()); 2862 for (BasicBlock *BB : CSEBlocks) 2863 if (DomTreeNode *N = DT->getNode(BB)) { 2864 assert(DT->isReachableFromEntry(N)); 2865 CSEWorkList.push_back(N); 2866 } 2867 2868 // Sort blocks by domination. This ensures we visit a block after all blocks 2869 // dominating it are visited. 2870 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2871 [this](const DomTreeNode *A, const DomTreeNode *B) { 2872 return DT->properlyDominates(A, B); 2873 }); 2874 2875 // Perform O(N^2) search over the gather sequences and merge identical 2876 // instructions. TODO: We can further optimize this scan if we split the 2877 // instructions into different buckets based on the insert lane. 2878 SmallVector<Instruction *, 16> Visited; 2879 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2880 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2881 "Worklist not sorted properly!"); 2882 BasicBlock *BB = (*I)->getBlock(); 2883 // For all instructions in blocks containing gather sequences: 2884 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2885 Instruction *In = &*it++; 2886 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2887 continue; 2888 2889 // Check if we can replace this instruction with any of the 2890 // visited instructions. 2891 for (Instruction *v : Visited) { 2892 if (In->isIdenticalTo(v) && 2893 DT->dominates(v->getParent(), In->getParent())) { 2894 In->replaceAllUsesWith(v); 2895 eraseInstruction(In); 2896 In = nullptr; 2897 break; 2898 } 2899 } 2900 if (In) { 2901 assert(!is_contained(Visited, In)); 2902 Visited.push_back(In); 2903 } 2904 } 2905 } 2906 CSEBlocks.clear(); 2907 GatherSeq.clear(); 2908 } 2909 2910 // Groups the instructions to a bundle (which is then a single scheduling entity) 2911 // and schedules instructions until the bundle gets ready. 2912 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2913 BoUpSLP *SLP) { 2914 if (isa<PHINode>(VL[0])) 2915 return true; 2916 2917 // Initialize the instruction bundle. 2918 Instruction *OldScheduleEnd = ScheduleEnd; 2919 ScheduleData *PrevInBundle = nullptr; 2920 ScheduleData *Bundle = nullptr; 2921 bool ReSchedule = false; 2922 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2923 2924 // Make sure that the scheduling region contains all 2925 // instructions of the bundle. 2926 for (Value *V : VL) { 2927 if (!extendSchedulingRegion(V)) 2928 return false; 2929 } 2930 2931 for (Value *V : VL) { 2932 ScheduleData *BundleMember = getScheduleData(V); 2933 assert(BundleMember && 2934 "no ScheduleData for bundle member (maybe not in same basic block)"); 2935 if (BundleMember->IsScheduled) { 2936 // A bundle member was scheduled as single instruction before and now 2937 // needs to be scheduled as part of the bundle. We just get rid of the 2938 // existing schedule. 2939 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2940 << " was already scheduled\n"); 2941 ReSchedule = true; 2942 } 2943 assert(BundleMember->isSchedulingEntity() && 2944 "bundle member already part of other bundle"); 2945 if (PrevInBundle) { 2946 PrevInBundle->NextInBundle = BundleMember; 2947 } else { 2948 Bundle = BundleMember; 2949 } 2950 BundleMember->UnscheduledDepsInBundle = 0; 2951 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2952 2953 // Group the instructions to a bundle. 2954 BundleMember->FirstInBundle = Bundle; 2955 PrevInBundle = BundleMember; 2956 } 2957 if (ScheduleEnd != OldScheduleEnd) { 2958 // The scheduling region got new instructions at the lower end (or it is a 2959 // new region for the first bundle). This makes it necessary to 2960 // recalculate all dependencies. 2961 // It is seldom that this needs to be done a second time after adding the 2962 // initial bundle to the region. 2963 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2964 ScheduleData *SD = getScheduleData(I); 2965 SD->clearDependencies(); 2966 } 2967 ReSchedule = true; 2968 } 2969 if (ReSchedule) { 2970 resetSchedule(); 2971 initialFillReadyList(ReadyInsts); 2972 } 2973 2974 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2975 << BB->getName() << "\n"); 2976 2977 calculateDependencies(Bundle, true, SLP); 2978 2979 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2980 // means that there are no cyclic dependencies and we can schedule it. 2981 // Note that's important that we don't "schedule" the bundle yet (see 2982 // cancelScheduling). 2983 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2984 2985 ScheduleData *pickedSD = ReadyInsts.back(); 2986 ReadyInsts.pop_back(); 2987 2988 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2989 schedule(pickedSD, ReadyInsts); 2990 } 2991 } 2992 if (!Bundle->isReady()) { 2993 cancelScheduling(VL); 2994 return false; 2995 } 2996 return true; 2997 } 2998 2999 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3000 if (isa<PHINode>(VL[0])) 3001 return; 3002 3003 ScheduleData *Bundle = getScheduleData(VL[0]); 3004 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3005 assert(!Bundle->IsScheduled && 3006 "Can't cancel bundle which is already scheduled"); 3007 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3008 "tried to unbundle something which is not a bundle"); 3009 3010 // Un-bundle: make single instructions out of the bundle. 3011 ScheduleData *BundleMember = Bundle; 3012 while (BundleMember) { 3013 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3014 BundleMember->FirstInBundle = BundleMember; 3015 ScheduleData *Next = BundleMember->NextInBundle; 3016 BundleMember->NextInBundle = nullptr; 3017 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3018 if (BundleMember->UnscheduledDepsInBundle == 0) { 3019 ReadyInsts.insert(BundleMember); 3020 } 3021 BundleMember = Next; 3022 } 3023 } 3024 3025 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3026 if (getScheduleData(V)) 3027 return true; 3028 Instruction *I = dyn_cast<Instruction>(V); 3029 assert(I && "bundle member must be an instruction"); 3030 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3031 if (!ScheduleStart) { 3032 // It's the first instruction in the new region. 3033 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3034 ScheduleStart = I; 3035 ScheduleEnd = I->getNextNode(); 3036 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3037 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3038 return true; 3039 } 3040 // Search up and down at the same time, because we don't know if the new 3041 // instruction is above or below the existing scheduling region. 3042 BasicBlock::reverse_iterator UpIter = 3043 ++ScheduleStart->getIterator().getReverse(); 3044 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3045 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3046 BasicBlock::iterator LowerEnd = BB->end(); 3047 for (;;) { 3048 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3049 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3050 return false; 3051 } 3052 3053 if (UpIter != UpperEnd) { 3054 if (&*UpIter == I) { 3055 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3056 ScheduleStart = I; 3057 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3058 return true; 3059 } 3060 UpIter++; 3061 } 3062 if (DownIter != LowerEnd) { 3063 if (&*DownIter == I) { 3064 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3065 nullptr); 3066 ScheduleEnd = I->getNextNode(); 3067 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3068 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3069 return true; 3070 } 3071 DownIter++; 3072 } 3073 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3074 "instruction not found in block"); 3075 } 3076 return true; 3077 } 3078 3079 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3080 Instruction *ToI, 3081 ScheduleData *PrevLoadStore, 3082 ScheduleData *NextLoadStore) { 3083 ScheduleData *CurrentLoadStore = PrevLoadStore; 3084 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3085 ScheduleData *SD = ScheduleDataMap[I]; 3086 if (!SD) { 3087 // Allocate a new ScheduleData for the instruction. 3088 if (ChunkPos >= ChunkSize) { 3089 ScheduleDataChunks.push_back( 3090 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3091 ChunkPos = 0; 3092 } 3093 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3094 ScheduleDataMap[I] = SD; 3095 SD->Inst = I; 3096 } 3097 assert(!isInSchedulingRegion(SD) && 3098 "new ScheduleData already in scheduling region"); 3099 SD->init(SchedulingRegionID); 3100 3101 if (I->mayReadOrWriteMemory()) { 3102 // Update the linked list of memory accessing instructions. 3103 if (CurrentLoadStore) { 3104 CurrentLoadStore->NextLoadStore = SD; 3105 } else { 3106 FirstLoadStoreInRegion = SD; 3107 } 3108 CurrentLoadStore = SD; 3109 } 3110 } 3111 if (NextLoadStore) { 3112 if (CurrentLoadStore) 3113 CurrentLoadStore->NextLoadStore = NextLoadStore; 3114 } else { 3115 LastLoadStoreInRegion = CurrentLoadStore; 3116 } 3117 } 3118 3119 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3120 bool InsertInReadyList, 3121 BoUpSLP *SLP) { 3122 assert(SD->isSchedulingEntity()); 3123 3124 SmallVector<ScheduleData *, 10> WorkList; 3125 WorkList.push_back(SD); 3126 3127 while (!WorkList.empty()) { 3128 ScheduleData *SD = WorkList.back(); 3129 WorkList.pop_back(); 3130 3131 ScheduleData *BundleMember = SD; 3132 while (BundleMember) { 3133 assert(isInSchedulingRegion(BundleMember)); 3134 if (!BundleMember->hasValidDependencies()) { 3135 3136 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3137 BundleMember->Dependencies = 0; 3138 BundleMember->resetUnscheduledDeps(); 3139 3140 // Handle def-use chain dependencies. 3141 for (User *U : BundleMember->Inst->users()) { 3142 if (isa<Instruction>(U)) { 3143 ScheduleData *UseSD = getScheduleData(U); 3144 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3145 BundleMember->Dependencies++; 3146 ScheduleData *DestBundle = UseSD->FirstInBundle; 3147 if (!DestBundle->IsScheduled) { 3148 BundleMember->incrementUnscheduledDeps(1); 3149 } 3150 if (!DestBundle->hasValidDependencies()) { 3151 WorkList.push_back(DestBundle); 3152 } 3153 } 3154 } else { 3155 // I'm not sure if this can ever happen. But we need to be safe. 3156 // This lets the instruction/bundle never be scheduled and 3157 // eventually disable vectorization. 3158 BundleMember->Dependencies++; 3159 BundleMember->incrementUnscheduledDeps(1); 3160 } 3161 } 3162 3163 // Handle the memory dependencies. 3164 ScheduleData *DepDest = BundleMember->NextLoadStore; 3165 if (DepDest) { 3166 Instruction *SrcInst = BundleMember->Inst; 3167 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3168 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3169 unsigned numAliased = 0; 3170 unsigned DistToSrc = 1; 3171 3172 while (DepDest) { 3173 assert(isInSchedulingRegion(DepDest)); 3174 3175 // We have two limits to reduce the complexity: 3176 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3177 // SLP->isAliased (which is the expensive part in this loop). 3178 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3179 // the whole loop (even if the loop is fast, it's quadratic). 3180 // It's important for the loop break condition (see below) to 3181 // check this limit even between two read-only instructions. 3182 if (DistToSrc >= MaxMemDepDistance || 3183 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3184 (numAliased >= AliasedCheckLimit || 3185 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3186 3187 // We increment the counter only if the locations are aliased 3188 // (instead of counting all alias checks). This gives a better 3189 // balance between reduced runtime and accurate dependencies. 3190 numAliased++; 3191 3192 DepDest->MemoryDependencies.push_back(BundleMember); 3193 BundleMember->Dependencies++; 3194 ScheduleData *DestBundle = DepDest->FirstInBundle; 3195 if (!DestBundle->IsScheduled) { 3196 BundleMember->incrementUnscheduledDeps(1); 3197 } 3198 if (!DestBundle->hasValidDependencies()) { 3199 WorkList.push_back(DestBundle); 3200 } 3201 } 3202 DepDest = DepDest->NextLoadStore; 3203 3204 // Example, explaining the loop break condition: Let's assume our 3205 // starting instruction is i0 and MaxMemDepDistance = 3. 3206 // 3207 // +--------v--v--v 3208 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3209 // +--------^--^--^ 3210 // 3211 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3212 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3213 // Previously we already added dependencies from i3 to i6,i7,i8 3214 // (because of MaxMemDepDistance). As we added a dependency from 3215 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3216 // and we can abort this loop at i6. 3217 if (DistToSrc >= 2 * MaxMemDepDistance) 3218 break; 3219 DistToSrc++; 3220 } 3221 } 3222 } 3223 BundleMember = BundleMember->NextInBundle; 3224 } 3225 if (InsertInReadyList && SD->isReady()) { 3226 ReadyInsts.push_back(SD); 3227 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3228 } 3229 } 3230 } 3231 3232 void BoUpSLP::BlockScheduling::resetSchedule() { 3233 assert(ScheduleStart && 3234 "tried to reset schedule on block which has not been scheduled"); 3235 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3236 ScheduleData *SD = getScheduleData(I); 3237 assert(isInSchedulingRegion(SD)); 3238 SD->IsScheduled = false; 3239 SD->resetUnscheduledDeps(); 3240 } 3241 ReadyInsts.clear(); 3242 } 3243 3244 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3245 3246 if (!BS->ScheduleStart) 3247 return; 3248 3249 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3250 3251 BS->resetSchedule(); 3252 3253 // For the real scheduling we use a more sophisticated ready-list: it is 3254 // sorted by the original instruction location. This lets the final schedule 3255 // be as close as possible to the original instruction order. 3256 struct ScheduleDataCompare { 3257 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3258 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3259 } 3260 }; 3261 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3262 3263 // Ensure that all dependency data is updated and fill the ready-list with 3264 // initial instructions. 3265 int Idx = 0; 3266 int NumToSchedule = 0; 3267 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3268 I = I->getNextNode()) { 3269 ScheduleData *SD = BS->getScheduleData(I); 3270 assert( 3271 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3272 "scheduler and vectorizer have different opinion on what is a bundle"); 3273 SD->FirstInBundle->SchedulingPriority = Idx++; 3274 if (SD->isSchedulingEntity()) { 3275 BS->calculateDependencies(SD, false, this); 3276 NumToSchedule++; 3277 } 3278 } 3279 BS->initialFillReadyList(ReadyInsts); 3280 3281 Instruction *LastScheduledInst = BS->ScheduleEnd; 3282 3283 // Do the "real" scheduling. 3284 while (!ReadyInsts.empty()) { 3285 ScheduleData *picked = *ReadyInsts.begin(); 3286 ReadyInsts.erase(ReadyInsts.begin()); 3287 3288 // Move the scheduled instruction(s) to their dedicated places, if not 3289 // there yet. 3290 ScheduleData *BundleMember = picked; 3291 while (BundleMember) { 3292 Instruction *pickedInst = BundleMember->Inst; 3293 if (LastScheduledInst->getNextNode() != pickedInst) { 3294 BS->BB->getInstList().remove(pickedInst); 3295 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3296 pickedInst); 3297 } 3298 LastScheduledInst = pickedInst; 3299 BundleMember = BundleMember->NextInBundle; 3300 } 3301 3302 BS->schedule(picked, ReadyInsts); 3303 NumToSchedule--; 3304 } 3305 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3306 3307 // Avoid duplicate scheduling of the block. 3308 BS->ScheduleStart = nullptr; 3309 } 3310 3311 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3312 // If V is a store, just return the width of the stored value without 3313 // traversing the expression tree. This is the common case. 3314 if (auto *Store = dyn_cast<StoreInst>(V)) 3315 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3316 3317 // If V is not a store, we can traverse the expression tree to find loads 3318 // that feed it. The type of the loaded value may indicate a more suitable 3319 // width than V's type. We want to base the vector element size on the width 3320 // of memory operations where possible. 3321 SmallVector<Instruction *, 16> Worklist; 3322 SmallPtrSet<Instruction *, 16> Visited; 3323 if (auto *I = dyn_cast<Instruction>(V)) 3324 Worklist.push_back(I); 3325 3326 // Traverse the expression tree in bottom-up order looking for loads. If we 3327 // encounter an instruciton we don't yet handle, we give up. 3328 auto MaxWidth = 0u; 3329 auto FoundUnknownInst = false; 3330 while (!Worklist.empty() && !FoundUnknownInst) { 3331 auto *I = Worklist.pop_back_val(); 3332 Visited.insert(I); 3333 3334 // We should only be looking at scalar instructions here. If the current 3335 // instruction has a vector type, give up. 3336 auto *Ty = I->getType(); 3337 if (isa<VectorType>(Ty)) 3338 FoundUnknownInst = true; 3339 3340 // If the current instruction is a load, update MaxWidth to reflect the 3341 // width of the loaded value. 3342 else if (isa<LoadInst>(I)) 3343 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3344 3345 // Otherwise, we need to visit the operands of the instruction. We only 3346 // handle the interesting cases from buildTree here. If an operand is an 3347 // instruction we haven't yet visited, we add it to the worklist. 3348 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3349 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3350 for (Use &U : I->operands()) 3351 if (auto *J = dyn_cast<Instruction>(U.get())) 3352 if (!Visited.count(J)) 3353 Worklist.push_back(J); 3354 } 3355 3356 // If we don't yet handle the instruction, give up. 3357 else 3358 FoundUnknownInst = true; 3359 } 3360 3361 // If we didn't encounter a memory access in the expression tree, or if we 3362 // gave up for some reason, just return the width of V. 3363 if (!MaxWidth || FoundUnknownInst) 3364 return DL->getTypeSizeInBits(V->getType()); 3365 3366 // Otherwise, return the maximum width we found. 3367 return MaxWidth; 3368 } 3369 3370 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3371 // smaller type with a truncation. We collect the values that will be demoted 3372 // in ToDemote and additional roots that require investigating in Roots. 3373 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3374 SmallVectorImpl<Value *> &ToDemote, 3375 SmallVectorImpl<Value *> &Roots) { 3376 3377 // We can always demote constants. 3378 if (isa<Constant>(V)) { 3379 ToDemote.push_back(V); 3380 return true; 3381 } 3382 3383 // If the value is not an instruction in the expression with only one use, it 3384 // cannot be demoted. 3385 auto *I = dyn_cast<Instruction>(V); 3386 if (!I || !I->hasOneUse() || !Expr.count(I)) 3387 return false; 3388 3389 switch (I->getOpcode()) { 3390 3391 // We can always demote truncations and extensions. Since truncations can 3392 // seed additional demotion, we save the truncated value. 3393 case Instruction::Trunc: 3394 Roots.push_back(I->getOperand(0)); 3395 case Instruction::ZExt: 3396 case Instruction::SExt: 3397 break; 3398 3399 // We can demote certain binary operations if we can demote both of their 3400 // operands. 3401 case Instruction::Add: 3402 case Instruction::Sub: 3403 case Instruction::Mul: 3404 case Instruction::And: 3405 case Instruction::Or: 3406 case Instruction::Xor: 3407 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3408 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3409 return false; 3410 break; 3411 3412 // We can demote selects if we can demote their true and false values. 3413 case Instruction::Select: { 3414 SelectInst *SI = cast<SelectInst>(I); 3415 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3416 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3417 return false; 3418 break; 3419 } 3420 3421 // We can demote phis if we can demote all their incoming operands. Note that 3422 // we don't need to worry about cycles since we ensure single use above. 3423 case Instruction::PHI: { 3424 PHINode *PN = cast<PHINode>(I); 3425 for (Value *IncValue : PN->incoming_values()) 3426 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3427 return false; 3428 break; 3429 } 3430 3431 // Otherwise, conservatively give up. 3432 default: 3433 return false; 3434 } 3435 3436 // Record the value that we can demote. 3437 ToDemote.push_back(V); 3438 return true; 3439 } 3440 3441 void BoUpSLP::computeMinimumValueSizes() { 3442 // If there are no external uses, the expression tree must be rooted by a 3443 // store. We can't demote in-memory values, so there is nothing to do here. 3444 if (ExternalUses.empty()) 3445 return; 3446 3447 // We only attempt to truncate integer expressions. 3448 auto &TreeRoot = VectorizableTree[0].Scalars; 3449 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3450 if (!TreeRootIT) 3451 return; 3452 3453 // If the expression is not rooted by a store, these roots should have 3454 // external uses. We will rely on InstCombine to rewrite the expression in 3455 // the narrower type. However, InstCombine only rewrites single-use values. 3456 // This means that if a tree entry other than a root is used externally, it 3457 // must have multiple uses and InstCombine will not rewrite it. The code 3458 // below ensures that only the roots are used externally. 3459 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3460 for (auto &EU : ExternalUses) 3461 if (!Expr.erase(EU.Scalar)) 3462 return; 3463 if (!Expr.empty()) 3464 return; 3465 3466 // Collect the scalar values of the vectorizable expression. We will use this 3467 // context to determine which values can be demoted. If we see a truncation, 3468 // we mark it as seeding another demotion. 3469 for (auto &Entry : VectorizableTree) 3470 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3471 3472 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3473 // have a single external user that is not in the vectorizable tree. 3474 for (auto *Root : TreeRoot) 3475 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3476 return; 3477 3478 // Conservatively determine if we can actually truncate the roots of the 3479 // expression. Collect the values that can be demoted in ToDemote and 3480 // additional roots that require investigating in Roots. 3481 SmallVector<Value *, 32> ToDemote; 3482 SmallVector<Value *, 4> Roots; 3483 for (auto *Root : TreeRoot) 3484 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3485 return; 3486 3487 // The maximum bit width required to represent all the values that can be 3488 // demoted without loss of precision. It would be safe to truncate the roots 3489 // of the expression to this width. 3490 auto MaxBitWidth = 8u; 3491 3492 // We first check if all the bits of the roots are demanded. If they're not, 3493 // we can truncate the roots to this narrower type. 3494 for (auto *Root : TreeRoot) { 3495 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3496 MaxBitWidth = std::max<unsigned>( 3497 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3498 } 3499 3500 // If all the bits of the roots are demanded, we can try a little harder to 3501 // compute a narrower type. This can happen, for example, if the roots are 3502 // getelementptr indices. InstCombine promotes these indices to the pointer 3503 // width. Thus, all their bits are technically demanded even though the 3504 // address computation might be vectorized in a smaller type. 3505 // 3506 // We start by looking at each entry that can be demoted. We compute the 3507 // maximum bit width required to store the scalar by using ValueTracking to 3508 // compute the number of high-order bits we can truncate. 3509 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3510 MaxBitWidth = 8u; 3511 for (auto *Scalar : ToDemote) { 3512 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3513 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3514 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3515 } 3516 } 3517 3518 // Round MaxBitWidth up to the next power-of-two. 3519 if (!isPowerOf2_64(MaxBitWidth)) 3520 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3521 3522 // If the maximum bit width we compute is less than the with of the roots' 3523 // type, we can proceed with the narrowing. Otherwise, do nothing. 3524 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3525 return; 3526 3527 // If we can truncate the root, we must collect additional values that might 3528 // be demoted as a result. That is, those seeded by truncations we will 3529 // modify. 3530 while (!Roots.empty()) 3531 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3532 3533 // Finally, map the values we can demote to the maximum bit with we computed. 3534 for (auto *Scalar : ToDemote) 3535 MinBWs[Scalar] = MaxBitWidth; 3536 } 3537 3538 namespace { 3539 /// The SLPVectorizer Pass. 3540 struct SLPVectorizer : public FunctionPass { 3541 SLPVectorizerPass Impl; 3542 3543 /// Pass identification, replacement for typeid 3544 static char ID; 3545 3546 explicit SLPVectorizer() : FunctionPass(ID) { 3547 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3548 } 3549 3550 3551 bool doInitialization(Module &M) override { 3552 return false; 3553 } 3554 3555 bool runOnFunction(Function &F) override { 3556 if (skipFunction(F)) 3557 return false; 3558 3559 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3560 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3561 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3562 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3563 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3564 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3565 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3566 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3567 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3568 3569 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3570 } 3571 3572 void getAnalysisUsage(AnalysisUsage &AU) const override { 3573 FunctionPass::getAnalysisUsage(AU); 3574 AU.addRequired<AssumptionCacheTracker>(); 3575 AU.addRequired<ScalarEvolutionWrapperPass>(); 3576 AU.addRequired<AAResultsWrapperPass>(); 3577 AU.addRequired<TargetTransformInfoWrapperPass>(); 3578 AU.addRequired<LoopInfoWrapperPass>(); 3579 AU.addRequired<DominatorTreeWrapperPass>(); 3580 AU.addRequired<DemandedBitsWrapperPass>(); 3581 AU.addPreserved<LoopInfoWrapperPass>(); 3582 AU.addPreserved<DominatorTreeWrapperPass>(); 3583 AU.addPreserved<AAResultsWrapperPass>(); 3584 AU.addPreserved<GlobalsAAWrapperPass>(); 3585 AU.setPreservesCFG(); 3586 } 3587 }; 3588 } // end anonymous namespace 3589 3590 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3591 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3592 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3593 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3594 auto *AA = &AM.getResult<AAManager>(F); 3595 auto *LI = &AM.getResult<LoopAnalysis>(F); 3596 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3597 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3598 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3599 3600 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3601 if (!Changed) 3602 return PreservedAnalyses::all(); 3603 PreservedAnalyses PA; 3604 PA.preserve<LoopAnalysis>(); 3605 PA.preserve<DominatorTreeAnalysis>(); 3606 PA.preserve<AAManager>(); 3607 PA.preserve<GlobalsAA>(); 3608 return PA; 3609 } 3610 3611 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3612 TargetTransformInfo *TTI_, 3613 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3614 LoopInfo *LI_, DominatorTree *DT_, 3615 AssumptionCache *AC_, DemandedBits *DB_) { 3616 SE = SE_; 3617 TTI = TTI_; 3618 TLI = TLI_; 3619 AA = AA_; 3620 LI = LI_; 3621 DT = DT_; 3622 AC = AC_; 3623 DB = DB_; 3624 DL = &F.getParent()->getDataLayout(); 3625 3626 Stores.clear(); 3627 GEPs.clear(); 3628 bool Changed = false; 3629 3630 // If the target claims to have no vector registers don't attempt 3631 // vectorization. 3632 if (!TTI->getNumberOfRegisters(true)) 3633 return false; 3634 3635 // Don't vectorize when the attribute NoImplicitFloat is used. 3636 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3637 return false; 3638 3639 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3640 3641 // Use the bottom up slp vectorizer to construct chains that start with 3642 // store instructions. 3643 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3644 3645 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3646 // delete instructions. 3647 3648 // Scan the blocks in the function in post order. 3649 for (auto BB : post_order(&F.getEntryBlock())) { 3650 collectSeedInstructions(BB); 3651 3652 // Vectorize trees that end at stores. 3653 if (!Stores.empty()) { 3654 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3655 << " underlying objects.\n"); 3656 Changed |= vectorizeStoreChains(R); 3657 } 3658 3659 // Vectorize trees that end at reductions. 3660 Changed |= vectorizeChainsInBlock(BB, R); 3661 3662 // Vectorize the index computations of getelementptr instructions. This 3663 // is primarily intended to catch gather-like idioms ending at 3664 // non-consecutive loads. 3665 if (!GEPs.empty()) { 3666 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3667 << " underlying objects.\n"); 3668 Changed |= vectorizeGEPIndices(BB, R); 3669 } 3670 } 3671 3672 if (Changed) { 3673 R.optimizeGatherSequence(); 3674 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3675 DEBUG(verifyFunction(F)); 3676 } 3677 return Changed; 3678 } 3679 3680 /// \brief Check that the Values in the slice in VL array are still existent in 3681 /// the WeakVH array. 3682 /// Vectorization of part of the VL array may cause later values in the VL array 3683 /// to become invalid. We track when this has happened in the WeakVH array. 3684 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3685 unsigned SliceBegin, unsigned SliceSize) { 3686 VL = VL.slice(SliceBegin, SliceSize); 3687 VH = VH.slice(SliceBegin, SliceSize); 3688 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3689 } 3690 3691 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3692 unsigned VecRegSize) { 3693 unsigned ChainLen = Chain.size(); 3694 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3695 << "\n"); 3696 unsigned Sz = R.getVectorElementSize(Chain[0]); 3697 unsigned VF = VecRegSize / Sz; 3698 3699 if (!isPowerOf2_32(Sz) || VF < 2) 3700 return false; 3701 3702 // Keep track of values that were deleted by vectorizing in the loop below. 3703 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3704 3705 bool Changed = false; 3706 // Look for profitable vectorizable trees at all offsets, starting at zero. 3707 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3708 if (i + VF > e) 3709 break; 3710 3711 // Check that a previous iteration of this loop did not delete the Value. 3712 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3713 continue; 3714 3715 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3716 << "\n"); 3717 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3718 3719 R.buildTree(Operands); 3720 if (R.isTreeTinyAndNotFullyVectorizable()) 3721 continue; 3722 3723 R.computeMinimumValueSizes(); 3724 3725 int Cost = R.getTreeCost(); 3726 3727 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3728 if (Cost < -SLPCostThreshold) { 3729 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3730 R.vectorizeTree(); 3731 3732 // Move to the next bundle. 3733 i += VF - 1; 3734 Changed = true; 3735 } 3736 } 3737 3738 return Changed; 3739 } 3740 3741 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3742 BoUpSLP &R) { 3743 SetVector<StoreInst *> Heads, Tails; 3744 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3745 3746 // We may run into multiple chains that merge into a single chain. We mark the 3747 // stores that we vectorized so that we don't visit the same store twice. 3748 BoUpSLP::ValueSet VectorizedStores; 3749 bool Changed = false; 3750 3751 // Do a quadratic search on all of the given stores and find 3752 // all of the pairs of stores that follow each other. 3753 SmallVector<unsigned, 16> IndexQueue; 3754 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3755 IndexQueue.clear(); 3756 // If a store has multiple consecutive store candidates, search Stores 3757 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3758 // This is because usually pairing with immediate succeeding or preceding 3759 // candidate create the best chance to find slp vectorization opportunity. 3760 unsigned j = 0; 3761 for (j = i + 1; j < e; ++j) 3762 IndexQueue.push_back(j); 3763 for (j = i; j > 0; --j) 3764 IndexQueue.push_back(j - 1); 3765 3766 for (auto &k : IndexQueue) { 3767 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3768 Tails.insert(Stores[k]); 3769 Heads.insert(Stores[i]); 3770 ConsecutiveChain[Stores[i]] = Stores[k]; 3771 break; 3772 } 3773 } 3774 } 3775 3776 // For stores that start but don't end a link in the chain: 3777 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3778 it != e; ++it) { 3779 if (Tails.count(*it)) 3780 continue; 3781 3782 // We found a store instr that starts a chain. Now follow the chain and try 3783 // to vectorize it. 3784 BoUpSLP::ValueList Operands; 3785 StoreInst *I = *it; 3786 // Collect the chain into a list. 3787 while (Tails.count(I) || Heads.count(I)) { 3788 if (VectorizedStores.count(I)) 3789 break; 3790 Operands.push_back(I); 3791 // Move to the next value in the chain. 3792 I = ConsecutiveChain[I]; 3793 } 3794 3795 // FIXME: Is division-by-2 the correct step? Should we assert that the 3796 // register size is a power-of-2? 3797 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3798 Size /= 2) { 3799 if (vectorizeStoreChain(Operands, R, Size)) { 3800 // Mark the vectorized stores so that we don't vectorize them again. 3801 VectorizedStores.insert(Operands.begin(), Operands.end()); 3802 Changed = true; 3803 break; 3804 } 3805 } 3806 } 3807 3808 return Changed; 3809 } 3810 3811 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3812 3813 // Initialize the collections. We will make a single pass over the block. 3814 Stores.clear(); 3815 GEPs.clear(); 3816 3817 // Visit the store and getelementptr instructions in BB and organize them in 3818 // Stores and GEPs according to the underlying objects of their pointer 3819 // operands. 3820 for (Instruction &I : *BB) { 3821 3822 // Ignore store instructions that are volatile or have a pointer operand 3823 // that doesn't point to a scalar type. 3824 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3825 if (!SI->isSimple()) 3826 continue; 3827 if (!isValidElementType(SI->getValueOperand()->getType())) 3828 continue; 3829 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3830 } 3831 3832 // Ignore getelementptr instructions that have more than one index, a 3833 // constant index, or a pointer operand that doesn't point to a scalar 3834 // type. 3835 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3836 auto Idx = GEP->idx_begin()->get(); 3837 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3838 continue; 3839 if (!isValidElementType(Idx->getType())) 3840 continue; 3841 if (GEP->getType()->isVectorTy()) 3842 continue; 3843 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3844 } 3845 } 3846 } 3847 3848 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3849 if (!A || !B) 3850 return false; 3851 Value *VL[] = { A, B }; 3852 return tryToVectorizeList(VL, R, None, true); 3853 } 3854 3855 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3856 ArrayRef<Value *> BuildVector, 3857 bool AllowReorder) { 3858 if (VL.size() < 2) 3859 return false; 3860 3861 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 3862 << ".\n"); 3863 3864 // Check that all of the parts are scalar instructions of the same type. 3865 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3866 if (!I0) 3867 return false; 3868 3869 unsigned Opcode0 = I0->getOpcode(); 3870 3871 // FIXME: Register size should be a parameter to this function, so we can 3872 // try different vectorization factors. 3873 unsigned Sz = R.getVectorElementSize(I0); 3874 unsigned VF = R.getMinVecRegSize() / Sz; 3875 3876 for (Value *V : VL) { 3877 Type *Ty = V->getType(); 3878 if (!isValidElementType(Ty)) 3879 return false; 3880 Instruction *Inst = dyn_cast<Instruction>(V); 3881 if (!Inst || Inst->getOpcode() != Opcode0) 3882 return false; 3883 } 3884 3885 bool Changed = false; 3886 3887 // Keep track of values that were deleted by vectorizing in the loop below. 3888 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3889 3890 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3891 unsigned OpsWidth = 0; 3892 3893 if (i + VF > e) 3894 OpsWidth = e - i; 3895 else 3896 OpsWidth = VF; 3897 3898 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3899 break; 3900 3901 // Check that a previous iteration of this loop did not delete the Value. 3902 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3903 continue; 3904 3905 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3906 << "\n"); 3907 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3908 3909 ArrayRef<Value *> BuildVectorSlice; 3910 if (!BuildVector.empty()) 3911 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3912 3913 R.buildTree(Ops, BuildVectorSlice); 3914 // TODO: check if we can allow reordering for more cases. 3915 if (AllowReorder && R.shouldReorder()) { 3916 // Conceptually, there is nothing actually preventing us from trying to 3917 // reorder a larger list. In fact, we do exactly this when vectorizing 3918 // reductions. However, at this point, we only expect to get here from 3919 // tryToVectorizePair(). 3920 assert(Ops.size() == 2); 3921 assert(BuildVectorSlice.empty()); 3922 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3923 R.buildTree(ReorderedOps, None); 3924 } 3925 if (R.isTreeTinyAndNotFullyVectorizable()) 3926 continue; 3927 3928 R.computeMinimumValueSizes(); 3929 int Cost = R.getTreeCost(); 3930 3931 if (Cost < -SLPCostThreshold) { 3932 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3933 Value *VectorizedRoot = R.vectorizeTree(); 3934 3935 // Reconstruct the build vector by extracting the vectorized root. This 3936 // way we handle the case where some elements of the vector are undefined. 3937 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3938 if (!BuildVectorSlice.empty()) { 3939 // The insert point is the last build vector instruction. The vectorized 3940 // root will precede it. This guarantees that we get an instruction. The 3941 // vectorized tree could have been constant folded. 3942 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3943 unsigned VecIdx = 0; 3944 for (auto &V : BuildVectorSlice) { 3945 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3946 ++BasicBlock::iterator(InsertAfter)); 3947 Instruction *I = cast<Instruction>(V); 3948 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 3949 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3950 VectorizedRoot, Builder.getInt32(VecIdx++))); 3951 I->setOperand(1, Extract); 3952 I->removeFromParent(); 3953 I->insertAfter(Extract); 3954 InsertAfter = I; 3955 } 3956 } 3957 // Move to the next bundle. 3958 i += VF - 1; 3959 Changed = true; 3960 } 3961 } 3962 3963 return Changed; 3964 } 3965 3966 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3967 if (!V) 3968 return false; 3969 3970 // Try to vectorize V. 3971 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3972 return true; 3973 3974 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3975 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3976 // Try to skip B. 3977 if (B && B->hasOneUse()) { 3978 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3979 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3980 if (tryToVectorizePair(A, B0, R)) { 3981 return true; 3982 } 3983 if (tryToVectorizePair(A, B1, R)) { 3984 return true; 3985 } 3986 } 3987 3988 // Try to skip A. 3989 if (A && A->hasOneUse()) { 3990 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3991 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3992 if (tryToVectorizePair(A0, B, R)) { 3993 return true; 3994 } 3995 if (tryToVectorizePair(A1, B, R)) { 3996 return true; 3997 } 3998 } 3999 return 0; 4000 } 4001 4002 /// \brief Generate a shuffle mask to be used in a reduction tree. 4003 /// 4004 /// \param VecLen The length of the vector to be reduced. 4005 /// \param NumEltsToRdx The number of elements that should be reduced in the 4006 /// vector. 4007 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4008 /// reduction. A pairwise reduction will generate a mask of 4009 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4010 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4011 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4012 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4013 bool IsPairwise, bool IsLeft, 4014 IRBuilder<> &Builder) { 4015 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4016 4017 SmallVector<Constant *, 32> ShuffleMask( 4018 VecLen, UndefValue::get(Builder.getInt32Ty())); 4019 4020 if (IsPairwise) 4021 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4022 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4023 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4024 else 4025 // Move the upper half of the vector to the lower half. 4026 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4027 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4028 4029 return ConstantVector::get(ShuffleMask); 4030 } 4031 4032 namespace { 4033 /// Model horizontal reductions. 4034 /// 4035 /// A horizontal reduction is a tree of reduction operations (currently add and 4036 /// fadd) that has operations that can be put into a vector as its leaf. 4037 /// For example, this tree: 4038 /// 4039 /// mul mul mul mul 4040 /// \ / \ / 4041 /// + + 4042 /// \ / 4043 /// + 4044 /// This tree has "mul" as its reduced values and "+" as its reduction 4045 /// operations. A reduction might be feeding into a store or a binary operation 4046 /// feeding a phi. 4047 /// ... 4048 /// \ / 4049 /// + 4050 /// | 4051 /// phi += 4052 /// 4053 /// Or: 4054 /// ... 4055 /// \ / 4056 /// + 4057 /// | 4058 /// *p = 4059 /// 4060 class HorizontalReduction { 4061 SmallVector<Value *, 16> ReductionOps; 4062 SmallVector<Value *, 32> ReducedVals; 4063 4064 BinaryOperator *ReductionRoot; 4065 PHINode *ReductionPHI; 4066 4067 /// The opcode of the reduction. 4068 unsigned ReductionOpcode; 4069 /// The opcode of the values we perform a reduction on. 4070 unsigned ReducedValueOpcode; 4071 /// Should we model this reduction as a pairwise reduction tree or a tree that 4072 /// splits the vector in halves and adds those halves. 4073 bool IsPairwiseReduction; 4074 4075 public: 4076 /// The width of one full horizontal reduction operation. 4077 unsigned ReduxWidth; 4078 4079 /// Minimal width of available vector registers. It's used to determine 4080 /// ReduxWidth. 4081 unsigned MinVecRegSize; 4082 4083 HorizontalReduction(unsigned MinVecRegSize) 4084 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 4085 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 4086 MinVecRegSize(MinVecRegSize) {} 4087 4088 /// \brief Try to find a reduction tree. 4089 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4090 assert((!Phi || is_contained(Phi->operands(), B)) && 4091 "Thi phi needs to use the binary operator"); 4092 4093 // We could have a initial reductions that is not an add. 4094 // r *= v1 + v2 + v3 + v4 4095 // In such a case start looking for a tree rooted in the first '+'. 4096 if (Phi) { 4097 if (B->getOperand(0) == Phi) { 4098 Phi = nullptr; 4099 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4100 } else if (B->getOperand(1) == Phi) { 4101 Phi = nullptr; 4102 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4103 } 4104 } 4105 4106 if (!B) 4107 return false; 4108 4109 Type *Ty = B->getType(); 4110 if (!isValidElementType(Ty)) 4111 return false; 4112 4113 const DataLayout &DL = B->getModule()->getDataLayout(); 4114 ReductionOpcode = B->getOpcode(); 4115 ReducedValueOpcode = 0; 4116 // FIXME: Register size should be a parameter to this function, so we can 4117 // try different vectorization factors. 4118 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4119 ReductionRoot = B; 4120 ReductionPHI = Phi; 4121 4122 if (ReduxWidth < 4) 4123 return false; 4124 4125 // We currently only support adds. 4126 if (ReductionOpcode != Instruction::Add && 4127 ReductionOpcode != Instruction::FAdd) 4128 return false; 4129 4130 // Post order traverse the reduction tree starting at B. We only handle true 4131 // trees containing only binary operators or selects. 4132 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4133 Stack.push_back(std::make_pair(B, 0)); 4134 while (!Stack.empty()) { 4135 Instruction *TreeN = Stack.back().first; 4136 unsigned EdgeToVist = Stack.back().second++; 4137 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4138 4139 // Only handle trees in the current basic block. 4140 if (TreeN->getParent() != B->getParent()) 4141 return false; 4142 4143 // Each tree node needs to have one user except for the ultimate 4144 // reduction. 4145 if (!TreeN->hasOneUse() && TreeN != B) 4146 return false; 4147 4148 // Postorder vist. 4149 if (EdgeToVist == 2 || IsReducedValue) { 4150 if (IsReducedValue) { 4151 // Make sure that the opcodes of the operations that we are going to 4152 // reduce match. 4153 if (!ReducedValueOpcode) 4154 ReducedValueOpcode = TreeN->getOpcode(); 4155 else if (ReducedValueOpcode != TreeN->getOpcode()) 4156 return false; 4157 ReducedVals.push_back(TreeN); 4158 } else { 4159 // We need to be able to reassociate the adds. 4160 if (!TreeN->isAssociative()) 4161 return false; 4162 ReductionOps.push_back(TreeN); 4163 } 4164 // Retract. 4165 Stack.pop_back(); 4166 continue; 4167 } 4168 4169 // Visit left or right. 4170 Value *NextV = TreeN->getOperand(EdgeToVist); 4171 if (NextV != Phi) { 4172 auto *I = dyn_cast<Instruction>(NextV); 4173 // Continue analysis if the next operand is a reduction operation or 4174 // (possibly) a reduced value. If the reduced value opcode is not set, 4175 // the first met operation != reduction operation is considered as the 4176 // reduced value class. 4177 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4178 I->getOpcode() == ReductionOpcode)) { 4179 if (!ReducedValueOpcode && I->getOpcode() != ReductionOpcode) 4180 ReducedValueOpcode = I->getOpcode(); 4181 Stack.push_back(std::make_pair(I, 0)); 4182 continue; 4183 } 4184 return false; 4185 } 4186 } 4187 return true; 4188 } 4189 4190 /// \brief Attempt to vectorize the tree found by 4191 /// matchAssociativeReduction. 4192 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4193 if (ReducedVals.empty()) 4194 return false; 4195 4196 unsigned NumReducedVals = ReducedVals.size(); 4197 if (NumReducedVals < ReduxWidth) 4198 return false; 4199 4200 Value *VectorizedTree = nullptr; 4201 IRBuilder<> Builder(ReductionRoot); 4202 FastMathFlags Unsafe; 4203 Unsafe.setUnsafeAlgebra(); 4204 Builder.setFastMathFlags(Unsafe); 4205 unsigned i = 0; 4206 4207 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4208 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4209 V.buildTree(VL, ReductionOps); 4210 if (V.shouldReorder()) { 4211 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4212 V.buildTree(Reversed, ReductionOps); 4213 } 4214 if (V.isTreeTinyAndNotFullyVectorizable()) 4215 continue; 4216 4217 V.computeMinimumValueSizes(); 4218 4219 // Estimate cost. 4220 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4221 if (Cost >= -SLPCostThreshold) 4222 break; 4223 4224 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4225 << ". (HorRdx)\n"); 4226 4227 // Vectorize a tree. 4228 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4229 Value *VectorizedRoot = V.vectorizeTree(); 4230 4231 // Emit a reduction. 4232 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4233 if (VectorizedTree) { 4234 Builder.SetCurrentDebugLocation(Loc); 4235 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4236 ReducedSubTree, "bin.rdx"); 4237 } else 4238 VectorizedTree = ReducedSubTree; 4239 } 4240 4241 if (VectorizedTree) { 4242 // Finish the reduction. 4243 for (; i < NumReducedVals; ++i) { 4244 Builder.SetCurrentDebugLocation( 4245 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4246 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4247 ReducedVals[i]); 4248 } 4249 // Update users. 4250 if (ReductionPHI) { 4251 assert(ReductionRoot && "Need a reduction operation"); 4252 ReductionRoot->setOperand(0, VectorizedTree); 4253 ReductionRoot->setOperand(1, ReductionPHI); 4254 } else 4255 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4256 } 4257 return VectorizedTree != nullptr; 4258 } 4259 4260 unsigned numReductionValues() const { 4261 return ReducedVals.size(); 4262 } 4263 4264 private: 4265 /// \brief Calculate the cost of a reduction. 4266 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4267 Type *ScalarTy = FirstReducedVal->getType(); 4268 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4269 4270 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4271 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4272 4273 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4274 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4275 4276 int ScalarReduxCost = 4277 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4278 4279 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4280 << " for reduction that starts with " << *FirstReducedVal 4281 << " (It is a " 4282 << (IsPairwiseReduction ? "pairwise" : "splitting") 4283 << " reduction)\n"); 4284 4285 return VecReduxCost - ScalarReduxCost; 4286 } 4287 4288 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4289 Value *R, const Twine &Name = "") { 4290 if (Opcode == Instruction::FAdd) 4291 return Builder.CreateFAdd(L, R, Name); 4292 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4293 } 4294 4295 /// \brief Emit a horizontal reduction of the vectorized value. 4296 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4297 assert(VectorizedValue && "Need to have a vectorized tree node"); 4298 assert(isPowerOf2_32(ReduxWidth) && 4299 "We only handle power-of-two reductions for now"); 4300 4301 Value *TmpVec = VectorizedValue; 4302 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4303 if (IsPairwiseReduction) { 4304 Value *LeftMask = 4305 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4306 Value *RightMask = 4307 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4308 4309 Value *LeftShuf = Builder.CreateShuffleVector( 4310 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4311 Value *RightShuf = Builder.CreateShuffleVector( 4312 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4313 "rdx.shuf.r"); 4314 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4315 "bin.rdx"); 4316 } else { 4317 Value *UpperHalf = 4318 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4319 Value *Shuf = Builder.CreateShuffleVector( 4320 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4321 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4322 } 4323 } 4324 4325 // The result is in the first element of the vector. 4326 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4327 } 4328 }; 4329 } // end anonymous namespace 4330 4331 /// \brief Recognize construction of vectors like 4332 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4333 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4334 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4335 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4336 /// 4337 /// Returns true if it matches 4338 /// 4339 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4340 SmallVectorImpl<Value *> &BuildVector, 4341 SmallVectorImpl<Value *> &BuildVectorOpds) { 4342 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4343 return false; 4344 4345 InsertElementInst *IE = FirstInsertElem; 4346 while (true) { 4347 BuildVector.push_back(IE); 4348 BuildVectorOpds.push_back(IE->getOperand(1)); 4349 4350 if (IE->use_empty()) 4351 return false; 4352 4353 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4354 if (!NextUse) 4355 return true; 4356 4357 // If this isn't the final use, make sure the next insertelement is the only 4358 // use. It's OK if the final constructed vector is used multiple times 4359 if (!IE->hasOneUse()) 4360 return false; 4361 4362 IE = NextUse; 4363 } 4364 4365 return false; 4366 } 4367 4368 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4369 /// 4370 /// \return true if it matches. 4371 static bool findBuildAggregate(InsertValueInst *IV, 4372 SmallVectorImpl<Value *> &BuildVector, 4373 SmallVectorImpl<Value *> &BuildVectorOpds) { 4374 if (!IV->hasOneUse()) 4375 return false; 4376 Value *V = IV->getAggregateOperand(); 4377 if (!isa<UndefValue>(V)) { 4378 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4379 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4380 return false; 4381 } 4382 BuildVector.push_back(IV); 4383 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4384 return true; 4385 } 4386 4387 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4388 return V->getType() < V2->getType(); 4389 } 4390 4391 /// \brief Try and get a reduction value from a phi node. 4392 /// 4393 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4394 /// if they come from either \p ParentBB or a containing loop latch. 4395 /// 4396 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4397 /// if not possible. 4398 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4399 BasicBlock *ParentBB, LoopInfo *LI) { 4400 // There are situations where the reduction value is not dominated by the 4401 // reduction phi. Vectorizing such cases has been reported to cause 4402 // miscompiles. See PR25787. 4403 auto DominatedReduxValue = [&](Value *R) { 4404 return ( 4405 dyn_cast<Instruction>(R) && 4406 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4407 }; 4408 4409 Value *Rdx = nullptr; 4410 4411 // Return the incoming value if it comes from the same BB as the phi node. 4412 if (P->getIncomingBlock(0) == ParentBB) { 4413 Rdx = P->getIncomingValue(0); 4414 } else if (P->getIncomingBlock(1) == ParentBB) { 4415 Rdx = P->getIncomingValue(1); 4416 } 4417 4418 if (Rdx && DominatedReduxValue(Rdx)) 4419 return Rdx; 4420 4421 // Otherwise, check whether we have a loop latch to look at. 4422 Loop *BBL = LI->getLoopFor(ParentBB); 4423 if (!BBL) 4424 return nullptr; 4425 BasicBlock *BBLatch = BBL->getLoopLatch(); 4426 if (!BBLatch) 4427 return nullptr; 4428 4429 // There is a loop latch, return the incoming value if it comes from 4430 // that. This reduction pattern occassionaly turns up. 4431 if (P->getIncomingBlock(0) == BBLatch) { 4432 Rdx = P->getIncomingValue(0); 4433 } else if (P->getIncomingBlock(1) == BBLatch) { 4434 Rdx = P->getIncomingValue(1); 4435 } 4436 4437 if (Rdx && DominatedReduxValue(Rdx)) 4438 return Rdx; 4439 4440 return nullptr; 4441 } 4442 4443 /// \brief Attempt to reduce a horizontal reduction. 4444 /// If it is legal to match a horizontal reduction feeding 4445 /// the phi node P with reduction operators BI, then check if it 4446 /// can be done. 4447 /// \returns true if a horizontal reduction was matched and reduced. 4448 /// \returns false if a horizontal reduction was not matched. 4449 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4450 BoUpSLP &R, TargetTransformInfo *TTI, 4451 unsigned MinRegSize) { 4452 if (!ShouldVectorizeHor) 4453 return false; 4454 4455 HorizontalReduction HorRdx(MinRegSize); 4456 if (!HorRdx.matchAssociativeReduction(P, BI)) 4457 return false; 4458 4459 // If there is a sufficient number of reduction values, reduce 4460 // to a nearby power-of-2. Can safely generate oversized 4461 // vectors and rely on the backend to split them to legal sizes. 4462 HorRdx.ReduxWidth = 4463 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4464 4465 return HorRdx.tryToReduce(R, TTI); 4466 } 4467 4468 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4469 bool Changed = false; 4470 SmallVector<Value *, 4> Incoming; 4471 SmallSet<Value *, 16> VisitedInstrs; 4472 4473 bool HaveVectorizedPhiNodes = true; 4474 while (HaveVectorizedPhiNodes) { 4475 HaveVectorizedPhiNodes = false; 4476 4477 // Collect the incoming values from the PHIs. 4478 Incoming.clear(); 4479 for (Instruction &I : *BB) { 4480 PHINode *P = dyn_cast<PHINode>(&I); 4481 if (!P) 4482 break; 4483 4484 if (!VisitedInstrs.count(P)) 4485 Incoming.push_back(P); 4486 } 4487 4488 // Sort by type. 4489 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4490 4491 // Try to vectorize elements base on their type. 4492 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4493 E = Incoming.end(); 4494 IncIt != E;) { 4495 4496 // Look for the next elements with the same type. 4497 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4498 while (SameTypeIt != E && 4499 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4500 VisitedInstrs.insert(*SameTypeIt); 4501 ++SameTypeIt; 4502 } 4503 4504 // Try to vectorize them. 4505 unsigned NumElts = (SameTypeIt - IncIt); 4506 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4507 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4508 // Success start over because instructions might have been changed. 4509 HaveVectorizedPhiNodes = true; 4510 Changed = true; 4511 break; 4512 } 4513 4514 // Start over at the next instruction of a different type (or the end). 4515 IncIt = SameTypeIt; 4516 } 4517 } 4518 4519 VisitedInstrs.clear(); 4520 4521 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4522 // We may go through BB multiple times so skip the one we have checked. 4523 if (!VisitedInstrs.insert(&*it).second) 4524 continue; 4525 4526 if (isa<DbgInfoIntrinsic>(it)) 4527 continue; 4528 4529 // Try to vectorize reductions that use PHINodes. 4530 if (PHINode *P = dyn_cast<PHINode>(it)) { 4531 // Check that the PHI is a reduction PHI. 4532 if (P->getNumIncomingValues() != 2) 4533 return Changed; 4534 4535 Value *Rdx = getReductionValue(DT, P, BB, LI); 4536 4537 // Check if this is a Binary Operator. 4538 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4539 if (!BI) 4540 continue; 4541 4542 // Try to match and vectorize a horizontal reduction. 4543 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4544 Changed = true; 4545 it = BB->begin(); 4546 e = BB->end(); 4547 continue; 4548 } 4549 4550 Value *Inst = BI->getOperand(0); 4551 if (Inst == P) 4552 Inst = BI->getOperand(1); 4553 4554 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4555 // We would like to start over since some instructions are deleted 4556 // and the iterator may become invalid value. 4557 Changed = true; 4558 it = BB->begin(); 4559 e = BB->end(); 4560 continue; 4561 } 4562 4563 continue; 4564 } 4565 4566 if (ShouldStartVectorizeHorAtStore) 4567 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4568 if (BinaryOperator *BinOp = 4569 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4570 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4571 R.getMinVecRegSize()) || 4572 tryToVectorize(BinOp, R)) { 4573 Changed = true; 4574 it = BB->begin(); 4575 e = BB->end(); 4576 continue; 4577 } 4578 } 4579 4580 // Try to vectorize horizontal reductions feeding into a return. 4581 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4582 if (RI->getNumOperands() != 0) 4583 if (BinaryOperator *BinOp = 4584 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4585 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4586 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4587 R.getMinVecRegSize()) || 4588 tryToVectorizePair(BinOp->getOperand(0), BinOp->getOperand(1), 4589 R)) { 4590 Changed = true; 4591 it = BB->begin(); 4592 e = BB->end(); 4593 continue; 4594 } 4595 } 4596 4597 // Try to vectorize trees that start at compare instructions. 4598 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4599 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4600 Changed = true; 4601 // We would like to start over since some instructions are deleted 4602 // and the iterator may become invalid value. 4603 it = BB->begin(); 4604 e = BB->end(); 4605 continue; 4606 } 4607 4608 for (int i = 0; i < 2; ++i) { 4609 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4610 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4611 Changed = true; 4612 // We would like to start over since some instructions are deleted 4613 // and the iterator may become invalid value. 4614 it = BB->begin(); 4615 e = BB->end(); 4616 break; 4617 } 4618 } 4619 } 4620 continue; 4621 } 4622 4623 // Try to vectorize trees that start at insertelement instructions. 4624 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4625 SmallVector<Value *, 16> BuildVector; 4626 SmallVector<Value *, 16> BuildVectorOpds; 4627 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4628 continue; 4629 4630 // Vectorize starting with the build vector operands ignoring the 4631 // BuildVector instructions for the purpose of scheduling and user 4632 // extraction. 4633 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4634 Changed = true; 4635 it = BB->begin(); 4636 e = BB->end(); 4637 } 4638 4639 continue; 4640 } 4641 4642 // Try to vectorize trees that start at insertvalue instructions feeding into 4643 // a store. 4644 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4645 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4646 const DataLayout &DL = BB->getModule()->getDataLayout(); 4647 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4648 SmallVector<Value *, 16> BuildVector; 4649 SmallVector<Value *, 16> BuildVectorOpds; 4650 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4651 continue; 4652 4653 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4654 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4655 Changed = true; 4656 it = BB->begin(); 4657 e = BB->end(); 4658 } 4659 continue; 4660 } 4661 } 4662 } 4663 } 4664 4665 return Changed; 4666 } 4667 4668 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4669 auto Changed = false; 4670 for (auto &Entry : GEPs) { 4671 4672 // If the getelementptr list has fewer than two elements, there's nothing 4673 // to do. 4674 if (Entry.second.size() < 2) 4675 continue; 4676 4677 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4678 << Entry.second.size() << ".\n"); 4679 4680 // We process the getelementptr list in chunks of 16 (like we do for 4681 // stores) to minimize compile-time. 4682 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4683 auto Len = std::min<unsigned>(BE - BI, 16); 4684 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4685 4686 // Initialize a set a candidate getelementptrs. Note that we use a 4687 // SetVector here to preserve program order. If the index computations 4688 // are vectorizable and begin with loads, we want to minimize the chance 4689 // of having to reorder them later. 4690 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4691 4692 // Some of the candidates may have already been vectorized after we 4693 // initially collected them. If so, the WeakVHs will have nullified the 4694 // values, so remove them from the set of candidates. 4695 Candidates.remove(nullptr); 4696 4697 // Remove from the set of candidates all pairs of getelementptrs with 4698 // constant differences. Such getelementptrs are likely not good 4699 // candidates for vectorization in a bottom-up phase since one can be 4700 // computed from the other. We also ensure all candidate getelementptr 4701 // indices are unique. 4702 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4703 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4704 if (!Candidates.count(GEPI)) 4705 continue; 4706 auto *SCEVI = SE->getSCEV(GEPList[I]); 4707 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4708 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4709 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4710 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4711 Candidates.remove(GEPList[I]); 4712 Candidates.remove(GEPList[J]); 4713 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4714 Candidates.remove(GEPList[J]); 4715 } 4716 } 4717 } 4718 4719 // We break out of the above computation as soon as we know there are 4720 // fewer than two candidates remaining. 4721 if (Candidates.size() < 2) 4722 continue; 4723 4724 // Add the single, non-constant index of each candidate to the bundle. We 4725 // ensured the indices met these constraints when we originally collected 4726 // the getelementptrs. 4727 SmallVector<Value *, 16> Bundle(Candidates.size()); 4728 auto BundleIndex = 0u; 4729 for (auto *V : Candidates) { 4730 auto *GEP = cast<GetElementPtrInst>(V); 4731 auto *GEPIdx = GEP->idx_begin()->get(); 4732 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4733 Bundle[BundleIndex++] = GEPIdx; 4734 } 4735 4736 // Try and vectorize the indices. We are currently only interested in 4737 // gather-like cases of the form: 4738 // 4739 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4740 // 4741 // where the loads of "a", the loads of "b", and the subtractions can be 4742 // performed in parallel. It's likely that detecting this pattern in a 4743 // bottom-up phase will be simpler and less costly than building a 4744 // full-blown top-down phase beginning at the consecutive loads. 4745 Changed |= tryToVectorizeList(Bundle, R); 4746 } 4747 } 4748 return Changed; 4749 } 4750 4751 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4752 bool Changed = false; 4753 // Attempt to sort and vectorize each of the store-groups. 4754 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4755 ++it) { 4756 if (it->second.size() < 2) 4757 continue; 4758 4759 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4760 << it->second.size() << ".\n"); 4761 4762 // Process the stores in chunks of 16. 4763 // TODO: The limit of 16 inhibits greater vectorization factors. 4764 // For example, AVX2 supports v32i8. Increasing this limit, however, 4765 // may cause a significant compile-time increase. 4766 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4767 unsigned Len = std::min<unsigned>(CE - CI, 16); 4768 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 4769 } 4770 } 4771 return Changed; 4772 } 4773 4774 char SLPVectorizer::ID = 0; 4775 static const char lv_name[] = "SLP Vectorizer"; 4776 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4777 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4778 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4779 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4780 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4781 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4782 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4783 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4784 4785 namespace llvm { 4786 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4787 } 4788