1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(const Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 const auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 ArrayRef<Value *> UserIgnoreLst = None); 899 900 /// Builds external uses of the vectorized scalars, i.e. the list of 901 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 902 /// ExternallyUsedValues contains additional list of external uses to handle 903 /// vectorization of reductions. 904 void 905 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 906 907 /// Clear the internal data structures that are created by 'buildTree'. 908 void deleteTree() { 909 VectorizableTree.clear(); 910 ScalarToTreeEntry.clear(); 911 MustGather.clear(); 912 ExternalUses.clear(); 913 for (auto &Iter : BlocksSchedules) { 914 BlockScheduling *BS = Iter.second.get(); 915 BS->clear(); 916 } 917 MinBWs.clear(); 918 InstrElementSize.clear(); 919 } 920 921 unsigned getTreeSize() const { return VectorizableTree.size(); } 922 923 /// Perform LICM and CSE on the newly generated gather sequences. 924 void optimizeGatherSequence(); 925 926 /// Checks if the specified gather tree entry \p TE can be represented as a 927 /// shuffled vector entry + (possibly) permutation with other gathers. It 928 /// implements the checks only for possibly ordered scalars (Loads, 929 /// ExtractElement, ExtractValue), which can be part of the graph. 930 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 931 932 /// Sort loads into increasing pointers offsets to allow greater clustering. 933 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 934 935 /// Gets reordering data for the given tree entry. If the entry is vectorized 936 /// - just return ReorderIndices, otherwise check if the scalars can be 937 /// reordered and return the most optimal order. 938 /// \param TopToBottom If true, include the order of vectorized stores and 939 /// insertelement nodes, otherwise skip them. 940 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 941 942 /// Reorders the current graph to the most profitable order starting from the 943 /// root node to the leaf nodes. The best order is chosen only from the nodes 944 /// of the same size (vectorization factor). Smaller nodes are considered 945 /// parts of subgraph with smaller VF and they are reordered independently. We 946 /// can make it because we still need to extend smaller nodes to the wider VF 947 /// and we can merge reordering shuffles with the widening shuffles. 948 void reorderTopToBottom(); 949 950 /// Reorders the current graph to the most profitable order starting from 951 /// leaves to the root. It allows to rotate small subgraphs and reduce the 952 /// number of reshuffles if the leaf nodes use the same order. In this case we 953 /// can merge the orders and just shuffle user node instead of shuffling its 954 /// operands. Plus, even the leaf nodes have different orders, it allows to 955 /// sink reordering in the graph closer to the root node and merge it later 956 /// during analysis. 957 void reorderBottomToTop(bool IgnoreReorder = false); 958 959 /// \return The vector element size in bits to use when vectorizing the 960 /// expression tree ending at \p V. If V is a store, the size is the width of 961 /// the stored value. Otherwise, the size is the width of the largest loaded 962 /// value reaching V. This method is used by the vectorizer to calculate 963 /// vectorization factors. 964 unsigned getVectorElementSize(Value *V); 965 966 /// Compute the minimum type sizes required to represent the entries in a 967 /// vectorizable tree. 968 void computeMinimumValueSizes(); 969 970 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 971 unsigned getMaxVecRegSize() const { 972 return MaxVecRegSize; 973 } 974 975 // \returns minimum vector register size as set by cl::opt. 976 unsigned getMinVecRegSize() const { 977 return MinVecRegSize; 978 } 979 980 unsigned getMinVF(unsigned Sz) const { 981 return std::max(2U, getMinVecRegSize() / Sz); 982 } 983 984 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 985 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 986 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 987 return MaxVF ? MaxVF : UINT_MAX; 988 } 989 990 /// Check if homogeneous aggregate is isomorphic to some VectorType. 991 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 992 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 993 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 994 /// 995 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 996 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 997 998 /// \returns True if the VectorizableTree is both tiny and not fully 999 /// vectorizable. We do not vectorize such trees. 1000 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1001 1002 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1003 /// can be load combined in the backend. Load combining may not be allowed in 1004 /// the IR optimizer, so we do not want to alter the pattern. For example, 1005 /// partially transforming a scalar bswap() pattern into vector code is 1006 /// effectively impossible for the backend to undo. 1007 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1008 /// may not be necessary. 1009 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1010 1011 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1012 /// can be load combined in the backend. Load combining may not be allowed in 1013 /// the IR optimizer, so we do not want to alter the pattern. For example, 1014 /// partially transforming a scalar bswap() pattern into vector code is 1015 /// effectively impossible for the backend to undo. 1016 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1017 /// may not be necessary. 1018 bool isLoadCombineCandidate() const; 1019 1020 OptimizationRemarkEmitter *getORE() { return ORE; } 1021 1022 /// This structure holds any data we need about the edges being traversed 1023 /// during buildTree_rec(). We keep track of: 1024 /// (i) the user TreeEntry index, and 1025 /// (ii) the index of the edge. 1026 struct EdgeInfo { 1027 EdgeInfo() = default; 1028 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1029 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1030 /// The user TreeEntry. 1031 TreeEntry *UserTE = nullptr; 1032 /// The operand index of the use. 1033 unsigned EdgeIdx = UINT_MAX; 1034 #ifndef NDEBUG 1035 friend inline raw_ostream &operator<<(raw_ostream &OS, 1036 const BoUpSLP::EdgeInfo &EI) { 1037 EI.dump(OS); 1038 return OS; 1039 } 1040 /// Debug print. 1041 void dump(raw_ostream &OS) const { 1042 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1043 << " EdgeIdx:" << EdgeIdx << "}"; 1044 } 1045 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1046 #endif 1047 }; 1048 1049 /// A helper class used for scoring candidates for two consecutive lanes. 1050 class LookAheadHeuristics { 1051 const DataLayout &DL; 1052 ScalarEvolution &SE; 1053 const BoUpSLP &R; 1054 int NumLanes; // Total number of lanes (aka vectorization factor). 1055 int MaxLevel; // The maximum recursion depth for accumulating score. 1056 1057 public: 1058 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1059 const BoUpSLP &R, int NumLanes, int MaxLevel) 1060 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1061 1062 // The hard-coded scores listed here are not very important, though it shall 1063 // be higher for better matches to improve the resulting cost. When 1064 // computing the scores of matching one sub-tree with another, we are 1065 // basically counting the number of values that are matching. So even if all 1066 // scores are set to 1, we would still get a decent matching result. 1067 // However, sometimes we have to break ties. For example we may have to 1068 // choose between matching loads vs matching opcodes. This is what these 1069 // scores are helping us with: they provide the order of preference. Also, 1070 // this is important if the scalar is externally used or used in another 1071 // tree entry node in the different lane. 1072 1073 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1074 static const int ScoreConsecutiveLoads = 4; 1075 /// The same load multiple times. This should have a better score than 1076 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1077 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1078 /// a vector load and 1.0 for a broadcast. 1079 static const int ScoreSplatLoads = 3; 1080 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1081 static const int ScoreReversedLoads = 3; 1082 /// ExtractElementInst from same vector and consecutive indexes. 1083 static const int ScoreConsecutiveExtracts = 4; 1084 /// ExtractElementInst from same vector and reversed indices. 1085 static const int ScoreReversedExtracts = 3; 1086 /// Constants. 1087 static const int ScoreConstants = 2; 1088 /// Instructions with the same opcode. 1089 static const int ScoreSameOpcode = 2; 1090 /// Instructions with alt opcodes (e.g, add + sub). 1091 static const int ScoreAltOpcodes = 1; 1092 /// Identical instructions (a.k.a. splat or broadcast). 1093 static const int ScoreSplat = 1; 1094 /// Matching with an undef is preferable to failing. 1095 static const int ScoreUndef = 1; 1096 /// Score for failing to find a decent match. 1097 static const int ScoreFail = 0; 1098 /// Score if all users are vectorized. 1099 static const int ScoreAllUserVectorized = 1; 1100 1101 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1102 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1103 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1104 /// MainAltOps. 1105 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1106 ArrayRef<Value *> MainAltOps) const { 1107 if (V1 == V2) { 1108 if (isa<LoadInst>(V1)) { 1109 // Retruns true if the users of V1 and V2 won't need to be extracted. 1110 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1111 // Bail out if we have too many uses to save compilation time. 1112 static constexpr unsigned Limit = 8; 1113 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1114 return false; 1115 1116 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1117 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1118 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1119 }); 1120 }; 1121 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1122 }; 1123 // A broadcast of a load can be cheaper on some targets. 1124 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1125 ElementCount::getFixed(NumLanes)) && 1126 ((int)V1->getNumUses() == NumLanes || 1127 AllUsersAreInternal(V1, V2))) 1128 return LookAheadHeuristics::ScoreSplatLoads; 1129 } 1130 return LookAheadHeuristics::ScoreSplat; 1131 } 1132 1133 auto *LI1 = dyn_cast<LoadInst>(V1); 1134 auto *LI2 = dyn_cast<LoadInst>(V2); 1135 if (LI1 && LI2) { 1136 if (LI1->getParent() != LI2->getParent()) 1137 return LookAheadHeuristics::ScoreFail; 1138 1139 Optional<int> Dist = getPointersDiff( 1140 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1141 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1142 if (!Dist || *Dist == 0) 1143 return LookAheadHeuristics::ScoreFail; 1144 // The distance is too large - still may be profitable to use masked 1145 // loads/gathers. 1146 if (std::abs(*Dist) > NumLanes / 2) 1147 return LookAheadHeuristics::ScoreAltOpcodes; 1148 // This still will detect consecutive loads, but we might have "holes" 1149 // in some cases. It is ok for non-power-2 vectorization and may produce 1150 // better results. It should not affect current vectorization. 1151 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1152 : LookAheadHeuristics::ScoreReversedLoads; 1153 } 1154 1155 auto *C1 = dyn_cast<Constant>(V1); 1156 auto *C2 = dyn_cast<Constant>(V2); 1157 if (C1 && C2) 1158 return LookAheadHeuristics::ScoreConstants; 1159 1160 // Extracts from consecutive indexes of the same vector better score as 1161 // the extracts could be optimized away. 1162 Value *EV1; 1163 ConstantInt *Ex1Idx; 1164 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1165 // Undefs are always profitable for extractelements. 1166 if (isa<UndefValue>(V2)) 1167 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1168 Value *EV2 = nullptr; 1169 ConstantInt *Ex2Idx = nullptr; 1170 if (match(V2, 1171 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1172 m_Undef())))) { 1173 // Undefs are always profitable for extractelements. 1174 if (!Ex2Idx) 1175 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1176 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1177 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1178 if (EV2 == EV1) { 1179 int Idx1 = Ex1Idx->getZExtValue(); 1180 int Idx2 = Ex2Idx->getZExtValue(); 1181 int Dist = Idx2 - Idx1; 1182 // The distance is too large - still may be profitable to use 1183 // shuffles. 1184 if (std::abs(Dist) == 0) 1185 return LookAheadHeuristics::ScoreSplat; 1186 if (std::abs(Dist) > NumLanes / 2) 1187 return LookAheadHeuristics::ScoreSameOpcode; 1188 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1189 : LookAheadHeuristics::ScoreReversedExtracts; 1190 } 1191 return LookAheadHeuristics::ScoreAltOpcodes; 1192 } 1193 return LookAheadHeuristics::ScoreFail; 1194 } 1195 1196 auto *I1 = dyn_cast<Instruction>(V1); 1197 auto *I2 = dyn_cast<Instruction>(V2); 1198 if (I1 && I2) { 1199 if (I1->getParent() != I2->getParent()) 1200 return LookAheadHeuristics::ScoreFail; 1201 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1202 Ops.push_back(I1); 1203 Ops.push_back(I2); 1204 InstructionsState S = getSameOpcode(Ops); 1205 // Note: Only consider instructions with <= 2 operands to avoid 1206 // complexity explosion. 1207 if (S.getOpcode() && 1208 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1209 !S.isAltShuffle()) && 1210 all_of(Ops, [&S](Value *V) { 1211 return cast<Instruction>(V)->getNumOperands() == 1212 S.MainOp->getNumOperands(); 1213 })) 1214 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1215 : LookAheadHeuristics::ScoreSameOpcode; 1216 } 1217 1218 if (isa<UndefValue>(V2)) 1219 return LookAheadHeuristics::ScoreUndef; 1220 1221 return LookAheadHeuristics::ScoreFail; 1222 } 1223 1224 /// Go through the operands of \p LHS and \p RHS recursively until 1225 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1226 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1227 /// of \p U1 and \p U2), except at the beginning of the recursion where 1228 /// these are set to nullptr. 1229 /// 1230 /// For example: 1231 /// \verbatim 1232 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1233 /// \ / \ / \ / \ / 1234 /// + + + + 1235 /// G1 G2 G3 G4 1236 /// \endverbatim 1237 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1238 /// each level recursively, accumulating the score. It starts from matching 1239 /// the additions at level 0, then moves on to the loads (level 1). The 1240 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1241 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1242 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1243 /// Please note that the order of the operands does not matter, as we 1244 /// evaluate the score of all profitable combinations of operands. In 1245 /// other words the score of G1 and G4 is the same as G1 and G2. This 1246 /// heuristic is based on ideas described in: 1247 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1248 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1249 /// Luís F. W. Góes 1250 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1251 Instruction *U2, int CurrLevel, 1252 ArrayRef<Value *> MainAltOps) const { 1253 1254 // Get the shallow score of V1 and V2. 1255 int ShallowScoreAtThisLevel = 1256 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1257 1258 // If reached MaxLevel, 1259 // or if V1 and V2 are not instructions, 1260 // or if they are SPLAT, 1261 // or if they are not consecutive, 1262 // or if profitable to vectorize loads or extractelements, early return 1263 // the current cost. 1264 auto *I1 = dyn_cast<Instruction>(LHS); 1265 auto *I2 = dyn_cast<Instruction>(RHS); 1266 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1267 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1268 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1269 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1270 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1271 ShallowScoreAtThisLevel)) 1272 return ShallowScoreAtThisLevel; 1273 assert(I1 && I2 && "Should have early exited."); 1274 1275 // Contains the I2 operand indexes that got matched with I1 operands. 1276 SmallSet<unsigned, 4> Op2Used; 1277 1278 // Recursion towards the operands of I1 and I2. We are trying all possible 1279 // operand pairs, and keeping track of the best score. 1280 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1281 OpIdx1 != NumOperands1; ++OpIdx1) { 1282 // Try to pair op1I with the best operand of I2. 1283 int MaxTmpScore = 0; 1284 unsigned MaxOpIdx2 = 0; 1285 bool FoundBest = false; 1286 // If I2 is commutative try all combinations. 1287 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1288 unsigned ToIdx = isCommutative(I2) 1289 ? I2->getNumOperands() 1290 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1291 assert(FromIdx <= ToIdx && "Bad index"); 1292 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1293 // Skip operands already paired with OpIdx1. 1294 if (Op2Used.count(OpIdx2)) 1295 continue; 1296 // Recursively calculate the cost at each level 1297 int TmpScore = 1298 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1299 I1, I2, CurrLevel + 1, None); 1300 // Look for the best score. 1301 if (TmpScore > LookAheadHeuristics::ScoreFail && 1302 TmpScore > MaxTmpScore) { 1303 MaxTmpScore = TmpScore; 1304 MaxOpIdx2 = OpIdx2; 1305 FoundBest = true; 1306 } 1307 } 1308 if (FoundBest) { 1309 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1310 Op2Used.insert(MaxOpIdx2); 1311 ShallowScoreAtThisLevel += MaxTmpScore; 1312 } 1313 } 1314 return ShallowScoreAtThisLevel; 1315 } 1316 }; 1317 /// A helper data structure to hold the operands of a vector of instructions. 1318 /// This supports a fixed vector length for all operand vectors. 1319 class VLOperands { 1320 /// For each operand we need (i) the value, and (ii) the opcode that it 1321 /// would be attached to if the expression was in a left-linearized form. 1322 /// This is required to avoid illegal operand reordering. 1323 /// For example: 1324 /// \verbatim 1325 /// 0 Op1 1326 /// |/ 1327 /// Op1 Op2 Linearized + Op2 1328 /// \ / ----------> |/ 1329 /// - - 1330 /// 1331 /// Op1 - Op2 (0 + Op1) - Op2 1332 /// \endverbatim 1333 /// 1334 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1335 /// 1336 /// Another way to think of this is to track all the operations across the 1337 /// path from the operand all the way to the root of the tree and to 1338 /// calculate the operation that corresponds to this path. For example, the 1339 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1340 /// corresponding operation is a '-' (which matches the one in the 1341 /// linearized tree, as shown above). 1342 /// 1343 /// For lack of a better term, we refer to this operation as Accumulated 1344 /// Path Operation (APO). 1345 struct OperandData { 1346 OperandData() = default; 1347 OperandData(Value *V, bool APO, bool IsUsed) 1348 : V(V), APO(APO), IsUsed(IsUsed) {} 1349 /// The operand value. 1350 Value *V = nullptr; 1351 /// TreeEntries only allow a single opcode, or an alternate sequence of 1352 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1353 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1354 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1355 /// (e.g., Add/Mul) 1356 bool APO = false; 1357 /// Helper data for the reordering function. 1358 bool IsUsed = false; 1359 }; 1360 1361 /// During operand reordering, we are trying to select the operand at lane 1362 /// that matches best with the operand at the neighboring lane. Our 1363 /// selection is based on the type of value we are looking for. For example, 1364 /// if the neighboring lane has a load, we need to look for a load that is 1365 /// accessing a consecutive address. These strategies are summarized in the 1366 /// 'ReorderingMode' enumerator. 1367 enum class ReorderingMode { 1368 Load, ///< Matching loads to consecutive memory addresses 1369 Opcode, ///< Matching instructions based on opcode (same or alternate) 1370 Constant, ///< Matching constants 1371 Splat, ///< Matching the same instruction multiple times (broadcast) 1372 Failed, ///< We failed to create a vectorizable group 1373 }; 1374 1375 using OperandDataVec = SmallVector<OperandData, 2>; 1376 1377 /// A vector of operand vectors. 1378 SmallVector<OperandDataVec, 4> OpsVec; 1379 1380 const DataLayout &DL; 1381 ScalarEvolution &SE; 1382 const BoUpSLP &R; 1383 1384 /// \returns the operand data at \p OpIdx and \p Lane. 1385 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1386 return OpsVec[OpIdx][Lane]; 1387 } 1388 1389 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1390 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1391 return OpsVec[OpIdx][Lane]; 1392 } 1393 1394 /// Clears the used flag for all entries. 1395 void clearUsed() { 1396 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1397 OpIdx != NumOperands; ++OpIdx) 1398 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1399 ++Lane) 1400 OpsVec[OpIdx][Lane].IsUsed = false; 1401 } 1402 1403 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1404 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1405 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1406 } 1407 1408 /// \param Lane lane of the operands under analysis. 1409 /// \param OpIdx operand index in \p Lane lane we're looking the best 1410 /// candidate for. 1411 /// \param Idx operand index of the current candidate value. 1412 /// \returns The additional score due to possible broadcasting of the 1413 /// elements in the lane. It is more profitable to have power-of-2 unique 1414 /// elements in the lane, it will be vectorized with higher probability 1415 /// after removing duplicates. Currently the SLP vectorizer supports only 1416 /// vectorization of the power-of-2 number of unique scalars. 1417 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1418 Value *IdxLaneV = getData(Idx, Lane).V; 1419 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1420 return 0; 1421 SmallPtrSet<Value *, 4> Uniques; 1422 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1423 if (Ln == Lane) 1424 continue; 1425 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1426 if (!isa<Instruction>(OpIdxLnV)) 1427 return 0; 1428 Uniques.insert(OpIdxLnV); 1429 } 1430 int UniquesCount = Uniques.size(); 1431 int UniquesCntWithIdxLaneV = 1432 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1433 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1434 int UniquesCntWithOpIdxLaneV = 1435 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1436 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1437 return 0; 1438 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1439 UniquesCntWithOpIdxLaneV) - 1440 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1441 } 1442 1443 /// \param Lane lane of the operands under analysis. 1444 /// \param OpIdx operand index in \p Lane lane we're looking the best 1445 /// candidate for. 1446 /// \param Idx operand index of the current candidate value. 1447 /// \returns The additional score for the scalar which users are all 1448 /// vectorized. 1449 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1450 Value *IdxLaneV = getData(Idx, Lane).V; 1451 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1452 // Do not care about number of uses for vector-like instructions 1453 // (extractelement/extractvalue with constant indices), they are extracts 1454 // themselves and already externally used. Vectorization of such 1455 // instructions does not add extra extractelement instruction, just may 1456 // remove it. 1457 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1458 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1459 return LookAheadHeuristics::ScoreAllUserVectorized; 1460 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1461 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1462 return 0; 1463 return R.areAllUsersVectorized(IdxLaneI, None) 1464 ? LookAheadHeuristics::ScoreAllUserVectorized 1465 : 0; 1466 } 1467 1468 /// Score scaling factor for fully compatible instructions but with 1469 /// different number of external uses. Allows better selection of the 1470 /// instructions with less external uses. 1471 static const int ScoreScaleFactor = 10; 1472 1473 /// \Returns the look-ahead score, which tells us how much the sub-trees 1474 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1475 /// score. This helps break ties in an informed way when we cannot decide on 1476 /// the order of the operands by just considering the immediate 1477 /// predecessors. 1478 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1479 int Lane, unsigned OpIdx, unsigned Idx, 1480 bool &IsUsed) { 1481 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1482 LookAheadMaxDepth); 1483 // Keep track of the instruction stack as we recurse into the operands 1484 // during the look-ahead score exploration. 1485 int Score = 1486 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1487 /*CurrLevel=*/1, MainAltOps); 1488 if (Score) { 1489 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1490 if (Score <= -SplatScore) { 1491 // Set the minimum score for splat-like sequence to avoid setting 1492 // failed state. 1493 Score = 1; 1494 } else { 1495 Score += SplatScore; 1496 // Scale score to see the difference between different operands 1497 // and similar operands but all vectorized/not all vectorized 1498 // uses. It does not affect actual selection of the best 1499 // compatible operand in general, just allows to select the 1500 // operand with all vectorized uses. 1501 Score *= ScoreScaleFactor; 1502 Score += getExternalUseScore(Lane, OpIdx, Idx); 1503 IsUsed = true; 1504 } 1505 } 1506 return Score; 1507 } 1508 1509 /// Best defined scores per lanes between the passes. Used to choose the 1510 /// best operand (with the highest score) between the passes. 1511 /// The key - {Operand Index, Lane}. 1512 /// The value - the best score between the passes for the lane and the 1513 /// operand. 1514 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1515 BestScoresPerLanes; 1516 1517 // Search all operands in Ops[*][Lane] for the one that matches best 1518 // Ops[OpIdx][LastLane] and return its opreand index. 1519 // If no good match can be found, return None. 1520 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1521 ArrayRef<ReorderingMode> ReorderingModes, 1522 ArrayRef<Value *> MainAltOps) { 1523 unsigned NumOperands = getNumOperands(); 1524 1525 // The operand of the previous lane at OpIdx. 1526 Value *OpLastLane = getData(OpIdx, LastLane).V; 1527 1528 // Our strategy mode for OpIdx. 1529 ReorderingMode RMode = ReorderingModes[OpIdx]; 1530 if (RMode == ReorderingMode::Failed) 1531 return None; 1532 1533 // The linearized opcode of the operand at OpIdx, Lane. 1534 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1535 1536 // The best operand index and its score. 1537 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1538 // are using the score to differentiate between the two. 1539 struct BestOpData { 1540 Optional<unsigned> Idx = None; 1541 unsigned Score = 0; 1542 } BestOp; 1543 BestOp.Score = 1544 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1545 .first->second; 1546 1547 // Track if the operand must be marked as used. If the operand is set to 1548 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1549 // want to reestimate the operands again on the following iterations). 1550 bool IsUsed = 1551 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1552 // Iterate through all unused operands and look for the best. 1553 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1554 // Get the operand at Idx and Lane. 1555 OperandData &OpData = getData(Idx, Lane); 1556 Value *Op = OpData.V; 1557 bool OpAPO = OpData.APO; 1558 1559 // Skip already selected operands. 1560 if (OpData.IsUsed) 1561 continue; 1562 1563 // Skip if we are trying to move the operand to a position with a 1564 // different opcode in the linearized tree form. This would break the 1565 // semantics. 1566 if (OpAPO != OpIdxAPO) 1567 continue; 1568 1569 // Look for an operand that matches the current mode. 1570 switch (RMode) { 1571 case ReorderingMode::Load: 1572 case ReorderingMode::Constant: 1573 case ReorderingMode::Opcode: { 1574 bool LeftToRight = Lane > LastLane; 1575 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1576 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1577 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1578 OpIdx, Idx, IsUsed); 1579 if (Score > static_cast<int>(BestOp.Score)) { 1580 BestOp.Idx = Idx; 1581 BestOp.Score = Score; 1582 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1583 } 1584 break; 1585 } 1586 case ReorderingMode::Splat: 1587 if (Op == OpLastLane) 1588 BestOp.Idx = Idx; 1589 break; 1590 case ReorderingMode::Failed: 1591 llvm_unreachable("Not expected Failed reordering mode."); 1592 } 1593 } 1594 1595 if (BestOp.Idx) { 1596 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1597 return BestOp.Idx; 1598 } 1599 // If we could not find a good match return None. 1600 return None; 1601 } 1602 1603 /// Helper for reorderOperandVecs. 1604 /// \returns the lane that we should start reordering from. This is the one 1605 /// which has the least number of operands that can freely move about or 1606 /// less profitable because it already has the most optimal set of operands. 1607 unsigned getBestLaneToStartReordering() const { 1608 unsigned Min = UINT_MAX; 1609 unsigned SameOpNumber = 0; 1610 // std::pair<unsigned, unsigned> is used to implement a simple voting 1611 // algorithm and choose the lane with the least number of operands that 1612 // can freely move about or less profitable because it already has the 1613 // most optimal set of operands. The first unsigned is a counter for 1614 // voting, the second unsigned is the counter of lanes with instructions 1615 // with same/alternate opcodes and same parent basic block. 1616 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1617 // Try to be closer to the original results, if we have multiple lanes 1618 // with same cost. If 2 lanes have the same cost, use the one with the 1619 // lowest index. 1620 for (int I = getNumLanes(); I > 0; --I) { 1621 unsigned Lane = I - 1; 1622 OperandsOrderData NumFreeOpsHash = 1623 getMaxNumOperandsThatCanBeReordered(Lane); 1624 // Compare the number of operands that can move and choose the one with 1625 // the least number. 1626 if (NumFreeOpsHash.NumOfAPOs < Min) { 1627 Min = NumFreeOpsHash.NumOfAPOs; 1628 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1629 HashMap.clear(); 1630 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1631 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1632 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1633 // Select the most optimal lane in terms of number of operands that 1634 // should be moved around. 1635 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1636 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1637 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1638 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1639 auto It = HashMap.find(NumFreeOpsHash.Hash); 1640 if (It == HashMap.end()) 1641 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1642 else 1643 ++It->second.first; 1644 } 1645 } 1646 // Select the lane with the minimum counter. 1647 unsigned BestLane = 0; 1648 unsigned CntMin = UINT_MAX; 1649 for (const auto &Data : reverse(HashMap)) { 1650 if (Data.second.first < CntMin) { 1651 CntMin = Data.second.first; 1652 BestLane = Data.second.second; 1653 } 1654 } 1655 return BestLane; 1656 } 1657 1658 /// Data structure that helps to reorder operands. 1659 struct OperandsOrderData { 1660 /// The best number of operands with the same APOs, which can be 1661 /// reordered. 1662 unsigned NumOfAPOs = UINT_MAX; 1663 /// Number of operands with the same/alternate instruction opcode and 1664 /// parent. 1665 unsigned NumOpsWithSameOpcodeParent = 0; 1666 /// Hash for the actual operands ordering. 1667 /// Used to count operands, actually their position id and opcode 1668 /// value. It is used in the voting mechanism to find the lane with the 1669 /// least number of operands that can freely move about or less profitable 1670 /// because it already has the most optimal set of operands. Can be 1671 /// replaced with SmallVector<unsigned> instead but hash code is faster 1672 /// and requires less memory. 1673 unsigned Hash = 0; 1674 }; 1675 /// \returns the maximum number of operands that are allowed to be reordered 1676 /// for \p Lane and the number of compatible instructions(with the same 1677 /// parent/opcode). This is used as a heuristic for selecting the first lane 1678 /// to start operand reordering. 1679 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1680 unsigned CntTrue = 0; 1681 unsigned NumOperands = getNumOperands(); 1682 // Operands with the same APO can be reordered. We therefore need to count 1683 // how many of them we have for each APO, like this: Cnt[APO] = x. 1684 // Since we only have two APOs, namely true and false, we can avoid using 1685 // a map. Instead we can simply count the number of operands that 1686 // correspond to one of them (in this case the 'true' APO), and calculate 1687 // the other by subtracting it from the total number of operands. 1688 // Operands with the same instruction opcode and parent are more 1689 // profitable since we don't need to move them in many cases, with a high 1690 // probability such lane already can be vectorized effectively. 1691 bool AllUndefs = true; 1692 unsigned NumOpsWithSameOpcodeParent = 0; 1693 Instruction *OpcodeI = nullptr; 1694 BasicBlock *Parent = nullptr; 1695 unsigned Hash = 0; 1696 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1697 const OperandData &OpData = getData(OpIdx, Lane); 1698 if (OpData.APO) 1699 ++CntTrue; 1700 // Use Boyer-Moore majority voting for finding the majority opcode and 1701 // the number of times it occurs. 1702 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1703 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1704 I->getParent() != Parent) { 1705 if (NumOpsWithSameOpcodeParent == 0) { 1706 NumOpsWithSameOpcodeParent = 1; 1707 OpcodeI = I; 1708 Parent = I->getParent(); 1709 } else { 1710 --NumOpsWithSameOpcodeParent; 1711 } 1712 } else { 1713 ++NumOpsWithSameOpcodeParent; 1714 } 1715 } 1716 Hash = hash_combine( 1717 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1718 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1719 } 1720 if (AllUndefs) 1721 return {}; 1722 OperandsOrderData Data; 1723 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1724 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1725 Data.Hash = Hash; 1726 return Data; 1727 } 1728 1729 /// Go through the instructions in VL and append their operands. 1730 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1731 assert(!VL.empty() && "Bad VL"); 1732 assert((empty() || VL.size() == getNumLanes()) && 1733 "Expected same number of lanes"); 1734 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1735 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1736 OpsVec.resize(NumOperands); 1737 unsigned NumLanes = VL.size(); 1738 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1739 OpsVec[OpIdx].resize(NumLanes); 1740 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1741 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1742 // Our tree has just 3 nodes: the root and two operands. 1743 // It is therefore trivial to get the APO. We only need to check the 1744 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1745 // RHS operand. The LHS operand of both add and sub is never attached 1746 // to an inversese operation in the linearized form, therefore its APO 1747 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1748 1749 // Since operand reordering is performed on groups of commutative 1750 // operations or alternating sequences (e.g., +, -), we can safely 1751 // tell the inverse operations by checking commutativity. 1752 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1753 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1754 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1755 APO, false}; 1756 } 1757 } 1758 } 1759 1760 /// \returns the number of operands. 1761 unsigned getNumOperands() const { return OpsVec.size(); } 1762 1763 /// \returns the number of lanes. 1764 unsigned getNumLanes() const { return OpsVec[0].size(); } 1765 1766 /// \returns the operand value at \p OpIdx and \p Lane. 1767 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1768 return getData(OpIdx, Lane).V; 1769 } 1770 1771 /// \returns true if the data structure is empty. 1772 bool empty() const { return OpsVec.empty(); } 1773 1774 /// Clears the data. 1775 void clear() { OpsVec.clear(); } 1776 1777 /// \Returns true if there are enough operands identical to \p Op to fill 1778 /// the whole vector. 1779 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1780 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1781 bool OpAPO = getData(OpIdx, Lane).APO; 1782 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1783 if (Ln == Lane) 1784 continue; 1785 // This is set to true if we found a candidate for broadcast at Lane. 1786 bool FoundCandidate = false; 1787 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1788 OperandData &Data = getData(OpI, Ln); 1789 if (Data.APO != OpAPO || Data.IsUsed) 1790 continue; 1791 if (Data.V == Op) { 1792 FoundCandidate = true; 1793 Data.IsUsed = true; 1794 break; 1795 } 1796 } 1797 if (!FoundCandidate) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 public: 1804 /// Initialize with all the operands of the instruction vector \p RootVL. 1805 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1806 ScalarEvolution &SE, const BoUpSLP &R) 1807 : DL(DL), SE(SE), R(R) { 1808 // Append all the operands of RootVL. 1809 appendOperandsOfVL(RootVL); 1810 } 1811 1812 /// \Returns a value vector with the operands across all lanes for the 1813 /// opearnd at \p OpIdx. 1814 ValueList getVL(unsigned OpIdx) const { 1815 ValueList OpVL(OpsVec[OpIdx].size()); 1816 assert(OpsVec[OpIdx].size() == getNumLanes() && 1817 "Expected same num of lanes across all operands"); 1818 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1819 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1820 return OpVL; 1821 } 1822 1823 // Performs operand reordering for 2 or more operands. 1824 // The original operands are in OrigOps[OpIdx][Lane]. 1825 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1826 void reorder() { 1827 unsigned NumOperands = getNumOperands(); 1828 unsigned NumLanes = getNumLanes(); 1829 // Each operand has its own mode. We are using this mode to help us select 1830 // the instructions for each lane, so that they match best with the ones 1831 // we have selected so far. 1832 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1833 1834 // This is a greedy single-pass algorithm. We are going over each lane 1835 // once and deciding on the best order right away with no back-tracking. 1836 // However, in order to increase its effectiveness, we start with the lane 1837 // that has operands that can move the least. For example, given the 1838 // following lanes: 1839 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1840 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1841 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1842 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1843 // we will start at Lane 1, since the operands of the subtraction cannot 1844 // be reordered. Then we will visit the rest of the lanes in a circular 1845 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1846 1847 // Find the first lane that we will start our search from. 1848 unsigned FirstLane = getBestLaneToStartReordering(); 1849 1850 // Initialize the modes. 1851 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1852 Value *OpLane0 = getValue(OpIdx, FirstLane); 1853 // Keep track if we have instructions with all the same opcode on one 1854 // side. 1855 if (isa<LoadInst>(OpLane0)) 1856 ReorderingModes[OpIdx] = ReorderingMode::Load; 1857 else if (isa<Instruction>(OpLane0)) { 1858 // Check if OpLane0 should be broadcast. 1859 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1861 else 1862 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1863 } 1864 else if (isa<Constant>(OpLane0)) 1865 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1866 else if (isa<Argument>(OpLane0)) 1867 // Our best hope is a Splat. It may save some cost in some cases. 1868 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1869 else 1870 // NOTE: This should be unreachable. 1871 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1872 } 1873 1874 // Check that we don't have same operands. No need to reorder if operands 1875 // are just perfect diamond or shuffled diamond match. Do not do it only 1876 // for possible broadcasts or non-power of 2 number of scalars (just for 1877 // now). 1878 auto &&SkipReordering = [this]() { 1879 SmallPtrSet<Value *, 4> UniqueValues; 1880 ArrayRef<OperandData> Op0 = OpsVec.front(); 1881 for (const OperandData &Data : Op0) 1882 UniqueValues.insert(Data.V); 1883 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1884 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1885 return !UniqueValues.contains(Data.V); 1886 })) 1887 return false; 1888 } 1889 // TODO: Check if we can remove a check for non-power-2 number of 1890 // scalars after full support of non-power-2 vectorization. 1891 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1892 }; 1893 1894 // If the initial strategy fails for any of the operand indexes, then we 1895 // perform reordering again in a second pass. This helps avoid assigning 1896 // high priority to the failed strategy, and should improve reordering for 1897 // the non-failed operand indexes. 1898 for (int Pass = 0; Pass != 2; ++Pass) { 1899 // Check if no need to reorder operands since they're are perfect or 1900 // shuffled diamond match. 1901 // Need to to do it to avoid extra external use cost counting for 1902 // shuffled matches, which may cause regressions. 1903 if (SkipReordering()) 1904 break; 1905 // Skip the second pass if the first pass did not fail. 1906 bool StrategyFailed = false; 1907 // Mark all operand data as free to use. 1908 clearUsed(); 1909 // We keep the original operand order for the FirstLane, so reorder the 1910 // rest of the lanes. We are visiting the nodes in a circular fashion, 1911 // using FirstLane as the center point and increasing the radius 1912 // distance. 1913 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1914 for (unsigned I = 0; I < NumOperands; ++I) 1915 MainAltOps[I].push_back(getData(I, FirstLane).V); 1916 1917 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1918 // Visit the lane on the right and then the lane on the left. 1919 for (int Direction : {+1, -1}) { 1920 int Lane = FirstLane + Direction * Distance; 1921 if (Lane < 0 || Lane >= (int)NumLanes) 1922 continue; 1923 int LastLane = Lane - Direction; 1924 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1925 "Out of bounds"); 1926 // Look for a good match for each operand. 1927 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1928 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1929 Optional<unsigned> BestIdx = getBestOperand( 1930 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1931 // By not selecting a value, we allow the operands that follow to 1932 // select a better matching value. We will get a non-null value in 1933 // the next run of getBestOperand(). 1934 if (BestIdx) { 1935 // Swap the current operand with the one returned by 1936 // getBestOperand(). 1937 swap(OpIdx, BestIdx.getValue(), Lane); 1938 } else { 1939 // We failed to find a best operand, set mode to 'Failed'. 1940 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1941 // Enable the second pass. 1942 StrategyFailed = true; 1943 } 1944 // Try to get the alternate opcode and follow it during analysis. 1945 if (MainAltOps[OpIdx].size() != 2) { 1946 OperandData &AltOp = getData(OpIdx, Lane); 1947 InstructionsState OpS = 1948 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1949 if (OpS.getOpcode() && OpS.isAltShuffle()) 1950 MainAltOps[OpIdx].push_back(AltOp.V); 1951 } 1952 } 1953 } 1954 } 1955 // Skip second pass if the strategy did not fail. 1956 if (!StrategyFailed) 1957 break; 1958 } 1959 } 1960 1961 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1962 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1963 switch (RMode) { 1964 case ReorderingMode::Load: 1965 return "Load"; 1966 case ReorderingMode::Opcode: 1967 return "Opcode"; 1968 case ReorderingMode::Constant: 1969 return "Constant"; 1970 case ReorderingMode::Splat: 1971 return "Splat"; 1972 case ReorderingMode::Failed: 1973 return "Failed"; 1974 } 1975 llvm_unreachable("Unimplemented Reordering Type"); 1976 } 1977 1978 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1979 raw_ostream &OS) { 1980 return OS << getModeStr(RMode); 1981 } 1982 1983 /// Debug print. 1984 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1985 printMode(RMode, dbgs()); 1986 } 1987 1988 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1989 return printMode(RMode, OS); 1990 } 1991 1992 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1993 const unsigned Indent = 2; 1994 unsigned Cnt = 0; 1995 for (const OperandDataVec &OpDataVec : OpsVec) { 1996 OS << "Operand " << Cnt++ << "\n"; 1997 for (const OperandData &OpData : OpDataVec) { 1998 OS.indent(Indent) << "{"; 1999 if (Value *V = OpData.V) 2000 OS << *V; 2001 else 2002 OS << "null"; 2003 OS << ", APO:" << OpData.APO << "}\n"; 2004 } 2005 OS << "\n"; 2006 } 2007 return OS; 2008 } 2009 2010 /// Debug print. 2011 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2012 #endif 2013 }; 2014 2015 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2016 /// for a pair which have highest score deemed to have best chance to form 2017 /// root of profitable tree to vectorize. Return None if no candidate scored 2018 /// above the LookAheadHeuristics::ScoreFail. 2019 /// \param Limit Lower limit of the cost, considered to be good enough score. 2020 Optional<int> 2021 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2022 int Limit = LookAheadHeuristics::ScoreFail) { 2023 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2024 RootLookAheadMaxDepth); 2025 int BestScore = Limit; 2026 Optional<int> Index = None; 2027 for (int I : seq<int>(0, Candidates.size())) { 2028 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2029 Candidates[I].second, 2030 /*U1=*/nullptr, /*U2=*/nullptr, 2031 /*Level=*/1, None); 2032 if (Score > BestScore) { 2033 BestScore = Score; 2034 Index = I; 2035 } 2036 } 2037 return Index; 2038 } 2039 2040 /// Checks if the instruction is marked for deletion. 2041 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2042 2043 /// Removes an instruction from its block and eventually deletes it. 2044 /// It's like Instruction::eraseFromParent() except that the actual deletion 2045 /// is delayed until BoUpSLP is destructed. 2046 void eraseInstruction(Instruction *I) { 2047 DeletedInstructions.insert(I); 2048 } 2049 2050 /// Checks if the instruction was already analyzed for being possible 2051 /// reduction root. 2052 bool isAnalyzedReductionRoot(Instruction *I) const { 2053 return AnalyzedReductionsRoots.count(I); 2054 } 2055 /// Register given instruction as already analyzed for being possible 2056 /// reduction root. 2057 void analyzedReductionRoot(Instruction *I) { 2058 AnalyzedReductionsRoots.insert(I); 2059 } 2060 /// Checks if the provided list of reduced values was checked already for 2061 /// vectorization. 2062 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2063 return AnalyzedReductionVals.contains(hash_value(VL)); 2064 } 2065 /// Adds the list of reduced values to list of already checked values for the 2066 /// vectorization. 2067 void analyzedReductionVals(ArrayRef<Value *> VL) { 2068 AnalyzedReductionVals.insert(hash_value(VL)); 2069 } 2070 /// Clear the list of the analyzed reduction root instructions. 2071 void clearReductionData() { 2072 AnalyzedReductionsRoots.clear(); 2073 AnalyzedReductionVals.clear(); 2074 } 2075 /// Checks if the given value is gathered in one of the nodes. 2076 bool isGathered(Value *V) const { 2077 return MustGather.contains(V); 2078 } 2079 2080 ~BoUpSLP(); 2081 2082 private: 2083 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2084 /// reordering (i.e. the operands can be reordered because they have only one 2085 /// user and reordarable). 2086 /// \param ReorderableGathers List of all gather nodes that require reordering 2087 /// (e.g., gather of extractlements or partially vectorizable loads). 2088 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2089 /// reordering, subset of \p NonVectorized. 2090 bool 2091 canReorderOperands(TreeEntry *UserTE, 2092 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2093 ArrayRef<TreeEntry *> ReorderableGathers, 2094 SmallVectorImpl<TreeEntry *> &GatherOps); 2095 2096 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2097 /// if any. If it is not vectorized (gather node), returns nullptr. 2098 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2099 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2100 TreeEntry *TE = nullptr; 2101 const auto *It = find_if(VL, [this, &TE](Value *V) { 2102 TE = getTreeEntry(V); 2103 return TE; 2104 }); 2105 if (It != VL.end() && TE->isSame(VL)) 2106 return TE; 2107 return nullptr; 2108 } 2109 2110 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2111 /// if any. If it is not vectorized (gather node), returns nullptr. 2112 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2113 unsigned OpIdx) const { 2114 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2115 const_cast<TreeEntry *>(UserTE), OpIdx); 2116 } 2117 2118 /// Checks if all users of \p I are the part of the vectorization tree. 2119 bool areAllUsersVectorized(Instruction *I, 2120 ArrayRef<Value *> VectorizedVals) const; 2121 2122 /// \returns the cost of the vectorizable entry. 2123 InstructionCost getEntryCost(const TreeEntry *E, 2124 ArrayRef<Value *> VectorizedVals); 2125 2126 /// This is the recursive part of buildTree. 2127 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2128 const EdgeInfo &EI); 2129 2130 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2131 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2132 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2133 /// returns false, setting \p CurrentOrder to either an empty vector or a 2134 /// non-identity permutation that allows to reuse extract instructions. 2135 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2136 SmallVectorImpl<unsigned> &CurrentOrder) const; 2137 2138 /// Vectorize a single entry in the tree. 2139 Value *vectorizeTree(TreeEntry *E); 2140 2141 /// Vectorize a single entry in the tree, starting in \p VL. 2142 Value *vectorizeTree(ArrayRef<Value *> VL); 2143 2144 /// Create a new vector from a list of scalar values. Produces a sequence 2145 /// which exploits values reused across lanes, and arranges the inserts 2146 /// for ease of later optimization. 2147 Value *createBuildVector(ArrayRef<Value *> VL); 2148 2149 /// \returns the scalarization cost for this type. Scalarization in this 2150 /// context means the creation of vectors from a group of scalars. If \p 2151 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2152 /// vector elements. 2153 InstructionCost getGatherCost(FixedVectorType *Ty, 2154 const APInt &ShuffledIndices, 2155 bool NeedToShuffle) const; 2156 2157 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2158 /// tree entries. 2159 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2160 /// previous tree entries. \p Mask is filled with the shuffle mask. 2161 Optional<TargetTransformInfo::ShuffleKind> 2162 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2163 SmallVectorImpl<const TreeEntry *> &Entries); 2164 2165 /// \returns the scalarization cost for this list of values. Assuming that 2166 /// this subtree gets vectorized, we may need to extract the values from the 2167 /// roots. This method calculates the cost of extracting the values. 2168 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2169 2170 /// Set the Builder insert point to one after the last instruction in 2171 /// the bundle 2172 void setInsertPointAfterBundle(const TreeEntry *E); 2173 2174 /// \returns a vector from a collection of scalars in \p VL. 2175 Value *gather(ArrayRef<Value *> VL); 2176 2177 /// \returns whether the VectorizableTree is fully vectorizable and will 2178 /// be beneficial even the tree height is tiny. 2179 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2180 2181 /// Reorder commutative or alt operands to get better probability of 2182 /// generating vectorized code. 2183 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2184 SmallVectorImpl<Value *> &Left, 2185 SmallVectorImpl<Value *> &Right, 2186 const DataLayout &DL, 2187 ScalarEvolution &SE, 2188 const BoUpSLP &R); 2189 2190 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2191 /// users of \p TE and collects the stores. It returns the map from the store 2192 /// pointers to the collected stores. 2193 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2194 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2195 2196 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2197 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2198 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2199 /// when compared to the sorted vector. 2200 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2201 OrdersType &ReorderIndices) const; 2202 2203 /// Iterates through the users of \p TE, looking for scalar stores that can be 2204 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2205 /// their order and builds an order index vector for each store bundle. It 2206 /// returns all these order vectors found. 2207 /// We run this after the tree has formed, otherwise we may come across user 2208 /// instructions that are not yet in the tree. 2209 SmallVector<OrdersType, 1> 2210 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2211 2212 struct TreeEntry { 2213 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2214 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2215 2216 /// \returns true if the scalars in VL are equal to this entry. 2217 bool isSame(ArrayRef<Value *> VL) const { 2218 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2219 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2220 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2221 return VL.size() == Mask.size() && 2222 std::equal(VL.begin(), VL.end(), Mask.begin(), 2223 [Scalars](Value *V, int Idx) { 2224 return (isa<UndefValue>(V) && 2225 Idx == UndefMaskElem) || 2226 (Idx != UndefMaskElem && V == Scalars[Idx]); 2227 }); 2228 }; 2229 if (!ReorderIndices.empty()) { 2230 // TODO: implement matching if the nodes are just reordered, still can 2231 // treat the vector as the same if the list of scalars matches VL 2232 // directly, without reordering. 2233 SmallVector<int> Mask; 2234 inversePermutation(ReorderIndices, Mask); 2235 if (VL.size() == Scalars.size()) 2236 return IsSame(Scalars, Mask); 2237 if (VL.size() == ReuseShuffleIndices.size()) { 2238 ::addMask(Mask, ReuseShuffleIndices); 2239 return IsSame(Scalars, Mask); 2240 } 2241 return false; 2242 } 2243 return IsSame(Scalars, ReuseShuffleIndices); 2244 } 2245 2246 /// \returns true if current entry has same operands as \p TE. 2247 bool hasEqualOperands(const TreeEntry &TE) const { 2248 if (TE.getNumOperands() != getNumOperands()) 2249 return false; 2250 SmallBitVector Used(getNumOperands()); 2251 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2252 unsigned PrevCount = Used.count(); 2253 for (unsigned K = 0; K < E; ++K) { 2254 if (Used.test(K)) 2255 continue; 2256 if (getOperand(K) == TE.getOperand(I)) { 2257 Used.set(K); 2258 break; 2259 } 2260 } 2261 // Check if we actually found the matching operand. 2262 if (PrevCount == Used.count()) 2263 return false; 2264 } 2265 return true; 2266 } 2267 2268 /// \return Final vectorization factor for the node. Defined by the total 2269 /// number of vectorized scalars, including those, used several times in the 2270 /// entry and counted in the \a ReuseShuffleIndices, if any. 2271 unsigned getVectorFactor() const { 2272 if (!ReuseShuffleIndices.empty()) 2273 return ReuseShuffleIndices.size(); 2274 return Scalars.size(); 2275 }; 2276 2277 /// A vector of scalars. 2278 ValueList Scalars; 2279 2280 /// The Scalars are vectorized into this value. It is initialized to Null. 2281 Value *VectorizedValue = nullptr; 2282 2283 /// Do we need to gather this sequence or vectorize it 2284 /// (either with vector instruction or with scatter/gather 2285 /// intrinsics for store/load)? 2286 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2287 EntryState State; 2288 2289 /// Does this sequence require some shuffling? 2290 SmallVector<int, 4> ReuseShuffleIndices; 2291 2292 /// Does this entry require reordering? 2293 SmallVector<unsigned, 4> ReorderIndices; 2294 2295 /// Points back to the VectorizableTree. 2296 /// 2297 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2298 /// to be a pointer and needs to be able to initialize the child iterator. 2299 /// Thus we need a reference back to the container to translate the indices 2300 /// to entries. 2301 VecTreeTy &Container; 2302 2303 /// The TreeEntry index containing the user of this entry. We can actually 2304 /// have multiple users so the data structure is not truly a tree. 2305 SmallVector<EdgeInfo, 1> UserTreeIndices; 2306 2307 /// The index of this treeEntry in VectorizableTree. 2308 int Idx = -1; 2309 2310 private: 2311 /// The operands of each instruction in each lane Operands[op_index][lane]. 2312 /// Note: This helps avoid the replication of the code that performs the 2313 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2314 SmallVector<ValueList, 2> Operands; 2315 2316 /// The main/alternate instruction. 2317 Instruction *MainOp = nullptr; 2318 Instruction *AltOp = nullptr; 2319 2320 public: 2321 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2322 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2323 if (Operands.size() < OpIdx + 1) 2324 Operands.resize(OpIdx + 1); 2325 assert(Operands[OpIdx].empty() && "Already resized?"); 2326 assert(OpVL.size() <= Scalars.size() && 2327 "Number of operands is greater than the number of scalars."); 2328 Operands[OpIdx].resize(OpVL.size()); 2329 copy(OpVL, Operands[OpIdx].begin()); 2330 } 2331 2332 /// Set the operands of this bundle in their original order. 2333 void setOperandsInOrder() { 2334 assert(Operands.empty() && "Already initialized?"); 2335 auto *I0 = cast<Instruction>(Scalars[0]); 2336 Operands.resize(I0->getNumOperands()); 2337 unsigned NumLanes = Scalars.size(); 2338 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2339 OpIdx != NumOperands; ++OpIdx) { 2340 Operands[OpIdx].resize(NumLanes); 2341 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2342 auto *I = cast<Instruction>(Scalars[Lane]); 2343 assert(I->getNumOperands() == NumOperands && 2344 "Expected same number of operands"); 2345 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2346 } 2347 } 2348 } 2349 2350 /// Reorders operands of the node to the given mask \p Mask. 2351 void reorderOperands(ArrayRef<int> Mask) { 2352 for (ValueList &Operand : Operands) 2353 reorderScalars(Operand, Mask); 2354 } 2355 2356 /// \returns the \p OpIdx operand of this TreeEntry. 2357 ValueList &getOperand(unsigned OpIdx) { 2358 assert(OpIdx < Operands.size() && "Off bounds"); 2359 return Operands[OpIdx]; 2360 } 2361 2362 /// \returns the \p OpIdx operand of this TreeEntry. 2363 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2364 assert(OpIdx < Operands.size() && "Off bounds"); 2365 return Operands[OpIdx]; 2366 } 2367 2368 /// \returns the number of operands. 2369 unsigned getNumOperands() const { return Operands.size(); } 2370 2371 /// \return the single \p OpIdx operand. 2372 Value *getSingleOperand(unsigned OpIdx) const { 2373 assert(OpIdx < Operands.size() && "Off bounds"); 2374 assert(!Operands[OpIdx].empty() && "No operand available"); 2375 return Operands[OpIdx][0]; 2376 } 2377 2378 /// Some of the instructions in the list have alternate opcodes. 2379 bool isAltShuffle() const { return MainOp != AltOp; } 2380 2381 bool isOpcodeOrAlt(Instruction *I) const { 2382 unsigned CheckedOpcode = I->getOpcode(); 2383 return (getOpcode() == CheckedOpcode || 2384 getAltOpcode() == CheckedOpcode); 2385 } 2386 2387 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2389 /// \p OpValue. 2390 Value *isOneOf(Value *Op) const { 2391 auto *I = dyn_cast<Instruction>(Op); 2392 if (I && isOpcodeOrAlt(I)) 2393 return Op; 2394 return MainOp; 2395 } 2396 2397 void setOperations(const InstructionsState &S) { 2398 MainOp = S.MainOp; 2399 AltOp = S.AltOp; 2400 } 2401 2402 Instruction *getMainOp() const { 2403 return MainOp; 2404 } 2405 2406 Instruction *getAltOp() const { 2407 return AltOp; 2408 } 2409 2410 /// The main/alternate opcodes for the list of instructions. 2411 unsigned getOpcode() const { 2412 return MainOp ? MainOp->getOpcode() : 0; 2413 } 2414 2415 unsigned getAltOpcode() const { 2416 return AltOp ? AltOp->getOpcode() : 0; 2417 } 2418 2419 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2420 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2421 int findLaneForValue(Value *V) const { 2422 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2423 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2424 if (!ReorderIndices.empty()) 2425 FoundLane = ReorderIndices[FoundLane]; 2426 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2427 if (!ReuseShuffleIndices.empty()) { 2428 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2429 find(ReuseShuffleIndices, FoundLane)); 2430 } 2431 return FoundLane; 2432 } 2433 2434 #ifndef NDEBUG 2435 /// Debug printer. 2436 LLVM_DUMP_METHOD void dump() const { 2437 dbgs() << Idx << ".\n"; 2438 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2439 dbgs() << "Operand " << OpI << ":\n"; 2440 for (const Value *V : Operands[OpI]) 2441 dbgs().indent(2) << *V << "\n"; 2442 } 2443 dbgs() << "Scalars: \n"; 2444 for (Value *V : Scalars) 2445 dbgs().indent(2) << *V << "\n"; 2446 dbgs() << "State: "; 2447 switch (State) { 2448 case Vectorize: 2449 dbgs() << "Vectorize\n"; 2450 break; 2451 case ScatterVectorize: 2452 dbgs() << "ScatterVectorize\n"; 2453 break; 2454 case NeedToGather: 2455 dbgs() << "NeedToGather\n"; 2456 break; 2457 } 2458 dbgs() << "MainOp: "; 2459 if (MainOp) 2460 dbgs() << *MainOp << "\n"; 2461 else 2462 dbgs() << "NULL\n"; 2463 dbgs() << "AltOp: "; 2464 if (AltOp) 2465 dbgs() << *AltOp << "\n"; 2466 else 2467 dbgs() << "NULL\n"; 2468 dbgs() << "VectorizedValue: "; 2469 if (VectorizedValue) 2470 dbgs() << *VectorizedValue << "\n"; 2471 else 2472 dbgs() << "NULL\n"; 2473 dbgs() << "ReuseShuffleIndices: "; 2474 if (ReuseShuffleIndices.empty()) 2475 dbgs() << "Empty"; 2476 else 2477 for (int ReuseIdx : ReuseShuffleIndices) 2478 dbgs() << ReuseIdx << ", "; 2479 dbgs() << "\n"; 2480 dbgs() << "ReorderIndices: "; 2481 for (unsigned ReorderIdx : ReorderIndices) 2482 dbgs() << ReorderIdx << ", "; 2483 dbgs() << "\n"; 2484 dbgs() << "UserTreeIndices: "; 2485 for (const auto &EInfo : UserTreeIndices) 2486 dbgs() << EInfo << ", "; 2487 dbgs() << "\n"; 2488 } 2489 #endif 2490 }; 2491 2492 #ifndef NDEBUG 2493 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2494 InstructionCost VecCost, 2495 InstructionCost ScalarCost) const { 2496 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2497 dbgs() << "SLP: Costs:\n"; 2498 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2499 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2500 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2501 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2502 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2503 } 2504 #endif 2505 2506 /// Create a new VectorizableTree entry. 2507 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2508 const InstructionsState &S, 2509 const EdgeInfo &UserTreeIdx, 2510 ArrayRef<int> ReuseShuffleIndices = None, 2511 ArrayRef<unsigned> ReorderIndices = None) { 2512 TreeEntry::EntryState EntryState = 2513 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2514 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2515 ReuseShuffleIndices, ReorderIndices); 2516 } 2517 2518 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2519 TreeEntry::EntryState EntryState, 2520 Optional<ScheduleData *> Bundle, 2521 const InstructionsState &S, 2522 const EdgeInfo &UserTreeIdx, 2523 ArrayRef<int> ReuseShuffleIndices = None, 2524 ArrayRef<unsigned> ReorderIndices = None) { 2525 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2526 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2527 "Need to vectorize gather entry?"); 2528 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2529 TreeEntry *Last = VectorizableTree.back().get(); 2530 Last->Idx = VectorizableTree.size() - 1; 2531 Last->State = EntryState; 2532 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2533 ReuseShuffleIndices.end()); 2534 if (ReorderIndices.empty()) { 2535 Last->Scalars.assign(VL.begin(), VL.end()); 2536 Last->setOperations(S); 2537 } else { 2538 // Reorder scalars and build final mask. 2539 Last->Scalars.assign(VL.size(), nullptr); 2540 transform(ReorderIndices, Last->Scalars.begin(), 2541 [VL](unsigned Idx) -> Value * { 2542 if (Idx >= VL.size()) 2543 return UndefValue::get(VL.front()->getType()); 2544 return VL[Idx]; 2545 }); 2546 InstructionsState S = getSameOpcode(Last->Scalars); 2547 Last->setOperations(S); 2548 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2549 } 2550 if (Last->State != TreeEntry::NeedToGather) { 2551 for (Value *V : VL) { 2552 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2553 ScalarToTreeEntry[V] = Last; 2554 } 2555 // Update the scheduler bundle to point to this TreeEntry. 2556 ScheduleData *BundleMember = Bundle.getValue(); 2557 assert((BundleMember || isa<PHINode>(S.MainOp) || 2558 isVectorLikeInstWithConstOps(S.MainOp) || 2559 doesNotNeedToSchedule(VL)) && 2560 "Bundle and VL out of sync"); 2561 if (BundleMember) { 2562 for (Value *V : VL) { 2563 if (doesNotNeedToBeScheduled(V)) 2564 continue; 2565 assert(BundleMember && "Unexpected end of bundle."); 2566 BundleMember->TE = Last; 2567 BundleMember = BundleMember->NextInBundle; 2568 } 2569 } 2570 assert(!BundleMember && "Bundle and VL out of sync"); 2571 } else { 2572 MustGather.insert(VL.begin(), VL.end()); 2573 } 2574 2575 if (UserTreeIdx.UserTE) 2576 Last->UserTreeIndices.push_back(UserTreeIdx); 2577 2578 return Last; 2579 } 2580 2581 /// -- Vectorization State -- 2582 /// Holds all of the tree entries. 2583 TreeEntry::VecTreeTy VectorizableTree; 2584 2585 #ifndef NDEBUG 2586 /// Debug printer. 2587 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2588 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2589 VectorizableTree[Id]->dump(); 2590 dbgs() << "\n"; 2591 } 2592 } 2593 #endif 2594 2595 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2596 2597 const TreeEntry *getTreeEntry(Value *V) const { 2598 return ScalarToTreeEntry.lookup(V); 2599 } 2600 2601 /// Maps a specific scalar to its tree entry. 2602 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2603 2604 /// Maps a value to the proposed vectorizable size. 2605 SmallDenseMap<Value *, unsigned> InstrElementSize; 2606 2607 /// A list of scalars that we found that we need to keep as scalars. 2608 ValueSet MustGather; 2609 2610 /// This POD struct describes one external user in the vectorized tree. 2611 struct ExternalUser { 2612 ExternalUser(Value *S, llvm::User *U, int L) 2613 : Scalar(S), User(U), Lane(L) {} 2614 2615 // Which scalar in our function. 2616 Value *Scalar; 2617 2618 // Which user that uses the scalar. 2619 llvm::User *User; 2620 2621 // Which lane does the scalar belong to. 2622 int Lane; 2623 }; 2624 using UserList = SmallVector<ExternalUser, 16>; 2625 2626 /// Checks if two instructions may access the same memory. 2627 /// 2628 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2629 /// is invariant in the calling loop. 2630 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2631 Instruction *Inst2) { 2632 // First check if the result is already in the cache. 2633 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2634 Optional<bool> &result = AliasCache[key]; 2635 if (result.hasValue()) { 2636 return result.getValue(); 2637 } 2638 bool aliased = true; 2639 if (Loc1.Ptr && isSimple(Inst1)) 2640 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2641 // Store the result in the cache. 2642 result = aliased; 2643 return aliased; 2644 } 2645 2646 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2647 2648 /// Cache for alias results. 2649 /// TODO: consider moving this to the AliasAnalysis itself. 2650 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2651 2652 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2653 // globally through SLP because we don't perform any action which 2654 // invalidates capture results. 2655 BatchAAResults BatchAA; 2656 2657 /// Temporary store for deleted instructions. Instructions will be deleted 2658 /// eventually when the BoUpSLP is destructed. The deferral is required to 2659 /// ensure that there are no incorrect collisions in the AliasCache, which 2660 /// can happen if a new instruction is allocated at the same address as a 2661 /// previously deleted instruction. 2662 DenseSet<Instruction *> DeletedInstructions; 2663 2664 /// Set of the instruction, being analyzed already for reductions. 2665 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2666 2667 /// Set of hashes for the list of reduction values already being analyzed. 2668 DenseSet<size_t> AnalyzedReductionVals; 2669 2670 /// A list of values that need to extracted out of the tree. 2671 /// This list holds pairs of (Internal Scalar : External User). External User 2672 /// can be nullptr, it means that this Internal Scalar will be used later, 2673 /// after vectorization. 2674 UserList ExternalUses; 2675 2676 /// Values used only by @llvm.assume calls. 2677 SmallPtrSet<const Value *, 32> EphValues; 2678 2679 /// Holds all of the instructions that we gathered. 2680 SetVector<Instruction *> GatherShuffleSeq; 2681 2682 /// A list of blocks that we are going to CSE. 2683 SetVector<BasicBlock *> CSEBlocks; 2684 2685 /// Contains all scheduling relevant data for an instruction. 2686 /// A ScheduleData either represents a single instruction or a member of an 2687 /// instruction bundle (= a group of instructions which is combined into a 2688 /// vector instruction). 2689 struct ScheduleData { 2690 // The initial value for the dependency counters. It means that the 2691 // dependencies are not calculated yet. 2692 enum { InvalidDeps = -1 }; 2693 2694 ScheduleData() = default; 2695 2696 void init(int BlockSchedulingRegionID, Value *OpVal) { 2697 FirstInBundle = this; 2698 NextInBundle = nullptr; 2699 NextLoadStore = nullptr; 2700 IsScheduled = false; 2701 SchedulingRegionID = BlockSchedulingRegionID; 2702 clearDependencies(); 2703 OpValue = OpVal; 2704 TE = nullptr; 2705 } 2706 2707 /// Verify basic self consistency properties 2708 void verify() { 2709 if (hasValidDependencies()) { 2710 assert(UnscheduledDeps <= Dependencies && "invariant"); 2711 } else { 2712 assert(UnscheduledDeps == Dependencies && "invariant"); 2713 } 2714 2715 if (IsScheduled) { 2716 assert(isSchedulingEntity() && 2717 "unexpected scheduled state"); 2718 for (const ScheduleData *BundleMember = this; BundleMember; 2719 BundleMember = BundleMember->NextInBundle) { 2720 assert(BundleMember->hasValidDependencies() && 2721 BundleMember->UnscheduledDeps == 0 && 2722 "unexpected scheduled state"); 2723 assert((BundleMember == this || !BundleMember->IsScheduled) && 2724 "only bundle is marked scheduled"); 2725 } 2726 } 2727 2728 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2729 "all bundle members must be in same basic block"); 2730 } 2731 2732 /// Returns true if the dependency information has been calculated. 2733 /// Note that depenendency validity can vary between instructions within 2734 /// a single bundle. 2735 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2736 2737 /// Returns true for single instructions and for bundle representatives 2738 /// (= the head of a bundle). 2739 bool isSchedulingEntity() const { return FirstInBundle == this; } 2740 2741 /// Returns true if it represents an instruction bundle and not only a 2742 /// single instruction. 2743 bool isPartOfBundle() const { 2744 return NextInBundle != nullptr || FirstInBundle != this || TE; 2745 } 2746 2747 /// Returns true if it is ready for scheduling, i.e. it has no more 2748 /// unscheduled depending instructions/bundles. 2749 bool isReady() const { 2750 assert(isSchedulingEntity() && 2751 "can't consider non-scheduling entity for ready list"); 2752 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2753 } 2754 2755 /// Modifies the number of unscheduled dependencies for this instruction, 2756 /// and returns the number of remaining dependencies for the containing 2757 /// bundle. 2758 int incrementUnscheduledDeps(int Incr) { 2759 assert(hasValidDependencies() && 2760 "increment of unscheduled deps would be meaningless"); 2761 UnscheduledDeps += Incr; 2762 return FirstInBundle->unscheduledDepsInBundle(); 2763 } 2764 2765 /// Sets the number of unscheduled dependencies to the number of 2766 /// dependencies. 2767 void resetUnscheduledDeps() { 2768 UnscheduledDeps = Dependencies; 2769 } 2770 2771 /// Clears all dependency information. 2772 void clearDependencies() { 2773 Dependencies = InvalidDeps; 2774 resetUnscheduledDeps(); 2775 MemoryDependencies.clear(); 2776 ControlDependencies.clear(); 2777 } 2778 2779 int unscheduledDepsInBundle() const { 2780 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2781 int Sum = 0; 2782 for (const ScheduleData *BundleMember = this; BundleMember; 2783 BundleMember = BundleMember->NextInBundle) { 2784 if (BundleMember->UnscheduledDeps == InvalidDeps) 2785 return InvalidDeps; 2786 Sum += BundleMember->UnscheduledDeps; 2787 } 2788 return Sum; 2789 } 2790 2791 void dump(raw_ostream &os) const { 2792 if (!isSchedulingEntity()) { 2793 os << "/ " << *Inst; 2794 } else if (NextInBundle) { 2795 os << '[' << *Inst; 2796 ScheduleData *SD = NextInBundle; 2797 while (SD) { 2798 os << ';' << *SD->Inst; 2799 SD = SD->NextInBundle; 2800 } 2801 os << ']'; 2802 } else { 2803 os << *Inst; 2804 } 2805 } 2806 2807 Instruction *Inst = nullptr; 2808 2809 /// Opcode of the current instruction in the schedule data. 2810 Value *OpValue = nullptr; 2811 2812 /// The TreeEntry that this instruction corresponds to. 2813 TreeEntry *TE = nullptr; 2814 2815 /// Points to the head in an instruction bundle (and always to this for 2816 /// single instructions). 2817 ScheduleData *FirstInBundle = nullptr; 2818 2819 /// Single linked list of all instructions in a bundle. Null if it is a 2820 /// single instruction. 2821 ScheduleData *NextInBundle = nullptr; 2822 2823 /// Single linked list of all memory instructions (e.g. load, store, call) 2824 /// in the block - until the end of the scheduling region. 2825 ScheduleData *NextLoadStore = nullptr; 2826 2827 /// The dependent memory instructions. 2828 /// This list is derived on demand in calculateDependencies(). 2829 SmallVector<ScheduleData *, 4> MemoryDependencies; 2830 2831 /// List of instructions which this instruction could be control dependent 2832 /// on. Allowing such nodes to be scheduled below this one could introduce 2833 /// a runtime fault which didn't exist in the original program. 2834 /// ex: this is a load or udiv following a readonly call which inf loops 2835 SmallVector<ScheduleData *, 4> ControlDependencies; 2836 2837 /// This ScheduleData is in the current scheduling region if this matches 2838 /// the current SchedulingRegionID of BlockScheduling. 2839 int SchedulingRegionID = 0; 2840 2841 /// Used for getting a "good" final ordering of instructions. 2842 int SchedulingPriority = 0; 2843 2844 /// The number of dependencies. Constitutes of the number of users of the 2845 /// instruction plus the number of dependent memory instructions (if any). 2846 /// This value is calculated on demand. 2847 /// If InvalidDeps, the number of dependencies is not calculated yet. 2848 int Dependencies = InvalidDeps; 2849 2850 /// The number of dependencies minus the number of dependencies of scheduled 2851 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2852 /// for scheduling. 2853 /// Note that this is negative as long as Dependencies is not calculated. 2854 int UnscheduledDeps = InvalidDeps; 2855 2856 /// True if this instruction is scheduled (or considered as scheduled in the 2857 /// dry-run). 2858 bool IsScheduled = false; 2859 }; 2860 2861 #ifndef NDEBUG 2862 friend inline raw_ostream &operator<<(raw_ostream &os, 2863 const BoUpSLP::ScheduleData &SD) { 2864 SD.dump(os); 2865 return os; 2866 } 2867 #endif 2868 2869 friend struct GraphTraits<BoUpSLP *>; 2870 friend struct DOTGraphTraits<BoUpSLP *>; 2871 2872 /// Contains all scheduling data for a basic block. 2873 /// It does not schedules instructions, which are not memory read/write 2874 /// instructions and their operands are either constants, or arguments, or 2875 /// phis, or instructions from others blocks, or their users are phis or from 2876 /// the other blocks. The resulting vector instructions can be placed at the 2877 /// beginning of the basic block without scheduling (if operands does not need 2878 /// to be scheduled) or at the end of the block (if users are outside of the 2879 /// block). It allows to save some compile time and memory used by the 2880 /// compiler. 2881 /// ScheduleData is assigned for each instruction in between the boundaries of 2882 /// the tree entry, even for those, which are not part of the graph. It is 2883 /// required to correctly follow the dependencies between the instructions and 2884 /// their correct scheduling. The ScheduleData is not allocated for the 2885 /// instructions, which do not require scheduling, like phis, nodes with 2886 /// extractelements/insertelements only or nodes with instructions, with 2887 /// uses/operands outside of the block. 2888 struct BlockScheduling { 2889 BlockScheduling(BasicBlock *BB) 2890 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2891 2892 void clear() { 2893 ReadyInsts.clear(); 2894 ScheduleStart = nullptr; 2895 ScheduleEnd = nullptr; 2896 FirstLoadStoreInRegion = nullptr; 2897 LastLoadStoreInRegion = nullptr; 2898 RegionHasStackSave = false; 2899 2900 // Reduce the maximum schedule region size by the size of the 2901 // previous scheduling run. 2902 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2903 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2904 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2905 ScheduleRegionSize = 0; 2906 2907 // Make a new scheduling region, i.e. all existing ScheduleData is not 2908 // in the new region yet. 2909 ++SchedulingRegionID; 2910 } 2911 2912 ScheduleData *getScheduleData(Instruction *I) { 2913 if (BB != I->getParent()) 2914 // Avoid lookup if can't possibly be in map. 2915 return nullptr; 2916 ScheduleData *SD = ScheduleDataMap.lookup(I); 2917 if (SD && isInSchedulingRegion(SD)) 2918 return SD; 2919 return nullptr; 2920 } 2921 2922 ScheduleData *getScheduleData(Value *V) { 2923 if (auto *I = dyn_cast<Instruction>(V)) 2924 return getScheduleData(I); 2925 return nullptr; 2926 } 2927 2928 ScheduleData *getScheduleData(Value *V, Value *Key) { 2929 if (V == Key) 2930 return getScheduleData(V); 2931 auto I = ExtraScheduleDataMap.find(V); 2932 if (I != ExtraScheduleDataMap.end()) { 2933 ScheduleData *SD = I->second.lookup(Key); 2934 if (SD && isInSchedulingRegion(SD)) 2935 return SD; 2936 } 2937 return nullptr; 2938 } 2939 2940 bool isInSchedulingRegion(ScheduleData *SD) const { 2941 return SD->SchedulingRegionID == SchedulingRegionID; 2942 } 2943 2944 /// Marks an instruction as scheduled and puts all dependent ready 2945 /// instructions into the ready-list. 2946 template <typename ReadyListType> 2947 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2948 SD->IsScheduled = true; 2949 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2950 2951 for (ScheduleData *BundleMember = SD; BundleMember; 2952 BundleMember = BundleMember->NextInBundle) { 2953 if (BundleMember->Inst != BundleMember->OpValue) 2954 continue; 2955 2956 // Handle the def-use chain dependencies. 2957 2958 // Decrement the unscheduled counter and insert to ready list if ready. 2959 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2960 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2961 if (OpDef && OpDef->hasValidDependencies() && 2962 OpDef->incrementUnscheduledDeps(-1) == 0) { 2963 // There are no more unscheduled dependencies after 2964 // decrementing, so we can put the dependent instruction 2965 // into the ready list. 2966 ScheduleData *DepBundle = OpDef->FirstInBundle; 2967 assert(!DepBundle->IsScheduled && 2968 "already scheduled bundle gets ready"); 2969 ReadyList.insert(DepBundle); 2970 LLVM_DEBUG(dbgs() 2971 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2972 } 2973 }); 2974 }; 2975 2976 // If BundleMember is a vector bundle, its operands may have been 2977 // reordered during buildTree(). We therefore need to get its operands 2978 // through the TreeEntry. 2979 if (TreeEntry *TE = BundleMember->TE) { 2980 // Need to search for the lane since the tree entry can be reordered. 2981 int Lane = std::distance(TE->Scalars.begin(), 2982 find(TE->Scalars, BundleMember->Inst)); 2983 assert(Lane >= 0 && "Lane not set"); 2984 2985 // Since vectorization tree is being built recursively this assertion 2986 // ensures that the tree entry has all operands set before reaching 2987 // this code. Couple of exceptions known at the moment are extracts 2988 // where their second (immediate) operand is not added. Since 2989 // immediates do not affect scheduler behavior this is considered 2990 // okay. 2991 auto *In = BundleMember->Inst; 2992 assert(In && 2993 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2994 In->getNumOperands() == TE->getNumOperands()) && 2995 "Missed TreeEntry operands?"); 2996 (void)In; // fake use to avoid build failure when assertions disabled 2997 2998 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2999 OpIdx != NumOperands; ++OpIdx) 3000 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3001 DecrUnsched(I); 3002 } else { 3003 // If BundleMember is a stand-alone instruction, no operand reordering 3004 // has taken place, so we directly access its operands. 3005 for (Use &U : BundleMember->Inst->operands()) 3006 if (auto *I = dyn_cast<Instruction>(U.get())) 3007 DecrUnsched(I); 3008 } 3009 // Handle the memory dependencies. 3010 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3011 if (MemoryDepSD->hasValidDependencies() && 3012 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3013 // There are no more unscheduled dependencies after decrementing, 3014 // so we can put the dependent instruction into the ready list. 3015 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3016 assert(!DepBundle->IsScheduled && 3017 "already scheduled bundle gets ready"); 3018 ReadyList.insert(DepBundle); 3019 LLVM_DEBUG(dbgs() 3020 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3021 } 3022 } 3023 // Handle the control dependencies. 3024 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3025 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3026 // There are no more unscheduled dependencies after decrementing, 3027 // so we can put the dependent instruction into the ready list. 3028 ScheduleData *DepBundle = DepSD->FirstInBundle; 3029 assert(!DepBundle->IsScheduled && 3030 "already scheduled bundle gets ready"); 3031 ReadyList.insert(DepBundle); 3032 LLVM_DEBUG(dbgs() 3033 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3034 } 3035 } 3036 3037 } 3038 } 3039 3040 /// Verify basic self consistency properties of the data structure. 3041 void verify() { 3042 if (!ScheduleStart) 3043 return; 3044 3045 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3046 ScheduleStart->comesBefore(ScheduleEnd) && 3047 "Not a valid scheduling region?"); 3048 3049 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3050 auto *SD = getScheduleData(I); 3051 if (!SD) 3052 continue; 3053 assert(isInSchedulingRegion(SD) && 3054 "primary schedule data not in window?"); 3055 assert(isInSchedulingRegion(SD->FirstInBundle) && 3056 "entire bundle in window!"); 3057 (void)SD; 3058 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3059 } 3060 3061 for (auto *SD : ReadyInsts) { 3062 assert(SD->isSchedulingEntity() && SD->isReady() && 3063 "item in ready list not ready?"); 3064 (void)SD; 3065 } 3066 } 3067 3068 void doForAllOpcodes(Value *V, 3069 function_ref<void(ScheduleData *SD)> Action) { 3070 if (ScheduleData *SD = getScheduleData(V)) 3071 Action(SD); 3072 auto I = ExtraScheduleDataMap.find(V); 3073 if (I != ExtraScheduleDataMap.end()) 3074 for (auto &P : I->second) 3075 if (isInSchedulingRegion(P.second)) 3076 Action(P.second); 3077 } 3078 3079 /// Put all instructions into the ReadyList which are ready for scheduling. 3080 template <typename ReadyListType> 3081 void initialFillReadyList(ReadyListType &ReadyList) { 3082 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3083 doForAllOpcodes(I, [&](ScheduleData *SD) { 3084 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3085 SD->isReady()) { 3086 ReadyList.insert(SD); 3087 LLVM_DEBUG(dbgs() 3088 << "SLP: initially in ready list: " << *SD << "\n"); 3089 } 3090 }); 3091 } 3092 } 3093 3094 /// Build a bundle from the ScheduleData nodes corresponding to the 3095 /// scalar instruction for each lane. 3096 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3097 3098 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3099 /// cyclic dependencies. This is only a dry-run, no instructions are 3100 /// actually moved at this stage. 3101 /// \returns the scheduling bundle. The returned Optional value is non-None 3102 /// if \p VL is allowed to be scheduled. 3103 Optional<ScheduleData *> 3104 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3105 const InstructionsState &S); 3106 3107 /// Un-bundles a group of instructions. 3108 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3109 3110 /// Allocates schedule data chunk. 3111 ScheduleData *allocateScheduleDataChunks(); 3112 3113 /// Extends the scheduling region so that V is inside the region. 3114 /// \returns true if the region size is within the limit. 3115 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3116 3117 /// Initialize the ScheduleData structures for new instructions in the 3118 /// scheduling region. 3119 void initScheduleData(Instruction *FromI, Instruction *ToI, 3120 ScheduleData *PrevLoadStore, 3121 ScheduleData *NextLoadStore); 3122 3123 /// Updates the dependency information of a bundle and of all instructions/ 3124 /// bundles which depend on the original bundle. 3125 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3126 BoUpSLP *SLP); 3127 3128 /// Sets all instruction in the scheduling region to un-scheduled. 3129 void resetSchedule(); 3130 3131 BasicBlock *BB; 3132 3133 /// Simple memory allocation for ScheduleData. 3134 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3135 3136 /// The size of a ScheduleData array in ScheduleDataChunks. 3137 int ChunkSize; 3138 3139 /// The allocator position in the current chunk, which is the last entry 3140 /// of ScheduleDataChunks. 3141 int ChunkPos; 3142 3143 /// Attaches ScheduleData to Instruction. 3144 /// Note that the mapping survives during all vectorization iterations, i.e. 3145 /// ScheduleData structures are recycled. 3146 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3147 3148 /// Attaches ScheduleData to Instruction with the leading key. 3149 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3150 ExtraScheduleDataMap; 3151 3152 /// The ready-list for scheduling (only used for the dry-run). 3153 SetVector<ScheduleData *> ReadyInsts; 3154 3155 /// The first instruction of the scheduling region. 3156 Instruction *ScheduleStart = nullptr; 3157 3158 /// The first instruction _after_ the scheduling region. 3159 Instruction *ScheduleEnd = nullptr; 3160 3161 /// The first memory accessing instruction in the scheduling region 3162 /// (can be null). 3163 ScheduleData *FirstLoadStoreInRegion = nullptr; 3164 3165 /// The last memory accessing instruction in the scheduling region 3166 /// (can be null). 3167 ScheduleData *LastLoadStoreInRegion = nullptr; 3168 3169 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3170 /// region? Used to optimize the dependence calculation for the 3171 /// common case where there isn't. 3172 bool RegionHasStackSave = false; 3173 3174 /// The current size of the scheduling region. 3175 int ScheduleRegionSize = 0; 3176 3177 /// The maximum size allowed for the scheduling region. 3178 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3179 3180 /// The ID of the scheduling region. For a new vectorization iteration this 3181 /// is incremented which "removes" all ScheduleData from the region. 3182 /// Make sure that the initial SchedulingRegionID is greater than the 3183 /// initial SchedulingRegionID in ScheduleData (which is 0). 3184 int SchedulingRegionID = 1; 3185 }; 3186 3187 /// Attaches the BlockScheduling structures to basic blocks. 3188 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3189 3190 /// Performs the "real" scheduling. Done before vectorization is actually 3191 /// performed in a basic block. 3192 void scheduleBlock(BlockScheduling *BS); 3193 3194 /// List of users to ignore during scheduling and that don't need extracting. 3195 ArrayRef<Value *> UserIgnoreList; 3196 3197 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3198 /// sorted SmallVectors of unsigned. 3199 struct OrdersTypeDenseMapInfo { 3200 static OrdersType getEmptyKey() { 3201 OrdersType V; 3202 V.push_back(~1U); 3203 return V; 3204 } 3205 3206 static OrdersType getTombstoneKey() { 3207 OrdersType V; 3208 V.push_back(~2U); 3209 return V; 3210 } 3211 3212 static unsigned getHashValue(const OrdersType &V) { 3213 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3214 } 3215 3216 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3217 return LHS == RHS; 3218 } 3219 }; 3220 3221 // Analysis and block reference. 3222 Function *F; 3223 ScalarEvolution *SE; 3224 TargetTransformInfo *TTI; 3225 TargetLibraryInfo *TLI; 3226 LoopInfo *LI; 3227 DominatorTree *DT; 3228 AssumptionCache *AC; 3229 DemandedBits *DB; 3230 const DataLayout *DL; 3231 OptimizationRemarkEmitter *ORE; 3232 3233 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3234 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3235 3236 /// Instruction builder to construct the vectorized tree. 3237 IRBuilder<> Builder; 3238 3239 /// A map of scalar integer values to the smallest bit width with which they 3240 /// can legally be represented. The values map to (width, signed) pairs, 3241 /// where "width" indicates the minimum bit width and "signed" is True if the 3242 /// value must be signed-extended, rather than zero-extended, back to its 3243 /// original width. 3244 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3245 }; 3246 3247 } // end namespace slpvectorizer 3248 3249 template <> struct GraphTraits<BoUpSLP *> { 3250 using TreeEntry = BoUpSLP::TreeEntry; 3251 3252 /// NodeRef has to be a pointer per the GraphWriter. 3253 using NodeRef = TreeEntry *; 3254 3255 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3256 3257 /// Add the VectorizableTree to the index iterator to be able to return 3258 /// TreeEntry pointers. 3259 struct ChildIteratorType 3260 : public iterator_adaptor_base< 3261 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3262 ContainerTy &VectorizableTree; 3263 3264 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3265 ContainerTy &VT) 3266 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3267 3268 NodeRef operator*() { return I->UserTE; } 3269 }; 3270 3271 static NodeRef getEntryNode(BoUpSLP &R) { 3272 return R.VectorizableTree[0].get(); 3273 } 3274 3275 static ChildIteratorType child_begin(NodeRef N) { 3276 return {N->UserTreeIndices.begin(), N->Container}; 3277 } 3278 3279 static ChildIteratorType child_end(NodeRef N) { 3280 return {N->UserTreeIndices.end(), N->Container}; 3281 } 3282 3283 /// For the node iterator we just need to turn the TreeEntry iterator into a 3284 /// TreeEntry* iterator so that it dereferences to NodeRef. 3285 class nodes_iterator { 3286 using ItTy = ContainerTy::iterator; 3287 ItTy It; 3288 3289 public: 3290 nodes_iterator(const ItTy &It2) : It(It2) {} 3291 NodeRef operator*() { return It->get(); } 3292 nodes_iterator operator++() { 3293 ++It; 3294 return *this; 3295 } 3296 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3297 }; 3298 3299 static nodes_iterator nodes_begin(BoUpSLP *R) { 3300 return nodes_iterator(R->VectorizableTree.begin()); 3301 } 3302 3303 static nodes_iterator nodes_end(BoUpSLP *R) { 3304 return nodes_iterator(R->VectorizableTree.end()); 3305 } 3306 3307 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3308 }; 3309 3310 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3311 using TreeEntry = BoUpSLP::TreeEntry; 3312 3313 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3314 3315 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3316 std::string Str; 3317 raw_string_ostream OS(Str); 3318 if (isSplat(Entry->Scalars)) 3319 OS << "<splat> "; 3320 for (auto V : Entry->Scalars) { 3321 OS << *V; 3322 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3323 return EU.Scalar == V; 3324 })) 3325 OS << " <extract>"; 3326 OS << "\n"; 3327 } 3328 return Str; 3329 } 3330 3331 static std::string getNodeAttributes(const TreeEntry *Entry, 3332 const BoUpSLP *) { 3333 if (Entry->State == TreeEntry::NeedToGather) 3334 return "color=red"; 3335 return ""; 3336 } 3337 }; 3338 3339 } // end namespace llvm 3340 3341 BoUpSLP::~BoUpSLP() { 3342 SmallVector<WeakTrackingVH> DeadInsts; 3343 for (auto *I : DeletedInstructions) { 3344 for (Use &U : I->operands()) { 3345 auto *Op = dyn_cast<Instruction>(U.get()); 3346 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3347 wouldInstructionBeTriviallyDead(Op, TLI)) 3348 DeadInsts.emplace_back(Op); 3349 } 3350 I->dropAllReferences(); 3351 } 3352 for (auto *I : DeletedInstructions) { 3353 assert(I->use_empty() && 3354 "trying to erase instruction with users."); 3355 I->eraseFromParent(); 3356 } 3357 3358 // Cleanup any dead scalar code feeding the vectorized instructions 3359 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3360 3361 #ifdef EXPENSIVE_CHECKS 3362 // If we could guarantee that this call is not extremely slow, we could 3363 // remove the ifdef limitation (see PR47712). 3364 assert(!verifyFunction(*F, &dbgs())); 3365 #endif 3366 } 3367 3368 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3369 /// contains original mask for the scalars reused in the node. Procedure 3370 /// transform this mask in accordance with the given \p Mask. 3371 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3372 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3373 "Expected non-empty mask."); 3374 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3375 Prev.swap(Reuses); 3376 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3377 if (Mask[I] != UndefMaskElem) 3378 Reuses[Mask[I]] = Prev[I]; 3379 } 3380 3381 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3382 /// the original order of the scalars. Procedure transforms the provided order 3383 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3384 /// identity order, \p Order is cleared. 3385 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3386 assert(!Mask.empty() && "Expected non-empty mask."); 3387 SmallVector<int> MaskOrder; 3388 if (Order.empty()) { 3389 MaskOrder.resize(Mask.size()); 3390 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3391 } else { 3392 inversePermutation(Order, MaskOrder); 3393 } 3394 reorderReuses(MaskOrder, Mask); 3395 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3396 Order.clear(); 3397 return; 3398 } 3399 Order.assign(Mask.size(), Mask.size()); 3400 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3401 if (MaskOrder[I] != UndefMaskElem) 3402 Order[MaskOrder[I]] = I; 3403 fixupOrderingIndices(Order); 3404 } 3405 3406 Optional<BoUpSLP::OrdersType> 3407 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3408 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3409 unsigned NumScalars = TE.Scalars.size(); 3410 OrdersType CurrentOrder(NumScalars, NumScalars); 3411 SmallVector<int> Positions; 3412 SmallBitVector UsedPositions(NumScalars); 3413 const TreeEntry *STE = nullptr; 3414 // Try to find all gathered scalars that are gets vectorized in other 3415 // vectorize node. Here we can have only one single tree vector node to 3416 // correctly identify order of the gathered scalars. 3417 for (unsigned I = 0; I < NumScalars; ++I) { 3418 Value *V = TE.Scalars[I]; 3419 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3420 continue; 3421 if (const auto *LocalSTE = getTreeEntry(V)) { 3422 if (!STE) 3423 STE = LocalSTE; 3424 else if (STE != LocalSTE) 3425 // Take the order only from the single vector node. 3426 return None; 3427 unsigned Lane = 3428 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3429 if (Lane >= NumScalars) 3430 return None; 3431 if (CurrentOrder[Lane] != NumScalars) { 3432 if (Lane != I) 3433 continue; 3434 UsedPositions.reset(CurrentOrder[Lane]); 3435 } 3436 // The partial identity (where only some elements of the gather node are 3437 // in the identity order) is good. 3438 CurrentOrder[Lane] = I; 3439 UsedPositions.set(I); 3440 } 3441 } 3442 // Need to keep the order if we have a vector entry and at least 2 scalars or 3443 // the vectorized entry has just 2 scalars. 3444 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3445 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3446 for (unsigned I = 0; I < NumScalars; ++I) 3447 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3448 return false; 3449 return true; 3450 }; 3451 if (IsIdentityOrder(CurrentOrder)) { 3452 CurrentOrder.clear(); 3453 return CurrentOrder; 3454 } 3455 auto *It = CurrentOrder.begin(); 3456 for (unsigned I = 0; I < NumScalars;) { 3457 if (UsedPositions.test(I)) { 3458 ++I; 3459 continue; 3460 } 3461 if (*It == NumScalars) { 3462 *It = I; 3463 ++I; 3464 } 3465 ++It; 3466 } 3467 return CurrentOrder; 3468 } 3469 return None; 3470 } 3471 3472 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3473 const DataLayout &DL, ScalarEvolution &SE, 3474 SmallVectorImpl<unsigned> &SortedIndices) { 3475 assert(llvm::all_of( 3476 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3477 "Expected list of pointer operands."); 3478 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3479 // Ptr into, sort and return the sorted indices with values next to one 3480 // another. 3481 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3482 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3483 3484 unsigned Cnt = 1; 3485 for (Value *Ptr : VL.drop_front()) { 3486 bool Found = any_of(Bases, [&](auto &Base) { 3487 Optional<int> Diff = 3488 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3489 /*StrictCheck=*/true); 3490 if (!Diff) 3491 return false; 3492 3493 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3494 return true; 3495 }); 3496 3497 if (!Found) { 3498 // If we haven't found enough to usefully cluster, return early. 3499 if (Bases.size() > VL.size() / 2 - 1) 3500 return false; 3501 3502 // Not found already - add a new Base 3503 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3504 } 3505 } 3506 3507 // For each of the bases sort the pointers by Offset and check if any of the 3508 // base become consecutively allocated. 3509 bool AnyConsecutive = false; 3510 for (auto &Base : Bases) { 3511 auto &Vec = Base.second; 3512 if (Vec.size() > 1) { 3513 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3514 const std::tuple<Value *, int, unsigned> &Y) { 3515 return std::get<1>(X) < std::get<1>(Y); 3516 }); 3517 int InitialOffset = std::get<1>(Vec[0]); 3518 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3519 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3520 }); 3521 } 3522 } 3523 3524 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3525 SortedIndices.clear(); 3526 if (!AnyConsecutive) 3527 return false; 3528 3529 for (auto &Base : Bases) { 3530 for (auto &T : Base.second) 3531 SortedIndices.push_back(std::get<2>(T)); 3532 } 3533 3534 assert(SortedIndices.size() == VL.size() && 3535 "Expected SortedIndices to be the size of VL"); 3536 return true; 3537 } 3538 3539 Optional<BoUpSLP::OrdersType> 3540 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3541 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3542 Type *ScalarTy = TE.Scalars[0]->getType(); 3543 3544 SmallVector<Value *> Ptrs; 3545 Ptrs.reserve(TE.Scalars.size()); 3546 for (Value *V : TE.Scalars) { 3547 auto *L = dyn_cast<LoadInst>(V); 3548 if (!L || !L->isSimple()) 3549 return None; 3550 Ptrs.push_back(L->getPointerOperand()); 3551 } 3552 3553 BoUpSLP::OrdersType Order; 3554 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3555 return Order; 3556 return None; 3557 } 3558 3559 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3560 bool TopToBottom) { 3561 // No need to reorder if need to shuffle reuses, still need to shuffle the 3562 // node. 3563 if (!TE.ReuseShuffleIndices.empty()) 3564 return None; 3565 if (TE.State == TreeEntry::Vectorize && 3566 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3567 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3568 !TE.isAltShuffle()) 3569 return TE.ReorderIndices; 3570 if (TE.State == TreeEntry::NeedToGather) { 3571 // TODO: add analysis of other gather nodes with extractelement 3572 // instructions and other values/instructions, not only undefs. 3573 if (((TE.getOpcode() == Instruction::ExtractElement && 3574 !TE.isAltShuffle()) || 3575 (all_of(TE.Scalars, 3576 [](Value *V) { 3577 return isa<UndefValue, ExtractElementInst>(V); 3578 }) && 3579 any_of(TE.Scalars, 3580 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3581 all_of(TE.Scalars, 3582 [](Value *V) { 3583 auto *EE = dyn_cast<ExtractElementInst>(V); 3584 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3585 }) && 3586 allSameType(TE.Scalars)) { 3587 // Check that gather of extractelements can be represented as 3588 // just a shuffle of a single vector. 3589 OrdersType CurrentOrder; 3590 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3591 if (Reuse || !CurrentOrder.empty()) { 3592 if (!CurrentOrder.empty()) 3593 fixupOrderingIndices(CurrentOrder); 3594 return CurrentOrder; 3595 } 3596 } 3597 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3598 return CurrentOrder; 3599 if (TE.Scalars.size() >= 4) 3600 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3601 return Order; 3602 } 3603 return None; 3604 } 3605 3606 void BoUpSLP::reorderTopToBottom() { 3607 // Maps VF to the graph nodes. 3608 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3609 // ExtractElement gather nodes which can be vectorized and need to handle 3610 // their ordering. 3611 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3612 3613 // Maps a TreeEntry to the reorder indices of external users. 3614 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3615 ExternalUserReorderMap; 3616 // Find all reorderable nodes with the given VF. 3617 // Currently the are vectorized stores,loads,extracts + some gathering of 3618 // extracts. 3619 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders, 3620 &ExternalUserReorderMap]( 3621 const std::unique_ptr<TreeEntry> &TE) { 3622 // Look for external users that will probably be vectorized. 3623 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3624 findExternalStoreUsersReorderIndices(TE.get()); 3625 if (!ExternalUserReorderIndices.empty()) { 3626 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3627 ExternalUserReorderMap.try_emplace(TE.get(), 3628 std::move(ExternalUserReorderIndices)); 3629 } 3630 3631 if (Optional<OrdersType> CurrentOrder = 3632 getReorderingData(*TE, /*TopToBottom=*/true)) { 3633 // Do not include ordering for nodes used in the alt opcode vectorization, 3634 // better to reorder them during bottom-to-top stage. If follow the order 3635 // here, it causes reordering of the whole graph though actually it is 3636 // profitable just to reorder the subgraph that starts from the alternate 3637 // opcode vectorization node. Such nodes already end-up with the shuffle 3638 // instruction and it is just enough to change this shuffle rather than 3639 // rotate the scalars for the whole graph. 3640 unsigned Cnt = 0; 3641 const TreeEntry *UserTE = TE.get(); 3642 while (UserTE && Cnt < RecursionMaxDepth) { 3643 if (UserTE->UserTreeIndices.size() != 1) 3644 break; 3645 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3646 return EI.UserTE->State == TreeEntry::Vectorize && 3647 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3648 })) 3649 return; 3650 if (UserTE->UserTreeIndices.empty()) 3651 UserTE = nullptr; 3652 else 3653 UserTE = UserTE->UserTreeIndices.back().UserTE; 3654 ++Cnt; 3655 } 3656 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3657 if (TE->State != TreeEntry::Vectorize) 3658 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3659 } 3660 }); 3661 3662 // Reorder the graph nodes according to their vectorization factor. 3663 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3664 VF /= 2) { 3665 auto It = VFToOrderedEntries.find(VF); 3666 if (It == VFToOrderedEntries.end()) 3667 continue; 3668 // Try to find the most profitable order. We just are looking for the most 3669 // used order and reorder scalar elements in the nodes according to this 3670 // mostly used order. 3671 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3672 // All operands are reordered and used only in this node - propagate the 3673 // most used order to the user node. 3674 MapVector<OrdersType, unsigned, 3675 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3676 OrdersUses; 3677 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3678 for (const TreeEntry *OpTE : OrderedEntries) { 3679 // No need to reorder this nodes, still need to extend and to use shuffle, 3680 // just need to merge reordering shuffle and the reuse shuffle. 3681 if (!OpTE->ReuseShuffleIndices.empty()) 3682 continue; 3683 // Count number of orders uses. 3684 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3685 if (OpTE->State == TreeEntry::NeedToGather) { 3686 auto It = GathersToOrders.find(OpTE); 3687 if (It != GathersToOrders.end()) 3688 return It->second; 3689 } 3690 return OpTE->ReorderIndices; 3691 }(); 3692 // First consider the order of the external scalar users. 3693 auto It = ExternalUserReorderMap.find(OpTE); 3694 if (It != ExternalUserReorderMap.end()) { 3695 const auto &ExternalUserReorderIndices = It->second; 3696 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3697 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3698 // No other useful reorder data in this entry. 3699 if (Order.empty()) 3700 continue; 3701 } 3702 // Stores actually store the mask, not the order, need to invert. 3703 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3704 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3705 SmallVector<int> Mask; 3706 inversePermutation(Order, Mask); 3707 unsigned E = Order.size(); 3708 OrdersType CurrentOrder(E, E); 3709 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3710 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3711 }); 3712 fixupOrderingIndices(CurrentOrder); 3713 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3714 } else { 3715 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3716 } 3717 } 3718 // Set order of the user node. 3719 if (OrdersUses.empty()) 3720 continue; 3721 // Choose the most used order. 3722 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3723 unsigned Cnt = OrdersUses.front().second; 3724 for (const auto &Pair : drop_begin(OrdersUses)) { 3725 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3726 BestOrder = Pair.first; 3727 Cnt = Pair.second; 3728 } 3729 } 3730 // Set order of the user node. 3731 if (BestOrder.empty()) 3732 continue; 3733 SmallVector<int> Mask; 3734 inversePermutation(BestOrder, Mask); 3735 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3736 unsigned E = BestOrder.size(); 3737 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3738 return I < E ? static_cast<int>(I) : UndefMaskElem; 3739 }); 3740 // Do an actual reordering, if profitable. 3741 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3742 // Just do the reordering for the nodes with the given VF. 3743 if (TE->Scalars.size() != VF) { 3744 if (TE->ReuseShuffleIndices.size() == VF) { 3745 // Need to reorder the reuses masks of the operands with smaller VF to 3746 // be able to find the match between the graph nodes and scalar 3747 // operands of the given node during vectorization/cost estimation. 3748 assert(all_of(TE->UserTreeIndices, 3749 [VF, &TE](const EdgeInfo &EI) { 3750 return EI.UserTE->Scalars.size() == VF || 3751 EI.UserTE->Scalars.size() == 3752 TE->Scalars.size(); 3753 }) && 3754 "All users must be of VF size."); 3755 // Update ordering of the operands with the smaller VF than the given 3756 // one. 3757 reorderReuses(TE->ReuseShuffleIndices, Mask); 3758 } 3759 continue; 3760 } 3761 if (TE->State == TreeEntry::Vectorize && 3762 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3763 InsertElementInst>(TE->getMainOp()) && 3764 !TE->isAltShuffle()) { 3765 // Build correct orders for extract{element,value}, loads and 3766 // stores. 3767 reorderOrder(TE->ReorderIndices, Mask); 3768 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3769 TE->reorderOperands(Mask); 3770 } else { 3771 // Reorder the node and its operands. 3772 TE->reorderOperands(Mask); 3773 assert(TE->ReorderIndices.empty() && 3774 "Expected empty reorder sequence."); 3775 reorderScalars(TE->Scalars, Mask); 3776 } 3777 if (!TE->ReuseShuffleIndices.empty()) { 3778 // Apply reversed order to keep the original ordering of the reused 3779 // elements to avoid extra reorder indices shuffling. 3780 OrdersType CurrentOrder; 3781 reorderOrder(CurrentOrder, MaskOrder); 3782 SmallVector<int> NewReuses; 3783 inversePermutation(CurrentOrder, NewReuses); 3784 addMask(NewReuses, TE->ReuseShuffleIndices); 3785 TE->ReuseShuffleIndices.swap(NewReuses); 3786 } 3787 } 3788 } 3789 } 3790 3791 bool BoUpSLP::canReorderOperands( 3792 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3793 ArrayRef<TreeEntry *> ReorderableGathers, 3794 SmallVectorImpl<TreeEntry *> &GatherOps) { 3795 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3796 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3797 return OpData.first == I && 3798 OpData.second->State == TreeEntry::Vectorize; 3799 })) 3800 continue; 3801 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3802 // Do not reorder if operand node is used by many user nodes. 3803 if (any_of(TE->UserTreeIndices, 3804 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3805 return false; 3806 // Add the node to the list of the ordered nodes with the identity 3807 // order. 3808 Edges.emplace_back(I, TE); 3809 continue; 3810 } 3811 ArrayRef<Value *> VL = UserTE->getOperand(I); 3812 TreeEntry *Gather = nullptr; 3813 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3814 assert(TE->State != TreeEntry::Vectorize && 3815 "Only non-vectorized nodes are expected."); 3816 if (TE->isSame(VL)) { 3817 Gather = TE; 3818 return true; 3819 } 3820 return false; 3821 }) > 1) 3822 return false; 3823 if (Gather) 3824 GatherOps.push_back(Gather); 3825 } 3826 return true; 3827 } 3828 3829 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3830 SetVector<TreeEntry *> OrderedEntries; 3831 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3832 // Find all reorderable leaf nodes with the given VF. 3833 // Currently the are vectorized loads,extracts without alternate operands + 3834 // some gathering of extracts. 3835 SmallVector<TreeEntry *> NonVectorized; 3836 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3837 &NonVectorized]( 3838 const std::unique_ptr<TreeEntry> &TE) { 3839 if (TE->State != TreeEntry::Vectorize) 3840 NonVectorized.push_back(TE.get()); 3841 if (Optional<OrdersType> CurrentOrder = 3842 getReorderingData(*TE, /*TopToBottom=*/false)) { 3843 OrderedEntries.insert(TE.get()); 3844 if (TE->State != TreeEntry::Vectorize) 3845 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3846 } 3847 }); 3848 3849 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3850 // I.e., if the node has operands, that are reordered, try to make at least 3851 // one operand order in the natural order and reorder others + reorder the 3852 // user node itself. 3853 SmallPtrSet<const TreeEntry *, 4> Visited; 3854 while (!OrderedEntries.empty()) { 3855 // 1. Filter out only reordered nodes. 3856 // 2. If the entry has multiple uses - skip it and jump to the next node. 3857 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3858 SmallVector<TreeEntry *> Filtered; 3859 for (TreeEntry *TE : OrderedEntries) { 3860 if (!(TE->State == TreeEntry::Vectorize || 3861 (TE->State == TreeEntry::NeedToGather && 3862 GathersToOrders.count(TE))) || 3863 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3864 !all_of(drop_begin(TE->UserTreeIndices), 3865 [TE](const EdgeInfo &EI) { 3866 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3867 }) || 3868 !Visited.insert(TE).second) { 3869 Filtered.push_back(TE); 3870 continue; 3871 } 3872 // Build a map between user nodes and their operands order to speedup 3873 // search. The graph currently does not provide this dependency directly. 3874 for (EdgeInfo &EI : TE->UserTreeIndices) { 3875 TreeEntry *UserTE = EI.UserTE; 3876 auto It = Users.find(UserTE); 3877 if (It == Users.end()) 3878 It = Users.insert({UserTE, {}}).first; 3879 It->second.emplace_back(EI.EdgeIdx, TE); 3880 } 3881 } 3882 // Erase filtered entries. 3883 for_each(Filtered, 3884 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3885 for (auto &Data : Users) { 3886 // Check that operands are used only in the User node. 3887 SmallVector<TreeEntry *> GatherOps; 3888 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3889 GatherOps)) { 3890 for_each(Data.second, 3891 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3892 OrderedEntries.remove(Op.second); 3893 }); 3894 continue; 3895 } 3896 // All operands are reordered and used only in this node - propagate the 3897 // most used order to the user node. 3898 MapVector<OrdersType, unsigned, 3899 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3900 OrdersUses; 3901 // Do the analysis for each tree entry only once, otherwise the order of 3902 // the same node my be considered several times, though might be not 3903 // profitable. 3904 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3905 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3906 for (const auto &Op : Data.second) { 3907 TreeEntry *OpTE = Op.second; 3908 if (!VisitedOps.insert(OpTE).second) 3909 continue; 3910 if (!OpTE->ReuseShuffleIndices.empty() || 3911 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3912 continue; 3913 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3914 if (OpTE->State == TreeEntry::NeedToGather) 3915 return GathersToOrders.find(OpTE)->second; 3916 return OpTE->ReorderIndices; 3917 }(); 3918 unsigned NumOps = count_if( 3919 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3920 return P.second == OpTE; 3921 }); 3922 // Stores actually store the mask, not the order, need to invert. 3923 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3924 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3925 SmallVector<int> Mask; 3926 inversePermutation(Order, Mask); 3927 unsigned E = Order.size(); 3928 OrdersType CurrentOrder(E, E); 3929 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3930 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3931 }); 3932 fixupOrderingIndices(CurrentOrder); 3933 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3934 NumOps; 3935 } else { 3936 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3937 } 3938 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3939 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3940 const TreeEntry *TE) { 3941 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3942 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3943 (IgnoreReorder && TE->Idx == 0)) 3944 return true; 3945 if (TE->State == TreeEntry::NeedToGather) { 3946 auto It = GathersToOrders.find(TE); 3947 if (It != GathersToOrders.end()) 3948 return !It->second.empty(); 3949 return true; 3950 } 3951 return false; 3952 }; 3953 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3954 TreeEntry *UserTE = EI.UserTE; 3955 if (!VisitedUsers.insert(UserTE).second) 3956 continue; 3957 // May reorder user node if it requires reordering, has reused 3958 // scalars, is an alternate op vectorize node or its op nodes require 3959 // reordering. 3960 if (AllowsReordering(UserTE)) 3961 continue; 3962 // Check if users allow reordering. 3963 // Currently look up just 1 level of operands to avoid increase of 3964 // the compile time. 3965 // Profitable to reorder if definitely more operands allow 3966 // reordering rather than those with natural order. 3967 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3968 if (static_cast<unsigned>(count_if( 3969 Ops, [UserTE, &AllowsReordering]( 3970 const std::pair<unsigned, TreeEntry *> &Op) { 3971 return AllowsReordering(Op.second) && 3972 all_of(Op.second->UserTreeIndices, 3973 [UserTE](const EdgeInfo &EI) { 3974 return EI.UserTE == UserTE; 3975 }); 3976 })) <= Ops.size() / 2) 3977 ++Res.first->second; 3978 } 3979 } 3980 // If no orders - skip current nodes and jump to the next one, if any. 3981 if (OrdersUses.empty()) { 3982 for_each(Data.second, 3983 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3984 OrderedEntries.remove(Op.second); 3985 }); 3986 continue; 3987 } 3988 // Choose the best order. 3989 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3990 unsigned Cnt = OrdersUses.front().second; 3991 for (const auto &Pair : drop_begin(OrdersUses)) { 3992 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3993 BestOrder = Pair.first; 3994 Cnt = Pair.second; 3995 } 3996 } 3997 // Set order of the user node (reordering of operands and user nodes). 3998 if (BestOrder.empty()) { 3999 for_each(Data.second, 4000 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4001 OrderedEntries.remove(Op.second); 4002 }); 4003 continue; 4004 } 4005 // Erase operands from OrderedEntries list and adjust their orders. 4006 VisitedOps.clear(); 4007 SmallVector<int> Mask; 4008 inversePermutation(BestOrder, Mask); 4009 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4010 unsigned E = BestOrder.size(); 4011 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4012 return I < E ? static_cast<int>(I) : UndefMaskElem; 4013 }); 4014 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4015 TreeEntry *TE = Op.second; 4016 OrderedEntries.remove(TE); 4017 if (!VisitedOps.insert(TE).second) 4018 continue; 4019 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4020 // Just reorder reuses indices. 4021 reorderReuses(TE->ReuseShuffleIndices, Mask); 4022 continue; 4023 } 4024 // Gathers are processed separately. 4025 if (TE->State != TreeEntry::Vectorize) 4026 continue; 4027 assert((BestOrder.size() == TE->ReorderIndices.size() || 4028 TE->ReorderIndices.empty()) && 4029 "Non-matching sizes of user/operand entries."); 4030 reorderOrder(TE->ReorderIndices, Mask); 4031 } 4032 // For gathers just need to reorder its scalars. 4033 for (TreeEntry *Gather : GatherOps) { 4034 assert(Gather->ReorderIndices.empty() && 4035 "Unexpected reordering of gathers."); 4036 if (!Gather->ReuseShuffleIndices.empty()) { 4037 // Just reorder reuses indices. 4038 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4039 continue; 4040 } 4041 reorderScalars(Gather->Scalars, Mask); 4042 OrderedEntries.remove(Gather); 4043 } 4044 // Reorder operands of the user node and set the ordering for the user 4045 // node itself. 4046 if (Data.first->State != TreeEntry::Vectorize || 4047 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4048 Data.first->getMainOp()) || 4049 Data.first->isAltShuffle()) 4050 Data.first->reorderOperands(Mask); 4051 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4052 Data.first->isAltShuffle()) { 4053 reorderScalars(Data.first->Scalars, Mask); 4054 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4055 if (Data.first->ReuseShuffleIndices.empty() && 4056 !Data.first->ReorderIndices.empty() && 4057 !Data.first->isAltShuffle()) { 4058 // Insert user node to the list to try to sink reordering deeper in 4059 // the graph. 4060 OrderedEntries.insert(Data.first); 4061 } 4062 } else { 4063 reorderOrder(Data.first->ReorderIndices, Mask); 4064 } 4065 } 4066 } 4067 // If the reordering is unnecessary, just remove the reorder. 4068 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4069 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4070 VectorizableTree.front()->ReorderIndices.clear(); 4071 } 4072 4073 void BoUpSLP::buildExternalUses( 4074 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4075 // Collect the values that we need to extract from the tree. 4076 for (auto &TEPtr : VectorizableTree) { 4077 TreeEntry *Entry = TEPtr.get(); 4078 4079 // No need to handle users of gathered values. 4080 if (Entry->State == TreeEntry::NeedToGather) 4081 continue; 4082 4083 // For each lane: 4084 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4085 Value *Scalar = Entry->Scalars[Lane]; 4086 int FoundLane = Entry->findLaneForValue(Scalar); 4087 4088 // Check if the scalar is externally used as an extra arg. 4089 auto ExtI = ExternallyUsedValues.find(Scalar); 4090 if (ExtI != ExternallyUsedValues.end()) { 4091 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4092 << Lane << " from " << *Scalar << ".\n"); 4093 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4094 } 4095 for (User *U : Scalar->users()) { 4096 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4097 4098 Instruction *UserInst = dyn_cast<Instruction>(U); 4099 if (!UserInst) 4100 continue; 4101 4102 if (isDeleted(UserInst)) 4103 continue; 4104 4105 // Skip in-tree scalars that become vectors 4106 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4107 Value *UseScalar = UseEntry->Scalars[0]; 4108 // Some in-tree scalars will remain as scalar in vectorized 4109 // instructions. If that is the case, the one in Lane 0 will 4110 // be used. 4111 if (UseScalar != U || 4112 UseEntry->State == TreeEntry::ScatterVectorize || 4113 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4114 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4115 << ".\n"); 4116 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4117 continue; 4118 } 4119 } 4120 4121 // Ignore users in the user ignore list. 4122 if (is_contained(UserIgnoreList, UserInst)) 4123 continue; 4124 4125 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4126 << Lane << " from " << *Scalar << ".\n"); 4127 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4128 } 4129 } 4130 } 4131 } 4132 4133 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4134 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4135 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4136 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4137 Value *V = TE->Scalars[Lane]; 4138 // To save compilation time we don't visit if we have too many users. 4139 static constexpr unsigned UsersLimit = 4; 4140 if (V->hasNUsesOrMore(UsersLimit)) 4141 break; 4142 4143 // Collect stores per pointer object. 4144 for (User *U : V->users()) { 4145 auto *SI = dyn_cast<StoreInst>(U); 4146 if (SI == nullptr || !SI->isSimple() || 4147 !isValidElementType(SI->getValueOperand()->getType())) 4148 continue; 4149 // Skip entry if already 4150 if (getTreeEntry(U)) 4151 continue; 4152 4153 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4154 auto &StoresVec = PtrToStoresMap[Ptr]; 4155 // For now just keep one store per pointer object per lane. 4156 // TODO: Extend this to support multiple stores per pointer per lane 4157 if (StoresVec.size() > Lane) 4158 continue; 4159 // Skip if in different BBs. 4160 if (!StoresVec.empty() && 4161 SI->getParent() != StoresVec.back()->getParent()) 4162 continue; 4163 // Make sure that the stores are of the same type. 4164 if (!StoresVec.empty() && 4165 SI->getValueOperand()->getType() != 4166 StoresVec.back()->getValueOperand()->getType()) 4167 continue; 4168 StoresVec.push_back(SI); 4169 } 4170 } 4171 return PtrToStoresMap; 4172 } 4173 4174 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4175 OrdersType &ReorderIndices) const { 4176 // We check whether the stores in StoreVec can form a vector by sorting them 4177 // and checking whether they are consecutive. 4178 4179 // To avoid calling getPointersDiff() while sorting we create a vector of 4180 // pairs {store, offset from first} and sort this instead. 4181 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4182 StoreInst *S0 = StoresVec[0]; 4183 StoreOffsetVec[0] = {S0, 0}; 4184 Type *S0Ty = S0->getValueOperand()->getType(); 4185 Value *S0Ptr = S0->getPointerOperand(); 4186 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4187 StoreInst *SI = StoresVec[Idx]; 4188 Optional<int> Diff = 4189 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4190 SI->getPointerOperand(), *DL, *SE, 4191 /*StrictCheck=*/true); 4192 // We failed to compare the pointers so just abandon this StoresVec. 4193 if (!Diff) 4194 return false; 4195 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4196 } 4197 4198 // Sort the vector based on the pointers. We create a copy because we may 4199 // need the original later for calculating the reorder (shuffle) indices. 4200 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4201 const std::pair<StoreInst *, int> &Pair2) { 4202 int Offset1 = Pair1.second; 4203 int Offset2 = Pair2.second; 4204 return Offset1 < Offset2; 4205 }); 4206 4207 // Check if the stores are consecutive by checking if their difference is 1. 4208 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4209 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4210 return false; 4211 4212 // Calculate the shuffle indices according to their offset against the sorted 4213 // StoreOffsetVec. 4214 ReorderIndices.reserve(StoresVec.size()); 4215 for (StoreInst *SI : StoresVec) { 4216 unsigned Idx = find_if(StoreOffsetVec, 4217 [SI](const std::pair<StoreInst *, int> &Pair) { 4218 return Pair.first == SI; 4219 }) - 4220 StoreOffsetVec.begin(); 4221 ReorderIndices.push_back(Idx); 4222 } 4223 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4224 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4225 // same convention here. 4226 auto IsIdentityOrder = [](const OrdersType &Order) { 4227 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4228 if (Idx != Order[Idx]) 4229 return false; 4230 return true; 4231 }; 4232 if (IsIdentityOrder(ReorderIndices)) 4233 ReorderIndices.clear(); 4234 4235 return true; 4236 } 4237 4238 #ifndef NDEBUG 4239 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4240 for (unsigned Idx : Order) 4241 dbgs() << Idx << ", "; 4242 dbgs() << "\n"; 4243 } 4244 #endif 4245 4246 SmallVector<BoUpSLP::OrdersType, 1> 4247 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4248 unsigned NumLanes = TE->Scalars.size(); 4249 4250 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4251 collectUserStores(TE); 4252 4253 // Holds the reorder indices for each candidate store vector that is a user of 4254 // the current TreeEntry. 4255 SmallVector<OrdersType, 1> ExternalReorderIndices; 4256 4257 // Now inspect the stores collected per pointer and look for vectorization 4258 // candidates. For each candidate calculate the reorder index vector and push 4259 // it into `ExternalReorderIndices` 4260 for (const auto &Pair : PtrToStoresMap) { 4261 auto &StoresVec = Pair.second; 4262 // If we have fewer than NumLanes stores, then we can't form a vector. 4263 if (StoresVec.size() != NumLanes) 4264 continue; 4265 4266 // If the stores are not consecutive then abandon this StoresVec. 4267 OrdersType ReorderIndices; 4268 if (!CanFormVector(StoresVec, ReorderIndices)) 4269 continue; 4270 4271 // We now know that the scalars in StoresVec can form a vector instruction, 4272 // so set the reorder indices. 4273 ExternalReorderIndices.push_back(ReorderIndices); 4274 } 4275 return ExternalReorderIndices; 4276 } 4277 4278 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4279 ArrayRef<Value *> UserIgnoreLst) { 4280 deleteTree(); 4281 UserIgnoreList = UserIgnoreLst; 4282 if (!allSameType(Roots)) 4283 return; 4284 buildTree_rec(Roots, 0, EdgeInfo()); 4285 } 4286 4287 namespace { 4288 /// Tracks the state we can represent the loads in the given sequence. 4289 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 4290 } // anonymous namespace 4291 4292 /// Checks if the given array of loads can be represented as a vectorized, 4293 /// scatter or just simple gather. 4294 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 4295 const TargetTransformInfo &TTI, 4296 const DataLayout &DL, ScalarEvolution &SE, 4297 SmallVectorImpl<unsigned> &Order, 4298 SmallVectorImpl<Value *> &PointerOps) { 4299 // Check that a vectorized load would load the same memory as a scalar 4300 // load. For example, we don't want to vectorize loads that are smaller 4301 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4302 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4303 // from such a struct, we read/write packed bits disagreeing with the 4304 // unvectorized version. 4305 Type *ScalarTy = VL0->getType(); 4306 4307 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 4308 return LoadsState::Gather; 4309 4310 // Make sure all loads in the bundle are simple - we can't vectorize 4311 // atomic or volatile loads. 4312 PointerOps.clear(); 4313 PointerOps.resize(VL.size()); 4314 auto *POIter = PointerOps.begin(); 4315 for (Value *V : VL) { 4316 auto *L = cast<LoadInst>(V); 4317 if (!L->isSimple()) 4318 return LoadsState::Gather; 4319 *POIter = L->getPointerOperand(); 4320 ++POIter; 4321 } 4322 4323 Order.clear(); 4324 // Check the order of pointer operands. 4325 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4326 Value *Ptr0; 4327 Value *PtrN; 4328 if (Order.empty()) { 4329 Ptr0 = PointerOps.front(); 4330 PtrN = PointerOps.back(); 4331 } else { 4332 Ptr0 = PointerOps[Order.front()]; 4333 PtrN = PointerOps[Order.back()]; 4334 } 4335 Optional<int> Diff = 4336 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4337 // Check that the sorted loads are consecutive. 4338 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4339 return LoadsState::Vectorize; 4340 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4341 for (Value *V : VL) 4342 CommonAlignment = 4343 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4344 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 4345 CommonAlignment)) 4346 return LoadsState::ScatterVectorize; 4347 } 4348 4349 return LoadsState::Gather; 4350 } 4351 4352 /// \return true if the specified list of values has only one instruction that 4353 /// requires scheduling, false otherwise. 4354 #ifndef NDEBUG 4355 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4356 Value *NeedsScheduling = nullptr; 4357 for (Value *V : VL) { 4358 if (doesNotNeedToBeScheduled(V)) 4359 continue; 4360 if (!NeedsScheduling) { 4361 NeedsScheduling = V; 4362 continue; 4363 } 4364 return false; 4365 } 4366 return NeedsScheduling; 4367 } 4368 #endif 4369 4370 /// Generates key/subkey pair for the given value to provide effective sorting 4371 /// of the values and better detection of the vectorizable values sequences. The 4372 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4373 /// and in values subgroups (subkeys). 4374 static std::pair<size_t, size_t> generateKeySubkey( 4375 Value *V, const TargetLibraryInfo *TLI, 4376 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4377 bool AllowAlternate) { 4378 hash_code Key = hash_value(V->getValueID() + 2); 4379 hash_code SubKey = hash_value(0); 4380 // Sort the loads by the distance between the pointers. 4381 if (auto *LI = dyn_cast<LoadInst>(V)) { 4382 Key = hash_combine(hash_value(Instruction::Load), Key); 4383 if (LI->isSimple()) 4384 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4385 else 4386 SubKey = hash_value(LI); 4387 } else if (isVectorLikeInstWithConstOps(V)) { 4388 // Sort extracts by the vector operands. 4389 if (isa<ExtractElementInst, UndefValue>(V)) 4390 Key = hash_value(Value::UndefValueVal + 1); 4391 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4392 if (!isUndefVector(EI->getVectorOperand()) && 4393 !isa<UndefValue>(EI->getIndexOperand())) 4394 SubKey = hash_value(EI->getVectorOperand()); 4395 } 4396 } else if (auto *I = dyn_cast<Instruction>(V)) { 4397 // Sort other instructions just by the opcodes except for CMPInst. 4398 // For CMP also sort by the predicate kind. 4399 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4400 isValidForAlternation(I->getOpcode())) { 4401 if (AllowAlternate) 4402 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4403 else 4404 Key = hash_combine(hash_value(I->getOpcode()), Key); 4405 SubKey = hash_combine( 4406 hash_value(I->getOpcode()), hash_value(I->getType()), 4407 hash_value(isa<BinaryOperator>(I) 4408 ? I->getType() 4409 : cast<CastInst>(I)->getOperand(0)->getType())); 4410 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4411 CmpInst::Predicate Pred = CI->getPredicate(); 4412 if (CI->isCommutative()) 4413 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4414 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4415 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4416 hash_value(SwapPred), 4417 hash_value(CI->getOperand(0)->getType())); 4418 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4419 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4420 if (isTriviallyVectorizable(ID)) 4421 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4422 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4423 SubKey = hash_combine(hash_value(I->getOpcode()), 4424 hash_value(Call->getCalledFunction())); 4425 else 4426 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4427 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4428 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4429 hash_value(Op.Tag), SubKey); 4430 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4431 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4432 SubKey = hash_value(Gep->getPointerOperand()); 4433 else 4434 SubKey = hash_value(Gep); 4435 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4436 !isa<ConstantInt>(I->getOperand(1))) { 4437 // Do not try to vectorize instructions with potentially high cost. 4438 SubKey = hash_value(I); 4439 } else { 4440 SubKey = hash_value(I->getOpcode()); 4441 } 4442 Key = hash_combine(hash_value(I->getParent()), Key); 4443 } 4444 return std::make_pair(Key, SubKey); 4445 } 4446 4447 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4448 const EdgeInfo &UserTreeIdx) { 4449 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4450 4451 SmallVector<int> ReuseShuffleIndicies; 4452 SmallVector<Value *> UniqueValues; 4453 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4454 &UserTreeIdx, 4455 this](const InstructionsState &S) { 4456 // Check that every instruction appears once in this bundle. 4457 DenseMap<Value *, unsigned> UniquePositions; 4458 for (Value *V : VL) { 4459 if (isConstant(V)) { 4460 ReuseShuffleIndicies.emplace_back( 4461 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4462 UniqueValues.emplace_back(V); 4463 continue; 4464 } 4465 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4466 ReuseShuffleIndicies.emplace_back(Res.first->second); 4467 if (Res.second) 4468 UniqueValues.emplace_back(V); 4469 } 4470 size_t NumUniqueScalarValues = UniqueValues.size(); 4471 if (NumUniqueScalarValues == VL.size()) { 4472 ReuseShuffleIndicies.clear(); 4473 } else { 4474 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4475 if (NumUniqueScalarValues <= 1 || 4476 (UniquePositions.size() == 1 && all_of(UniqueValues, 4477 [](Value *V) { 4478 return isa<UndefValue>(V) || 4479 !isConstant(V); 4480 })) || 4481 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4482 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4483 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4484 return false; 4485 } 4486 VL = UniqueValues; 4487 } 4488 return true; 4489 }; 4490 4491 InstructionsState S = getSameOpcode(VL); 4492 if (Depth == RecursionMaxDepth) { 4493 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4494 if (TryToFindDuplicates(S)) 4495 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4496 ReuseShuffleIndicies); 4497 return; 4498 } 4499 4500 // Don't handle scalable vectors 4501 if (S.getOpcode() == Instruction::ExtractElement && 4502 isa<ScalableVectorType>( 4503 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4504 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4505 if (TryToFindDuplicates(S)) 4506 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4507 ReuseShuffleIndicies); 4508 return; 4509 } 4510 4511 // Don't handle vectors. 4512 if (S.OpValue->getType()->isVectorTy() && 4513 !isa<InsertElementInst>(S.OpValue)) { 4514 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4515 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4516 return; 4517 } 4518 4519 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4520 if (SI->getValueOperand()->getType()->isVectorTy()) { 4521 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4522 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4523 return; 4524 } 4525 4526 // If all of the operands are identical or constant we have a simple solution. 4527 // If we deal with insert/extract instructions, they all must have constant 4528 // indices, otherwise we should gather them, not try to vectorize. 4529 // If alternate op node with 2 elements with gathered operands - do not 4530 // vectorize. 4531 auto &&NotProfitableForVectorization = [&S, this, 4532 Depth](ArrayRef<Value *> VL) { 4533 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 4534 return false; 4535 if (VectorizableTree.size() < MinTreeSize) 4536 return false; 4537 if (Depth >= RecursionMaxDepth - 1) 4538 return true; 4539 // Check if all operands are extracts, part of vector node or can build a 4540 // regular vectorize node. 4541 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 4542 for (Value *V : VL) { 4543 auto *I = cast<Instruction>(V); 4544 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 4545 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 4546 })); 4547 } 4548 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 4549 if ((IsCommutative && 4550 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 4551 (!IsCommutative && 4552 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 4553 return true; 4554 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 4555 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 4556 auto *I1 = cast<Instruction>(VL.front()); 4557 auto *I2 = cast<Instruction>(VL.back()); 4558 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4559 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4560 I2->getOperand(Op)); 4561 if (count_if( 4562 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4563 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4564 }) >= S.MainOp->getNumOperands() / 2) 4565 return false; 4566 if (S.MainOp->getNumOperands() > 2) 4567 return true; 4568 if (IsCommutative) { 4569 // Check permuted operands. 4570 Candidates.clear(); 4571 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4572 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4573 I2->getOperand((Op + 1) % E)); 4574 if (any_of( 4575 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4576 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4577 })) 4578 return false; 4579 } 4580 return true; 4581 }; 4582 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4583 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4584 !all_of(VL, isVectorLikeInstWithConstOps)) || 4585 NotProfitableForVectorization(VL)) { 4586 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 4587 if (TryToFindDuplicates(S)) 4588 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4589 ReuseShuffleIndicies); 4590 return; 4591 } 4592 4593 // We now know that this is a vector of instructions of the same type from 4594 // the same block. 4595 4596 // Don't vectorize ephemeral values. 4597 for (Value *V : VL) { 4598 if (EphValues.count(V)) { 4599 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4600 << ") is ephemeral.\n"); 4601 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4602 return; 4603 } 4604 } 4605 4606 // Check if this is a duplicate of another entry. 4607 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4608 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4609 if (!E->isSame(VL)) { 4610 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4611 if (TryToFindDuplicates(S)) 4612 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4613 ReuseShuffleIndicies); 4614 return; 4615 } 4616 // Record the reuse of the tree node. FIXME, currently this is only used to 4617 // properly draw the graph rather than for the actual vectorization. 4618 E->UserTreeIndices.push_back(UserTreeIdx); 4619 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4620 << ".\n"); 4621 return; 4622 } 4623 4624 // Check that none of the instructions in the bundle are already in the tree. 4625 for (Value *V : VL) { 4626 auto *I = dyn_cast<Instruction>(V); 4627 if (!I) 4628 continue; 4629 if (getTreeEntry(I)) { 4630 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4631 << ") is already in tree.\n"); 4632 if (TryToFindDuplicates(S)) 4633 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4634 ReuseShuffleIndicies); 4635 return; 4636 } 4637 } 4638 4639 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4640 for (Value *V : VL) { 4641 if (is_contained(UserIgnoreList, V)) { 4642 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4643 if (TryToFindDuplicates(S)) 4644 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4645 ReuseShuffleIndicies); 4646 return; 4647 } 4648 } 4649 4650 // Check that all of the users of the scalars that we want to vectorize are 4651 // schedulable. 4652 auto *VL0 = cast<Instruction>(S.OpValue); 4653 BasicBlock *BB = VL0->getParent(); 4654 4655 if (!DT->isReachableFromEntry(BB)) { 4656 // Don't go into unreachable blocks. They may contain instructions with 4657 // dependency cycles which confuse the final scheduling. 4658 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4659 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4660 return; 4661 } 4662 4663 // Check that every instruction appears once in this bundle. 4664 if (!TryToFindDuplicates(S)) 4665 return; 4666 4667 auto &BSRef = BlocksSchedules[BB]; 4668 if (!BSRef) 4669 BSRef = std::make_unique<BlockScheduling>(BB); 4670 4671 BlockScheduling &BS = *BSRef; 4672 4673 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4674 #ifdef EXPENSIVE_CHECKS 4675 // Make sure we didn't break any internal invariants 4676 BS.verify(); 4677 #endif 4678 if (!Bundle) { 4679 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4680 assert((!BS.getScheduleData(VL0) || 4681 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4682 "tryScheduleBundle should cancelScheduling on failure"); 4683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4684 ReuseShuffleIndicies); 4685 return; 4686 } 4687 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4688 4689 unsigned ShuffleOrOp = S.isAltShuffle() ? 4690 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4691 switch (ShuffleOrOp) { 4692 case Instruction::PHI: { 4693 auto *PH = cast<PHINode>(VL0); 4694 4695 // Check for terminator values (e.g. invoke). 4696 for (Value *V : VL) 4697 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4698 Instruction *Term = dyn_cast<Instruction>(Incoming); 4699 if (Term && Term->isTerminator()) { 4700 LLVM_DEBUG(dbgs() 4701 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4702 BS.cancelScheduling(VL, VL0); 4703 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4704 ReuseShuffleIndicies); 4705 return; 4706 } 4707 } 4708 4709 TreeEntry *TE = 4710 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4711 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4712 4713 // Keeps the reordered operands to avoid code duplication. 4714 SmallVector<ValueList, 2> OperandsVec; 4715 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4716 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4717 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4718 TE->setOperand(I, Operands); 4719 OperandsVec.push_back(Operands); 4720 continue; 4721 } 4722 ValueList Operands; 4723 // Prepare the operand vector. 4724 for (Value *V : VL) 4725 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4726 PH->getIncomingBlock(I))); 4727 TE->setOperand(I, Operands); 4728 OperandsVec.push_back(Operands); 4729 } 4730 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4731 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4732 return; 4733 } 4734 case Instruction::ExtractValue: 4735 case Instruction::ExtractElement: { 4736 OrdersType CurrentOrder; 4737 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4738 if (Reuse) { 4739 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4740 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4741 ReuseShuffleIndicies); 4742 // This is a special case, as it does not gather, but at the same time 4743 // we are not extending buildTree_rec() towards the operands. 4744 ValueList Op0; 4745 Op0.assign(VL.size(), VL0->getOperand(0)); 4746 VectorizableTree.back()->setOperand(0, Op0); 4747 return; 4748 } 4749 if (!CurrentOrder.empty()) { 4750 LLVM_DEBUG({ 4751 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4752 "with order"; 4753 for (unsigned Idx : CurrentOrder) 4754 dbgs() << " " << Idx; 4755 dbgs() << "\n"; 4756 }); 4757 fixupOrderingIndices(CurrentOrder); 4758 // Insert new order with initial value 0, if it does not exist, 4759 // otherwise return the iterator to the existing one. 4760 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4761 ReuseShuffleIndicies, CurrentOrder); 4762 // This is a special case, as it does not gather, but at the same time 4763 // we are not extending buildTree_rec() towards the operands. 4764 ValueList Op0; 4765 Op0.assign(VL.size(), VL0->getOperand(0)); 4766 VectorizableTree.back()->setOperand(0, Op0); 4767 return; 4768 } 4769 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4770 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4771 ReuseShuffleIndicies); 4772 BS.cancelScheduling(VL, VL0); 4773 return; 4774 } 4775 case Instruction::InsertElement: { 4776 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4777 4778 // Check that we have a buildvector and not a shuffle of 2 or more 4779 // different vectors. 4780 ValueSet SourceVectors; 4781 for (Value *V : VL) { 4782 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4783 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4784 } 4785 4786 if (count_if(VL, [&SourceVectors](Value *V) { 4787 return !SourceVectors.contains(V); 4788 }) >= 2) { 4789 // Found 2nd source vector - cancel. 4790 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4791 "different source vectors.\n"); 4792 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4793 BS.cancelScheduling(VL, VL0); 4794 return; 4795 } 4796 4797 auto OrdCompare = [](const std::pair<int, int> &P1, 4798 const std::pair<int, int> &P2) { 4799 return P1.first > P2.first; 4800 }; 4801 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4802 decltype(OrdCompare)> 4803 Indices(OrdCompare); 4804 for (int I = 0, E = VL.size(); I < E; ++I) { 4805 unsigned Idx = *getInsertIndex(VL[I]); 4806 Indices.emplace(Idx, I); 4807 } 4808 OrdersType CurrentOrder(VL.size(), VL.size()); 4809 bool IsIdentity = true; 4810 for (int I = 0, E = VL.size(); I < E; ++I) { 4811 CurrentOrder[Indices.top().second] = I; 4812 IsIdentity &= Indices.top().second == I; 4813 Indices.pop(); 4814 } 4815 if (IsIdentity) 4816 CurrentOrder.clear(); 4817 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4818 None, CurrentOrder); 4819 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4820 4821 constexpr int NumOps = 2; 4822 ValueList VectorOperands[NumOps]; 4823 for (int I = 0; I < NumOps; ++I) { 4824 for (Value *V : VL) 4825 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4826 4827 TE->setOperand(I, VectorOperands[I]); 4828 } 4829 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4830 return; 4831 } 4832 case Instruction::Load: { 4833 // Check that a vectorized load would load the same memory as a scalar 4834 // load. For example, we don't want to vectorize loads that are smaller 4835 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4836 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4837 // from such a struct, we read/write packed bits disagreeing with the 4838 // unvectorized version. 4839 SmallVector<Value *> PointerOps; 4840 OrdersType CurrentOrder; 4841 TreeEntry *TE = nullptr; 4842 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4843 PointerOps)) { 4844 case LoadsState::Vectorize: 4845 if (CurrentOrder.empty()) { 4846 // Original loads are consecutive and does not require reordering. 4847 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4848 ReuseShuffleIndicies); 4849 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4850 } else { 4851 fixupOrderingIndices(CurrentOrder); 4852 // Need to reorder. 4853 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4854 ReuseShuffleIndicies, CurrentOrder); 4855 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4856 } 4857 TE->setOperandsInOrder(); 4858 break; 4859 case LoadsState::ScatterVectorize: 4860 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4861 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4862 UserTreeIdx, ReuseShuffleIndicies); 4863 TE->setOperandsInOrder(); 4864 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4865 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4866 break; 4867 case LoadsState::Gather: 4868 BS.cancelScheduling(VL, VL0); 4869 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4870 ReuseShuffleIndicies); 4871 #ifndef NDEBUG 4872 Type *ScalarTy = VL0->getType(); 4873 if (DL->getTypeSizeInBits(ScalarTy) != 4874 DL->getTypeAllocSizeInBits(ScalarTy)) 4875 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4876 else if (any_of(VL, [](Value *V) { 4877 return !cast<LoadInst>(V)->isSimple(); 4878 })) 4879 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4880 else 4881 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4882 #endif // NDEBUG 4883 break; 4884 } 4885 return; 4886 } 4887 case Instruction::ZExt: 4888 case Instruction::SExt: 4889 case Instruction::FPToUI: 4890 case Instruction::FPToSI: 4891 case Instruction::FPExt: 4892 case Instruction::PtrToInt: 4893 case Instruction::IntToPtr: 4894 case Instruction::SIToFP: 4895 case Instruction::UIToFP: 4896 case Instruction::Trunc: 4897 case Instruction::FPTrunc: 4898 case Instruction::BitCast: { 4899 Type *SrcTy = VL0->getOperand(0)->getType(); 4900 for (Value *V : VL) { 4901 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4902 if (Ty != SrcTy || !isValidElementType(Ty)) { 4903 BS.cancelScheduling(VL, VL0); 4904 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4905 ReuseShuffleIndicies); 4906 LLVM_DEBUG(dbgs() 4907 << "SLP: Gathering casts with different src types.\n"); 4908 return; 4909 } 4910 } 4911 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4912 ReuseShuffleIndicies); 4913 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4914 4915 TE->setOperandsInOrder(); 4916 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4917 ValueList Operands; 4918 // Prepare the operand vector. 4919 for (Value *V : VL) 4920 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4921 4922 buildTree_rec(Operands, Depth + 1, {TE, i}); 4923 } 4924 return; 4925 } 4926 case Instruction::ICmp: 4927 case Instruction::FCmp: { 4928 // Check that all of the compares have the same predicate. 4929 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4930 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4931 Type *ComparedTy = VL0->getOperand(0)->getType(); 4932 for (Value *V : VL) { 4933 CmpInst *Cmp = cast<CmpInst>(V); 4934 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4935 Cmp->getOperand(0)->getType() != ComparedTy) { 4936 BS.cancelScheduling(VL, VL0); 4937 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4938 ReuseShuffleIndicies); 4939 LLVM_DEBUG(dbgs() 4940 << "SLP: Gathering cmp with different predicate.\n"); 4941 return; 4942 } 4943 } 4944 4945 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4946 ReuseShuffleIndicies); 4947 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4948 4949 ValueList Left, Right; 4950 if (cast<CmpInst>(VL0)->isCommutative()) { 4951 // Commutative predicate - collect + sort operands of the instructions 4952 // so that each side is more likely to have the same opcode. 4953 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4954 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4955 } else { 4956 // Collect operands - commute if it uses the swapped predicate. 4957 for (Value *V : VL) { 4958 auto *Cmp = cast<CmpInst>(V); 4959 Value *LHS = Cmp->getOperand(0); 4960 Value *RHS = Cmp->getOperand(1); 4961 if (Cmp->getPredicate() != P0) 4962 std::swap(LHS, RHS); 4963 Left.push_back(LHS); 4964 Right.push_back(RHS); 4965 } 4966 } 4967 TE->setOperand(0, Left); 4968 TE->setOperand(1, Right); 4969 buildTree_rec(Left, Depth + 1, {TE, 0}); 4970 buildTree_rec(Right, Depth + 1, {TE, 1}); 4971 return; 4972 } 4973 case Instruction::Select: 4974 case Instruction::FNeg: 4975 case Instruction::Add: 4976 case Instruction::FAdd: 4977 case Instruction::Sub: 4978 case Instruction::FSub: 4979 case Instruction::Mul: 4980 case Instruction::FMul: 4981 case Instruction::UDiv: 4982 case Instruction::SDiv: 4983 case Instruction::FDiv: 4984 case Instruction::URem: 4985 case Instruction::SRem: 4986 case Instruction::FRem: 4987 case Instruction::Shl: 4988 case Instruction::LShr: 4989 case Instruction::AShr: 4990 case Instruction::And: 4991 case Instruction::Or: 4992 case Instruction::Xor: { 4993 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4994 ReuseShuffleIndicies); 4995 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4996 4997 // Sort operands of the instructions so that each side is more likely to 4998 // have the same opcode. 4999 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5000 ValueList Left, Right; 5001 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5002 TE->setOperand(0, Left); 5003 TE->setOperand(1, Right); 5004 buildTree_rec(Left, Depth + 1, {TE, 0}); 5005 buildTree_rec(Right, Depth + 1, {TE, 1}); 5006 return; 5007 } 5008 5009 TE->setOperandsInOrder(); 5010 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5011 ValueList Operands; 5012 // Prepare the operand vector. 5013 for (Value *V : VL) 5014 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5015 5016 buildTree_rec(Operands, Depth + 1, {TE, i}); 5017 } 5018 return; 5019 } 5020 case Instruction::GetElementPtr: { 5021 // We don't combine GEPs with complicated (nested) indexing. 5022 for (Value *V : VL) { 5023 if (cast<Instruction>(V)->getNumOperands() != 2) { 5024 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5025 BS.cancelScheduling(VL, VL0); 5026 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5027 ReuseShuffleIndicies); 5028 return; 5029 } 5030 } 5031 5032 // We can't combine several GEPs into one vector if they operate on 5033 // different types. 5034 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5035 for (Value *V : VL) { 5036 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 5037 if (Ty0 != CurTy) { 5038 LLVM_DEBUG(dbgs() 5039 << "SLP: not-vectorizable GEP (different types).\n"); 5040 BS.cancelScheduling(VL, VL0); 5041 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5042 ReuseShuffleIndicies); 5043 return; 5044 } 5045 } 5046 5047 // We don't combine GEPs with non-constant indexes. 5048 Type *Ty1 = VL0->getOperand(1)->getType(); 5049 for (Value *V : VL) { 5050 auto Op = cast<Instruction>(V)->getOperand(1); 5051 if (!isa<ConstantInt>(Op) || 5052 (Op->getType() != Ty1 && 5053 Op->getType()->getScalarSizeInBits() > 5054 DL->getIndexSizeInBits( 5055 V->getType()->getPointerAddressSpace()))) { 5056 LLVM_DEBUG(dbgs() 5057 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5058 BS.cancelScheduling(VL, VL0); 5059 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5060 ReuseShuffleIndicies); 5061 return; 5062 } 5063 } 5064 5065 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5066 ReuseShuffleIndicies); 5067 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5068 SmallVector<ValueList, 2> Operands(2); 5069 // Prepare the operand vector for pointer operands. 5070 for (Value *V : VL) 5071 Operands.front().push_back( 5072 cast<GetElementPtrInst>(V)->getPointerOperand()); 5073 TE->setOperand(0, Operands.front()); 5074 // Need to cast all indices to the same type before vectorization to 5075 // avoid crash. 5076 // Required to be able to find correct matches between different gather 5077 // nodes and reuse the vectorized values rather than trying to gather them 5078 // again. 5079 int IndexIdx = 1; 5080 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5081 Type *Ty = all_of(VL, 5082 [VL0Ty, IndexIdx](Value *V) { 5083 return VL0Ty == cast<GetElementPtrInst>(V) 5084 ->getOperand(IndexIdx) 5085 ->getType(); 5086 }) 5087 ? VL0Ty 5088 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5089 ->getPointerOperandType() 5090 ->getScalarType()); 5091 // Prepare the operand vector. 5092 for (Value *V : VL) { 5093 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 5094 auto *CI = cast<ConstantInt>(Op); 5095 Operands.back().push_back(ConstantExpr::getIntegerCast( 5096 CI, Ty, CI->getValue().isSignBitSet())); 5097 } 5098 TE->setOperand(IndexIdx, Operands.back()); 5099 5100 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5101 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5102 return; 5103 } 5104 case Instruction::Store: { 5105 // Check if the stores are consecutive or if we need to swizzle them. 5106 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5107 // Avoid types that are padded when being allocated as scalars, while 5108 // being packed together in a vector (such as i1). 5109 if (DL->getTypeSizeInBits(ScalarTy) != 5110 DL->getTypeAllocSizeInBits(ScalarTy)) { 5111 BS.cancelScheduling(VL, VL0); 5112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5113 ReuseShuffleIndicies); 5114 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5115 return; 5116 } 5117 // Make sure all stores in the bundle are simple - we can't vectorize 5118 // atomic or volatile stores. 5119 SmallVector<Value *, 4> PointerOps(VL.size()); 5120 ValueList Operands(VL.size()); 5121 auto POIter = PointerOps.begin(); 5122 auto OIter = Operands.begin(); 5123 for (Value *V : VL) { 5124 auto *SI = cast<StoreInst>(V); 5125 if (!SI->isSimple()) { 5126 BS.cancelScheduling(VL, VL0); 5127 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5128 ReuseShuffleIndicies); 5129 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5130 return; 5131 } 5132 *POIter = SI->getPointerOperand(); 5133 *OIter = SI->getValueOperand(); 5134 ++POIter; 5135 ++OIter; 5136 } 5137 5138 OrdersType CurrentOrder; 5139 // Check the order of pointer operands. 5140 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5141 Value *Ptr0; 5142 Value *PtrN; 5143 if (CurrentOrder.empty()) { 5144 Ptr0 = PointerOps.front(); 5145 PtrN = PointerOps.back(); 5146 } else { 5147 Ptr0 = PointerOps[CurrentOrder.front()]; 5148 PtrN = PointerOps[CurrentOrder.back()]; 5149 } 5150 Optional<int> Dist = 5151 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5152 // Check that the sorted pointer operands are consecutive. 5153 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5154 if (CurrentOrder.empty()) { 5155 // Original stores are consecutive and does not require reordering. 5156 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5157 UserTreeIdx, ReuseShuffleIndicies); 5158 TE->setOperandsInOrder(); 5159 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5160 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5161 } else { 5162 fixupOrderingIndices(CurrentOrder); 5163 TreeEntry *TE = 5164 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5165 ReuseShuffleIndicies, CurrentOrder); 5166 TE->setOperandsInOrder(); 5167 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5168 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5169 } 5170 return; 5171 } 5172 } 5173 5174 BS.cancelScheduling(VL, VL0); 5175 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5176 ReuseShuffleIndicies); 5177 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5178 return; 5179 } 5180 case Instruction::Call: { 5181 // Check if the calls are all to the same vectorizable intrinsic or 5182 // library function. 5183 CallInst *CI = cast<CallInst>(VL0); 5184 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5185 5186 VFShape Shape = VFShape::get( 5187 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5188 false /*HasGlobalPred*/); 5189 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5190 5191 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5192 BS.cancelScheduling(VL, VL0); 5193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5194 ReuseShuffleIndicies); 5195 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5196 return; 5197 } 5198 Function *F = CI->getCalledFunction(); 5199 unsigned NumArgs = CI->arg_size(); 5200 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5201 for (unsigned j = 0; j != NumArgs; ++j) 5202 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5203 ScalarArgs[j] = CI->getArgOperand(j); 5204 for (Value *V : VL) { 5205 CallInst *CI2 = dyn_cast<CallInst>(V); 5206 if (!CI2 || CI2->getCalledFunction() != F || 5207 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5208 (VecFunc && 5209 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5210 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5211 BS.cancelScheduling(VL, VL0); 5212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5213 ReuseShuffleIndicies); 5214 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5215 << "\n"); 5216 return; 5217 } 5218 // Some intrinsics have scalar arguments and should be same in order for 5219 // them to be vectorized. 5220 for (unsigned j = 0; j != NumArgs; ++j) { 5221 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5222 Value *A1J = CI2->getArgOperand(j); 5223 if (ScalarArgs[j] != A1J) { 5224 BS.cancelScheduling(VL, VL0); 5225 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5226 ReuseShuffleIndicies); 5227 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5228 << " argument " << ScalarArgs[j] << "!=" << A1J 5229 << "\n"); 5230 return; 5231 } 5232 } 5233 } 5234 // Verify that the bundle operands are identical between the two calls. 5235 if (CI->hasOperandBundles() && 5236 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5237 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5238 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5239 BS.cancelScheduling(VL, VL0); 5240 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5241 ReuseShuffleIndicies); 5242 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5243 << *CI << "!=" << *V << '\n'); 5244 return; 5245 } 5246 } 5247 5248 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5249 ReuseShuffleIndicies); 5250 TE->setOperandsInOrder(); 5251 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5252 // For scalar operands no need to to create an entry since no need to 5253 // vectorize it. 5254 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5255 continue; 5256 ValueList Operands; 5257 // Prepare the operand vector. 5258 for (Value *V : VL) { 5259 auto *CI2 = cast<CallInst>(V); 5260 Operands.push_back(CI2->getArgOperand(i)); 5261 } 5262 buildTree_rec(Operands, Depth + 1, {TE, i}); 5263 } 5264 return; 5265 } 5266 case Instruction::ShuffleVector: { 5267 // If this is not an alternate sequence of opcode like add-sub 5268 // then do not vectorize this instruction. 5269 if (!S.isAltShuffle()) { 5270 BS.cancelScheduling(VL, VL0); 5271 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5272 ReuseShuffleIndicies); 5273 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5274 return; 5275 } 5276 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5277 ReuseShuffleIndicies); 5278 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5279 5280 // Reorder operands if reordering would enable vectorization. 5281 auto *CI = dyn_cast<CmpInst>(VL0); 5282 if (isa<BinaryOperator>(VL0) || CI) { 5283 ValueList Left, Right; 5284 if (!CI || all_of(VL, [](Value *V) { 5285 return cast<CmpInst>(V)->isCommutative(); 5286 })) { 5287 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5288 } else { 5289 CmpInst::Predicate P0 = CI->getPredicate(); 5290 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5291 assert(P0 != AltP0 && 5292 "Expected different main/alternate predicates."); 5293 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5294 Value *BaseOp0 = VL0->getOperand(0); 5295 Value *BaseOp1 = VL0->getOperand(1); 5296 // Collect operands - commute if it uses the swapped predicate or 5297 // alternate operation. 5298 for (Value *V : VL) { 5299 auto *Cmp = cast<CmpInst>(V); 5300 Value *LHS = Cmp->getOperand(0); 5301 Value *RHS = Cmp->getOperand(1); 5302 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5303 if (P0 == AltP0Swapped) { 5304 if (CI != Cmp && S.AltOp != Cmp && 5305 ((P0 == CurrentPred && 5306 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5307 (AltP0 == CurrentPred && 5308 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5309 std::swap(LHS, RHS); 5310 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5311 std::swap(LHS, RHS); 5312 } 5313 Left.push_back(LHS); 5314 Right.push_back(RHS); 5315 } 5316 } 5317 TE->setOperand(0, Left); 5318 TE->setOperand(1, Right); 5319 buildTree_rec(Left, Depth + 1, {TE, 0}); 5320 buildTree_rec(Right, Depth + 1, {TE, 1}); 5321 return; 5322 } 5323 5324 TE->setOperandsInOrder(); 5325 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5326 ValueList Operands; 5327 // Prepare the operand vector. 5328 for (Value *V : VL) 5329 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5330 5331 buildTree_rec(Operands, Depth + 1, {TE, i}); 5332 } 5333 return; 5334 } 5335 default: 5336 BS.cancelScheduling(VL, VL0); 5337 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5338 ReuseShuffleIndicies); 5339 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5340 return; 5341 } 5342 } 5343 5344 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5345 unsigned N = 1; 5346 Type *EltTy = T; 5347 5348 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5349 isa<VectorType>(EltTy)) { 5350 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5351 // Check that struct is homogeneous. 5352 for (const auto *Ty : ST->elements()) 5353 if (Ty != *ST->element_begin()) 5354 return 0; 5355 N *= ST->getNumElements(); 5356 EltTy = *ST->element_begin(); 5357 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5358 N *= AT->getNumElements(); 5359 EltTy = AT->getElementType(); 5360 } else { 5361 auto *VT = cast<FixedVectorType>(EltTy); 5362 N *= VT->getNumElements(); 5363 EltTy = VT->getElementType(); 5364 } 5365 } 5366 5367 if (!isValidElementType(EltTy)) 5368 return 0; 5369 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5370 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5371 return 0; 5372 return N; 5373 } 5374 5375 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5376 SmallVectorImpl<unsigned> &CurrentOrder) const { 5377 const auto *It = find_if(VL, [](Value *V) { 5378 return isa<ExtractElementInst, ExtractValueInst>(V); 5379 }); 5380 assert(It != VL.end() && "Expected at least one extract instruction."); 5381 auto *E0 = cast<Instruction>(*It); 5382 assert(all_of(VL, 5383 [](Value *V) { 5384 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5385 V); 5386 }) && 5387 "Invalid opcode"); 5388 // Check if all of the extracts come from the same vector and from the 5389 // correct offset. 5390 Value *Vec = E0->getOperand(0); 5391 5392 CurrentOrder.clear(); 5393 5394 // We have to extract from a vector/aggregate with the same number of elements. 5395 unsigned NElts; 5396 if (E0->getOpcode() == Instruction::ExtractValue) { 5397 const DataLayout &DL = E0->getModule()->getDataLayout(); 5398 NElts = canMapToVector(Vec->getType(), DL); 5399 if (!NElts) 5400 return false; 5401 // Check if load can be rewritten as load of vector. 5402 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5403 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5404 return false; 5405 } else { 5406 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5407 } 5408 5409 if (NElts != VL.size()) 5410 return false; 5411 5412 // Check that all of the indices extract from the correct offset. 5413 bool ShouldKeepOrder = true; 5414 unsigned E = VL.size(); 5415 // Assign to all items the initial value E + 1 so we can check if the extract 5416 // instruction index was used already. 5417 // Also, later we can check that all the indices are used and we have a 5418 // consecutive access in the extract instructions, by checking that no 5419 // element of CurrentOrder still has value E + 1. 5420 CurrentOrder.assign(E, E); 5421 unsigned I = 0; 5422 for (; I < E; ++I) { 5423 auto *Inst = dyn_cast<Instruction>(VL[I]); 5424 if (!Inst) 5425 continue; 5426 if (Inst->getOperand(0) != Vec) 5427 break; 5428 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5429 if (isa<UndefValue>(EE->getIndexOperand())) 5430 continue; 5431 Optional<unsigned> Idx = getExtractIndex(Inst); 5432 if (!Idx) 5433 break; 5434 const unsigned ExtIdx = *Idx; 5435 if (ExtIdx != I) { 5436 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5437 break; 5438 ShouldKeepOrder = false; 5439 CurrentOrder[ExtIdx] = I; 5440 } else { 5441 if (CurrentOrder[I] != E) 5442 break; 5443 CurrentOrder[I] = I; 5444 } 5445 } 5446 if (I < E) { 5447 CurrentOrder.clear(); 5448 return false; 5449 } 5450 if (ShouldKeepOrder) 5451 CurrentOrder.clear(); 5452 5453 return ShouldKeepOrder; 5454 } 5455 5456 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5457 ArrayRef<Value *> VectorizedVals) const { 5458 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5459 all_of(I->users(), [this](User *U) { 5460 return ScalarToTreeEntry.count(U) > 0 || 5461 isVectorLikeInstWithConstOps(U) || 5462 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5463 }); 5464 } 5465 5466 static std::pair<InstructionCost, InstructionCost> 5467 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5468 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5469 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5470 5471 // Calculate the cost of the scalar and vector calls. 5472 SmallVector<Type *, 4> VecTys; 5473 for (Use &Arg : CI->args()) 5474 VecTys.push_back( 5475 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5476 FastMathFlags FMF; 5477 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5478 FMF = FPCI->getFastMathFlags(); 5479 SmallVector<const Value *> Arguments(CI->args()); 5480 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5481 dyn_cast<IntrinsicInst>(CI)); 5482 auto IntrinsicCost = 5483 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5484 5485 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5486 VecTy->getNumElements())), 5487 false /*HasGlobalPred*/); 5488 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5489 auto LibCost = IntrinsicCost; 5490 if (!CI->isNoBuiltin() && VecFunc) { 5491 // Calculate the cost of the vector library call. 5492 // If the corresponding vector call is cheaper, return its cost. 5493 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5494 TTI::TCK_RecipThroughput); 5495 } 5496 return {IntrinsicCost, LibCost}; 5497 } 5498 5499 /// Compute the cost of creating a vector of type \p VecTy containing the 5500 /// extracted values from \p VL. 5501 static InstructionCost 5502 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5503 TargetTransformInfo::ShuffleKind ShuffleKind, 5504 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5505 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5506 5507 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5508 VecTy->getNumElements() < NumOfParts) 5509 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5510 5511 bool AllConsecutive = true; 5512 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5513 unsigned Idx = -1; 5514 InstructionCost Cost = 0; 5515 5516 // Process extracts in blocks of EltsPerVector to check if the source vector 5517 // operand can be re-used directly. If not, add the cost of creating a shuffle 5518 // to extract the values into a vector register. 5519 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5520 for (auto *V : VL) { 5521 ++Idx; 5522 5523 // Need to exclude undefs from analysis. 5524 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5525 continue; 5526 5527 // Reached the start of a new vector registers. 5528 if (Idx % EltsPerVector == 0) { 5529 RegMask.assign(EltsPerVector, UndefMaskElem); 5530 AllConsecutive = true; 5531 continue; 5532 } 5533 5534 // Check all extracts for a vector register on the target directly 5535 // extract values in order. 5536 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5537 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5538 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5539 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5540 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5541 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5542 } 5543 5544 if (AllConsecutive) 5545 continue; 5546 5547 // Skip all indices, except for the last index per vector block. 5548 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5549 continue; 5550 5551 // If we have a series of extracts which are not consecutive and hence 5552 // cannot re-use the source vector register directly, compute the shuffle 5553 // cost to extract the vector with EltsPerVector elements. 5554 Cost += TTI.getShuffleCost( 5555 TargetTransformInfo::SK_PermuteSingleSrc, 5556 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5557 } 5558 return Cost; 5559 } 5560 5561 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5562 /// operations operands. 5563 static void 5564 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5565 ArrayRef<int> ReusesIndices, 5566 const function_ref<bool(Instruction *)> IsAltOp, 5567 SmallVectorImpl<int> &Mask, 5568 SmallVectorImpl<Value *> *OpScalars = nullptr, 5569 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5570 unsigned Sz = VL.size(); 5571 Mask.assign(Sz, UndefMaskElem); 5572 SmallVector<int> OrderMask; 5573 if (!ReorderIndices.empty()) 5574 inversePermutation(ReorderIndices, OrderMask); 5575 for (unsigned I = 0; I < Sz; ++I) { 5576 unsigned Idx = I; 5577 if (!ReorderIndices.empty()) 5578 Idx = OrderMask[I]; 5579 auto *OpInst = cast<Instruction>(VL[Idx]); 5580 if (IsAltOp(OpInst)) { 5581 Mask[I] = Sz + Idx; 5582 if (AltScalars) 5583 AltScalars->push_back(OpInst); 5584 } else { 5585 Mask[I] = Idx; 5586 if (OpScalars) 5587 OpScalars->push_back(OpInst); 5588 } 5589 } 5590 if (!ReusesIndices.empty()) { 5591 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5592 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5593 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5594 }); 5595 Mask.swap(NewMask); 5596 } 5597 } 5598 5599 /// Checks if the specified instruction \p I is an alternate operation for the 5600 /// given \p MainOp and \p AltOp instructions. 5601 static bool isAlternateInstruction(const Instruction *I, 5602 const Instruction *MainOp, 5603 const Instruction *AltOp) { 5604 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5605 auto *AltCI0 = cast<CmpInst>(AltOp); 5606 auto *CI = cast<CmpInst>(I); 5607 CmpInst::Predicate P0 = CI0->getPredicate(); 5608 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5609 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5610 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5611 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5612 if (P0 == AltP0Swapped) 5613 return I == AltCI0 || 5614 (I != MainOp && 5615 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5616 CI->getOperand(0), CI->getOperand(1))); 5617 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5618 } 5619 return I->getOpcode() == AltOp->getOpcode(); 5620 } 5621 5622 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5623 ArrayRef<Value *> VectorizedVals) { 5624 ArrayRef<Value*> VL = E->Scalars; 5625 5626 Type *ScalarTy = VL[0]->getType(); 5627 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5628 ScalarTy = SI->getValueOperand()->getType(); 5629 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5630 ScalarTy = CI->getOperand(0)->getType(); 5631 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5632 ScalarTy = IE->getOperand(1)->getType(); 5633 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5634 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5635 5636 // If we have computed a smaller type for the expression, update VecTy so 5637 // that the costs will be accurate. 5638 if (MinBWs.count(VL[0])) 5639 VecTy = FixedVectorType::get( 5640 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5641 unsigned EntryVF = E->getVectorFactor(); 5642 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5643 5644 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5645 // FIXME: it tries to fix a problem with MSVC buildbots. 5646 TargetTransformInfo &TTIRef = *TTI; 5647 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5648 VectorizedVals, E](InstructionCost &Cost) { 5649 DenseMap<Value *, int> ExtractVectorsTys; 5650 SmallPtrSet<Value *, 4> CheckedExtracts; 5651 for (auto *V : VL) { 5652 if (isa<UndefValue>(V)) 5653 continue; 5654 // If all users of instruction are going to be vectorized and this 5655 // instruction itself is not going to be vectorized, consider this 5656 // instruction as dead and remove its cost from the final cost of the 5657 // vectorized tree. 5658 // Also, avoid adjusting the cost for extractelements with multiple uses 5659 // in different graph entries. 5660 const TreeEntry *VE = getTreeEntry(V); 5661 if (!CheckedExtracts.insert(V).second || 5662 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5663 (VE && VE != E)) 5664 continue; 5665 auto *EE = cast<ExtractElementInst>(V); 5666 Optional<unsigned> EEIdx = getExtractIndex(EE); 5667 if (!EEIdx) 5668 continue; 5669 unsigned Idx = *EEIdx; 5670 if (TTIRef.getNumberOfParts(VecTy) != 5671 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5672 auto It = 5673 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5674 It->getSecond() = std::min<int>(It->second, Idx); 5675 } 5676 // Take credit for instruction that will become dead. 5677 if (EE->hasOneUse()) { 5678 Instruction *Ext = EE->user_back(); 5679 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5680 all_of(Ext->users(), 5681 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5682 // Use getExtractWithExtendCost() to calculate the cost of 5683 // extractelement/ext pair. 5684 Cost -= 5685 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5686 EE->getVectorOperandType(), Idx); 5687 // Add back the cost of s|zext which is subtracted separately. 5688 Cost += TTIRef.getCastInstrCost( 5689 Ext->getOpcode(), Ext->getType(), EE->getType(), 5690 TTI::getCastContextHint(Ext), CostKind, Ext); 5691 continue; 5692 } 5693 } 5694 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5695 EE->getVectorOperandType(), Idx); 5696 } 5697 // Add a cost for subvector extracts/inserts if required. 5698 for (const auto &Data : ExtractVectorsTys) { 5699 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5700 unsigned NumElts = VecTy->getNumElements(); 5701 if (Data.second % NumElts == 0) 5702 continue; 5703 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5704 unsigned Idx = (Data.second / NumElts) * NumElts; 5705 unsigned EENumElts = EEVTy->getNumElements(); 5706 if (Idx + NumElts <= EENumElts) { 5707 Cost += 5708 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5709 EEVTy, None, Idx, VecTy); 5710 } else { 5711 // Need to round up the subvector type vectorization factor to avoid a 5712 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5713 // <= EENumElts. 5714 auto *SubVT = 5715 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5716 Cost += 5717 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5718 EEVTy, None, Idx, SubVT); 5719 } 5720 } else { 5721 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5722 VecTy, None, 0, EEVTy); 5723 } 5724 } 5725 }; 5726 if (E->State == TreeEntry::NeedToGather) { 5727 if (allConstant(VL)) 5728 return 0; 5729 if (isa<InsertElementInst>(VL[0])) 5730 return InstructionCost::getInvalid(); 5731 SmallVector<int> Mask; 5732 SmallVector<const TreeEntry *> Entries; 5733 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5734 isGatherShuffledEntry(E, Mask, Entries); 5735 if (Shuffle.hasValue()) { 5736 InstructionCost GatherCost = 0; 5737 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5738 // Perfect match in the graph, will reuse the previously vectorized 5739 // node. Cost is 0. 5740 LLVM_DEBUG( 5741 dbgs() 5742 << "SLP: perfect diamond match for gather bundle that starts with " 5743 << *VL.front() << ".\n"); 5744 if (NeedToShuffleReuses) 5745 GatherCost = 5746 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5747 FinalVecTy, E->ReuseShuffleIndices); 5748 } else { 5749 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5750 << " entries for bundle that starts with " 5751 << *VL.front() << ".\n"); 5752 // Detected that instead of gather we can emit a shuffle of single/two 5753 // previously vectorized nodes. Add the cost of the permutation rather 5754 // than gather. 5755 ::addMask(Mask, E->ReuseShuffleIndices); 5756 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5757 } 5758 return GatherCost; 5759 } 5760 if ((E->getOpcode() == Instruction::ExtractElement || 5761 all_of(E->Scalars, 5762 [](Value *V) { 5763 return isa<ExtractElementInst, UndefValue>(V); 5764 })) && 5765 allSameType(VL)) { 5766 // Check that gather of extractelements can be represented as just a 5767 // shuffle of a single/two vectors the scalars are extracted from. 5768 SmallVector<int> Mask; 5769 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5770 isFixedVectorShuffle(VL, Mask); 5771 if (ShuffleKind.hasValue()) { 5772 // Found the bunch of extractelement instructions that must be gathered 5773 // into a vector and can be represented as a permutation elements in a 5774 // single input vector or of 2 input vectors. 5775 InstructionCost Cost = 5776 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5777 AdjustExtractsCost(Cost); 5778 if (NeedToShuffleReuses) 5779 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5780 FinalVecTy, E->ReuseShuffleIndices); 5781 return Cost; 5782 } 5783 } 5784 if (isSplat(VL)) { 5785 // Found the broadcasting of the single scalar, calculate the cost as the 5786 // broadcast. 5787 assert(VecTy == FinalVecTy && 5788 "No reused scalars expected for broadcast."); 5789 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5790 /*Mask=*/None, /*Index=*/0, 5791 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5792 } 5793 InstructionCost ReuseShuffleCost = 0; 5794 if (NeedToShuffleReuses) 5795 ReuseShuffleCost = TTI->getShuffleCost( 5796 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5797 // Improve gather cost for gather of loads, if we can group some of the 5798 // loads into vector loads. 5799 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5800 !E->isAltShuffle()) { 5801 BoUpSLP::ValueSet VectorizedLoads; 5802 unsigned StartIdx = 0; 5803 unsigned VF = VL.size() / 2; 5804 unsigned VectorizedCnt = 0; 5805 unsigned ScatterVectorizeCnt = 0; 5806 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5807 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5808 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5809 Cnt += VF) { 5810 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5811 if (!VectorizedLoads.count(Slice.front()) && 5812 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5813 SmallVector<Value *> PointerOps; 5814 OrdersType CurrentOrder; 5815 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5816 *SE, CurrentOrder, PointerOps); 5817 switch (LS) { 5818 case LoadsState::Vectorize: 5819 case LoadsState::ScatterVectorize: 5820 // Mark the vectorized loads so that we don't vectorize them 5821 // again. 5822 if (LS == LoadsState::Vectorize) 5823 ++VectorizedCnt; 5824 else 5825 ++ScatterVectorizeCnt; 5826 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5827 // If we vectorized initial block, no need to try to vectorize it 5828 // again. 5829 if (Cnt == StartIdx) 5830 StartIdx += VF; 5831 break; 5832 case LoadsState::Gather: 5833 break; 5834 } 5835 } 5836 } 5837 // Check if the whole array was vectorized already - exit. 5838 if (StartIdx >= VL.size()) 5839 break; 5840 // Found vectorizable parts - exit. 5841 if (!VectorizedLoads.empty()) 5842 break; 5843 } 5844 if (!VectorizedLoads.empty()) { 5845 InstructionCost GatherCost = 0; 5846 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5847 bool NeedInsertSubvectorAnalysis = 5848 !NumParts || (VL.size() / VF) > NumParts; 5849 // Get the cost for gathered loads. 5850 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5851 if (VectorizedLoads.contains(VL[I])) 5852 continue; 5853 GatherCost += getGatherCost(VL.slice(I, VF)); 5854 } 5855 // The cost for vectorized loads. 5856 InstructionCost ScalarsCost = 0; 5857 for (Value *V : VectorizedLoads) { 5858 auto *LI = cast<LoadInst>(V); 5859 ScalarsCost += TTI->getMemoryOpCost( 5860 Instruction::Load, LI->getType(), LI->getAlign(), 5861 LI->getPointerAddressSpace(), CostKind, LI); 5862 } 5863 auto *LI = cast<LoadInst>(E->getMainOp()); 5864 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5865 Align Alignment = LI->getAlign(); 5866 GatherCost += 5867 VectorizedCnt * 5868 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5869 LI->getPointerAddressSpace(), CostKind, LI); 5870 GatherCost += ScatterVectorizeCnt * 5871 TTI->getGatherScatterOpCost( 5872 Instruction::Load, LoadTy, LI->getPointerOperand(), 5873 /*VariableMask=*/false, Alignment, CostKind, LI); 5874 if (NeedInsertSubvectorAnalysis) { 5875 // Add the cost for the subvectors insert. 5876 for (int I = VF, E = VL.size(); I < E; I += VF) 5877 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5878 None, I, LoadTy); 5879 } 5880 return ReuseShuffleCost + GatherCost - ScalarsCost; 5881 } 5882 } 5883 return ReuseShuffleCost + getGatherCost(VL); 5884 } 5885 InstructionCost CommonCost = 0; 5886 SmallVector<int> Mask; 5887 if (!E->ReorderIndices.empty()) { 5888 SmallVector<int> NewMask; 5889 if (E->getOpcode() == Instruction::Store) { 5890 // For stores the order is actually a mask. 5891 NewMask.resize(E->ReorderIndices.size()); 5892 copy(E->ReorderIndices, NewMask.begin()); 5893 } else { 5894 inversePermutation(E->ReorderIndices, NewMask); 5895 } 5896 ::addMask(Mask, NewMask); 5897 } 5898 if (NeedToShuffleReuses) 5899 ::addMask(Mask, E->ReuseShuffleIndices); 5900 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5901 CommonCost = 5902 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5903 assert((E->State == TreeEntry::Vectorize || 5904 E->State == TreeEntry::ScatterVectorize) && 5905 "Unhandled state"); 5906 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5907 Instruction *VL0 = E->getMainOp(); 5908 unsigned ShuffleOrOp = 5909 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5910 switch (ShuffleOrOp) { 5911 case Instruction::PHI: 5912 return 0; 5913 5914 case Instruction::ExtractValue: 5915 case Instruction::ExtractElement: { 5916 // The common cost of removal ExtractElement/ExtractValue instructions + 5917 // the cost of shuffles, if required to resuffle the original vector. 5918 if (NeedToShuffleReuses) { 5919 unsigned Idx = 0; 5920 for (unsigned I : E->ReuseShuffleIndices) { 5921 if (ShuffleOrOp == Instruction::ExtractElement) { 5922 auto *EE = cast<ExtractElementInst>(VL[I]); 5923 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5924 EE->getVectorOperandType(), 5925 *getExtractIndex(EE)); 5926 } else { 5927 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5928 VecTy, Idx); 5929 ++Idx; 5930 } 5931 } 5932 Idx = EntryVF; 5933 for (Value *V : VL) { 5934 if (ShuffleOrOp == Instruction::ExtractElement) { 5935 auto *EE = cast<ExtractElementInst>(V); 5936 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5937 EE->getVectorOperandType(), 5938 *getExtractIndex(EE)); 5939 } else { 5940 --Idx; 5941 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5942 VecTy, Idx); 5943 } 5944 } 5945 } 5946 if (ShuffleOrOp == Instruction::ExtractValue) { 5947 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5948 auto *EI = cast<Instruction>(VL[I]); 5949 // Take credit for instruction that will become dead. 5950 if (EI->hasOneUse()) { 5951 Instruction *Ext = EI->user_back(); 5952 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5953 all_of(Ext->users(), 5954 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5955 // Use getExtractWithExtendCost() to calculate the cost of 5956 // extractelement/ext pair. 5957 CommonCost -= TTI->getExtractWithExtendCost( 5958 Ext->getOpcode(), Ext->getType(), VecTy, I); 5959 // Add back the cost of s|zext which is subtracted separately. 5960 CommonCost += TTI->getCastInstrCost( 5961 Ext->getOpcode(), Ext->getType(), EI->getType(), 5962 TTI::getCastContextHint(Ext), CostKind, Ext); 5963 continue; 5964 } 5965 } 5966 CommonCost -= 5967 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5968 } 5969 } else { 5970 AdjustExtractsCost(CommonCost); 5971 } 5972 return CommonCost; 5973 } 5974 case Instruction::InsertElement: { 5975 assert(E->ReuseShuffleIndices.empty() && 5976 "Unique insertelements only are expected."); 5977 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5978 5979 unsigned const NumElts = SrcVecTy->getNumElements(); 5980 unsigned const NumScalars = VL.size(); 5981 APInt DemandedElts = APInt::getZero(NumElts); 5982 // TODO: Add support for Instruction::InsertValue. 5983 SmallVector<int> Mask; 5984 if (!E->ReorderIndices.empty()) { 5985 inversePermutation(E->ReorderIndices, Mask); 5986 Mask.append(NumElts - NumScalars, UndefMaskElem); 5987 } else { 5988 Mask.assign(NumElts, UndefMaskElem); 5989 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5990 } 5991 unsigned Offset = *getInsertIndex(VL0); 5992 bool IsIdentity = true; 5993 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5994 Mask.swap(PrevMask); 5995 for (unsigned I = 0; I < NumScalars; ++I) { 5996 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5997 DemandedElts.setBit(InsertIdx); 5998 IsIdentity &= InsertIdx - Offset == I; 5999 Mask[InsertIdx - Offset] = I; 6000 } 6001 assert(Offset < NumElts && "Failed to find vector index offset"); 6002 6003 InstructionCost Cost = 0; 6004 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 6005 /*Insert*/ true, /*Extract*/ false); 6006 6007 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 6008 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 6009 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 6010 Cost += TTI->getShuffleCost( 6011 TargetTransformInfo::SK_PermuteSingleSrc, 6012 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 6013 } else if (!IsIdentity) { 6014 auto *FirstInsert = 6015 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6016 return !is_contained(E->Scalars, 6017 cast<Instruction>(V)->getOperand(0)); 6018 })); 6019 if (isUndefVector(FirstInsert->getOperand(0))) { 6020 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 6021 } else { 6022 SmallVector<int> InsertMask(NumElts); 6023 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6024 for (unsigned I = 0; I < NumElts; I++) { 6025 if (Mask[I] != UndefMaskElem) 6026 InsertMask[Offset + I] = NumElts + I; 6027 } 6028 Cost += 6029 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 6030 } 6031 } 6032 6033 return Cost; 6034 } 6035 case Instruction::ZExt: 6036 case Instruction::SExt: 6037 case Instruction::FPToUI: 6038 case Instruction::FPToSI: 6039 case Instruction::FPExt: 6040 case Instruction::PtrToInt: 6041 case Instruction::IntToPtr: 6042 case Instruction::SIToFP: 6043 case Instruction::UIToFP: 6044 case Instruction::Trunc: 6045 case Instruction::FPTrunc: 6046 case Instruction::BitCast: { 6047 Type *SrcTy = VL0->getOperand(0)->getType(); 6048 InstructionCost ScalarEltCost = 6049 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 6050 TTI::getCastContextHint(VL0), CostKind, VL0); 6051 if (NeedToShuffleReuses) { 6052 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6053 } 6054 6055 // Calculate the cost of this instruction. 6056 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6057 6058 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6059 InstructionCost VecCost = 0; 6060 // Check if the values are candidates to demote. 6061 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6062 VecCost = CommonCost + TTI->getCastInstrCost( 6063 E->getOpcode(), VecTy, SrcVecTy, 6064 TTI::getCastContextHint(VL0), CostKind, VL0); 6065 } 6066 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6067 return VecCost - ScalarCost; 6068 } 6069 case Instruction::FCmp: 6070 case Instruction::ICmp: 6071 case Instruction::Select: { 6072 // Calculate the cost of this instruction. 6073 InstructionCost ScalarEltCost = 6074 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6075 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6076 if (NeedToShuffleReuses) { 6077 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6078 } 6079 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6080 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6081 6082 // Check if all entries in VL are either compares or selects with compares 6083 // as condition that have the same predicates. 6084 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6085 bool First = true; 6086 for (auto *V : VL) { 6087 CmpInst::Predicate CurrentPred; 6088 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6089 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6090 !match(V, MatchCmp)) || 6091 (!First && VecPred != CurrentPred)) { 6092 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6093 break; 6094 } 6095 First = false; 6096 VecPred = CurrentPred; 6097 } 6098 6099 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6100 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6101 // Check if it is possible and profitable to use min/max for selects in 6102 // VL. 6103 // 6104 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6105 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6106 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6107 {VecTy, VecTy}); 6108 InstructionCost IntrinsicCost = 6109 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6110 // If the selects are the only uses of the compares, they will be dead 6111 // and we can adjust the cost by removing their cost. 6112 if (IntrinsicAndUse.second) 6113 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6114 MaskTy, VecPred, CostKind); 6115 VecCost = std::min(VecCost, IntrinsicCost); 6116 } 6117 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6118 return CommonCost + VecCost - ScalarCost; 6119 } 6120 case Instruction::FNeg: 6121 case Instruction::Add: 6122 case Instruction::FAdd: 6123 case Instruction::Sub: 6124 case Instruction::FSub: 6125 case Instruction::Mul: 6126 case Instruction::FMul: 6127 case Instruction::UDiv: 6128 case Instruction::SDiv: 6129 case Instruction::FDiv: 6130 case Instruction::URem: 6131 case Instruction::SRem: 6132 case Instruction::FRem: 6133 case Instruction::Shl: 6134 case Instruction::LShr: 6135 case Instruction::AShr: 6136 case Instruction::And: 6137 case Instruction::Or: 6138 case Instruction::Xor: { 6139 // Certain instructions can be cheaper to vectorize if they have a 6140 // constant second vector operand. 6141 TargetTransformInfo::OperandValueKind Op1VK = 6142 TargetTransformInfo::OK_AnyValue; 6143 TargetTransformInfo::OperandValueKind Op2VK = 6144 TargetTransformInfo::OK_UniformConstantValue; 6145 TargetTransformInfo::OperandValueProperties Op1VP = 6146 TargetTransformInfo::OP_None; 6147 TargetTransformInfo::OperandValueProperties Op2VP = 6148 TargetTransformInfo::OP_PowerOf2; 6149 6150 // If all operands are exactly the same ConstantInt then set the 6151 // operand kind to OK_UniformConstantValue. 6152 // If instead not all operands are constants, then set the operand kind 6153 // to OK_AnyValue. If all operands are constants but not the same, 6154 // then set the operand kind to OK_NonUniformConstantValue. 6155 ConstantInt *CInt0 = nullptr; 6156 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6157 const Instruction *I = cast<Instruction>(VL[i]); 6158 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6159 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6160 if (!CInt) { 6161 Op2VK = TargetTransformInfo::OK_AnyValue; 6162 Op2VP = TargetTransformInfo::OP_None; 6163 break; 6164 } 6165 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6166 !CInt->getValue().isPowerOf2()) 6167 Op2VP = TargetTransformInfo::OP_None; 6168 if (i == 0) { 6169 CInt0 = CInt; 6170 continue; 6171 } 6172 if (CInt0 != CInt) 6173 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6174 } 6175 6176 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6177 InstructionCost ScalarEltCost = 6178 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6179 Op2VK, Op1VP, Op2VP, Operands, VL0); 6180 if (NeedToShuffleReuses) { 6181 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6182 } 6183 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6184 InstructionCost VecCost = 6185 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6186 Op2VK, Op1VP, Op2VP, Operands, VL0); 6187 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6188 return CommonCost + VecCost - ScalarCost; 6189 } 6190 case Instruction::GetElementPtr: { 6191 TargetTransformInfo::OperandValueKind Op1VK = 6192 TargetTransformInfo::OK_AnyValue; 6193 TargetTransformInfo::OperandValueKind Op2VK = 6194 TargetTransformInfo::OK_UniformConstantValue; 6195 6196 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6197 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6198 if (NeedToShuffleReuses) { 6199 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6200 } 6201 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6202 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6203 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6204 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6205 return CommonCost + VecCost - ScalarCost; 6206 } 6207 case Instruction::Load: { 6208 // Cost of wide load - cost of scalar loads. 6209 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6210 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6211 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6212 if (NeedToShuffleReuses) { 6213 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6214 } 6215 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6216 InstructionCost VecLdCost; 6217 if (E->State == TreeEntry::Vectorize) { 6218 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6219 CostKind, VL0); 6220 } else { 6221 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6222 Align CommonAlignment = Alignment; 6223 for (Value *V : VL) 6224 CommonAlignment = 6225 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6226 VecLdCost = TTI->getGatherScatterOpCost( 6227 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6228 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6229 } 6230 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6231 return CommonCost + VecLdCost - ScalarLdCost; 6232 } 6233 case Instruction::Store: { 6234 // We know that we can merge the stores. Calculate the cost. 6235 bool IsReorder = !E->ReorderIndices.empty(); 6236 auto *SI = 6237 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6238 Align Alignment = SI->getAlign(); 6239 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6240 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6241 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6242 InstructionCost VecStCost = TTI->getMemoryOpCost( 6243 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6244 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6245 return CommonCost + VecStCost - ScalarStCost; 6246 } 6247 case Instruction::Call: { 6248 CallInst *CI = cast<CallInst>(VL0); 6249 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6250 6251 // Calculate the cost of the scalar and vector calls. 6252 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6253 InstructionCost ScalarEltCost = 6254 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6255 if (NeedToShuffleReuses) { 6256 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6257 } 6258 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6259 6260 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6261 InstructionCost VecCallCost = 6262 std::min(VecCallCosts.first, VecCallCosts.second); 6263 6264 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6265 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6266 << " for " << *CI << "\n"); 6267 6268 return CommonCost + VecCallCost - ScalarCallCost; 6269 } 6270 case Instruction::ShuffleVector: { 6271 assert(E->isAltShuffle() && 6272 ((Instruction::isBinaryOp(E->getOpcode()) && 6273 Instruction::isBinaryOp(E->getAltOpcode())) || 6274 (Instruction::isCast(E->getOpcode()) && 6275 Instruction::isCast(E->getAltOpcode())) || 6276 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6277 "Invalid Shuffle Vector Operand"); 6278 InstructionCost ScalarCost = 0; 6279 if (NeedToShuffleReuses) { 6280 for (unsigned Idx : E->ReuseShuffleIndices) { 6281 Instruction *I = cast<Instruction>(VL[Idx]); 6282 CommonCost -= TTI->getInstructionCost(I, CostKind); 6283 } 6284 for (Value *V : VL) { 6285 Instruction *I = cast<Instruction>(V); 6286 CommonCost += TTI->getInstructionCost(I, CostKind); 6287 } 6288 } 6289 for (Value *V : VL) { 6290 Instruction *I = cast<Instruction>(V); 6291 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6292 ScalarCost += TTI->getInstructionCost(I, CostKind); 6293 } 6294 // VecCost is equal to sum of the cost of creating 2 vectors 6295 // and the cost of creating shuffle. 6296 InstructionCost VecCost = 0; 6297 // Try to find the previous shuffle node with the same operands and same 6298 // main/alternate ops. 6299 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6300 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6301 if (TE.get() == E) 6302 break; 6303 if (TE->isAltShuffle() && 6304 ((TE->getOpcode() == E->getOpcode() && 6305 TE->getAltOpcode() == E->getAltOpcode()) || 6306 (TE->getOpcode() == E->getAltOpcode() && 6307 TE->getAltOpcode() == E->getOpcode())) && 6308 TE->hasEqualOperands(*E)) 6309 return true; 6310 } 6311 return false; 6312 }; 6313 if (TryFindNodeWithEqualOperands()) { 6314 LLVM_DEBUG({ 6315 dbgs() << "SLP: diamond match for alternate node found.\n"; 6316 E->dump(); 6317 }); 6318 // No need to add new vector costs here since we're going to reuse 6319 // same main/alternate vector ops, just do different shuffling. 6320 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6321 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6322 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6323 CostKind); 6324 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6325 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6326 Builder.getInt1Ty(), 6327 CI0->getPredicate(), CostKind, VL0); 6328 VecCost += TTI->getCmpSelInstrCost( 6329 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6330 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6331 E->getAltOp()); 6332 } else { 6333 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6334 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6335 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6336 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6337 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6338 TTI::CastContextHint::None, CostKind); 6339 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6340 TTI::CastContextHint::None, CostKind); 6341 } 6342 6343 if (E->ReuseShuffleIndices.empty()) { 6344 CommonCost = 6345 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6346 } else { 6347 SmallVector<int> Mask; 6348 buildShuffleEntryMask( 6349 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6350 [E](Instruction *I) { 6351 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6352 return I->getOpcode() == E->getAltOpcode(); 6353 }, 6354 Mask); 6355 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6356 FinalVecTy, Mask); 6357 } 6358 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6359 return CommonCost + VecCost - ScalarCost; 6360 } 6361 default: 6362 llvm_unreachable("Unknown instruction"); 6363 } 6364 } 6365 6366 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6367 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6368 << VectorizableTree.size() << " is fully vectorizable .\n"); 6369 6370 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6371 SmallVector<int> Mask; 6372 return TE->State == TreeEntry::NeedToGather && 6373 !any_of(TE->Scalars, 6374 [this](Value *V) { return EphValues.contains(V); }) && 6375 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6376 TE->Scalars.size() < Limit || 6377 ((TE->getOpcode() == Instruction::ExtractElement || 6378 all_of(TE->Scalars, 6379 [](Value *V) { 6380 return isa<ExtractElementInst, UndefValue>(V); 6381 })) && 6382 isFixedVectorShuffle(TE->Scalars, Mask)) || 6383 (TE->State == TreeEntry::NeedToGather && 6384 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6385 }; 6386 6387 // We only handle trees of heights 1 and 2. 6388 if (VectorizableTree.size() == 1 && 6389 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6390 (ForReduction && 6391 AreVectorizableGathers(VectorizableTree[0].get(), 6392 VectorizableTree[0]->Scalars.size()) && 6393 VectorizableTree[0]->getVectorFactor() > 2))) 6394 return true; 6395 6396 if (VectorizableTree.size() != 2) 6397 return false; 6398 6399 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6400 // with the second gather nodes if they have less scalar operands rather than 6401 // the initial tree element (may be profitable to shuffle the second gather) 6402 // or they are extractelements, which form shuffle. 6403 SmallVector<int> Mask; 6404 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6405 AreVectorizableGathers(VectorizableTree[1].get(), 6406 VectorizableTree[0]->Scalars.size())) 6407 return true; 6408 6409 // Gathering cost would be too much for tiny trees. 6410 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6411 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6412 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6413 return false; 6414 6415 return true; 6416 } 6417 6418 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6419 TargetTransformInfo *TTI, 6420 bool MustMatchOrInst) { 6421 // Look past the root to find a source value. Arbitrarily follow the 6422 // path through operand 0 of any 'or'. Also, peek through optional 6423 // shift-left-by-multiple-of-8-bits. 6424 Value *ZextLoad = Root; 6425 const APInt *ShAmtC; 6426 bool FoundOr = false; 6427 while (!isa<ConstantExpr>(ZextLoad) && 6428 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6429 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6430 ShAmtC->urem(8) == 0))) { 6431 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6432 ZextLoad = BinOp->getOperand(0); 6433 if (BinOp->getOpcode() == Instruction::Or) 6434 FoundOr = true; 6435 } 6436 // Check if the input is an extended load of the required or/shift expression. 6437 Value *Load; 6438 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6439 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6440 return false; 6441 6442 // Require that the total load bit width is a legal integer type. 6443 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6444 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6445 Type *SrcTy = Load->getType(); 6446 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6447 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6448 return false; 6449 6450 // Everything matched - assume that we can fold the whole sequence using 6451 // load combining. 6452 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6453 << *(cast<Instruction>(Root)) << "\n"); 6454 6455 return true; 6456 } 6457 6458 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6459 if (RdxKind != RecurKind::Or) 6460 return false; 6461 6462 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6463 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6464 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6465 /* MatchOr */ false); 6466 } 6467 6468 bool BoUpSLP::isLoadCombineCandidate() const { 6469 // Peek through a final sequence of stores and check if all operations are 6470 // likely to be load-combined. 6471 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6472 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6473 Value *X; 6474 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6475 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6476 return false; 6477 } 6478 return true; 6479 } 6480 6481 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6482 // No need to vectorize inserts of gathered values. 6483 if (VectorizableTree.size() == 2 && 6484 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6485 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6486 return true; 6487 6488 // We can vectorize the tree if its size is greater than or equal to the 6489 // minimum size specified by the MinTreeSize command line option. 6490 if (VectorizableTree.size() >= MinTreeSize) 6491 return false; 6492 6493 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6494 // can vectorize it if we can prove it fully vectorizable. 6495 if (isFullyVectorizableTinyTree(ForReduction)) 6496 return false; 6497 6498 assert(VectorizableTree.empty() 6499 ? ExternalUses.empty() 6500 : true && "We shouldn't have any external users"); 6501 6502 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6503 // vectorizable. 6504 return true; 6505 } 6506 6507 InstructionCost BoUpSLP::getSpillCost() const { 6508 // Walk from the bottom of the tree to the top, tracking which values are 6509 // live. When we see a call instruction that is not part of our tree, 6510 // query TTI to see if there is a cost to keeping values live over it 6511 // (for example, if spills and fills are required). 6512 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6513 InstructionCost Cost = 0; 6514 6515 SmallPtrSet<Instruction*, 4> LiveValues; 6516 Instruction *PrevInst = nullptr; 6517 6518 // The entries in VectorizableTree are not necessarily ordered by their 6519 // position in basic blocks. Collect them and order them by dominance so later 6520 // instructions are guaranteed to be visited first. For instructions in 6521 // different basic blocks, we only scan to the beginning of the block, so 6522 // their order does not matter, as long as all instructions in a basic block 6523 // are grouped together. Using dominance ensures a deterministic order. 6524 SmallVector<Instruction *, 16> OrderedScalars; 6525 for (const auto &TEPtr : VectorizableTree) { 6526 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6527 if (!Inst) 6528 continue; 6529 OrderedScalars.push_back(Inst); 6530 } 6531 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6532 auto *NodeA = DT->getNode(A->getParent()); 6533 auto *NodeB = DT->getNode(B->getParent()); 6534 assert(NodeA && "Should only process reachable instructions"); 6535 assert(NodeB && "Should only process reachable instructions"); 6536 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6537 "Different nodes should have different DFS numbers"); 6538 if (NodeA != NodeB) 6539 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6540 return B->comesBefore(A); 6541 }); 6542 6543 for (Instruction *Inst : OrderedScalars) { 6544 if (!PrevInst) { 6545 PrevInst = Inst; 6546 continue; 6547 } 6548 6549 // Update LiveValues. 6550 LiveValues.erase(PrevInst); 6551 for (auto &J : PrevInst->operands()) { 6552 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6553 LiveValues.insert(cast<Instruction>(&*J)); 6554 } 6555 6556 LLVM_DEBUG({ 6557 dbgs() << "SLP: #LV: " << LiveValues.size(); 6558 for (auto *X : LiveValues) 6559 dbgs() << " " << X->getName(); 6560 dbgs() << ", Looking at "; 6561 Inst->dump(); 6562 }); 6563 6564 // Now find the sequence of instructions between PrevInst and Inst. 6565 unsigned NumCalls = 0; 6566 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6567 PrevInstIt = 6568 PrevInst->getIterator().getReverse(); 6569 while (InstIt != PrevInstIt) { 6570 if (PrevInstIt == PrevInst->getParent()->rend()) { 6571 PrevInstIt = Inst->getParent()->rbegin(); 6572 continue; 6573 } 6574 6575 // Debug information does not impact spill cost. 6576 if ((isa<CallInst>(&*PrevInstIt) && 6577 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6578 &*PrevInstIt != PrevInst) 6579 NumCalls++; 6580 6581 ++PrevInstIt; 6582 } 6583 6584 if (NumCalls) { 6585 SmallVector<Type*, 4> V; 6586 for (auto *II : LiveValues) { 6587 auto *ScalarTy = II->getType(); 6588 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6589 ScalarTy = VectorTy->getElementType(); 6590 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6591 } 6592 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6593 } 6594 6595 PrevInst = Inst; 6596 } 6597 6598 return Cost; 6599 } 6600 6601 /// Check if two insertelement instructions are from the same buildvector. 6602 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6603 InsertElementInst *V) { 6604 // Instructions must be from the same basic blocks. 6605 if (VU->getParent() != V->getParent()) 6606 return false; 6607 // Checks if 2 insertelements are from the same buildvector. 6608 if (VU->getType() != V->getType()) 6609 return false; 6610 // Multiple used inserts are separate nodes. 6611 if (!VU->hasOneUse() && !V->hasOneUse()) 6612 return false; 6613 auto *IE1 = VU; 6614 auto *IE2 = V; 6615 unsigned Idx1 = *getInsertIndex(IE1); 6616 unsigned Idx2 = *getInsertIndex(IE2); 6617 // Go through the vector operand of insertelement instructions trying to find 6618 // either VU as the original vector for IE2 or V as the original vector for 6619 // IE1. 6620 do { 6621 if (IE2 == VU) 6622 return VU->hasOneUse(); 6623 if (IE1 == V) 6624 return V->hasOneUse(); 6625 if (IE1) { 6626 if ((IE1 != VU && !IE1->hasOneUse()) || 6627 getInsertIndex(IE1).getValueOr(Idx2) == Idx2) 6628 IE1 = nullptr; 6629 else 6630 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6631 } 6632 if (IE2) { 6633 if ((IE2 != V && !IE2->hasOneUse()) || 6634 getInsertIndex(IE2).getValueOr(Idx1) == Idx1) 6635 IE2 = nullptr; 6636 else 6637 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6638 } 6639 } while (IE1 || IE2); 6640 return false; 6641 } 6642 6643 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6644 /// buildvector sequence. 6645 static bool isFirstInsertElement(const InsertElementInst *IE1, 6646 const InsertElementInst *IE2) { 6647 const auto *I1 = IE1; 6648 const auto *I2 = IE2; 6649 const InsertElementInst *PrevI1; 6650 const InsertElementInst *PrevI2; 6651 unsigned Idx1 = *getInsertIndex(IE1); 6652 unsigned Idx2 = *getInsertIndex(IE2); 6653 do { 6654 if (I2 == IE1) 6655 return true; 6656 if (I1 == IE2) 6657 return false; 6658 PrevI1 = I1; 6659 PrevI2 = I2; 6660 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 6661 getInsertIndex(I1).getValueOr(Idx2) != Idx2) 6662 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6663 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 6664 getInsertIndex(I2).getValueOr(Idx1) != Idx1) 6665 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6666 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6667 llvm_unreachable("Two different buildvectors not expected."); 6668 } 6669 6670 /// Does the analysis of the provided shuffle masks and performs the requested 6671 /// actions on the vectors with the given shuffle masks. It tries to do it in 6672 /// several steps. 6673 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6674 /// have common VF and perform action for 2 input vectors (including non-undef 6675 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6676 /// and processed as a shuffle of 2 elements. 6677 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6678 /// action only for 1 vector with the given mask, if it is not the identity 6679 /// mask. 6680 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6681 /// vectors, combing the masks properly between the steps. 6682 template <typename T> 6683 static T *performExtractsShuffleAction( 6684 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6685 function_ref<unsigned(T *)> GetVF, 6686 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6687 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6688 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6689 SmallVector<int> Mask(ShuffleMask.begin()->second); 6690 auto VMIt = std::next(ShuffleMask.begin()); 6691 T *Prev = nullptr; 6692 bool IsBaseNotUndef = !isUndefVector(Base); 6693 if (IsBaseNotUndef) { 6694 // Base is not undef, need to combine it with the next subvectors. 6695 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6696 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6697 if (Mask[Idx] == UndefMaskElem) 6698 Mask[Idx] = Idx; 6699 else 6700 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6701 } 6702 Prev = Action(Mask, {nullptr, Res.first}); 6703 } else if (ShuffleMask.size() == 1) { 6704 // Base is undef and only 1 vector is shuffled - perform the action only for 6705 // single vector, if the mask is not the identity mask. 6706 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6707 if (Res.second) 6708 // Identity mask is found. 6709 Prev = Res.first; 6710 else 6711 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6712 } else { 6713 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6714 // shuffles step by step, combining shuffle between the steps. 6715 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6716 unsigned Vec2VF = GetVF(VMIt->first); 6717 if (Vec1VF == Vec2VF) { 6718 // No need to resize the input vectors since they are of the same size, we 6719 // can shuffle them directly. 6720 ArrayRef<int> SecMask = VMIt->second; 6721 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6722 if (SecMask[I] != UndefMaskElem) { 6723 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6724 Mask[I] = SecMask[I] + Vec1VF; 6725 } 6726 } 6727 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6728 } else { 6729 // Vectors of different sizes - resize and reshuffle. 6730 std::pair<T *, bool> Res1 = 6731 ResizeAction(ShuffleMask.begin()->first, Mask); 6732 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6733 ArrayRef<int> SecMask = VMIt->second; 6734 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6735 if (Mask[I] != UndefMaskElem) { 6736 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6737 if (Res1.second) 6738 Mask[I] = I; 6739 } else if (SecMask[I] != UndefMaskElem) { 6740 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6741 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6742 } 6743 } 6744 Prev = Action(Mask, {Res1.first, Res2.first}); 6745 } 6746 VMIt = std::next(VMIt); 6747 } 6748 // Perform requested actions for the remaining masks/vectors. 6749 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6750 // Shuffle other input vectors, if any. 6751 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 6752 ArrayRef<int> SecMask = VMIt->second; 6753 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6754 if (SecMask[I] != UndefMaskElem) { 6755 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 6756 "Multiple uses of scalars."); 6757 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 6758 } else if (Mask[I] != UndefMaskElem) { 6759 Mask[I] = I; 6760 } 6761 } 6762 Prev = Action(Mask, {Prev, Res.first}); 6763 } 6764 return Prev; 6765 } 6766 6767 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6768 InstructionCost Cost = 0; 6769 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6770 << VectorizableTree.size() << ".\n"); 6771 6772 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6773 6774 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6775 TreeEntry &TE = *VectorizableTree[I]; 6776 6777 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6778 Cost += C; 6779 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6780 << " for bundle that starts with " << *TE.Scalars[0] 6781 << ".\n" 6782 << "SLP: Current total cost = " << Cost << "\n"); 6783 } 6784 6785 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6786 InstructionCost ExtractCost = 0; 6787 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 6788 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 6789 SmallVector<APInt> DemandedElts; 6790 for (ExternalUser &EU : ExternalUses) { 6791 // We only add extract cost once for the same scalar. 6792 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6793 !ExtractCostCalculated.insert(EU.Scalar).second) 6794 continue; 6795 6796 // Uses by ephemeral values are free (because the ephemeral value will be 6797 // removed prior to code generation, and so the extraction will be 6798 // removed as well). 6799 if (EphValues.count(EU.User)) 6800 continue; 6801 6802 // No extract cost for vector "scalar" 6803 if (isa<FixedVectorType>(EU.Scalar->getType())) 6804 continue; 6805 6806 // Already counted the cost for external uses when tried to adjust the cost 6807 // for extractelements, no need to add it again. 6808 if (isa<ExtractElementInst>(EU.Scalar)) 6809 continue; 6810 6811 // If found user is an insertelement, do not calculate extract cost but try 6812 // to detect it as a final shuffled/identity match. 6813 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6814 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6815 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6816 if (InsertIdx) { 6817 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 6818 auto *It = 6819 find_if(FirstUsers, 6820 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 6821 return areTwoInsertFromSameBuildVector( 6822 VU, cast<InsertElementInst>(Pair.first)); 6823 }); 6824 int VecId = -1; 6825 if (It == FirstUsers.end()) { 6826 (void)ShuffleMasks.emplace_back(); 6827 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 6828 if (Mask.empty()) 6829 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6830 // Find the insertvector, vectorized in tree, if any. 6831 Value *Base = VU; 6832 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6833 if (IEBase != EU.User && 6834 (!IEBase->hasOneUse() || 6835 getInsertIndex(IEBase).getValueOr(*InsertIdx) == *InsertIdx)) 6836 break; 6837 // Build the mask for the vectorized insertelement instructions. 6838 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6839 VU = IEBase; 6840 do { 6841 IEBase = cast<InsertElementInst>(Base); 6842 int Idx = *getInsertIndex(IEBase); 6843 assert(Mask[Idx] == UndefMaskElem && 6844 "InsertElementInstruction used already."); 6845 Mask[Idx] = Idx; 6846 Base = IEBase->getOperand(0); 6847 } while (E == getTreeEntry(Base)); 6848 break; 6849 } 6850 Base = cast<InsertElementInst>(Base)->getOperand(0); 6851 } 6852 FirstUsers.emplace_back(VU, ScalarTE); 6853 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 6854 VecId = FirstUsers.size() - 1; 6855 } else { 6856 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 6857 It->first = VU; 6858 VecId = std::distance(FirstUsers.begin(), It); 6859 } 6860 int InIdx = *InsertIdx; 6861 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 6862 if (Mask.empty()) 6863 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6864 Mask[InIdx] = EU.Lane; 6865 DemandedElts[VecId].setBit(InIdx); 6866 continue; 6867 } 6868 } 6869 } 6870 6871 // If we plan to rewrite the tree in a smaller type, we will need to sign 6872 // extend the extracted value back to the original type. Here, we account 6873 // for the extract and the added cost of the sign extend if needed. 6874 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6875 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6876 if (MinBWs.count(ScalarRoot)) { 6877 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6878 auto Extend = 6879 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6880 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6881 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6882 VecTy, EU.Lane); 6883 } else { 6884 ExtractCost += 6885 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6886 } 6887 } 6888 6889 InstructionCost SpillCost = getSpillCost(); 6890 Cost += SpillCost + ExtractCost; 6891 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 6892 InstructionCost C = 0; 6893 unsigned VF = Mask.size(); 6894 unsigned VecVF = TE->getVectorFactor(); 6895 if (VF != VecVF && 6896 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 6897 (all_of(Mask, 6898 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 6899 !ShuffleVectorInst::isIdentityMask(Mask)))) { 6900 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 6901 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 6902 OrigMask.begin()); 6903 C = TTI->getShuffleCost( 6904 TTI::SK_PermuteSingleSrc, 6905 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 6906 LLVM_DEBUG( 6907 dbgs() << "SLP: Adding cost " << C 6908 << " for final shuffle of insertelement external users.\n"; 6909 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6910 Cost += C; 6911 return std::make_pair(TE, true); 6912 } 6913 return std::make_pair(TE, false); 6914 }; 6915 // Calculate the cost of the reshuffled vectors, if any. 6916 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 6917 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 6918 unsigned VF = ShuffleMasks[I].begin()->second.size(); 6919 auto *FTy = FixedVectorType::get( 6920 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 6921 auto Vector = ShuffleMasks[I].takeVector(); 6922 auto &&EstimateShufflesCost = [this, FTy, 6923 &Cost](ArrayRef<int> Mask, 6924 ArrayRef<const TreeEntry *> TEs) { 6925 assert((TEs.size() == 1 || TEs.size() == 2) && 6926 "Expected exactly 1 or 2 tree entries."); 6927 if (TEs.size() == 1) { 6928 int Limit = 2 * Mask.size(); 6929 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 6930 !ShuffleVectorInst::isIdentityMask(Mask)) { 6931 InstructionCost C = 6932 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 6933 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6934 << " for final shuffle of insertelement " 6935 "external users.\n"; 6936 TEs.front()->dump(); 6937 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6938 Cost += C; 6939 } 6940 } else { 6941 InstructionCost C = 6942 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 6943 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6944 << " for final shuffle of vector node and external " 6945 "insertelement users.\n"; 6946 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 6947 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6948 Cost += C; 6949 } 6950 return TEs.back(); 6951 }; 6952 (void)performExtractsShuffleAction<const TreeEntry>( 6953 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 6954 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 6955 EstimateShufflesCost); 6956 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6957 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 6958 /*Insert*/ true, /*Extract*/ false); 6959 Cost -= InsertCost; 6960 } 6961 6962 #ifndef NDEBUG 6963 SmallString<256> Str; 6964 { 6965 raw_svector_ostream OS(Str); 6966 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6967 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6968 << "SLP: Total Cost = " << Cost << ".\n"; 6969 } 6970 LLVM_DEBUG(dbgs() << Str); 6971 if (ViewSLPTree) 6972 ViewGraph(this, "SLP" + F->getName(), false, Str); 6973 #endif 6974 6975 return Cost; 6976 } 6977 6978 Optional<TargetTransformInfo::ShuffleKind> 6979 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6980 SmallVectorImpl<const TreeEntry *> &Entries) { 6981 // TODO: currently checking only for Scalars in the tree entry, need to count 6982 // reused elements too for better cost estimation. 6983 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6984 Entries.clear(); 6985 // Build a lists of values to tree entries. 6986 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6987 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6988 if (EntryPtr.get() == TE) 6989 break; 6990 if (EntryPtr->State != TreeEntry::NeedToGather) 6991 continue; 6992 for (Value *V : EntryPtr->Scalars) 6993 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6994 } 6995 // Find all tree entries used by the gathered values. If no common entries 6996 // found - not a shuffle. 6997 // Here we build a set of tree nodes for each gathered value and trying to 6998 // find the intersection between these sets. If we have at least one common 6999 // tree node for each gathered value - we have just a permutation of the 7000 // single vector. If we have 2 different sets, we're in situation where we 7001 // have a permutation of 2 input vectors. 7002 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 7003 DenseMap<Value *, int> UsedValuesEntry; 7004 for (Value *V : TE->Scalars) { 7005 if (isa<UndefValue>(V)) 7006 continue; 7007 // Build a list of tree entries where V is used. 7008 SmallPtrSet<const TreeEntry *, 4> VToTEs; 7009 auto It = ValueToTEs.find(V); 7010 if (It != ValueToTEs.end()) 7011 VToTEs = It->second; 7012 if (const TreeEntry *VTE = getTreeEntry(V)) 7013 VToTEs.insert(VTE); 7014 if (VToTEs.empty()) 7015 return None; 7016 if (UsedTEs.empty()) { 7017 // The first iteration, just insert the list of nodes to vector. 7018 UsedTEs.push_back(VToTEs); 7019 } else { 7020 // Need to check if there are any previously used tree nodes which use V. 7021 // If there are no such nodes, consider that we have another one input 7022 // vector. 7023 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 7024 unsigned Idx = 0; 7025 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 7026 // Do we have a non-empty intersection of previously listed tree entries 7027 // and tree entries using current V? 7028 set_intersect(VToTEs, Set); 7029 if (!VToTEs.empty()) { 7030 // Yes, write the new subset and continue analysis for the next 7031 // scalar. 7032 Set.swap(VToTEs); 7033 break; 7034 } 7035 VToTEs = SavedVToTEs; 7036 ++Idx; 7037 } 7038 // No non-empty intersection found - need to add a second set of possible 7039 // source vectors. 7040 if (Idx == UsedTEs.size()) { 7041 // If the number of input vectors is greater than 2 - not a permutation, 7042 // fallback to the regular gather. 7043 if (UsedTEs.size() == 2) 7044 return None; 7045 UsedTEs.push_back(SavedVToTEs); 7046 Idx = UsedTEs.size() - 1; 7047 } 7048 UsedValuesEntry.try_emplace(V, Idx); 7049 } 7050 } 7051 7052 if (UsedTEs.empty()) { 7053 assert(all_of(TE->Scalars, UndefValue::classof) && 7054 "Expected vector of undefs only."); 7055 return None; 7056 } 7057 7058 unsigned VF = 0; 7059 if (UsedTEs.size() == 1) { 7060 // Try to find the perfect match in another gather node at first. 7061 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 7062 return EntryPtr->isSame(TE->Scalars); 7063 }); 7064 if (It != UsedTEs.front().end()) { 7065 Entries.push_back(*It); 7066 std::iota(Mask.begin(), Mask.end(), 0); 7067 return TargetTransformInfo::SK_PermuteSingleSrc; 7068 } 7069 // No perfect match, just shuffle, so choose the first tree node. 7070 Entries.push_back(*UsedTEs.front().begin()); 7071 } else { 7072 // Try to find nodes with the same vector factor. 7073 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7074 DenseMap<int, const TreeEntry *> VFToTE; 7075 for (const TreeEntry *TE : UsedTEs.front()) 7076 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7077 for (const TreeEntry *TE : UsedTEs.back()) { 7078 auto It = VFToTE.find(TE->getVectorFactor()); 7079 if (It != VFToTE.end()) { 7080 VF = It->first; 7081 Entries.push_back(It->second); 7082 Entries.push_back(TE); 7083 break; 7084 } 7085 } 7086 // No 2 source vectors with the same vector factor - give up and do regular 7087 // gather. 7088 if (Entries.empty()) 7089 return None; 7090 } 7091 7092 // Build a shuffle mask for better cost estimation and vector emission. 7093 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7094 Value *V = TE->Scalars[I]; 7095 if (isa<UndefValue>(V)) 7096 continue; 7097 unsigned Idx = UsedValuesEntry.lookup(V); 7098 const TreeEntry *VTE = Entries[Idx]; 7099 int FoundLane = VTE->findLaneForValue(V); 7100 Mask[I] = Idx * VF + FoundLane; 7101 // Extra check required by isSingleSourceMaskImpl function (called by 7102 // ShuffleVectorInst::isSingleSourceMask). 7103 if (Mask[I] >= 2 * E) 7104 return None; 7105 } 7106 switch (Entries.size()) { 7107 case 1: 7108 return TargetTransformInfo::SK_PermuteSingleSrc; 7109 case 2: 7110 return TargetTransformInfo::SK_PermuteTwoSrc; 7111 default: 7112 break; 7113 } 7114 return None; 7115 } 7116 7117 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7118 const APInt &ShuffledIndices, 7119 bool NeedToShuffle) const { 7120 InstructionCost Cost = 7121 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7122 /*Extract*/ false); 7123 if (NeedToShuffle) 7124 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7125 return Cost; 7126 } 7127 7128 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7129 // Find the type of the operands in VL. 7130 Type *ScalarTy = VL[0]->getType(); 7131 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7132 ScalarTy = SI->getValueOperand()->getType(); 7133 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7134 bool DuplicateNonConst = false; 7135 // Find the cost of inserting/extracting values from the vector. 7136 // Check if the same elements are inserted several times and count them as 7137 // shuffle candidates. 7138 APInt ShuffledElements = APInt::getZero(VL.size()); 7139 DenseSet<Value *> UniqueElements; 7140 // Iterate in reverse order to consider insert elements with the high cost. 7141 for (unsigned I = VL.size(); I > 0; --I) { 7142 unsigned Idx = I - 1; 7143 // No need to shuffle duplicates for constants. 7144 if (isConstant(VL[Idx])) { 7145 ShuffledElements.setBit(Idx); 7146 continue; 7147 } 7148 if (!UniqueElements.insert(VL[Idx]).second) { 7149 DuplicateNonConst = true; 7150 ShuffledElements.setBit(Idx); 7151 } 7152 } 7153 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7154 } 7155 7156 // Perform operand reordering on the instructions in VL and return the reordered 7157 // operands in Left and Right. 7158 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7159 SmallVectorImpl<Value *> &Left, 7160 SmallVectorImpl<Value *> &Right, 7161 const DataLayout &DL, 7162 ScalarEvolution &SE, 7163 const BoUpSLP &R) { 7164 if (VL.empty()) 7165 return; 7166 VLOperands Ops(VL, DL, SE, R); 7167 // Reorder the operands in place. 7168 Ops.reorder(); 7169 Left = Ops.getVL(0); 7170 Right = Ops.getVL(1); 7171 } 7172 7173 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7174 // Get the basic block this bundle is in. All instructions in the bundle 7175 // should be in this block. 7176 auto *Front = E->getMainOp(); 7177 auto *BB = Front->getParent(); 7178 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7179 auto *I = cast<Instruction>(V); 7180 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 7181 })); 7182 7183 auto &&FindLastInst = [E, Front]() { 7184 Instruction *LastInst = Front; 7185 for (Value *V : E->Scalars) { 7186 auto *I = dyn_cast<Instruction>(V); 7187 if (!I) 7188 continue; 7189 if (LastInst->comesBefore(I)) 7190 LastInst = I; 7191 } 7192 return LastInst; 7193 }; 7194 7195 auto &&FindFirstInst = [E, Front]() { 7196 Instruction *FirstInst = Front; 7197 for (Value *V : E->Scalars) { 7198 auto *I = dyn_cast<Instruction>(V); 7199 if (!I) 7200 continue; 7201 if (I->comesBefore(FirstInst)) 7202 FirstInst = I; 7203 } 7204 return FirstInst; 7205 }; 7206 7207 // Set the insert point to the beginning of the basic block if the entry 7208 // should not be scheduled. 7209 if (E->State != TreeEntry::NeedToGather && 7210 doesNotNeedToSchedule(E->Scalars)) { 7211 Instruction *InsertInst; 7212 if (all_of(E->Scalars, isUsedOutsideBlock)) 7213 InsertInst = FindLastInst(); 7214 else 7215 InsertInst = FindFirstInst(); 7216 // If the instruction is PHI, set the insert point after all the PHIs. 7217 if (isa<PHINode>(InsertInst)) 7218 InsertInst = BB->getFirstNonPHI(); 7219 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7220 Builder.SetInsertPoint(BB, InsertPt); 7221 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7222 return; 7223 } 7224 7225 // The last instruction in the bundle in program order. 7226 Instruction *LastInst = nullptr; 7227 7228 // Find the last instruction. The common case should be that BB has been 7229 // scheduled, and the last instruction is VL.back(). So we start with 7230 // VL.back() and iterate over schedule data until we reach the end of the 7231 // bundle. The end of the bundle is marked by null ScheduleData. 7232 if (BlocksSchedules.count(BB)) { 7233 Value *V = E->isOneOf(E->Scalars.back()); 7234 if (doesNotNeedToBeScheduled(V)) 7235 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7236 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7237 if (Bundle && Bundle->isPartOfBundle()) 7238 for (; Bundle; Bundle = Bundle->NextInBundle) 7239 if (Bundle->OpValue == Bundle->Inst) 7240 LastInst = Bundle->Inst; 7241 } 7242 7243 // LastInst can still be null at this point if there's either not an entry 7244 // for BB in BlocksSchedules or there's no ScheduleData available for 7245 // VL.back(). This can be the case if buildTree_rec aborts for various 7246 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7247 // size is reached, etc.). ScheduleData is initialized in the scheduling 7248 // "dry-run". 7249 // 7250 // If this happens, we can still find the last instruction by brute force. We 7251 // iterate forwards from Front (inclusive) until we either see all 7252 // instructions in the bundle or reach the end of the block. If Front is the 7253 // last instruction in program order, LastInst will be set to Front, and we 7254 // will visit all the remaining instructions in the block. 7255 // 7256 // One of the reasons we exit early from buildTree_rec is to place an upper 7257 // bound on compile-time. Thus, taking an additional compile-time hit here is 7258 // not ideal. However, this should be exceedingly rare since it requires that 7259 // we both exit early from buildTree_rec and that the bundle be out-of-order 7260 // (causing us to iterate all the way to the end of the block). 7261 if (!LastInst) { 7262 LastInst = FindLastInst(); 7263 // If the instruction is PHI, set the insert point after all the PHIs. 7264 if (isa<PHINode>(LastInst)) 7265 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7266 } 7267 assert(LastInst && "Failed to find last instruction in bundle"); 7268 7269 // Set the insertion point after the last instruction in the bundle. Set the 7270 // debug location to Front. 7271 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7272 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7273 } 7274 7275 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7276 // List of instructions/lanes from current block and/or the blocks which are 7277 // part of the current loop. These instructions will be inserted at the end to 7278 // make it possible to optimize loops and hoist invariant instructions out of 7279 // the loops body with better chances for success. 7280 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7281 SmallSet<int, 4> PostponedIndices; 7282 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7283 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7284 SmallPtrSet<BasicBlock *, 4> Visited; 7285 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7286 InsertBB = InsertBB->getSinglePredecessor(); 7287 return InsertBB && InsertBB == InstBB; 7288 }; 7289 for (int I = 0, E = VL.size(); I < E; ++I) { 7290 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7291 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7292 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7293 PostponedIndices.insert(I).second) 7294 PostponedInsts.emplace_back(Inst, I); 7295 } 7296 7297 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7298 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7299 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7300 if (!InsElt) 7301 return Vec; 7302 GatherShuffleSeq.insert(InsElt); 7303 CSEBlocks.insert(InsElt->getParent()); 7304 // Add to our 'need-to-extract' list. 7305 if (TreeEntry *Entry = getTreeEntry(V)) { 7306 // Find which lane we need to extract. 7307 unsigned FoundLane = Entry->findLaneForValue(V); 7308 ExternalUses.emplace_back(V, InsElt, FoundLane); 7309 } 7310 return Vec; 7311 }; 7312 Value *Val0 = 7313 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7314 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7315 Value *Vec = PoisonValue::get(VecTy); 7316 SmallVector<int> NonConsts; 7317 // Insert constant values at first. 7318 for (int I = 0, E = VL.size(); I < E; ++I) { 7319 if (PostponedIndices.contains(I)) 7320 continue; 7321 if (!isConstant(VL[I])) { 7322 NonConsts.push_back(I); 7323 continue; 7324 } 7325 Vec = CreateInsertElement(Vec, VL[I], I); 7326 } 7327 // Insert non-constant values. 7328 for (int I : NonConsts) 7329 Vec = CreateInsertElement(Vec, VL[I], I); 7330 // Append instructions, which are/may be part of the loop, in the end to make 7331 // it possible to hoist non-loop-based instructions. 7332 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7333 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7334 7335 return Vec; 7336 } 7337 7338 namespace { 7339 /// Merges shuffle masks and emits final shuffle instruction, if required. 7340 class ShuffleInstructionBuilder { 7341 IRBuilderBase &Builder; 7342 const unsigned VF = 0; 7343 bool IsFinalized = false; 7344 SmallVector<int, 4> Mask; 7345 /// Holds all of the instructions that we gathered. 7346 SetVector<Instruction *> &GatherShuffleSeq; 7347 /// A list of blocks that we are going to CSE. 7348 SetVector<BasicBlock *> &CSEBlocks; 7349 7350 public: 7351 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7352 SetVector<Instruction *> &GatherShuffleSeq, 7353 SetVector<BasicBlock *> &CSEBlocks) 7354 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7355 CSEBlocks(CSEBlocks) {} 7356 7357 /// Adds a mask, inverting it before applying. 7358 void addInversedMask(ArrayRef<unsigned> SubMask) { 7359 if (SubMask.empty()) 7360 return; 7361 SmallVector<int, 4> NewMask; 7362 inversePermutation(SubMask, NewMask); 7363 addMask(NewMask); 7364 } 7365 7366 /// Functions adds masks, merging them into single one. 7367 void addMask(ArrayRef<unsigned> SubMask) { 7368 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7369 addMask(NewMask); 7370 } 7371 7372 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7373 7374 Value *finalize(Value *V) { 7375 IsFinalized = true; 7376 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7377 if (VF == ValueVF && Mask.empty()) 7378 return V; 7379 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7380 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7381 addMask(NormalizedMask); 7382 7383 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7384 return V; 7385 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7386 if (auto *I = dyn_cast<Instruction>(Vec)) { 7387 GatherShuffleSeq.insert(I); 7388 CSEBlocks.insert(I->getParent()); 7389 } 7390 return Vec; 7391 } 7392 7393 ~ShuffleInstructionBuilder() { 7394 assert((IsFinalized || Mask.empty()) && 7395 "Shuffle construction must be finalized."); 7396 } 7397 }; 7398 } // namespace 7399 7400 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7401 const unsigned VF = VL.size(); 7402 InstructionsState S = getSameOpcode(VL); 7403 if (S.getOpcode()) { 7404 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7405 if (E->isSame(VL)) { 7406 Value *V = vectorizeTree(E); 7407 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7408 if (!E->ReuseShuffleIndices.empty()) { 7409 // Reshuffle to get only unique values. 7410 // If some of the scalars are duplicated in the vectorization tree 7411 // entry, we do not vectorize them but instead generate a mask for 7412 // the reuses. But if there are several users of the same entry, 7413 // they may have different vectorization factors. This is especially 7414 // important for PHI nodes. In this case, we need to adapt the 7415 // resulting instruction for the user vectorization factor and have 7416 // to reshuffle it again to take only unique elements of the vector. 7417 // Without this code the function incorrectly returns reduced vector 7418 // instruction with the same elements, not with the unique ones. 7419 7420 // block: 7421 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7422 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7423 // ... (use %2) 7424 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7425 // br %block 7426 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7427 SmallSet<int, 4> UsedIdxs; 7428 int Pos = 0; 7429 int Sz = VL.size(); 7430 for (int Idx : E->ReuseShuffleIndices) { 7431 if (Idx != Sz && Idx != UndefMaskElem && 7432 UsedIdxs.insert(Idx).second) 7433 UniqueIdxs[Idx] = Pos; 7434 ++Pos; 7435 } 7436 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7437 "less than original vector size."); 7438 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7439 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7440 } else { 7441 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7442 "Expected vectorization factor less " 7443 "than original vector size."); 7444 SmallVector<int> UniformMask(VF, 0); 7445 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7446 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7447 } 7448 if (auto *I = dyn_cast<Instruction>(V)) { 7449 GatherShuffleSeq.insert(I); 7450 CSEBlocks.insert(I->getParent()); 7451 } 7452 } 7453 return V; 7454 } 7455 } 7456 7457 // Can't vectorize this, so simply build a new vector with each lane 7458 // corresponding to the requested value. 7459 return createBuildVector(VL); 7460 } 7461 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7462 unsigned VF = VL.size(); 7463 // Exploit possible reuse of values across lanes. 7464 SmallVector<int> ReuseShuffleIndicies; 7465 SmallVector<Value *> UniqueValues; 7466 if (VL.size() > 2) { 7467 DenseMap<Value *, unsigned> UniquePositions; 7468 unsigned NumValues = 7469 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7470 return !isa<UndefValue>(V); 7471 }).base()); 7472 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7473 int UniqueVals = 0; 7474 for (Value *V : VL.drop_back(VL.size() - VF)) { 7475 if (isa<UndefValue>(V)) { 7476 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7477 continue; 7478 } 7479 if (isConstant(V)) { 7480 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7481 UniqueValues.emplace_back(V); 7482 continue; 7483 } 7484 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7485 ReuseShuffleIndicies.emplace_back(Res.first->second); 7486 if (Res.second) { 7487 UniqueValues.emplace_back(V); 7488 ++UniqueVals; 7489 } 7490 } 7491 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7492 // Emit pure splat vector. 7493 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7494 UndefMaskElem); 7495 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7496 ReuseShuffleIndicies.clear(); 7497 UniqueValues.clear(); 7498 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7499 } 7500 UniqueValues.append(VF - UniqueValues.size(), 7501 PoisonValue::get(VL[0]->getType())); 7502 VL = UniqueValues; 7503 } 7504 7505 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7506 CSEBlocks); 7507 Value *Vec = gather(VL); 7508 if (!ReuseShuffleIndicies.empty()) { 7509 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7510 Vec = ShuffleBuilder.finalize(Vec); 7511 } 7512 return Vec; 7513 } 7514 7515 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7516 IRBuilder<>::InsertPointGuard Guard(Builder); 7517 7518 if (E->VectorizedValue) { 7519 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7520 return E->VectorizedValue; 7521 } 7522 7523 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7524 unsigned VF = E->getVectorFactor(); 7525 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7526 CSEBlocks); 7527 if (E->State == TreeEntry::NeedToGather) { 7528 if (E->getMainOp()) 7529 setInsertPointAfterBundle(E); 7530 Value *Vec; 7531 SmallVector<int> Mask; 7532 SmallVector<const TreeEntry *> Entries; 7533 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7534 isGatherShuffledEntry(E, Mask, Entries); 7535 if (Shuffle.hasValue()) { 7536 assert((Entries.size() == 1 || Entries.size() == 2) && 7537 "Expected shuffle of 1 or 2 entries."); 7538 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7539 Entries.back()->VectorizedValue, Mask); 7540 if (auto *I = dyn_cast<Instruction>(Vec)) { 7541 GatherShuffleSeq.insert(I); 7542 CSEBlocks.insert(I->getParent()); 7543 } 7544 } else { 7545 Vec = gather(E->Scalars); 7546 } 7547 if (NeedToShuffleReuses) { 7548 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7549 Vec = ShuffleBuilder.finalize(Vec); 7550 } 7551 E->VectorizedValue = Vec; 7552 return Vec; 7553 } 7554 7555 assert((E->State == TreeEntry::Vectorize || 7556 E->State == TreeEntry::ScatterVectorize) && 7557 "Unhandled state"); 7558 unsigned ShuffleOrOp = 7559 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7560 Instruction *VL0 = E->getMainOp(); 7561 Type *ScalarTy = VL0->getType(); 7562 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7563 ScalarTy = Store->getValueOperand()->getType(); 7564 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7565 ScalarTy = IE->getOperand(1)->getType(); 7566 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7567 switch (ShuffleOrOp) { 7568 case Instruction::PHI: { 7569 assert( 7570 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7571 "PHI reordering is free."); 7572 auto *PH = cast<PHINode>(VL0); 7573 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7574 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7575 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7576 Value *V = NewPhi; 7577 7578 // Adjust insertion point once all PHI's have been generated. 7579 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7580 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7581 7582 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7583 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7584 V = ShuffleBuilder.finalize(V); 7585 7586 E->VectorizedValue = V; 7587 7588 // PHINodes may have multiple entries from the same block. We want to 7589 // visit every block once. 7590 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7591 7592 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7593 ValueList Operands; 7594 BasicBlock *IBB = PH->getIncomingBlock(i); 7595 7596 if (!VisitedBBs.insert(IBB).second) { 7597 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7598 continue; 7599 } 7600 7601 Builder.SetInsertPoint(IBB->getTerminator()); 7602 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7603 Value *Vec = vectorizeTree(E->getOperand(i)); 7604 NewPhi->addIncoming(Vec, IBB); 7605 } 7606 7607 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7608 "Invalid number of incoming values"); 7609 return V; 7610 } 7611 7612 case Instruction::ExtractElement: { 7613 Value *V = E->getSingleOperand(0); 7614 Builder.SetInsertPoint(VL0); 7615 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7616 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7617 V = ShuffleBuilder.finalize(V); 7618 E->VectorizedValue = V; 7619 return V; 7620 } 7621 case Instruction::ExtractValue: { 7622 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7623 Builder.SetInsertPoint(LI); 7624 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7625 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7626 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7627 Value *NewV = propagateMetadata(V, E->Scalars); 7628 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7629 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7630 NewV = ShuffleBuilder.finalize(NewV); 7631 E->VectorizedValue = NewV; 7632 return NewV; 7633 } 7634 case Instruction::InsertElement: { 7635 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7636 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7637 Value *V = vectorizeTree(E->getOperand(1)); 7638 7639 // Create InsertVector shuffle if necessary 7640 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7641 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7642 })); 7643 const unsigned NumElts = 7644 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7645 const unsigned NumScalars = E->Scalars.size(); 7646 7647 unsigned Offset = *getInsertIndex(VL0); 7648 assert(Offset < NumElts && "Failed to find vector index offset"); 7649 7650 // Create shuffle to resize vector 7651 SmallVector<int> Mask; 7652 if (!E->ReorderIndices.empty()) { 7653 inversePermutation(E->ReorderIndices, Mask); 7654 Mask.append(NumElts - NumScalars, UndefMaskElem); 7655 } else { 7656 Mask.assign(NumElts, UndefMaskElem); 7657 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7658 } 7659 // Create InsertVector shuffle if necessary 7660 bool IsIdentity = true; 7661 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7662 Mask.swap(PrevMask); 7663 for (unsigned I = 0; I < NumScalars; ++I) { 7664 Value *Scalar = E->Scalars[PrevMask[I]]; 7665 unsigned InsertIdx = *getInsertIndex(Scalar); 7666 IsIdentity &= InsertIdx - Offset == I; 7667 Mask[InsertIdx - Offset] = I; 7668 } 7669 if (!IsIdentity || NumElts != NumScalars) { 7670 V = Builder.CreateShuffleVector(V, Mask); 7671 if (auto *I = dyn_cast<Instruction>(V)) { 7672 GatherShuffleSeq.insert(I); 7673 CSEBlocks.insert(I->getParent()); 7674 } 7675 } 7676 7677 if ((!IsIdentity || Offset != 0 || 7678 !isUndefVector(FirstInsert->getOperand(0))) && 7679 NumElts != NumScalars) { 7680 SmallVector<int> InsertMask(NumElts); 7681 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7682 for (unsigned I = 0; I < NumElts; I++) { 7683 if (Mask[I] != UndefMaskElem) 7684 InsertMask[Offset + I] = NumElts + I; 7685 } 7686 7687 V = Builder.CreateShuffleVector( 7688 FirstInsert->getOperand(0), V, InsertMask, 7689 cast<Instruction>(E->Scalars.back())->getName()); 7690 if (auto *I = dyn_cast<Instruction>(V)) { 7691 GatherShuffleSeq.insert(I); 7692 CSEBlocks.insert(I->getParent()); 7693 } 7694 } 7695 7696 ++NumVectorInstructions; 7697 E->VectorizedValue = V; 7698 return V; 7699 } 7700 case Instruction::ZExt: 7701 case Instruction::SExt: 7702 case Instruction::FPToUI: 7703 case Instruction::FPToSI: 7704 case Instruction::FPExt: 7705 case Instruction::PtrToInt: 7706 case Instruction::IntToPtr: 7707 case Instruction::SIToFP: 7708 case Instruction::UIToFP: 7709 case Instruction::Trunc: 7710 case Instruction::FPTrunc: 7711 case Instruction::BitCast: { 7712 setInsertPointAfterBundle(E); 7713 7714 Value *InVec = vectorizeTree(E->getOperand(0)); 7715 7716 if (E->VectorizedValue) { 7717 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7718 return E->VectorizedValue; 7719 } 7720 7721 auto *CI = cast<CastInst>(VL0); 7722 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7723 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7724 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7725 V = ShuffleBuilder.finalize(V); 7726 7727 E->VectorizedValue = V; 7728 ++NumVectorInstructions; 7729 return V; 7730 } 7731 case Instruction::FCmp: 7732 case Instruction::ICmp: { 7733 setInsertPointAfterBundle(E); 7734 7735 Value *L = vectorizeTree(E->getOperand(0)); 7736 Value *R = vectorizeTree(E->getOperand(1)); 7737 7738 if (E->VectorizedValue) { 7739 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7740 return E->VectorizedValue; 7741 } 7742 7743 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7744 Value *V = Builder.CreateCmp(P0, L, R); 7745 propagateIRFlags(V, E->Scalars, VL0); 7746 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7747 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7748 V = ShuffleBuilder.finalize(V); 7749 7750 E->VectorizedValue = V; 7751 ++NumVectorInstructions; 7752 return V; 7753 } 7754 case Instruction::Select: { 7755 setInsertPointAfterBundle(E); 7756 7757 Value *Cond = vectorizeTree(E->getOperand(0)); 7758 Value *True = vectorizeTree(E->getOperand(1)); 7759 Value *False = vectorizeTree(E->getOperand(2)); 7760 7761 if (E->VectorizedValue) { 7762 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7763 return E->VectorizedValue; 7764 } 7765 7766 Value *V = Builder.CreateSelect(Cond, True, False); 7767 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7768 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7769 V = ShuffleBuilder.finalize(V); 7770 7771 E->VectorizedValue = V; 7772 ++NumVectorInstructions; 7773 return V; 7774 } 7775 case Instruction::FNeg: { 7776 setInsertPointAfterBundle(E); 7777 7778 Value *Op = vectorizeTree(E->getOperand(0)); 7779 7780 if (E->VectorizedValue) { 7781 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7782 return E->VectorizedValue; 7783 } 7784 7785 Value *V = Builder.CreateUnOp( 7786 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7787 propagateIRFlags(V, E->Scalars, VL0); 7788 if (auto *I = dyn_cast<Instruction>(V)) 7789 V = propagateMetadata(I, E->Scalars); 7790 7791 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7792 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7793 V = ShuffleBuilder.finalize(V); 7794 7795 E->VectorizedValue = V; 7796 ++NumVectorInstructions; 7797 7798 return V; 7799 } 7800 case Instruction::Add: 7801 case Instruction::FAdd: 7802 case Instruction::Sub: 7803 case Instruction::FSub: 7804 case Instruction::Mul: 7805 case Instruction::FMul: 7806 case Instruction::UDiv: 7807 case Instruction::SDiv: 7808 case Instruction::FDiv: 7809 case Instruction::URem: 7810 case Instruction::SRem: 7811 case Instruction::FRem: 7812 case Instruction::Shl: 7813 case Instruction::LShr: 7814 case Instruction::AShr: 7815 case Instruction::And: 7816 case Instruction::Or: 7817 case Instruction::Xor: { 7818 setInsertPointAfterBundle(E); 7819 7820 Value *LHS = vectorizeTree(E->getOperand(0)); 7821 Value *RHS = vectorizeTree(E->getOperand(1)); 7822 7823 if (E->VectorizedValue) { 7824 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7825 return E->VectorizedValue; 7826 } 7827 7828 Value *V = Builder.CreateBinOp( 7829 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7830 RHS); 7831 propagateIRFlags(V, E->Scalars, VL0); 7832 if (auto *I = dyn_cast<Instruction>(V)) 7833 V = propagateMetadata(I, E->Scalars); 7834 7835 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7836 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7837 V = ShuffleBuilder.finalize(V); 7838 7839 E->VectorizedValue = V; 7840 ++NumVectorInstructions; 7841 7842 return V; 7843 } 7844 case Instruction::Load: { 7845 // Loads are inserted at the head of the tree because we don't want to 7846 // sink them all the way down past store instructions. 7847 setInsertPointAfterBundle(E); 7848 7849 LoadInst *LI = cast<LoadInst>(VL0); 7850 Instruction *NewLI; 7851 unsigned AS = LI->getPointerAddressSpace(); 7852 Value *PO = LI->getPointerOperand(); 7853 if (E->State == TreeEntry::Vectorize) { 7854 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7855 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7856 7857 // The pointer operand uses an in-tree scalar so we add the new BitCast 7858 // or LoadInst to ExternalUses list to make sure that an extract will 7859 // be generated in the future. 7860 if (TreeEntry *Entry = getTreeEntry(PO)) { 7861 // Find which lane we need to extract. 7862 unsigned FoundLane = Entry->findLaneForValue(PO); 7863 ExternalUses.emplace_back( 7864 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7865 } 7866 } else { 7867 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7868 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7869 // Use the minimum alignment of the gathered loads. 7870 Align CommonAlignment = LI->getAlign(); 7871 for (Value *V : E->Scalars) 7872 CommonAlignment = 7873 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7874 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7875 } 7876 Value *V = propagateMetadata(NewLI, E->Scalars); 7877 7878 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7879 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7880 V = ShuffleBuilder.finalize(V); 7881 E->VectorizedValue = V; 7882 ++NumVectorInstructions; 7883 return V; 7884 } 7885 case Instruction::Store: { 7886 auto *SI = cast<StoreInst>(VL0); 7887 unsigned AS = SI->getPointerAddressSpace(); 7888 7889 setInsertPointAfterBundle(E); 7890 7891 Value *VecValue = vectorizeTree(E->getOperand(0)); 7892 ShuffleBuilder.addMask(E->ReorderIndices); 7893 VecValue = ShuffleBuilder.finalize(VecValue); 7894 7895 Value *ScalarPtr = SI->getPointerOperand(); 7896 Value *VecPtr = Builder.CreateBitCast( 7897 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7898 StoreInst *ST = 7899 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7900 7901 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7902 // StoreInst to ExternalUses to make sure that an extract will be 7903 // generated in the future. 7904 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7905 // Find which lane we need to extract. 7906 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7907 ExternalUses.push_back(ExternalUser( 7908 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7909 FoundLane)); 7910 } 7911 7912 Value *V = propagateMetadata(ST, E->Scalars); 7913 7914 E->VectorizedValue = V; 7915 ++NumVectorInstructions; 7916 return V; 7917 } 7918 case Instruction::GetElementPtr: { 7919 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7920 setInsertPointAfterBundle(E); 7921 7922 Value *Op0 = vectorizeTree(E->getOperand(0)); 7923 7924 SmallVector<Value *> OpVecs; 7925 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7926 Value *OpVec = vectorizeTree(E->getOperand(J)); 7927 OpVecs.push_back(OpVec); 7928 } 7929 7930 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7931 if (Instruction *I = dyn_cast<Instruction>(V)) 7932 V = propagateMetadata(I, E->Scalars); 7933 7934 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7935 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7936 V = ShuffleBuilder.finalize(V); 7937 7938 E->VectorizedValue = V; 7939 ++NumVectorInstructions; 7940 7941 return V; 7942 } 7943 case Instruction::Call: { 7944 CallInst *CI = cast<CallInst>(VL0); 7945 setInsertPointAfterBundle(E); 7946 7947 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7948 if (Function *FI = CI->getCalledFunction()) 7949 IID = FI->getIntrinsicID(); 7950 7951 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7952 7953 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7954 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7955 VecCallCosts.first <= VecCallCosts.second; 7956 7957 Value *ScalarArg = nullptr; 7958 std::vector<Value *> OpVecs; 7959 SmallVector<Type *, 2> TysForDecl = 7960 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7961 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7962 ValueList OpVL; 7963 // Some intrinsics have scalar arguments. This argument should not be 7964 // vectorized. 7965 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 7966 CallInst *CEI = cast<CallInst>(VL0); 7967 ScalarArg = CEI->getArgOperand(j); 7968 OpVecs.push_back(CEI->getArgOperand(j)); 7969 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7970 TysForDecl.push_back(ScalarArg->getType()); 7971 continue; 7972 } 7973 7974 Value *OpVec = vectorizeTree(E->getOperand(j)); 7975 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7976 OpVecs.push_back(OpVec); 7977 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7978 TysForDecl.push_back(OpVec->getType()); 7979 } 7980 7981 Function *CF; 7982 if (!UseIntrinsic) { 7983 VFShape Shape = 7984 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7985 VecTy->getNumElements())), 7986 false /*HasGlobalPred*/); 7987 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7988 } else { 7989 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7990 } 7991 7992 SmallVector<OperandBundleDef, 1> OpBundles; 7993 CI->getOperandBundlesAsDefs(OpBundles); 7994 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7995 7996 // The scalar argument uses an in-tree scalar so we add the new vectorized 7997 // call to ExternalUses list to make sure that an extract will be 7998 // generated in the future. 7999 if (ScalarArg) { 8000 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 8001 // Find which lane we need to extract. 8002 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 8003 ExternalUses.push_back( 8004 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 8005 } 8006 } 8007 8008 propagateIRFlags(V, E->Scalars, VL0); 8009 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8010 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8011 V = ShuffleBuilder.finalize(V); 8012 8013 E->VectorizedValue = V; 8014 ++NumVectorInstructions; 8015 return V; 8016 } 8017 case Instruction::ShuffleVector: { 8018 assert(E->isAltShuffle() && 8019 ((Instruction::isBinaryOp(E->getOpcode()) && 8020 Instruction::isBinaryOp(E->getAltOpcode())) || 8021 (Instruction::isCast(E->getOpcode()) && 8022 Instruction::isCast(E->getAltOpcode())) || 8023 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 8024 "Invalid Shuffle Vector Operand"); 8025 8026 Value *LHS = nullptr, *RHS = nullptr; 8027 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 8028 setInsertPointAfterBundle(E); 8029 LHS = vectorizeTree(E->getOperand(0)); 8030 RHS = vectorizeTree(E->getOperand(1)); 8031 } else { 8032 setInsertPointAfterBundle(E); 8033 LHS = vectorizeTree(E->getOperand(0)); 8034 } 8035 8036 if (E->VectorizedValue) { 8037 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8038 return E->VectorizedValue; 8039 } 8040 8041 Value *V0, *V1; 8042 if (Instruction::isBinaryOp(E->getOpcode())) { 8043 V0 = Builder.CreateBinOp( 8044 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 8045 V1 = Builder.CreateBinOp( 8046 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 8047 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 8048 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 8049 auto *AltCI = cast<CmpInst>(E->getAltOp()); 8050 CmpInst::Predicate AltPred = AltCI->getPredicate(); 8051 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 8052 } else { 8053 V0 = Builder.CreateCast( 8054 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 8055 V1 = Builder.CreateCast( 8056 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 8057 } 8058 // Add V0 and V1 to later analysis to try to find and remove matching 8059 // instruction, if any. 8060 for (Value *V : {V0, V1}) { 8061 if (auto *I = dyn_cast<Instruction>(V)) { 8062 GatherShuffleSeq.insert(I); 8063 CSEBlocks.insert(I->getParent()); 8064 } 8065 } 8066 8067 // Create shuffle to take alternate operations from the vector. 8068 // Also, gather up main and alt scalar ops to propagate IR flags to 8069 // each vector operation. 8070 ValueList OpScalars, AltScalars; 8071 SmallVector<int> Mask; 8072 buildShuffleEntryMask( 8073 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8074 [E](Instruction *I) { 8075 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8076 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8077 }, 8078 Mask, &OpScalars, &AltScalars); 8079 8080 propagateIRFlags(V0, OpScalars); 8081 propagateIRFlags(V1, AltScalars); 8082 8083 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8084 if (auto *I = dyn_cast<Instruction>(V)) { 8085 V = propagateMetadata(I, E->Scalars); 8086 GatherShuffleSeq.insert(I); 8087 CSEBlocks.insert(I->getParent()); 8088 } 8089 V = ShuffleBuilder.finalize(V); 8090 8091 E->VectorizedValue = V; 8092 ++NumVectorInstructions; 8093 8094 return V; 8095 } 8096 default: 8097 llvm_unreachable("unknown inst"); 8098 } 8099 return nullptr; 8100 } 8101 8102 Value *BoUpSLP::vectorizeTree() { 8103 ExtraValueToDebugLocsMap ExternallyUsedValues; 8104 return vectorizeTree(ExternallyUsedValues); 8105 } 8106 8107 Value * 8108 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8109 // All blocks must be scheduled before any instructions are inserted. 8110 for (auto &BSIter : BlocksSchedules) { 8111 scheduleBlock(BSIter.second.get()); 8112 } 8113 8114 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8115 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8116 8117 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8118 // vectorized root. InstCombine will then rewrite the entire expression. We 8119 // sign extend the extracted values below. 8120 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8121 if (MinBWs.count(ScalarRoot)) { 8122 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8123 // If current instr is a phi and not the last phi, insert it after the 8124 // last phi node. 8125 if (isa<PHINode>(I)) 8126 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8127 else 8128 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8129 } 8130 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8131 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8132 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8133 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8134 VectorizableTree[0]->VectorizedValue = Trunc; 8135 } 8136 8137 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8138 << " values .\n"); 8139 8140 // Extract all of the elements with the external uses. 8141 for (const auto &ExternalUse : ExternalUses) { 8142 Value *Scalar = ExternalUse.Scalar; 8143 llvm::User *User = ExternalUse.User; 8144 8145 // Skip users that we already RAUW. This happens when one instruction 8146 // has multiple uses of the same value. 8147 if (User && !is_contained(Scalar->users(), User)) 8148 continue; 8149 TreeEntry *E = getTreeEntry(Scalar); 8150 assert(E && "Invalid scalar"); 8151 assert(E->State != TreeEntry::NeedToGather && 8152 "Extracting from a gather list"); 8153 8154 Value *Vec = E->VectorizedValue; 8155 assert(Vec && "Can't find vectorizable value"); 8156 8157 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8158 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8159 if (Scalar->getType() != Vec->getType()) { 8160 Value *Ex; 8161 // "Reuse" the existing extract to improve final codegen. 8162 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8163 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8164 ES->getOperand(1)); 8165 } else { 8166 Ex = Builder.CreateExtractElement(Vec, Lane); 8167 } 8168 // If necessary, sign-extend or zero-extend ScalarRoot 8169 // to the larger type. 8170 if (!MinBWs.count(ScalarRoot)) 8171 return Ex; 8172 if (MinBWs[ScalarRoot].second) 8173 return Builder.CreateSExt(Ex, Scalar->getType()); 8174 return Builder.CreateZExt(Ex, Scalar->getType()); 8175 } 8176 assert(isa<FixedVectorType>(Scalar->getType()) && 8177 isa<InsertElementInst>(Scalar) && 8178 "In-tree scalar of vector type is not insertelement?"); 8179 return Vec; 8180 }; 8181 // If User == nullptr, the Scalar is used as extra arg. Generate 8182 // ExtractElement instruction and update the record for this scalar in 8183 // ExternallyUsedValues. 8184 if (!User) { 8185 assert(ExternallyUsedValues.count(Scalar) && 8186 "Scalar with nullptr as an external user must be registered in " 8187 "ExternallyUsedValues map"); 8188 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8189 Builder.SetInsertPoint(VecI->getParent(), 8190 std::next(VecI->getIterator())); 8191 } else { 8192 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8193 } 8194 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8195 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8196 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8197 auto It = ExternallyUsedValues.find(Scalar); 8198 assert(It != ExternallyUsedValues.end() && 8199 "Externally used scalar is not found in ExternallyUsedValues"); 8200 NewInstLocs.append(It->second); 8201 ExternallyUsedValues.erase(Scalar); 8202 // Required to update internally referenced instructions. 8203 Scalar->replaceAllUsesWith(NewInst); 8204 continue; 8205 } 8206 8207 // Generate extracts for out-of-tree users. 8208 // Find the insertion point for the extractelement lane. 8209 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8210 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8211 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8212 if (PH->getIncomingValue(i) == Scalar) { 8213 Instruction *IncomingTerminator = 8214 PH->getIncomingBlock(i)->getTerminator(); 8215 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8216 Builder.SetInsertPoint(VecI->getParent(), 8217 std::next(VecI->getIterator())); 8218 } else { 8219 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8220 } 8221 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8222 CSEBlocks.insert(PH->getIncomingBlock(i)); 8223 PH->setOperand(i, NewInst); 8224 } 8225 } 8226 } else { 8227 Builder.SetInsertPoint(cast<Instruction>(User)); 8228 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8229 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8230 User->replaceUsesOfWith(Scalar, NewInst); 8231 } 8232 } else { 8233 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8234 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8235 CSEBlocks.insert(&F->getEntryBlock()); 8236 User->replaceUsesOfWith(Scalar, NewInst); 8237 } 8238 8239 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8240 } 8241 8242 // For each vectorized value: 8243 for (auto &TEPtr : VectorizableTree) { 8244 TreeEntry *Entry = TEPtr.get(); 8245 8246 // No need to handle users of gathered values. 8247 if (Entry->State == TreeEntry::NeedToGather) 8248 continue; 8249 8250 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8251 8252 // For each lane: 8253 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8254 Value *Scalar = Entry->Scalars[Lane]; 8255 8256 #ifndef NDEBUG 8257 Type *Ty = Scalar->getType(); 8258 if (!Ty->isVoidTy()) { 8259 for (User *U : Scalar->users()) { 8260 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8261 8262 // It is legal to delete users in the ignorelist. 8263 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 8264 (isa_and_nonnull<Instruction>(U) && 8265 isDeleted(cast<Instruction>(U)))) && 8266 "Deleting out-of-tree value"); 8267 } 8268 } 8269 #endif 8270 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8271 eraseInstruction(cast<Instruction>(Scalar)); 8272 } 8273 } 8274 8275 Builder.ClearInsertionPoint(); 8276 InstrElementSize.clear(); 8277 8278 return VectorizableTree[0]->VectorizedValue; 8279 } 8280 8281 void BoUpSLP::optimizeGatherSequence() { 8282 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8283 << " gather sequences instructions.\n"); 8284 // LICM InsertElementInst sequences. 8285 for (Instruction *I : GatherShuffleSeq) { 8286 if (isDeleted(I)) 8287 continue; 8288 8289 // Check if this block is inside a loop. 8290 Loop *L = LI->getLoopFor(I->getParent()); 8291 if (!L) 8292 continue; 8293 8294 // Check if it has a preheader. 8295 BasicBlock *PreHeader = L->getLoopPreheader(); 8296 if (!PreHeader) 8297 continue; 8298 8299 // If the vector or the element that we insert into it are 8300 // instructions that are defined in this basic block then we can't 8301 // hoist this instruction. 8302 if (any_of(I->operands(), [L](Value *V) { 8303 auto *OpI = dyn_cast<Instruction>(V); 8304 return OpI && L->contains(OpI); 8305 })) 8306 continue; 8307 8308 // We can hoist this instruction. Move it to the pre-header. 8309 I->moveBefore(PreHeader->getTerminator()); 8310 } 8311 8312 // Make a list of all reachable blocks in our CSE queue. 8313 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8314 CSEWorkList.reserve(CSEBlocks.size()); 8315 for (BasicBlock *BB : CSEBlocks) 8316 if (DomTreeNode *N = DT->getNode(BB)) { 8317 assert(DT->isReachableFromEntry(N)); 8318 CSEWorkList.push_back(N); 8319 } 8320 8321 // Sort blocks by domination. This ensures we visit a block after all blocks 8322 // dominating it are visited. 8323 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8324 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8325 "Different nodes should have different DFS numbers"); 8326 return A->getDFSNumIn() < B->getDFSNumIn(); 8327 }); 8328 8329 // Less defined shuffles can be replaced by the more defined copies. 8330 // Between two shuffles one is less defined if it has the same vector operands 8331 // and its mask indeces are the same as in the first one or undefs. E.g. 8332 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8333 // poison, <0, 0, 0, 0>. 8334 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8335 SmallVectorImpl<int> &NewMask) { 8336 if (I1->getType() != I2->getType()) 8337 return false; 8338 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8339 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8340 if (!SI1 || !SI2) 8341 return I1->isIdenticalTo(I2); 8342 if (SI1->isIdenticalTo(SI2)) 8343 return true; 8344 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8345 if (SI1->getOperand(I) != SI2->getOperand(I)) 8346 return false; 8347 // Check if the second instruction is more defined than the first one. 8348 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8349 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8350 // Count trailing undefs in the mask to check the final number of used 8351 // registers. 8352 unsigned LastUndefsCnt = 0; 8353 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8354 if (SM1[I] == UndefMaskElem) 8355 ++LastUndefsCnt; 8356 else 8357 LastUndefsCnt = 0; 8358 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8359 NewMask[I] != SM1[I]) 8360 return false; 8361 if (NewMask[I] == UndefMaskElem) 8362 NewMask[I] = SM1[I]; 8363 } 8364 // Check if the last undefs actually change the final number of used vector 8365 // registers. 8366 return SM1.size() - LastUndefsCnt > 1 && 8367 TTI->getNumberOfParts(SI1->getType()) == 8368 TTI->getNumberOfParts( 8369 FixedVectorType::get(SI1->getType()->getElementType(), 8370 SM1.size() - LastUndefsCnt)); 8371 }; 8372 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8373 // instructions. TODO: We can further optimize this scan if we split the 8374 // instructions into different buckets based on the insert lane. 8375 SmallVector<Instruction *, 16> Visited; 8376 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8377 assert(*I && 8378 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8379 "Worklist not sorted properly!"); 8380 BasicBlock *BB = (*I)->getBlock(); 8381 // For all instructions in blocks containing gather sequences: 8382 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8383 if (isDeleted(&In)) 8384 continue; 8385 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8386 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8387 continue; 8388 8389 // Check if we can replace this instruction with any of the 8390 // visited instructions. 8391 bool Replaced = false; 8392 for (Instruction *&V : Visited) { 8393 SmallVector<int> NewMask; 8394 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8395 DT->dominates(V->getParent(), In.getParent())) { 8396 In.replaceAllUsesWith(V); 8397 eraseInstruction(&In); 8398 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 8399 if (!NewMask.empty()) 8400 SI->setShuffleMask(NewMask); 8401 Replaced = true; 8402 break; 8403 } 8404 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 8405 GatherShuffleSeq.contains(V) && 8406 IsIdenticalOrLessDefined(V, &In, NewMask) && 8407 DT->dominates(In.getParent(), V->getParent())) { 8408 In.moveAfter(V); 8409 V->replaceAllUsesWith(&In); 8410 eraseInstruction(V); 8411 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 8412 if (!NewMask.empty()) 8413 SI->setShuffleMask(NewMask); 8414 V = &In; 8415 Replaced = true; 8416 break; 8417 } 8418 } 8419 if (!Replaced) { 8420 assert(!is_contained(Visited, &In)); 8421 Visited.push_back(&In); 8422 } 8423 } 8424 } 8425 CSEBlocks.clear(); 8426 GatherShuffleSeq.clear(); 8427 } 8428 8429 BoUpSLP::ScheduleData * 8430 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 8431 ScheduleData *Bundle = nullptr; 8432 ScheduleData *PrevInBundle = nullptr; 8433 for (Value *V : VL) { 8434 if (doesNotNeedToBeScheduled(V)) 8435 continue; 8436 ScheduleData *BundleMember = getScheduleData(V); 8437 assert(BundleMember && 8438 "no ScheduleData for bundle member " 8439 "(maybe not in same basic block)"); 8440 assert(BundleMember->isSchedulingEntity() && 8441 "bundle member already part of other bundle"); 8442 if (PrevInBundle) { 8443 PrevInBundle->NextInBundle = BundleMember; 8444 } else { 8445 Bundle = BundleMember; 8446 } 8447 8448 // Group the instructions to a bundle. 8449 BundleMember->FirstInBundle = Bundle; 8450 PrevInBundle = BundleMember; 8451 } 8452 assert(Bundle && "Failed to find schedule bundle"); 8453 return Bundle; 8454 } 8455 8456 // Groups the instructions to a bundle (which is then a single scheduling entity) 8457 // and schedules instructions until the bundle gets ready. 8458 Optional<BoUpSLP::ScheduleData *> 8459 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 8460 const InstructionsState &S) { 8461 // No need to schedule PHIs, insertelement, extractelement and extractvalue 8462 // instructions. 8463 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 8464 doesNotNeedToSchedule(VL)) 8465 return nullptr; 8466 8467 // Initialize the instruction bundle. 8468 Instruction *OldScheduleEnd = ScheduleEnd; 8469 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 8470 8471 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 8472 ScheduleData *Bundle) { 8473 // The scheduling region got new instructions at the lower end (or it is a 8474 // new region for the first bundle). This makes it necessary to 8475 // recalculate all dependencies. 8476 // It is seldom that this needs to be done a second time after adding the 8477 // initial bundle to the region. 8478 if (ScheduleEnd != OldScheduleEnd) { 8479 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8480 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8481 ReSchedule = true; 8482 } 8483 if (Bundle) { 8484 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8485 << " in block " << BB->getName() << "\n"); 8486 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8487 } 8488 8489 if (ReSchedule) { 8490 resetSchedule(); 8491 initialFillReadyList(ReadyInsts); 8492 } 8493 8494 // Now try to schedule the new bundle or (if no bundle) just calculate 8495 // dependencies. As soon as the bundle is "ready" it means that there are no 8496 // cyclic dependencies and we can schedule it. Note that's important that we 8497 // don't "schedule" the bundle yet (see cancelScheduling). 8498 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8499 !ReadyInsts.empty()) { 8500 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8501 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8502 "must be ready to schedule"); 8503 schedule(Picked, ReadyInsts); 8504 } 8505 }; 8506 8507 // Make sure that the scheduling region contains all 8508 // instructions of the bundle. 8509 for (Value *V : VL) { 8510 if (doesNotNeedToBeScheduled(V)) 8511 continue; 8512 if (!extendSchedulingRegion(V, S)) { 8513 // If the scheduling region got new instructions at the lower end (or it 8514 // is a new region for the first bundle). This makes it necessary to 8515 // recalculate all dependencies. 8516 // Otherwise the compiler may crash trying to incorrectly calculate 8517 // dependencies and emit instruction in the wrong order at the actual 8518 // scheduling. 8519 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8520 return None; 8521 } 8522 } 8523 8524 bool ReSchedule = false; 8525 for (Value *V : VL) { 8526 if (doesNotNeedToBeScheduled(V)) 8527 continue; 8528 ScheduleData *BundleMember = getScheduleData(V); 8529 assert(BundleMember && 8530 "no ScheduleData for bundle member (maybe not in same basic block)"); 8531 8532 // Make sure we don't leave the pieces of the bundle in the ready list when 8533 // whole bundle might not be ready. 8534 ReadyInsts.remove(BundleMember); 8535 8536 if (!BundleMember->IsScheduled) 8537 continue; 8538 // A bundle member was scheduled as single instruction before and now 8539 // needs to be scheduled as part of the bundle. We just get rid of the 8540 // existing schedule. 8541 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8542 << " was already scheduled\n"); 8543 ReSchedule = true; 8544 } 8545 8546 auto *Bundle = buildBundle(VL); 8547 TryScheduleBundleImpl(ReSchedule, Bundle); 8548 if (!Bundle->isReady()) { 8549 cancelScheduling(VL, S.OpValue); 8550 return None; 8551 } 8552 return Bundle; 8553 } 8554 8555 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8556 Value *OpValue) { 8557 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8558 doesNotNeedToSchedule(VL)) 8559 return; 8560 8561 if (doesNotNeedToBeScheduled(OpValue)) 8562 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8563 ScheduleData *Bundle = getScheduleData(OpValue); 8564 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8565 assert(!Bundle->IsScheduled && 8566 "Can't cancel bundle which is already scheduled"); 8567 assert(Bundle->isSchedulingEntity() && 8568 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8569 "tried to unbundle something which is not a bundle"); 8570 8571 // Remove the bundle from the ready list. 8572 if (Bundle->isReady()) 8573 ReadyInsts.remove(Bundle); 8574 8575 // Un-bundle: make single instructions out of the bundle. 8576 ScheduleData *BundleMember = Bundle; 8577 while (BundleMember) { 8578 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8579 BundleMember->FirstInBundle = BundleMember; 8580 ScheduleData *Next = BundleMember->NextInBundle; 8581 BundleMember->NextInBundle = nullptr; 8582 BundleMember->TE = nullptr; 8583 if (BundleMember->unscheduledDepsInBundle() == 0) { 8584 ReadyInsts.insert(BundleMember); 8585 } 8586 BundleMember = Next; 8587 } 8588 } 8589 8590 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8591 // Allocate a new ScheduleData for the instruction. 8592 if (ChunkPos >= ChunkSize) { 8593 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8594 ChunkPos = 0; 8595 } 8596 return &(ScheduleDataChunks.back()[ChunkPos++]); 8597 } 8598 8599 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8600 const InstructionsState &S) { 8601 if (getScheduleData(V, isOneOf(S, V))) 8602 return true; 8603 Instruction *I = dyn_cast<Instruction>(V); 8604 assert(I && "bundle member must be an instruction"); 8605 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8606 !doesNotNeedToBeScheduled(I) && 8607 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8608 "be scheduled"); 8609 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8610 ScheduleData *ISD = getScheduleData(I); 8611 if (!ISD) 8612 return false; 8613 assert(isInSchedulingRegion(ISD) && 8614 "ScheduleData not in scheduling region"); 8615 ScheduleData *SD = allocateScheduleDataChunks(); 8616 SD->Inst = I; 8617 SD->init(SchedulingRegionID, S.OpValue); 8618 ExtraScheduleDataMap[I][S.OpValue] = SD; 8619 return true; 8620 }; 8621 if (CheckScheduleForI(I)) 8622 return true; 8623 if (!ScheduleStart) { 8624 // It's the first instruction in the new region. 8625 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8626 ScheduleStart = I; 8627 ScheduleEnd = I->getNextNode(); 8628 if (isOneOf(S, I) != I) 8629 CheckScheduleForI(I); 8630 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8631 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8632 return true; 8633 } 8634 // Search up and down at the same time, because we don't know if the new 8635 // instruction is above or below the existing scheduling region. 8636 BasicBlock::reverse_iterator UpIter = 8637 ++ScheduleStart->getIterator().getReverse(); 8638 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8639 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8640 BasicBlock::iterator LowerEnd = BB->end(); 8641 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8642 &*DownIter != I) { 8643 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8644 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8645 return false; 8646 } 8647 8648 ++UpIter; 8649 ++DownIter; 8650 } 8651 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8652 assert(I->getParent() == ScheduleStart->getParent() && 8653 "Instruction is in wrong basic block."); 8654 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8655 ScheduleStart = I; 8656 if (isOneOf(S, I) != I) 8657 CheckScheduleForI(I); 8658 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8659 << "\n"); 8660 return true; 8661 } 8662 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8663 "Expected to reach top of the basic block or instruction down the " 8664 "lower end."); 8665 assert(I->getParent() == ScheduleEnd->getParent() && 8666 "Instruction is in wrong basic block."); 8667 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8668 nullptr); 8669 ScheduleEnd = I->getNextNode(); 8670 if (isOneOf(S, I) != I) 8671 CheckScheduleForI(I); 8672 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8673 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8674 return true; 8675 } 8676 8677 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8678 Instruction *ToI, 8679 ScheduleData *PrevLoadStore, 8680 ScheduleData *NextLoadStore) { 8681 ScheduleData *CurrentLoadStore = PrevLoadStore; 8682 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8683 // No need to allocate data for non-schedulable instructions. 8684 if (doesNotNeedToBeScheduled(I)) 8685 continue; 8686 ScheduleData *SD = ScheduleDataMap.lookup(I); 8687 if (!SD) { 8688 SD = allocateScheduleDataChunks(); 8689 ScheduleDataMap[I] = SD; 8690 SD->Inst = I; 8691 } 8692 assert(!isInSchedulingRegion(SD) && 8693 "new ScheduleData already in scheduling region"); 8694 SD->init(SchedulingRegionID, I); 8695 8696 if (I->mayReadOrWriteMemory() && 8697 (!isa<IntrinsicInst>(I) || 8698 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8699 cast<IntrinsicInst>(I)->getIntrinsicID() != 8700 Intrinsic::pseudoprobe))) { 8701 // Update the linked list of memory accessing instructions. 8702 if (CurrentLoadStore) { 8703 CurrentLoadStore->NextLoadStore = SD; 8704 } else { 8705 FirstLoadStoreInRegion = SD; 8706 } 8707 CurrentLoadStore = SD; 8708 } 8709 8710 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8711 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8712 RegionHasStackSave = true; 8713 } 8714 if (NextLoadStore) { 8715 if (CurrentLoadStore) 8716 CurrentLoadStore->NextLoadStore = NextLoadStore; 8717 } else { 8718 LastLoadStoreInRegion = CurrentLoadStore; 8719 } 8720 } 8721 8722 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8723 bool InsertInReadyList, 8724 BoUpSLP *SLP) { 8725 assert(SD->isSchedulingEntity()); 8726 8727 SmallVector<ScheduleData *, 10> WorkList; 8728 WorkList.push_back(SD); 8729 8730 while (!WorkList.empty()) { 8731 ScheduleData *SD = WorkList.pop_back_val(); 8732 for (ScheduleData *BundleMember = SD; BundleMember; 8733 BundleMember = BundleMember->NextInBundle) { 8734 assert(isInSchedulingRegion(BundleMember)); 8735 if (BundleMember->hasValidDependencies()) 8736 continue; 8737 8738 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8739 << "\n"); 8740 BundleMember->Dependencies = 0; 8741 BundleMember->resetUnscheduledDeps(); 8742 8743 // Handle def-use chain dependencies. 8744 if (BundleMember->OpValue != BundleMember->Inst) { 8745 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8746 BundleMember->Dependencies++; 8747 ScheduleData *DestBundle = UseSD->FirstInBundle; 8748 if (!DestBundle->IsScheduled) 8749 BundleMember->incrementUnscheduledDeps(1); 8750 if (!DestBundle->hasValidDependencies()) 8751 WorkList.push_back(DestBundle); 8752 } 8753 } else { 8754 for (User *U : BundleMember->Inst->users()) { 8755 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8756 BundleMember->Dependencies++; 8757 ScheduleData *DestBundle = UseSD->FirstInBundle; 8758 if (!DestBundle->IsScheduled) 8759 BundleMember->incrementUnscheduledDeps(1); 8760 if (!DestBundle->hasValidDependencies()) 8761 WorkList.push_back(DestBundle); 8762 } 8763 } 8764 } 8765 8766 auto makeControlDependent = [&](Instruction *I) { 8767 auto *DepDest = getScheduleData(I); 8768 assert(DepDest && "must be in schedule window"); 8769 DepDest->ControlDependencies.push_back(BundleMember); 8770 BundleMember->Dependencies++; 8771 ScheduleData *DestBundle = DepDest->FirstInBundle; 8772 if (!DestBundle->IsScheduled) 8773 BundleMember->incrementUnscheduledDeps(1); 8774 if (!DestBundle->hasValidDependencies()) 8775 WorkList.push_back(DestBundle); 8776 }; 8777 8778 // Any instruction which isn't safe to speculate at the begining of the 8779 // block is control dependend on any early exit or non-willreturn call 8780 // which proceeds it. 8781 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8782 for (Instruction *I = BundleMember->Inst->getNextNode(); 8783 I != ScheduleEnd; I = I->getNextNode()) { 8784 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8785 continue; 8786 8787 // Add the dependency 8788 makeControlDependent(I); 8789 8790 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8791 // Everything past here must be control dependent on I. 8792 break; 8793 } 8794 } 8795 8796 if (RegionHasStackSave) { 8797 // If we have an inalloc alloca instruction, it needs to be scheduled 8798 // after any preceeding stacksave. We also need to prevent any alloca 8799 // from reordering above a preceeding stackrestore. 8800 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8801 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8802 for (Instruction *I = BundleMember->Inst->getNextNode(); 8803 I != ScheduleEnd; I = I->getNextNode()) { 8804 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8805 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8806 // Any allocas past here must be control dependent on I, and I 8807 // must be memory dependend on BundleMember->Inst. 8808 break; 8809 8810 if (!isa<AllocaInst>(I)) 8811 continue; 8812 8813 // Add the dependency 8814 makeControlDependent(I); 8815 } 8816 } 8817 8818 // In addition to the cases handle just above, we need to prevent 8819 // allocas from moving below a stacksave. The stackrestore case 8820 // is currently thought to be conservatism. 8821 if (isa<AllocaInst>(BundleMember->Inst)) { 8822 for (Instruction *I = BundleMember->Inst->getNextNode(); 8823 I != ScheduleEnd; I = I->getNextNode()) { 8824 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8825 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8826 continue; 8827 8828 // Add the dependency 8829 makeControlDependent(I); 8830 break; 8831 } 8832 } 8833 } 8834 8835 // Handle the memory dependencies (if any). 8836 ScheduleData *DepDest = BundleMember->NextLoadStore; 8837 if (!DepDest) 8838 continue; 8839 Instruction *SrcInst = BundleMember->Inst; 8840 assert(SrcInst->mayReadOrWriteMemory() && 8841 "NextLoadStore list for non memory effecting bundle?"); 8842 MemoryLocation SrcLoc = getLocation(SrcInst); 8843 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8844 unsigned numAliased = 0; 8845 unsigned DistToSrc = 1; 8846 8847 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8848 assert(isInSchedulingRegion(DepDest)); 8849 8850 // We have two limits to reduce the complexity: 8851 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8852 // SLP->isAliased (which is the expensive part in this loop). 8853 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8854 // the whole loop (even if the loop is fast, it's quadratic). 8855 // It's important for the loop break condition (see below) to 8856 // check this limit even between two read-only instructions. 8857 if (DistToSrc >= MaxMemDepDistance || 8858 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8859 (numAliased >= AliasedCheckLimit || 8860 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8861 8862 // We increment the counter only if the locations are aliased 8863 // (instead of counting all alias checks). This gives a better 8864 // balance between reduced runtime and accurate dependencies. 8865 numAliased++; 8866 8867 DepDest->MemoryDependencies.push_back(BundleMember); 8868 BundleMember->Dependencies++; 8869 ScheduleData *DestBundle = DepDest->FirstInBundle; 8870 if (!DestBundle->IsScheduled) { 8871 BundleMember->incrementUnscheduledDeps(1); 8872 } 8873 if (!DestBundle->hasValidDependencies()) { 8874 WorkList.push_back(DestBundle); 8875 } 8876 } 8877 8878 // Example, explaining the loop break condition: Let's assume our 8879 // starting instruction is i0 and MaxMemDepDistance = 3. 8880 // 8881 // +--------v--v--v 8882 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8883 // +--------^--^--^ 8884 // 8885 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8886 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8887 // Previously we already added dependencies from i3 to i6,i7,i8 8888 // (because of MaxMemDepDistance). As we added a dependency from 8889 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8890 // and we can abort this loop at i6. 8891 if (DistToSrc >= 2 * MaxMemDepDistance) 8892 break; 8893 DistToSrc++; 8894 } 8895 } 8896 if (InsertInReadyList && SD->isReady()) { 8897 ReadyInsts.insert(SD); 8898 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8899 << "\n"); 8900 } 8901 } 8902 } 8903 8904 void BoUpSLP::BlockScheduling::resetSchedule() { 8905 assert(ScheduleStart && 8906 "tried to reset schedule on block which has not been scheduled"); 8907 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8908 doForAllOpcodes(I, [&](ScheduleData *SD) { 8909 assert(isInSchedulingRegion(SD) && 8910 "ScheduleData not in scheduling region"); 8911 SD->IsScheduled = false; 8912 SD->resetUnscheduledDeps(); 8913 }); 8914 } 8915 ReadyInsts.clear(); 8916 } 8917 8918 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8919 if (!BS->ScheduleStart) 8920 return; 8921 8922 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8923 8924 // A key point - if we got here, pre-scheduling was able to find a valid 8925 // scheduling of the sub-graph of the scheduling window which consists 8926 // of all vector bundles and their transitive users. As such, we do not 8927 // need to reschedule anything *outside of* that subgraph. 8928 8929 BS->resetSchedule(); 8930 8931 // For the real scheduling we use a more sophisticated ready-list: it is 8932 // sorted by the original instruction location. This lets the final schedule 8933 // be as close as possible to the original instruction order. 8934 // WARNING: If changing this order causes a correctness issue, that means 8935 // there is some missing dependence edge in the schedule data graph. 8936 struct ScheduleDataCompare { 8937 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8938 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8939 } 8940 }; 8941 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8942 8943 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8944 // and fill the ready-list with initial instructions. 8945 int Idx = 0; 8946 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8947 I = I->getNextNode()) { 8948 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8949 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8950 (void)SDTE; 8951 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8952 SD->isPartOfBundle() == 8953 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8954 "scheduler and vectorizer bundle mismatch"); 8955 SD->FirstInBundle->SchedulingPriority = Idx++; 8956 8957 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8958 BS->calculateDependencies(SD, false, this); 8959 }); 8960 } 8961 BS->initialFillReadyList(ReadyInsts); 8962 8963 Instruction *LastScheduledInst = BS->ScheduleEnd; 8964 8965 // Do the "real" scheduling. 8966 while (!ReadyInsts.empty()) { 8967 ScheduleData *picked = *ReadyInsts.begin(); 8968 ReadyInsts.erase(ReadyInsts.begin()); 8969 8970 // Move the scheduled instruction(s) to their dedicated places, if not 8971 // there yet. 8972 for (ScheduleData *BundleMember = picked; BundleMember; 8973 BundleMember = BundleMember->NextInBundle) { 8974 Instruction *pickedInst = BundleMember->Inst; 8975 if (pickedInst->getNextNode() != LastScheduledInst) 8976 pickedInst->moveBefore(LastScheduledInst); 8977 LastScheduledInst = pickedInst; 8978 } 8979 8980 BS->schedule(picked, ReadyInsts); 8981 } 8982 8983 // Check that we didn't break any of our invariants. 8984 #ifdef EXPENSIVE_CHECKS 8985 BS->verify(); 8986 #endif 8987 8988 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8989 // Check that all schedulable entities got scheduled 8990 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8991 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8992 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8993 assert(SD->IsScheduled && "must be scheduled at this point"); 8994 } 8995 }); 8996 } 8997 #endif 8998 8999 // Avoid duplicate scheduling of the block. 9000 BS->ScheduleStart = nullptr; 9001 } 9002 9003 unsigned BoUpSLP::getVectorElementSize(Value *V) { 9004 // If V is a store, just return the width of the stored value (or value 9005 // truncated just before storing) without traversing the expression tree. 9006 // This is the common case. 9007 if (auto *Store = dyn_cast<StoreInst>(V)) 9008 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 9009 9010 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 9011 return getVectorElementSize(IEI->getOperand(1)); 9012 9013 auto E = InstrElementSize.find(V); 9014 if (E != InstrElementSize.end()) 9015 return E->second; 9016 9017 // If V is not a store, we can traverse the expression tree to find loads 9018 // that feed it. The type of the loaded value may indicate a more suitable 9019 // width than V's type. We want to base the vector element size on the width 9020 // of memory operations where possible. 9021 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 9022 SmallPtrSet<Instruction *, 16> Visited; 9023 if (auto *I = dyn_cast<Instruction>(V)) { 9024 Worklist.emplace_back(I, I->getParent()); 9025 Visited.insert(I); 9026 } 9027 9028 // Traverse the expression tree in bottom-up order looking for loads. If we 9029 // encounter an instruction we don't yet handle, we give up. 9030 auto Width = 0u; 9031 while (!Worklist.empty()) { 9032 Instruction *I; 9033 BasicBlock *Parent; 9034 std::tie(I, Parent) = Worklist.pop_back_val(); 9035 9036 // We should only be looking at scalar instructions here. If the current 9037 // instruction has a vector type, skip. 9038 auto *Ty = I->getType(); 9039 if (isa<VectorType>(Ty)) 9040 continue; 9041 9042 // If the current instruction is a load, update MaxWidth to reflect the 9043 // width of the loaded value. 9044 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 9045 isa<ExtractValueInst>(I)) 9046 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 9047 9048 // Otherwise, we need to visit the operands of the instruction. We only 9049 // handle the interesting cases from buildTree here. If an operand is an 9050 // instruction we haven't yet visited and from the same basic block as the 9051 // user or the use is a PHI node, we add it to the worklist. 9052 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9053 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 9054 isa<UnaryOperator>(I)) { 9055 for (Use &U : I->operands()) 9056 if (auto *J = dyn_cast<Instruction>(U.get())) 9057 if (Visited.insert(J).second && 9058 (isa<PHINode>(I) || J->getParent() == Parent)) 9059 Worklist.emplace_back(J, J->getParent()); 9060 } else { 9061 break; 9062 } 9063 } 9064 9065 // If we didn't encounter a memory access in the expression tree, or if we 9066 // gave up for some reason, just return the width of V. Otherwise, return the 9067 // maximum width we found. 9068 if (!Width) { 9069 if (auto *CI = dyn_cast<CmpInst>(V)) 9070 V = CI->getOperand(0); 9071 Width = DL->getTypeSizeInBits(V->getType()); 9072 } 9073 9074 for (Instruction *I : Visited) 9075 InstrElementSize[I] = Width; 9076 9077 return Width; 9078 } 9079 9080 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9081 // smaller type with a truncation. We collect the values that will be demoted 9082 // in ToDemote and additional roots that require investigating in Roots. 9083 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9084 SmallVectorImpl<Value *> &ToDemote, 9085 SmallVectorImpl<Value *> &Roots) { 9086 // We can always demote constants. 9087 if (isa<Constant>(V)) { 9088 ToDemote.push_back(V); 9089 return true; 9090 } 9091 9092 // If the value is not an instruction in the expression with only one use, it 9093 // cannot be demoted. 9094 auto *I = dyn_cast<Instruction>(V); 9095 if (!I || !I->hasOneUse() || !Expr.count(I)) 9096 return false; 9097 9098 switch (I->getOpcode()) { 9099 9100 // We can always demote truncations and extensions. Since truncations can 9101 // seed additional demotion, we save the truncated value. 9102 case Instruction::Trunc: 9103 Roots.push_back(I->getOperand(0)); 9104 break; 9105 case Instruction::ZExt: 9106 case Instruction::SExt: 9107 if (isa<ExtractElementInst>(I->getOperand(0)) || 9108 isa<InsertElementInst>(I->getOperand(0))) 9109 return false; 9110 break; 9111 9112 // We can demote certain binary operations if we can demote both of their 9113 // operands. 9114 case Instruction::Add: 9115 case Instruction::Sub: 9116 case Instruction::Mul: 9117 case Instruction::And: 9118 case Instruction::Or: 9119 case Instruction::Xor: 9120 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9121 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9122 return false; 9123 break; 9124 9125 // We can demote selects if we can demote their true and false values. 9126 case Instruction::Select: { 9127 SelectInst *SI = cast<SelectInst>(I); 9128 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9129 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9130 return false; 9131 break; 9132 } 9133 9134 // We can demote phis if we can demote all their incoming operands. Note that 9135 // we don't need to worry about cycles since we ensure single use above. 9136 case Instruction::PHI: { 9137 PHINode *PN = cast<PHINode>(I); 9138 for (Value *IncValue : PN->incoming_values()) 9139 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9140 return false; 9141 break; 9142 } 9143 9144 // Otherwise, conservatively give up. 9145 default: 9146 return false; 9147 } 9148 9149 // Record the value that we can demote. 9150 ToDemote.push_back(V); 9151 return true; 9152 } 9153 9154 void BoUpSLP::computeMinimumValueSizes() { 9155 // If there are no external uses, the expression tree must be rooted by a 9156 // store. We can't demote in-memory values, so there is nothing to do here. 9157 if (ExternalUses.empty()) 9158 return; 9159 9160 // We only attempt to truncate integer expressions. 9161 auto &TreeRoot = VectorizableTree[0]->Scalars; 9162 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9163 if (!TreeRootIT) 9164 return; 9165 9166 // If the expression is not rooted by a store, these roots should have 9167 // external uses. We will rely on InstCombine to rewrite the expression in 9168 // the narrower type. However, InstCombine only rewrites single-use values. 9169 // This means that if a tree entry other than a root is used externally, it 9170 // must have multiple uses and InstCombine will not rewrite it. The code 9171 // below ensures that only the roots are used externally. 9172 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9173 for (auto &EU : ExternalUses) 9174 if (!Expr.erase(EU.Scalar)) 9175 return; 9176 if (!Expr.empty()) 9177 return; 9178 9179 // Collect the scalar values of the vectorizable expression. We will use this 9180 // context to determine which values can be demoted. If we see a truncation, 9181 // we mark it as seeding another demotion. 9182 for (auto &EntryPtr : VectorizableTree) 9183 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9184 9185 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9186 // have a single external user that is not in the vectorizable tree. 9187 for (auto *Root : TreeRoot) 9188 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9189 return; 9190 9191 // Conservatively determine if we can actually truncate the roots of the 9192 // expression. Collect the values that can be demoted in ToDemote and 9193 // additional roots that require investigating in Roots. 9194 SmallVector<Value *, 32> ToDemote; 9195 SmallVector<Value *, 4> Roots; 9196 for (auto *Root : TreeRoot) 9197 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9198 return; 9199 9200 // The maximum bit width required to represent all the values that can be 9201 // demoted without loss of precision. It would be safe to truncate the roots 9202 // of the expression to this width. 9203 auto MaxBitWidth = 8u; 9204 9205 // We first check if all the bits of the roots are demanded. If they're not, 9206 // we can truncate the roots to this narrower type. 9207 for (auto *Root : TreeRoot) { 9208 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9209 MaxBitWidth = std::max<unsigned>( 9210 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9211 } 9212 9213 // True if the roots can be zero-extended back to their original type, rather 9214 // than sign-extended. We know that if the leading bits are not demanded, we 9215 // can safely zero-extend. So we initialize IsKnownPositive to True. 9216 bool IsKnownPositive = true; 9217 9218 // If all the bits of the roots are demanded, we can try a little harder to 9219 // compute a narrower type. This can happen, for example, if the roots are 9220 // getelementptr indices. InstCombine promotes these indices to the pointer 9221 // width. Thus, all their bits are technically demanded even though the 9222 // address computation might be vectorized in a smaller type. 9223 // 9224 // We start by looking at each entry that can be demoted. We compute the 9225 // maximum bit width required to store the scalar by using ValueTracking to 9226 // compute the number of high-order bits we can truncate. 9227 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9228 llvm::all_of(TreeRoot, [](Value *R) { 9229 assert(R->hasOneUse() && "Root should have only one use!"); 9230 return isa<GetElementPtrInst>(R->user_back()); 9231 })) { 9232 MaxBitWidth = 8u; 9233 9234 // Determine if the sign bit of all the roots is known to be zero. If not, 9235 // IsKnownPositive is set to False. 9236 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9237 KnownBits Known = computeKnownBits(R, *DL); 9238 return Known.isNonNegative(); 9239 }); 9240 9241 // Determine the maximum number of bits required to store the scalar 9242 // values. 9243 for (auto *Scalar : ToDemote) { 9244 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9245 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9246 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9247 } 9248 9249 // If we can't prove that the sign bit is zero, we must add one to the 9250 // maximum bit width to account for the unknown sign bit. This preserves 9251 // the existing sign bit so we can safely sign-extend the root back to the 9252 // original type. Otherwise, if we know the sign bit is zero, we will 9253 // zero-extend the root instead. 9254 // 9255 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9256 // one to the maximum bit width will yield a larger-than-necessary 9257 // type. In general, we need to add an extra bit only if we can't 9258 // prove that the upper bit of the original type is equal to the 9259 // upper bit of the proposed smaller type. If these two bits are the 9260 // same (either zero or one) we know that sign-extending from the 9261 // smaller type will result in the same value. Here, since we can't 9262 // yet prove this, we are just making the proposed smaller type 9263 // larger to ensure correctness. 9264 if (!IsKnownPositive) 9265 ++MaxBitWidth; 9266 } 9267 9268 // Round MaxBitWidth up to the next power-of-two. 9269 if (!isPowerOf2_64(MaxBitWidth)) 9270 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9271 9272 // If the maximum bit width we compute is less than the with of the roots' 9273 // type, we can proceed with the narrowing. Otherwise, do nothing. 9274 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9275 return; 9276 9277 // If we can truncate the root, we must collect additional values that might 9278 // be demoted as a result. That is, those seeded by truncations we will 9279 // modify. 9280 while (!Roots.empty()) 9281 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9282 9283 // Finally, map the values we can demote to the maximum bit with we computed. 9284 for (auto *Scalar : ToDemote) 9285 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9286 } 9287 9288 namespace { 9289 9290 /// The SLPVectorizer Pass. 9291 struct SLPVectorizer : public FunctionPass { 9292 SLPVectorizerPass Impl; 9293 9294 /// Pass identification, replacement for typeid 9295 static char ID; 9296 9297 explicit SLPVectorizer() : FunctionPass(ID) { 9298 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9299 } 9300 9301 bool doInitialization(Module &M) override { return false; } 9302 9303 bool runOnFunction(Function &F) override { 9304 if (skipFunction(F)) 9305 return false; 9306 9307 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9308 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9309 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9310 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9311 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9312 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9313 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9314 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9315 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9316 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9317 9318 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9319 } 9320 9321 void getAnalysisUsage(AnalysisUsage &AU) const override { 9322 FunctionPass::getAnalysisUsage(AU); 9323 AU.addRequired<AssumptionCacheTracker>(); 9324 AU.addRequired<ScalarEvolutionWrapperPass>(); 9325 AU.addRequired<AAResultsWrapperPass>(); 9326 AU.addRequired<TargetTransformInfoWrapperPass>(); 9327 AU.addRequired<LoopInfoWrapperPass>(); 9328 AU.addRequired<DominatorTreeWrapperPass>(); 9329 AU.addRequired<DemandedBitsWrapperPass>(); 9330 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9331 AU.addRequired<InjectTLIMappingsLegacy>(); 9332 AU.addPreserved<LoopInfoWrapperPass>(); 9333 AU.addPreserved<DominatorTreeWrapperPass>(); 9334 AU.addPreserved<AAResultsWrapperPass>(); 9335 AU.addPreserved<GlobalsAAWrapperPass>(); 9336 AU.setPreservesCFG(); 9337 } 9338 }; 9339 9340 } // end anonymous namespace 9341 9342 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9343 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9344 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9345 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9346 auto *AA = &AM.getResult<AAManager>(F); 9347 auto *LI = &AM.getResult<LoopAnalysis>(F); 9348 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9349 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9350 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9351 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9352 9353 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9354 if (!Changed) 9355 return PreservedAnalyses::all(); 9356 9357 PreservedAnalyses PA; 9358 PA.preserveSet<CFGAnalyses>(); 9359 return PA; 9360 } 9361 9362 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9363 TargetTransformInfo *TTI_, 9364 TargetLibraryInfo *TLI_, AAResults *AA_, 9365 LoopInfo *LI_, DominatorTree *DT_, 9366 AssumptionCache *AC_, DemandedBits *DB_, 9367 OptimizationRemarkEmitter *ORE_) { 9368 if (!RunSLPVectorization) 9369 return false; 9370 SE = SE_; 9371 TTI = TTI_; 9372 TLI = TLI_; 9373 AA = AA_; 9374 LI = LI_; 9375 DT = DT_; 9376 AC = AC_; 9377 DB = DB_; 9378 DL = &F.getParent()->getDataLayout(); 9379 9380 Stores.clear(); 9381 GEPs.clear(); 9382 bool Changed = false; 9383 9384 // If the target claims to have no vector registers don't attempt 9385 // vectorization. 9386 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9387 LLVM_DEBUG( 9388 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9389 return false; 9390 } 9391 9392 // Don't vectorize when the attribute NoImplicitFloat is used. 9393 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9394 return false; 9395 9396 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9397 9398 // Use the bottom up slp vectorizer to construct chains that start with 9399 // store instructions. 9400 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 9401 9402 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 9403 // delete instructions. 9404 9405 // Update DFS numbers now so that we can use them for ordering. 9406 DT->updateDFSNumbers(); 9407 9408 // Scan the blocks in the function in post order. 9409 for (auto BB : post_order(&F.getEntryBlock())) { 9410 // Start new block - clear the list of reduction roots. 9411 R.clearReductionData(); 9412 collectSeedInstructions(BB); 9413 9414 // Vectorize trees that end at stores. 9415 if (!Stores.empty()) { 9416 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 9417 << " underlying objects.\n"); 9418 Changed |= vectorizeStoreChains(R); 9419 } 9420 9421 // Vectorize trees that end at reductions. 9422 Changed |= vectorizeChainsInBlock(BB, R); 9423 9424 // Vectorize the index computations of getelementptr instructions. This 9425 // is primarily intended to catch gather-like idioms ending at 9426 // non-consecutive loads. 9427 if (!GEPs.empty()) { 9428 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 9429 << " underlying objects.\n"); 9430 Changed |= vectorizeGEPIndices(BB, R); 9431 } 9432 } 9433 9434 if (Changed) { 9435 R.optimizeGatherSequence(); 9436 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 9437 } 9438 return Changed; 9439 } 9440 9441 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 9442 unsigned Idx, unsigned MinVF) { 9443 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 9444 << "\n"); 9445 const unsigned Sz = R.getVectorElementSize(Chain[0]); 9446 unsigned VF = Chain.size(); 9447 9448 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 9449 return false; 9450 9451 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 9452 << "\n"); 9453 9454 R.buildTree(Chain); 9455 if (R.isTreeTinyAndNotFullyVectorizable()) 9456 return false; 9457 if (R.isLoadCombineCandidate()) 9458 return false; 9459 R.reorderTopToBottom(); 9460 R.reorderBottomToTop(); 9461 R.buildExternalUses(); 9462 9463 R.computeMinimumValueSizes(); 9464 9465 InstructionCost Cost = R.getTreeCost(); 9466 9467 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 9468 if (Cost < -SLPCostThreshold) { 9469 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 9470 9471 using namespace ore; 9472 9473 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9474 cast<StoreInst>(Chain[0])) 9475 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9476 << " and with tree size " 9477 << NV("TreeSize", R.getTreeSize())); 9478 9479 R.vectorizeTree(); 9480 return true; 9481 } 9482 9483 return false; 9484 } 9485 9486 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9487 BoUpSLP &R) { 9488 // We may run into multiple chains that merge into a single chain. We mark the 9489 // stores that we vectorized so that we don't visit the same store twice. 9490 BoUpSLP::ValueSet VectorizedStores; 9491 bool Changed = false; 9492 9493 int E = Stores.size(); 9494 SmallBitVector Tails(E, false); 9495 int MaxIter = MaxStoreLookup.getValue(); 9496 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9497 E, std::make_pair(E, INT_MAX)); 9498 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9499 int IterCnt; 9500 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9501 &CheckedPairs, 9502 &ConsecutiveChain](int K, int Idx) { 9503 if (IterCnt >= MaxIter) 9504 return true; 9505 if (CheckedPairs[Idx].test(K)) 9506 return ConsecutiveChain[K].second == 1 && 9507 ConsecutiveChain[K].first == Idx; 9508 ++IterCnt; 9509 CheckedPairs[Idx].set(K); 9510 CheckedPairs[K].set(Idx); 9511 Optional<int> Diff = getPointersDiff( 9512 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9513 Stores[Idx]->getValueOperand()->getType(), 9514 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9515 if (!Diff || *Diff == 0) 9516 return false; 9517 int Val = *Diff; 9518 if (Val < 0) { 9519 if (ConsecutiveChain[Idx].second > -Val) { 9520 Tails.set(K); 9521 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9522 } 9523 return false; 9524 } 9525 if (ConsecutiveChain[K].second <= Val) 9526 return false; 9527 9528 Tails.set(Idx); 9529 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9530 return Val == 1; 9531 }; 9532 // Do a quadratic search on all of the given stores in reverse order and find 9533 // all of the pairs of stores that follow each other. 9534 for (int Idx = E - 1; Idx >= 0; --Idx) { 9535 // If a store has multiple consecutive store candidates, search according 9536 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9537 // This is because usually pairing with immediate succeeding or preceding 9538 // candidate create the best chance to find slp vectorization opportunity. 9539 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9540 IterCnt = 0; 9541 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9542 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9543 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9544 break; 9545 } 9546 9547 // Tracks if we tried to vectorize stores starting from the given tail 9548 // already. 9549 SmallBitVector TriedTails(E, false); 9550 // For stores that start but don't end a link in the chain: 9551 for (int Cnt = E; Cnt > 0; --Cnt) { 9552 int I = Cnt - 1; 9553 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9554 continue; 9555 // We found a store instr that starts a chain. Now follow the chain and try 9556 // to vectorize it. 9557 BoUpSLP::ValueList Operands; 9558 // Collect the chain into a list. 9559 while (I != E && !VectorizedStores.count(Stores[I])) { 9560 Operands.push_back(Stores[I]); 9561 Tails.set(I); 9562 if (ConsecutiveChain[I].second != 1) { 9563 // Mark the new end in the chain and go back, if required. It might be 9564 // required if the original stores come in reversed order, for example. 9565 if (ConsecutiveChain[I].first != E && 9566 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9567 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9568 TriedTails.set(I); 9569 Tails.reset(ConsecutiveChain[I].first); 9570 if (Cnt < ConsecutiveChain[I].first + 2) 9571 Cnt = ConsecutiveChain[I].first + 2; 9572 } 9573 break; 9574 } 9575 // Move to the next value in the chain. 9576 I = ConsecutiveChain[I].first; 9577 } 9578 assert(!Operands.empty() && "Expected non-empty list of stores."); 9579 9580 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9581 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9582 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9583 9584 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9585 MaxElts); 9586 auto *Store = cast<StoreInst>(Operands[0]); 9587 Type *StoreTy = Store->getValueOperand()->getType(); 9588 Type *ValueTy = StoreTy; 9589 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 9590 ValueTy = Trunc->getSrcTy(); 9591 unsigned MinVF = TTI->getStoreMinimumVF( 9592 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 9593 9594 // FIXME: Is division-by-2 the correct step? Should we assert that the 9595 // register size is a power-of-2? 9596 unsigned StartIdx = 0; 9597 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9598 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9599 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9600 if (!VectorizedStores.count(Slice.front()) && 9601 !VectorizedStores.count(Slice.back()) && 9602 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 9603 // Mark the vectorized stores so that we don't vectorize them again. 9604 VectorizedStores.insert(Slice.begin(), Slice.end()); 9605 Changed = true; 9606 // If we vectorized initial block, no need to try to vectorize it 9607 // again. 9608 if (Cnt == StartIdx) 9609 StartIdx += Size; 9610 Cnt += Size; 9611 continue; 9612 } 9613 ++Cnt; 9614 } 9615 // Check if the whole array was vectorized already - exit. 9616 if (StartIdx >= Operands.size()) 9617 break; 9618 } 9619 } 9620 9621 return Changed; 9622 } 9623 9624 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9625 // Initialize the collections. We will make a single pass over the block. 9626 Stores.clear(); 9627 GEPs.clear(); 9628 9629 // Visit the store and getelementptr instructions in BB and organize them in 9630 // Stores and GEPs according to the underlying objects of their pointer 9631 // operands. 9632 for (Instruction &I : *BB) { 9633 // Ignore store instructions that are volatile or have a pointer operand 9634 // that doesn't point to a scalar type. 9635 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9636 if (!SI->isSimple()) 9637 continue; 9638 if (!isValidElementType(SI->getValueOperand()->getType())) 9639 continue; 9640 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9641 } 9642 9643 // Ignore getelementptr instructions that have more than one index, a 9644 // constant index, or a pointer operand that doesn't point to a scalar 9645 // type. 9646 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9647 auto Idx = GEP->idx_begin()->get(); 9648 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9649 continue; 9650 if (!isValidElementType(Idx->getType())) 9651 continue; 9652 if (GEP->getType()->isVectorTy()) 9653 continue; 9654 GEPs[GEP->getPointerOperand()].push_back(GEP); 9655 } 9656 } 9657 } 9658 9659 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9660 if (!A || !B) 9661 return false; 9662 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9663 return false; 9664 Value *VL[] = {A, B}; 9665 return tryToVectorizeList(VL, R); 9666 } 9667 9668 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9669 bool LimitForRegisterSize) { 9670 if (VL.size() < 2) 9671 return false; 9672 9673 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9674 << VL.size() << ".\n"); 9675 9676 // Check that all of the parts are instructions of the same type, 9677 // we permit an alternate opcode via InstructionsState. 9678 InstructionsState S = getSameOpcode(VL); 9679 if (!S.getOpcode()) 9680 return false; 9681 9682 Instruction *I0 = cast<Instruction>(S.OpValue); 9683 // Make sure invalid types (including vector type) are rejected before 9684 // determining vectorization factor for scalar instructions. 9685 for (Value *V : VL) { 9686 Type *Ty = V->getType(); 9687 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9688 // NOTE: the following will give user internal llvm type name, which may 9689 // not be useful. 9690 R.getORE()->emit([&]() { 9691 std::string type_str; 9692 llvm::raw_string_ostream rso(type_str); 9693 Ty->print(rso); 9694 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9695 << "Cannot SLP vectorize list: type " 9696 << rso.str() + " is unsupported by vectorizer"; 9697 }); 9698 return false; 9699 } 9700 } 9701 9702 unsigned Sz = R.getVectorElementSize(I0); 9703 unsigned MinVF = R.getMinVF(Sz); 9704 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9705 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9706 if (MaxVF < 2) { 9707 R.getORE()->emit([&]() { 9708 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9709 << "Cannot SLP vectorize list: vectorization factor " 9710 << "less than 2 is not supported"; 9711 }); 9712 return false; 9713 } 9714 9715 bool Changed = false; 9716 bool CandidateFound = false; 9717 InstructionCost MinCost = SLPCostThreshold.getValue(); 9718 Type *ScalarTy = VL[0]->getType(); 9719 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9720 ScalarTy = IE->getOperand(1)->getType(); 9721 9722 unsigned NextInst = 0, MaxInst = VL.size(); 9723 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9724 // No actual vectorization should happen, if number of parts is the same as 9725 // provided vectorization factor (i.e. the scalar type is used for vector 9726 // code during codegen). 9727 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9728 if (TTI->getNumberOfParts(VecTy) == VF) 9729 continue; 9730 for (unsigned I = NextInst; I < MaxInst; ++I) { 9731 unsigned OpsWidth = 0; 9732 9733 if (I + VF > MaxInst) 9734 OpsWidth = MaxInst - I; 9735 else 9736 OpsWidth = VF; 9737 9738 if (!isPowerOf2_32(OpsWidth)) 9739 continue; 9740 9741 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9742 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9743 break; 9744 9745 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9746 // Check that a previous iteration of this loop did not delete the Value. 9747 if (llvm::any_of(Ops, [&R](Value *V) { 9748 auto *I = dyn_cast<Instruction>(V); 9749 return I && R.isDeleted(I); 9750 })) 9751 continue; 9752 9753 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9754 << "\n"); 9755 9756 R.buildTree(Ops); 9757 if (R.isTreeTinyAndNotFullyVectorizable()) 9758 continue; 9759 R.reorderTopToBottom(); 9760 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9761 R.buildExternalUses(); 9762 9763 R.computeMinimumValueSizes(); 9764 InstructionCost Cost = R.getTreeCost(); 9765 CandidateFound = true; 9766 MinCost = std::min(MinCost, Cost); 9767 9768 if (Cost < -SLPCostThreshold) { 9769 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9770 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9771 cast<Instruction>(Ops[0])) 9772 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9773 << " and with tree size " 9774 << ore::NV("TreeSize", R.getTreeSize())); 9775 9776 R.vectorizeTree(); 9777 // Move to the next bundle. 9778 I += VF - 1; 9779 NextInst = I + 1; 9780 Changed = true; 9781 } 9782 } 9783 } 9784 9785 if (!Changed && CandidateFound) { 9786 R.getORE()->emit([&]() { 9787 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9788 << "List vectorization was possible but not beneficial with cost " 9789 << ore::NV("Cost", MinCost) << " >= " 9790 << ore::NV("Treshold", -SLPCostThreshold); 9791 }); 9792 } else if (!Changed) { 9793 R.getORE()->emit([&]() { 9794 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9795 << "Cannot SLP vectorize list: vectorization was impossible" 9796 << " with available vectorization factors"; 9797 }); 9798 } 9799 return Changed; 9800 } 9801 9802 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9803 if (!I) 9804 return false; 9805 9806 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 9807 isa<VectorType>(I->getType())) 9808 return false; 9809 9810 Value *P = I->getParent(); 9811 9812 // Vectorize in current basic block only. 9813 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9814 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9815 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9816 return false; 9817 9818 // First collect all possible candidates 9819 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 9820 Candidates.emplace_back(Op0, Op1); 9821 9822 auto *A = dyn_cast<BinaryOperator>(Op0); 9823 auto *B = dyn_cast<BinaryOperator>(Op1); 9824 // Try to skip B. 9825 if (A && B && B->hasOneUse()) { 9826 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9827 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9828 if (B0 && B0->getParent() == P) 9829 Candidates.emplace_back(A, B0); 9830 if (B1 && B1->getParent() == P) 9831 Candidates.emplace_back(A, B1); 9832 } 9833 // Try to skip A. 9834 if (B && A && A->hasOneUse()) { 9835 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9836 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9837 if (A0 && A0->getParent() == P) 9838 Candidates.emplace_back(A0, B); 9839 if (A1 && A1->getParent() == P) 9840 Candidates.emplace_back(A1, B); 9841 } 9842 9843 if (Candidates.size() == 1) 9844 return tryToVectorizePair(Op0, Op1, R); 9845 9846 // We have multiple options. Try to pick the single best. 9847 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 9848 if (!BestCandidate) 9849 return false; 9850 return tryToVectorizePair(Candidates[*BestCandidate].first, 9851 Candidates[*BestCandidate].second, R); 9852 } 9853 9854 namespace { 9855 9856 /// Model horizontal reductions. 9857 /// 9858 /// A horizontal reduction is a tree of reduction instructions that has values 9859 /// that can be put into a vector as its leaves. For example: 9860 /// 9861 /// mul mul mul mul 9862 /// \ / \ / 9863 /// + + 9864 /// \ / 9865 /// + 9866 /// This tree has "mul" as its leaf values and "+" as its reduction 9867 /// instructions. A reduction can feed into a store or a binary operation 9868 /// feeding a phi. 9869 /// ... 9870 /// \ / 9871 /// + 9872 /// | 9873 /// phi += 9874 /// 9875 /// Or: 9876 /// ... 9877 /// \ / 9878 /// + 9879 /// | 9880 /// *p = 9881 /// 9882 class HorizontalReduction { 9883 using ReductionOpsType = SmallVector<Value *, 16>; 9884 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9885 ReductionOpsListType ReductionOps; 9886 /// List of possibly reduced values. 9887 SmallVector<SmallVector<Value *>> ReducedVals; 9888 /// Maps reduced value to the corresponding reduction operation. 9889 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 9890 // Use map vector to make stable output. 9891 MapVector<Instruction *, Value *> ExtraArgs; 9892 WeakTrackingVH ReductionRoot; 9893 /// The type of reduction operation. 9894 RecurKind RdxKind; 9895 9896 static bool isCmpSelMinMax(Instruction *I) { 9897 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9898 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9899 } 9900 9901 // And/or are potentially poison-safe logical patterns like: 9902 // select x, y, false 9903 // select x, true, y 9904 static bool isBoolLogicOp(Instruction *I) { 9905 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9906 match(I, m_LogicalOr(m_Value(), m_Value())); 9907 } 9908 9909 /// Checks if instruction is associative and can be vectorized. 9910 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9911 if (Kind == RecurKind::None) 9912 return false; 9913 9914 // Integer ops that map to select instructions or intrinsics are fine. 9915 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9916 isBoolLogicOp(I)) 9917 return true; 9918 9919 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9920 // FP min/max are associative except for NaN and -0.0. We do not 9921 // have to rule out -0.0 here because the intrinsic semantics do not 9922 // specify a fixed result for it. 9923 return I->getFastMathFlags().noNaNs(); 9924 } 9925 9926 return I->isAssociative(); 9927 } 9928 9929 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9930 // Poison-safe 'or' takes the form: select X, true, Y 9931 // To make that work with the normal operand processing, we skip the 9932 // true value operand. 9933 // TODO: Change the code and data structures to handle this without a hack. 9934 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9935 return I->getOperand(2); 9936 return I->getOperand(Index); 9937 } 9938 9939 /// Creates reduction operation with the current opcode. 9940 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9941 Value *RHS, const Twine &Name, bool UseSelect) { 9942 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9943 switch (Kind) { 9944 case RecurKind::Or: 9945 if (UseSelect && 9946 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9947 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9948 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9949 Name); 9950 case RecurKind::And: 9951 if (UseSelect && 9952 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9953 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9954 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9955 Name); 9956 case RecurKind::Add: 9957 case RecurKind::Mul: 9958 case RecurKind::Xor: 9959 case RecurKind::FAdd: 9960 case RecurKind::FMul: 9961 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9962 Name); 9963 case RecurKind::FMax: 9964 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9965 case RecurKind::FMin: 9966 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9967 case RecurKind::SMax: 9968 if (UseSelect) { 9969 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9970 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9971 } 9972 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9973 case RecurKind::SMin: 9974 if (UseSelect) { 9975 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9976 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9977 } 9978 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9979 case RecurKind::UMax: 9980 if (UseSelect) { 9981 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9982 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9983 } 9984 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9985 case RecurKind::UMin: 9986 if (UseSelect) { 9987 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9988 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9989 } 9990 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9991 default: 9992 llvm_unreachable("Unknown reduction operation."); 9993 } 9994 } 9995 9996 /// Creates reduction operation with the current opcode with the IR flags 9997 /// from \p ReductionOps. 9998 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9999 Value *RHS, const Twine &Name, 10000 const ReductionOpsListType &ReductionOps) { 10001 bool UseSelect = ReductionOps.size() == 2 || 10002 // Logical or/and. 10003 (ReductionOps.size() == 1 && 10004 isa<SelectInst>(ReductionOps.front().front())); 10005 assert((!UseSelect || ReductionOps.size() != 2 || 10006 isa<SelectInst>(ReductionOps[1][0])) && 10007 "Expected cmp + select pairs for reduction"); 10008 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 10009 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10010 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 10011 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 10012 propagateIRFlags(Op, ReductionOps[1]); 10013 return Op; 10014 } 10015 } 10016 propagateIRFlags(Op, ReductionOps[0]); 10017 return Op; 10018 } 10019 10020 /// Creates reduction operation with the current opcode with the IR flags 10021 /// from \p I. 10022 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10023 Value *RHS, const Twine &Name, Value *I) { 10024 auto *SelI = dyn_cast<SelectInst>(I); 10025 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 10026 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10027 if (auto *Sel = dyn_cast<SelectInst>(Op)) 10028 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 10029 } 10030 propagateIRFlags(Op, I); 10031 return Op; 10032 } 10033 10034 static RecurKind getRdxKind(Value *V) { 10035 auto *I = dyn_cast<Instruction>(V); 10036 if (!I) 10037 return RecurKind::None; 10038 if (match(I, m_Add(m_Value(), m_Value()))) 10039 return RecurKind::Add; 10040 if (match(I, m_Mul(m_Value(), m_Value()))) 10041 return RecurKind::Mul; 10042 if (match(I, m_And(m_Value(), m_Value())) || 10043 match(I, m_LogicalAnd(m_Value(), m_Value()))) 10044 return RecurKind::And; 10045 if (match(I, m_Or(m_Value(), m_Value())) || 10046 match(I, m_LogicalOr(m_Value(), m_Value()))) 10047 return RecurKind::Or; 10048 if (match(I, m_Xor(m_Value(), m_Value()))) 10049 return RecurKind::Xor; 10050 if (match(I, m_FAdd(m_Value(), m_Value()))) 10051 return RecurKind::FAdd; 10052 if (match(I, m_FMul(m_Value(), m_Value()))) 10053 return RecurKind::FMul; 10054 10055 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 10056 return RecurKind::FMax; 10057 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 10058 return RecurKind::FMin; 10059 10060 // This matches either cmp+select or intrinsics. SLP is expected to handle 10061 // either form. 10062 // TODO: If we are canonicalizing to intrinsics, we can remove several 10063 // special-case paths that deal with selects. 10064 if (match(I, m_SMax(m_Value(), m_Value()))) 10065 return RecurKind::SMax; 10066 if (match(I, m_SMin(m_Value(), m_Value()))) 10067 return RecurKind::SMin; 10068 if (match(I, m_UMax(m_Value(), m_Value()))) 10069 return RecurKind::UMax; 10070 if (match(I, m_UMin(m_Value(), m_Value()))) 10071 return RecurKind::UMin; 10072 10073 if (auto *Select = dyn_cast<SelectInst>(I)) { 10074 // Try harder: look for min/max pattern based on instructions producing 10075 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10076 // During the intermediate stages of SLP, it's very common to have 10077 // pattern like this (since optimizeGatherSequence is run only once 10078 // at the end): 10079 // %1 = extractelement <2 x i32> %a, i32 0 10080 // %2 = extractelement <2 x i32> %a, i32 1 10081 // %cond = icmp sgt i32 %1, %2 10082 // %3 = extractelement <2 x i32> %a, i32 0 10083 // %4 = extractelement <2 x i32> %a, i32 1 10084 // %select = select i1 %cond, i32 %3, i32 %4 10085 CmpInst::Predicate Pred; 10086 Instruction *L1; 10087 Instruction *L2; 10088 10089 Value *LHS = Select->getTrueValue(); 10090 Value *RHS = Select->getFalseValue(); 10091 Value *Cond = Select->getCondition(); 10092 10093 // TODO: Support inverse predicates. 10094 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10095 if (!isa<ExtractElementInst>(RHS) || 10096 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10097 return RecurKind::None; 10098 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10099 if (!isa<ExtractElementInst>(LHS) || 10100 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10101 return RecurKind::None; 10102 } else { 10103 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10104 return RecurKind::None; 10105 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10106 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10107 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10108 return RecurKind::None; 10109 } 10110 10111 switch (Pred) { 10112 default: 10113 return RecurKind::None; 10114 case CmpInst::ICMP_SGT: 10115 case CmpInst::ICMP_SGE: 10116 return RecurKind::SMax; 10117 case CmpInst::ICMP_SLT: 10118 case CmpInst::ICMP_SLE: 10119 return RecurKind::SMin; 10120 case CmpInst::ICMP_UGT: 10121 case CmpInst::ICMP_UGE: 10122 return RecurKind::UMax; 10123 case CmpInst::ICMP_ULT: 10124 case CmpInst::ICMP_ULE: 10125 return RecurKind::UMin; 10126 } 10127 } 10128 return RecurKind::None; 10129 } 10130 10131 /// Get the index of the first operand. 10132 static unsigned getFirstOperandIndex(Instruction *I) { 10133 return isCmpSelMinMax(I) ? 1 : 0; 10134 } 10135 10136 /// Total number of operands in the reduction operation. 10137 static unsigned getNumberOfOperands(Instruction *I) { 10138 return isCmpSelMinMax(I) ? 3 : 2; 10139 } 10140 10141 /// Checks if the instruction is in basic block \p BB. 10142 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10143 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10144 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10145 auto *Sel = cast<SelectInst>(I); 10146 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10147 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10148 } 10149 return I->getParent() == BB; 10150 } 10151 10152 /// Expected number of uses for reduction operations/reduced values. 10153 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10154 if (IsCmpSelMinMax) { 10155 // SelectInst must be used twice while the condition op must have single 10156 // use only. 10157 if (auto *Sel = dyn_cast<SelectInst>(I)) 10158 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10159 return I->hasNUses(2); 10160 } 10161 10162 // Arithmetic reduction operation must be used once only. 10163 return I->hasOneUse(); 10164 } 10165 10166 /// Initializes the list of reduction operations. 10167 void initReductionOps(Instruction *I) { 10168 if (isCmpSelMinMax(I)) 10169 ReductionOps.assign(2, ReductionOpsType()); 10170 else 10171 ReductionOps.assign(1, ReductionOpsType()); 10172 } 10173 10174 /// Add all reduction operations for the reduction instruction \p I. 10175 void addReductionOps(Instruction *I) { 10176 if (isCmpSelMinMax(I)) { 10177 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10178 ReductionOps[1].emplace_back(I); 10179 } else { 10180 ReductionOps[0].emplace_back(I); 10181 } 10182 } 10183 10184 static Value *getLHS(RecurKind Kind, Instruction *I) { 10185 if (Kind == RecurKind::None) 10186 return nullptr; 10187 return I->getOperand(getFirstOperandIndex(I)); 10188 } 10189 static Value *getRHS(RecurKind Kind, Instruction *I) { 10190 if (Kind == RecurKind::None) 10191 return nullptr; 10192 return I->getOperand(getFirstOperandIndex(I) + 1); 10193 } 10194 10195 public: 10196 HorizontalReduction() = default; 10197 10198 /// Try to find a reduction tree. 10199 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10200 ScalarEvolution &SE, const DataLayout &DL, 10201 const TargetLibraryInfo &TLI) { 10202 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10203 "Phi needs to use the binary operator"); 10204 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10205 isa<IntrinsicInst>(Inst)) && 10206 "Expected binop, select, or intrinsic for reduction matching"); 10207 RdxKind = getRdxKind(Inst); 10208 10209 // We could have a initial reductions that is not an add. 10210 // r *= v1 + v2 + v3 + v4 10211 // In such a case start looking for a tree rooted in the first '+'. 10212 if (Phi) { 10213 if (getLHS(RdxKind, Inst) == Phi) { 10214 Phi = nullptr; 10215 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10216 if (!Inst) 10217 return false; 10218 RdxKind = getRdxKind(Inst); 10219 } else if (getRHS(RdxKind, Inst) == Phi) { 10220 Phi = nullptr; 10221 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10222 if (!Inst) 10223 return false; 10224 RdxKind = getRdxKind(Inst); 10225 } 10226 } 10227 10228 if (!isVectorizable(RdxKind, Inst)) 10229 return false; 10230 10231 // Analyze "regular" integer/FP types for reductions - no target-specific 10232 // types or pointers. 10233 Type *Ty = Inst->getType(); 10234 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10235 return false; 10236 10237 // Though the ultimate reduction may have multiple uses, its condition must 10238 // have only single use. 10239 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10240 if (!Sel->getCondition()->hasOneUse()) 10241 return false; 10242 10243 ReductionRoot = Inst; 10244 10245 // Iterate through all the operands of the possible reduction tree and 10246 // gather all the reduced values, sorting them by their value id. 10247 BasicBlock *BB = Inst->getParent(); 10248 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10249 SmallVector<Instruction *> Worklist(1, Inst); 10250 // Checks if the operands of the \p TreeN instruction are also reduction 10251 // operations or should be treated as reduced values or an extra argument, 10252 // which is not part of the reduction. 10253 auto &&CheckOperands = [this, IsCmpSelMinMax, 10254 BB](Instruction *TreeN, 10255 SmallVectorImpl<Value *> &ExtraArgs, 10256 SmallVectorImpl<Value *> &PossibleReducedVals, 10257 SmallVectorImpl<Instruction *> &ReductionOps) { 10258 for (int I = getFirstOperandIndex(TreeN), 10259 End = getNumberOfOperands(TreeN); 10260 I < End; ++I) { 10261 Value *EdgeVal = getRdxOperand(TreeN, I); 10262 ReducedValsToOps[EdgeVal].push_back(TreeN); 10263 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10264 // Edge has wrong parent - mark as an extra argument. 10265 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10266 !hasSameParent(EdgeInst, BB)) { 10267 ExtraArgs.push_back(EdgeVal); 10268 continue; 10269 } 10270 // If the edge is not an instruction, or it is different from the main 10271 // reduction opcode or has too many uses - possible reduced value. 10272 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10273 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 10274 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10275 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10276 PossibleReducedVals.push_back(EdgeVal); 10277 continue; 10278 } 10279 ReductionOps.push_back(EdgeInst); 10280 } 10281 }; 10282 // Try to regroup reduced values so that it gets more profitable to try to 10283 // reduce them. Values are grouped by their value ids, instructions - by 10284 // instruction op id and/or alternate op id, plus do extra analysis for 10285 // loads (grouping them by the distabce between pointers) and cmp 10286 // instructions (grouping them by the predicate). 10287 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10288 PossibleReducedVals; 10289 initReductionOps(Inst); 10290 while (!Worklist.empty()) { 10291 Instruction *TreeN = Worklist.pop_back_val(); 10292 SmallVector<Value *> Args; 10293 SmallVector<Value *> PossibleRedVals; 10294 SmallVector<Instruction *> PossibleReductionOps; 10295 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10296 // If too many extra args - mark the instruction itself as a reduction 10297 // value, not a reduction operation. 10298 if (Args.size() < 2) { 10299 addReductionOps(TreeN); 10300 // Add extra args. 10301 if (!Args.empty()) { 10302 assert(Args.size() == 1 && "Expected only single argument."); 10303 ExtraArgs[TreeN] = Args.front(); 10304 } 10305 // Add reduction values. The values are sorted for better vectorization 10306 // results. 10307 for (Value *V : PossibleRedVals) { 10308 size_t Key, Idx; 10309 std::tie(Key, Idx) = generateKeySubkey( 10310 V, &TLI, 10311 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10312 for (const auto &LoadData : PossibleReducedVals[Key]) { 10313 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10314 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10315 LI->getType(), LI->getPointerOperand(), 10316 DL, SE, /*StrictCheck=*/true)) 10317 return hash_value(RLI->getPointerOperand()); 10318 } 10319 return hash_value(LI->getPointerOperand()); 10320 }, 10321 /*AllowAlternate=*/false); 10322 ++PossibleReducedVals[Key][Idx] 10323 .insert(std::make_pair(V, 0)) 10324 .first->second; 10325 } 10326 Worklist.append(PossibleReductionOps.rbegin(), 10327 PossibleReductionOps.rend()); 10328 } else { 10329 size_t Key, Idx; 10330 std::tie(Key, Idx) = generateKeySubkey( 10331 TreeN, &TLI, 10332 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10333 for (const auto &LoadData : PossibleReducedVals[Key]) { 10334 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10335 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10336 LI->getType(), LI->getPointerOperand(), DL, 10337 SE, /*StrictCheck=*/true)) 10338 return hash_value(RLI->getPointerOperand()); 10339 } 10340 return hash_value(LI->getPointerOperand()); 10341 }, 10342 /*AllowAlternate=*/false); 10343 ++PossibleReducedVals[Key][Idx] 10344 .insert(std::make_pair(TreeN, 0)) 10345 .first->second; 10346 } 10347 } 10348 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10349 // Sort values by the total number of values kinds to start the reduction 10350 // from the longest possible reduced values sequences. 10351 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10352 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10353 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10354 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10355 It != E; ++It) { 10356 PossibleRedValsVect.emplace_back(); 10357 auto RedValsVect = It->second.takeVector(); 10358 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10359 return P1.second < P2.second; 10360 }); 10361 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10362 PossibleRedValsVect.back().append(Data.second, Data.first); 10363 } 10364 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10365 return P1.size() > P2.size(); 10366 }); 10367 ReducedVals.emplace_back(); 10368 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10369 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10370 } 10371 // Sort the reduced values by number of same/alternate opcode and/or pointer 10372 // operand. 10373 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10374 return P1.size() > P2.size(); 10375 }); 10376 return true; 10377 } 10378 10379 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10380 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10381 constexpr int ReductionLimit = 4; 10382 // If there are a sufficient number of reduction values, reduce 10383 // to a nearby power-of-2. We can safely generate oversized 10384 // vectors and rely on the backend to split them to legal sizes. 10385 unsigned NumReducedVals = std::accumulate( 10386 ReducedVals.begin(), ReducedVals.end(), 0, 10387 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10388 if (NumReducedVals < ReductionLimit) 10389 return nullptr; 10390 10391 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10392 10393 // Track the reduced values in case if they are replaced by extractelement 10394 // because of the vectorization. 10395 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10396 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10397 // The same extra argument may be used several times, so log each attempt 10398 // to use it. 10399 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10400 assert(Pair.first && "DebugLoc must be set."); 10401 ExternallyUsedValues[Pair.second].push_back(Pair.first); 10402 TrackedVals.try_emplace(Pair.second, Pair.second); 10403 } 10404 10405 // The compare instruction of a min/max is the insertion point for new 10406 // instructions and may be replaced with a new compare instruction. 10407 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 10408 assert(isa<SelectInst>(RdxRootInst) && 10409 "Expected min/max reduction to have select root instruction"); 10410 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 10411 assert(isa<Instruction>(ScalarCond) && 10412 "Expected min/max reduction to have compare condition"); 10413 return cast<Instruction>(ScalarCond); 10414 }; 10415 10416 // The reduction root is used as the insertion point for new instructions, 10417 // so set it as externally used to prevent it from being deleted. 10418 ExternallyUsedValues[ReductionRoot]; 10419 SmallVector<Value *> IgnoreList; 10420 for (ReductionOpsType &RdxOps : ReductionOps) 10421 for (Value *RdxOp : RdxOps) { 10422 if (!RdxOp) 10423 continue; 10424 IgnoreList.push_back(RdxOp); 10425 } 10426 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 10427 10428 // Need to track reduced vals, they may be changed during vectorization of 10429 // subvectors. 10430 for (ArrayRef<Value *> Candidates : ReducedVals) 10431 for (Value *V : Candidates) 10432 TrackedVals.try_emplace(V, V); 10433 10434 DenseMap<Value *, unsigned> VectorizedVals; 10435 Value *VectorizedTree = nullptr; 10436 bool CheckForReusedReductionOps = false; 10437 // Try to vectorize elements based on their type. 10438 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10439 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 10440 InstructionsState S = getSameOpcode(OrigReducedVals); 10441 SmallVector<Value *> Candidates; 10442 DenseMap<Value *, Value *> TrackedToOrig; 10443 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 10444 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 10445 // Check if the reduction value was not overriden by the extractelement 10446 // instruction because of the vectorization and exclude it, if it is not 10447 // compatible with other values. 10448 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10449 if (isVectorLikeInstWithConstOps(Inst) && 10450 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 10451 continue; 10452 Candidates.push_back(RdxVal); 10453 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 10454 } 10455 bool ShuffledExtracts = false; 10456 // Try to handle shuffled extractelements. 10457 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 10458 I + 1 < E) { 10459 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 10460 if (NextS.getOpcode() == Instruction::ExtractElement && 10461 !NextS.isAltShuffle()) { 10462 SmallVector<Value *> CommonCandidates(Candidates); 10463 for (Value *RV : ReducedVals[I + 1]) { 10464 Value *RdxVal = TrackedVals.find(RV)->second; 10465 // Check if the reduction value was not overriden by the 10466 // extractelement instruction because of the vectorization and 10467 // exclude it, if it is not compatible with other values. 10468 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10469 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 10470 continue; 10471 CommonCandidates.push_back(RdxVal); 10472 TrackedToOrig.try_emplace(RdxVal, RV); 10473 } 10474 SmallVector<int> Mask; 10475 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 10476 ++I; 10477 Candidates.swap(CommonCandidates); 10478 ShuffledExtracts = true; 10479 } 10480 } 10481 } 10482 unsigned NumReducedVals = Candidates.size(); 10483 if (NumReducedVals < ReductionLimit) 10484 continue; 10485 10486 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 10487 unsigned Start = 0; 10488 unsigned Pos = Start; 10489 // Restarts vectorization attempt with lower vector factor. 10490 unsigned PrevReduxWidth = ReduxWidth; 10491 bool CheckForReusedReductionOpsLocal = false; 10492 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10493 &CheckForReusedReductionOpsLocal, 10494 &PrevReduxWidth, &V, 10495 &IgnoreList](bool IgnoreVL = false) { 10496 bool IsAnyRedOpGathered = 10497 !IgnoreVL && any_of(IgnoreList, [&V](Value *RedOp) { 10498 return V.isGathered(RedOp); 10499 }); 10500 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10501 // Check if any of the reduction ops are gathered. If so, worth 10502 // trying again with less number of reduction ops. 10503 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10504 } 10505 ++Pos; 10506 if (Pos < NumReducedVals - ReduxWidth + 1) 10507 return IsAnyRedOpGathered; 10508 Pos = Start; 10509 ReduxWidth /= 2; 10510 return IsAnyRedOpGathered; 10511 }; 10512 while (Pos < NumReducedVals - ReduxWidth + 1 && 10513 ReduxWidth >= ReductionLimit) { 10514 // Dependency in tree of the reduction ops - drop this attempt, try 10515 // later. 10516 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10517 Start == 0) { 10518 CheckForReusedReductionOps = true; 10519 break; 10520 } 10521 PrevReduxWidth = ReduxWidth; 10522 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10523 // Beeing analyzed already - skip. 10524 if (V.areAnalyzedReductionVals(VL)) { 10525 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10526 continue; 10527 } 10528 // Early exit if any of the reduction values were deleted during 10529 // previous vectorization attempts. 10530 if (any_of(VL, [&V](Value *RedVal) { 10531 auto *RedValI = dyn_cast<Instruction>(RedVal); 10532 if (!RedValI) 10533 return false; 10534 return V.isDeleted(RedValI); 10535 })) 10536 break; 10537 V.buildTree(VL, IgnoreList); 10538 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10539 if (!AdjustReducedVals()) 10540 V.analyzedReductionVals(VL); 10541 continue; 10542 } 10543 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10544 if (!AdjustReducedVals()) 10545 V.analyzedReductionVals(VL); 10546 continue; 10547 } 10548 V.reorderTopToBottom(); 10549 // No need to reorder the root node at all. 10550 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10551 // Keep extracted other reduction values, if they are used in the 10552 // vectorization trees. 10553 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10554 ExternallyUsedValues); 10555 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10556 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10557 continue; 10558 for_each(ReducedVals[Cnt], 10559 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10560 if (isa<Instruction>(V)) 10561 LocalExternallyUsedValues[TrackedVals[V]]; 10562 }); 10563 } 10564 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 10565 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 10566 continue; 10567 unsigned NumOps = VectorizedVals.lookup(Candidates[Cnt]) + 10568 std::count(VL.begin(), VL.end(), Candidates[Cnt]); 10569 if (NumOps != ReducedValsToOps.find(Candidates[Cnt])->second.size()) 10570 LocalExternallyUsedValues[Candidates[Cnt]]; 10571 } 10572 V.buildExternalUses(LocalExternallyUsedValues); 10573 10574 V.computeMinimumValueSizes(); 10575 10576 // Intersect the fast-math-flags from all reduction operations. 10577 FastMathFlags RdxFMF; 10578 RdxFMF.set(); 10579 for (Value *U : IgnoreList) 10580 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10581 RdxFMF &= FPMO->getFastMathFlags(); 10582 // Estimate cost. 10583 InstructionCost TreeCost = V.getTreeCost(VL); 10584 InstructionCost ReductionCost = 10585 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 10586 InstructionCost Cost = TreeCost + ReductionCost; 10587 if (!Cost.isValid()) { 10588 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10589 return nullptr; 10590 } 10591 if (Cost >= -SLPCostThreshold) { 10592 V.getORE()->emit([&]() { 10593 return OptimizationRemarkMissed( 10594 SV_NAME, "HorSLPNotBeneficial", 10595 ReducedValsToOps.find(VL[0])->second.front()) 10596 << "Vectorizing horizontal reduction is possible" 10597 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10598 << " and threshold " 10599 << ore::NV("Threshold", -SLPCostThreshold); 10600 }); 10601 if (!AdjustReducedVals()) 10602 V.analyzedReductionVals(VL); 10603 continue; 10604 } 10605 10606 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10607 << Cost << ". (HorRdx)\n"); 10608 V.getORE()->emit([&]() { 10609 return OptimizationRemark( 10610 SV_NAME, "VectorizedHorizontalReduction", 10611 ReducedValsToOps.find(VL[0])->second.front()) 10612 << "Vectorized horizontal reduction with cost " 10613 << ore::NV("Cost", Cost) << " and with tree size " 10614 << ore::NV("TreeSize", V.getTreeSize()); 10615 }); 10616 10617 Builder.setFastMathFlags(RdxFMF); 10618 10619 // Vectorize a tree. 10620 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10621 10622 // Emit a reduction. If the root is a select (min/max idiom), the insert 10623 // point is the compare condition of that select. 10624 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 10625 if (IsCmpSelMinMax) 10626 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 10627 else 10628 Builder.SetInsertPoint(RdxRootInst); 10629 10630 // To prevent poison from leaking across what used to be sequential, 10631 // safe, scalar boolean logic operations, the reduction operand must be 10632 // frozen. 10633 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 10634 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 10635 10636 Value *ReducedSubTree = 10637 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 10638 10639 if (!VectorizedTree) { 10640 // Initialize the final value in the reduction. 10641 VectorizedTree = ReducedSubTree; 10642 } else { 10643 // Update the final value in the reduction. 10644 Builder.SetCurrentDebugLocation( 10645 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 10646 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10647 ReducedSubTree, "op.rdx", ReductionOps); 10648 } 10649 // Count vectorized reduced values to exclude them from final reduction. 10650 for (Value *V : VL) 10651 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 10652 .first->getSecond(); 10653 Pos += ReduxWidth; 10654 Start = Pos; 10655 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 10656 } 10657 } 10658 if (VectorizedTree) { 10659 // Finish the reduction. 10660 // Need to add extra arguments and not vectorized possible reduction 10661 // values. 10662 // Try to avoid dependencies between the scalar remainders after 10663 // reductions. 10664 auto &&FinalGen = 10665 [this, &Builder, 10666 &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 10667 unsigned Sz = InstVals.size(); 10668 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 10669 Sz % 2); 10670 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 10671 Instruction *RedOp = InstVals[I + 1].first; 10672 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10673 ReductionOpsListType Ops; 10674 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10675 Ops.emplace_back().push_back(Sel->getCondition()); 10676 Ops.emplace_back().push_back(RedOp); 10677 Value *RdxVal1 = InstVals[I].second; 10678 Value *StableRdxVal1 = RdxVal1; 10679 auto It1 = TrackedVals.find(RdxVal1); 10680 if (It1 != TrackedVals.end()) 10681 StableRdxVal1 = It1->second; 10682 Value *RdxVal2 = InstVals[I + 1].second; 10683 Value *StableRdxVal2 = RdxVal2; 10684 auto It2 = TrackedVals.find(RdxVal2); 10685 if (It2 != TrackedVals.end()) 10686 StableRdxVal2 = It2->second; 10687 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 10688 StableRdxVal2, "op.rdx", Ops); 10689 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 10690 } 10691 if (Sz % 2 == 1) 10692 ExtraReds[Sz / 2] = InstVals.back(); 10693 return ExtraReds; 10694 }; 10695 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 10696 SmallPtrSet<Value *, 8> Visited; 10697 for (ArrayRef<Value *> Candidates : ReducedVals) { 10698 for (Value *RdxVal : Candidates) { 10699 if (!Visited.insert(RdxVal).second) 10700 continue; 10701 unsigned NumOps = VectorizedVals.lookup(RdxVal); 10702 for (Instruction *RedOp : 10703 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 10704 .drop_back(NumOps)) 10705 ExtraReductions.emplace_back(RedOp, RdxVal); 10706 } 10707 } 10708 for (auto &Pair : ExternallyUsedValues) { 10709 // Add each externally used value to the final reduction. 10710 for (auto *I : Pair.second) 10711 ExtraReductions.emplace_back(I, Pair.first); 10712 } 10713 // Iterate through all not-vectorized reduction values/extra arguments. 10714 while (ExtraReductions.size() > 1) { 10715 SmallVector<std::pair<Instruction *, Value *>> NewReds = 10716 FinalGen(ExtraReductions); 10717 ExtraReductions.swap(NewReds); 10718 } 10719 // Final reduction. 10720 if (ExtraReductions.size() == 1) { 10721 Instruction *RedOp = ExtraReductions.back().first; 10722 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10723 ReductionOpsListType Ops; 10724 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10725 Ops.emplace_back().push_back(Sel->getCondition()); 10726 Ops.emplace_back().push_back(RedOp); 10727 Value *RdxVal = ExtraReductions.back().second; 10728 Value *StableRdxVal = RdxVal; 10729 auto It = TrackedVals.find(RdxVal); 10730 if (It != TrackedVals.end()) 10731 StableRdxVal = It->second; 10732 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10733 StableRdxVal, "op.rdx", Ops); 10734 } 10735 10736 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10737 10738 // The original scalar reduction is expected to have no remaining 10739 // uses outside the reduction tree itself. Assert that we got this 10740 // correct, replace internal uses with undef, and mark for eventual 10741 // deletion. 10742 #ifndef NDEBUG 10743 SmallSet<Value *, 4> IgnoreSet; 10744 for (ArrayRef<Value *> RdxOps : ReductionOps) 10745 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 10746 #endif 10747 for (ArrayRef<Value *> RdxOps : ReductionOps) { 10748 for (Value *Ignore : RdxOps) { 10749 if (!Ignore) 10750 continue; 10751 #ifndef NDEBUG 10752 for (auto *U : Ignore->users()) { 10753 assert(IgnoreSet.count(U) && 10754 "All users must be either in the reduction ops list."); 10755 } 10756 #endif 10757 if (!Ignore->use_empty()) { 10758 Value *Undef = UndefValue::get(Ignore->getType()); 10759 Ignore->replaceAllUsesWith(Undef); 10760 } 10761 V.eraseInstruction(cast<Instruction>(Ignore)); 10762 } 10763 } 10764 } else if (!CheckForReusedReductionOps) { 10765 for (ReductionOpsType &RdxOps : ReductionOps) 10766 for (Value *RdxOp : RdxOps) 10767 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 10768 } 10769 return VectorizedTree; 10770 } 10771 10772 private: 10773 /// Calculate the cost of a reduction. 10774 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10775 ArrayRef<Value *> ReducedVals, 10776 unsigned ReduxWidth, FastMathFlags FMF) { 10777 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10778 Value *FirstReducedVal = ReducedVals.front(); 10779 Type *ScalarTy = FirstReducedVal->getType(); 10780 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10781 InstructionCost VectorCost = 0, ScalarCost; 10782 // If all of the reduced values are constant, the vector cost is 0, since 10783 // the reduction value can be calculated at the compile time. 10784 bool AllConsts = all_of(ReducedVals, isConstant); 10785 switch (RdxKind) { 10786 case RecurKind::Add: 10787 case RecurKind::Mul: 10788 case RecurKind::Or: 10789 case RecurKind::And: 10790 case RecurKind::Xor: 10791 case RecurKind::FAdd: 10792 case RecurKind::FMul: { 10793 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10794 if (!AllConsts) 10795 VectorCost = 10796 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10797 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10798 break; 10799 } 10800 case RecurKind::FMax: 10801 case RecurKind::FMin: { 10802 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10803 if (!AllConsts) { 10804 auto *VecCondTy = 10805 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10806 VectorCost = 10807 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10808 /*IsUnsigned=*/false, CostKind); 10809 } 10810 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10811 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10812 SclCondTy, RdxPred, CostKind) + 10813 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10814 SclCondTy, RdxPred, CostKind); 10815 break; 10816 } 10817 case RecurKind::SMax: 10818 case RecurKind::SMin: 10819 case RecurKind::UMax: 10820 case RecurKind::UMin: { 10821 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10822 if (!AllConsts) { 10823 auto *VecCondTy = 10824 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10825 bool IsUnsigned = 10826 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10827 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10828 IsUnsigned, CostKind); 10829 } 10830 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10831 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10832 SclCondTy, RdxPred, CostKind) + 10833 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10834 SclCondTy, RdxPred, CostKind); 10835 break; 10836 } 10837 default: 10838 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10839 } 10840 10841 // Scalar cost is repeated for N-1 elements. 10842 ScalarCost *= (ReduxWidth - 1); 10843 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10844 << " for reduction that starts with " << *FirstReducedVal 10845 << " (It is a splitting reduction)\n"); 10846 return VectorCost - ScalarCost; 10847 } 10848 10849 /// Emit a horizontal reduction of the vectorized value. 10850 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10851 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10852 assert(VectorizedValue && "Need to have a vectorized tree node"); 10853 assert(isPowerOf2_32(ReduxWidth) && 10854 "We only handle power-of-two reductions for now"); 10855 assert(RdxKind != RecurKind::FMulAdd && 10856 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10857 10858 ++NumVectorInstructions; 10859 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10860 } 10861 }; 10862 10863 } // end anonymous namespace 10864 10865 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10866 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10867 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10868 10869 unsigned AggregateSize = 1; 10870 auto *IV = cast<InsertValueInst>(InsertInst); 10871 Type *CurrentType = IV->getType(); 10872 do { 10873 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10874 for (auto *Elt : ST->elements()) 10875 if (Elt != ST->getElementType(0)) // check homogeneity 10876 return None; 10877 AggregateSize *= ST->getNumElements(); 10878 CurrentType = ST->getElementType(0); 10879 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10880 AggregateSize *= AT->getNumElements(); 10881 CurrentType = AT->getElementType(); 10882 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10883 AggregateSize *= VT->getNumElements(); 10884 return AggregateSize; 10885 } else if (CurrentType->isSingleValueType()) { 10886 return AggregateSize; 10887 } else { 10888 return None; 10889 } 10890 } while (true); 10891 } 10892 10893 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10894 TargetTransformInfo *TTI, 10895 SmallVectorImpl<Value *> &BuildVectorOpds, 10896 SmallVectorImpl<Value *> &InsertElts, 10897 unsigned OperandOffset) { 10898 do { 10899 Value *InsertedOperand = LastInsertInst->getOperand(1); 10900 Optional<unsigned> OperandIndex = 10901 getInsertIndex(LastInsertInst, OperandOffset); 10902 if (!OperandIndex) 10903 return; 10904 if (isa<InsertElementInst>(InsertedOperand) || 10905 isa<InsertValueInst>(InsertedOperand)) { 10906 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10907 BuildVectorOpds, InsertElts, *OperandIndex); 10908 10909 } else { 10910 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10911 InsertElts[*OperandIndex] = LastInsertInst; 10912 } 10913 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10914 } while (LastInsertInst != nullptr && 10915 (isa<InsertValueInst>(LastInsertInst) || 10916 isa<InsertElementInst>(LastInsertInst)) && 10917 LastInsertInst->hasOneUse()); 10918 } 10919 10920 /// Recognize construction of vectors like 10921 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10922 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10923 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10924 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10925 /// starting from the last insertelement or insertvalue instruction. 10926 /// 10927 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10928 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10929 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10930 /// 10931 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10932 /// 10933 /// \return true if it matches. 10934 static bool findBuildAggregate(Instruction *LastInsertInst, 10935 TargetTransformInfo *TTI, 10936 SmallVectorImpl<Value *> &BuildVectorOpds, 10937 SmallVectorImpl<Value *> &InsertElts) { 10938 10939 assert((isa<InsertElementInst>(LastInsertInst) || 10940 isa<InsertValueInst>(LastInsertInst)) && 10941 "Expected insertelement or insertvalue instruction!"); 10942 10943 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10944 "Expected empty result vectors!"); 10945 10946 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10947 if (!AggregateSize) 10948 return false; 10949 BuildVectorOpds.resize(*AggregateSize); 10950 InsertElts.resize(*AggregateSize); 10951 10952 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10953 llvm::erase_value(BuildVectorOpds, nullptr); 10954 llvm::erase_value(InsertElts, nullptr); 10955 if (BuildVectorOpds.size() >= 2) 10956 return true; 10957 10958 return false; 10959 } 10960 10961 /// Try and get a reduction value from a phi node. 10962 /// 10963 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10964 /// if they come from either \p ParentBB or a containing loop latch. 10965 /// 10966 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10967 /// if not possible. 10968 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10969 BasicBlock *ParentBB, LoopInfo *LI) { 10970 // There are situations where the reduction value is not dominated by the 10971 // reduction phi. Vectorizing such cases has been reported to cause 10972 // miscompiles. See PR25787. 10973 auto DominatedReduxValue = [&](Value *R) { 10974 return isa<Instruction>(R) && 10975 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10976 }; 10977 10978 Value *Rdx = nullptr; 10979 10980 // Return the incoming value if it comes from the same BB as the phi node. 10981 if (P->getIncomingBlock(0) == ParentBB) { 10982 Rdx = P->getIncomingValue(0); 10983 } else if (P->getIncomingBlock(1) == ParentBB) { 10984 Rdx = P->getIncomingValue(1); 10985 } 10986 10987 if (Rdx && DominatedReduxValue(Rdx)) 10988 return Rdx; 10989 10990 // Otherwise, check whether we have a loop latch to look at. 10991 Loop *BBL = LI->getLoopFor(ParentBB); 10992 if (!BBL) 10993 return nullptr; 10994 BasicBlock *BBLatch = BBL->getLoopLatch(); 10995 if (!BBLatch) 10996 return nullptr; 10997 10998 // There is a loop latch, return the incoming value if it comes from 10999 // that. This reduction pattern occasionally turns up. 11000 if (P->getIncomingBlock(0) == BBLatch) { 11001 Rdx = P->getIncomingValue(0); 11002 } else if (P->getIncomingBlock(1) == BBLatch) { 11003 Rdx = P->getIncomingValue(1); 11004 } 11005 11006 if (Rdx && DominatedReduxValue(Rdx)) 11007 return Rdx; 11008 11009 return nullptr; 11010 } 11011 11012 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 11013 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 11014 return true; 11015 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 11016 return true; 11017 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 11018 return true; 11019 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 11020 return true; 11021 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 11022 return true; 11023 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 11024 return true; 11025 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 11026 return true; 11027 return false; 11028 } 11029 11030 /// Attempt to reduce a horizontal reduction. 11031 /// If it is legal to match a horizontal reduction feeding the phi node \a P 11032 /// with reduction operators \a Root (or one of its operands) in a basic block 11033 /// \a BB, then check if it can be done. If horizontal reduction is not found 11034 /// and root instruction is a binary operation, vectorization of the operands is 11035 /// attempted. 11036 /// \returns true if a horizontal reduction was matched and reduced or operands 11037 /// of one of the binary instruction were vectorized. 11038 /// \returns false if a horizontal reduction was not matched (or not possible) 11039 /// or no vectorization of any binary operation feeding \a Root instruction was 11040 /// performed. 11041 static bool tryToVectorizeHorReductionOrInstOperands( 11042 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 11043 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 11044 const TargetLibraryInfo &TLI, 11045 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 11046 if (!ShouldVectorizeHor) 11047 return false; 11048 11049 if (!Root) 11050 return false; 11051 11052 if (Root->getParent() != BB || isa<PHINode>(Root)) 11053 return false; 11054 // Start analysis starting from Root instruction. If horizontal reduction is 11055 // found, try to vectorize it. If it is not a horizontal reduction or 11056 // vectorization is not possible or not effective, and currently analyzed 11057 // instruction is a binary operation, try to vectorize the operands, using 11058 // pre-order DFS traversal order. If the operands were not vectorized, repeat 11059 // the same procedure considering each operand as a possible root of the 11060 // horizontal reduction. 11061 // Interrupt the process if the Root instruction itself was vectorized or all 11062 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 11063 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 11064 // CmpInsts so we can skip extra attempts in 11065 // tryToVectorizeHorReductionOrInstOperands and save compile time. 11066 std::queue<std::pair<Instruction *, unsigned>> Stack; 11067 Stack.emplace(Root, 0); 11068 SmallPtrSet<Value *, 8> VisitedInstrs; 11069 SmallVector<WeakTrackingVH> PostponedInsts; 11070 bool Res = false; 11071 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 11072 Value *&B0, 11073 Value *&B1) -> Value * { 11074 if (R.isAnalyzedReductionRoot(Inst)) 11075 return nullptr; 11076 bool IsBinop = matchRdxBop(Inst, B0, B1); 11077 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 11078 if (IsBinop || IsSelect) { 11079 HorizontalReduction HorRdx; 11080 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 11081 return HorRdx.tryToReduce(R, TTI); 11082 } 11083 return nullptr; 11084 }; 11085 while (!Stack.empty()) { 11086 Instruction *Inst; 11087 unsigned Level; 11088 std::tie(Inst, Level) = Stack.front(); 11089 Stack.pop(); 11090 // Do not try to analyze instruction that has already been vectorized. 11091 // This may happen when we vectorize instruction operands on a previous 11092 // iteration while stack was populated before that happened. 11093 if (R.isDeleted(Inst)) 11094 continue; 11095 Value *B0 = nullptr, *B1 = nullptr; 11096 if (Value *V = TryToReduce(Inst, B0, B1)) { 11097 Res = true; 11098 // Set P to nullptr to avoid re-analysis of phi node in 11099 // matchAssociativeReduction function unless this is the root node. 11100 P = nullptr; 11101 if (auto *I = dyn_cast<Instruction>(V)) { 11102 // Try to find another reduction. 11103 Stack.emplace(I, Level); 11104 continue; 11105 } 11106 } else { 11107 bool IsBinop = B0 && B1; 11108 if (P && IsBinop) { 11109 Inst = dyn_cast<Instruction>(B0); 11110 if (Inst == P) 11111 Inst = dyn_cast<Instruction>(B1); 11112 if (!Inst) { 11113 // Set P to nullptr to avoid re-analysis of phi node in 11114 // matchAssociativeReduction function unless this is the root node. 11115 P = nullptr; 11116 continue; 11117 } 11118 } 11119 // Set P to nullptr to avoid re-analysis of phi node in 11120 // matchAssociativeReduction function unless this is the root node. 11121 P = nullptr; 11122 // Do not try to vectorize CmpInst operands, this is done separately. 11123 // Final attempt for binop args vectorization should happen after the loop 11124 // to try to find reductions. 11125 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11126 PostponedInsts.push_back(Inst); 11127 } 11128 11129 // Try to vectorize operands. 11130 // Continue analysis for the instruction from the same basic block only to 11131 // save compile time. 11132 if (++Level < RecursionMaxDepth) 11133 for (auto *Op : Inst->operand_values()) 11134 if (VisitedInstrs.insert(Op).second) 11135 if (auto *I = dyn_cast<Instruction>(Op)) 11136 // Do not try to vectorize CmpInst operands, this is done 11137 // separately. 11138 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11139 !R.isDeleted(I) && I->getParent() == BB) 11140 Stack.emplace(I, Level); 11141 } 11142 // Try to vectorized binops where reductions were not found. 11143 for (Value *V : PostponedInsts) 11144 if (auto *Inst = dyn_cast<Instruction>(V)) 11145 if (!R.isDeleted(Inst)) 11146 Res |= Vectorize(Inst, R); 11147 return Res; 11148 } 11149 11150 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11151 BasicBlock *BB, BoUpSLP &R, 11152 TargetTransformInfo *TTI) { 11153 auto *I = dyn_cast_or_null<Instruction>(V); 11154 if (!I) 11155 return false; 11156 11157 if (!isa<BinaryOperator>(I)) 11158 P = nullptr; 11159 // Try to match and vectorize a horizontal reduction. 11160 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11161 return tryToVectorize(I, R); 11162 }; 11163 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11164 *TLI, ExtraVectorization); 11165 } 11166 11167 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11168 BasicBlock *BB, BoUpSLP &R) { 11169 const DataLayout &DL = BB->getModule()->getDataLayout(); 11170 if (!R.canMapToVector(IVI->getType(), DL)) 11171 return false; 11172 11173 SmallVector<Value *, 16> BuildVectorOpds; 11174 SmallVector<Value *, 16> BuildVectorInsts; 11175 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11176 return false; 11177 11178 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11179 // Aggregate value is unlikely to be processed in vector register. 11180 return tryToVectorizeList(BuildVectorOpds, R); 11181 } 11182 11183 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11184 BasicBlock *BB, BoUpSLP &R) { 11185 SmallVector<Value *, 16> BuildVectorInsts; 11186 SmallVector<Value *, 16> BuildVectorOpds; 11187 SmallVector<int> Mask; 11188 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11189 (llvm::all_of( 11190 BuildVectorOpds, 11191 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11192 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11193 return false; 11194 11195 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11196 return tryToVectorizeList(BuildVectorInsts, R); 11197 } 11198 11199 template <typename T> 11200 static bool 11201 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11202 function_ref<unsigned(T *)> Limit, 11203 function_ref<bool(T *, T *)> Comparator, 11204 function_ref<bool(T *, T *)> AreCompatible, 11205 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11206 bool LimitForRegisterSize) { 11207 bool Changed = false; 11208 // Sort by type, parent, operands. 11209 stable_sort(Incoming, Comparator); 11210 11211 // Try to vectorize elements base on their type. 11212 SmallVector<T *> Candidates; 11213 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11214 // Look for the next elements with the same type, parent and operand 11215 // kinds. 11216 auto *SameTypeIt = IncIt; 11217 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11218 ++SameTypeIt; 11219 11220 // Try to vectorize them. 11221 unsigned NumElts = (SameTypeIt - IncIt); 11222 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11223 << NumElts << ")\n"); 11224 // The vectorization is a 3-state attempt: 11225 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11226 // size of maximal register at first. 11227 // 2. Try to vectorize remaining instructions with the same type, if 11228 // possible. This may result in the better vectorization results rather than 11229 // if we try just to vectorize instructions with the same/alternate opcodes. 11230 // 3. Final attempt to try to vectorize all instructions with the 11231 // same/alternate ops only, this may result in some extra final 11232 // vectorization. 11233 if (NumElts > 1 && 11234 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11235 // Success start over because instructions might have been changed. 11236 Changed = true; 11237 } else if (NumElts < Limit(*IncIt) && 11238 (Candidates.empty() || 11239 Candidates.front()->getType() == (*IncIt)->getType())) { 11240 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11241 } 11242 // Final attempt to vectorize instructions with the same types. 11243 if (Candidates.size() > 1 && 11244 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11245 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11246 // Success start over because instructions might have been changed. 11247 Changed = true; 11248 } else if (LimitForRegisterSize) { 11249 // Try to vectorize using small vectors. 11250 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11251 It != End;) { 11252 auto *SameTypeIt = It; 11253 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11254 ++SameTypeIt; 11255 unsigned NumElts = (SameTypeIt - It); 11256 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11257 /*LimitForRegisterSize=*/false)) 11258 Changed = true; 11259 It = SameTypeIt; 11260 } 11261 } 11262 Candidates.clear(); 11263 } 11264 11265 // Start over at the next instruction of a different type (or the end). 11266 IncIt = SameTypeIt; 11267 } 11268 return Changed; 11269 } 11270 11271 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11272 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11273 /// operands. If IsCompatibility is false, function implements strict weak 11274 /// ordering relation between two cmp instructions, returning true if the first 11275 /// instruction is "less" than the second, i.e. its predicate is less than the 11276 /// predicate of the second or the operands IDs are less than the operands IDs 11277 /// of the second cmp instruction. 11278 template <bool IsCompatibility> 11279 static bool compareCmp(Value *V, Value *V2, 11280 function_ref<bool(Instruction *)> IsDeleted) { 11281 auto *CI1 = cast<CmpInst>(V); 11282 auto *CI2 = cast<CmpInst>(V2); 11283 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11284 return false; 11285 if (CI1->getOperand(0)->getType()->getTypeID() < 11286 CI2->getOperand(0)->getType()->getTypeID()) 11287 return !IsCompatibility; 11288 if (CI1->getOperand(0)->getType()->getTypeID() > 11289 CI2->getOperand(0)->getType()->getTypeID()) 11290 return false; 11291 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11292 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11293 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11294 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11295 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11296 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11297 if (BasePred1 < BasePred2) 11298 return !IsCompatibility; 11299 if (BasePred1 > BasePred2) 11300 return false; 11301 // Compare operands. 11302 bool LEPreds = Pred1 <= Pred2; 11303 bool GEPreds = Pred1 >= Pred2; 11304 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11305 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11306 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11307 if (Op1->getValueID() < Op2->getValueID()) 11308 return !IsCompatibility; 11309 if (Op1->getValueID() > Op2->getValueID()) 11310 return false; 11311 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11312 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11313 if (I1->getParent() != I2->getParent()) 11314 return false; 11315 InstructionsState S = getSameOpcode({I1, I2}); 11316 if (S.getOpcode()) 11317 continue; 11318 return false; 11319 } 11320 } 11321 return IsCompatibility; 11322 } 11323 11324 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11325 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11326 bool AtTerminator) { 11327 bool OpsChanged = false; 11328 SmallVector<Instruction *, 4> PostponedCmps; 11329 for (auto *I : reverse(Instructions)) { 11330 if (R.isDeleted(I)) 11331 continue; 11332 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11333 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11334 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11335 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11336 } else if (isa<CmpInst>(I)) { 11337 PostponedCmps.push_back(I); 11338 continue; 11339 } 11340 // Try to find reductions in buildvector sequnces. 11341 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11342 } 11343 if (AtTerminator) { 11344 // Try to find reductions first. 11345 for (Instruction *I : PostponedCmps) { 11346 if (R.isDeleted(I)) 11347 continue; 11348 for (Value *Op : I->operands()) 11349 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11350 } 11351 // Try to vectorize operands as vector bundles. 11352 for (Instruction *I : PostponedCmps) { 11353 if (R.isDeleted(I)) 11354 continue; 11355 OpsChanged |= tryToVectorize(I, R); 11356 } 11357 // Try to vectorize list of compares. 11358 // Sort by type, compare predicate, etc. 11359 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11360 return compareCmp<false>(V, V2, 11361 [&R](Instruction *I) { return R.isDeleted(I); }); 11362 }; 11363 11364 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11365 if (V1 == V2) 11366 return true; 11367 return compareCmp<true>(V1, V2, 11368 [&R](Instruction *I) { return R.isDeleted(I); }); 11369 }; 11370 auto Limit = [&R](Value *V) { 11371 unsigned EltSize = R.getVectorElementSize(V); 11372 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11373 }; 11374 11375 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11376 OpsChanged |= tryToVectorizeSequence<Value>( 11377 Vals, Limit, CompareSorter, AreCompatibleCompares, 11378 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11379 // Exclude possible reductions from other blocks. 11380 bool ArePossiblyReducedInOtherBlock = 11381 any_of(Candidates, [](Value *V) { 11382 return any_of(V->users(), [V](User *U) { 11383 return isa<SelectInst>(U) && 11384 cast<SelectInst>(U)->getParent() != 11385 cast<Instruction>(V)->getParent(); 11386 }); 11387 }); 11388 if (ArePossiblyReducedInOtherBlock) 11389 return false; 11390 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11391 }, 11392 /*LimitForRegisterSize=*/true); 11393 Instructions.clear(); 11394 } else { 11395 // Insert in reverse order since the PostponedCmps vector was filled in 11396 // reverse order. 11397 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 11398 } 11399 return OpsChanged; 11400 } 11401 11402 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 11403 bool Changed = false; 11404 SmallVector<Value *, 4> Incoming; 11405 SmallPtrSet<Value *, 16> VisitedInstrs; 11406 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 11407 // node. Allows better to identify the chains that can be vectorized in the 11408 // better way. 11409 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 11410 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 11411 assert(isValidElementType(V1->getType()) && 11412 isValidElementType(V2->getType()) && 11413 "Expected vectorizable types only."); 11414 // It is fine to compare type IDs here, since we expect only vectorizable 11415 // types, like ints, floats and pointers, we don't care about other type. 11416 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 11417 return true; 11418 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 11419 return false; 11420 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11421 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11422 if (Opcodes1.size() < Opcodes2.size()) 11423 return true; 11424 if (Opcodes1.size() > Opcodes2.size()) 11425 return false; 11426 Optional<bool> ConstOrder; 11427 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11428 // Undefs are compatible with any other value. 11429 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 11430 if (!ConstOrder) 11431 ConstOrder = 11432 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 11433 continue; 11434 } 11435 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11436 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11437 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 11438 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 11439 if (!NodeI1) 11440 return NodeI2 != nullptr; 11441 if (!NodeI2) 11442 return false; 11443 assert((NodeI1 == NodeI2) == 11444 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11445 "Different nodes should have different DFS numbers"); 11446 if (NodeI1 != NodeI2) 11447 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11448 InstructionsState S = getSameOpcode({I1, I2}); 11449 if (S.getOpcode()) 11450 continue; 11451 return I1->getOpcode() < I2->getOpcode(); 11452 } 11453 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 11454 if (!ConstOrder) 11455 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 11456 continue; 11457 } 11458 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 11459 return true; 11460 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 11461 return false; 11462 } 11463 return ConstOrder && *ConstOrder; 11464 }; 11465 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 11466 if (V1 == V2) 11467 return true; 11468 if (V1->getType() != V2->getType()) 11469 return false; 11470 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11471 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11472 if (Opcodes1.size() != Opcodes2.size()) 11473 return false; 11474 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11475 // Undefs are compatible with any other value. 11476 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 11477 continue; 11478 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11479 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11480 if (I1->getParent() != I2->getParent()) 11481 return false; 11482 InstructionsState S = getSameOpcode({I1, I2}); 11483 if (S.getOpcode()) 11484 continue; 11485 return false; 11486 } 11487 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 11488 continue; 11489 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 11490 return false; 11491 } 11492 return true; 11493 }; 11494 auto Limit = [&R](Value *V) { 11495 unsigned EltSize = R.getVectorElementSize(V); 11496 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11497 }; 11498 11499 bool HaveVectorizedPhiNodes = false; 11500 do { 11501 // Collect the incoming values from the PHIs. 11502 Incoming.clear(); 11503 for (Instruction &I : *BB) { 11504 PHINode *P = dyn_cast<PHINode>(&I); 11505 if (!P) 11506 break; 11507 11508 // No need to analyze deleted, vectorized and non-vectorizable 11509 // instructions. 11510 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 11511 isValidElementType(P->getType())) 11512 Incoming.push_back(P); 11513 } 11514 11515 // Find the corresponding non-phi nodes for better matching when trying to 11516 // build the tree. 11517 for (Value *V : Incoming) { 11518 SmallVectorImpl<Value *> &Opcodes = 11519 PHIToOpcodes.try_emplace(V).first->getSecond(); 11520 if (!Opcodes.empty()) 11521 continue; 11522 SmallVector<Value *, 4> Nodes(1, V); 11523 SmallPtrSet<Value *, 4> Visited; 11524 while (!Nodes.empty()) { 11525 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11526 if (!Visited.insert(PHI).second) 11527 continue; 11528 for (Value *V : PHI->incoming_values()) { 11529 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11530 Nodes.push_back(PHI1); 11531 continue; 11532 } 11533 Opcodes.emplace_back(V); 11534 } 11535 } 11536 } 11537 11538 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11539 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11540 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11541 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11542 }, 11543 /*LimitForRegisterSize=*/true); 11544 Changed |= HaveVectorizedPhiNodes; 11545 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11546 } while (HaveVectorizedPhiNodes); 11547 11548 VisitedInstrs.clear(); 11549 11550 SmallVector<Instruction *, 8> PostProcessInstructions; 11551 SmallDenseSet<Instruction *, 4> KeyNodes; 11552 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11553 // Skip instructions with scalable type. The num of elements is unknown at 11554 // compile-time for scalable type. 11555 if (isa<ScalableVectorType>(it->getType())) 11556 continue; 11557 11558 // Skip instructions marked for the deletion. 11559 if (R.isDeleted(&*it)) 11560 continue; 11561 // We may go through BB multiple times so skip the one we have checked. 11562 if (!VisitedInstrs.insert(&*it).second) { 11563 if (it->use_empty() && KeyNodes.contains(&*it) && 11564 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11565 it->isTerminator())) { 11566 // We would like to start over since some instructions are deleted 11567 // and the iterator may become invalid value. 11568 Changed = true; 11569 it = BB->begin(); 11570 e = BB->end(); 11571 } 11572 continue; 11573 } 11574 11575 if (isa<DbgInfoIntrinsic>(it)) 11576 continue; 11577 11578 // Try to vectorize reductions that use PHINodes. 11579 if (PHINode *P = dyn_cast<PHINode>(it)) { 11580 // Check that the PHI is a reduction PHI. 11581 if (P->getNumIncomingValues() == 2) { 11582 // Try to match and vectorize a horizontal reduction. 11583 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11584 TTI)) { 11585 Changed = true; 11586 it = BB->begin(); 11587 e = BB->end(); 11588 continue; 11589 } 11590 } 11591 // Try to vectorize the incoming values of the PHI, to catch reductions 11592 // that feed into PHIs. 11593 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11594 // Skip if the incoming block is the current BB for now. Also, bypass 11595 // unreachable IR for efficiency and to avoid crashing. 11596 // TODO: Collect the skipped incoming values and try to vectorize them 11597 // after processing BB. 11598 if (BB == P->getIncomingBlock(I) || 11599 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11600 continue; 11601 11602 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11603 P->getIncomingBlock(I), R, TTI); 11604 } 11605 continue; 11606 } 11607 11608 // Ran into an instruction without users, like terminator, or function call 11609 // with ignored return value, store. Ignore unused instructions (basing on 11610 // instruction type, except for CallInst and InvokeInst). 11611 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11612 isa<InvokeInst>(it))) { 11613 KeyNodes.insert(&*it); 11614 bool OpsChanged = false; 11615 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11616 for (auto *V : it->operand_values()) { 11617 // Try to match and vectorize a horizontal reduction. 11618 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11619 } 11620 } 11621 // Start vectorization of post-process list of instructions from the 11622 // top-tree instructions to try to vectorize as many instructions as 11623 // possible. 11624 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11625 it->isTerminator()); 11626 if (OpsChanged) { 11627 // We would like to start over since some instructions are deleted 11628 // and the iterator may become invalid value. 11629 Changed = true; 11630 it = BB->begin(); 11631 e = BB->end(); 11632 continue; 11633 } 11634 } 11635 11636 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 11637 isa<InsertValueInst>(it)) 11638 PostProcessInstructions.push_back(&*it); 11639 } 11640 11641 return Changed; 11642 } 11643 11644 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 11645 auto Changed = false; 11646 for (auto &Entry : GEPs) { 11647 // If the getelementptr list has fewer than two elements, there's nothing 11648 // to do. 11649 if (Entry.second.size() < 2) 11650 continue; 11651 11652 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 11653 << Entry.second.size() << ".\n"); 11654 11655 // Process the GEP list in chunks suitable for the target's supported 11656 // vector size. If a vector register can't hold 1 element, we are done. We 11657 // are trying to vectorize the index computations, so the maximum number of 11658 // elements is based on the size of the index expression, rather than the 11659 // size of the GEP itself (the target's pointer size). 11660 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 11661 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 11662 if (MaxVecRegSize < EltSize) 11663 continue; 11664 11665 unsigned MaxElts = MaxVecRegSize / EltSize; 11666 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 11667 auto Len = std::min<unsigned>(BE - BI, MaxElts); 11668 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 11669 11670 // Initialize a set a candidate getelementptrs. Note that we use a 11671 // SetVector here to preserve program order. If the index computations 11672 // are vectorizable and begin with loads, we want to minimize the chance 11673 // of having to reorder them later. 11674 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 11675 11676 // Some of the candidates may have already been vectorized after we 11677 // initially collected them. If so, they are marked as deleted, so remove 11678 // them from the set of candidates. 11679 Candidates.remove_if( 11680 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 11681 11682 // Remove from the set of candidates all pairs of getelementptrs with 11683 // constant differences. Such getelementptrs are likely not good 11684 // candidates for vectorization in a bottom-up phase since one can be 11685 // computed from the other. We also ensure all candidate getelementptr 11686 // indices are unique. 11687 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 11688 auto *GEPI = GEPList[I]; 11689 if (!Candidates.count(GEPI)) 11690 continue; 11691 auto *SCEVI = SE->getSCEV(GEPList[I]); 11692 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 11693 auto *GEPJ = GEPList[J]; 11694 auto *SCEVJ = SE->getSCEV(GEPList[J]); 11695 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 11696 Candidates.remove(GEPI); 11697 Candidates.remove(GEPJ); 11698 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 11699 Candidates.remove(GEPJ); 11700 } 11701 } 11702 } 11703 11704 // We break out of the above computation as soon as we know there are 11705 // fewer than two candidates remaining. 11706 if (Candidates.size() < 2) 11707 continue; 11708 11709 // Add the single, non-constant index of each candidate to the bundle. We 11710 // ensured the indices met these constraints when we originally collected 11711 // the getelementptrs. 11712 SmallVector<Value *, 16> Bundle(Candidates.size()); 11713 auto BundleIndex = 0u; 11714 for (auto *V : Candidates) { 11715 auto *GEP = cast<GetElementPtrInst>(V); 11716 auto *GEPIdx = GEP->idx_begin()->get(); 11717 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 11718 Bundle[BundleIndex++] = GEPIdx; 11719 } 11720 11721 // Try and vectorize the indices. We are currently only interested in 11722 // gather-like cases of the form: 11723 // 11724 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 11725 // 11726 // where the loads of "a", the loads of "b", and the subtractions can be 11727 // performed in parallel. It's likely that detecting this pattern in a 11728 // bottom-up phase will be simpler and less costly than building a 11729 // full-blown top-down phase beginning at the consecutive loads. 11730 Changed |= tryToVectorizeList(Bundle, R); 11731 } 11732 } 11733 return Changed; 11734 } 11735 11736 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11737 bool Changed = false; 11738 // Sort by type, base pointers and values operand. Value operands must be 11739 // compatible (have the same opcode, same parent), otherwise it is 11740 // definitely not profitable to try to vectorize them. 11741 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11742 if (V->getPointerOperandType()->getTypeID() < 11743 V2->getPointerOperandType()->getTypeID()) 11744 return true; 11745 if (V->getPointerOperandType()->getTypeID() > 11746 V2->getPointerOperandType()->getTypeID()) 11747 return false; 11748 // UndefValues are compatible with all other values. 11749 if (isa<UndefValue>(V->getValueOperand()) || 11750 isa<UndefValue>(V2->getValueOperand())) 11751 return false; 11752 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11753 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11754 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11755 DT->getNode(I1->getParent()); 11756 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11757 DT->getNode(I2->getParent()); 11758 assert(NodeI1 && "Should only process reachable instructions"); 11759 assert(NodeI2 && "Should only process reachable instructions"); 11760 assert((NodeI1 == NodeI2) == 11761 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11762 "Different nodes should have different DFS numbers"); 11763 if (NodeI1 != NodeI2) 11764 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11765 InstructionsState S = getSameOpcode({I1, I2}); 11766 if (S.getOpcode()) 11767 return false; 11768 return I1->getOpcode() < I2->getOpcode(); 11769 } 11770 if (isa<Constant>(V->getValueOperand()) && 11771 isa<Constant>(V2->getValueOperand())) 11772 return false; 11773 return V->getValueOperand()->getValueID() < 11774 V2->getValueOperand()->getValueID(); 11775 }; 11776 11777 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11778 if (V1 == V2) 11779 return true; 11780 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11781 return false; 11782 // Undefs are compatible with any other value. 11783 if (isa<UndefValue>(V1->getValueOperand()) || 11784 isa<UndefValue>(V2->getValueOperand())) 11785 return true; 11786 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11787 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11788 if (I1->getParent() != I2->getParent()) 11789 return false; 11790 InstructionsState S = getSameOpcode({I1, I2}); 11791 return S.getOpcode() > 0; 11792 } 11793 if (isa<Constant>(V1->getValueOperand()) && 11794 isa<Constant>(V2->getValueOperand())) 11795 return true; 11796 return V1->getValueOperand()->getValueID() == 11797 V2->getValueOperand()->getValueID(); 11798 }; 11799 auto Limit = [&R, this](StoreInst *SI) { 11800 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11801 return R.getMinVF(EltSize); 11802 }; 11803 11804 // Attempt to sort and vectorize each of the store-groups. 11805 for (auto &Pair : Stores) { 11806 if (Pair.second.size() < 2) 11807 continue; 11808 11809 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11810 << Pair.second.size() << ".\n"); 11811 11812 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11813 continue; 11814 11815 Changed |= tryToVectorizeSequence<StoreInst>( 11816 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11817 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11818 return vectorizeStores(Candidates, R); 11819 }, 11820 /*LimitForRegisterSize=*/false); 11821 } 11822 return Changed; 11823 } 11824 11825 char SLPVectorizer::ID = 0; 11826 11827 static const char lv_name[] = "SLP Vectorizer"; 11828 11829 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11830 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11831 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11832 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11833 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11834 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11835 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11836 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11837 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11838 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11839 11840 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11841