1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// \brief Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// Checks if the vector of instructions can be represented as a shuffle, like: 210 /// %x0 = extractelement <4 x i8> %x, i32 0 211 /// %x3 = extractelement <4 x i8> %x, i32 3 212 /// %y1 = extractelement <4 x i8> %y, i32 1 213 /// %y2 = extractelement <4 x i8> %y, i32 2 214 /// %x0x0 = mul i8 %x0, %x0 215 /// %x3x3 = mul i8 %x3, %x3 216 /// %y1y1 = mul i8 %y1, %y1 217 /// %y2y2 = mul i8 %y2, %y2 218 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 219 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 220 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 221 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 222 /// ret <4 x i8> %ins4 223 /// can be transformed into: 224 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 225 /// i32 6> 226 /// %2 = mul <4 x i8> %1, %1 227 /// ret <4 x i8> %2 228 /// We convert this initially to something like: 229 /// %x0 = extractelement <4 x i8> %x, i32 0 230 /// %x3 = extractelement <4 x i8> %x, i32 3 231 /// %y1 = extractelement <4 x i8> %y, i32 1 232 /// %y2 = extractelement <4 x i8> %y, i32 2 233 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 234 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 235 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 236 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 237 /// %5 = mul <4 x i8> %4, %4 238 /// %6 = extractelement <4 x i8> %5, i32 0 239 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 240 /// %7 = extractelement <4 x i8> %5, i32 1 241 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 242 /// %8 = extractelement <4 x i8> %5, i32 2 243 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 244 /// %9 = extractelement <4 x i8> %5, i32 3 245 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 246 /// ret <4 x i8> %ins4 247 /// InstCombiner transforms this into a shuffle and vector mul 248 static Optional<TargetTransformInfo::ShuffleKind> 249 isShuffle(ArrayRef<Value *> VL) { 250 auto *EI0 = cast<ExtractElementInst>(VL[0]); 251 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 252 Value *Vec1 = nullptr; 253 Value *Vec2 = nullptr; 254 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 255 ShuffleMode CommonShuffleMode = Unknown; 256 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 257 auto *EI = cast<ExtractElementInst>(VL[I]); 258 auto *Vec = EI->getVectorOperand(); 259 // All vector operands must have the same number of vector elements. 260 if (Vec->getType()->getVectorNumElements() != Size) 261 return None; 262 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 263 if (!Idx) 264 return None; 265 // Undefined behavior if Idx is negative or >= Size. 266 if (Idx->getValue().uge(Size)) 267 continue; 268 unsigned IntIdx = Idx->getValue().getZExtValue(); 269 // We can extractelement from undef vector. 270 if (isa<UndefValue>(Vec)) 271 continue; 272 // For correct shuffling we have to have at most 2 different vector operands 273 // in all extractelement instructions. 274 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 275 return None; 276 if (CommonShuffleMode == Permute) 277 continue; 278 // If the extract index is not the same as the operation number, it is a 279 // permutation. 280 if (IntIdx != I) { 281 CommonShuffleMode = Permute; 282 continue; 283 } 284 // Check the shuffle mode for the current operation. 285 if (!Vec1) 286 Vec1 = Vec; 287 else if (Vec != Vec1) 288 Vec2 = Vec; 289 // Example: shufflevector A, B, <0,5,2,7> 290 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 291 // I is even and IntIdx for B == I - FirstAlternate shuffle. 292 // Example: shufflevector A, B, <4,1,6,3> 293 // I is even and IntIdx for A == I - SecondAlternate shuffle. 294 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 295 const bool IIsEven = I & 1; 296 const bool CurrVecIsA = Vec == Vec1; 297 const bool IIsOdd = !IIsEven; 298 const bool CurrVecIsB = !CurrVecIsA; 299 ShuffleMode CurrentShuffleMode = 300 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 301 : SecondAlternate; 302 // Common mode is not set or the same as the shuffle mode of the current 303 // operation - alternate. 304 if (CommonShuffleMode == Unknown) 305 CommonShuffleMode = CurrentShuffleMode; 306 // Common shuffle mode is not the same as the shuffle mode of the current 307 // operation - permutation. 308 if (CommonShuffleMode != CurrentShuffleMode) 309 CommonShuffleMode = Permute; 310 } 311 // If we're not crossing lanes in different vectors, consider it as blending. 312 if ((CommonShuffleMode == FirstAlternate || 313 CommonShuffleMode == SecondAlternate) && 314 Vec2) 315 return TargetTransformInfo::SK_Alternate; 316 // If Vec2 was never used, we have a permutation of a single vector, otherwise 317 // we have permutation of 2 vectors. 318 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 319 : TargetTransformInfo::SK_PermuteSingleSrc; 320 } 321 322 ///\returns Opcode that can be clubbed with \p Op to create an alternate 323 /// sequence which can later be merged as a ShuffleVector instruction. 324 static unsigned getAltOpcode(unsigned Op) { 325 switch (Op) { 326 case Instruction::FAdd: 327 return Instruction::FSub; 328 case Instruction::FSub: 329 return Instruction::FAdd; 330 case Instruction::Add: 331 return Instruction::Sub; 332 case Instruction::Sub: 333 return Instruction::Add; 334 default: 335 return 0; 336 } 337 } 338 339 /// true if the \p Value is odd, false otherwise. 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 ///\returns bool representing if Opcode \p Op can be part 365 /// of an alternate sequence which can later be merged as 366 /// a ShuffleVector instruction. 367 static bool canCombineAsAltInst(unsigned Op) { 368 return Op == Instruction::FAdd || Op == Instruction::FSub || 369 Op == Instruction::Sub || Op == Instruction::Add; 370 } 371 372 /// \returns ShuffleVector instruction if instructions in \p VL have 373 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 374 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 375 static unsigned isAltInst(ArrayRef<Value *> VL) { 376 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 377 unsigned Opcode = I0->getOpcode(); 378 unsigned AltOpcode = getAltOpcode(Opcode); 379 for (int i = 1, e = VL.size(); i < e; i++) { 380 Instruction *I = dyn_cast<Instruction>(VL[i]); 381 if (!I || I->getOpcode() != (isOdd(i) ? AltOpcode : Opcode)) 382 return 0; 383 } 384 return Instruction::ShuffleVector; 385 } 386 387 /// \returns The opcode if all of the Instructions in \p VL have the same 388 /// opcode, or zero. 389 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 390 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 391 if (!I0) 392 return 0; 393 unsigned Opcode = I0->getOpcode(); 394 for (int i = 1, e = VL.size(); i < e; i++) { 395 Instruction *I = dyn_cast<Instruction>(VL[i]); 396 if (!I || Opcode != I->getOpcode()) { 397 if (canCombineAsAltInst(Opcode) && i == 1) 398 return isAltInst(VL); 399 return 0; 400 } 401 } 402 return Opcode; 403 } 404 405 /// \returns true if all of the values in \p VL have the same type or false 406 /// otherwise. 407 static bool allSameType(ArrayRef<Value *> VL) { 408 Type *Ty = VL[0]->getType(); 409 for (int i = 1, e = VL.size(); i < e; i++) 410 if (VL[i]->getType() != Ty) 411 return false; 412 413 return true; 414 } 415 416 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 417 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 418 assert(Opcode == Instruction::ExtractElement || 419 Opcode == Instruction::ExtractValue); 420 if (Opcode == Instruction::ExtractElement) { 421 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 422 return CI && CI->getZExtValue() == Idx; 423 } else { 424 ExtractValueInst *EI = cast<ExtractValueInst>(E); 425 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 426 } 427 } 428 429 /// \returns True if in-tree use also needs extract. This refers to 430 /// possible scalar operand in vectorized instruction. 431 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 432 TargetLibraryInfo *TLI) { 433 unsigned Opcode = UserInst->getOpcode(); 434 switch (Opcode) { 435 case Instruction::Load: { 436 LoadInst *LI = cast<LoadInst>(UserInst); 437 return (LI->getPointerOperand() == Scalar); 438 } 439 case Instruction::Store: { 440 StoreInst *SI = cast<StoreInst>(UserInst); 441 return (SI->getPointerOperand() == Scalar); 442 } 443 case Instruction::Call: { 444 CallInst *CI = cast<CallInst>(UserInst); 445 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 446 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 447 return (CI->getArgOperand(1) == Scalar); 448 } 449 LLVM_FALLTHROUGH; 450 } 451 default: 452 return false; 453 } 454 } 455 456 /// \returns the AA location that is being access by the instruction. 457 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 458 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 459 return MemoryLocation::get(SI); 460 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 461 return MemoryLocation::get(LI); 462 return MemoryLocation(); 463 } 464 465 /// \returns True if the instruction is not a volatile or atomic load/store. 466 static bool isSimple(Instruction *I) { 467 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 468 return LI->isSimple(); 469 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 470 return SI->isSimple(); 471 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 472 return !MI->isVolatile(); 473 return true; 474 } 475 476 namespace llvm { 477 478 namespace slpvectorizer { 479 480 /// Bottom Up SLP Vectorizer. 481 class BoUpSLP { 482 public: 483 using ValueList = SmallVector<Value *, 8>; 484 using InstrList = SmallVector<Instruction *, 16>; 485 using ValueSet = SmallPtrSet<Value *, 16>; 486 using StoreList = SmallVector<StoreInst *, 8>; 487 using ExtraValueToDebugLocsMap = 488 MapVector<Value *, SmallVector<Instruction *, 2>>; 489 490 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 491 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 492 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 493 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 494 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 495 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 496 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 497 // Use the vector register size specified by the target unless overridden 498 // by a command-line option. 499 // TODO: It would be better to limit the vectorization factor based on 500 // data type rather than just register size. For example, x86 AVX has 501 // 256-bit registers, but it does not support integer operations 502 // at that width (that requires AVX2). 503 if (MaxVectorRegSizeOption.getNumOccurrences()) 504 MaxVecRegSize = MaxVectorRegSizeOption; 505 else 506 MaxVecRegSize = TTI->getRegisterBitWidth(true); 507 508 if (MinVectorRegSizeOption.getNumOccurrences()) 509 MinVecRegSize = MinVectorRegSizeOption; 510 else 511 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 512 } 513 514 /// \brief Vectorize the tree that starts with the elements in \p VL. 515 /// Returns the vectorized root. 516 Value *vectorizeTree(); 517 518 /// Vectorize the tree but with the list of externally used values \p 519 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 520 /// generated extractvalue instructions. 521 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 522 523 /// \returns the cost incurred by unwanted spills and fills, caused by 524 /// holding live values over call sites. 525 int getSpillCost(); 526 527 /// \returns the vectorization cost of the subtree that starts at \p VL. 528 /// A negative number means that this is profitable. 529 int getTreeCost(); 530 531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 533 void buildTree(ArrayRef<Value *> Roots, 534 ArrayRef<Value *> UserIgnoreLst = None); 535 536 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 537 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 538 /// into account (anf updating it, if required) list of externally used 539 /// values stored in \p ExternallyUsedValues. 540 void buildTree(ArrayRef<Value *> Roots, 541 ExtraValueToDebugLocsMap &ExternallyUsedValues, 542 ArrayRef<Value *> UserIgnoreLst = None); 543 544 /// Clear the internal data structures that are created by 'buildTree'. 545 void deleteTree() { 546 VectorizableTree.clear(); 547 ScalarToTreeEntry.clear(); 548 MustGather.clear(); 549 ExternalUses.clear(); 550 NumLoadsWantToKeepOrder = 0; 551 NumLoadsWantToChangeOrder = 0; 552 for (auto &Iter : BlocksSchedules) { 553 BlockScheduling *BS = Iter.second.get(); 554 BS->clear(); 555 } 556 MinBWs.clear(); 557 } 558 559 unsigned getTreeSize() const { return VectorizableTree.size(); } 560 561 /// \brief Perform LICM and CSE on the newly generated gather sequences. 562 void optimizeGatherSequence(); 563 564 /// \returns true if it is beneficial to reverse the vector order. 565 bool shouldReorder() const { 566 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 567 } 568 569 /// \return The vector element size in bits to use when vectorizing the 570 /// expression tree ending at \p V. If V is a store, the size is the width of 571 /// the stored value. Otherwise, the size is the width of the largest loaded 572 /// value reaching V. This method is used by the vectorizer to calculate 573 /// vectorization factors. 574 unsigned getVectorElementSize(Value *V); 575 576 /// Compute the minimum type sizes required to represent the entries in a 577 /// vectorizable tree. 578 void computeMinimumValueSizes(); 579 580 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 581 unsigned getMaxVecRegSize() const { 582 return MaxVecRegSize; 583 } 584 585 // \returns minimum vector register size as set by cl::opt. 586 unsigned getMinVecRegSize() const { 587 return MinVecRegSize; 588 } 589 590 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 591 /// 592 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 593 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 594 595 /// \returns True if the VectorizableTree is both tiny and not fully 596 /// vectorizable. We do not vectorize such trees. 597 bool isTreeTinyAndNotFullyVectorizable(); 598 599 OptimizationRemarkEmitter *getORE() { return ORE; } 600 601 private: 602 struct TreeEntry; 603 604 /// Checks if all users of \p I are the part of the vectorization tree. 605 bool areAllUsersVectorized(Instruction *I) const; 606 607 /// \returns the cost of the vectorizable entry. 608 int getEntryCost(TreeEntry *E); 609 610 /// This is the recursive part of buildTree. 611 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 612 613 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 614 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 615 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 616 617 /// Vectorize a single entry in the tree. 618 Value *vectorizeTree(TreeEntry *E); 619 620 /// Vectorize a single entry in the tree, starting in \p VL. 621 Value *vectorizeTree(ArrayRef<Value *> VL); 622 623 /// \returns the pointer to the vectorized value if \p VL is already 624 /// vectorized, or NULL. They may happen in cycles. 625 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 626 627 /// \returns the scalarization cost for this type. Scalarization in this 628 /// context means the creation of vectors from a group of scalars. 629 int getGatherCost(Type *Ty); 630 631 /// \returns the scalarization cost for this list of values. Assuming that 632 /// this subtree gets vectorized, we may need to extract the values from the 633 /// roots. This method calculates the cost of extracting the values. 634 int getGatherCost(ArrayRef<Value *> VL); 635 636 /// \brief Set the Builder insert point to one after the last instruction in 637 /// the bundle 638 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 639 640 /// \returns a vector from a collection of scalars in \p VL. 641 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 642 643 /// \returns whether the VectorizableTree is fully vectorizable and will 644 /// be beneficial even the tree height is tiny. 645 bool isFullyVectorizableTinyTree(); 646 647 /// \reorder commutative operands in alt shuffle if they result in 648 /// vectorized code. 649 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 650 SmallVectorImpl<Value *> &Left, 651 SmallVectorImpl<Value *> &Right); 652 653 /// \reorder commutative operands to get better probability of 654 /// generating vectorized code. 655 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 656 SmallVectorImpl<Value *> &Left, 657 SmallVectorImpl<Value *> &Right); 658 struct TreeEntry { 659 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 660 661 /// \returns true if the scalars in VL are equal to this entry. 662 bool isSame(ArrayRef<Value *> VL) const { 663 assert(VL.size() == Scalars.size() && "Invalid size"); 664 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 665 } 666 667 /// A vector of scalars. 668 ValueList Scalars; 669 670 /// The Scalars are vectorized into this value. It is initialized to Null. 671 Value *VectorizedValue = nullptr; 672 673 /// Do we need to gather this sequence ? 674 bool NeedToGather = false; 675 676 /// Points back to the VectorizableTree. 677 /// 678 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 679 /// to be a pointer and needs to be able to initialize the child iterator. 680 /// Thus we need a reference back to the container to translate the indices 681 /// to entries. 682 std::vector<TreeEntry> &Container; 683 684 /// The TreeEntry index containing the user of this entry. We can actually 685 /// have multiple users so the data structure is not truly a tree. 686 SmallVector<int, 1> UserTreeIndices; 687 }; 688 689 /// Create a new VectorizableTree entry. 690 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 691 int &UserTreeIdx) { 692 VectorizableTree.emplace_back(VectorizableTree); 693 int idx = VectorizableTree.size() - 1; 694 TreeEntry *Last = &VectorizableTree[idx]; 695 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 696 Last->NeedToGather = !Vectorized; 697 if (Vectorized) { 698 for (int i = 0, e = VL.size(); i != e; ++i) { 699 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 700 ScalarToTreeEntry[VL[i]] = idx; 701 } 702 } else { 703 MustGather.insert(VL.begin(), VL.end()); 704 } 705 706 if (UserTreeIdx >= 0) 707 Last->UserTreeIndices.push_back(UserTreeIdx); 708 UserTreeIdx = idx; 709 return Last; 710 } 711 712 /// -- Vectorization State -- 713 /// Holds all of the tree entries. 714 std::vector<TreeEntry> VectorizableTree; 715 716 TreeEntry *getTreeEntry(Value *V) { 717 auto I = ScalarToTreeEntry.find(V); 718 if (I != ScalarToTreeEntry.end()) 719 return &VectorizableTree[I->second]; 720 return nullptr; 721 } 722 723 const TreeEntry *getTreeEntry(Value *V) const { 724 auto I = ScalarToTreeEntry.find(V); 725 if (I != ScalarToTreeEntry.end()) 726 return &VectorizableTree[I->second]; 727 return nullptr; 728 } 729 730 /// Maps a specific scalar to its tree entry. 731 SmallDenseMap<Value*, int> ScalarToTreeEntry; 732 733 /// A list of scalars that we found that we need to keep as scalars. 734 ValueSet MustGather; 735 736 /// This POD struct describes one external user in the vectorized tree. 737 struct ExternalUser { 738 ExternalUser(Value *S, llvm::User *U, int L) 739 : Scalar(S), User(U), Lane(L) {} 740 741 // Which scalar in our function. 742 Value *Scalar; 743 744 // Which user that uses the scalar. 745 llvm::User *User; 746 747 // Which lane does the scalar belong to. 748 int Lane; 749 }; 750 using UserList = SmallVector<ExternalUser, 16>; 751 752 /// Checks if two instructions may access the same memory. 753 /// 754 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 755 /// is invariant in the calling loop. 756 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 757 Instruction *Inst2) { 758 // First check if the result is already in the cache. 759 AliasCacheKey key = std::make_pair(Inst1, Inst2); 760 Optional<bool> &result = AliasCache[key]; 761 if (result.hasValue()) { 762 return result.getValue(); 763 } 764 MemoryLocation Loc2 = getLocation(Inst2, AA); 765 bool aliased = true; 766 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 767 // Do the alias check. 768 aliased = AA->alias(Loc1, Loc2); 769 } 770 // Store the result in the cache. 771 result = aliased; 772 return aliased; 773 } 774 775 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 776 777 /// Cache for alias results. 778 /// TODO: consider moving this to the AliasAnalysis itself. 779 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 780 781 /// Removes an instruction from its block and eventually deletes it. 782 /// It's like Instruction::eraseFromParent() except that the actual deletion 783 /// is delayed until BoUpSLP is destructed. 784 /// This is required to ensure that there are no incorrect collisions in the 785 /// AliasCache, which can happen if a new instruction is allocated at the 786 /// same address as a previously deleted instruction. 787 void eraseInstruction(Instruction *I) { 788 I->removeFromParent(); 789 I->dropAllReferences(); 790 DeletedInstructions.emplace_back(I); 791 } 792 793 /// Temporary store for deleted instructions. Instructions will be deleted 794 /// eventually when the BoUpSLP is destructed. 795 SmallVector<unique_value, 8> DeletedInstructions; 796 797 /// A list of values that need to extracted out of the tree. 798 /// This list holds pairs of (Internal Scalar : External User). External User 799 /// can be nullptr, it means that this Internal Scalar will be used later, 800 /// after vectorization. 801 UserList ExternalUses; 802 803 /// Values used only by @llvm.assume calls. 804 SmallPtrSet<const Value *, 32> EphValues; 805 806 /// Holds all of the instructions that we gathered. 807 SetVector<Instruction *> GatherSeq; 808 809 /// A list of blocks that we are going to CSE. 810 SetVector<BasicBlock *> CSEBlocks; 811 812 /// Contains all scheduling relevant data for an instruction. 813 /// A ScheduleData either represents a single instruction or a member of an 814 /// instruction bundle (= a group of instructions which is combined into a 815 /// vector instruction). 816 struct ScheduleData { 817 // The initial value for the dependency counters. It means that the 818 // dependencies are not calculated yet. 819 enum { InvalidDeps = -1 }; 820 821 ScheduleData() = default; 822 823 void init(int BlockSchedulingRegionID, Value *OpVal) { 824 FirstInBundle = this; 825 NextInBundle = nullptr; 826 NextLoadStore = nullptr; 827 IsScheduled = false; 828 SchedulingRegionID = BlockSchedulingRegionID; 829 UnscheduledDepsInBundle = UnscheduledDeps; 830 clearDependencies(); 831 OpValue = OpVal; 832 } 833 834 /// Returns true if the dependency information has been calculated. 835 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 836 837 /// Returns true for single instructions and for bundle representatives 838 /// (= the head of a bundle). 839 bool isSchedulingEntity() const { return FirstInBundle == this; } 840 841 /// Returns true if it represents an instruction bundle and not only a 842 /// single instruction. 843 bool isPartOfBundle() const { 844 return NextInBundle != nullptr || FirstInBundle != this; 845 } 846 847 /// Returns true if it is ready for scheduling, i.e. it has no more 848 /// unscheduled depending instructions/bundles. 849 bool isReady() const { 850 assert(isSchedulingEntity() && 851 "can't consider non-scheduling entity for ready list"); 852 return UnscheduledDepsInBundle == 0 && !IsScheduled; 853 } 854 855 /// Modifies the number of unscheduled dependencies, also updating it for 856 /// the whole bundle. 857 int incrementUnscheduledDeps(int Incr) { 858 UnscheduledDeps += Incr; 859 return FirstInBundle->UnscheduledDepsInBundle += Incr; 860 } 861 862 /// Sets the number of unscheduled dependencies to the number of 863 /// dependencies. 864 void resetUnscheduledDeps() { 865 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 866 } 867 868 /// Clears all dependency information. 869 void clearDependencies() { 870 Dependencies = InvalidDeps; 871 resetUnscheduledDeps(); 872 MemoryDependencies.clear(); 873 } 874 875 void dump(raw_ostream &os) const { 876 if (!isSchedulingEntity()) { 877 os << "/ " << *Inst; 878 } else if (NextInBundle) { 879 os << '[' << *Inst; 880 ScheduleData *SD = NextInBundle; 881 while (SD) { 882 os << ';' << *SD->Inst; 883 SD = SD->NextInBundle; 884 } 885 os << ']'; 886 } else { 887 os << *Inst; 888 } 889 } 890 891 Instruction *Inst = nullptr; 892 893 /// Points to the head in an instruction bundle (and always to this for 894 /// single instructions). 895 ScheduleData *FirstInBundle = nullptr; 896 897 /// Single linked list of all instructions in a bundle. Null if it is a 898 /// single instruction. 899 ScheduleData *NextInBundle = nullptr; 900 901 /// Single linked list of all memory instructions (e.g. load, store, call) 902 /// in the block - until the end of the scheduling region. 903 ScheduleData *NextLoadStore = nullptr; 904 905 /// The dependent memory instructions. 906 /// This list is derived on demand in calculateDependencies(). 907 SmallVector<ScheduleData *, 4> MemoryDependencies; 908 909 /// This ScheduleData is in the current scheduling region if this matches 910 /// the current SchedulingRegionID of BlockScheduling. 911 int SchedulingRegionID = 0; 912 913 /// Used for getting a "good" final ordering of instructions. 914 int SchedulingPriority = 0; 915 916 /// The number of dependencies. Constitutes of the number of users of the 917 /// instruction plus the number of dependent memory instructions (if any). 918 /// This value is calculated on demand. 919 /// If InvalidDeps, the number of dependencies is not calculated yet. 920 int Dependencies = InvalidDeps; 921 922 /// The number of dependencies minus the number of dependencies of scheduled 923 /// instructions. As soon as this is zero, the instruction/bundle gets ready 924 /// for scheduling. 925 /// Note that this is negative as long as Dependencies is not calculated. 926 int UnscheduledDeps = InvalidDeps; 927 928 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 929 /// single instructions. 930 int UnscheduledDepsInBundle = InvalidDeps; 931 932 /// True if this instruction is scheduled (or considered as scheduled in the 933 /// dry-run). 934 bool IsScheduled = false; 935 936 /// Opcode of the current instruction in the schedule data. 937 Value *OpValue = nullptr; 938 }; 939 940 #ifndef NDEBUG 941 friend inline raw_ostream &operator<<(raw_ostream &os, 942 const BoUpSLP::ScheduleData &SD) { 943 SD.dump(os); 944 return os; 945 } 946 #endif 947 friend struct GraphTraits<BoUpSLP *>; 948 friend struct DOTGraphTraits<BoUpSLP *>; 949 950 /// Contains all scheduling data for a basic block. 951 struct BlockScheduling { 952 BlockScheduling(BasicBlock *BB) 953 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 954 955 void clear() { 956 ReadyInsts.clear(); 957 ScheduleStart = nullptr; 958 ScheduleEnd = nullptr; 959 FirstLoadStoreInRegion = nullptr; 960 LastLoadStoreInRegion = nullptr; 961 962 // Reduce the maximum schedule region size by the size of the 963 // previous scheduling run. 964 ScheduleRegionSizeLimit -= ScheduleRegionSize; 965 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 966 ScheduleRegionSizeLimit = MinScheduleRegionSize; 967 ScheduleRegionSize = 0; 968 969 // Make a new scheduling region, i.e. all existing ScheduleData is not 970 // in the new region yet. 971 ++SchedulingRegionID; 972 } 973 974 ScheduleData *getScheduleData(Value *V) { 975 ScheduleData *SD = ScheduleDataMap[V]; 976 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 977 return SD; 978 return nullptr; 979 } 980 981 ScheduleData *getScheduleData(Value *V, Value *Key) { 982 if (V == Key) 983 return getScheduleData(V); 984 auto I = ExtraScheduleDataMap.find(V); 985 if (I != ExtraScheduleDataMap.end()) { 986 ScheduleData *SD = I->second[Key]; 987 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 988 return SD; 989 } 990 return nullptr; 991 } 992 993 bool isInSchedulingRegion(ScheduleData *SD) { 994 return SD->SchedulingRegionID == SchedulingRegionID; 995 } 996 997 /// Marks an instruction as scheduled and puts all dependent ready 998 /// instructions into the ready-list. 999 template <typename ReadyListType> 1000 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1001 SD->IsScheduled = true; 1002 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1003 1004 ScheduleData *BundleMember = SD; 1005 while (BundleMember) { 1006 if (BundleMember->Inst != BundleMember->OpValue) { 1007 BundleMember = BundleMember->NextInBundle; 1008 continue; 1009 } 1010 // Handle the def-use chain dependencies. 1011 for (Use &U : BundleMember->Inst->operands()) { 1012 auto *I = dyn_cast<Instruction>(U.get()); 1013 if (!I) 1014 continue; 1015 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1016 if (OpDef && OpDef->hasValidDependencies() && 1017 OpDef->incrementUnscheduledDeps(-1) == 0) { 1018 // There are no more unscheduled dependencies after 1019 // decrementing, so we can put the dependent instruction 1020 // into the ready list. 1021 ScheduleData *DepBundle = OpDef->FirstInBundle; 1022 assert(!DepBundle->IsScheduled && 1023 "already scheduled bundle gets ready"); 1024 ReadyList.insert(DepBundle); 1025 DEBUG(dbgs() 1026 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1027 } 1028 }); 1029 } 1030 // Handle the memory dependencies. 1031 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1032 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1033 // There are no more unscheduled dependencies after decrementing, 1034 // so we can put the dependent instruction into the ready list. 1035 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1036 assert(!DepBundle->IsScheduled && 1037 "already scheduled bundle gets ready"); 1038 ReadyList.insert(DepBundle); 1039 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1040 << "\n"); 1041 } 1042 } 1043 BundleMember = BundleMember->NextInBundle; 1044 } 1045 } 1046 1047 void doForAllOpcodes(Value *V, 1048 function_ref<void(ScheduleData *SD)> Action) { 1049 if (ScheduleData *SD = getScheduleData(V)) 1050 Action(SD); 1051 auto I = ExtraScheduleDataMap.find(V); 1052 if (I != ExtraScheduleDataMap.end()) 1053 for (auto &P : I->second) 1054 if (P.second->SchedulingRegionID == SchedulingRegionID) 1055 Action(P.second); 1056 } 1057 1058 /// Put all instructions into the ReadyList which are ready for scheduling. 1059 template <typename ReadyListType> 1060 void initialFillReadyList(ReadyListType &ReadyList) { 1061 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1062 doForAllOpcodes(I, [&](ScheduleData *SD) { 1063 if (SD->isSchedulingEntity() && SD->isReady()) { 1064 ReadyList.insert(SD); 1065 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1066 } 1067 }); 1068 } 1069 } 1070 1071 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1072 /// cyclic dependencies. This is only a dry-run, no instructions are 1073 /// actually moved at this stage. 1074 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1075 1076 /// Un-bundles a group of instructions. 1077 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1078 1079 /// Allocates schedule data chunk. 1080 ScheduleData *allocateScheduleDataChunks(); 1081 1082 /// Extends the scheduling region so that V is inside the region. 1083 /// \returns true if the region size is within the limit. 1084 bool extendSchedulingRegion(Value *V, Value *OpValue); 1085 1086 /// Initialize the ScheduleData structures for new instructions in the 1087 /// scheduling region. 1088 void initScheduleData(Instruction *FromI, Instruction *ToI, 1089 ScheduleData *PrevLoadStore, 1090 ScheduleData *NextLoadStore); 1091 1092 /// Updates the dependency information of a bundle and of all instructions/ 1093 /// bundles which depend on the original bundle. 1094 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1095 BoUpSLP *SLP); 1096 1097 /// Sets all instruction in the scheduling region to un-scheduled. 1098 void resetSchedule(); 1099 1100 BasicBlock *BB; 1101 1102 /// Simple memory allocation for ScheduleData. 1103 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1104 1105 /// The size of a ScheduleData array in ScheduleDataChunks. 1106 int ChunkSize; 1107 1108 /// The allocator position in the current chunk, which is the last entry 1109 /// of ScheduleDataChunks. 1110 int ChunkPos; 1111 1112 /// Attaches ScheduleData to Instruction. 1113 /// Note that the mapping survives during all vectorization iterations, i.e. 1114 /// ScheduleData structures are recycled. 1115 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1116 1117 /// Attaches ScheduleData to Instruction with the leading key. 1118 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1119 ExtraScheduleDataMap; 1120 1121 struct ReadyList : SmallVector<ScheduleData *, 8> { 1122 void insert(ScheduleData *SD) { push_back(SD); } 1123 }; 1124 1125 /// The ready-list for scheduling (only used for the dry-run). 1126 ReadyList ReadyInsts; 1127 1128 /// The first instruction of the scheduling region. 1129 Instruction *ScheduleStart = nullptr; 1130 1131 /// The first instruction _after_ the scheduling region. 1132 Instruction *ScheduleEnd = nullptr; 1133 1134 /// The first memory accessing instruction in the scheduling region 1135 /// (can be null). 1136 ScheduleData *FirstLoadStoreInRegion = nullptr; 1137 1138 /// The last memory accessing instruction in the scheduling region 1139 /// (can be null). 1140 ScheduleData *LastLoadStoreInRegion = nullptr; 1141 1142 /// The current size of the scheduling region. 1143 int ScheduleRegionSize = 0; 1144 1145 /// The maximum size allowed for the scheduling region. 1146 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1147 1148 /// The ID of the scheduling region. For a new vectorization iteration this 1149 /// is incremented which "removes" all ScheduleData from the region. 1150 int SchedulingRegionID = 1; 1151 // Make sure that the initial SchedulingRegionID is greater than the 1152 // initial SchedulingRegionID in ScheduleData (which is 0). 1153 }; 1154 1155 /// Attaches the BlockScheduling structures to basic blocks. 1156 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1157 1158 /// Performs the "real" scheduling. Done before vectorization is actually 1159 /// performed in a basic block. 1160 void scheduleBlock(BlockScheduling *BS); 1161 1162 /// List of users to ignore during scheduling and that don't need extracting. 1163 ArrayRef<Value *> UserIgnoreList; 1164 1165 // Number of load bundles that contain consecutive loads. 1166 int NumLoadsWantToKeepOrder = 0; 1167 1168 // Number of load bundles that contain consecutive loads in reversed order. 1169 int NumLoadsWantToChangeOrder = 0; 1170 1171 // Analysis and block reference. 1172 Function *F; 1173 ScalarEvolution *SE; 1174 TargetTransformInfo *TTI; 1175 TargetLibraryInfo *TLI; 1176 AliasAnalysis *AA; 1177 LoopInfo *LI; 1178 DominatorTree *DT; 1179 AssumptionCache *AC; 1180 DemandedBits *DB; 1181 const DataLayout *DL; 1182 OptimizationRemarkEmitter *ORE; 1183 1184 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1185 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1186 /// Instruction builder to construct the vectorized tree. 1187 IRBuilder<> Builder; 1188 1189 /// A map of scalar integer values to the smallest bit width with which they 1190 /// can legally be represented. The values map to (width, signed) pairs, 1191 /// where "width" indicates the minimum bit width and "signed" is True if the 1192 /// value must be signed-extended, rather than zero-extended, back to its 1193 /// original width. 1194 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1195 }; 1196 1197 } // end namespace slpvectorizer 1198 1199 template <> struct GraphTraits<BoUpSLP *> { 1200 using TreeEntry = BoUpSLP::TreeEntry; 1201 1202 /// NodeRef has to be a pointer per the GraphWriter. 1203 using NodeRef = TreeEntry *; 1204 1205 /// \brief Add the VectorizableTree to the index iterator to be able to return 1206 /// TreeEntry pointers. 1207 struct ChildIteratorType 1208 : public iterator_adaptor_base<ChildIteratorType, 1209 SmallVector<int, 1>::iterator> { 1210 std::vector<TreeEntry> &VectorizableTree; 1211 1212 ChildIteratorType(SmallVector<int, 1>::iterator W, 1213 std::vector<TreeEntry> &VT) 1214 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1215 1216 NodeRef operator*() { return &VectorizableTree[*I]; } 1217 }; 1218 1219 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1220 1221 static ChildIteratorType child_begin(NodeRef N) { 1222 return {N->UserTreeIndices.begin(), N->Container}; 1223 } 1224 1225 static ChildIteratorType child_end(NodeRef N) { 1226 return {N->UserTreeIndices.end(), N->Container}; 1227 } 1228 1229 /// For the node iterator we just need to turn the TreeEntry iterator into a 1230 /// TreeEntry* iterator so that it dereferences to NodeRef. 1231 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1232 1233 static nodes_iterator nodes_begin(BoUpSLP *R) { 1234 return nodes_iterator(R->VectorizableTree.begin()); 1235 } 1236 1237 static nodes_iterator nodes_end(BoUpSLP *R) { 1238 return nodes_iterator(R->VectorizableTree.end()); 1239 } 1240 1241 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1242 }; 1243 1244 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1245 using TreeEntry = BoUpSLP::TreeEntry; 1246 1247 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1248 1249 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1250 std::string Str; 1251 raw_string_ostream OS(Str); 1252 if (isSplat(Entry->Scalars)) { 1253 OS << "<splat> " << *Entry->Scalars[0]; 1254 return Str; 1255 } 1256 for (auto V : Entry->Scalars) { 1257 OS << *V; 1258 if (std::any_of( 1259 R->ExternalUses.begin(), R->ExternalUses.end(), 1260 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1261 OS << " <extract>"; 1262 OS << "\n"; 1263 } 1264 return Str; 1265 } 1266 1267 static std::string getNodeAttributes(const TreeEntry *Entry, 1268 const BoUpSLP *) { 1269 if (Entry->NeedToGather) 1270 return "color=red"; 1271 return ""; 1272 } 1273 }; 1274 1275 } // end namespace llvm 1276 1277 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1278 ArrayRef<Value *> UserIgnoreLst) { 1279 ExtraValueToDebugLocsMap ExternallyUsedValues; 1280 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1281 } 1282 1283 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1284 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1285 ArrayRef<Value *> UserIgnoreLst) { 1286 deleteTree(); 1287 UserIgnoreList = UserIgnoreLst; 1288 if (!allSameType(Roots)) 1289 return; 1290 buildTree_rec(Roots, 0, -1); 1291 1292 // Collect the values that we need to extract from the tree. 1293 for (TreeEntry &EIdx : VectorizableTree) { 1294 TreeEntry *Entry = &EIdx; 1295 1296 // No need to handle users of gathered values. 1297 if (Entry->NeedToGather) 1298 continue; 1299 1300 // For each lane: 1301 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1302 Value *Scalar = Entry->Scalars[Lane]; 1303 1304 // Check if the scalar is externally used as an extra arg. 1305 auto ExtI = ExternallyUsedValues.find(Scalar); 1306 if (ExtI != ExternallyUsedValues.end()) { 1307 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1308 Lane << " from " << *Scalar << ".\n"); 1309 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1310 continue; 1311 } 1312 for (User *U : Scalar->users()) { 1313 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1314 1315 Instruction *UserInst = dyn_cast<Instruction>(U); 1316 if (!UserInst) 1317 continue; 1318 1319 // Skip in-tree scalars that become vectors 1320 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1321 Value *UseScalar = UseEntry->Scalars[0]; 1322 // Some in-tree scalars will remain as scalar in vectorized 1323 // instructions. If that is the case, the one in Lane 0 will 1324 // be used. 1325 if (UseScalar != U || 1326 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1327 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1328 << ".\n"); 1329 assert(!UseEntry->NeedToGather && "Bad state"); 1330 continue; 1331 } 1332 } 1333 1334 // Ignore users in the user ignore list. 1335 if (is_contained(UserIgnoreList, UserInst)) 1336 continue; 1337 1338 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1339 Lane << " from " << *Scalar << ".\n"); 1340 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1341 } 1342 } 1343 } 1344 } 1345 1346 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1347 int UserTreeIdx) { 1348 bool isAltShuffle = false; 1349 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1350 1351 if (Depth == RecursionMaxDepth) { 1352 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1353 newTreeEntry(VL, false, UserTreeIdx); 1354 return; 1355 } 1356 1357 // Don't handle vectors. 1358 if (VL[0]->getType()->isVectorTy()) { 1359 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1360 newTreeEntry(VL, false, UserTreeIdx); 1361 return; 1362 } 1363 1364 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1365 if (SI->getValueOperand()->getType()->isVectorTy()) { 1366 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1367 newTreeEntry(VL, false, UserTreeIdx); 1368 return; 1369 } 1370 unsigned Opcode = getSameOpcode(VL); 1371 1372 // Check that this shuffle vector refers to the alternate 1373 // sequence of opcodes. 1374 if (Opcode == Instruction::ShuffleVector) { 1375 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1376 unsigned Op = I0->getOpcode(); 1377 if (Op != Instruction::ShuffleVector) 1378 isAltShuffle = true; 1379 } 1380 1381 // If all of the operands are identical or constant we have a simple solution. 1382 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1383 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1384 newTreeEntry(VL, false, UserTreeIdx); 1385 return; 1386 } 1387 1388 // We now know that this is a vector of instructions of the same type from 1389 // the same block. 1390 1391 // Don't vectorize ephemeral values. 1392 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1393 if (EphValues.count(VL[i])) { 1394 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1395 ") is ephemeral.\n"); 1396 newTreeEntry(VL, false, UserTreeIdx); 1397 return; 1398 } 1399 } 1400 1401 // Check if this is a duplicate of another entry. 1402 if (TreeEntry *E = getTreeEntry(VL[0])) { 1403 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1404 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1405 if (E->Scalars[i] != VL[i]) { 1406 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1407 newTreeEntry(VL, false, UserTreeIdx); 1408 return; 1409 } 1410 } 1411 // Record the reuse of the tree node. FIXME, currently this is only used to 1412 // properly draw the graph rather than for the actual vectorization. 1413 E->UserTreeIndices.push_back(UserTreeIdx); 1414 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1415 return; 1416 } 1417 1418 // Check that none of the instructions in the bundle are already in the tree. 1419 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1420 if (ScalarToTreeEntry.count(VL[i])) { 1421 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1422 ") is already in tree.\n"); 1423 newTreeEntry(VL, false, UserTreeIdx); 1424 return; 1425 } 1426 } 1427 1428 // If any of the scalars is marked as a value that needs to stay scalar then 1429 // we need to gather the scalars. 1430 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1431 if (MustGather.count(VL[i])) { 1432 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1433 newTreeEntry(VL, false, UserTreeIdx); 1434 return; 1435 } 1436 } 1437 1438 // Check that all of the users of the scalars that we want to vectorize are 1439 // schedulable. 1440 Instruction *VL0 = cast<Instruction>(VL[0]); 1441 BasicBlock *BB = VL0->getParent(); 1442 1443 if (!DT->isReachableFromEntry(BB)) { 1444 // Don't go into unreachable blocks. They may contain instructions with 1445 // dependency cycles which confuse the final scheduling. 1446 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1447 newTreeEntry(VL, false, UserTreeIdx); 1448 return; 1449 } 1450 1451 // Check that every instructions appears once in this bundle. 1452 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1453 for (unsigned j = i+1; j < e; ++j) 1454 if (VL[i] == VL[j]) { 1455 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1456 newTreeEntry(VL, false, UserTreeIdx); 1457 return; 1458 } 1459 1460 auto &BSRef = BlocksSchedules[BB]; 1461 if (!BSRef) { 1462 BSRef = llvm::make_unique<BlockScheduling>(BB); 1463 } 1464 BlockScheduling &BS = *BSRef.get(); 1465 1466 if (!BS.tryScheduleBundle(VL, this, VL0)) { 1467 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1468 assert((!BS.getScheduleData(VL0) || 1469 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1470 "tryScheduleBundle should cancelScheduling on failure"); 1471 newTreeEntry(VL, false, UserTreeIdx); 1472 return; 1473 } 1474 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1475 1476 switch (Opcode) { 1477 case Instruction::PHI: { 1478 PHINode *PH = dyn_cast<PHINode>(VL0); 1479 1480 // Check for terminator values (e.g. invoke). 1481 for (unsigned j = 0; j < VL.size(); ++j) 1482 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1483 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1484 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1485 if (Term) { 1486 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1487 BS.cancelScheduling(VL, VL0); 1488 newTreeEntry(VL, false, UserTreeIdx); 1489 return; 1490 } 1491 } 1492 1493 newTreeEntry(VL, true, UserTreeIdx); 1494 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1495 1496 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1497 ValueList Operands; 1498 // Prepare the operand vector. 1499 for (Value *j : VL) 1500 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1501 PH->getIncomingBlock(i))); 1502 1503 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1504 } 1505 return; 1506 } 1507 case Instruction::ExtractValue: 1508 case Instruction::ExtractElement: { 1509 bool Reuse = canReuseExtract(VL, VL0); 1510 if (Reuse) { 1511 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1512 } else { 1513 BS.cancelScheduling(VL, VL0); 1514 } 1515 newTreeEntry(VL, Reuse, UserTreeIdx); 1516 return; 1517 } 1518 case Instruction::Load: { 1519 // Check that a vectorized load would load the same memory as a scalar 1520 // load. 1521 // For example we don't want vectorize loads that are smaller than 8 bit. 1522 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1523 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1524 // such a struct we read/write packed bits disagreeing with the 1525 // unvectorized version. 1526 Type *ScalarTy = VL0->getType(); 1527 1528 if (DL->getTypeSizeInBits(ScalarTy) != 1529 DL->getTypeAllocSizeInBits(ScalarTy)) { 1530 BS.cancelScheduling(VL, VL0); 1531 newTreeEntry(VL, false, UserTreeIdx); 1532 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1533 return; 1534 } 1535 1536 // Make sure all loads in the bundle are simple - we can't vectorize 1537 // atomic or volatile loads. 1538 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1539 LoadInst *L = cast<LoadInst>(VL[i]); 1540 if (!L->isSimple()) { 1541 BS.cancelScheduling(VL, VL0); 1542 newTreeEntry(VL, false, UserTreeIdx); 1543 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1544 return; 1545 } 1546 } 1547 1548 // Check if the loads are consecutive, reversed, or neither. 1549 // TODO: What we really want is to sort the loads, but for now, check 1550 // the two likely directions. 1551 bool Consecutive = true; 1552 bool ReverseConsecutive = true; 1553 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1554 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1555 Consecutive = false; 1556 break; 1557 } else { 1558 ReverseConsecutive = false; 1559 } 1560 } 1561 1562 if (Consecutive) { 1563 ++NumLoadsWantToKeepOrder; 1564 newTreeEntry(VL, true, UserTreeIdx); 1565 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1566 return; 1567 } 1568 1569 // If none of the load pairs were consecutive when checked in order, 1570 // check the reverse order. 1571 if (ReverseConsecutive) 1572 for (unsigned i = VL.size() - 1; i > 0; --i) 1573 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1574 ReverseConsecutive = false; 1575 break; 1576 } 1577 1578 BS.cancelScheduling(VL, VL0); 1579 newTreeEntry(VL, false, UserTreeIdx); 1580 1581 if (ReverseConsecutive) { 1582 ++NumLoadsWantToChangeOrder; 1583 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1584 } else { 1585 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1586 } 1587 return; 1588 } 1589 case Instruction::ZExt: 1590 case Instruction::SExt: 1591 case Instruction::FPToUI: 1592 case Instruction::FPToSI: 1593 case Instruction::FPExt: 1594 case Instruction::PtrToInt: 1595 case Instruction::IntToPtr: 1596 case Instruction::SIToFP: 1597 case Instruction::UIToFP: 1598 case Instruction::Trunc: 1599 case Instruction::FPTrunc: 1600 case Instruction::BitCast: { 1601 Type *SrcTy = VL0->getOperand(0)->getType(); 1602 for (unsigned i = 0; i < VL.size(); ++i) { 1603 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1604 if (Ty != SrcTy || !isValidElementType(Ty)) { 1605 BS.cancelScheduling(VL, VL0); 1606 newTreeEntry(VL, false, UserTreeIdx); 1607 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1608 return; 1609 } 1610 } 1611 newTreeEntry(VL, true, UserTreeIdx); 1612 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1613 1614 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1615 ValueList Operands; 1616 // Prepare the operand vector. 1617 for (Value *j : VL) 1618 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1619 1620 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1621 } 1622 return; 1623 } 1624 case Instruction::ICmp: 1625 case Instruction::FCmp: { 1626 // Check that all of the compares have the same predicate. 1627 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1628 Type *ComparedTy = VL0->getOperand(0)->getType(); 1629 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1630 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1631 if (Cmp->getPredicate() != P0 || 1632 Cmp->getOperand(0)->getType() != ComparedTy) { 1633 BS.cancelScheduling(VL, VL0); 1634 newTreeEntry(VL, false, UserTreeIdx); 1635 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1636 return; 1637 } 1638 } 1639 1640 newTreeEntry(VL, true, UserTreeIdx); 1641 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1642 1643 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1644 ValueList Operands; 1645 // Prepare the operand vector. 1646 for (Value *j : VL) 1647 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1648 1649 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1650 } 1651 return; 1652 } 1653 case Instruction::Select: 1654 case Instruction::Add: 1655 case Instruction::FAdd: 1656 case Instruction::Sub: 1657 case Instruction::FSub: 1658 case Instruction::Mul: 1659 case Instruction::FMul: 1660 case Instruction::UDiv: 1661 case Instruction::SDiv: 1662 case Instruction::FDiv: 1663 case Instruction::URem: 1664 case Instruction::SRem: 1665 case Instruction::FRem: 1666 case Instruction::Shl: 1667 case Instruction::LShr: 1668 case Instruction::AShr: 1669 case Instruction::And: 1670 case Instruction::Or: 1671 case Instruction::Xor: 1672 newTreeEntry(VL, true, UserTreeIdx); 1673 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1674 1675 // Sort operands of the instructions so that each side is more likely to 1676 // have the same opcode. 1677 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1678 ValueList Left, Right; 1679 reorderInputsAccordingToOpcode(VL0->getOpcode(), VL, Left, Right); 1680 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1681 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1682 return; 1683 } 1684 1685 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1686 ValueList Operands; 1687 // Prepare the operand vector. 1688 for (Value *j : VL) 1689 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1690 1691 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1692 } 1693 return; 1694 1695 case Instruction::GetElementPtr: { 1696 // We don't combine GEPs with complicated (nested) indexing. 1697 for (unsigned j = 0; j < VL.size(); ++j) { 1698 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1699 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1700 BS.cancelScheduling(VL, VL0); 1701 newTreeEntry(VL, false, UserTreeIdx); 1702 return; 1703 } 1704 } 1705 1706 // We can't combine several GEPs into one vector if they operate on 1707 // different types. 1708 Type *Ty0 = VL0->getOperand(0)->getType(); 1709 for (unsigned j = 0; j < VL.size(); ++j) { 1710 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1711 if (Ty0 != CurTy) { 1712 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1713 BS.cancelScheduling(VL, VL0); 1714 newTreeEntry(VL, false, UserTreeIdx); 1715 return; 1716 } 1717 } 1718 1719 // We don't combine GEPs with non-constant indexes. 1720 for (unsigned j = 0; j < VL.size(); ++j) { 1721 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1722 if (!isa<ConstantInt>(Op)) { 1723 DEBUG( 1724 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1725 BS.cancelScheduling(VL, VL0); 1726 newTreeEntry(VL, false, UserTreeIdx); 1727 return; 1728 } 1729 } 1730 1731 newTreeEntry(VL, true, UserTreeIdx); 1732 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1733 for (unsigned i = 0, e = 2; i < e; ++i) { 1734 ValueList Operands; 1735 // Prepare the operand vector. 1736 for (Value *j : VL) 1737 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1738 1739 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1740 } 1741 return; 1742 } 1743 case Instruction::Store: { 1744 // Check if the stores are consecutive or of we need to swizzle them. 1745 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1746 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1747 BS.cancelScheduling(VL, VL0); 1748 newTreeEntry(VL, false, UserTreeIdx); 1749 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1750 return; 1751 } 1752 1753 newTreeEntry(VL, true, UserTreeIdx); 1754 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1755 1756 ValueList Operands; 1757 for (Value *j : VL) 1758 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1759 1760 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1761 return; 1762 } 1763 case Instruction::Call: { 1764 // Check if the calls are all to the same vectorizable intrinsic. 1765 CallInst *CI = cast<CallInst>(VL0); 1766 // Check if this is an Intrinsic call or something that can be 1767 // represented by an intrinsic call 1768 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1769 if (!isTriviallyVectorizable(ID)) { 1770 BS.cancelScheduling(VL, VL0); 1771 newTreeEntry(VL, false, UserTreeIdx); 1772 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1773 return; 1774 } 1775 Function *Int = CI->getCalledFunction(); 1776 Value *A1I = nullptr; 1777 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1778 A1I = CI->getArgOperand(1); 1779 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1780 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1781 if (!CI2 || CI2->getCalledFunction() != Int || 1782 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1783 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1784 BS.cancelScheduling(VL, VL0); 1785 newTreeEntry(VL, false, UserTreeIdx); 1786 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1787 << "\n"); 1788 return; 1789 } 1790 // ctlz,cttz and powi are special intrinsics whose second argument 1791 // should be same in order for them to be vectorized. 1792 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1793 Value *A1J = CI2->getArgOperand(1); 1794 if (A1I != A1J) { 1795 BS.cancelScheduling(VL, VL0); 1796 newTreeEntry(VL, false, UserTreeIdx); 1797 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1798 << " argument "<< A1I<<"!=" << A1J 1799 << "\n"); 1800 return; 1801 } 1802 } 1803 // Verify that the bundle operands are identical between the two calls. 1804 if (CI->hasOperandBundles() && 1805 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1806 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1807 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1808 BS.cancelScheduling(VL, VL0); 1809 newTreeEntry(VL, false, UserTreeIdx); 1810 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1811 << *VL[i] << '\n'); 1812 return; 1813 } 1814 } 1815 1816 newTreeEntry(VL, true, UserTreeIdx); 1817 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1818 ValueList Operands; 1819 // Prepare the operand vector. 1820 for (Value *j : VL) { 1821 CallInst *CI2 = dyn_cast<CallInst>(j); 1822 Operands.push_back(CI2->getArgOperand(i)); 1823 } 1824 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1825 } 1826 return; 1827 } 1828 case Instruction::ShuffleVector: 1829 // If this is not an alternate sequence of opcode like add-sub 1830 // then do not vectorize this instruction. 1831 if (!isAltShuffle) { 1832 BS.cancelScheduling(VL, VL0); 1833 newTreeEntry(VL, false, UserTreeIdx); 1834 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1835 return; 1836 } 1837 newTreeEntry(VL, true, UserTreeIdx); 1838 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1839 1840 // Reorder operands if reordering would enable vectorization. 1841 if (isa<BinaryOperator>(VL0)) { 1842 ValueList Left, Right; 1843 reorderAltShuffleOperands(VL0->getOpcode(), VL, Left, Right); 1844 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1845 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1846 return; 1847 } 1848 1849 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1850 ValueList Operands; 1851 // Prepare the operand vector. 1852 for (Value *j : VL) 1853 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1854 1855 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1856 } 1857 return; 1858 1859 default: 1860 BS.cancelScheduling(VL, VL0); 1861 newTreeEntry(VL, false, UserTreeIdx); 1862 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1863 return; 1864 } 1865 } 1866 1867 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1868 unsigned N; 1869 Type *EltTy; 1870 auto *ST = dyn_cast<StructType>(T); 1871 if (ST) { 1872 N = ST->getNumElements(); 1873 EltTy = *ST->element_begin(); 1874 } else { 1875 N = cast<ArrayType>(T)->getNumElements(); 1876 EltTy = cast<ArrayType>(T)->getElementType(); 1877 } 1878 if (!isValidElementType(EltTy)) 1879 return 0; 1880 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1881 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1882 return 0; 1883 if (ST) { 1884 // Check that struct is homogeneous. 1885 for (const auto *Ty : ST->elements()) 1886 if (Ty != EltTy) 1887 return 0; 1888 } 1889 return N; 1890 } 1891 1892 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1893 Instruction *E0 = cast<Instruction>(OpValue); 1894 assert(E0->getOpcode() == Instruction::ExtractElement || 1895 E0->getOpcode() == Instruction::ExtractValue); 1896 assert(E0->getOpcode() == getSameOpcode(VL) && "Invalid opcode"); 1897 // Check if all of the extracts come from the same vector and from the 1898 // correct offset. 1899 Value *Vec = E0->getOperand(0); 1900 1901 // We have to extract from a vector/aggregate with the same number of elements. 1902 unsigned NElts; 1903 if (E0->getOpcode() == Instruction::ExtractValue) { 1904 const DataLayout &DL = E0->getModule()->getDataLayout(); 1905 NElts = canMapToVector(Vec->getType(), DL); 1906 if (!NElts) 1907 return false; 1908 // Check if load can be rewritten as load of vector. 1909 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1910 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1911 return false; 1912 } else { 1913 NElts = Vec->getType()->getVectorNumElements(); 1914 } 1915 1916 if (NElts != VL.size()) 1917 return false; 1918 1919 // Check that all of the indices extract from the correct offset. 1920 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1921 Instruction *Inst = cast<Instruction>(VL[I]); 1922 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1923 return false; 1924 if (Inst->getOperand(0) != Vec) 1925 return false; 1926 } 1927 1928 return true; 1929 } 1930 1931 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1932 return I->hasOneUse() || 1933 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1934 return ScalarToTreeEntry.count(U) > 0; 1935 }); 1936 } 1937 1938 int BoUpSLP::getEntryCost(TreeEntry *E) { 1939 ArrayRef<Value*> VL = E->Scalars; 1940 1941 Type *ScalarTy = VL[0]->getType(); 1942 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1943 ScalarTy = SI->getValueOperand()->getType(); 1944 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1945 ScalarTy = CI->getOperand(0)->getType(); 1946 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1947 1948 // If we have computed a smaller type for the expression, update VecTy so 1949 // that the costs will be accurate. 1950 if (MinBWs.count(VL[0])) 1951 VecTy = VectorType::get( 1952 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1953 1954 if (E->NeedToGather) { 1955 if (allConstant(VL)) 1956 return 0; 1957 if (isSplat(VL)) { 1958 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1959 } 1960 if (getSameOpcode(VL) == Instruction::ExtractElement) { 1961 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 1962 if (ShuffleKind.hasValue()) { 1963 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 1964 for (auto *V : VL) { 1965 // If all users of instruction are going to be vectorized and this 1966 // instruction itself is not going to be vectorized, consider this 1967 // instruction as dead and remove its cost from the final cost of the 1968 // vectorized tree. 1969 if (areAllUsersVectorized(cast<Instruction>(V)) && 1970 !ScalarToTreeEntry.count(V)) { 1971 auto *IO = cast<ConstantInt>( 1972 cast<ExtractElementInst>(V)->getIndexOperand()); 1973 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1974 IO->getZExtValue()); 1975 } 1976 } 1977 return Cost; 1978 } 1979 } 1980 return getGatherCost(E->Scalars); 1981 } 1982 unsigned Opcode = getSameOpcode(VL); 1983 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1984 Instruction *VL0 = cast<Instruction>(VL[0]); 1985 switch (Opcode) { 1986 case Instruction::PHI: 1987 return 0; 1988 1989 case Instruction::ExtractValue: 1990 case Instruction::ExtractElement: 1991 if (canReuseExtract(VL, VL0)) { 1992 int DeadCost = 0; 1993 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1994 Instruction *E = cast<Instruction>(VL[i]); 1995 // If all users are going to be vectorized, instruction can be 1996 // considered as dead. 1997 // The same, if have only one user, it will be vectorized for sure. 1998 if (areAllUsersVectorized(E)) 1999 // Take credit for instruction that will become dead. 2000 DeadCost += 2001 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2002 } 2003 return -DeadCost; 2004 } 2005 return getGatherCost(VecTy); 2006 2007 case Instruction::ZExt: 2008 case Instruction::SExt: 2009 case Instruction::FPToUI: 2010 case Instruction::FPToSI: 2011 case Instruction::FPExt: 2012 case Instruction::PtrToInt: 2013 case Instruction::IntToPtr: 2014 case Instruction::SIToFP: 2015 case Instruction::UIToFP: 2016 case Instruction::Trunc: 2017 case Instruction::FPTrunc: 2018 case Instruction::BitCast: { 2019 Type *SrcTy = VL0->getOperand(0)->getType(); 2020 2021 // Calculate the cost of this instruction. 2022 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2023 VL0->getType(), SrcTy, VL0); 2024 2025 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2026 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2027 return VecCost - ScalarCost; 2028 } 2029 case Instruction::FCmp: 2030 case Instruction::ICmp: 2031 case Instruction::Select: { 2032 // Calculate the cost of this instruction. 2033 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2034 int ScalarCost = VecTy->getNumElements() * 2035 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2036 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0); 2037 return VecCost - ScalarCost; 2038 } 2039 case Instruction::Add: 2040 case Instruction::FAdd: 2041 case Instruction::Sub: 2042 case Instruction::FSub: 2043 case Instruction::Mul: 2044 case Instruction::FMul: 2045 case Instruction::UDiv: 2046 case Instruction::SDiv: 2047 case Instruction::FDiv: 2048 case Instruction::URem: 2049 case Instruction::SRem: 2050 case Instruction::FRem: 2051 case Instruction::Shl: 2052 case Instruction::LShr: 2053 case Instruction::AShr: 2054 case Instruction::And: 2055 case Instruction::Or: 2056 case Instruction::Xor: { 2057 // Certain instructions can be cheaper to vectorize if they have a 2058 // constant second vector operand. 2059 TargetTransformInfo::OperandValueKind Op1VK = 2060 TargetTransformInfo::OK_AnyValue; 2061 TargetTransformInfo::OperandValueKind Op2VK = 2062 TargetTransformInfo::OK_UniformConstantValue; 2063 TargetTransformInfo::OperandValueProperties Op1VP = 2064 TargetTransformInfo::OP_None; 2065 TargetTransformInfo::OperandValueProperties Op2VP = 2066 TargetTransformInfo::OP_None; 2067 2068 // If all operands are exactly the same ConstantInt then set the 2069 // operand kind to OK_UniformConstantValue. 2070 // If instead not all operands are constants, then set the operand kind 2071 // to OK_AnyValue. If all operands are constants but not the same, 2072 // then set the operand kind to OK_NonUniformConstantValue. 2073 ConstantInt *CInt = nullptr; 2074 for (unsigned i = 0; i < VL.size(); ++i) { 2075 const Instruction *I = cast<Instruction>(VL[i]); 2076 if (!isa<ConstantInt>(I->getOperand(1))) { 2077 Op2VK = TargetTransformInfo::OK_AnyValue; 2078 break; 2079 } 2080 if (i == 0) { 2081 CInt = cast<ConstantInt>(I->getOperand(1)); 2082 continue; 2083 } 2084 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2085 CInt != cast<ConstantInt>(I->getOperand(1))) 2086 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2087 } 2088 // FIXME: Currently cost of model modification for division by power of 2089 // 2 is handled for X86 and AArch64. Add support for other targets. 2090 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2091 CInt->getValue().isPowerOf2()) 2092 Op2VP = TargetTransformInfo::OP_PowerOf2; 2093 2094 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2095 int ScalarCost = 2096 VecTy->getNumElements() * 2097 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2098 Op2VP, Operands); 2099 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 2100 Op1VP, Op2VP, Operands); 2101 return VecCost - ScalarCost; 2102 } 2103 case Instruction::GetElementPtr: { 2104 TargetTransformInfo::OperandValueKind Op1VK = 2105 TargetTransformInfo::OK_AnyValue; 2106 TargetTransformInfo::OperandValueKind Op2VK = 2107 TargetTransformInfo::OK_UniformConstantValue; 2108 2109 int ScalarCost = 2110 VecTy->getNumElements() * 2111 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2112 int VecCost = 2113 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2114 2115 return VecCost - ScalarCost; 2116 } 2117 case Instruction::Load: { 2118 // Cost of wide load - cost of scalar loads. 2119 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2120 int ScalarLdCost = VecTy->getNumElements() * 2121 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2122 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2123 VecTy, alignment, 0, VL0); 2124 return VecLdCost - ScalarLdCost; 2125 } 2126 case Instruction::Store: { 2127 // We know that we can merge the stores. Calculate the cost. 2128 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2129 int ScalarStCost = VecTy->getNumElements() * 2130 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2131 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2132 VecTy, alignment, 0, VL0); 2133 return VecStCost - ScalarStCost; 2134 } 2135 case Instruction::Call: { 2136 CallInst *CI = cast<CallInst>(VL0); 2137 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2138 2139 // Calculate the cost of the scalar and vector calls. 2140 SmallVector<Type*, 4> ScalarTys; 2141 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2142 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2143 2144 FastMathFlags FMF; 2145 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2146 FMF = FPMO->getFastMathFlags(); 2147 2148 int ScalarCallCost = VecTy->getNumElements() * 2149 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2150 2151 SmallVector<Value *, 4> Args(CI->arg_operands()); 2152 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2153 VecTy->getNumElements()); 2154 2155 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2156 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2157 << " for " << *CI << "\n"); 2158 2159 return VecCallCost - ScalarCallCost; 2160 } 2161 case Instruction::ShuffleVector: { 2162 TargetTransformInfo::OperandValueKind Op1VK = 2163 TargetTransformInfo::OK_AnyValue; 2164 TargetTransformInfo::OperandValueKind Op2VK = 2165 TargetTransformInfo::OK_AnyValue; 2166 int ScalarCost = 0; 2167 int VecCost = 0; 2168 for (Value *i : VL) { 2169 Instruction *I = cast<Instruction>(i); 2170 if (!I) 2171 break; 2172 ScalarCost += 2173 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2174 } 2175 // VecCost is equal to sum of the cost of creating 2 vectors 2176 // and the cost of creating shuffle. 2177 Instruction *I0 = cast<Instruction>(VL[0]); 2178 VecCost = 2179 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2180 Instruction *I1 = cast<Instruction>(VL[1]); 2181 VecCost += 2182 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2183 VecCost += 2184 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2185 return VecCost - ScalarCost; 2186 } 2187 default: 2188 llvm_unreachable("Unknown instruction"); 2189 } 2190 } 2191 2192 bool BoUpSLP::isFullyVectorizableTinyTree() { 2193 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2194 VectorizableTree.size() << " is fully vectorizable .\n"); 2195 2196 // We only handle trees of heights 1 and 2. 2197 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2198 return true; 2199 2200 if (VectorizableTree.size() != 2) 2201 return false; 2202 2203 // Handle splat and all-constants stores. 2204 if (!VectorizableTree[0].NeedToGather && 2205 (allConstant(VectorizableTree[1].Scalars) || 2206 isSplat(VectorizableTree[1].Scalars))) 2207 return true; 2208 2209 // Gathering cost would be too much for tiny trees. 2210 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2211 return false; 2212 2213 return true; 2214 } 2215 2216 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2217 // We can vectorize the tree if its size is greater than or equal to the 2218 // minimum size specified by the MinTreeSize command line option. 2219 if (VectorizableTree.size() >= MinTreeSize) 2220 return false; 2221 2222 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2223 // can vectorize it if we can prove it fully vectorizable. 2224 if (isFullyVectorizableTinyTree()) 2225 return false; 2226 2227 assert(VectorizableTree.empty() 2228 ? ExternalUses.empty() 2229 : true && "We shouldn't have any external users"); 2230 2231 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2232 // vectorizable. 2233 return true; 2234 } 2235 2236 int BoUpSLP::getSpillCost() { 2237 // Walk from the bottom of the tree to the top, tracking which values are 2238 // live. When we see a call instruction that is not part of our tree, 2239 // query TTI to see if there is a cost to keeping values live over it 2240 // (for example, if spills and fills are required). 2241 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2242 int Cost = 0; 2243 2244 SmallPtrSet<Instruction*, 4> LiveValues; 2245 Instruction *PrevInst = nullptr; 2246 2247 for (const auto &N : VectorizableTree) { 2248 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2249 if (!Inst) 2250 continue; 2251 2252 if (!PrevInst) { 2253 PrevInst = Inst; 2254 continue; 2255 } 2256 2257 // Update LiveValues. 2258 LiveValues.erase(PrevInst); 2259 for (auto &J : PrevInst->operands()) { 2260 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2261 LiveValues.insert(cast<Instruction>(&*J)); 2262 } 2263 2264 DEBUG( 2265 dbgs() << "SLP: #LV: " << LiveValues.size(); 2266 for (auto *X : LiveValues) 2267 dbgs() << " " << X->getName(); 2268 dbgs() << ", Looking at "; 2269 Inst->dump(); 2270 ); 2271 2272 // Now find the sequence of instructions between PrevInst and Inst. 2273 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2274 PrevInstIt = 2275 PrevInst->getIterator().getReverse(); 2276 while (InstIt != PrevInstIt) { 2277 if (PrevInstIt == PrevInst->getParent()->rend()) { 2278 PrevInstIt = Inst->getParent()->rbegin(); 2279 continue; 2280 } 2281 2282 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2283 SmallVector<Type*, 4> V; 2284 for (auto *II : LiveValues) 2285 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2286 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2287 } 2288 2289 ++PrevInstIt; 2290 } 2291 2292 PrevInst = Inst; 2293 } 2294 2295 return Cost; 2296 } 2297 2298 int BoUpSLP::getTreeCost() { 2299 int Cost = 0; 2300 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2301 VectorizableTree.size() << ".\n"); 2302 2303 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2304 2305 for (TreeEntry &TE : VectorizableTree) { 2306 int C = getEntryCost(&TE); 2307 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2308 << *TE.Scalars[0] << ".\n"); 2309 Cost += C; 2310 } 2311 2312 SmallSet<Value *, 16> ExtractCostCalculated; 2313 int ExtractCost = 0; 2314 for (ExternalUser &EU : ExternalUses) { 2315 // We only add extract cost once for the same scalar. 2316 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2317 continue; 2318 2319 // Uses by ephemeral values are free (because the ephemeral value will be 2320 // removed prior to code generation, and so the extraction will be 2321 // removed as well). 2322 if (EphValues.count(EU.User)) 2323 continue; 2324 2325 // If we plan to rewrite the tree in a smaller type, we will need to sign 2326 // extend the extracted value back to the original type. Here, we account 2327 // for the extract and the added cost of the sign extend if needed. 2328 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2329 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2330 if (MinBWs.count(ScalarRoot)) { 2331 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2332 auto Extend = 2333 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2334 VecTy = VectorType::get(MinTy, BundleWidth); 2335 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2336 VecTy, EU.Lane); 2337 } else { 2338 ExtractCost += 2339 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2340 } 2341 } 2342 2343 int SpillCost = getSpillCost(); 2344 Cost += SpillCost + ExtractCost; 2345 2346 std::string Str; 2347 { 2348 raw_string_ostream OS(Str); 2349 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2350 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2351 << "SLP: Total Cost = " << Cost << ".\n"; 2352 } 2353 DEBUG(dbgs() << Str); 2354 2355 if (ViewSLPTree) 2356 ViewGraph(this, "SLP" + F->getName(), false, Str); 2357 2358 return Cost; 2359 } 2360 2361 int BoUpSLP::getGatherCost(Type *Ty) { 2362 int Cost = 0; 2363 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2364 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2365 return Cost; 2366 } 2367 2368 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2369 // Find the type of the operands in VL. 2370 Type *ScalarTy = VL[0]->getType(); 2371 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2372 ScalarTy = SI->getValueOperand()->getType(); 2373 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2374 // Find the cost of inserting/extracting values from the vector. 2375 return getGatherCost(VecTy); 2376 } 2377 2378 // Reorder commutative operations in alternate shuffle if the resulting vectors 2379 // are consecutive loads. This would allow us to vectorize the tree. 2380 // If we have something like- 2381 // load a[0] - load b[0] 2382 // load b[1] + load a[1] 2383 // load a[2] - load b[2] 2384 // load a[3] + load b[3] 2385 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2386 // code. 2387 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2388 SmallVectorImpl<Value *> &Left, 2389 SmallVectorImpl<Value *> &Right) { 2390 // Push left and right operands of binary operation into Left and Right 2391 unsigned AltOpcode = getAltOpcode(Opcode); 2392 (void)AltOpcode; 2393 for (Value *V : VL) { 2394 auto *I = cast<Instruction>(V); 2395 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2396 "Incorrect instruction in vector"); 2397 Left.push_back(I->getOperand(0)); 2398 Right.push_back(I->getOperand(1)); 2399 } 2400 2401 // Reorder if we have a commutative operation and consecutive access 2402 // are on either side of the alternate instructions. 2403 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2404 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2405 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2406 Instruction *VL1 = cast<Instruction>(VL[j]); 2407 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2408 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2409 std::swap(Left[j], Right[j]); 2410 continue; 2411 } else if (VL2->isCommutative() && 2412 isConsecutiveAccess(L, L1, *DL, *SE)) { 2413 std::swap(Left[j + 1], Right[j + 1]); 2414 continue; 2415 } 2416 // else unchanged 2417 } 2418 } 2419 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2420 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2421 Instruction *VL1 = cast<Instruction>(VL[j]); 2422 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2423 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2424 std::swap(Left[j], Right[j]); 2425 continue; 2426 } else if (VL2->isCommutative() && 2427 isConsecutiveAccess(L, L1, *DL, *SE)) { 2428 std::swap(Left[j + 1], Right[j + 1]); 2429 continue; 2430 } 2431 // else unchanged 2432 } 2433 } 2434 } 2435 } 2436 2437 // Return true if I should be commuted before adding it's left and right 2438 // operands to the arrays Left and Right. 2439 // 2440 // The vectorizer is trying to either have all elements one side being 2441 // instruction with the same opcode to enable further vectorization, or having 2442 // a splat to lower the vectorizing cost. 2443 static bool shouldReorderOperands( 2444 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2445 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2446 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2447 VLeft = I.getOperand(0); 2448 VRight = I.getOperand(1); 2449 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2450 if (SplatRight) { 2451 if (VRight == Right[i - 1]) 2452 // Preserve SplatRight 2453 return false; 2454 if (VLeft == Right[i - 1]) { 2455 // Commuting would preserve SplatRight, but we don't want to break 2456 // SplatLeft either, i.e. preserve the original order if possible. 2457 // (FIXME: why do we care?) 2458 if (SplatLeft && VLeft == Left[i - 1]) 2459 return false; 2460 return true; 2461 } 2462 } 2463 // Symmetrically handle Right side. 2464 if (SplatLeft) { 2465 if (VLeft == Left[i - 1]) 2466 // Preserve SplatLeft 2467 return false; 2468 if (VRight == Left[i - 1]) 2469 return true; 2470 } 2471 2472 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2473 Instruction *IRight = dyn_cast<Instruction>(VRight); 2474 2475 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2476 // it and not the right, in this case we want to commute. 2477 if (AllSameOpcodeRight) { 2478 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2479 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2480 // Do not commute, a match on the right preserves AllSameOpcodeRight 2481 return false; 2482 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2483 // We have a match and may want to commute, but first check if there is 2484 // not also a match on the existing operands on the Left to preserve 2485 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2486 // (FIXME: why do we care?) 2487 if (AllSameOpcodeLeft && ILeft && 2488 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2489 return false; 2490 return true; 2491 } 2492 } 2493 // Symmetrically handle Left side. 2494 if (AllSameOpcodeLeft) { 2495 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2496 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2497 return false; 2498 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2499 return true; 2500 } 2501 return false; 2502 } 2503 2504 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2505 ArrayRef<Value *> VL, 2506 SmallVectorImpl<Value *> &Left, 2507 SmallVectorImpl<Value *> &Right) { 2508 if (!VL.empty()) { 2509 // Peel the first iteration out of the loop since there's nothing 2510 // interesting to do anyway and it simplifies the checks in the loop. 2511 auto *I = cast<Instruction>(VL[0]); 2512 Value *VLeft = I->getOperand(0); 2513 Value *VRight = I->getOperand(1); 2514 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2515 // Favor having instruction to the right. FIXME: why? 2516 std::swap(VLeft, VRight); 2517 Left.push_back(VLeft); 2518 Right.push_back(VRight); 2519 } 2520 2521 // Keep track if we have instructions with all the same opcode on one side. 2522 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2523 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2524 // Keep track if we have one side with all the same value (broadcast). 2525 bool SplatLeft = true; 2526 bool SplatRight = true; 2527 2528 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2529 Instruction *I = cast<Instruction>(VL[i]); 2530 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2531 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2532 "Can only process commutative instruction"); 2533 // Commute to favor either a splat or maximizing having the same opcodes on 2534 // one side. 2535 Value *VLeft; 2536 Value *VRight; 2537 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2538 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2539 VRight)) { 2540 Left.push_back(VRight); 2541 Right.push_back(VLeft); 2542 } else { 2543 Left.push_back(VLeft); 2544 Right.push_back(VRight); 2545 } 2546 // Update Splat* and AllSameOpcode* after the insertion. 2547 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2548 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2549 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2550 (cast<Instruction>(Left[i - 1])->getOpcode() == 2551 cast<Instruction>(Left[i])->getOpcode()); 2552 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2553 (cast<Instruction>(Right[i - 1])->getOpcode() == 2554 cast<Instruction>(Right[i])->getOpcode()); 2555 } 2556 2557 // If one operand end up being broadcast, return this operand order. 2558 if (SplatRight || SplatLeft) 2559 return; 2560 2561 // Finally check if we can get longer vectorizable chain by reordering 2562 // without breaking the good operand order detected above. 2563 // E.g. If we have something like- 2564 // load a[0] load b[0] 2565 // load b[1] load a[1] 2566 // load a[2] load b[2] 2567 // load a[3] load b[3] 2568 // Reordering the second load b[1] load a[1] would allow us to vectorize 2569 // this code and we still retain AllSameOpcode property. 2570 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2571 // such as- 2572 // add a[0],c[0] load b[0] 2573 // add a[1],c[2] load b[1] 2574 // b[2] load b[2] 2575 // add a[3],c[3] load b[3] 2576 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2577 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2578 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2579 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2580 std::swap(Left[j + 1], Right[j + 1]); 2581 continue; 2582 } 2583 } 2584 } 2585 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2586 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2587 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2588 std::swap(Left[j + 1], Right[j + 1]); 2589 continue; 2590 } 2591 } 2592 } 2593 // else unchanged 2594 } 2595 } 2596 2597 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2598 // Get the basic block this bundle is in. All instructions in the bundle 2599 // should be in this block. 2600 auto *Front = cast<Instruction>(OpValue); 2601 auto *BB = Front->getParent(); 2602 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2603 const unsigned AltOpcode = getAltOpcode(Opcode); 2604 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2605 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2606 cast<Instruction>(V)->getOpcode()) || 2607 cast<Instruction>(V)->getParent() == BB; 2608 })); 2609 2610 // The last instruction in the bundle in program order. 2611 Instruction *LastInst = nullptr; 2612 2613 // Find the last instruction. The common case should be that BB has been 2614 // scheduled, and the last instruction is VL.back(). So we start with 2615 // VL.back() and iterate over schedule data until we reach the end of the 2616 // bundle. The end of the bundle is marked by null ScheduleData. 2617 if (BlocksSchedules.count(BB)) { 2618 auto *Bundle = 2619 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2620 if (Bundle && Bundle->isPartOfBundle()) 2621 for (; Bundle; Bundle = Bundle->NextInBundle) 2622 if (Bundle->OpValue == Bundle->Inst) 2623 LastInst = Bundle->Inst; 2624 } 2625 2626 // LastInst can still be null at this point if there's either not an entry 2627 // for BB in BlocksSchedules or there's no ScheduleData available for 2628 // VL.back(). This can be the case if buildTree_rec aborts for various 2629 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2630 // size is reached, etc.). ScheduleData is initialized in the scheduling 2631 // "dry-run". 2632 // 2633 // If this happens, we can still find the last instruction by brute force. We 2634 // iterate forwards from Front (inclusive) until we either see all 2635 // instructions in the bundle or reach the end of the block. If Front is the 2636 // last instruction in program order, LastInst will be set to Front, and we 2637 // will visit all the remaining instructions in the block. 2638 // 2639 // One of the reasons we exit early from buildTree_rec is to place an upper 2640 // bound on compile-time. Thus, taking an additional compile-time hit here is 2641 // not ideal. However, this should be exceedingly rare since it requires that 2642 // we both exit early from buildTree_rec and that the bundle be out-of-order 2643 // (causing us to iterate all the way to the end of the block). 2644 if (!LastInst) { 2645 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2646 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2647 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2648 LastInst = &I; 2649 if (Bundle.empty()) 2650 break; 2651 } 2652 } 2653 2654 // Set the insertion point after the last instruction in the bundle. Set the 2655 // debug location to Front. 2656 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2657 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2658 } 2659 2660 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2661 Value *Vec = UndefValue::get(Ty); 2662 // Generate the 'InsertElement' instruction. 2663 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2664 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2665 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2666 GatherSeq.insert(Insrt); 2667 CSEBlocks.insert(Insrt->getParent()); 2668 2669 // Add to our 'need-to-extract' list. 2670 if (TreeEntry *E = getTreeEntry(VL[i])) { 2671 // Find which lane we need to extract. 2672 int FoundLane = -1; 2673 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2674 // Is this the lane of the scalar that we are looking for ? 2675 if (E->Scalars[Lane] == VL[i]) { 2676 FoundLane = Lane; 2677 break; 2678 } 2679 } 2680 assert(FoundLane >= 0 && "Could not find the correct lane"); 2681 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2682 } 2683 } 2684 } 2685 2686 return Vec; 2687 } 2688 2689 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2690 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2691 if (En->isSame(VL) && En->VectorizedValue) 2692 return En->VectorizedValue; 2693 } 2694 return nullptr; 2695 } 2696 2697 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2698 if (TreeEntry *E = getTreeEntry(VL[0])) 2699 if (E->isSame(VL)) 2700 return vectorizeTree(E); 2701 2702 Type *ScalarTy = VL[0]->getType(); 2703 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2704 ScalarTy = SI->getValueOperand()->getType(); 2705 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2706 2707 return Gather(VL, VecTy); 2708 } 2709 2710 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2711 IRBuilder<>::InsertPointGuard Guard(Builder); 2712 2713 if (E->VectorizedValue) { 2714 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2715 return E->VectorizedValue; 2716 } 2717 2718 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2719 Type *ScalarTy = VL0->getType(); 2720 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2721 ScalarTy = SI->getValueOperand()->getType(); 2722 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2723 2724 if (E->NeedToGather) { 2725 setInsertPointAfterBundle(E->Scalars, VL0); 2726 auto *V = Gather(E->Scalars, VecTy); 2727 E->VectorizedValue = V; 2728 return V; 2729 } 2730 2731 unsigned Opcode = getSameOpcode(E->Scalars); 2732 2733 switch (Opcode) { 2734 case Instruction::PHI: { 2735 PHINode *PH = dyn_cast<PHINode>(VL0); 2736 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2737 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2738 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2739 E->VectorizedValue = NewPhi; 2740 2741 // PHINodes may have multiple entries from the same block. We want to 2742 // visit every block once. 2743 SmallSet<BasicBlock*, 4> VisitedBBs; 2744 2745 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2746 ValueList Operands; 2747 BasicBlock *IBB = PH->getIncomingBlock(i); 2748 2749 if (!VisitedBBs.insert(IBB).second) { 2750 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2751 continue; 2752 } 2753 2754 // Prepare the operand vector. 2755 for (Value *V : E->Scalars) 2756 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2757 2758 Builder.SetInsertPoint(IBB->getTerminator()); 2759 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2760 Value *Vec = vectorizeTree(Operands); 2761 NewPhi->addIncoming(Vec, IBB); 2762 } 2763 2764 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2765 "Invalid number of incoming values"); 2766 return NewPhi; 2767 } 2768 2769 case Instruction::ExtractElement: { 2770 if (canReuseExtract(E->Scalars, VL0)) { 2771 Value *V = VL0->getOperand(0); 2772 E->VectorizedValue = V; 2773 return V; 2774 } 2775 setInsertPointAfterBundle(E->Scalars, VL0); 2776 auto *V = Gather(E->Scalars, VecTy); 2777 E->VectorizedValue = V; 2778 return V; 2779 } 2780 case Instruction::ExtractValue: { 2781 if (canReuseExtract(E->Scalars, VL0)) { 2782 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2783 Builder.SetInsertPoint(LI); 2784 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2785 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2786 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2787 E->VectorizedValue = V; 2788 return propagateMetadata(V, E->Scalars); 2789 } 2790 setInsertPointAfterBundle(E->Scalars, VL0); 2791 auto *V = Gather(E->Scalars, VecTy); 2792 E->VectorizedValue = V; 2793 return V; 2794 } 2795 case Instruction::ZExt: 2796 case Instruction::SExt: 2797 case Instruction::FPToUI: 2798 case Instruction::FPToSI: 2799 case Instruction::FPExt: 2800 case Instruction::PtrToInt: 2801 case Instruction::IntToPtr: 2802 case Instruction::SIToFP: 2803 case Instruction::UIToFP: 2804 case Instruction::Trunc: 2805 case Instruction::FPTrunc: 2806 case Instruction::BitCast: { 2807 ValueList INVL; 2808 for (Value *V : E->Scalars) 2809 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2810 2811 setInsertPointAfterBundle(E->Scalars, VL0); 2812 2813 Value *InVec = vectorizeTree(INVL); 2814 2815 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2816 return V; 2817 2818 CastInst *CI = dyn_cast<CastInst>(VL0); 2819 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2820 E->VectorizedValue = V; 2821 ++NumVectorInstructions; 2822 return V; 2823 } 2824 case Instruction::FCmp: 2825 case Instruction::ICmp: { 2826 ValueList LHSV, RHSV; 2827 for (Value *V : E->Scalars) { 2828 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2829 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2830 } 2831 2832 setInsertPointAfterBundle(E->Scalars, VL0); 2833 2834 Value *L = vectorizeTree(LHSV); 2835 Value *R = vectorizeTree(RHSV); 2836 2837 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2838 return V; 2839 2840 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2841 Value *V; 2842 if (Opcode == Instruction::FCmp) 2843 V = Builder.CreateFCmp(P0, L, R); 2844 else 2845 V = Builder.CreateICmp(P0, L, R); 2846 2847 E->VectorizedValue = V; 2848 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2849 ++NumVectorInstructions; 2850 return V; 2851 } 2852 case Instruction::Select: { 2853 ValueList TrueVec, FalseVec, CondVec; 2854 for (Value *V : E->Scalars) { 2855 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2856 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2857 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2858 } 2859 2860 setInsertPointAfterBundle(E->Scalars, VL0); 2861 2862 Value *Cond = vectorizeTree(CondVec); 2863 Value *True = vectorizeTree(TrueVec); 2864 Value *False = vectorizeTree(FalseVec); 2865 2866 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2867 return V; 2868 2869 Value *V = Builder.CreateSelect(Cond, True, False); 2870 E->VectorizedValue = V; 2871 ++NumVectorInstructions; 2872 return V; 2873 } 2874 case Instruction::Add: 2875 case Instruction::FAdd: 2876 case Instruction::Sub: 2877 case Instruction::FSub: 2878 case Instruction::Mul: 2879 case Instruction::FMul: 2880 case Instruction::UDiv: 2881 case Instruction::SDiv: 2882 case Instruction::FDiv: 2883 case Instruction::URem: 2884 case Instruction::SRem: 2885 case Instruction::FRem: 2886 case Instruction::Shl: 2887 case Instruction::LShr: 2888 case Instruction::AShr: 2889 case Instruction::And: 2890 case Instruction::Or: 2891 case Instruction::Xor: { 2892 ValueList LHSVL, RHSVL; 2893 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2894 reorderInputsAccordingToOpcode(VL0->getOpcode(), 2895 E->Scalars, LHSVL, RHSVL); 2896 else 2897 for (Value *V : E->Scalars) { 2898 auto *I = cast<Instruction>(V); 2899 LHSVL.push_back(I->getOperand(0)); 2900 RHSVL.push_back(I->getOperand(1)); 2901 } 2902 2903 setInsertPointAfterBundle(E->Scalars, VL0); 2904 2905 Value *LHS = vectorizeTree(LHSVL); 2906 Value *RHS = vectorizeTree(RHSVL); 2907 2908 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2909 return V; 2910 2911 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2912 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2913 E->VectorizedValue = V; 2914 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2915 ++NumVectorInstructions; 2916 2917 if (Instruction *I = dyn_cast<Instruction>(V)) 2918 return propagateMetadata(I, E->Scalars); 2919 2920 return V; 2921 } 2922 case Instruction::Load: { 2923 // Loads are inserted at the head of the tree because we don't want to 2924 // sink them all the way down past store instructions. 2925 setInsertPointAfterBundle(E->Scalars, VL0); 2926 2927 LoadInst *LI = cast<LoadInst>(VL0); 2928 Type *ScalarLoadTy = LI->getType(); 2929 unsigned AS = LI->getPointerAddressSpace(); 2930 2931 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2932 VecTy->getPointerTo(AS)); 2933 2934 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2935 // ExternalUses list to make sure that an extract will be generated in the 2936 // future. 2937 Value *PO = LI->getPointerOperand(); 2938 if (getTreeEntry(PO)) 2939 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2940 2941 unsigned Alignment = LI->getAlignment(); 2942 LI = Builder.CreateLoad(VecPtr); 2943 if (!Alignment) { 2944 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2945 } 2946 LI->setAlignment(Alignment); 2947 E->VectorizedValue = LI; 2948 ++NumVectorInstructions; 2949 return propagateMetadata(LI, E->Scalars); 2950 } 2951 case Instruction::Store: { 2952 StoreInst *SI = cast<StoreInst>(VL0); 2953 unsigned Alignment = SI->getAlignment(); 2954 unsigned AS = SI->getPointerAddressSpace(); 2955 2956 ValueList ValueOp; 2957 for (Value *V : E->Scalars) 2958 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2959 2960 setInsertPointAfterBundle(E->Scalars, VL0); 2961 2962 Value *VecValue = vectorizeTree(ValueOp); 2963 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2964 VecTy->getPointerTo(AS)); 2965 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2966 2967 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2968 // ExternalUses list to make sure that an extract will be generated in the 2969 // future. 2970 Value *PO = SI->getPointerOperand(); 2971 if (getTreeEntry(PO)) 2972 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2973 2974 if (!Alignment) { 2975 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2976 } 2977 S->setAlignment(Alignment); 2978 E->VectorizedValue = S; 2979 ++NumVectorInstructions; 2980 return propagateMetadata(S, E->Scalars); 2981 } 2982 case Instruction::GetElementPtr: { 2983 setInsertPointAfterBundle(E->Scalars, VL0); 2984 2985 ValueList Op0VL; 2986 for (Value *V : E->Scalars) 2987 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2988 2989 Value *Op0 = vectorizeTree(Op0VL); 2990 2991 std::vector<Value *> OpVecs; 2992 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2993 ++j) { 2994 ValueList OpVL; 2995 for (Value *V : E->Scalars) 2996 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2997 2998 Value *OpVec = vectorizeTree(OpVL); 2999 OpVecs.push_back(OpVec); 3000 } 3001 3002 Value *V = Builder.CreateGEP( 3003 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3004 E->VectorizedValue = V; 3005 ++NumVectorInstructions; 3006 3007 if (Instruction *I = dyn_cast<Instruction>(V)) 3008 return propagateMetadata(I, E->Scalars); 3009 3010 return V; 3011 } 3012 case Instruction::Call: { 3013 CallInst *CI = cast<CallInst>(VL0); 3014 setInsertPointAfterBundle(E->Scalars, VL0); 3015 Function *FI; 3016 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3017 Value *ScalarArg = nullptr; 3018 if (CI && (FI = CI->getCalledFunction())) { 3019 IID = FI->getIntrinsicID(); 3020 } 3021 std::vector<Value *> OpVecs; 3022 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3023 ValueList OpVL; 3024 // ctlz,cttz and powi are special intrinsics whose second argument is 3025 // a scalar. This argument should not be vectorized. 3026 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3027 CallInst *CEI = cast<CallInst>(VL0); 3028 ScalarArg = CEI->getArgOperand(j); 3029 OpVecs.push_back(CEI->getArgOperand(j)); 3030 continue; 3031 } 3032 for (Value *V : E->Scalars) { 3033 CallInst *CEI = cast<CallInst>(V); 3034 OpVL.push_back(CEI->getArgOperand(j)); 3035 } 3036 3037 Value *OpVec = vectorizeTree(OpVL); 3038 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3039 OpVecs.push_back(OpVec); 3040 } 3041 3042 Module *M = F->getParent(); 3043 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3044 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3045 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3046 SmallVector<OperandBundleDef, 1> OpBundles; 3047 CI->getOperandBundlesAsDefs(OpBundles); 3048 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3049 3050 // The scalar argument uses an in-tree scalar so we add the new vectorized 3051 // call to ExternalUses list to make sure that an extract will be 3052 // generated in the future. 3053 if (ScalarArg && getTreeEntry(ScalarArg)) 3054 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3055 3056 E->VectorizedValue = V; 3057 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3058 ++NumVectorInstructions; 3059 return V; 3060 } 3061 case Instruction::ShuffleVector: { 3062 ValueList LHSVL, RHSVL; 3063 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 3064 reorderAltShuffleOperands(VL0->getOpcode(), E->Scalars, LHSVL, RHSVL); 3065 setInsertPointAfterBundle(E->Scalars, VL0); 3066 3067 Value *LHS = vectorizeTree(LHSVL); 3068 Value *RHS = vectorizeTree(RHSVL); 3069 3070 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3071 return V; 3072 3073 // Create a vector of LHS op1 RHS 3074 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 3075 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 3076 3077 // Create a vector of LHS op2 RHS 3078 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 3079 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 3080 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 3081 3082 // Create shuffle to take alternate operations from the vector. 3083 // Also, gather up odd and even scalar ops to propagate IR flags to 3084 // each vector operation. 3085 ValueList OddScalars, EvenScalars; 3086 unsigned e = E->Scalars.size(); 3087 SmallVector<Constant *, 8> Mask(e); 3088 for (unsigned i = 0; i < e; ++i) { 3089 if (isOdd(i)) { 3090 Mask[i] = Builder.getInt32(e + i); 3091 OddScalars.push_back(E->Scalars[i]); 3092 } else { 3093 Mask[i] = Builder.getInt32(i); 3094 EvenScalars.push_back(E->Scalars[i]); 3095 } 3096 } 3097 3098 Value *ShuffleMask = ConstantVector::get(Mask); 3099 propagateIRFlags(V0, EvenScalars); 3100 propagateIRFlags(V1, OddScalars); 3101 3102 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3103 E->VectorizedValue = V; 3104 ++NumVectorInstructions; 3105 if (Instruction *I = dyn_cast<Instruction>(V)) 3106 return propagateMetadata(I, E->Scalars); 3107 3108 return V; 3109 } 3110 default: 3111 llvm_unreachable("unknown inst"); 3112 } 3113 return nullptr; 3114 } 3115 3116 Value *BoUpSLP::vectorizeTree() { 3117 ExtraValueToDebugLocsMap ExternallyUsedValues; 3118 return vectorizeTree(ExternallyUsedValues); 3119 } 3120 3121 Value * 3122 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3123 // All blocks must be scheduled before any instructions are inserted. 3124 for (auto &BSIter : BlocksSchedules) { 3125 scheduleBlock(BSIter.second.get()); 3126 } 3127 3128 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3129 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3130 3131 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3132 // vectorized root. InstCombine will then rewrite the entire expression. We 3133 // sign extend the extracted values below. 3134 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3135 if (MinBWs.count(ScalarRoot)) { 3136 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3137 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3138 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3139 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3140 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3141 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3142 VectorizableTree[0].VectorizedValue = Trunc; 3143 } 3144 3145 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3146 3147 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3148 // specified by ScalarType. 3149 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3150 if (!MinBWs.count(ScalarRoot)) 3151 return Ex; 3152 if (MinBWs[ScalarRoot].second) 3153 return Builder.CreateSExt(Ex, ScalarType); 3154 return Builder.CreateZExt(Ex, ScalarType); 3155 }; 3156 3157 // Extract all of the elements with the external uses. 3158 for (const auto &ExternalUse : ExternalUses) { 3159 Value *Scalar = ExternalUse.Scalar; 3160 llvm::User *User = ExternalUse.User; 3161 3162 // Skip users that we already RAUW. This happens when one instruction 3163 // has multiple uses of the same value. 3164 if (User && !is_contained(Scalar->users(), User)) 3165 continue; 3166 TreeEntry *E = getTreeEntry(Scalar); 3167 assert(E && "Invalid scalar"); 3168 assert(!E->NeedToGather && "Extracting from a gather list"); 3169 3170 Value *Vec = E->VectorizedValue; 3171 assert(Vec && "Can't find vectorizable value"); 3172 3173 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3174 // If User == nullptr, the Scalar is used as extra arg. Generate 3175 // ExtractElement instruction and update the record for this scalar in 3176 // ExternallyUsedValues. 3177 if (!User) { 3178 assert(ExternallyUsedValues.count(Scalar) && 3179 "Scalar with nullptr as an external user must be registered in " 3180 "ExternallyUsedValues map"); 3181 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3182 Builder.SetInsertPoint(VecI->getParent(), 3183 std::next(VecI->getIterator())); 3184 } else { 3185 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3186 } 3187 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3188 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3189 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3190 auto &Locs = ExternallyUsedValues[Scalar]; 3191 ExternallyUsedValues.insert({Ex, Locs}); 3192 ExternallyUsedValues.erase(Scalar); 3193 continue; 3194 } 3195 3196 // Generate extracts for out-of-tree users. 3197 // Find the insertion point for the extractelement lane. 3198 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3199 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3200 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3201 if (PH->getIncomingValue(i) == Scalar) { 3202 TerminatorInst *IncomingTerminator = 3203 PH->getIncomingBlock(i)->getTerminator(); 3204 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3205 Builder.SetInsertPoint(VecI->getParent(), 3206 std::next(VecI->getIterator())); 3207 } else { 3208 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3209 } 3210 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3211 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3212 CSEBlocks.insert(PH->getIncomingBlock(i)); 3213 PH->setOperand(i, Ex); 3214 } 3215 } 3216 } else { 3217 Builder.SetInsertPoint(cast<Instruction>(User)); 3218 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3219 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3220 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3221 User->replaceUsesOfWith(Scalar, Ex); 3222 } 3223 } else { 3224 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3225 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3226 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3227 CSEBlocks.insert(&F->getEntryBlock()); 3228 User->replaceUsesOfWith(Scalar, Ex); 3229 } 3230 3231 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3232 } 3233 3234 // For each vectorized value: 3235 for (TreeEntry &EIdx : VectorizableTree) { 3236 TreeEntry *Entry = &EIdx; 3237 3238 // No need to handle users of gathered values. 3239 if (Entry->NeedToGather) 3240 continue; 3241 3242 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3243 3244 // For each lane: 3245 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3246 Value *Scalar = Entry->Scalars[Lane]; 3247 3248 Type *Ty = Scalar->getType(); 3249 if (!Ty->isVoidTy()) { 3250 #ifndef NDEBUG 3251 for (User *U : Scalar->users()) { 3252 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3253 3254 // It is legal to replace users in the ignorelist by undef. 3255 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3256 "Replacing out-of-tree value with undef"); 3257 } 3258 #endif 3259 Value *Undef = UndefValue::get(Ty); 3260 Scalar->replaceAllUsesWith(Undef); 3261 } 3262 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3263 eraseInstruction(cast<Instruction>(Scalar)); 3264 } 3265 } 3266 3267 Builder.ClearInsertionPoint(); 3268 3269 return VectorizableTree[0].VectorizedValue; 3270 } 3271 3272 void BoUpSLP::optimizeGatherSequence() { 3273 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3274 << " gather sequences instructions.\n"); 3275 // LICM InsertElementInst sequences. 3276 for (Instruction *it : GatherSeq) { 3277 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3278 3279 if (!Insert) 3280 continue; 3281 3282 // Check if this block is inside a loop. 3283 Loop *L = LI->getLoopFor(Insert->getParent()); 3284 if (!L) 3285 continue; 3286 3287 // Check if it has a preheader. 3288 BasicBlock *PreHeader = L->getLoopPreheader(); 3289 if (!PreHeader) 3290 continue; 3291 3292 // If the vector or the element that we insert into it are 3293 // instructions that are defined in this basic block then we can't 3294 // hoist this instruction. 3295 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3296 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3297 if (CurrVec && L->contains(CurrVec)) 3298 continue; 3299 if (NewElem && L->contains(NewElem)) 3300 continue; 3301 3302 // We can hoist this instruction. Move it to the pre-header. 3303 Insert->moveBefore(PreHeader->getTerminator()); 3304 } 3305 3306 // Make a list of all reachable blocks in our CSE queue. 3307 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3308 CSEWorkList.reserve(CSEBlocks.size()); 3309 for (BasicBlock *BB : CSEBlocks) 3310 if (DomTreeNode *N = DT->getNode(BB)) { 3311 assert(DT->isReachableFromEntry(N)); 3312 CSEWorkList.push_back(N); 3313 } 3314 3315 // Sort blocks by domination. This ensures we visit a block after all blocks 3316 // dominating it are visited. 3317 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3318 [this](const DomTreeNode *A, const DomTreeNode *B) { 3319 return DT->properlyDominates(A, B); 3320 }); 3321 3322 // Perform O(N^2) search over the gather sequences and merge identical 3323 // instructions. TODO: We can further optimize this scan if we split the 3324 // instructions into different buckets based on the insert lane. 3325 SmallVector<Instruction *, 16> Visited; 3326 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3327 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3328 "Worklist not sorted properly!"); 3329 BasicBlock *BB = (*I)->getBlock(); 3330 // For all instructions in blocks containing gather sequences: 3331 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3332 Instruction *In = &*it++; 3333 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3334 continue; 3335 3336 // Check if we can replace this instruction with any of the 3337 // visited instructions. 3338 for (Instruction *v : Visited) { 3339 if (In->isIdenticalTo(v) && 3340 DT->dominates(v->getParent(), In->getParent())) { 3341 In->replaceAllUsesWith(v); 3342 eraseInstruction(In); 3343 In = nullptr; 3344 break; 3345 } 3346 } 3347 if (In) { 3348 assert(!is_contained(Visited, In)); 3349 Visited.push_back(In); 3350 } 3351 } 3352 } 3353 CSEBlocks.clear(); 3354 GatherSeq.clear(); 3355 } 3356 3357 // Groups the instructions to a bundle (which is then a single scheduling entity) 3358 // and schedules instructions until the bundle gets ready. 3359 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3360 BoUpSLP *SLP, Value *OpValue) { 3361 if (isa<PHINode>(OpValue)) 3362 return true; 3363 3364 // Initialize the instruction bundle. 3365 Instruction *OldScheduleEnd = ScheduleEnd; 3366 ScheduleData *PrevInBundle = nullptr; 3367 ScheduleData *Bundle = nullptr; 3368 bool ReSchedule = false; 3369 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3370 3371 // Make sure that the scheduling region contains all 3372 // instructions of the bundle. 3373 for (Value *V : VL) { 3374 if (!extendSchedulingRegion(V, OpValue)) 3375 return false; 3376 } 3377 3378 for (Value *V : VL) { 3379 ScheduleData *BundleMember = getScheduleData(V); 3380 assert(BundleMember && 3381 "no ScheduleData for bundle member (maybe not in same basic block)"); 3382 if (BundleMember->IsScheduled) { 3383 // A bundle member was scheduled as single instruction before and now 3384 // needs to be scheduled as part of the bundle. We just get rid of the 3385 // existing schedule. 3386 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3387 << " was already scheduled\n"); 3388 ReSchedule = true; 3389 } 3390 assert(BundleMember->isSchedulingEntity() && 3391 "bundle member already part of other bundle"); 3392 if (PrevInBundle) { 3393 PrevInBundle->NextInBundle = BundleMember; 3394 } else { 3395 Bundle = BundleMember; 3396 } 3397 BundleMember->UnscheduledDepsInBundle = 0; 3398 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3399 3400 // Group the instructions to a bundle. 3401 BundleMember->FirstInBundle = Bundle; 3402 PrevInBundle = BundleMember; 3403 } 3404 if (ScheduleEnd != OldScheduleEnd) { 3405 // The scheduling region got new instructions at the lower end (or it is a 3406 // new region for the first bundle). This makes it necessary to 3407 // recalculate all dependencies. 3408 // It is seldom that this needs to be done a second time after adding the 3409 // initial bundle to the region. 3410 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3411 doForAllOpcodes(I, [](ScheduleData *SD) { 3412 SD->clearDependencies(); 3413 }); 3414 } 3415 ReSchedule = true; 3416 } 3417 if (ReSchedule) { 3418 resetSchedule(); 3419 initialFillReadyList(ReadyInsts); 3420 } 3421 3422 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3423 << BB->getName() << "\n"); 3424 3425 calculateDependencies(Bundle, true, SLP); 3426 3427 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3428 // means that there are no cyclic dependencies and we can schedule it. 3429 // Note that's important that we don't "schedule" the bundle yet (see 3430 // cancelScheduling). 3431 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3432 3433 ScheduleData *pickedSD = ReadyInsts.back(); 3434 ReadyInsts.pop_back(); 3435 3436 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3437 schedule(pickedSD, ReadyInsts); 3438 } 3439 } 3440 if (!Bundle->isReady()) { 3441 cancelScheduling(VL, OpValue); 3442 return false; 3443 } 3444 return true; 3445 } 3446 3447 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3448 Value *OpValue) { 3449 if (isa<PHINode>(OpValue)) 3450 return; 3451 3452 ScheduleData *Bundle = getScheduleData(OpValue); 3453 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3454 assert(!Bundle->IsScheduled && 3455 "Can't cancel bundle which is already scheduled"); 3456 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3457 "tried to unbundle something which is not a bundle"); 3458 3459 // Un-bundle: make single instructions out of the bundle. 3460 ScheduleData *BundleMember = Bundle; 3461 while (BundleMember) { 3462 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3463 BundleMember->FirstInBundle = BundleMember; 3464 ScheduleData *Next = BundleMember->NextInBundle; 3465 BundleMember->NextInBundle = nullptr; 3466 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3467 if (BundleMember->UnscheduledDepsInBundle == 0) { 3468 ReadyInsts.insert(BundleMember); 3469 } 3470 BundleMember = Next; 3471 } 3472 } 3473 3474 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3475 // Allocate a new ScheduleData for the instruction. 3476 if (ChunkPos >= ChunkSize) { 3477 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3478 ChunkPos = 0; 3479 } 3480 return &(ScheduleDataChunks.back()[ChunkPos++]); 3481 } 3482 3483 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3484 Value *OpValue) { 3485 if (getScheduleData(V, isOneOf(OpValue, V))) 3486 return true; 3487 Instruction *I = dyn_cast<Instruction>(V); 3488 assert(I && "bundle member must be an instruction"); 3489 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3490 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3491 ScheduleData *ISD = getScheduleData(I); 3492 if (!ISD) 3493 return false; 3494 assert(isInSchedulingRegion(ISD) && 3495 "ScheduleData not in scheduling region"); 3496 ScheduleData *SD = allocateScheduleDataChunks(); 3497 SD->Inst = I; 3498 SD->init(SchedulingRegionID, OpValue); 3499 ExtraScheduleDataMap[I][OpValue] = SD; 3500 return true; 3501 }; 3502 if (CheckSheduleForI(I)) 3503 return true; 3504 if (!ScheduleStart) { 3505 // It's the first instruction in the new region. 3506 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3507 ScheduleStart = I; 3508 ScheduleEnd = I->getNextNode(); 3509 if (isOneOf(OpValue, I) != I) 3510 CheckSheduleForI(I); 3511 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3512 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3513 return true; 3514 } 3515 // Search up and down at the same time, because we don't know if the new 3516 // instruction is above or below the existing scheduling region. 3517 BasicBlock::reverse_iterator UpIter = 3518 ++ScheduleStart->getIterator().getReverse(); 3519 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3520 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3521 BasicBlock::iterator LowerEnd = BB->end(); 3522 while (true) { 3523 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3524 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3525 return false; 3526 } 3527 3528 if (UpIter != UpperEnd) { 3529 if (&*UpIter == I) { 3530 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3531 ScheduleStart = I; 3532 if (isOneOf(OpValue, I) != I) 3533 CheckSheduleForI(I); 3534 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3535 return true; 3536 } 3537 UpIter++; 3538 } 3539 if (DownIter != LowerEnd) { 3540 if (&*DownIter == I) { 3541 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3542 nullptr); 3543 ScheduleEnd = I->getNextNode(); 3544 if (isOneOf(OpValue, I) != I) 3545 CheckSheduleForI(I); 3546 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3547 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3548 return true; 3549 } 3550 DownIter++; 3551 } 3552 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3553 "instruction not found in block"); 3554 } 3555 return true; 3556 } 3557 3558 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3559 Instruction *ToI, 3560 ScheduleData *PrevLoadStore, 3561 ScheduleData *NextLoadStore) { 3562 ScheduleData *CurrentLoadStore = PrevLoadStore; 3563 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3564 ScheduleData *SD = ScheduleDataMap[I]; 3565 if (!SD) { 3566 // Allocate a new ScheduleData for the instruction. 3567 if (ChunkPos >= ChunkSize) { 3568 ScheduleDataChunks.push_back( 3569 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3570 ChunkPos = 0; 3571 } 3572 SD = allocateScheduleDataChunks(); 3573 ScheduleDataMap[I] = SD; 3574 SD->Inst = I; 3575 } 3576 assert(!isInSchedulingRegion(SD) && 3577 "new ScheduleData already in scheduling region"); 3578 SD->init(SchedulingRegionID, I); 3579 3580 if (I->mayReadOrWriteMemory()) { 3581 // Update the linked list of memory accessing instructions. 3582 if (CurrentLoadStore) { 3583 CurrentLoadStore->NextLoadStore = SD; 3584 } else { 3585 FirstLoadStoreInRegion = SD; 3586 } 3587 CurrentLoadStore = SD; 3588 } 3589 } 3590 if (NextLoadStore) { 3591 if (CurrentLoadStore) 3592 CurrentLoadStore->NextLoadStore = NextLoadStore; 3593 } else { 3594 LastLoadStoreInRegion = CurrentLoadStore; 3595 } 3596 } 3597 3598 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3599 bool InsertInReadyList, 3600 BoUpSLP *SLP) { 3601 assert(SD->isSchedulingEntity()); 3602 3603 SmallVector<ScheduleData *, 10> WorkList; 3604 WorkList.push_back(SD); 3605 3606 while (!WorkList.empty()) { 3607 ScheduleData *SD = WorkList.back(); 3608 WorkList.pop_back(); 3609 3610 ScheduleData *BundleMember = SD; 3611 while (BundleMember) { 3612 assert(isInSchedulingRegion(BundleMember)); 3613 if (!BundleMember->hasValidDependencies()) { 3614 3615 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3616 BundleMember->Dependencies = 0; 3617 BundleMember->resetUnscheduledDeps(); 3618 3619 // Handle def-use chain dependencies. 3620 if (BundleMember->OpValue != BundleMember->Inst) { 3621 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3622 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3623 BundleMember->Dependencies++; 3624 ScheduleData *DestBundle = UseSD->FirstInBundle; 3625 if (!DestBundle->IsScheduled) 3626 BundleMember->incrementUnscheduledDeps(1); 3627 if (!DestBundle->hasValidDependencies()) 3628 WorkList.push_back(DestBundle); 3629 } 3630 } else { 3631 for (User *U : BundleMember->Inst->users()) { 3632 if (isa<Instruction>(U)) { 3633 ScheduleData *UseSD = getScheduleData(U); 3634 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3635 BundleMember->Dependencies++; 3636 ScheduleData *DestBundle = UseSD->FirstInBundle; 3637 if (!DestBundle->IsScheduled) 3638 BundleMember->incrementUnscheduledDeps(1); 3639 if (!DestBundle->hasValidDependencies()) 3640 WorkList.push_back(DestBundle); 3641 } 3642 } else { 3643 // I'm not sure if this can ever happen. But we need to be safe. 3644 // This lets the instruction/bundle never be scheduled and 3645 // eventually disable vectorization. 3646 BundleMember->Dependencies++; 3647 BundleMember->incrementUnscheduledDeps(1); 3648 } 3649 } 3650 } 3651 3652 // Handle the memory dependencies. 3653 ScheduleData *DepDest = BundleMember->NextLoadStore; 3654 if (DepDest) { 3655 Instruction *SrcInst = BundleMember->Inst; 3656 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3657 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3658 unsigned numAliased = 0; 3659 unsigned DistToSrc = 1; 3660 3661 while (DepDest) { 3662 assert(isInSchedulingRegion(DepDest)); 3663 3664 // We have two limits to reduce the complexity: 3665 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3666 // SLP->isAliased (which is the expensive part in this loop). 3667 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3668 // the whole loop (even if the loop is fast, it's quadratic). 3669 // It's important for the loop break condition (see below) to 3670 // check this limit even between two read-only instructions. 3671 if (DistToSrc >= MaxMemDepDistance || 3672 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3673 (numAliased >= AliasedCheckLimit || 3674 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3675 3676 // We increment the counter only if the locations are aliased 3677 // (instead of counting all alias checks). This gives a better 3678 // balance between reduced runtime and accurate dependencies. 3679 numAliased++; 3680 3681 DepDest->MemoryDependencies.push_back(BundleMember); 3682 BundleMember->Dependencies++; 3683 ScheduleData *DestBundle = DepDest->FirstInBundle; 3684 if (!DestBundle->IsScheduled) { 3685 BundleMember->incrementUnscheduledDeps(1); 3686 } 3687 if (!DestBundle->hasValidDependencies()) { 3688 WorkList.push_back(DestBundle); 3689 } 3690 } 3691 DepDest = DepDest->NextLoadStore; 3692 3693 // Example, explaining the loop break condition: Let's assume our 3694 // starting instruction is i0 and MaxMemDepDistance = 3. 3695 // 3696 // +--------v--v--v 3697 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3698 // +--------^--^--^ 3699 // 3700 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3701 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3702 // Previously we already added dependencies from i3 to i6,i7,i8 3703 // (because of MaxMemDepDistance). As we added a dependency from 3704 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3705 // and we can abort this loop at i6. 3706 if (DistToSrc >= 2 * MaxMemDepDistance) 3707 break; 3708 DistToSrc++; 3709 } 3710 } 3711 } 3712 BundleMember = BundleMember->NextInBundle; 3713 } 3714 if (InsertInReadyList && SD->isReady()) { 3715 ReadyInsts.push_back(SD); 3716 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3717 } 3718 } 3719 } 3720 3721 void BoUpSLP::BlockScheduling::resetSchedule() { 3722 assert(ScheduleStart && 3723 "tried to reset schedule on block which has not been scheduled"); 3724 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3725 doForAllOpcodes(I, [&](ScheduleData *SD) { 3726 assert(isInSchedulingRegion(SD) && 3727 "ScheduleData not in scheduling region"); 3728 SD->IsScheduled = false; 3729 SD->resetUnscheduledDeps(); 3730 }); 3731 } 3732 ReadyInsts.clear(); 3733 } 3734 3735 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3736 if (!BS->ScheduleStart) 3737 return; 3738 3739 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3740 3741 BS->resetSchedule(); 3742 3743 // For the real scheduling we use a more sophisticated ready-list: it is 3744 // sorted by the original instruction location. This lets the final schedule 3745 // be as close as possible to the original instruction order. 3746 struct ScheduleDataCompare { 3747 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3748 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3749 } 3750 }; 3751 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3752 3753 // Ensure that all dependency data is updated and fill the ready-list with 3754 // initial instructions. 3755 int Idx = 0; 3756 int NumToSchedule = 0; 3757 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3758 I = I->getNextNode()) { 3759 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 3760 assert(SD->isPartOfBundle() == 3761 (getTreeEntry(SD->Inst) != nullptr) && 3762 "scheduler and vectorizer bundle mismatch"); 3763 SD->FirstInBundle->SchedulingPriority = Idx++; 3764 if (SD->isSchedulingEntity()) { 3765 BS->calculateDependencies(SD, false, this); 3766 NumToSchedule++; 3767 } 3768 }); 3769 } 3770 BS->initialFillReadyList(ReadyInsts); 3771 3772 Instruction *LastScheduledInst = BS->ScheduleEnd; 3773 3774 // Do the "real" scheduling. 3775 while (!ReadyInsts.empty()) { 3776 ScheduleData *picked = *ReadyInsts.begin(); 3777 ReadyInsts.erase(ReadyInsts.begin()); 3778 3779 // Move the scheduled instruction(s) to their dedicated places, if not 3780 // there yet. 3781 ScheduleData *BundleMember = picked; 3782 while (BundleMember) { 3783 Instruction *pickedInst = BundleMember->Inst; 3784 if (LastScheduledInst->getNextNode() != pickedInst) { 3785 BS->BB->getInstList().remove(pickedInst); 3786 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3787 pickedInst); 3788 } 3789 LastScheduledInst = pickedInst; 3790 BundleMember = BundleMember->NextInBundle; 3791 } 3792 3793 BS->schedule(picked, ReadyInsts); 3794 NumToSchedule--; 3795 } 3796 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3797 3798 // Avoid duplicate scheduling of the block. 3799 BS->ScheduleStart = nullptr; 3800 } 3801 3802 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3803 // If V is a store, just return the width of the stored value without 3804 // traversing the expression tree. This is the common case. 3805 if (auto *Store = dyn_cast<StoreInst>(V)) 3806 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3807 3808 // If V is not a store, we can traverse the expression tree to find loads 3809 // that feed it. The type of the loaded value may indicate a more suitable 3810 // width than V's type. We want to base the vector element size on the width 3811 // of memory operations where possible. 3812 SmallVector<Instruction *, 16> Worklist; 3813 SmallPtrSet<Instruction *, 16> Visited; 3814 if (auto *I = dyn_cast<Instruction>(V)) 3815 Worklist.push_back(I); 3816 3817 // Traverse the expression tree in bottom-up order looking for loads. If we 3818 // encounter an instruciton we don't yet handle, we give up. 3819 auto MaxWidth = 0u; 3820 auto FoundUnknownInst = false; 3821 while (!Worklist.empty() && !FoundUnknownInst) { 3822 auto *I = Worklist.pop_back_val(); 3823 Visited.insert(I); 3824 3825 // We should only be looking at scalar instructions here. If the current 3826 // instruction has a vector type, give up. 3827 auto *Ty = I->getType(); 3828 if (isa<VectorType>(Ty)) 3829 FoundUnknownInst = true; 3830 3831 // If the current instruction is a load, update MaxWidth to reflect the 3832 // width of the loaded value. 3833 else if (isa<LoadInst>(I)) 3834 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3835 3836 // Otherwise, we need to visit the operands of the instruction. We only 3837 // handle the interesting cases from buildTree here. If an operand is an 3838 // instruction we haven't yet visited, we add it to the worklist. 3839 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3840 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3841 for (Use &U : I->operands()) 3842 if (auto *J = dyn_cast<Instruction>(U.get())) 3843 if (!Visited.count(J)) 3844 Worklist.push_back(J); 3845 } 3846 3847 // If we don't yet handle the instruction, give up. 3848 else 3849 FoundUnknownInst = true; 3850 } 3851 3852 // If we didn't encounter a memory access in the expression tree, or if we 3853 // gave up for some reason, just return the width of V. 3854 if (!MaxWidth || FoundUnknownInst) 3855 return DL->getTypeSizeInBits(V->getType()); 3856 3857 // Otherwise, return the maximum width we found. 3858 return MaxWidth; 3859 } 3860 3861 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3862 // smaller type with a truncation. We collect the values that will be demoted 3863 // in ToDemote and additional roots that require investigating in Roots. 3864 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3865 SmallVectorImpl<Value *> &ToDemote, 3866 SmallVectorImpl<Value *> &Roots) { 3867 // We can always demote constants. 3868 if (isa<Constant>(V)) { 3869 ToDemote.push_back(V); 3870 return true; 3871 } 3872 3873 // If the value is not an instruction in the expression with only one use, it 3874 // cannot be demoted. 3875 auto *I = dyn_cast<Instruction>(V); 3876 if (!I || !I->hasOneUse() || !Expr.count(I)) 3877 return false; 3878 3879 switch (I->getOpcode()) { 3880 3881 // We can always demote truncations and extensions. Since truncations can 3882 // seed additional demotion, we save the truncated value. 3883 case Instruction::Trunc: 3884 Roots.push_back(I->getOperand(0)); 3885 case Instruction::ZExt: 3886 case Instruction::SExt: 3887 break; 3888 3889 // We can demote certain binary operations if we can demote both of their 3890 // operands. 3891 case Instruction::Add: 3892 case Instruction::Sub: 3893 case Instruction::Mul: 3894 case Instruction::And: 3895 case Instruction::Or: 3896 case Instruction::Xor: 3897 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3898 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3899 return false; 3900 break; 3901 3902 // We can demote selects if we can demote their true and false values. 3903 case Instruction::Select: { 3904 SelectInst *SI = cast<SelectInst>(I); 3905 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3906 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3907 return false; 3908 break; 3909 } 3910 3911 // We can demote phis if we can demote all their incoming operands. Note that 3912 // we don't need to worry about cycles since we ensure single use above. 3913 case Instruction::PHI: { 3914 PHINode *PN = cast<PHINode>(I); 3915 for (Value *IncValue : PN->incoming_values()) 3916 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3917 return false; 3918 break; 3919 } 3920 3921 // Otherwise, conservatively give up. 3922 default: 3923 return false; 3924 } 3925 3926 // Record the value that we can demote. 3927 ToDemote.push_back(V); 3928 return true; 3929 } 3930 3931 void BoUpSLP::computeMinimumValueSizes() { 3932 // If there are no external uses, the expression tree must be rooted by a 3933 // store. We can't demote in-memory values, so there is nothing to do here. 3934 if (ExternalUses.empty()) 3935 return; 3936 3937 // We only attempt to truncate integer expressions. 3938 auto &TreeRoot = VectorizableTree[0].Scalars; 3939 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3940 if (!TreeRootIT) 3941 return; 3942 3943 // If the expression is not rooted by a store, these roots should have 3944 // external uses. We will rely on InstCombine to rewrite the expression in 3945 // the narrower type. However, InstCombine only rewrites single-use values. 3946 // This means that if a tree entry other than a root is used externally, it 3947 // must have multiple uses and InstCombine will not rewrite it. The code 3948 // below ensures that only the roots are used externally. 3949 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3950 for (auto &EU : ExternalUses) 3951 if (!Expr.erase(EU.Scalar)) 3952 return; 3953 if (!Expr.empty()) 3954 return; 3955 3956 // Collect the scalar values of the vectorizable expression. We will use this 3957 // context to determine which values can be demoted. If we see a truncation, 3958 // we mark it as seeding another demotion. 3959 for (auto &Entry : VectorizableTree) 3960 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3961 3962 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3963 // have a single external user that is not in the vectorizable tree. 3964 for (auto *Root : TreeRoot) 3965 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3966 return; 3967 3968 // Conservatively determine if we can actually truncate the roots of the 3969 // expression. Collect the values that can be demoted in ToDemote and 3970 // additional roots that require investigating in Roots. 3971 SmallVector<Value *, 32> ToDemote; 3972 SmallVector<Value *, 4> Roots; 3973 for (auto *Root : TreeRoot) 3974 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3975 return; 3976 3977 // The maximum bit width required to represent all the values that can be 3978 // demoted without loss of precision. It would be safe to truncate the roots 3979 // of the expression to this width. 3980 auto MaxBitWidth = 8u; 3981 3982 // We first check if all the bits of the roots are demanded. If they're not, 3983 // we can truncate the roots to this narrower type. 3984 for (auto *Root : TreeRoot) { 3985 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3986 MaxBitWidth = std::max<unsigned>( 3987 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3988 } 3989 3990 // True if the roots can be zero-extended back to their original type, rather 3991 // than sign-extended. We know that if the leading bits are not demanded, we 3992 // can safely zero-extend. So we initialize IsKnownPositive to True. 3993 bool IsKnownPositive = true; 3994 3995 // If all the bits of the roots are demanded, we can try a little harder to 3996 // compute a narrower type. This can happen, for example, if the roots are 3997 // getelementptr indices. InstCombine promotes these indices to the pointer 3998 // width. Thus, all their bits are technically demanded even though the 3999 // address computation might be vectorized in a smaller type. 4000 // 4001 // We start by looking at each entry that can be demoted. We compute the 4002 // maximum bit width required to store the scalar by using ValueTracking to 4003 // compute the number of high-order bits we can truncate. 4004 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4005 MaxBitWidth = 8u; 4006 4007 // Determine if the sign bit of all the roots is known to be zero. If not, 4008 // IsKnownPositive is set to False. 4009 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4010 KnownBits Known = computeKnownBits(R, *DL); 4011 return Known.isNonNegative(); 4012 }); 4013 4014 // Determine the maximum number of bits required to store the scalar 4015 // values. 4016 for (auto *Scalar : ToDemote) { 4017 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4018 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4019 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4020 } 4021 4022 // If we can't prove that the sign bit is zero, we must add one to the 4023 // maximum bit width to account for the unknown sign bit. This preserves 4024 // the existing sign bit so we can safely sign-extend the root back to the 4025 // original type. Otherwise, if we know the sign bit is zero, we will 4026 // zero-extend the root instead. 4027 // 4028 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4029 // one to the maximum bit width will yield a larger-than-necessary 4030 // type. In general, we need to add an extra bit only if we can't 4031 // prove that the upper bit of the original type is equal to the 4032 // upper bit of the proposed smaller type. If these two bits are the 4033 // same (either zero or one) we know that sign-extending from the 4034 // smaller type will result in the same value. Here, since we can't 4035 // yet prove this, we are just making the proposed smaller type 4036 // larger to ensure correctness. 4037 if (!IsKnownPositive) 4038 ++MaxBitWidth; 4039 } 4040 4041 // Round MaxBitWidth up to the next power-of-two. 4042 if (!isPowerOf2_64(MaxBitWidth)) 4043 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4044 4045 // If the maximum bit width we compute is less than the with of the roots' 4046 // type, we can proceed with the narrowing. Otherwise, do nothing. 4047 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4048 return; 4049 4050 // If we can truncate the root, we must collect additional values that might 4051 // be demoted as a result. That is, those seeded by truncations we will 4052 // modify. 4053 while (!Roots.empty()) 4054 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4055 4056 // Finally, map the values we can demote to the maximum bit with we computed. 4057 for (auto *Scalar : ToDemote) 4058 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4059 } 4060 4061 namespace { 4062 4063 /// The SLPVectorizer Pass. 4064 struct SLPVectorizer : public FunctionPass { 4065 SLPVectorizerPass Impl; 4066 4067 /// Pass identification, replacement for typeid 4068 static char ID; 4069 4070 explicit SLPVectorizer() : FunctionPass(ID) { 4071 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4072 } 4073 4074 bool doInitialization(Module &M) override { 4075 return false; 4076 } 4077 4078 bool runOnFunction(Function &F) override { 4079 if (skipFunction(F)) 4080 return false; 4081 4082 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4083 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4084 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4085 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4086 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4087 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4088 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4089 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4090 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4091 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4092 4093 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4094 } 4095 4096 void getAnalysisUsage(AnalysisUsage &AU) const override { 4097 FunctionPass::getAnalysisUsage(AU); 4098 AU.addRequired<AssumptionCacheTracker>(); 4099 AU.addRequired<ScalarEvolutionWrapperPass>(); 4100 AU.addRequired<AAResultsWrapperPass>(); 4101 AU.addRequired<TargetTransformInfoWrapperPass>(); 4102 AU.addRequired<LoopInfoWrapperPass>(); 4103 AU.addRequired<DominatorTreeWrapperPass>(); 4104 AU.addRequired<DemandedBitsWrapperPass>(); 4105 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4106 AU.addPreserved<LoopInfoWrapperPass>(); 4107 AU.addPreserved<DominatorTreeWrapperPass>(); 4108 AU.addPreserved<AAResultsWrapperPass>(); 4109 AU.addPreserved<GlobalsAAWrapperPass>(); 4110 AU.setPreservesCFG(); 4111 } 4112 }; 4113 4114 } // end anonymous namespace 4115 4116 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4117 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4118 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4119 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4120 auto *AA = &AM.getResult<AAManager>(F); 4121 auto *LI = &AM.getResult<LoopAnalysis>(F); 4122 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4123 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4124 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4125 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4126 4127 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4128 if (!Changed) 4129 return PreservedAnalyses::all(); 4130 4131 PreservedAnalyses PA; 4132 PA.preserveSet<CFGAnalyses>(); 4133 PA.preserve<AAManager>(); 4134 PA.preserve<GlobalsAA>(); 4135 return PA; 4136 } 4137 4138 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4139 TargetTransformInfo *TTI_, 4140 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4141 LoopInfo *LI_, DominatorTree *DT_, 4142 AssumptionCache *AC_, DemandedBits *DB_, 4143 OptimizationRemarkEmitter *ORE_) { 4144 SE = SE_; 4145 TTI = TTI_; 4146 TLI = TLI_; 4147 AA = AA_; 4148 LI = LI_; 4149 DT = DT_; 4150 AC = AC_; 4151 DB = DB_; 4152 DL = &F.getParent()->getDataLayout(); 4153 4154 Stores.clear(); 4155 GEPs.clear(); 4156 bool Changed = false; 4157 4158 // If the target claims to have no vector registers don't attempt 4159 // vectorization. 4160 if (!TTI->getNumberOfRegisters(true)) 4161 return false; 4162 4163 // Don't vectorize when the attribute NoImplicitFloat is used. 4164 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4165 return false; 4166 4167 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4168 4169 // Use the bottom up slp vectorizer to construct chains that start with 4170 // store instructions. 4171 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4172 4173 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4174 // delete instructions. 4175 4176 // Scan the blocks in the function in post order. 4177 for (auto BB : post_order(&F.getEntryBlock())) { 4178 collectSeedInstructions(BB); 4179 4180 // Vectorize trees that end at stores. 4181 if (!Stores.empty()) { 4182 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4183 << " underlying objects.\n"); 4184 Changed |= vectorizeStoreChains(R); 4185 } 4186 4187 // Vectorize trees that end at reductions. 4188 Changed |= vectorizeChainsInBlock(BB, R); 4189 4190 // Vectorize the index computations of getelementptr instructions. This 4191 // is primarily intended to catch gather-like idioms ending at 4192 // non-consecutive loads. 4193 if (!GEPs.empty()) { 4194 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4195 << " underlying objects.\n"); 4196 Changed |= vectorizeGEPIndices(BB, R); 4197 } 4198 } 4199 4200 if (Changed) { 4201 R.optimizeGatherSequence(); 4202 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4203 DEBUG(verifyFunction(F)); 4204 } 4205 return Changed; 4206 } 4207 4208 /// \brief Check that the Values in the slice in VL array are still existent in 4209 /// the WeakTrackingVH array. 4210 /// Vectorization of part of the VL array may cause later values in the VL array 4211 /// to become invalid. We track when this has happened in the WeakTrackingVH 4212 /// array. 4213 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4214 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4215 unsigned SliceSize) { 4216 VL = VL.slice(SliceBegin, SliceSize); 4217 VH = VH.slice(SliceBegin, SliceSize); 4218 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4219 } 4220 4221 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4222 unsigned VecRegSize) { 4223 unsigned ChainLen = Chain.size(); 4224 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4225 << "\n"); 4226 unsigned Sz = R.getVectorElementSize(Chain[0]); 4227 unsigned VF = VecRegSize / Sz; 4228 4229 if (!isPowerOf2_32(Sz) || VF < 2) 4230 return false; 4231 4232 // Keep track of values that were deleted by vectorizing in the loop below. 4233 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4234 4235 bool Changed = false; 4236 // Look for profitable vectorizable trees at all offsets, starting at zero. 4237 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4238 if (i + VF > e) 4239 break; 4240 4241 // Check that a previous iteration of this loop did not delete the Value. 4242 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4243 continue; 4244 4245 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4246 << "\n"); 4247 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4248 4249 R.buildTree(Operands); 4250 if (R.isTreeTinyAndNotFullyVectorizable()) 4251 continue; 4252 4253 R.computeMinimumValueSizes(); 4254 4255 int Cost = R.getTreeCost(); 4256 4257 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4258 if (Cost < -SLPCostThreshold) { 4259 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4260 4261 using namespace ore; 4262 4263 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4264 cast<StoreInst>(Chain[i])) 4265 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4266 << " and with tree size " 4267 << NV("TreeSize", R.getTreeSize())); 4268 4269 R.vectorizeTree(); 4270 4271 // Move to the next bundle. 4272 i += VF - 1; 4273 Changed = true; 4274 } 4275 } 4276 4277 return Changed; 4278 } 4279 4280 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4281 BoUpSLP &R) { 4282 SetVector<StoreInst *> Heads, Tails; 4283 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4284 4285 // We may run into multiple chains that merge into a single chain. We mark the 4286 // stores that we vectorized so that we don't visit the same store twice. 4287 BoUpSLP::ValueSet VectorizedStores; 4288 bool Changed = false; 4289 4290 // Do a quadratic search on all of the given stores and find 4291 // all of the pairs of stores that follow each other. 4292 SmallVector<unsigned, 16> IndexQueue; 4293 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 4294 IndexQueue.clear(); 4295 // If a store has multiple consecutive store candidates, search Stores 4296 // array according to the sequence: from i+1 to e, then from i-1 to 0. 4297 // This is because usually pairing with immediate succeeding or preceding 4298 // candidate create the best chance to find slp vectorization opportunity. 4299 unsigned j = 0; 4300 for (j = i + 1; j < e; ++j) 4301 IndexQueue.push_back(j); 4302 for (j = i; j > 0; --j) 4303 IndexQueue.push_back(j - 1); 4304 4305 for (auto &k : IndexQueue) { 4306 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 4307 Tails.insert(Stores[k]); 4308 Heads.insert(Stores[i]); 4309 ConsecutiveChain[Stores[i]] = Stores[k]; 4310 break; 4311 } 4312 } 4313 } 4314 4315 // For stores that start but don't end a link in the chain: 4316 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4317 it != e; ++it) { 4318 if (Tails.count(*it)) 4319 continue; 4320 4321 // We found a store instr that starts a chain. Now follow the chain and try 4322 // to vectorize it. 4323 BoUpSLP::ValueList Operands; 4324 StoreInst *I = *it; 4325 // Collect the chain into a list. 4326 while (Tails.count(I) || Heads.count(I)) { 4327 if (VectorizedStores.count(I)) 4328 break; 4329 Operands.push_back(I); 4330 // Move to the next value in the chain. 4331 I = ConsecutiveChain[I]; 4332 } 4333 4334 // FIXME: Is division-by-2 the correct step? Should we assert that the 4335 // register size is a power-of-2? 4336 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4337 Size /= 2) { 4338 if (vectorizeStoreChain(Operands, R, Size)) { 4339 // Mark the vectorized stores so that we don't vectorize them again. 4340 VectorizedStores.insert(Operands.begin(), Operands.end()); 4341 Changed = true; 4342 break; 4343 } 4344 } 4345 } 4346 4347 return Changed; 4348 } 4349 4350 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4351 // Initialize the collections. We will make a single pass over the block. 4352 Stores.clear(); 4353 GEPs.clear(); 4354 4355 // Visit the store and getelementptr instructions in BB and organize them in 4356 // Stores and GEPs according to the underlying objects of their pointer 4357 // operands. 4358 for (Instruction &I : *BB) { 4359 // Ignore store instructions that are volatile or have a pointer operand 4360 // that doesn't point to a scalar type. 4361 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4362 if (!SI->isSimple()) 4363 continue; 4364 if (!isValidElementType(SI->getValueOperand()->getType())) 4365 continue; 4366 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4367 } 4368 4369 // Ignore getelementptr instructions that have more than one index, a 4370 // constant index, or a pointer operand that doesn't point to a scalar 4371 // type. 4372 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4373 auto Idx = GEP->idx_begin()->get(); 4374 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4375 continue; 4376 if (!isValidElementType(Idx->getType())) 4377 continue; 4378 if (GEP->getType()->isVectorTy()) 4379 continue; 4380 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4381 } 4382 } 4383 } 4384 4385 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4386 if (!A || !B) 4387 return false; 4388 Value *VL[] = { A, B }; 4389 return tryToVectorizeList(VL, R, None, true); 4390 } 4391 4392 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4393 ArrayRef<Value *> BuildVector, 4394 bool AllowReorder) { 4395 if (VL.size() < 2) 4396 return false; 4397 4398 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4399 << ".\n"); 4400 4401 // Check that all of the parts are scalar instructions of the same type. 4402 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4403 if (!I0) 4404 return false; 4405 4406 unsigned Opcode0 = I0->getOpcode(); 4407 4408 unsigned Sz = R.getVectorElementSize(I0); 4409 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4410 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4411 if (MaxVF < 2) 4412 return false; 4413 4414 for (Value *V : VL) { 4415 Type *Ty = V->getType(); 4416 if (!isValidElementType(Ty)) 4417 return false; 4418 Instruction *Inst = dyn_cast<Instruction>(V); 4419 if (!Inst || Inst->getOpcode() != Opcode0) 4420 return false; 4421 } 4422 4423 bool Changed = false; 4424 4425 // Keep track of values that were deleted by vectorizing in the loop below. 4426 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4427 4428 unsigned NextInst = 0, MaxInst = VL.size(); 4429 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4430 VF /= 2) { 4431 // No actual vectorization should happen, if number of parts is the same as 4432 // provided vectorization factor (i.e. the scalar type is used for vector 4433 // code during codegen). 4434 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4435 if (TTI->getNumberOfParts(VecTy) == VF) 4436 continue; 4437 for (unsigned I = NextInst; I < MaxInst; ++I) { 4438 unsigned OpsWidth = 0; 4439 4440 if (I + VF > MaxInst) 4441 OpsWidth = MaxInst - I; 4442 else 4443 OpsWidth = VF; 4444 4445 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4446 break; 4447 4448 // Check that a previous iteration of this loop did not delete the Value. 4449 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4450 continue; 4451 4452 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4453 << "\n"); 4454 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4455 4456 ArrayRef<Value *> BuildVectorSlice; 4457 if (!BuildVector.empty()) 4458 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4459 4460 R.buildTree(Ops, BuildVectorSlice); 4461 // TODO: check if we can allow reordering for more cases. 4462 if (AllowReorder && R.shouldReorder()) { 4463 // Conceptually, there is nothing actually preventing us from trying to 4464 // reorder a larger list. In fact, we do exactly this when vectorizing 4465 // reductions. However, at this point, we only expect to get here when 4466 // there are exactly two operations. 4467 assert(Ops.size() == 2); 4468 assert(BuildVectorSlice.empty()); 4469 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4470 R.buildTree(ReorderedOps, None); 4471 } 4472 if (R.isTreeTinyAndNotFullyVectorizable()) 4473 continue; 4474 4475 R.computeMinimumValueSizes(); 4476 int Cost = R.getTreeCost(); 4477 4478 if (Cost < -SLPCostThreshold) { 4479 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4480 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4481 cast<Instruction>(Ops[0])) 4482 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4483 << " and with tree size " 4484 << ore::NV("TreeSize", R.getTreeSize())); 4485 4486 Value *VectorizedRoot = R.vectorizeTree(); 4487 4488 // Reconstruct the build vector by extracting the vectorized root. This 4489 // way we handle the case where some elements of the vector are 4490 // undefined. 4491 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4492 if (!BuildVectorSlice.empty()) { 4493 // The insert point is the last build vector instruction. The 4494 // vectorized root will precede it. This guarantees that we get an 4495 // instruction. The vectorized tree could have been constant folded. 4496 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4497 unsigned VecIdx = 0; 4498 for (auto &V : BuildVectorSlice) { 4499 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4500 ++BasicBlock::iterator(InsertAfter)); 4501 Instruction *I = cast<Instruction>(V); 4502 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4503 Instruction *Extract = 4504 cast<Instruction>(Builder.CreateExtractElement( 4505 VectorizedRoot, Builder.getInt32(VecIdx++))); 4506 I->setOperand(1, Extract); 4507 I->moveAfter(Extract); 4508 InsertAfter = I; 4509 } 4510 } 4511 // Move to the next bundle. 4512 I += VF - 1; 4513 NextInst = I + 1; 4514 Changed = true; 4515 } 4516 } 4517 } 4518 4519 return Changed; 4520 } 4521 4522 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4523 if (!I) 4524 return false; 4525 4526 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4527 return false; 4528 4529 Value *P = I->getParent(); 4530 4531 // Vectorize in current basic block only. 4532 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4533 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4534 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4535 return false; 4536 4537 // Try to vectorize V. 4538 if (tryToVectorizePair(Op0, Op1, R)) 4539 return true; 4540 4541 auto *A = dyn_cast<BinaryOperator>(Op0); 4542 auto *B = dyn_cast<BinaryOperator>(Op1); 4543 // Try to skip B. 4544 if (B && B->hasOneUse()) { 4545 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4546 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4547 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4548 return true; 4549 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4550 return true; 4551 } 4552 4553 // Try to skip A. 4554 if (A && A->hasOneUse()) { 4555 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4556 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4557 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4558 return true; 4559 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4560 return true; 4561 } 4562 return false; 4563 } 4564 4565 /// \brief Generate a shuffle mask to be used in a reduction tree. 4566 /// 4567 /// \param VecLen The length of the vector to be reduced. 4568 /// \param NumEltsToRdx The number of elements that should be reduced in the 4569 /// vector. 4570 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4571 /// reduction. A pairwise reduction will generate a mask of 4572 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4573 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4574 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4575 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4576 bool IsPairwise, bool IsLeft, 4577 IRBuilder<> &Builder) { 4578 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4579 4580 SmallVector<Constant *, 32> ShuffleMask( 4581 VecLen, UndefValue::get(Builder.getInt32Ty())); 4582 4583 if (IsPairwise) 4584 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4585 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4586 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4587 else 4588 // Move the upper half of the vector to the lower half. 4589 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4590 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4591 4592 return ConstantVector::get(ShuffleMask); 4593 } 4594 4595 namespace { 4596 4597 /// Model horizontal reductions. 4598 /// 4599 /// A horizontal reduction is a tree of reduction operations (currently add and 4600 /// fadd) that has operations that can be put into a vector as its leaf. 4601 /// For example, this tree: 4602 /// 4603 /// mul mul mul mul 4604 /// \ / \ / 4605 /// + + 4606 /// \ / 4607 /// + 4608 /// This tree has "mul" as its reduced values and "+" as its reduction 4609 /// operations. A reduction might be feeding into a store or a binary operation 4610 /// feeding a phi. 4611 /// ... 4612 /// \ / 4613 /// + 4614 /// | 4615 /// phi += 4616 /// 4617 /// Or: 4618 /// ... 4619 /// \ / 4620 /// + 4621 /// | 4622 /// *p = 4623 /// 4624 class HorizontalReduction { 4625 SmallVector<Value *, 16> ReductionOps; 4626 SmallVector<Value *, 32> ReducedVals; 4627 // Use map vector to make stable output. 4628 MapVector<Instruction *, Value *> ExtraArgs; 4629 4630 /// Contains info about operation, like its opcode, left and right operands. 4631 struct OperationData { 4632 /// true if the operation is a reduced value, false if reduction operation. 4633 bool IsReducedValue = false; 4634 4635 /// Opcode of the instruction. 4636 unsigned Opcode = 0; 4637 4638 /// Left operand of the reduction operation. 4639 Value *LHS = nullptr; 4640 4641 /// Right operand of the reduction operation. 4642 Value *RHS = nullptr; 4643 4644 /// Checks if the reduction operation can be vectorized. 4645 bool isVectorizable() const { 4646 return LHS && RHS && 4647 // We currently only support adds. 4648 (Opcode == Instruction::Add || Opcode == Instruction::FAdd); 4649 } 4650 4651 public: 4652 explicit OperationData() = default; 4653 4654 /// Construction for reduced values. They are identified by opcode only and 4655 /// don't have associated LHS/RHS values. 4656 explicit OperationData(Value *V) : IsReducedValue(true) { 4657 if (auto *I = dyn_cast<Instruction>(V)) 4658 Opcode = I->getOpcode(); 4659 } 4660 4661 /// Constructor for binary reduction operations with opcode and its left and 4662 /// right operands. 4663 OperationData(unsigned Opcode, Value *LHS, Value *RHS) 4664 : Opcode(Opcode), LHS(LHS), RHS(RHS) {} 4665 4666 explicit operator bool() const { return Opcode; } 4667 4668 /// Get the index of the first operand. 4669 unsigned getFirstOperandIndex() const { 4670 assert(!!*this && "The opcode is not set."); 4671 return 0; 4672 } 4673 4674 /// Total number of operands in the reduction operation. 4675 unsigned getNumberOfOperands() const { 4676 assert(!IsReducedValue && !!*this && LHS && RHS && 4677 "Expected reduction operation."); 4678 return 2; 4679 } 4680 4681 /// Expected number of uses for reduction operations/reduced values. 4682 unsigned getRequiredNumberOfUses() const { 4683 assert(!IsReducedValue && !!*this && LHS && RHS && 4684 "Expected reduction operation."); 4685 return 1; 4686 } 4687 4688 /// Checks if instruction is associative and can be vectorized. 4689 bool isAssociative(Instruction *I) const { 4690 assert(!IsReducedValue && *this && LHS && RHS && 4691 "Expected reduction operation."); 4692 return I->isAssociative(); 4693 } 4694 4695 /// Checks if the reduction operation can be vectorized. 4696 bool isVectorizable(Instruction *I) const { 4697 return isVectorizable() && isAssociative(I); 4698 } 4699 4700 /// Checks if two operation data are both a reduction op or both a reduced 4701 /// value. 4702 bool operator==(const OperationData &OD) { 4703 assert(((IsReducedValue != OD.IsReducedValue) || 4704 ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 4705 "One of the comparing operations is incorrect."); 4706 return this == &OD || 4707 (IsReducedValue == OD.IsReducedValue && Opcode == OD.Opcode); 4708 } 4709 bool operator!=(const OperationData &OD) { return !(*this == OD); } 4710 void clear() { 4711 IsReducedValue = false; 4712 Opcode = 0; 4713 LHS = nullptr; 4714 RHS = nullptr; 4715 } 4716 4717 /// Get the opcode of the reduction operation. 4718 unsigned getOpcode() const { 4719 assert(isVectorizable() && "Expected vectorizable operation."); 4720 return Opcode; 4721 } 4722 4723 Value *getLHS() const { return LHS; } 4724 Value *getRHS() const { return RHS; } 4725 4726 /// Creates reduction operation with the current opcode. 4727 Value *createOp(IRBuilder<> &Builder, const Twine &Name = "") const { 4728 assert(!IsReducedValue && 4729 (Opcode == Instruction::FAdd || Opcode == Instruction::Add) && 4730 "Expected add|fadd reduction operation."); 4731 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4732 Name); 4733 } 4734 }; 4735 4736 Instruction *ReductionRoot = nullptr; 4737 4738 /// The operation data of the reduction operation. 4739 OperationData ReductionData; 4740 4741 /// The operation data of the values we perform a reduction on. 4742 OperationData ReducedValueData; 4743 4744 /// Should we model this reduction as a pairwise reduction tree or a tree that 4745 /// splits the vector in halves and adds those halves. 4746 bool IsPairwiseReduction = false; 4747 4748 /// Checks if the ParentStackElem.first should be marked as a reduction 4749 /// operation with an extra argument or as extra argument itself. 4750 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4751 Value *ExtraArg) { 4752 if (ExtraArgs.count(ParentStackElem.first)) { 4753 ExtraArgs[ParentStackElem.first] = nullptr; 4754 // We ran into something like: 4755 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4756 // The whole ParentStackElem.first should be considered as an extra value 4757 // in this case. 4758 // Do not perform analysis of remaining operands of ParentStackElem.first 4759 // instruction, this whole instruction is an extra argument. 4760 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4761 } else { 4762 // We ran into something like: 4763 // ParentStackElem.first += ... + ExtraArg + ... 4764 ExtraArgs[ParentStackElem.first] = ExtraArg; 4765 } 4766 } 4767 4768 static OperationData getOperationData(Value *V) { 4769 if (!V) 4770 return OperationData(); 4771 4772 Value *LHS; 4773 Value *RHS; 4774 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) 4775 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS); 4776 return OperationData(V); 4777 } 4778 4779 public: 4780 HorizontalReduction() = default; 4781 4782 /// \brief Try to find a reduction tree. 4783 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 4784 assert((!Phi || is_contained(Phi->operands(), B)) && 4785 "Thi phi needs to use the binary operator"); 4786 4787 ReductionData = getOperationData(B); 4788 4789 // We could have a initial reductions that is not an add. 4790 // r *= v1 + v2 + v3 + v4 4791 // In such a case start looking for a tree rooted in the first '+'. 4792 if (Phi) { 4793 if (ReductionData.getLHS() == Phi) { 4794 Phi = nullptr; 4795 B = dyn_cast<Instruction>(ReductionData.getRHS()); 4796 ReductionData = getOperationData(B); 4797 } else if (ReductionData.getRHS() == Phi) { 4798 Phi = nullptr; 4799 B = dyn_cast<Instruction>(ReductionData.getLHS()); 4800 ReductionData = getOperationData(B); 4801 } 4802 } 4803 4804 if (!ReductionData.isVectorizable(B)) 4805 return false; 4806 4807 Type *Ty = B->getType(); 4808 if (!isValidElementType(Ty)) 4809 return false; 4810 4811 ReducedValueData.clear(); 4812 ReductionRoot = B; 4813 4814 // Post order traverse the reduction tree starting at B. We only handle true 4815 // trees containing only binary operators. 4816 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4817 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 4818 const unsigned NUses = ReductionData.getRequiredNumberOfUses(); 4819 while (!Stack.empty()) { 4820 Instruction *TreeN = Stack.back().first; 4821 unsigned EdgeToVist = Stack.back().second++; 4822 OperationData OpData = getOperationData(TreeN); 4823 bool IsReducedValue = OpData != ReductionData; 4824 4825 // Postorder vist. 4826 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 4827 if (IsReducedValue) 4828 ReducedVals.push_back(TreeN); 4829 else { 4830 auto I = ExtraArgs.find(TreeN); 4831 if (I != ExtraArgs.end() && !I->second) { 4832 // Check if TreeN is an extra argument of its parent operation. 4833 if (Stack.size() <= 1) { 4834 // TreeN can't be an extra argument as it is a root reduction 4835 // operation. 4836 return false; 4837 } 4838 // Yes, TreeN is an extra argument, do not add it to a list of 4839 // reduction operations. 4840 // Stack[Stack.size() - 2] always points to the parent operation. 4841 markExtraArg(Stack[Stack.size() - 2], TreeN); 4842 ExtraArgs.erase(TreeN); 4843 } else 4844 ReductionOps.push_back(TreeN); 4845 } 4846 // Retract. 4847 Stack.pop_back(); 4848 continue; 4849 } 4850 4851 // Visit left or right. 4852 Value *NextV = TreeN->getOperand(EdgeToVist); 4853 if (NextV != Phi) { 4854 auto *I = dyn_cast<Instruction>(NextV); 4855 OpData = getOperationData(I); 4856 // Continue analysis if the next operand is a reduction operation or 4857 // (possibly) a reduced value. If the reduced value opcode is not set, 4858 // the first met operation != reduction operation is considered as the 4859 // reduced value class. 4860 if (I && (!ReducedValueData || OpData == ReducedValueData || 4861 OpData == ReductionData)) { 4862 // Only handle trees in the current basic block. 4863 if (I->getParent() != B->getParent()) { 4864 // I is an extra argument for TreeN (its parent operation). 4865 markExtraArg(Stack.back(), I); 4866 continue; 4867 } 4868 4869 // Each tree node needs to have minimal number of users except for the 4870 // ultimate reduction. 4871 if (!I->hasNUses(NUses) && I != B) { 4872 // I is an extra argument for TreeN (its parent operation). 4873 markExtraArg(Stack.back(), I); 4874 continue; 4875 } 4876 4877 if (OpData == ReductionData) { 4878 // We need to be able to reassociate the reduction operations. 4879 if (!OpData.isAssociative(I)) { 4880 // I is an extra argument for TreeN (its parent operation). 4881 markExtraArg(Stack.back(), I); 4882 continue; 4883 } 4884 } else if (ReducedValueData && 4885 ReducedValueData != OpData) { 4886 // Make sure that the opcodes of the operations that we are going to 4887 // reduce match. 4888 // I is an extra argument for TreeN (its parent operation). 4889 markExtraArg(Stack.back(), I); 4890 continue; 4891 } else if (!ReducedValueData) 4892 ReducedValueData = OpData; 4893 4894 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 4895 continue; 4896 } 4897 } 4898 // NextV is an extra argument for TreeN (its parent operation). 4899 markExtraArg(Stack.back(), NextV); 4900 } 4901 return true; 4902 } 4903 4904 /// \brief Attempt to vectorize the tree found by 4905 /// matchAssociativeReduction. 4906 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4907 if (ReducedVals.empty()) 4908 return false; 4909 4910 // If there is a sufficient number of reduction values, reduce 4911 // to a nearby power-of-2. Can safely generate oversized 4912 // vectors and rely on the backend to split them to legal sizes. 4913 unsigned NumReducedVals = ReducedVals.size(); 4914 if (NumReducedVals < 4) 4915 return false; 4916 4917 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4918 4919 Value *VectorizedTree = nullptr; 4920 IRBuilder<> Builder(ReductionRoot); 4921 FastMathFlags Unsafe; 4922 Unsafe.setUnsafeAlgebra(); 4923 Builder.setFastMathFlags(Unsafe); 4924 unsigned i = 0; 4925 4926 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 4927 // The same extra argument may be used several time, so log each attempt 4928 // to use it. 4929 for (auto &Pair : ExtraArgs) 4930 ExternallyUsedValues[Pair.second].push_back(Pair.first); 4931 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4932 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4933 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4934 if (V.shouldReorder()) { 4935 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4936 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4937 } 4938 if (V.isTreeTinyAndNotFullyVectorizable()) 4939 break; 4940 4941 V.computeMinimumValueSizes(); 4942 4943 // Estimate cost. 4944 int Cost = 4945 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4946 if (Cost >= -SLPCostThreshold) 4947 break; 4948 4949 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4950 << ". (HorRdx)\n"); 4951 auto *I0 = cast<Instruction>(VL[0]); 4952 V.getORE()->emit( 4953 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 4954 << "Vectorized horizontal reduction with cost " 4955 << ore::NV("Cost", Cost) << " and with tree size " 4956 << ore::NV("TreeSize", V.getTreeSize())); 4957 4958 // Vectorize a tree. 4959 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4960 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4961 4962 // Emit a reduction. 4963 Value *ReducedSubTree = 4964 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI); 4965 if (VectorizedTree) { 4966 Builder.SetCurrentDebugLocation(Loc); 4967 OperationData VectReductionData(ReductionData.getOpcode(), 4968 VectorizedTree, ReducedSubTree); 4969 VectorizedTree = VectReductionData.createOp(Builder, "bin.rdx"); 4970 propagateIRFlags(VectorizedTree, ReductionOps); 4971 } else 4972 VectorizedTree = ReducedSubTree; 4973 i += ReduxWidth; 4974 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4975 } 4976 4977 if (VectorizedTree) { 4978 // Finish the reduction. 4979 for (; i < NumReducedVals; ++i) { 4980 auto *I = cast<Instruction>(ReducedVals[i]); 4981 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4982 OperationData VectReductionData(ReductionData.getOpcode(), 4983 VectorizedTree, I); 4984 VectorizedTree = VectReductionData.createOp(Builder); 4985 propagateIRFlags(VectorizedTree, ReductionOps); 4986 } 4987 for (auto &Pair : ExternallyUsedValues) { 4988 assert(!Pair.second.empty() && 4989 "At least one DebugLoc must be inserted"); 4990 // Add each externally used value to the final reduction. 4991 for (auto *I : Pair.second) { 4992 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4993 OperationData VectReductionData(ReductionData.getOpcode(), 4994 VectorizedTree, Pair.first); 4995 VectorizedTree = VectReductionData.createOp(Builder, "bin.extra"); 4996 propagateIRFlags(VectorizedTree, I); 4997 } 4998 } 4999 // Update users. 5000 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5001 } 5002 return VectorizedTree != nullptr; 5003 } 5004 5005 unsigned numReductionValues() const { 5006 return ReducedVals.size(); 5007 } 5008 5009 private: 5010 /// \brief Calculate the cost of a reduction. 5011 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5012 unsigned ReduxWidth) { 5013 Type *ScalarTy = FirstReducedVal->getType(); 5014 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5015 5016 int PairwiseRdxCost = 5017 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5018 /*IsPairwiseForm=*/true); 5019 int SplittingRdxCost = 5020 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5021 /*IsPairwiseForm=*/false); 5022 5023 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5024 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5025 5026 int ScalarReduxCost = 5027 (ReduxWidth - 1) * 5028 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5029 5030 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5031 << " for reduction that starts with " << *FirstReducedVal 5032 << " (It is a " 5033 << (IsPairwiseReduction ? "pairwise" : "splitting") 5034 << " reduction)\n"); 5035 5036 return VecReduxCost - ScalarReduxCost; 5037 } 5038 5039 /// \brief Emit a horizontal reduction of the vectorized value. 5040 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5041 unsigned ReduxWidth, ArrayRef<Value *> RedOps, 5042 const TargetTransformInfo *TTI) { 5043 assert(VectorizedValue && "Need to have a vectorized tree node"); 5044 assert(isPowerOf2_32(ReduxWidth) && 5045 "We only handle power-of-two reductions for now"); 5046 5047 if (!IsPairwiseReduction) 5048 return createSimpleTargetReduction( 5049 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5050 TargetTransformInfo::ReductionFlags(), RedOps); 5051 5052 Value *TmpVec = VectorizedValue; 5053 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5054 Value *LeftMask = 5055 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5056 Value *RightMask = 5057 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5058 5059 Value *LeftShuf = Builder.CreateShuffleVector( 5060 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5061 Value *RightShuf = Builder.CreateShuffleVector( 5062 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5063 "rdx.shuf.r"); 5064 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5065 RightShuf); 5066 TmpVec = VectReductionData.createOp(Builder, "bin.rdx"); 5067 propagateIRFlags(TmpVec, RedOps); 5068 } 5069 5070 // The result is in the first element of the vector. 5071 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5072 } 5073 }; 5074 5075 } // end anonymous namespace 5076 5077 /// \brief Recognize construction of vectors like 5078 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5079 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5080 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5081 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5082 /// starting from the last insertelement instruction. 5083 /// 5084 /// Returns true if it matches 5085 /// 5086 static bool findBuildVector(InsertElementInst *LastInsertElem, 5087 SmallVectorImpl<Value *> &BuildVector, 5088 SmallVectorImpl<Value *> &BuildVectorOpds) { 5089 Value *V = nullptr; 5090 do { 5091 BuildVector.push_back(LastInsertElem); 5092 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5093 V = LastInsertElem->getOperand(0); 5094 if (isa<UndefValue>(V)) 5095 break; 5096 LastInsertElem = dyn_cast<InsertElementInst>(V); 5097 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5098 return false; 5099 } while (true); 5100 std::reverse(BuildVector.begin(), BuildVector.end()); 5101 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5102 return true; 5103 } 5104 5105 /// \brief Like findBuildVector, but looks for construction of aggregate. 5106 /// 5107 /// \return true if it matches. 5108 static bool findBuildAggregate(InsertValueInst *IV, 5109 SmallVectorImpl<Value *> &BuildVector, 5110 SmallVectorImpl<Value *> &BuildVectorOpds) { 5111 Value *V; 5112 do { 5113 BuildVector.push_back(IV); 5114 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5115 V = IV->getAggregateOperand(); 5116 if (isa<UndefValue>(V)) 5117 break; 5118 IV = dyn_cast<InsertValueInst>(V); 5119 if (!IV || !IV->hasOneUse()) 5120 return false; 5121 } while (true); 5122 std::reverse(BuildVector.begin(), BuildVector.end()); 5123 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5124 return true; 5125 } 5126 5127 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5128 return V->getType() < V2->getType(); 5129 } 5130 5131 /// \brief Try and get a reduction value from a phi node. 5132 /// 5133 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5134 /// if they come from either \p ParentBB or a containing loop latch. 5135 /// 5136 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5137 /// if not possible. 5138 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5139 BasicBlock *ParentBB, LoopInfo *LI) { 5140 // There are situations where the reduction value is not dominated by the 5141 // reduction phi. Vectorizing such cases has been reported to cause 5142 // miscompiles. See PR25787. 5143 auto DominatedReduxValue = [&](Value *R) { 5144 return ( 5145 dyn_cast<Instruction>(R) && 5146 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5147 }; 5148 5149 Value *Rdx = nullptr; 5150 5151 // Return the incoming value if it comes from the same BB as the phi node. 5152 if (P->getIncomingBlock(0) == ParentBB) { 5153 Rdx = P->getIncomingValue(0); 5154 } else if (P->getIncomingBlock(1) == ParentBB) { 5155 Rdx = P->getIncomingValue(1); 5156 } 5157 5158 if (Rdx && DominatedReduxValue(Rdx)) 5159 return Rdx; 5160 5161 // Otherwise, check whether we have a loop latch to look at. 5162 Loop *BBL = LI->getLoopFor(ParentBB); 5163 if (!BBL) 5164 return nullptr; 5165 BasicBlock *BBLatch = BBL->getLoopLatch(); 5166 if (!BBLatch) 5167 return nullptr; 5168 5169 // There is a loop latch, return the incoming value if it comes from 5170 // that. This reduction pattern occasionally turns up. 5171 if (P->getIncomingBlock(0) == BBLatch) { 5172 Rdx = P->getIncomingValue(0); 5173 } else if (P->getIncomingBlock(1) == BBLatch) { 5174 Rdx = P->getIncomingValue(1); 5175 } 5176 5177 if (Rdx && DominatedReduxValue(Rdx)) 5178 return Rdx; 5179 5180 return nullptr; 5181 } 5182 5183 /// Attempt to reduce a horizontal reduction. 5184 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5185 /// with reduction operators \a Root (or one of its operands) in a basic block 5186 /// \a BB, then check if it can be done. If horizontal reduction is not found 5187 /// and root instruction is a binary operation, vectorization of the operands is 5188 /// attempted. 5189 /// \returns true if a horizontal reduction was matched and reduced or operands 5190 /// of one of the binary instruction were vectorized. 5191 /// \returns false if a horizontal reduction was not matched (or not possible) 5192 /// or no vectorization of any binary operation feeding \a Root instruction was 5193 /// performed. 5194 static bool tryToVectorizeHorReductionOrInstOperands( 5195 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5196 TargetTransformInfo *TTI, 5197 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5198 if (!ShouldVectorizeHor) 5199 return false; 5200 5201 if (!Root) 5202 return false; 5203 5204 if (Root->getParent() != BB || isa<PHINode>(Root)) 5205 return false; 5206 // Start analysis starting from Root instruction. If horizontal reduction is 5207 // found, try to vectorize it. If it is not a horizontal reduction or 5208 // vectorization is not possible or not effective, and currently analyzed 5209 // instruction is a binary operation, try to vectorize the operands, using 5210 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5211 // the same procedure considering each operand as a possible root of the 5212 // horizontal reduction. 5213 // Interrupt the process if the Root instruction itself was vectorized or all 5214 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5215 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5216 SmallSet<Value *, 8> VisitedInstrs; 5217 bool Res = false; 5218 while (!Stack.empty()) { 5219 Value *V; 5220 unsigned Level; 5221 std::tie(V, Level) = Stack.pop_back_val(); 5222 if (!V) 5223 continue; 5224 auto *Inst = dyn_cast<Instruction>(V); 5225 if (!Inst) 5226 continue; 5227 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 5228 HorizontalReduction HorRdx; 5229 if (HorRdx.matchAssociativeReduction(P, BI)) { 5230 if (HorRdx.tryToReduce(R, TTI)) { 5231 Res = true; 5232 // Set P to nullptr to avoid re-analysis of phi node in 5233 // matchAssociativeReduction function unless this is the root node. 5234 P = nullptr; 5235 continue; 5236 } 5237 } 5238 if (P) { 5239 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5240 if (Inst == P) 5241 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5242 if (!Inst) { 5243 // Set P to nullptr to avoid re-analysis of phi node in 5244 // matchAssociativeReduction function unless this is the root node. 5245 P = nullptr; 5246 continue; 5247 } 5248 } 5249 } 5250 // Set P to nullptr to avoid re-analysis of phi node in 5251 // matchAssociativeReduction function unless this is the root node. 5252 P = nullptr; 5253 if (Vectorize(Inst, R)) { 5254 Res = true; 5255 continue; 5256 } 5257 5258 // Try to vectorize operands. 5259 // Continue analysis for the instruction from the same basic block only to 5260 // save compile time. 5261 if (++Level < RecursionMaxDepth) 5262 for (auto *Op : Inst->operand_values()) 5263 if (VisitedInstrs.insert(Op).second) 5264 if (auto *I = dyn_cast<Instruction>(Op)) 5265 if (!isa<PHINode>(Inst) && I->getParent() == BB) 5266 Stack.emplace_back(Op, Level); 5267 } 5268 return Res; 5269 } 5270 5271 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5272 BasicBlock *BB, BoUpSLP &R, 5273 TargetTransformInfo *TTI) { 5274 if (!V) 5275 return false; 5276 auto *I = dyn_cast<Instruction>(V); 5277 if (!I) 5278 return false; 5279 5280 if (!isa<BinaryOperator>(I)) 5281 P = nullptr; 5282 // Try to match and vectorize a horizontal reduction. 5283 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5284 return tryToVectorize(I, R); 5285 }; 5286 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5287 ExtraVectorization); 5288 } 5289 5290 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5291 BasicBlock *BB, BoUpSLP &R) { 5292 const DataLayout &DL = BB->getModule()->getDataLayout(); 5293 if (!R.canMapToVector(IVI->getType(), DL)) 5294 return false; 5295 5296 SmallVector<Value *, 16> BuildVector; 5297 SmallVector<Value *, 16> BuildVectorOpds; 5298 if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds)) 5299 return false; 5300 5301 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5302 return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false); 5303 } 5304 5305 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5306 BasicBlock *BB, BoUpSLP &R) { 5307 SmallVector<Value *, 16> BuildVector; 5308 SmallVector<Value *, 16> BuildVectorOpds; 5309 if (!findBuildVector(IEI, BuildVector, BuildVectorOpds)) 5310 return false; 5311 5312 // Vectorize starting with the build vector operands ignoring the BuildVector 5313 // instructions for the purpose of scheduling and user extraction. 5314 return tryToVectorizeList(BuildVectorOpds, R, BuildVector); 5315 } 5316 5317 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5318 BoUpSLP &R) { 5319 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5320 return true; 5321 5322 bool OpsChanged = false; 5323 for (int Idx = 0; Idx < 2; ++Idx) { 5324 OpsChanged |= 5325 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5326 } 5327 return OpsChanged; 5328 } 5329 5330 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5331 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5332 bool OpsChanged = false; 5333 for (auto &VH : reverse(Instructions)) { 5334 auto *I = dyn_cast_or_null<Instruction>(VH); 5335 if (!I) 5336 continue; 5337 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5338 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5339 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5340 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5341 else if (auto *CI = dyn_cast<CmpInst>(I)) 5342 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5343 } 5344 Instructions.clear(); 5345 return OpsChanged; 5346 } 5347 5348 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5349 bool Changed = false; 5350 SmallVector<Value *, 4> Incoming; 5351 SmallSet<Value *, 16> VisitedInstrs; 5352 5353 bool HaveVectorizedPhiNodes = true; 5354 while (HaveVectorizedPhiNodes) { 5355 HaveVectorizedPhiNodes = false; 5356 5357 // Collect the incoming values from the PHIs. 5358 Incoming.clear(); 5359 for (Instruction &I : *BB) { 5360 PHINode *P = dyn_cast<PHINode>(&I); 5361 if (!P) 5362 break; 5363 5364 if (!VisitedInstrs.count(P)) 5365 Incoming.push_back(P); 5366 } 5367 5368 // Sort by type. 5369 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5370 5371 // Try to vectorize elements base on their type. 5372 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5373 E = Incoming.end(); 5374 IncIt != E;) { 5375 5376 // Look for the next elements with the same type. 5377 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5378 while (SameTypeIt != E && 5379 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5380 VisitedInstrs.insert(*SameTypeIt); 5381 ++SameTypeIt; 5382 } 5383 5384 // Try to vectorize them. 5385 unsigned NumElts = (SameTypeIt - IncIt); 5386 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5387 // The order in which the phi nodes appear in the program does not matter. 5388 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5389 // is done when there are exactly two elements since tryToVectorizeList 5390 // asserts that there are only two values when AllowReorder is true. 5391 bool AllowReorder = NumElts == 2; 5392 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 5393 None, AllowReorder)) { 5394 // Success start over because instructions might have been changed. 5395 HaveVectorizedPhiNodes = true; 5396 Changed = true; 5397 break; 5398 } 5399 5400 // Start over at the next instruction of a different type (or the end). 5401 IncIt = SameTypeIt; 5402 } 5403 } 5404 5405 VisitedInstrs.clear(); 5406 5407 SmallVector<WeakVH, 8> PostProcessInstructions; 5408 SmallDenseSet<Instruction *, 4> KeyNodes; 5409 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5410 // We may go through BB multiple times so skip the one we have checked. 5411 if (!VisitedInstrs.insert(&*it).second) { 5412 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5413 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5414 // We would like to start over since some instructions are deleted 5415 // and the iterator may become invalid value. 5416 Changed = true; 5417 it = BB->begin(); 5418 e = BB->end(); 5419 } 5420 continue; 5421 } 5422 5423 if (isa<DbgInfoIntrinsic>(it)) 5424 continue; 5425 5426 // Try to vectorize reductions that use PHINodes. 5427 if (PHINode *P = dyn_cast<PHINode>(it)) { 5428 // Check that the PHI is a reduction PHI. 5429 if (P->getNumIncomingValues() != 2) 5430 return Changed; 5431 5432 // Try to match and vectorize a horizontal reduction. 5433 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5434 TTI)) { 5435 Changed = true; 5436 it = BB->begin(); 5437 e = BB->end(); 5438 continue; 5439 } 5440 continue; 5441 } 5442 5443 // Ran into an instruction without users, like terminator, or function call 5444 // with ignored return value, store. Ignore unused instructions (basing on 5445 // instruction type, except for CallInst and InvokeInst). 5446 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5447 isa<InvokeInst>(it))) { 5448 KeyNodes.insert(&*it); 5449 bool OpsChanged = false; 5450 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5451 for (auto *V : it->operand_values()) { 5452 // Try to match and vectorize a horizontal reduction. 5453 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5454 } 5455 } 5456 // Start vectorization of post-process list of instructions from the 5457 // top-tree instructions to try to vectorize as many instructions as 5458 // possible. 5459 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5460 if (OpsChanged) { 5461 // We would like to start over since some instructions are deleted 5462 // and the iterator may become invalid value. 5463 Changed = true; 5464 it = BB->begin(); 5465 e = BB->end(); 5466 continue; 5467 } 5468 } 5469 5470 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5471 isa<InsertValueInst>(it)) 5472 PostProcessInstructions.push_back(&*it); 5473 5474 } 5475 5476 return Changed; 5477 } 5478 5479 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5480 auto Changed = false; 5481 for (auto &Entry : GEPs) { 5482 // If the getelementptr list has fewer than two elements, there's nothing 5483 // to do. 5484 if (Entry.second.size() < 2) 5485 continue; 5486 5487 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5488 << Entry.second.size() << ".\n"); 5489 5490 // We process the getelementptr list in chunks of 16 (like we do for 5491 // stores) to minimize compile-time. 5492 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5493 auto Len = std::min<unsigned>(BE - BI, 16); 5494 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5495 5496 // Initialize a set a candidate getelementptrs. Note that we use a 5497 // SetVector here to preserve program order. If the index computations 5498 // are vectorizable and begin with loads, we want to minimize the chance 5499 // of having to reorder them later. 5500 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5501 5502 // Some of the candidates may have already been vectorized after we 5503 // initially collected them. If so, the WeakTrackingVHs will have 5504 // nullified the 5505 // values, so remove them from the set of candidates. 5506 Candidates.remove(nullptr); 5507 5508 // Remove from the set of candidates all pairs of getelementptrs with 5509 // constant differences. Such getelementptrs are likely not good 5510 // candidates for vectorization in a bottom-up phase since one can be 5511 // computed from the other. We also ensure all candidate getelementptr 5512 // indices are unique. 5513 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5514 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5515 if (!Candidates.count(GEPI)) 5516 continue; 5517 auto *SCEVI = SE->getSCEV(GEPList[I]); 5518 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5519 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5520 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5521 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5522 Candidates.remove(GEPList[I]); 5523 Candidates.remove(GEPList[J]); 5524 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5525 Candidates.remove(GEPList[J]); 5526 } 5527 } 5528 } 5529 5530 // We break out of the above computation as soon as we know there are 5531 // fewer than two candidates remaining. 5532 if (Candidates.size() < 2) 5533 continue; 5534 5535 // Add the single, non-constant index of each candidate to the bundle. We 5536 // ensured the indices met these constraints when we originally collected 5537 // the getelementptrs. 5538 SmallVector<Value *, 16> Bundle(Candidates.size()); 5539 auto BundleIndex = 0u; 5540 for (auto *V : Candidates) { 5541 auto *GEP = cast<GetElementPtrInst>(V); 5542 auto *GEPIdx = GEP->idx_begin()->get(); 5543 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5544 Bundle[BundleIndex++] = GEPIdx; 5545 } 5546 5547 // Try and vectorize the indices. We are currently only interested in 5548 // gather-like cases of the form: 5549 // 5550 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5551 // 5552 // where the loads of "a", the loads of "b", and the subtractions can be 5553 // performed in parallel. It's likely that detecting this pattern in a 5554 // bottom-up phase will be simpler and less costly than building a 5555 // full-blown top-down phase beginning at the consecutive loads. 5556 Changed |= tryToVectorizeList(Bundle, R); 5557 } 5558 } 5559 return Changed; 5560 } 5561 5562 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5563 bool Changed = false; 5564 // Attempt to sort and vectorize each of the store-groups. 5565 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5566 ++it) { 5567 if (it->second.size() < 2) 5568 continue; 5569 5570 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5571 << it->second.size() << ".\n"); 5572 5573 // Process the stores in chunks of 16. 5574 // TODO: The limit of 16 inhibits greater vectorization factors. 5575 // For example, AVX2 supports v32i8. Increasing this limit, however, 5576 // may cause a significant compile-time increase. 5577 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5578 unsigned Len = std::min<unsigned>(CE - CI, 16); 5579 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5580 } 5581 } 5582 return Changed; 5583 } 5584 5585 char SLPVectorizer::ID = 0; 5586 5587 static const char lv_name[] = "SLP Vectorizer"; 5588 5589 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5590 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5591 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5592 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5593 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5594 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5595 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5596 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5597 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5598 5599 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 5600