1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 796 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1908 /// reordering (i.e. the operands can be reordered because they have only one 1909 /// user and reordarable). 1910 /// \param NonVectorized List of all gather nodes that require reordering 1911 /// (e.g., gather of extractlements or partially vectorizable loads). 1912 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1913 /// reordering, subset of \p NonVectorized. 1914 bool 1915 canReorderOperands(TreeEntry *UserTE, 1916 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1917 ArrayRef<TreeEntry *> ReorderableGathers, 1918 SmallVectorImpl<TreeEntry *> &GatherOps); 1919 1920 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1921 /// if any. If it is not vectorized (gather node), returns nullptr. 1922 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1923 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1924 TreeEntry *TE = nullptr; 1925 const auto *It = find_if(VL, [this, &TE](Value *V) { 1926 TE = getTreeEntry(V); 1927 return TE; 1928 }); 1929 if (It != VL.end() && TE->isSame(VL)) 1930 return TE; 1931 return nullptr; 1932 } 1933 1934 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1935 /// if any. If it is not vectorized (gather node), returns nullptr. 1936 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1937 unsigned OpIdx) const { 1938 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1939 const_cast<TreeEntry *>(UserTE), OpIdx); 1940 } 1941 1942 /// Checks if all users of \p I are the part of the vectorization tree. 1943 bool areAllUsersVectorized(Instruction *I, 1944 ArrayRef<Value *> VectorizedVals) const; 1945 1946 /// \returns the cost of the vectorizable entry. 1947 InstructionCost getEntryCost(const TreeEntry *E, 1948 ArrayRef<Value *> VectorizedVals); 1949 1950 /// This is the recursive part of buildTree. 1951 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1952 const EdgeInfo &EI); 1953 1954 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1955 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1956 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1957 /// returns false, setting \p CurrentOrder to either an empty vector or a 1958 /// non-identity permutation that allows to reuse extract instructions. 1959 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1960 SmallVectorImpl<unsigned> &CurrentOrder) const; 1961 1962 /// Vectorize a single entry in the tree. 1963 Value *vectorizeTree(TreeEntry *E); 1964 1965 /// Vectorize a single entry in the tree, starting in \p VL. 1966 Value *vectorizeTree(ArrayRef<Value *> VL); 1967 1968 /// \returns the scalarization cost for this type. Scalarization in this 1969 /// context means the creation of vectors from a group of scalars. If \p 1970 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1971 /// vector elements. 1972 InstructionCost getGatherCost(FixedVectorType *Ty, 1973 const APInt &ShuffledIndices, 1974 bool NeedToShuffle) const; 1975 1976 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1977 /// tree entries. 1978 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1979 /// previous tree entries. \p Mask is filled with the shuffle mask. 1980 Optional<TargetTransformInfo::ShuffleKind> 1981 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1982 SmallVectorImpl<const TreeEntry *> &Entries); 1983 1984 /// \returns the scalarization cost for this list of values. Assuming that 1985 /// this subtree gets vectorized, we may need to extract the values from the 1986 /// roots. This method calculates the cost of extracting the values. 1987 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1988 1989 /// Set the Builder insert point to one after the last instruction in 1990 /// the bundle 1991 void setInsertPointAfterBundle(const TreeEntry *E); 1992 1993 /// \returns a vector from a collection of scalars in \p VL. 1994 Value *gather(ArrayRef<Value *> VL); 1995 1996 /// \returns whether the VectorizableTree is fully vectorizable and will 1997 /// be beneficial even the tree height is tiny. 1998 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1999 2000 /// Reorder commutative or alt operands to get better probability of 2001 /// generating vectorized code. 2002 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2003 SmallVectorImpl<Value *> &Left, 2004 SmallVectorImpl<Value *> &Right, 2005 const DataLayout &DL, 2006 ScalarEvolution &SE, 2007 const BoUpSLP &R); 2008 struct TreeEntry { 2009 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2010 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2011 2012 /// \returns true if the scalars in VL are equal to this entry. 2013 bool isSame(ArrayRef<Value *> VL) const { 2014 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2015 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2016 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2017 return VL.size() == Mask.size() && 2018 std::equal(VL.begin(), VL.end(), Mask.begin(), 2019 [Scalars](Value *V, int Idx) { 2020 return (isa<UndefValue>(V) && 2021 Idx == UndefMaskElem) || 2022 (Idx != UndefMaskElem && V == Scalars[Idx]); 2023 }); 2024 }; 2025 if (!ReorderIndices.empty()) { 2026 // TODO: implement matching if the nodes are just reordered, still can 2027 // treat the vector as the same if the list of scalars matches VL 2028 // directly, without reordering. 2029 SmallVector<int> Mask; 2030 inversePermutation(ReorderIndices, Mask); 2031 if (VL.size() == Scalars.size()) 2032 return IsSame(Scalars, Mask); 2033 if (VL.size() == ReuseShuffleIndices.size()) { 2034 ::addMask(Mask, ReuseShuffleIndices); 2035 return IsSame(Scalars, Mask); 2036 } 2037 return false; 2038 } 2039 return IsSame(Scalars, ReuseShuffleIndices); 2040 } 2041 2042 /// \returns true if current entry has same operands as \p TE. 2043 bool hasEqualOperands(const TreeEntry &TE) const { 2044 if (TE.getNumOperands() != getNumOperands()) 2045 return false; 2046 SmallBitVector Used(getNumOperands()); 2047 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2048 unsigned PrevCount = Used.count(); 2049 for (unsigned K = 0; K < E; ++K) { 2050 if (Used.test(K)) 2051 continue; 2052 if (getOperand(K) == TE.getOperand(I)) { 2053 Used.set(K); 2054 break; 2055 } 2056 } 2057 // Check if we actually found the matching operand. 2058 if (PrevCount == Used.count()) 2059 return false; 2060 } 2061 return true; 2062 } 2063 2064 /// \return Final vectorization factor for the node. Defined by the total 2065 /// number of vectorized scalars, including those, used several times in the 2066 /// entry and counted in the \a ReuseShuffleIndices, if any. 2067 unsigned getVectorFactor() const { 2068 if (!ReuseShuffleIndices.empty()) 2069 return ReuseShuffleIndices.size(); 2070 return Scalars.size(); 2071 }; 2072 2073 /// A vector of scalars. 2074 ValueList Scalars; 2075 2076 /// The Scalars are vectorized into this value. It is initialized to Null. 2077 Value *VectorizedValue = nullptr; 2078 2079 /// Do we need to gather this sequence or vectorize it 2080 /// (either with vector instruction or with scatter/gather 2081 /// intrinsics for store/load)? 2082 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2083 EntryState State; 2084 2085 /// Does this sequence require some shuffling? 2086 SmallVector<int, 4> ReuseShuffleIndices; 2087 2088 /// Does this entry require reordering? 2089 SmallVector<unsigned, 4> ReorderIndices; 2090 2091 /// Points back to the VectorizableTree. 2092 /// 2093 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2094 /// to be a pointer and needs to be able to initialize the child iterator. 2095 /// Thus we need a reference back to the container to translate the indices 2096 /// to entries. 2097 VecTreeTy &Container; 2098 2099 /// The TreeEntry index containing the user of this entry. We can actually 2100 /// have multiple users so the data structure is not truly a tree. 2101 SmallVector<EdgeInfo, 1> UserTreeIndices; 2102 2103 /// The index of this treeEntry in VectorizableTree. 2104 int Idx = -1; 2105 2106 private: 2107 /// The operands of each instruction in each lane Operands[op_index][lane]. 2108 /// Note: This helps avoid the replication of the code that performs the 2109 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2110 SmallVector<ValueList, 2> Operands; 2111 2112 /// The main/alternate instruction. 2113 Instruction *MainOp = nullptr; 2114 Instruction *AltOp = nullptr; 2115 2116 public: 2117 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2118 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2119 if (Operands.size() < OpIdx + 1) 2120 Operands.resize(OpIdx + 1); 2121 assert(Operands[OpIdx].empty() && "Already resized?"); 2122 assert(OpVL.size() <= Scalars.size() && 2123 "Number of operands is greater than the number of scalars."); 2124 Operands[OpIdx].resize(OpVL.size()); 2125 copy(OpVL, Operands[OpIdx].begin()); 2126 } 2127 2128 /// Set the operands of this bundle in their original order. 2129 void setOperandsInOrder() { 2130 assert(Operands.empty() && "Already initialized?"); 2131 auto *I0 = cast<Instruction>(Scalars[0]); 2132 Operands.resize(I0->getNumOperands()); 2133 unsigned NumLanes = Scalars.size(); 2134 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2135 OpIdx != NumOperands; ++OpIdx) { 2136 Operands[OpIdx].resize(NumLanes); 2137 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2138 auto *I = cast<Instruction>(Scalars[Lane]); 2139 assert(I->getNumOperands() == NumOperands && 2140 "Expected same number of operands"); 2141 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2142 } 2143 } 2144 } 2145 2146 /// Reorders operands of the node to the given mask \p Mask. 2147 void reorderOperands(ArrayRef<int> Mask) { 2148 for (ValueList &Operand : Operands) 2149 reorderScalars(Operand, Mask); 2150 } 2151 2152 /// \returns the \p OpIdx operand of this TreeEntry. 2153 ValueList &getOperand(unsigned OpIdx) { 2154 assert(OpIdx < Operands.size() && "Off bounds"); 2155 return Operands[OpIdx]; 2156 } 2157 2158 /// \returns the \p OpIdx operand of this TreeEntry. 2159 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2160 assert(OpIdx < Operands.size() && "Off bounds"); 2161 return Operands[OpIdx]; 2162 } 2163 2164 /// \returns the number of operands. 2165 unsigned getNumOperands() const { return Operands.size(); } 2166 2167 /// \return the single \p OpIdx operand. 2168 Value *getSingleOperand(unsigned OpIdx) const { 2169 assert(OpIdx < Operands.size() && "Off bounds"); 2170 assert(!Operands[OpIdx].empty() && "No operand available"); 2171 return Operands[OpIdx][0]; 2172 } 2173 2174 /// Some of the instructions in the list have alternate opcodes. 2175 bool isAltShuffle() const { return MainOp != AltOp; } 2176 2177 bool isOpcodeOrAlt(Instruction *I) const { 2178 unsigned CheckedOpcode = I->getOpcode(); 2179 return (getOpcode() == CheckedOpcode || 2180 getAltOpcode() == CheckedOpcode); 2181 } 2182 2183 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2184 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2185 /// \p OpValue. 2186 Value *isOneOf(Value *Op) const { 2187 auto *I = dyn_cast<Instruction>(Op); 2188 if (I && isOpcodeOrAlt(I)) 2189 return Op; 2190 return MainOp; 2191 } 2192 2193 void setOperations(const InstructionsState &S) { 2194 MainOp = S.MainOp; 2195 AltOp = S.AltOp; 2196 } 2197 2198 Instruction *getMainOp() const { 2199 return MainOp; 2200 } 2201 2202 Instruction *getAltOp() const { 2203 return AltOp; 2204 } 2205 2206 /// The main/alternate opcodes for the list of instructions. 2207 unsigned getOpcode() const { 2208 return MainOp ? MainOp->getOpcode() : 0; 2209 } 2210 2211 unsigned getAltOpcode() const { 2212 return AltOp ? AltOp->getOpcode() : 0; 2213 } 2214 2215 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2216 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2217 int findLaneForValue(Value *V) const { 2218 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2219 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2220 if (!ReorderIndices.empty()) 2221 FoundLane = ReorderIndices[FoundLane]; 2222 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2223 if (!ReuseShuffleIndices.empty()) { 2224 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2225 find(ReuseShuffleIndices, FoundLane)); 2226 } 2227 return FoundLane; 2228 } 2229 2230 #ifndef NDEBUG 2231 /// Debug printer. 2232 LLVM_DUMP_METHOD void dump() const { 2233 dbgs() << Idx << ".\n"; 2234 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2235 dbgs() << "Operand " << OpI << ":\n"; 2236 for (const Value *V : Operands[OpI]) 2237 dbgs().indent(2) << *V << "\n"; 2238 } 2239 dbgs() << "Scalars: \n"; 2240 for (Value *V : Scalars) 2241 dbgs().indent(2) << *V << "\n"; 2242 dbgs() << "State: "; 2243 switch (State) { 2244 case Vectorize: 2245 dbgs() << "Vectorize\n"; 2246 break; 2247 case ScatterVectorize: 2248 dbgs() << "ScatterVectorize\n"; 2249 break; 2250 case NeedToGather: 2251 dbgs() << "NeedToGather\n"; 2252 break; 2253 } 2254 dbgs() << "MainOp: "; 2255 if (MainOp) 2256 dbgs() << *MainOp << "\n"; 2257 else 2258 dbgs() << "NULL\n"; 2259 dbgs() << "AltOp: "; 2260 if (AltOp) 2261 dbgs() << *AltOp << "\n"; 2262 else 2263 dbgs() << "NULL\n"; 2264 dbgs() << "VectorizedValue: "; 2265 if (VectorizedValue) 2266 dbgs() << *VectorizedValue << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "ReuseShuffleIndices: "; 2270 if (ReuseShuffleIndices.empty()) 2271 dbgs() << "Empty"; 2272 else 2273 for (int ReuseIdx : ReuseShuffleIndices) 2274 dbgs() << ReuseIdx << ", "; 2275 dbgs() << "\n"; 2276 dbgs() << "ReorderIndices: "; 2277 for (unsigned ReorderIdx : ReorderIndices) 2278 dbgs() << ReorderIdx << ", "; 2279 dbgs() << "\n"; 2280 dbgs() << "UserTreeIndices: "; 2281 for (const auto &EInfo : UserTreeIndices) 2282 dbgs() << EInfo << ", "; 2283 dbgs() << "\n"; 2284 } 2285 #endif 2286 }; 2287 2288 #ifndef NDEBUG 2289 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2290 InstructionCost VecCost, 2291 InstructionCost ScalarCost) const { 2292 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2293 dbgs() << "SLP: Costs:\n"; 2294 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2295 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2296 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2297 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2298 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2299 } 2300 #endif 2301 2302 /// Create a new VectorizableTree entry. 2303 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2304 const InstructionsState &S, 2305 const EdgeInfo &UserTreeIdx, 2306 ArrayRef<int> ReuseShuffleIndices = None, 2307 ArrayRef<unsigned> ReorderIndices = None) { 2308 TreeEntry::EntryState EntryState = 2309 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2310 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2311 ReuseShuffleIndices, ReorderIndices); 2312 } 2313 2314 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2315 TreeEntry::EntryState EntryState, 2316 Optional<ScheduleData *> Bundle, 2317 const InstructionsState &S, 2318 const EdgeInfo &UserTreeIdx, 2319 ArrayRef<int> ReuseShuffleIndices = None, 2320 ArrayRef<unsigned> ReorderIndices = None) { 2321 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2322 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2323 "Need to vectorize gather entry?"); 2324 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2325 TreeEntry *Last = VectorizableTree.back().get(); 2326 Last->Idx = VectorizableTree.size() - 1; 2327 Last->State = EntryState; 2328 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2329 ReuseShuffleIndices.end()); 2330 if (ReorderIndices.empty()) { 2331 Last->Scalars.assign(VL.begin(), VL.end()); 2332 Last->setOperations(S); 2333 } else { 2334 // Reorder scalars and build final mask. 2335 Last->Scalars.assign(VL.size(), nullptr); 2336 transform(ReorderIndices, Last->Scalars.begin(), 2337 [VL](unsigned Idx) -> Value * { 2338 if (Idx >= VL.size()) 2339 return UndefValue::get(VL.front()->getType()); 2340 return VL[Idx]; 2341 }); 2342 InstructionsState S = getSameOpcode(Last->Scalars); 2343 Last->setOperations(S); 2344 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2345 } 2346 if (Last->State != TreeEntry::NeedToGather) { 2347 for (Value *V : VL) { 2348 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2349 ScalarToTreeEntry[V] = Last; 2350 } 2351 // Update the scheduler bundle to point to this TreeEntry. 2352 unsigned Lane = 0; 2353 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2354 BundleMember = BundleMember->NextInBundle) { 2355 BundleMember->TE = Last; 2356 BundleMember->Lane = Lane; 2357 ++Lane; 2358 } 2359 assert((!Bundle.getValue() || Lane == VL.size()) && 2360 "Bundle and VL out of sync"); 2361 } else { 2362 MustGather.insert(VL.begin(), VL.end()); 2363 } 2364 2365 if (UserTreeIdx.UserTE) 2366 Last->UserTreeIndices.push_back(UserTreeIdx); 2367 2368 return Last; 2369 } 2370 2371 /// -- Vectorization State -- 2372 /// Holds all of the tree entries. 2373 TreeEntry::VecTreeTy VectorizableTree; 2374 2375 #ifndef NDEBUG 2376 /// Debug printer. 2377 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2378 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2379 VectorizableTree[Id]->dump(); 2380 dbgs() << "\n"; 2381 } 2382 } 2383 #endif 2384 2385 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2386 2387 const TreeEntry *getTreeEntry(Value *V) const { 2388 return ScalarToTreeEntry.lookup(V); 2389 } 2390 2391 /// Maps a specific scalar to its tree entry. 2392 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2393 2394 /// Maps a value to the proposed vectorizable size. 2395 SmallDenseMap<Value *, unsigned> InstrElementSize; 2396 2397 /// A list of scalars that we found that we need to keep as scalars. 2398 ValueSet MustGather; 2399 2400 /// This POD struct describes one external user in the vectorized tree. 2401 struct ExternalUser { 2402 ExternalUser(Value *S, llvm::User *U, int L) 2403 : Scalar(S), User(U), Lane(L) {} 2404 2405 // Which scalar in our function. 2406 Value *Scalar; 2407 2408 // Which user that uses the scalar. 2409 llvm::User *User; 2410 2411 // Which lane does the scalar belong to. 2412 int Lane; 2413 }; 2414 using UserList = SmallVector<ExternalUser, 16>; 2415 2416 /// Checks if two instructions may access the same memory. 2417 /// 2418 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2419 /// is invariant in the calling loop. 2420 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2421 Instruction *Inst2) { 2422 // First check if the result is already in the cache. 2423 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2424 Optional<bool> &result = AliasCache[key]; 2425 if (result.hasValue()) { 2426 return result.getValue(); 2427 } 2428 bool aliased = true; 2429 if (Loc1.Ptr && isSimple(Inst1)) 2430 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2431 // Store the result in the cache. 2432 result = aliased; 2433 return aliased; 2434 } 2435 2436 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2437 2438 /// Cache for alias results. 2439 /// TODO: consider moving this to the AliasAnalysis itself. 2440 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2441 2442 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2443 // globally through SLP because we don't perform any action which 2444 // invalidates capture results. 2445 BatchAAResults BatchAA; 2446 2447 /// Removes an instruction from its block and eventually deletes it. 2448 /// It's like Instruction::eraseFromParent() except that the actual deletion 2449 /// is delayed until BoUpSLP is destructed. 2450 /// This is required to ensure that there are no incorrect collisions in the 2451 /// AliasCache, which can happen if a new instruction is allocated at the 2452 /// same address as a previously deleted instruction. 2453 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2454 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2455 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2456 } 2457 2458 /// Temporary store for deleted instructions. Instructions will be deleted 2459 /// eventually when the BoUpSLP is destructed. 2460 DenseMap<Instruction *, bool> DeletedInstructions; 2461 2462 /// A list of values that need to extracted out of the tree. 2463 /// This list holds pairs of (Internal Scalar : External User). External User 2464 /// can be nullptr, it means that this Internal Scalar will be used later, 2465 /// after vectorization. 2466 UserList ExternalUses; 2467 2468 /// Values used only by @llvm.assume calls. 2469 SmallPtrSet<const Value *, 32> EphValues; 2470 2471 /// Holds all of the instructions that we gathered. 2472 SetVector<Instruction *> GatherShuffleSeq; 2473 2474 /// A list of blocks that we are going to CSE. 2475 SetVector<BasicBlock *> CSEBlocks; 2476 2477 /// Contains all scheduling relevant data for an instruction. 2478 /// A ScheduleData either represents a single instruction or a member of an 2479 /// instruction bundle (= a group of instructions which is combined into a 2480 /// vector instruction). 2481 struct ScheduleData { 2482 // The initial value for the dependency counters. It means that the 2483 // dependencies are not calculated yet. 2484 enum { InvalidDeps = -1 }; 2485 2486 ScheduleData() = default; 2487 2488 void init(int BlockSchedulingRegionID, Value *OpVal) { 2489 FirstInBundle = this; 2490 NextInBundle = nullptr; 2491 NextLoadStore = nullptr; 2492 IsScheduled = false; 2493 SchedulingRegionID = BlockSchedulingRegionID; 2494 clearDependencies(); 2495 OpValue = OpVal; 2496 TE = nullptr; 2497 Lane = -1; 2498 } 2499 2500 /// Verify basic self consistency properties 2501 void verify() { 2502 if (hasValidDependencies()) { 2503 assert(UnscheduledDeps <= Dependencies && "invariant"); 2504 } else { 2505 assert(UnscheduledDeps == Dependencies && "invariant"); 2506 } 2507 2508 if (IsScheduled) { 2509 assert(isSchedulingEntity() && 2510 "unexpected scheduled state"); 2511 for (const ScheduleData *BundleMember = this; BundleMember; 2512 BundleMember = BundleMember->NextInBundle) { 2513 assert(BundleMember->hasValidDependencies() && 2514 BundleMember->UnscheduledDeps == 0 && 2515 "unexpected scheduled state"); 2516 assert((BundleMember == this || !BundleMember->IsScheduled) && 2517 "only bundle is marked scheduled"); 2518 } 2519 } 2520 2521 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2522 "all bundle members must be in same basic block"); 2523 } 2524 2525 /// Returns true if the dependency information has been calculated. 2526 /// Note that depenendency validity can vary between instructions within 2527 /// a single bundle. 2528 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2529 2530 /// Returns true for single instructions and for bundle representatives 2531 /// (= the head of a bundle). 2532 bool isSchedulingEntity() const { return FirstInBundle == this; } 2533 2534 /// Returns true if it represents an instruction bundle and not only a 2535 /// single instruction. 2536 bool isPartOfBundle() const { 2537 return NextInBundle != nullptr || FirstInBundle != this; 2538 } 2539 2540 /// Returns true if it is ready for scheduling, i.e. it has no more 2541 /// unscheduled depending instructions/bundles. 2542 bool isReady() const { 2543 assert(isSchedulingEntity() && 2544 "can't consider non-scheduling entity for ready list"); 2545 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2546 } 2547 2548 /// Modifies the number of unscheduled dependencies for this instruction, 2549 /// and returns the number of remaining dependencies for the containing 2550 /// bundle. 2551 int incrementUnscheduledDeps(int Incr) { 2552 assert(hasValidDependencies() && 2553 "increment of unscheduled deps would be meaningless"); 2554 UnscheduledDeps += Incr; 2555 return FirstInBundle->unscheduledDepsInBundle(); 2556 } 2557 2558 /// Sets the number of unscheduled dependencies to the number of 2559 /// dependencies. 2560 void resetUnscheduledDeps() { 2561 UnscheduledDeps = Dependencies; 2562 } 2563 2564 /// Clears all dependency information. 2565 void clearDependencies() { 2566 Dependencies = InvalidDeps; 2567 resetUnscheduledDeps(); 2568 MemoryDependencies.clear(); 2569 } 2570 2571 int unscheduledDepsInBundle() const { 2572 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2573 int Sum = 0; 2574 for (const ScheduleData *BundleMember = this; BundleMember; 2575 BundleMember = BundleMember->NextInBundle) { 2576 if (BundleMember->UnscheduledDeps == InvalidDeps) 2577 return InvalidDeps; 2578 Sum += BundleMember->UnscheduledDeps; 2579 } 2580 return Sum; 2581 } 2582 2583 void dump(raw_ostream &os) const { 2584 if (!isSchedulingEntity()) { 2585 os << "/ " << *Inst; 2586 } else if (NextInBundle) { 2587 os << '[' << *Inst; 2588 ScheduleData *SD = NextInBundle; 2589 while (SD) { 2590 os << ';' << *SD->Inst; 2591 SD = SD->NextInBundle; 2592 } 2593 os << ']'; 2594 } else { 2595 os << *Inst; 2596 } 2597 } 2598 2599 Instruction *Inst = nullptr; 2600 2601 /// Opcode of the current instruction in the schedule data. 2602 Value *OpValue = nullptr; 2603 2604 /// The TreeEntry that this instruction corresponds to. 2605 TreeEntry *TE = nullptr; 2606 2607 /// Points to the head in an instruction bundle (and always to this for 2608 /// single instructions). 2609 ScheduleData *FirstInBundle = nullptr; 2610 2611 /// Single linked list of all instructions in a bundle. Null if it is a 2612 /// single instruction. 2613 ScheduleData *NextInBundle = nullptr; 2614 2615 /// Single linked list of all memory instructions (e.g. load, store, call) 2616 /// in the block - until the end of the scheduling region. 2617 ScheduleData *NextLoadStore = nullptr; 2618 2619 /// The dependent memory instructions. 2620 /// This list is derived on demand in calculateDependencies(). 2621 SmallVector<ScheduleData *, 4> MemoryDependencies; 2622 2623 /// This ScheduleData is in the current scheduling region if this matches 2624 /// the current SchedulingRegionID of BlockScheduling. 2625 int SchedulingRegionID = 0; 2626 2627 /// Used for getting a "good" final ordering of instructions. 2628 int SchedulingPriority = 0; 2629 2630 /// The number of dependencies. Constitutes of the number of users of the 2631 /// instruction plus the number of dependent memory instructions (if any). 2632 /// This value is calculated on demand. 2633 /// If InvalidDeps, the number of dependencies is not calculated yet. 2634 int Dependencies = InvalidDeps; 2635 2636 /// The number of dependencies minus the number of dependencies of scheduled 2637 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2638 /// for scheduling. 2639 /// Note that this is negative as long as Dependencies is not calculated. 2640 int UnscheduledDeps = InvalidDeps; 2641 2642 /// The lane of this node in the TreeEntry. 2643 int Lane = -1; 2644 2645 /// True if this instruction is scheduled (or considered as scheduled in the 2646 /// dry-run). 2647 bool IsScheduled = false; 2648 }; 2649 2650 #ifndef NDEBUG 2651 friend inline raw_ostream &operator<<(raw_ostream &os, 2652 const BoUpSLP::ScheduleData &SD) { 2653 SD.dump(os); 2654 return os; 2655 } 2656 #endif 2657 2658 friend struct GraphTraits<BoUpSLP *>; 2659 friend struct DOTGraphTraits<BoUpSLP *>; 2660 2661 /// Contains all scheduling data for a basic block. 2662 struct BlockScheduling { 2663 BlockScheduling(BasicBlock *BB) 2664 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2665 2666 void clear() { 2667 ReadyInsts.clear(); 2668 ScheduleStart = nullptr; 2669 ScheduleEnd = nullptr; 2670 FirstLoadStoreInRegion = nullptr; 2671 LastLoadStoreInRegion = nullptr; 2672 2673 // Reduce the maximum schedule region size by the size of the 2674 // previous scheduling run. 2675 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2676 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2677 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2678 ScheduleRegionSize = 0; 2679 2680 // Make a new scheduling region, i.e. all existing ScheduleData is not 2681 // in the new region yet. 2682 ++SchedulingRegionID; 2683 } 2684 2685 ScheduleData *getScheduleData(Instruction *I) { 2686 if (BB != I->getParent()) 2687 // Avoid lookup if can't possibly be in map. 2688 return nullptr; 2689 ScheduleData *SD = ScheduleDataMap[I]; 2690 if (SD && isInSchedulingRegion(SD)) 2691 return SD; 2692 return nullptr; 2693 } 2694 2695 ScheduleData *getScheduleData(Value *V) { 2696 if (auto *I = dyn_cast<Instruction>(V)) 2697 return getScheduleData(I); 2698 return nullptr; 2699 } 2700 2701 ScheduleData *getScheduleData(Value *V, Value *Key) { 2702 if (V == Key) 2703 return getScheduleData(V); 2704 auto I = ExtraScheduleDataMap.find(V); 2705 if (I != ExtraScheduleDataMap.end()) { 2706 ScheduleData *SD = I->second[Key]; 2707 if (SD && isInSchedulingRegion(SD)) 2708 return SD; 2709 } 2710 return nullptr; 2711 } 2712 2713 bool isInSchedulingRegion(ScheduleData *SD) const { 2714 return SD->SchedulingRegionID == SchedulingRegionID; 2715 } 2716 2717 /// Marks an instruction as scheduled and puts all dependent ready 2718 /// instructions into the ready-list. 2719 template <typename ReadyListType> 2720 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2721 SD->IsScheduled = true; 2722 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2723 2724 for (ScheduleData *BundleMember = SD; BundleMember; 2725 BundleMember = BundleMember->NextInBundle) { 2726 if (BundleMember->Inst != BundleMember->OpValue) 2727 continue; 2728 2729 // Handle the def-use chain dependencies. 2730 2731 // Decrement the unscheduled counter and insert to ready list if ready. 2732 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2733 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2734 if (OpDef && OpDef->hasValidDependencies() && 2735 OpDef->incrementUnscheduledDeps(-1) == 0) { 2736 // There are no more unscheduled dependencies after 2737 // decrementing, so we can put the dependent instruction 2738 // into the ready list. 2739 ScheduleData *DepBundle = OpDef->FirstInBundle; 2740 assert(!DepBundle->IsScheduled && 2741 "already scheduled bundle gets ready"); 2742 ReadyList.insert(DepBundle); 2743 LLVM_DEBUG(dbgs() 2744 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2745 } 2746 }); 2747 }; 2748 2749 // If BundleMember is a vector bundle, its operands may have been 2750 // reordered during buildTree(). We therefore need to get its operands 2751 // through the TreeEntry. 2752 if (TreeEntry *TE = BundleMember->TE) { 2753 int Lane = BundleMember->Lane; 2754 assert(Lane >= 0 && "Lane not set"); 2755 2756 // Since vectorization tree is being built recursively this assertion 2757 // ensures that the tree entry has all operands set before reaching 2758 // this code. Couple of exceptions known at the moment are extracts 2759 // where their second (immediate) operand is not added. Since 2760 // immediates do not affect scheduler behavior this is considered 2761 // okay. 2762 auto *In = TE->getMainOp(); 2763 assert(In && 2764 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2765 In->getNumOperands() == TE->getNumOperands()) && 2766 "Missed TreeEntry operands?"); 2767 (void)In; // fake use to avoid build failure when assertions disabled 2768 2769 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2770 OpIdx != NumOperands; ++OpIdx) 2771 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2772 DecrUnsched(I); 2773 } else { 2774 // If BundleMember is a stand-alone instruction, no operand reordering 2775 // has taken place, so we directly access its operands. 2776 for (Use &U : BundleMember->Inst->operands()) 2777 if (auto *I = dyn_cast<Instruction>(U.get())) 2778 DecrUnsched(I); 2779 } 2780 // Handle the memory dependencies. 2781 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2782 if (MemoryDepSD->hasValidDependencies() && 2783 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2784 // There are no more unscheduled dependencies after decrementing, 2785 // so we can put the dependent instruction into the ready list. 2786 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2787 assert(!DepBundle->IsScheduled && 2788 "already scheduled bundle gets ready"); 2789 ReadyList.insert(DepBundle); 2790 LLVM_DEBUG(dbgs() 2791 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2792 } 2793 } 2794 } 2795 } 2796 2797 /// Verify basic self consistency properties of the data structure. 2798 void verify() { 2799 if (!ScheduleStart) 2800 return; 2801 2802 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2803 ScheduleStart->comesBefore(ScheduleEnd) && 2804 "Not a valid scheduling region?"); 2805 2806 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2807 auto *SD = getScheduleData(I); 2808 assert(SD && "primary scheduledata must exist in window"); 2809 assert(isInSchedulingRegion(SD) && 2810 "primary schedule data not in window?"); 2811 assert(isInSchedulingRegion(SD->FirstInBundle) && 2812 "entire bundle in window!"); 2813 (void)SD; 2814 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2815 } 2816 2817 for (auto *SD : ReadyInsts) { 2818 assert(SD->isSchedulingEntity() && SD->isReady() && 2819 "item in ready list not ready?"); 2820 (void)SD; 2821 } 2822 } 2823 2824 void doForAllOpcodes(Value *V, 2825 function_ref<void(ScheduleData *SD)> Action) { 2826 if (ScheduleData *SD = getScheduleData(V)) 2827 Action(SD); 2828 auto I = ExtraScheduleDataMap.find(V); 2829 if (I != ExtraScheduleDataMap.end()) 2830 for (auto &P : I->second) 2831 if (isInSchedulingRegion(P.second)) 2832 Action(P.second); 2833 } 2834 2835 /// Put all instructions into the ReadyList which are ready for scheduling. 2836 template <typename ReadyListType> 2837 void initialFillReadyList(ReadyListType &ReadyList) { 2838 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2839 doForAllOpcodes(I, [&](ScheduleData *SD) { 2840 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2841 SD->isReady()) { 2842 ReadyList.insert(SD); 2843 LLVM_DEBUG(dbgs() 2844 << "SLP: initially in ready list: " << *SD << "\n"); 2845 } 2846 }); 2847 } 2848 } 2849 2850 /// Build a bundle from the ScheduleData nodes corresponding to the 2851 /// scalar instruction for each lane. 2852 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2853 2854 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2855 /// cyclic dependencies. This is only a dry-run, no instructions are 2856 /// actually moved at this stage. 2857 /// \returns the scheduling bundle. The returned Optional value is non-None 2858 /// if \p VL is allowed to be scheduled. 2859 Optional<ScheduleData *> 2860 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2861 const InstructionsState &S); 2862 2863 /// Un-bundles a group of instructions. 2864 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2865 2866 /// Allocates schedule data chunk. 2867 ScheduleData *allocateScheduleDataChunks(); 2868 2869 /// Extends the scheduling region so that V is inside the region. 2870 /// \returns true if the region size is within the limit. 2871 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2872 2873 /// Initialize the ScheduleData structures for new instructions in the 2874 /// scheduling region. 2875 void initScheduleData(Instruction *FromI, Instruction *ToI, 2876 ScheduleData *PrevLoadStore, 2877 ScheduleData *NextLoadStore); 2878 2879 /// Updates the dependency information of a bundle and of all instructions/ 2880 /// bundles which depend on the original bundle. 2881 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2882 BoUpSLP *SLP); 2883 2884 /// Sets all instruction in the scheduling region to un-scheduled. 2885 void resetSchedule(); 2886 2887 BasicBlock *BB; 2888 2889 /// Simple memory allocation for ScheduleData. 2890 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2891 2892 /// The size of a ScheduleData array in ScheduleDataChunks. 2893 int ChunkSize; 2894 2895 /// The allocator position in the current chunk, which is the last entry 2896 /// of ScheduleDataChunks. 2897 int ChunkPos; 2898 2899 /// Attaches ScheduleData to Instruction. 2900 /// Note that the mapping survives during all vectorization iterations, i.e. 2901 /// ScheduleData structures are recycled. 2902 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2903 2904 /// Attaches ScheduleData to Instruction with the leading key. 2905 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2906 ExtraScheduleDataMap; 2907 2908 /// The ready-list for scheduling (only used for the dry-run). 2909 SetVector<ScheduleData *> ReadyInsts; 2910 2911 /// The first instruction of the scheduling region. 2912 Instruction *ScheduleStart = nullptr; 2913 2914 /// The first instruction _after_ the scheduling region. 2915 Instruction *ScheduleEnd = nullptr; 2916 2917 /// The first memory accessing instruction in the scheduling region 2918 /// (can be null). 2919 ScheduleData *FirstLoadStoreInRegion = nullptr; 2920 2921 /// The last memory accessing instruction in the scheduling region 2922 /// (can be null). 2923 ScheduleData *LastLoadStoreInRegion = nullptr; 2924 2925 /// The current size of the scheduling region. 2926 int ScheduleRegionSize = 0; 2927 2928 /// The maximum size allowed for the scheduling region. 2929 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2930 2931 /// The ID of the scheduling region. For a new vectorization iteration this 2932 /// is incremented which "removes" all ScheduleData from the region. 2933 /// Make sure that the initial SchedulingRegionID is greater than the 2934 /// initial SchedulingRegionID in ScheduleData (which is 0). 2935 int SchedulingRegionID = 1; 2936 }; 2937 2938 /// Attaches the BlockScheduling structures to basic blocks. 2939 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2940 2941 /// Performs the "real" scheduling. Done before vectorization is actually 2942 /// performed in a basic block. 2943 void scheduleBlock(BlockScheduling *BS); 2944 2945 /// List of users to ignore during scheduling and that don't need extracting. 2946 ArrayRef<Value *> UserIgnoreList; 2947 2948 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2949 /// sorted SmallVectors of unsigned. 2950 struct OrdersTypeDenseMapInfo { 2951 static OrdersType getEmptyKey() { 2952 OrdersType V; 2953 V.push_back(~1U); 2954 return V; 2955 } 2956 2957 static OrdersType getTombstoneKey() { 2958 OrdersType V; 2959 V.push_back(~2U); 2960 return V; 2961 } 2962 2963 static unsigned getHashValue(const OrdersType &V) { 2964 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2965 } 2966 2967 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2968 return LHS == RHS; 2969 } 2970 }; 2971 2972 // Analysis and block reference. 2973 Function *F; 2974 ScalarEvolution *SE; 2975 TargetTransformInfo *TTI; 2976 TargetLibraryInfo *TLI; 2977 LoopInfo *LI; 2978 DominatorTree *DT; 2979 AssumptionCache *AC; 2980 DemandedBits *DB; 2981 const DataLayout *DL; 2982 OptimizationRemarkEmitter *ORE; 2983 2984 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2985 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2986 2987 /// Instruction builder to construct the vectorized tree. 2988 IRBuilder<> Builder; 2989 2990 /// A map of scalar integer values to the smallest bit width with which they 2991 /// can legally be represented. The values map to (width, signed) pairs, 2992 /// where "width" indicates the minimum bit width and "signed" is True if the 2993 /// value must be signed-extended, rather than zero-extended, back to its 2994 /// original width. 2995 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2996 }; 2997 2998 } // end namespace slpvectorizer 2999 3000 template <> struct GraphTraits<BoUpSLP *> { 3001 using TreeEntry = BoUpSLP::TreeEntry; 3002 3003 /// NodeRef has to be a pointer per the GraphWriter. 3004 using NodeRef = TreeEntry *; 3005 3006 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3007 3008 /// Add the VectorizableTree to the index iterator to be able to return 3009 /// TreeEntry pointers. 3010 struct ChildIteratorType 3011 : public iterator_adaptor_base< 3012 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3013 ContainerTy &VectorizableTree; 3014 3015 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3016 ContainerTy &VT) 3017 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3018 3019 NodeRef operator*() { return I->UserTE; } 3020 }; 3021 3022 static NodeRef getEntryNode(BoUpSLP &R) { 3023 return R.VectorizableTree[0].get(); 3024 } 3025 3026 static ChildIteratorType child_begin(NodeRef N) { 3027 return {N->UserTreeIndices.begin(), N->Container}; 3028 } 3029 3030 static ChildIteratorType child_end(NodeRef N) { 3031 return {N->UserTreeIndices.end(), N->Container}; 3032 } 3033 3034 /// For the node iterator we just need to turn the TreeEntry iterator into a 3035 /// TreeEntry* iterator so that it dereferences to NodeRef. 3036 class nodes_iterator { 3037 using ItTy = ContainerTy::iterator; 3038 ItTy It; 3039 3040 public: 3041 nodes_iterator(const ItTy &It2) : It(It2) {} 3042 NodeRef operator*() { return It->get(); } 3043 nodes_iterator operator++() { 3044 ++It; 3045 return *this; 3046 } 3047 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3048 }; 3049 3050 static nodes_iterator nodes_begin(BoUpSLP *R) { 3051 return nodes_iterator(R->VectorizableTree.begin()); 3052 } 3053 3054 static nodes_iterator nodes_end(BoUpSLP *R) { 3055 return nodes_iterator(R->VectorizableTree.end()); 3056 } 3057 3058 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3059 }; 3060 3061 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3062 using TreeEntry = BoUpSLP::TreeEntry; 3063 3064 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3065 3066 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3067 std::string Str; 3068 raw_string_ostream OS(Str); 3069 if (isSplat(Entry->Scalars)) 3070 OS << "<splat> "; 3071 for (auto V : Entry->Scalars) { 3072 OS << *V; 3073 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3074 return EU.Scalar == V; 3075 })) 3076 OS << " <extract>"; 3077 OS << "\n"; 3078 } 3079 return Str; 3080 } 3081 3082 static std::string getNodeAttributes(const TreeEntry *Entry, 3083 const BoUpSLP *) { 3084 if (Entry->State == TreeEntry::NeedToGather) 3085 return "color=red"; 3086 return ""; 3087 } 3088 }; 3089 3090 } // end namespace llvm 3091 3092 BoUpSLP::~BoUpSLP() { 3093 for (const auto &Pair : DeletedInstructions) { 3094 // Replace operands of ignored instructions with Undefs in case if they were 3095 // marked for deletion. 3096 if (Pair.getSecond()) { 3097 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3098 Pair.getFirst()->replaceAllUsesWith(Undef); 3099 } 3100 Pair.getFirst()->dropAllReferences(); 3101 } 3102 for (const auto &Pair : DeletedInstructions) { 3103 assert(Pair.getFirst()->use_empty() && 3104 "trying to erase instruction with users."); 3105 Pair.getFirst()->eraseFromParent(); 3106 } 3107 #ifdef EXPENSIVE_CHECKS 3108 // If we could guarantee that this call is not extremely slow, we could 3109 // remove the ifdef limitation (see PR47712). 3110 assert(!verifyFunction(*F, &dbgs())); 3111 #endif 3112 } 3113 3114 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3115 for (auto *V : AV) { 3116 if (auto *I = dyn_cast<Instruction>(V)) 3117 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3118 }; 3119 } 3120 3121 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3122 /// contains original mask for the scalars reused in the node. Procedure 3123 /// transform this mask in accordance with the given \p Mask. 3124 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3125 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3126 "Expected non-empty mask."); 3127 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3128 Prev.swap(Reuses); 3129 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3130 if (Mask[I] != UndefMaskElem) 3131 Reuses[Mask[I]] = Prev[I]; 3132 } 3133 3134 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3135 /// the original order of the scalars. Procedure transforms the provided order 3136 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3137 /// identity order, \p Order is cleared. 3138 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3139 assert(!Mask.empty() && "Expected non-empty mask."); 3140 SmallVector<int> MaskOrder; 3141 if (Order.empty()) { 3142 MaskOrder.resize(Mask.size()); 3143 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3144 } else { 3145 inversePermutation(Order, MaskOrder); 3146 } 3147 reorderReuses(MaskOrder, Mask); 3148 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3149 Order.clear(); 3150 return; 3151 } 3152 Order.assign(Mask.size(), Mask.size()); 3153 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3154 if (MaskOrder[I] != UndefMaskElem) 3155 Order[MaskOrder[I]] = I; 3156 fixupOrderingIndices(Order); 3157 } 3158 3159 Optional<BoUpSLP::OrdersType> 3160 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3161 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3162 unsigned NumScalars = TE.Scalars.size(); 3163 OrdersType CurrentOrder(NumScalars, NumScalars); 3164 SmallVector<int> Positions; 3165 SmallBitVector UsedPositions(NumScalars); 3166 const TreeEntry *STE = nullptr; 3167 // Try to find all gathered scalars that are gets vectorized in other 3168 // vectorize node. Here we can have only one single tree vector node to 3169 // correctly identify order of the gathered scalars. 3170 for (unsigned I = 0; I < NumScalars; ++I) { 3171 Value *V = TE.Scalars[I]; 3172 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3173 continue; 3174 if (const auto *LocalSTE = getTreeEntry(V)) { 3175 if (!STE) 3176 STE = LocalSTE; 3177 else if (STE != LocalSTE) 3178 // Take the order only from the single vector node. 3179 return None; 3180 unsigned Lane = 3181 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3182 if (Lane >= NumScalars) 3183 return None; 3184 if (CurrentOrder[Lane] != NumScalars) { 3185 if (Lane != I) 3186 continue; 3187 UsedPositions.reset(CurrentOrder[Lane]); 3188 } 3189 // The partial identity (where only some elements of the gather node are 3190 // in the identity order) is good. 3191 CurrentOrder[Lane] = I; 3192 UsedPositions.set(I); 3193 } 3194 } 3195 // Need to keep the order if we have a vector entry and at least 2 scalars or 3196 // the vectorized entry has just 2 scalars. 3197 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3198 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3199 for (unsigned I = 0; I < NumScalars; ++I) 3200 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3201 return false; 3202 return true; 3203 }; 3204 if (IsIdentityOrder(CurrentOrder)) { 3205 CurrentOrder.clear(); 3206 return CurrentOrder; 3207 } 3208 auto *It = CurrentOrder.begin(); 3209 for (unsigned I = 0; I < NumScalars;) { 3210 if (UsedPositions.test(I)) { 3211 ++I; 3212 continue; 3213 } 3214 if (*It == NumScalars) { 3215 *It = I; 3216 ++I; 3217 } 3218 ++It; 3219 } 3220 return CurrentOrder; 3221 } 3222 return None; 3223 } 3224 3225 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3226 bool TopToBottom) { 3227 // No need to reorder if need to shuffle reuses, still need to shuffle the 3228 // node. 3229 if (!TE.ReuseShuffleIndices.empty()) 3230 return None; 3231 if (TE.State == TreeEntry::Vectorize && 3232 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3233 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3234 !TE.isAltShuffle()) 3235 return TE.ReorderIndices; 3236 if (TE.State == TreeEntry::NeedToGather) { 3237 // TODO: add analysis of other gather nodes with extractelement 3238 // instructions and other values/instructions, not only undefs. 3239 if (((TE.getOpcode() == Instruction::ExtractElement && 3240 !TE.isAltShuffle()) || 3241 (all_of(TE.Scalars, 3242 [](Value *V) { 3243 return isa<UndefValue, ExtractElementInst>(V); 3244 }) && 3245 any_of(TE.Scalars, 3246 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3247 all_of(TE.Scalars, 3248 [](Value *V) { 3249 auto *EE = dyn_cast<ExtractElementInst>(V); 3250 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3251 }) && 3252 allSameType(TE.Scalars)) { 3253 // Check that gather of extractelements can be represented as 3254 // just a shuffle of a single vector. 3255 OrdersType CurrentOrder; 3256 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3257 if (Reuse || !CurrentOrder.empty()) { 3258 if (!CurrentOrder.empty()) 3259 fixupOrderingIndices(CurrentOrder); 3260 return CurrentOrder; 3261 } 3262 } 3263 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3264 return CurrentOrder; 3265 } 3266 return None; 3267 } 3268 3269 void BoUpSLP::reorderTopToBottom() { 3270 // Maps VF to the graph nodes. 3271 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3272 // ExtractElement gather nodes which can be vectorized and need to handle 3273 // their ordering. 3274 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3275 // Find all reorderable nodes with the given VF. 3276 // Currently the are vectorized stores,loads,extracts + some gathering of 3277 // extracts. 3278 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3279 const std::unique_ptr<TreeEntry> &TE) { 3280 if (Optional<OrdersType> CurrentOrder = 3281 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3282 // Do not include ordering for nodes used in the alt opcode vectorization, 3283 // better to reorder them during bottom-to-top stage. If follow the order 3284 // here, it causes reordering of the whole graph though actually it is 3285 // profitable just to reorder the subgraph that starts from the alternate 3286 // opcode vectorization node. Such nodes already end-up with the shuffle 3287 // instruction and it is just enough to change this shuffle rather than 3288 // rotate the scalars for the whole graph. 3289 unsigned Cnt = 0; 3290 const TreeEntry *UserTE = TE.get(); 3291 while (UserTE && Cnt < RecursionMaxDepth) { 3292 if (UserTE->UserTreeIndices.size() != 1) 3293 break; 3294 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3295 return EI.UserTE->State == TreeEntry::Vectorize && 3296 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3297 })) 3298 return; 3299 if (UserTE->UserTreeIndices.empty()) 3300 UserTE = nullptr; 3301 else 3302 UserTE = UserTE->UserTreeIndices.back().UserTE; 3303 ++Cnt; 3304 } 3305 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3306 if (TE->State != TreeEntry::Vectorize) 3307 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3308 } 3309 }); 3310 3311 // Reorder the graph nodes according to their vectorization factor. 3312 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3313 VF /= 2) { 3314 auto It = VFToOrderedEntries.find(VF); 3315 if (It == VFToOrderedEntries.end()) 3316 continue; 3317 // Try to find the most profitable order. We just are looking for the most 3318 // used order and reorder scalar elements in the nodes according to this 3319 // mostly used order. 3320 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3321 // All operands are reordered and used only in this node - propagate the 3322 // most used order to the user node. 3323 MapVector<OrdersType, unsigned, 3324 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3325 OrdersUses; 3326 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3327 for (const TreeEntry *OpTE : OrderedEntries) { 3328 // No need to reorder this nodes, still need to extend and to use shuffle, 3329 // just need to merge reordering shuffle and the reuse shuffle. 3330 if (!OpTE->ReuseShuffleIndices.empty()) 3331 continue; 3332 // Count number of orders uses. 3333 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3334 if (OpTE->State == TreeEntry::NeedToGather) 3335 return GathersToOrders.find(OpTE)->second; 3336 return OpTE->ReorderIndices; 3337 }(); 3338 // Stores actually store the mask, not the order, need to invert. 3339 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3340 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3341 SmallVector<int> Mask; 3342 inversePermutation(Order, Mask); 3343 unsigned E = Order.size(); 3344 OrdersType CurrentOrder(E, E); 3345 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3346 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3347 }); 3348 fixupOrderingIndices(CurrentOrder); 3349 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3350 } else { 3351 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3352 } 3353 } 3354 // Set order of the user node. 3355 if (OrdersUses.empty()) 3356 continue; 3357 // Choose the most used order. 3358 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3359 unsigned Cnt = OrdersUses.front().second; 3360 for (const auto &Pair : drop_begin(OrdersUses)) { 3361 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3362 BestOrder = Pair.first; 3363 Cnt = Pair.second; 3364 } 3365 } 3366 // Set order of the user node. 3367 if (BestOrder.empty()) 3368 continue; 3369 SmallVector<int> Mask; 3370 inversePermutation(BestOrder, Mask); 3371 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3372 unsigned E = BestOrder.size(); 3373 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3374 return I < E ? static_cast<int>(I) : UndefMaskElem; 3375 }); 3376 // Do an actual reordering, if profitable. 3377 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3378 // Just do the reordering for the nodes with the given VF. 3379 if (TE->Scalars.size() != VF) { 3380 if (TE->ReuseShuffleIndices.size() == VF) { 3381 // Need to reorder the reuses masks of the operands with smaller VF to 3382 // be able to find the match between the graph nodes and scalar 3383 // operands of the given node during vectorization/cost estimation. 3384 assert(all_of(TE->UserTreeIndices, 3385 [VF, &TE](const EdgeInfo &EI) { 3386 return EI.UserTE->Scalars.size() == VF || 3387 EI.UserTE->Scalars.size() == 3388 TE->Scalars.size(); 3389 }) && 3390 "All users must be of VF size."); 3391 // Update ordering of the operands with the smaller VF than the given 3392 // one. 3393 reorderReuses(TE->ReuseShuffleIndices, Mask); 3394 } 3395 continue; 3396 } 3397 if (TE->State == TreeEntry::Vectorize && 3398 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3399 InsertElementInst>(TE->getMainOp()) && 3400 !TE->isAltShuffle()) { 3401 // Build correct orders for extract{element,value}, loads and 3402 // stores. 3403 reorderOrder(TE->ReorderIndices, Mask); 3404 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3405 TE->reorderOperands(Mask); 3406 } else { 3407 // Reorder the node and its operands. 3408 TE->reorderOperands(Mask); 3409 assert(TE->ReorderIndices.empty() && 3410 "Expected empty reorder sequence."); 3411 reorderScalars(TE->Scalars, Mask); 3412 } 3413 if (!TE->ReuseShuffleIndices.empty()) { 3414 // Apply reversed order to keep the original ordering of the reused 3415 // elements to avoid extra reorder indices shuffling. 3416 OrdersType CurrentOrder; 3417 reorderOrder(CurrentOrder, MaskOrder); 3418 SmallVector<int> NewReuses; 3419 inversePermutation(CurrentOrder, NewReuses); 3420 addMask(NewReuses, TE->ReuseShuffleIndices); 3421 TE->ReuseShuffleIndices.swap(NewReuses); 3422 } 3423 } 3424 } 3425 } 3426 3427 bool BoUpSLP::canReorderOperands( 3428 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3429 ArrayRef<TreeEntry *> ReorderableGathers, 3430 SmallVectorImpl<TreeEntry *> &GatherOps) { 3431 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3432 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3433 return OpData.first == I && 3434 OpData.second->State == TreeEntry::Vectorize; 3435 })) 3436 continue; 3437 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3438 // Do not reorder if operand node is used by many user nodes. 3439 if (any_of(TE->UserTreeIndices, 3440 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3441 return false; 3442 // Add the node to the list of the ordered nodes with the identity 3443 // order. 3444 Edges.emplace_back(I, TE); 3445 continue; 3446 } 3447 ArrayRef<Value *> VL = UserTE->getOperand(I); 3448 TreeEntry *Gather = nullptr; 3449 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3450 assert(TE->State != TreeEntry::Vectorize && 3451 "Only non-vectorized nodes are expected."); 3452 if (TE->isSame(VL)) { 3453 Gather = TE; 3454 return true; 3455 } 3456 return false; 3457 }) > 1) 3458 return false; 3459 if (Gather) 3460 GatherOps.push_back(Gather); 3461 } 3462 return true; 3463 } 3464 3465 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3466 SetVector<TreeEntry *> OrderedEntries; 3467 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3468 // Find all reorderable leaf nodes with the given VF. 3469 // Currently the are vectorized loads,extracts without alternate operands + 3470 // some gathering of extracts. 3471 SmallVector<TreeEntry *> NonVectorized; 3472 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3473 &NonVectorized]( 3474 const std::unique_ptr<TreeEntry> &TE) { 3475 if (TE->State != TreeEntry::Vectorize) 3476 NonVectorized.push_back(TE.get()); 3477 if (Optional<OrdersType> CurrentOrder = 3478 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3479 OrderedEntries.insert(TE.get()); 3480 if (TE->State != TreeEntry::Vectorize) 3481 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3482 } 3483 }); 3484 3485 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3486 // I.e., if the node has operands, that are reordered, try to make at least 3487 // one operand order in the natural order and reorder others + reorder the 3488 // user node itself. 3489 SmallPtrSet<const TreeEntry *, 4> Visited; 3490 while (!OrderedEntries.empty()) { 3491 // 1. Filter out only reordered nodes. 3492 // 2. If the entry has multiple uses - skip it and jump to the next node. 3493 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3494 SmallVector<TreeEntry *> Filtered; 3495 for (TreeEntry *TE : OrderedEntries) { 3496 if (!(TE->State == TreeEntry::Vectorize || 3497 (TE->State == TreeEntry::NeedToGather && 3498 GathersToOrders.count(TE))) || 3499 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3500 !all_of(drop_begin(TE->UserTreeIndices), 3501 [TE](const EdgeInfo &EI) { 3502 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3503 }) || 3504 !Visited.insert(TE).second) { 3505 Filtered.push_back(TE); 3506 continue; 3507 } 3508 // Build a map between user nodes and their operands order to speedup 3509 // search. The graph currently does not provide this dependency directly. 3510 for (EdgeInfo &EI : TE->UserTreeIndices) { 3511 TreeEntry *UserTE = EI.UserTE; 3512 auto It = Users.find(UserTE); 3513 if (It == Users.end()) 3514 It = Users.insert({UserTE, {}}).first; 3515 It->second.emplace_back(EI.EdgeIdx, TE); 3516 } 3517 } 3518 // Erase filtered entries. 3519 for_each(Filtered, 3520 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3521 for (auto &Data : Users) { 3522 // Check that operands are used only in the User node. 3523 SmallVector<TreeEntry *> GatherOps; 3524 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3525 GatherOps)) { 3526 for_each(Data.second, 3527 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3528 OrderedEntries.remove(Op.second); 3529 }); 3530 continue; 3531 } 3532 // All operands are reordered and used only in this node - propagate the 3533 // most used order to the user node. 3534 MapVector<OrdersType, unsigned, 3535 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3536 OrdersUses; 3537 // Do the analysis for each tree entry only once, otherwise the order of 3538 // the same node my be considered several times, though might be not 3539 // profitable. 3540 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3541 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3542 for (const auto &Op : Data.second) { 3543 TreeEntry *OpTE = Op.second; 3544 if (!VisitedOps.insert(OpTE).second) 3545 continue; 3546 if (!OpTE->ReuseShuffleIndices.empty() || 3547 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3548 continue; 3549 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3550 if (OpTE->State == TreeEntry::NeedToGather) 3551 return GathersToOrders.find(OpTE)->second; 3552 return OpTE->ReorderIndices; 3553 }(); 3554 unsigned NumOps = count_if( 3555 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3556 return P.second == OpTE; 3557 }); 3558 // Stores actually store the mask, not the order, need to invert. 3559 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3560 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3561 SmallVector<int> Mask; 3562 inversePermutation(Order, Mask); 3563 unsigned E = Order.size(); 3564 OrdersType CurrentOrder(E, E); 3565 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3566 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3567 }); 3568 fixupOrderingIndices(CurrentOrder); 3569 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3570 NumOps; 3571 } else { 3572 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3573 } 3574 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3575 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3576 const TreeEntry *TE) { 3577 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3578 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3579 (IgnoreReorder && TE->Idx == 0)) 3580 return true; 3581 if (TE->State == TreeEntry::NeedToGather) { 3582 auto It = GathersToOrders.find(TE); 3583 if (It != GathersToOrders.end()) 3584 return !It->second.empty(); 3585 return true; 3586 } 3587 return false; 3588 }; 3589 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3590 TreeEntry *UserTE = EI.UserTE; 3591 if (!VisitedUsers.insert(UserTE).second) 3592 continue; 3593 // May reorder user node if it requires reordering, has reused 3594 // scalars, is an alternate op vectorize node or its op nodes require 3595 // reordering. 3596 if (AllowsReordering(UserTE)) 3597 continue; 3598 // Check if users allow reordering. 3599 // Currently look up just 1 level of operands to avoid increase of 3600 // the compile time. 3601 // Profitable to reorder if definitely more operands allow 3602 // reordering rather than those with natural order. 3603 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3604 if (static_cast<unsigned>(count_if( 3605 Ops, [UserTE, &AllowsReordering]( 3606 const std::pair<unsigned, TreeEntry *> &Op) { 3607 return AllowsReordering(Op.second) && 3608 all_of(Op.second->UserTreeIndices, 3609 [UserTE](const EdgeInfo &EI) { 3610 return EI.UserTE == UserTE; 3611 }); 3612 })) <= Ops.size() / 2) 3613 ++Res.first->second; 3614 } 3615 } 3616 // If no orders - skip current nodes and jump to the next one, if any. 3617 if (OrdersUses.empty()) { 3618 for_each(Data.second, 3619 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3620 OrderedEntries.remove(Op.second); 3621 }); 3622 continue; 3623 } 3624 // Choose the best order. 3625 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3626 unsigned Cnt = OrdersUses.front().second; 3627 for (const auto &Pair : drop_begin(OrdersUses)) { 3628 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3629 BestOrder = Pair.first; 3630 Cnt = Pair.second; 3631 } 3632 } 3633 // Set order of the user node (reordering of operands and user nodes). 3634 if (BestOrder.empty()) { 3635 for_each(Data.second, 3636 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3637 OrderedEntries.remove(Op.second); 3638 }); 3639 continue; 3640 } 3641 // Erase operands from OrderedEntries list and adjust their orders. 3642 VisitedOps.clear(); 3643 SmallVector<int> Mask; 3644 inversePermutation(BestOrder, Mask); 3645 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3646 unsigned E = BestOrder.size(); 3647 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3648 return I < E ? static_cast<int>(I) : UndefMaskElem; 3649 }); 3650 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3651 TreeEntry *TE = Op.second; 3652 OrderedEntries.remove(TE); 3653 if (!VisitedOps.insert(TE).second) 3654 continue; 3655 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3656 // Just reorder reuses indices. 3657 reorderReuses(TE->ReuseShuffleIndices, Mask); 3658 continue; 3659 } 3660 // Gathers are processed separately. 3661 if (TE->State != TreeEntry::Vectorize) 3662 continue; 3663 assert((BestOrder.size() == TE->ReorderIndices.size() || 3664 TE->ReorderIndices.empty()) && 3665 "Non-matching sizes of user/operand entries."); 3666 reorderOrder(TE->ReorderIndices, Mask); 3667 } 3668 // For gathers just need to reorder its scalars. 3669 for (TreeEntry *Gather : GatherOps) { 3670 assert(Gather->ReorderIndices.empty() && 3671 "Unexpected reordering of gathers."); 3672 if (!Gather->ReuseShuffleIndices.empty()) { 3673 // Just reorder reuses indices. 3674 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3675 continue; 3676 } 3677 reorderScalars(Gather->Scalars, Mask); 3678 OrderedEntries.remove(Gather); 3679 } 3680 // Reorder operands of the user node and set the ordering for the user 3681 // node itself. 3682 if (Data.first->State != TreeEntry::Vectorize || 3683 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3684 Data.first->getMainOp()) || 3685 Data.first->isAltShuffle()) 3686 Data.first->reorderOperands(Mask); 3687 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3688 Data.first->isAltShuffle()) { 3689 reorderScalars(Data.first->Scalars, Mask); 3690 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3691 if (Data.first->ReuseShuffleIndices.empty() && 3692 !Data.first->ReorderIndices.empty() && 3693 !Data.first->isAltShuffle()) { 3694 // Insert user node to the list to try to sink reordering deeper in 3695 // the graph. 3696 OrderedEntries.insert(Data.first); 3697 } 3698 } else { 3699 reorderOrder(Data.first->ReorderIndices, Mask); 3700 } 3701 } 3702 } 3703 // If the reordering is unnecessary, just remove the reorder. 3704 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3705 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3706 VectorizableTree.front()->ReorderIndices.clear(); 3707 } 3708 3709 void BoUpSLP::buildExternalUses( 3710 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3711 // Collect the values that we need to extract from the tree. 3712 for (auto &TEPtr : VectorizableTree) { 3713 TreeEntry *Entry = TEPtr.get(); 3714 3715 // No need to handle users of gathered values. 3716 if (Entry->State == TreeEntry::NeedToGather) 3717 continue; 3718 3719 // For each lane: 3720 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3721 Value *Scalar = Entry->Scalars[Lane]; 3722 int FoundLane = Entry->findLaneForValue(Scalar); 3723 3724 // Check if the scalar is externally used as an extra arg. 3725 auto ExtI = ExternallyUsedValues.find(Scalar); 3726 if (ExtI != ExternallyUsedValues.end()) { 3727 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3728 << Lane << " from " << *Scalar << ".\n"); 3729 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3730 } 3731 for (User *U : Scalar->users()) { 3732 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3733 3734 Instruction *UserInst = dyn_cast<Instruction>(U); 3735 if (!UserInst) 3736 continue; 3737 3738 if (isDeleted(UserInst)) 3739 continue; 3740 3741 // Skip in-tree scalars that become vectors 3742 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3743 Value *UseScalar = UseEntry->Scalars[0]; 3744 // Some in-tree scalars will remain as scalar in vectorized 3745 // instructions. If that is the case, the one in Lane 0 will 3746 // be used. 3747 if (UseScalar != U || 3748 UseEntry->State == TreeEntry::ScatterVectorize || 3749 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3750 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3751 << ".\n"); 3752 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3753 continue; 3754 } 3755 } 3756 3757 // Ignore users in the user ignore list. 3758 if (is_contained(UserIgnoreList, UserInst)) 3759 continue; 3760 3761 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3762 << Lane << " from " << *Scalar << ".\n"); 3763 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3764 } 3765 } 3766 } 3767 } 3768 3769 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3770 ArrayRef<Value *> UserIgnoreLst) { 3771 deleteTree(); 3772 UserIgnoreList = UserIgnoreLst; 3773 if (!allSameType(Roots)) 3774 return; 3775 buildTree_rec(Roots, 0, EdgeInfo()); 3776 } 3777 3778 namespace { 3779 /// Tracks the state we can represent the loads in the given sequence. 3780 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3781 } // anonymous namespace 3782 3783 /// Checks if the given array of loads can be represented as a vectorized, 3784 /// scatter or just simple gather. 3785 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3786 const TargetTransformInfo &TTI, 3787 const DataLayout &DL, ScalarEvolution &SE, 3788 SmallVectorImpl<unsigned> &Order, 3789 SmallVectorImpl<Value *> &PointerOps) { 3790 // Check that a vectorized load would load the same memory as a scalar 3791 // load. For example, we don't want to vectorize loads that are smaller 3792 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3793 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3794 // from such a struct, we read/write packed bits disagreeing with the 3795 // unvectorized version. 3796 Type *ScalarTy = VL0->getType(); 3797 3798 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3799 return LoadsState::Gather; 3800 3801 // Make sure all loads in the bundle are simple - we can't vectorize 3802 // atomic or volatile loads. 3803 PointerOps.clear(); 3804 PointerOps.resize(VL.size()); 3805 auto *POIter = PointerOps.begin(); 3806 for (Value *V : VL) { 3807 auto *L = cast<LoadInst>(V); 3808 if (!L->isSimple()) 3809 return LoadsState::Gather; 3810 *POIter = L->getPointerOperand(); 3811 ++POIter; 3812 } 3813 3814 Order.clear(); 3815 // Check the order of pointer operands. 3816 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3817 Value *Ptr0; 3818 Value *PtrN; 3819 if (Order.empty()) { 3820 Ptr0 = PointerOps.front(); 3821 PtrN = PointerOps.back(); 3822 } else { 3823 Ptr0 = PointerOps[Order.front()]; 3824 PtrN = PointerOps[Order.back()]; 3825 } 3826 Optional<int> Diff = 3827 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3828 // Check that the sorted loads are consecutive. 3829 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3830 return LoadsState::Vectorize; 3831 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3832 for (Value *V : VL) 3833 CommonAlignment = 3834 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3835 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3836 CommonAlignment)) 3837 return LoadsState::ScatterVectorize; 3838 } 3839 3840 return LoadsState::Gather; 3841 } 3842 3843 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3844 const EdgeInfo &UserTreeIdx) { 3845 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3846 3847 SmallVector<int> ReuseShuffleIndicies; 3848 SmallVector<Value *> UniqueValues; 3849 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3850 &UserTreeIdx, 3851 this](const InstructionsState &S) { 3852 // Check that every instruction appears once in this bundle. 3853 DenseMap<Value *, unsigned> UniquePositions; 3854 for (Value *V : VL) { 3855 if (isConstant(V)) { 3856 ReuseShuffleIndicies.emplace_back( 3857 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3858 UniqueValues.emplace_back(V); 3859 continue; 3860 } 3861 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3862 ReuseShuffleIndicies.emplace_back(Res.first->second); 3863 if (Res.second) 3864 UniqueValues.emplace_back(V); 3865 } 3866 size_t NumUniqueScalarValues = UniqueValues.size(); 3867 if (NumUniqueScalarValues == VL.size()) { 3868 ReuseShuffleIndicies.clear(); 3869 } else { 3870 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3871 if (NumUniqueScalarValues <= 1 || 3872 (UniquePositions.size() == 1 && all_of(UniqueValues, 3873 [](Value *V) { 3874 return isa<UndefValue>(V) || 3875 !isConstant(V); 3876 })) || 3877 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3878 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3879 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3880 return false; 3881 } 3882 VL = UniqueValues; 3883 } 3884 return true; 3885 }; 3886 3887 InstructionsState S = getSameOpcode(VL); 3888 if (Depth == RecursionMaxDepth) { 3889 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3890 if (TryToFindDuplicates(S)) 3891 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3892 ReuseShuffleIndicies); 3893 return; 3894 } 3895 3896 // Don't handle scalable vectors 3897 if (S.getOpcode() == Instruction::ExtractElement && 3898 isa<ScalableVectorType>( 3899 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3900 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3901 if (TryToFindDuplicates(S)) 3902 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3903 ReuseShuffleIndicies); 3904 return; 3905 } 3906 3907 // Don't handle vectors. 3908 if (S.OpValue->getType()->isVectorTy() && 3909 !isa<InsertElementInst>(S.OpValue)) { 3910 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3911 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3912 return; 3913 } 3914 3915 // Avoid attempting to schedule allocas; there are unmodeled dependencies 3916 // for "static" alloca status and for reordering with stacksave calls. 3917 for (Value *V : VL) { 3918 if (isa<AllocaInst>(V)) { 3919 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 3920 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3921 return; 3922 } 3923 } 3924 3925 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3926 if (SI->getValueOperand()->getType()->isVectorTy()) { 3927 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3928 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3929 return; 3930 } 3931 3932 // If all of the operands are identical or constant we have a simple solution. 3933 // If we deal with insert/extract instructions, they all must have constant 3934 // indices, otherwise we should gather them, not try to vectorize. 3935 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3936 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3937 !all_of(VL, isVectorLikeInstWithConstOps))) { 3938 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3939 if (TryToFindDuplicates(S)) 3940 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3941 ReuseShuffleIndicies); 3942 return; 3943 } 3944 3945 // We now know that this is a vector of instructions of the same type from 3946 // the same block. 3947 3948 // Don't vectorize ephemeral values. 3949 for (Value *V : VL) { 3950 if (EphValues.count(V)) { 3951 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3952 << ") is ephemeral.\n"); 3953 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3954 return; 3955 } 3956 } 3957 3958 // Check if this is a duplicate of another entry. 3959 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3960 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3961 if (!E->isSame(VL)) { 3962 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3963 if (TryToFindDuplicates(S)) 3964 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3965 ReuseShuffleIndicies); 3966 return; 3967 } 3968 // Record the reuse of the tree node. FIXME, currently this is only used to 3969 // properly draw the graph rather than for the actual vectorization. 3970 E->UserTreeIndices.push_back(UserTreeIdx); 3971 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3972 << ".\n"); 3973 return; 3974 } 3975 3976 // Check that none of the instructions in the bundle are already in the tree. 3977 for (Value *V : VL) { 3978 auto *I = dyn_cast<Instruction>(V); 3979 if (!I) 3980 continue; 3981 if (getTreeEntry(I)) { 3982 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3983 << ") is already in tree.\n"); 3984 if (TryToFindDuplicates(S)) 3985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3986 ReuseShuffleIndicies); 3987 return; 3988 } 3989 } 3990 3991 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3992 for (Value *V : VL) { 3993 if (is_contained(UserIgnoreList, V)) { 3994 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3995 if (TryToFindDuplicates(S)) 3996 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3997 ReuseShuffleIndicies); 3998 return; 3999 } 4000 } 4001 4002 // Check that all of the users of the scalars that we want to vectorize are 4003 // schedulable. 4004 auto *VL0 = cast<Instruction>(S.OpValue); 4005 BasicBlock *BB = VL0->getParent(); 4006 4007 if (!DT->isReachableFromEntry(BB)) { 4008 // Don't go into unreachable blocks. They may contain instructions with 4009 // dependency cycles which confuse the final scheduling. 4010 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4011 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4012 return; 4013 } 4014 4015 // Check that every instruction appears once in this bundle. 4016 if (!TryToFindDuplicates(S)) 4017 return; 4018 4019 auto &BSRef = BlocksSchedules[BB]; 4020 if (!BSRef) 4021 BSRef = std::make_unique<BlockScheduling>(BB); 4022 4023 BlockScheduling &BS = *BSRef.get(); 4024 4025 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4026 #ifdef EXPENSIVE_CHECKS 4027 // Make sure we didn't break any internal invariants 4028 BS.verify(); 4029 #endif 4030 if (!Bundle) { 4031 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4032 assert((!BS.getScheduleData(VL0) || 4033 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4034 "tryScheduleBundle should cancelScheduling on failure"); 4035 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4036 ReuseShuffleIndicies); 4037 return; 4038 } 4039 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4040 4041 unsigned ShuffleOrOp = S.isAltShuffle() ? 4042 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4043 switch (ShuffleOrOp) { 4044 case Instruction::PHI: { 4045 auto *PH = cast<PHINode>(VL0); 4046 4047 // Check for terminator values (e.g. invoke). 4048 for (Value *V : VL) 4049 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4050 Instruction *Term = dyn_cast<Instruction>( 4051 cast<PHINode>(V)->getIncomingValueForBlock( 4052 PH->getIncomingBlock(I))); 4053 if (Term && Term->isTerminator()) { 4054 LLVM_DEBUG(dbgs() 4055 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4056 BS.cancelScheduling(VL, VL0); 4057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4058 ReuseShuffleIndicies); 4059 return; 4060 } 4061 } 4062 4063 TreeEntry *TE = 4064 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4065 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4066 4067 // Keeps the reordered operands to avoid code duplication. 4068 SmallVector<ValueList, 2> OperandsVec; 4069 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4070 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4071 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4072 TE->setOperand(I, Operands); 4073 OperandsVec.push_back(Operands); 4074 continue; 4075 } 4076 ValueList Operands; 4077 // Prepare the operand vector. 4078 for (Value *V : VL) 4079 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4080 PH->getIncomingBlock(I))); 4081 TE->setOperand(I, Operands); 4082 OperandsVec.push_back(Operands); 4083 } 4084 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4085 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4086 return; 4087 } 4088 case Instruction::ExtractValue: 4089 case Instruction::ExtractElement: { 4090 OrdersType CurrentOrder; 4091 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4092 if (Reuse) { 4093 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4094 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4095 ReuseShuffleIndicies); 4096 // This is a special case, as it does not gather, but at the same time 4097 // we are not extending buildTree_rec() towards the operands. 4098 ValueList Op0; 4099 Op0.assign(VL.size(), VL0->getOperand(0)); 4100 VectorizableTree.back()->setOperand(0, Op0); 4101 return; 4102 } 4103 if (!CurrentOrder.empty()) { 4104 LLVM_DEBUG({ 4105 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4106 "with order"; 4107 for (unsigned Idx : CurrentOrder) 4108 dbgs() << " " << Idx; 4109 dbgs() << "\n"; 4110 }); 4111 fixupOrderingIndices(CurrentOrder); 4112 // Insert new order with initial value 0, if it does not exist, 4113 // otherwise return the iterator to the existing one. 4114 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4115 ReuseShuffleIndicies, CurrentOrder); 4116 // This is a special case, as it does not gather, but at the same time 4117 // we are not extending buildTree_rec() towards the operands. 4118 ValueList Op0; 4119 Op0.assign(VL.size(), VL0->getOperand(0)); 4120 VectorizableTree.back()->setOperand(0, Op0); 4121 return; 4122 } 4123 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4124 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4125 ReuseShuffleIndicies); 4126 BS.cancelScheduling(VL, VL0); 4127 return; 4128 } 4129 case Instruction::InsertElement: { 4130 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4131 4132 // Check that we have a buildvector and not a shuffle of 2 or more 4133 // different vectors. 4134 ValueSet SourceVectors; 4135 for (Value *V : VL) { 4136 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4137 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4138 } 4139 4140 if (count_if(VL, [&SourceVectors](Value *V) { 4141 return !SourceVectors.contains(V); 4142 }) >= 2) { 4143 // Found 2nd source vector - cancel. 4144 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4145 "different source vectors.\n"); 4146 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4147 BS.cancelScheduling(VL, VL0); 4148 return; 4149 } 4150 4151 auto OrdCompare = [](const std::pair<int, int> &P1, 4152 const std::pair<int, int> &P2) { 4153 return P1.first > P2.first; 4154 }; 4155 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4156 decltype(OrdCompare)> 4157 Indices(OrdCompare); 4158 for (int I = 0, E = VL.size(); I < E; ++I) { 4159 unsigned Idx = *getInsertIndex(VL[I]); 4160 Indices.emplace(Idx, I); 4161 } 4162 OrdersType CurrentOrder(VL.size(), VL.size()); 4163 bool IsIdentity = true; 4164 for (int I = 0, E = VL.size(); I < E; ++I) { 4165 CurrentOrder[Indices.top().second] = I; 4166 IsIdentity &= Indices.top().second == I; 4167 Indices.pop(); 4168 } 4169 if (IsIdentity) 4170 CurrentOrder.clear(); 4171 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4172 None, CurrentOrder); 4173 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4174 4175 constexpr int NumOps = 2; 4176 ValueList VectorOperands[NumOps]; 4177 for (int I = 0; I < NumOps; ++I) { 4178 for (Value *V : VL) 4179 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4180 4181 TE->setOperand(I, VectorOperands[I]); 4182 } 4183 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4184 return; 4185 } 4186 case Instruction::Load: { 4187 // Check that a vectorized load would load the same memory as a scalar 4188 // load. For example, we don't want to vectorize loads that are smaller 4189 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4190 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4191 // from such a struct, we read/write packed bits disagreeing with the 4192 // unvectorized version. 4193 SmallVector<Value *> PointerOps; 4194 OrdersType CurrentOrder; 4195 TreeEntry *TE = nullptr; 4196 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4197 PointerOps)) { 4198 case LoadsState::Vectorize: 4199 if (CurrentOrder.empty()) { 4200 // Original loads are consecutive and does not require reordering. 4201 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4202 ReuseShuffleIndicies); 4203 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4204 } else { 4205 fixupOrderingIndices(CurrentOrder); 4206 // Need to reorder. 4207 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4208 ReuseShuffleIndicies, CurrentOrder); 4209 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4210 } 4211 TE->setOperandsInOrder(); 4212 break; 4213 case LoadsState::ScatterVectorize: 4214 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4215 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4216 UserTreeIdx, ReuseShuffleIndicies); 4217 TE->setOperandsInOrder(); 4218 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4219 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4220 break; 4221 case LoadsState::Gather: 4222 BS.cancelScheduling(VL, VL0); 4223 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4224 ReuseShuffleIndicies); 4225 #ifndef NDEBUG 4226 Type *ScalarTy = VL0->getType(); 4227 if (DL->getTypeSizeInBits(ScalarTy) != 4228 DL->getTypeAllocSizeInBits(ScalarTy)) 4229 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4230 else if (any_of(VL, [](Value *V) { 4231 return !cast<LoadInst>(V)->isSimple(); 4232 })) 4233 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4234 else 4235 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4236 #endif // NDEBUG 4237 break; 4238 } 4239 return; 4240 } 4241 case Instruction::ZExt: 4242 case Instruction::SExt: 4243 case Instruction::FPToUI: 4244 case Instruction::FPToSI: 4245 case Instruction::FPExt: 4246 case Instruction::PtrToInt: 4247 case Instruction::IntToPtr: 4248 case Instruction::SIToFP: 4249 case Instruction::UIToFP: 4250 case Instruction::Trunc: 4251 case Instruction::FPTrunc: 4252 case Instruction::BitCast: { 4253 Type *SrcTy = VL0->getOperand(0)->getType(); 4254 for (Value *V : VL) { 4255 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4256 if (Ty != SrcTy || !isValidElementType(Ty)) { 4257 BS.cancelScheduling(VL, VL0); 4258 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4259 ReuseShuffleIndicies); 4260 LLVM_DEBUG(dbgs() 4261 << "SLP: Gathering casts with different src types.\n"); 4262 return; 4263 } 4264 } 4265 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4266 ReuseShuffleIndicies); 4267 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4268 4269 TE->setOperandsInOrder(); 4270 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4271 ValueList Operands; 4272 // Prepare the operand vector. 4273 for (Value *V : VL) 4274 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4275 4276 buildTree_rec(Operands, Depth + 1, {TE, i}); 4277 } 4278 return; 4279 } 4280 case Instruction::ICmp: 4281 case Instruction::FCmp: { 4282 // Check that all of the compares have the same predicate. 4283 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4284 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4285 Type *ComparedTy = VL0->getOperand(0)->getType(); 4286 for (Value *V : VL) { 4287 CmpInst *Cmp = cast<CmpInst>(V); 4288 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4289 Cmp->getOperand(0)->getType() != ComparedTy) { 4290 BS.cancelScheduling(VL, VL0); 4291 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4292 ReuseShuffleIndicies); 4293 LLVM_DEBUG(dbgs() 4294 << "SLP: Gathering cmp with different predicate.\n"); 4295 return; 4296 } 4297 } 4298 4299 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4300 ReuseShuffleIndicies); 4301 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4302 4303 ValueList Left, Right; 4304 if (cast<CmpInst>(VL0)->isCommutative()) { 4305 // Commutative predicate - collect + sort operands of the instructions 4306 // so that each side is more likely to have the same opcode. 4307 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4308 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4309 } else { 4310 // Collect operands - commute if it uses the swapped predicate. 4311 for (Value *V : VL) { 4312 auto *Cmp = cast<CmpInst>(V); 4313 Value *LHS = Cmp->getOperand(0); 4314 Value *RHS = Cmp->getOperand(1); 4315 if (Cmp->getPredicate() != P0) 4316 std::swap(LHS, RHS); 4317 Left.push_back(LHS); 4318 Right.push_back(RHS); 4319 } 4320 } 4321 TE->setOperand(0, Left); 4322 TE->setOperand(1, Right); 4323 buildTree_rec(Left, Depth + 1, {TE, 0}); 4324 buildTree_rec(Right, Depth + 1, {TE, 1}); 4325 return; 4326 } 4327 case Instruction::Select: 4328 case Instruction::FNeg: 4329 case Instruction::Add: 4330 case Instruction::FAdd: 4331 case Instruction::Sub: 4332 case Instruction::FSub: 4333 case Instruction::Mul: 4334 case Instruction::FMul: 4335 case Instruction::UDiv: 4336 case Instruction::SDiv: 4337 case Instruction::FDiv: 4338 case Instruction::URem: 4339 case Instruction::SRem: 4340 case Instruction::FRem: 4341 case Instruction::Shl: 4342 case Instruction::LShr: 4343 case Instruction::AShr: 4344 case Instruction::And: 4345 case Instruction::Or: 4346 case Instruction::Xor: { 4347 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4348 ReuseShuffleIndicies); 4349 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4350 4351 // Sort operands of the instructions so that each side is more likely to 4352 // have the same opcode. 4353 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4354 ValueList Left, Right; 4355 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4356 TE->setOperand(0, Left); 4357 TE->setOperand(1, Right); 4358 buildTree_rec(Left, Depth + 1, {TE, 0}); 4359 buildTree_rec(Right, Depth + 1, {TE, 1}); 4360 return; 4361 } 4362 4363 TE->setOperandsInOrder(); 4364 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4365 ValueList Operands; 4366 // Prepare the operand vector. 4367 for (Value *V : VL) 4368 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4369 4370 buildTree_rec(Operands, Depth + 1, {TE, i}); 4371 } 4372 return; 4373 } 4374 case Instruction::GetElementPtr: { 4375 // We don't combine GEPs with complicated (nested) indexing. 4376 for (Value *V : VL) { 4377 if (cast<Instruction>(V)->getNumOperands() != 2) { 4378 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4379 BS.cancelScheduling(VL, VL0); 4380 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4381 ReuseShuffleIndicies); 4382 return; 4383 } 4384 } 4385 4386 // We can't combine several GEPs into one vector if they operate on 4387 // different types. 4388 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4389 for (Value *V : VL) { 4390 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4391 if (Ty0 != CurTy) { 4392 LLVM_DEBUG(dbgs() 4393 << "SLP: not-vectorizable GEP (different types).\n"); 4394 BS.cancelScheduling(VL, VL0); 4395 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4396 ReuseShuffleIndicies); 4397 return; 4398 } 4399 } 4400 4401 // We don't combine GEPs with non-constant indexes. 4402 Type *Ty1 = VL0->getOperand(1)->getType(); 4403 for (Value *V : VL) { 4404 auto Op = cast<Instruction>(V)->getOperand(1); 4405 if (!isa<ConstantInt>(Op) || 4406 (Op->getType() != Ty1 && 4407 Op->getType()->getScalarSizeInBits() > 4408 DL->getIndexSizeInBits( 4409 V->getType()->getPointerAddressSpace()))) { 4410 LLVM_DEBUG(dbgs() 4411 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4412 BS.cancelScheduling(VL, VL0); 4413 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4414 ReuseShuffleIndicies); 4415 return; 4416 } 4417 } 4418 4419 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4420 ReuseShuffleIndicies); 4421 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4422 SmallVector<ValueList, 2> Operands(2); 4423 // Prepare the operand vector for pointer operands. 4424 for (Value *V : VL) 4425 Operands.front().push_back( 4426 cast<GetElementPtrInst>(V)->getPointerOperand()); 4427 TE->setOperand(0, Operands.front()); 4428 // Need to cast all indices to the same type before vectorization to 4429 // avoid crash. 4430 // Required to be able to find correct matches between different gather 4431 // nodes and reuse the vectorized values rather than trying to gather them 4432 // again. 4433 int IndexIdx = 1; 4434 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4435 Type *Ty = all_of(VL, 4436 [VL0Ty, IndexIdx](Value *V) { 4437 return VL0Ty == cast<GetElementPtrInst>(V) 4438 ->getOperand(IndexIdx) 4439 ->getType(); 4440 }) 4441 ? VL0Ty 4442 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4443 ->getPointerOperandType() 4444 ->getScalarType()); 4445 // Prepare the operand vector. 4446 for (Value *V : VL) { 4447 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4448 auto *CI = cast<ConstantInt>(Op); 4449 Operands.back().push_back(ConstantExpr::getIntegerCast( 4450 CI, Ty, CI->getValue().isSignBitSet())); 4451 } 4452 TE->setOperand(IndexIdx, Operands.back()); 4453 4454 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4455 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4456 return; 4457 } 4458 case Instruction::Store: { 4459 // Check if the stores are consecutive or if we need to swizzle them. 4460 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4461 // Avoid types that are padded when being allocated as scalars, while 4462 // being packed together in a vector (such as i1). 4463 if (DL->getTypeSizeInBits(ScalarTy) != 4464 DL->getTypeAllocSizeInBits(ScalarTy)) { 4465 BS.cancelScheduling(VL, VL0); 4466 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4467 ReuseShuffleIndicies); 4468 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4469 return; 4470 } 4471 // Make sure all stores in the bundle are simple - we can't vectorize 4472 // atomic or volatile stores. 4473 SmallVector<Value *, 4> PointerOps(VL.size()); 4474 ValueList Operands(VL.size()); 4475 auto POIter = PointerOps.begin(); 4476 auto OIter = Operands.begin(); 4477 for (Value *V : VL) { 4478 auto *SI = cast<StoreInst>(V); 4479 if (!SI->isSimple()) { 4480 BS.cancelScheduling(VL, VL0); 4481 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4482 ReuseShuffleIndicies); 4483 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4484 return; 4485 } 4486 *POIter = SI->getPointerOperand(); 4487 *OIter = SI->getValueOperand(); 4488 ++POIter; 4489 ++OIter; 4490 } 4491 4492 OrdersType CurrentOrder; 4493 // Check the order of pointer operands. 4494 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4495 Value *Ptr0; 4496 Value *PtrN; 4497 if (CurrentOrder.empty()) { 4498 Ptr0 = PointerOps.front(); 4499 PtrN = PointerOps.back(); 4500 } else { 4501 Ptr0 = PointerOps[CurrentOrder.front()]; 4502 PtrN = PointerOps[CurrentOrder.back()]; 4503 } 4504 Optional<int> Dist = 4505 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4506 // Check that the sorted pointer operands are consecutive. 4507 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4508 if (CurrentOrder.empty()) { 4509 // Original stores are consecutive and does not require reordering. 4510 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4511 UserTreeIdx, ReuseShuffleIndicies); 4512 TE->setOperandsInOrder(); 4513 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4514 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4515 } else { 4516 fixupOrderingIndices(CurrentOrder); 4517 TreeEntry *TE = 4518 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4519 ReuseShuffleIndicies, CurrentOrder); 4520 TE->setOperandsInOrder(); 4521 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4522 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4523 } 4524 return; 4525 } 4526 } 4527 4528 BS.cancelScheduling(VL, VL0); 4529 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4530 ReuseShuffleIndicies); 4531 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4532 return; 4533 } 4534 case Instruction::Call: { 4535 // Check if the calls are all to the same vectorizable intrinsic or 4536 // library function. 4537 CallInst *CI = cast<CallInst>(VL0); 4538 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4539 4540 VFShape Shape = VFShape::get( 4541 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4542 false /*HasGlobalPred*/); 4543 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4544 4545 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4546 BS.cancelScheduling(VL, VL0); 4547 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4548 ReuseShuffleIndicies); 4549 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4550 return; 4551 } 4552 Function *F = CI->getCalledFunction(); 4553 unsigned NumArgs = CI->arg_size(); 4554 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4555 for (unsigned j = 0; j != NumArgs; ++j) 4556 if (hasVectorInstrinsicScalarOpd(ID, j)) 4557 ScalarArgs[j] = CI->getArgOperand(j); 4558 for (Value *V : VL) { 4559 CallInst *CI2 = dyn_cast<CallInst>(V); 4560 if (!CI2 || CI2->getCalledFunction() != F || 4561 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4562 (VecFunc && 4563 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4564 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4565 BS.cancelScheduling(VL, VL0); 4566 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4567 ReuseShuffleIndicies); 4568 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4569 << "\n"); 4570 return; 4571 } 4572 // Some intrinsics have scalar arguments and should be same in order for 4573 // them to be vectorized. 4574 for (unsigned j = 0; j != NumArgs; ++j) { 4575 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4576 Value *A1J = CI2->getArgOperand(j); 4577 if (ScalarArgs[j] != A1J) { 4578 BS.cancelScheduling(VL, VL0); 4579 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4580 ReuseShuffleIndicies); 4581 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4582 << " argument " << ScalarArgs[j] << "!=" << A1J 4583 << "\n"); 4584 return; 4585 } 4586 } 4587 } 4588 // Verify that the bundle operands are identical between the two calls. 4589 if (CI->hasOperandBundles() && 4590 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4591 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4592 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4593 BS.cancelScheduling(VL, VL0); 4594 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4595 ReuseShuffleIndicies); 4596 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4597 << *CI << "!=" << *V << '\n'); 4598 return; 4599 } 4600 } 4601 4602 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4603 ReuseShuffleIndicies); 4604 TE->setOperandsInOrder(); 4605 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4606 // For scalar operands no need to to create an entry since no need to 4607 // vectorize it. 4608 if (hasVectorInstrinsicScalarOpd(ID, i)) 4609 continue; 4610 ValueList Operands; 4611 // Prepare the operand vector. 4612 for (Value *V : VL) { 4613 auto *CI2 = cast<CallInst>(V); 4614 Operands.push_back(CI2->getArgOperand(i)); 4615 } 4616 buildTree_rec(Operands, Depth + 1, {TE, i}); 4617 } 4618 return; 4619 } 4620 case Instruction::ShuffleVector: { 4621 // If this is not an alternate sequence of opcode like add-sub 4622 // then do not vectorize this instruction. 4623 if (!S.isAltShuffle()) { 4624 BS.cancelScheduling(VL, VL0); 4625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4626 ReuseShuffleIndicies); 4627 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4628 return; 4629 } 4630 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4631 ReuseShuffleIndicies); 4632 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4633 4634 // Reorder operands if reordering would enable vectorization. 4635 auto *CI = dyn_cast<CmpInst>(VL0); 4636 if (isa<BinaryOperator>(VL0) || CI) { 4637 ValueList Left, Right; 4638 if (!CI || all_of(VL, [](Value *V) { 4639 return cast<CmpInst>(V)->isCommutative(); 4640 })) { 4641 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4642 } else { 4643 CmpInst::Predicate P0 = CI->getPredicate(); 4644 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4645 assert(P0 != AltP0 && 4646 "Expected different main/alternate predicates."); 4647 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4648 Value *BaseOp0 = VL0->getOperand(0); 4649 Value *BaseOp1 = VL0->getOperand(1); 4650 // Collect operands - commute if it uses the swapped predicate or 4651 // alternate operation. 4652 for (Value *V : VL) { 4653 auto *Cmp = cast<CmpInst>(V); 4654 Value *LHS = Cmp->getOperand(0); 4655 Value *RHS = Cmp->getOperand(1); 4656 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4657 if (P0 == AltP0Swapped) { 4658 if (CI != Cmp && S.AltOp != Cmp && 4659 ((P0 == CurrentPred && 4660 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4661 (AltP0 == CurrentPred && 4662 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4663 std::swap(LHS, RHS); 4664 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4665 std::swap(LHS, RHS); 4666 } 4667 Left.push_back(LHS); 4668 Right.push_back(RHS); 4669 } 4670 } 4671 TE->setOperand(0, Left); 4672 TE->setOperand(1, Right); 4673 buildTree_rec(Left, Depth + 1, {TE, 0}); 4674 buildTree_rec(Right, Depth + 1, {TE, 1}); 4675 return; 4676 } 4677 4678 TE->setOperandsInOrder(); 4679 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4680 ValueList Operands; 4681 // Prepare the operand vector. 4682 for (Value *V : VL) 4683 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4684 4685 buildTree_rec(Operands, Depth + 1, {TE, i}); 4686 } 4687 return; 4688 } 4689 default: 4690 BS.cancelScheduling(VL, VL0); 4691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4692 ReuseShuffleIndicies); 4693 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4694 return; 4695 } 4696 } 4697 4698 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4699 unsigned N = 1; 4700 Type *EltTy = T; 4701 4702 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4703 isa<VectorType>(EltTy)) { 4704 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4705 // Check that struct is homogeneous. 4706 for (const auto *Ty : ST->elements()) 4707 if (Ty != *ST->element_begin()) 4708 return 0; 4709 N *= ST->getNumElements(); 4710 EltTy = *ST->element_begin(); 4711 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4712 N *= AT->getNumElements(); 4713 EltTy = AT->getElementType(); 4714 } else { 4715 auto *VT = cast<FixedVectorType>(EltTy); 4716 N *= VT->getNumElements(); 4717 EltTy = VT->getElementType(); 4718 } 4719 } 4720 4721 if (!isValidElementType(EltTy)) 4722 return 0; 4723 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4724 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4725 return 0; 4726 return N; 4727 } 4728 4729 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4730 SmallVectorImpl<unsigned> &CurrentOrder) const { 4731 const auto *It = find_if(VL, [](Value *V) { 4732 return isa<ExtractElementInst, ExtractValueInst>(V); 4733 }); 4734 assert(It != VL.end() && "Expected at least one extract instruction."); 4735 auto *E0 = cast<Instruction>(*It); 4736 assert(all_of(VL, 4737 [](Value *V) { 4738 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4739 V); 4740 }) && 4741 "Invalid opcode"); 4742 // Check if all of the extracts come from the same vector and from the 4743 // correct offset. 4744 Value *Vec = E0->getOperand(0); 4745 4746 CurrentOrder.clear(); 4747 4748 // We have to extract from a vector/aggregate with the same number of elements. 4749 unsigned NElts; 4750 if (E0->getOpcode() == Instruction::ExtractValue) { 4751 const DataLayout &DL = E0->getModule()->getDataLayout(); 4752 NElts = canMapToVector(Vec->getType(), DL); 4753 if (!NElts) 4754 return false; 4755 // Check if load can be rewritten as load of vector. 4756 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4757 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4758 return false; 4759 } else { 4760 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4761 } 4762 4763 if (NElts != VL.size()) 4764 return false; 4765 4766 // Check that all of the indices extract from the correct offset. 4767 bool ShouldKeepOrder = true; 4768 unsigned E = VL.size(); 4769 // Assign to all items the initial value E + 1 so we can check if the extract 4770 // instruction index was used already. 4771 // Also, later we can check that all the indices are used and we have a 4772 // consecutive access in the extract instructions, by checking that no 4773 // element of CurrentOrder still has value E + 1. 4774 CurrentOrder.assign(E, E); 4775 unsigned I = 0; 4776 for (; I < E; ++I) { 4777 auto *Inst = dyn_cast<Instruction>(VL[I]); 4778 if (!Inst) 4779 continue; 4780 if (Inst->getOperand(0) != Vec) 4781 break; 4782 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4783 if (isa<UndefValue>(EE->getIndexOperand())) 4784 continue; 4785 Optional<unsigned> Idx = getExtractIndex(Inst); 4786 if (!Idx) 4787 break; 4788 const unsigned ExtIdx = *Idx; 4789 if (ExtIdx != I) { 4790 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4791 break; 4792 ShouldKeepOrder = false; 4793 CurrentOrder[ExtIdx] = I; 4794 } else { 4795 if (CurrentOrder[I] != E) 4796 break; 4797 CurrentOrder[I] = I; 4798 } 4799 } 4800 if (I < E) { 4801 CurrentOrder.clear(); 4802 return false; 4803 } 4804 if (ShouldKeepOrder) 4805 CurrentOrder.clear(); 4806 4807 return ShouldKeepOrder; 4808 } 4809 4810 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4811 ArrayRef<Value *> VectorizedVals) const { 4812 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4813 all_of(I->users(), [this](User *U) { 4814 return ScalarToTreeEntry.count(U) > 0 || 4815 isVectorLikeInstWithConstOps(U) || 4816 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4817 }); 4818 } 4819 4820 static std::pair<InstructionCost, InstructionCost> 4821 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4822 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4823 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4824 4825 // Calculate the cost of the scalar and vector calls. 4826 SmallVector<Type *, 4> VecTys; 4827 for (Use &Arg : CI->args()) 4828 VecTys.push_back( 4829 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4830 FastMathFlags FMF; 4831 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4832 FMF = FPCI->getFastMathFlags(); 4833 SmallVector<const Value *> Arguments(CI->args()); 4834 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4835 dyn_cast<IntrinsicInst>(CI)); 4836 auto IntrinsicCost = 4837 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4838 4839 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4840 VecTy->getNumElements())), 4841 false /*HasGlobalPred*/); 4842 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4843 auto LibCost = IntrinsicCost; 4844 if (!CI->isNoBuiltin() && VecFunc) { 4845 // Calculate the cost of the vector library call. 4846 // If the corresponding vector call is cheaper, return its cost. 4847 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4848 TTI::TCK_RecipThroughput); 4849 } 4850 return {IntrinsicCost, LibCost}; 4851 } 4852 4853 /// Compute the cost of creating a vector of type \p VecTy containing the 4854 /// extracted values from \p VL. 4855 static InstructionCost 4856 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4857 TargetTransformInfo::ShuffleKind ShuffleKind, 4858 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4859 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4860 4861 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4862 VecTy->getNumElements() < NumOfParts) 4863 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4864 4865 bool AllConsecutive = true; 4866 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4867 unsigned Idx = -1; 4868 InstructionCost Cost = 0; 4869 4870 // Process extracts in blocks of EltsPerVector to check if the source vector 4871 // operand can be re-used directly. If not, add the cost of creating a shuffle 4872 // to extract the values into a vector register. 4873 for (auto *V : VL) { 4874 ++Idx; 4875 4876 // Need to exclude undefs from analysis. 4877 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4878 continue; 4879 4880 // Reached the start of a new vector registers. 4881 if (Idx % EltsPerVector == 0) { 4882 AllConsecutive = true; 4883 continue; 4884 } 4885 4886 // Check all extracts for a vector register on the target directly 4887 // extract values in order. 4888 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4889 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4890 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4891 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4892 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4893 } 4894 4895 if (AllConsecutive) 4896 continue; 4897 4898 // Skip all indices, except for the last index per vector block. 4899 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4900 continue; 4901 4902 // If we have a series of extracts which are not consecutive and hence 4903 // cannot re-use the source vector register directly, compute the shuffle 4904 // cost to extract the a vector with EltsPerVector elements. 4905 Cost += TTI.getShuffleCost( 4906 TargetTransformInfo::SK_PermuteSingleSrc, 4907 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4908 } 4909 return Cost; 4910 } 4911 4912 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4913 /// operations operands. 4914 static void 4915 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4916 ArrayRef<int> ReusesIndices, 4917 const function_ref<bool(Instruction *)> IsAltOp, 4918 SmallVectorImpl<int> &Mask, 4919 SmallVectorImpl<Value *> *OpScalars = nullptr, 4920 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4921 unsigned Sz = VL.size(); 4922 Mask.assign(Sz, UndefMaskElem); 4923 SmallVector<int> OrderMask; 4924 if (!ReorderIndices.empty()) 4925 inversePermutation(ReorderIndices, OrderMask); 4926 for (unsigned I = 0; I < Sz; ++I) { 4927 unsigned Idx = I; 4928 if (!ReorderIndices.empty()) 4929 Idx = OrderMask[I]; 4930 auto *OpInst = cast<Instruction>(VL[Idx]); 4931 if (IsAltOp(OpInst)) { 4932 Mask[I] = Sz + Idx; 4933 if (AltScalars) 4934 AltScalars->push_back(OpInst); 4935 } else { 4936 Mask[I] = Idx; 4937 if (OpScalars) 4938 OpScalars->push_back(OpInst); 4939 } 4940 } 4941 if (!ReusesIndices.empty()) { 4942 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4943 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4944 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4945 }); 4946 Mask.swap(NewMask); 4947 } 4948 } 4949 4950 /// Checks if the specified instruction \p I is an alternate operation for the 4951 /// given \p MainOp and \p AltOp instructions. 4952 static bool isAlternateInstruction(const Instruction *I, 4953 const Instruction *MainOp, 4954 const Instruction *AltOp) { 4955 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4956 auto *AltCI0 = cast<CmpInst>(AltOp); 4957 auto *CI = cast<CmpInst>(I); 4958 CmpInst::Predicate P0 = CI0->getPredicate(); 4959 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4960 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4961 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4962 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4963 if (P0 == AltP0Swapped) 4964 return I == AltCI0 || 4965 (I != MainOp && 4966 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4967 CI->getOperand(0), CI->getOperand(1))); 4968 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4969 } 4970 return I->getOpcode() == AltOp->getOpcode(); 4971 } 4972 4973 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4974 ArrayRef<Value *> VectorizedVals) { 4975 ArrayRef<Value*> VL = E->Scalars; 4976 4977 Type *ScalarTy = VL[0]->getType(); 4978 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4979 ScalarTy = SI->getValueOperand()->getType(); 4980 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4981 ScalarTy = CI->getOperand(0)->getType(); 4982 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4983 ScalarTy = IE->getOperand(1)->getType(); 4984 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4985 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4986 4987 // If we have computed a smaller type for the expression, update VecTy so 4988 // that the costs will be accurate. 4989 if (MinBWs.count(VL[0])) 4990 VecTy = FixedVectorType::get( 4991 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4992 unsigned EntryVF = E->getVectorFactor(); 4993 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4994 4995 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4996 // FIXME: it tries to fix a problem with MSVC buildbots. 4997 TargetTransformInfo &TTIRef = *TTI; 4998 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4999 VectorizedVals, E](InstructionCost &Cost) { 5000 DenseMap<Value *, int> ExtractVectorsTys; 5001 SmallPtrSet<Value *, 4> CheckedExtracts; 5002 for (auto *V : VL) { 5003 if (isa<UndefValue>(V)) 5004 continue; 5005 // If all users of instruction are going to be vectorized and this 5006 // instruction itself is not going to be vectorized, consider this 5007 // instruction as dead and remove its cost from the final cost of the 5008 // vectorized tree. 5009 // Also, avoid adjusting the cost for extractelements with multiple uses 5010 // in different graph entries. 5011 const TreeEntry *VE = getTreeEntry(V); 5012 if (!CheckedExtracts.insert(V).second || 5013 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5014 (VE && VE != E)) 5015 continue; 5016 auto *EE = cast<ExtractElementInst>(V); 5017 Optional<unsigned> EEIdx = getExtractIndex(EE); 5018 if (!EEIdx) 5019 continue; 5020 unsigned Idx = *EEIdx; 5021 if (TTIRef.getNumberOfParts(VecTy) != 5022 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5023 auto It = 5024 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5025 It->getSecond() = std::min<int>(It->second, Idx); 5026 } 5027 // Take credit for instruction that will become dead. 5028 if (EE->hasOneUse()) { 5029 Instruction *Ext = EE->user_back(); 5030 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5031 all_of(Ext->users(), 5032 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5033 // Use getExtractWithExtendCost() to calculate the cost of 5034 // extractelement/ext pair. 5035 Cost -= 5036 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5037 EE->getVectorOperandType(), Idx); 5038 // Add back the cost of s|zext which is subtracted separately. 5039 Cost += TTIRef.getCastInstrCost( 5040 Ext->getOpcode(), Ext->getType(), EE->getType(), 5041 TTI::getCastContextHint(Ext), CostKind, Ext); 5042 continue; 5043 } 5044 } 5045 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5046 EE->getVectorOperandType(), Idx); 5047 } 5048 // Add a cost for subvector extracts/inserts if required. 5049 for (const auto &Data : ExtractVectorsTys) { 5050 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5051 unsigned NumElts = VecTy->getNumElements(); 5052 if (Data.second % NumElts == 0) 5053 continue; 5054 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5055 unsigned Idx = (Data.second / NumElts) * NumElts; 5056 unsigned EENumElts = EEVTy->getNumElements(); 5057 if (Idx + NumElts <= EENumElts) { 5058 Cost += 5059 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5060 EEVTy, None, Idx, VecTy); 5061 } else { 5062 // Need to round up the subvector type vectorization factor to avoid a 5063 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5064 // <= EENumElts. 5065 auto *SubVT = 5066 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5067 Cost += 5068 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5069 EEVTy, None, Idx, SubVT); 5070 } 5071 } else { 5072 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5073 VecTy, None, 0, EEVTy); 5074 } 5075 } 5076 }; 5077 if (E->State == TreeEntry::NeedToGather) { 5078 if (allConstant(VL)) 5079 return 0; 5080 if (isa<InsertElementInst>(VL[0])) 5081 return InstructionCost::getInvalid(); 5082 SmallVector<int> Mask; 5083 SmallVector<const TreeEntry *> Entries; 5084 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5085 isGatherShuffledEntry(E, Mask, Entries); 5086 if (Shuffle.hasValue()) { 5087 InstructionCost GatherCost = 0; 5088 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5089 // Perfect match in the graph, will reuse the previously vectorized 5090 // node. Cost is 0. 5091 LLVM_DEBUG( 5092 dbgs() 5093 << "SLP: perfect diamond match for gather bundle that starts with " 5094 << *VL.front() << ".\n"); 5095 if (NeedToShuffleReuses) 5096 GatherCost = 5097 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5098 FinalVecTy, E->ReuseShuffleIndices); 5099 } else { 5100 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5101 << " entries for bundle that starts with " 5102 << *VL.front() << ".\n"); 5103 // Detected that instead of gather we can emit a shuffle of single/two 5104 // previously vectorized nodes. Add the cost of the permutation rather 5105 // than gather. 5106 ::addMask(Mask, E->ReuseShuffleIndices); 5107 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5108 } 5109 return GatherCost; 5110 } 5111 if ((E->getOpcode() == Instruction::ExtractElement || 5112 all_of(E->Scalars, 5113 [](Value *V) { 5114 return isa<ExtractElementInst, UndefValue>(V); 5115 })) && 5116 allSameType(VL)) { 5117 // Check that gather of extractelements can be represented as just a 5118 // shuffle of a single/two vectors the scalars are extracted from. 5119 SmallVector<int> Mask; 5120 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5121 isFixedVectorShuffle(VL, Mask); 5122 if (ShuffleKind.hasValue()) { 5123 // Found the bunch of extractelement instructions that must be gathered 5124 // into a vector and can be represented as a permutation elements in a 5125 // single input vector or of 2 input vectors. 5126 InstructionCost Cost = 5127 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5128 AdjustExtractsCost(Cost); 5129 if (NeedToShuffleReuses) 5130 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5131 FinalVecTy, E->ReuseShuffleIndices); 5132 return Cost; 5133 } 5134 } 5135 if (isSplat(VL)) { 5136 // Found the broadcasting of the single scalar, calculate the cost as the 5137 // broadcast. 5138 assert(VecTy == FinalVecTy && 5139 "No reused scalars expected for broadcast."); 5140 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5141 } 5142 InstructionCost ReuseShuffleCost = 0; 5143 if (NeedToShuffleReuses) 5144 ReuseShuffleCost = TTI->getShuffleCost( 5145 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5146 // Improve gather cost for gather of loads, if we can group some of the 5147 // loads into vector loads. 5148 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5149 !E->isAltShuffle()) { 5150 BoUpSLP::ValueSet VectorizedLoads; 5151 unsigned StartIdx = 0; 5152 unsigned VF = VL.size() / 2; 5153 unsigned VectorizedCnt = 0; 5154 unsigned ScatterVectorizeCnt = 0; 5155 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5156 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5157 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5158 Cnt += VF) { 5159 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5160 if (!VectorizedLoads.count(Slice.front()) && 5161 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5162 SmallVector<Value *> PointerOps; 5163 OrdersType CurrentOrder; 5164 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5165 *SE, CurrentOrder, PointerOps); 5166 switch (LS) { 5167 case LoadsState::Vectorize: 5168 case LoadsState::ScatterVectorize: 5169 // Mark the vectorized loads so that we don't vectorize them 5170 // again. 5171 if (LS == LoadsState::Vectorize) 5172 ++VectorizedCnt; 5173 else 5174 ++ScatterVectorizeCnt; 5175 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5176 // If we vectorized initial block, no need to try to vectorize it 5177 // again. 5178 if (Cnt == StartIdx) 5179 StartIdx += VF; 5180 break; 5181 case LoadsState::Gather: 5182 break; 5183 } 5184 } 5185 } 5186 // Check if the whole array was vectorized already - exit. 5187 if (StartIdx >= VL.size()) 5188 break; 5189 // Found vectorizable parts - exit. 5190 if (!VectorizedLoads.empty()) 5191 break; 5192 } 5193 if (!VectorizedLoads.empty()) { 5194 InstructionCost GatherCost = 0; 5195 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5196 bool NeedInsertSubvectorAnalysis = 5197 !NumParts || (VL.size() / VF) > NumParts; 5198 // Get the cost for gathered loads. 5199 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5200 if (VectorizedLoads.contains(VL[I])) 5201 continue; 5202 GatherCost += getGatherCost(VL.slice(I, VF)); 5203 } 5204 // The cost for vectorized loads. 5205 InstructionCost ScalarsCost = 0; 5206 for (Value *V : VectorizedLoads) { 5207 auto *LI = cast<LoadInst>(V); 5208 ScalarsCost += TTI->getMemoryOpCost( 5209 Instruction::Load, LI->getType(), LI->getAlign(), 5210 LI->getPointerAddressSpace(), CostKind, LI); 5211 } 5212 auto *LI = cast<LoadInst>(E->getMainOp()); 5213 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5214 Align Alignment = LI->getAlign(); 5215 GatherCost += 5216 VectorizedCnt * 5217 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5218 LI->getPointerAddressSpace(), CostKind, LI); 5219 GatherCost += ScatterVectorizeCnt * 5220 TTI->getGatherScatterOpCost( 5221 Instruction::Load, LoadTy, LI->getPointerOperand(), 5222 /*VariableMask=*/false, Alignment, CostKind, LI); 5223 if (NeedInsertSubvectorAnalysis) { 5224 // Add the cost for the subvectors insert. 5225 for (int I = VF, E = VL.size(); I < E; I += VF) 5226 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5227 None, I, LoadTy); 5228 } 5229 return ReuseShuffleCost + GatherCost - ScalarsCost; 5230 } 5231 } 5232 return ReuseShuffleCost + getGatherCost(VL); 5233 } 5234 InstructionCost CommonCost = 0; 5235 SmallVector<int> Mask; 5236 if (!E->ReorderIndices.empty()) { 5237 SmallVector<int> NewMask; 5238 if (E->getOpcode() == Instruction::Store) { 5239 // For stores the order is actually a mask. 5240 NewMask.resize(E->ReorderIndices.size()); 5241 copy(E->ReorderIndices, NewMask.begin()); 5242 } else { 5243 inversePermutation(E->ReorderIndices, NewMask); 5244 } 5245 ::addMask(Mask, NewMask); 5246 } 5247 if (NeedToShuffleReuses) 5248 ::addMask(Mask, E->ReuseShuffleIndices); 5249 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5250 CommonCost = 5251 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5252 assert((E->State == TreeEntry::Vectorize || 5253 E->State == TreeEntry::ScatterVectorize) && 5254 "Unhandled state"); 5255 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5256 Instruction *VL0 = E->getMainOp(); 5257 unsigned ShuffleOrOp = 5258 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5259 switch (ShuffleOrOp) { 5260 case Instruction::PHI: 5261 return 0; 5262 5263 case Instruction::ExtractValue: 5264 case Instruction::ExtractElement: { 5265 // The common cost of removal ExtractElement/ExtractValue instructions + 5266 // the cost of shuffles, if required to resuffle the original vector. 5267 if (NeedToShuffleReuses) { 5268 unsigned Idx = 0; 5269 for (unsigned I : E->ReuseShuffleIndices) { 5270 if (ShuffleOrOp == Instruction::ExtractElement) { 5271 auto *EE = cast<ExtractElementInst>(VL[I]); 5272 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5273 EE->getVectorOperandType(), 5274 *getExtractIndex(EE)); 5275 } else { 5276 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5277 VecTy, Idx); 5278 ++Idx; 5279 } 5280 } 5281 Idx = EntryVF; 5282 for (Value *V : VL) { 5283 if (ShuffleOrOp == Instruction::ExtractElement) { 5284 auto *EE = cast<ExtractElementInst>(V); 5285 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5286 EE->getVectorOperandType(), 5287 *getExtractIndex(EE)); 5288 } else { 5289 --Idx; 5290 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5291 VecTy, Idx); 5292 } 5293 } 5294 } 5295 if (ShuffleOrOp == Instruction::ExtractValue) { 5296 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5297 auto *EI = cast<Instruction>(VL[I]); 5298 // Take credit for instruction that will become dead. 5299 if (EI->hasOneUse()) { 5300 Instruction *Ext = EI->user_back(); 5301 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5302 all_of(Ext->users(), 5303 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5304 // Use getExtractWithExtendCost() to calculate the cost of 5305 // extractelement/ext pair. 5306 CommonCost -= TTI->getExtractWithExtendCost( 5307 Ext->getOpcode(), Ext->getType(), VecTy, I); 5308 // Add back the cost of s|zext which is subtracted separately. 5309 CommonCost += TTI->getCastInstrCost( 5310 Ext->getOpcode(), Ext->getType(), EI->getType(), 5311 TTI::getCastContextHint(Ext), CostKind, Ext); 5312 continue; 5313 } 5314 } 5315 CommonCost -= 5316 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5317 } 5318 } else { 5319 AdjustExtractsCost(CommonCost); 5320 } 5321 return CommonCost; 5322 } 5323 case Instruction::InsertElement: { 5324 assert(E->ReuseShuffleIndices.empty() && 5325 "Unique insertelements only are expected."); 5326 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5327 5328 unsigned const NumElts = SrcVecTy->getNumElements(); 5329 unsigned const NumScalars = VL.size(); 5330 APInt DemandedElts = APInt::getZero(NumElts); 5331 // TODO: Add support for Instruction::InsertValue. 5332 SmallVector<int> Mask; 5333 if (!E->ReorderIndices.empty()) { 5334 inversePermutation(E->ReorderIndices, Mask); 5335 Mask.append(NumElts - NumScalars, UndefMaskElem); 5336 } else { 5337 Mask.assign(NumElts, UndefMaskElem); 5338 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5339 } 5340 unsigned Offset = *getInsertIndex(VL0); 5341 bool IsIdentity = true; 5342 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5343 Mask.swap(PrevMask); 5344 for (unsigned I = 0; I < NumScalars; ++I) { 5345 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5346 DemandedElts.setBit(InsertIdx); 5347 IsIdentity &= InsertIdx - Offset == I; 5348 Mask[InsertIdx - Offset] = I; 5349 } 5350 assert(Offset < NumElts && "Failed to find vector index offset"); 5351 5352 InstructionCost Cost = 0; 5353 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5354 /*Insert*/ true, /*Extract*/ false); 5355 5356 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5357 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5358 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5359 Cost += TTI->getShuffleCost( 5360 TargetTransformInfo::SK_PermuteSingleSrc, 5361 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5362 } else if (!IsIdentity) { 5363 auto *FirstInsert = 5364 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5365 return !is_contained(E->Scalars, 5366 cast<Instruction>(V)->getOperand(0)); 5367 })); 5368 if (isUndefVector(FirstInsert->getOperand(0))) { 5369 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5370 } else { 5371 SmallVector<int> InsertMask(NumElts); 5372 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5373 for (unsigned I = 0; I < NumElts; I++) { 5374 if (Mask[I] != UndefMaskElem) 5375 InsertMask[Offset + I] = NumElts + I; 5376 } 5377 Cost += 5378 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5379 } 5380 } 5381 5382 return Cost; 5383 } 5384 case Instruction::ZExt: 5385 case Instruction::SExt: 5386 case Instruction::FPToUI: 5387 case Instruction::FPToSI: 5388 case Instruction::FPExt: 5389 case Instruction::PtrToInt: 5390 case Instruction::IntToPtr: 5391 case Instruction::SIToFP: 5392 case Instruction::UIToFP: 5393 case Instruction::Trunc: 5394 case Instruction::FPTrunc: 5395 case Instruction::BitCast: { 5396 Type *SrcTy = VL0->getOperand(0)->getType(); 5397 InstructionCost ScalarEltCost = 5398 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5399 TTI::getCastContextHint(VL0), CostKind, VL0); 5400 if (NeedToShuffleReuses) { 5401 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5402 } 5403 5404 // Calculate the cost of this instruction. 5405 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5406 5407 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5408 InstructionCost VecCost = 0; 5409 // Check if the values are candidates to demote. 5410 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5411 VecCost = CommonCost + TTI->getCastInstrCost( 5412 E->getOpcode(), VecTy, SrcVecTy, 5413 TTI::getCastContextHint(VL0), CostKind, VL0); 5414 } 5415 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5416 return VecCost - ScalarCost; 5417 } 5418 case Instruction::FCmp: 5419 case Instruction::ICmp: 5420 case Instruction::Select: { 5421 // Calculate the cost of this instruction. 5422 InstructionCost ScalarEltCost = 5423 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5424 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5425 if (NeedToShuffleReuses) { 5426 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5427 } 5428 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5429 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5430 5431 // Check if all entries in VL are either compares or selects with compares 5432 // as condition that have the same predicates. 5433 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5434 bool First = true; 5435 for (auto *V : VL) { 5436 CmpInst::Predicate CurrentPred; 5437 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5438 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5439 !match(V, MatchCmp)) || 5440 (!First && VecPred != CurrentPred)) { 5441 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5442 break; 5443 } 5444 First = false; 5445 VecPred = CurrentPred; 5446 } 5447 5448 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5449 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5450 // Check if it is possible and profitable to use min/max for selects in 5451 // VL. 5452 // 5453 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5454 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5455 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5456 {VecTy, VecTy}); 5457 InstructionCost IntrinsicCost = 5458 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5459 // If the selects are the only uses of the compares, they will be dead 5460 // and we can adjust the cost by removing their cost. 5461 if (IntrinsicAndUse.second) 5462 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5463 MaskTy, VecPred, CostKind); 5464 VecCost = std::min(VecCost, IntrinsicCost); 5465 } 5466 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5467 return CommonCost + VecCost - ScalarCost; 5468 } 5469 case Instruction::FNeg: 5470 case Instruction::Add: 5471 case Instruction::FAdd: 5472 case Instruction::Sub: 5473 case Instruction::FSub: 5474 case Instruction::Mul: 5475 case Instruction::FMul: 5476 case Instruction::UDiv: 5477 case Instruction::SDiv: 5478 case Instruction::FDiv: 5479 case Instruction::URem: 5480 case Instruction::SRem: 5481 case Instruction::FRem: 5482 case Instruction::Shl: 5483 case Instruction::LShr: 5484 case Instruction::AShr: 5485 case Instruction::And: 5486 case Instruction::Or: 5487 case Instruction::Xor: { 5488 // Certain instructions can be cheaper to vectorize if they have a 5489 // constant second vector operand. 5490 TargetTransformInfo::OperandValueKind Op1VK = 5491 TargetTransformInfo::OK_AnyValue; 5492 TargetTransformInfo::OperandValueKind Op2VK = 5493 TargetTransformInfo::OK_UniformConstantValue; 5494 TargetTransformInfo::OperandValueProperties Op1VP = 5495 TargetTransformInfo::OP_None; 5496 TargetTransformInfo::OperandValueProperties Op2VP = 5497 TargetTransformInfo::OP_PowerOf2; 5498 5499 // If all operands are exactly the same ConstantInt then set the 5500 // operand kind to OK_UniformConstantValue. 5501 // If instead not all operands are constants, then set the operand kind 5502 // to OK_AnyValue. If all operands are constants but not the same, 5503 // then set the operand kind to OK_NonUniformConstantValue. 5504 ConstantInt *CInt0 = nullptr; 5505 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5506 const Instruction *I = cast<Instruction>(VL[i]); 5507 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5508 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5509 if (!CInt) { 5510 Op2VK = TargetTransformInfo::OK_AnyValue; 5511 Op2VP = TargetTransformInfo::OP_None; 5512 break; 5513 } 5514 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5515 !CInt->getValue().isPowerOf2()) 5516 Op2VP = TargetTransformInfo::OP_None; 5517 if (i == 0) { 5518 CInt0 = CInt; 5519 continue; 5520 } 5521 if (CInt0 != CInt) 5522 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5523 } 5524 5525 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5526 InstructionCost ScalarEltCost = 5527 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5528 Op2VK, Op1VP, Op2VP, Operands, VL0); 5529 if (NeedToShuffleReuses) { 5530 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5531 } 5532 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5533 InstructionCost VecCost = 5534 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5535 Op2VK, Op1VP, Op2VP, Operands, VL0); 5536 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5537 return CommonCost + VecCost - ScalarCost; 5538 } 5539 case Instruction::GetElementPtr: { 5540 TargetTransformInfo::OperandValueKind Op1VK = 5541 TargetTransformInfo::OK_AnyValue; 5542 TargetTransformInfo::OperandValueKind Op2VK = 5543 TargetTransformInfo::OK_UniformConstantValue; 5544 5545 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5546 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5547 if (NeedToShuffleReuses) { 5548 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5549 } 5550 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5551 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5552 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5553 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5554 return CommonCost + VecCost - ScalarCost; 5555 } 5556 case Instruction::Load: { 5557 // Cost of wide load - cost of scalar loads. 5558 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5559 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5560 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5561 if (NeedToShuffleReuses) { 5562 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5563 } 5564 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5565 InstructionCost VecLdCost; 5566 if (E->State == TreeEntry::Vectorize) { 5567 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5568 CostKind, VL0); 5569 } else { 5570 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5571 Align CommonAlignment = Alignment; 5572 for (Value *V : VL) 5573 CommonAlignment = 5574 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5575 VecLdCost = TTI->getGatherScatterOpCost( 5576 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5577 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5578 } 5579 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5580 return CommonCost + VecLdCost - ScalarLdCost; 5581 } 5582 case Instruction::Store: { 5583 // We know that we can merge the stores. Calculate the cost. 5584 bool IsReorder = !E->ReorderIndices.empty(); 5585 auto *SI = 5586 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5587 Align Alignment = SI->getAlign(); 5588 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5589 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5590 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5591 InstructionCost VecStCost = TTI->getMemoryOpCost( 5592 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5593 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5594 return CommonCost + VecStCost - ScalarStCost; 5595 } 5596 case Instruction::Call: { 5597 CallInst *CI = cast<CallInst>(VL0); 5598 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5599 5600 // Calculate the cost of the scalar and vector calls. 5601 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5602 InstructionCost ScalarEltCost = 5603 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5604 if (NeedToShuffleReuses) { 5605 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5606 } 5607 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5608 5609 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5610 InstructionCost VecCallCost = 5611 std::min(VecCallCosts.first, VecCallCosts.second); 5612 5613 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5614 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5615 << " for " << *CI << "\n"); 5616 5617 return CommonCost + VecCallCost - ScalarCallCost; 5618 } 5619 case Instruction::ShuffleVector: { 5620 assert(E->isAltShuffle() && 5621 ((Instruction::isBinaryOp(E->getOpcode()) && 5622 Instruction::isBinaryOp(E->getAltOpcode())) || 5623 (Instruction::isCast(E->getOpcode()) && 5624 Instruction::isCast(E->getAltOpcode())) || 5625 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5626 "Invalid Shuffle Vector Operand"); 5627 InstructionCost ScalarCost = 0; 5628 if (NeedToShuffleReuses) { 5629 for (unsigned Idx : E->ReuseShuffleIndices) { 5630 Instruction *I = cast<Instruction>(VL[Idx]); 5631 CommonCost -= TTI->getInstructionCost(I, CostKind); 5632 } 5633 for (Value *V : VL) { 5634 Instruction *I = cast<Instruction>(V); 5635 CommonCost += TTI->getInstructionCost(I, CostKind); 5636 } 5637 } 5638 for (Value *V : VL) { 5639 Instruction *I = cast<Instruction>(V); 5640 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5641 ScalarCost += TTI->getInstructionCost(I, CostKind); 5642 } 5643 // VecCost is equal to sum of the cost of creating 2 vectors 5644 // and the cost of creating shuffle. 5645 InstructionCost VecCost = 0; 5646 // Try to find the previous shuffle node with the same operands and same 5647 // main/alternate ops. 5648 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5649 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5650 if (TE.get() == E) 5651 break; 5652 if (TE->isAltShuffle() && 5653 ((TE->getOpcode() == E->getOpcode() && 5654 TE->getAltOpcode() == E->getAltOpcode()) || 5655 (TE->getOpcode() == E->getAltOpcode() && 5656 TE->getAltOpcode() == E->getOpcode())) && 5657 TE->hasEqualOperands(*E)) 5658 return true; 5659 } 5660 return false; 5661 }; 5662 if (TryFindNodeWithEqualOperands()) { 5663 LLVM_DEBUG({ 5664 dbgs() << "SLP: diamond match for alternate node found.\n"; 5665 E->dump(); 5666 }); 5667 // No need to add new vector costs here since we're going to reuse 5668 // same main/alternate vector ops, just do different shuffling. 5669 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5670 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5671 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5672 CostKind); 5673 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5674 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5675 Builder.getInt1Ty(), 5676 CI0->getPredicate(), CostKind, VL0); 5677 VecCost += TTI->getCmpSelInstrCost( 5678 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5679 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5680 E->getAltOp()); 5681 } else { 5682 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5683 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5684 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5685 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5686 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5687 TTI::CastContextHint::None, CostKind); 5688 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5689 TTI::CastContextHint::None, CostKind); 5690 } 5691 5692 SmallVector<int> Mask; 5693 buildShuffleEntryMask( 5694 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5695 [E](Instruction *I) { 5696 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5697 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5698 }, 5699 Mask); 5700 CommonCost = 5701 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5702 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5703 return CommonCost + VecCost - ScalarCost; 5704 } 5705 default: 5706 llvm_unreachable("Unknown instruction"); 5707 } 5708 } 5709 5710 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5711 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5712 << VectorizableTree.size() << " is fully vectorizable .\n"); 5713 5714 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5715 SmallVector<int> Mask; 5716 return TE->State == TreeEntry::NeedToGather && 5717 !any_of(TE->Scalars, 5718 [this](Value *V) { return EphValues.contains(V); }) && 5719 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5720 TE->Scalars.size() < Limit || 5721 ((TE->getOpcode() == Instruction::ExtractElement || 5722 all_of(TE->Scalars, 5723 [](Value *V) { 5724 return isa<ExtractElementInst, UndefValue>(V); 5725 })) && 5726 isFixedVectorShuffle(TE->Scalars, Mask)) || 5727 (TE->State == TreeEntry::NeedToGather && 5728 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5729 }; 5730 5731 // We only handle trees of heights 1 and 2. 5732 if (VectorizableTree.size() == 1 && 5733 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5734 (ForReduction && 5735 AreVectorizableGathers(VectorizableTree[0].get(), 5736 VectorizableTree[0]->Scalars.size()) && 5737 VectorizableTree[0]->getVectorFactor() > 2))) 5738 return true; 5739 5740 if (VectorizableTree.size() != 2) 5741 return false; 5742 5743 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5744 // with the second gather nodes if they have less scalar operands rather than 5745 // the initial tree element (may be profitable to shuffle the second gather) 5746 // or they are extractelements, which form shuffle. 5747 SmallVector<int> Mask; 5748 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5749 AreVectorizableGathers(VectorizableTree[1].get(), 5750 VectorizableTree[0]->Scalars.size())) 5751 return true; 5752 5753 // Gathering cost would be too much for tiny trees. 5754 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5755 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5756 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5757 return false; 5758 5759 return true; 5760 } 5761 5762 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5763 TargetTransformInfo *TTI, 5764 bool MustMatchOrInst) { 5765 // Look past the root to find a source value. Arbitrarily follow the 5766 // path through operand 0 of any 'or'. Also, peek through optional 5767 // shift-left-by-multiple-of-8-bits. 5768 Value *ZextLoad = Root; 5769 const APInt *ShAmtC; 5770 bool FoundOr = false; 5771 while (!isa<ConstantExpr>(ZextLoad) && 5772 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5773 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5774 ShAmtC->urem(8) == 0))) { 5775 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5776 ZextLoad = BinOp->getOperand(0); 5777 if (BinOp->getOpcode() == Instruction::Or) 5778 FoundOr = true; 5779 } 5780 // Check if the input is an extended load of the required or/shift expression. 5781 Value *Load; 5782 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5783 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5784 return false; 5785 5786 // Require that the total load bit width is a legal integer type. 5787 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5788 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5789 Type *SrcTy = Load->getType(); 5790 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5791 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5792 return false; 5793 5794 // Everything matched - assume that we can fold the whole sequence using 5795 // load combining. 5796 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5797 << *(cast<Instruction>(Root)) << "\n"); 5798 5799 return true; 5800 } 5801 5802 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5803 if (RdxKind != RecurKind::Or) 5804 return false; 5805 5806 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5807 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5808 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5809 /* MatchOr */ false); 5810 } 5811 5812 bool BoUpSLP::isLoadCombineCandidate() const { 5813 // Peek through a final sequence of stores and check if all operations are 5814 // likely to be load-combined. 5815 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5816 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5817 Value *X; 5818 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5819 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5820 return false; 5821 } 5822 return true; 5823 } 5824 5825 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5826 // No need to vectorize inserts of gathered values. 5827 if (VectorizableTree.size() == 2 && 5828 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5829 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5830 return true; 5831 5832 // We can vectorize the tree if its size is greater than or equal to the 5833 // minimum size specified by the MinTreeSize command line option. 5834 if (VectorizableTree.size() >= MinTreeSize) 5835 return false; 5836 5837 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5838 // can vectorize it if we can prove it fully vectorizable. 5839 if (isFullyVectorizableTinyTree(ForReduction)) 5840 return false; 5841 5842 assert(VectorizableTree.empty() 5843 ? ExternalUses.empty() 5844 : true && "We shouldn't have any external users"); 5845 5846 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5847 // vectorizable. 5848 return true; 5849 } 5850 5851 InstructionCost BoUpSLP::getSpillCost() const { 5852 // Walk from the bottom of the tree to the top, tracking which values are 5853 // live. When we see a call instruction that is not part of our tree, 5854 // query TTI to see if there is a cost to keeping values live over it 5855 // (for example, if spills and fills are required). 5856 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5857 InstructionCost Cost = 0; 5858 5859 SmallPtrSet<Instruction*, 4> LiveValues; 5860 Instruction *PrevInst = nullptr; 5861 5862 // The entries in VectorizableTree are not necessarily ordered by their 5863 // position in basic blocks. Collect them and order them by dominance so later 5864 // instructions are guaranteed to be visited first. For instructions in 5865 // different basic blocks, we only scan to the beginning of the block, so 5866 // their order does not matter, as long as all instructions in a basic block 5867 // are grouped together. Using dominance ensures a deterministic order. 5868 SmallVector<Instruction *, 16> OrderedScalars; 5869 for (const auto &TEPtr : VectorizableTree) { 5870 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5871 if (!Inst) 5872 continue; 5873 OrderedScalars.push_back(Inst); 5874 } 5875 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5876 auto *NodeA = DT->getNode(A->getParent()); 5877 auto *NodeB = DT->getNode(B->getParent()); 5878 assert(NodeA && "Should only process reachable instructions"); 5879 assert(NodeB && "Should only process reachable instructions"); 5880 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5881 "Different nodes should have different DFS numbers"); 5882 if (NodeA != NodeB) 5883 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5884 return B->comesBefore(A); 5885 }); 5886 5887 for (Instruction *Inst : OrderedScalars) { 5888 if (!PrevInst) { 5889 PrevInst = Inst; 5890 continue; 5891 } 5892 5893 // Update LiveValues. 5894 LiveValues.erase(PrevInst); 5895 for (auto &J : PrevInst->operands()) { 5896 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5897 LiveValues.insert(cast<Instruction>(&*J)); 5898 } 5899 5900 LLVM_DEBUG({ 5901 dbgs() << "SLP: #LV: " << LiveValues.size(); 5902 for (auto *X : LiveValues) 5903 dbgs() << " " << X->getName(); 5904 dbgs() << ", Looking at "; 5905 Inst->dump(); 5906 }); 5907 5908 // Now find the sequence of instructions between PrevInst and Inst. 5909 unsigned NumCalls = 0; 5910 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5911 PrevInstIt = 5912 PrevInst->getIterator().getReverse(); 5913 while (InstIt != PrevInstIt) { 5914 if (PrevInstIt == PrevInst->getParent()->rend()) { 5915 PrevInstIt = Inst->getParent()->rbegin(); 5916 continue; 5917 } 5918 5919 // Debug information does not impact spill cost. 5920 if ((isa<CallInst>(&*PrevInstIt) && 5921 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5922 &*PrevInstIt != PrevInst) 5923 NumCalls++; 5924 5925 ++PrevInstIt; 5926 } 5927 5928 if (NumCalls) { 5929 SmallVector<Type*, 4> V; 5930 for (auto *II : LiveValues) { 5931 auto *ScalarTy = II->getType(); 5932 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5933 ScalarTy = VectorTy->getElementType(); 5934 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5935 } 5936 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5937 } 5938 5939 PrevInst = Inst; 5940 } 5941 5942 return Cost; 5943 } 5944 5945 /// Check if two insertelement instructions are from the same buildvector. 5946 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5947 InsertElementInst *V) { 5948 // Instructions must be from the same basic blocks. 5949 if (VU->getParent() != V->getParent()) 5950 return false; 5951 // Checks if 2 insertelements are from the same buildvector. 5952 if (VU->getType() != V->getType()) 5953 return false; 5954 // Multiple used inserts are separate nodes. 5955 if (!VU->hasOneUse() && !V->hasOneUse()) 5956 return false; 5957 auto *IE1 = VU; 5958 auto *IE2 = V; 5959 // Go through the vector operand of insertelement instructions trying to find 5960 // either VU as the original vector for IE2 or V as the original vector for 5961 // IE1. 5962 do { 5963 if (IE2 == VU || IE1 == V) 5964 return true; 5965 if (IE1) { 5966 if (IE1 != VU && !IE1->hasOneUse()) 5967 IE1 = nullptr; 5968 else 5969 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5970 } 5971 if (IE2) { 5972 if (IE2 != V && !IE2->hasOneUse()) 5973 IE2 = nullptr; 5974 else 5975 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5976 } 5977 } while (IE1 || IE2); 5978 return false; 5979 } 5980 5981 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5982 InstructionCost Cost = 0; 5983 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5984 << VectorizableTree.size() << ".\n"); 5985 5986 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5987 5988 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5989 TreeEntry &TE = *VectorizableTree[I].get(); 5990 5991 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5992 Cost += C; 5993 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5994 << " for bundle that starts with " << *TE.Scalars[0] 5995 << ".\n" 5996 << "SLP: Current total cost = " << Cost << "\n"); 5997 } 5998 5999 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6000 InstructionCost ExtractCost = 0; 6001 SmallVector<unsigned> VF; 6002 SmallVector<SmallVector<int>> ShuffleMask; 6003 SmallVector<Value *> FirstUsers; 6004 SmallVector<APInt> DemandedElts; 6005 for (ExternalUser &EU : ExternalUses) { 6006 // We only add extract cost once for the same scalar. 6007 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6008 !ExtractCostCalculated.insert(EU.Scalar).second) 6009 continue; 6010 6011 // Uses by ephemeral values are free (because the ephemeral value will be 6012 // removed prior to code generation, and so the extraction will be 6013 // removed as well). 6014 if (EphValues.count(EU.User)) 6015 continue; 6016 6017 // No extract cost for vector "scalar" 6018 if (isa<FixedVectorType>(EU.Scalar->getType())) 6019 continue; 6020 6021 // Already counted the cost for external uses when tried to adjust the cost 6022 // for extractelements, no need to add it again. 6023 if (isa<ExtractElementInst>(EU.Scalar)) 6024 continue; 6025 6026 // If found user is an insertelement, do not calculate extract cost but try 6027 // to detect it as a final shuffled/identity match. 6028 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6029 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6030 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6031 if (InsertIdx) { 6032 auto *It = find_if(FirstUsers, [VU](Value *V) { 6033 return areTwoInsertFromSameBuildVector(VU, 6034 cast<InsertElementInst>(V)); 6035 }); 6036 int VecId = -1; 6037 if (It == FirstUsers.end()) { 6038 VF.push_back(FTy->getNumElements()); 6039 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6040 // Find the insertvector, vectorized in tree, if any. 6041 Value *Base = VU; 6042 while (isa<InsertElementInst>(Base)) { 6043 // Build the mask for the vectorized insertelement instructions. 6044 if (const TreeEntry *E = getTreeEntry(Base)) { 6045 VU = cast<InsertElementInst>(Base); 6046 do { 6047 int Idx = E->findLaneForValue(Base); 6048 ShuffleMask.back()[Idx] = Idx; 6049 Base = cast<InsertElementInst>(Base)->getOperand(0); 6050 } while (E == getTreeEntry(Base)); 6051 break; 6052 } 6053 Base = cast<InsertElementInst>(Base)->getOperand(0); 6054 } 6055 FirstUsers.push_back(VU); 6056 DemandedElts.push_back(APInt::getZero(VF.back())); 6057 VecId = FirstUsers.size() - 1; 6058 } else { 6059 VecId = std::distance(FirstUsers.begin(), It); 6060 } 6061 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6062 DemandedElts[VecId].setBit(*InsertIdx); 6063 continue; 6064 } 6065 } 6066 } 6067 6068 // If we plan to rewrite the tree in a smaller type, we will need to sign 6069 // extend the extracted value back to the original type. Here, we account 6070 // for the extract and the added cost of the sign extend if needed. 6071 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6072 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6073 if (MinBWs.count(ScalarRoot)) { 6074 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6075 auto Extend = 6076 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6077 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6078 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6079 VecTy, EU.Lane); 6080 } else { 6081 ExtractCost += 6082 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6083 } 6084 } 6085 6086 InstructionCost SpillCost = getSpillCost(); 6087 Cost += SpillCost + ExtractCost; 6088 if (FirstUsers.size() == 1) { 6089 int Limit = ShuffleMask.front().size() * 2; 6090 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6091 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6092 InstructionCost C = TTI->getShuffleCost( 6093 TTI::SK_PermuteSingleSrc, 6094 cast<FixedVectorType>(FirstUsers.front()->getType()), 6095 ShuffleMask.front()); 6096 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6097 << " for final shuffle of insertelement external users " 6098 << *VectorizableTree.front()->Scalars.front() << ".\n" 6099 << "SLP: Current total cost = " << Cost << "\n"); 6100 Cost += C; 6101 } 6102 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6103 cast<FixedVectorType>(FirstUsers.front()->getType()), 6104 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6105 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6106 << " for insertelements gather.\n" 6107 << "SLP: Current total cost = " << Cost << "\n"); 6108 Cost -= InsertCost; 6109 } else if (FirstUsers.size() >= 2) { 6110 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6111 // Combined masks of the first 2 vectors. 6112 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6113 copy(ShuffleMask.front(), CombinedMask.begin()); 6114 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6115 auto *VecTy = FixedVectorType::get( 6116 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6117 MaxVF); 6118 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6119 if (ShuffleMask[1][I] != UndefMaskElem) { 6120 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6121 CombinedDemandedElts.setBit(I); 6122 } 6123 } 6124 InstructionCost C = 6125 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6126 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6127 << " for final shuffle of vector node and external " 6128 "insertelement users " 6129 << *VectorizableTree.front()->Scalars.front() << ".\n" 6130 << "SLP: Current total cost = " << Cost << "\n"); 6131 Cost += C; 6132 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6133 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6134 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6135 << " for insertelements gather.\n" 6136 << "SLP: Current total cost = " << Cost << "\n"); 6137 Cost -= InsertCost; 6138 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6139 // Other elements - permutation of 2 vectors (the initial one and the 6140 // next Ith incoming vector). 6141 unsigned VF = ShuffleMask[I].size(); 6142 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6143 int Mask = ShuffleMask[I][Idx]; 6144 if (Mask != UndefMaskElem) 6145 CombinedMask[Idx] = MaxVF + Mask; 6146 else if (CombinedMask[Idx] != UndefMaskElem) 6147 CombinedMask[Idx] = Idx; 6148 } 6149 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6150 if (CombinedMask[Idx] != UndefMaskElem) 6151 CombinedMask[Idx] = Idx; 6152 InstructionCost C = 6153 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6154 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6155 << " for final shuffle of vector node and external " 6156 "insertelement users " 6157 << *VectorizableTree.front()->Scalars.front() << ".\n" 6158 << "SLP: Current total cost = " << Cost << "\n"); 6159 Cost += C; 6160 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6161 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6162 /*Insert*/ true, /*Extract*/ false); 6163 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6164 << " for insertelements gather.\n" 6165 << "SLP: Current total cost = " << Cost << "\n"); 6166 Cost -= InsertCost; 6167 } 6168 } 6169 6170 #ifndef NDEBUG 6171 SmallString<256> Str; 6172 { 6173 raw_svector_ostream OS(Str); 6174 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6175 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6176 << "SLP: Total Cost = " << Cost << ".\n"; 6177 } 6178 LLVM_DEBUG(dbgs() << Str); 6179 if (ViewSLPTree) 6180 ViewGraph(this, "SLP" + F->getName(), false, Str); 6181 #endif 6182 6183 return Cost; 6184 } 6185 6186 Optional<TargetTransformInfo::ShuffleKind> 6187 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6188 SmallVectorImpl<const TreeEntry *> &Entries) { 6189 // TODO: currently checking only for Scalars in the tree entry, need to count 6190 // reused elements too for better cost estimation. 6191 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6192 Entries.clear(); 6193 // Build a lists of values to tree entries. 6194 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6195 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6196 if (EntryPtr.get() == TE) 6197 break; 6198 if (EntryPtr->State != TreeEntry::NeedToGather) 6199 continue; 6200 for (Value *V : EntryPtr->Scalars) 6201 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6202 } 6203 // Find all tree entries used by the gathered values. If no common entries 6204 // found - not a shuffle. 6205 // Here we build a set of tree nodes for each gathered value and trying to 6206 // find the intersection between these sets. If we have at least one common 6207 // tree node for each gathered value - we have just a permutation of the 6208 // single vector. If we have 2 different sets, we're in situation where we 6209 // have a permutation of 2 input vectors. 6210 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6211 DenseMap<Value *, int> UsedValuesEntry; 6212 for (Value *V : TE->Scalars) { 6213 if (isa<UndefValue>(V)) 6214 continue; 6215 // Build a list of tree entries where V is used. 6216 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6217 auto It = ValueToTEs.find(V); 6218 if (It != ValueToTEs.end()) 6219 VToTEs = It->second; 6220 if (const TreeEntry *VTE = getTreeEntry(V)) 6221 VToTEs.insert(VTE); 6222 if (VToTEs.empty()) 6223 return None; 6224 if (UsedTEs.empty()) { 6225 // The first iteration, just insert the list of nodes to vector. 6226 UsedTEs.push_back(VToTEs); 6227 } else { 6228 // Need to check if there are any previously used tree nodes which use V. 6229 // If there are no such nodes, consider that we have another one input 6230 // vector. 6231 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6232 unsigned Idx = 0; 6233 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6234 // Do we have a non-empty intersection of previously listed tree entries 6235 // and tree entries using current V? 6236 set_intersect(VToTEs, Set); 6237 if (!VToTEs.empty()) { 6238 // Yes, write the new subset and continue analysis for the next 6239 // scalar. 6240 Set.swap(VToTEs); 6241 break; 6242 } 6243 VToTEs = SavedVToTEs; 6244 ++Idx; 6245 } 6246 // No non-empty intersection found - need to add a second set of possible 6247 // source vectors. 6248 if (Idx == UsedTEs.size()) { 6249 // If the number of input vectors is greater than 2 - not a permutation, 6250 // fallback to the regular gather. 6251 if (UsedTEs.size() == 2) 6252 return None; 6253 UsedTEs.push_back(SavedVToTEs); 6254 Idx = UsedTEs.size() - 1; 6255 } 6256 UsedValuesEntry.try_emplace(V, Idx); 6257 } 6258 } 6259 6260 unsigned VF = 0; 6261 if (UsedTEs.size() == 1) { 6262 // Try to find the perfect match in another gather node at first. 6263 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6264 return EntryPtr->isSame(TE->Scalars); 6265 }); 6266 if (It != UsedTEs.front().end()) { 6267 Entries.push_back(*It); 6268 std::iota(Mask.begin(), Mask.end(), 0); 6269 return TargetTransformInfo::SK_PermuteSingleSrc; 6270 } 6271 // No perfect match, just shuffle, so choose the first tree node. 6272 Entries.push_back(*UsedTEs.front().begin()); 6273 } else { 6274 // Try to find nodes with the same vector factor. 6275 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6276 DenseMap<int, const TreeEntry *> VFToTE; 6277 for (const TreeEntry *TE : UsedTEs.front()) 6278 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6279 for (const TreeEntry *TE : UsedTEs.back()) { 6280 auto It = VFToTE.find(TE->getVectorFactor()); 6281 if (It != VFToTE.end()) { 6282 VF = It->first; 6283 Entries.push_back(It->second); 6284 Entries.push_back(TE); 6285 break; 6286 } 6287 } 6288 // No 2 source vectors with the same vector factor - give up and do regular 6289 // gather. 6290 if (Entries.empty()) 6291 return None; 6292 } 6293 6294 // Build a shuffle mask for better cost estimation and vector emission. 6295 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6296 Value *V = TE->Scalars[I]; 6297 if (isa<UndefValue>(V)) 6298 continue; 6299 unsigned Idx = UsedValuesEntry.lookup(V); 6300 const TreeEntry *VTE = Entries[Idx]; 6301 int FoundLane = VTE->findLaneForValue(V); 6302 Mask[I] = Idx * VF + FoundLane; 6303 // Extra check required by isSingleSourceMaskImpl function (called by 6304 // ShuffleVectorInst::isSingleSourceMask). 6305 if (Mask[I] >= 2 * E) 6306 return None; 6307 } 6308 switch (Entries.size()) { 6309 case 1: 6310 return TargetTransformInfo::SK_PermuteSingleSrc; 6311 case 2: 6312 return TargetTransformInfo::SK_PermuteTwoSrc; 6313 default: 6314 break; 6315 } 6316 return None; 6317 } 6318 6319 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6320 const APInt &ShuffledIndices, 6321 bool NeedToShuffle) const { 6322 InstructionCost Cost = 6323 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6324 /*Extract*/ false); 6325 if (NeedToShuffle) 6326 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6327 return Cost; 6328 } 6329 6330 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6331 // Find the type of the operands in VL. 6332 Type *ScalarTy = VL[0]->getType(); 6333 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6334 ScalarTy = SI->getValueOperand()->getType(); 6335 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6336 bool DuplicateNonConst = false; 6337 // Find the cost of inserting/extracting values from the vector. 6338 // Check if the same elements are inserted several times and count them as 6339 // shuffle candidates. 6340 APInt ShuffledElements = APInt::getZero(VL.size()); 6341 DenseSet<Value *> UniqueElements; 6342 // Iterate in reverse order to consider insert elements with the high cost. 6343 for (unsigned I = VL.size(); I > 0; --I) { 6344 unsigned Idx = I - 1; 6345 // No need to shuffle duplicates for constants. 6346 if (isConstant(VL[Idx])) { 6347 ShuffledElements.setBit(Idx); 6348 continue; 6349 } 6350 if (!UniqueElements.insert(VL[Idx]).second) { 6351 DuplicateNonConst = true; 6352 ShuffledElements.setBit(Idx); 6353 } 6354 } 6355 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6356 } 6357 6358 // Perform operand reordering on the instructions in VL and return the reordered 6359 // operands in Left and Right. 6360 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6361 SmallVectorImpl<Value *> &Left, 6362 SmallVectorImpl<Value *> &Right, 6363 const DataLayout &DL, 6364 ScalarEvolution &SE, 6365 const BoUpSLP &R) { 6366 if (VL.empty()) 6367 return; 6368 VLOperands Ops(VL, DL, SE, R); 6369 // Reorder the operands in place. 6370 Ops.reorder(); 6371 Left = Ops.getVL(0); 6372 Right = Ops.getVL(1); 6373 } 6374 6375 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6376 // Get the basic block this bundle is in. All instructions in the bundle 6377 // should be in this block. 6378 auto *Front = E->getMainOp(); 6379 auto *BB = Front->getParent(); 6380 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6381 auto *I = cast<Instruction>(V); 6382 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6383 })); 6384 6385 // The last instruction in the bundle in program order. 6386 Instruction *LastInst = nullptr; 6387 6388 // Find the last instruction. The common case should be that BB has been 6389 // scheduled, and the last instruction is VL.back(). So we start with 6390 // VL.back() and iterate over schedule data until we reach the end of the 6391 // bundle. The end of the bundle is marked by null ScheduleData. 6392 if (BlocksSchedules.count(BB)) { 6393 auto *Bundle = 6394 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6395 if (Bundle && Bundle->isPartOfBundle()) 6396 for (; Bundle; Bundle = Bundle->NextInBundle) 6397 if (Bundle->OpValue == Bundle->Inst) 6398 LastInst = Bundle->Inst; 6399 } 6400 6401 // LastInst can still be null at this point if there's either not an entry 6402 // for BB in BlocksSchedules or there's no ScheduleData available for 6403 // VL.back(). This can be the case if buildTree_rec aborts for various 6404 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6405 // size is reached, etc.). ScheduleData is initialized in the scheduling 6406 // "dry-run". 6407 // 6408 // If this happens, we can still find the last instruction by brute force. We 6409 // iterate forwards from Front (inclusive) until we either see all 6410 // instructions in the bundle or reach the end of the block. If Front is the 6411 // last instruction in program order, LastInst will be set to Front, and we 6412 // will visit all the remaining instructions in the block. 6413 // 6414 // One of the reasons we exit early from buildTree_rec is to place an upper 6415 // bound on compile-time. Thus, taking an additional compile-time hit here is 6416 // not ideal. However, this should be exceedingly rare since it requires that 6417 // we both exit early from buildTree_rec and that the bundle be out-of-order 6418 // (causing us to iterate all the way to the end of the block). 6419 if (!LastInst) { 6420 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6421 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6422 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6423 LastInst = &I; 6424 if (Bundle.empty()) 6425 break; 6426 } 6427 } 6428 assert(LastInst && "Failed to find last instruction in bundle"); 6429 6430 // Set the insertion point after the last instruction in the bundle. Set the 6431 // debug location to Front. 6432 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6433 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6434 } 6435 6436 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6437 // List of instructions/lanes from current block and/or the blocks which are 6438 // part of the current loop. These instructions will be inserted at the end to 6439 // make it possible to optimize loops and hoist invariant instructions out of 6440 // the loops body with better chances for success. 6441 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6442 SmallSet<int, 4> PostponedIndices; 6443 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6444 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6445 SmallPtrSet<BasicBlock *, 4> Visited; 6446 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6447 InsertBB = InsertBB->getSinglePredecessor(); 6448 return InsertBB && InsertBB == InstBB; 6449 }; 6450 for (int I = 0, E = VL.size(); I < E; ++I) { 6451 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6452 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6453 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6454 PostponedIndices.insert(I).second) 6455 PostponedInsts.emplace_back(Inst, I); 6456 } 6457 6458 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6459 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6460 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6461 if (!InsElt) 6462 return Vec; 6463 GatherShuffleSeq.insert(InsElt); 6464 CSEBlocks.insert(InsElt->getParent()); 6465 // Add to our 'need-to-extract' list. 6466 if (TreeEntry *Entry = getTreeEntry(V)) { 6467 // Find which lane we need to extract. 6468 unsigned FoundLane = Entry->findLaneForValue(V); 6469 ExternalUses.emplace_back(V, InsElt, FoundLane); 6470 } 6471 return Vec; 6472 }; 6473 Value *Val0 = 6474 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6475 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6476 Value *Vec = PoisonValue::get(VecTy); 6477 SmallVector<int> NonConsts; 6478 // Insert constant values at first. 6479 for (int I = 0, E = VL.size(); I < E; ++I) { 6480 if (PostponedIndices.contains(I)) 6481 continue; 6482 if (!isConstant(VL[I])) { 6483 NonConsts.push_back(I); 6484 continue; 6485 } 6486 Vec = CreateInsertElement(Vec, VL[I], I); 6487 } 6488 // Insert non-constant values. 6489 for (int I : NonConsts) 6490 Vec = CreateInsertElement(Vec, VL[I], I); 6491 // Append instructions, which are/may be part of the loop, in the end to make 6492 // it possible to hoist non-loop-based instructions. 6493 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6494 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6495 6496 return Vec; 6497 } 6498 6499 namespace { 6500 /// Merges shuffle masks and emits final shuffle instruction, if required. 6501 class ShuffleInstructionBuilder { 6502 IRBuilderBase &Builder; 6503 const unsigned VF = 0; 6504 bool IsFinalized = false; 6505 SmallVector<int, 4> Mask; 6506 /// Holds all of the instructions that we gathered. 6507 SetVector<Instruction *> &GatherShuffleSeq; 6508 /// A list of blocks that we are going to CSE. 6509 SetVector<BasicBlock *> &CSEBlocks; 6510 6511 public: 6512 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6513 SetVector<Instruction *> &GatherShuffleSeq, 6514 SetVector<BasicBlock *> &CSEBlocks) 6515 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6516 CSEBlocks(CSEBlocks) {} 6517 6518 /// Adds a mask, inverting it before applying. 6519 void addInversedMask(ArrayRef<unsigned> SubMask) { 6520 if (SubMask.empty()) 6521 return; 6522 SmallVector<int, 4> NewMask; 6523 inversePermutation(SubMask, NewMask); 6524 addMask(NewMask); 6525 } 6526 6527 /// Functions adds masks, merging them into single one. 6528 void addMask(ArrayRef<unsigned> SubMask) { 6529 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6530 addMask(NewMask); 6531 } 6532 6533 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6534 6535 Value *finalize(Value *V) { 6536 IsFinalized = true; 6537 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6538 if (VF == ValueVF && Mask.empty()) 6539 return V; 6540 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6541 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6542 addMask(NormalizedMask); 6543 6544 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6545 return V; 6546 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6547 if (auto *I = dyn_cast<Instruction>(Vec)) { 6548 GatherShuffleSeq.insert(I); 6549 CSEBlocks.insert(I->getParent()); 6550 } 6551 return Vec; 6552 } 6553 6554 ~ShuffleInstructionBuilder() { 6555 assert((IsFinalized || Mask.empty()) && 6556 "Shuffle construction must be finalized."); 6557 } 6558 }; 6559 } // namespace 6560 6561 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6562 unsigned VF = VL.size(); 6563 InstructionsState S = getSameOpcode(VL); 6564 if (S.getOpcode()) { 6565 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6566 if (E->isSame(VL)) { 6567 Value *V = vectorizeTree(E); 6568 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6569 if (!E->ReuseShuffleIndices.empty()) { 6570 // Reshuffle to get only unique values. 6571 // If some of the scalars are duplicated in the vectorization tree 6572 // entry, we do not vectorize them but instead generate a mask for 6573 // the reuses. But if there are several users of the same entry, 6574 // they may have different vectorization factors. This is especially 6575 // important for PHI nodes. In this case, we need to adapt the 6576 // resulting instruction for the user vectorization factor and have 6577 // to reshuffle it again to take only unique elements of the vector. 6578 // Without this code the function incorrectly returns reduced vector 6579 // instruction with the same elements, not with the unique ones. 6580 6581 // block: 6582 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6583 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6584 // ... (use %2) 6585 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6586 // br %block 6587 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6588 SmallSet<int, 4> UsedIdxs; 6589 int Pos = 0; 6590 int Sz = VL.size(); 6591 for (int Idx : E->ReuseShuffleIndices) { 6592 if (Idx != Sz && Idx != UndefMaskElem && 6593 UsedIdxs.insert(Idx).second) 6594 UniqueIdxs[Idx] = Pos; 6595 ++Pos; 6596 } 6597 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6598 "less than original vector size."); 6599 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6600 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6601 } else { 6602 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6603 "Expected vectorization factor less " 6604 "than original vector size."); 6605 SmallVector<int> UniformMask(VF, 0); 6606 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6607 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6608 } 6609 if (auto *I = dyn_cast<Instruction>(V)) { 6610 GatherShuffleSeq.insert(I); 6611 CSEBlocks.insert(I->getParent()); 6612 } 6613 } 6614 return V; 6615 } 6616 } 6617 6618 // Check that every instruction appears once in this bundle. 6619 SmallVector<int> ReuseShuffleIndicies; 6620 SmallVector<Value *> UniqueValues; 6621 if (VL.size() > 2) { 6622 DenseMap<Value *, unsigned> UniquePositions; 6623 unsigned NumValues = 6624 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6625 return !isa<UndefValue>(V); 6626 }).base()); 6627 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6628 int UniqueVals = 0; 6629 for (Value *V : VL.drop_back(VL.size() - VF)) { 6630 if (isa<UndefValue>(V)) { 6631 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6632 continue; 6633 } 6634 if (isConstant(V)) { 6635 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6636 UniqueValues.emplace_back(V); 6637 continue; 6638 } 6639 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6640 ReuseShuffleIndicies.emplace_back(Res.first->second); 6641 if (Res.second) { 6642 UniqueValues.emplace_back(V); 6643 ++UniqueVals; 6644 } 6645 } 6646 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6647 // Emit pure splat vector. 6648 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6649 UndefMaskElem); 6650 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6651 ReuseShuffleIndicies.clear(); 6652 UniqueValues.clear(); 6653 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6654 } 6655 UniqueValues.append(VF - UniqueValues.size(), 6656 PoisonValue::get(VL[0]->getType())); 6657 VL = UniqueValues; 6658 } 6659 6660 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6661 CSEBlocks); 6662 Value *Vec = gather(VL); 6663 if (!ReuseShuffleIndicies.empty()) { 6664 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6665 Vec = ShuffleBuilder.finalize(Vec); 6666 } 6667 return Vec; 6668 } 6669 6670 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6671 IRBuilder<>::InsertPointGuard Guard(Builder); 6672 6673 if (E->VectorizedValue) { 6674 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6675 return E->VectorizedValue; 6676 } 6677 6678 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6679 unsigned VF = E->getVectorFactor(); 6680 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6681 CSEBlocks); 6682 if (E->State == TreeEntry::NeedToGather) { 6683 if (E->getMainOp()) 6684 setInsertPointAfterBundle(E); 6685 Value *Vec; 6686 SmallVector<int> Mask; 6687 SmallVector<const TreeEntry *> Entries; 6688 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6689 isGatherShuffledEntry(E, Mask, Entries); 6690 if (Shuffle.hasValue()) { 6691 assert((Entries.size() == 1 || Entries.size() == 2) && 6692 "Expected shuffle of 1 or 2 entries."); 6693 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6694 Entries.back()->VectorizedValue, Mask); 6695 if (auto *I = dyn_cast<Instruction>(Vec)) { 6696 GatherShuffleSeq.insert(I); 6697 CSEBlocks.insert(I->getParent()); 6698 } 6699 } else { 6700 Vec = gather(E->Scalars); 6701 } 6702 if (NeedToShuffleReuses) { 6703 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6704 Vec = ShuffleBuilder.finalize(Vec); 6705 } 6706 E->VectorizedValue = Vec; 6707 return Vec; 6708 } 6709 6710 assert((E->State == TreeEntry::Vectorize || 6711 E->State == TreeEntry::ScatterVectorize) && 6712 "Unhandled state"); 6713 unsigned ShuffleOrOp = 6714 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6715 Instruction *VL0 = E->getMainOp(); 6716 Type *ScalarTy = VL0->getType(); 6717 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6718 ScalarTy = Store->getValueOperand()->getType(); 6719 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6720 ScalarTy = IE->getOperand(1)->getType(); 6721 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6722 switch (ShuffleOrOp) { 6723 case Instruction::PHI: { 6724 assert( 6725 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6726 "PHI reordering is free."); 6727 auto *PH = cast<PHINode>(VL0); 6728 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6729 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6730 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6731 Value *V = NewPhi; 6732 6733 // Adjust insertion point once all PHI's have been generated. 6734 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6735 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6736 6737 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6738 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6739 V = ShuffleBuilder.finalize(V); 6740 6741 E->VectorizedValue = V; 6742 6743 // PHINodes may have multiple entries from the same block. We want to 6744 // visit every block once. 6745 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6746 6747 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6748 ValueList Operands; 6749 BasicBlock *IBB = PH->getIncomingBlock(i); 6750 6751 if (!VisitedBBs.insert(IBB).second) { 6752 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6753 continue; 6754 } 6755 6756 Builder.SetInsertPoint(IBB->getTerminator()); 6757 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6758 Value *Vec = vectorizeTree(E->getOperand(i)); 6759 NewPhi->addIncoming(Vec, IBB); 6760 } 6761 6762 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6763 "Invalid number of incoming values"); 6764 return V; 6765 } 6766 6767 case Instruction::ExtractElement: { 6768 Value *V = E->getSingleOperand(0); 6769 Builder.SetInsertPoint(VL0); 6770 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6771 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6772 V = ShuffleBuilder.finalize(V); 6773 E->VectorizedValue = V; 6774 return V; 6775 } 6776 case Instruction::ExtractValue: { 6777 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6778 Builder.SetInsertPoint(LI); 6779 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6780 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6781 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6782 Value *NewV = propagateMetadata(V, E->Scalars); 6783 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6784 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6785 NewV = ShuffleBuilder.finalize(NewV); 6786 E->VectorizedValue = NewV; 6787 return NewV; 6788 } 6789 case Instruction::InsertElement: { 6790 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6791 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6792 Value *V = vectorizeTree(E->getOperand(1)); 6793 6794 // Create InsertVector shuffle if necessary 6795 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6796 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6797 })); 6798 const unsigned NumElts = 6799 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6800 const unsigned NumScalars = E->Scalars.size(); 6801 6802 unsigned Offset = *getInsertIndex(VL0); 6803 assert(Offset < NumElts && "Failed to find vector index offset"); 6804 6805 // Create shuffle to resize vector 6806 SmallVector<int> Mask; 6807 if (!E->ReorderIndices.empty()) { 6808 inversePermutation(E->ReorderIndices, Mask); 6809 Mask.append(NumElts - NumScalars, UndefMaskElem); 6810 } else { 6811 Mask.assign(NumElts, UndefMaskElem); 6812 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6813 } 6814 // Create InsertVector shuffle if necessary 6815 bool IsIdentity = true; 6816 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6817 Mask.swap(PrevMask); 6818 for (unsigned I = 0; I < NumScalars; ++I) { 6819 Value *Scalar = E->Scalars[PrevMask[I]]; 6820 unsigned InsertIdx = *getInsertIndex(Scalar); 6821 IsIdentity &= InsertIdx - Offset == I; 6822 Mask[InsertIdx - Offset] = I; 6823 } 6824 if (!IsIdentity || NumElts != NumScalars) { 6825 V = Builder.CreateShuffleVector(V, Mask); 6826 if (auto *I = dyn_cast<Instruction>(V)) { 6827 GatherShuffleSeq.insert(I); 6828 CSEBlocks.insert(I->getParent()); 6829 } 6830 } 6831 6832 if ((!IsIdentity || Offset != 0 || 6833 !isUndefVector(FirstInsert->getOperand(0))) && 6834 NumElts != NumScalars) { 6835 SmallVector<int> InsertMask(NumElts); 6836 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6837 for (unsigned I = 0; I < NumElts; I++) { 6838 if (Mask[I] != UndefMaskElem) 6839 InsertMask[Offset + I] = NumElts + I; 6840 } 6841 6842 V = Builder.CreateShuffleVector( 6843 FirstInsert->getOperand(0), V, InsertMask, 6844 cast<Instruction>(E->Scalars.back())->getName()); 6845 if (auto *I = dyn_cast<Instruction>(V)) { 6846 GatherShuffleSeq.insert(I); 6847 CSEBlocks.insert(I->getParent()); 6848 } 6849 } 6850 6851 ++NumVectorInstructions; 6852 E->VectorizedValue = V; 6853 return V; 6854 } 6855 case Instruction::ZExt: 6856 case Instruction::SExt: 6857 case Instruction::FPToUI: 6858 case Instruction::FPToSI: 6859 case Instruction::FPExt: 6860 case Instruction::PtrToInt: 6861 case Instruction::IntToPtr: 6862 case Instruction::SIToFP: 6863 case Instruction::UIToFP: 6864 case Instruction::Trunc: 6865 case Instruction::FPTrunc: 6866 case Instruction::BitCast: { 6867 setInsertPointAfterBundle(E); 6868 6869 Value *InVec = vectorizeTree(E->getOperand(0)); 6870 6871 if (E->VectorizedValue) { 6872 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6873 return E->VectorizedValue; 6874 } 6875 6876 auto *CI = cast<CastInst>(VL0); 6877 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6878 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6879 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6880 V = ShuffleBuilder.finalize(V); 6881 6882 E->VectorizedValue = V; 6883 ++NumVectorInstructions; 6884 return V; 6885 } 6886 case Instruction::FCmp: 6887 case Instruction::ICmp: { 6888 setInsertPointAfterBundle(E); 6889 6890 Value *L = vectorizeTree(E->getOperand(0)); 6891 Value *R = vectorizeTree(E->getOperand(1)); 6892 6893 if (E->VectorizedValue) { 6894 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6895 return E->VectorizedValue; 6896 } 6897 6898 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6899 Value *V = Builder.CreateCmp(P0, L, R); 6900 propagateIRFlags(V, E->Scalars, VL0); 6901 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6902 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6903 V = ShuffleBuilder.finalize(V); 6904 6905 E->VectorizedValue = V; 6906 ++NumVectorInstructions; 6907 return V; 6908 } 6909 case Instruction::Select: { 6910 setInsertPointAfterBundle(E); 6911 6912 Value *Cond = vectorizeTree(E->getOperand(0)); 6913 Value *True = vectorizeTree(E->getOperand(1)); 6914 Value *False = vectorizeTree(E->getOperand(2)); 6915 6916 if (E->VectorizedValue) { 6917 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6918 return E->VectorizedValue; 6919 } 6920 6921 Value *V = Builder.CreateSelect(Cond, True, False); 6922 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6923 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6924 V = ShuffleBuilder.finalize(V); 6925 6926 E->VectorizedValue = V; 6927 ++NumVectorInstructions; 6928 return V; 6929 } 6930 case Instruction::FNeg: { 6931 setInsertPointAfterBundle(E); 6932 6933 Value *Op = vectorizeTree(E->getOperand(0)); 6934 6935 if (E->VectorizedValue) { 6936 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6937 return E->VectorizedValue; 6938 } 6939 6940 Value *V = Builder.CreateUnOp( 6941 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6942 propagateIRFlags(V, E->Scalars, VL0); 6943 if (auto *I = dyn_cast<Instruction>(V)) 6944 V = propagateMetadata(I, E->Scalars); 6945 6946 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6947 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6948 V = ShuffleBuilder.finalize(V); 6949 6950 E->VectorizedValue = V; 6951 ++NumVectorInstructions; 6952 6953 return V; 6954 } 6955 case Instruction::Add: 6956 case Instruction::FAdd: 6957 case Instruction::Sub: 6958 case Instruction::FSub: 6959 case Instruction::Mul: 6960 case Instruction::FMul: 6961 case Instruction::UDiv: 6962 case Instruction::SDiv: 6963 case Instruction::FDiv: 6964 case Instruction::URem: 6965 case Instruction::SRem: 6966 case Instruction::FRem: 6967 case Instruction::Shl: 6968 case Instruction::LShr: 6969 case Instruction::AShr: 6970 case Instruction::And: 6971 case Instruction::Or: 6972 case Instruction::Xor: { 6973 setInsertPointAfterBundle(E); 6974 6975 Value *LHS = vectorizeTree(E->getOperand(0)); 6976 Value *RHS = vectorizeTree(E->getOperand(1)); 6977 6978 if (E->VectorizedValue) { 6979 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6980 return E->VectorizedValue; 6981 } 6982 6983 Value *V = Builder.CreateBinOp( 6984 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6985 RHS); 6986 propagateIRFlags(V, E->Scalars, VL0); 6987 if (auto *I = dyn_cast<Instruction>(V)) 6988 V = propagateMetadata(I, E->Scalars); 6989 6990 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6991 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6992 V = ShuffleBuilder.finalize(V); 6993 6994 E->VectorizedValue = V; 6995 ++NumVectorInstructions; 6996 6997 return V; 6998 } 6999 case Instruction::Load: { 7000 // Loads are inserted at the head of the tree because we don't want to 7001 // sink them all the way down past store instructions. 7002 setInsertPointAfterBundle(E); 7003 7004 LoadInst *LI = cast<LoadInst>(VL0); 7005 Instruction *NewLI; 7006 unsigned AS = LI->getPointerAddressSpace(); 7007 Value *PO = LI->getPointerOperand(); 7008 if (E->State == TreeEntry::Vectorize) { 7009 7010 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7011 7012 // The pointer operand uses an in-tree scalar so we add the new BitCast 7013 // to ExternalUses list to make sure that an extract will be generated 7014 // in the future. 7015 if (TreeEntry *Entry = getTreeEntry(PO)) { 7016 // Find which lane we need to extract. 7017 unsigned FoundLane = Entry->findLaneForValue(PO); 7018 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 7019 } 7020 7021 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7022 } else { 7023 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7024 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7025 // Use the minimum alignment of the gathered loads. 7026 Align CommonAlignment = LI->getAlign(); 7027 for (Value *V : E->Scalars) 7028 CommonAlignment = 7029 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7030 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7031 } 7032 Value *V = propagateMetadata(NewLI, E->Scalars); 7033 7034 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7035 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7036 V = ShuffleBuilder.finalize(V); 7037 E->VectorizedValue = V; 7038 ++NumVectorInstructions; 7039 return V; 7040 } 7041 case Instruction::Store: { 7042 auto *SI = cast<StoreInst>(VL0); 7043 unsigned AS = SI->getPointerAddressSpace(); 7044 7045 setInsertPointAfterBundle(E); 7046 7047 Value *VecValue = vectorizeTree(E->getOperand(0)); 7048 ShuffleBuilder.addMask(E->ReorderIndices); 7049 VecValue = ShuffleBuilder.finalize(VecValue); 7050 7051 Value *ScalarPtr = SI->getPointerOperand(); 7052 Value *VecPtr = Builder.CreateBitCast( 7053 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7054 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 7055 SI->getAlign()); 7056 7057 // The pointer operand uses an in-tree scalar, so add the new BitCast to 7058 // ExternalUses to make sure that an extract will be generated in the 7059 // future. 7060 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7061 // Find which lane we need to extract. 7062 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7063 ExternalUses.push_back( 7064 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 7065 } 7066 7067 Value *V = propagateMetadata(ST, E->Scalars); 7068 7069 E->VectorizedValue = V; 7070 ++NumVectorInstructions; 7071 return V; 7072 } 7073 case Instruction::GetElementPtr: { 7074 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7075 setInsertPointAfterBundle(E); 7076 7077 Value *Op0 = vectorizeTree(E->getOperand(0)); 7078 7079 SmallVector<Value *> OpVecs; 7080 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7081 Value *OpVec = vectorizeTree(E->getOperand(J)); 7082 OpVecs.push_back(OpVec); 7083 } 7084 7085 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7086 if (Instruction *I = dyn_cast<Instruction>(V)) 7087 V = propagateMetadata(I, E->Scalars); 7088 7089 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7090 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7091 V = ShuffleBuilder.finalize(V); 7092 7093 E->VectorizedValue = V; 7094 ++NumVectorInstructions; 7095 7096 return V; 7097 } 7098 case Instruction::Call: { 7099 CallInst *CI = cast<CallInst>(VL0); 7100 setInsertPointAfterBundle(E); 7101 7102 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7103 if (Function *FI = CI->getCalledFunction()) 7104 IID = FI->getIntrinsicID(); 7105 7106 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7107 7108 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7109 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7110 VecCallCosts.first <= VecCallCosts.second; 7111 7112 Value *ScalarArg = nullptr; 7113 std::vector<Value *> OpVecs; 7114 SmallVector<Type *, 2> TysForDecl = 7115 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7116 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7117 ValueList OpVL; 7118 // Some intrinsics have scalar arguments. This argument should not be 7119 // vectorized. 7120 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7121 CallInst *CEI = cast<CallInst>(VL0); 7122 ScalarArg = CEI->getArgOperand(j); 7123 OpVecs.push_back(CEI->getArgOperand(j)); 7124 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7125 TysForDecl.push_back(ScalarArg->getType()); 7126 continue; 7127 } 7128 7129 Value *OpVec = vectorizeTree(E->getOperand(j)); 7130 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7131 OpVecs.push_back(OpVec); 7132 } 7133 7134 Function *CF; 7135 if (!UseIntrinsic) { 7136 VFShape Shape = 7137 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7138 VecTy->getNumElements())), 7139 false /*HasGlobalPred*/); 7140 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7141 } else { 7142 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7143 } 7144 7145 SmallVector<OperandBundleDef, 1> OpBundles; 7146 CI->getOperandBundlesAsDefs(OpBundles); 7147 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7148 7149 // The scalar argument uses an in-tree scalar so we add the new vectorized 7150 // call to ExternalUses list to make sure that an extract will be 7151 // generated in the future. 7152 if (ScalarArg) { 7153 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7154 // Find which lane we need to extract. 7155 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7156 ExternalUses.push_back( 7157 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7158 } 7159 } 7160 7161 propagateIRFlags(V, E->Scalars, VL0); 7162 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7163 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7164 V = ShuffleBuilder.finalize(V); 7165 7166 E->VectorizedValue = V; 7167 ++NumVectorInstructions; 7168 return V; 7169 } 7170 case Instruction::ShuffleVector: { 7171 assert(E->isAltShuffle() && 7172 ((Instruction::isBinaryOp(E->getOpcode()) && 7173 Instruction::isBinaryOp(E->getAltOpcode())) || 7174 (Instruction::isCast(E->getOpcode()) && 7175 Instruction::isCast(E->getAltOpcode())) || 7176 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7177 "Invalid Shuffle Vector Operand"); 7178 7179 Value *LHS = nullptr, *RHS = nullptr; 7180 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7181 setInsertPointAfterBundle(E); 7182 LHS = vectorizeTree(E->getOperand(0)); 7183 RHS = vectorizeTree(E->getOperand(1)); 7184 } else { 7185 setInsertPointAfterBundle(E); 7186 LHS = vectorizeTree(E->getOperand(0)); 7187 } 7188 7189 if (E->VectorizedValue) { 7190 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7191 return E->VectorizedValue; 7192 } 7193 7194 Value *V0, *V1; 7195 if (Instruction::isBinaryOp(E->getOpcode())) { 7196 V0 = Builder.CreateBinOp( 7197 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7198 V1 = Builder.CreateBinOp( 7199 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7200 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7201 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7202 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7203 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7204 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7205 } else { 7206 V0 = Builder.CreateCast( 7207 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7208 V1 = Builder.CreateCast( 7209 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7210 } 7211 // Add V0 and V1 to later analysis to try to find and remove matching 7212 // instruction, if any. 7213 for (Value *V : {V0, V1}) { 7214 if (auto *I = dyn_cast<Instruction>(V)) { 7215 GatherShuffleSeq.insert(I); 7216 CSEBlocks.insert(I->getParent()); 7217 } 7218 } 7219 7220 // Create shuffle to take alternate operations from the vector. 7221 // Also, gather up main and alt scalar ops to propagate IR flags to 7222 // each vector operation. 7223 ValueList OpScalars, AltScalars; 7224 SmallVector<int> Mask; 7225 buildShuffleEntryMask( 7226 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7227 [E](Instruction *I) { 7228 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7229 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7230 }, 7231 Mask, &OpScalars, &AltScalars); 7232 7233 propagateIRFlags(V0, OpScalars); 7234 propagateIRFlags(V1, AltScalars); 7235 7236 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7237 if (auto *I = dyn_cast<Instruction>(V)) { 7238 V = propagateMetadata(I, E->Scalars); 7239 GatherShuffleSeq.insert(I); 7240 CSEBlocks.insert(I->getParent()); 7241 } 7242 V = ShuffleBuilder.finalize(V); 7243 7244 E->VectorizedValue = V; 7245 ++NumVectorInstructions; 7246 7247 return V; 7248 } 7249 default: 7250 llvm_unreachable("unknown inst"); 7251 } 7252 return nullptr; 7253 } 7254 7255 Value *BoUpSLP::vectorizeTree() { 7256 ExtraValueToDebugLocsMap ExternallyUsedValues; 7257 return vectorizeTree(ExternallyUsedValues); 7258 } 7259 7260 Value * 7261 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7262 // All blocks must be scheduled before any instructions are inserted. 7263 for (auto &BSIter : BlocksSchedules) { 7264 scheduleBlock(BSIter.second.get()); 7265 } 7266 7267 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7268 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7269 7270 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7271 // vectorized root. InstCombine will then rewrite the entire expression. We 7272 // sign extend the extracted values below. 7273 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7274 if (MinBWs.count(ScalarRoot)) { 7275 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7276 // If current instr is a phi and not the last phi, insert it after the 7277 // last phi node. 7278 if (isa<PHINode>(I)) 7279 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7280 else 7281 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7282 } 7283 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7284 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7285 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7286 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7287 VectorizableTree[0]->VectorizedValue = Trunc; 7288 } 7289 7290 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7291 << " values .\n"); 7292 7293 // Extract all of the elements with the external uses. 7294 for (const auto &ExternalUse : ExternalUses) { 7295 Value *Scalar = ExternalUse.Scalar; 7296 llvm::User *User = ExternalUse.User; 7297 7298 // Skip users that we already RAUW. This happens when one instruction 7299 // has multiple uses of the same value. 7300 if (User && !is_contained(Scalar->users(), User)) 7301 continue; 7302 TreeEntry *E = getTreeEntry(Scalar); 7303 assert(E && "Invalid scalar"); 7304 assert(E->State != TreeEntry::NeedToGather && 7305 "Extracting from a gather list"); 7306 7307 Value *Vec = E->VectorizedValue; 7308 assert(Vec && "Can't find vectorizable value"); 7309 7310 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7311 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7312 if (Scalar->getType() != Vec->getType()) { 7313 Value *Ex; 7314 // "Reuse" the existing extract to improve final codegen. 7315 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7316 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7317 ES->getOperand(1)); 7318 } else { 7319 Ex = Builder.CreateExtractElement(Vec, Lane); 7320 } 7321 // If necessary, sign-extend or zero-extend ScalarRoot 7322 // to the larger type. 7323 if (!MinBWs.count(ScalarRoot)) 7324 return Ex; 7325 if (MinBWs[ScalarRoot].second) 7326 return Builder.CreateSExt(Ex, Scalar->getType()); 7327 return Builder.CreateZExt(Ex, Scalar->getType()); 7328 } 7329 assert(isa<FixedVectorType>(Scalar->getType()) && 7330 isa<InsertElementInst>(Scalar) && 7331 "In-tree scalar of vector type is not insertelement?"); 7332 return Vec; 7333 }; 7334 // If User == nullptr, the Scalar is used as extra arg. Generate 7335 // ExtractElement instruction and update the record for this scalar in 7336 // ExternallyUsedValues. 7337 if (!User) { 7338 assert(ExternallyUsedValues.count(Scalar) && 7339 "Scalar with nullptr as an external user must be registered in " 7340 "ExternallyUsedValues map"); 7341 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7342 Builder.SetInsertPoint(VecI->getParent(), 7343 std::next(VecI->getIterator())); 7344 } else { 7345 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7346 } 7347 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7348 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7349 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7350 auto It = ExternallyUsedValues.find(Scalar); 7351 assert(It != ExternallyUsedValues.end() && 7352 "Externally used scalar is not found in ExternallyUsedValues"); 7353 NewInstLocs.append(It->second); 7354 ExternallyUsedValues.erase(Scalar); 7355 // Required to update internally referenced instructions. 7356 Scalar->replaceAllUsesWith(NewInst); 7357 continue; 7358 } 7359 7360 // Generate extracts for out-of-tree users. 7361 // Find the insertion point for the extractelement lane. 7362 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7363 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7364 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7365 if (PH->getIncomingValue(i) == Scalar) { 7366 Instruction *IncomingTerminator = 7367 PH->getIncomingBlock(i)->getTerminator(); 7368 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7369 Builder.SetInsertPoint(VecI->getParent(), 7370 std::next(VecI->getIterator())); 7371 } else { 7372 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7373 } 7374 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7375 CSEBlocks.insert(PH->getIncomingBlock(i)); 7376 PH->setOperand(i, NewInst); 7377 } 7378 } 7379 } else { 7380 Builder.SetInsertPoint(cast<Instruction>(User)); 7381 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7382 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7383 User->replaceUsesOfWith(Scalar, NewInst); 7384 } 7385 } else { 7386 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7387 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7388 CSEBlocks.insert(&F->getEntryBlock()); 7389 User->replaceUsesOfWith(Scalar, NewInst); 7390 } 7391 7392 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7393 } 7394 7395 // For each vectorized value: 7396 for (auto &TEPtr : VectorizableTree) { 7397 TreeEntry *Entry = TEPtr.get(); 7398 7399 // No need to handle users of gathered values. 7400 if (Entry->State == TreeEntry::NeedToGather) 7401 continue; 7402 7403 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7404 7405 // For each lane: 7406 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7407 Value *Scalar = Entry->Scalars[Lane]; 7408 7409 #ifndef NDEBUG 7410 Type *Ty = Scalar->getType(); 7411 if (!Ty->isVoidTy()) { 7412 for (User *U : Scalar->users()) { 7413 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7414 7415 // It is legal to delete users in the ignorelist. 7416 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7417 (isa_and_nonnull<Instruction>(U) && 7418 isDeleted(cast<Instruction>(U)))) && 7419 "Deleting out-of-tree value"); 7420 } 7421 } 7422 #endif 7423 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7424 eraseInstruction(cast<Instruction>(Scalar)); 7425 } 7426 } 7427 7428 Builder.ClearInsertionPoint(); 7429 InstrElementSize.clear(); 7430 7431 return VectorizableTree[0]->VectorizedValue; 7432 } 7433 7434 void BoUpSLP::optimizeGatherSequence() { 7435 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7436 << " gather sequences instructions.\n"); 7437 // LICM InsertElementInst sequences. 7438 for (Instruction *I : GatherShuffleSeq) { 7439 if (isDeleted(I)) 7440 continue; 7441 7442 // Check if this block is inside a loop. 7443 Loop *L = LI->getLoopFor(I->getParent()); 7444 if (!L) 7445 continue; 7446 7447 // Check if it has a preheader. 7448 BasicBlock *PreHeader = L->getLoopPreheader(); 7449 if (!PreHeader) 7450 continue; 7451 7452 // If the vector or the element that we insert into it are 7453 // instructions that are defined in this basic block then we can't 7454 // hoist this instruction. 7455 if (any_of(I->operands(), [L](Value *V) { 7456 auto *OpI = dyn_cast<Instruction>(V); 7457 return OpI && L->contains(OpI); 7458 })) 7459 continue; 7460 7461 // We can hoist this instruction. Move it to the pre-header. 7462 I->moveBefore(PreHeader->getTerminator()); 7463 } 7464 7465 // Make a list of all reachable blocks in our CSE queue. 7466 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7467 CSEWorkList.reserve(CSEBlocks.size()); 7468 for (BasicBlock *BB : CSEBlocks) 7469 if (DomTreeNode *N = DT->getNode(BB)) { 7470 assert(DT->isReachableFromEntry(N)); 7471 CSEWorkList.push_back(N); 7472 } 7473 7474 // Sort blocks by domination. This ensures we visit a block after all blocks 7475 // dominating it are visited. 7476 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7477 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7478 "Different nodes should have different DFS numbers"); 7479 return A->getDFSNumIn() < B->getDFSNumIn(); 7480 }); 7481 7482 // Less defined shuffles can be replaced by the more defined copies. 7483 // Between two shuffles one is less defined if it has the same vector operands 7484 // and its mask indeces are the same as in the first one or undefs. E.g. 7485 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7486 // poison, <0, 0, 0, 0>. 7487 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7488 SmallVectorImpl<int> &NewMask) { 7489 if (I1->getType() != I2->getType()) 7490 return false; 7491 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7492 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7493 if (!SI1 || !SI2) 7494 return I1->isIdenticalTo(I2); 7495 if (SI1->isIdenticalTo(SI2)) 7496 return true; 7497 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7498 if (SI1->getOperand(I) != SI2->getOperand(I)) 7499 return false; 7500 // Check if the second instruction is more defined than the first one. 7501 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7502 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7503 // Count trailing undefs in the mask to check the final number of used 7504 // registers. 7505 unsigned LastUndefsCnt = 0; 7506 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7507 if (SM1[I] == UndefMaskElem) 7508 ++LastUndefsCnt; 7509 else 7510 LastUndefsCnt = 0; 7511 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7512 NewMask[I] != SM1[I]) 7513 return false; 7514 if (NewMask[I] == UndefMaskElem) 7515 NewMask[I] = SM1[I]; 7516 } 7517 // Check if the last undefs actually change the final number of used vector 7518 // registers. 7519 return SM1.size() - LastUndefsCnt > 1 && 7520 TTI->getNumberOfParts(SI1->getType()) == 7521 TTI->getNumberOfParts( 7522 FixedVectorType::get(SI1->getType()->getElementType(), 7523 SM1.size() - LastUndefsCnt)); 7524 }; 7525 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7526 // instructions. TODO: We can further optimize this scan if we split the 7527 // instructions into different buckets based on the insert lane. 7528 SmallVector<Instruction *, 16> Visited; 7529 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7530 assert(*I && 7531 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7532 "Worklist not sorted properly!"); 7533 BasicBlock *BB = (*I)->getBlock(); 7534 // For all instructions in blocks containing gather sequences: 7535 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7536 if (isDeleted(&In)) 7537 continue; 7538 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7539 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7540 continue; 7541 7542 // Check if we can replace this instruction with any of the 7543 // visited instructions. 7544 bool Replaced = false; 7545 for (Instruction *&V : Visited) { 7546 SmallVector<int> NewMask; 7547 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7548 DT->dominates(V->getParent(), In.getParent())) { 7549 In.replaceAllUsesWith(V); 7550 eraseInstruction(&In); 7551 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7552 if (!NewMask.empty()) 7553 SI->setShuffleMask(NewMask); 7554 Replaced = true; 7555 break; 7556 } 7557 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7558 GatherShuffleSeq.contains(V) && 7559 IsIdenticalOrLessDefined(V, &In, NewMask) && 7560 DT->dominates(In.getParent(), V->getParent())) { 7561 In.moveAfter(V); 7562 V->replaceAllUsesWith(&In); 7563 eraseInstruction(V); 7564 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7565 if (!NewMask.empty()) 7566 SI->setShuffleMask(NewMask); 7567 V = &In; 7568 Replaced = true; 7569 break; 7570 } 7571 } 7572 if (!Replaced) { 7573 assert(!is_contained(Visited, &In)); 7574 Visited.push_back(&In); 7575 } 7576 } 7577 } 7578 CSEBlocks.clear(); 7579 GatherShuffleSeq.clear(); 7580 } 7581 7582 BoUpSLP::ScheduleData * 7583 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7584 ScheduleData *Bundle = nullptr; 7585 ScheduleData *PrevInBundle = nullptr; 7586 for (Value *V : VL) { 7587 ScheduleData *BundleMember = getScheduleData(V); 7588 assert(BundleMember && 7589 "no ScheduleData for bundle member " 7590 "(maybe not in same basic block)"); 7591 assert(BundleMember->isSchedulingEntity() && 7592 "bundle member already part of other bundle"); 7593 if (PrevInBundle) { 7594 PrevInBundle->NextInBundle = BundleMember; 7595 } else { 7596 Bundle = BundleMember; 7597 } 7598 7599 // Group the instructions to a bundle. 7600 BundleMember->FirstInBundle = Bundle; 7601 PrevInBundle = BundleMember; 7602 } 7603 assert(Bundle && "Failed to find schedule bundle"); 7604 return Bundle; 7605 } 7606 7607 // Groups the instructions to a bundle (which is then a single scheduling entity) 7608 // and schedules instructions until the bundle gets ready. 7609 Optional<BoUpSLP::ScheduleData *> 7610 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7611 const InstructionsState &S) { 7612 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7613 // instructions. 7614 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7615 return nullptr; 7616 7617 // Initialize the instruction bundle. 7618 Instruction *OldScheduleEnd = ScheduleEnd; 7619 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7620 7621 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7622 ScheduleData *Bundle) { 7623 // The scheduling region got new instructions at the lower end (or it is a 7624 // new region for the first bundle). This makes it necessary to 7625 // recalculate all dependencies. 7626 // It is seldom that this needs to be done a second time after adding the 7627 // initial bundle to the region. 7628 if (ScheduleEnd != OldScheduleEnd) { 7629 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7630 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7631 ReSchedule = true; 7632 } 7633 if (Bundle) { 7634 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7635 << " in block " << BB->getName() << "\n"); 7636 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7637 } 7638 7639 if (ReSchedule) { 7640 resetSchedule(); 7641 initialFillReadyList(ReadyInsts); 7642 } 7643 7644 // Now try to schedule the new bundle or (if no bundle) just calculate 7645 // dependencies. As soon as the bundle is "ready" it means that there are no 7646 // cyclic dependencies and we can schedule it. Note that's important that we 7647 // don't "schedule" the bundle yet (see cancelScheduling). 7648 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7649 !ReadyInsts.empty()) { 7650 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7651 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7652 "must be ready to schedule"); 7653 schedule(Picked, ReadyInsts); 7654 } 7655 }; 7656 7657 // Make sure that the scheduling region contains all 7658 // instructions of the bundle. 7659 for (Value *V : VL) { 7660 if (!extendSchedulingRegion(V, S)) { 7661 // If the scheduling region got new instructions at the lower end (or it 7662 // is a new region for the first bundle). This makes it necessary to 7663 // recalculate all dependencies. 7664 // Otherwise the compiler may crash trying to incorrectly calculate 7665 // dependencies and emit instruction in the wrong order at the actual 7666 // scheduling. 7667 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7668 return None; 7669 } 7670 } 7671 7672 bool ReSchedule = false; 7673 for (Value *V : VL) { 7674 ScheduleData *BundleMember = getScheduleData(V); 7675 assert(BundleMember && 7676 "no ScheduleData for bundle member (maybe not in same basic block)"); 7677 7678 // Make sure we don't leave the pieces of the bundle in the ready list when 7679 // whole bundle might not be ready. 7680 ReadyInsts.remove(BundleMember); 7681 7682 if (!BundleMember->IsScheduled) 7683 continue; 7684 // A bundle member was scheduled as single instruction before and now 7685 // needs to be scheduled as part of the bundle. We just get rid of the 7686 // existing schedule. 7687 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7688 << " was already scheduled\n"); 7689 ReSchedule = true; 7690 } 7691 7692 auto *Bundle = buildBundle(VL); 7693 TryScheduleBundleImpl(ReSchedule, Bundle); 7694 if (!Bundle->isReady()) { 7695 cancelScheduling(VL, S.OpValue); 7696 return None; 7697 } 7698 return Bundle; 7699 } 7700 7701 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7702 Value *OpValue) { 7703 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7704 return; 7705 7706 ScheduleData *Bundle = getScheduleData(OpValue); 7707 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7708 assert(!Bundle->IsScheduled && 7709 "Can't cancel bundle which is already scheduled"); 7710 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7711 "tried to unbundle something which is not a bundle"); 7712 7713 // Remove the bundle from the ready list. 7714 if (Bundle->isReady()) 7715 ReadyInsts.remove(Bundle); 7716 7717 // Un-bundle: make single instructions out of the bundle. 7718 ScheduleData *BundleMember = Bundle; 7719 while (BundleMember) { 7720 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7721 BundleMember->FirstInBundle = BundleMember; 7722 ScheduleData *Next = BundleMember->NextInBundle; 7723 BundleMember->NextInBundle = nullptr; 7724 if (BundleMember->unscheduledDepsInBundle() == 0) { 7725 ReadyInsts.insert(BundleMember); 7726 } 7727 BundleMember = Next; 7728 } 7729 } 7730 7731 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7732 // Allocate a new ScheduleData for the instruction. 7733 if (ChunkPos >= ChunkSize) { 7734 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7735 ChunkPos = 0; 7736 } 7737 return &(ScheduleDataChunks.back()[ChunkPos++]); 7738 } 7739 7740 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7741 const InstructionsState &S) { 7742 if (getScheduleData(V, isOneOf(S, V))) 7743 return true; 7744 Instruction *I = dyn_cast<Instruction>(V); 7745 assert(I && "bundle member must be an instruction"); 7746 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7747 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7748 "be scheduled"); 7749 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7750 ScheduleData *ISD = getScheduleData(I); 7751 if (!ISD) 7752 return false; 7753 assert(isInSchedulingRegion(ISD) && 7754 "ScheduleData not in scheduling region"); 7755 ScheduleData *SD = allocateScheduleDataChunks(); 7756 SD->Inst = I; 7757 SD->init(SchedulingRegionID, S.OpValue); 7758 ExtraScheduleDataMap[I][S.OpValue] = SD; 7759 return true; 7760 }; 7761 if (CheckSheduleForI(I)) 7762 return true; 7763 if (!ScheduleStart) { 7764 // It's the first instruction in the new region. 7765 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7766 ScheduleStart = I; 7767 ScheduleEnd = I->getNextNode(); 7768 if (isOneOf(S, I) != I) 7769 CheckSheduleForI(I); 7770 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7771 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7772 return true; 7773 } 7774 // Search up and down at the same time, because we don't know if the new 7775 // instruction is above or below the existing scheduling region. 7776 BasicBlock::reverse_iterator UpIter = 7777 ++ScheduleStart->getIterator().getReverse(); 7778 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7779 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7780 BasicBlock::iterator LowerEnd = BB->end(); 7781 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7782 &*DownIter != I) { 7783 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7784 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7785 return false; 7786 } 7787 7788 ++UpIter; 7789 ++DownIter; 7790 } 7791 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7792 assert(I->getParent() == ScheduleStart->getParent() && 7793 "Instruction is in wrong basic block."); 7794 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7795 ScheduleStart = I; 7796 if (isOneOf(S, I) != I) 7797 CheckSheduleForI(I); 7798 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7799 << "\n"); 7800 return true; 7801 } 7802 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7803 "Expected to reach top of the basic block or instruction down the " 7804 "lower end."); 7805 assert(I->getParent() == ScheduleEnd->getParent() && 7806 "Instruction is in wrong basic block."); 7807 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7808 nullptr); 7809 ScheduleEnd = I->getNextNode(); 7810 if (isOneOf(S, I) != I) 7811 CheckSheduleForI(I); 7812 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7813 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7814 return true; 7815 } 7816 7817 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7818 Instruction *ToI, 7819 ScheduleData *PrevLoadStore, 7820 ScheduleData *NextLoadStore) { 7821 ScheduleData *CurrentLoadStore = PrevLoadStore; 7822 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7823 ScheduleData *SD = ScheduleDataMap[I]; 7824 if (!SD) { 7825 SD = allocateScheduleDataChunks(); 7826 ScheduleDataMap[I] = SD; 7827 SD->Inst = I; 7828 } 7829 assert(!isInSchedulingRegion(SD) && 7830 "new ScheduleData already in scheduling region"); 7831 SD->init(SchedulingRegionID, I); 7832 7833 if (I->mayReadOrWriteMemory() && 7834 (!isa<IntrinsicInst>(I) || 7835 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7836 cast<IntrinsicInst>(I)->getIntrinsicID() != 7837 Intrinsic::pseudoprobe))) { 7838 // Update the linked list of memory accessing instructions. 7839 if (CurrentLoadStore) { 7840 CurrentLoadStore->NextLoadStore = SD; 7841 } else { 7842 FirstLoadStoreInRegion = SD; 7843 } 7844 CurrentLoadStore = SD; 7845 } 7846 } 7847 if (NextLoadStore) { 7848 if (CurrentLoadStore) 7849 CurrentLoadStore->NextLoadStore = NextLoadStore; 7850 } else { 7851 LastLoadStoreInRegion = CurrentLoadStore; 7852 } 7853 } 7854 7855 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7856 bool InsertInReadyList, 7857 BoUpSLP *SLP) { 7858 assert(SD->isSchedulingEntity()); 7859 7860 SmallVector<ScheduleData *, 10> WorkList; 7861 WorkList.push_back(SD); 7862 7863 while (!WorkList.empty()) { 7864 ScheduleData *SD = WorkList.pop_back_val(); 7865 for (ScheduleData *BundleMember = SD; BundleMember; 7866 BundleMember = BundleMember->NextInBundle) { 7867 assert(isInSchedulingRegion(BundleMember)); 7868 if (BundleMember->hasValidDependencies()) 7869 continue; 7870 7871 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7872 << "\n"); 7873 BundleMember->Dependencies = 0; 7874 BundleMember->resetUnscheduledDeps(); 7875 7876 // Handle def-use chain dependencies. 7877 if (BundleMember->OpValue != BundleMember->Inst) { 7878 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7879 BundleMember->Dependencies++; 7880 ScheduleData *DestBundle = UseSD->FirstInBundle; 7881 if (!DestBundle->IsScheduled) 7882 BundleMember->incrementUnscheduledDeps(1); 7883 if (!DestBundle->hasValidDependencies()) 7884 WorkList.push_back(DestBundle); 7885 } 7886 } else { 7887 for (User *U : BundleMember->Inst->users()) { 7888 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7889 BundleMember->Dependencies++; 7890 ScheduleData *DestBundle = UseSD->FirstInBundle; 7891 if (!DestBundle->IsScheduled) 7892 BundleMember->incrementUnscheduledDeps(1); 7893 if (!DestBundle->hasValidDependencies()) 7894 WorkList.push_back(DestBundle); 7895 } 7896 } 7897 } 7898 7899 // Handle the memory dependencies (if any). 7900 ScheduleData *DepDest = BundleMember->NextLoadStore; 7901 if (!DepDest) 7902 continue; 7903 Instruction *SrcInst = BundleMember->Inst; 7904 assert(SrcInst->mayReadOrWriteMemory() && 7905 "NextLoadStore list for non memory effecting bundle?"); 7906 MemoryLocation SrcLoc = getLocation(SrcInst); 7907 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7908 unsigned numAliased = 0; 7909 unsigned DistToSrc = 1; 7910 7911 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7912 assert(isInSchedulingRegion(DepDest)); 7913 7914 // We have two limits to reduce the complexity: 7915 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7916 // SLP->isAliased (which is the expensive part in this loop). 7917 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7918 // the whole loop (even if the loop is fast, it's quadratic). 7919 // It's important for the loop break condition (see below) to 7920 // check this limit even between two read-only instructions. 7921 if (DistToSrc >= MaxMemDepDistance || 7922 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7923 (numAliased >= AliasedCheckLimit || 7924 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7925 7926 // We increment the counter only if the locations are aliased 7927 // (instead of counting all alias checks). This gives a better 7928 // balance between reduced runtime and accurate dependencies. 7929 numAliased++; 7930 7931 DepDest->MemoryDependencies.push_back(BundleMember); 7932 BundleMember->Dependencies++; 7933 ScheduleData *DestBundle = DepDest->FirstInBundle; 7934 if (!DestBundle->IsScheduled) { 7935 BundleMember->incrementUnscheduledDeps(1); 7936 } 7937 if (!DestBundle->hasValidDependencies()) { 7938 WorkList.push_back(DestBundle); 7939 } 7940 } 7941 7942 // Example, explaining the loop break condition: Let's assume our 7943 // starting instruction is i0 and MaxMemDepDistance = 3. 7944 // 7945 // +--------v--v--v 7946 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7947 // +--------^--^--^ 7948 // 7949 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7950 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7951 // Previously we already added dependencies from i3 to i6,i7,i8 7952 // (because of MaxMemDepDistance). As we added a dependency from 7953 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7954 // and we can abort this loop at i6. 7955 if (DistToSrc >= 2 * MaxMemDepDistance) 7956 break; 7957 DistToSrc++; 7958 } 7959 } 7960 if (InsertInReadyList && SD->isReady()) { 7961 ReadyInsts.insert(SD); 7962 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7963 << "\n"); 7964 } 7965 } 7966 } 7967 7968 void BoUpSLP::BlockScheduling::resetSchedule() { 7969 assert(ScheduleStart && 7970 "tried to reset schedule on block which has not been scheduled"); 7971 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7972 doForAllOpcodes(I, [&](ScheduleData *SD) { 7973 assert(isInSchedulingRegion(SD) && 7974 "ScheduleData not in scheduling region"); 7975 SD->IsScheduled = false; 7976 SD->resetUnscheduledDeps(); 7977 }); 7978 } 7979 ReadyInsts.clear(); 7980 } 7981 7982 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7983 if (!BS->ScheduleStart) 7984 return; 7985 7986 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7987 7988 // A key point - if we got here, pre-scheduling was able to find a valid 7989 // scheduling of the sub-graph of the scheduling window which consists 7990 // of all vector bundles and their transitive users. As such, we do not 7991 // need to reschedule anything *outside of* that subgraph. 7992 7993 BS->resetSchedule(); 7994 7995 // For the real scheduling we use a more sophisticated ready-list: it is 7996 // sorted by the original instruction location. This lets the final schedule 7997 // be as close as possible to the original instruction order. 7998 struct ScheduleDataCompare { 7999 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8000 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8001 } 8002 }; 8003 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8004 8005 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8006 // and fill the ready-list with initial instructions. 8007 int Idx = 0; 8008 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8009 I = I->getNextNode()) { 8010 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8011 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8012 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 8013 "scheduler and vectorizer bundle mismatch"); 8014 SD->FirstInBundle->SchedulingPriority = Idx++; 8015 8016 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8017 BS->calculateDependencies(SD, false, this); 8018 }); 8019 } 8020 BS->initialFillReadyList(ReadyInsts); 8021 8022 Instruction *LastScheduledInst = BS->ScheduleEnd; 8023 8024 // Do the "real" scheduling. 8025 while (!ReadyInsts.empty()) { 8026 ScheduleData *picked = *ReadyInsts.begin(); 8027 ReadyInsts.erase(ReadyInsts.begin()); 8028 8029 // Move the scheduled instruction(s) to their dedicated places, if not 8030 // there yet. 8031 for (ScheduleData *BundleMember = picked; BundleMember; 8032 BundleMember = BundleMember->NextInBundle) { 8033 Instruction *pickedInst = BundleMember->Inst; 8034 if (pickedInst->getNextNode() != LastScheduledInst) 8035 pickedInst->moveBefore(LastScheduledInst); 8036 LastScheduledInst = pickedInst; 8037 } 8038 8039 BS->schedule(picked, ReadyInsts); 8040 } 8041 8042 // Check that we didn't break any of our invariants. 8043 #ifdef EXPENSIVE_CHECKS 8044 BS->verify(); 8045 #endif 8046 8047 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8048 // Check that all schedulable entities got scheduled 8049 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8050 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8051 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8052 assert(SD->IsScheduled && "must be scheduled at this point"); 8053 } 8054 }); 8055 } 8056 #endif 8057 8058 // Avoid duplicate scheduling of the block. 8059 BS->ScheduleStart = nullptr; 8060 } 8061 8062 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8063 // If V is a store, just return the width of the stored value (or value 8064 // truncated just before storing) without traversing the expression tree. 8065 // This is the common case. 8066 if (auto *Store = dyn_cast<StoreInst>(V)) { 8067 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8068 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8069 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8070 } 8071 8072 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8073 return getVectorElementSize(IEI->getOperand(1)); 8074 8075 auto E = InstrElementSize.find(V); 8076 if (E != InstrElementSize.end()) 8077 return E->second; 8078 8079 // If V is not a store, we can traverse the expression tree to find loads 8080 // that feed it. The type of the loaded value may indicate a more suitable 8081 // width than V's type. We want to base the vector element size on the width 8082 // of memory operations where possible. 8083 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8084 SmallPtrSet<Instruction *, 16> Visited; 8085 if (auto *I = dyn_cast<Instruction>(V)) { 8086 Worklist.emplace_back(I, I->getParent()); 8087 Visited.insert(I); 8088 } 8089 8090 // Traverse the expression tree in bottom-up order looking for loads. If we 8091 // encounter an instruction we don't yet handle, we give up. 8092 auto Width = 0u; 8093 while (!Worklist.empty()) { 8094 Instruction *I; 8095 BasicBlock *Parent; 8096 std::tie(I, Parent) = Worklist.pop_back_val(); 8097 8098 // We should only be looking at scalar instructions here. If the current 8099 // instruction has a vector type, skip. 8100 auto *Ty = I->getType(); 8101 if (isa<VectorType>(Ty)) 8102 continue; 8103 8104 // If the current instruction is a load, update MaxWidth to reflect the 8105 // width of the loaded value. 8106 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8107 isa<ExtractValueInst>(I)) 8108 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8109 8110 // Otherwise, we need to visit the operands of the instruction. We only 8111 // handle the interesting cases from buildTree here. If an operand is an 8112 // instruction we haven't yet visited and from the same basic block as the 8113 // user or the use is a PHI node, we add it to the worklist. 8114 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8115 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8116 isa<UnaryOperator>(I)) { 8117 for (Use &U : I->operands()) 8118 if (auto *J = dyn_cast<Instruction>(U.get())) 8119 if (Visited.insert(J).second && 8120 (isa<PHINode>(I) || J->getParent() == Parent)) 8121 Worklist.emplace_back(J, J->getParent()); 8122 } else { 8123 break; 8124 } 8125 } 8126 8127 // If we didn't encounter a memory access in the expression tree, or if we 8128 // gave up for some reason, just return the width of V. Otherwise, return the 8129 // maximum width we found. 8130 if (!Width) { 8131 if (auto *CI = dyn_cast<CmpInst>(V)) 8132 V = CI->getOperand(0); 8133 Width = DL->getTypeSizeInBits(V->getType()); 8134 } 8135 8136 for (Instruction *I : Visited) 8137 InstrElementSize[I] = Width; 8138 8139 return Width; 8140 } 8141 8142 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8143 // smaller type with a truncation. We collect the values that will be demoted 8144 // in ToDemote and additional roots that require investigating in Roots. 8145 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8146 SmallVectorImpl<Value *> &ToDemote, 8147 SmallVectorImpl<Value *> &Roots) { 8148 // We can always demote constants. 8149 if (isa<Constant>(V)) { 8150 ToDemote.push_back(V); 8151 return true; 8152 } 8153 8154 // If the value is not an instruction in the expression with only one use, it 8155 // cannot be demoted. 8156 auto *I = dyn_cast<Instruction>(V); 8157 if (!I || !I->hasOneUse() || !Expr.count(I)) 8158 return false; 8159 8160 switch (I->getOpcode()) { 8161 8162 // We can always demote truncations and extensions. Since truncations can 8163 // seed additional demotion, we save the truncated value. 8164 case Instruction::Trunc: 8165 Roots.push_back(I->getOperand(0)); 8166 break; 8167 case Instruction::ZExt: 8168 case Instruction::SExt: 8169 if (isa<ExtractElementInst>(I->getOperand(0)) || 8170 isa<InsertElementInst>(I->getOperand(0))) 8171 return false; 8172 break; 8173 8174 // We can demote certain binary operations if we can demote both of their 8175 // operands. 8176 case Instruction::Add: 8177 case Instruction::Sub: 8178 case Instruction::Mul: 8179 case Instruction::And: 8180 case Instruction::Or: 8181 case Instruction::Xor: 8182 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8183 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8184 return false; 8185 break; 8186 8187 // We can demote selects if we can demote their true and false values. 8188 case Instruction::Select: { 8189 SelectInst *SI = cast<SelectInst>(I); 8190 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8191 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8192 return false; 8193 break; 8194 } 8195 8196 // We can demote phis if we can demote all their incoming operands. Note that 8197 // we don't need to worry about cycles since we ensure single use above. 8198 case Instruction::PHI: { 8199 PHINode *PN = cast<PHINode>(I); 8200 for (Value *IncValue : PN->incoming_values()) 8201 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8202 return false; 8203 break; 8204 } 8205 8206 // Otherwise, conservatively give up. 8207 default: 8208 return false; 8209 } 8210 8211 // Record the value that we can demote. 8212 ToDemote.push_back(V); 8213 return true; 8214 } 8215 8216 void BoUpSLP::computeMinimumValueSizes() { 8217 // If there are no external uses, the expression tree must be rooted by a 8218 // store. We can't demote in-memory values, so there is nothing to do here. 8219 if (ExternalUses.empty()) 8220 return; 8221 8222 // We only attempt to truncate integer expressions. 8223 auto &TreeRoot = VectorizableTree[0]->Scalars; 8224 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8225 if (!TreeRootIT) 8226 return; 8227 8228 // If the expression is not rooted by a store, these roots should have 8229 // external uses. We will rely on InstCombine to rewrite the expression in 8230 // the narrower type. However, InstCombine only rewrites single-use values. 8231 // This means that if a tree entry other than a root is used externally, it 8232 // must have multiple uses and InstCombine will not rewrite it. The code 8233 // below ensures that only the roots are used externally. 8234 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8235 for (auto &EU : ExternalUses) 8236 if (!Expr.erase(EU.Scalar)) 8237 return; 8238 if (!Expr.empty()) 8239 return; 8240 8241 // Collect the scalar values of the vectorizable expression. We will use this 8242 // context to determine which values can be demoted. If we see a truncation, 8243 // we mark it as seeding another demotion. 8244 for (auto &EntryPtr : VectorizableTree) 8245 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8246 8247 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8248 // have a single external user that is not in the vectorizable tree. 8249 for (auto *Root : TreeRoot) 8250 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8251 return; 8252 8253 // Conservatively determine if we can actually truncate the roots of the 8254 // expression. Collect the values that can be demoted in ToDemote and 8255 // additional roots that require investigating in Roots. 8256 SmallVector<Value *, 32> ToDemote; 8257 SmallVector<Value *, 4> Roots; 8258 for (auto *Root : TreeRoot) 8259 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8260 return; 8261 8262 // The maximum bit width required to represent all the values that can be 8263 // demoted without loss of precision. It would be safe to truncate the roots 8264 // of the expression to this width. 8265 auto MaxBitWidth = 8u; 8266 8267 // We first check if all the bits of the roots are demanded. If they're not, 8268 // we can truncate the roots to this narrower type. 8269 for (auto *Root : TreeRoot) { 8270 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8271 MaxBitWidth = std::max<unsigned>( 8272 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8273 } 8274 8275 // True if the roots can be zero-extended back to their original type, rather 8276 // than sign-extended. We know that if the leading bits are not demanded, we 8277 // can safely zero-extend. So we initialize IsKnownPositive to True. 8278 bool IsKnownPositive = true; 8279 8280 // If all the bits of the roots are demanded, we can try a little harder to 8281 // compute a narrower type. This can happen, for example, if the roots are 8282 // getelementptr indices. InstCombine promotes these indices to the pointer 8283 // width. Thus, all their bits are technically demanded even though the 8284 // address computation might be vectorized in a smaller type. 8285 // 8286 // We start by looking at each entry that can be demoted. We compute the 8287 // maximum bit width required to store the scalar by using ValueTracking to 8288 // compute the number of high-order bits we can truncate. 8289 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8290 llvm::all_of(TreeRoot, [](Value *R) { 8291 assert(R->hasOneUse() && "Root should have only one use!"); 8292 return isa<GetElementPtrInst>(R->user_back()); 8293 })) { 8294 MaxBitWidth = 8u; 8295 8296 // Determine if the sign bit of all the roots is known to be zero. If not, 8297 // IsKnownPositive is set to False. 8298 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8299 KnownBits Known = computeKnownBits(R, *DL); 8300 return Known.isNonNegative(); 8301 }); 8302 8303 // Determine the maximum number of bits required to store the scalar 8304 // values. 8305 for (auto *Scalar : ToDemote) { 8306 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8307 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8308 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8309 } 8310 8311 // If we can't prove that the sign bit is zero, we must add one to the 8312 // maximum bit width to account for the unknown sign bit. This preserves 8313 // the existing sign bit so we can safely sign-extend the root back to the 8314 // original type. Otherwise, if we know the sign bit is zero, we will 8315 // zero-extend the root instead. 8316 // 8317 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8318 // one to the maximum bit width will yield a larger-than-necessary 8319 // type. In general, we need to add an extra bit only if we can't 8320 // prove that the upper bit of the original type is equal to the 8321 // upper bit of the proposed smaller type. If these two bits are the 8322 // same (either zero or one) we know that sign-extending from the 8323 // smaller type will result in the same value. Here, since we can't 8324 // yet prove this, we are just making the proposed smaller type 8325 // larger to ensure correctness. 8326 if (!IsKnownPositive) 8327 ++MaxBitWidth; 8328 } 8329 8330 // Round MaxBitWidth up to the next power-of-two. 8331 if (!isPowerOf2_64(MaxBitWidth)) 8332 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8333 8334 // If the maximum bit width we compute is less than the with of the roots' 8335 // type, we can proceed with the narrowing. Otherwise, do nothing. 8336 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8337 return; 8338 8339 // If we can truncate the root, we must collect additional values that might 8340 // be demoted as a result. That is, those seeded by truncations we will 8341 // modify. 8342 while (!Roots.empty()) 8343 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8344 8345 // Finally, map the values we can demote to the maximum bit with we computed. 8346 for (auto *Scalar : ToDemote) 8347 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8348 } 8349 8350 namespace { 8351 8352 /// The SLPVectorizer Pass. 8353 struct SLPVectorizer : public FunctionPass { 8354 SLPVectorizerPass Impl; 8355 8356 /// Pass identification, replacement for typeid 8357 static char ID; 8358 8359 explicit SLPVectorizer() : FunctionPass(ID) { 8360 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8361 } 8362 8363 bool doInitialization(Module &M) override { return false; } 8364 8365 bool runOnFunction(Function &F) override { 8366 if (skipFunction(F)) 8367 return false; 8368 8369 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8370 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8371 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8372 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8373 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8374 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8375 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8376 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8377 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8378 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8379 8380 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8381 } 8382 8383 void getAnalysisUsage(AnalysisUsage &AU) const override { 8384 FunctionPass::getAnalysisUsage(AU); 8385 AU.addRequired<AssumptionCacheTracker>(); 8386 AU.addRequired<ScalarEvolutionWrapperPass>(); 8387 AU.addRequired<AAResultsWrapperPass>(); 8388 AU.addRequired<TargetTransformInfoWrapperPass>(); 8389 AU.addRequired<LoopInfoWrapperPass>(); 8390 AU.addRequired<DominatorTreeWrapperPass>(); 8391 AU.addRequired<DemandedBitsWrapperPass>(); 8392 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8393 AU.addRequired<InjectTLIMappingsLegacy>(); 8394 AU.addPreserved<LoopInfoWrapperPass>(); 8395 AU.addPreserved<DominatorTreeWrapperPass>(); 8396 AU.addPreserved<AAResultsWrapperPass>(); 8397 AU.addPreserved<GlobalsAAWrapperPass>(); 8398 AU.setPreservesCFG(); 8399 } 8400 }; 8401 8402 } // end anonymous namespace 8403 8404 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8405 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8406 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8407 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8408 auto *AA = &AM.getResult<AAManager>(F); 8409 auto *LI = &AM.getResult<LoopAnalysis>(F); 8410 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8411 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8412 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8413 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8414 8415 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8416 if (!Changed) 8417 return PreservedAnalyses::all(); 8418 8419 PreservedAnalyses PA; 8420 PA.preserveSet<CFGAnalyses>(); 8421 return PA; 8422 } 8423 8424 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8425 TargetTransformInfo *TTI_, 8426 TargetLibraryInfo *TLI_, AAResults *AA_, 8427 LoopInfo *LI_, DominatorTree *DT_, 8428 AssumptionCache *AC_, DemandedBits *DB_, 8429 OptimizationRemarkEmitter *ORE_) { 8430 if (!RunSLPVectorization) 8431 return false; 8432 SE = SE_; 8433 TTI = TTI_; 8434 TLI = TLI_; 8435 AA = AA_; 8436 LI = LI_; 8437 DT = DT_; 8438 AC = AC_; 8439 DB = DB_; 8440 DL = &F.getParent()->getDataLayout(); 8441 8442 Stores.clear(); 8443 GEPs.clear(); 8444 bool Changed = false; 8445 8446 // If the target claims to have no vector registers don't attempt 8447 // vectorization. 8448 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8449 LLVM_DEBUG( 8450 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8451 return false; 8452 } 8453 8454 // Don't vectorize when the attribute NoImplicitFloat is used. 8455 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8456 return false; 8457 8458 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8459 8460 // Use the bottom up slp vectorizer to construct chains that start with 8461 // store instructions. 8462 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8463 8464 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8465 // delete instructions. 8466 8467 // Update DFS numbers now so that we can use them for ordering. 8468 DT->updateDFSNumbers(); 8469 8470 // Scan the blocks in the function in post order. 8471 for (auto BB : post_order(&F.getEntryBlock())) { 8472 collectSeedInstructions(BB); 8473 8474 // Vectorize trees that end at stores. 8475 if (!Stores.empty()) { 8476 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8477 << " underlying objects.\n"); 8478 Changed |= vectorizeStoreChains(R); 8479 } 8480 8481 // Vectorize trees that end at reductions. 8482 Changed |= vectorizeChainsInBlock(BB, R); 8483 8484 // Vectorize the index computations of getelementptr instructions. This 8485 // is primarily intended to catch gather-like idioms ending at 8486 // non-consecutive loads. 8487 if (!GEPs.empty()) { 8488 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8489 << " underlying objects.\n"); 8490 Changed |= vectorizeGEPIndices(BB, R); 8491 } 8492 } 8493 8494 if (Changed) { 8495 R.optimizeGatherSequence(); 8496 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8497 } 8498 return Changed; 8499 } 8500 8501 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8502 unsigned Idx) { 8503 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8504 << "\n"); 8505 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8506 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8507 unsigned VF = Chain.size(); 8508 8509 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8510 return false; 8511 8512 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8513 << "\n"); 8514 8515 R.buildTree(Chain); 8516 if (R.isTreeTinyAndNotFullyVectorizable()) 8517 return false; 8518 if (R.isLoadCombineCandidate()) 8519 return false; 8520 R.reorderTopToBottom(); 8521 R.reorderBottomToTop(); 8522 R.buildExternalUses(); 8523 8524 R.computeMinimumValueSizes(); 8525 8526 InstructionCost Cost = R.getTreeCost(); 8527 8528 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8529 if (Cost < -SLPCostThreshold) { 8530 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8531 8532 using namespace ore; 8533 8534 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8535 cast<StoreInst>(Chain[0])) 8536 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8537 << " and with tree size " 8538 << NV("TreeSize", R.getTreeSize())); 8539 8540 R.vectorizeTree(); 8541 return true; 8542 } 8543 8544 return false; 8545 } 8546 8547 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8548 BoUpSLP &R) { 8549 // We may run into multiple chains that merge into a single chain. We mark the 8550 // stores that we vectorized so that we don't visit the same store twice. 8551 BoUpSLP::ValueSet VectorizedStores; 8552 bool Changed = false; 8553 8554 int E = Stores.size(); 8555 SmallBitVector Tails(E, false); 8556 int MaxIter = MaxStoreLookup.getValue(); 8557 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8558 E, std::make_pair(E, INT_MAX)); 8559 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8560 int IterCnt; 8561 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8562 &CheckedPairs, 8563 &ConsecutiveChain](int K, int Idx) { 8564 if (IterCnt >= MaxIter) 8565 return true; 8566 if (CheckedPairs[Idx].test(K)) 8567 return ConsecutiveChain[K].second == 1 && 8568 ConsecutiveChain[K].first == Idx; 8569 ++IterCnt; 8570 CheckedPairs[Idx].set(K); 8571 CheckedPairs[K].set(Idx); 8572 Optional<int> Diff = getPointersDiff( 8573 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8574 Stores[Idx]->getValueOperand()->getType(), 8575 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8576 if (!Diff || *Diff == 0) 8577 return false; 8578 int Val = *Diff; 8579 if (Val < 0) { 8580 if (ConsecutiveChain[Idx].second > -Val) { 8581 Tails.set(K); 8582 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8583 } 8584 return false; 8585 } 8586 if (ConsecutiveChain[K].second <= Val) 8587 return false; 8588 8589 Tails.set(Idx); 8590 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8591 return Val == 1; 8592 }; 8593 // Do a quadratic search on all of the given stores in reverse order and find 8594 // all of the pairs of stores that follow each other. 8595 for (int Idx = E - 1; Idx >= 0; --Idx) { 8596 // If a store has multiple consecutive store candidates, search according 8597 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8598 // This is because usually pairing with immediate succeeding or preceding 8599 // candidate create the best chance to find slp vectorization opportunity. 8600 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8601 IterCnt = 0; 8602 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8603 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8604 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8605 break; 8606 } 8607 8608 // Tracks if we tried to vectorize stores starting from the given tail 8609 // already. 8610 SmallBitVector TriedTails(E, false); 8611 // For stores that start but don't end a link in the chain: 8612 for (int Cnt = E; Cnt > 0; --Cnt) { 8613 int I = Cnt - 1; 8614 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8615 continue; 8616 // We found a store instr that starts a chain. Now follow the chain and try 8617 // to vectorize it. 8618 BoUpSLP::ValueList Operands; 8619 // Collect the chain into a list. 8620 while (I != E && !VectorizedStores.count(Stores[I])) { 8621 Operands.push_back(Stores[I]); 8622 Tails.set(I); 8623 if (ConsecutiveChain[I].second != 1) { 8624 // Mark the new end in the chain and go back, if required. It might be 8625 // required if the original stores come in reversed order, for example. 8626 if (ConsecutiveChain[I].first != E && 8627 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8628 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8629 TriedTails.set(I); 8630 Tails.reset(ConsecutiveChain[I].first); 8631 if (Cnt < ConsecutiveChain[I].first + 2) 8632 Cnt = ConsecutiveChain[I].first + 2; 8633 } 8634 break; 8635 } 8636 // Move to the next value in the chain. 8637 I = ConsecutiveChain[I].first; 8638 } 8639 assert(!Operands.empty() && "Expected non-empty list of stores."); 8640 8641 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8642 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8643 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8644 8645 unsigned MinVF = R.getMinVF(EltSize); 8646 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8647 MaxElts); 8648 8649 // FIXME: Is division-by-2 the correct step? Should we assert that the 8650 // register size is a power-of-2? 8651 unsigned StartIdx = 0; 8652 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8653 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8654 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8655 if (!VectorizedStores.count(Slice.front()) && 8656 !VectorizedStores.count(Slice.back()) && 8657 vectorizeStoreChain(Slice, R, Cnt)) { 8658 // Mark the vectorized stores so that we don't vectorize them again. 8659 VectorizedStores.insert(Slice.begin(), Slice.end()); 8660 Changed = true; 8661 // If we vectorized initial block, no need to try to vectorize it 8662 // again. 8663 if (Cnt == StartIdx) 8664 StartIdx += Size; 8665 Cnt += Size; 8666 continue; 8667 } 8668 ++Cnt; 8669 } 8670 // Check if the whole array was vectorized already - exit. 8671 if (StartIdx >= Operands.size()) 8672 break; 8673 } 8674 } 8675 8676 return Changed; 8677 } 8678 8679 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8680 // Initialize the collections. We will make a single pass over the block. 8681 Stores.clear(); 8682 GEPs.clear(); 8683 8684 // Visit the store and getelementptr instructions in BB and organize them in 8685 // Stores and GEPs according to the underlying objects of their pointer 8686 // operands. 8687 for (Instruction &I : *BB) { 8688 // Ignore store instructions that are volatile or have a pointer operand 8689 // that doesn't point to a scalar type. 8690 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8691 if (!SI->isSimple()) 8692 continue; 8693 if (!isValidElementType(SI->getValueOperand()->getType())) 8694 continue; 8695 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8696 } 8697 8698 // Ignore getelementptr instructions that have more than one index, a 8699 // constant index, or a pointer operand that doesn't point to a scalar 8700 // type. 8701 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8702 auto Idx = GEP->idx_begin()->get(); 8703 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8704 continue; 8705 if (!isValidElementType(Idx->getType())) 8706 continue; 8707 if (GEP->getType()->isVectorTy()) 8708 continue; 8709 GEPs[GEP->getPointerOperand()].push_back(GEP); 8710 } 8711 } 8712 } 8713 8714 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8715 if (!A || !B) 8716 return false; 8717 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8718 return false; 8719 Value *VL[] = {A, B}; 8720 return tryToVectorizeList(VL, R); 8721 } 8722 8723 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8724 bool LimitForRegisterSize) { 8725 if (VL.size() < 2) 8726 return false; 8727 8728 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8729 << VL.size() << ".\n"); 8730 8731 // Check that all of the parts are instructions of the same type, 8732 // we permit an alternate opcode via InstructionsState. 8733 InstructionsState S = getSameOpcode(VL); 8734 if (!S.getOpcode()) 8735 return false; 8736 8737 Instruction *I0 = cast<Instruction>(S.OpValue); 8738 // Make sure invalid types (including vector type) are rejected before 8739 // determining vectorization factor for scalar instructions. 8740 for (Value *V : VL) { 8741 Type *Ty = V->getType(); 8742 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8743 // NOTE: the following will give user internal llvm type name, which may 8744 // not be useful. 8745 R.getORE()->emit([&]() { 8746 std::string type_str; 8747 llvm::raw_string_ostream rso(type_str); 8748 Ty->print(rso); 8749 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8750 << "Cannot SLP vectorize list: type " 8751 << rso.str() + " is unsupported by vectorizer"; 8752 }); 8753 return false; 8754 } 8755 } 8756 8757 unsigned Sz = R.getVectorElementSize(I0); 8758 unsigned MinVF = R.getMinVF(Sz); 8759 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8760 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8761 if (MaxVF < 2) { 8762 R.getORE()->emit([&]() { 8763 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8764 << "Cannot SLP vectorize list: vectorization factor " 8765 << "less than 2 is not supported"; 8766 }); 8767 return false; 8768 } 8769 8770 bool Changed = false; 8771 bool CandidateFound = false; 8772 InstructionCost MinCost = SLPCostThreshold.getValue(); 8773 Type *ScalarTy = VL[0]->getType(); 8774 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8775 ScalarTy = IE->getOperand(1)->getType(); 8776 8777 unsigned NextInst = 0, MaxInst = VL.size(); 8778 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8779 // No actual vectorization should happen, if number of parts is the same as 8780 // provided vectorization factor (i.e. the scalar type is used for vector 8781 // code during codegen). 8782 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8783 if (TTI->getNumberOfParts(VecTy) == VF) 8784 continue; 8785 for (unsigned I = NextInst; I < MaxInst; ++I) { 8786 unsigned OpsWidth = 0; 8787 8788 if (I + VF > MaxInst) 8789 OpsWidth = MaxInst - I; 8790 else 8791 OpsWidth = VF; 8792 8793 if (!isPowerOf2_32(OpsWidth)) 8794 continue; 8795 8796 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8797 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8798 break; 8799 8800 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8801 // Check that a previous iteration of this loop did not delete the Value. 8802 if (llvm::any_of(Ops, [&R](Value *V) { 8803 auto *I = dyn_cast<Instruction>(V); 8804 return I && R.isDeleted(I); 8805 })) 8806 continue; 8807 8808 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8809 << "\n"); 8810 8811 R.buildTree(Ops); 8812 if (R.isTreeTinyAndNotFullyVectorizable()) 8813 continue; 8814 R.reorderTopToBottom(); 8815 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8816 R.buildExternalUses(); 8817 8818 R.computeMinimumValueSizes(); 8819 InstructionCost Cost = R.getTreeCost(); 8820 CandidateFound = true; 8821 MinCost = std::min(MinCost, Cost); 8822 8823 if (Cost < -SLPCostThreshold) { 8824 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8825 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8826 cast<Instruction>(Ops[0])) 8827 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8828 << " and with tree size " 8829 << ore::NV("TreeSize", R.getTreeSize())); 8830 8831 R.vectorizeTree(); 8832 // Move to the next bundle. 8833 I += VF - 1; 8834 NextInst = I + 1; 8835 Changed = true; 8836 } 8837 } 8838 } 8839 8840 if (!Changed && CandidateFound) { 8841 R.getORE()->emit([&]() { 8842 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8843 << "List vectorization was possible but not beneficial with cost " 8844 << ore::NV("Cost", MinCost) << " >= " 8845 << ore::NV("Treshold", -SLPCostThreshold); 8846 }); 8847 } else if (!Changed) { 8848 R.getORE()->emit([&]() { 8849 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8850 << "Cannot SLP vectorize list: vectorization was impossible" 8851 << " with available vectorization factors"; 8852 }); 8853 } 8854 return Changed; 8855 } 8856 8857 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8858 if (!I) 8859 return false; 8860 8861 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8862 return false; 8863 8864 Value *P = I->getParent(); 8865 8866 // Vectorize in current basic block only. 8867 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8868 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8869 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8870 return false; 8871 8872 // Try to vectorize V. 8873 if (tryToVectorizePair(Op0, Op1, R)) 8874 return true; 8875 8876 auto *A = dyn_cast<BinaryOperator>(Op0); 8877 auto *B = dyn_cast<BinaryOperator>(Op1); 8878 // Try to skip B. 8879 if (B && B->hasOneUse()) { 8880 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8881 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8882 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8883 return true; 8884 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8885 return true; 8886 } 8887 8888 // Try to skip A. 8889 if (A && A->hasOneUse()) { 8890 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8891 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8892 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8893 return true; 8894 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8895 return true; 8896 } 8897 return false; 8898 } 8899 8900 namespace { 8901 8902 /// Model horizontal reductions. 8903 /// 8904 /// A horizontal reduction is a tree of reduction instructions that has values 8905 /// that can be put into a vector as its leaves. For example: 8906 /// 8907 /// mul mul mul mul 8908 /// \ / \ / 8909 /// + + 8910 /// \ / 8911 /// + 8912 /// This tree has "mul" as its leaf values and "+" as its reduction 8913 /// instructions. A reduction can feed into a store or a binary operation 8914 /// feeding a phi. 8915 /// ... 8916 /// \ / 8917 /// + 8918 /// | 8919 /// phi += 8920 /// 8921 /// Or: 8922 /// ... 8923 /// \ / 8924 /// + 8925 /// | 8926 /// *p = 8927 /// 8928 class HorizontalReduction { 8929 using ReductionOpsType = SmallVector<Value *, 16>; 8930 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8931 ReductionOpsListType ReductionOps; 8932 SmallVector<Value *, 32> ReducedVals; 8933 // Use map vector to make stable output. 8934 MapVector<Instruction *, Value *> ExtraArgs; 8935 WeakTrackingVH ReductionRoot; 8936 /// The type of reduction operation. 8937 RecurKind RdxKind; 8938 8939 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8940 8941 static bool isCmpSelMinMax(Instruction *I) { 8942 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8943 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8944 } 8945 8946 // And/or are potentially poison-safe logical patterns like: 8947 // select x, y, false 8948 // select x, true, y 8949 static bool isBoolLogicOp(Instruction *I) { 8950 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8951 match(I, m_LogicalOr(m_Value(), m_Value())); 8952 } 8953 8954 /// Checks if instruction is associative and can be vectorized. 8955 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8956 if (Kind == RecurKind::None) 8957 return false; 8958 8959 // Integer ops that map to select instructions or intrinsics are fine. 8960 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8961 isBoolLogicOp(I)) 8962 return true; 8963 8964 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8965 // FP min/max are associative except for NaN and -0.0. We do not 8966 // have to rule out -0.0 here because the intrinsic semantics do not 8967 // specify a fixed result for it. 8968 return I->getFastMathFlags().noNaNs(); 8969 } 8970 8971 return I->isAssociative(); 8972 } 8973 8974 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8975 // Poison-safe 'or' takes the form: select X, true, Y 8976 // To make that work with the normal operand processing, we skip the 8977 // true value operand. 8978 // TODO: Change the code and data structures to handle this without a hack. 8979 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8980 return I->getOperand(2); 8981 return I->getOperand(Index); 8982 } 8983 8984 /// Checks if the ParentStackElem.first should be marked as a reduction 8985 /// operation with an extra argument or as extra argument itself. 8986 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8987 Value *ExtraArg) { 8988 if (ExtraArgs.count(ParentStackElem.first)) { 8989 ExtraArgs[ParentStackElem.first] = nullptr; 8990 // We ran into something like: 8991 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8992 // The whole ParentStackElem.first should be considered as an extra value 8993 // in this case. 8994 // Do not perform analysis of remaining operands of ParentStackElem.first 8995 // instruction, this whole instruction is an extra argument. 8996 ParentStackElem.second = INVALID_OPERAND_INDEX; 8997 } else { 8998 // We ran into something like: 8999 // ParentStackElem.first += ... + ExtraArg + ... 9000 ExtraArgs[ParentStackElem.first] = ExtraArg; 9001 } 9002 } 9003 9004 /// Creates reduction operation with the current opcode. 9005 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9006 Value *RHS, const Twine &Name, bool UseSelect) { 9007 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9008 switch (Kind) { 9009 case RecurKind::Or: 9010 if (UseSelect && 9011 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9012 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9013 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9014 Name); 9015 case RecurKind::And: 9016 if (UseSelect && 9017 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9018 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9019 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9020 Name); 9021 case RecurKind::Add: 9022 case RecurKind::Mul: 9023 case RecurKind::Xor: 9024 case RecurKind::FAdd: 9025 case RecurKind::FMul: 9026 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9027 Name); 9028 case RecurKind::FMax: 9029 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9030 case RecurKind::FMin: 9031 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9032 case RecurKind::SMax: 9033 if (UseSelect) { 9034 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9035 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9036 } 9037 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9038 case RecurKind::SMin: 9039 if (UseSelect) { 9040 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9041 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9042 } 9043 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9044 case RecurKind::UMax: 9045 if (UseSelect) { 9046 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9047 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9048 } 9049 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9050 case RecurKind::UMin: 9051 if (UseSelect) { 9052 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9053 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9054 } 9055 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9056 default: 9057 llvm_unreachable("Unknown reduction operation."); 9058 } 9059 } 9060 9061 /// Creates reduction operation with the current opcode with the IR flags 9062 /// from \p ReductionOps. 9063 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9064 Value *RHS, const Twine &Name, 9065 const ReductionOpsListType &ReductionOps) { 9066 bool UseSelect = ReductionOps.size() == 2 || 9067 // Logical or/and. 9068 (ReductionOps.size() == 1 && 9069 isa<SelectInst>(ReductionOps.front().front())); 9070 assert((!UseSelect || ReductionOps.size() != 2 || 9071 isa<SelectInst>(ReductionOps[1][0])) && 9072 "Expected cmp + select pairs for reduction"); 9073 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9074 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9075 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9076 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9077 propagateIRFlags(Op, ReductionOps[1]); 9078 return Op; 9079 } 9080 } 9081 propagateIRFlags(Op, ReductionOps[0]); 9082 return Op; 9083 } 9084 9085 /// Creates reduction operation with the current opcode with the IR flags 9086 /// from \p I. 9087 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9088 Value *RHS, const Twine &Name, Instruction *I) { 9089 auto *SelI = dyn_cast<SelectInst>(I); 9090 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9091 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9092 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9093 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9094 } 9095 propagateIRFlags(Op, I); 9096 return Op; 9097 } 9098 9099 static RecurKind getRdxKind(Instruction *I) { 9100 assert(I && "Expected instruction for reduction matching"); 9101 if (match(I, m_Add(m_Value(), m_Value()))) 9102 return RecurKind::Add; 9103 if (match(I, m_Mul(m_Value(), m_Value()))) 9104 return RecurKind::Mul; 9105 if (match(I, m_And(m_Value(), m_Value())) || 9106 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9107 return RecurKind::And; 9108 if (match(I, m_Or(m_Value(), m_Value())) || 9109 match(I, m_LogicalOr(m_Value(), m_Value()))) 9110 return RecurKind::Or; 9111 if (match(I, m_Xor(m_Value(), m_Value()))) 9112 return RecurKind::Xor; 9113 if (match(I, m_FAdd(m_Value(), m_Value()))) 9114 return RecurKind::FAdd; 9115 if (match(I, m_FMul(m_Value(), m_Value()))) 9116 return RecurKind::FMul; 9117 9118 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9119 return RecurKind::FMax; 9120 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9121 return RecurKind::FMin; 9122 9123 // This matches either cmp+select or intrinsics. SLP is expected to handle 9124 // either form. 9125 // TODO: If we are canonicalizing to intrinsics, we can remove several 9126 // special-case paths that deal with selects. 9127 if (match(I, m_SMax(m_Value(), m_Value()))) 9128 return RecurKind::SMax; 9129 if (match(I, m_SMin(m_Value(), m_Value()))) 9130 return RecurKind::SMin; 9131 if (match(I, m_UMax(m_Value(), m_Value()))) 9132 return RecurKind::UMax; 9133 if (match(I, m_UMin(m_Value(), m_Value()))) 9134 return RecurKind::UMin; 9135 9136 if (auto *Select = dyn_cast<SelectInst>(I)) { 9137 // Try harder: look for min/max pattern based on instructions producing 9138 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9139 // During the intermediate stages of SLP, it's very common to have 9140 // pattern like this (since optimizeGatherSequence is run only once 9141 // at the end): 9142 // %1 = extractelement <2 x i32> %a, i32 0 9143 // %2 = extractelement <2 x i32> %a, i32 1 9144 // %cond = icmp sgt i32 %1, %2 9145 // %3 = extractelement <2 x i32> %a, i32 0 9146 // %4 = extractelement <2 x i32> %a, i32 1 9147 // %select = select i1 %cond, i32 %3, i32 %4 9148 CmpInst::Predicate Pred; 9149 Instruction *L1; 9150 Instruction *L2; 9151 9152 Value *LHS = Select->getTrueValue(); 9153 Value *RHS = Select->getFalseValue(); 9154 Value *Cond = Select->getCondition(); 9155 9156 // TODO: Support inverse predicates. 9157 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9158 if (!isa<ExtractElementInst>(RHS) || 9159 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9160 return RecurKind::None; 9161 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9162 if (!isa<ExtractElementInst>(LHS) || 9163 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9164 return RecurKind::None; 9165 } else { 9166 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9167 return RecurKind::None; 9168 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9169 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9170 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9171 return RecurKind::None; 9172 } 9173 9174 switch (Pred) { 9175 default: 9176 return RecurKind::None; 9177 case CmpInst::ICMP_SGT: 9178 case CmpInst::ICMP_SGE: 9179 return RecurKind::SMax; 9180 case CmpInst::ICMP_SLT: 9181 case CmpInst::ICMP_SLE: 9182 return RecurKind::SMin; 9183 case CmpInst::ICMP_UGT: 9184 case CmpInst::ICMP_UGE: 9185 return RecurKind::UMax; 9186 case CmpInst::ICMP_ULT: 9187 case CmpInst::ICMP_ULE: 9188 return RecurKind::UMin; 9189 } 9190 } 9191 return RecurKind::None; 9192 } 9193 9194 /// Get the index of the first operand. 9195 static unsigned getFirstOperandIndex(Instruction *I) { 9196 return isCmpSelMinMax(I) ? 1 : 0; 9197 } 9198 9199 /// Total number of operands in the reduction operation. 9200 static unsigned getNumberOfOperands(Instruction *I) { 9201 return isCmpSelMinMax(I) ? 3 : 2; 9202 } 9203 9204 /// Checks if the instruction is in basic block \p BB. 9205 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9206 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9207 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9208 auto *Sel = cast<SelectInst>(I); 9209 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9210 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9211 } 9212 return I->getParent() == BB; 9213 } 9214 9215 /// Expected number of uses for reduction operations/reduced values. 9216 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9217 if (IsCmpSelMinMax) { 9218 // SelectInst must be used twice while the condition op must have single 9219 // use only. 9220 if (auto *Sel = dyn_cast<SelectInst>(I)) 9221 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9222 return I->hasNUses(2); 9223 } 9224 9225 // Arithmetic reduction operation must be used once only. 9226 return I->hasOneUse(); 9227 } 9228 9229 /// Initializes the list of reduction operations. 9230 void initReductionOps(Instruction *I) { 9231 if (isCmpSelMinMax(I)) 9232 ReductionOps.assign(2, ReductionOpsType()); 9233 else 9234 ReductionOps.assign(1, ReductionOpsType()); 9235 } 9236 9237 /// Add all reduction operations for the reduction instruction \p I. 9238 void addReductionOps(Instruction *I) { 9239 if (isCmpSelMinMax(I)) { 9240 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9241 ReductionOps[1].emplace_back(I); 9242 } else { 9243 ReductionOps[0].emplace_back(I); 9244 } 9245 } 9246 9247 static Value *getLHS(RecurKind Kind, Instruction *I) { 9248 if (Kind == RecurKind::None) 9249 return nullptr; 9250 return I->getOperand(getFirstOperandIndex(I)); 9251 } 9252 static Value *getRHS(RecurKind Kind, Instruction *I) { 9253 if (Kind == RecurKind::None) 9254 return nullptr; 9255 return I->getOperand(getFirstOperandIndex(I) + 1); 9256 } 9257 9258 public: 9259 HorizontalReduction() = default; 9260 9261 /// Try to find a reduction tree. 9262 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9263 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9264 "Phi needs to use the binary operator"); 9265 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9266 isa<IntrinsicInst>(Inst)) && 9267 "Expected binop, select, or intrinsic for reduction matching"); 9268 RdxKind = getRdxKind(Inst); 9269 9270 // We could have a initial reductions that is not an add. 9271 // r *= v1 + v2 + v3 + v4 9272 // In such a case start looking for a tree rooted in the first '+'. 9273 if (Phi) { 9274 if (getLHS(RdxKind, Inst) == Phi) { 9275 Phi = nullptr; 9276 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9277 if (!Inst) 9278 return false; 9279 RdxKind = getRdxKind(Inst); 9280 } else if (getRHS(RdxKind, Inst) == Phi) { 9281 Phi = nullptr; 9282 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9283 if (!Inst) 9284 return false; 9285 RdxKind = getRdxKind(Inst); 9286 } 9287 } 9288 9289 if (!isVectorizable(RdxKind, Inst)) 9290 return false; 9291 9292 // Analyze "regular" integer/FP types for reductions - no target-specific 9293 // types or pointers. 9294 Type *Ty = Inst->getType(); 9295 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9296 return false; 9297 9298 // Though the ultimate reduction may have multiple uses, its condition must 9299 // have only single use. 9300 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9301 if (!Sel->getCondition()->hasOneUse()) 9302 return false; 9303 9304 ReductionRoot = Inst; 9305 9306 // The opcode for leaf values that we perform a reduction on. 9307 // For example: load(x) + load(y) + load(z) + fptoui(w) 9308 // The leaf opcode for 'w' does not match, so we don't include it as a 9309 // potential candidate for the reduction. 9310 unsigned LeafOpcode = 0; 9311 9312 // Post-order traverse the reduction tree starting at Inst. We only handle 9313 // true trees containing binary operators or selects. 9314 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9315 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9316 initReductionOps(Inst); 9317 while (!Stack.empty()) { 9318 Instruction *TreeN = Stack.back().first; 9319 unsigned EdgeToVisit = Stack.back().second++; 9320 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9321 bool IsReducedValue = TreeRdxKind != RdxKind; 9322 9323 // Postorder visit. 9324 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9325 if (IsReducedValue) 9326 ReducedVals.push_back(TreeN); 9327 else { 9328 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9329 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9330 // Check if TreeN is an extra argument of its parent operation. 9331 if (Stack.size() <= 1) { 9332 // TreeN can't be an extra argument as it is a root reduction 9333 // operation. 9334 return false; 9335 } 9336 // Yes, TreeN is an extra argument, do not add it to a list of 9337 // reduction operations. 9338 // Stack[Stack.size() - 2] always points to the parent operation. 9339 markExtraArg(Stack[Stack.size() - 2], TreeN); 9340 ExtraArgs.erase(TreeN); 9341 } else 9342 addReductionOps(TreeN); 9343 } 9344 // Retract. 9345 Stack.pop_back(); 9346 continue; 9347 } 9348 9349 // Visit operands. 9350 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9351 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9352 if (!EdgeInst) { 9353 // Edge value is not a reduction instruction or a leaf instruction. 9354 // (It may be a constant, function argument, or something else.) 9355 markExtraArg(Stack.back(), EdgeVal); 9356 continue; 9357 } 9358 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9359 // Continue analysis if the next operand is a reduction operation or 9360 // (possibly) a leaf value. If the leaf value opcode is not set, 9361 // the first met operation != reduction operation is considered as the 9362 // leaf opcode. 9363 // Only handle trees in the current basic block. 9364 // Each tree node needs to have minimal number of users except for the 9365 // ultimate reduction. 9366 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9367 if (EdgeInst != Phi && EdgeInst != Inst && 9368 hasSameParent(EdgeInst, Inst->getParent()) && 9369 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9370 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9371 if (IsRdxInst) { 9372 // We need to be able to reassociate the reduction operations. 9373 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9374 // I is an extra argument for TreeN (its parent operation). 9375 markExtraArg(Stack.back(), EdgeInst); 9376 continue; 9377 } 9378 } else if (!LeafOpcode) { 9379 LeafOpcode = EdgeInst->getOpcode(); 9380 } 9381 Stack.push_back( 9382 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9383 continue; 9384 } 9385 // I is an extra argument for TreeN (its parent operation). 9386 markExtraArg(Stack.back(), EdgeInst); 9387 } 9388 return true; 9389 } 9390 9391 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9392 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9393 // If there are a sufficient number of reduction values, reduce 9394 // to a nearby power-of-2. We can safely generate oversized 9395 // vectors and rely on the backend to split them to legal sizes. 9396 unsigned NumReducedVals = ReducedVals.size(); 9397 if (NumReducedVals < 4) 9398 return nullptr; 9399 9400 // Intersect the fast-math-flags from all reduction operations. 9401 FastMathFlags RdxFMF; 9402 RdxFMF.set(); 9403 for (ReductionOpsType &RdxOp : ReductionOps) { 9404 for (Value *RdxVal : RdxOp) { 9405 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9406 RdxFMF &= FPMO->getFastMathFlags(); 9407 } 9408 } 9409 9410 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9411 Builder.setFastMathFlags(RdxFMF); 9412 9413 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9414 // The same extra argument may be used several times, so log each attempt 9415 // to use it. 9416 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9417 assert(Pair.first && "DebugLoc must be set."); 9418 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9419 } 9420 9421 // The compare instruction of a min/max is the insertion point for new 9422 // instructions and may be replaced with a new compare instruction. 9423 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9424 assert(isa<SelectInst>(RdxRootInst) && 9425 "Expected min/max reduction to have select root instruction"); 9426 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9427 assert(isa<Instruction>(ScalarCond) && 9428 "Expected min/max reduction to have compare condition"); 9429 return cast<Instruction>(ScalarCond); 9430 }; 9431 9432 // The reduction root is used as the insertion point for new instructions, 9433 // so set it as externally used to prevent it from being deleted. 9434 ExternallyUsedValues[ReductionRoot]; 9435 SmallVector<Value *, 16> IgnoreList; 9436 for (ReductionOpsType &RdxOp : ReductionOps) 9437 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9438 9439 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9440 if (NumReducedVals > ReduxWidth) { 9441 // In the loop below, we are building a tree based on a window of 9442 // 'ReduxWidth' values. 9443 // If the operands of those values have common traits (compare predicate, 9444 // constant operand, etc), then we want to group those together to 9445 // minimize the cost of the reduction. 9446 9447 // TODO: This should be extended to count common operands for 9448 // compares and binops. 9449 9450 // Step 1: Count the number of times each compare predicate occurs. 9451 SmallDenseMap<unsigned, unsigned> PredCountMap; 9452 for (Value *RdxVal : ReducedVals) { 9453 CmpInst::Predicate Pred; 9454 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9455 ++PredCountMap[Pred]; 9456 } 9457 // Step 2: Sort the values so the most common predicates come first. 9458 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9459 CmpInst::Predicate PredA, PredB; 9460 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9461 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9462 return PredCountMap[PredA] > PredCountMap[PredB]; 9463 } 9464 return false; 9465 }); 9466 } 9467 9468 Value *VectorizedTree = nullptr; 9469 unsigned i = 0; 9470 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9471 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9472 V.buildTree(VL, IgnoreList); 9473 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9474 break; 9475 if (V.isLoadCombineReductionCandidate(RdxKind)) 9476 break; 9477 V.reorderTopToBottom(); 9478 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9479 V.buildExternalUses(ExternallyUsedValues); 9480 9481 // For a poison-safe boolean logic reduction, do not replace select 9482 // instructions with logic ops. All reduced values will be frozen (see 9483 // below) to prevent leaking poison. 9484 if (isa<SelectInst>(ReductionRoot) && 9485 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9486 NumReducedVals != ReduxWidth) 9487 break; 9488 9489 V.computeMinimumValueSizes(); 9490 9491 // Estimate cost. 9492 InstructionCost TreeCost = 9493 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9494 InstructionCost ReductionCost = 9495 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9496 InstructionCost Cost = TreeCost + ReductionCost; 9497 if (!Cost.isValid()) { 9498 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9499 return nullptr; 9500 } 9501 if (Cost >= -SLPCostThreshold) { 9502 V.getORE()->emit([&]() { 9503 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9504 cast<Instruction>(VL[0])) 9505 << "Vectorizing horizontal reduction is possible" 9506 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9507 << " and threshold " 9508 << ore::NV("Threshold", -SLPCostThreshold); 9509 }); 9510 break; 9511 } 9512 9513 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9514 << Cost << ". (HorRdx)\n"); 9515 V.getORE()->emit([&]() { 9516 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9517 cast<Instruction>(VL[0])) 9518 << "Vectorized horizontal reduction with cost " 9519 << ore::NV("Cost", Cost) << " and with tree size " 9520 << ore::NV("TreeSize", V.getTreeSize()); 9521 }); 9522 9523 // Vectorize a tree. 9524 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9525 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9526 9527 // Emit a reduction. If the root is a select (min/max idiom), the insert 9528 // point is the compare condition of that select. 9529 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9530 if (isCmpSelMinMax(RdxRootInst)) 9531 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9532 else 9533 Builder.SetInsertPoint(RdxRootInst); 9534 9535 // To prevent poison from leaking across what used to be sequential, safe, 9536 // scalar boolean logic operations, the reduction operand must be frozen. 9537 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9538 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9539 9540 Value *ReducedSubTree = 9541 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9542 9543 if (!VectorizedTree) { 9544 // Initialize the final value in the reduction. 9545 VectorizedTree = ReducedSubTree; 9546 } else { 9547 // Update the final value in the reduction. 9548 Builder.SetCurrentDebugLocation(Loc); 9549 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9550 ReducedSubTree, "op.rdx", ReductionOps); 9551 } 9552 i += ReduxWidth; 9553 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9554 } 9555 9556 if (VectorizedTree) { 9557 // Finish the reduction. 9558 for (; i < NumReducedVals; ++i) { 9559 auto *I = cast<Instruction>(ReducedVals[i]); 9560 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9561 VectorizedTree = 9562 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9563 } 9564 for (auto &Pair : ExternallyUsedValues) { 9565 // Add each externally used value to the final reduction. 9566 for (auto *I : Pair.second) { 9567 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9568 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9569 Pair.first, "op.extra", I); 9570 } 9571 } 9572 9573 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9574 9575 // Mark all scalar reduction ops for deletion, they are replaced by the 9576 // vector reductions. 9577 V.eraseInstructions(IgnoreList); 9578 } 9579 return VectorizedTree; 9580 } 9581 9582 unsigned numReductionValues() const { return ReducedVals.size(); } 9583 9584 private: 9585 /// Calculate the cost of a reduction. 9586 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9587 Value *FirstReducedVal, unsigned ReduxWidth, 9588 FastMathFlags FMF) { 9589 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9590 Type *ScalarTy = FirstReducedVal->getType(); 9591 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9592 InstructionCost VectorCost, ScalarCost; 9593 switch (RdxKind) { 9594 case RecurKind::Add: 9595 case RecurKind::Mul: 9596 case RecurKind::Or: 9597 case RecurKind::And: 9598 case RecurKind::Xor: 9599 case RecurKind::FAdd: 9600 case RecurKind::FMul: { 9601 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9602 VectorCost = 9603 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9604 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9605 break; 9606 } 9607 case RecurKind::FMax: 9608 case RecurKind::FMin: { 9609 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9610 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9611 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9612 /*IsUnsigned=*/false, CostKind); 9613 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9614 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9615 SclCondTy, RdxPred, CostKind) + 9616 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9617 SclCondTy, RdxPred, CostKind); 9618 break; 9619 } 9620 case RecurKind::SMax: 9621 case RecurKind::SMin: 9622 case RecurKind::UMax: 9623 case RecurKind::UMin: { 9624 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9625 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9626 bool IsUnsigned = 9627 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9628 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9629 CostKind); 9630 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9631 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9632 SclCondTy, RdxPred, CostKind) + 9633 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9634 SclCondTy, RdxPred, CostKind); 9635 break; 9636 } 9637 default: 9638 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9639 } 9640 9641 // Scalar cost is repeated for N-1 elements. 9642 ScalarCost *= (ReduxWidth - 1); 9643 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9644 << " for reduction that starts with " << *FirstReducedVal 9645 << " (It is a splitting reduction)\n"); 9646 return VectorCost - ScalarCost; 9647 } 9648 9649 /// Emit a horizontal reduction of the vectorized value. 9650 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9651 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9652 assert(VectorizedValue && "Need to have a vectorized tree node"); 9653 assert(isPowerOf2_32(ReduxWidth) && 9654 "We only handle power-of-two reductions for now"); 9655 assert(RdxKind != RecurKind::FMulAdd && 9656 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9657 9658 ++NumVectorInstructions; 9659 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9660 } 9661 }; 9662 9663 } // end anonymous namespace 9664 9665 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9666 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9667 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9668 9669 unsigned AggregateSize = 1; 9670 auto *IV = cast<InsertValueInst>(InsertInst); 9671 Type *CurrentType = IV->getType(); 9672 do { 9673 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9674 for (auto *Elt : ST->elements()) 9675 if (Elt != ST->getElementType(0)) // check homogeneity 9676 return None; 9677 AggregateSize *= ST->getNumElements(); 9678 CurrentType = ST->getElementType(0); 9679 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9680 AggregateSize *= AT->getNumElements(); 9681 CurrentType = AT->getElementType(); 9682 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9683 AggregateSize *= VT->getNumElements(); 9684 return AggregateSize; 9685 } else if (CurrentType->isSingleValueType()) { 9686 return AggregateSize; 9687 } else { 9688 return None; 9689 } 9690 } while (true); 9691 } 9692 9693 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9694 TargetTransformInfo *TTI, 9695 SmallVectorImpl<Value *> &BuildVectorOpds, 9696 SmallVectorImpl<Value *> &InsertElts, 9697 unsigned OperandOffset) { 9698 do { 9699 Value *InsertedOperand = LastInsertInst->getOperand(1); 9700 Optional<unsigned> OperandIndex = 9701 getInsertIndex(LastInsertInst, OperandOffset); 9702 if (!OperandIndex) 9703 return; 9704 if (isa<InsertElementInst>(InsertedOperand) || 9705 isa<InsertValueInst>(InsertedOperand)) { 9706 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9707 BuildVectorOpds, InsertElts, *OperandIndex); 9708 9709 } else { 9710 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9711 InsertElts[*OperandIndex] = LastInsertInst; 9712 } 9713 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9714 } while (LastInsertInst != nullptr && 9715 (isa<InsertValueInst>(LastInsertInst) || 9716 isa<InsertElementInst>(LastInsertInst)) && 9717 LastInsertInst->hasOneUse()); 9718 } 9719 9720 /// Recognize construction of vectors like 9721 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9722 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9723 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9724 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9725 /// starting from the last insertelement or insertvalue instruction. 9726 /// 9727 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9728 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9729 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9730 /// 9731 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9732 /// 9733 /// \return true if it matches. 9734 static bool findBuildAggregate(Instruction *LastInsertInst, 9735 TargetTransformInfo *TTI, 9736 SmallVectorImpl<Value *> &BuildVectorOpds, 9737 SmallVectorImpl<Value *> &InsertElts) { 9738 9739 assert((isa<InsertElementInst>(LastInsertInst) || 9740 isa<InsertValueInst>(LastInsertInst)) && 9741 "Expected insertelement or insertvalue instruction!"); 9742 9743 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9744 "Expected empty result vectors!"); 9745 9746 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9747 if (!AggregateSize) 9748 return false; 9749 BuildVectorOpds.resize(*AggregateSize); 9750 InsertElts.resize(*AggregateSize); 9751 9752 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9753 llvm::erase_value(BuildVectorOpds, nullptr); 9754 llvm::erase_value(InsertElts, nullptr); 9755 if (BuildVectorOpds.size() >= 2) 9756 return true; 9757 9758 return false; 9759 } 9760 9761 /// Try and get a reduction value from a phi node. 9762 /// 9763 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9764 /// if they come from either \p ParentBB or a containing loop latch. 9765 /// 9766 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9767 /// if not possible. 9768 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9769 BasicBlock *ParentBB, LoopInfo *LI) { 9770 // There are situations where the reduction value is not dominated by the 9771 // reduction phi. Vectorizing such cases has been reported to cause 9772 // miscompiles. See PR25787. 9773 auto DominatedReduxValue = [&](Value *R) { 9774 return isa<Instruction>(R) && 9775 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9776 }; 9777 9778 Value *Rdx = nullptr; 9779 9780 // Return the incoming value if it comes from the same BB as the phi node. 9781 if (P->getIncomingBlock(0) == ParentBB) { 9782 Rdx = P->getIncomingValue(0); 9783 } else if (P->getIncomingBlock(1) == ParentBB) { 9784 Rdx = P->getIncomingValue(1); 9785 } 9786 9787 if (Rdx && DominatedReduxValue(Rdx)) 9788 return Rdx; 9789 9790 // Otherwise, check whether we have a loop latch to look at. 9791 Loop *BBL = LI->getLoopFor(ParentBB); 9792 if (!BBL) 9793 return nullptr; 9794 BasicBlock *BBLatch = BBL->getLoopLatch(); 9795 if (!BBLatch) 9796 return nullptr; 9797 9798 // There is a loop latch, return the incoming value if it comes from 9799 // that. This reduction pattern occasionally turns up. 9800 if (P->getIncomingBlock(0) == BBLatch) { 9801 Rdx = P->getIncomingValue(0); 9802 } else if (P->getIncomingBlock(1) == BBLatch) { 9803 Rdx = P->getIncomingValue(1); 9804 } 9805 9806 if (Rdx && DominatedReduxValue(Rdx)) 9807 return Rdx; 9808 9809 return nullptr; 9810 } 9811 9812 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9813 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9814 return true; 9815 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9816 return true; 9817 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9818 return true; 9819 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9820 return true; 9821 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9822 return true; 9823 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9824 return true; 9825 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9826 return true; 9827 return false; 9828 } 9829 9830 /// Attempt to reduce a horizontal reduction. 9831 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9832 /// with reduction operators \a Root (or one of its operands) in a basic block 9833 /// \a BB, then check if it can be done. If horizontal reduction is not found 9834 /// and root instruction is a binary operation, vectorization of the operands is 9835 /// attempted. 9836 /// \returns true if a horizontal reduction was matched and reduced or operands 9837 /// of one of the binary instruction were vectorized. 9838 /// \returns false if a horizontal reduction was not matched (or not possible) 9839 /// or no vectorization of any binary operation feeding \a Root instruction was 9840 /// performed. 9841 static bool tryToVectorizeHorReductionOrInstOperands( 9842 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9843 TargetTransformInfo *TTI, 9844 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9845 if (!ShouldVectorizeHor) 9846 return false; 9847 9848 if (!Root) 9849 return false; 9850 9851 if (Root->getParent() != BB || isa<PHINode>(Root)) 9852 return false; 9853 // Start analysis starting from Root instruction. If horizontal reduction is 9854 // found, try to vectorize it. If it is not a horizontal reduction or 9855 // vectorization is not possible or not effective, and currently analyzed 9856 // instruction is a binary operation, try to vectorize the operands, using 9857 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9858 // the same procedure considering each operand as a possible root of the 9859 // horizontal reduction. 9860 // Interrupt the process if the Root instruction itself was vectorized or all 9861 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9862 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9863 // CmpInsts so we can skip extra attempts in 9864 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9865 std::queue<std::pair<Instruction *, unsigned>> Stack; 9866 Stack.emplace(Root, 0); 9867 SmallPtrSet<Value *, 8> VisitedInstrs; 9868 SmallVector<WeakTrackingVH> PostponedInsts; 9869 bool Res = false; 9870 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9871 Value *&B1) -> Value * { 9872 bool IsBinop = matchRdxBop(Inst, B0, B1); 9873 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9874 if (IsBinop || IsSelect) { 9875 HorizontalReduction HorRdx; 9876 if (HorRdx.matchAssociativeReduction(P, Inst)) 9877 return HorRdx.tryToReduce(R, TTI); 9878 } 9879 return nullptr; 9880 }; 9881 while (!Stack.empty()) { 9882 Instruction *Inst; 9883 unsigned Level; 9884 std::tie(Inst, Level) = Stack.front(); 9885 Stack.pop(); 9886 // Do not try to analyze instruction that has already been vectorized. 9887 // This may happen when we vectorize instruction operands on a previous 9888 // iteration while stack was populated before that happened. 9889 if (R.isDeleted(Inst)) 9890 continue; 9891 Value *B0 = nullptr, *B1 = nullptr; 9892 if (Value *V = TryToReduce(Inst, B0, B1)) { 9893 Res = true; 9894 // Set P to nullptr to avoid re-analysis of phi node in 9895 // matchAssociativeReduction function unless this is the root node. 9896 P = nullptr; 9897 if (auto *I = dyn_cast<Instruction>(V)) { 9898 // Try to find another reduction. 9899 Stack.emplace(I, Level); 9900 continue; 9901 } 9902 } else { 9903 bool IsBinop = B0 && B1; 9904 if (P && IsBinop) { 9905 Inst = dyn_cast<Instruction>(B0); 9906 if (Inst == P) 9907 Inst = dyn_cast<Instruction>(B1); 9908 if (!Inst) { 9909 // Set P to nullptr to avoid re-analysis of phi node in 9910 // matchAssociativeReduction function unless this is the root node. 9911 P = nullptr; 9912 continue; 9913 } 9914 } 9915 // Set P to nullptr to avoid re-analysis of phi node in 9916 // matchAssociativeReduction function unless this is the root node. 9917 P = nullptr; 9918 // Do not try to vectorize CmpInst operands, this is done separately. 9919 // Final attempt for binop args vectorization should happen after the loop 9920 // to try to find reductions. 9921 if (!isa<CmpInst>(Inst)) 9922 PostponedInsts.push_back(Inst); 9923 } 9924 9925 // Try to vectorize operands. 9926 // Continue analysis for the instruction from the same basic block only to 9927 // save compile time. 9928 if (++Level < RecursionMaxDepth) 9929 for (auto *Op : Inst->operand_values()) 9930 if (VisitedInstrs.insert(Op).second) 9931 if (auto *I = dyn_cast<Instruction>(Op)) 9932 // Do not try to vectorize CmpInst operands, this is done 9933 // separately. 9934 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9935 I->getParent() == BB) 9936 Stack.emplace(I, Level); 9937 } 9938 // Try to vectorized binops where reductions were not found. 9939 for (Value *V : PostponedInsts) 9940 if (auto *Inst = dyn_cast<Instruction>(V)) 9941 if (!R.isDeleted(Inst)) 9942 Res |= Vectorize(Inst, R); 9943 return Res; 9944 } 9945 9946 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9947 BasicBlock *BB, BoUpSLP &R, 9948 TargetTransformInfo *TTI) { 9949 auto *I = dyn_cast_or_null<Instruction>(V); 9950 if (!I) 9951 return false; 9952 9953 if (!isa<BinaryOperator>(I)) 9954 P = nullptr; 9955 // Try to match and vectorize a horizontal reduction. 9956 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9957 return tryToVectorize(I, R); 9958 }; 9959 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9960 ExtraVectorization); 9961 } 9962 9963 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9964 BasicBlock *BB, BoUpSLP &R) { 9965 const DataLayout &DL = BB->getModule()->getDataLayout(); 9966 if (!R.canMapToVector(IVI->getType(), DL)) 9967 return false; 9968 9969 SmallVector<Value *, 16> BuildVectorOpds; 9970 SmallVector<Value *, 16> BuildVectorInsts; 9971 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9972 return false; 9973 9974 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9975 // Aggregate value is unlikely to be processed in vector register. 9976 return tryToVectorizeList(BuildVectorOpds, R); 9977 } 9978 9979 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9980 BasicBlock *BB, BoUpSLP &R) { 9981 SmallVector<Value *, 16> BuildVectorInsts; 9982 SmallVector<Value *, 16> BuildVectorOpds; 9983 SmallVector<int> Mask; 9984 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9985 (llvm::all_of( 9986 BuildVectorOpds, 9987 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9988 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9989 return false; 9990 9991 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9992 return tryToVectorizeList(BuildVectorInsts, R); 9993 } 9994 9995 template <typename T> 9996 static bool 9997 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9998 function_ref<unsigned(T *)> Limit, 9999 function_ref<bool(T *, T *)> Comparator, 10000 function_ref<bool(T *, T *)> AreCompatible, 10001 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10002 bool LimitForRegisterSize) { 10003 bool Changed = false; 10004 // Sort by type, parent, operands. 10005 stable_sort(Incoming, Comparator); 10006 10007 // Try to vectorize elements base on their type. 10008 SmallVector<T *> Candidates; 10009 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10010 // Look for the next elements with the same type, parent and operand 10011 // kinds. 10012 auto *SameTypeIt = IncIt; 10013 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10014 ++SameTypeIt; 10015 10016 // Try to vectorize them. 10017 unsigned NumElts = (SameTypeIt - IncIt); 10018 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10019 << NumElts << ")\n"); 10020 // The vectorization is a 3-state attempt: 10021 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10022 // size of maximal register at first. 10023 // 2. Try to vectorize remaining instructions with the same type, if 10024 // possible. This may result in the better vectorization results rather than 10025 // if we try just to vectorize instructions with the same/alternate opcodes. 10026 // 3. Final attempt to try to vectorize all instructions with the 10027 // same/alternate ops only, this may result in some extra final 10028 // vectorization. 10029 if (NumElts > 1 && 10030 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10031 // Success start over because instructions might have been changed. 10032 Changed = true; 10033 } else if (NumElts < Limit(*IncIt) && 10034 (Candidates.empty() || 10035 Candidates.front()->getType() == (*IncIt)->getType())) { 10036 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10037 } 10038 // Final attempt to vectorize instructions with the same types. 10039 if (Candidates.size() > 1 && 10040 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10041 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10042 // Success start over because instructions might have been changed. 10043 Changed = true; 10044 } else if (LimitForRegisterSize) { 10045 // Try to vectorize using small vectors. 10046 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10047 It != End;) { 10048 auto *SameTypeIt = It; 10049 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10050 ++SameTypeIt; 10051 unsigned NumElts = (SameTypeIt - It); 10052 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10053 /*LimitForRegisterSize=*/false)) 10054 Changed = true; 10055 It = SameTypeIt; 10056 } 10057 } 10058 Candidates.clear(); 10059 } 10060 10061 // Start over at the next instruction of a different type (or the end). 10062 IncIt = SameTypeIt; 10063 } 10064 return Changed; 10065 } 10066 10067 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10068 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10069 /// operands. If IsCompatibility is false, function implements strict weak 10070 /// ordering relation between two cmp instructions, returning true if the first 10071 /// instruction is "less" than the second, i.e. its predicate is less than the 10072 /// predicate of the second or the operands IDs are less than the operands IDs 10073 /// of the second cmp instruction. 10074 template <bool IsCompatibility> 10075 static bool compareCmp(Value *V, Value *V2, 10076 function_ref<bool(Instruction *)> IsDeleted) { 10077 auto *CI1 = cast<CmpInst>(V); 10078 auto *CI2 = cast<CmpInst>(V2); 10079 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10080 return false; 10081 if (CI1->getOperand(0)->getType()->getTypeID() < 10082 CI2->getOperand(0)->getType()->getTypeID()) 10083 return !IsCompatibility; 10084 if (CI1->getOperand(0)->getType()->getTypeID() > 10085 CI2->getOperand(0)->getType()->getTypeID()) 10086 return false; 10087 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10088 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10089 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10090 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10091 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10092 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10093 if (BasePred1 < BasePred2) 10094 return !IsCompatibility; 10095 if (BasePred1 > BasePred2) 10096 return false; 10097 // Compare operands. 10098 bool LEPreds = Pred1 <= Pred2; 10099 bool GEPreds = Pred1 >= Pred2; 10100 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10101 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10102 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10103 if (Op1->getValueID() < Op2->getValueID()) 10104 return !IsCompatibility; 10105 if (Op1->getValueID() > Op2->getValueID()) 10106 return false; 10107 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10108 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10109 if (I1->getParent() != I2->getParent()) 10110 return false; 10111 InstructionsState S = getSameOpcode({I1, I2}); 10112 if (S.getOpcode()) 10113 continue; 10114 return false; 10115 } 10116 } 10117 return IsCompatibility; 10118 } 10119 10120 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10121 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10122 bool AtTerminator) { 10123 bool OpsChanged = false; 10124 SmallVector<Instruction *, 4> PostponedCmps; 10125 for (auto *I : reverse(Instructions)) { 10126 if (R.isDeleted(I)) 10127 continue; 10128 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10129 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10130 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10131 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10132 else if (isa<CmpInst>(I)) 10133 PostponedCmps.push_back(I); 10134 } 10135 if (AtTerminator) { 10136 // Try to find reductions first. 10137 for (Instruction *I : PostponedCmps) { 10138 if (R.isDeleted(I)) 10139 continue; 10140 for (Value *Op : I->operands()) 10141 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10142 } 10143 // Try to vectorize operands as vector bundles. 10144 for (Instruction *I : PostponedCmps) { 10145 if (R.isDeleted(I)) 10146 continue; 10147 OpsChanged |= tryToVectorize(I, R); 10148 } 10149 // Try to vectorize list of compares. 10150 // Sort by type, compare predicate, etc. 10151 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10152 return compareCmp<false>(V, V2, 10153 [&R](Instruction *I) { return R.isDeleted(I); }); 10154 }; 10155 10156 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10157 if (V1 == V2) 10158 return true; 10159 return compareCmp<true>(V1, V2, 10160 [&R](Instruction *I) { return R.isDeleted(I); }); 10161 }; 10162 auto Limit = [&R](Value *V) { 10163 unsigned EltSize = R.getVectorElementSize(V); 10164 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10165 }; 10166 10167 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10168 OpsChanged |= tryToVectorizeSequence<Value>( 10169 Vals, Limit, CompareSorter, AreCompatibleCompares, 10170 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10171 // Exclude possible reductions from other blocks. 10172 bool ArePossiblyReducedInOtherBlock = 10173 any_of(Candidates, [](Value *V) { 10174 return any_of(V->users(), [V](User *U) { 10175 return isa<SelectInst>(U) && 10176 cast<SelectInst>(U)->getParent() != 10177 cast<Instruction>(V)->getParent(); 10178 }); 10179 }); 10180 if (ArePossiblyReducedInOtherBlock) 10181 return false; 10182 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10183 }, 10184 /*LimitForRegisterSize=*/true); 10185 Instructions.clear(); 10186 } else { 10187 // Insert in reverse order since the PostponedCmps vector was filled in 10188 // reverse order. 10189 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10190 } 10191 return OpsChanged; 10192 } 10193 10194 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10195 bool Changed = false; 10196 SmallVector<Value *, 4> Incoming; 10197 SmallPtrSet<Value *, 16> VisitedInstrs; 10198 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10199 // node. Allows better to identify the chains that can be vectorized in the 10200 // better way. 10201 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10202 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10203 assert(isValidElementType(V1->getType()) && 10204 isValidElementType(V2->getType()) && 10205 "Expected vectorizable types only."); 10206 // It is fine to compare type IDs here, since we expect only vectorizable 10207 // types, like ints, floats and pointers, we don't care about other type. 10208 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10209 return true; 10210 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10211 return false; 10212 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10213 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10214 if (Opcodes1.size() < Opcodes2.size()) 10215 return true; 10216 if (Opcodes1.size() > Opcodes2.size()) 10217 return false; 10218 Optional<bool> ConstOrder; 10219 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10220 // Undefs are compatible with any other value. 10221 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10222 if (!ConstOrder) 10223 ConstOrder = 10224 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10225 continue; 10226 } 10227 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10228 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10229 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10230 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10231 if (!NodeI1) 10232 return NodeI2 != nullptr; 10233 if (!NodeI2) 10234 return false; 10235 assert((NodeI1 == NodeI2) == 10236 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10237 "Different nodes should have different DFS numbers"); 10238 if (NodeI1 != NodeI2) 10239 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10240 InstructionsState S = getSameOpcode({I1, I2}); 10241 if (S.getOpcode()) 10242 continue; 10243 return I1->getOpcode() < I2->getOpcode(); 10244 } 10245 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10246 if (!ConstOrder) 10247 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10248 continue; 10249 } 10250 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10251 return true; 10252 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10253 return false; 10254 } 10255 return ConstOrder && *ConstOrder; 10256 }; 10257 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10258 if (V1 == V2) 10259 return true; 10260 if (V1->getType() != V2->getType()) 10261 return false; 10262 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10263 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10264 if (Opcodes1.size() != Opcodes2.size()) 10265 return false; 10266 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10267 // Undefs are compatible with any other value. 10268 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10269 continue; 10270 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10271 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10272 if (I1->getParent() != I2->getParent()) 10273 return false; 10274 InstructionsState S = getSameOpcode({I1, I2}); 10275 if (S.getOpcode()) 10276 continue; 10277 return false; 10278 } 10279 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10280 continue; 10281 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10282 return false; 10283 } 10284 return true; 10285 }; 10286 auto Limit = [&R](Value *V) { 10287 unsigned EltSize = R.getVectorElementSize(V); 10288 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10289 }; 10290 10291 bool HaveVectorizedPhiNodes = false; 10292 do { 10293 // Collect the incoming values from the PHIs. 10294 Incoming.clear(); 10295 for (Instruction &I : *BB) { 10296 PHINode *P = dyn_cast<PHINode>(&I); 10297 if (!P) 10298 break; 10299 10300 // No need to analyze deleted, vectorized and non-vectorizable 10301 // instructions. 10302 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10303 isValidElementType(P->getType())) 10304 Incoming.push_back(P); 10305 } 10306 10307 // Find the corresponding non-phi nodes for better matching when trying to 10308 // build the tree. 10309 for (Value *V : Incoming) { 10310 SmallVectorImpl<Value *> &Opcodes = 10311 PHIToOpcodes.try_emplace(V).first->getSecond(); 10312 if (!Opcodes.empty()) 10313 continue; 10314 SmallVector<Value *, 4> Nodes(1, V); 10315 SmallPtrSet<Value *, 4> Visited; 10316 while (!Nodes.empty()) { 10317 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10318 if (!Visited.insert(PHI).second) 10319 continue; 10320 for (Value *V : PHI->incoming_values()) { 10321 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10322 Nodes.push_back(PHI1); 10323 continue; 10324 } 10325 Opcodes.emplace_back(V); 10326 } 10327 } 10328 } 10329 10330 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10331 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10332 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10333 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10334 }, 10335 /*LimitForRegisterSize=*/true); 10336 Changed |= HaveVectorizedPhiNodes; 10337 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10338 } while (HaveVectorizedPhiNodes); 10339 10340 VisitedInstrs.clear(); 10341 10342 SmallVector<Instruction *, 8> PostProcessInstructions; 10343 SmallDenseSet<Instruction *, 4> KeyNodes; 10344 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10345 // Skip instructions with scalable type. The num of elements is unknown at 10346 // compile-time for scalable type. 10347 if (isa<ScalableVectorType>(it->getType())) 10348 continue; 10349 10350 // Skip instructions marked for the deletion. 10351 if (R.isDeleted(&*it)) 10352 continue; 10353 // We may go through BB multiple times so skip the one we have checked. 10354 if (!VisitedInstrs.insert(&*it).second) { 10355 if (it->use_empty() && KeyNodes.contains(&*it) && 10356 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10357 it->isTerminator())) { 10358 // We would like to start over since some instructions are deleted 10359 // and the iterator may become invalid value. 10360 Changed = true; 10361 it = BB->begin(); 10362 e = BB->end(); 10363 } 10364 continue; 10365 } 10366 10367 if (isa<DbgInfoIntrinsic>(it)) 10368 continue; 10369 10370 // Try to vectorize reductions that use PHINodes. 10371 if (PHINode *P = dyn_cast<PHINode>(it)) { 10372 // Check that the PHI is a reduction PHI. 10373 if (P->getNumIncomingValues() == 2) { 10374 // Try to match and vectorize a horizontal reduction. 10375 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10376 TTI)) { 10377 Changed = true; 10378 it = BB->begin(); 10379 e = BB->end(); 10380 continue; 10381 } 10382 } 10383 // Try to vectorize the incoming values of the PHI, to catch reductions 10384 // that feed into PHIs. 10385 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10386 // Skip if the incoming block is the current BB for now. Also, bypass 10387 // unreachable IR for efficiency and to avoid crashing. 10388 // TODO: Collect the skipped incoming values and try to vectorize them 10389 // after processing BB. 10390 if (BB == P->getIncomingBlock(I) || 10391 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10392 continue; 10393 10394 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10395 P->getIncomingBlock(I), R, TTI); 10396 } 10397 continue; 10398 } 10399 10400 // Ran into an instruction without users, like terminator, or function call 10401 // with ignored return value, store. Ignore unused instructions (basing on 10402 // instruction type, except for CallInst and InvokeInst). 10403 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10404 isa<InvokeInst>(it))) { 10405 KeyNodes.insert(&*it); 10406 bool OpsChanged = false; 10407 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10408 for (auto *V : it->operand_values()) { 10409 // Try to match and vectorize a horizontal reduction. 10410 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10411 } 10412 } 10413 // Start vectorization of post-process list of instructions from the 10414 // top-tree instructions to try to vectorize as many instructions as 10415 // possible. 10416 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10417 it->isTerminator()); 10418 if (OpsChanged) { 10419 // We would like to start over since some instructions are deleted 10420 // and the iterator may become invalid value. 10421 Changed = true; 10422 it = BB->begin(); 10423 e = BB->end(); 10424 continue; 10425 } 10426 } 10427 10428 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10429 isa<InsertValueInst>(it)) 10430 PostProcessInstructions.push_back(&*it); 10431 } 10432 10433 return Changed; 10434 } 10435 10436 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10437 auto Changed = false; 10438 for (auto &Entry : GEPs) { 10439 // If the getelementptr list has fewer than two elements, there's nothing 10440 // to do. 10441 if (Entry.second.size() < 2) 10442 continue; 10443 10444 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10445 << Entry.second.size() << ".\n"); 10446 10447 // Process the GEP list in chunks suitable for the target's supported 10448 // vector size. If a vector register can't hold 1 element, we are done. We 10449 // are trying to vectorize the index computations, so the maximum number of 10450 // elements is based on the size of the index expression, rather than the 10451 // size of the GEP itself (the target's pointer size). 10452 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10453 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10454 if (MaxVecRegSize < EltSize) 10455 continue; 10456 10457 unsigned MaxElts = MaxVecRegSize / EltSize; 10458 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10459 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10460 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10461 10462 // Initialize a set a candidate getelementptrs. Note that we use a 10463 // SetVector here to preserve program order. If the index computations 10464 // are vectorizable and begin with loads, we want to minimize the chance 10465 // of having to reorder them later. 10466 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10467 10468 // Some of the candidates may have already been vectorized after we 10469 // initially collected them. If so, they are marked as deleted, so remove 10470 // them from the set of candidates. 10471 Candidates.remove_if( 10472 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10473 10474 // Remove from the set of candidates all pairs of getelementptrs with 10475 // constant differences. Such getelementptrs are likely not good 10476 // candidates for vectorization in a bottom-up phase since one can be 10477 // computed from the other. We also ensure all candidate getelementptr 10478 // indices are unique. 10479 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10480 auto *GEPI = GEPList[I]; 10481 if (!Candidates.count(GEPI)) 10482 continue; 10483 auto *SCEVI = SE->getSCEV(GEPList[I]); 10484 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10485 auto *GEPJ = GEPList[J]; 10486 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10487 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10488 Candidates.remove(GEPI); 10489 Candidates.remove(GEPJ); 10490 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10491 Candidates.remove(GEPJ); 10492 } 10493 } 10494 } 10495 10496 // We break out of the above computation as soon as we know there are 10497 // fewer than two candidates remaining. 10498 if (Candidates.size() < 2) 10499 continue; 10500 10501 // Add the single, non-constant index of each candidate to the bundle. We 10502 // ensured the indices met these constraints when we originally collected 10503 // the getelementptrs. 10504 SmallVector<Value *, 16> Bundle(Candidates.size()); 10505 auto BundleIndex = 0u; 10506 for (auto *V : Candidates) { 10507 auto *GEP = cast<GetElementPtrInst>(V); 10508 auto *GEPIdx = GEP->idx_begin()->get(); 10509 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10510 Bundle[BundleIndex++] = GEPIdx; 10511 } 10512 10513 // Try and vectorize the indices. We are currently only interested in 10514 // gather-like cases of the form: 10515 // 10516 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10517 // 10518 // where the loads of "a", the loads of "b", and the subtractions can be 10519 // performed in parallel. It's likely that detecting this pattern in a 10520 // bottom-up phase will be simpler and less costly than building a 10521 // full-blown top-down phase beginning at the consecutive loads. 10522 Changed |= tryToVectorizeList(Bundle, R); 10523 } 10524 } 10525 return Changed; 10526 } 10527 10528 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10529 bool Changed = false; 10530 // Sort by type, base pointers and values operand. Value operands must be 10531 // compatible (have the same opcode, same parent), otherwise it is 10532 // definitely not profitable to try to vectorize them. 10533 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10534 if (V->getPointerOperandType()->getTypeID() < 10535 V2->getPointerOperandType()->getTypeID()) 10536 return true; 10537 if (V->getPointerOperandType()->getTypeID() > 10538 V2->getPointerOperandType()->getTypeID()) 10539 return false; 10540 // UndefValues are compatible with all other values. 10541 if (isa<UndefValue>(V->getValueOperand()) || 10542 isa<UndefValue>(V2->getValueOperand())) 10543 return false; 10544 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10545 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10546 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10547 DT->getNode(I1->getParent()); 10548 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10549 DT->getNode(I2->getParent()); 10550 assert(NodeI1 && "Should only process reachable instructions"); 10551 assert(NodeI1 && "Should only process reachable instructions"); 10552 assert((NodeI1 == NodeI2) == 10553 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10554 "Different nodes should have different DFS numbers"); 10555 if (NodeI1 != NodeI2) 10556 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10557 InstructionsState S = getSameOpcode({I1, I2}); 10558 if (S.getOpcode()) 10559 return false; 10560 return I1->getOpcode() < I2->getOpcode(); 10561 } 10562 if (isa<Constant>(V->getValueOperand()) && 10563 isa<Constant>(V2->getValueOperand())) 10564 return false; 10565 return V->getValueOperand()->getValueID() < 10566 V2->getValueOperand()->getValueID(); 10567 }; 10568 10569 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10570 if (V1 == V2) 10571 return true; 10572 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10573 return false; 10574 // Undefs are compatible with any other value. 10575 if (isa<UndefValue>(V1->getValueOperand()) || 10576 isa<UndefValue>(V2->getValueOperand())) 10577 return true; 10578 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10579 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10580 if (I1->getParent() != I2->getParent()) 10581 return false; 10582 InstructionsState S = getSameOpcode({I1, I2}); 10583 return S.getOpcode() > 0; 10584 } 10585 if (isa<Constant>(V1->getValueOperand()) && 10586 isa<Constant>(V2->getValueOperand())) 10587 return true; 10588 return V1->getValueOperand()->getValueID() == 10589 V2->getValueOperand()->getValueID(); 10590 }; 10591 auto Limit = [&R, this](StoreInst *SI) { 10592 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10593 return R.getMinVF(EltSize); 10594 }; 10595 10596 // Attempt to sort and vectorize each of the store-groups. 10597 for (auto &Pair : Stores) { 10598 if (Pair.second.size() < 2) 10599 continue; 10600 10601 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10602 << Pair.second.size() << ".\n"); 10603 10604 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10605 continue; 10606 10607 Changed |= tryToVectorizeSequence<StoreInst>( 10608 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10609 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10610 return vectorizeStores(Candidates, R); 10611 }, 10612 /*LimitForRegisterSize=*/false); 10613 } 10614 return Changed; 10615 } 10616 10617 char SLPVectorizer::ID = 0; 10618 10619 static const char lv_name[] = "SLP Vectorizer"; 10620 10621 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10622 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10623 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10624 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10625 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10626 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10627 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10628 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10629 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10630 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10631 10632 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10633