1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants. 198 static bool allConstant(ArrayRef<Value *> VL) { 199 for (Value *i : VL) 200 if (!isa<Constant>(i)) 201 return false; 202 return true; 203 } 204 205 /// \returns True if all of the values in \p VL are identical. 206 static bool isSplat(ArrayRef<Value *> VL) { 207 for (unsigned i = 1, e = VL.size(); i < e; ++i) 208 if (VL[i] != VL[0]) 209 return false; 210 return true; 211 } 212 213 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 214 static bool isCommutative(Instruction *I) { 215 if (auto *IC = dyn_cast<CmpInst>(I)) 216 return IC->isCommutative(); 217 return I->isCommutative(); 218 } 219 220 /// Checks if the vector of instructions can be represented as a shuffle, like: 221 /// %x0 = extractelement <4 x i8> %x, i32 0 222 /// %x3 = extractelement <4 x i8> %x, i32 3 223 /// %y1 = extractelement <4 x i8> %y, i32 1 224 /// %y2 = extractelement <4 x i8> %y, i32 2 225 /// %x0x0 = mul i8 %x0, %x0 226 /// %x3x3 = mul i8 %x3, %x3 227 /// %y1y1 = mul i8 %y1, %y1 228 /// %y2y2 = mul i8 %y2, %y2 229 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 230 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 231 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 232 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 233 /// ret <4 x i8> %ins4 234 /// can be transformed into: 235 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 236 /// i32 6> 237 /// %2 = mul <4 x i8> %1, %1 238 /// ret <4 x i8> %2 239 /// We convert this initially to something like: 240 /// %x0 = extractelement <4 x i8> %x, i32 0 241 /// %x3 = extractelement <4 x i8> %x, i32 3 242 /// %y1 = extractelement <4 x i8> %y, i32 1 243 /// %y2 = extractelement <4 x i8> %y, i32 2 244 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 245 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 246 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 247 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 248 /// %5 = mul <4 x i8> %4, %4 249 /// %6 = extractelement <4 x i8> %5, i32 0 250 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 251 /// %7 = extractelement <4 x i8> %5, i32 1 252 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 253 /// %8 = extractelement <4 x i8> %5, i32 2 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 255 /// %9 = extractelement <4 x i8> %5, i32 3 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 257 /// ret <4 x i8> %ins4 258 /// InstCombiner transforms this into a shuffle and vector mul 259 /// TODO: Can we split off and reuse the shuffle mask detection from 260 /// TargetTransformInfo::getInstructionThroughput? 261 static Optional<TargetTransformInfo::ShuffleKind> 262 isShuffle(ArrayRef<Value *> VL) { 263 auto *EI0 = cast<ExtractElementInst>(VL[0]); 264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 265 Value *Vec1 = nullptr; 266 Value *Vec2 = nullptr; 267 enum ShuffleMode { Unknown, Select, Permute }; 268 ShuffleMode CommonShuffleMode = Unknown; 269 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 270 auto *EI = cast<ExtractElementInst>(VL[I]); 271 auto *Vec = EI->getVectorOperand(); 272 // All vector operands must have the same number of vector elements. 273 if (Vec->getType()->getVectorNumElements() != Size) 274 return None; 275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 276 if (!Idx) 277 return None; 278 // Undefined behavior if Idx is negative or >= Size. 279 if (Idx->getValue().uge(Size)) 280 continue; 281 unsigned IntIdx = Idx->getValue().getZExtValue(); 282 // We can extractelement from undef vector. 283 if (isa<UndefValue>(Vec)) 284 continue; 285 // For correct shuffling we have to have at most 2 different vector operands 286 // in all extractelement instructions. 287 if (!Vec1 || Vec1 == Vec) 288 Vec1 = Vec; 289 else if (!Vec2 || Vec2 == Vec) 290 Vec2 = Vec; 291 else 292 return None; 293 if (CommonShuffleMode == Permute) 294 continue; 295 // If the extract index is not the same as the operation number, it is a 296 // permutation. 297 if (IntIdx != I) { 298 CommonShuffleMode = Permute; 299 continue; 300 } 301 CommonShuffleMode = Select; 302 } 303 // If we're not crossing lanes in different vectors, consider it as blending. 304 if (CommonShuffleMode == Select && Vec2) 305 return TargetTransformInfo::SK_Select; 306 // If Vec2 was never used, we have a permutation of a single vector, otherwise 307 // we have permutation of 2 vectors. 308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 309 : TargetTransformInfo::SK_PermuteSingleSrc; 310 } 311 312 namespace { 313 314 /// Main data required for vectorization of instructions. 315 struct InstructionsState { 316 /// The very first instruction in the list with the main opcode. 317 Value *OpValue = nullptr; 318 319 /// The main/alternate instruction. 320 Instruction *MainOp = nullptr; 321 Instruction *AltOp = nullptr; 322 323 /// The main/alternate opcodes for the list of instructions. 324 unsigned getOpcode() const { 325 return MainOp ? MainOp->getOpcode() : 0; 326 } 327 328 unsigned getAltOpcode() const { 329 return AltOp ? AltOp->getOpcode() : 0; 330 } 331 332 /// Some of the instructions in the list have alternate opcodes. 333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 334 335 bool isOpcodeOrAlt(Instruction *I) const { 336 unsigned CheckedOpcode = I->getOpcode(); 337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 338 } 339 340 InstructionsState() = delete; 341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 343 }; 344 345 } // end anonymous namespace 346 347 /// Chooses the correct key for scheduling data. If \p Op has the same (or 348 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 349 /// OpValue. 350 static Value *isOneOf(const InstructionsState &S, Value *Op) { 351 auto *I = dyn_cast<Instruction>(Op); 352 if (I && S.isOpcodeOrAlt(I)) 353 return Op; 354 return S.OpValue; 355 } 356 357 /// \returns analysis of the Instructions in \p VL described in 358 /// InstructionsState, the Opcode that we suppose the whole list 359 /// could be vectorized even if its structure is diverse. 360 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 361 unsigned BaseIndex = 0) { 362 // Make sure these are all Instructions. 363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 364 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 365 366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 369 unsigned AltOpcode = Opcode; 370 unsigned AltIndex = BaseIndex; 371 372 // Check for one alternate opcode from another BinaryOperator. 373 // TODO - generalize to support all operators (types, calls etc.). 374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 387 if (Ty0 == Ty1) { 388 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 389 continue; 390 if (Opcode == AltOpcode) { 391 AltOpcode = InstOpcode; 392 AltIndex = Cnt; 393 continue; 394 } 395 } 396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 397 continue; 398 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 399 } 400 401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 402 cast<Instruction>(VL[AltIndex])); 403 } 404 405 /// \returns true if all of the values in \p VL have the same type or false 406 /// otherwise. 407 static bool allSameType(ArrayRef<Value *> VL) { 408 Type *Ty = VL[0]->getType(); 409 for (int i = 1, e = VL.size(); i < e; i++) 410 if (VL[i]->getType() != Ty) 411 return false; 412 413 return true; 414 } 415 416 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 417 static Optional<unsigned> getExtractIndex(Instruction *E) { 418 unsigned Opcode = E->getOpcode(); 419 assert((Opcode == Instruction::ExtractElement || 420 Opcode == Instruction::ExtractValue) && 421 "Expected extractelement or extractvalue instruction."); 422 if (Opcode == Instruction::ExtractElement) { 423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 424 if (!CI) 425 return None; 426 return CI->getZExtValue(); 427 } 428 ExtractValueInst *EI = cast<ExtractValueInst>(E); 429 if (EI->getNumIndices() != 1) 430 return None; 431 return *EI->idx_begin(); 432 } 433 434 /// \returns True if in-tree use also needs extract. This refers to 435 /// possible scalar operand in vectorized instruction. 436 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 437 TargetLibraryInfo *TLI) { 438 unsigned Opcode = UserInst->getOpcode(); 439 switch (Opcode) { 440 case Instruction::Load: { 441 LoadInst *LI = cast<LoadInst>(UserInst); 442 return (LI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Store: { 445 StoreInst *SI = cast<StoreInst>(UserInst); 446 return (SI->getPointerOperand() == Scalar); 447 } 448 case Instruction::Call: { 449 CallInst *CI = cast<CallInst>(UserInst); 450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 452 if (hasVectorInstrinsicScalarOpd(ID, i)) 453 return (CI->getArgOperand(i) == Scalar); 454 } 455 LLVM_FALLTHROUGH; 456 } 457 default: 458 return false; 459 } 460 } 461 462 /// \returns the AA location that is being access by the instruction. 463 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return MemoryLocation::get(SI); 466 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 467 return MemoryLocation::get(LI); 468 return MemoryLocation(); 469 } 470 471 /// \returns True if the instruction is not a volatile or atomic load/store. 472 static bool isSimple(Instruction *I) { 473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 474 return LI->isSimple(); 475 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 476 return SI->isSimple(); 477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 478 return !MI->isVolatile(); 479 return true; 480 } 481 482 namespace llvm { 483 484 namespace slpvectorizer { 485 486 /// Bottom Up SLP Vectorizer. 487 class BoUpSLP { 488 public: 489 using ValueList = SmallVector<Value *, 8>; 490 using InstrList = SmallVector<Instruction *, 16>; 491 using ValueSet = SmallPtrSet<Value *, 16>; 492 using StoreList = SmallVector<StoreInst *, 8>; 493 using ExtraValueToDebugLocsMap = 494 MapVector<Value *, SmallVector<Instruction *, 2>>; 495 496 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 497 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 498 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 499 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 500 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 501 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 502 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 503 // Use the vector register size specified by the target unless overridden 504 // by a command-line option. 505 // TODO: It would be better to limit the vectorization factor based on 506 // data type rather than just register size. For example, x86 AVX has 507 // 256-bit registers, but it does not support integer operations 508 // at that width (that requires AVX2). 509 if (MaxVectorRegSizeOption.getNumOccurrences()) 510 MaxVecRegSize = MaxVectorRegSizeOption; 511 else 512 MaxVecRegSize = TTI->getRegisterBitWidth(true); 513 514 if (MinVectorRegSizeOption.getNumOccurrences()) 515 MinVecRegSize = MinVectorRegSizeOption; 516 else 517 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 518 } 519 520 /// Vectorize the tree that starts with the elements in \p VL. 521 /// Returns the vectorized root. 522 Value *vectorizeTree(); 523 524 /// Vectorize the tree but with the list of externally used values \p 525 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 526 /// generated extractvalue instructions. 527 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 528 529 /// \returns the cost incurred by unwanted spills and fills, caused by 530 /// holding live values over call sites. 531 int getSpillCost() const; 532 533 /// \returns the vectorization cost of the subtree that starts at \p VL. 534 /// A negative number means that this is profitable. 535 int getTreeCost(); 536 537 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 538 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 539 void buildTree(ArrayRef<Value *> Roots, 540 ArrayRef<Value *> UserIgnoreLst = None); 541 542 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 543 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 544 /// into account (anf updating it, if required) list of externally used 545 /// values stored in \p ExternallyUsedValues. 546 void buildTree(ArrayRef<Value *> Roots, 547 ExtraValueToDebugLocsMap &ExternallyUsedValues, 548 ArrayRef<Value *> UserIgnoreLst = None); 549 550 /// Clear the internal data structures that are created by 'buildTree'. 551 void deleteTree() { 552 VectorizableTree.clear(); 553 ScalarToTreeEntry.clear(); 554 MustGather.clear(); 555 ExternalUses.clear(); 556 NumOpsWantToKeepOrder.clear(); 557 NumOpsWantToKeepOriginalOrder = 0; 558 for (auto &Iter : BlocksSchedules) { 559 BlockScheduling *BS = Iter.second.get(); 560 BS->clear(); 561 } 562 MinBWs.clear(); 563 } 564 565 unsigned getTreeSize() const { return VectorizableTree.size(); } 566 567 /// Perform LICM and CSE on the newly generated gather sequences. 568 void optimizeGatherSequence(); 569 570 /// \returns The best order of instructions for vectorization. 571 Optional<ArrayRef<unsigned>> bestOrder() const { 572 auto I = std::max_element( 573 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 574 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 575 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 576 return D1.second < D2.second; 577 }); 578 if (I == NumOpsWantToKeepOrder.end() || 579 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 580 return None; 581 582 return makeArrayRef(I->getFirst()); 583 } 584 585 /// \return The vector element size in bits to use when vectorizing the 586 /// expression tree ending at \p V. If V is a store, the size is the width of 587 /// the stored value. Otherwise, the size is the width of the largest loaded 588 /// value reaching V. This method is used by the vectorizer to calculate 589 /// vectorization factors. 590 unsigned getVectorElementSize(Value *V) const; 591 592 /// Compute the minimum type sizes required to represent the entries in a 593 /// vectorizable tree. 594 void computeMinimumValueSizes(); 595 596 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 597 unsigned getMaxVecRegSize() const { 598 return MaxVecRegSize; 599 } 600 601 // \returns minimum vector register size as set by cl::opt. 602 unsigned getMinVecRegSize() const { 603 return MinVecRegSize; 604 } 605 606 /// Check if ArrayType or StructType is isomorphic to some VectorType. 607 /// 608 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 609 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 610 611 /// \returns True if the VectorizableTree is both tiny and not fully 612 /// vectorizable. We do not vectorize such trees. 613 bool isTreeTinyAndNotFullyVectorizable() const; 614 615 OptimizationRemarkEmitter *getORE() { return ORE; } 616 617 /// This structure holds any data we need about the edges being traversed 618 /// during buildTree_rec(). We keep track of: 619 /// (i) the user TreeEntry index, and 620 /// (ii) the index of the edge. 621 struct EdgeInfo { 622 EdgeInfo() = default; 623 /// The index of the user TreeEntry in VectorizableTree. 624 int Idx = -1; 625 /// The operand index of the use. 626 unsigned EdgeIdx = UINT_MAX; 627 #ifndef NDEBUG 628 friend inline raw_ostream &operator<<(raw_ostream &OS, 629 const BoUpSLP::EdgeInfo &EI) { 630 EI.dump(OS); 631 return OS; 632 } 633 /// Debug print. 634 void dump(raw_ostream &OS) const { 635 OS << "{User:" << Idx << " EdgeIdx:" << EdgeIdx << "}"; 636 } 637 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 638 #endif 639 }; 640 641 /// A helper data structure to hold the operands of a vector of instructions. 642 /// This supports a fixed vector length for all operand vectors. 643 class VLOperands { 644 /// For each operand we need (i) the value, and (ii) the opcode that it 645 /// would be attached to if the expression was in a left-linearized form. 646 /// This is required to avoid illegal operand reordering. 647 /// For example: 648 /// \verbatim 649 /// 0 Op1 650 /// |/ 651 /// Op1 Op2 Linearized + Op2 652 /// \ / ----------> |/ 653 /// - - 654 /// 655 /// Op1 - Op2 (0 + Op1) - Op2 656 /// \endverbatim 657 /// 658 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 659 /// 660 /// Another way to think of this is to track all the operations across the 661 /// path from the operand all the way to the root of the tree and to 662 /// calculate the operation that corresponds to this path. For example, the 663 /// path from Op2 to the root crosses the RHS of the '-', therefore the 664 /// corresponding operation is a '-' (which matches the one in the 665 /// linearized tree, as shown above). 666 /// 667 /// For lack of a better term, we refer to this operation as Accumulated 668 /// Path Operation (APO). 669 struct OperandData { 670 OperandData() = default; 671 OperandData(Value *V, bool APO, bool IsUsed) 672 : V(V), APO(APO), IsUsed(IsUsed) {} 673 /// The operand value. 674 Value *V = nullptr; 675 /// TreeEntries only allow a single opcode, or an alternate sequence of 676 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 677 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 678 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 679 /// (e.g., Add/Mul) 680 bool APO = false; 681 /// Helper data for the reordering function. 682 bool IsUsed = false; 683 }; 684 685 /// During operand reordering, we are trying to select the operand at lane 686 /// that matches best with the operand at the neighboring lane. Our 687 /// selection is based on the type of value we are looking for. For example, 688 /// if the neighboring lane has a load, we need to look for a load that is 689 /// accessing a consecutive address. These strategies are summarized in the 690 /// 'ReorderingMode' enumerator. 691 enum class ReorderingMode { 692 Load, ///< Matching loads to consecutive memory addresses 693 Opcode, ///< Matching instructions based on opcode (same or alternate) 694 Constant, ///< Matching constants 695 Splat, ///< Matching the same instruction multiple times (broadcast) 696 Failed, ///< We failed to create a vectorizable group 697 }; 698 699 using OperandDataVec = SmallVector<OperandData, 2>; 700 701 /// A vector of operand vectors. 702 SmallVector<OperandDataVec, 4> OpsVec; 703 704 const DataLayout &DL; 705 ScalarEvolution &SE; 706 707 /// \returns the operand data at \p OpIdx and \p Lane. 708 OperandData &getData(unsigned OpIdx, unsigned Lane) { 709 return OpsVec[OpIdx][Lane]; 710 } 711 712 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 713 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 714 return OpsVec[OpIdx][Lane]; 715 } 716 717 /// Clears the used flag for all entries. 718 void clearUsed() { 719 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 720 OpIdx != NumOperands; ++OpIdx) 721 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 722 ++Lane) 723 OpsVec[OpIdx][Lane].IsUsed = false; 724 } 725 726 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 727 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 728 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 729 } 730 731 // Search all operands in Ops[*][Lane] for the one that matches best 732 // Ops[OpIdx][LastLane] and return its opreand index. 733 // If no good match can be found, return None. 734 Optional<unsigned> 735 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 736 ArrayRef<ReorderingMode> ReorderingModes) { 737 unsigned NumOperands = getNumOperands(); 738 739 // The operand of the previous lane at OpIdx. 740 Value *OpLastLane = getData(OpIdx, LastLane).V; 741 742 // Our strategy mode for OpIdx. 743 ReorderingMode RMode = ReorderingModes[OpIdx]; 744 745 // The linearized opcode of the operand at OpIdx, Lane. 746 bool OpIdxAPO = getData(OpIdx, Lane).APO; 747 748 const unsigned BestScore = 2; 749 const unsigned GoodScore = 1; 750 751 // The best operand index and its score. 752 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 753 // are using the score to differentiate between the two. 754 struct BestOpData { 755 Optional<unsigned> Idx = None; 756 unsigned Score = 0; 757 } BestOp; 758 759 // Iterate through all unused operands and look for the best. 760 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 761 // Get the operand at Idx and Lane. 762 OperandData &OpData = getData(Idx, Lane); 763 Value *Op = OpData.V; 764 bool OpAPO = OpData.APO; 765 766 // Skip already selected operands. 767 if (OpData.IsUsed) 768 continue; 769 770 // Skip if we are trying to move the operand to a position with a 771 // different opcode in the linearized tree form. This would break the 772 // semantics. 773 if (OpAPO != OpIdxAPO) 774 continue; 775 776 // Look for an operand that matches the current mode. 777 switch (RMode) { 778 case ReorderingMode::Load: 779 if (isa<LoadInst>(Op)) { 780 // Figure out which is left and right, so that we can check for 781 // consecutive loads 782 bool LeftToRight = Lane > LastLane; 783 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 784 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 785 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 786 cast<LoadInst>(OpRight), DL, SE)) 787 BestOp.Idx = Idx; 788 } 789 break; 790 case ReorderingMode::Opcode: 791 // We accept both Instructions and Undefs, but with different scores. 792 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 793 cast<Instruction>(Op)->getOpcode() == 794 cast<Instruction>(OpLastLane)->getOpcode()) || 795 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 796 isa<UndefValue>(Op)) { 797 // An instruction has a higher score than an undef. 798 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 799 if (Score > BestOp.Score) { 800 BestOp.Idx = Idx; 801 BestOp.Score = Score; 802 } 803 } 804 break; 805 case ReorderingMode::Constant: 806 if (isa<Constant>(Op)) { 807 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 808 if (Score > BestOp.Score) { 809 BestOp.Idx = Idx; 810 BestOp.Score = Score; 811 } 812 } 813 break; 814 case ReorderingMode::Splat: 815 if (Op == OpLastLane) 816 BestOp.Idx = Idx; 817 break; 818 case ReorderingMode::Failed: 819 return None; 820 } 821 } 822 823 if (BestOp.Idx) { 824 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 825 return BestOp.Idx; 826 } 827 // If we could not find a good match return None. 828 return None; 829 } 830 831 /// Helper for reorderOperandVecs. \Returns the lane that we should start 832 /// reordering from. This is the one which has the least number of operands 833 /// that can freely move about. 834 unsigned getBestLaneToStartReordering() const { 835 unsigned BestLane = 0; 836 unsigned Min = UINT_MAX; 837 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 838 ++Lane) { 839 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 840 if (NumFreeOps < Min) { 841 Min = NumFreeOps; 842 BestLane = Lane; 843 } 844 } 845 return BestLane; 846 } 847 848 /// \Returns the maximum number of operands that are allowed to be reordered 849 /// for \p Lane. This is used as a heuristic for selecting the first lane to 850 /// start operand reordering. 851 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 852 unsigned CntTrue = 0; 853 unsigned NumOperands = getNumOperands(); 854 // Operands with the same APO can be reordered. We therefore need to count 855 // how many of them we have for each APO, like this: Cnt[APO] = x. 856 // Since we only have two APOs, namely true and false, we can avoid using 857 // a map. Instead we can simply count the number of operands that 858 // correspond to one of them (in this case the 'true' APO), and calculate 859 // the other by subtracting it from the total number of operands. 860 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 861 if (getData(OpIdx, Lane).APO) 862 ++CntTrue; 863 unsigned CntFalse = NumOperands - CntTrue; 864 return std::max(CntTrue, CntFalse); 865 } 866 867 /// Go through the instructions in VL and append their operands. 868 void appendOperandsOfVL(ArrayRef<Value *> VL) { 869 assert(!VL.empty() && "Bad VL"); 870 assert((empty() || VL.size() == getNumLanes()) && 871 "Expected same number of lanes"); 872 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 873 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 874 OpsVec.resize(NumOperands); 875 unsigned NumLanes = VL.size(); 876 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 877 OpsVec[OpIdx].resize(NumLanes); 878 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 879 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 880 // Our tree has just 3 nodes: the root and two operands. 881 // It is therefore trivial to get the APO. We only need to check the 882 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 883 // RHS operand. The LHS operand of both add and sub is never attached 884 // to an inversese operation in the linearized form, therefore its APO 885 // is false. The RHS is true only if VL[Lane] is an inverse operation. 886 887 // Since operand reordering is performed on groups of commutative 888 // operations or alternating sequences (e.g., +, -), we can safely 889 // tell the inverse operations by checking commutativity. 890 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 891 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 892 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 893 APO, false}; 894 } 895 } 896 } 897 898 /// \returns the number of operands. 899 unsigned getNumOperands() const { return OpsVec.size(); } 900 901 /// \returns the number of lanes. 902 unsigned getNumLanes() const { return OpsVec[0].size(); } 903 904 /// \returns the operand value at \p OpIdx and \p Lane. 905 Value *getValue(unsigned OpIdx, unsigned Lane) const { 906 return getData(OpIdx, Lane).V; 907 } 908 909 /// \returns true if the data structure is empty. 910 bool empty() const { return OpsVec.empty(); } 911 912 /// Clears the data. 913 void clear() { OpsVec.clear(); } 914 915 public: 916 /// Initialize with all the operands of the instruction vector \p RootVL. 917 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 918 ScalarEvolution &SE) 919 : DL(DL), SE(SE) { 920 // Append all the operands of RootVL. 921 appendOperandsOfVL(RootVL); 922 } 923 924 /// \Returns a value vector with the operands across all lanes for the 925 /// opearnd at \p OpIdx. 926 ValueList getVL(unsigned OpIdx) const { 927 ValueList OpVL(OpsVec[OpIdx].size()); 928 assert(OpsVec[OpIdx].size() == getNumLanes() && 929 "Expected same num of lanes across all operands"); 930 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 931 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 932 return OpVL; 933 } 934 935 // Performs operand reordering for 2 or more operands. 936 // The original operands are in OrigOps[OpIdx][Lane]. 937 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 938 void reorder() { 939 unsigned NumOperands = getNumOperands(); 940 unsigned NumLanes = getNumLanes(); 941 // Each operand has its own mode. We are using this mode to help us select 942 // the instructions for each lane, so that they match best with the ones 943 // we have selected so far. 944 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 945 946 // This is a greedy single-pass algorithm. We are going over each lane 947 // once and deciding on the best order right away with no back-tracking. 948 // However, in order to increase its effectiveness, we start with the lane 949 // that has operands that can move the least. For example, given the 950 // following lanes: 951 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 952 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 953 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 954 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 955 // we will start at Lane 1, since the operands of the subtraction cannot 956 // be reordered. Then we will visit the rest of the lanes in a circular 957 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 958 959 // Find the first lane that we will start our search from. 960 unsigned FirstLane = getBestLaneToStartReordering(); 961 962 // Initialize the modes. 963 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 964 Value *OpLane0 = getValue(OpIdx, FirstLane); 965 // Keep track if we have instructions with all the same opcode on one 966 // side. 967 if (isa<LoadInst>(OpLane0)) 968 ReorderingModes[OpIdx] = ReorderingMode::Load; 969 else if (isa<Instruction>(OpLane0)) 970 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 971 else if (isa<Constant>(OpLane0)) 972 ReorderingModes[OpIdx] = ReorderingMode::Constant; 973 else if (isa<Argument>(OpLane0)) 974 // Our best hope is a Splat. It may save some cost in some cases. 975 ReorderingModes[OpIdx] = ReorderingMode::Splat; 976 else 977 // NOTE: This should be unreachable. 978 ReorderingModes[OpIdx] = ReorderingMode::Failed; 979 } 980 981 // If the initial strategy fails for any of the operand indexes, then we 982 // perform reordering again in a second pass. This helps avoid assigning 983 // high priority to the failed strategy, and should improve reordering for 984 // the non-failed operand indexes. 985 for (int Pass = 0; Pass != 2; ++Pass) { 986 // Skip the second pass if the first pass did not fail. 987 bool StrategyFailed = false; 988 // Mark the operand data as free to use for all but the first pass. 989 if (Pass > 0) 990 clearUsed(); 991 // We keep the original operand order for the FirstLane, so reorder the 992 // rest of the lanes. We are visiting the nodes in a circular fashion, 993 // using FirstLane as the center point and increasing the radius 994 // distance. 995 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 996 // Visit the lane on the right and then the lane on the left. 997 for (int Direction : {+1, -1}) { 998 int Lane = FirstLane + Direction * Distance; 999 if (Lane < 0 || Lane >= (int)NumLanes) 1000 continue; 1001 int LastLane = Lane - Direction; 1002 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1003 "Out of bounds"); 1004 // Look for a good match for each operand. 1005 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1006 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1007 Optional<unsigned> BestIdx = 1008 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1009 // By not selecting a value, we allow the operands that follow to 1010 // select a better matching value. We will get a non-null value in 1011 // the next run of getBestOperand(). 1012 if (BestIdx) { 1013 // Swap the current operand with the one returned by 1014 // getBestOperand(). 1015 swap(OpIdx, BestIdx.getValue(), Lane); 1016 } else { 1017 // We failed to find a best operand, set mode to 'Failed'. 1018 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1019 // Enable the second pass. 1020 StrategyFailed = true; 1021 } 1022 } 1023 } 1024 } 1025 // Skip second pass if the strategy did not fail. 1026 if (!StrategyFailed) 1027 break; 1028 } 1029 } 1030 1031 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1032 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1033 switch (RMode) { 1034 case ReorderingMode::Load: 1035 return "Load"; 1036 case ReorderingMode::Opcode: 1037 return "Opcode"; 1038 case ReorderingMode::Constant: 1039 return "Constant"; 1040 case ReorderingMode::Splat: 1041 return "Splat"; 1042 case ReorderingMode::Failed: 1043 return "Failed"; 1044 } 1045 llvm_unreachable("Unimplemented Reordering Type"); 1046 } 1047 1048 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1049 raw_ostream &OS) { 1050 return OS << getModeStr(RMode); 1051 } 1052 1053 /// Debug print. 1054 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1055 printMode(RMode, dbgs()); 1056 } 1057 1058 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1059 return printMode(RMode, OS); 1060 } 1061 1062 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1063 const unsigned Indent = 2; 1064 unsigned Cnt = 0; 1065 for (const OperandDataVec &OpDataVec : OpsVec) { 1066 OS << "Operand " << Cnt++ << "\n"; 1067 for (const OperandData &OpData : OpDataVec) { 1068 OS.indent(Indent) << "{"; 1069 if (Value *V = OpData.V) 1070 OS << *V; 1071 else 1072 OS << "null"; 1073 OS << ", APO:" << OpData.APO << "}\n"; 1074 } 1075 OS << "\n"; 1076 } 1077 return OS; 1078 } 1079 1080 /// Debug print. 1081 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1082 #endif 1083 }; 1084 1085 private: 1086 struct TreeEntry; 1087 1088 /// Checks if all users of \p I are the part of the vectorization tree. 1089 bool areAllUsersVectorized(Instruction *I) const; 1090 1091 /// \returns the cost of the vectorizable entry. 1092 int getEntryCost(TreeEntry *E); 1093 1094 /// This is the recursive part of buildTree. 1095 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, EdgeInfo EI); 1096 1097 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1098 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1099 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1100 /// returns false, setting \p CurrentOrder to either an empty vector or a 1101 /// non-identity permutation that allows to reuse extract instructions. 1102 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1103 SmallVectorImpl<unsigned> &CurrentOrder) const; 1104 1105 /// Vectorize a single entry in the tree. 1106 Value *vectorizeTree(TreeEntry *E); 1107 1108 /// Vectorize a single entry in the tree, starting in \p VL. 1109 Value *vectorizeTree(ArrayRef<Value *> VL); 1110 1111 /// \returns the scalarization cost for this type. Scalarization in this 1112 /// context means the creation of vectors from a group of scalars. 1113 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1114 1115 /// \returns the scalarization cost for this list of values. Assuming that 1116 /// this subtree gets vectorized, we may need to extract the values from the 1117 /// roots. This method calculates the cost of extracting the values. 1118 int getGatherCost(ArrayRef<Value *> VL) const; 1119 1120 /// Set the Builder insert point to one after the last instruction in 1121 /// the bundle 1122 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 1123 const InstructionsState &S); 1124 1125 /// \returns a vector from a collection of scalars in \p VL. 1126 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1127 1128 /// \returns whether the VectorizableTree is fully vectorizable and will 1129 /// be beneficial even the tree height is tiny. 1130 bool isFullyVectorizableTinyTree() const; 1131 1132 /// Reorder commutative or alt operands to get better probability of 1133 /// generating vectorized code. 1134 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1135 SmallVectorImpl<Value *> &Left, 1136 SmallVectorImpl<Value *> &Right, 1137 const DataLayout &DL, 1138 ScalarEvolution &SE); 1139 struct TreeEntry { 1140 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1141 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1142 1143 /// \returns true if the scalars in VL are equal to this entry. 1144 bool isSame(ArrayRef<Value *> VL) const { 1145 if (VL.size() == Scalars.size()) 1146 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1147 return VL.size() == ReuseShuffleIndices.size() && 1148 std::equal( 1149 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1150 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1151 } 1152 1153 /// A vector of scalars. 1154 ValueList Scalars; 1155 1156 /// The Scalars are vectorized into this value. It is initialized to Null. 1157 Value *VectorizedValue = nullptr; 1158 1159 /// Do we need to gather this sequence ? 1160 bool NeedToGather = false; 1161 1162 /// Does this sequence require some shuffling? 1163 SmallVector<unsigned, 4> ReuseShuffleIndices; 1164 1165 /// Does this entry require reordering? 1166 ArrayRef<unsigned> ReorderIndices; 1167 1168 /// Points back to the VectorizableTree. 1169 /// 1170 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1171 /// to be a pointer and needs to be able to initialize the child iterator. 1172 /// Thus we need a reference back to the container to translate the indices 1173 /// to entries. 1174 VecTreeTy &Container; 1175 1176 /// The TreeEntry index containing the user of this entry. We can actually 1177 /// have multiple users so the data structure is not truly a tree. 1178 SmallVector<EdgeInfo, 1> UserTreeIndices; 1179 1180 private: 1181 /// The operands of each instruction in each lane Operands[op_index][lane]. 1182 /// Note: This helps avoid the replication of the code that performs the 1183 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1184 SmallVector<ValueList, 2> Operands; 1185 1186 public: 1187 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1188 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 1189 ArrayRef<unsigned> ReuseShuffleIndices) { 1190 if (Operands.size() < OpIdx + 1) 1191 Operands.resize(OpIdx + 1); 1192 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1193 Operands[OpIdx].resize(Scalars.size()); 1194 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1195 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 1196 ? OpVL[ReuseShuffleIndices[Lane]] 1197 : OpVL[Lane]; 1198 } 1199 1200 /// If there is a user TreeEntry, then set its operand. 1201 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 1202 ArrayRef<Value *> OpVL, 1203 ArrayRef<unsigned> ReuseShuffleIndices) { 1204 if (UserTreeIdx.Idx >= 0) { 1205 auto &VectorizableTree = Container; 1206 VectorizableTree[UserTreeIdx.Idx]->setOperand(UserTreeIdx.EdgeIdx, OpVL, 1207 ReuseShuffleIndices); 1208 } 1209 } 1210 1211 /// \returns the \p OpIdx operand of this TreeEntry. 1212 ValueList &getOperand(unsigned OpIdx) { 1213 assert(OpIdx < Operands.size() && "Off bounds"); 1214 return Operands[OpIdx]; 1215 } 1216 1217 /// \return the single \p OpIdx operand. 1218 Value *getSingleOperand(unsigned OpIdx) const { 1219 assert(OpIdx < Operands.size() && "Off bounds"); 1220 assert(!Operands[OpIdx].empty() && "No operand availabe"); 1221 return Operands[OpIdx][0]; 1222 } 1223 1224 #ifndef NDEBUG 1225 /// Debug printer. 1226 LLVM_DUMP_METHOD void dump() const { 1227 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1228 dbgs() << "Operand " << OpI << ":\n"; 1229 for (const Value *V : Operands[OpI]) 1230 dbgs().indent(2) << *V << "\n"; 1231 } 1232 dbgs() << "Scalars: \n"; 1233 for (Value *V : Scalars) 1234 dbgs().indent(2) << *V << "\n"; 1235 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1236 dbgs() << "VectorizedValue: "; 1237 if (VectorizedValue) 1238 dbgs() << *VectorizedValue; 1239 else 1240 dbgs() << "NULL"; 1241 dbgs() << "\n"; 1242 dbgs() << "ReuseShuffleIndices: "; 1243 if (ReuseShuffleIndices.empty()) 1244 dbgs() << "Emtpy"; 1245 else 1246 for (unsigned Idx : ReuseShuffleIndices) 1247 dbgs() << Idx << ", "; 1248 dbgs() << "\n"; 1249 dbgs() << "ReorderIndices: "; 1250 for (unsigned Idx : ReorderIndices) 1251 dbgs() << Idx << ", "; 1252 dbgs() << "\n"; 1253 dbgs() << "UserTreeIndices: "; 1254 for (const auto &EInfo : UserTreeIndices) 1255 dbgs() << EInfo << ", "; 1256 dbgs() << "\n"; 1257 } 1258 #endif 1259 }; 1260 1261 /// Create a new VectorizableTree entry. 1262 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 1263 EdgeInfo &UserTreeIdx, 1264 ArrayRef<unsigned> ReuseShuffleIndices = None, 1265 ArrayRef<unsigned> ReorderIndices = None) { 1266 VectorizableTree.push_back(llvm::make_unique<TreeEntry>(VectorizableTree)); 1267 TreeEntry *Last = VectorizableTree.back().get(); 1268 int idx = VectorizableTree.size() - 1; 1269 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1270 Last->NeedToGather = !Vectorized; 1271 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1272 ReuseShuffleIndices.end()); 1273 Last->ReorderIndices = ReorderIndices; 1274 if (Vectorized) { 1275 for (int i = 0, e = VL.size(); i != e; ++i) { 1276 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1277 ScalarToTreeEntry[VL[i]] = idx; 1278 } 1279 } else { 1280 MustGather.insert(VL.begin(), VL.end()); 1281 } 1282 1283 if (UserTreeIdx.Idx >= 0) 1284 Last->UserTreeIndices.push_back(UserTreeIdx); 1285 1286 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 1287 1288 UserTreeIdx.Idx = idx; 1289 return Last; 1290 } 1291 1292 /// -- Vectorization State -- 1293 /// Holds all of the tree entries. 1294 TreeEntry::VecTreeTy VectorizableTree; 1295 1296 #ifndef NDEBUG 1297 /// Debug printer. 1298 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1299 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1300 dbgs() << Id << ".\n"; 1301 VectorizableTree[Id]->dump(); 1302 dbgs() << "\n"; 1303 } 1304 } 1305 #endif 1306 1307 TreeEntry *getTreeEntry(Value *V) { 1308 auto I = ScalarToTreeEntry.find(V); 1309 if (I != ScalarToTreeEntry.end()) 1310 return VectorizableTree[I->second].get(); 1311 return nullptr; 1312 } 1313 1314 const TreeEntry *getTreeEntry(Value *V) const { 1315 auto I = ScalarToTreeEntry.find(V); 1316 if (I != ScalarToTreeEntry.end()) 1317 return VectorizableTree[I->second].get(); 1318 return nullptr; 1319 } 1320 1321 /// Maps a specific scalar to its tree entry. 1322 SmallDenseMap<Value*, int> ScalarToTreeEntry; 1323 1324 /// A list of scalars that we found that we need to keep as scalars. 1325 ValueSet MustGather; 1326 1327 /// This POD struct describes one external user in the vectorized tree. 1328 struct ExternalUser { 1329 ExternalUser(Value *S, llvm::User *U, int L) 1330 : Scalar(S), User(U), Lane(L) {} 1331 1332 // Which scalar in our function. 1333 Value *Scalar; 1334 1335 // Which user that uses the scalar. 1336 llvm::User *User; 1337 1338 // Which lane does the scalar belong to. 1339 int Lane; 1340 }; 1341 using UserList = SmallVector<ExternalUser, 16>; 1342 1343 /// Checks if two instructions may access the same memory. 1344 /// 1345 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1346 /// is invariant in the calling loop. 1347 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1348 Instruction *Inst2) { 1349 // First check if the result is already in the cache. 1350 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1351 Optional<bool> &result = AliasCache[key]; 1352 if (result.hasValue()) { 1353 return result.getValue(); 1354 } 1355 MemoryLocation Loc2 = getLocation(Inst2, AA); 1356 bool aliased = true; 1357 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1358 // Do the alias check. 1359 aliased = AA->alias(Loc1, Loc2); 1360 } 1361 // Store the result in the cache. 1362 result = aliased; 1363 return aliased; 1364 } 1365 1366 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1367 1368 /// Cache for alias results. 1369 /// TODO: consider moving this to the AliasAnalysis itself. 1370 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1371 1372 /// Removes an instruction from its block and eventually deletes it. 1373 /// It's like Instruction::eraseFromParent() except that the actual deletion 1374 /// is delayed until BoUpSLP is destructed. 1375 /// This is required to ensure that there are no incorrect collisions in the 1376 /// AliasCache, which can happen if a new instruction is allocated at the 1377 /// same address as a previously deleted instruction. 1378 void eraseInstruction(Instruction *I) { 1379 I->removeFromParent(); 1380 I->dropAllReferences(); 1381 DeletedInstructions.emplace_back(I); 1382 } 1383 1384 /// Temporary store for deleted instructions. Instructions will be deleted 1385 /// eventually when the BoUpSLP is destructed. 1386 SmallVector<unique_value, 8> DeletedInstructions; 1387 1388 /// A list of values that need to extracted out of the tree. 1389 /// This list holds pairs of (Internal Scalar : External User). External User 1390 /// can be nullptr, it means that this Internal Scalar will be used later, 1391 /// after vectorization. 1392 UserList ExternalUses; 1393 1394 /// Values used only by @llvm.assume calls. 1395 SmallPtrSet<const Value *, 32> EphValues; 1396 1397 /// Holds all of the instructions that we gathered. 1398 SetVector<Instruction *> GatherSeq; 1399 1400 /// A list of blocks that we are going to CSE. 1401 SetVector<BasicBlock *> CSEBlocks; 1402 1403 /// Contains all scheduling relevant data for an instruction. 1404 /// A ScheduleData either represents a single instruction or a member of an 1405 /// instruction bundle (= a group of instructions which is combined into a 1406 /// vector instruction). 1407 struct ScheduleData { 1408 // The initial value for the dependency counters. It means that the 1409 // dependencies are not calculated yet. 1410 enum { InvalidDeps = -1 }; 1411 1412 ScheduleData() = default; 1413 1414 void init(int BlockSchedulingRegionID, Value *OpVal) { 1415 FirstInBundle = this; 1416 NextInBundle = nullptr; 1417 NextLoadStore = nullptr; 1418 IsScheduled = false; 1419 SchedulingRegionID = BlockSchedulingRegionID; 1420 UnscheduledDepsInBundle = UnscheduledDeps; 1421 clearDependencies(); 1422 OpValue = OpVal; 1423 } 1424 1425 /// Returns true if the dependency information has been calculated. 1426 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1427 1428 /// Returns true for single instructions and for bundle representatives 1429 /// (= the head of a bundle). 1430 bool isSchedulingEntity() const { return FirstInBundle == this; } 1431 1432 /// Returns true if it represents an instruction bundle and not only a 1433 /// single instruction. 1434 bool isPartOfBundle() const { 1435 return NextInBundle != nullptr || FirstInBundle != this; 1436 } 1437 1438 /// Returns true if it is ready for scheduling, i.e. it has no more 1439 /// unscheduled depending instructions/bundles. 1440 bool isReady() const { 1441 assert(isSchedulingEntity() && 1442 "can't consider non-scheduling entity for ready list"); 1443 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1444 } 1445 1446 /// Modifies the number of unscheduled dependencies, also updating it for 1447 /// the whole bundle. 1448 int incrementUnscheduledDeps(int Incr) { 1449 UnscheduledDeps += Incr; 1450 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1451 } 1452 1453 /// Sets the number of unscheduled dependencies to the number of 1454 /// dependencies. 1455 void resetUnscheduledDeps() { 1456 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1457 } 1458 1459 /// Clears all dependency information. 1460 void clearDependencies() { 1461 Dependencies = InvalidDeps; 1462 resetUnscheduledDeps(); 1463 MemoryDependencies.clear(); 1464 } 1465 1466 void dump(raw_ostream &os) const { 1467 if (!isSchedulingEntity()) { 1468 os << "/ " << *Inst; 1469 } else if (NextInBundle) { 1470 os << '[' << *Inst; 1471 ScheduleData *SD = NextInBundle; 1472 while (SD) { 1473 os << ';' << *SD->Inst; 1474 SD = SD->NextInBundle; 1475 } 1476 os << ']'; 1477 } else { 1478 os << *Inst; 1479 } 1480 } 1481 1482 Instruction *Inst = nullptr; 1483 1484 /// Points to the head in an instruction bundle (and always to this for 1485 /// single instructions). 1486 ScheduleData *FirstInBundle = nullptr; 1487 1488 /// Single linked list of all instructions in a bundle. Null if it is a 1489 /// single instruction. 1490 ScheduleData *NextInBundle = nullptr; 1491 1492 /// Single linked list of all memory instructions (e.g. load, store, call) 1493 /// in the block - until the end of the scheduling region. 1494 ScheduleData *NextLoadStore = nullptr; 1495 1496 /// The dependent memory instructions. 1497 /// This list is derived on demand in calculateDependencies(). 1498 SmallVector<ScheduleData *, 4> MemoryDependencies; 1499 1500 /// This ScheduleData is in the current scheduling region if this matches 1501 /// the current SchedulingRegionID of BlockScheduling. 1502 int SchedulingRegionID = 0; 1503 1504 /// Used for getting a "good" final ordering of instructions. 1505 int SchedulingPriority = 0; 1506 1507 /// The number of dependencies. Constitutes of the number of users of the 1508 /// instruction plus the number of dependent memory instructions (if any). 1509 /// This value is calculated on demand. 1510 /// If InvalidDeps, the number of dependencies is not calculated yet. 1511 int Dependencies = InvalidDeps; 1512 1513 /// The number of dependencies minus the number of dependencies of scheduled 1514 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1515 /// for scheduling. 1516 /// Note that this is negative as long as Dependencies is not calculated. 1517 int UnscheduledDeps = InvalidDeps; 1518 1519 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1520 /// single instructions. 1521 int UnscheduledDepsInBundle = InvalidDeps; 1522 1523 /// True if this instruction is scheduled (or considered as scheduled in the 1524 /// dry-run). 1525 bool IsScheduled = false; 1526 1527 /// Opcode of the current instruction in the schedule data. 1528 Value *OpValue = nullptr; 1529 }; 1530 1531 #ifndef NDEBUG 1532 friend inline raw_ostream &operator<<(raw_ostream &os, 1533 const BoUpSLP::ScheduleData &SD) { 1534 SD.dump(os); 1535 return os; 1536 } 1537 #endif 1538 1539 friend struct GraphTraits<BoUpSLP *>; 1540 friend struct DOTGraphTraits<BoUpSLP *>; 1541 1542 /// Contains all scheduling data for a basic block. 1543 struct BlockScheduling { 1544 BlockScheduling(BasicBlock *BB) 1545 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1546 1547 void clear() { 1548 ReadyInsts.clear(); 1549 ScheduleStart = nullptr; 1550 ScheduleEnd = nullptr; 1551 FirstLoadStoreInRegion = nullptr; 1552 LastLoadStoreInRegion = nullptr; 1553 1554 // Reduce the maximum schedule region size by the size of the 1555 // previous scheduling run. 1556 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1557 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1558 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1559 ScheduleRegionSize = 0; 1560 1561 // Make a new scheduling region, i.e. all existing ScheduleData is not 1562 // in the new region yet. 1563 ++SchedulingRegionID; 1564 } 1565 1566 ScheduleData *getScheduleData(Value *V) { 1567 ScheduleData *SD = ScheduleDataMap[V]; 1568 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1569 return SD; 1570 return nullptr; 1571 } 1572 1573 ScheduleData *getScheduleData(Value *V, Value *Key) { 1574 if (V == Key) 1575 return getScheduleData(V); 1576 auto I = ExtraScheduleDataMap.find(V); 1577 if (I != ExtraScheduleDataMap.end()) { 1578 ScheduleData *SD = I->second[Key]; 1579 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1580 return SD; 1581 } 1582 return nullptr; 1583 } 1584 1585 bool isInSchedulingRegion(ScheduleData *SD) { 1586 return SD->SchedulingRegionID == SchedulingRegionID; 1587 } 1588 1589 /// Marks an instruction as scheduled and puts all dependent ready 1590 /// instructions into the ready-list. 1591 template <typename ReadyListType> 1592 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1593 SD->IsScheduled = true; 1594 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1595 1596 ScheduleData *BundleMember = SD; 1597 while (BundleMember) { 1598 if (BundleMember->Inst != BundleMember->OpValue) { 1599 BundleMember = BundleMember->NextInBundle; 1600 continue; 1601 } 1602 // Handle the def-use chain dependencies. 1603 for (Use &U : BundleMember->Inst->operands()) { 1604 auto *I = dyn_cast<Instruction>(U.get()); 1605 if (!I) 1606 continue; 1607 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1608 if (OpDef && OpDef->hasValidDependencies() && 1609 OpDef->incrementUnscheduledDeps(-1) == 0) { 1610 // There are no more unscheduled dependencies after 1611 // decrementing, so we can put the dependent instruction 1612 // into the ready list. 1613 ScheduleData *DepBundle = OpDef->FirstInBundle; 1614 assert(!DepBundle->IsScheduled && 1615 "already scheduled bundle gets ready"); 1616 ReadyList.insert(DepBundle); 1617 LLVM_DEBUG(dbgs() 1618 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1619 } 1620 }); 1621 } 1622 // Handle the memory dependencies. 1623 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1624 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1625 // There are no more unscheduled dependencies after decrementing, 1626 // so we can put the dependent instruction into the ready list. 1627 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1628 assert(!DepBundle->IsScheduled && 1629 "already scheduled bundle gets ready"); 1630 ReadyList.insert(DepBundle); 1631 LLVM_DEBUG(dbgs() 1632 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1633 } 1634 } 1635 BundleMember = BundleMember->NextInBundle; 1636 } 1637 } 1638 1639 void doForAllOpcodes(Value *V, 1640 function_ref<void(ScheduleData *SD)> Action) { 1641 if (ScheduleData *SD = getScheduleData(V)) 1642 Action(SD); 1643 auto I = ExtraScheduleDataMap.find(V); 1644 if (I != ExtraScheduleDataMap.end()) 1645 for (auto &P : I->second) 1646 if (P.second->SchedulingRegionID == SchedulingRegionID) 1647 Action(P.second); 1648 } 1649 1650 /// Put all instructions into the ReadyList which are ready for scheduling. 1651 template <typename ReadyListType> 1652 void initialFillReadyList(ReadyListType &ReadyList) { 1653 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1654 doForAllOpcodes(I, [&](ScheduleData *SD) { 1655 if (SD->isSchedulingEntity() && SD->isReady()) { 1656 ReadyList.insert(SD); 1657 LLVM_DEBUG(dbgs() 1658 << "SLP: initially in ready list: " << *I << "\n"); 1659 } 1660 }); 1661 } 1662 } 1663 1664 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1665 /// cyclic dependencies. This is only a dry-run, no instructions are 1666 /// actually moved at this stage. 1667 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1668 const InstructionsState &S); 1669 1670 /// Un-bundles a group of instructions. 1671 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1672 1673 /// Allocates schedule data chunk. 1674 ScheduleData *allocateScheduleDataChunks(); 1675 1676 /// Extends the scheduling region so that V is inside the region. 1677 /// \returns true if the region size is within the limit. 1678 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1679 1680 /// Initialize the ScheduleData structures for new instructions in the 1681 /// scheduling region. 1682 void initScheduleData(Instruction *FromI, Instruction *ToI, 1683 ScheduleData *PrevLoadStore, 1684 ScheduleData *NextLoadStore); 1685 1686 /// Updates the dependency information of a bundle and of all instructions/ 1687 /// bundles which depend on the original bundle. 1688 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1689 BoUpSLP *SLP); 1690 1691 /// Sets all instruction in the scheduling region to un-scheduled. 1692 void resetSchedule(); 1693 1694 BasicBlock *BB; 1695 1696 /// Simple memory allocation for ScheduleData. 1697 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1698 1699 /// The size of a ScheduleData array in ScheduleDataChunks. 1700 int ChunkSize; 1701 1702 /// The allocator position in the current chunk, which is the last entry 1703 /// of ScheduleDataChunks. 1704 int ChunkPos; 1705 1706 /// Attaches ScheduleData to Instruction. 1707 /// Note that the mapping survives during all vectorization iterations, i.e. 1708 /// ScheduleData structures are recycled. 1709 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1710 1711 /// Attaches ScheduleData to Instruction with the leading key. 1712 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1713 ExtraScheduleDataMap; 1714 1715 struct ReadyList : SmallVector<ScheduleData *, 8> { 1716 void insert(ScheduleData *SD) { push_back(SD); } 1717 }; 1718 1719 /// The ready-list for scheduling (only used for the dry-run). 1720 ReadyList ReadyInsts; 1721 1722 /// The first instruction of the scheduling region. 1723 Instruction *ScheduleStart = nullptr; 1724 1725 /// The first instruction _after_ the scheduling region. 1726 Instruction *ScheduleEnd = nullptr; 1727 1728 /// The first memory accessing instruction in the scheduling region 1729 /// (can be null). 1730 ScheduleData *FirstLoadStoreInRegion = nullptr; 1731 1732 /// The last memory accessing instruction in the scheduling region 1733 /// (can be null). 1734 ScheduleData *LastLoadStoreInRegion = nullptr; 1735 1736 /// The current size of the scheduling region. 1737 int ScheduleRegionSize = 0; 1738 1739 /// The maximum size allowed for the scheduling region. 1740 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1741 1742 /// The ID of the scheduling region. For a new vectorization iteration this 1743 /// is incremented which "removes" all ScheduleData from the region. 1744 // Make sure that the initial SchedulingRegionID is greater than the 1745 // initial SchedulingRegionID in ScheduleData (which is 0). 1746 int SchedulingRegionID = 1; 1747 }; 1748 1749 /// Attaches the BlockScheduling structures to basic blocks. 1750 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1751 1752 /// Performs the "real" scheduling. Done before vectorization is actually 1753 /// performed in a basic block. 1754 void scheduleBlock(BlockScheduling *BS); 1755 1756 /// List of users to ignore during scheduling and that don't need extracting. 1757 ArrayRef<Value *> UserIgnoreList; 1758 1759 using OrdersType = SmallVector<unsigned, 4>; 1760 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1761 /// sorted SmallVectors of unsigned. 1762 struct OrdersTypeDenseMapInfo { 1763 static OrdersType getEmptyKey() { 1764 OrdersType V; 1765 V.push_back(~1U); 1766 return V; 1767 } 1768 1769 static OrdersType getTombstoneKey() { 1770 OrdersType V; 1771 V.push_back(~2U); 1772 return V; 1773 } 1774 1775 static unsigned getHashValue(const OrdersType &V) { 1776 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1777 } 1778 1779 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1780 return LHS == RHS; 1781 } 1782 }; 1783 1784 /// Contains orders of operations along with the number of bundles that have 1785 /// operations in this order. It stores only those orders that require 1786 /// reordering, if reordering is not required it is counted using \a 1787 /// NumOpsWantToKeepOriginalOrder. 1788 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1789 /// Number of bundles that do not require reordering. 1790 unsigned NumOpsWantToKeepOriginalOrder = 0; 1791 1792 // Analysis and block reference. 1793 Function *F; 1794 ScalarEvolution *SE; 1795 TargetTransformInfo *TTI; 1796 TargetLibraryInfo *TLI; 1797 AliasAnalysis *AA; 1798 LoopInfo *LI; 1799 DominatorTree *DT; 1800 AssumptionCache *AC; 1801 DemandedBits *DB; 1802 const DataLayout *DL; 1803 OptimizationRemarkEmitter *ORE; 1804 1805 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1806 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1807 1808 /// Instruction builder to construct the vectorized tree. 1809 IRBuilder<> Builder; 1810 1811 /// A map of scalar integer values to the smallest bit width with which they 1812 /// can legally be represented. The values map to (width, signed) pairs, 1813 /// where "width" indicates the minimum bit width and "signed" is True if the 1814 /// value must be signed-extended, rather than zero-extended, back to its 1815 /// original width. 1816 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1817 }; 1818 1819 } // end namespace slpvectorizer 1820 1821 template <> struct GraphTraits<BoUpSLP *> { 1822 using TreeEntry = BoUpSLP::TreeEntry; 1823 1824 /// NodeRef has to be a pointer per the GraphWriter. 1825 using NodeRef = TreeEntry *; 1826 1827 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1828 1829 /// Add the VectorizableTree to the index iterator to be able to return 1830 /// TreeEntry pointers. 1831 struct ChildIteratorType 1832 : public iterator_adaptor_base< 1833 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1834 ContainerTy &VectorizableTree; 1835 1836 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1837 ContainerTy &VT) 1838 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1839 1840 NodeRef operator*() { return VectorizableTree[I->Idx].get(); } 1841 }; 1842 1843 static NodeRef getEntryNode(BoUpSLP &R) { 1844 return R.VectorizableTree[0].get(); 1845 } 1846 1847 static ChildIteratorType child_begin(NodeRef N) { 1848 return {N->UserTreeIndices.begin(), N->Container}; 1849 } 1850 1851 static ChildIteratorType child_end(NodeRef N) { 1852 return {N->UserTreeIndices.end(), N->Container}; 1853 } 1854 1855 /// For the node iterator we just need to turn the TreeEntry iterator into a 1856 /// TreeEntry* iterator so that it dereferences to NodeRef. 1857 class nodes_iterator { 1858 using ItTy = ContainerTy::iterator; 1859 ItTy It; 1860 1861 public: 1862 nodes_iterator(const ItTy &It2) : It(It2) {} 1863 NodeRef operator*() { return It->get(); } 1864 nodes_iterator operator++() { 1865 ++It; 1866 return *this; 1867 } 1868 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 1869 }; 1870 1871 static nodes_iterator nodes_begin(BoUpSLP *R) { 1872 return nodes_iterator(R->VectorizableTree.begin()); 1873 } 1874 1875 static nodes_iterator nodes_end(BoUpSLP *R) { 1876 return nodes_iterator(R->VectorizableTree.end()); 1877 } 1878 1879 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1880 }; 1881 1882 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1883 using TreeEntry = BoUpSLP::TreeEntry; 1884 1885 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1886 1887 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1888 std::string Str; 1889 raw_string_ostream OS(Str); 1890 if (isSplat(Entry->Scalars)) { 1891 OS << "<splat> " << *Entry->Scalars[0]; 1892 return Str; 1893 } 1894 for (auto V : Entry->Scalars) { 1895 OS << *V; 1896 if (std::any_of( 1897 R->ExternalUses.begin(), R->ExternalUses.end(), 1898 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1899 OS << " <extract>"; 1900 OS << "\n"; 1901 } 1902 return Str; 1903 } 1904 1905 static std::string getNodeAttributes(const TreeEntry *Entry, 1906 const BoUpSLP *) { 1907 if (Entry->NeedToGather) 1908 return "color=red"; 1909 return ""; 1910 } 1911 }; 1912 1913 } // end namespace llvm 1914 1915 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1916 ArrayRef<Value *> UserIgnoreLst) { 1917 ExtraValueToDebugLocsMap ExternallyUsedValues; 1918 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1919 } 1920 1921 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1922 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1923 ArrayRef<Value *> UserIgnoreLst) { 1924 deleteTree(); 1925 UserIgnoreList = UserIgnoreLst; 1926 if (!allSameType(Roots)) 1927 return; 1928 buildTree_rec(Roots, 0, EdgeInfo()); 1929 1930 // Collect the values that we need to extract from the tree. 1931 for (auto &TEPtr : VectorizableTree) { 1932 TreeEntry *Entry = TEPtr.get(); 1933 1934 // No need to handle users of gathered values. 1935 if (Entry->NeedToGather) 1936 continue; 1937 1938 // For each lane: 1939 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1940 Value *Scalar = Entry->Scalars[Lane]; 1941 int FoundLane = Lane; 1942 if (!Entry->ReuseShuffleIndices.empty()) { 1943 FoundLane = 1944 std::distance(Entry->ReuseShuffleIndices.begin(), 1945 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1946 } 1947 1948 // Check if the scalar is externally used as an extra arg. 1949 auto ExtI = ExternallyUsedValues.find(Scalar); 1950 if (ExtI != ExternallyUsedValues.end()) { 1951 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1952 << Lane << " from " << *Scalar << ".\n"); 1953 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1954 } 1955 for (User *U : Scalar->users()) { 1956 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1957 1958 Instruction *UserInst = dyn_cast<Instruction>(U); 1959 if (!UserInst) 1960 continue; 1961 1962 // Skip in-tree scalars that become vectors 1963 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1964 Value *UseScalar = UseEntry->Scalars[0]; 1965 // Some in-tree scalars will remain as scalar in vectorized 1966 // instructions. If that is the case, the one in Lane 0 will 1967 // be used. 1968 if (UseScalar != U || 1969 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1970 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1971 << ".\n"); 1972 assert(!UseEntry->NeedToGather && "Bad state"); 1973 continue; 1974 } 1975 } 1976 1977 // Ignore users in the user ignore list. 1978 if (is_contained(UserIgnoreList, UserInst)) 1979 continue; 1980 1981 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1982 << Lane << " from " << *Scalar << ".\n"); 1983 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1984 } 1985 } 1986 } 1987 } 1988 1989 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1990 EdgeInfo UserTreeIdx) { 1991 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1992 1993 InstructionsState S = getSameOpcode(VL); 1994 if (Depth == RecursionMaxDepth) { 1995 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1996 newTreeEntry(VL, false, UserTreeIdx); 1997 return; 1998 } 1999 2000 // Don't handle vectors. 2001 if (S.OpValue->getType()->isVectorTy()) { 2002 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2003 newTreeEntry(VL, false, UserTreeIdx); 2004 return; 2005 } 2006 2007 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2008 if (SI->getValueOperand()->getType()->isVectorTy()) { 2009 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2010 newTreeEntry(VL, false, UserTreeIdx); 2011 return; 2012 } 2013 2014 // If all of the operands are identical or constant we have a simple solution. 2015 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2016 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2017 newTreeEntry(VL, false, UserTreeIdx); 2018 return; 2019 } 2020 2021 // We now know that this is a vector of instructions of the same type from 2022 // the same block. 2023 2024 // Don't vectorize ephemeral values. 2025 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2026 if (EphValues.count(VL[i])) { 2027 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2028 << ") is ephemeral.\n"); 2029 newTreeEntry(VL, false, UserTreeIdx); 2030 return; 2031 } 2032 } 2033 2034 // Check if this is a duplicate of another entry. 2035 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2036 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2037 if (!E->isSame(VL)) { 2038 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2039 newTreeEntry(VL, false, UserTreeIdx); 2040 return; 2041 } 2042 // Record the reuse of the tree node. FIXME, currently this is only used to 2043 // properly draw the graph rather than for the actual vectorization. 2044 E->UserTreeIndices.push_back(UserTreeIdx); 2045 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2046 << ".\n"); 2047 E->trySetUserTEOperand(UserTreeIdx, VL, None); 2048 return; 2049 } 2050 2051 // Check that none of the instructions in the bundle are already in the tree. 2052 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2053 auto *I = dyn_cast<Instruction>(VL[i]); 2054 if (!I) 2055 continue; 2056 if (getTreeEntry(I)) { 2057 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2058 << ") is already in tree.\n"); 2059 newTreeEntry(VL, false, UserTreeIdx); 2060 return; 2061 } 2062 } 2063 2064 // If any of the scalars is marked as a value that needs to stay scalar, then 2065 // we need to gather the scalars. 2066 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2067 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2068 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2069 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2070 newTreeEntry(VL, false, UserTreeIdx); 2071 return; 2072 } 2073 } 2074 2075 // Check that all of the users of the scalars that we want to vectorize are 2076 // schedulable. 2077 auto *VL0 = cast<Instruction>(S.OpValue); 2078 BasicBlock *BB = VL0->getParent(); 2079 2080 if (!DT->isReachableFromEntry(BB)) { 2081 // Don't go into unreachable blocks. They may contain instructions with 2082 // dependency cycles which confuse the final scheduling. 2083 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2084 newTreeEntry(VL, false, UserTreeIdx); 2085 return; 2086 } 2087 2088 // Check that every instruction appears once in this bundle. 2089 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2090 SmallVector<Value *, 4> UniqueValues; 2091 DenseMap<Value *, unsigned> UniquePositions; 2092 for (Value *V : VL) { 2093 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2094 ReuseShuffleIndicies.emplace_back(Res.first->second); 2095 if (Res.second) 2096 UniqueValues.emplace_back(V); 2097 } 2098 if (UniqueValues.size() == VL.size()) { 2099 ReuseShuffleIndicies.clear(); 2100 } else { 2101 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2102 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 2103 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2104 newTreeEntry(VL, false, UserTreeIdx); 2105 return; 2106 } 2107 VL = UniqueValues; 2108 } 2109 2110 auto &BSRef = BlocksSchedules[BB]; 2111 if (!BSRef) 2112 BSRef = llvm::make_unique<BlockScheduling>(BB); 2113 2114 BlockScheduling &BS = *BSRef.get(); 2115 2116 if (!BS.tryScheduleBundle(VL, this, S)) { 2117 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2118 assert((!BS.getScheduleData(VL0) || 2119 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2120 "tryScheduleBundle should cancelScheduling on failure"); 2121 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2122 return; 2123 } 2124 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2125 2126 unsigned ShuffleOrOp = S.isAltShuffle() ? 2127 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2128 switch (ShuffleOrOp) { 2129 case Instruction::PHI: { 2130 PHINode *PH = dyn_cast<PHINode>(VL0); 2131 2132 // Check for terminator values (e.g. invoke). 2133 for (unsigned j = 0; j < VL.size(); ++j) 2134 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2135 Instruction *Term = dyn_cast<Instruction>( 2136 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2137 PH->getIncomingBlock(i))); 2138 if (Term && Term->isTerminator()) { 2139 LLVM_DEBUG(dbgs() 2140 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2141 BS.cancelScheduling(VL, VL0); 2142 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2143 return; 2144 } 2145 } 2146 2147 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2148 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2149 2150 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2151 ValueList Operands; 2152 // Prepare the operand vector. 2153 for (Value *j : VL) 2154 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2155 PH->getIncomingBlock(i))); 2156 2157 UserTreeIdx.EdgeIdx = i; 2158 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2159 } 2160 return; 2161 } 2162 case Instruction::ExtractValue: 2163 case Instruction::ExtractElement: { 2164 OrdersType CurrentOrder; 2165 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2166 if (Reuse) { 2167 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2168 ++NumOpsWantToKeepOriginalOrder; 2169 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2170 ReuseShuffleIndicies); 2171 // This is a special case, as it does not gather, but at the same time 2172 // we are not extending buildTree_rec() towards the operands. 2173 ValueList Op0; 2174 Op0.assign(VL.size(), VL0->getOperand(0)); 2175 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2176 return; 2177 } 2178 if (!CurrentOrder.empty()) { 2179 LLVM_DEBUG({ 2180 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2181 "with order"; 2182 for (unsigned Idx : CurrentOrder) 2183 dbgs() << " " << Idx; 2184 dbgs() << "\n"; 2185 }); 2186 // Insert new order with initial value 0, if it does not exist, 2187 // otherwise return the iterator to the existing one. 2188 auto StoredCurrentOrderAndNum = 2189 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2190 ++StoredCurrentOrderAndNum->getSecond(); 2191 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 2192 StoredCurrentOrderAndNum->getFirst()); 2193 // This is a special case, as it does not gather, but at the same time 2194 // we are not extending buildTree_rec() towards the operands. 2195 ValueList Op0; 2196 Op0.assign(VL.size(), VL0->getOperand(0)); 2197 VectorizableTree.back()->setOperand(0, Op0, ReuseShuffleIndicies); 2198 return; 2199 } 2200 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2201 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 2202 BS.cancelScheduling(VL, VL0); 2203 return; 2204 } 2205 case Instruction::Load: { 2206 // Check that a vectorized load would load the same memory as a scalar 2207 // load. For example, we don't want to vectorize loads that are smaller 2208 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2209 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2210 // from such a struct, we read/write packed bits disagreeing with the 2211 // unvectorized version. 2212 Type *ScalarTy = VL0->getType(); 2213 2214 if (DL->getTypeSizeInBits(ScalarTy) != 2215 DL->getTypeAllocSizeInBits(ScalarTy)) { 2216 BS.cancelScheduling(VL, VL0); 2217 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2218 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2219 return; 2220 } 2221 2222 // Make sure all loads in the bundle are simple - we can't vectorize 2223 // atomic or volatile loads. 2224 SmallVector<Value *, 4> PointerOps(VL.size()); 2225 auto POIter = PointerOps.begin(); 2226 for (Value *V : VL) { 2227 auto *L = cast<LoadInst>(V); 2228 if (!L->isSimple()) { 2229 BS.cancelScheduling(VL, VL0); 2230 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2231 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2232 return; 2233 } 2234 *POIter = L->getPointerOperand(); 2235 ++POIter; 2236 } 2237 2238 OrdersType CurrentOrder; 2239 // Check the order of pointer operands. 2240 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2241 Value *Ptr0; 2242 Value *PtrN; 2243 if (CurrentOrder.empty()) { 2244 Ptr0 = PointerOps.front(); 2245 PtrN = PointerOps.back(); 2246 } else { 2247 Ptr0 = PointerOps[CurrentOrder.front()]; 2248 PtrN = PointerOps[CurrentOrder.back()]; 2249 } 2250 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2251 const SCEV *ScevN = SE->getSCEV(PtrN); 2252 const auto *Diff = 2253 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2254 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2255 // Check that the sorted loads are consecutive. 2256 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2257 if (CurrentOrder.empty()) { 2258 // Original loads are consecutive and does not require reordering. 2259 ++NumOpsWantToKeepOriginalOrder; 2260 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2261 ReuseShuffleIndicies); 2262 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2263 } else { 2264 // Need to reorder. 2265 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2266 ++I->getSecond(); 2267 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2268 ReuseShuffleIndicies, I->getFirst()); 2269 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2270 } 2271 return; 2272 } 2273 } 2274 2275 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2276 BS.cancelScheduling(VL, VL0); 2277 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2278 return; 2279 } 2280 case Instruction::ZExt: 2281 case Instruction::SExt: 2282 case Instruction::FPToUI: 2283 case Instruction::FPToSI: 2284 case Instruction::FPExt: 2285 case Instruction::PtrToInt: 2286 case Instruction::IntToPtr: 2287 case Instruction::SIToFP: 2288 case Instruction::UIToFP: 2289 case Instruction::Trunc: 2290 case Instruction::FPTrunc: 2291 case Instruction::BitCast: { 2292 Type *SrcTy = VL0->getOperand(0)->getType(); 2293 for (unsigned i = 0; i < VL.size(); ++i) { 2294 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2295 if (Ty != SrcTy || !isValidElementType(Ty)) { 2296 BS.cancelScheduling(VL, VL0); 2297 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2298 LLVM_DEBUG(dbgs() 2299 << "SLP: Gathering casts with different src types.\n"); 2300 return; 2301 } 2302 } 2303 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2304 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2305 2306 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2307 ValueList Operands; 2308 // Prepare the operand vector. 2309 for (Value *j : VL) 2310 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2311 2312 UserTreeIdx.EdgeIdx = i; 2313 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2314 } 2315 return; 2316 } 2317 case Instruction::ICmp: 2318 case Instruction::FCmp: { 2319 // Check that all of the compares have the same predicate. 2320 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2321 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2322 Type *ComparedTy = VL0->getOperand(0)->getType(); 2323 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2324 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2325 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2326 Cmp->getOperand(0)->getType() != ComparedTy) { 2327 BS.cancelScheduling(VL, VL0); 2328 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2329 LLVM_DEBUG(dbgs() 2330 << "SLP: Gathering cmp with different predicate.\n"); 2331 return; 2332 } 2333 } 2334 2335 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2336 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2337 2338 ValueList Left, Right; 2339 if (cast<CmpInst>(VL0)->isCommutative()) { 2340 // Commutative predicate - collect + sort operands of the instructions 2341 // so that each side is more likely to have the same opcode. 2342 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2343 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2344 } else { 2345 // Collect operands - commute if it uses the swapped predicate. 2346 for (Value *V : VL) { 2347 auto *Cmp = cast<CmpInst>(V); 2348 Value *LHS = Cmp->getOperand(0); 2349 Value *RHS = Cmp->getOperand(1); 2350 if (Cmp->getPredicate() != P0) 2351 std::swap(LHS, RHS); 2352 Left.push_back(LHS); 2353 Right.push_back(RHS); 2354 } 2355 } 2356 2357 UserTreeIdx.EdgeIdx = 0; 2358 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2359 UserTreeIdx.EdgeIdx = 1; 2360 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2361 return; 2362 } 2363 case Instruction::Select: 2364 case Instruction::Add: 2365 case Instruction::FAdd: 2366 case Instruction::Sub: 2367 case Instruction::FSub: 2368 case Instruction::Mul: 2369 case Instruction::FMul: 2370 case Instruction::UDiv: 2371 case Instruction::SDiv: 2372 case Instruction::FDiv: 2373 case Instruction::URem: 2374 case Instruction::SRem: 2375 case Instruction::FRem: 2376 case Instruction::Shl: 2377 case Instruction::LShr: 2378 case Instruction::AShr: 2379 case Instruction::And: 2380 case Instruction::Or: 2381 case Instruction::Xor: 2382 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2383 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 2384 2385 // Sort operands of the instructions so that each side is more likely to 2386 // have the same opcode. 2387 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2388 ValueList Left, Right; 2389 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2390 UserTreeIdx.EdgeIdx = 0; 2391 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2392 UserTreeIdx.EdgeIdx = 1; 2393 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2394 return; 2395 } 2396 2397 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2398 ValueList Operands; 2399 // Prepare the operand vector. 2400 for (Value *j : VL) 2401 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2402 2403 UserTreeIdx.EdgeIdx = i; 2404 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2405 } 2406 return; 2407 2408 case Instruction::GetElementPtr: { 2409 // We don't combine GEPs with complicated (nested) indexing. 2410 for (unsigned j = 0; j < VL.size(); ++j) { 2411 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2412 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2413 BS.cancelScheduling(VL, VL0); 2414 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2415 return; 2416 } 2417 } 2418 2419 // We can't combine several GEPs into one vector if they operate on 2420 // different types. 2421 Type *Ty0 = VL0->getOperand(0)->getType(); 2422 for (unsigned j = 0; j < VL.size(); ++j) { 2423 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2424 if (Ty0 != CurTy) { 2425 LLVM_DEBUG(dbgs() 2426 << "SLP: not-vectorizable GEP (different types).\n"); 2427 BS.cancelScheduling(VL, VL0); 2428 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2429 return; 2430 } 2431 } 2432 2433 // We don't combine GEPs with non-constant indexes. 2434 for (unsigned j = 0; j < VL.size(); ++j) { 2435 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2436 if (!isa<ConstantInt>(Op)) { 2437 LLVM_DEBUG(dbgs() 2438 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2439 BS.cancelScheduling(VL, VL0); 2440 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2441 return; 2442 } 2443 } 2444 2445 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2446 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2447 for (unsigned i = 0, e = 2; i < e; ++i) { 2448 ValueList Operands; 2449 // Prepare the operand vector. 2450 for (Value *j : VL) 2451 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2452 2453 UserTreeIdx.EdgeIdx = i; 2454 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2455 } 2456 return; 2457 } 2458 case Instruction::Store: { 2459 // Check if the stores are consecutive or of we need to swizzle them. 2460 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2461 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2462 BS.cancelScheduling(VL, VL0); 2463 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2464 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2465 return; 2466 } 2467 2468 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2469 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2470 2471 ValueList Operands; 2472 for (Value *j : VL) 2473 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2474 2475 UserTreeIdx.EdgeIdx = 0; 2476 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2477 return; 2478 } 2479 case Instruction::Call: { 2480 // Check if the calls are all to the same vectorizable intrinsic. 2481 CallInst *CI = cast<CallInst>(VL0); 2482 // Check if this is an Intrinsic call or something that can be 2483 // represented by an intrinsic call 2484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2485 if (!isTriviallyVectorizable(ID)) { 2486 BS.cancelScheduling(VL, VL0); 2487 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2488 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2489 return; 2490 } 2491 Function *Int = CI->getCalledFunction(); 2492 unsigned NumArgs = CI->getNumArgOperands(); 2493 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2494 for (unsigned j = 0; j != NumArgs; ++j) 2495 if (hasVectorInstrinsicScalarOpd(ID, j)) 2496 ScalarArgs[j] = CI->getArgOperand(j); 2497 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2498 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2499 if (!CI2 || CI2->getCalledFunction() != Int || 2500 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2501 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2502 BS.cancelScheduling(VL, VL0); 2503 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2504 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2505 << "\n"); 2506 return; 2507 } 2508 // Some intrinsics have scalar arguments and should be same in order for 2509 // them to be vectorized. 2510 for (unsigned j = 0; j != NumArgs; ++j) { 2511 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2512 Value *A1J = CI2->getArgOperand(j); 2513 if (ScalarArgs[j] != A1J) { 2514 BS.cancelScheduling(VL, VL0); 2515 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2516 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2517 << " argument " << ScalarArgs[j] << "!=" << A1J 2518 << "\n"); 2519 return; 2520 } 2521 } 2522 } 2523 // Verify that the bundle operands are identical between the two calls. 2524 if (CI->hasOperandBundles() && 2525 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2526 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2527 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2528 BS.cancelScheduling(VL, VL0); 2529 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2530 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2531 << *CI << "!=" << *VL[i] << '\n'); 2532 return; 2533 } 2534 } 2535 2536 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2537 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2538 ValueList Operands; 2539 // Prepare the operand vector. 2540 for (Value *j : VL) { 2541 CallInst *CI2 = dyn_cast<CallInst>(j); 2542 Operands.push_back(CI2->getArgOperand(i)); 2543 } 2544 UserTreeIdx.EdgeIdx = i; 2545 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2546 } 2547 return; 2548 } 2549 case Instruction::ShuffleVector: 2550 // If this is not an alternate sequence of opcode like add-sub 2551 // then do not vectorize this instruction. 2552 if (!S.isAltShuffle()) { 2553 BS.cancelScheduling(VL, VL0); 2554 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2555 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2556 return; 2557 } 2558 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2559 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2560 2561 // Reorder operands if reordering would enable vectorization. 2562 if (isa<BinaryOperator>(VL0)) { 2563 ValueList Left, Right; 2564 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2565 UserTreeIdx.EdgeIdx = 0; 2566 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2567 UserTreeIdx.EdgeIdx = 1; 2568 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2569 return; 2570 } 2571 2572 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2573 ValueList Operands; 2574 // Prepare the operand vector. 2575 for (Value *j : VL) 2576 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2577 2578 UserTreeIdx.EdgeIdx = i; 2579 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2580 } 2581 return; 2582 2583 default: 2584 BS.cancelScheduling(VL, VL0); 2585 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2586 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2587 return; 2588 } 2589 } 2590 2591 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2592 unsigned N; 2593 Type *EltTy; 2594 auto *ST = dyn_cast<StructType>(T); 2595 if (ST) { 2596 N = ST->getNumElements(); 2597 EltTy = *ST->element_begin(); 2598 } else { 2599 N = cast<ArrayType>(T)->getNumElements(); 2600 EltTy = cast<ArrayType>(T)->getElementType(); 2601 } 2602 if (!isValidElementType(EltTy)) 2603 return 0; 2604 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2605 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2606 return 0; 2607 if (ST) { 2608 // Check that struct is homogeneous. 2609 for (const auto *Ty : ST->elements()) 2610 if (Ty != EltTy) 2611 return 0; 2612 } 2613 return N; 2614 } 2615 2616 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2617 SmallVectorImpl<unsigned> &CurrentOrder) const { 2618 Instruction *E0 = cast<Instruction>(OpValue); 2619 assert(E0->getOpcode() == Instruction::ExtractElement || 2620 E0->getOpcode() == Instruction::ExtractValue); 2621 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2622 // Check if all of the extracts come from the same vector and from the 2623 // correct offset. 2624 Value *Vec = E0->getOperand(0); 2625 2626 CurrentOrder.clear(); 2627 2628 // We have to extract from a vector/aggregate with the same number of elements. 2629 unsigned NElts; 2630 if (E0->getOpcode() == Instruction::ExtractValue) { 2631 const DataLayout &DL = E0->getModule()->getDataLayout(); 2632 NElts = canMapToVector(Vec->getType(), DL); 2633 if (!NElts) 2634 return false; 2635 // Check if load can be rewritten as load of vector. 2636 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2637 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2638 return false; 2639 } else { 2640 NElts = Vec->getType()->getVectorNumElements(); 2641 } 2642 2643 if (NElts != VL.size()) 2644 return false; 2645 2646 // Check that all of the indices extract from the correct offset. 2647 bool ShouldKeepOrder = true; 2648 unsigned E = VL.size(); 2649 // Assign to all items the initial value E + 1 so we can check if the extract 2650 // instruction index was used already. 2651 // Also, later we can check that all the indices are used and we have a 2652 // consecutive access in the extract instructions, by checking that no 2653 // element of CurrentOrder still has value E + 1. 2654 CurrentOrder.assign(E, E + 1); 2655 unsigned I = 0; 2656 for (; I < E; ++I) { 2657 auto *Inst = cast<Instruction>(VL[I]); 2658 if (Inst->getOperand(0) != Vec) 2659 break; 2660 Optional<unsigned> Idx = getExtractIndex(Inst); 2661 if (!Idx) 2662 break; 2663 const unsigned ExtIdx = *Idx; 2664 if (ExtIdx != I) { 2665 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2666 break; 2667 ShouldKeepOrder = false; 2668 CurrentOrder[ExtIdx] = I; 2669 } else { 2670 if (CurrentOrder[I] != E + 1) 2671 break; 2672 CurrentOrder[I] = I; 2673 } 2674 } 2675 if (I < E) { 2676 CurrentOrder.clear(); 2677 return false; 2678 } 2679 2680 return ShouldKeepOrder; 2681 } 2682 2683 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2684 return I->hasOneUse() || 2685 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2686 return ScalarToTreeEntry.count(U) > 0; 2687 }); 2688 } 2689 2690 int BoUpSLP::getEntryCost(TreeEntry *E) { 2691 ArrayRef<Value*> VL = E->Scalars; 2692 2693 Type *ScalarTy = VL[0]->getType(); 2694 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2695 ScalarTy = SI->getValueOperand()->getType(); 2696 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2697 ScalarTy = CI->getOperand(0)->getType(); 2698 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2699 2700 // If we have computed a smaller type for the expression, update VecTy so 2701 // that the costs will be accurate. 2702 if (MinBWs.count(VL[0])) 2703 VecTy = VectorType::get( 2704 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2705 2706 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2707 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2708 int ReuseShuffleCost = 0; 2709 if (NeedToShuffleReuses) { 2710 ReuseShuffleCost = 2711 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2712 } 2713 if (E->NeedToGather) { 2714 if (allConstant(VL)) 2715 return 0; 2716 if (isSplat(VL)) { 2717 return ReuseShuffleCost + 2718 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2719 } 2720 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2721 allSameType(VL) && allSameBlock(VL)) { 2722 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2723 if (ShuffleKind.hasValue()) { 2724 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2725 for (auto *V : VL) { 2726 // If all users of instruction are going to be vectorized and this 2727 // instruction itself is not going to be vectorized, consider this 2728 // instruction as dead and remove its cost from the final cost of the 2729 // vectorized tree. 2730 if (areAllUsersVectorized(cast<Instruction>(V)) && 2731 !ScalarToTreeEntry.count(V)) { 2732 auto *IO = cast<ConstantInt>( 2733 cast<ExtractElementInst>(V)->getIndexOperand()); 2734 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2735 IO->getZExtValue()); 2736 } 2737 } 2738 return ReuseShuffleCost + Cost; 2739 } 2740 } 2741 return ReuseShuffleCost + getGatherCost(VL); 2742 } 2743 InstructionsState S = getSameOpcode(VL); 2744 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2745 Instruction *VL0 = cast<Instruction>(S.OpValue); 2746 unsigned ShuffleOrOp = S.isAltShuffle() ? 2747 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2748 switch (ShuffleOrOp) { 2749 case Instruction::PHI: 2750 return 0; 2751 2752 case Instruction::ExtractValue: 2753 case Instruction::ExtractElement: 2754 if (NeedToShuffleReuses) { 2755 unsigned Idx = 0; 2756 for (unsigned I : E->ReuseShuffleIndices) { 2757 if (ShuffleOrOp == Instruction::ExtractElement) { 2758 auto *IO = cast<ConstantInt>( 2759 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2760 Idx = IO->getZExtValue(); 2761 ReuseShuffleCost -= TTI->getVectorInstrCost( 2762 Instruction::ExtractElement, VecTy, Idx); 2763 } else { 2764 ReuseShuffleCost -= TTI->getVectorInstrCost( 2765 Instruction::ExtractElement, VecTy, Idx); 2766 ++Idx; 2767 } 2768 } 2769 Idx = ReuseShuffleNumbers; 2770 for (Value *V : VL) { 2771 if (ShuffleOrOp == Instruction::ExtractElement) { 2772 auto *IO = cast<ConstantInt>( 2773 cast<ExtractElementInst>(V)->getIndexOperand()); 2774 Idx = IO->getZExtValue(); 2775 } else { 2776 --Idx; 2777 } 2778 ReuseShuffleCost += 2779 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2780 } 2781 } 2782 if (!E->NeedToGather) { 2783 int DeadCost = ReuseShuffleCost; 2784 if (!E->ReorderIndices.empty()) { 2785 // TODO: Merge this shuffle with the ReuseShuffleCost. 2786 DeadCost += TTI->getShuffleCost( 2787 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2788 } 2789 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2790 Instruction *E = cast<Instruction>(VL[i]); 2791 // If all users are going to be vectorized, instruction can be 2792 // considered as dead. 2793 // The same, if have only one user, it will be vectorized for sure. 2794 if (areAllUsersVectorized(E)) { 2795 // Take credit for instruction that will become dead. 2796 if (E->hasOneUse()) { 2797 Instruction *Ext = E->user_back(); 2798 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2799 all_of(Ext->users(), 2800 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2801 // Use getExtractWithExtendCost() to calculate the cost of 2802 // extractelement/ext pair. 2803 DeadCost -= TTI->getExtractWithExtendCost( 2804 Ext->getOpcode(), Ext->getType(), VecTy, i); 2805 // Add back the cost of s|zext which is subtracted separately. 2806 DeadCost += TTI->getCastInstrCost( 2807 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2808 continue; 2809 } 2810 } 2811 DeadCost -= 2812 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2813 } 2814 } 2815 return DeadCost; 2816 } 2817 return ReuseShuffleCost + getGatherCost(VL); 2818 2819 case Instruction::ZExt: 2820 case Instruction::SExt: 2821 case Instruction::FPToUI: 2822 case Instruction::FPToSI: 2823 case Instruction::FPExt: 2824 case Instruction::PtrToInt: 2825 case Instruction::IntToPtr: 2826 case Instruction::SIToFP: 2827 case Instruction::UIToFP: 2828 case Instruction::Trunc: 2829 case Instruction::FPTrunc: 2830 case Instruction::BitCast: { 2831 Type *SrcTy = VL0->getOperand(0)->getType(); 2832 int ScalarEltCost = 2833 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2834 if (NeedToShuffleReuses) { 2835 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2836 } 2837 2838 // Calculate the cost of this instruction. 2839 int ScalarCost = VL.size() * ScalarEltCost; 2840 2841 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2842 int VecCost = 0; 2843 // Check if the values are candidates to demote. 2844 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2845 VecCost = ReuseShuffleCost + 2846 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2847 } 2848 return VecCost - ScalarCost; 2849 } 2850 case Instruction::FCmp: 2851 case Instruction::ICmp: 2852 case Instruction::Select: { 2853 // Calculate the cost of this instruction. 2854 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2855 Builder.getInt1Ty(), VL0); 2856 if (NeedToShuffleReuses) { 2857 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2858 } 2859 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2860 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2861 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2862 return ReuseShuffleCost + VecCost - ScalarCost; 2863 } 2864 case Instruction::Add: 2865 case Instruction::FAdd: 2866 case Instruction::Sub: 2867 case Instruction::FSub: 2868 case Instruction::Mul: 2869 case Instruction::FMul: 2870 case Instruction::UDiv: 2871 case Instruction::SDiv: 2872 case Instruction::FDiv: 2873 case Instruction::URem: 2874 case Instruction::SRem: 2875 case Instruction::FRem: 2876 case Instruction::Shl: 2877 case Instruction::LShr: 2878 case Instruction::AShr: 2879 case Instruction::And: 2880 case Instruction::Or: 2881 case Instruction::Xor: { 2882 // Certain instructions can be cheaper to vectorize if they have a 2883 // constant second vector operand. 2884 TargetTransformInfo::OperandValueKind Op1VK = 2885 TargetTransformInfo::OK_AnyValue; 2886 TargetTransformInfo::OperandValueKind Op2VK = 2887 TargetTransformInfo::OK_UniformConstantValue; 2888 TargetTransformInfo::OperandValueProperties Op1VP = 2889 TargetTransformInfo::OP_None; 2890 TargetTransformInfo::OperandValueProperties Op2VP = 2891 TargetTransformInfo::OP_PowerOf2; 2892 2893 // If all operands are exactly the same ConstantInt then set the 2894 // operand kind to OK_UniformConstantValue. 2895 // If instead not all operands are constants, then set the operand kind 2896 // to OK_AnyValue. If all operands are constants but not the same, 2897 // then set the operand kind to OK_NonUniformConstantValue. 2898 ConstantInt *CInt0 = nullptr; 2899 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2900 const Instruction *I = cast<Instruction>(VL[i]); 2901 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2902 if (!CInt) { 2903 Op2VK = TargetTransformInfo::OK_AnyValue; 2904 Op2VP = TargetTransformInfo::OP_None; 2905 break; 2906 } 2907 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2908 !CInt->getValue().isPowerOf2()) 2909 Op2VP = TargetTransformInfo::OP_None; 2910 if (i == 0) { 2911 CInt0 = CInt; 2912 continue; 2913 } 2914 if (CInt0 != CInt) 2915 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2916 } 2917 2918 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2919 int ScalarEltCost = TTI->getArithmeticInstrCost( 2920 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2921 if (NeedToShuffleReuses) { 2922 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2923 } 2924 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2925 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2926 Op2VK, Op1VP, Op2VP, Operands); 2927 return ReuseShuffleCost + VecCost - ScalarCost; 2928 } 2929 case Instruction::GetElementPtr: { 2930 TargetTransformInfo::OperandValueKind Op1VK = 2931 TargetTransformInfo::OK_AnyValue; 2932 TargetTransformInfo::OperandValueKind Op2VK = 2933 TargetTransformInfo::OK_UniformConstantValue; 2934 2935 int ScalarEltCost = 2936 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2937 if (NeedToShuffleReuses) { 2938 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2939 } 2940 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2941 int VecCost = 2942 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2943 return ReuseShuffleCost + VecCost - ScalarCost; 2944 } 2945 case Instruction::Load: { 2946 // Cost of wide load - cost of scalar loads. 2947 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2948 int ScalarEltCost = 2949 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2950 if (NeedToShuffleReuses) { 2951 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2952 } 2953 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2954 int VecLdCost = 2955 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2956 if (!E->ReorderIndices.empty()) { 2957 // TODO: Merge this shuffle with the ReuseShuffleCost. 2958 VecLdCost += TTI->getShuffleCost( 2959 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2960 } 2961 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2962 } 2963 case Instruction::Store: { 2964 // We know that we can merge the stores. Calculate the cost. 2965 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2966 int ScalarEltCost = 2967 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2968 if (NeedToShuffleReuses) { 2969 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2970 } 2971 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2972 int VecStCost = 2973 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2974 return ReuseShuffleCost + VecStCost - ScalarStCost; 2975 } 2976 case Instruction::Call: { 2977 CallInst *CI = cast<CallInst>(VL0); 2978 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2979 2980 // Calculate the cost of the scalar and vector calls. 2981 SmallVector<Type *, 4> ScalarTys; 2982 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2983 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2984 2985 FastMathFlags FMF; 2986 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2987 FMF = FPMO->getFastMathFlags(); 2988 2989 int ScalarEltCost = 2990 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2991 if (NeedToShuffleReuses) { 2992 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2993 } 2994 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2995 2996 SmallVector<Value *, 4> Args(CI->arg_operands()); 2997 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2998 VecTy->getNumElements()); 2999 3000 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3001 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3002 << " for " << *CI << "\n"); 3003 3004 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3005 } 3006 case Instruction::ShuffleVector: { 3007 assert(S.isAltShuffle() && 3008 ((Instruction::isBinaryOp(S.getOpcode()) && 3009 Instruction::isBinaryOp(S.getAltOpcode())) || 3010 (Instruction::isCast(S.getOpcode()) && 3011 Instruction::isCast(S.getAltOpcode()))) && 3012 "Invalid Shuffle Vector Operand"); 3013 int ScalarCost = 0; 3014 if (NeedToShuffleReuses) { 3015 for (unsigned Idx : E->ReuseShuffleIndices) { 3016 Instruction *I = cast<Instruction>(VL[Idx]); 3017 ReuseShuffleCost -= TTI->getInstructionCost( 3018 I, TargetTransformInfo::TCK_RecipThroughput); 3019 } 3020 for (Value *V : VL) { 3021 Instruction *I = cast<Instruction>(V); 3022 ReuseShuffleCost += TTI->getInstructionCost( 3023 I, TargetTransformInfo::TCK_RecipThroughput); 3024 } 3025 } 3026 for (Value *i : VL) { 3027 Instruction *I = cast<Instruction>(i); 3028 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3029 ScalarCost += TTI->getInstructionCost( 3030 I, TargetTransformInfo::TCK_RecipThroughput); 3031 } 3032 // VecCost is equal to sum of the cost of creating 2 vectors 3033 // and the cost of creating shuffle. 3034 int VecCost = 0; 3035 if (Instruction::isBinaryOp(S.getOpcode())) { 3036 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 3037 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 3038 } else { 3039 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 3040 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 3041 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3042 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3043 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 3044 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 3045 } 3046 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3047 return ReuseShuffleCost + VecCost - ScalarCost; 3048 } 3049 default: 3050 llvm_unreachable("Unknown instruction"); 3051 } 3052 } 3053 3054 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3055 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3056 << VectorizableTree.size() << " is fully vectorizable .\n"); 3057 3058 // We only handle trees of heights 1 and 2. 3059 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3060 return true; 3061 3062 if (VectorizableTree.size() != 2) 3063 return false; 3064 3065 // Handle splat and all-constants stores. 3066 if (!VectorizableTree[0]->NeedToGather && 3067 (allConstant(VectorizableTree[1]->Scalars) || 3068 isSplat(VectorizableTree[1]->Scalars))) 3069 return true; 3070 3071 // Gathering cost would be too much for tiny trees. 3072 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3073 return false; 3074 3075 return true; 3076 } 3077 3078 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3079 // We can vectorize the tree if its size is greater than or equal to the 3080 // minimum size specified by the MinTreeSize command line option. 3081 if (VectorizableTree.size() >= MinTreeSize) 3082 return false; 3083 3084 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3085 // can vectorize it if we can prove it fully vectorizable. 3086 if (isFullyVectorizableTinyTree()) 3087 return false; 3088 3089 assert(VectorizableTree.empty() 3090 ? ExternalUses.empty() 3091 : true && "We shouldn't have any external users"); 3092 3093 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3094 // vectorizable. 3095 return true; 3096 } 3097 3098 int BoUpSLP::getSpillCost() const { 3099 // Walk from the bottom of the tree to the top, tracking which values are 3100 // live. When we see a call instruction that is not part of our tree, 3101 // query TTI to see if there is a cost to keeping values live over it 3102 // (for example, if spills and fills are required). 3103 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3104 int Cost = 0; 3105 3106 SmallPtrSet<Instruction*, 4> LiveValues; 3107 Instruction *PrevInst = nullptr; 3108 3109 for (const auto &TEPtr : VectorizableTree) { 3110 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3111 if (!Inst) 3112 continue; 3113 3114 if (!PrevInst) { 3115 PrevInst = Inst; 3116 continue; 3117 } 3118 3119 // Update LiveValues. 3120 LiveValues.erase(PrevInst); 3121 for (auto &J : PrevInst->operands()) { 3122 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3123 LiveValues.insert(cast<Instruction>(&*J)); 3124 } 3125 3126 LLVM_DEBUG({ 3127 dbgs() << "SLP: #LV: " << LiveValues.size(); 3128 for (auto *X : LiveValues) 3129 dbgs() << " " << X->getName(); 3130 dbgs() << ", Looking at "; 3131 Inst->dump(); 3132 }); 3133 3134 // Now find the sequence of instructions between PrevInst and Inst. 3135 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3136 PrevInstIt = 3137 PrevInst->getIterator().getReverse(); 3138 while (InstIt != PrevInstIt) { 3139 if (PrevInstIt == PrevInst->getParent()->rend()) { 3140 PrevInstIt = Inst->getParent()->rbegin(); 3141 continue; 3142 } 3143 3144 // Debug informations don't impact spill cost. 3145 if ((isa<CallInst>(&*PrevInstIt) && 3146 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3147 &*PrevInstIt != PrevInst) { 3148 SmallVector<Type*, 4> V; 3149 for (auto *II : LiveValues) 3150 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3151 Cost += TTI->getCostOfKeepingLiveOverCall(V); 3152 } 3153 3154 ++PrevInstIt; 3155 } 3156 3157 PrevInst = Inst; 3158 } 3159 3160 return Cost; 3161 } 3162 3163 int BoUpSLP::getTreeCost() { 3164 int Cost = 0; 3165 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3166 << VectorizableTree.size() << ".\n"); 3167 3168 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3169 3170 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3171 TreeEntry &TE = *VectorizableTree[I].get(); 3172 3173 // We create duplicate tree entries for gather sequences that have multiple 3174 // uses. However, we should not compute the cost of duplicate sequences. 3175 // For example, if we have a build vector (i.e., insertelement sequence) 3176 // that is used by more than one vector instruction, we only need to 3177 // compute the cost of the insertelement instructions once. The redundant 3178 // instructions will be eliminated by CSE. 3179 // 3180 // We should consider not creating duplicate tree entries for gather 3181 // sequences, and instead add additional edges to the tree representing 3182 // their uses. Since such an approach results in fewer total entries, 3183 // existing heuristics based on tree size may yield different results. 3184 // 3185 if (TE.NeedToGather && 3186 std::any_of( 3187 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3188 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3189 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3190 })) 3191 continue; 3192 3193 int C = getEntryCost(&TE); 3194 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3195 << " for bundle that starts with " << *TE.Scalars[0] 3196 << ".\n"); 3197 Cost += C; 3198 } 3199 3200 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3201 int ExtractCost = 0; 3202 for (ExternalUser &EU : ExternalUses) { 3203 // We only add extract cost once for the same scalar. 3204 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3205 continue; 3206 3207 // Uses by ephemeral values are free (because the ephemeral value will be 3208 // removed prior to code generation, and so the extraction will be 3209 // removed as well). 3210 if (EphValues.count(EU.User)) 3211 continue; 3212 3213 // If we plan to rewrite the tree in a smaller type, we will need to sign 3214 // extend the extracted value back to the original type. Here, we account 3215 // for the extract and the added cost of the sign extend if needed. 3216 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3217 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3218 if (MinBWs.count(ScalarRoot)) { 3219 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3220 auto Extend = 3221 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3222 VecTy = VectorType::get(MinTy, BundleWidth); 3223 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3224 VecTy, EU.Lane); 3225 } else { 3226 ExtractCost += 3227 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3228 } 3229 } 3230 3231 int SpillCost = getSpillCost(); 3232 Cost += SpillCost + ExtractCost; 3233 3234 std::string Str; 3235 { 3236 raw_string_ostream OS(Str); 3237 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3238 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3239 << "SLP: Total Cost = " << Cost << ".\n"; 3240 } 3241 LLVM_DEBUG(dbgs() << Str); 3242 3243 if (ViewSLPTree) 3244 ViewGraph(this, "SLP" + F->getName(), false, Str); 3245 3246 return Cost; 3247 } 3248 3249 int BoUpSLP::getGatherCost(Type *Ty, 3250 const DenseSet<unsigned> &ShuffledIndices) const { 3251 int Cost = 0; 3252 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3253 if (!ShuffledIndices.count(i)) 3254 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3255 if (!ShuffledIndices.empty()) 3256 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3257 return Cost; 3258 } 3259 3260 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3261 // Find the type of the operands in VL. 3262 Type *ScalarTy = VL[0]->getType(); 3263 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3264 ScalarTy = SI->getValueOperand()->getType(); 3265 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3266 // Find the cost of inserting/extracting values from the vector. 3267 // Check if the same elements are inserted several times and count them as 3268 // shuffle candidates. 3269 DenseSet<unsigned> ShuffledElements; 3270 DenseSet<Value *> UniqueElements; 3271 // Iterate in reverse order to consider insert elements with the high cost. 3272 for (unsigned I = VL.size(); I > 0; --I) { 3273 unsigned Idx = I - 1; 3274 if (!UniqueElements.insert(VL[Idx]).second) 3275 ShuffledElements.insert(Idx); 3276 } 3277 return getGatherCost(VecTy, ShuffledElements); 3278 } 3279 3280 // Perform operand reordering on the instructions in VL and return the reordered 3281 // operands in Left and Right. 3282 void BoUpSLP::reorderInputsAccordingToOpcode( 3283 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3284 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3285 ScalarEvolution &SE) { 3286 if (VL.empty()) 3287 return; 3288 VLOperands Ops(VL, DL, SE); 3289 // Reorder the operands in place. 3290 Ops.reorder(); 3291 Left = Ops.getVL(0); 3292 Right = Ops.getVL(1); 3293 } 3294 3295 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 3296 const InstructionsState &S) { 3297 // Get the basic block this bundle is in. All instructions in the bundle 3298 // should be in this block. 3299 auto *Front = cast<Instruction>(S.OpValue); 3300 auto *BB = Front->getParent(); 3301 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 3302 auto *I = cast<Instruction>(V); 3303 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 3304 })); 3305 3306 // The last instruction in the bundle in program order. 3307 Instruction *LastInst = nullptr; 3308 3309 // Find the last instruction. The common case should be that BB has been 3310 // scheduled, and the last instruction is VL.back(). So we start with 3311 // VL.back() and iterate over schedule data until we reach the end of the 3312 // bundle. The end of the bundle is marked by null ScheduleData. 3313 if (BlocksSchedules.count(BB)) { 3314 auto *Bundle = 3315 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 3316 if (Bundle && Bundle->isPartOfBundle()) 3317 for (; Bundle; Bundle = Bundle->NextInBundle) 3318 if (Bundle->OpValue == Bundle->Inst) 3319 LastInst = Bundle->Inst; 3320 } 3321 3322 // LastInst can still be null at this point if there's either not an entry 3323 // for BB in BlocksSchedules or there's no ScheduleData available for 3324 // VL.back(). This can be the case if buildTree_rec aborts for various 3325 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3326 // size is reached, etc.). ScheduleData is initialized in the scheduling 3327 // "dry-run". 3328 // 3329 // If this happens, we can still find the last instruction by brute force. We 3330 // iterate forwards from Front (inclusive) until we either see all 3331 // instructions in the bundle or reach the end of the block. If Front is the 3332 // last instruction in program order, LastInst will be set to Front, and we 3333 // will visit all the remaining instructions in the block. 3334 // 3335 // One of the reasons we exit early from buildTree_rec is to place an upper 3336 // bound on compile-time. Thus, taking an additional compile-time hit here is 3337 // not ideal. However, this should be exceedingly rare since it requires that 3338 // we both exit early from buildTree_rec and that the bundle be out-of-order 3339 // (causing us to iterate all the way to the end of the block). 3340 if (!LastInst) { 3341 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3342 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3343 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3344 LastInst = &I; 3345 if (Bundle.empty()) 3346 break; 3347 } 3348 } 3349 3350 // Set the insertion point after the last instruction in the bundle. Set the 3351 // debug location to Front. 3352 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3353 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3354 } 3355 3356 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3357 Value *Vec = UndefValue::get(Ty); 3358 // Generate the 'InsertElement' instruction. 3359 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3360 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3361 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3362 GatherSeq.insert(Insrt); 3363 CSEBlocks.insert(Insrt->getParent()); 3364 3365 // Add to our 'need-to-extract' list. 3366 if (TreeEntry *E = getTreeEntry(VL[i])) { 3367 // Find which lane we need to extract. 3368 int FoundLane = -1; 3369 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3370 // Is this the lane of the scalar that we are looking for ? 3371 if (E->Scalars[Lane] == VL[i]) { 3372 FoundLane = Lane; 3373 break; 3374 } 3375 } 3376 assert(FoundLane >= 0 && "Could not find the correct lane"); 3377 if (!E->ReuseShuffleIndices.empty()) { 3378 FoundLane = 3379 std::distance(E->ReuseShuffleIndices.begin(), 3380 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3381 } 3382 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3383 } 3384 } 3385 } 3386 3387 return Vec; 3388 } 3389 3390 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3391 InstructionsState S = getSameOpcode(VL); 3392 if (S.getOpcode()) { 3393 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3394 if (E->isSame(VL)) { 3395 Value *V = vectorizeTree(E); 3396 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3397 // We need to get the vectorized value but without shuffle. 3398 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3399 V = SV->getOperand(0); 3400 } else { 3401 // Reshuffle to get only unique values. 3402 SmallVector<unsigned, 4> UniqueIdxs; 3403 SmallSet<unsigned, 4> UsedIdxs; 3404 for(unsigned Idx : E->ReuseShuffleIndices) 3405 if (UsedIdxs.insert(Idx).second) 3406 UniqueIdxs.emplace_back(Idx); 3407 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3408 UniqueIdxs); 3409 } 3410 } 3411 return V; 3412 } 3413 } 3414 } 3415 3416 Type *ScalarTy = S.OpValue->getType(); 3417 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3418 ScalarTy = SI->getValueOperand()->getType(); 3419 3420 // Check that every instruction appears once in this bundle. 3421 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3422 SmallVector<Value *, 4> UniqueValues; 3423 if (VL.size() > 2) { 3424 DenseMap<Value *, unsigned> UniquePositions; 3425 for (Value *V : VL) { 3426 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3427 ReuseShuffleIndicies.emplace_back(Res.first->second); 3428 if (Res.second || isa<Constant>(V)) 3429 UniqueValues.emplace_back(V); 3430 } 3431 // Do not shuffle single element or if number of unique values is not power 3432 // of 2. 3433 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3434 !llvm::isPowerOf2_32(UniqueValues.size())) 3435 ReuseShuffleIndicies.clear(); 3436 else 3437 VL = UniqueValues; 3438 } 3439 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3440 3441 Value *V = Gather(VL, VecTy); 3442 if (!ReuseShuffleIndicies.empty()) { 3443 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3444 ReuseShuffleIndicies, "shuffle"); 3445 if (auto *I = dyn_cast<Instruction>(V)) { 3446 GatherSeq.insert(I); 3447 CSEBlocks.insert(I->getParent()); 3448 } 3449 } 3450 return V; 3451 } 3452 3453 static void inversePermutation(ArrayRef<unsigned> Indices, 3454 SmallVectorImpl<unsigned> &Mask) { 3455 Mask.clear(); 3456 const unsigned E = Indices.size(); 3457 Mask.resize(E); 3458 for (unsigned I = 0; I < E; ++I) 3459 Mask[Indices[I]] = I; 3460 } 3461 3462 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3463 IRBuilder<>::InsertPointGuard Guard(Builder); 3464 3465 if (E->VectorizedValue) { 3466 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3467 return E->VectorizedValue; 3468 } 3469 3470 InstructionsState S = getSameOpcode(E->Scalars); 3471 Instruction *VL0 = cast<Instruction>(S.OpValue); 3472 Type *ScalarTy = VL0->getType(); 3473 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3474 ScalarTy = SI->getValueOperand()->getType(); 3475 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3476 3477 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3478 3479 if (E->NeedToGather) { 3480 setInsertPointAfterBundle(E->Scalars, S); 3481 auto *V = Gather(E->Scalars, VecTy); 3482 if (NeedToShuffleReuses) { 3483 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3484 E->ReuseShuffleIndices, "shuffle"); 3485 if (auto *I = dyn_cast<Instruction>(V)) { 3486 GatherSeq.insert(I); 3487 CSEBlocks.insert(I->getParent()); 3488 } 3489 } 3490 E->VectorizedValue = V; 3491 return V; 3492 } 3493 3494 unsigned ShuffleOrOp = S.isAltShuffle() ? 3495 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3496 switch (ShuffleOrOp) { 3497 case Instruction::PHI: { 3498 PHINode *PH = dyn_cast<PHINode>(VL0); 3499 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3500 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3501 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3502 Value *V = NewPhi; 3503 if (NeedToShuffleReuses) { 3504 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3505 E->ReuseShuffleIndices, "shuffle"); 3506 } 3507 E->VectorizedValue = V; 3508 3509 // PHINodes may have multiple entries from the same block. We want to 3510 // visit every block once. 3511 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3512 3513 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3514 ValueList Operands; 3515 BasicBlock *IBB = PH->getIncomingBlock(i); 3516 3517 if (!VisitedBBs.insert(IBB).second) { 3518 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3519 continue; 3520 } 3521 3522 Builder.SetInsertPoint(IBB->getTerminator()); 3523 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3524 Value *Vec = vectorizeTree(E->getOperand(i)); 3525 NewPhi->addIncoming(Vec, IBB); 3526 } 3527 3528 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3529 "Invalid number of incoming values"); 3530 return V; 3531 } 3532 3533 case Instruction::ExtractElement: { 3534 if (!E->NeedToGather) { 3535 Value *V = E->getSingleOperand(0); 3536 if (!E->ReorderIndices.empty()) { 3537 OrdersType Mask; 3538 inversePermutation(E->ReorderIndices, Mask); 3539 Builder.SetInsertPoint(VL0); 3540 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3541 "reorder_shuffle"); 3542 } 3543 if (NeedToShuffleReuses) { 3544 // TODO: Merge this shuffle with the ReorderShuffleMask. 3545 if (E->ReorderIndices.empty()) 3546 Builder.SetInsertPoint(VL0); 3547 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3548 E->ReuseShuffleIndices, "shuffle"); 3549 } 3550 E->VectorizedValue = V; 3551 return V; 3552 } 3553 setInsertPointAfterBundle(E->Scalars, S); 3554 auto *V = Gather(E->Scalars, VecTy); 3555 if (NeedToShuffleReuses) { 3556 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3557 E->ReuseShuffleIndices, "shuffle"); 3558 if (auto *I = dyn_cast<Instruction>(V)) { 3559 GatherSeq.insert(I); 3560 CSEBlocks.insert(I->getParent()); 3561 } 3562 } 3563 E->VectorizedValue = V; 3564 return V; 3565 } 3566 case Instruction::ExtractValue: { 3567 if (!E->NeedToGather) { 3568 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3569 Builder.SetInsertPoint(LI); 3570 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3571 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3572 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3573 Value *NewV = propagateMetadata(V, E->Scalars); 3574 if (!E->ReorderIndices.empty()) { 3575 OrdersType Mask; 3576 inversePermutation(E->ReorderIndices, Mask); 3577 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3578 "reorder_shuffle"); 3579 } 3580 if (NeedToShuffleReuses) { 3581 // TODO: Merge this shuffle with the ReorderShuffleMask. 3582 NewV = Builder.CreateShuffleVector( 3583 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3584 } 3585 E->VectorizedValue = NewV; 3586 return NewV; 3587 } 3588 setInsertPointAfterBundle(E->Scalars, S); 3589 auto *V = Gather(E->Scalars, VecTy); 3590 if (NeedToShuffleReuses) { 3591 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3592 E->ReuseShuffleIndices, "shuffle"); 3593 if (auto *I = dyn_cast<Instruction>(V)) { 3594 GatherSeq.insert(I); 3595 CSEBlocks.insert(I->getParent()); 3596 } 3597 } 3598 E->VectorizedValue = V; 3599 return V; 3600 } 3601 case Instruction::ZExt: 3602 case Instruction::SExt: 3603 case Instruction::FPToUI: 3604 case Instruction::FPToSI: 3605 case Instruction::FPExt: 3606 case Instruction::PtrToInt: 3607 case Instruction::IntToPtr: 3608 case Instruction::SIToFP: 3609 case Instruction::UIToFP: 3610 case Instruction::Trunc: 3611 case Instruction::FPTrunc: 3612 case Instruction::BitCast: { 3613 setInsertPointAfterBundle(E->Scalars, S); 3614 3615 Value *InVec = vectorizeTree(E->getOperand(0)); 3616 3617 if (E->VectorizedValue) { 3618 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3619 return E->VectorizedValue; 3620 } 3621 3622 CastInst *CI = dyn_cast<CastInst>(VL0); 3623 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3624 if (NeedToShuffleReuses) { 3625 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3626 E->ReuseShuffleIndices, "shuffle"); 3627 } 3628 E->VectorizedValue = V; 3629 ++NumVectorInstructions; 3630 return V; 3631 } 3632 case Instruction::FCmp: 3633 case Instruction::ICmp: { 3634 setInsertPointAfterBundle(E->Scalars, S); 3635 3636 Value *L = vectorizeTree(E->getOperand(0)); 3637 Value *R = vectorizeTree(E->getOperand(1)); 3638 3639 if (E->VectorizedValue) { 3640 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3641 return E->VectorizedValue; 3642 } 3643 3644 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3645 Value *V; 3646 if (S.getOpcode() == Instruction::FCmp) 3647 V = Builder.CreateFCmp(P0, L, R); 3648 else 3649 V = Builder.CreateICmp(P0, L, R); 3650 3651 propagateIRFlags(V, E->Scalars, VL0); 3652 if (NeedToShuffleReuses) { 3653 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3654 E->ReuseShuffleIndices, "shuffle"); 3655 } 3656 E->VectorizedValue = V; 3657 ++NumVectorInstructions; 3658 return V; 3659 } 3660 case Instruction::Select: { 3661 setInsertPointAfterBundle(E->Scalars, S); 3662 3663 Value *Cond = vectorizeTree(E->getOperand(0)); 3664 Value *True = vectorizeTree(E->getOperand(1)); 3665 Value *False = vectorizeTree(E->getOperand(2)); 3666 3667 if (E->VectorizedValue) { 3668 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3669 return E->VectorizedValue; 3670 } 3671 3672 Value *V = Builder.CreateSelect(Cond, True, False); 3673 if (NeedToShuffleReuses) { 3674 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3675 E->ReuseShuffleIndices, "shuffle"); 3676 } 3677 E->VectorizedValue = V; 3678 ++NumVectorInstructions; 3679 return V; 3680 } 3681 case Instruction::Add: 3682 case Instruction::FAdd: 3683 case Instruction::Sub: 3684 case Instruction::FSub: 3685 case Instruction::Mul: 3686 case Instruction::FMul: 3687 case Instruction::UDiv: 3688 case Instruction::SDiv: 3689 case Instruction::FDiv: 3690 case Instruction::URem: 3691 case Instruction::SRem: 3692 case Instruction::FRem: 3693 case Instruction::Shl: 3694 case Instruction::LShr: 3695 case Instruction::AShr: 3696 case Instruction::And: 3697 case Instruction::Or: 3698 case Instruction::Xor: { 3699 setInsertPointAfterBundle(E->Scalars, S); 3700 3701 Value *LHS = vectorizeTree(E->getOperand(0)); 3702 Value *RHS = vectorizeTree(E->getOperand(1)); 3703 3704 if (E->VectorizedValue) { 3705 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3706 return E->VectorizedValue; 3707 } 3708 3709 Value *V = Builder.CreateBinOp( 3710 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3711 propagateIRFlags(V, E->Scalars, VL0); 3712 if (auto *I = dyn_cast<Instruction>(V)) 3713 V = propagateMetadata(I, E->Scalars); 3714 3715 if (NeedToShuffleReuses) { 3716 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3717 E->ReuseShuffleIndices, "shuffle"); 3718 } 3719 E->VectorizedValue = V; 3720 ++NumVectorInstructions; 3721 3722 return V; 3723 } 3724 case Instruction::Load: { 3725 // Loads are inserted at the head of the tree because we don't want to 3726 // sink them all the way down past store instructions. 3727 bool IsReorder = !E->ReorderIndices.empty(); 3728 if (IsReorder) { 3729 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3730 VL0 = cast<Instruction>(S.OpValue); 3731 } 3732 setInsertPointAfterBundle(E->Scalars, S); 3733 3734 LoadInst *LI = cast<LoadInst>(VL0); 3735 Type *ScalarLoadTy = LI->getType(); 3736 unsigned AS = LI->getPointerAddressSpace(); 3737 3738 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3739 VecTy->getPointerTo(AS)); 3740 3741 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3742 // ExternalUses list to make sure that an extract will be generated in the 3743 // future. 3744 Value *PO = LI->getPointerOperand(); 3745 if (getTreeEntry(PO)) 3746 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3747 3748 unsigned Alignment = LI->getAlignment(); 3749 LI = Builder.CreateLoad(VecTy, VecPtr); 3750 if (!Alignment) { 3751 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3752 } 3753 LI->setAlignment(Alignment); 3754 Value *V = propagateMetadata(LI, E->Scalars); 3755 if (IsReorder) { 3756 OrdersType Mask; 3757 inversePermutation(E->ReorderIndices, Mask); 3758 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3759 Mask, "reorder_shuffle"); 3760 } 3761 if (NeedToShuffleReuses) { 3762 // TODO: Merge this shuffle with the ReorderShuffleMask. 3763 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3764 E->ReuseShuffleIndices, "shuffle"); 3765 } 3766 E->VectorizedValue = V; 3767 ++NumVectorInstructions; 3768 return V; 3769 } 3770 case Instruction::Store: { 3771 StoreInst *SI = cast<StoreInst>(VL0); 3772 unsigned Alignment = SI->getAlignment(); 3773 unsigned AS = SI->getPointerAddressSpace(); 3774 3775 setInsertPointAfterBundle(E->Scalars, S); 3776 3777 Value *VecValue = vectorizeTree(E->getOperand(0)); 3778 Value *ScalarPtr = SI->getPointerOperand(); 3779 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3780 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3781 3782 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3783 // ExternalUses to make sure that an extract will be generated in the 3784 // future. 3785 if (getTreeEntry(ScalarPtr)) 3786 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3787 3788 if (!Alignment) 3789 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3790 3791 ST->setAlignment(Alignment); 3792 Value *V = propagateMetadata(ST, E->Scalars); 3793 if (NeedToShuffleReuses) { 3794 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3795 E->ReuseShuffleIndices, "shuffle"); 3796 } 3797 E->VectorizedValue = V; 3798 ++NumVectorInstructions; 3799 return V; 3800 } 3801 case Instruction::GetElementPtr: { 3802 setInsertPointAfterBundle(E->Scalars, S); 3803 3804 Value *Op0 = vectorizeTree(E->getOperand(0)); 3805 3806 std::vector<Value *> OpVecs; 3807 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3808 ++j) { 3809 Value *OpVec = vectorizeTree(E->getOperand(j)); 3810 OpVecs.push_back(OpVec); 3811 } 3812 3813 Value *V = Builder.CreateGEP( 3814 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3815 if (Instruction *I = dyn_cast<Instruction>(V)) 3816 V = propagateMetadata(I, E->Scalars); 3817 3818 if (NeedToShuffleReuses) { 3819 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3820 E->ReuseShuffleIndices, "shuffle"); 3821 } 3822 E->VectorizedValue = V; 3823 ++NumVectorInstructions; 3824 3825 return V; 3826 } 3827 case Instruction::Call: { 3828 CallInst *CI = cast<CallInst>(VL0); 3829 setInsertPointAfterBundle(E->Scalars, S); 3830 Function *FI; 3831 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3832 Value *ScalarArg = nullptr; 3833 if (CI && (FI = CI->getCalledFunction())) { 3834 IID = FI->getIntrinsicID(); 3835 } 3836 std::vector<Value *> OpVecs; 3837 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3838 ValueList OpVL; 3839 // Some intrinsics have scalar arguments. This argument should not be 3840 // vectorized. 3841 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3842 CallInst *CEI = cast<CallInst>(VL0); 3843 ScalarArg = CEI->getArgOperand(j); 3844 OpVecs.push_back(CEI->getArgOperand(j)); 3845 continue; 3846 } 3847 3848 Value *OpVec = vectorizeTree(E->getOperand(j)); 3849 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3850 OpVecs.push_back(OpVec); 3851 } 3852 3853 Module *M = F->getParent(); 3854 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3855 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3856 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3857 SmallVector<OperandBundleDef, 1> OpBundles; 3858 CI->getOperandBundlesAsDefs(OpBundles); 3859 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3860 3861 // The scalar argument uses an in-tree scalar so we add the new vectorized 3862 // call to ExternalUses list to make sure that an extract will be 3863 // generated in the future. 3864 if (ScalarArg && getTreeEntry(ScalarArg)) 3865 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3866 3867 propagateIRFlags(V, E->Scalars, VL0); 3868 if (NeedToShuffleReuses) { 3869 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3870 E->ReuseShuffleIndices, "shuffle"); 3871 } 3872 E->VectorizedValue = V; 3873 ++NumVectorInstructions; 3874 return V; 3875 } 3876 case Instruction::ShuffleVector: { 3877 assert(S.isAltShuffle() && 3878 ((Instruction::isBinaryOp(S.getOpcode()) && 3879 Instruction::isBinaryOp(S.getAltOpcode())) || 3880 (Instruction::isCast(S.getOpcode()) && 3881 Instruction::isCast(S.getAltOpcode()))) && 3882 "Invalid Shuffle Vector Operand"); 3883 3884 Value *LHS, *RHS; 3885 if (Instruction::isBinaryOp(S.getOpcode())) { 3886 setInsertPointAfterBundle(E->Scalars, S); 3887 LHS = vectorizeTree(E->getOperand(0)); 3888 RHS = vectorizeTree(E->getOperand(1)); 3889 } else { 3890 setInsertPointAfterBundle(E->Scalars, S); 3891 LHS = vectorizeTree(E->getOperand(0)); 3892 } 3893 3894 if (E->VectorizedValue) { 3895 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3896 return E->VectorizedValue; 3897 } 3898 3899 Value *V0, *V1; 3900 if (Instruction::isBinaryOp(S.getOpcode())) { 3901 V0 = Builder.CreateBinOp( 3902 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3903 V1 = Builder.CreateBinOp( 3904 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3905 } else { 3906 V0 = Builder.CreateCast( 3907 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3908 V1 = Builder.CreateCast( 3909 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3910 } 3911 3912 // Create shuffle to take alternate operations from the vector. 3913 // Also, gather up main and alt scalar ops to propagate IR flags to 3914 // each vector operation. 3915 ValueList OpScalars, AltScalars; 3916 unsigned e = E->Scalars.size(); 3917 SmallVector<Constant *, 8> Mask(e); 3918 for (unsigned i = 0; i < e; ++i) { 3919 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3920 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3921 if (OpInst->getOpcode() == S.getAltOpcode()) { 3922 Mask[i] = Builder.getInt32(e + i); 3923 AltScalars.push_back(E->Scalars[i]); 3924 } else { 3925 Mask[i] = Builder.getInt32(i); 3926 OpScalars.push_back(E->Scalars[i]); 3927 } 3928 } 3929 3930 Value *ShuffleMask = ConstantVector::get(Mask); 3931 propagateIRFlags(V0, OpScalars); 3932 propagateIRFlags(V1, AltScalars); 3933 3934 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3935 if (Instruction *I = dyn_cast<Instruction>(V)) 3936 V = propagateMetadata(I, E->Scalars); 3937 if (NeedToShuffleReuses) { 3938 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3939 E->ReuseShuffleIndices, "shuffle"); 3940 } 3941 E->VectorizedValue = V; 3942 ++NumVectorInstructions; 3943 3944 return V; 3945 } 3946 default: 3947 llvm_unreachable("unknown inst"); 3948 } 3949 return nullptr; 3950 } 3951 3952 Value *BoUpSLP::vectorizeTree() { 3953 ExtraValueToDebugLocsMap ExternallyUsedValues; 3954 return vectorizeTree(ExternallyUsedValues); 3955 } 3956 3957 Value * 3958 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3959 // All blocks must be scheduled before any instructions are inserted. 3960 for (auto &BSIter : BlocksSchedules) { 3961 scheduleBlock(BSIter.second.get()); 3962 } 3963 3964 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3965 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 3966 3967 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3968 // vectorized root. InstCombine will then rewrite the entire expression. We 3969 // sign extend the extracted values below. 3970 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3971 if (MinBWs.count(ScalarRoot)) { 3972 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3973 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3974 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 3975 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3976 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3977 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3978 VectorizableTree[0]->VectorizedValue = Trunc; 3979 } 3980 3981 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3982 << " values .\n"); 3983 3984 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3985 // specified by ScalarType. 3986 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3987 if (!MinBWs.count(ScalarRoot)) 3988 return Ex; 3989 if (MinBWs[ScalarRoot].second) 3990 return Builder.CreateSExt(Ex, ScalarType); 3991 return Builder.CreateZExt(Ex, ScalarType); 3992 }; 3993 3994 // Extract all of the elements with the external uses. 3995 for (const auto &ExternalUse : ExternalUses) { 3996 Value *Scalar = ExternalUse.Scalar; 3997 llvm::User *User = ExternalUse.User; 3998 3999 // Skip users that we already RAUW. This happens when one instruction 4000 // has multiple uses of the same value. 4001 if (User && !is_contained(Scalar->users(), User)) 4002 continue; 4003 TreeEntry *E = getTreeEntry(Scalar); 4004 assert(E && "Invalid scalar"); 4005 assert(!E->NeedToGather && "Extracting from a gather list"); 4006 4007 Value *Vec = E->VectorizedValue; 4008 assert(Vec && "Can't find vectorizable value"); 4009 4010 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4011 // If User == nullptr, the Scalar is used as extra arg. Generate 4012 // ExtractElement instruction and update the record for this scalar in 4013 // ExternallyUsedValues. 4014 if (!User) { 4015 assert(ExternallyUsedValues.count(Scalar) && 4016 "Scalar with nullptr as an external user must be registered in " 4017 "ExternallyUsedValues map"); 4018 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4019 Builder.SetInsertPoint(VecI->getParent(), 4020 std::next(VecI->getIterator())); 4021 } else { 4022 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4023 } 4024 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4025 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4026 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4027 auto &Locs = ExternallyUsedValues[Scalar]; 4028 ExternallyUsedValues.insert({Ex, Locs}); 4029 ExternallyUsedValues.erase(Scalar); 4030 // Required to update internally referenced instructions. 4031 Scalar->replaceAllUsesWith(Ex); 4032 continue; 4033 } 4034 4035 // Generate extracts for out-of-tree users. 4036 // Find the insertion point for the extractelement lane. 4037 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4038 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4039 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4040 if (PH->getIncomingValue(i) == Scalar) { 4041 Instruction *IncomingTerminator = 4042 PH->getIncomingBlock(i)->getTerminator(); 4043 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4044 Builder.SetInsertPoint(VecI->getParent(), 4045 std::next(VecI->getIterator())); 4046 } else { 4047 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4048 } 4049 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4050 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4051 CSEBlocks.insert(PH->getIncomingBlock(i)); 4052 PH->setOperand(i, Ex); 4053 } 4054 } 4055 } else { 4056 Builder.SetInsertPoint(cast<Instruction>(User)); 4057 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4058 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4059 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4060 User->replaceUsesOfWith(Scalar, Ex); 4061 } 4062 } else { 4063 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4064 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4065 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4066 CSEBlocks.insert(&F->getEntryBlock()); 4067 User->replaceUsesOfWith(Scalar, Ex); 4068 } 4069 4070 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4071 } 4072 4073 // For each vectorized value: 4074 for (auto &TEPtr : VectorizableTree) { 4075 TreeEntry *Entry = TEPtr.get(); 4076 4077 // No need to handle users of gathered values. 4078 if (Entry->NeedToGather) 4079 continue; 4080 4081 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4082 4083 // For each lane: 4084 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4085 Value *Scalar = Entry->Scalars[Lane]; 4086 4087 Type *Ty = Scalar->getType(); 4088 if (!Ty->isVoidTy()) { 4089 #ifndef NDEBUG 4090 for (User *U : Scalar->users()) { 4091 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4092 4093 // It is legal to replace users in the ignorelist by undef. 4094 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4095 "Replacing out-of-tree value with undef"); 4096 } 4097 #endif 4098 Value *Undef = UndefValue::get(Ty); 4099 Scalar->replaceAllUsesWith(Undef); 4100 } 4101 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4102 eraseInstruction(cast<Instruction>(Scalar)); 4103 } 4104 } 4105 4106 Builder.ClearInsertionPoint(); 4107 4108 return VectorizableTree[0]->VectorizedValue; 4109 } 4110 4111 void BoUpSLP::optimizeGatherSequence() { 4112 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4113 << " gather sequences instructions.\n"); 4114 // LICM InsertElementInst sequences. 4115 for (Instruction *I : GatherSeq) { 4116 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4117 continue; 4118 4119 // Check if this block is inside a loop. 4120 Loop *L = LI->getLoopFor(I->getParent()); 4121 if (!L) 4122 continue; 4123 4124 // Check if it has a preheader. 4125 BasicBlock *PreHeader = L->getLoopPreheader(); 4126 if (!PreHeader) 4127 continue; 4128 4129 // If the vector or the element that we insert into it are 4130 // instructions that are defined in this basic block then we can't 4131 // hoist this instruction. 4132 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4133 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4134 if (Op0 && L->contains(Op0)) 4135 continue; 4136 if (Op1 && L->contains(Op1)) 4137 continue; 4138 4139 // We can hoist this instruction. Move it to the pre-header. 4140 I->moveBefore(PreHeader->getTerminator()); 4141 } 4142 4143 // Make a list of all reachable blocks in our CSE queue. 4144 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4145 CSEWorkList.reserve(CSEBlocks.size()); 4146 for (BasicBlock *BB : CSEBlocks) 4147 if (DomTreeNode *N = DT->getNode(BB)) { 4148 assert(DT->isReachableFromEntry(N)); 4149 CSEWorkList.push_back(N); 4150 } 4151 4152 // Sort blocks by domination. This ensures we visit a block after all blocks 4153 // dominating it are visited. 4154 llvm::stable_sort(CSEWorkList, 4155 [this](const DomTreeNode *A, const DomTreeNode *B) { 4156 return DT->properlyDominates(A, B); 4157 }); 4158 4159 // Perform O(N^2) search over the gather sequences and merge identical 4160 // instructions. TODO: We can further optimize this scan if we split the 4161 // instructions into different buckets based on the insert lane. 4162 SmallVector<Instruction *, 16> Visited; 4163 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4164 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4165 "Worklist not sorted properly!"); 4166 BasicBlock *BB = (*I)->getBlock(); 4167 // For all instructions in blocks containing gather sequences: 4168 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4169 Instruction *In = &*it++; 4170 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4171 continue; 4172 4173 // Check if we can replace this instruction with any of the 4174 // visited instructions. 4175 for (Instruction *v : Visited) { 4176 if (In->isIdenticalTo(v) && 4177 DT->dominates(v->getParent(), In->getParent())) { 4178 In->replaceAllUsesWith(v); 4179 eraseInstruction(In); 4180 In = nullptr; 4181 break; 4182 } 4183 } 4184 if (In) { 4185 assert(!is_contained(Visited, In)); 4186 Visited.push_back(In); 4187 } 4188 } 4189 } 4190 CSEBlocks.clear(); 4191 GatherSeq.clear(); 4192 } 4193 4194 // Groups the instructions to a bundle (which is then a single scheduling entity) 4195 // and schedules instructions until the bundle gets ready. 4196 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 4197 BoUpSLP *SLP, 4198 const InstructionsState &S) { 4199 if (isa<PHINode>(S.OpValue)) 4200 return true; 4201 4202 // Initialize the instruction bundle. 4203 Instruction *OldScheduleEnd = ScheduleEnd; 4204 ScheduleData *PrevInBundle = nullptr; 4205 ScheduleData *Bundle = nullptr; 4206 bool ReSchedule = false; 4207 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4208 4209 // Make sure that the scheduling region contains all 4210 // instructions of the bundle. 4211 for (Value *V : VL) { 4212 if (!extendSchedulingRegion(V, S)) 4213 return false; 4214 } 4215 4216 for (Value *V : VL) { 4217 ScheduleData *BundleMember = getScheduleData(V); 4218 assert(BundleMember && 4219 "no ScheduleData for bundle member (maybe not in same basic block)"); 4220 if (BundleMember->IsScheduled) { 4221 // A bundle member was scheduled as single instruction before and now 4222 // needs to be scheduled as part of the bundle. We just get rid of the 4223 // existing schedule. 4224 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4225 << " was already scheduled\n"); 4226 ReSchedule = true; 4227 } 4228 assert(BundleMember->isSchedulingEntity() && 4229 "bundle member already part of other bundle"); 4230 if (PrevInBundle) { 4231 PrevInBundle->NextInBundle = BundleMember; 4232 } else { 4233 Bundle = BundleMember; 4234 } 4235 BundleMember->UnscheduledDepsInBundle = 0; 4236 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4237 4238 // Group the instructions to a bundle. 4239 BundleMember->FirstInBundle = Bundle; 4240 PrevInBundle = BundleMember; 4241 } 4242 if (ScheduleEnd != OldScheduleEnd) { 4243 // The scheduling region got new instructions at the lower end (or it is a 4244 // new region for the first bundle). This makes it necessary to 4245 // recalculate all dependencies. 4246 // It is seldom that this needs to be done a second time after adding the 4247 // initial bundle to the region. 4248 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4249 doForAllOpcodes(I, [](ScheduleData *SD) { 4250 SD->clearDependencies(); 4251 }); 4252 } 4253 ReSchedule = true; 4254 } 4255 if (ReSchedule) { 4256 resetSchedule(); 4257 initialFillReadyList(ReadyInsts); 4258 } 4259 4260 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4261 << BB->getName() << "\n"); 4262 4263 calculateDependencies(Bundle, true, SLP); 4264 4265 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4266 // means that there are no cyclic dependencies and we can schedule it. 4267 // Note that's important that we don't "schedule" the bundle yet (see 4268 // cancelScheduling). 4269 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4270 4271 ScheduleData *pickedSD = ReadyInsts.back(); 4272 ReadyInsts.pop_back(); 4273 4274 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4275 schedule(pickedSD, ReadyInsts); 4276 } 4277 } 4278 if (!Bundle->isReady()) { 4279 cancelScheduling(VL, S.OpValue); 4280 return false; 4281 } 4282 return true; 4283 } 4284 4285 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4286 Value *OpValue) { 4287 if (isa<PHINode>(OpValue)) 4288 return; 4289 4290 ScheduleData *Bundle = getScheduleData(OpValue); 4291 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4292 assert(!Bundle->IsScheduled && 4293 "Can't cancel bundle which is already scheduled"); 4294 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4295 "tried to unbundle something which is not a bundle"); 4296 4297 // Un-bundle: make single instructions out of the bundle. 4298 ScheduleData *BundleMember = Bundle; 4299 while (BundleMember) { 4300 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4301 BundleMember->FirstInBundle = BundleMember; 4302 ScheduleData *Next = BundleMember->NextInBundle; 4303 BundleMember->NextInBundle = nullptr; 4304 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4305 if (BundleMember->UnscheduledDepsInBundle == 0) { 4306 ReadyInsts.insert(BundleMember); 4307 } 4308 BundleMember = Next; 4309 } 4310 } 4311 4312 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4313 // Allocate a new ScheduleData for the instruction. 4314 if (ChunkPos >= ChunkSize) { 4315 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 4316 ChunkPos = 0; 4317 } 4318 return &(ScheduleDataChunks.back()[ChunkPos++]); 4319 } 4320 4321 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4322 const InstructionsState &S) { 4323 if (getScheduleData(V, isOneOf(S, V))) 4324 return true; 4325 Instruction *I = dyn_cast<Instruction>(V); 4326 assert(I && "bundle member must be an instruction"); 4327 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4328 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4329 ScheduleData *ISD = getScheduleData(I); 4330 if (!ISD) 4331 return false; 4332 assert(isInSchedulingRegion(ISD) && 4333 "ScheduleData not in scheduling region"); 4334 ScheduleData *SD = allocateScheduleDataChunks(); 4335 SD->Inst = I; 4336 SD->init(SchedulingRegionID, S.OpValue); 4337 ExtraScheduleDataMap[I][S.OpValue] = SD; 4338 return true; 4339 }; 4340 if (CheckSheduleForI(I)) 4341 return true; 4342 if (!ScheduleStart) { 4343 // It's the first instruction in the new region. 4344 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4345 ScheduleStart = I; 4346 ScheduleEnd = I->getNextNode(); 4347 if (isOneOf(S, I) != I) 4348 CheckSheduleForI(I); 4349 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4350 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4351 return true; 4352 } 4353 // Search up and down at the same time, because we don't know if the new 4354 // instruction is above or below the existing scheduling region. 4355 BasicBlock::reverse_iterator UpIter = 4356 ++ScheduleStart->getIterator().getReverse(); 4357 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4358 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4359 BasicBlock::iterator LowerEnd = BB->end(); 4360 while (true) { 4361 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4362 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4363 return false; 4364 } 4365 4366 if (UpIter != UpperEnd) { 4367 if (&*UpIter == I) { 4368 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4369 ScheduleStart = I; 4370 if (isOneOf(S, I) != I) 4371 CheckSheduleForI(I); 4372 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4373 << "\n"); 4374 return true; 4375 } 4376 ++UpIter; 4377 } 4378 if (DownIter != LowerEnd) { 4379 if (&*DownIter == I) { 4380 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4381 nullptr); 4382 ScheduleEnd = I->getNextNode(); 4383 if (isOneOf(S, I) != I) 4384 CheckSheduleForI(I); 4385 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4386 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4387 << "\n"); 4388 return true; 4389 } 4390 ++DownIter; 4391 } 4392 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4393 "instruction not found in block"); 4394 } 4395 return true; 4396 } 4397 4398 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4399 Instruction *ToI, 4400 ScheduleData *PrevLoadStore, 4401 ScheduleData *NextLoadStore) { 4402 ScheduleData *CurrentLoadStore = PrevLoadStore; 4403 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4404 ScheduleData *SD = ScheduleDataMap[I]; 4405 if (!SD) { 4406 SD = allocateScheduleDataChunks(); 4407 ScheduleDataMap[I] = SD; 4408 SD->Inst = I; 4409 } 4410 assert(!isInSchedulingRegion(SD) && 4411 "new ScheduleData already in scheduling region"); 4412 SD->init(SchedulingRegionID, I); 4413 4414 if (I->mayReadOrWriteMemory() && 4415 (!isa<IntrinsicInst>(I) || 4416 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4417 // Update the linked list of memory accessing instructions. 4418 if (CurrentLoadStore) { 4419 CurrentLoadStore->NextLoadStore = SD; 4420 } else { 4421 FirstLoadStoreInRegion = SD; 4422 } 4423 CurrentLoadStore = SD; 4424 } 4425 } 4426 if (NextLoadStore) { 4427 if (CurrentLoadStore) 4428 CurrentLoadStore->NextLoadStore = NextLoadStore; 4429 } else { 4430 LastLoadStoreInRegion = CurrentLoadStore; 4431 } 4432 } 4433 4434 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4435 bool InsertInReadyList, 4436 BoUpSLP *SLP) { 4437 assert(SD->isSchedulingEntity()); 4438 4439 SmallVector<ScheduleData *, 10> WorkList; 4440 WorkList.push_back(SD); 4441 4442 while (!WorkList.empty()) { 4443 ScheduleData *SD = WorkList.back(); 4444 WorkList.pop_back(); 4445 4446 ScheduleData *BundleMember = SD; 4447 while (BundleMember) { 4448 assert(isInSchedulingRegion(BundleMember)); 4449 if (!BundleMember->hasValidDependencies()) { 4450 4451 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4452 << "\n"); 4453 BundleMember->Dependencies = 0; 4454 BundleMember->resetUnscheduledDeps(); 4455 4456 // Handle def-use chain dependencies. 4457 if (BundleMember->OpValue != BundleMember->Inst) { 4458 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4459 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4460 BundleMember->Dependencies++; 4461 ScheduleData *DestBundle = UseSD->FirstInBundle; 4462 if (!DestBundle->IsScheduled) 4463 BundleMember->incrementUnscheduledDeps(1); 4464 if (!DestBundle->hasValidDependencies()) 4465 WorkList.push_back(DestBundle); 4466 } 4467 } else { 4468 for (User *U : BundleMember->Inst->users()) { 4469 if (isa<Instruction>(U)) { 4470 ScheduleData *UseSD = getScheduleData(U); 4471 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4472 BundleMember->Dependencies++; 4473 ScheduleData *DestBundle = UseSD->FirstInBundle; 4474 if (!DestBundle->IsScheduled) 4475 BundleMember->incrementUnscheduledDeps(1); 4476 if (!DestBundle->hasValidDependencies()) 4477 WorkList.push_back(DestBundle); 4478 } 4479 } else { 4480 // I'm not sure if this can ever happen. But we need to be safe. 4481 // This lets the instruction/bundle never be scheduled and 4482 // eventually disable vectorization. 4483 BundleMember->Dependencies++; 4484 BundleMember->incrementUnscheduledDeps(1); 4485 } 4486 } 4487 } 4488 4489 // Handle the memory dependencies. 4490 ScheduleData *DepDest = BundleMember->NextLoadStore; 4491 if (DepDest) { 4492 Instruction *SrcInst = BundleMember->Inst; 4493 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4494 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4495 unsigned numAliased = 0; 4496 unsigned DistToSrc = 1; 4497 4498 while (DepDest) { 4499 assert(isInSchedulingRegion(DepDest)); 4500 4501 // We have two limits to reduce the complexity: 4502 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4503 // SLP->isAliased (which is the expensive part in this loop). 4504 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4505 // the whole loop (even if the loop is fast, it's quadratic). 4506 // It's important for the loop break condition (see below) to 4507 // check this limit even between two read-only instructions. 4508 if (DistToSrc >= MaxMemDepDistance || 4509 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4510 (numAliased >= AliasedCheckLimit || 4511 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4512 4513 // We increment the counter only if the locations are aliased 4514 // (instead of counting all alias checks). This gives a better 4515 // balance between reduced runtime and accurate dependencies. 4516 numAliased++; 4517 4518 DepDest->MemoryDependencies.push_back(BundleMember); 4519 BundleMember->Dependencies++; 4520 ScheduleData *DestBundle = DepDest->FirstInBundle; 4521 if (!DestBundle->IsScheduled) { 4522 BundleMember->incrementUnscheduledDeps(1); 4523 } 4524 if (!DestBundle->hasValidDependencies()) { 4525 WorkList.push_back(DestBundle); 4526 } 4527 } 4528 DepDest = DepDest->NextLoadStore; 4529 4530 // Example, explaining the loop break condition: Let's assume our 4531 // starting instruction is i0 and MaxMemDepDistance = 3. 4532 // 4533 // +--------v--v--v 4534 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4535 // +--------^--^--^ 4536 // 4537 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4538 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4539 // Previously we already added dependencies from i3 to i6,i7,i8 4540 // (because of MaxMemDepDistance). As we added a dependency from 4541 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4542 // and we can abort this loop at i6. 4543 if (DistToSrc >= 2 * MaxMemDepDistance) 4544 break; 4545 DistToSrc++; 4546 } 4547 } 4548 } 4549 BundleMember = BundleMember->NextInBundle; 4550 } 4551 if (InsertInReadyList && SD->isReady()) { 4552 ReadyInsts.push_back(SD); 4553 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4554 << "\n"); 4555 } 4556 } 4557 } 4558 4559 void BoUpSLP::BlockScheduling::resetSchedule() { 4560 assert(ScheduleStart && 4561 "tried to reset schedule on block which has not been scheduled"); 4562 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4563 doForAllOpcodes(I, [&](ScheduleData *SD) { 4564 assert(isInSchedulingRegion(SD) && 4565 "ScheduleData not in scheduling region"); 4566 SD->IsScheduled = false; 4567 SD->resetUnscheduledDeps(); 4568 }); 4569 } 4570 ReadyInsts.clear(); 4571 } 4572 4573 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4574 if (!BS->ScheduleStart) 4575 return; 4576 4577 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4578 4579 BS->resetSchedule(); 4580 4581 // For the real scheduling we use a more sophisticated ready-list: it is 4582 // sorted by the original instruction location. This lets the final schedule 4583 // be as close as possible to the original instruction order. 4584 struct ScheduleDataCompare { 4585 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4586 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4587 } 4588 }; 4589 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4590 4591 // Ensure that all dependency data is updated and fill the ready-list with 4592 // initial instructions. 4593 int Idx = 0; 4594 int NumToSchedule = 0; 4595 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4596 I = I->getNextNode()) { 4597 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4598 assert(SD->isPartOfBundle() == 4599 (getTreeEntry(SD->Inst) != nullptr) && 4600 "scheduler and vectorizer bundle mismatch"); 4601 SD->FirstInBundle->SchedulingPriority = Idx++; 4602 if (SD->isSchedulingEntity()) { 4603 BS->calculateDependencies(SD, false, this); 4604 NumToSchedule++; 4605 } 4606 }); 4607 } 4608 BS->initialFillReadyList(ReadyInsts); 4609 4610 Instruction *LastScheduledInst = BS->ScheduleEnd; 4611 4612 // Do the "real" scheduling. 4613 while (!ReadyInsts.empty()) { 4614 ScheduleData *picked = *ReadyInsts.begin(); 4615 ReadyInsts.erase(ReadyInsts.begin()); 4616 4617 // Move the scheduled instruction(s) to their dedicated places, if not 4618 // there yet. 4619 ScheduleData *BundleMember = picked; 4620 while (BundleMember) { 4621 Instruction *pickedInst = BundleMember->Inst; 4622 if (LastScheduledInst->getNextNode() != pickedInst) { 4623 BS->BB->getInstList().remove(pickedInst); 4624 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4625 pickedInst); 4626 } 4627 LastScheduledInst = pickedInst; 4628 BundleMember = BundleMember->NextInBundle; 4629 } 4630 4631 BS->schedule(picked, ReadyInsts); 4632 NumToSchedule--; 4633 } 4634 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4635 4636 // Avoid duplicate scheduling of the block. 4637 BS->ScheduleStart = nullptr; 4638 } 4639 4640 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4641 // If V is a store, just return the width of the stored value without 4642 // traversing the expression tree. This is the common case. 4643 if (auto *Store = dyn_cast<StoreInst>(V)) 4644 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4645 4646 // If V is not a store, we can traverse the expression tree to find loads 4647 // that feed it. The type of the loaded value may indicate a more suitable 4648 // width than V's type. We want to base the vector element size on the width 4649 // of memory operations where possible. 4650 SmallVector<Instruction *, 16> Worklist; 4651 SmallPtrSet<Instruction *, 16> Visited; 4652 if (auto *I = dyn_cast<Instruction>(V)) 4653 Worklist.push_back(I); 4654 4655 // Traverse the expression tree in bottom-up order looking for loads. If we 4656 // encounter an instruction we don't yet handle, we give up. 4657 auto MaxWidth = 0u; 4658 auto FoundUnknownInst = false; 4659 while (!Worklist.empty() && !FoundUnknownInst) { 4660 auto *I = Worklist.pop_back_val(); 4661 Visited.insert(I); 4662 4663 // We should only be looking at scalar instructions here. If the current 4664 // instruction has a vector type, give up. 4665 auto *Ty = I->getType(); 4666 if (isa<VectorType>(Ty)) 4667 FoundUnknownInst = true; 4668 4669 // If the current instruction is a load, update MaxWidth to reflect the 4670 // width of the loaded value. 4671 else if (isa<LoadInst>(I)) 4672 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4673 4674 // Otherwise, we need to visit the operands of the instruction. We only 4675 // handle the interesting cases from buildTree here. If an operand is an 4676 // instruction we haven't yet visited, we add it to the worklist. 4677 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4678 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4679 for (Use &U : I->operands()) 4680 if (auto *J = dyn_cast<Instruction>(U.get())) 4681 if (!Visited.count(J)) 4682 Worklist.push_back(J); 4683 } 4684 4685 // If we don't yet handle the instruction, give up. 4686 else 4687 FoundUnknownInst = true; 4688 } 4689 4690 // If we didn't encounter a memory access in the expression tree, or if we 4691 // gave up for some reason, just return the width of V. 4692 if (!MaxWidth || FoundUnknownInst) 4693 return DL->getTypeSizeInBits(V->getType()); 4694 4695 // Otherwise, return the maximum width we found. 4696 return MaxWidth; 4697 } 4698 4699 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4700 // smaller type with a truncation. We collect the values that will be demoted 4701 // in ToDemote and additional roots that require investigating in Roots. 4702 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4703 SmallVectorImpl<Value *> &ToDemote, 4704 SmallVectorImpl<Value *> &Roots) { 4705 // We can always demote constants. 4706 if (isa<Constant>(V)) { 4707 ToDemote.push_back(V); 4708 return true; 4709 } 4710 4711 // If the value is not an instruction in the expression with only one use, it 4712 // cannot be demoted. 4713 auto *I = dyn_cast<Instruction>(V); 4714 if (!I || !I->hasOneUse() || !Expr.count(I)) 4715 return false; 4716 4717 switch (I->getOpcode()) { 4718 4719 // We can always demote truncations and extensions. Since truncations can 4720 // seed additional demotion, we save the truncated value. 4721 case Instruction::Trunc: 4722 Roots.push_back(I->getOperand(0)); 4723 break; 4724 case Instruction::ZExt: 4725 case Instruction::SExt: 4726 break; 4727 4728 // We can demote certain binary operations if we can demote both of their 4729 // operands. 4730 case Instruction::Add: 4731 case Instruction::Sub: 4732 case Instruction::Mul: 4733 case Instruction::And: 4734 case Instruction::Or: 4735 case Instruction::Xor: 4736 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4737 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4738 return false; 4739 break; 4740 4741 // We can demote selects if we can demote their true and false values. 4742 case Instruction::Select: { 4743 SelectInst *SI = cast<SelectInst>(I); 4744 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4745 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4746 return false; 4747 break; 4748 } 4749 4750 // We can demote phis if we can demote all their incoming operands. Note that 4751 // we don't need to worry about cycles since we ensure single use above. 4752 case Instruction::PHI: { 4753 PHINode *PN = cast<PHINode>(I); 4754 for (Value *IncValue : PN->incoming_values()) 4755 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4756 return false; 4757 break; 4758 } 4759 4760 // Otherwise, conservatively give up. 4761 default: 4762 return false; 4763 } 4764 4765 // Record the value that we can demote. 4766 ToDemote.push_back(V); 4767 return true; 4768 } 4769 4770 void BoUpSLP::computeMinimumValueSizes() { 4771 // If there are no external uses, the expression tree must be rooted by a 4772 // store. We can't demote in-memory values, so there is nothing to do here. 4773 if (ExternalUses.empty()) 4774 return; 4775 4776 // We only attempt to truncate integer expressions. 4777 auto &TreeRoot = VectorizableTree[0]->Scalars; 4778 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4779 if (!TreeRootIT) 4780 return; 4781 4782 // If the expression is not rooted by a store, these roots should have 4783 // external uses. We will rely on InstCombine to rewrite the expression in 4784 // the narrower type. However, InstCombine only rewrites single-use values. 4785 // This means that if a tree entry other than a root is used externally, it 4786 // must have multiple uses and InstCombine will not rewrite it. The code 4787 // below ensures that only the roots are used externally. 4788 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4789 for (auto &EU : ExternalUses) 4790 if (!Expr.erase(EU.Scalar)) 4791 return; 4792 if (!Expr.empty()) 4793 return; 4794 4795 // Collect the scalar values of the vectorizable expression. We will use this 4796 // context to determine which values can be demoted. If we see a truncation, 4797 // we mark it as seeding another demotion. 4798 for (auto &EntryPtr : VectorizableTree) 4799 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 4800 4801 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4802 // have a single external user that is not in the vectorizable tree. 4803 for (auto *Root : TreeRoot) 4804 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4805 return; 4806 4807 // Conservatively determine if we can actually truncate the roots of the 4808 // expression. Collect the values that can be demoted in ToDemote and 4809 // additional roots that require investigating in Roots. 4810 SmallVector<Value *, 32> ToDemote; 4811 SmallVector<Value *, 4> Roots; 4812 for (auto *Root : TreeRoot) 4813 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4814 return; 4815 4816 // The maximum bit width required to represent all the values that can be 4817 // demoted without loss of precision. It would be safe to truncate the roots 4818 // of the expression to this width. 4819 auto MaxBitWidth = 8u; 4820 4821 // We first check if all the bits of the roots are demanded. If they're not, 4822 // we can truncate the roots to this narrower type. 4823 for (auto *Root : TreeRoot) { 4824 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4825 MaxBitWidth = std::max<unsigned>( 4826 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4827 } 4828 4829 // True if the roots can be zero-extended back to their original type, rather 4830 // than sign-extended. We know that if the leading bits are not demanded, we 4831 // can safely zero-extend. So we initialize IsKnownPositive to True. 4832 bool IsKnownPositive = true; 4833 4834 // If all the bits of the roots are demanded, we can try a little harder to 4835 // compute a narrower type. This can happen, for example, if the roots are 4836 // getelementptr indices. InstCombine promotes these indices to the pointer 4837 // width. Thus, all their bits are technically demanded even though the 4838 // address computation might be vectorized in a smaller type. 4839 // 4840 // We start by looking at each entry that can be demoted. We compute the 4841 // maximum bit width required to store the scalar by using ValueTracking to 4842 // compute the number of high-order bits we can truncate. 4843 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4844 llvm::all_of(TreeRoot, [](Value *R) { 4845 assert(R->hasOneUse() && "Root should have only one use!"); 4846 return isa<GetElementPtrInst>(R->user_back()); 4847 })) { 4848 MaxBitWidth = 8u; 4849 4850 // Determine if the sign bit of all the roots is known to be zero. If not, 4851 // IsKnownPositive is set to False. 4852 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4853 KnownBits Known = computeKnownBits(R, *DL); 4854 return Known.isNonNegative(); 4855 }); 4856 4857 // Determine the maximum number of bits required to store the scalar 4858 // values. 4859 for (auto *Scalar : ToDemote) { 4860 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4861 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4862 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4863 } 4864 4865 // If we can't prove that the sign bit is zero, we must add one to the 4866 // maximum bit width to account for the unknown sign bit. This preserves 4867 // the existing sign bit so we can safely sign-extend the root back to the 4868 // original type. Otherwise, if we know the sign bit is zero, we will 4869 // zero-extend the root instead. 4870 // 4871 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4872 // one to the maximum bit width will yield a larger-than-necessary 4873 // type. In general, we need to add an extra bit only if we can't 4874 // prove that the upper bit of the original type is equal to the 4875 // upper bit of the proposed smaller type. If these two bits are the 4876 // same (either zero or one) we know that sign-extending from the 4877 // smaller type will result in the same value. Here, since we can't 4878 // yet prove this, we are just making the proposed smaller type 4879 // larger to ensure correctness. 4880 if (!IsKnownPositive) 4881 ++MaxBitWidth; 4882 } 4883 4884 // Round MaxBitWidth up to the next power-of-two. 4885 if (!isPowerOf2_64(MaxBitWidth)) 4886 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4887 4888 // If the maximum bit width we compute is less than the with of the roots' 4889 // type, we can proceed with the narrowing. Otherwise, do nothing. 4890 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4891 return; 4892 4893 // If we can truncate the root, we must collect additional values that might 4894 // be demoted as a result. That is, those seeded by truncations we will 4895 // modify. 4896 while (!Roots.empty()) 4897 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4898 4899 // Finally, map the values we can demote to the maximum bit with we computed. 4900 for (auto *Scalar : ToDemote) 4901 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4902 } 4903 4904 namespace { 4905 4906 /// The SLPVectorizer Pass. 4907 struct SLPVectorizer : public FunctionPass { 4908 SLPVectorizerPass Impl; 4909 4910 /// Pass identification, replacement for typeid 4911 static char ID; 4912 4913 explicit SLPVectorizer() : FunctionPass(ID) { 4914 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4915 } 4916 4917 bool doInitialization(Module &M) override { 4918 return false; 4919 } 4920 4921 bool runOnFunction(Function &F) override { 4922 if (skipFunction(F)) 4923 return false; 4924 4925 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4926 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4927 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4928 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4929 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4930 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4931 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4932 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4933 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4934 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4935 4936 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4937 } 4938 4939 void getAnalysisUsage(AnalysisUsage &AU) const override { 4940 FunctionPass::getAnalysisUsage(AU); 4941 AU.addRequired<AssumptionCacheTracker>(); 4942 AU.addRequired<ScalarEvolutionWrapperPass>(); 4943 AU.addRequired<AAResultsWrapperPass>(); 4944 AU.addRequired<TargetTransformInfoWrapperPass>(); 4945 AU.addRequired<LoopInfoWrapperPass>(); 4946 AU.addRequired<DominatorTreeWrapperPass>(); 4947 AU.addRequired<DemandedBitsWrapperPass>(); 4948 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4949 AU.addPreserved<LoopInfoWrapperPass>(); 4950 AU.addPreserved<DominatorTreeWrapperPass>(); 4951 AU.addPreserved<AAResultsWrapperPass>(); 4952 AU.addPreserved<GlobalsAAWrapperPass>(); 4953 AU.setPreservesCFG(); 4954 } 4955 }; 4956 4957 } // end anonymous namespace 4958 4959 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4960 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4961 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4962 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4963 auto *AA = &AM.getResult<AAManager>(F); 4964 auto *LI = &AM.getResult<LoopAnalysis>(F); 4965 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4966 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4967 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4968 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4969 4970 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4971 if (!Changed) 4972 return PreservedAnalyses::all(); 4973 4974 PreservedAnalyses PA; 4975 PA.preserveSet<CFGAnalyses>(); 4976 PA.preserve<AAManager>(); 4977 PA.preserve<GlobalsAA>(); 4978 return PA; 4979 } 4980 4981 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4982 TargetTransformInfo *TTI_, 4983 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4984 LoopInfo *LI_, DominatorTree *DT_, 4985 AssumptionCache *AC_, DemandedBits *DB_, 4986 OptimizationRemarkEmitter *ORE_) { 4987 SE = SE_; 4988 TTI = TTI_; 4989 TLI = TLI_; 4990 AA = AA_; 4991 LI = LI_; 4992 DT = DT_; 4993 AC = AC_; 4994 DB = DB_; 4995 DL = &F.getParent()->getDataLayout(); 4996 4997 Stores.clear(); 4998 GEPs.clear(); 4999 bool Changed = false; 5000 5001 // If the target claims to have no vector registers don't attempt 5002 // vectorization. 5003 if (!TTI->getNumberOfRegisters(true)) 5004 return false; 5005 5006 // Don't vectorize when the attribute NoImplicitFloat is used. 5007 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5008 return false; 5009 5010 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5011 5012 // Use the bottom up slp vectorizer to construct chains that start with 5013 // store instructions. 5014 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5015 5016 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5017 // delete instructions. 5018 5019 // Scan the blocks in the function in post order. 5020 for (auto BB : post_order(&F.getEntryBlock())) { 5021 collectSeedInstructions(BB); 5022 5023 // Vectorize trees that end at stores. 5024 if (!Stores.empty()) { 5025 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5026 << " underlying objects.\n"); 5027 Changed |= vectorizeStoreChains(R); 5028 } 5029 5030 // Vectorize trees that end at reductions. 5031 Changed |= vectorizeChainsInBlock(BB, R); 5032 5033 // Vectorize the index computations of getelementptr instructions. This 5034 // is primarily intended to catch gather-like idioms ending at 5035 // non-consecutive loads. 5036 if (!GEPs.empty()) { 5037 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5038 << " underlying objects.\n"); 5039 Changed |= vectorizeGEPIndices(BB, R); 5040 } 5041 } 5042 5043 if (Changed) { 5044 R.optimizeGatherSequence(); 5045 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5046 LLVM_DEBUG(verifyFunction(F)); 5047 } 5048 return Changed; 5049 } 5050 5051 /// Check that the Values in the slice in VL array are still existent in 5052 /// the WeakTrackingVH array. 5053 /// Vectorization of part of the VL array may cause later values in the VL array 5054 /// to become invalid. We track when this has happened in the WeakTrackingVH 5055 /// array. 5056 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5057 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5058 unsigned SliceSize) { 5059 VL = VL.slice(SliceBegin, SliceSize); 5060 VH = VH.slice(SliceBegin, SliceSize); 5061 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5062 } 5063 5064 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5065 unsigned VecRegSize) { 5066 const unsigned ChainLen = Chain.size(); 5067 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5068 << "\n"); 5069 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5070 const unsigned VF = VecRegSize / Sz; 5071 5072 if (!isPowerOf2_32(Sz) || VF < 2) 5073 return false; 5074 5075 // Keep track of values that were deleted by vectorizing in the loop below. 5076 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5077 5078 bool Changed = false; 5079 // Look for profitable vectorizable trees at all offsets, starting at zero. 5080 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5081 5082 // Check that a previous iteration of this loop did not delete the Value. 5083 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5084 continue; 5085 5086 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5087 << "\n"); 5088 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5089 5090 R.buildTree(Operands); 5091 if (R.isTreeTinyAndNotFullyVectorizable()) 5092 continue; 5093 5094 R.computeMinimumValueSizes(); 5095 5096 int Cost = R.getTreeCost(); 5097 5098 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5099 << "\n"); 5100 if (Cost < -SLPCostThreshold) { 5101 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5102 5103 using namespace ore; 5104 5105 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5106 cast<StoreInst>(Chain[i])) 5107 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5108 << " and with tree size " 5109 << NV("TreeSize", R.getTreeSize())); 5110 5111 R.vectorizeTree(); 5112 5113 // Move to the next bundle. 5114 i += VF - 1; 5115 Changed = true; 5116 } 5117 } 5118 5119 return Changed; 5120 } 5121 5122 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5123 BoUpSLP &R) { 5124 SetVector<StoreInst *> Heads; 5125 SmallDenseSet<StoreInst *> Tails; 5126 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5127 5128 // We may run into multiple chains that merge into a single chain. We mark the 5129 // stores that we vectorized so that we don't visit the same store twice. 5130 BoUpSLP::ValueSet VectorizedStores; 5131 bool Changed = false; 5132 5133 auto &&FindConsecutiveAccess = 5134 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5135 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5136 return false; 5137 5138 Tails.insert(Stores[Idx]); 5139 Heads.insert(Stores[K]); 5140 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5141 return true; 5142 }; 5143 5144 // Do a quadratic search on all of the given stores in reverse order and find 5145 // all of the pairs of stores that follow each other. 5146 int E = Stores.size(); 5147 for (int Idx = E - 1; Idx >= 0; --Idx) { 5148 // If a store has multiple consecutive store candidates, search according 5149 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5150 // This is because usually pairing with immediate succeeding or preceding 5151 // candidate create the best chance to find slp vectorization opportunity. 5152 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5153 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5154 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5155 break; 5156 } 5157 5158 // For stores that start but don't end a link in the chain: 5159 for (auto *SI : llvm::reverse(Heads)) { 5160 if (Tails.count(SI)) 5161 continue; 5162 5163 // We found a store instr that starts a chain. Now follow the chain and try 5164 // to vectorize it. 5165 BoUpSLP::ValueList Operands; 5166 StoreInst *I = SI; 5167 // Collect the chain into a list. 5168 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5169 Operands.push_back(I); 5170 // Move to the next value in the chain. 5171 I = ConsecutiveChain[I]; 5172 } 5173 5174 // FIXME: Is division-by-2 the correct step? Should we assert that the 5175 // register size is a power-of-2? 5176 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5177 Size /= 2) { 5178 if (vectorizeStoreChain(Operands, R, Size)) { 5179 // Mark the vectorized stores so that we don't vectorize them again. 5180 VectorizedStores.insert(Operands.begin(), Operands.end()); 5181 Changed = true; 5182 break; 5183 } 5184 } 5185 } 5186 5187 return Changed; 5188 } 5189 5190 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5191 // Initialize the collections. We will make a single pass over the block. 5192 Stores.clear(); 5193 GEPs.clear(); 5194 5195 // Visit the store and getelementptr instructions in BB and organize them in 5196 // Stores and GEPs according to the underlying objects of their pointer 5197 // operands. 5198 for (Instruction &I : *BB) { 5199 // Ignore store instructions that are volatile or have a pointer operand 5200 // that doesn't point to a scalar type. 5201 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5202 if (!SI->isSimple()) 5203 continue; 5204 if (!isValidElementType(SI->getValueOperand()->getType())) 5205 continue; 5206 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5207 } 5208 5209 // Ignore getelementptr instructions that have more than one index, a 5210 // constant index, or a pointer operand that doesn't point to a scalar 5211 // type. 5212 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5213 auto Idx = GEP->idx_begin()->get(); 5214 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5215 continue; 5216 if (!isValidElementType(Idx->getType())) 5217 continue; 5218 if (GEP->getType()->isVectorTy()) 5219 continue; 5220 GEPs[GEP->getPointerOperand()].push_back(GEP); 5221 } 5222 } 5223 } 5224 5225 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5226 if (!A || !B) 5227 return false; 5228 Value *VL[] = { A, B }; 5229 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5230 } 5231 5232 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5233 int UserCost, bool AllowReorder) { 5234 if (VL.size() < 2) 5235 return false; 5236 5237 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5238 << VL.size() << ".\n"); 5239 5240 // Check that all of the parts are scalar instructions of the same type, 5241 // we permit an alternate opcode via InstructionsState. 5242 InstructionsState S = getSameOpcode(VL); 5243 if (!S.getOpcode()) 5244 return false; 5245 5246 Instruction *I0 = cast<Instruction>(S.OpValue); 5247 unsigned Sz = R.getVectorElementSize(I0); 5248 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5249 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5250 if (MaxVF < 2) { 5251 R.getORE()->emit([&]() { 5252 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5253 << "Cannot SLP vectorize list: vectorization factor " 5254 << "less than 2 is not supported"; 5255 }); 5256 return false; 5257 } 5258 5259 for (Value *V : VL) { 5260 Type *Ty = V->getType(); 5261 if (!isValidElementType(Ty)) { 5262 // NOTE: the following will give user internal llvm type name, which may 5263 // not be useful. 5264 R.getORE()->emit([&]() { 5265 std::string type_str; 5266 llvm::raw_string_ostream rso(type_str); 5267 Ty->print(rso); 5268 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5269 << "Cannot SLP vectorize list: type " 5270 << rso.str() + " is unsupported by vectorizer"; 5271 }); 5272 return false; 5273 } 5274 } 5275 5276 bool Changed = false; 5277 bool CandidateFound = false; 5278 int MinCost = SLPCostThreshold; 5279 5280 // Keep track of values that were deleted by vectorizing in the loop below. 5281 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5282 5283 unsigned NextInst = 0, MaxInst = VL.size(); 5284 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5285 VF /= 2) { 5286 // No actual vectorization should happen, if number of parts is the same as 5287 // provided vectorization factor (i.e. the scalar type is used for vector 5288 // code during codegen). 5289 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5290 if (TTI->getNumberOfParts(VecTy) == VF) 5291 continue; 5292 for (unsigned I = NextInst; I < MaxInst; ++I) { 5293 unsigned OpsWidth = 0; 5294 5295 if (I + VF > MaxInst) 5296 OpsWidth = MaxInst - I; 5297 else 5298 OpsWidth = VF; 5299 5300 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5301 break; 5302 5303 // Check that a previous iteration of this loop did not delete the Value. 5304 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5305 continue; 5306 5307 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5308 << "\n"); 5309 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5310 5311 R.buildTree(Ops); 5312 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5313 // TODO: check if we can allow reordering for more cases. 5314 if (AllowReorder && Order) { 5315 // TODO: reorder tree nodes without tree rebuilding. 5316 // Conceptually, there is nothing actually preventing us from trying to 5317 // reorder a larger list. In fact, we do exactly this when vectorizing 5318 // reductions. However, at this point, we only expect to get here when 5319 // there are exactly two operations. 5320 assert(Ops.size() == 2); 5321 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5322 R.buildTree(ReorderedOps, None); 5323 } 5324 if (R.isTreeTinyAndNotFullyVectorizable()) 5325 continue; 5326 5327 R.computeMinimumValueSizes(); 5328 int Cost = R.getTreeCost() - UserCost; 5329 CandidateFound = true; 5330 MinCost = std::min(MinCost, Cost); 5331 5332 if (Cost < -SLPCostThreshold) { 5333 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5334 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5335 cast<Instruction>(Ops[0])) 5336 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5337 << " and with tree size " 5338 << ore::NV("TreeSize", R.getTreeSize())); 5339 5340 R.vectorizeTree(); 5341 // Move to the next bundle. 5342 I += VF - 1; 5343 NextInst = I + 1; 5344 Changed = true; 5345 } 5346 } 5347 } 5348 5349 if (!Changed && CandidateFound) { 5350 R.getORE()->emit([&]() { 5351 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5352 << "List vectorization was possible but not beneficial with cost " 5353 << ore::NV("Cost", MinCost) << " >= " 5354 << ore::NV("Treshold", -SLPCostThreshold); 5355 }); 5356 } else if (!Changed) { 5357 R.getORE()->emit([&]() { 5358 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5359 << "Cannot SLP vectorize list: vectorization was impossible" 5360 << " with available vectorization factors"; 5361 }); 5362 } 5363 return Changed; 5364 } 5365 5366 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5367 if (!I) 5368 return false; 5369 5370 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5371 return false; 5372 5373 Value *P = I->getParent(); 5374 5375 // Vectorize in current basic block only. 5376 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5377 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5378 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5379 return false; 5380 5381 // Try to vectorize V. 5382 if (tryToVectorizePair(Op0, Op1, R)) 5383 return true; 5384 5385 auto *A = dyn_cast<BinaryOperator>(Op0); 5386 auto *B = dyn_cast<BinaryOperator>(Op1); 5387 // Try to skip B. 5388 if (B && B->hasOneUse()) { 5389 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5390 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5391 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5392 return true; 5393 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5394 return true; 5395 } 5396 5397 // Try to skip A. 5398 if (A && A->hasOneUse()) { 5399 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5400 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5401 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5402 return true; 5403 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5404 return true; 5405 } 5406 return false; 5407 } 5408 5409 /// Generate a shuffle mask to be used in a reduction tree. 5410 /// 5411 /// \param VecLen The length of the vector to be reduced. 5412 /// \param NumEltsToRdx The number of elements that should be reduced in the 5413 /// vector. 5414 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5415 /// reduction. A pairwise reduction will generate a mask of 5416 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5417 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5418 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5419 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5420 bool IsPairwise, bool IsLeft, 5421 IRBuilder<> &Builder) { 5422 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5423 5424 SmallVector<Constant *, 32> ShuffleMask( 5425 VecLen, UndefValue::get(Builder.getInt32Ty())); 5426 5427 if (IsPairwise) 5428 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5429 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5430 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5431 else 5432 // Move the upper half of the vector to the lower half. 5433 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5434 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5435 5436 return ConstantVector::get(ShuffleMask); 5437 } 5438 5439 namespace { 5440 5441 /// Model horizontal reductions. 5442 /// 5443 /// A horizontal reduction is a tree of reduction operations (currently add and 5444 /// fadd) that has operations that can be put into a vector as its leaf. 5445 /// For example, this tree: 5446 /// 5447 /// mul mul mul mul 5448 /// \ / \ / 5449 /// + + 5450 /// \ / 5451 /// + 5452 /// This tree has "mul" as its reduced values and "+" as its reduction 5453 /// operations. A reduction might be feeding into a store or a binary operation 5454 /// feeding a phi. 5455 /// ... 5456 /// \ / 5457 /// + 5458 /// | 5459 /// phi += 5460 /// 5461 /// Or: 5462 /// ... 5463 /// \ / 5464 /// + 5465 /// | 5466 /// *p = 5467 /// 5468 class HorizontalReduction { 5469 using ReductionOpsType = SmallVector<Value *, 16>; 5470 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5471 ReductionOpsListType ReductionOps; 5472 SmallVector<Value *, 32> ReducedVals; 5473 // Use map vector to make stable output. 5474 MapVector<Instruction *, Value *> ExtraArgs; 5475 5476 /// Kind of the reduction data. 5477 enum ReductionKind { 5478 RK_None, /// Not a reduction. 5479 RK_Arithmetic, /// Binary reduction data. 5480 RK_Min, /// Minimum reduction data. 5481 RK_UMin, /// Unsigned minimum reduction data. 5482 RK_Max, /// Maximum reduction data. 5483 RK_UMax, /// Unsigned maximum reduction data. 5484 }; 5485 5486 /// Contains info about operation, like its opcode, left and right operands. 5487 class OperationData { 5488 /// Opcode of the instruction. 5489 unsigned Opcode = 0; 5490 5491 /// Left operand of the reduction operation. 5492 Value *LHS = nullptr; 5493 5494 /// Right operand of the reduction operation. 5495 Value *RHS = nullptr; 5496 5497 /// Kind of the reduction operation. 5498 ReductionKind Kind = RK_None; 5499 5500 /// True if float point min/max reduction has no NaNs. 5501 bool NoNaN = false; 5502 5503 /// Checks if the reduction operation can be vectorized. 5504 bool isVectorizable() const { 5505 return LHS && RHS && 5506 // We currently only support add/mul/logical && min/max reductions. 5507 ((Kind == RK_Arithmetic && 5508 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5509 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5510 Opcode == Instruction::And || Opcode == Instruction::Or || 5511 Opcode == Instruction::Xor)) || 5512 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5513 (Kind == RK_Min || Kind == RK_Max)) || 5514 (Opcode == Instruction::ICmp && 5515 (Kind == RK_UMin || Kind == RK_UMax))); 5516 } 5517 5518 /// Creates reduction operation with the current opcode. 5519 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5520 assert(isVectorizable() && 5521 "Expected add|fadd or min/max reduction operation."); 5522 Value *Cmp; 5523 switch (Kind) { 5524 case RK_Arithmetic: 5525 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5526 Name); 5527 case RK_Min: 5528 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5529 : Builder.CreateFCmpOLT(LHS, RHS); 5530 break; 5531 case RK_Max: 5532 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5533 : Builder.CreateFCmpOGT(LHS, RHS); 5534 break; 5535 case RK_UMin: 5536 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5537 Cmp = Builder.CreateICmpULT(LHS, RHS); 5538 break; 5539 case RK_UMax: 5540 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5541 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5542 break; 5543 case RK_None: 5544 llvm_unreachable("Unknown reduction operation."); 5545 } 5546 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5547 } 5548 5549 public: 5550 explicit OperationData() = default; 5551 5552 /// Construction for reduced values. They are identified by opcode only and 5553 /// don't have associated LHS/RHS values. 5554 explicit OperationData(Value *V) { 5555 if (auto *I = dyn_cast<Instruction>(V)) 5556 Opcode = I->getOpcode(); 5557 } 5558 5559 /// Constructor for reduction operations with opcode and its left and 5560 /// right operands. 5561 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5562 bool NoNaN = false) 5563 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5564 assert(Kind != RK_None && "One of the reduction operations is expected."); 5565 } 5566 5567 explicit operator bool() const { return Opcode; } 5568 5569 /// Get the index of the first operand. 5570 unsigned getFirstOperandIndex() const { 5571 assert(!!*this && "The opcode is not set."); 5572 switch (Kind) { 5573 case RK_Min: 5574 case RK_UMin: 5575 case RK_Max: 5576 case RK_UMax: 5577 return 1; 5578 case RK_Arithmetic: 5579 case RK_None: 5580 break; 5581 } 5582 return 0; 5583 } 5584 5585 /// Total number of operands in the reduction operation. 5586 unsigned getNumberOfOperands() const { 5587 assert(Kind != RK_None && !!*this && LHS && RHS && 5588 "Expected reduction operation."); 5589 switch (Kind) { 5590 case RK_Arithmetic: 5591 return 2; 5592 case RK_Min: 5593 case RK_UMin: 5594 case RK_Max: 5595 case RK_UMax: 5596 return 3; 5597 case RK_None: 5598 break; 5599 } 5600 llvm_unreachable("Reduction kind is not set"); 5601 } 5602 5603 /// Checks if the operation has the same parent as \p P. 5604 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5605 assert(Kind != RK_None && !!*this && LHS && RHS && 5606 "Expected reduction operation."); 5607 if (!IsRedOp) 5608 return I->getParent() == P; 5609 switch (Kind) { 5610 case RK_Arithmetic: 5611 // Arithmetic reduction operation must be used once only. 5612 return I->getParent() == P; 5613 case RK_Min: 5614 case RK_UMin: 5615 case RK_Max: 5616 case RK_UMax: { 5617 // SelectInst must be used twice while the condition op must have single 5618 // use only. 5619 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5620 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5621 } 5622 case RK_None: 5623 break; 5624 } 5625 llvm_unreachable("Reduction kind is not set"); 5626 } 5627 /// Expected number of uses for reduction operations/reduced values. 5628 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5629 assert(Kind != RK_None && !!*this && LHS && RHS && 5630 "Expected reduction operation."); 5631 switch (Kind) { 5632 case RK_Arithmetic: 5633 return I->hasOneUse(); 5634 case RK_Min: 5635 case RK_UMin: 5636 case RK_Max: 5637 case RK_UMax: 5638 return I->hasNUses(2) && 5639 (!IsReductionOp || 5640 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5641 case RK_None: 5642 break; 5643 } 5644 llvm_unreachable("Reduction kind is not set"); 5645 } 5646 5647 /// Initializes the list of reduction operations. 5648 void initReductionOps(ReductionOpsListType &ReductionOps) { 5649 assert(Kind != RK_None && !!*this && LHS && RHS && 5650 "Expected reduction operation."); 5651 switch (Kind) { 5652 case RK_Arithmetic: 5653 ReductionOps.assign(1, ReductionOpsType()); 5654 break; 5655 case RK_Min: 5656 case RK_UMin: 5657 case RK_Max: 5658 case RK_UMax: 5659 ReductionOps.assign(2, ReductionOpsType()); 5660 break; 5661 case RK_None: 5662 llvm_unreachable("Reduction kind is not set"); 5663 } 5664 } 5665 /// Add all reduction operations for the reduction instruction \p I. 5666 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5667 assert(Kind != RK_None && !!*this && LHS && RHS && 5668 "Expected reduction operation."); 5669 switch (Kind) { 5670 case RK_Arithmetic: 5671 ReductionOps[0].emplace_back(I); 5672 break; 5673 case RK_Min: 5674 case RK_UMin: 5675 case RK_Max: 5676 case RK_UMax: 5677 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5678 ReductionOps[1].emplace_back(I); 5679 break; 5680 case RK_None: 5681 llvm_unreachable("Reduction kind is not set"); 5682 } 5683 } 5684 5685 /// Checks if instruction is associative and can be vectorized. 5686 bool isAssociative(Instruction *I) const { 5687 assert(Kind != RK_None && *this && LHS && RHS && 5688 "Expected reduction operation."); 5689 switch (Kind) { 5690 case RK_Arithmetic: 5691 return I->isAssociative(); 5692 case RK_Min: 5693 case RK_Max: 5694 return Opcode == Instruction::ICmp || 5695 cast<Instruction>(I->getOperand(0))->isFast(); 5696 case RK_UMin: 5697 case RK_UMax: 5698 assert(Opcode == Instruction::ICmp && 5699 "Only integer compare operation is expected."); 5700 return true; 5701 case RK_None: 5702 break; 5703 } 5704 llvm_unreachable("Reduction kind is not set"); 5705 } 5706 5707 /// Checks if the reduction operation can be vectorized. 5708 bool isVectorizable(Instruction *I) const { 5709 return isVectorizable() && isAssociative(I); 5710 } 5711 5712 /// Checks if two operation data are both a reduction op or both a reduced 5713 /// value. 5714 bool operator==(const OperationData &OD) { 5715 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5716 "One of the comparing operations is incorrect."); 5717 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5718 } 5719 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5720 void clear() { 5721 Opcode = 0; 5722 LHS = nullptr; 5723 RHS = nullptr; 5724 Kind = RK_None; 5725 NoNaN = false; 5726 } 5727 5728 /// Get the opcode of the reduction operation. 5729 unsigned getOpcode() const { 5730 assert(isVectorizable() && "Expected vectorizable operation."); 5731 return Opcode; 5732 } 5733 5734 /// Get kind of reduction data. 5735 ReductionKind getKind() const { return Kind; } 5736 Value *getLHS() const { return LHS; } 5737 Value *getRHS() const { return RHS; } 5738 Type *getConditionType() const { 5739 switch (Kind) { 5740 case RK_Arithmetic: 5741 return nullptr; 5742 case RK_Min: 5743 case RK_Max: 5744 case RK_UMin: 5745 case RK_UMax: 5746 return CmpInst::makeCmpResultType(LHS->getType()); 5747 case RK_None: 5748 break; 5749 } 5750 llvm_unreachable("Reduction kind is not set"); 5751 } 5752 5753 /// Creates reduction operation with the current opcode with the IR flags 5754 /// from \p ReductionOps. 5755 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5756 const ReductionOpsListType &ReductionOps) const { 5757 assert(isVectorizable() && 5758 "Expected add|fadd or min/max reduction operation."); 5759 auto *Op = createOp(Builder, Name); 5760 switch (Kind) { 5761 case RK_Arithmetic: 5762 propagateIRFlags(Op, ReductionOps[0]); 5763 return Op; 5764 case RK_Min: 5765 case RK_Max: 5766 case RK_UMin: 5767 case RK_UMax: 5768 if (auto *SI = dyn_cast<SelectInst>(Op)) 5769 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5770 propagateIRFlags(Op, ReductionOps[1]); 5771 return Op; 5772 case RK_None: 5773 break; 5774 } 5775 llvm_unreachable("Unknown reduction operation."); 5776 } 5777 /// Creates reduction operation with the current opcode with the IR flags 5778 /// from \p I. 5779 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5780 Instruction *I) const { 5781 assert(isVectorizable() && 5782 "Expected add|fadd or min/max reduction operation."); 5783 auto *Op = createOp(Builder, Name); 5784 switch (Kind) { 5785 case RK_Arithmetic: 5786 propagateIRFlags(Op, I); 5787 return Op; 5788 case RK_Min: 5789 case RK_Max: 5790 case RK_UMin: 5791 case RK_UMax: 5792 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5793 propagateIRFlags(SI->getCondition(), 5794 cast<SelectInst>(I)->getCondition()); 5795 } 5796 propagateIRFlags(Op, I); 5797 return Op; 5798 case RK_None: 5799 break; 5800 } 5801 llvm_unreachable("Unknown reduction operation."); 5802 } 5803 5804 TargetTransformInfo::ReductionFlags getFlags() const { 5805 TargetTransformInfo::ReductionFlags Flags; 5806 Flags.NoNaN = NoNaN; 5807 switch (Kind) { 5808 case RK_Arithmetic: 5809 break; 5810 case RK_Min: 5811 Flags.IsSigned = Opcode == Instruction::ICmp; 5812 Flags.IsMaxOp = false; 5813 break; 5814 case RK_Max: 5815 Flags.IsSigned = Opcode == Instruction::ICmp; 5816 Flags.IsMaxOp = true; 5817 break; 5818 case RK_UMin: 5819 Flags.IsSigned = false; 5820 Flags.IsMaxOp = false; 5821 break; 5822 case RK_UMax: 5823 Flags.IsSigned = false; 5824 Flags.IsMaxOp = true; 5825 break; 5826 case RK_None: 5827 llvm_unreachable("Reduction kind is not set"); 5828 } 5829 return Flags; 5830 } 5831 }; 5832 5833 WeakTrackingVH ReductionRoot; 5834 5835 /// The operation data of the reduction operation. 5836 OperationData ReductionData; 5837 5838 /// The operation data of the values we perform a reduction on. 5839 OperationData ReducedValueData; 5840 5841 /// Should we model this reduction as a pairwise reduction tree or a tree that 5842 /// splits the vector in halves and adds those halves. 5843 bool IsPairwiseReduction = false; 5844 5845 /// Checks if the ParentStackElem.first should be marked as a reduction 5846 /// operation with an extra argument or as extra argument itself. 5847 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5848 Value *ExtraArg) { 5849 if (ExtraArgs.count(ParentStackElem.first)) { 5850 ExtraArgs[ParentStackElem.first] = nullptr; 5851 // We ran into something like: 5852 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5853 // The whole ParentStackElem.first should be considered as an extra value 5854 // in this case. 5855 // Do not perform analysis of remaining operands of ParentStackElem.first 5856 // instruction, this whole instruction is an extra argument. 5857 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5858 } else { 5859 // We ran into something like: 5860 // ParentStackElem.first += ... + ExtraArg + ... 5861 ExtraArgs[ParentStackElem.first] = ExtraArg; 5862 } 5863 } 5864 5865 static OperationData getOperationData(Value *V) { 5866 if (!V) 5867 return OperationData(); 5868 5869 Value *LHS; 5870 Value *RHS; 5871 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5872 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5873 RK_Arithmetic); 5874 } 5875 if (auto *Select = dyn_cast<SelectInst>(V)) { 5876 // Look for a min/max pattern. 5877 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5878 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5879 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5880 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5881 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5882 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5883 return OperationData( 5884 Instruction::FCmp, LHS, RHS, RK_Min, 5885 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5886 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5887 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5888 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5889 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5890 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5891 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5892 return OperationData( 5893 Instruction::FCmp, LHS, RHS, RK_Max, 5894 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5895 } else { 5896 // Try harder: look for min/max pattern based on instructions producing 5897 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5898 // During the intermediate stages of SLP, it's very common to have 5899 // pattern like this (since optimizeGatherSequence is run only once 5900 // at the end): 5901 // %1 = extractelement <2 x i32> %a, i32 0 5902 // %2 = extractelement <2 x i32> %a, i32 1 5903 // %cond = icmp sgt i32 %1, %2 5904 // %3 = extractelement <2 x i32> %a, i32 0 5905 // %4 = extractelement <2 x i32> %a, i32 1 5906 // %select = select i1 %cond, i32 %3, i32 %4 5907 CmpInst::Predicate Pred; 5908 Instruction *L1; 5909 Instruction *L2; 5910 5911 LHS = Select->getTrueValue(); 5912 RHS = Select->getFalseValue(); 5913 Value *Cond = Select->getCondition(); 5914 5915 // TODO: Support inverse predicates. 5916 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5917 if (!isa<ExtractElementInst>(RHS) || 5918 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5919 return OperationData(V); 5920 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5921 if (!isa<ExtractElementInst>(LHS) || 5922 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5923 return OperationData(V); 5924 } else { 5925 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5926 return OperationData(V); 5927 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5928 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5929 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5930 return OperationData(V); 5931 } 5932 switch (Pred) { 5933 default: 5934 return OperationData(V); 5935 5936 case CmpInst::ICMP_ULT: 5937 case CmpInst::ICMP_ULE: 5938 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5939 5940 case CmpInst::ICMP_SLT: 5941 case CmpInst::ICMP_SLE: 5942 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5943 5944 case CmpInst::FCMP_OLT: 5945 case CmpInst::FCMP_OLE: 5946 case CmpInst::FCMP_ULT: 5947 case CmpInst::FCMP_ULE: 5948 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5949 cast<Instruction>(Cond)->hasNoNaNs()); 5950 5951 case CmpInst::ICMP_UGT: 5952 case CmpInst::ICMP_UGE: 5953 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5954 5955 case CmpInst::ICMP_SGT: 5956 case CmpInst::ICMP_SGE: 5957 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5958 5959 case CmpInst::FCMP_OGT: 5960 case CmpInst::FCMP_OGE: 5961 case CmpInst::FCMP_UGT: 5962 case CmpInst::FCMP_UGE: 5963 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5964 cast<Instruction>(Cond)->hasNoNaNs()); 5965 } 5966 } 5967 } 5968 return OperationData(V); 5969 } 5970 5971 public: 5972 HorizontalReduction() = default; 5973 5974 /// Try to find a reduction tree. 5975 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5976 assert((!Phi || is_contained(Phi->operands(), B)) && 5977 "Thi phi needs to use the binary operator"); 5978 5979 ReductionData = getOperationData(B); 5980 5981 // We could have a initial reductions that is not an add. 5982 // r *= v1 + v2 + v3 + v4 5983 // In such a case start looking for a tree rooted in the first '+'. 5984 if (Phi) { 5985 if (ReductionData.getLHS() == Phi) { 5986 Phi = nullptr; 5987 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5988 ReductionData = getOperationData(B); 5989 } else if (ReductionData.getRHS() == Phi) { 5990 Phi = nullptr; 5991 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5992 ReductionData = getOperationData(B); 5993 } 5994 } 5995 5996 if (!ReductionData.isVectorizable(B)) 5997 return false; 5998 5999 Type *Ty = B->getType(); 6000 if (!isValidElementType(Ty)) 6001 return false; 6002 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6003 return false; 6004 6005 ReducedValueData.clear(); 6006 ReductionRoot = B; 6007 6008 // Post order traverse the reduction tree starting at B. We only handle true 6009 // trees containing only binary operators. 6010 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6011 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6012 ReductionData.initReductionOps(ReductionOps); 6013 while (!Stack.empty()) { 6014 Instruction *TreeN = Stack.back().first; 6015 unsigned EdgeToVist = Stack.back().second++; 6016 OperationData OpData = getOperationData(TreeN); 6017 bool IsReducedValue = OpData != ReductionData; 6018 6019 // Postorder vist. 6020 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6021 if (IsReducedValue) 6022 ReducedVals.push_back(TreeN); 6023 else { 6024 auto I = ExtraArgs.find(TreeN); 6025 if (I != ExtraArgs.end() && !I->second) { 6026 // Check if TreeN is an extra argument of its parent operation. 6027 if (Stack.size() <= 1) { 6028 // TreeN can't be an extra argument as it is a root reduction 6029 // operation. 6030 return false; 6031 } 6032 // Yes, TreeN is an extra argument, do not add it to a list of 6033 // reduction operations. 6034 // Stack[Stack.size() - 2] always points to the parent operation. 6035 markExtraArg(Stack[Stack.size() - 2], TreeN); 6036 ExtraArgs.erase(TreeN); 6037 } else 6038 ReductionData.addReductionOps(TreeN, ReductionOps); 6039 } 6040 // Retract. 6041 Stack.pop_back(); 6042 continue; 6043 } 6044 6045 // Visit left or right. 6046 Value *NextV = TreeN->getOperand(EdgeToVist); 6047 if (NextV != Phi) { 6048 auto *I = dyn_cast<Instruction>(NextV); 6049 OpData = getOperationData(I); 6050 // Continue analysis if the next operand is a reduction operation or 6051 // (possibly) a reduced value. If the reduced value opcode is not set, 6052 // the first met operation != reduction operation is considered as the 6053 // reduced value class. 6054 if (I && (!ReducedValueData || OpData == ReducedValueData || 6055 OpData == ReductionData)) { 6056 const bool IsReductionOperation = OpData == ReductionData; 6057 // Only handle trees in the current basic block. 6058 if (!ReductionData.hasSameParent(I, B->getParent(), 6059 IsReductionOperation)) { 6060 // I is an extra argument for TreeN (its parent operation). 6061 markExtraArg(Stack.back(), I); 6062 continue; 6063 } 6064 6065 // Each tree node needs to have minimal number of users except for the 6066 // ultimate reduction. 6067 if (!ReductionData.hasRequiredNumberOfUses(I, 6068 OpData == ReductionData) && 6069 I != B) { 6070 // I is an extra argument for TreeN (its parent operation). 6071 markExtraArg(Stack.back(), I); 6072 continue; 6073 } 6074 6075 if (IsReductionOperation) { 6076 // We need to be able to reassociate the reduction operations. 6077 if (!OpData.isAssociative(I)) { 6078 // I is an extra argument for TreeN (its parent operation). 6079 markExtraArg(Stack.back(), I); 6080 continue; 6081 } 6082 } else if (ReducedValueData && 6083 ReducedValueData != OpData) { 6084 // Make sure that the opcodes of the operations that we are going to 6085 // reduce match. 6086 // I is an extra argument for TreeN (its parent operation). 6087 markExtraArg(Stack.back(), I); 6088 continue; 6089 } else if (!ReducedValueData) 6090 ReducedValueData = OpData; 6091 6092 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6093 continue; 6094 } 6095 } 6096 // NextV is an extra argument for TreeN (its parent operation). 6097 markExtraArg(Stack.back(), NextV); 6098 } 6099 return true; 6100 } 6101 6102 /// Attempt to vectorize the tree found by 6103 /// matchAssociativeReduction. 6104 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6105 if (ReducedVals.empty()) 6106 return false; 6107 6108 // If there is a sufficient number of reduction values, reduce 6109 // to a nearby power-of-2. Can safely generate oversized 6110 // vectors and rely on the backend to split them to legal sizes. 6111 unsigned NumReducedVals = ReducedVals.size(); 6112 if (NumReducedVals < 4) 6113 return false; 6114 6115 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6116 6117 Value *VectorizedTree = nullptr; 6118 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6119 FastMathFlags Unsafe; 6120 Unsafe.setFast(); 6121 Builder.setFastMathFlags(Unsafe); 6122 unsigned i = 0; 6123 6124 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6125 // The same extra argument may be used several time, so log each attempt 6126 // to use it. 6127 for (auto &Pair : ExtraArgs) { 6128 assert(Pair.first && "DebugLoc must be set."); 6129 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6130 } 6131 // The reduction root is used as the insertion point for new instructions, 6132 // so set it as externally used to prevent it from being deleted. 6133 ExternallyUsedValues[ReductionRoot]; 6134 SmallVector<Value *, 16> IgnoreList; 6135 for (auto &V : ReductionOps) 6136 IgnoreList.append(V.begin(), V.end()); 6137 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6138 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6139 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6140 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6141 // TODO: Handle orders of size less than number of elements in the vector. 6142 if (Order && Order->size() == VL.size()) { 6143 // TODO: reorder tree nodes without tree rebuilding. 6144 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6145 llvm::transform(*Order, ReorderedOps.begin(), 6146 [VL](const unsigned Idx) { return VL[Idx]; }); 6147 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6148 } 6149 if (V.isTreeTinyAndNotFullyVectorizable()) 6150 break; 6151 6152 V.computeMinimumValueSizes(); 6153 6154 // Estimate cost. 6155 int TreeCost = V.getTreeCost(); 6156 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6157 int Cost = TreeCost + ReductionCost; 6158 if (Cost >= -SLPCostThreshold) { 6159 V.getORE()->emit([&]() { 6160 return OptimizationRemarkMissed( 6161 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6162 << "Vectorizing horizontal reduction is possible" 6163 << "but not beneficial with cost " 6164 << ore::NV("Cost", Cost) << " and threshold " 6165 << ore::NV("Threshold", -SLPCostThreshold); 6166 }); 6167 break; 6168 } 6169 6170 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6171 << Cost << ". (HorRdx)\n"); 6172 V.getORE()->emit([&]() { 6173 return OptimizationRemark( 6174 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6175 << "Vectorized horizontal reduction with cost " 6176 << ore::NV("Cost", Cost) << " and with tree size " 6177 << ore::NV("TreeSize", V.getTreeSize()); 6178 }); 6179 6180 // Vectorize a tree. 6181 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6182 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6183 6184 // Emit a reduction. 6185 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6186 Value *ReducedSubTree = 6187 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6188 if (VectorizedTree) { 6189 Builder.SetCurrentDebugLocation(Loc); 6190 OperationData VectReductionData(ReductionData.getOpcode(), 6191 VectorizedTree, ReducedSubTree, 6192 ReductionData.getKind()); 6193 VectorizedTree = 6194 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6195 } else 6196 VectorizedTree = ReducedSubTree; 6197 i += ReduxWidth; 6198 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6199 } 6200 6201 if (VectorizedTree) { 6202 // Finish the reduction. 6203 for (; i < NumReducedVals; ++i) { 6204 auto *I = cast<Instruction>(ReducedVals[i]); 6205 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6206 OperationData VectReductionData(ReductionData.getOpcode(), 6207 VectorizedTree, I, 6208 ReductionData.getKind()); 6209 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6210 } 6211 for (auto &Pair : ExternallyUsedValues) { 6212 // Add each externally used value to the final reduction. 6213 for (auto *I : Pair.second) { 6214 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6215 OperationData VectReductionData(ReductionData.getOpcode(), 6216 VectorizedTree, Pair.first, 6217 ReductionData.getKind()); 6218 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6219 } 6220 } 6221 // Update users. 6222 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6223 } 6224 return VectorizedTree != nullptr; 6225 } 6226 6227 unsigned numReductionValues() const { 6228 return ReducedVals.size(); 6229 } 6230 6231 private: 6232 /// Calculate the cost of a reduction. 6233 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6234 unsigned ReduxWidth) { 6235 Type *ScalarTy = FirstReducedVal->getType(); 6236 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6237 6238 int PairwiseRdxCost; 6239 int SplittingRdxCost; 6240 switch (ReductionData.getKind()) { 6241 case RK_Arithmetic: 6242 PairwiseRdxCost = 6243 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6244 /*IsPairwiseForm=*/true); 6245 SplittingRdxCost = 6246 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6247 /*IsPairwiseForm=*/false); 6248 break; 6249 case RK_Min: 6250 case RK_Max: 6251 case RK_UMin: 6252 case RK_UMax: { 6253 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6254 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6255 ReductionData.getKind() == RK_UMax; 6256 PairwiseRdxCost = 6257 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6258 /*IsPairwiseForm=*/true, IsUnsigned); 6259 SplittingRdxCost = 6260 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6261 /*IsPairwiseForm=*/false, IsUnsigned); 6262 break; 6263 } 6264 case RK_None: 6265 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6266 } 6267 6268 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6269 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6270 6271 int ScalarReduxCost; 6272 switch (ReductionData.getKind()) { 6273 case RK_Arithmetic: 6274 ScalarReduxCost = 6275 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6276 break; 6277 case RK_Min: 6278 case RK_Max: 6279 case RK_UMin: 6280 case RK_UMax: 6281 ScalarReduxCost = 6282 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6283 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6284 CmpInst::makeCmpResultType(ScalarTy)); 6285 break; 6286 case RK_None: 6287 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6288 } 6289 ScalarReduxCost *= (ReduxWidth - 1); 6290 6291 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6292 << " for reduction that starts with " << *FirstReducedVal 6293 << " (It is a " 6294 << (IsPairwiseReduction ? "pairwise" : "splitting") 6295 << " reduction)\n"); 6296 6297 return VecReduxCost - ScalarReduxCost; 6298 } 6299 6300 /// Emit a horizontal reduction of the vectorized value. 6301 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6302 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6303 assert(VectorizedValue && "Need to have a vectorized tree node"); 6304 assert(isPowerOf2_32(ReduxWidth) && 6305 "We only handle power-of-two reductions for now"); 6306 6307 if (!IsPairwiseReduction) 6308 return createSimpleTargetReduction( 6309 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6310 ReductionData.getFlags(), FastMathFlags::getFast(), 6311 ReductionOps.back()); 6312 6313 Value *TmpVec = VectorizedValue; 6314 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6315 Value *LeftMask = 6316 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6317 Value *RightMask = 6318 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6319 6320 Value *LeftShuf = Builder.CreateShuffleVector( 6321 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6322 Value *RightShuf = Builder.CreateShuffleVector( 6323 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6324 "rdx.shuf.r"); 6325 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6326 RightShuf, ReductionData.getKind()); 6327 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6328 } 6329 6330 // The result is in the first element of the vector. 6331 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6332 } 6333 }; 6334 6335 } // end anonymous namespace 6336 6337 /// Recognize construction of vectors like 6338 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6339 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6340 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6341 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6342 /// starting from the last insertelement instruction. 6343 /// 6344 /// Returns true if it matches 6345 static bool findBuildVector(InsertElementInst *LastInsertElem, 6346 TargetTransformInfo *TTI, 6347 SmallVectorImpl<Value *> &BuildVectorOpds, 6348 int &UserCost) { 6349 UserCost = 0; 6350 Value *V = nullptr; 6351 do { 6352 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6353 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6354 LastInsertElem->getType(), 6355 CI->getZExtValue()); 6356 } 6357 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6358 V = LastInsertElem->getOperand(0); 6359 if (isa<UndefValue>(V)) 6360 break; 6361 LastInsertElem = dyn_cast<InsertElementInst>(V); 6362 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6363 return false; 6364 } while (true); 6365 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6366 return true; 6367 } 6368 6369 /// Like findBuildVector, but looks for construction of aggregate. 6370 /// 6371 /// \return true if it matches. 6372 static bool findBuildAggregate(InsertValueInst *IV, 6373 SmallVectorImpl<Value *> &BuildVectorOpds) { 6374 Value *V; 6375 do { 6376 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6377 V = IV->getAggregateOperand(); 6378 if (isa<UndefValue>(V)) 6379 break; 6380 IV = dyn_cast<InsertValueInst>(V); 6381 if (!IV || !IV->hasOneUse()) 6382 return false; 6383 } while (true); 6384 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6385 return true; 6386 } 6387 6388 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6389 return V->getType() < V2->getType(); 6390 } 6391 6392 /// Try and get a reduction value from a phi node. 6393 /// 6394 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6395 /// if they come from either \p ParentBB or a containing loop latch. 6396 /// 6397 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6398 /// if not possible. 6399 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6400 BasicBlock *ParentBB, LoopInfo *LI) { 6401 // There are situations where the reduction value is not dominated by the 6402 // reduction phi. Vectorizing such cases has been reported to cause 6403 // miscompiles. See PR25787. 6404 auto DominatedReduxValue = [&](Value *R) { 6405 return isa<Instruction>(R) && 6406 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6407 }; 6408 6409 Value *Rdx = nullptr; 6410 6411 // Return the incoming value if it comes from the same BB as the phi node. 6412 if (P->getIncomingBlock(0) == ParentBB) { 6413 Rdx = P->getIncomingValue(0); 6414 } else if (P->getIncomingBlock(1) == ParentBB) { 6415 Rdx = P->getIncomingValue(1); 6416 } 6417 6418 if (Rdx && DominatedReduxValue(Rdx)) 6419 return Rdx; 6420 6421 // Otherwise, check whether we have a loop latch to look at. 6422 Loop *BBL = LI->getLoopFor(ParentBB); 6423 if (!BBL) 6424 return nullptr; 6425 BasicBlock *BBLatch = BBL->getLoopLatch(); 6426 if (!BBLatch) 6427 return nullptr; 6428 6429 // There is a loop latch, return the incoming value if it comes from 6430 // that. This reduction pattern occasionally turns up. 6431 if (P->getIncomingBlock(0) == BBLatch) { 6432 Rdx = P->getIncomingValue(0); 6433 } else if (P->getIncomingBlock(1) == BBLatch) { 6434 Rdx = P->getIncomingValue(1); 6435 } 6436 6437 if (Rdx && DominatedReduxValue(Rdx)) 6438 return Rdx; 6439 6440 return nullptr; 6441 } 6442 6443 /// Attempt to reduce a horizontal reduction. 6444 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6445 /// with reduction operators \a Root (or one of its operands) in a basic block 6446 /// \a BB, then check if it can be done. If horizontal reduction is not found 6447 /// and root instruction is a binary operation, vectorization of the operands is 6448 /// attempted. 6449 /// \returns true if a horizontal reduction was matched and reduced or operands 6450 /// of one of the binary instruction were vectorized. 6451 /// \returns false if a horizontal reduction was not matched (or not possible) 6452 /// or no vectorization of any binary operation feeding \a Root instruction was 6453 /// performed. 6454 static bool tryToVectorizeHorReductionOrInstOperands( 6455 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6456 TargetTransformInfo *TTI, 6457 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6458 if (!ShouldVectorizeHor) 6459 return false; 6460 6461 if (!Root) 6462 return false; 6463 6464 if (Root->getParent() != BB || isa<PHINode>(Root)) 6465 return false; 6466 // Start analysis starting from Root instruction. If horizontal reduction is 6467 // found, try to vectorize it. If it is not a horizontal reduction or 6468 // vectorization is not possible or not effective, and currently analyzed 6469 // instruction is a binary operation, try to vectorize the operands, using 6470 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6471 // the same procedure considering each operand as a possible root of the 6472 // horizontal reduction. 6473 // Interrupt the process if the Root instruction itself was vectorized or all 6474 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6475 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6476 SmallPtrSet<Value *, 8> VisitedInstrs; 6477 bool Res = false; 6478 while (!Stack.empty()) { 6479 Value *V; 6480 unsigned Level; 6481 std::tie(V, Level) = Stack.pop_back_val(); 6482 if (!V) 6483 continue; 6484 auto *Inst = dyn_cast<Instruction>(V); 6485 if (!Inst) 6486 continue; 6487 auto *BI = dyn_cast<BinaryOperator>(Inst); 6488 auto *SI = dyn_cast<SelectInst>(Inst); 6489 if (BI || SI) { 6490 HorizontalReduction HorRdx; 6491 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6492 if (HorRdx.tryToReduce(R, TTI)) { 6493 Res = true; 6494 // Set P to nullptr to avoid re-analysis of phi node in 6495 // matchAssociativeReduction function unless this is the root node. 6496 P = nullptr; 6497 continue; 6498 } 6499 } 6500 if (P && BI) { 6501 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6502 if (Inst == P) 6503 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6504 if (!Inst) { 6505 // Set P to nullptr to avoid re-analysis of phi node in 6506 // matchAssociativeReduction function unless this is the root node. 6507 P = nullptr; 6508 continue; 6509 } 6510 } 6511 } 6512 // Set P to nullptr to avoid re-analysis of phi node in 6513 // matchAssociativeReduction function unless this is the root node. 6514 P = nullptr; 6515 if (Vectorize(Inst, R)) { 6516 Res = true; 6517 continue; 6518 } 6519 6520 // Try to vectorize operands. 6521 // Continue analysis for the instruction from the same basic block only to 6522 // save compile time. 6523 if (++Level < RecursionMaxDepth) 6524 for (auto *Op : Inst->operand_values()) 6525 if (VisitedInstrs.insert(Op).second) 6526 if (auto *I = dyn_cast<Instruction>(Op)) 6527 if (!isa<PHINode>(I) && I->getParent() == BB) 6528 Stack.emplace_back(Op, Level); 6529 } 6530 return Res; 6531 } 6532 6533 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6534 BasicBlock *BB, BoUpSLP &R, 6535 TargetTransformInfo *TTI) { 6536 if (!V) 6537 return false; 6538 auto *I = dyn_cast<Instruction>(V); 6539 if (!I) 6540 return false; 6541 6542 if (!isa<BinaryOperator>(I)) 6543 P = nullptr; 6544 // Try to match and vectorize a horizontal reduction. 6545 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6546 return tryToVectorize(I, R); 6547 }; 6548 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6549 ExtraVectorization); 6550 } 6551 6552 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6553 BasicBlock *BB, BoUpSLP &R) { 6554 const DataLayout &DL = BB->getModule()->getDataLayout(); 6555 if (!R.canMapToVector(IVI->getType(), DL)) 6556 return false; 6557 6558 SmallVector<Value *, 16> BuildVectorOpds; 6559 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6560 return false; 6561 6562 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6563 // Aggregate value is unlikely to be processed in vector register, we need to 6564 // extract scalars into scalar registers, so NeedExtraction is set true. 6565 return tryToVectorizeList(BuildVectorOpds, R); 6566 } 6567 6568 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6569 BasicBlock *BB, BoUpSLP &R) { 6570 int UserCost; 6571 SmallVector<Value *, 16> BuildVectorOpds; 6572 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6573 (llvm::all_of(BuildVectorOpds, 6574 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6575 isShuffle(BuildVectorOpds))) 6576 return false; 6577 6578 // Vectorize starting with the build vector operands ignoring the BuildVector 6579 // instructions for the purpose of scheduling and user extraction. 6580 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6581 } 6582 6583 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6584 BoUpSLP &R) { 6585 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6586 return true; 6587 6588 bool OpsChanged = false; 6589 for (int Idx = 0; Idx < 2; ++Idx) { 6590 OpsChanged |= 6591 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6592 } 6593 return OpsChanged; 6594 } 6595 6596 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6597 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6598 bool OpsChanged = false; 6599 for (auto &VH : reverse(Instructions)) { 6600 auto *I = dyn_cast_or_null<Instruction>(VH); 6601 if (!I) 6602 continue; 6603 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6604 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6605 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6606 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6607 else if (auto *CI = dyn_cast<CmpInst>(I)) 6608 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6609 } 6610 Instructions.clear(); 6611 return OpsChanged; 6612 } 6613 6614 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6615 bool Changed = false; 6616 SmallVector<Value *, 4> Incoming; 6617 SmallPtrSet<Value *, 16> VisitedInstrs; 6618 6619 bool HaveVectorizedPhiNodes = true; 6620 while (HaveVectorizedPhiNodes) { 6621 HaveVectorizedPhiNodes = false; 6622 6623 // Collect the incoming values from the PHIs. 6624 Incoming.clear(); 6625 for (Instruction &I : *BB) { 6626 PHINode *P = dyn_cast<PHINode>(&I); 6627 if (!P) 6628 break; 6629 6630 if (!VisitedInstrs.count(P)) 6631 Incoming.push_back(P); 6632 } 6633 6634 // Sort by type. 6635 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6636 6637 // Try to vectorize elements base on their type. 6638 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6639 E = Incoming.end(); 6640 IncIt != E;) { 6641 6642 // Look for the next elements with the same type. 6643 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6644 while (SameTypeIt != E && 6645 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6646 VisitedInstrs.insert(*SameTypeIt); 6647 ++SameTypeIt; 6648 } 6649 6650 // Try to vectorize them. 6651 unsigned NumElts = (SameTypeIt - IncIt); 6652 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6653 << NumElts << ")\n"); 6654 // The order in which the phi nodes appear in the program does not matter. 6655 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6656 // is done when there are exactly two elements since tryToVectorizeList 6657 // asserts that there are only two values when AllowReorder is true. 6658 bool AllowReorder = NumElts == 2; 6659 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6660 /*UserCost=*/0, AllowReorder)) { 6661 // Success start over because instructions might have been changed. 6662 HaveVectorizedPhiNodes = true; 6663 Changed = true; 6664 break; 6665 } 6666 6667 // Start over at the next instruction of a different type (or the end). 6668 IncIt = SameTypeIt; 6669 } 6670 } 6671 6672 VisitedInstrs.clear(); 6673 6674 SmallVector<WeakVH, 8> PostProcessInstructions; 6675 SmallDenseSet<Instruction *, 4> KeyNodes; 6676 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6677 // We may go through BB multiple times so skip the one we have checked. 6678 if (!VisitedInstrs.insert(&*it).second) { 6679 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6680 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6681 // We would like to start over since some instructions are deleted 6682 // and the iterator may become invalid value. 6683 Changed = true; 6684 it = BB->begin(); 6685 e = BB->end(); 6686 } 6687 continue; 6688 } 6689 6690 if (isa<DbgInfoIntrinsic>(it)) 6691 continue; 6692 6693 // Try to vectorize reductions that use PHINodes. 6694 if (PHINode *P = dyn_cast<PHINode>(it)) { 6695 // Check that the PHI is a reduction PHI. 6696 if (P->getNumIncomingValues() != 2) 6697 return Changed; 6698 6699 // Try to match and vectorize a horizontal reduction. 6700 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6701 TTI)) { 6702 Changed = true; 6703 it = BB->begin(); 6704 e = BB->end(); 6705 continue; 6706 } 6707 continue; 6708 } 6709 6710 // Ran into an instruction without users, like terminator, or function call 6711 // with ignored return value, store. Ignore unused instructions (basing on 6712 // instruction type, except for CallInst and InvokeInst). 6713 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6714 isa<InvokeInst>(it))) { 6715 KeyNodes.insert(&*it); 6716 bool OpsChanged = false; 6717 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6718 for (auto *V : it->operand_values()) { 6719 // Try to match and vectorize a horizontal reduction. 6720 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6721 } 6722 } 6723 // Start vectorization of post-process list of instructions from the 6724 // top-tree instructions to try to vectorize as many instructions as 6725 // possible. 6726 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6727 if (OpsChanged) { 6728 // We would like to start over since some instructions are deleted 6729 // and the iterator may become invalid value. 6730 Changed = true; 6731 it = BB->begin(); 6732 e = BB->end(); 6733 continue; 6734 } 6735 } 6736 6737 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6738 isa<InsertValueInst>(it)) 6739 PostProcessInstructions.push_back(&*it); 6740 } 6741 6742 return Changed; 6743 } 6744 6745 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6746 auto Changed = false; 6747 for (auto &Entry : GEPs) { 6748 // If the getelementptr list has fewer than two elements, there's nothing 6749 // to do. 6750 if (Entry.second.size() < 2) 6751 continue; 6752 6753 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6754 << Entry.second.size() << ".\n"); 6755 6756 // We process the getelementptr list in chunks of 16 (like we do for 6757 // stores) to minimize compile-time. 6758 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6759 auto Len = std::min<unsigned>(BE - BI, 16); 6760 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6761 6762 // Initialize a set a candidate getelementptrs. Note that we use a 6763 // SetVector here to preserve program order. If the index computations 6764 // are vectorizable and begin with loads, we want to minimize the chance 6765 // of having to reorder them later. 6766 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6767 6768 // Some of the candidates may have already been vectorized after we 6769 // initially collected them. If so, the WeakTrackingVHs will have 6770 // nullified the 6771 // values, so remove them from the set of candidates. 6772 Candidates.remove(nullptr); 6773 6774 // Remove from the set of candidates all pairs of getelementptrs with 6775 // constant differences. Such getelementptrs are likely not good 6776 // candidates for vectorization in a bottom-up phase since one can be 6777 // computed from the other. We also ensure all candidate getelementptr 6778 // indices are unique. 6779 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6780 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6781 if (!Candidates.count(GEPI)) 6782 continue; 6783 auto *SCEVI = SE->getSCEV(GEPList[I]); 6784 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6785 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6786 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6787 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6788 Candidates.remove(GEPList[I]); 6789 Candidates.remove(GEPList[J]); 6790 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6791 Candidates.remove(GEPList[J]); 6792 } 6793 } 6794 } 6795 6796 // We break out of the above computation as soon as we know there are 6797 // fewer than two candidates remaining. 6798 if (Candidates.size() < 2) 6799 continue; 6800 6801 // Add the single, non-constant index of each candidate to the bundle. We 6802 // ensured the indices met these constraints when we originally collected 6803 // the getelementptrs. 6804 SmallVector<Value *, 16> Bundle(Candidates.size()); 6805 auto BundleIndex = 0u; 6806 for (auto *V : Candidates) { 6807 auto *GEP = cast<GetElementPtrInst>(V); 6808 auto *GEPIdx = GEP->idx_begin()->get(); 6809 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6810 Bundle[BundleIndex++] = GEPIdx; 6811 } 6812 6813 // Try and vectorize the indices. We are currently only interested in 6814 // gather-like cases of the form: 6815 // 6816 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6817 // 6818 // where the loads of "a", the loads of "b", and the subtractions can be 6819 // performed in parallel. It's likely that detecting this pattern in a 6820 // bottom-up phase will be simpler and less costly than building a 6821 // full-blown top-down phase beginning at the consecutive loads. 6822 Changed |= tryToVectorizeList(Bundle, R); 6823 } 6824 } 6825 return Changed; 6826 } 6827 6828 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6829 bool Changed = false; 6830 // Attempt to sort and vectorize each of the store-groups. 6831 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6832 ++it) { 6833 if (it->second.size() < 2) 6834 continue; 6835 6836 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6837 << it->second.size() << ".\n"); 6838 6839 // Process the stores in chunks of 16. 6840 // TODO: The limit of 16 inhibits greater vectorization factors. 6841 // For example, AVX2 supports v32i8. Increasing this limit, however, 6842 // may cause a significant compile-time increase. 6843 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6844 unsigned Len = std::min<unsigned>(CE - CI, 16); 6845 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6846 } 6847 } 6848 return Changed; 6849 } 6850 6851 char SLPVectorizer::ID = 0; 6852 6853 static const char lv_name[] = "SLP Vectorizer"; 6854 6855 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6856 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6857 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6858 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6859 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6860 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6861 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6862 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6863 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6864 6865 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6866